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ABSTRACT

APPLICATION OF A LINEAR VISCOELASTIC PLATE THEORY
TO HYGROSCOPIC WARPING OF LAMINATES

By

Hong Xu

A linear viscoelastic plate theory (LVP) was formulated based on Classical
Lamination Theory (CLT) and the linear viscoelastic constitutive equation for
hygroscopic materials such as wood and wood-based materials. Its solvable numerical
equivalence was arrived at by linear numerical integration of its integral governing
equation and its computation was automated on a desktop computer. Its validity was
examined when it was applied to the hygroscopic warping of a two-ply cross laminated
yellow-poplar (Liriodendron tulipifera) laminate and the theoretical predictions by the
LVP were compared with the measured warps suffered by the laminate subjected to a
high humidity environment. The viscoelastic creep properties of yellow-poplar in the
radial direction, needed as input in the application of the LVP, were tested and
characterized by a four-element Burger body. The non-Newtonian dashpot used in the
model is to account for the non-Newtonian behavior of the flow component of the
viscoelastic deformation. The general behavior of yellow-poplar in its radial direction
was found to be clearly nonlinearly viscoelastic, especially regarding the flow component
’and the recoverable component, while it is linearly elastic for the instantaneous elastic
component. The separate effects of moisture content, stress, and time on the four
coefficients of the four-element Burger body were investigated and mathematically

represented. The numerical form of the isothermal LVP theory was used to approximate
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warping - a nonlinear nonisothermal viscoelastic process - by accounting for the
variations of moisture content, stresses, and the four moisture content-stress dependent
viscoelastic coefficients in step-wise increments. The LVP theory resulted in much
improved predictions over its elastic counterpart. But, it failed to describe the warping
process satisfactorily in that it underestimated the drastic relaxation in the early stages
of the warping of the yellow-poplar laminate. Much of the error is very possibly due to
the mechano-sorptive effect which is known to cause far greater and more rapid creep
and relaxation and which is also prominent in warping and which was not incorporated
into the relaxation moduli input in the application. It is also demonstrated that any extra
effort within the elasticity realm in dealing with the warping problem in high and cyclic

humidity conditions will probably result in limited improvement.
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CHAPTER 1

INTRODUCTION

1.1 Background

Warping may be defined as the deviation of the geometry of a panel from an
initial state. This initial state is almost always desired to be a state of flatness in
practical cases. The warped condition would thus be considered a defect [Suchsland,
1985].

Warping, probably one of the most pervasive problem in the wood industry,
results in substantial losses to both the manufacturers and users. Even though efforts over
the years have been made to solve it, two aspects of this phenomenon make it remain as
one of the most puzzling and frustrating problems to both the experienced manufacturing
and research professionals.

First, warping is a condition that can rarely be corrected or repaired, once it
occurs. Often the entire panel or the entire product of which the panel is a part must be
replaced with no real guarantee that the replacement will perform better than the original
[Suchsland, 1985].

Secondly, warping usually occurs subsequent to the manufacture of panels or

products of which panels are a part as indicated in the definition. This subsequent nature
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2

indicates that either the panel itself may have experienced some changes under changed
environments, or the changing surroundings may have caused certain inherent properties
to manifest themselves in the form of warping, or both. In any case, this is an instability
in the panel itself, and therefore the control must be directed to the manufacturing
process of the panel to avoid it. However, warping potentials are difficult to recognize
since the processing variables involved are complex and their contributions to warping
are not all understood. It is just difficult to relate the warping of a returned panel to
processing conditions at the time of manufacturing [Suchsland, 1985].

Warping is a manifestation of dimensional instability caused by linear dimensional
changes in panel elements. The environmental changes that cause dimensional changes
in wood and wood-based materials are temperature and humidity changes. Since the
thermal expansion coefficient is much smaller than the hygroscopic expansion coefficient
(Table 1), it can thus be recognized that the humidity change is the major factor in the
warping process.

Table 1. Thermal and hygroscopic expansion coefficients of some wood species [Forest
Products Laboratory, 1987].

Thermal Coefficient (/F°) Hygroscopic coefficient (/MC(%))
Species Longitudinal Radial - Longitudinal Radial Tangential

Tangential

Walnut 0.17x10% 0.85x%10° 0.3x10* 0.18x 102 0.26x10?
S S

Red Oak 0.25x10 2.50%10° 0.6x10* 0.15% 102 0.37x 102

Red Pine for dry wood for most for most 0.13x10? 0.24x10?

species species
Douglas-fir 0.16x10? 0.25%10?



Conside;
an evenrual so!!
elastic approac’]
success. One ex
Norris [1942].
tesults by far ha’

However,
%ood and oo
tese conditions
¥aping process
Proach overes

"US at low gy,

A greay
chammeriZatiOn
Mater)g. But 1,
. "t been esta

tis bejie
Wema“ding of
e thay



3

Considerable research work has been directed towards a better understanding and
an eventual solution of warping. On the mathematical and theoretical side are many
elastic approaches which have been developed and have achieved moderate to good
success. One example is the popular beam approach used by Ismar and Paulitsch [1973],
Norris [1942], and Suchsland [1985]. The associated simplicity and its fairly reliable
results by far have made this approach the most useful analytical tool.

However, it is also recognized that the elastic approach is limited by the fact that
wood and wood-based materials behave elastically only under certain conditions. Once
these conditions are violated, the elastic approach would not be able to explain the
warping process with sufficient accuracy. Suchsland [1985] showed that the elastic beam
approach overestimated the warping of three-ply cross laminated red oak and three-ply
cross laminated loblolly pine beams at high humidities, while it provided agreeable
results at low and moderate humidities.

A great deal so far has been achieved regarding the understanding and
characterization of the significant viscoelastic behaviors of wood and wood-based
materials. But, how these viscoelastic properties are involved in the warping problems
has not been established.

It is believed that there are many avenues that could be taken to improve our
understanding of the warping mechanism. One of them is to develop a viscoelastic
approach that would account for the viscoelastic properties of constituent materials in

warping panels.

!
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1.2 Objectives of the Study

The first goal of this research is to formulate a linear viscoelastic plate theory and
derive its solvable numerical form for panels of materials that are known to develop
significant hygroscopic deformations or strains. Examples of such materials are wood and
wood-based materials.

The second objective is to examine the applicability and validity of the theory by
applying it to a two-ply cross laminated yellow-poplar laminate and beam, subjected to
high humidity. Theoretical predictions of warping by the theory will be compared with
the measured values.

In developing the necessary inputs for the application, yellow-poplar will be tested
for its viscoelastic properties in radial tension creep, and proper characterization of these

properties will be sought.
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CHAPTER II

DEVELOPMENT OF A LINEAR VISCOELASTIC PLATE THEORY
FOR HYGROSCOPIC COMPOSITE LAMINATES

2.1 Introduction

Laminated wood and wood composite panels can be regarded as multi-layer struc-
tured composite plates comprised of any number of physical or imaginary layers of
orthotropic or isotropic character. Plane homogeneity is usually observed within all layers
while homogeneity or heterogeneity exists between layers.

The approach taken here in the development of a viscoelastic plate theory consists
of two procedures. First, an appropriate elastic plate theory is chosen. Then, the elastic
constitutive equations of the plate theory, namely Hooke’s Law, are substituted by linear
viscoelastic constitutive equations, namely Boltzmann Superposition Principle [Schapery,
1967]. Therefore, the key that distinguishes the two theories lies in the constitutive equa-
tions (stress-strain relations) while all other elements remain the same. The success of
such a viscoelastic theory inevitably and inherently depends on, among other things, the

validity of its elastic foundation.

2.2 Validity of the Classical Lamination Theory (CLT)

Exact solutions based on three dimensional elasticity are attainable for composite
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6

plates [Pagano, 1969 and 1970]. However, certain restrictions have to be imposed upon
plate structure, boundary conditions, and loading patterns, thereby limiting the extension
of this approach to only a number of certain ideal cases.

Many plate theories have been developed as alternatives. While three-dimensional
theories [Rehfield and Valesetty, 1983; Pagano and Soni, 1983] tend to be intractable as
the number of layers becomes moderately large, two dimensional ones are less rigorous
and of good approximation accuracy.

Classical Lamination Theory (CLT) is the most basic and simple two-dimensional
theory in which it is [Jones, 1975; Liu, 1987] assumed that normals to the mid-plane
before deformation remain straight and normal to the plane after deformation in its
displacement field. In this regard it is equivalent to beam theory, but on a two
dimensional scale. The implication is that the transverse normal and shear components
are not accounted for. The resulting errors are overestimates of natural frequencies, and
underestimates of transverse deflections of composite plates. In case of advanced
composites, these errors become substantial because of the large elastic modulus to shear
modulus ratios of these materials (e.g., of the order of 25 to 40, instead of 2.6 for
typical isotropic materials) [Reddy, 1984].

To improve upon CLT, shear deformation theories and further improvement -
high-order theories - which include the transverse components have been proposed. Some
examples have been offered by Mindlin [1951], Whitney & Pagano [1970], Whitney &
Sun [1973], Lo & Christensen & Wu [1977], and Reddy [1984], in which linear or high-

order variations of mid-plane displacements through thickness are assumed in their
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7

respective displacement fields. They are generally much more accurate, as demonstrated
in Figures 1 to 6, where a very precise agreement of the high-order theory by Lo,
Christensen, and Wu [1977] with exact solutions is observed as opposed to CLT. It is
also noted that the poor agreement between CLT and exact solutions improved con-
siderably with the increase in aspect ratio.

This last observation is not incidental. It became very evident in the investigations
by Pagano [1969, 1970, 1971, and 1972] on CLT’s relations with exact solutions. He
showed [1972] that exact solutions converged to the respective CLT solutions for a
specific composite plate as its aspect ratio became very large (Shear deformation theories
and high-order theories, converging to exact solutions, subsequently converge to
respective CLT solutions under the same condition.). His results - Figures 7 to 10 and
Table 2 - clearly illustrate the rapid disappearance of the considerable deviation between
CLT and exact solutions in normal stress, shear stress, and in-plane displacement at an
aspect ratio of only 10. Convergence in the case of vertical deflection is relatively
slower, yet fairly good agreement is already achieved at an aspect ratio of 20.

The effect of number of layers was also examined by Pagano [1972]. His results
in Table 2 display a faster convergence for a composite plate of given thickness with the
increase in number of layers.

The described convergence property therefore defines the range of validity of
CLT with one parameter - aspect ratio. In practical applications, warping of wood and
wood composite plates, when identified as a problem, is normally associated with big

panels, whose large aspect ratios (larger than 20) thereby place themselves well into the






Table 2a. Maximum stresses and deflection in 3-ply laminate [Pagano, 1972].

Aspect Ratio g, g, Ta Ty Ty w
S (@2,a/2,+1/2) (a/2,a/2,+1/4) (0,a/2,0) (a/2,0,0) (0,0,+1/2) (a/2,2/2,0)
Elasticity Solution

2 1.388 0.835 0.153 0.295 -0.0863 11.767
-0.912 -0.795 0.264 0.298 0.0673

4 0.720 0.663 0.219 0.292 -0.0467 4.491
-0.684 0.666 0.222 0.0458

10 +0.559 0.401 0.301 0.196 -0.0275 1.709
-0.403 0.0276

20 +0.543 0.308 0.328 0.156 +0.0230 1.189

-0.309
50 +0.539 +0.276 0.337 0.141 +0.0216 1.031
100 +0.539 +0.271 0.339 0.139 +0.0214 1.008
CLT Solution
+0.539 +0.269 0.339 0.138 +0.0213 1.000

Table 2b. Maximum stresses and deflection in 5-ply laminate [Pagano, 1972].

Aspect Ratio 71-, g T T T w

S (@/2,a/2,1+1/2) (a/2,a/2fi 1/4) (O,a/;.O) (a/2.8,0) 0,0, ;:, 172) (a/2,a/2,0)
Elasticity Solution

2 1.332 1.001 0.227 0.186 -0.0836 12.278
-0.903 -0.848 0.229 0.286 0.0634

4 0.685 0.633 0.238 0.229 -0.039%4 4.291
-0.651 -0.626 0.238 0.233 0.0384

10 +0.545 0.430 0.258 0.223 -0.0246 1.570
-0.432 0.223 0.0247

20 +0.539 +0.380 0.268 0.212 ¥0.0222 1.145

50 +0.539 +0.363 0.271 0.206 +0.0214 1.023

100 +0.539 +0.360 0.272 0.205 ¥0.0213 1.006

CLT Solution

+0.539 +0.359 0.272 0.205 +0.0213 1.000
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Table 2c. Maximum stresses and deflection in 7-ply laminate [Pagano, 1972].

Aspect Ratio g g T T T w

S (a/2,a/2: +1/2) (a/2,a/2ti 1/4) (O,a/;,O) (a/2,y(;.0) 0,0, ; 1/2) (a/2,a/2,0)
Elasticity Solution
2 1.284 1.039 0.178 0.238 -0.0775 12.342
-0.880 -0.8.8 0.229 0.239 0.0579
4 0.679 0.623 0.219 0.236 -0.0356 4.153
-0.645 -0.610 0.223 0.0347
10 +0.548 0.457 0.255 0.219 -0.0237 1.529
-0.458 0.255 0.0238
20 +0.539 0.419 0.267 0.210 +0.0219 1.133
-0.420
50 +0.539 +0.407 0.271 0.206 +0.0214 1.021
100 +0.539 +0.405 0.272 0.205 +0.0213 1.005
CLT Solution
+0.539 +0.404 0.272 0.205 +0.0213 1.000

Table 2d. Maximum stresses and deflection in 9-ply laminate [Pagano, 1972].

Aspect Ratio a, g, Ta Ty Ty w
S (@/2,a/2,+1/2) (a2,a/2,+1/4) (0,2/2,0) (a/2,0,0)0 (0,0,+1/2) (a/2,a/2,0)
Elasticity Solution

2 1.260 1.051 0.204 0.194 -0.0722 12.288
-0.866 -0.824 0.224 0.211 0.0534

4 0.684 0.628 0.223 0.223 -0.0337 4.079
-0.649 0.612 0.223 0.225 0.0328

10 +0.551 0.477 0.247 0.226 -0.0233 1.512
0.226 0.0235

20 +0.541 +0.444 0.255 0.221 +0.0218 1.129

50 +0.539 +0.433 0.258 0.219 +0.0214 1.021

100 +0.539 +0.431 0.259 0.219 +0.0213 1.005

CLT Solution
_+0.539  +0.431 _ 0.259 0.219 +0.0213 1.000
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Figure 1. Flexural stress distribution for [+30°, -30°] angle-ply laminate at aspect ratio
L/h = 10 [Lo, Christensen, and Wu, 1977].
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Figure 2. Flexural stress distribution for [+30°, -30°] angle-ply laminate at aspect ratio
L/h = 4 [Lo, Christensen, and Wu, 1977].
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Figure 4. In-plane displacement for [+30°, -30°] angle-ply laminate at aspect ratio L/h
= 4 [Lo, Christensen, and Wu, 1977].
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validity range of CLT, in terms of accuracy.

It is seen in Table 4-1 in the Wood Handbook [Forest Products Laboratory, 1987]
that the elastic modulus to shear modulus ratios for wood can be large just as in the case
of advanced composites. Improved plate theories seem to be in order. However, the gain
in accuracy is very marginal due to the high accuracy of CLT approach at large aspect
ratios. Further, CLT has a critical advantage over high-order ones due to its simplicity
since the analytical complexity of an elastic foundation will inevitably complicate the
development process of a viscoelastic plate theory.

Finite Element Method (FEM) of composite plates is another approach providing
accuracy and automation capability. Tong and Suchsland [1992] made an attempt to apply
FEM to the warping of wood and wood composite panels. Based on the extensive time
and effort involved in the development of their elastic model, it is reasonable to speculate
that a sound viscoelastic FEM model may require a level of manpower and time that the
author lacks at this time. In addition, the numerical automation of their elastic model is
already beyond the capability of today’s desktop computers in terms of memory and
speed. Further, the elastic FEM model requires 9 independent elastic constants as inputs
(3 Poisson’s ratios, 3 moduli of elasticity, and 3 shear moduli), and it becomes clear that
a viscoelastic counterpart would need as inputs the quantitative descriptions of the time
dependent behaviors of these coefficients, which is not yet available and whose determi-
nation itself is an extensive and complicated task. Therefore, the practical applicability
of such a viscoelastic FEM model may be limited. In contrast a CLT-based viscoelastic

approach, in addition to possessing the validity of its elastic foundation at large aspect
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ratio, is quite easy to develop. A personal computer of adequate CPU and moderate
memory can carry out the computation automation at a fair speed. The smaller number
of inputs required renders it much more powerful.

CLT, by disregarding transverse shear and normal components in its displacement
field and thus making it inferior to improved plate theories in terms of defining the
behavior of composite plates, offers a blessing property in that the CLT and its
viscoelastic sibling are applicable where transverse normal and shear properties are not
readily available. Less stringent input requirement by a model characterizes its good
applicability - a trait always desired when good accuracy is already at hand.

In summary, the high accuracy at large aspect ratios, ease of analysis, and fewer
number of inputs required, justify CLT as being a good elastic foundation for the

development of a sound viscoelastic counterpart.

2.3 Introduction to the CLT

An introduction to the elastic CLT will be given prior to the development of the
CLT-based viscoelastic plate theory. The representations and derivations, which are quite
similar to the work by Liu [1987] and Jones [1975], are intended for convenience in

future referencing.

2.3.1 Displacement Field and Strain Field
Displacement field describes how a plate would deform under any combination

of external and/or internal forces and moments. Since it establishes a base for a plate
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theory, it accordingly fully governs the development, structure, and accuracy of such a
theory. The conditions under which such a description measures well against the actual
displacement behavior of plates determine the validity range for the resulting plate
theory.

The displacement field assumption for CLT is the familiar and classical Kirchhoff
Hypothesis. It assumes that: (1) a line originally straight and perpendicular to the mid-
plane of a laminate remains straight and perpendicular to the mid-plane after the laminate
is deformed, and (2) such a normal line has a constant length across the thickness before
and after laminate deformation, as shown in Figure 11. If transverse shear strains were
not zero (y,,#0, v,,#0), than transverse shear deformation would be present across the
laminate thickness, and a straight normal to the mid-plane would not remain straight and
normal after laminate deformation, violating assumption (1). If normal strain exists
across the thickness (e, # 0), causing plate thickness change, than a straight normal would
change its length across laminate thickness, violating assumption (2). Conversely, the
condition vy, =v,,=¢,=0 (no transverse shear deformation and no normal deformation
across the thickness), must be satisfied in conformation to the Kirchhoff Hypothesis.

The bonds in the laminate can be presumed to be infinitesimally thin if they are
thin and few, and may therefore be excluded from consideration. However, they must
satisfy two additional requirements in compliance with the Kirchhoff Hypothesis. A
straight normal, remaining so under deformation, implies continuous displacements
across the laminate thickness, and thus requires that there be no relative interlamina slip

at the bonds. Absence of deformation across the thickness requires that the bonds be
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non-shear-deformable, as well.

The laminate cross section in the xz plane shown in Figure 11 is a graphic
representation of the Kirchhoff Hypothesis. The displacement of point B in the x-
direction from the undeformed to the deformed mid-plane is u,. Since line ABCD

remains straight under deformation, the x-direction displacement for point C is,

u, = uy-zsinp 2.3.1

Line ABCD also remains normal to the mid-plane under deformation, indicating tang is

the slope of the mid-plane in the x-direction, that is,
wanp - 20 2.3.2
ox

Small displacement assumption suggests that at very small 8, the following relations hold

ow
sinp ~ tanp - _5;2 2.3.3

Therefore, the x-direction displacement, u, at any z across the laminate thickness is

ow
u-u, - zsinf =~ u, - zgo 234

By similar reasoning, the y-direction displacement, v, is

ow
VvV~ vo - z_o 2.3.5
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Therefore, the displacement field is

w,
ow
vy - 22 2.3.6

W,= wo(x9 )')

Since y,=7v,,=¢,=0 by the virtue of the Kirchhoff Hypothesis as discussed
earlier, the total of 6 strains are reduced to 3 plane strains ¢,,, €,,, and v,,. By linear elas-

ticity strain-displacement relation

Ou
€, - ?x'
e = 2.3.7
» oy
, L, »
xy dy x ’
three plane strains could subsequently be obtained as
. S,
g oM T 2.3.8
» dy ayz
Yy, = % + % - 22 azwo
7y & Oxdy

In matrix notation, the strain field is



& 2 o

or in short

{81 = {80} +
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u, , '_ FPw,
e ox a san X,
ov
8”, -130 r+z<—.?iw_° ) = eow + 2 Ky 2.3.9
£ du. ov ¥ Y Koy
T, T L, Fw, 7
ERE x|
or in short
(e} = {¢) + 2(x) 23.10

where the first term on the right hand side is the collection of plane strains of the mid-
plane as denoted by the zero superscript, the second term is the collection of curvature
rotations by the mid-plane as denoted by x multiplied by coordinate position z. Strains
are fully determined by the mid-plane motions (its stretch, shear, and its rotation) and
the coordinate location z as they are the sum of the mid-plane strains and linear

translations of the mid-plane curvature rotations at respective z coordinate positions.

2.3.2 Elastic Lamina Constitutive Equations - Stress-Strain Relations

With the strain field determined, the corresponding stress field could be obtained
by the elastic constitutive relations (stress-strain relations). A laminate under the
Kirchhoff Hypothesis results in 7,,=7,,=0,,=0 (no transverse shear stresses and normal
stress in the thickness direction) due to y,,=v,,=¢,=0 (no transverse shear strains and
no transverse normal strains as implied by the Kirchhoff Hypothesis). The remaining

three nonzero stresses, o,,, ¢,,, and 7,,, are confined within a plane geometry, char-
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acterizing a plane stress state. As such, the corresponding stress-strain relations are, for

an orthotropic lamina or layer in its material principle coordinates 1-2,

o1 Q, Q, 0] |,
Ot = Q12 Q@ 0 |{2y 2.3.11
712 0 0 Qg |7

or abbreviated

(o) - Q) {¢) 2.3.12

where [@], the reduced stiffnesses, are defined in terms of four elastic engineering

constants, E,,, E,;, G,;, »,,.

E, varEu 0 1
1-vjvy 1-vpvy
[Q] - o E,, 0 2.3.13
1-vpvy  1-vpvy
0 0 G,

The four zero components resulted from stress-strain relations being described in material
principle coordinates 1-2 which in the case of wood is respectively the grain direction
and cross grain direction.

For most laminates such as those of cross lamination and angled lamination
schemes, the material principle coordinates of constituent laminas do not always coincide
with prescribed laminate coordinates. Some constituent laminas have their principle

coordinates deviate from the prescribed laminate coordinates by arbitrary angles. Since
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the stress-strain relations of all laminas must be defined in a unified coordinate system,
defining the stress-strain relations in arbitrary x-y coordinates is necessary.

For a lamina k, such stress-strain relations in arbitrary coordinates x-y are

O Qi Q2 Qp -

0)')' = a12 622 626 8” 2314

Tl |[Qs Qu Qs £ Yol,

or in short

{0}, - [Ql, {¢}, 2.3.15

The [Q)] are transformed reduced stiffnesses for arbitrary x-y coordinates as opposed to
the reduced stiffnesses [@] for -2 material principle coordinates. The two are related by

the following transformation equations as found in Liu [1987] and Sims [1972],

Q;; - Q) c05*0 + 2(Q;,+2Qq)sin’6 cos?0 + Q,, sin'0

Q,, - Qsin*8 + 2(Q,,+2Q,)sin*6 cos*6 + Q,, cos*6

0, - Q) +Qyy-4Q,)sin?0 cos?0 + Q,,(sin0+cos*) i
0, - (Q;+Q5,-2Q,,-2Q,)sin?6 cos?0 + Q,/sin*6+ cos’8)

Qs = (Q);-Q,,-2Q,)sind cos’0 + (Q,;- Q,, +2Qy,) sin’ 6 cosd

Qs = (Q;-Q,;-2Q,sin’0 cosB + (Q,,- Q,, +2Q,y) sinb cos’0

where @ is the angle by which x-y coordinates rotate clock-wise to 1-2 material principle

coordinates, as illustrated in Figure 12.
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Figure 12. Relation of material principle coordinates I-2 with x-y coordinates.
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2.3.3 Strain and Stress Variations in a Laminate

The derived strain field verifies the Kirchhoff Hypothesis by implying a linear
variation of strains through thickness as characterized by Eq’s. 2.3.7 and 2.3.9. The
corresponding stress field based on Eq. 2.3.14 (linear stress-strain relations in x-y

coordinates) is
(A A A 0
O Qi Q12 Qp L K,

It = | Q2 Q2 Qu £yl + 2{% | 2.3.17

Tl? k hQu ng Q“ k Yo,,-y x-‘)'

or in short

{0}, - [Q], {{&°} +z{x}} 2.3.18

which in turn follows a linear variation across the k lamina. However, due to the
difference of transformed reduced stiffnesses among constituent laminas, the stress field
does not necessarily vary linearly across interlamina boundaries in a laminate, even
though the strain field behaves so. Such linear variation by strain field and stress field

are characteristic of CLT, as shown in Figure 13.

2.3.4 Resultant Laminate Forces and Moments
The stresses in a laminate must be balanced with resultant forces and moments
acting on the laminate by integration of stresses across laminate thickness. Resultant force

1-2 with x-y coordinates. N, and moment M, are related to stress o, by integrating o, over
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thickness A of a laminate as follows,
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2.3.19

in which the units for N, and M, are force and moment per unit length of the cross

section, respectively. By applying 2.3.19 to all three stresses, o,, 0,, and 7,,, in a n-layer

laminate as shown in Figure 14 the entire collection of resultant forces can be defined

in terms of stresses:

Nl m an n z. an

Nt - [ {oy1de - g [ {%
-hj2 oy,

ny Ty Ty

or

N2 a &
(N} = [{o)az = 3 [ {o)ydz

-N2 k-1 %1

2.3.20

2.3.21

Similarly, resultant moments are defined as

Mx Ox A ™

M’-fa”zdz-gfa”
-N2 7y

M” Ty o)

or

s 23.22
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Figure 13. Hypothetical variations of strain and stress across laminate thickness [Jones,

1976).
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Figure 14. Geometry of a n-layer laminate [Jones, 1976].
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h/2
(M} - f{a}zdz Z‘f (0} 2dz2 2.3.33

k-l g,

where z, and z,_, determine the z position of lamina k in the x-y-z coordinates as defined
in Figure 14. The resultant forces and moments become independent of the z coordinate
after the integration, but are functions of x and y. Their positions and orientations are
depicted in Figures 15 and 16.

Substituting stress-strain relations of Eq. 2.3.15 into resultant-stress relations of
Eq’s. 2.3.21 and 2.3.23 generates resultant-strain relations

N}y - X f [, (¢}, &

[
2.3.24

M} - 2[[5]. (e}, zdz
k-1 %,

The reduced stiffness matrix is considered constant within each constituent lamina, and

therefore can be taken out of the integration to generate

k-1 s k-1

[ 2,
(N} - Elol.f{{e°}+z{x}} dz - E[Q],,< f{ e’} dz+ f{x} zdz}
2.3.25

{M} - Zlolkf{{e"}u{x}}zdz 5[0, f{e°}zdz+ [ {x}zzdz]

k-1 k-1 | Z-1 5

As we recall, {¢’} and {x} are mid-plane strains and curvatures and thus are independent
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Figure 15. In-plane forces on a flat laminate [Jones, 1976].
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Figure 16. Moments on a flat laminate [Jones, 1976].
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of z. They can be positioned outside of the summation and integration over z to simplify

the above relations to

{N} -

310 | dz]{e"}
k-1 LA

+[2[6]1 deZ {K}
k-1 s
2.3.26
M} -| JIQ), fz dz]{eo}
k-1 et
+| Y101, [z2dz|(x)
k-1 o
Further, since
f dz - (-2, )
4
fz dz - %(z,,’-z,_,z) 2.3.27

%1

%4
fzzk - —;—(Z:-Zk_ls)
4

we obtain



-

—_—

M} -

N -

or

M)« 4

M} -

or
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[ n
{N} = k)::[a],, (Zk “Z4 )} { 80}
| k-1

+ (k-xl[a]k%(zkz‘zk_lz)J {x}

M} - [ glalké(zf—zk_,z)] { %

1

+ [k.Ejl-Q—]k E(ij"zk_ls)

or

(N} - [A]{e} + [B]
(M} - [B]{e’} + [D

{x}

{x}
1{x}

which can be jointly expressed as

or

|

2.3.28

2.3.29

2.3.30



N, (A, A, Ay By, By, By] reoxx
Ny Alz Azz Ay Bzz B, Aza 80,,
N, Aig Ay Ass  Bis By By e,
| L. ! 2.3.31
M, B, B, Bjs D, Dj, Dy |x,
M, B, B,, By, D,, D,, Dy K,
(M,,] [Bis Bis Bss Dis Dy Dy | [ Ky
where

4; - E (Q_i,-')k @ -z )

k-1

I
By- 32 E CANCAES AR 2.3.32

D, - 3 ?, @@ -7

The derived equations (Eq’s. 3.3.30 - 2.3.32) establish how the resultant forces
and moments acting on a laminate are related to the strains and curvatures at the mid-
plane surface of the laminate deformed under such forces and moments. Usually called
the governing equations of CLT, they fully dictate the mechanical behavior of a laminate
under the Kirchhoff Hypothesis.

The relating matrix is called the general stiffness matrix because of its reflection
on the stiffnesses of a laminate. Its components as seen in Eq. 3.3.31 are summations

over all laminas of the product of each lamina’s transformed reduced stiffnesses and the
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lamina’s z position characteristics. Due to that the transformed reduced stiffnesses of a
lamina are functions of the lamina’s four engineering constants,E,,, E,;, G,;, »,;, plus
its orientation @ with regard to the laminate coordinates. The stiffness matrix is fully
determined by the engineering properties (E,;, E,,, G,;, »,,) of all constituent laminas and
their geometric positions (coordinate orientation @ and z coordinate position).

The [A], [B], and [D] in the combined stiffness matrix shown in Eq. 3.3.30 have
distinct implications. Relating only plane forces {N} to plane strains {e’}, [A] are called
the extensional stiffnesses. /D] relates bending moments {M} to bending curvatures {x}
only, and are thus called the bending stiffnesses. /BJ by bridging both plane forces {N}
with curvatures {x}, and plane strains {¢’} with bending moments {M}, however,
suggests that extensional plane forces {N} applied to a laminate with a nonzero /B] term
would necessarily generate a curvature {x} term, that is, the laminate would bend and/or
twist under just extensional plane forces. In addition, such a laminate can not be subjec-
ted to bending moments {M} without at the same time experiencing extension at the mid-
plane, that is, plane strains {e’} would not be zero. [B] are therefore named the coupling

stiffnesses.

