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ABSTRACT

ANALYSIS or TOOL SCHEDULING STRATEGIES IN A

STOCI-IASTIC ENVIRONMENT WITH A FINITE

LIFE RESOURCE

By

Steven B. Lyman

Tooling has become a growing concern in most manufacturing environments.

This is most apparent in environments which have eliminated inventory and capacity

buffers which hide problems. Tooling is often the main determinate of Shop floor

capacity and performance. The recognition of tooling as a finite life resource has

brought about this research which involves tool control.

While there is an extensive body of research which examines machine and

labor resources, neither emulate tooling. Past dual resources constraint (DRC)

research examines only machine and labor as infinite life resources. The unique

nature of tooling necessitates the need for control and scheduling procedures which

considers these differences. Specifically, the unique traits of tooling are, machine

Specific because of size, finite life, and can be refurbished (maintenance).

The purpose of this research is to examine how a finite life resource, which

has maintenance performed intermittently, should be controlled. How should a DRC

flow Shop, with a finite life resource, be controlled when both tool life and

maintenance time are characterized by a stochastic distribution ill be addressed. The

DRC model used in this Simulation research attempts to answer this question by

examining the scheduling of jobs and control of tools.





Output from this model was analyzed using ANOVA and Tukey multiple

comparisons. The analysis found that tool control was the dominate factor in

determining Shop performance, followed by job scheduling. How tools were

controlled, via maintenance, determined tool availability which influenced Shop

performance. Those tool rules which promoted frequent preventive maintenance over

that of corrective maintenance enhanced performance.

As for job scheduling, job priority rules (dispatching) were most influential

on due date performance measures. Job priority rules which prioritized by sequence

dependency over considering all job due dates performed worse. While this result

contradicts past research, it can be attributed to the finite life of tooling.
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CHAPTER 1

INTRODUCTION AND PROBLEM STATEMENT

1.1 INTRODUCTION

Control systems such as Just-In—Time (JIT) and Computer Integrated

Manufacturing (CIM) have eliminated buffers in manufacturing environments,

including work in process and excess capacity. With fewer buffers, tooling has a

greater effect on production performance (Mason, 1986) such as delay order

processing. Tooling has become a major issue in most manufacturing environments.

In a Flexible Manufacturing System (FMS) for example, machining center

flexibility is determined by the number of different tools in the storage magazine

(Gray, Seidmann and Stecke, 1986). FMS tooling is a critical resource that needs

special control procedures (Gruver and Senninger, 1990).

In the automotive industry (Vasilash, 1990) and in other‘repetitive

manufacturing environments, the concern over tooling centers on costs. As much as

20 percent of a firm’s material costs (Erhom, 1983) can be attributed to tooling. In

the case of FMS, an estimated 25 to 30 percent of fixed and variable costs are due

to tooling (Kouvelis, 1991). Annual costs for various forms of tooling can exceed

$1 Million for small firms and $100 million for large firms (Huber, 1989). The

US. metalworking industry spends an estimated $1.5 billion a year on cutting tools

alone (Mason, 1991). As firms strive to utilize assets more effectively, tooling

issues take on greater importance. Idle or unused resources are a drain on assets
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2

and profits. Effective tooling asset management requires the right tool at the right

machine. Without adequate control, machines and workers are idle, and schedules

and delivery dates are missed (Kupferberg, 1986).

As the study of shop floor control focuses more on tooling its effect on

performance becomes apparent, particularly with respect tO capacity (Kupferberg,

1986; Blackburn, 1989). Tooling is Often the main determinant of Shop floor

capacity. Up to 16 percent of production schedules (Mason, 1991) may be missed

because of such problems as insufficient tool life, lost tools, and tool failure.

The importance of tooling was also confirmed during two separate

interviews. In the first case, an automotive parts supplier was in the process Of

developing a fully integrated automated tool control system to monitor all forms of

tooling. The tool control system will be a key component in a new production plant

beginning operation soon. The supplier had decided to invest in the new system for

three reasons.

First, to satisfy customer due date (delivery dates). In the past, the supplier

had not monitored tool wear and maintenance, resulting in unscheduled down time

and missed delivery dates. With the adoption of HT by the supplier’s customers,

lost capacity due to tooling can no longer be tolerated.

Second, some customers believe that properly maintained tools can provide a

better quality product. Research has shown that well-maintained tools not only yield

higher quality products but also ensure reliable capacity (Finch and Gilbert, 1986).

Since the supplier had no record of scheduled maintenance, the customer questioned
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whether the supplier was capable of maintaining quality tolerances for products.

Third, the supplier estimated that each plant operation had up tO $25 million

in obsolete or unusable tools stored throughout the plants. Another cost factor

involved buffers, as noted earlier. When the supplier moved to reduce inventory

cost by lowering work in process and excess tooling, it became apparent that

controls were necessary to plan tooling use and maintenance. It also became

apparent that the scheduling of tooling for production was a function of required

maintenance and differs from the traditional procedures used for machines and

equipment. The variability of tool types 030th cutting and forming) contributed to

uncertainty, and the supplier had to reevaluate and develop new policies for

controlling tools.

In the second case, the researcher interviewed a firm supplying consumer

products and discovered similar problems. The manager had adopted modular tools

to cut tooling cost, up to 40 percent. The modular tools allowed the firm to make

variations of its products using the same tool by inserting or moving sections on the

tool. The new tools increased flexibility, but reduced tool life and increased

required maintenance. This in turn, caused problems in tool availability and

production scheduling. New policies had to be adopted to control for those

contingencies.

As these cases illustrate, tooling is a constraining resource long overlooked

by production managers. With the adoption of HT and other new approaches, it has

become apparent that tooling is a key component of manufacturing that companies



no longer can afford to ignore.