2.3.5 Hygroscopic Strains and Stress Analysis

Previous analysis of CLT considers mechanical strains, that are strains resulting
from mechanical forces and moments, while strains from other sources are disregarded.
This mere mechanical analysis does not suffice in cases where non-mechanical strains are

prominent. As is the case with laminates made of hygroscopic materials such as wood
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and wood-based materials, which could deform due to hygroscopic strains from humidity
changes in their environments. CLT must account for the hygroscopic strains in its
analysis in order for it to be applicable to hygroscopic composites.

Total strains, including mechanical strains and hygroscopic strains, would be

expressed as the sum of both

(65) = (M) + {&¥) 2.3.33

where superscript € indicates total strains, superscript ¥ mechanical strains and
superscript # hygroscopic strains. Subtraction of humidity strains from the total strains

gives the mechanical strains

{eM} = {£°) - {&) 2.3.34

For laminates under the Kirchhoff Hypothesis, total strains are expressed as the sum of
the plane strains and the linear translations of curvatures at the mid-plane as defined in

Eq. 2.3.10. Hence, the mechanical strains are

{4} - (%) + z{x} - (£} 2.3.35

The corresponding mechanical stresses for lamina k, by Eq. 2.3.15, would be

(0}, = [Q), {{£°} +2{x} - {&"},} 2.3.36

where hygroscopic strains {e?} are assumed constant within each lamina. The associated

mechanical resultant forces and moments as denoted by superscript # would be, by Eq.
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2.3.25

w4} - 3@ (1) 2te) - 7))

k-1 L L) 2y

- i‘[ah{j{eo} dz+f{x} zdz-j{e"}k dz}

2.3.37

2[01.[{ b+ 2{x} - {e4),)2de

k-1 5y

- j\:m{ [ {2z [ (x)zdz- [ {e°}kzdz'
L G-t

k=1 %

which, in analogy to the derivation of Eq. 2.3.28 from Eq. 2.3.25, could be reduced to

(Nu} - kzl‘[—o—]k (Zk “Z g )]{80}
@1, 55N (x)
; {): 1, {e"mz,,-z,-,)}

2.3.38

{M¥} - E[ng—(zk -3, }{e"}

k-1

E[Q]k (zk -z, )| {x)}

k-1 .

- {2 [6]} {ea}k%(zgz'zk-lz)}

k-1
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or

(N¥} - [4]{e°) + [B]{x} - (N7}

2.3.39
{M¥} - [B]{£° + [D]{x} - {M¥")}
where {N"} and {M"}  defined as
(N¥) - { 1@, {8"},,(2,,—2,,_,)}
+ 2.3.40

o) - { B, e, L )

k=1

are called humidity forces and moments. They are therefore not real mechanical forces

and moments. Eq. 2.3.40 may be regrouped to

(N4} + (M7} - [4]{e) + [B]{x})

2.3.41
{M¥} + {N*} - [B]{e°} + [D]{x)
or
N¥ . NE A | B|(e

2.3.42

which is the governing equation that includes hygroscopic effects with the terms of N¥
and MY,
The strains and curvatures of a laminate under given mechanical actions and

hygroscopic effects can be obtained by inversion of the governing equation
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- - =] { e 2.3.43

In cases where the mechanical action is absent, hygroscopic effects imposed upon a

laminate are related to the strains and curvatures by

R SR DESE D 2.3.44
M B | D||«x
and vice versa by
&) [a4 | B]'|NE
2.3.45

It can be shown that /B] and {M”} are zero for laminates that are symmetric to
the mid-plane of the laminate in both geometry and material properties (both elastic
properties and hygroscopic properties). As such, curvatures must be zero by Eq. 2.3.45,
that is such laminates would not bend and/or twist under hygroscopic effects. However,
[B] and {M®} are not necessarily zero with nonsymmetric laminates where curvatures
({x}) result, suggesting bending and/or twisting by the laminate under hygroscopic
effects.

Wood and wood-based materials respond to humidity changes with proportionate

changes in their moisture contents. It is, therefore, equivalent to express hygroscopic
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effects or strains with reference to either humidity or moisture content. Superscript # and
MC become interchangeable in all expressions.
Thermal effects can also be included into the CLT analysis following the same

procedure. It can be shown that the resulting governing equation would then be

__________ N I 2.3.46
MM ME . MT B | D||x
where
(NT) - { 313, {ef}.(z,,-z,_p}
- 2.3.47

{MT} - {2'[613 {8T}k%(zk2_zk-12)}

k-1

and superscript T refers to thermal effects with other terms defined as before.

2.4 Development of the Linear Viscoelastic Plate Theory (LVP)

Viscoelastic behavior differs from elastic behavior in terms of stress-strain relation
(constitutive equation). The elastic relation, being time independent, is described by a
time-wise constant algebraic tensor equation, namely Hooke’s Law. The viscoelastic
relation, however, is not such a simple case due to the time dependence. Since any
theory attempting to represent material behavior must account for appropriate stress-strain
relation, the viscoelastic stress-strain relation must be substituted in place of the elastic

relation in CLT in the evolution of the viscoelastic CLT.
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2.4.1 Linear Viscoelastic Stress-Strain Relations for Plane Stress

The definite one-to-one correspondence between stresses and associated strains,
while existing for elastic behavior, however, is not observed in viscoelastic behavior. The
strain variation with time under stress implies that strains depend not only on the stress
at the very current moment, but also on the time under stress. The past history under
stress is also contributing to the material response (strains), which suggests that the
material, aside from responding to the current stresses, remembers the past history of
stress states. This memory effect, observed of stresses in relation to strains and strain
history as well, is characteristic of the stress-strain relation in viscoelastic behavior, and
it has been quantitatively represented by the Boltzman principle since 1874 when
Boltzman first proposed it. This principle is still considered one of the most important
means of representing material behavior. It is also known in the literatures as the
Principle of Superposition [Gross, 1953] and as the Hereditary Integral [Flugge, 1967].

The above principle, if expressed for a linear viscoelastic anisotropic material in
a three-dimensional stress state, gives the following stress-strain relations in tensor nota-

tion [Christensen, 1982; Schapery, 1967; Sims, 1972]]

4
aau
£ - ! J,.,H(t-t)~a—rdr
ij,kl=123 2.4.1

t
de,,
o; - ({Ym(:- 0. dr
where J,(t-7) and Yy(t-7) are defined to be the creep compliances and relaxation moduli

respectively. The 0" in the lower integration limit suggests inclusion of a step discontinu-
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ity of stresses or strains at ¢ = 0, which upon separation from the integration would

change the relations to:
£; = J® 0,00) + f.lm(t—r)—

0; = YD) £,00) + frm(:-r)—

ij k 1=123 2.4.2

However, the notation in Eq. 2.4.1 is more compact and will be used here.

The viscoelastic plate theory which is to be developed on the frame of CLT

presumes the CLT plane stress state in which only the three plane stresses, o,, g,, and

7, are considered. The resulting reduced stress-strain relations for lamina k are

(e,0)  [Ju@-9) T 0 0,9
{e, (0} - f J(t-1) J,(t-v) 0 0,(0)} dr
70, o | 0 0 Jlt-7) . 7,5(7) . "
(0,0 [, Y- 0 e, (9]
{o,0} - f Y,(t-7) Y,t-v) 0 (D} dr
@), Y| o 0 Y -9 |7u(9],
or
(e®} - [ [J@-9), {o()ydr
d 2.4.4

(0@}, = [ [¥¢-9)], {&(n)),ds
-
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where the prime (’) represents differentiation d/dr.

While the above viscoelastic stress-strain relations are with respect to material
principle coordinates I-2, their expression in arbitrary coordinates x-y is desired. By
stress and strain transformation defined in Eq. 2.3.16 (with J(t-7), 7‘-,(t-r) or Y(t-7),
_}-’é(t-r) in place of Q,, Q,-), the viscoelastic stress-strain relations in x-y coordinates are

obtained similarly to the elastic CLT analysis:

e,®0)  [T4E-9 Te-9 Te-9] (o)
1e,M¢ - f J(t-1) Jy(t-17) Tt-7) 0,(?)¢ dt
750], - _j;(t— ) Toglt-7) Jeft-1) , (D],

245
(0, 0] | [1-9) Yyt-9) Yy t-0)| [e(n)]
{o,®¢ - f Y, (t-1) Y,,t-1) Y (t-7)| {e,(0); dr
H®), Y t-1) Y (t-1) Y a-1)| |T5(D),
or
(e®), - [ [IC-9), (o), dr
- 2.4.6

4

(0@} - [ [¥t-9)], {e(a)},dr
-
where [Y(t-7)], and [J(t-7)], indicate that they are transformed relaxation moduli and
creep compliances in the arbitrary x-y coordinates.
The sharp contrast between Eq. 2.4.6 of linear viscoelastic CLT and Eq. 2.3.15

of elastic CLT is due to the time involvement and resulting complexity. The algebraic
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time-wise constant tensor [QJ in elastic CLT states the definite match between current
stresses and strains, while the functional integration in time space in linear viscoelastic
CLT analysis accounts for not only the effect of current stresses or strains, but also the

characteristic memory effect (effect of strain history or stress history).

2.4.2 Linear Viscoelastic Governing Equation
When a hygroscopic effect is present, the mechanical strain rates, by differentia-

tion of Eq. 2.3.35, are

(M) - {AD) + 2{x(D) - {eM(r) 2.4.7

where the hygroscopic strain rates are expressed in reference to moisture content
(superscript M€). If the hygroscopic strain rates are constant within each constituent
lamina, but different across the laminas in a laminate, the mechanical strain rates for a

particular lamina k are

(M), = (D)) + z{x(D)) - {M(D), 2.4.8

The corresponding mechanical stresses in this particular lamina k which are related to

strains by linear viscoelastic stress-strains relations defined in Eq. 2.4.6, are

(0@}, - [ [¥¢-9), (M), d=
’ 2.4.9

t

- [ [¥a-9), {{L@) +2 (2 - {H(D)},} de

o
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The balance between the resultant forces-moments and the stresses in the elastic
CLT analysis defined in Eq’s. 2.3.19 - 2.3.21 must be maintained at any instant ¢, which

results in the following forces-stresses relation

N@ . [0=® . [7=®

N,®p - [ {o,@1dz - 3 [{0,0} dz 2.4.10
- k-1

UG) I EN i ENCIR

or
h/2 A

(NO} - [ (o}dz - 3 [ {o(0),dz 2.4.11
-hj2 k-1 4,

and moments-stresses relation

MO, [7=® . [7=®
M, - [ 19,0 zdz-gf o, (0} zdz 2.4.12
M0 |50 1,0,
or
N2 a &
(M) - [ (o)zdz - 3 [ {o®),2dz 2.4.13
-A2 k-1 P

By viscoelastic stress-strain relations of Eq. 2.4.9, mechanical resultant forces

{N¥(1)} for a n-layer laminate are expressed in terms of strains as



n &
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(N0} - 3 [ (o0},

k=1 %

24.14

-3 [ [ [¥e-0), {{e°(r)}’+z{x(r)}’-{e“c(r)}’,}dr}dz
k-l 2, | o

Switching t-integration with z-integration and moving them outside of summation results

in

k-1

L

(N} - [ { [ [¥¢-9), {{e"(r)}’+z{x<r)}’-{e‘“-‘<r)}’,}dz}dr

(
| ]

)

k-1

.

f

)

L k-1

SRE—=-

S t— -

,
k-1

4

. - q-

-1

4L

[¥¢t-9)), {2 a2

~

4L

[ [¥e-o)l, (xe)Y zde
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Z

»

b

-1

)
ydt +

: 2.4.15

v dt -

s

[He-1), {c"c(r)}’,,dz}dr

{€(1)}’, {x(1)}’ are strain and curvature rates at the mid-plane, respectively. Constant

with respect to z, they are moved outside of z-integration and summation. [7(:-1)], and

hygroscopic strain rates {€“(r)}’, are only constant within the k lamina with respect to

z, and hence are only moved outside of z-integration. These manipulations, which are

similar to those in elastic analysis, reduce the above to
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k-1

W) - [| X [ > (Y-, | dZ]{e"(r)}’dr :
0

Zg-1
f[E[?(t-f)]kf z&]{x(r)}’ dr - 2.4.16
o- \ ¥! %

]l;[ [Ye-0)], zf dz]{e"c(r)}’k}dr

I Zx-1

N-

which, due to Eq. 2.3.27, are further simplified to be

(N¥@) - [ [ ¥ [¥e-9), (z,-zk_l)) (%) dr +
o k-1
/%

Y(t- r)], %(z,,2 - z,‘_lz)] {x(t)}’ dr - 2.4.17
k-1

{2 [?«-r)],uk-zk-,new«»;}df

k-1

Q'\...

or

(N¥@®) - [ [A¢-D){ ) dr +
d 2.4.18

f [Bt-19)] {x(3)) dt - {NM(p)}
o

where
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[A(t-7)] - Y Ye-9), (-7
k=1

[ B(t-1)] - "ZI: [Yt-9), é(z,f -z )
2.4.19

(N @) - [(N¥G-ne () dr
.

{N¥(t-r, (N} - Y [Ye-9), (2, -2, ) (2D,

k-1

{N¥“(1)} denotes hygroscopic forces in reference to moisture content change. Similarly,

mechanical resultant moments {M™€(¢)} are expressed in terms of strains as

(MY} - [ [Be-D){ () dr -
o 2.4.20
[ [De-9) {=x)Y dr - {M*(0)
o
where
[ B(t- 7)) - ;Z; [Ye-9), é(z,f -z))
[ D(t-1)] - .,Z [Ye-9)], é(z;’ - %)
- 2.4.21

(M*@} - [{M“e-5,))dr
"

(M- r. (e} - 3 Fo-0, 70 - &) {0

k-1
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{M™(t)} are the hygroscopic moments.

Eq’s. 2.4.18 and 2.4.20 are jointly expressed as

N¥@) . | A@-v) | B(-1)

&) NM<(p)
dt -

MY [ Bt-1t) | D(-7) || k(D)

and abbreviated to

t

(NMM@) + (NMM@) - [ [ABD(t-0) k(D)) dr

where
N¥@
{NM¥@®)} - -----
MM
(N M) . N¥C(t- 7, e(1))
{NMMC(t)} - {eme_ - f __________ dr
(M¥@) M1, e(0))
- f{ITM"C(t—r, e(0))} dr
-
[ A@-7) | B@-1)
[ABD(t-1)] = |------ @ ———---
| B(t-7) | D(t-1)

(%) |
{e’(n) )/ {-----

2.4.22

2.4.23

2.4.24
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Eq’s. 2.4.22 - 2.4.24 express mechanical and hygroscopic forces-moments in terms of
the strain and curvature at the mid-plane, and are called the governing equations in linear
hygroscopic viscoelastic analysis. They are convolution-type integrals and are similar to
that developed by Sims [1972].

The difference between the elastic stress-strain relation and governing equation
(Eq’s. 2.3.14 - 2.3.15) and the linear viscoelastic counterparts (Eq’s. 2.4.5 - 2.4.6) lies,
as expected, in the time domain - reflecting the distinction between elastic behavior and
viscoelastic behavior. The parallelness becomes more conspicuous in the Laplace domain
where the linear viscoelastic stress-strain and governing equation are transformed to be,

respectively

{09} - sV {es))

2.4.24.A
{e@)} - s {a())

and

N¥(s) + N¥C(s) As) | B |[ 2

____________ S S b I 2.4.24.B
M¥(s) + M*C(s) Bs) | Ds) || x(s

With time involvement hidden, they resemble their respective elastic counterparts (Eq’s.
2.3.14 -2.3.15 and Eq’s. 2.4.5 - 2.4.6) in the algebraic form. Such resemblance, which
is always observed between corresponding elastic and linear viscoelastic equations, is the
basis of the poplar and useful Correspondence Principle.

Theoretically, history of strain and curvature rates at mid-plane {ex(7)}’ can be
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obtained by Eq. 2.4.23 given mechanical actions and hygroscopic effect, namely {N™(¢)},

{MM@)}, {N¥(t)}, and {M™ (t)}. Yet, an exact analytical solution is probably only
possible in certain simple and ideal situations, presenting little practical usage for the

analytical governing equation. A numerical alternative has to be attempted.

2.4.3 Numericalization of Linear Viscoelastic Governing Equation and Successive Com-
putation of Strains and Stresses
A convolution-type integral like the following can be subdivided into a series of

integrals,

f ft-1)g(tYdr
>

- f8(0) + [ fit-D)g(vYdx
0

2.4.25
- fing(0) + fﬂt—f)g(‘t)ld1'+f+j+ ------ + T + ]f(t—r)g(r)’dr
7~0 T 6 Tm2 Tm-l

- f980 + 3 [fz,-Dg(r)ds

=] T

where integration limits 7,=0 through r_=¢ are m+1 ¢-points along the time domain and

(ro-O) < T < T,<T,<un<T, <7, < (r.-t) 2.4.26

As shown in Figure 17, if the time interval is very small, that is

At~ (r,-7, )-RAt < 1 2.4.27
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flt—7)a(7)

f(t—7)g(7)

f(t—Tl—l)g(Tx—l)' //

Figure 17. Illustration of linear finite difference approximation.
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the area under the curve could be approximated by the shaded area of a trapezoid,

]

f fie-1)g(r)dr - %( 7~ 7. URe-7,_De(r, ) +Re-1)g(z) ]
I 2.4.28

- %R,A t[ft-1,_)8(z,_ ) +Re-7)g(s) ]

As such, integral of Eq. 2.4.25 becomes

f At-v)g(rYdr
o 2.4.29

- 98 + 2 Ar z;‘ R 5,5, )8(r, ) + R5-7)8(c)]
The integral has been degenerated into a summation of algebraic expressions. Note that
all individual time intervals Ar; are measured against and expressed in terms of a unit
time interval Ar.

By Eq. 2.4.29, the hygroscopic forces-moments in governing equation Eq. 2.4.23
can be degenerated to

{NM @)} - f {NM™C(@t- ©,eM())} g drt
o
- {NM"(z,-0,e4(0p)}, + 2430
%Ari‘&.({m‘w r'-r'._l,c"c(t,._l)’)} + {W“C(t'-t,,e"c(r‘.)’)})

i-l

and the right side of the governing equation Eq. 2.4.23 to
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Lok 79

[_ [ABD(t- D] { e°K(7)} dt
- [ABD(rm)]{e"x(O)} +

%Angi([ABD(tm-fi_l)] {e'8(r, )} + [ABD(z,-7)]|{ e°K(7)})

The governing equation could then be written in algebraic form as

{NM¥@)} + {NM"“(s,-0,£4(0))} +

édng,({N_M'C 7=, (5, )N} + {NM"€ t= T, 24(r))}) -

[ABD(z,)] { £°x(0)) +

% A ré‘ki ([4BD(r,-7, )] { &Mz, )} + [ABD(s,-7)]{ X))} )

where

(70=0) < 7)< T, < Ty< o< T < T <(7,~0)

2.3.31

2.4.32

2.4.33

Next, successive computation is employed to obtain the history of strain-curvature

and their rates at the ¢+1 discrete time points, 7,, through 7.

At m=1, which is t=7_=7,, there is



M

[+
.r,‘



55

{NM¥(z)} + {NM"“(z,-0,64“(0))} +
% <R, {N_MMC(TI" 7 To)/)} * {Wuc(fz“ 7, eM( 71)’)} ) -
[ABD(r)] { £°%(0)} +

—;_ arR, ( [ABD(7;-7))] { e"x(ro)}’ + [ABD(7;- 7)) { eo"(’z)}l)

As 7, approaches 7,=0, it is obtained that

{NM™(0)} + {NM"C(0,e4¢(0))} +

( 1_,-,:‘01 At R, ({NM*(z,- 7, ()} + {NMM(z,-1,,64(c )} ) -

[ABD(0)] { £°x(0)} +

lim % AtR,([ABD(z,-1p)] { e°K(sp)} + [ABD()-1))|{ &K}

(74-79)~0

2434

2.4.35

Since no sudden hygroscopic strain input at t=0 is possible ({e¥6(0)}, = {0}), the

second term on the left hand side is zero. Assuming no mechanical action ({NM™(0)}

= {0}) and no initial strains at =0 ({e’x(0)} = {0}), we then have

Jdim L AcR, ({NM™(z,- 1, M)} + {NMM(5,- 1,4 (c )} ) -

lim %ATR‘([ABD(fl—to)] {eox(ro)}/ + [ABD(fl-fj)]{toR(fl)}’)

(v,-59-0

and subsequently arrive at

2.4.36
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{NM¥C(0,64(0y)} - [ABD(0)] { £°K(z,) 2.4.37

The strain and curvature rates at £=7,=0 are then determined to be

{ £2x(0)) - [ABD(O)]"! { NM™(0,#¢(0))} 2.4.38

The strains and curvatures at ¢=7, can subsequently be approximated by

{e%(z)} = { Kz, D) R, Ar+{ 'Kz, )} at i-1 2.4.39

where small interval condition of Eq. 2.4.27 is to be maintained, and initial strains and
curvatures at t=7,=0 ({e’«(r,)}) are assumed given. With strain and curvature rates at
t=1,=0 ({’k(7,)}’) known, the rates at t=7, ({e’x(r,)}’) can then be determined by
expanding Eq. 2.4.32 to be
{e"x(r,)}’ - [ABD(fI—rI)]”

2 —_
(—({NM"(r,)} + {NMYC(c,,(zp)} - [ABD(z)]{ e°K(zp)}) +

At 2.4.40

R {NM"““(z-7,e"(5p))} + R, {NM"(7)-7,,e"(s)))} -

R,[ABD(z;- 7)) { s"x(to)}’ )

The strains and curvatures at =7, are then

{ e"x(r‘.)} - { e"x(t,_l)}' R A r+{ e"x(r‘_,)} at i-2 2.4.41

Eq. 2.4.32 could be further expanded to obtain the rates at ¢=r,, subsequently. Similarly,

rates at t=r,, 7, and till 7, could be successively determined, as well as the strains and
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curvatures in analogy to Eq. 2.4.39. The general form for this successive computation

at discrete time point, ¢=r,, is derived to be
{e'(z,)} - [ABD(z,-7,)]"

(Z{(me) (T, - (43D )

2.4.42
)3(12‘_ ot R)( {W"C(ifk, A, eM( r,_,)’)} - [ABD(E;R, A r)] { ez, )Y ]
i=l J=t J=i
+ R, {W“C( T, - T, eM( r.)’} )
where
R,-0
m=1,2,3, 2.4.43

~ m i-1
ERJAT - ZRjAr— ERjAr
j-i j-1 j-1

The second term within the enclosing parenthesis on the right hand side of Eq.
2.4.42 which results from step-wise elevation of hygroscopic strains at t=r7,=0
({e(r4)},) must be zero since {e““(r,)}, = {0} (It is not possible to elevate hygroscopic
strains instantaneously as discussed in the derivation of Eq. 2.4.36). As such, Eq. 2.4.42

becomes
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{e°M(z,)} - [ABD(z,-7,)]"!

() - (A=t -
2.4.44

ABD(E:R, Aa1)

j-i

(en |

+ R {NM"(z,,-7,,e4(1,)})

g(&_, + R})( {W"C(ER,. Ar,eM( ri_,)')} -

{e°x(7,)}, the sudden step-wise elevation of strains and curvatures at t=7,=0,
must also be zero ({e’x(r,)}={0}) if there is no provocation by initial mechanical
actions. In addition, if mechanical actions are never introduced ({NM™(r_)}={0}), Eq.

2.4.44 is reduced to
{°M(z,)) - [ABD(z,-7,)]"

[ SR+ R)( {W"C(j%'ki At,eM(z,_ 1)’)} - [ABD( ,%R, A ,-)] {xtz, )Y ] 2.4.45

i-1

+ R, (NM"“(z,-7,,6(5,)})

The associated stresses could be computed from the strain and curvature rates by
the linear viscoelastic stress-strain relations defined in Eq. 2.4.6. However, the strain and
curvature rates are known only at discrete time points rather than continuously, and
therefore the integral linear viscoelastic stress-strain relations of Eq. 2.4.6 needs to be
degenerated to express stresses in terms of strain and curvature rates at those discrete
points. By the same numericalization technique as specified in Eq’s. 2.4.25 - 2.4.29, the

stress for lamina k is degenerated to
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t-r,

{o®}, = [ [Ye-9), (M), dr

o

~ [ Y0, { MO0}, + 2.4.46

Jj=i+l

ZI‘ % R A r( [Y( E’RjA r)]k{ M)y, - [?(j%RjA r)]k{ r ), )

which, by further expansion and regrouping and by assuming zero sudden step input of

strains and curvatures at t=7,=0 ({¢¥(0)},={0}), becomes

(o, -

2.4.47
-%At [E(R.._,m,.)ﬁ?(j:fj‘t r)] (M), + Ru[YO){ ),
i=1 -i+ k
where
{e"(r,.)}/k = { %)) + 2 { Kz - { e"c(t‘)}/k 2.4.48
as in Eq. 2.4.8.

For a laminate as depicted in Figure 18, its vertical deflection at an instant ¢ could

be determined by

wy(x,y,0) = - -%(rcx(t)x2 + ycy(t)y2 + xx’(t)xy) 2.4.49

if the laminate’s geometrical center (x/2, y/2, z, ¢) is fixed to the coordinate reference

point, and the mid-plane of the flat laminate coincides with the z=0 x-y plane. This is



(0, 9.15, 0) &

Figure 18. Coordinate positions of the yellow-poplar laminate and beam.
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readily verified by use of the curvature-vertical deflection relation defined in the strain
field of Eq. 2.3.9.

In summary, Eq’s. 2.4.45, 2.4.41, 2.4.47, and 2.4.49 form the set of formulas
of the developed linear viscoelastic plate theory for solving numerically for the history
of strain and curvature rates, strains, stresses, and vertical deformations of a laminate
described in Figure 18 subjected to hygroscopic effects. Upon the added presence of
mechanical actions and sudden elevation of mechanical strains and curvatures at ¢=0,

Eq’s. 2.4.44 and 2.4.46 replace Eq’s. 2.4.45 and 2.4.47 respectively in the formula set.

2.4.4 Linearity and Isothermal Requirements

The linear isothermal viscoelastic constitutive equations of Eq. 2.4.3 or 2.4.4,
the basis upon which the LVP theory is developed, determined that the analytical
governing equation of Eq. 2.4.23 is only applicable to linear isothermal viscoelastic
problems which are defined by the stress independence of the relaxation moduli or creep
compliances (linear), and the steady and uniform temperature distribution (isothermal).
Such application restrictions on the integral governing equation (Eq. 2.4.23), once carried
over to its numerical equivalence (Eq’s. 2.4.43 - 2.4.45), however are much lessened.
The first step (Eq. 2.4.25) in the numericalization process which establishes the
conditional numerical-integral equivalence, clearly determines that the linearity and
isothermal requirements only need to be imposed within each time segments 7, - 7,,= R;
Ar, while nonlinearity and nonisothermal conditions would be allowed across time

segments in the numerical equivalence (Eq’s. 2.4.43 - 2.4.45). Further, since time
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segments are sufficiently small due to the small interval assumption (Eq. 2.4.27), it is
reasonable to approximate nonlinearity and nonisothermal conditions with linear and
isothermal behavior within each segment. Therefore, the linearity and isothermal
application restrictions are no longer imposed on the numerical equivalence outlined in
the formula set, and the LVP theory is therefore applicable to nonlinear and noniso-
thermal viscoelastic problems such as hygroscopic warping.

If parallelness can be drawn regarding the effects of temperature and that of
moisture content, the aforementioned isothermal requirement extends to moisture content,
which would require a uniform and steady moisture content distribution for hygroscopic

materials.

2.4.5 Hygroscopic Strain Rates and Relaxation Moduli

It is evident in the set of formulas that the hygroscopic strain rates and linear
relaxation moduli denoted as {e™(¢)}’, and [Y(¢)], are two of the essential inputs. While
hygroscopic strain rates {€¥‘(¢)}’, are the results of changing moisture contents and
expansion coefficients, linear relaxation moduli [Y(#)]; are determined by the viscoelastic
properties of constituent laminas which are the subject of the next chapter. As the
theoretical development of the CLT-based linear viscoelastic plate theory is the focus of
this chapter, the discussion and formulation of all required inputs will be furnished in the
last chapter when the numerical form of the LVP theory is applied to an actual physical

laminate.
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CHAPTER III

CHARACTERIZATION OF VISCOELASTIC BEHAVIOR

3.1 Introduction

The proper characterization of the viscoelastic behavior of the constituent
materials in a laminate in the form of relaxation moduli is the key to the application of
the theory to practical problems. A perfect and complete description, though ideally
desired, may not be obtained since it is, in many cases, not only painstakingly difficult
to achieve, but also unnecessary as the associated efforts and complexity may far
outweigh any benefits and the limited gains may prove to be overkill under given
requirements. Therefore, an adequate description which must be contemplated in light
of balancing factors should give a sufficiently accurate characterization, but at the same
time should be as simple an expression as possible, and achievable with moderate effort.

It is known that wood and wood-based materials behave viscoelastically as a
consequence of their amorphous and crystalline components, cellulose, hemicellulose,
and lignin, and the structures revolving among them [Alexopoulos, 1989; Pentoney and
Davidson, 1962]. Characterization of the viscoelastic behavior based on a complete
molecular theory, though theoretically feasible, is rather difficult to develop however,
due to the complexity and lack of understanding of the wood components and the

structures of both wood and wood-based materials. As a result, the most dominant
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approach has been from the phenomenological point of view, that is the macro behavior
is the subject of investigation while transcending the micro-mechanism responsible for
the viscoelastic behaviors. It is not surprising that the same approach is adopted here.

It is widely proven in the enormous literature and very evident in applications that
wood and wood-based materials generally behave nonlinearly viscoelastically. The
sometimes so-called linear regions are no more than regions where nonlinearity is
relatively insignificant as a result of minimum influence from low and/or moderate levels
of stress, moisture content and temperature, and can be approximated to be linear. This
assumption is usually necessary for achieving a successful analysis, yet at the sacrifice
of accuracy that may be large when nonlinearity becomes relatively pronounced.

An attempt is made in the following to quantitatively characterize the nonlinear
and nonisothermal viscoelastic behavior of wood and wood-based materials, but with
linear concepts and linear mechanical viscoelastic models for simplicity and ease of

analysis.

3.2 Literature Reviews

New ideas and additional work are always conceived and build upon the work by
others of today and yesterday. This thesis is no exception. A review and discussion of
all pertinent information is the foundation for the development of a quantitative depiction

of the nonlinear viscoelastic behavior.
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3.2.1 The Nonlinearity - Relation Between Viscoelastic Properties and Stress Levels
Viscoelastic behavior is defined as being linear if stress independence of creep

compliance J(¢t) is observed in a creep test (or relaxation modulus in a relaxation test),

which is defined as

o - 2@ 3.2.1

-

ag

where J(t) and e(t) are creep compliance and strain history, respectively and o, the
applied time-wise constant creep stress in the test. The relative creep is defined as the

ratio of creep strain over the initial instantaneous strain,
SR(t) - 8(t)' 8(0)
e(0)

- J(t)a.-J(O)a‘ 3.2.2
J(O)o*

- J@® -J©0)
J(0)

It obviously observes the same stress independence, and is therefore a criteria often used
to check for linearity. The stress independence is the equivalent to strain being linear
with stress, as indicated in Eq. 3.2.1.

Reported limits of stress levels within which wood may be assumed to be linearly
viscoelastic vary widely due to differences in testing environments, designs, species, and
loading with respect to grain direction. Nielsen [1972] reported 30 percent of the ultimate

static strength to be the limit of linearity, yet according to a review by Schniewind [1968]
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many authors in their experiments arrived at values from 38 percent to as high as 75
percent. It was shown that once above those limits wood and wood-based materials
clearly exhibited nonlinear viscoelastic behavior. It is a well documented and established
fact that a region where wood and wood-based materials can be treated as being linearly
viscoelastic definitely exists. Due to the simplicity of linear viscoelastic analysis, it is
of great practical significance if wood and wood-based materials in use would usually fall
into such linear regions and therefore can be treated so. Since actual load levels in
application are rarely greater than 50 percent of the static strength which is about the
limit of linearity found by many authors [Schniewind, 1968], linear treatment may seem
to be a rather promising approach as suggested by Schniewind [1968].

In further examining the test conditions under which those limits of linearity were
arrived at, one may raise some doubts as to the validity of the linear treatment. The
relative humidity and temperature in those tests were low and moderate, and maintained
at constant levels. In contrast, they vary continuously in actual applications and could rise
to very high levels. Bach and Pentoney [1968] found that the deformation-stress relation
of maple subjected to longitudinal tension was definitely nonlinear at high humidity and
temperature values.

Bach and Pentoney [1968] succeeded in expressing total compliance as well as its
components as quadratic functions of stress, moisture content, and temperature in
longitudinal tension tests on maple in which the separate effects of the three variables
were included. They showed that wood responds to longitudinal tension stress as an

elastic body at low temperatures and moisture contents (total compliance being constant).
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At very low stress, wood approximates the response of a linear viscoelastic body (total
compliance stress independent) even if the temperatures and moisture contents are
relatively high, and changing. However, stress dependence of the compliance (character
of nonlinear viscoelasticity) at moderate and higher stress levels when varying moisture
content and temperature is evident in the compliance expressions by Bach and Pentoney
[1968] who pointed out that wood must be treated as a nonlinear viscoelastic material to
be realistic.

Compliance results by Bach and Pentoney [1968] were obtained for the grain
direction which is the most crystalline and elastic since the orientation of microfibrils are
mostly in the grain direction. Nonlinearity is expected to be much more prominent across
the grain of wood.

Though functions of moisture content, temperature, and stress levels, the
compliance results by Bach and Pentoney [1968] do not represent the combined actions
of the involved variables on actual compliances since Bach and Pentoney did not really
vary moisture content and temperature under stress during their tests, but kept them
constant in each creep test and varied their levels between tests. The actual effects of
changing moisture content and temperature under stress are much more severe and
complex. Numerous references have indicated that creep rates and the total creep were
much larger when moisture content and temperature were changed under load rather than
prior to loading and kept constant under load. The interaction between mechanical stress
and moisture content-temperature changes obviously contributes a great deal more to

creep than if they acted alone separately. Consequently, a creep compliance which would
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otherwise have been stress independent (linear viscoelasticity) will be stress dependent
(nonlinear viscoelastic behavior) in addition to being dependent on moisture content. To
reflect the coupling effects of stress and moisture content changes, the interaction is often
referred to as the mechano-sorptive effect. The prevalent view regarding the mechanism
[Gibson, 1965] suggests structural changes at the micro level. Since structural changes
occur under temperature changes [Davidson, 1962] as well, temperature changes under
load are speculated to exert similar thermal-mechanical coupling effects.

In short, the region in which wood and wood-based materials may be assumed to
be linearly viscoelastic, though it exits, unfortunately has not as much practical
significance as expected, largely due to the pervasive humidity and temperature changes
(mechano-sorptive and thermal-mechanical coupling effects) in application environments
which violate the conditions under which the linear assumption is valid. In reality wood

and wood-based materials inevitably exhibit nonlinearity in their viscoelastic behavior.

3.2.2 Relation Between Viscoelastic Properties and Moisture Contents, and Mechano-
Sorptive Effects

Moisture acts as a plasticizer, and increases in moisture content will usually lead
to increases in creep compliance and decreases in relaxation modulus [Schniewind,
1968]. Bach and Pentoney [1968] found in longitudinal tension on maple that total
compliance, as well as its components, were proportional to quadratic terms of moisture
content. Increase in creep at increasing moisture content was also observed in bending

[Nemeth, 1964; Ota and Tsubota, 1966], in tension and compression parallel and
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perpendicular to the grain of beech [Schniewind, 1968] and red oak [Youngs, 1957], and

in torsion of Hinoki [Norimoto, Hiyano and Yamada, 1965]. Sharp stress relaxation was
reported with increases in moisture content [Ugolev, 1964; Kunesh, 1961]. It is to be
noted that moisture content changes were not introduced during creep and relaxation
tests, but prior to the tests. For this reason, this phenomenon is sometimes called the
direct effect of moisture content as in a review by Schniewind [1968].

The moisture content changes in wood and/or wood-based materials as a result
of the frequent and sometimes drastic humidity changes in their application environment
unfortunately coincide with the materials being in one or another state of loading or
stress. As briefly mentioned earlier, the resulting coupling effect on the viscoelastic
behavior is much greater than if moisture content changes had acted alone.

Armstrong and Kingston [1960] noted that small beams made of three species
loaded green and kept so during creep test showed about the same relative creep as those
which were loaded and kept dry, but the relative creep doubled when initially green
beams were allowed to dry under load during the creep test. They also indicated that
creep increased markedly in wood subjected to increasing moisture content during test
while under load as compared to the case where moisture content was raised before the
test. Similar trends were observed in relaxation test of beams [Armstrong and Kingston,
1960]. Cyclic changes under load amplify the above effect and lead to much larger total
creep as observed by Armstrong and Christensen [1961] and Hearmon and Paton [1964],
and to greater stress relaxation rate and residual deformation, as reported by Lawniczak

[1958], Takemura and lkeda [1963], and Takemura [1966 & 1967]. For example,
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extensive cycling of moisture content at a given load caused a beam to deflect over 20
times more than keeping the beam conditioned at the extreme moisture content at the
same load throughout the test [Hearmon and Paton, 1964].

Some manifestations of this mechano-sorptive effect are actually very common
phenomena which have been used to advantage in practice. During either kiln or air
drying, timber tends to distort because of spiral grain, growth stresses, reaction wood,
and even its own gravity weight. However, good stacking and application of loads to the
stack while drying takes place, can prevent most of such distortions [Koch, 1971]. In
contrast, stacking and application of load even for an extended period of time after the
timber is dried eliminates little of such drying distortions. In restrained swelling, the final
pressure required to keep a wood body within its original dimensions as the body absorbs
or desorbs moisture in the restraining process is much lower than that required at the end
of the restraining process if the body’s moisture content is raised or lowered preceding
the restraint [Perkitny and Kingston, 1972]. Therefore, the resistance force exerted to
a structure by a restrained wood member due to its hygroscopic expansion or shrinkage
is greatly minimized.

Hearmon and Paton [1964] noticed that the known moisture content-MOE relation
was not changed by cycling moisture content under load, suggesting that the elastic
component is only affected by moisture content, regardless of whether and how moisture
content is changed. Grossman [1976] indicated that upon removal of a load maintained
during moisture content changes as much immediate and delayed recovery of shape

occurred as would occur had the moisture content changes preceded the application of
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load, indicating that both the elastic and the recoverable components of the deformation
do not suffer from the mechano-sorptive effect. Only the flow portion of deformation are
susceptible to the mechano-sorptive coupling.

One of the explanations regarding the mechanism is that the coupling effect results
from interaction between the applied stress and stresses arising from the swelling or
shrinkage differential caused by moisture content gradient. Armstrong and Christensen
[1961] in testing both 1mm thick beams so as to eliminate the influence of moisture
content gradient and 2cm thick beams for comparison observed similar effects on beams
of both sizes, which suggested that stresses arising from nonuniform expansion or
shrinkage were not likely involved. The most attractive hypothesis which is capable of
explaining most aspects of this effect is that during the breaking and remaking of
hydrogen bonds that must occur during moisture content changes in either direction,
stress bias will favor slippage, resulting in new positions and shape [Schniewind, 1968;
Gibson, 1965; Grossman, 1976].

There are many other aspects and characters to this mechano-sorptive effect as
thoroughly discussed by Grossman [1976]. It is a phenomenon of considerable interest
and practical significance, but nevertheless remains very perplexing with a great lack of
understanding regarding its description and interpretation. A number of postulates were
proposed over the years, yet fail to explain all the features of this effect cohesively.
Finding a characterization that is compatible with all the observations remains a big
challenge to wood scientists, and may take years of extensive research effort cooperative-

ly put forward by all interested researchers.
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Significant as this effect is, its lack of understanding also presents an impasse at
the moment. For this reason, it was not included in the creep experiments and
characterization of nonlinear viscoelastic behavior in this study. However, the direct
effect of moisture content and stress level changes will be accounted for as they, even
in the absence of mechano-sorptive effects, still exert great effects on the behaviors of
wood and wood-based materials (hygroscopic materials).

An interesting characteristic displayed by wood and wood-based materials stands
alone among materials in that the permanent deformation resulting from direct .and
mechano-sorptive effects of vafying moisture contents under load are not really totally
permanent, but at least a large portion can be recovered when the unloaded material is
taken through another moisture content cycle. This is revealed by permanent deformation
due to mechano-sorptive effect by Armstrong and Christensen [1961] and Christensen
[1962]. It is demonstrated that the strain energy is not dissipated in the loading process
and that some component within the structure "remembers” its original length and shape
[Grossman, 1976]. This perplexing phenomenon, while a very significant and live
component in the viscoelastic behavior of wood and wood-based materials because of the
constant irregular humidity variation (cycling) in actual applications, can not be

characterized yet due to the little information and understanding of it.

3.2.3 Relation Between Viscoelastic Properties and Temperature, and Thermal-
Mechanical Coupling

As in the case of moisture content, we can distinguish between direct effect of
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temperatures and interaction effect of temperature changes while under stress [Schniew-
ind, 1968].

In general, increase in temperature leads to increase in creep compliance and
decrease in relaxation modulus. In hard maple subjected to tensile creep parallel to grain
in the temperature range from 30 ... 70° C, the total creep compliance as well as its
components were reported to be proportional to quadratic terms of temperature [Bach and
Pentoney, 1968]. In bending creep test on green specimens, the deflection increased
exponentially with increasing temperature in the range of 5 to 70° C [Kitahara and
Okabe, 1959]. Similar relation is observed in compression creep on oven-dry Hinoki in
the temperature range from 100 to 180° C [Arima, 1967]. In torsional creep of Hinoki,
the temperature effect seemed somewhat inconsistent, but in general caused an increase
in creep compliance with increasing temperature [Norimoto, Hiyano and Yamada, 1965].
The results of Norimota and Yamada [1965] showed a decrease in relaxation modulus
as temperature rose from 15 to 62.5° C, though the relaxation rate was affected little
within this range. Other authors also found increased relaxation at elevated temperatures
[Youngs, 1957; Ugolev and Pimenowa, 1963]. The results in many other references
show the same general trend, but are rather diverse and inconclusive in terms of a
quantitative description of the temperature effect.

More profound than the direct effect of temperature is the interaction arising from
temperature changes occurring under load during test (thermal-mechanical coupling). It
is noted in creep bending [Kitahara and Yukawa, 1964] that when the temperature was

raised from 20 to 50° C during a creep test, the creep response was greater than that
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occurring under constant temperature at the highest level throughout the test, though
cooling during the test resulted in a sharp reduction of creep.

Temperature changes when coupled with moisture content changes while under
load result in even more complex viscoelastic behavior [Schniewind, 1968]. This,
unfortunately, occurs commonly in the applications of wood and wood-based materials.
Very limited information regarding this phenomenon is available and much lack of
understanding remains.

To isolate the direct effect of moisture content changes on the viscoelastic
behavior, both the direct and interactive effects by temperatures variations are not
included in this work. The results of the direct effect of increasing moisture content may
be extended to the direct effect of increasing temperature to some degree of approxima-
tion according to Bach and Pentoney [1968], who noted an equivalence between one
percent moisture content increase and 6° C temperature increase regarding their direct

effects on the viscoelastic properties of hard maple tensioned parallel to the grain.

3.2.4 Functional Forms and Linear Viscoelastic Models

One of the basic aims of the study of viscoelastic behavior is the determination
of mathematical representation of material response in relation to material parameters and
time. Numerous models have been proposed in the literature which simulate the real
materials with varying degree of success. In essence, they fall into two categories:

empirical curve fitting, and mechanical models (springs and dashpots).
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3.2.4.1 Empirical Models
Clouser [1959] in his bending creep work found that over relatively long time
spans, the power law (parabolic) model was rather useful. Other researcher have had
good success in using this model under mild and high humidity conditions. The model
takes the form
3.23

£(t) - g,+at™

where
e(?) - total strain
e, - instantaneous elastic strain
t - elapsed time

a,m - constants

3.24

A variant is

e(t) - at™ 3.2.5

which was also employed by some others. These two models prove to be the most

popular representations.
King, Jr. used another form for very short term experiments in tension parallel

to grain [King, Jr., 1961]:

e(t) - e,+blog(t+1) 3.2.6

The sum of Eq’s. 3.2.5 and 3.2.6 was also used to fit experimental results [Yamada,
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Takemura and Kadita, 1961]. Bodig and Jane [1982] compiled a list of commonly used

empirical equations in their publication on wood and wood mechanics.

3.2.4.2 Linear Mechanical Models

The empirical representations attempt to achieve the best mathematical fit to
existing experimental data. They are simple and successful, but, only valid within the test
conditions under which they are obtained. Different models may have to be employed
once test conditions are changed to produce good fit. It is obvious that this test condition
dependence does not allow comparison across tests in different environments, thus
reducing the empirical models’ application significance. And moreover the empirical
method does not help in providing insights into the underlying processes controlling the
viscoelastic behavior.

Rheological models or mechanical models, however, do not have those
limitations. They are comprised of springs and dashpots interconnected in various
fashions and model linear viscoelastic behavior if the springs and dashpots are linear
elements. To be specific, linear springs (Hookean springs) which feature linear propor-
tionality between stress and strain are used to simulate elastic components. Linear
dashpots (Newtonian dashpots) possessing linear proportionality between stress and strain
rates represent the flow components.

The most significant classical linear models are the Kelvin element, the Maxwell
element, and the various combinations of the two, shown in Figure 19. A Kelvin element

consists of a linear spring and a linear dashpot in parallel, while a Maxwell element
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Figure 19. Classical linear viscoelastic models.
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consists of a linear spring and a linear dashpot in series. A Kelvin chain is any number
of Kelvin elements connected in series, whereas a Maxwell chain is any number of
Maxwell elements linked in parallel.

The most convenient and simple linear model which has been used successfully
to describe wood and wood-based materials is the four-element Burger body found in the
book by Bodig and Jane [1982]. It is a Kelvin and a Maxwell element chained in series,
as seen in Figure 20. By and large, it is accepted as capable of sufficiently and
qualitatively explaining some of the fundamental aspects of the viscoelastic behavior of
wood and wood-based materials. The Kelvin element accounts for the recoverable
component of the behavior, while the spring and dashpot in the Maxwell element
represent instantaneous elastic and flow behavior, respectively.

A good illustration of the creep deformation process by this Burger body is given
in Figure 21. As seen, when a load is suddenly applied at ¢,, only the spring responds
by an instantaneous deformation equal to the product of the spring constant (E) and
applied load (P) while the others remain in their original positions. With passage of time
under the action of the load (P), both the Kelvin element and the Maxwell dashpot begin
to extend gradually. Upon the removal of the applied load (P) at (¢,), the Maxwell
spring instantaneously returns to its original position. The Kelvin element will return to
its undeformed position too (elastic), however over a period of time, showing delayed
character. The lone Maxwell dashpot will remain in its extended and irrecoverable
position. For a more detailed discussion refer to Bodig and Jane [1982].

The mathematical form of the model, expressed in terms of creep compliance, is
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Figure 20. Four-element Burger body.
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where J(1), J(t), and J(¢) are the total compliance, the recoverable compliance, and the
flow compliance, respectively. €(?) and ¢° are the total strain and time-wise constant
creep stress. E,, E_, ns and n,, are respectively the Kelvin and Maxwell spring
constants, the Kelvin and Maxwell dashpot coefficients. The first term represents the
Maxwell spring (elastic compliance), the second term represents the Kelvin element
(recoverable compliance), and the last the Maxwell dashpot (flow compliance). Clearly,
the total compliance is the sum of the contributions of the three elements.

The retardation time for the Kelvin element, r, defined as

e o e 3.2.8

is determined by the relative ratio of the Kelvin spring constant over the Kelvin dashpot
coefficient. With £=r time elapsed, a Kelvin element has extended about 1/3 (almost one
&*) of or recovered about 2/3 of the total possible extension depending on whether a load
is applied at zero extension or released at full extension. It is therefore a convenient
measure of the retardation of the element’s response.

The Burger body may be extended by inserting any number of Kelvin elements
into the serial linking. Each element may have a different retardation time (defined in

Eq. 3.2.8) which characterizes the time response of the element. Such models with
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discrete retardation times have been applied by several authors [Ugolev, 1963; Rose,
1965; Ethington and Youngs, 1965]. Higher degree of approximation is expected of the
extended Burger body in describing the recoverable component.

Since each Kelvin element’s contribution to creep compliance is

s - 4= 3.2.9
Eb

the creep compliance of a Burger body with N Kelvin elements, in analogy to Eq. 3.2.7,

is

N -z,
I - e(? _ 1 +£(1-—e ’)+ t
g

E, % E, NMmd 3.2.10

= J(O) +J () + J (1)

The extreme is reached when the number of Kelvin elements approaches infinity, at
which time retardation times are continuously distributed. The summation in Eq. 3.2.10
becomes an integral and the total compliance is

t

O - 2 - s [ U - e dine +

4 ms Nud 3.2.11

- JO) +J O +J®

where L(7) is the spectrum of retardation times.
It is possible to approximate both the retardation spectrum and its counterpart the
relaxation spectrum from experimental data if they do exist. Both Alfrey [1948] and

Leaderman [1958] developed a first approximation method. The result is quite good , but
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only when the distribution is constant or changing slowly. Schwarzl and Staverman
[1953] have extended this method to yield a better approximation. Pentoney and
Davidson [1962] found in their study that the spectrum was quite flat, while Noritomo
did find spikes in the spectra. The experimental work in obtaining the spectra is no easy
task. As the moisture content and the temperature change, the spectra will both shift and
change as a result of their sensitivity to moisture content [Norimoto, Hiyano and
Yamada, 1965] and temperature [Davidson, 1962]. Obtaining spectra functions in terms
of moisture content and temperature should be more challenging.

It should be emphasized that nonlinearity in a recoverable component would void
all the effort on spectrum analysis which is based on linear mechanical models. The
recoverable component may possibly be characterized as being linearly viscoelastic only
at low stress levels and at temperature below 50° C [Davidson, 1962], and at low and
moderate moisture content [Bach, 1968]. As significant as the contribution of the infinite
Kelvin chain is in the extended Burger body, the extensive effort involved results in no
more than a better depiction of the recoverable component, while a much larger part of

the viscoelastic deformation is due to the flow element.

3.2.4.3 Nonlinear Models

It has been clearly indicated that at least the flow component in wood is non-
Newtonian (nonlinear) [Davidson, 1962; Ethington and Youngs, 1965; Bach, 196S;
Youngs and Hilbrand, 1963]. Among the attempts to model nonlinearity, Kihne [1961]

proposed a hinged frame containing linear springs and dashpots where nonlinearity arises
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out of frame geometry. Kingston and Clarke [1961] had moderate success with reaction
rate theory and a model following the hyperbolic sine law. Ylinen [1965] devised a
model consisting of a Maxwell element paralleled with a nonlinear spring to be applied
to compressive loading parallel to the grain and to the long term load effects on columns
[Ylinen, 1966]. The most complete treatment of nonlinearity is an empirical one by Bach
[1965] in which total creep compliance, as well as its three components (instantaneous
compliance, recoverable compliance, and flow compliance) were expressed as a function
of linear and quadratic terms of logarithmic time, stress, moisture content, temperature,

and their products.

3.3 Creep Experimentation

As stated in the literature review section, only direct effects of moisture content
and stress levels will be tested.

Yellow-poplar (Liriodendron tulipifera) is the species chosen for the creep
experiments. However, only viscoelastic properties in the radial direction will be tested
and characterized. This will satisfy the input requirements for the application of the LVP

theory, as detailed in the last chapter.

3.3.1 Experimental Design
Tension creep tests were carried out in the radial direction at three stress levels,
approximately 25%, 50%, and 90% of the static strength, and at three moisture contents,

11.5%, 15.7%, and 21.5%, respectively. Temperature was maintained constant. With
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two replications, there were a total of 3 X3 X3 = 18 creep tests.

Edge grained boards were cut from large flat sawn yellow-poplar lumber free of
juvenile wood. After being jointed and planed to appropriate thickness, they were edge
glued with epoxy to form larger edge grained panels which after conditioning at 70° F
and 65% R.H. were jointed and planed again to achieve flatness and a final thickness of
1/4 inch.

Long and slender radial tension specimens of 1/4 inch by 1/4 inch cross section
and about 12 inch in length were cross cut from the prepared flat edge grained panel.
The specimen ends were inserted into tension grips, leaving a usable specimen length of
about 9 inches. The sample dimension and configuration are illustrated in Figure 22.

Holes were drilled through the tension grips at the ends of the tension specimen
to fit loading pins. One of them anchored the creep sample to a frame, while the other
transferred the static creep load (consisting of dead weights) to the creep specimen.
Figure 23 shows the loading and extensometer assembly.

The three stress levels were achieved by combinations of different weights. The
three moisture content levels were achieved by a light and simple apparatus affixed to
the loading assembly. As shown in Figure 24a and Figure 24b, the apparatus consists of
a rectangular plexi glass plate and two layers of thick plastic bags. The plate is supported
by the top pin by means of four wires attached to the plate’s four corners, and the hole
in the plate center allows the weight hanger rod to pass through so that the plate does not
interfere with the loading mechanism. The two-ply plastic bag with a hole in its closed

end for the hanger rod to go through encloses the plexi glass plate and the entire
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Figure 22. Radial tension creep specimen of yellow-poplar.
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Figure 23. Loading frame and extensometer assembly.
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Figure 24a. Complete test setup with flexible humidity chamber open.
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Figure 24b. Complete test setup with charged flexible humidity chamber enclosing
tension creep specimen.
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specimen. Tying up the open end of the plastic bag tight above the top pin creates an
insulated humidity chamber in which the tension specimen could be placed and loaded.
The flexible chamber is very small and is sealed at the top and at the bottom. By placing
two dishes of saturated salt solutions on the plexi glass plate inside the flexible chamber,
appropriate relative humidities could be created and maintained. (Figure 25a and Figure
25b are closeups of the flexible humidity chamber.) The three nominal relative humidities
for achieving the three moisture content levels are 66% RH, 86% RH, and 93% RH

which were created over saturated salt solutions listed in Table 3.

Table 3. Relative humidity over saturated salt solutions.

Relative Humidity (%)

Chemical @20C
Sodium Nitrite 66
Potassium Chloride 86
Ammonium Phosphate 93

The specimen was placed into the loading mechanism and the flexible humidity
chamber charged with appropriate salt solution with no load applied. As shown in Figure
24a, an calibrated Instron extensometer of 1 inch gauge length was affixed to the center
portion of the specimen. Any extension within the gauge length was detected and
recorded by the connected strain indicator.

To reduce possible slippage between the contact edges of the Instron extensometer
and the specimen surface, the specimen was first sanded and then coated with a very

narrow thin smooth layer of super glue where the extensometer edges contacted the
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Figure 25a. Closeup of open flexible humidity chamber.
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Figure 25b. Closeup of closed charged flexible humidity chamber.
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specimen. To further eliminate any possible slack in the assembly, a 20 psi load was
applied to the whole setup for 2 seconds, which increased reproducability.

While the stress-free specimen was being conditioned in the flexible humidity
chamber to the equilibrium moisture content, the strain indicator indicated the
hygroscopic expansion of the specimens. The extensometer-indicator system was
calibrated to a sensitivity of 1/50000 extension per inch per scale unit indicator reading,
that equals to an expansion strain of ((1/50000)/1)100 = 1/500% = 0.002%. (The
extensometer-indicator system can be calibrated to higher sensitivity, but readings
become unstable at sensitivities finer than 0.001 % expansion strain.) When the indicator
reading did not change more than 2 units (a 0.004 % extension strain) over 12 hours,
equilibrium moisture content was assumed to have been reached. At that point, the
indicator was reset to zero and predetermined load was applied to the creep specimen by
lowering a laboratory jack. The instantaneous elastic response was recorded immediate-
ly. Subsequent creep extension readings were recorded at selected time intervals.

Creep was allowed to continue in the charged flexible humidity chamber for about
600 hours, after which time the load was released by raising the laboratory jack. The
instantaneous recovery was immediately recorded. The delayed recovery was recorded
intermittently till the indicator reading became stable. The whole assembly was then
taken down and preparations were made for the next creep test.

The modulus of elasticity (MOE) of a sample can be tested nondestructively with
the extensometer-indicator mechanism. By subjecting the specimen to increments of load

and recording corresponding strains on the indicator, a linear stress-strain relation was
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obtained. The tangent of the linear line is the MOE. However, this test procedure by this

must be completed within a couple minutes to avoid the onset of time dependent
behavior.

All specimens, after having been conditioned and equalized at room conditions
of 70° F and 65% RH, had their MOE so tested. Those with very similar MOE values
were selected for the 18 creep tests to assure uniformity among test samples. The
statistical basis for this selection was the normal distribution of the MOEs. Samples
whose MOEs were around the average of the sample population were retained with
others eliminated.

A small piece of control sample of yellow-poplar was placed into the charged
flexible humidity chamber at the time a test sample was fitted into the loading set up. It
was weighed both at the end of the test and after subsequent overnight oven-drying at
103° C, after which the equilibrium moisture content were computed.

The test setup is very simple and worked well, yet it is also very delicate and
sensitive. Even the slightest disturbances to any part of it, like, repositioning of the
extensometer wire, caused at least small changes of the indicator reading, and therefore
had to be avoided. It is far from fool-proof, but care and practice reduce failures and

mistakes.

3.3.2 Experimental Results and Observations
The recorded indicator readings were converted to extension strains based on the

calibrated extensometer-indicator sensitivity. Dividing the extension strains by the applied
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constant creep stress yields creep compliance

et

-

g

J@ - 3.3.1

The initial creep compliance J,=J(0) is the elastic instantaneous strain divided by creep
stress, which is the elastic compliance. Creep compliance can be normalized by dividing

it by the corresponding initial creep compliance, that is

_Jo _ Jo
I 10 I, 3.3.2

J\(t), the normalized creep compliance which is a compliance ratio, is related to relative
creep ex(t) by

J ) = eqH) +1 3.3.3

according to Eq’s. 3.3.2 and 3.2.2.

For comparability, data of all tension creep tests compiled in Table 4 were
expressed in terms of normalized creep compliance. They are the average of two
replications of tests for each of the nine test conditions outlined in Table 5. Nine sets of
normalized creep compliances are presented in Figure 26.

It is shown in Figure 26 that the three normalized creep compliances for 11.5%
moisture content almost coincide with each other. The stress level has no effect on the
creep compliances (the criteria for linear viscoelasticity). At the two higher moisture

content levels, however, the normalized creep compliances increase substantially with
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Table 4. Normalized creep compliance of yellow-poplar in the radial direction at nine
creep test conditions.

Test Condition Number

11 12 13
t (hour) J(1)/J(0) t (hour) J()/J(0) t (hour) J(t)/J(0)
0 1 0 1 0 1

0.42 1.043 0.5 1.1 0.17 1.062
1.25 1.1 1 1.17 0.33 1.085
2.92 1.143 2 1.157 0.5 1.101
9.25 1.193 9.67 1.22 1 1.127
19.42 1.25 41.51 1.318 1.33 1.144
32.92 1.293 118.81 1.425 1.67 1.149
42.92 1.314 184.22 1.473 2 1.158
67.5 1.357 253.1 1.51 3.33 1.175
104.17 1.4 335.14 1.54 5.08 1.189
152.08 1.443 440.21 1.57 6.75 1.203

209.1 1.478 541.31 1.586 9.67 1.22

207.17 1.521 600 1.598 19.83 1.26
423.58 1.55 600 0.618 31.5 1.294
544 1.578 600.54 0.592 41.5 1.319
600 1.585 602 0.58 66.08 1.364
600 0.6 619.5 0.552 118.8 1.427
600.17 0.586 654 0.536 184.08 1.474
600.5 0.578 745.19 0.528 253.83 1.511

602 0.564 335.08 1.54
619 0.535 440.93 1.571
643.6 0.521 541.5 1.588
725 0.514 600 1.599
600 0.619
600.19 0.607
611.54 0.593
602.5 0.579
618.7 0.554
654.2 0.537
765 0.528

Test Condition Number
21 22 23
t (hour) J(t)/J(0) t (hour) J(t)/J(0) t (hour) J(t)/1(0)
0 1 0 1 0 1
0.5 1.08 0.08 1.1 0.07 1.15

5.5 1.292 0.17 1.128 0.15 1.205
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Table 4 (cont’d)

25 1.604 0.25 1.15 0.23 1.26
49.67 1.792 0.42 1.182 0.4 1.291
76 1.979 0.67 1.215 1.07 1.474
101 2.104 2 1.332 1.73 1.574
148 2.25 2.67 1.364 2.73 1.685
189.5 2.354 3.67 1.407 3.73 1.771
241.67 2.458 4.67 1.439 4.73 1.84
292.5 2.5 5.67 1.472 5.73 1.904
351.67 2.604 6.67 1.504 6.82 1.949
404 2.625 7.75 1.536 9.07 2.018
471.25 2.667 10 1.579 10.73 2.073
509.42 2.708 11.67 1.611 11.73 2.109
559.13 2.729 12.67 1.632 224 2.42
600 2.75 23.33 1.804 48.57 2.767
600 1.771 46.5 2.041 69.4 3
600.17 1.75 71.33 2.233 135.42 3.465
600.5 1.708 94.33 2.393 207.9 3.77
602 1.688 154.67 2.67 265.37 3.965
619 1.625 203.33 2.8 312.5 4.048
643.67 1.604 257 2.93 353.83 4.131
667 1.583 304 3.004 447.5 4.27
766.48 1.563 353.5 3.079 516.27 4.325
418.67 3.154 569.47 4.375
474.27 3.209 620 4.408
521.07 3.241 620 3.424
610 3.284 620.5 3.41
610 2.265 620.8 3.408
610.53 2.19 621.75 3.362
610.78 2.146 627.85 3.296
611.78 2.093 638.75 3.258
617.78 2.041 675.1 3.195
628.78 1.976 709.2 3.17
653.45 1.921 755.1 3.16
676.78 1.889 830.8 3.15
708.28 1.869
798 1.846
Test Condition Number
31 32 33
t (hour) J(©/1(0) t (hour) J(©)/J(0) t (hour) J()/3(0)
0 1 0 1 0 1

0.08 1.059 0.07 1.121 0.05 1.151
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0.33
0.67
1
1.33
2.12
2.75
3.5
4.5
5
6.67
9.17
10
12.97
22.5
24.75
28
30.75
34
47.5
54
82.75
97.5
119.83
143.67
166.25
190.75
237.27
287.5
347.9
407.5
467.9
528.5
600
600
600.07
600.22
600.97
601.47
603.97
649.47
692.93

1.078
1.137
1.157
1.196
1.235
1.274
1.314
1.373
1.412
1.471
1.627
1.647
1.784
2.039
2.078
2.137
2.157
2.216
2.412
2.431
2.627
2.745
2.784
2.882
2.941
3.019
3.137
3.255
3.333
3.451
3.529
3.568
3.647
2.686
2.314
2.294
2.255
2.235
2.196
2.118
2.078

0.23
0.57
0.73
1.23
3.23
5.23
6.23
10.23
22.9
46.23
74.23
84.23
103.73
118.73
142.73
166.73
176.4
180.18
189.68
214.68
237.93
252.68
274.35
298.18
357.42
442.02
509.2
562.02
610
610
610.05
610.18
610.93
611.93
615.43
633.1
659.43
730.18
871.93
991.93
1052.67

1.204
1.287
1.316
1.371
1.566
1.678
1.704
1.891
2.242
2.613
2.946
3.021
3.197
3.271
3.392
3.502
3.55
3.567
3.596
3.66
3.725
3.8
3.826
3.892
4.03
4.179
4.272
4.327
4.392
3.392
3.335
3.289
3.216
3.16
3.076
2.975
2.891
2.742
2.65
2.613
2.604

0.13
0.3
0.63
0.97
1.3
1.72
2.08
2.72
3.47
4.47
4.97
6.63
9.13
9.97
10.13
12.88
22.47
24.72
25.97
30.75
33.97
47.47
53.97
82.72
97.47
119.8
143.63
237.17
297.05
333.33
385.1
437.5
516.77
620
620
620.02
620.05
620.3
620.88
624.22
631.3

1.263
1.368
1.528
1.644
1.735
1.844
1.918
2.05
2.177
2.352
2.422
2.623
2.918
2.97
2.988
3.191
3.613
3.669
3.75
3.815
3.887
4.093
4.131
4.333
4.444
4.5
4.585
4.844
4.968
5.055
5.131
5.2
5.313
5.387
4.433
4.431
4.4
4.354
4.313
4.229
4.179
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795.4 2.039 641.72 4.132
861.87 2.02 650.22 4.1

911.37 2 672.22 4.055

696.22 4.011

742.72 3.988

809.22 3.946

937.22 3.917

1179.75 3.901

stress levels, evidencing the nonlinear viscoelastic behavior of yellow-poplar in the
radialdirection at moderate and high moisture content levels.

The two MOEs were obtained from each creep test based on the instantaneous
elastic strain from load application and from load removal, respectively. The former is
called the initial MOE and the latter the recovery MOE. It is seen in Table 5 that there
are slight increases in the range of 0 to 5 percent in the recovery MOE over the
corresponding initial MOE. The elastic component showed time dependent creep at
constant moisture content. Such time dependence is larger at high stress and moisture
content levels. To substantiate the above finding, further investigation on larger numbers
of observations is necessary. Nevertheless, the observed time dependence is very
marginal and can probably be disregarded. Actually, both Herman and Paton [1964],
and Grossman [1976] indicated that the elastic component quantified by MOE only,
increases or decreases directly according to moisture content (temperature not considered
here) under moisture content changes and/or moisture content cycling during stress,
suggesting no such time dependent variation is experienced by MOE under either the

direct effect of moisture content or mechano-sorptive coupling effect.
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Table 5. Instantaneous MOEs of yellow-poplar in the radial direction at nine creep test

conditions.
Instantaneous MOE
(10° psi)
Test Condition Moisture Creep Stress  Initial MOE  Recovery MOE  MOE Change
Number Content (psi) @ 600 hrs (%)
(%)

11 11.5 100 145.96 146.92 0.66

12 11.5 310 148.72 149.96 0.83

13 11.5 650 145.54 148.59 2.10
Average: 146.74 148.49
Predicted': 145.25 148.12
Difference (%)% -1.02 0.25

21 15.7 133 135.89 138.57 1.97

22 15.7 314 136.93 140.57 2.65

23 15.7 785 135.56 142.22 4.91
Average: 136.13 140.45
Predicted: 136.94 140.66
Difference (%): 0.59 0.15

31 21.5 130 124.80 129.89 4.08

32 21.5 321 124.58 130.65 4.88

33 21.5 600 124.02 131.00 5.62
Average: 124.47 130.51
Predicted: 122.72 130.06
Difference (%): -1.4 0.35

1: MOE computed according to Eq. 3.3.5 on the basis of the MOEs at two other moisture content levels.
2: Difference between the computed MOE and the measured MOE.
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As expected, both MOEs decrease with increase in moisture content, as shown
in Figure 27. The experimental data were checked for their agreement with the known
moisture content-MOE relationship given in the Wood Handbook [Forest Products

Laboratory, 1987]. A mechanical property at moisture content MC is found to be

MC-12
12 - MC,

P
-P, (_12)( 334

P MC PG

where

P,,c - mechanical property at moisture content of MC percent

P,; - mechanical property at moisture content of 12 percent

P; - mechanical property at green condition

MC is the moisture content at which the mechanical property ceases to decrease with

moisture content. A variant form of the same relation is

p MCx - MC,
uc,) MC, -uc,)

P, - PMCI(P 3.35

MC,

where

Py - mechanical property at moisture content of Mcx percent

Py - mechanical property at moisture content of MC, percent

P, - mechanical property at moisture content of MC, percent

This version allows for the calculation of the mechanical property at any moisture content

(Mcx) given the property at moisture content MC, and MC,. The MOE at the third
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moisture content calculated based on the MOEs at two other moisture content levels was
found to be within 2% of the actual MOE value. Table 5 and Figure 27 illustrate such
close agreement.

The recoverable component is the part of creep deformation that can recover over
time following the instantaneous recovery upon the load release. For comparability, it

was expressed as normalized recoverable strain, defined as

e® &0
e, (t) - — -
¥ e(0) &

3.3.6

where

¢,»(t) = normalized recoverable strain in percent

¢(t) = recoverable strain

€ = instantaneous elastic strain at the time of load application

The normalized recoverable strain is equivalent to the normalized recoverable compliance

as demonstrated in

e, () - £ &0le” 10 J 3.3.7
v e0)  e0)/o° J "

In Figure 28 which shows recovery strain at nine test conditions, it may be noted
that increases in both stress level and moisture content result in an increase of the
normalized recoverable compliance (or normalized recoverable strain) and in longer

recovery time, which is more profound at higher stress levels and moisture contents. The

observed moisture content dependence, and the stress dependence of the normalized
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recoverable compliance - indicating nonlinear behavior of the recoverable component -
agree with the findings of Bach [1968] that recoverable compliance is a nonlinear
function of stress levels and moisture content.

The effect of mechano-sorptive coupling on the recoverable component was not
investigated in this work. The indication by Grossman [1976] is that the coupling should
impose no further influence on the recoverable component.

Measurement at the end of the creep test (about 600 hours) does not reveal
whether the recoverable component is time dependent during the creep test maintained
at constant moisture content. Investigation of this time dependence would require the
release of the creep load at different times during the creep tests on a number of
matching specimens.

The recoverable component is, therefore, assumed to be time independent in this
study. Consequently, any such time dependence is being factored into the flow
component. Characterization is made much simpler this way as there is only one time
dependent component - the flow component - to deal with. The rationale rests in the
relative insignificant contribution by the recoverable component as outlined in Table 6
which shows that the recoverable component accounts for only about 20 percent of the
total creep, while 80% is due to the flow component.

The flow component results in permanent deformation that does not recover after
the release of load. It is apparent in Figure 29 that the normalized flow strain increases
with an increase in both stress and moisture content, as found by Bach and Pentoney

[1968] that the flow component is clearly nonlinearly viscoelastic.
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3.4 Modelling Creep Behavior by Mechanical Model

As opposed to empirical models, the mechanical ones provide a unified approach

to the analysis of viscoelastic behavior in that the behavior of a material can be described

Table 6. Composition of tension creep strain of yellow-poplar in the radial direction.

Normalized Creep Strain (%)
Test Total Recoverable Permanent Recoverable Permanent
Condition
Number
11 0.5857 0.0747 0.511 12.75 87.25
12 0.598 0.084 0.514 14.05 85.95
13 0.5989 0.0709 0.528 11.84 88.16
21 1.75 0.188 1.563 10.71 89.29
22 2.28 0.211 2.069 9.25 90.75
23 341 0.258 3.15 7.57 92.43
31 2.65 0.65 2 24.53 75.47
32 3.39 0.61 2.78 17.99 82.01

33 4.39 0.77 3.62 17.54 82.46

by a finite number of parameters that can be compared to those of other materials as well
as of the same material subject to different environmental conditions [Bodig and Jane,
1982]. Therefore, a unified mechanical model must be used for the nine test conditions
in this study.

The model proposed is based on the ever popular 4-element Burger body defined
in Eq. 3.2.7. Since the initial creep compliance is the elastic compliance - the reciprocal

of modulus of elasticity -
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JO - Jp - — 3.3.8

the normalized total creep compliance is

T - 20 _JO

J(0) Jy

. 1lp ,d-e™)p ,  t g 3.3.9
E E

- 1+JWE, + J(OE,,

-1+ J,N(t) + JfN(t)

where

J\(t) = normalized total creep compliance

J Mt) = normalized recoverable compliance

Jv(t) = normalized flow compliance

with others defined in the same manner as specified in Eq. 3.2.7. The total creep
compliance can then be easily obtained by dividing a given normalized creep compliance
by the initial MOE or the reciprocal of the initial creep compliance.

The normalized total creep compliance and its components described in Eq. 3.3.9
are shown in Figure 30 to demonstrate relations among them. The instantaneous
component is normalized to unity. The recoverable component rises and levels off
relatively quickly, and recovers completely after load release at ¢, evidencing the

behavior of the Kelvin element. The flow component increases linearly with time and
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remains permanent after load release, indicating Newtonian behavior (linear dashpot).
(The Newtonian dashpot, by definition, maintains linear proportionality of its strain rate

with stress

de(1)
o - n,, el(t)’ - ﬂwT[ 3.3.10

Integration of the above results in

e - 1o 3.3.11

The creep compliance is then

sy - L L, 33.12

o Nms

and its normalization over the initial creep compliance J, is

1
It E
5, - L) | w _ Ew, 3.3.13
y ‘,0 _1_ "m
E”

This shows that the normalized creep compliance of the Newtonian dashpot is represented
by a straight line.). In the superimposition of the three elements, the instantaneous part
establishes a starting base at unity, the recoverable component raises it to another level,
and the flow segment rides atop. The only transient phase is before the recoverable

component reaches its equilibrium level. This phase whose length depends on the Kelvin
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element’s retardation time is however generally short in comparison to the total creep
span. Therefore, the slope behavior of normalized total compliance is dominated by that
of the Newtonian flow component. The tangent of the slope for the normalized total

creep compliance could be approximated by that of its flow component as

diy d+J @O+J 1) dJ @O E_
dt dt dt Nod

3.3.14

In absolute creep compliance, the slope tangent of a Newtonian dashpot is then just the

reciprocal of the dashpot’s coefficient

djp _ dU\0Jp) dUWIIEY 1 3.3.15
dt dt dt Mms -

However, it is shown in Figure 26 that the actual normalized total compliances never
reach straight slopes. In another words, the flow component is not linear and can not be
represented by a Newtonian dashpot. This is neither new nor surprising as many others
have arrived at the same finding [Davidson, 1962; Ethington and Youngs, 1965; Bach,
1965; Youngs and Hilbrand, 1963]. Realistic characterization must employ a non-
Newtonian dashpot.

Before addressing the mathematical form of an appropriate non-Newtonian flow
component, we first explore possible relations between Newtonian and non-Newtonian
dashpots. If one agrees that a curve (nonlinear) can be divided into an infinitely large
number of infinitely short straight lines and that each line segment is the slope or

derivative of the nonlinear curve within the respective segment, one could in the same
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way divide a non-Newtonian compliance curve into an infinite number of infinitely short
straight compliance lines. Since each individual straight compliance segment corresponds
to a Newtonian dashpot whose coefficient is the reciprocal of the tangent of the straight
segment within the respective infinitesimal time interval, a non-Newtonian dashpot can
be viewed as a Newtonian one with its coefficient varying in accordance with the tangent
or the differentiation of the non-Newtonian compliance curve.

By trial, the parabolic function (af™) which has been a successful empirical model
for wood and wood-based materials defined in Eq. 3.2.5 is found to be an appropriate
non-Newtonian dashpot that best fits the experimental data of the normalized creep
compliance in this study. The reciprocal of the coefficient of its Newtonian equivalence

is therefore

L - amt™! 3.3.16
NMmd

which is the differentiation of the parabolic function. The coefficient

1
n. - 3.3.17
™ aml

is no longer a constant as it is in a Newtonian dashpot, but time dependent.
The recoverable component which makes only a small contribution to the total
creep (Table 6) is approximated with a single Kelvin element which contributes a

compliance of
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Ey,

-—t

(I-e™)
Eb

The proposed four element linear Burger body model is then modified to
J 0 = 1+ Em(l;

n 4
-1+ Emg’;_.) + E'__,famt“'"’dt 3.3.18
0

in terms of the normalized compliance. It differs from the proposed linear Burger body
(Eq. 3.3.9) in the flow term. Equation 3.3.18 will be used to characterize the
experimental normalized creep compliance data in Figure 26 in order to determine the
coefficients, namely E,,, E;, ny, and 9,,.

E,, is easily determined from the instantaneous elastic strain at the start of the
creep test - load application.

The Kelvin element with which E,, and 5, are associated is governed by the

differential equation

de (1)
dt

E_e(t) - ny (= o) 3.3.19
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as a result of its parallel arrangement of spring and dashpot. At the initial condition of

zero extension, the solution of the differential equation results in the normalized

compliance
e B,
J (0 - 7O o 20 EN.(I_""J 3.3.20
AT ) E,
a.

At the initial condition of full extension, the normalized compli.ance would be

&0 L,
J, @® - LN U E S ™ 3.3.21
o d, 2@ e E,
a.

It also follows from Eq. 3.3.20 that when ¢ goes to infinity, which is when the Kelvin

model is fully extended,

J () - L 3.3.22
N Eh

or

I - L 3.3.23
r Eb

Therefore, the Kelvin spring constant, E,,, and the Kelvin dashpot coefficient, #,,

can be obtained from experimental recovery strain data. First, E;, was found by dividing
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the creep stress by the total recoverable strain according to Eq. 3.3.23. Next, Eq.
3.3.21 was forced on the recovery portion of the normalized creep compliance curve
(Figure 31) to arrive at E, /y,, (the reciprocal of the retardation time 1/7) to obtain .
It is apparent in Figure 31 that one Kelvin element does not suffice for good approxima-
tion of the behavior, but can account for the most important two aspects of the
recoverable component -the total recovery and the total recovery time.

The a, and m coefficients in the flow term were obtained by nonlinear regression
fitting of Eq. 3.3.18 to the nine sets of normalized total creep compliances in Figure 26.
An example is given in Figure 32 for the normalized creep compliance at test condition
21.

To express the normalized creep compliance as function of moisture content,

stress, and time, Eq. 3.3.18 may be rewritten as

_EyMCo)
- e MMCR 3.3.24
J(MC,04) - 1+E, MC) L€ ) + E_(MC)a(MC, ) ™¥C.o
kx(MC,0)
where
MC - moisture content
o - stress
Alternatively, it could be alternatively written as
J(MC,00) - 1 +AMC,07) - e™%) + C(MC,0) 7™M 3.3.25

where
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E, (MC)

A(MC, 0) - e
E}_‘(MC, o)
E, (MC,
BMC,0) - —eME9)
7,4{MC,0)
3.3.26
1 - C(MC,0) D(MC,0) ¢(D(MC,0)-1)
n(MC,o,t) E.

C(MC,0) - E,(MC)a(MC,0)

D(MC,0) - m(MC,o)

Given A, B, C, D, and E_,, E,,, w,,, and y,, can be readily computed. The A, B, C, and
D values for the 9 conditions were obtained and are listed in Table 7. Though multi-
variable regression analysis is the best choice for the procurement of the empirical A, B,
C, and D functions of stress and moisture content, the author opted for two steps of
single variable empirical curve fitting. Because there is no coupling between stress and
moisture content changes, their effects on A, B, C, and D may be dealt with indepen-
dently. The A, B, C, and D functions of stress at each of the three moisture content
levels were obtained in the first empirical fitting. The variations of the coefficients in the
acquired A, B, C, and D functions of stress with the three levels of moisture content
were then captured in the second empirical fitting, which yields A, B, C, and D functions
of both stress and moisture content as presented in Table 8.

The normalized creep compliances based on the empirical functions of A, B, C,
and D at the three stress levels and three moisture contents were drawn against the
experimental normalized creep compliances in Figure 33 to show the fairly good

agreement between them.
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Table 7. Coefficients of normalized creep compliance of yellow-poplar in the radial
direction at nine creep test conditions.

Coefficient
Test Moisture Creep Stress A B C D
Condition Content (pst)
Number (%)
11 11.5 100 0.08566 0.035 0.10927 0.2366
12 11.5 310 0.08566 0.035 0.11526 0.2367
13 11.5 650 0.08927 0.035 0.11526 0.2318
21 15.7 133 0.2102 0.030 0.19538 0.3280
22 15.7 314 0.2503 0.030 0.38578 0.2582
23 15.7 785 0.3038 0.030 0.51460 0.2866
31 21.5 130 0.4302 0.015 0.28780 0.3267
32 21.5 321 0.7420 0.011 0.54078 0.2472
33 21.5 600 0.9210 0.010 0.70318 0.2622

In summary, the creep behavior of yellow-poplar in its radial tension as
influenced by stress levels and moisture contents has been mathematically characterized
by a four element Burger body containing a non-Newtonian Maxwell dashpot. The
coefficients of the Burger body are successfully expressed as functions of their dependent
variables, namely, stress, moisture content, and time. Though there are many available
choices for the function forms, the chosen one presumably is the simplest and did
produce good conformity with the actual experimental data. It is to be kept in mind that
the current mathematical characterization only includes the direct effects of stress and
moisture content changes during moisture content gain. Its validity is not certain beyond

the tested stress and moisture content ranges.
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Table 8. Empirical functions of coefficients of normalized creep compliance of yellow-
poplar in the radial direction.

T 0 - -J;i) - 1+A(I-e®) +CtP
0

A-—1
Ae™ 4 A,

B - -0.0014¢°1424C . 0.0424

C - C(l-e%

D - 0.154756e"00004sMC , g 25

A, - -2.85 + 0.467931MC - 0.00799MC>

A, - -0.00085912 + 0.00004962MC + 0.00001658MC>
A, - 247.08¢702T18MC

C, - 1.01(I - ¢ 0151MC-105)

C, - 0.00019(] - 035C-209) _ 0,0031

MC - Moisture Content
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CHAPTER IV

APPLICATION OF THE LVP THEORYTO HYGROSCOPIC WARPING

In this chapter, the hygroscopic warping is viewed as being a highly viscoelastic,
as well as a dynamic process. With the viscoelastic properties characterized in Chapter
3 as one of the necessary inputs, the LVP theory developed in Chapter 2 is to be applied
to a cross laminated yellow-poplar wood plate and beam. Theoretical predictions of the
warping development of the plate and beam are to be compared with the measured values

along the experimentally determined moisture content path.

4.1 The Process of Hygroscopic Warping of Wood and Wood-based Material Panels
Hygroscopic warping of a panel occurs when the hygroscopic expansions or
shrinkages resulting from moisture content changes at any pair of planes that are
symmetrical with respect to the mid-plane of the panel differ and generate bending
moments. Such differentiation can come from either the structural unsymmetry such as
difference in species - difference in hygroscopic expansion or shrinkage coefficient - or
unsymmetry in moisture content gradient across the thickness of the panel. It is
theoretically possible for a panel of structural unsymmetry to become flat at some point
if subjected to opposing and equal moisture content gradient unsymmetry. Inreality, this

temporary stability however can not be maintained. A panel of perfect structural

123
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symmetry can still warp when the moisture content gradient is unbalanced, but the
problem is not inherent in the structure. Therefore, such panel is considered hygro-
scopically stable. Perfect structural symmetry is ideal, but difficult to achieve in
manufacturing practice. The best effort can only result in the reduction of any unsymme-
try to a minimum, according to potential application requirements. However, it often has
to be compromised due to cost, availability of species, etc..

The viscoelastic nature of warping in wood and wood-based panels is soundly
evidenced in the following manifestation. When the moisture content of an unsymmetrical
panel is elevated to moderate ahd high levels, the resulting warp is much less than the
elastic estimate. Reversing the moisture content to its original level which would have
reversed the warp backward to its initial value were the panel elastic, however, leaves
a significant part of the original warp unrecovered or permanent. This is nevertheless
expected as the panel behavior must reflect the viscoelastic properties of constituent wood
and wood-based materials.

In the following thought process which attempts to analyze a viscoelastic warping
process, a wood panel cross laminated of two very thin plies of the same thickness and
species is selected. The layers are so thin that the moisture content is assumed to change
uniformly across the panel thickness so that there is no differential expansion or
shrinkage within each of the layer of the panel. The plate is presumed to be at some
initial moisture content where the panel is flat, and therefore stress free (due to its
structural instability). The hygroscopic expansion or shrinkage differential between the

two cross laminated layers in each of the two coordinate directions is the cause of
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potential mutual restraint between them. This restraint is triggered by any deviation of
the moisture content from its initial value and will result in a saddle shaped warp of the
panel.

Suppose the panel’s moisture content is going to be increased along a path to
MC+ AMC over a time period of Az. As soon as the moisture content strays away from
its initial point, both layers start to expand. The much larger hygroscopic expansion
across the grain relative to that along the grain results in mutual restraint, leading to
tension along the grain and compression across the grain in the panel. The resulting
bending moment would then cause the panel to warp away from its original flat position.
Immediately at the onset of tension and compression stresses, the viscoelastic property
of the constituent would emerge in the process (viscoelastic properties are dormant in the
stress free state). It asserts itself in that the tension layer would tend to creep-stretch, and
the compression layer tend to compression-creep under their respective stresses. This
creep, here called deformation creep, would lessen the mutual restraint between the two
layers, resulting in lower stresses (stresses relaxed), and consequently smaller bending
moment and warp than would be the case if the constituents were completely elastic.
Here, the onset of stresses and deformation creep (plus stress relaxation) are related in
a sequential manner. These two are actually simultaneous, intertwined, and inseparable
in time space. No sooner than with the onset of the tension and compression stresses
will deformation creep begin and stresses start to relax, resulting in a reduced potential
for bending moment and warp.

As moisture content further increases, the expansion differential becomes larger,
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causing greater mutual restraint and restraining stresses. In the meantime, it is known
that the hygroscopic constituent layers will creep and relax more at higher moisture
contents and under higher stresses. Therefore, the deformation creep and stress relaxation
in the two layers are expected to occur to a greater extent and at a faster rate with each
increment of moisture content and stress increase, thereby lessening the relative restraint
and slowing down the otherwise much larger and faster elastic warp development. The
concurrent development of the two phases (restraint and restraining stresses versus
deformation creep and stress relaxation) represents a balancing mechanism which
minimizes the restraint and resulting warp. Due to larger and faster creep at higher stress
of wood and wood-based materials, the more severe and the faster the condition of
restraint develops, the more significant and the faster the deformation creep and stress
relaxation occur. Conversely, the less severe the restraint is, the less significant the
deformation creep will be and the slower the stress relaxation will take place. It should
be emphasized that these events take place along a continuous moisture content path as
it is impossible to elevate moisture content instantaneously.

As moisture content stabilizes, no further hygroscopic expansion is introduced.
Yet the mutual restraint and restraining stresses, and the warp resulting from the previous
moisture content path are still present. Therefore the deformation creep and stress
relaxation will continue. As the restraint is further lessened, less deformation creep and
stress relaxation occur due to less creep by wood under lower stresses. This downward
trend would continue until a balance between the lessening of the restraint and the

development of the deformation creep has been reached. It needs to be emphasized that
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the laminate is not necessarily free of stress or restraint free at this point. It is merely
in a temporary stable state. The permanent portion of the deformation creep (the
Maxwell dashpot) would be embedded in such a stable warp by manifesting itself as the
irrecoverable portion of the warp if the panel is subjected to the reverse of the moisture
content path back to its initial moisture content level.

In real panels there exist moisture content gradients since moisture content can
not be raised uniformly across a thickness, just like temperature. It is by the gradient that
the moisture gets diffused and uniform moisture content is reached over a period of time.
The presence of a moisture content gradient poses a more complicated scenario in that
aside from the mutual restraint as caused by the directional expansion differential
between the two layers, there is mutual restraint everywhere within each layer, caused
by moisture content differentials. Every imaginary layer as thin as necessary is restrained
by its adjacent ones, and therefore two phases of the warping process must be taking
place concurrently in the involved layers.

Another source of mutual restraint for this two-layer panel could come from the
warp itself. It is known that when the panel warps, a stress distribution develops in such
a way that the stresses in the outer layers are the largest, and that they gradually diminish
towards the mid-plane. The stress differential between adjacent imaginary layers imposes
constraint between them.

In short, the hygroscopically induced mutual restraint due to either imbalance in
structure and/or moisture content gradient and the simultaneously resulting deformation

creep and stress relaxation due to the viscoelastic nature of the constituent wood and
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wood-based materials are the two inherently cohesive phases in the warping process.
Though conceptually conceived and separated here for the analysis of the warping
process, they actually are inseparable, interdependent, counter balancing and canceling
each other. Consideration of just one of them in a fixed time frame in any analysis is not
feasible.

The complexity of this warping process is further increased by the fact that
moisture content and stresses not only vary across the thickness of each physical layer
in a panel due to moisture content gradients and stress distributions, but also that such
gradients and distributions do not remain constant, but vary with time. These two varia-
tions have to be captured somehow in any realistic approach.

The LVP theory is not capable of capturing them in a continuous manner since
it must treat a panel as composed of a finite number of layers, however thin they may
be, and consider the process within a finite number of discrete time intervals. The
moisture content within a layer must be uniform as required by the CLT structure and
constant within a time interval as required by the isothermal requirement of the LVP
theory (We can extend the isothermal concept to moisture content if moisture content and
temperature are considered to have equivalent effects. Warping where moisture content
gradient changes with time actually falls in the realm of thermal viscoelasticity.
However, the isothermal LVP theory is a lot simpler, and the isothermal restriction is
only to be enforced within each of, but not across the discretized time intervals in the
numerical form of the LVP theory achieved by linear finite difference approximation.

Therefore, the isothermal LVP theory in its numerical form can be and is used in this
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study to approximate the thermal viscoelastic problem.). If we treat moisture content
increase as a step-wise process, that is moisture content within a layer is uniform and
remains constant during time interval Az, before advancing to a new level at the next time
interval Af; as shown in Figure 34, the LVP theory is able to numerically capture
moisture content variations in the thickness direction along a time scale. This treatment
is feasible provided that the layers are specified to be very thin and time intervals are
sufficiently small so that the moisture content gradient within a layer is small enough to
be viewed as uniform, and its variation with time in a single time interval so little as to
be considered constant.

Secondly, the viscoelastic properties of wood and wood-based material such as
yellow-poplar for each imaginary thin layer in the panel are stress and moisture content
dependent, and therefore would change accordingly with the changes in moisture content
and stresses in the warping process. Such changes should be accounted for, if not
precisely, then at least numerically to a good approximation. The moisture content
dependent changes in viscoelastic coefficients can be numerically captured since moisture
content variation across the thickness along the time scale can be numerically captured
as just discussed and the viscoelastic coefficients-moisture content relations have already
been characterized mathematically for yellow-poplar in Chapter 3. To account for the
stress dependent changes in viscoelastic coefficients, a similar numerical approach is
applied where the stress distribution within each thin layer would be assumed to be
uniform and to change in the same step wise manner as the moisture content. Stress

distributions exist inside each layer, however thin the layer may be.  But, they are
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averaged within a layer for the purpose of determining the stress effect on the
viscoelastic coefficients of the layer during a time interval according to the viscoelastic
coefficients-stress relationships defined in Chapter 3. (The CLT structure of this LVP
theory determined that the viscoelastic coefficients must be uniform within a layer.
Therefore the stress dependence of the coefficients must be computed based on one stress
within a layer.). This account of stress dependence would be a close approximation if
the layer was thin enough.

It is seen that dividing a panel into thin imaginary plane layers is the basis of the
LVP theory. The thinner and the larger the number of layers, the closer the theoretical
predictions should be to actual results, if the LVP theory proves itself valid. An exact
account of the actual behavior would necessarily resort to analytical solutions which
consider the continuous nature of the warping process, but this is not achievable. A
discrete method has to be the alternative, just as in so many other science and
engineering problems where numerical methods such as the finite element method are
widely used. Actually in a sense, the thin imaginary layer strategy resembles the finite
element method in a sense as the panel is divided into a finite number of parallel adjacent

layers.

4.2 Warping Experimentation
A yellow-poplar panel was constructed in the laboratory of 65% RH and subjected
to 91 % relative humidity. Its subsequent warp development was measured and compared

with the theoretical predictions by the LVP theory to examine validity of this theory.
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4.2.1 Panel Design and Manufacturing

A two-ply cross laminate of yellow-poplar layers of identical thickness was
selected for it is of the simplest unsymmetrical structure, and requires the least effort in
lamination and manufacturing. The most important reason however is that the structural
unsymmetry would not allow any stresses in it without manifesting the stresses in the
form of warping of the panel. Every effort was made to minimize any possible residual
stresses arising from the laminating process.

As shown in Figure 35, edge grained strips of yellow-poplar of 3/4 by 1/2 by 50
in were cut from flat sawn yellow-poplar lumber and edge-glued with conventional white
glue to form two large edge grain panels with dimension 50 by 23 by 1/2. The panels
were then conditioned at a room condition of 70° F and 65% RH for three weeks before
they were planed to a final thickness of 0.25 inches. These panels were monitored to
remain flat at further conditioning at the prior room conditions, indicating dimensional
stability. Three 1 in wide strips were cross cut from each of the two panels for use as
radial linear expansion samples. One of the panels was then cut in half and the two
halves were turned around for 90 degrees before being cross laminated to the other panel
with Epoxy AW-106/HV-953 made by Ciba-Geigy. To avoid any potential moisture
content change, the glue spreading and laminating operation were conducted in the same
room condition. The Epoxy which is 100% chemical reactive in its curing process does
not contain water or other solvents thus eliminating any hygroscopic expansions during
the lamination and curing. The AW-106/HV-953 Epoxy was recommended by the

manufacturer based on our requirements that the glue line must be able to cure under
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Figure 35. Manufacturing of edge grain yellow-poplar panel.
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room temperatures as hot press curing would introduce thermal stresses, must be
relatively rigid with as little creep and slippage as possible so that glue line could be
considered as being of zero thickness and in compliance with the Kirchhoff deformation
field, and must be highly moisture or humidity resistant as it is to be subjected to high
humidity for extended periods of time, and must have moderate viscosity for ease of
handling during the lamination process. The laminate assembly was then transferred to
a plywood press to cure under pressure. As suggested by the manufacturer, a relatively
low press pressure (15 psi) was used to minimize the development of residual stresses,
while maintaining sufficiently good contact. The laminate was allowed to remain under
such pressure to cure for over 18 hours before it was taken out and placed in the prior
room condition. As the press is situated in a room of lower humidity, some moisture
along the four edges of the laminate may have escaped during the 18 hour pressing time,
and some stresses may have been introduced along the edge areas. For that reason, the
laminate was trimmed to a final size of 42 by 19 by 0.5 inches. The samples prepared
from this piece are a 1 by 19 in beam, and a 19 by 29 in plate for the warping test, and
eight 4 by 4 in square blocks for the determination of moisture content gradients, as
shown in Figure 36.

The laminate should have remained flat when returned to the prior room condition
since its constituent panels had been equalized under such conditions. However, the
laminate when placed in the same room conditions warped as though the constituent
panels were conditioned at a higher relative humidity condition, though it came out of

the press flat. It was later confirmed that on the day of the lamination the valve system
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Figure 36. Specimen arrangement on the yellow-poplar laminate.
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controlling the conditioning room malfunctioned for a short time without the author’s
knowledge. As a result, the actual room humidity did go up somewhat above 65% RH.
When the laminate was placed in a conditioning chamber maintained at 70% RH, it
straightened out eventually and remained flat. Therefore, 70° F and 70% RH are
considered the initial condition at which the laminate was both stress free and free of
warp.

Longitudinal tension samples for testing static MOEs of the laminating material
and longitudinal linear expansion samples were prepared from some of the randomly
selected strips cut from the ﬂai sawn lumber. Radial tension samples for radial MOEs
and radial linear expansion samples were cross cut from the edge glued radial panels
shown in Figure 35 prior to laminating. A total of 11 longitudinal and 10 radial tension
samples were made. Their shape and dimensions are shown in Figure 37. A total of 10
longitudinal and 4 radial linear expansion samples were prepared. Figure 38 shows the

their dimensions and shape.

4.2.2 Warp, Moisture Content Gradient, and Expansion Coefficients

To avoid horizontal moisture content gradients due to faster moisture penetration
through the four edge surfaces, the edge surfaces of the prepared samples - the laminate
of 42 by 20 by 0.5 in, the beam of 1 by 19 in, and 10 4 by 4 in control squares - were
sealed with wax before transfer into the humidity chamber. After the laminate and the
beam had straightened out at 70% RH in the humidity chamber, the relative humidity in

the chamber was raised to 91% RH within only 5 minutes. As a consequence, moisture
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Figure 37. Static tension specimen of yellow-poplar.
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content gradients developed and increased. Laminate and beam started to warp.

In this study warp was recorded as the vertical deflection of a laminate in
reference to the original flat position of the panel. In Figure 18 which shows the
positioning of the laminate in x-y-z coordinate system, the geometrical center of the
laminate is fixed to the coordinate origin, and the mid-plane of the original flat laminate
coincides with the z=0 x-y plane, as implied in Eq. 2.4.49. The vertical deflection of
the laminate at coordinate position (x, y, 0) therefore is in reference to the z=0 x-y
plane. Positive vertical deflection indicates a downward deflection, while a negative one
identifies a upward deflection. Due to cross lamination of two identical yellow-poplar
plies, the vertical deflection is symmetrical to x-z and y-z planes, that is the vertical
deflections at (0, y, 0) and (0, -y, 0), or at (x, 0, 0) and (-x, 0, 0) are identical.

At certain time intervals, vertical deflections relative to the geometrical center
were measured at (14.1, 0, 0) and (0, 9.15, 0), respectively on the laminate, and at (0,
9.15, 0) on the 19 in beam shown in Figure 18. The measuring device is an aluminum
beam with contact points at each end and with a conventional dial gauge affixed to its
center as shown in Figure 39a. By placing the two end pins at (+14.1, 0, 0) or at (0,
19.15, 0) where the vertical deflections are identical, the dial gauge which touches the
geometrical center of the laminate or the beam thereby indicates the vertical deflections
at the two end pin locations, as shown in Figure 39b. The device was first leveled by
adjusting the heights of the two end pins.

The focus of this study is on only the hygroscopic warp, and therefore any other

sources affecting the warp including the effect of the laminate own gravity force on
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Figure 39a. Deflection measuring apparatus.
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Figure 39b. Measuring apparatus on the warped yellow-poplar laminate.
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vertical deflection had to be avoided. For this reason, the laminate and the beam were
placed on their edges both inside the humidity chamber (Figure 40) and when being
measured.

The development of the moisture content gradient in the thickness direction is the
necessary input for the application of the LVP theory. The measurement of moisture
content gradient in the laminate was conducted on 4 by 4 in square blocks cut from the
original laminate. The blocks were place in the humidity chamber simultaneously with
the laminate. Each block was taken out at certain time interval after the chamber
humidity was raised to 91% 'RH and tested by the method developed by Feng and
Suchsland [1993]. The depth increment used is 0.1 inches and only three layers of
sampling were taken as the moisture content gradient in this laminate can be considered
symmetrical to the mid-plane of the laminate. The new method using Forstner drill bit
was demonstrated to be superior in accuracy to the conventional layer sawing technique
[Feng and Suchsland, 1993].

The linear expansion samples were first conditioned at 65% RH and then
subjected to a humidity cycle of from 65% to 86% to 93% RH. Measurements were
taken when the specimens had equalized at 86% and 93% RH, respectively on an optical

comparator developed by Suchsland [1970].

4.2.3 Test Results
The developments of vertical deflections at locations (+14.1, 0, 0) and (0,

+9.15, 0) on the laminate and (0, +9.15, 0) on the beam as indicated in Figure 18, are
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Figure 40. Yellow-poplar laminate and beam in humidity chamber.
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presented in Figure 41. The vertical deflections for these particular locations may be
interpreted as the center deflections over a span of 14.1X2=28.2 in one direction and
9.15%x2=18.3 in the other direction for the laminate, and a span of 9.15%X2=18.3 for
the beam. Time zero is when the humidity in the chamber was at 91% RH. The jump
from 70% to 91% RH took only 5 minutes during which time no noticeable warp
occurred in either the laminate or the beam.

The vertical deflections are seen in Figure 41 to rise quickly, slow down about
50 hours into the exposure, and eventually level off at 200 hours. The beam shows larger
vertical deflection than the laminate over the same span, which is probably due to the
absence of two dimensional restraint on the beam.

In Table 9 and Figure 42 which both indicate moisture content gradient progress,
it is seen that the moisture content gradient is uniform at the beginning and end of the
exposure test. As expected, the moisture contents in the outer layers rise first and rather
quickly, while they lag behind for the inner layers. Describing the empirical gradients
with quadratic equation resulted in a good fit (see regression coefficients in Table 9).

The expansion coefficients for both longitudinal and radial directions were
obtained by the method introduced by Xu and Suchsland [1992] as a function of moisture
content in the considered moisture content range which in this case is from 11.5% to
21.5%. As shown in Figure 43, expansion coefficients in both directions experience a
reduction with increase in moisture content. Figure 44 is the sorption isotherm obtained
based on measurements performed on expansion specimens.

The tension test for MOE was performed on the prepared longitudinal and radial
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Table 9. Measured moisture content gradients in the yellow-poplar laminate.

Distance From Surface (in)

0.05 0.15 0.25 0.35 0.45
Exposure Time Moisture Content (%)
X (Y)

0.00 hours 11.72 11.68 11.66 11.68 11.72
1.33 hours 13.63 12.27 11.67 12.27 13.63
7.00 hours 14.81 12.93 12.05 12.93 14.81
12.50 hours 15.71 13.36 12.38 13.36 15.71
27.50 hours 16.30 13.97 13.06 13.97 16.30
47.50 hours 16.60 14.64 13.33 14.64 16.60
97.00 hours 17.37 15.59 14.68 15.59 17.37
6.00 days 17.64 16.29 15.44 16.29 17.64
12.00 days 19.09 19.09 19.09 19.09 19.09

Regression Curve Fitting of Moisture Content Gradients
Quadratic Function: Y = B(0) + B(1)X + B2)X?

Coefficient
B(0) B(1) B(2) £
0.00 hours 11.737 -0.503 0.893 0.999
1.33 hours 14.713 -23.714 47.428 0.998
7.00 hours 16.312 -33.000 66.000 0.994
12.50 hours 17.545 -40.500 81.000 0.997
27.50 hours 18.097 -39.785 79.572 0.999
47.50 hours 18.338 -37.343 74.685 0.973
97.00 hours 18.824 -31.823 63.686 0.992
6.00 days 18.810 -25.357 50.714 0.978

12.00 days 19.090 0.000 0.000 1.000
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tension samples using the previously described extensometer-strain indicator loading
setup. The results at three moisture content levels are listed in Table 10 and plotted in
Figure 45. The projected indicates the MOE-moisture content relation according to the

Wood Handbook [Forest Products Laboratory, 1987].

4.3 Application of the LVP Theory
4.3.1 Creep Compliances and Relaxation Moduli

One of the primary inputs for the LVP theory are the relaxation moduli described
in a two dimensional plane stress state - namely [Y].

When Onsager’s principal is applicable, one can draw upon results directly from
elasticity theory for each type of geometric symmetry of interest [Schapery, 1967].
Therefore, for an orthotropic material, there are 9 independent relaxation moduli. Upon

reducing the stress state down to plane stress, that number is reduced to 4, that is

01 I(t) Yl 1(') le(t) 0 8; 1

() - |Y,() Y, 0 |{e;, 4.3.1
012(1) 0 0 Y“(t) 8;2

or

{o®)} = [Y®l{e"} 4.3.2

Superscript * indicates time-wise constant strains in a two dimensional relaxation test.

The counterpart of the relaxation moduli /Y], the creep compliances [J] in a two
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Table 10. Static tension MOEs of yellow-poplar.

e ———me
Moisture Content (%)

11.63 16.85 23.08
Specimen # Longitudinal Tension MOE (10° psi)
1R 2081.04 1712.90 1587.63
1529.95 1324.50 1125.91
5 2075.81 1794.06 1488.51
8R 1917.83 1689.10 1424.80
12 1330.26 1202.30 1079.40
14R 1780.15 1544.26 1287.23
15 1748.54 1536.81 1308.21
17 1616.92 1452.02 1288.86
18 1467.14 1237.54 1109.24 ~
20 1586.09 1436.22 1260.47
23 1709.0S 1502.36 1212.30
Average: 1712.98 1493.82 1297.60
STD Coeff.! (%): 13.42 12.20 11.65
Projected?: 1680.91 1509.27 1268.66
Difference® (%): -1.87 1.03 2.23

Radial Tension MOE (10° psi)

R1 155.96 126.54 111.60
R2 127.48 115.21 104.19
R3 127.10 113.40 105.40
R4R 111.22 105.28 98.49
RS 150.21 132.28 114.67
R6 153.03 124.13 110.5
R7 126.97 114.90 106.81
R8R 156.23 138.14 121.33
R9 169.02 149.63 128.88
R10 188.09 169.53 146.77
Average: 146.53 128.93 114.86
STD Coeff. (%): 15.02 14.28 11.75
Projected: 142.03 131.14 110.66
Difference (%): -3. 07 1.71 -3.66

1: Deviation coefficient.

2: MOE computed according to Eq. 3.3.5 on the basis of the MOEs at two other moisture content levels.

3: Difference between the computed MOE and the measured MOE.
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dimensional creep test is expressed as

8”(0 -’“(t) le(t) 0 a;l
£, = [J,,(0 J 0 0 O3 4.3.3
£,,(1) 0 0 J,

where superscript * refers to time-wise constant creep stresses. If Poisson’s ratio is
introduced as in elasticity theory, then [J] can be expressed as
J,® vy (DT, 0

-v (0, J,,(®) 0 4.3.4
0 0 J 0

If the two viscoelastic quantities are linear, they may be related through Laplace

transformation

[¥(s)] - ﬁLZ]I 4.3.5
S

Where s is the variable in the Laplace domain. Thus the relaxation moduli may be
obtained if all components of the creep compliances are known, namely J,,(¢), the creep
compliance in the grain direction, J,,(2), the creep compliance across the grain, J,,(¢),
a compliance of the nature of Poisson’s ratio, and J(¢), the plane shear creep compli-
ance. However, only the creep compliance across the grain (radial) of yellow-poplar
J;,(t) was tested and known. This is sufficient for the purpose of this study as shown in

the following.
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Wood is viscoelastic radially as well as longitudinally as has been shown in the
literature. It is also known that wood is relatively very rigid in the grain direction
compared to the radial direction with a MOE ratio of 10:1 for yellow-poplar (Wood
Handbook) [Forest Products Laboratory, 1987]. The mutual restraint due to cross
lamination must result in much larger viscoelastic activity in the radial direction. It is
therefore reasonable to disregard the relatively small viscoelastic activity in the
longitudinal direction and assume complete elasticity in the grain direction in a cross
laminated structure. J,,(¢) is thus known to be J,,(0) - longitudinal elastic compliance,
easily obtainable by a static test. If a simple radial tension creep test is performed on a

radial sample which creates a stress state of

the strain in the longitudinal direction by Eq’s. 4.3.3 and 4.3.4 would be

e,t) = -v, J,() 0" 4.3.7

Due to creep associated with longitudinal strain, e,(#) should not change with time.

Therefore,

£(0 = €,(0) = -v (T, = -v,,(0)],(0) 4.3.8

and
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J,,(0)
VZI(t) -J—zz(-;)— v2l(0) 4.3.9
J;;(0) is the initial radial creep compliance which happens to be the radial elastic
compliance. »,,(0), the initial creep Poisson’s ratio at #=0 happens to be the elastic

Poisson’s ratio. Since both of them plus the radial compliance J,,(¢) are all known, »,,(?)

is easily found by Eq. 4.3.9. By compliance symmetry

vy OO = -v OT,0 4.3.10

Poisson’s ratio »,,(?) can be easily found to be

I ()
J,(0)

4.3.11

vi® = vy ()

J(t),, defined in 4.3.3 and 4.3.4 can subsequently be obtained.

In a cross lamination structure, the plane shear stress and strain are absent. The
shear compliance term J(?) therefore is irrelevant and could take any nonzero value.
This may be an important for the wood industry where cross lamination is the most
widely practiced lamination scheme for wood and wood-based composite panels.

Obtaining the relaxation moduli /Y] from the creep compliances [J] by Laplace
transformation is only valid if both quantities are linear and isothermal. But, they are not,
since warping is a nonlinear nonisothermal viscoelastic phenomenon. However, we have
become familiar with the technique of discretization of the time domain in the numerical

form of the LVP theory, the viscoelastic behavior and thus these two quantities may be
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considered as linear and isothermal within a small enough time interval, where stresses,
moisture content, and Poisson’s ratio all vary so little that it is both practical and realistic
for them to be assumed constant.

The expressions for creep compliance terms depend on the chosen mechanical
model which in this study is the four element Burger body with an non-Newtonian
Maxwell dashpot, as discussed in Chapter 3. Such a nonlinear model may be linearized
if considered in a sufficiently small time interval where the non-Newtonian (nonlinear)
dashpot would have such a minor variation in its coefficient that it can be regarded as
a Newtonian (linear) dashpot with constant coefficient.

For a linear four element model, the creep compliance in terms of the coefficients

of its four elements is

ii = 11,22,66 4.3.12

If Poisson’s ratio is assumed constant, the corresponding relaxation moduli by Laplace

transformation is found to be

EnRu®  vuEw Ry ]
T-vpvy) TA-vyvy
[Y®)] = | ~Vi2Ewey R0 Ep R 0 4.3.13
T-vpvy)  A-vyvy
0 0 E, R®)|

where



158

“Pu,t Pyt
R() - A,e ' +B,e

Py, = P, 4.3.14

E.E,,

Ci =

Ned, Mma,

ii = 11,22,66

It is to be remembered that this conversion is made under the condition that the Poisson’s
ratio is constant and is therefore only valid during a small time interval where Poisson’s
ratio can be regarded as constant. It is seen that both creep compliances and relaxation
moduli are functions of the coefficients of the four elements of the proposed mechanical
model. In other words, the study of creep compliances and relaxation moduli is reduced
to that of the coefficients of the elements comprising the model.

Due to the continuous variations of moisture contents and stresses during
hygroscopic warping, the four coefficients in the relaxation moduli would vary

accordingly. The numerical form of the LVP theory due to its discrete nature allows only
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discretized descriptions of those variations. Within each thin layer, moisture content and
stresses are assumed to be the averages of their distributions in the layer, and remain so
during the current time interval before they jump to new levels at the beginning of the
next time interval. The moisture content dependence of the coefficients would subse-
quently follow such step-wise pace with the moisture content.

The stress dependence of the coefficients is more difficult to deal wi.th. In order
to account for the stress dependence of the coefficients, stresses must be known. Stresses,
however, can not be obtained for the current interval before the determination of the
coefficient values. This indetermination results from the nonlinearity of the viscoelastic
behavior where the coefficients (coefficients determine compliance) depend on the stress
levels. The approach taken here to break the impasse is to use the stresses already found
at the previous time interval as the basis for computation of the stress dependence of the
coefficients for the current interval, and then obtain strain rates, strains, and stresses.
It should be a good approximation since the time interval is very small and thus the step-
wise stress increase from the previous time interval to the current one is not significant.

A better method however is by iteration of computation to reach convergence.
Specifically, stress dependence of the coefficients for the current time interval is first
calculated based on the stress values from the previous time interval, followed by the
computation of the stress values using the obtained coefficient values. The computed
stress value for this time interval is the first approximation. In the next iteration, stress
dependence of the coefficients for the current interval are again computed, but this time

on the basis of the first approximation of the stress values. The resulting new coefficient
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values when used to compute the stress should result in new stress values called the
second approximation which are different from those of the first approximation. This
iteration computation could carry on until the difference of the stress values of the newest
iteration from those of the previous iteration is relatively insignificant indicating that
convergence has been achieved. Such technique should yield better results. However,
it is not adopted here because the intensive interaction computation was expected to take
too much computing time, slowing down the computing speed on a desktop PC. It should
pose no such problem when the numerical LVP is implemented on mainframes. Such
implementation of the computer program is not difficult.

Of the four coefficients (E,,, E;, %o M) Which determine the relaxation moduli

[Y(V)], Ny defined as

¢1-mMC,0)
a(MC,oc)m(MC,o)

4.3.15

ﬂmd(t’M C9 0) -

needs special attention since it is also dependent on time in addition to moisture content
and stresses, as indicated in Chapter 3. Therefore, time into the warping process must
somehow be factored into the value of this coefficient. As we only know of the variation
of the coefficient with time under given constant stress and moisture content, certain
treatment must be adopted to approximate its variation under changing moisture content
and stress during the warping process.

If it is assumed that the stress ¢ and the moisture content MC are to increase step-
wise along the discretized time scale shown in Figure 46, the flow component of the

creep compliance due to Ag; and MC, in the first time interval is by Eq. 3.3.24
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JMC\, Aay,)|,, = a(MC,, Ao " ¥Cr 47 4.3.16

Therefore, the reciprocal of the coefficient 1/y,, which is assumed constant in the small
time interval A¢, takes the following value at the midpoint Az,/2, which is the differentia-

tion of 4.3.16 at At,/2

1 1 , At, ™MC;, do)-1
qnd |4" - At 'a(MCI,A UI)M(MCI,A 01)(7)

n,.,(T’,MC,,Aa,)

4.3.17

In the next interval where moisture content is elevated to MC, and stress incremented by
another amount of Ag; on top of Ag,, the part of the flow compliance due to the stress
Ao, at the second interval (At,) is not directly available since moisture content and stress

have changed, but could be approximated by

MC,xAt, + MC,x At,
J ,40,

¢ 4.3.18
At, + At, a,

where the creep is supposedly to occur under the weighted average moisture content of
the two intervals. Another part of the flow compliance is due to the Ag, at the beginning

of the second interval which contributes an amount of

J(MC,, 40,9, 4.3.19

Superimposing the two parts results in the flow compliance for the second interval. The
reciprocal of the flow coefficient for the second interval is then the differentiation of the

sum compliance at (At,/2)
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1 1 1
- +
q,‘,"‘r MCIxAt,+MC2x4t, | 4:,) L MC2.4.02. 2 Lo
»d0l, t— y A Oly——
Mma 4t A, 1" M > 4.3.20

At the next or third time interval, there will be three parts of the coefficient summed up
due to the presence of three stress jumps, Ag;, Ag,, and Ag;. By this superimposing
scheme, the coefficient 5, for every discretized time interval along the time scale of the
warping process may be approximately and numerically obtained.

The resulting relaxation moduli [Y(¢)] as input for the application of the LVP
theory therefore accounts for the changing of its four coefficients with moisture content,

stress level, and time in the warping process.

4.3.2 Hygroscopic Strain Rates

The hygroscopic strain {€*(s)} may be expressed as

ey weo €1 [@u®

e - [ {ea0paMC - [{ O MC@Y dt 4321

P () 4O a0 *|a®

or

(@) - [(ew) MC@Y a 4.3.22
0

where {€*“(t)} and {a(t)} are hygroscopic strains and hygroscopic expansion coefficients,

respectively. MC(t)’ is the rate of moisture content variation. It follows that the strain
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rates are

(0] (a0

{ Xt = { @0} MC@Y 4.3.23

\eﬁc(t)) a,, (1)

due to
x /

oY - [ff(x)dx] - f» 4.3.24
0

For a small time increment Af, hygroscopic strain rates could be approximated by

( \/
en O (a0
) e;‘zc(t)i - azz(t) AMC 4.3.25
ch(t) a,(0)
since
MC(t) =~ AaMc 4.3.26
At

a,,(t) and «,,(¢) are the expansion coefficients in the grain and across the grain
direction, respectively, while «,,(#) would be zero. If the x-y coordinates are rotated
clock-wise by an angel @ relative to the I-2 coordinates as indicated in Figure 12, then

the strain rates in x-y coordinates become
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0] (a0

MC aAMC
gy O = ¢,.,(t) —_— 4.3.27

At
£4(r) @, ()

The {«(t}).., (hygroscopic expansion coefficients in x-y coordinates), are related to
{a(t)},., (hygroscopic expansion coefficient in 1-2 material principle coordinates) through
coordinate transformation [T]

f

@)
&)
%y 4.3.28
o, = [T]4 > 3.
0 et
| 2
where

cos*0 sin’@  2cos6sin®
[T] - | sin®6 cos’0  -2cos6sind 4.3.29
-sinBcos@ sinbcosd cos*0-sin*0

4.3.3 Computer Programming of the Numerical Form of the LVP Theory

The numerical form of the LVP was implemented in the Microsoft QuickBASIC
language. The computation is automatically carried out on a 486DX50 IBM compatible
desktop computer, given the necessary inputs. The detailed programming codes are
presented in Appendix A. It is to be pointed out that the programming focus was on the

main computing body. The preprocessing which handles the accepting of inputs and
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postprocessing which handles the output function are merely functional and sufficient for
the author, but by no means fancy and user friendly. However, these two parts can be
refined to a user friendly and efficient level without much difficulty if necessary in the

future.

4.3.4 Preparation of Inputs

Aside from the relaxation moduli and the hygroscopic expansion strain rates
already formulated in previous sections, the remaining necessary inputs are the thickness
and grain orientations of constituent layers. The yellow-poplar laminate in this study
consisted of two cross laminated lamina of equal thickness, each assumed to be

comprised of an equal number of imaginary thin layers.

4.4 Theoretical Predictions and Analysis

In Figure 41, theoretical predictions by the LVP on the vertical deflections are
plotted against the measured values for the yellow-poplar laminate and beam (refer to
Figure 18 for the coordinate positions and locations). Moisture content developments
with respect to time are presented as a reference on the progress of the warping process.
Also included for comparison are the elastic predictions which are achieved by replacing
the viscoelastic relaxation moduli with the elastic moduli for inputs in the LVP, equiva-
lent to using a mechanical model of only a spring.

The laminate and beam are seen to deflect very quickly in the early stages of the

warping process where the moisture content gain is rather steep. Their vertical
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deflections, however, level off at about 200 hours into warping process - 80 hours before
moisture content equilibrium.

The overestimate by the elastic prediction is expected because the viscoelastic
nature of the warping process is not accounted for in the elastic moduli. The leveling
off of the elastic predictions occurs exactly where anticipated as the hygroscopic strains
ceases to increase at moisture content equilibrium. The elastic prediction gave somewhat
better estimates than the elastic beam theory [Suchsland, 1985]], possibly due to the
incorporation of the effect of moisture content on elastic moduli during warping. The
latter, however, is much simpler in that it only requires inputs of the total moisture
content increase for the whole warping process, the average expansion coefficients, and
the elastic moduli at the end condition. The small improvement by the former whose
complexity results from accounting for the moisture content effect on the elastic moduli
during the warping process only proves that the elastic beam theory yields a sufficiently
precise and practical estimate. It further demonstrates that extra effort within the realm
of elasticity is of very limited reward, and such effort should be directed towards the
study of viscoelasticity. It is worth mentioning that the elastic beam theory has provided
warping estimates that are sufficiently accurate at low and moderate moisture contents
[Suchsland, 1985].

The viscoelastic predictions show quick deflection increase due to rapid moisture
content increase, and reach a peak at about 130 hours of exposure when they start to
relax to final values that are within 5% of the measured at 800 hours. The LVP theory

reflects the early domination by the large hygroscopic expansion resulting from rapid
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moisture content increase. Even though deformation creep and stress relaxation must be
occurring simultaneously and picking up due to the rise in stresses, they are still
overshadowed. However, as the moisture content increase slows down, deformation
creep and stress relaxation increase their share. When the predicted vertical deflection
peaks at 130 hours,deformation creep and stress relaxation start to dominate. As stresses
are relaxed, less deformation creep and stress relaxation take place, which is seen as the
decrease in the relaxation rate. When the moisture content is completely equalized at 300
hours, no further hygroscopic strains are introduced. The LVP responds with a inflection
point in the theoretical predictions. From that point on, only deformation creep and
stress relaxation take place. They slow themselves down due to the stress reduction till
the leveling off point at 800 hours.

Though the LVP theory is clearly able to simulate the warping process and
provide much improved predictions over its elastic counterpart, it deviates from the
actual warping development, especially in the early stages. In the theoretical predictions,
peaks are observed and it is well after moisture content equalization that predictions relax
to stable levels, while actual vertical deflections have no such peaks and reach a stable
levels at about 200 hours, well before the point of moisture content equalization (about
300 hours). It is evident that there exists in the warping process a mechanism
responsible for the much earlier and faster relaxation than described in the LVP theory.
This disparity could possibly be due to either the limitations of the LVP theory itself or
the inaccurate description of the constituent’s (yellow-poplar) viscoelastic response. The

former can not be verified before the latter is investigated and corrected. Regarding the
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latter, the effects of moisture content and stresses on wood and wood-based materials are
not as simple as characterized in this study, where only the separate effects of stress and
moisture content are considered. When moisture content is changed under stress, creep
and relaxation are much larger and faster than if moisture content is changed prior to
stressing as has been discussed in detail in the review section. Moisture content and
stresses change simultaneously in a warping process, and assuming separate effects of
moisture content and stress is obviously not realistic, very possibly resulting in the large
variance between the theoretical predictions and the measured vertical deflections.

As the LVP theory requires the discretization of the panel into a number of
layers, theoretical predictions are computed based on both a 10 layer and a 6 layer
discretization. Slight differences resulted, as listed in Table 11. Theoretically, more

layer elements generate better results, but require more computing time.

Table 11. Theoretical predictions vs. measured vertical deflections of the yellow-poplar
laminate and beam.

Vertical Deflection

Measured Viscoelastic Prediction Elastic Prediction Elastic Beam
Theory
(in) (in) (in) (in)
6-layer 10-layer 6-layer 10-layer

Laminate

@ (£14.1,0,0) -0.623 0.625 -0.642 -2.699 -2.698 -3.050

@ (0, +£9.15,0) 0.246 0.263 0.270 1.137 1.136 1.285

Beam

@ (0, £9.15,0) 0.291 0.263 0.270 1.137 1.136 1.285

/] ——— ————————  ——  —————\ ____...-—————
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Since the agreement of theoretical predictions and the measured vertical
deflections was checked for only discrete locations (+14.1, 0) and (0, £9.15) of the
laminate, it is not known yet how well the overall warped shape of the laminate is
simulated by the LVP theory. One way to examine this is to check the vertical
deflections at as many locations on the laminate as necessary. However, this can be
achieved by a much simpler test.

The Kirchhoff Hypothesis (the displacement field) - the foundation of both the
CLT and the LVP theory - assumes a quadratic surface for laminates as defined in Eq.
2.4.9. For the particular 2-ply cross laminated yellow-poplar laminate, the LVP theory
predicts that curvatures «, and x, are of equal magnitude but of opposite sign, while the
twist curvature rotation «,, is zero. The cross lamination of the two identical layers
determines that the same degree of curvature but in opposite direction should develop in
the x and y directions, respectively, and that no twist should occur in the laminate.
Therefore, by Eq. 2.4.9, no vertical deflections should occur along the two 45° diagonal
lines, if the warped shape of the laminate agrees with the quadratic surface. Placing a
straight edge along the diagonal lines on the laminate showed little vertical deflections,
thereby confirming that the actual deformation of the laminate does approximately follow

a quadratic surface as the LVP theory assumes.



CHAPTER V

Summary and Suggestions on Future Investigations

This work is probably the first attempt ever to formulate a viscoelastic plate
theory in solvable numerical form integrated with viscoelastic properties of constituent
materials to theoretically approach the hygroscopic warping phenomenon - a nonlinear
nonisothermal viscoelastic process.

The LVP theory was developed on the basis of CLT and linear viscoelasticity
theory. The viscoelastic properties of yellow-poplar were characterized using a four
element Burger body model with a non-Newtonian Maxwell dashpot to account for the
non-Newtonian behavior of the flow component of the viscoelastic deformation. The
numerical form of the LVP theory was achieved by applying linear finite approximation
to the integral viscoelastic governing equation of the LVP theory (discretization of time
domain). Numerical computations were implemented in QuickBASIC and conducted on
a desktop PC computer. The treatment taken in applying this linear isothermal theory
to nonlinear nonisothermal viscoelastic warping problem is that the viscoelastic
coefficients determining the viscoelastic properties of the constituent materials were
allowed to vary accordingly with moisture content, stresses, and time during warping.
The validity of this theory and its superiority over elastic prediction in describing the

viscoelastic warping process was demonstrated at least on a preliminary level in its
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application to a two-ply cross laminated yellow-poplar laminate.

In characterizing the viscoelastic properties of yellow-poplar in the radial direction
as inputs for the application, it is verified what many authors have found, namely that
wood exhibits nonlinear viscoelasticity of its flow and recoverable components, while the
instantaneous elastic component remains linearly elastic. The elastic component varies
with moisture content according to the known moisture content effect on mechanical
properties, while the other two components are shown to be dependent on both moisture
content and stresses.

The development and computer implementation are somewhat involved. But once
carried to completion as in this study, the application is reduced to running the program
with required inputs on a desktop computer and retrieve the result files from the
designated disk. The theory and its numerical form are material independent and could
be applicable to a variety of panels of different materials and structures suffering from
hygroscopic deformation, as long as the information regarding the structures and the
viscoelastic properties of the composing materials are given.

The LVP theory loses its applicability when the actual displacement field gets
more complicated than that of the Kirchhoff Hypothesis. It has been proven that beams
and plates of small aspect ratios do not deform according to the Kirchhoff assumption
because of the relative significance of transverse shear and normal components.
Fortunately, most industrial wood and wood-based composite panels that are susceptible
to hygroscopic warping have large aspect ratios which ensures convergence to the

displacement field specified by the Kirchhoff Hypothesis, as supported by the simple
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straight edge test.

The applicability of the described LVP theory very much depends on the
availability and accuracy of the required inputs. Of the greatest importance is the
formation of the two dimensional stress state relaxation moduli that characterize the
viscoelastic properties of the involved materials. How accurately and completely the
relaxation moduli account for the viscoelastic properties should greatly influence the
quality of the theoretical predictions of the LVP theory. In this study only the separate
effects of moisture content and stress were characterized into the relaxation moduli,
which is why the theoretical predictions, though much better than the elastic approach,
still deviate from the measured results. This shortcoming can be attributed in part to the
exclusion of the mechano-sorptive behavior (coupling between stress and moisture content
change). The mechano-sorptive effects are known to cause as much as many times more
creep and faster relaxation than would occur when moisture content is changed prior to
stressing. Such effect is very prevalent in a warping process where the moisture content
changes during stress development, and therefore must be factored into the viscoelastic
relaxation moduli for better results.

The moisture content gradient development and the hygroscopic expansion
coefficients which are necessary for calculating the cause of hygroscopic deformation -
hygroscopic strains - are also expected to influence theoretical predictions. As both the
LVP theory and warping are process dependent, the in-process variation path of moisture
content development and coefficients will definitely affect the final outcome.

How moisture content gradient development, expansion coefficients, material
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viscoelastic properties, and laminate structures affect the hygroscopic warping have up
to now been either qualitatively analyzed or experimentally determined. This could now
be evaluated and analyzed relatively quickly on a computer by entering different variables
into the LVP theory. The described method could serve as an efficient research tool in
aiding further study and providing understanding of the hygroscopic warping process.

Several assumptions are essential in this study. Transverse normal and shear
components were not considered as a result of the CLT structure of the LVP theory (the
Kirchhoff Hypothesis). Their definite presence has been proven to exert minimum
influences on the overall behavior of laminates of large aspect ratios (Chapter 2).
Mechano-sorptive coupling of wood and wood-based materials (varying moisture content
under creep load) is known to be heavily involved in the viscoelastic warping process,
yet has not been well understood and mathematically defined. It was therefore not tested
and characterized into the relaxation moduli input for the application of the LVP. Plane
shear component was assumed to be zero in the yellow-poplar laminate due to the cross
lamination structure. It was also assumed that there is no viscoelastic activity in the grain
direction because of the relatively highly crystalline and elastic nature in the grain
direction.

As to further improvements of the applicability of the LVP theory to the warping
problem, the first to be suggested is a characterization approach that can integrate
mechano-sorptive effects into the relaxation moduli. The mechano-sorptive effect in the
warping process has been shown to be too significant to be ignored.

The applicability of the LVP theory was examined on a preliminary level in this
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study. Further verification on a larger scale is necessary. In the meantime, it can offer
some new insights into the warping process.

The programming of its numerical computation needs to be refined, especially the
preprocessing and postprocessing portions that handle processing of inputs and outputs.
Increased capability and versatility of the preprocessing portion would allow inputs in a
variety of forms. Improved postprocessing would provide better illustration and

interpretation of outputs.

.
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Computer Program of LVP in Mirosoft QuickBASIC



Computer Program of LVP in Microsoft QuickBASIC

DECLARE SUB PRNTPARM (X!, P$, PARM!())
DECLARE SUB ERRLOCTN (LOC$)
DECLARE SUB MATRPRN1 (X, S)
DECLARE SUB MATRPRN2 (X(), S)
OECLARE SUB MATRTRAN (X(, XT()
DECLARE SUB MATRINVS (A}, Al) Y
DECLARE SUB MATRMULT (A(. B(, AB() :
DECLARE SUB INTSCRN ()
DECLARE SUB INPTSCRN (DLT. T
DECLARE SUB INMTMANU (!, DLT!)
DECLARE SUB INPUTSEC (K. OLT, TT, CMSS, CTMP)
DECLARE SUB PLOTCMOF (K)
DECLARE SUB WRITECMO (NUM!, RANK!, NAME$()
DECLARE SUB SPLINQUD (X(\, Y0l COF()
DECLARE SUB MOISTURE (K, DLT, M. CMIS)
DECLARE SUB MODELCOF (K, XFLAG#(l, PARM()
DECLARE SUB EXPANSIN (K, OLT, M)
OECLARE SUB ALEINIT (K, OTL CX, CV
DECLARE SUB COEFFINT (it, P!, K1, DLT!, WD
DECLARE SUB PARAMTR1 (X!0, Y10}, CEF!()
OECLARE SUB PARAMTRZ (M(, Y1, S, CEF)
OECLARE SUB FUNCCOEF (x!(), Y10, CEF'()
DECLARE SUB QTRAFORM (O{), THETA, QXYD)
DECLARE SUB STRAFORM (SXY(), THETA, S120)
DECLARE SUB STFHNMS! (It, P!, K1, OLT!)
DECLARE SUB MAINCOM1 (M!, P!, K!, DLT!)
OECLARE SUB SCRNPLOT (1. NUM. A, 8,C.D.E. F)
OECLARE FUNCTION INMTNUMR! (DLT!, T
DECLARE FUNCTION INMTAUTO! (1!)
DECLARE FUNCTION LEFTWORD$ (INT$)
DECLARE FUNCTION LEFTCHARS (INT$, N)
DECLARE FUNCTION TIMEVALU (TS$)
DECLARE FUNCTION TIMESTRGS (TVL)
OECLARE FUNCTION RELXMODU (TYPES, MS, RMV, KS, RKV, T)
COMMON K, DLT
COMMON SHARED INFNUMS, PREFIX$, INFILES, STRESSS, STRAINS, STRANPS, DISMINT$, MOISTUS, PLTCMOD
COMMON SHARED DIRINPS, DIROUTS, TIMERS, LMOIST$, LSTRESS, CX, CY, SOL SSL, SNL SPL MCL TYPES, SEQ$
DM SHARED LSTRANS(1 TO 6), LSTRANPS(1 TO 6)
COMMON LSTRAINS(., LSTRANPS()
COMMON SHARED SCANS, DSPLS
KEY(1) ON
ON KEY(1) GOSUB KEYQ
KEY(2) ON
ON KEY(2) GOSUB DISPLAY
CALL INPTSCRN(DLT, TT)
CALL INITSCRN
IF TIMERS = °Y" THEN
TIMER ON
ELSE
TIMER OFF
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END IF

CTM=0

ON TIMER(1) GOSUB DISPLAY
OLD = TIMEVALU(TIMES)

OPEN DIRINPS + INFILES FOR INPUT AS 11
0o
LINE INPUT #1, INT$
LOOP UNTI LEFTWORD4(INT$) = INFILES
00
UINE INPUT #1, INT$
LOOP UNTIL LEFTWORD$(INT$) « “F" OR EOH1)
IFEOF1) = -1 THEN CALL ERRLOCTN("2 IN MODULE")
LINE INPUT #1. INT$
K = VALINT$)
M = INMTNUMR(DLT, TT) ‘RETURN TOTAL # OF INCREMENTS
DIM SHARED H(0 TO K)
OIM SHARED ANGLE(1 TO K), MP(1 TO K)
DIM SHARED MC$(1 T0 20), TM$(1 TO 20)
OIM SHARED MCM + 1,1 TO K)
DM SHARED AVGMCWM + 1,1 T0 K)
DIM SHARED EXPCOF1 TOK. 17021704
OIM SHARED EXPVALO TOM 1 TOK, 1T03,1T0 1)
DM SHARED ME12(1 TOK 1 TO J)
DM SHARED MEGN(1 TOK. 1TO 3)
OIM SHARED V12(1 TO K)
DM SHARED RO TOM + 1), RSUMIOTOM + 1)
OIM SHARED PARMA(1 TOK. 1703,1TO®
DIM SHARED PARMB(1 TOK. 1T03,1T03)
DIM SHARED PARMC(1 TOK, 1703, 1 T0 10
DM SHARED MSMCOM + 1,1TOK 1T0 )
DIM SHARED MSMCAVGEM + 1, 1TOK 1T0 )
O SHARED KSM. 1 TOK, 170 3)
DIM SHARED RMVIM. 1 TOK. 1T0 3)
O SHARED RKVIM, 1 TOK, 1 TO 3)
DIM SHARED FLAG$(1 TOK. 1 T0 3)
DM SHARED YTR(1 TOK, 1703, 1T03)
DIM SHARED YEJ(1 TOK, 1T03,1T0 1)
DIM SHARED YKH1TOK 1T03,1T0 1)
DM SHARED YHX1TOK, 1T03,1T0 1)
OMM SHARED STRESSMM. 1 TOK. 1 T0 3)
FORJ = 1TOK
FORR-1T03
STRESSO, J. M) = 0
NEXT X
NEXT J
DM SHARED ABBD(1T0 6, 1 TO 8)
DIM SHARED HNM(1 TO 6, 1TO 1)
DIM SHARED GRAND{(1T06,1T0 1)
DIM SHARED EKPPOM, 1 TO 6)
DM SHARED EXIM + 1,1 TO 8)
FORH - 17086
EKI0. 1 = 0
NEXT #
DIM SHARED PSX(1 T0 6), PSY(1 TO 8)
DIM SHARED POX(1 TO 6), POY(1 TO 6)
DM SHARED PNX(1 TO 61, PNY(1TO 8)
0 SHARED PPX(1 T0 8), PPY(1 TO 6)
DIM SHARED PMX(1 TO 6), PMY(1 TO 8)
FORH = 1TO6
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PSX(I = 0: PSY(Il) = 0
POX(H) = 0: POY(H) = 0
PHX(I) = O: PNY(H) = O
PPX(Il) = 0: PPYW) = 0
PMX(I) = 0: PMY(N) = O
NEXT H
CMIS = 0
CTMP = 0
CALL INPUTSEC(X. DLT, TT, CMIS, CTMP)
CALL INMTMANU(DLT, TT)  ‘COMPUTE R{) AND RSUM()
CLose n

CALL PLOTCMOFK)

CALL FLEMNITIX, DLT, CX. CY)

CALL MOISTURE(K. DLT, M, CMIS - 1)
CALL EXPANSIN(K, DLT, M)

FORN=-0TOM
FORJ = 1TOK
FORH-1TO3
YEJJ. 01 -0
YKJU. L1 =0
YHJU. 0L 1) =0
NEXT U
NEXT J
FORN=1T086
GRANOIN, 1) = 0
NEXT H
IFN = 0 THEN
CALL COEFFIN1(0. 0, K, DLT, M)
FORN=-1T06
FORM=1T06
ABBO(L. W0 = 0

CALL STFHNMS1(0, 0, K, DLT)
ELSEF N > 0 THEN
FORI« 1TON+1
CALL COEFFNI(L N. K. OLT, M)
FORH = 1T06
FORM = 1706
ABBO{H, W) = 0
NEXT W
HNMOL 1) = 0
NEXT N
CALL STFHNMS1(L N, K, DLT)
NEXT
ENO ¥
CALL MAINCOM1M, N, K, OLT)
NEXTN

LOCATE 24, 40 - LEN("Total computing tims: °)
PRINT “Total computing time: °;
PRINT TIMESTRG $(TIMEVALU(TIMES) - OLD)

00
LOCATE 24, 40 - LEN("Save output [N]: °)
INPUT “Save eutput N): °, CHOICE$
IF CHOICES = °Y" THEN

[ g
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SHELL (°C:")
SHELL ("CD\")
SHELL ("CO\VPTDROUTPUT™)
SHELL ("MD ° + PREFIX$ + INFNUMS)
SHELL ("CO\VPT\DROUTPUT\" + PREFIXS + INFNUMS)
SHELL ("DEL ° + PREFIXS + °°.°)
SHELL ("COPY D:° + PREFIX$ + °°.*7)
SHELL ("DEL D:° + PREFIX$ + °°.°°)
SHELL "DEL D:° + PREFXS + *°.PLT")
SHELL ("CD\")
SHELL "CO\VPTIPF")
EXIT DO

ELSEIF CHOICES = “N” OR CHOICES = “° THEN
EXIT DO

ENO ¥

BEEP

LOCATE 20. 1

PRINT STRING$(79, ° °)

Loop

KEYQ:
END
RETURN

DISPLAY:
IF CTM = 0 THEN
LOCATE 25, 2
PRINT “Time clapsed: °;
END F
ROW = CSRUN
COL = POSID)
VIEWPRINT 1370 25
LOCATE 25, 18
PRINT TIMESTRG $ (TIMEVALU(TIME$) - OLDL
VIEW PRINT 1370 24
LOCATE ROW, COL
CTM=-CTM+1
RETURN

SUB COEFFIN1 (L. P, K, DLT, M)
IF1 = P+ 1 THEN EXIT SUB
DM SI612(1 70 3)

IF 1« 0AND P = 0 THEN
LOCATE 17, 1
PRINT STRING$(79, ° )
LOCATE 17, 22
PRINT “Adjusting visce-slastic coefficients!”
FORTM=0TOM « 1
FORJ = 1T0K
FORN=1T0J
MSMC(TM, J, i) = ME12(J, 1) * (ME12(J, 1) | MEGNJ, 1) “ ((12 - MC(TM, J)) / (MPU) - 12))
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MSMCAVG(TM, J. H) = ME12(J, 11) * MET2(J, 1) | MEGNLJ, M) “ ((12 - AVGMCWITI, J)) | MPY) - 12)
NEXT
NEXT J
NEXT ™™
EXIT SuB
ELSE
IF TYPES = °S° THEN
EXITSUB  'COMPLETE ELASTICITY
ELSE ‘VISCOELASTICITY
IF| = 1 THEN 'ONLY THE 1ST CYCLE WITHIN THE INNER LOOP.
FORJ - 1TOK
MC1 « (MC(P, J) « MC(P-1,J)) /2
MC2 = MC1 ° MC1
FORN=1T03
IF FLAG$(UJ. ) = “V" THEN ‘VISCOELASTIC LAYER
S1 « ABSISTRESS(P - 1, J, W)
AAA = PARMAU, 1, 1) « PARMAU, IL 2) * MC1 + PARMAL, IL, 3) * MC2
AAB = PARMALJ, II, 8) + PARMAL, N, 5) ° MC1 + PARMAL, I, 6) * MC2
AAC = PARMAU, I, 7) © EXPIPARMAL, Il 8) * MC1)
KSIP, J, ) = MSMCIL J, ) ° (AAA * EXP(-AAB ° S1) + AAC)
888 = PARMBLJ, I, 1) * EXPPARMBIJ, i, 2) * MC1) « PARMBY, I, 3)
RKV(P, J, ) = BBB / KSP, J, N)

IF TYPES = °KS° ORI < > P THEN
EXIT Su8
ELSE
IF 1 = 0 THEN
FORJ = 1TOK
MC1 = MCWW, J)
MC2 = MC1 * MCY
FORN=1T703
IFFLAGSU, ) = V" THEN ‘VISCOELASTIC LAYER
CCA = PARMCL, I, 1) * (1 - EXPIPARMCU, I, 2) ° (MC1 - PARMCL, 1, 3
CCB = PARMCLJ, H, 4) ° (1 - EXPIPARMCL, I, 5) * (MC1 - PARMCLI, R, 81 - PARMCL, &, 7)
CC = CCA ° (1 - EXPCCB ® ABSISTRESS(P - 1, J, W)
00 = PARMCL, i, 8) * EXPIPARMCLJ, N, 8) ® ABSISTRESS®P - 1, J, I} + PARMCU, I 10)
IFl = 1 THEN
RMV(L J, i) = 0 "ZERQ MV() AT 1ST INNER CYCLE BEFORE SUMMATION.
ENOD ¥
RMVILJ, 1) = CC° DD * (P ° OLT) “ (DD - 1)/ MSMCLL, J, )
END ¥
NEXT N
NEXT J
ELSEIF 1 « | THEN
FORJ = 1TOK
FORW - 1701
MC1 = AVGMCWWJ, J)
MC1 = MCWJ, J) + MCLN - 1,001 2
MC2 = MC1 * MC!
FORN=1T03
IF FLAG$W, i) « “V" THEN ‘VISCOELASTIC LAYER
IFJJ = 1 THEN
SO = ABSISTRESS(O, J, W)
SIGN = 1
ELSE
SO = STRESSWJ - 1, J, 1) - STRESSW - 2, J, )
SIGN = 1
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IF STRESSIIJ - 1, J, W) < = 0 AND STRESSWJ - 2, J, I < = 0 THEN
IF SO < 0 THEN
SIGN = 1
ELSEIF SO > 0 THEN
SIGN = -1
END IF
ELSEWF STRESSWJ - 1,J. M) < = 0 AND STRESSUJ - 2, J, W) > = 0 THEN
SIGN = -1
ELSEIF STRESSWJ - 1, J, W) > = 0 AND STRESSW - 2. J, ) < = 0 THEN
SIGN = 1
ELSEIF STRESSIN - 1, J, ) > = 0 AND STRESSWJ - 2. J, ) > = 0 THEN
FSD < OTHEN ‘STRESS REDUCTION

CCA = PARMCU, I, 1) * (1 - EXPPARMC. I 2) ° (MC1 - PARMCL, 1. 30
CCB = PARMCU, I &) ° (1 - EXPIPARMCU, IL 5) * (MC1 - PARMCL, I, 8)) - PARMCL, &, 7)
CC = CCA ° (1 - EXP(CCS * ABS(SD))
0D = PARMCU, 1L, 8) ° EXP(PARMCL), I 9) ° ABSISTRESS(P - 1, J, I} + PARMCL, I, 10)
‘DD = PARMCL, I 8) * EXPIPARMCLJ, I, 9) ° ABSISD)) + PARMCU, K, 10)
IF) = 1 THEN
RV, J, i) « 0 "ZERO MV( AT 1ST INNER CYCLE BEFORE SUMMATION.
SUMOD = RSUM(1)

AMVT = CC * DD ° (SUMD ° DLT) “ (DD - 1)/ MSMCAVGLN, J, )
END ¥
IF RMV(L J, M) = 0 AND SIGN * RMVT < 0 THEN
RMVIL J, ¥) = RMVT
END ¥
IF (RMVIL J, 1) + (SIGN * RMVT)) < = 0 THEN
ELSE
RMVIL J, 1) = RMVIL J, 1) + (SIGN ° RMVT)
ENO F
PRINT L J, W RMV(L J, 1)
‘IF RMV(L, J, M) < O THEN STOP
END IF
NEXT 0
NEXT JJ
NEXT J
ENO ¥F
ENO IF
END I
END IF

EXIT SUB
END SUB
SUB ERRLOCTN (LOC3)

CLS
COLOR 7.1
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LOCATE 15, 15

PRINT "ERROR #°; LOCS; "!*
LOCATE 18. 15

PRINT "PROGRAM TERMINATED!"
StTop

END SUB
SUB EXPANSIN (X, DLT, M)
OM EXPC(1T03,1T0 1), EXPP1T03,1T0 1)

LOCATE 17,1

PRINT STRING$(79, * °)

LOCATE 17. 23

PRINT “Computing expansien coefficients!”

FORN=0TOM
FORJ - 1TOK
MC1 = MC, J)
MC2 - MC1 * MC1
MC3 = MC2 * MC1
EXPCI1, 1) = EXPCOFW, 1, 1) * MC3 + EXPCOFW, 1, 2) * MC2 + EXPCOF, 1,3)° MC1 + EXPCOFY, 1, 4
EXPC(2, 1) = EXPCOF, 2. 1) * MC3 + EXPCOFW, 2, 2) * MC2 + EXPCORL, 2, 3) * MC1 + EXPCOFU, 2, 4)
EXPC3. 1) =0
CALL QTRAFORMIEXPC(, ANGLELJ), EXPP()
FORW = 1703
EXPVALIN, J, W 1) = EXPPIL, 1)
NEXT M
NEXT J
NEXT

END SUB
SUB FILEINIT (X, DLT, CX, CYV)

LOCATE 17,1

PRINT STRING$(78, ° °)
LOCATE 17, 28

PRINT “initializing files!"

OPEM DIROUT$ + STRANPS FOR OUTPUT AS 1
cLose n
OPEN DIROUT$ + STRANPS FOR APPEND AS #1
PRINT #1, TAB{1); STRANPS
PRINT £#1, "UNIT = (0.001/he)"
PRINT #1, TAB(1); "HOUR";
PRINT #1, TAB(S), CHR$(238) + “1";
PRINT #1, TAB(21); CHR$(238) + “y"";
PRINT #1, TAB(33); CHR$(238) + “xy"";
PRINT 11, TABIAS); *Kx™;
PRINT #1, TAB(S7); “Ky™";
PRINT 11, TAB(6SL; “Kxy™”
CLOSE 1

FORW=1TOB
SELECT CASE W
CASE 1
SYM$ = CHR$(238) + 1"
CASE 2
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SYM$ = CHR$(238) + “y"
CASE 3
SYM$ = CHR$(238) + “ry"”
CASE 4
SYMS$ = Kz
CASE 5
SYM$ = “Ky"*
CASt 6
SYM$ = “Kxy”
END SELECT

OPEN DIROUTS + LSTRANPS$(H) FOR OUTPUT AS 11
CLOSE N
OPEN DIROUTS + LSTRANPS(N) FOR APPEND AS £1
PRINT 71, TAB(1); LSTRANP$(N)
PRINT #1, “UNIT = (0.001/w)°
PRINT #1, TAB(1); "HOUR";
PRINT #1, TAB(S); SYM$
cLose 1
NEXT Ui

OPEN DIROUT$ + STRAINS FOR OUTPUT AS 11
CLOSE 71
OPEN DIROUTS + STRAINS FOR APPEND AS #1
PRINT #1, STRAINS
PRINT 11, “UNIT = (0.001)°
PRINT #1, TAB(1); "HOUR";
PRINT #1, TAB(B); CHR$(238) + “x°;
PRINT #1, TAB{21); CHR$(238) + °y";
PRINT #1, TAB(33); CHR$(238) + “xy";
PRINT #1, TAB(45); “Ka";
PRINT £1, TABS7); “Ky";
PRINT #1, TAB(BS), “Kzy®

PRINT #1, TAB(1); USING “##IF4F; O;
FORN = 1T05
PRINT #1, TAB(S + (M- 1) * 12 USING “F.4088""""", 0;
NEXT N
PRINT #1, TAB(BSY USING “F.4#08" "~ 0
CLOSE M

FORH=1TOG
SELECT CASE N
CASE 1
SYM$ = CHR$(238) + “1°
CASE 2
SYM$ = CHR$(238) « °y"
CASE 3
SYM$ = CHR$(238) + “ry"
CASE 4
SYM$ « “Kx"
CASE 5
SYM$ = °Ky"
CASE 8
SYM$ = “Kxy®
END SELECT

OPEN DIROUTS + LSTRAINS(Il) FOR QUTPUT AS #1
CLOSE #1
OPEN DIROUT$ + LSTRAINS(Il) FOR APPEND AS #1
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PRINT #1, TAB(1); LSTRAINS(I)
PRINT #1, "UNIT - (0.001)°
PRINT #1, TAB(1); "HOUR";
PRINT #1, TAB(9); SYM$

PRINT #1, TAB(1); USING “##24.41"; O;
PRINT #1. TAB(9); USING “£.4408~~". 0
CLOSE 1
NEXT It

OPEN DIROUTS + STRESS$ FOR OUTPUT AS M
CLOSE M
OPEN DIROUT$ + STRESSS FOR APPEND AS #1
PRINT #1, STRESS$
PRINT #1, “UNIT = (1000°psi)*
PRINT #1, TAB(1); "HOUR®;
PRINT #1, TAB(S); “LAYER®;
PRINT #1, TAB(16); CHR$(229) + “1x";
PRINT #1, TAB(28); CHR$(228) + “yy";
PRINT #1, TAB/40) CHR$(231) + “ry*

PRINT #1, TAB(1); USING “##28.41°; 0;

FORK = 1TOK
PRINT #1, TAB(O), USING “##7°; K;
FORM = 1702

PRINT 71, TAB(16 + (M - 1) © 12} USING 14888~ ", 0;

NEXT
PRINT #1, TABIAOY; USING “#.40888"~~"; 0

NEXT

CLOSE £1

FORJ = 170K .
OPEN DIROUTS + LSTRESS + LTRIMS(STR$W)) + °.PAN" FOR OUTPUT AS #1
CLOSE 11
OPEN DIROUTS + LSTRESS + LTRIM$(STRS(J)) +  PRN" FOR APPEND AS #1
PRINT #1, LSTRESS + LTRIMS(STR$W)) + ° PRN"
PRINT #1, "UNIT = (1000°psi)®
PRINT #1. “LAYER® + LTRIMS${STRSW)L TABSL “TOP SURFACE": TABI44} “BOTTOM SURFACE"
PRINT #1, "HOUR"; TAB(S: CHR$(229) + “xx°; TAB(20); CHR$(229) + “yy": TABI31); CHR$(231) + ‘v
PRINT #1. TAB(44); CHR$(228) + “ux”; TAB(SSL CHR$(229) « "yy"; TABIST: CHR$(231) + R
PRINT #1, USING “###4.48°; P ° DLT;
FORN=1T03
PRINT #1, TAB(® + (- 1) ® 11); USING "2 8888~~~ 0;
NEXT N
FORH-1T03
PRINT #1, TAB(11 + (l + 3- 1) * 11); USING “2.0888"~*~"; 0;
NEXT H
PRINT 11,
CLOSE 7
NEXT J

FORH=1T06
SELECT CASE N
CASE 1
SYMBS - T1°
DIRS = “1x°
CASE 2
SYMBS - “T2"
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DIRS = “yy*
CASE 3

SYMBS = “T3"

DIRS = “1y°
CASE 4

SYMB$ - “B1°

DIRS = “ur”
CASE S

SYMB$ - “B2°

DIRS = “yy°
CASE 8

SYMBS$ - “B3°

DIRS = “ry"

END SELECT

OPEN DIROUTS + LSTRESS + SYMBS + °.PRN" FOR OUTPUT AS A1
CLOSE 1
OPEN DIROUT$ + LSTRESS + SYMBS « ° PRN" FOR APPEND AS #1
PRINT #1, LSTRESS + SYMBS + ° PRN"
PRINT #1, “UNIT = (1000°psi)®
PRINT #1, "HOUR®; TAB(S); CHR$(229) + DIR$
PRINT #1, USING “F¥sf #4°; P ° DLT;
PRINT #1, TAB(S), USING “2.0288" " 0
CLOSE #1
NEXT W

FORN=1T02
OPEN DIROUTS + DISMNT$ + LTRIM$(STRS(N) + ~.PRN" FOR OUTPUT AS 1
CLOSE
OPEN DIROUTS + DISMNTS + LTRIMS$(STRS(N) + °.PAN" FOR APPEND AS #1
PRINT #1, DISMNTS + LTRIMS(STR$(W)) + ° PRN"
PRINT #1, TAB(1); "HOUR®;
PRINT #1, TAB(9); “DISPLACEMENT (INCH)*
IFN = 1 THEN
X=CX:Y=CY
ELSE
X = .CX
ENOD IF
PRINT #1, TAB(S); *(";
PRINT #1, USING °“###°; X;
PRINT N, ", °;
PRINT #1, USING “##2°; Y;
PRINT N, °)°

PRINT #1, TAB(1); 0;
PRINT #1, TAB(BL USING #8888 ~~~". 0
CLose n
NEXT

END Sus

SUB FUNCCOEF (X(), Y0, CEF)
X12 = X(1)] Xf2)

X23 = X(2)/ X(3)

M = (X(1)- X@2)) ] (X(2) - X(3)
Y12 = Y1 1)/Y2 1)

Y23« Y2, 1)/YQ3, 1)

CEF{2, 1) = LOG(Y12/ (Y23 “ M)/ LOGIX 12/ (X23 * M)
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CEM3, 1) = LOG(Y12/(X12 ~ CEF2, 1)/ (X(1) - X(2))
CEF{1, 1) = Y(1, 1)/ (X(1) * CEF2, 1) * EXP(CEF3, 1) * X(1))

END SUB
SUB INITSCRN
SHARED 0LD

SCREEN 1
SCREEN 9
CLS

COLOR 7,1

LOCATES. 4

PRINT “Pregram running! °;

LOCATE 7, 4

PRINT “Fletnd F2<Time"

LOCATE 9, 4

PRINT “Pouse=Pause Enter=Continue’

IF TIMERS = “Y" THEN
LOCATE 25. 2
PRINT “Time slapsed: °;
END

VIEWPRINT 13T0 24

VIEW (280, 1830, 145), 1,2
WINDOW (40, -1104520, 110)
LINE (0, 014500, 0), 7

LINE (0, -10010, 100, 7

FORN = 170 10
UNE (W © 50, OHM © 50, 3), 7
NEXT ¥

FORU=1TO4
LINE (0,25 ° N5, 25° . 7
LINE (0, -25 ° WS, -25 ° 1), 7
NEXT W

END SUB
FUNCTION INMTAUTO 1)

"EQUATION TO AUTOMEATICALLY DETERMINE THE TIME INCREMENT YET TO BE DIFINED.
“TO ACTIVATE OR ENGAGE AUTOMATIC DETERMINATION, THE MAMUAL DETERMINATION
"SUBROUTINE CALL IN INPTSCRN SUBROUTINE MUST BE TURNED OFF.

ENO FUNCTION

SUB INMTMANU (DLT, TT)

O TK1 TO 15), TD(1 TO 15)

Il=0:SUM <0

RPLS = SEQ$

DO0:lU=h+1

TKH) « VALILEFTWORD$(RPLS))
TO(N) « VALILEFTWORD$(RPL$))

P
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SUM = SUM «+ TO(Il)
LOOP UNTIL TDM = 0
TO(N « (TT - SUM)
ROI=0
BEG -0
FORI = 1TOH

NUM « (TOM / Tl 1 OLT

FORH = 1 TO NUM

R(IH + BEG) = TN

NEXT W

BEG = BEG + NUM
NEXT |
RBEG + 1) = 1

RSUM(O) = 0

RSUMM + 1) = 0

FORI = 1T0 BEG
RSUM(I) = RSUMKI - 1) + R

NEXT I

END SUB
FUNCTION IMTNUMR (DLT, TT

SUM -0

8E6 -0

RPLS - SEQ$

0o
TI = VALLEFTWORD$RPLS))
TD = VALLEFTWORD$(RPLS)
SUM - SUM + TD
IF TD = O THEN EXIT DO
BEG - BE6 + TO/TI/OLT

LooP

TD = TT-SUM

BEG - BEG + TD /(M ° DLT

INMTNUMR - BEG
END FUNCTION
SUB INPTSCRN (OLT, TN

500 COLOR 7,1
cLs

ROW =4

0o
LOCATE ROW. 40 - LEN("Input data file [N * .PRN]: °)
INPUT “input data fils [IN ° PRN): °, INFNUM?
IF INFNUMS < > °° THEN
INFILES = “IN" + INFNUMS + ° PRN®
EXIT DO
END IF
BEEP
LOCATE ROW. 1
PRINT STRING$(79, ° °)
Loop
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LOCATE ROW « 1, 40 - LEN(*input directery (C:\VPT\DRINPUT: *)
INPUT “Input dirsctory [C:\VPT\DRINPUT\): °, DIRINP$
IF DIRINPS = °* THEN
OIRINPS = “C:\VPT\DRINPUT\"
LOCATE ROW + 1, 40
PRINT DIRINPS
END IF

LOCATE ROW + 2, 40 - LEN("Output dirsctery (D:): °)
INPUT “Output directery (D:): °, DIROUTS
IF DIROUTS = °° THEN
DIROUTS = “D:°
LOCATE ROW + 2, 40
PRINT DIROUT$
END IF

LOCATE ROW + 3, 40 - LEN("Prefix for eutput filenames: °)
INPUT “Prefix for output filenamas: °, PREFIX$

STRANS = PREFIX$ + “N° + INFNUM$ + °PRN"

STRANPS = PREFIX$ + “P° + INFNUM$ + ° PRN"

FORN=1T08
LSTRAINS(I) = PREFIXS + “N° + INFNUM$ + LTRIM$(STRS()) + ° PRN"
LSTRANPS(N) = PREFIX$ + “P* « INFNUMS + LTRIM$(STR$(N) + *.PRN"

NEXT W

STRESS$ = PREFIX$ + °S” « INFNUMS$ + ° PRN"

MOISTUS = PREFIXS + “M" + INFNUMS + ° PAN"

LSTRES$ = PREFIXS + °S° + INFNUMS

LMOIST$ = PREFIXS + “M" + INFNUMS

DISMNT$ = PREFIX$ + “D° + INFNUM$

PLTCMOS$ = PREFIXS + INFNUMS + °PLT"

LOCATE ROW + S, 40 - LEN("DELTA (1 hewr]: )
INPUT “Delta (1 howr): °, OLT
IFOLT = 0 THEN
OLT =1
LOCATE ROW + 5, 40
PRINT DLT
ENO IF

00
LOCATE ROW + 8, 40 - LEN("Endding time (800 howrs): °)
INPUT “Endding time (900 howrs]: *, TT
IFTT = 0 THEN
TT - 800
LOCATE ROW + 6. 40
PRINT TT
EXIT 00
ELSEIF TT > OLT THEN
EXIT DO
ENO IF
BEEP
LOCATE ROW + 6, 1
PRINT STRING$(79, ° °)
Loop

LOCATE ROW + 7, 40 - LEN("Time increment sequencs: *)
INPUT “Time incrament sequence: °, SEQ$
IF SEQ$ = °° THEN

SEQ$ = 1102204205 100 10 150 25 100 50°
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LOCATE ROW + 7. 40
PRINT SEQ$
END IF

00
LOCATE ROW + 8, 40 - LEN("Panel size [20°1 in®in): *)
INPUT “Panel size (20°1 in®inj: °, TEMPS
IF TEMP$ « “° THEN
TEMPS = “20°1°
LOCATE ROW « 8, 40
PRINT TEMP$
ENO IF
N = INSTRTEMPS, °*")
IFN <> 0 THEN
CX = VAL(LEFT$(TEMPS, N - 1))/ 2
CY « VAL(RIGHT$(TEMP$, LEN(TEMPS) - N)) | 2
EXIT DO
END IF
LooP

DO
LOCATE ROW + 9. 40 - LEN("Maximum meisture content (25%): *)
INPUT "Mazimum meistre contant (25%]: °, MCL
IF MCL = 0 THEN :
MCL = 25
LOCATE ROW + 9, 40
PRINT MCL
EXIT DO
ELSEIF MCL < = 30 THEN
EXIT 00
END ¥
BEEP
LOCATE ROW + 9, 1
PRINT STRING$(79, ° °)
Loop

00
LOCATE ROW + 10, 40 - LEN("Maximum strain rate (0.0001Mw]: °)
INPUT “Maxiowm strain rats (0.0001/w]: °, SPL
IF SPL = 0 THEN
SPL - 0001
LOCATE ROW + 10, 40
PRINT SPL
EXIT DO
ELSEIF SPL < = .0015 THEN
EXIT DO
ENO IF
BEEP
LOCATE ROW + 10, 1
PRINT STRING$(79, * °)
Loop

00
LOCATE ROW + 11, 40 - LEN("Mazxisum strain (0.007): °)
INPUT “Mazimum strain (0.007]: °, SNL
IF SNL = 0 THEN
SML - .007
LOCATE ROW + 11, 40
PRINT SNL
EXIT DO
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ELSEIF SNL < .01 THEN
EXIT DO
END IF
BEEP
LOCATE ROW + 11,1
PRINT STRING$(78. ° °)
Loop

00
LOCATE ROW «+ 12, 40 - LEN("Mazimumm warp (in) (2]: °)
INPUT “Mazimwm warp (m) (2]: °, SOL
IF SOL = 0 THEN
SOL =2
LOCATE ROW + 12, 40
PRINT SOL
EXIT DO
ELSEIF SOL < S THEN
EXIT 00
ENO I
BEEP
LOCATE ROW + 12,1
PRINT STRING$(79, ° °)
Loop '

0o
LOCATE ROW « 13, 40 - LEN("Maximuen stress (psi): °)
INPUT “Mazium stress (psi): °, SSL
IF SSL > 0 AND SSL < 10000 THEN EXIT DO
BEEP
LOCATE ROW « 13,1
PRINT STRINGS(79, ° °)
Loop

00
LOCATE ROW «+ 14, 40 - LEN("Elmant type (S. M. KS, or KM}: °)
INPUT “Elemant type (S, M, KS, or KM): °, TYPE$
IF TYPES = “M" OR TYPES = °KS” OR TYPES = “KM" OR TYPE$ » °S° THEN
EXIT 00
END IF
BEEP
LOCATE ROW + 14, 1
PRINT STRING$(79, ° °)
Loop

00
LOCATE ROW + 15, 40 - LEN("Timer [N]: )
INPUT “Timar (N]: °, TIMERS
IF TIMERS = °° THEN
TIMERS = “N°
LOCATE ROW + 15, 40
PRINT TIMER$
ENO ¥
IF TIMERS = “Y" OR TIMERS = “N" THEN
EXIT DO
ENO IF
BEEP
LOCATE ROW «+ 15, 1
PRINT STRING$(79, ° )
LooP
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0o
LOCATE ROW + 16, 40 - LEN("Edit comment [N]: *)
INPUT “Edit comment [N): °, CMT$
IF CMT$ = °° THEN
CMTS$ = °N°
LOCATE ROW + 18, 40
PRINT CMT$
END IF
IFCMT$ = “Y" OR CMT$ = “N° THEN
EXIT DO
END IF
BEEP
LOCATE ROW + 16, 1
PRINT STRING$(79, * °)
Loop

00
LOCATE ROW + 17, 40 - LEN("Print on [Y): °)
INPUT “Print on [Y): °, SCRNS
IF SCRN$ = °° THEN
SCANS = °Y°
LOCATE ROW + 17, 40
PRINT SCRN$
ENO ¥
IF SCRNS = °Y" OR SCRNS = “N° THEN
EXIT DO
ENO ¥
BEEP
LOCATE ROW + 17,1
PRINT STRING$(79, * °)
LooP

00
LOCATE ROW + 18, 40 - LEN("Dispiay ea [Y]: *)
INPUT “Displey on [Y]: *, DSPLS
IFOSPLS = *° THEN
OSPLS$ = Y
LOCATE ROW + 18, 40
PRINT DSPLS
END ¥
IFDSPLS = “Y" OR DSPLS = “N° THEN
EXIT DO
END I
BEEP
LOCATE ROW + 18,1
PRINT STRING$(79, * °)
Loop

00
LOCATE ROW + 18, 40 - LEN("Cerrect [Y]: °)
INPUT “Correct [Y]: °, YorN$
IF YorN$ = “Y" OR YorN$ = °y° OR YorN$ = ° THEN
IF CMT$ = “Y" THEN
SHELL (DIROUTS$)
SHELL ("PE2 * + PREFIXS + INFNUMS + °.CMT™)
END IF
EXIT DO
ELSEIF YorM$ = “N° OR YorN$ = °n° THEN
GOTO 500



192

ELSE
BEEP
LOCATE ROW + 18, 39
PRINT ==,
END IF
LoopP

ENO SUB
SUB INPUTSEC (K, DLT, TT, CMIS, CTMP)
DM THK(1 TO K)

LOCATE 17,1

PRINT STRING$(79, ° °)

LOCATE 17, 23

PRINT “Reading and preprecessing inputs!”

LINE INPUT 11, INT$
LINE INPUT #1. INT$
FORH=1TOK
ANGLE(H) = VALILEFTWORDS$(INT$)
NEXT It

LINE INPUT #1, INT$
LINE INPUT #1, NT$
FORN=1TOK

THKN = VALLEFTWORD$(INT$))
NEXT W
TTHK = 0
FORH - 1TOK

TTHK = TTHK + THK(®)
NEXT It
H(O) = -TTHK/ 2
FORN = 1TOK

HH) = W - 1) + THKON
NEXT N

LINE INPUT 41, INT$
LINE INPUT #1, INT$
FORN=1TOK

MP(H) = VALLEFTWORDS(INT$))
NEXT

LINE INPUT /1. NT$
LINE INPUT 11, INT$
FORJ = 1TOK
LINE INPUT 11, INT$
LW1$ « LEFTWORDS(INTS)
IFVALILW1$) = J THEN
LW2$ = LEFTWORDS(INTS)
IFLW2$ = “SAME" THEN
FORR=1TO7
IFH <= 3 THEN
MET20, 1 = ME12U - 1. 1)

ELSEIFH >« 4 AND N < - 6 THEN
MEGNW, N-3) = MEGNL - 1, 8- 3)

ELSEIF Ul = 7 THEN
ViU = Vi2J - 1)
END ¥
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NEXT Il
ELSE
INT$ = LW2$ + °° + INT$
FORN=1T07
IFl <= 3THEN
ME12(J, ) = VALILEFTWORDS$(INT$))
ELSEIFH <= 6 AND Nl > = 4 THEN
MEGN(J, il - 3) = VALILEFTWORDS(INT$))
ELSEIF Il = 7 THEN
V12(J) = VALILEFTWORDS(INT$))

ELSE
FORJJ =« JTOK
FORH=1TO?
IFN < = 3 THEN
ME12(JJ, N) = MET2J - 1, 10
ELSEIF Il > « 4 AND N < = 6 THEN
MEGN(IJ, U - 3) = MEGNJ - 1, M- 3)
ELSEIF Il « 7 THEN
VI2UJ) = V12U - 1)
ENO IF’
NEXT i
NEXT W
EXIT FOR
ENO IF
NEXTJ

LINE INPUT #1, INT$
LINE INPUT #1, INT$
FORJ = 1TOK
LINE INPUT #1, INT$
LW1$ = LEFTWORDS(INT$)
IF VAL(LW13) = J THEN
LW2$ = LEFTWORDS(INT$)
IF LW2$ = “SAME" THEN
FORN=1T02
FORM = 1TO4
EXPCOFU, I, W) = EXPCOF - 1, 1L W)
NEXT
NEXT N
ELSE
INTS = (W28 + °° « INT$
FORH=1T02
FORM=1T04
EXPCOFLJ, I, W) = VALILEFTWORD$(INT$))/ 100
NEXT I
NEXT
END IF
ELSE
FORJW = JTOK
FORK = 1T02
FORM=-1T04
EXPCOFJJ, I, ) = EXPCOFJ - 1, i, )
NEXT it
NEXT H
NEXT W
EXIT FOR
ENO IF
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NEXT J

LINE INPUT 1, INT$
CALL MODELCOFK. FLAG$(), PARMC()
LINE INPUT #1, INT$
CALL MODELCOFK. FLAG$(), PARMA()
LINE INPUT #1, INT$
CALL MODELCOF(K. FLAGS(), PARMB()

LINE INPUT #1, INT$
LINE INPUT #1, INT$
LINE INPUT #1, INT$
FORM - 1T06
EK(0, IN) = VAL(LEFTWORDS$(INT$))
NEXT W

LINE INPUT #1, INT$
LINE INPUT #1, NT$
LINE INPUT #1, INT$
CMIS = 0
00
LINE INPUT #1, INT$
COPY$ « INT$
If LEFTWORD$(COPY$) « “END" THEN EXIT DO
CMIS « CMIS + 1
MC$(CMIS) = INT$
Loop

0o
LOCATE 17.1
PRINT STRING$(78, ° °)
LOCATE 17, 40 - LEN("Priwt inputs [N]: )
INPUT “Print inputs (N]: °, IN$
IFIN$ = °° THEN
N$ =« W
LOCATE 17. 40
PRINT IN$
END IF
IFIN$ = “Y" OR IN$ = “N" THEN
IF IN$ = °N° THEN
NUM - 1
ELSE
NUM - 2
ENO IF
LOCATE 17,1
PRINT STRING$(79, ° °)
EXIT DO
ENO IF
Loop
FOR| = 170 NUM
IF NUM = 2 THEN
OPEN “LPT1:° FOR OUTPUT AS 12
ELSEIF NUM = 1 THEN
OPEN DIROUTS + PREFIXS + INFNUMS + “.INP° FOR OUTPUT AS 12
ENO IF
LOCATE 17,1
PRINT #2, TAB(S); “INPUT FILE": TAB(18); INFILE$
PRINT #2, TAB(SI; “INPUT DIR"; TAB(18); DIRINP$
PRINT #2, TAB(5); “OUTPUT DIR"; TAB(18); DIROUT$
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PRINT #2, TAB(S). “FILE PREFIX"; TAB/(18); PREFIX$
PRINT #2, TAB(S); “TYPE"; TAB(18); TYPE$
PRINT #2. STRING$(79, ° )
PRINT #2, TAB(S); °K". TAB(18k K
PRINT #2, TAB(S); “DLT™; TAB(18); DLT: TAB(30L: “theur)®
PRINT #2, TAB(S). "ENOING"; TAB(18); TT; TAB(30L “Mewr)”
PRINT #2, TAB(S): "INCREMENT SEQUENCE"
PRINT #2, TAB(18): SEQ$
PRINT #2, TAB(S). “PANEL SIZE*; TAB(18k CX * 2; "by"; CY * 2; TAB(30L “(m°m)°
PRINT #2. TAB(S) “ANGLE (degree)”
FORN = 1TOK

PRINT #2, TAB(18 + 8 ° (W - 1)); USING “###.4"; ANGLE(H);
NEXT i
PRINT £2,

PRINT #2, TAB(SL “THK (in)";
FORU = 1TOK
PRINT #2, TAB(18 « 8 ° (i - 1);; USING “#.##41; THK(H);
NEXT 0
PRINT #2,

PRINT #2, TAB(S) “H (m)";
FORN = 0TOK
PRINT #2. TAB(18 + 8 * (W) USING “F 2##1; HNY
NEXT %
PRINT 12,

PRINT #2, TAB(S) “MCp (%)°;
FORN = 1TOK
PRINT #2, TAB(18 + 8 ° (N - 1)} USING “#7.47"; MP(NL
NEXT 0
PRINT 12,
PRINT #2,

PRINT #2. TAB(S); “MOE (million pai)”
PRINT #2, TAB(10); "LAYER"; TAB(18); “E11°; TAB(30) “E22°; TAB(A2); "E12°; TAB(S4L “V12°
PRINT #2, TAB(S), “12%";
FORJ = 1TOK

PRINT #2, TAB(10L J:

FORH=1T03

PRINT #2. TAB(18 + 12 ° (- 1) USING “F.20#88" """, ME12UJ, i;

NEXT B

PRINT £2. TAB(SA); USING “2.08881°. V12U))
NEXT J

PRINT £2, TAB(S). “GAN";
FORJ = 1TOK
PRINT #2, TAB(10k J;
FORN=1T03
PRINT 42, TAB(18 « 12 * (N - 1)k USING “2.24#8"“~~"; MEGNU, R}
NEXT ¥
PRINT #2, TAB(SAL USING “1.44181°; V12U)
NEXT J
PRINT 12,

PRINT #2, TAB(5); “EXPANSION COEFFICIENT PARAMETERS®
PRINT #2, TAB(18); “AA1"; TAB(30) "AA2"; TABI42) “AAJ"; TAB(SA); “AA4"
PRINT #2, TAB(S): "EXP";
FORJ = 1TOK
PRINT #2, TAB(10L. J:
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FORN = 1702
IF H = 1 THEN : PRINT #2. TABIVA), °IT;
IF 1l = 2 THEN : PRINT #2, TAB(14L *|_*;
FORM = 170 4
PRINT #2. TAB(1S + 12 °* (N - 1)); USING “2.##24°; EXPCOFLJ, I, I;
NEXT 1
PRINT 12,
NEXT N
NEXT J
PRINT 12,

CALL PRNTPARM(K, “C*, PARMC()
CALL PRNTPARMIK, “A", PARMA()
CALL PRNTPARMIK, “B°, PARMB()

PRINT #2, TAB(S:: “INITAL TOTAL STRANS®
PRINT #2, TAB(10) "Ex"; TAB(18); “Ey"; TAB(28), “Exy"; TAB(34) "Xx"; TABIA2); “Ky"; TAB(SOL “Kxy"
FORN=1TOG
PRINT #2, TAB{10 « (i - 1) * 8); EK(O, W),
NEXT 0
PRINT 2,

PRINT #2, TAB(SL “MIC"; TAB(20k "HOUR®"; TAB{30L “LAYER";
FORN = 1TOK
PRINT #2, TABR7 + M- 1) Tk &
NEXT U
PRINT 12,
FORN = 1 TO CWIS
PRINT #2, TAB(18); MC$(W)
NEXT N
PRINT #2, TAB(S]; “TMP";
FORN = 1 TO CTMP
PRINT #2, TAB(18); TM$(W)
NEXT ¥
CLOSE
NEXT |

FUNCTION LEFTCHARS (INT$, N)
00 WHILE LEFTS(INTS, 1) = °©

INT$ = RIGHTS(NTS, LENINTS) - 1)
Loop

TEMPS = LEFT$(INT$, N)
LT$ = TEMPS

END FUNCTION

FUNCTION LEFTWORD$ (INT$)

‘DO WHILE LEFTS(INTS, 1) = °°

" INT$ = RIGHTS(INTS, LENIINTS) - 1)
‘Loop

INT$ = LTRIM$(INTS)

IF INSTRINTS, *°) > 1 THEN
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TEMPS = LEFTS(INTS, INSTRINTS, * *) - 1)
INT$ = RIGHTS(INTS, LEMINTS) - LEMTEMPS))
LEFTWORD$ = TEMP$
DO WHILE LEFTS(INTS, 1) = **
INT$ = RIGHT$(INT$, LEMINT$) - 1)
Loop
ELSEIF INT$ < > *° THEN
LEFTWORD$ = INT$
INT$ = *°
ELSE
LEFTWORD$ = INT$
END IF

END FUNCTION

SUB MAINCOM1 (M, P, K, DLT)

O ABBDINV(1 TO 6, 1 TO 6), EKPINT(1 TO S, 1 TO 1)
OMYINT(1 TO3, 1 TO3LEMITO3, 1TO1LKP1TO3,1TO 1)
DMEXPP(1T03, 170 1)

OMYE(1TO3, 1TONL YK TO3, 1TOILYHITO3,1TO 1)
DM TEMP(1 TO 3), SI612(1 TO 31, WARP(1 T0 2)

IFP = 0 THEN

LOCATE 12.1

PRINT STRING$(79, * )
ENO I

CALL MATRINVSIABBO(), ABBOINVN)
CALL MATRMULT(ABBOINV(, GRAND(, EXPINT()

FORN=-1TO6
EKPPP, N) = EXPINT(L 1)
NEXT B

OPEN DIROUTS + STRANPS FOR APPEND AS #1  ‘COMBINED
PRINT #1, TAB(1); USING “##42.47"; RSUM(P) ° DLT;
FORH-1T06 .

PRINT #1, TAB(S + (N - 1) * 12); USING “#.8#24"“~*; EKPINT(, 1) * 1000;
NEXT N
PRINT 11,

CLOSE N

FORN=1T086 ‘EACH LAYER
OPEN OIROUTS + LSTRANP$(I) FOR APPEND AS #1

PRINT #1, TAB(1); USING “###% 47" RSUMIP) ° DLT;
PRINT £1, TAB(S); USING “#.#282"“~~°; EKPINTIL, 1) * 1000
CLOSE 1
NEXT It

IFP = M THEN
INCT = DLT ‘STRAIN RATES
INCTSUM = (RSUMIP) + 1)  'STRAN
OLTT « (RSUMP) + 1) * DLT ‘WARPAGE
ELSE
INCT=R(P+ 1)°DLT  'STRAN RATES
INCTSUM = RSUMP + 1)  ‘STRAN
OLTT « RSUMIP + 1) * OLT  "WARPAGE
END IF

FORH=1T086
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EK(P «+ 1, 1)) = EK(P, Il) + EXPINT(IL, 1) ® INCT
NEXT I

OPEN DIROUTS + STRAINS FOR APPEND AS #1  "COMBINED
PRINT #1, TAB(1); USING “###%.44°; INCTSUM ° DLT;
FORN=1T06

PRINT #1, TAB(S « (il - 1) * 12); USING “#.4#88"“~" EK(P + 1, ) * 1000;
NEXT H
PRINT N,

CLOSE N

FORN - 1T06 ‘EACH LAYER
OPEN DIROUT$ + LSTRAINS(I) FOR APPEND AS #1

PRINT #1, TAB(1); USING “####.#4°. INCTSUM ° DLT;
PRINT #1, TAB(S); USING #4448~ EK(P + 1, W) © 1000
CLOSE 1
NEXT Ul

OPEN DIROUTS + STRESS$ FOR APPEND AS /1 "AGGREGATED
PRINT #1, TAB(1); USING “####.44°. RSUM(P) * DLT;
FORJ = 1TOK
PRINT #1, TAB(S): USING “#4#°. J;
OMC = (MC(P + 1, J) - MCIP, J)) | (R(P + 1) ° DLT)
FORN=1TO03
FORM-1T03
YINTIL ) = YTRU, IL, )
NEXT ¥
NEXT i
IFP > OTHEN  °EP(, KP{) AND EXPP() ARE STRAIN RATES.
FORH-1T03
EPM, 1) = EKPINT(N, 1)
KPM, 1) = EKPINT(N + 3, 1)
EXPP(IL 1) = EXPVAL(P, J, K, 1) * DMC
NEXT i
ELSEIF P = 0 THEN ‘THE ABOVE QUANTITIES ARE STRAINS AT P=0
FORN=-1T03
EPN, 1) = EK(O. I}
KP(®, 1) = EX®O, Il + 3)
EXPP, 1) = 0
NEXT I
ENOD If
CALL MATRMULT(YINT(, EPY), YE()
CALL MATRMULT(YINT(), KP(), YK)
CALL MATRMULT(YINT(), EXPP(), YH()
IFP = 0 THEN
RPLC = 1 'STRESSES AT P=0
ELSE
RPLC = 5 ° R(P) ° DLT
ENO ¥
FORN=1TO3
YEJU. 1L 1) = YEJU, I 1) + RPLC ° YER, 1)
YKJW, 1, 1) = YKJU, I, 1) + RPLC * YK(R, 1)
YHIJ, 1L 1) = YHIU, 1L 1) + RPLC * YHIN, 1)
NEXT
FORN = 1TO3 ‘AT THE CENTER OF EACH LAYER
TEMPI) = (YEJW, I 1)+ YKJW, 0, 1) * .5 ° (HJ) « HJ - 1) - YHIJ, W, 1) © 1000
PRINT #1, TAB(18 « (Il - 1) * 12); USING “#.4804"~~"°; TEMPIN)
NEXT I
CALL STRAFORM(TEMP(,, ANGLE(J), S1612())
FORN-1T03
STRESSIP. J, Il) = SIG12(W)
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NEXT I
PRINT £1,
NEXT J
CLOSE 41

FORJ = 1TOK 'AT THE SURFACE OF EACH LAYER
OPEN DIROUTS + LSTRESS + LTRIMS(STR$(J)) « “.PRN" FOR APPEND AS 11
PRINT #1. USING “#4#4.48°; RSUMIP) * DLT:
HH = HU - 1) + (HU) - HWJ - 1))/ 2 "*° FOR STRESS AT THE MIDPOINT OF EACH LAYER
FORN=1T03
TMP = (YEJ(J, I, 1) + YIJW, 1L, 1) * HH - YHJW. 1, 1) * 1000
PRINT #1, TAB(S + (I - 1) ® 11); USING “£.4#44"~““°; TMP | 1000;
NEXT Wi
FORN=1T03
TMP = (YEJW. Il 1) « YKJU, IL 1) ° HWJ) - YHOU, I 1)) © 1000
PRINT #1, TAB(11 + (N + 3-1)° 11); USING “#.4288"~“~; TMP | 1000;
NEXT U
PRINT 1,
CLOSE
NEXT J
FORN=1TO6 ‘TOP AND BOTTOM SURFACES
SELECT CASE M
CASE 1
SYMBS - “T1*
CASE 2
SYMBS - “T2°
CASE3
SYMB$ - T3°
CASE 4
SYMBS - °81°
CASE 5
SYMBS$ - “82°
CASt 6
SYMB$ - °B3°
ENOD SELECT
OPEN DIROUTS + LSTRESS + SYMBS + “PRN" FOR APPEND AS #1
PRINT #1, USING “###8 44", RSUM(P) ° OLT;
IFN < 4THEN TOP LAYER
TMP = (YENL IL 1) « YKJ(1, R 1) © H(O) - YH(1, &, 1) * 1000
PRINT #1, TAB(S): USING “#.4##4" " ; TMIP | 1000
ELSEIF N > 3 THEN 'BOTTOM LAYER
TMP = (YEHK H-3, 1) « YKHK N-3, 1) © HK) - YHHK, & - 3, 1)) * 1000
PRINT #1, TAB(S); USING #4288~~~ TMP | 1000
ENO I
CLOSE 1
NEXT I

FORN=1T02
OPEN DIROUTS + DISMNTS « LTRIM$(STR$(W) + °PRN" FOR APPEND AS N1
PRINT #1, TAB(1; USING “###.44°; DLTT;
IFH = 1 THEN
X=141:Y-0
ELSEN = 2
X=0:Y=915
ENO IF
WARPH) = {-5)*(EKIP + 1, 4)* XX + EKP + 1,5)° Y Y+ EKIP + 1,8)° X °Y)
PRINT #1, TAB(9); USING “#.0##8" """, WARPM);
PRINT 11,
CLOSE M
NEXT H
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IF SCRN$ = “Y" OR (SCRN$ = “N" AND P = M) THEN
PRINT ° SP*; TAB(G); USING “###.44"; RSUMIP) * DLT;
FORN-1T06
PRINT TAB(15 + (- 1) * 11); USING “#.484"““~*; EKPINT(, 1);
NEXT Ul
PRINT

PRINT ° SN°; TAB(B); USING “#4#.41"; INCTSUM ° DLT;
FORNI=1TO6

PRINT TAB(1S + (- 1) * 11); USING “£.8#8"“~~; EK(P + 1, W);
NEXT H
PRINT

PRINT ° SS°; TAB(BL USING “###.24°; RSUMIP) * DLT;
FORNI« 1703
TMP = (YEJ(T, I, 1) « YKHT, I 1) * HO) - YHU(1, K, 1)) * 1000
PRINT TAB(1S + (M- 1)° 11%; USING “#.488"~~"; TMP;
NEXT i
FORH-1TO3
TMP « (YEJC I, 1) « YKJIK, I, 1) © HIK) - YHUK, 1, 1)) * 1000
PRINT TAB(1S + ( + 3- 1) * 11); USING “2.088"~ ", TMP;
NEXT I
PRINT

PRINT ° DS”; TAB(S); USING “###.21"; DLTT;
FORN=1T02
PRINT TAB(15 + (W - 1) * 11); USING “#.028"~ ", WARPIN)
NEXT N
PRINT
PRINT STRING$(78, ° °)
ENOD IF

IFDSPLS « “Y" THEN
FORH=1TO3
CALL SCRNPLOT(1, 14, RSUMM, RSUMIP), MCL - 10, MC(P, i) - 10, PMX(I0, PMY(N)
NEXT W

FORN « 1TO 4 STEP3
IFll = 1 THEN
RPLSPL = SPL
ELSEIF N = 4 THEN
RPLSPL - SPL°8
ENO IF
CALL SCRNPLOT(1, 15, RSUMM), RSUM(P), RPLSPL EKPINTIN, 1), PPX(H), PPY(I)
NEXT ¥

FORN = 1 TO4STEP3
IFH = 1 THEN
RPLSNL = SNL
ELSEIF it = 4 THEN
RPLSNL = SNL ° 10
END ¥
CALL SCRNPLOT(1, 7, RSUMMM), RSUMIP), RPLSNL, EK(P + 1, N, PNX(N), PNY(Il)
NEXT W

FORN=1T02
IFil < 4 THEN
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T80
ELSEIF i > 3 THEN
T8 =K
END IF
TMP = (YEJ(1. 11, 1) « YKJ(1, . 1) © H(TB) - YHJ(1, I, 1)) * 1000
CALL SCRNPLOT(1, 2, RSUMM), RSUM(P), SSL. TMP, PSX(N), PSY(N))
NEXT Il

FORH = 1701
CALL SCRNPLOT(1, 14, RSUMMM), RSUM(P), SOL WARPM), PDX (), PDY(II)
NEXT H
END IF

END SUB

SUB MATRINVS (A(), AK))

‘ Matrix inversion subrowting by Gauss-Jerden climination
* matrix (A] is imput, metnz (B is output

"dim(Al=L%°L% temperary dim [B]=L%°2L%

' First creats matrix with (A] on the left and (1] en the right

L% = UBOUNDIA. 1)
OMB(ITOL%. 1TO2°L%)

FORI% = 1TOL%
FORJ% = 1T0L%
Bi%.J% « 1% =0
BI%, J%) = A%, J%)
NEXT J%
Ba%, 1% + L%) =1
NEXT 1%

* Parform rew orientsd eperations te convert the left hand
" side of [B] te the identity matrix. The inverse of (A} will
 then be on the right.

FORKK% = 1TO L%
IF KK% = L% THEN GOTO 42424
M% = KK%

* Find the mazimum slement
FORI% = KK% + 1 TOL%

IF ABS(B(1%, KK%)) > ABSBM%, KK%)) THEN M% = 1%
NEXT 1%

IF M% = KK% THEN GOTO 42424
FORJ% = KK% TO2° L%
B = BIKK%, J%)
BIKK%. J%) = BOM%, J%)
8M%, J%) - B
NEXT J%

* divide rew K
42424 : FORJ% = KK% + 1TO2° L%
BIKK%, J%) = B(KK%, J%) / BIKK%, KK%)
NEXT J%

IFKK% = 1 THEN GOTO 42434
FORI% = 1 TO KK% -1
FORJ% = KK% +1T02° L%



202

B1%, J%) = B(1%, J%) - B%, KK%) * B{KKY, J%)
NEXT J%
NEXT 1%

IF KK% = L% THEN GOTO 42438
42434 : FORI% = KK% + 1 TOL%
FORJ% = KK% + 1TO2° L%
BUI%, J%) = B(I%, J%) - BA%, KK%) * BIKK%, J%)
NEXT J%
NEXT %
42439 : NEXT KK%

' retrigve inverss from the right side of (B]
FORI% = 1TOLY%
FORJ% - 1TOL%
ANI%, J%) = BI%. J% + L%)
NEXT J%
NEXT 1%

END SuB
SUB MATRMULT (A!, B0, AB!()

‘AB=A°B AisL%°M% BisM%°N% ABisL%°N%
‘COMPUTE THE PRODUCT MATRIX
MATRIX AB() DOES NOT NEED TO BE INITIALIZED.

L% = UBOUND(A, 1)
M% = UBOUNDIA, 2)
N% - UBOUNDS, 2)

OMC(1TOL%, 1 TO N%)

FORI=1TOL%
FORJ = 1 TON%
FORK = 1TO M%
CLJ) = CLJ) + AL K) ° BIK, J)
ABIL J) = COL J)
NEXT K
NEXTJ
NEXT |

END SUB
SUB MATRPRN1 (X(), S)
L = UBOUNDIX, 1)

IFS = 0 THEN
FORI=1TOL
PRINT TAB(1); USING “#.448" ", XM
NEXT |
PRINT
ELSE
CLOSE
OPEN °LPT1:° FOR OUTPUT AS #1
FORI=1TOL
PRINT #1, TAB(1); USING “#.4#4~ ", X{I)
NEXT |
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PRINT N1,
PRINT 11,
CLOSE 1
END IF

PRINT
END SUB
SUB MATRPRN2 (X(), S)

L = UBOUND(X, 1)
M = UBOUND(X, 2)

IFS = 0 THEN
FORI=1TOL
FORJ=1TOM
PRINT TAB(1 + (J - 1) * 10); USING “#.0#8~~~"; X(L, J};
NEXT J
PRINT
NEXT |
PRINT
ELSE
CLOSE
OPEN °LPT1:* FOR OUTPUT AS 11
FORI=1T0L
FORJ=-1TOM
PRINT 1, TAB(1 + (J - 1) * 101, USING “£.082"~~~"; X{I, J}
NEXT J
PRINT 1,
NEXT |
PRINT 11,
PRINT N1,
CLOSE 1
END I

END SuUB
SUB MATRTRAN (X(, XT()

0 - UBOUND(X, 1)
IF UBOUNOIX, 2) < > D OR UBOUNDIXT, 1) < > D OR USOUNDIXT, 2) < > 0 THEN CALL ERRLOCTN("1 IN MATRTRAN")

FORI=1TOD

FORJ - 1T0D

XTR, J) = XW,

NEXT J
NEXT |
ENO SuB
SUB MODELCOF (K, XFLAGS(. PARM)
NUM = UBOUNO(PARM, 3)

LINE INPUT 11, INT$
LINE INPUT 21, INT$

FORJ = 1T0K
LINE INPUT 11, INT$
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LW1$ = LEFTWORDS$(INTS)
IF VALILW1S) = J THEN
LW2$ = LEFTWORD$(INT$)
IF LW2$ = "SAME" THEN
FORI=1T03
IF NUM > 8 THEN
XFLAGS$(, 1) = XFLAGS$W - 1. 1)
END I
FOR N = 1 TO NUM
PARMIJ, L, 1) = PARMKJ - 1.1, 11}
NEXTH
NEXT |
ELSE
FORI=1T03
LW3$ = LEFTWORDS(INT$)
IF LW3$ = "E° THEN
IFNUM > 9 THEN "ONLY ON READING PARAMETER C
XFLAGSW, I = LW3$
END F
ELSEIF LW3$ = "N THEN
¥ NUM > 9 THEN ‘ONLY ON READING PARAMETER C
XFLAGSW, 1) = LW3$
END F
ELSE
FNUM > 9 THEN ‘ONLY ON READING PARAMETER C
XFLAGSW, 1) = V°
END
INTS = LW38 + ° " + TS
FORN = 1 TO NUM
PARMU, L ) = VAL(LEFTWORDS(INT$))

LINE INPUT 1, INT$
LW2$ = LEFTWORDS(NTS)
END F
NEXT
END ¥
ELSE
FORW = JTOK
FORI=1T03
IF NUM > 9 THEN
XFLAGSW, ) = XFLAGSW - 1. 1
END ¥
FORN = 1 TO NUM
PARMWJ, L ) = PARMIJ - 1. L 1)
NEXT U
NEXT |
NEXT 1
EXIT FOR
END ¥
NEXT J

ENOD SUB
SUB MOISTURE (K, DLT. M. PTS)
DIMMCCOF(1 TOK, 1 TO(PTS- 1,170 3)

DM Y(1 TO PTS), YY(1 TOK. 5)
OMRCOKITO(PTS-1)°3. 1)
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DIM TIME(1 TO PTS)
OMB(1 TOPTS,.1TOJ)

LOCATE 17.1

PRINT STRING$(79, ° °)

LOCATE 17.23

PRINT “Computing meisture development!”

FOR1 = 1TOPTS
TIME() = VALILEFTWORD $ MC (1))
FORN=1T03
BiL ) = VALILEFTWORDS$OMC (1))
NEXT 1l
NEXT |

FORJ = 1TOK
DEPTH = ABS(HW - 1) - HO)) + (HW) - B - 1)/ 2
FORM = 1 TOPTS
(D = BOL 1) + B(K, 2) * DEPTH + B, 3) ° DEPTH * DEPTH
NEXT il
CALL SPLINQUD(TIME(, Y0, RCOF()
FORI= 1TO(PTS- 1)
FORN=1T03
MCCOFJ, L M) = RCOFI- N3 + L 1)
NEXT N
NEXT |
NEXT J

FORJ = 1TOK
FORI=0TOM + 1
IFl=M+1THEN
DLT1 = (RSUMG - 1) + 1) ° DLT
ELSE
DLT1 = RSUMM ° OLT
ENOD IF
OLT2 = DLT1 ° OLTY
IFDLT1 < = TIME(PTS) THEN
€1
00
IFDLT1 < = TIME(C + 1) THEN
MC(L, J) = MCCOFRJ, C. 1) * DLT2 + MCCORJ, C, 2) * DLT1 + MCCOFJ, C. 3)
EXIT 00

ELSE
MC(L J) = MC(1- 1. J)
ENO If
NEXT |
NEXT J

FORJ - 1 TOK
IF TYPES = “KM" OR TYPE$ = “M" THEN
FORN=1TOM
AVGMC = (MC(t, J) « MCM - 1,40/ 2
DRSUM = (RSUMIIT - RSUMIH - 1) ° DLT
AVGMCWI, J) = AVGMCWAH - 1, J) * RSUMG! - 1) * OLT + AVGMC * DRSUM
AVGMCWIIL, J) = AVGMCWIH, J) | (RSUMH) ° DLT)
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NEXT Ul
END IF
OPEN DIROUTS + LMOISTS$ + LTRIM$(STR$UJ)) + “.PRN" FOR OUTPUT AS #1
CLOSE 1
OPEN DIROUTS « LMOISTS + LTRIM$(STR$(J)) + *.PRN" FOR OUTPUT AS 11
PRINT #1, LMOIST$ + LTRIM$(STR$(J)) + °.PRN"
PRINT #1, "MOISTURE CONTENT (%)°
PRINT #1, "HOUR"; TAB(10). "LAYER® + STR$UJ)
FORI-0TOM + 1
IFll = M + 1 THEN
TIME = RSUMIH - 1) + 1
ELSE
TIME = RSUM(H)
END IF
PRINT #1, USING “###.41"; TIME ° OLT;
PRINT 71, TAB(10); USING “##4 #81°; NC(L, J)
NEXT U
CLOSE 1
NEXT J

END SUB

SUB PARAMTR1 (M), Y(), CEF)

D - UBOUNDMM. 1)

IFD < > UBOUND(Y. 1) THEN CALL ERRLOCTNC"1 IN PARAMTR1°)
IFD < > UBOUND(CEF, 1) THEN CALL ERRLOCTN("2 IN PARAMTR1°)

OMMCT(1T00,1T0D)
DM MCTK1 700, 1T0D)

FORL=1T0D
FORM < 170D
MCTIL M) = ML) “ (D - M)
NEXTM
NEXT L

CALL MATRINVSIMCT(), MCTN))
CALL MATRMULTIMCT), Y(, CEFD)

SUB PARAMTR2 (M, (), S{L. CEF0)

0 = UBOUNOMM. 1)
IFD < > UBOUND(Y, 1) THEN CALL ERRLOCTN(™1 IN PARAMTR2")

OMMCT(1T0D.1TOD)
OMMCTK1 TOD, 1 TOD)
DM STS(1T0D. 1 T0 D)
OMSTSK1T00,1T00)
DM STSIT(1T0D, 170 D)
OMXY(1 70D, 170D)

FORL-1T0D
FORM = 1700
MCTIL M) = WL) (D -M)
STSIL M} = SIL) “ (D - M)
NEXTM
NEXT L



207

CALL WRITECMOD(2, 0, RD$() 1 WARP CURVE

CALL WRITECMD(3. K « 8, FiD$()) ‘3 NORMAL STRAN CURVES

CALL WRITECMD(3, K « 2, FID$() 3 NORMAL STRAIN RATE

CALL WRITECMD(3, K « S, FiD$() ‘3 CURVATURE STRAIN RATE

CALL WRITECMD(3, K + 11, RD$() ‘3 CURVATURE STRAN

CALL WRITECMO(6, 2 * K + 14, FiD$() '3 TOP SURFACE STRESS CURVES
‘3 BOTTOM SURFACE STRESS CURVES

SPF$ = SUBDIRS + PREFIXS + INFNUMS + °.SPF"
PRINT #1, 'W° ‘COMMENT

PRINT #1, “RESET 1,7°

PRINT #1, SPF$

PRINT 1. “W"

PRINT 11, °E°

PRNT#1,°C"  ‘EOP
PRINT #1,"SAVE"  "SAVE *.SPF
PRINT #1, SPF$
PRINT #1, "PLOTIT,1,” ‘CREATE *.PIC
PRINT /1. SUBDIRS + PREFIXS + INFNUM3 + “PIC
PRINT #1, SPF$
PRINT £1, “PLOT"
PRINT #1, SPF$
PRINT £1, *%"
CLOSE 1

ENOD SUB
SUB PRNTPARM (K. P$, PARMO)

PRINT #2. P$ + ° PARAMETERS:*

PRINT #2, “LAYER DIR";

FOR W = 1 TO UBOUND(PARM. 3)
PRINT #2, TAB(14 « (- 1) *SL I;

NEXT

PRINT #2,

FORJ = 170K
PRINT #2. J;
FORI=1T03
DIR=11°LF|=3THENOR = 12
PRINT #2, TABS). DIR:
FOR W = 1 TO UBOUND(PARM, 3) STEP 2
PRINT #2, TAB(11 + (- 1) ® Sk USING “#.4#"~~*"; PARMU, | W)
NEXT W
PRINT #2,
FOR N = 2 TO UBOUND(PARM, 3) STEP 2
PRINT #2, TAB(18 + (W - 2) * 5k USING “#.4#"~"“"; PARMU, L lI)
NEXT K
PRINT #2,
NEXT |
NEXT J

END SUB

SUB QTRAFORM (Q), ANGLE, QXY()

FOM = UBOUND(Q 1)
SOM - UBOUNDIQ. 2)
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IF FOM < > UBOUND(QXY, 1) THEN CALL ERRLOCTN("1 IN TRANSFORM")
IF SOM < > UBOUND(QXY, 2) THEN CALL ERRLOCTN("2 IN TRANSFORM")

THETA = ANGLE / 180 * 3.1415926544
C = COS(THETA)

S = SINTHETA)

CS=C*S

C2-C°C

S2-8°S$

IF SOM = 3 THEN
C3=C2°C -
C4-C3°C
S-82°8
S4-83°8
€252 - C2° 82
TC282 - 2 * €282
FC252 - 4 * C282
C3s=C3°S
(8-C*S

Qxv(1, 1) = i1, 1)° C4 + 02, 2) * 84 + Qi1, 2) * TC2S2 + O, 3) * FC282

QXY(2.2) = Qi1, 1) ° $4 + O2, 2) * C4 + Q{1, 2) * TC282 + O, 3) * FC282

axY(1,2) = 1, 1)° €252 + Q2. 2) * C282 + (1, 2) * (C4 + S4) + O3, 3) * FL2S2
axv3, 3) - Q1. 1)° €252 + 042, 2) * C282 + (1, 2) * -2 * €282 + O3, 3) * (C2 - S2) * (C2 - 82
xXYi1, 3« Q1. N°C3S +» 02.2)° €SI +» (1,2)* (CSI-CI9) + AR, 3N * 2 ° (CSI - C38)
QXY(2.3) = Oi1, 1) °CS3 » 042, 2) * €IS + (A1, 2)° (C3S-CSI) + 03, 3 * 2 ° (CIS - CA)
axy, 1) = axv(1, 2)

axv3, 1 = axv(1, 3)

axYR3, 2) = AXY12, 3

ELSEIF SOM = 1 THEN
OMT(1TO3,1TO3)L TX1TOJ, 1703

T, 1 =C2
Ti2,.2) = €2
T, 2) = 82
T2, 1) = 82
T3, 1= €S
T3,2) = CS
TLyHe=2°CS
T23=-2°CS
13,3 = C2-82

CALL MATRINVST(), TK)
CALL MATRMULT(TI), Q4L GXY(0)
QXv[3, 1) = QXY3, 1) ° 2
ELSE
CALL ERRLOCTN("3 IN Tranferm®)
ENO IF

END SUB
FUNCTION RELXMODU (TYPES, MS, RMV, KS, RKV, T)

‘IF RMV = 0 THEN FREE OF MAXWELL DASHPOT
‘IF RKV = 0 THEN FREE OF KELVIN ELEMENT

SELECT CASE TYPES
CASE "KM"
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UK = KS * RKV
UM = MS ° RMV
Bl = UK + MS * RKV + UM
Cl= UK * UM
P1=5°Bl+@BI"“2-4°C)" 5)
P2-5°®BI-BI“2-4°Ch" 5)
IF P11 = P12 AND P11 = 0 THEN
RELXMOOU = 1
ELSEIF P11 = P12 THEN
RELXMODU = EXP{-PI1 ° T)
ELSE
A = (P11 -UK)/ (P11 - P12)
B8 = (UK - P12)/ (P11 - P12)
RELXMODU = A EXP(PI1°T) + B EXP(-PR2° T)
END IF
CASE “W°
UM = MS ° RMV
RELXMODU = EXP(-UM °* T)
CASE °K§*
A= KS/MS + KS)
B = MS/MS + KS)
CeMS+KS)*RKV°T
RELXMODU = A + B * EXPI-C)
CASE ELSE
CALL ERRLOCTN("1 IN RELXMODU")
END SELECT

END FUNCTION
SUB SCRNPLOT (. NUM. A.8.C.0.E. P

CSX=500/A°B
CSY-100/C°0
SELECT CASE M
CASE 1
STYLE = &HFFFF
CASE 2
STVLE = &HCCCC
CASE 3
STNLE - &Hi8888
END SELECT
LINE (€. FHCSX, CSY), NUM. , STVLE
E = CSX
F = CSY

ENO SUB
SUB SPLINCUB (X(l. Y0, COF)

D = UBOUNDIX. 1)

IFD < > UBOUND(Y, 1)OR (D /3) * 4 < > UBOUNDI(COF, 1) OR UBOUND(COF, 2) < > 1 THEN
. CALL ERRLOCTN("1 IN SPLINCUB")

END IF

OMXX(1TOD/3)°4.1TODII* 4

DMXXKITOD/3*4.1TODII* 4

OMYY1TOMDI/3N 41T

FORI - 1T0(D/3)
XX(1 o« &°(1-1), 1 «4°(1-1) = XD XM X0
XXV« 401-1L,2+4°(-1)=XID° XD
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XX(1+4°0-1,3+4°(1-1) =X

XX+ 4°0-1),8+4°(-1) =}

XXQ2+4°0-1.1+4°0- 1) XO+N°XE+ X1+ 1)

X2+ 4°(-1,2+4°0-MaXOs 1) X0+ 1)

XX2+4°0-1,3+4°(1-MeXl+1)

XX2+4°(1-1.84+4°(1-1) =1

XX+ 4°0-1L1+4°0-MeXUe2°X0+2)*X(+2)

XX[3+4°01-1,2+4°(1-1M=XD+2°X(l+2)

XXQ+4°0-1,3+4°0-1)=X(l+2)

XXQ+4°(1-1),4+4°(1-1) =1

XX@+8°(-10«4°(1-1M=3°X1+2°X(1+2)

XX(h+4°(1-1,2+8°0-1M=2°X(l+2)

XX@+4°(1-1,3+4°0-1) =1

IF1 < D-1THEN
XX(4+4°0-1,5¢3°0-1)e3°XN+2)°X01 +2)
XXi4+4°0-1,8+3°(1-1)=-2°X1+2)
XX(4+4°(1-1,7¢3°0-1) =

END IF

Wl+d®0-NNaY1e0-1)

W2+4°0-0N=Y2+(-1)

W3+4°(-1NeY3«(-1)

YW4+4°(1-1,1)=0

NEXT |

CALL MATRINVSIXX(, XXK))
CALL MATRMULTIXX), YY0, COF()

END SUB
SUB SPLINQUD (X(, Y0, COF)

0 = UBOUND{X, 1)

IFD < > UBOUND(Y, 1) OR - 1) * 3 < > UBOUNDICOF, 1) OR UBOUNDI(COF, 2) < > 1 THEN
CALL ERRLOCTM("1 IN SPLINOUD")

END I

OMXX(1TOM-1*3,1TOMD-1)°3)

OMXXKITOMD-N*3,1TOM-1)°*3)

OMYY1TOD-1°3,1TO )

FORI= 170D -1
XX(V+3°0-1,1«3°0-1)) « X * XN
XX(V+3°0-1,2+3°0-1) = Xl
XX(1+3°01-1,3+3°(1-1) =1
XXQ2«3°0-01+3°0-MeXA+s)*X0+1)
XX2+3°0-1,2+3°0-M=X0+1)
XX(2+3°0-1,3«3°(1-1) =1
XX3+3°0-N1+3°0-Me2°X0+1)
XX@B+3°(1-1,2+3°0-1) =1
IFI < 0-1THEN
X3 +3°0-1.4+3°01-Me-2°X0+1)
XX@+3°0-1,5+3°0-1M=1

END ¥

W3- NeY1efi-1)

W2+3°(-1.0=Y2+0-1)

YY3«3°(1-1),1) =0 ‘1ST DIFFERENTIATION AT LAST POINT IS ZERO.

NEXT |

CALL MATRINVSIXX(), XX)))
CALL MATRMULT(XXH), YY(), COF{))
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ENO SUB
SUB STFHNMS! (I, P, K, DLT)

OMRR(1 TO 3)

DM Y(1T03, 1T03), YINT(1TO3,1T0J)
OMEXPINT(1TO3, 170 1), YEXP(1 T3, 1TO 1)
OMEPI1TO3 1TO 1L KP(1TO3, 1TO )

DMYE1TO3 1T01), YKI1TOJ 1TOLYHITO3, 170 1)
DM ABBOEKP{1 TO 6, 1 TO 1), EKP(1 TO 6, 1 TO 1)

IFP > 0AND | < = P THEN
FORIN=1T06
EKP(M, 1) = EKPP{I - 1, I ‘PREVIOUS STRAIN RATES
NEXT )l
FORN=1T03
EP{N, 1) = EXP(R, 1)
KP(H, 1) = EKP(N + 3, 1)
NEXT N
ENO ¥

IFP = 0AND | = 0 THEN
RPLT « 0
RPLEXP « 0
RPUMC = 1
ELSE
RPLT = (RSUMIP) - RSUMNI - 1)) ° DLT
RPLEXP = |- 1
RPLMC = |
ENO IF

FORJ = 1TOK
FORN=1T03
IFRPLT < > 0 THEN
IF TYPES <> “S°THEN VISCOELASTIC
IF FLAGSW, 1) = "E° THEN
RAMD = 1
ELSEIF FLAGSW, M = “N° THEN
RR(MN = 1 ‘SHEAR RELAXATION MODULUS YET TO BE DEFINED.
ELSEIF FLAG$W, H) = “V" THEN
RRN) = RELXMODUW(TYPES, MSMC(P, J, N}, RMV(L J, W), KSP, J, W, RKV(P, J, N}, RPLT)
END IF
ELSE ‘COMPLETE ELASTIC
RRM = 1
ENO IF
ELSEIF RPLT = 0 THEN ‘AT T=0 RELAXATION MODULUS DEGENERATES TO MOE.
RR() = 1
END IF
NEXT U
V21 = (RR(2) * MSMCIL, J. 2))/ (RR(1) * MSMC(L, J, 1)) * V124)
V121 « 1/{1-V12) * V21)
Y(1, 1) « MSMCI(L J, 1) * RR(1)/ V121
Y(1.2) = Y(1, 1) * (V21)
¥(1,3)=0
Y(2. 2) = MSMCIL, J. 2) * RR(2)/ V121
Y2, 1) = ¥(2,2) ¢ (V12()
Y2.3)-0
Y3, 10
Y3.21=0
Y13, 3) = MSMCIL, J, 3) © RR(3)
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CALL QTRAFORMKY(), ANGLELJ), YINT()
FORII=1T03
FORM = 1T03
YTRW, i, 1) = YINT(IL W)
NEXT I
EXPINT(IL 1) = EXPVALIRPLEXP, J, I 1)
NEXT Il .
CALL MATRMULTIYINT{), EXPINT(), YEXP()
DMC = (MC(RPLMC, J) - MC{RPLMC - 1, J)) | (RIRPLMC) * OLT)
FORN-1TO3
YH(L, 1) = YEXP(L, 1) * DMC
NEXT Il
IF| <=PANOP > 0 THEN ‘EXCLUDE 1ST RUN OF STFHNMS1 AT P=0
‘EXCLUDE FINAL ITERATION WHICH IS |=P+1
THE FINAL SUM WILL BE TAKEN IN MAINCOM1 SUBROUTINE.
CALL MATRMULT(YINT(), EP{), YE()
CALL MATRMULT(YINT(, KP{. YK0)
OR = 5°(R- 1)+ RM) ° DLT
FORH=1T03
YEJJ. N 1)« YEJJ, ML 1) + DR ° YEM, 1)
YJU. I 1) = YKJJ, 1L 1)+ DR ° YKIN, 1)
YHIJ, N 1) = YHJU, N, 1) « DR ° YL 1)
NEXT i
END IF :
HJT1 = HJE HI2 = HJT * HUT: HU3 « HU2 ° KUY
H1 = HJ - 1:H2 = HY ° H1:H3 = H2 * HY
FORN=1TO03
FORW-1T03
ABBO(L M) = ABBD(L N + YTRU, I WD ° HJ1 - HY)
ABBO(L I + 3) = ABBO(L W + 3) + YTRU, LMD ° 5 ° (W2 - H2)
ABBO(N + 3, WD = ABBO(L N + 3)
ABBO(N + 3,1 + 3) = ABBO(M + 3, M + 3) « YTRW, L. M) * (1/3) * (HJ3 - HI)
NEXT W
HNBAL 1) = HNMIOL 1) + (YHOL 1) © (HJ1 - H1))
HNMM + 3, 1) = HNMAM + 3, 1) « YHOL 1)° 5 * (WJ2 - H2)
NEXT N
NEXTJ

IFP > 0 THEN ‘EXCLUDE 1ST RUN OF STFHNMS! AT P=0
IFl <= PTHEN ‘EXCEPT FINAL ITERATION
CALL MATRMULT(ABBOA), EXP(, ABBOEKP()
RPLR = (R(1 - 1) + R / R(P)
FORN=-1T08
GRANG(L, 1) = GRAND(R, 1) + RPLR ° (HNM(, 1) - ABBDEKP, 1))
NEXT W
ELSE ‘BUT FINAL ITERATION
FORR=-1TOB
GRAND(M, 1) = GRAND(K, 1) + HNBAN, 1)
NEXT B
ENO ¥
ELSE
FORH=-1T08
GRAND(L 1) = HNBWILL 1)
NEXT H
ENO ¥

END SuB

SUB STRAFORM (SXY(), ANGLE. S12()
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THETA = ANGLE / 180 © 3.141582654#
C « COS(THETA)

S = SINTHETA)

CS=-C*S

C2-C*°C

S2-5°8

S12(1) = C2 * SXY(1) + 82 * SXY(2) + 2 * CS * SXY(3)
S12(2) = §2 * SXY(1) « C2 * SXY(2)-2 * CS * SXY(3)
S12(3) = -CS * SXY(1) + CS * SX¥(2) + (C2 - S2) * SXY(3)

END SuB
FUNCTION TIMESTRG$ (TVL)

H1$ = °0°
H28 = 0°
M1s = °0°
M2$ - °0°
S1s = °0°
S28 « °0°

IF TVL > = 36000 THEN
H1$ = LEFTWORD$(STR$((TVL | 36000)))
TVL = TVL MOD 36000

END IF

IF TVL > = 3600 THEN
H2$ « LEFTWORD$(STR$(TVL | 3600))
TVL = TVL MOD 3800

END IF

IF TVL > = 600 THEN
M1$ = LEFTWORD$(STR$(TVL | 800)
TVL = TVL MOD 600

ENO IF

IF TVL > = 60 THEN
M2$ = LEFTWORD$(STR$(TVL \ 80)
TVL = TVL MQD 60

END IF

IF TVL > = 10 THEN
S18 = LEFTWORDS(STR$(TVL | 10)
TVL « TVL MOD 10

END IF

§2¢% = LEFTWORD$(STR$(TVL))

TIMESTRGS = (H1$ + H2$ + " « M1$ +» M28 + °° + S1% + S28)

END FUNCTION

FUNCTION TIMEVALU (TS$)

H1$ = LEFT$(TSS, 1. TS$ = RIGHTS(TSS, LEMTSS) - 1)

H2$ = LEFT$(TSS, 1% TS$ = RIGHTS$(TS$, LENTSS) - 2)

M1$ = LEFT$(TSS, 1): TS$ = RIGHTS$(TSS, LEN(TSS) - 1)

M2$ « LEFT4(TSS, 1): TS$ = RIGHTS(TSS, LEN(TSS) - 2)

S1¢ « LEFT$(TS$, 1): S28 = RIGHTS(TSS, 1)

TIMEVALU = VAL(H1$)* 10 * 60 * 60 + VAL(H28) * 60 * 60 + VAL(M14) ® 10 * 60 + VALIM2$) * 60 + VAL(S1$) * 10 + VAL(S2$)

END FUNCTION
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SUB WRITECMD (NUM, RANK. NAMES()

IF RANK = 0 THEN
X=1

ELSE
Xe2

ENO IF

FORN = 1TOX
PRINT N1, °C*
NEXT I
PRINT #1, “"W°
FOR 1l = 1 TO NUM
PRINT #1, "RESET * + STR$(N) + °,14° NUM CURVES
PRINT #1, “C:VPTIDROUTPUT\" + PREFIXS + INFNUMS + 71" + NAMES(RANK + ) + ° SDF°
NEXT W
PRINT 11, 'W°
PRNT N, °t"

END SUB
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