1.2 DESCRIPTION OF TOOLING ENVIRONMENT

Briefly, tooling is composed of a variety Of items which include: jigs,

fixtures, forms, dies, cutting tools, gauges, molds, templates, and more (Broom,

1967). Figure 1-1 Shows the various forms Of tooling. There are production and
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non-production tools, differentiated by the fact that production tools are those used

to shape or alter the product directly.

Table 1-1 compares different tool types on a number of dimensions. For

example, costs for a standard cutting tool (drills) are low, specialized cutting tools

(multi-bit mill) are moderate (up to $10,000), and costs for dies are high ($100,000
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and up). It should be noted that a number of the dimensions are interrelated such as

replacement frequency and life Of tool.

Table 1-1 Comparative Rating Of Tooling Issues by Tool Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tool Type

Standard Special Stamping Injection

Tooling Issues Cutting Cutting Dies Dies

Costs per Tool Low Moderate High High

Purchasing Lead Time Low Low High High

Tool Standardization High Moderate Low Low

Life of Tool Low High High High

Breakage Probability High Moderate Moderate Moderate

Breakage Cost ' Low Low High High

Maintenance Frequency High High Moderate Moderate

Maintenance Lead Time Low Low Moderate Moderate

Replacement Frequency High Moderate Low Low

Replacement Lead Time Low Low High High

Speed Variability High High Low Low

Scheduling Difficulty Low Low High High

Duplicates Likely High Moderate Low Low

Batch Run Length Low Low High High      
As can be seen in Figure 1-1, production tools fall into two categories,

cutting or forming and it is this latter category which is of interest in this research.

Forming tools have two important features: cost and uniqueness. It is not

uncommon for forming tools to cost as much as the machine on which it is used

(Brown, Geoffrion and Bradley, 1981), in excess Of $1 million and for that reason
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multiple tool copies are rare. The single tool COpy places a capacity constraint on

the jobs produced and is especially apparent when the tOOl requires maintenance.

When a forming tool breaks or needs service, it is pulled for repair, and unlike

cutting tools, can not be easily replaced with a new copy.

1.2-119mm

A major variable in the production environment is tool life. Tool life is

defined as: the period between placing a tool into production and removing it from

service because it no longer yields a quality (usable) product. Once the tool fails to

make a quality part, it must be refurbished or repaired. Obviously, tool life is

directly related to control and scheduling Of both production and maintenance.

A unique difference between cutting and forming tools is that the latter are

not discarded until a model change makes them Obsolete. Depending on their

classification, forming tools generally do not wear out permanently. The

classification of forming tools found in the Tool Engineers Handbook (1949) is

shown in Table 1-2. This research centers on the type A classification.

During the life of a forming tool there may be several refurbishment or

maintenance operations. In this research, tool life is defined as the period between

placing a tool into production and removing it from service for maintenance. Tool

life is a finite life resource because there will be periods when the tool is

unavailable for production. The fact that tools are not always available for

production and the subsequent impact on capacity has been noted by researchers
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(Blackburn, 1989; Kupferberg, 1986).

Table 1-2 Forming Tool Classifications.

 

Class Description of Classification
 

A Best type and grade of materials used for long life. Designed for high

volume production and for ease of maintenance.
 

B Applicable for medium production quantities. Designed tO last for total

production run only. Less consideration given to ease of maintenance.
 

C Cheapest useable tools for low volume production. Limited life with

little or no maintenance done on tool.

 

Temporary Used for limited production runs typically found in job shops. Lowest

cost tool that can produce the part.

Source: 'Iool Engineers HandFOOF, 19:9

      

1.2-2mm

Tooling differs from other production resources because tools: (1) are

specific to machines and jobs, (2) have'a finite life, and (3) are renewable (Melnyk,

Ghosh and Ragatz, 1989). Some of these traits were mentioned previously, and are

now described in detail.

1) Specificity: Tools usually are used on a designated machine because of size

or configuration. Frequently, the machine is the only resource capable of using the

tool for production. Use on a designated machine also simplifies shop floor control,

as the tool may be too large to transport, and use at one location Simplifies the flow

of production. Compared to cutting tools forming tools tend to be more machine

specific.

Another aspect of specificity involves the specific tasks of each job or order.

Cutting tools usually are flexible, that is, different types such as reamers and mills
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can perform the same production task (Slack, 1987). In reality, this flexibility is

limited because job’s require certain production tasks by certain tools. The

advantage of cutting tools are that multiple tool copies exist for each tool type. The

tooling requirements of a given job may be fulfilled by any copy of a specific tool

type. With forming tools, there exists only one copy of each tool, and it is designed

for a particular product or job.

Thus, forming tools are both machine and job specific. A tool is used on one

machine and is used to process a single job type. Introducing machine-specific

tooling is a unique approach to production Simulation.

2) Finite Life: Recall that tool life is defined as the period during which the

tool yields a usable product (from placement into production until removal for

maintenance). Various measures for defining tool life include number of hours of

operation, number of jobs processed, or number of tool hits (McCall, 1965;

Gillimore and Penlesky, 1988). Finite life means that the tool is a resource which

may not always be available. Past research with either machine, labor, or a

combination of the two assumes that tools will always be available (Nelson, 1967;

Fryer, 1974; Treleven and Elvers, 1985). The worker or machine does not wear out

and is assumed to have a infinite life, whereas finite life tooling must be removed at

the end of its life. When the tool fails to produce a usable product or reaches a

point at which the risk of failure is high, it must be serviced. The removal for

maintenance differentiates the tooling resource from the labor resource. It does,

however, make tooling life Similar to machine breakdown.
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3) Renewal: The frequency and duration of tool renewal varies with tool type.

Cutting tools have a relatively shorter tool life and tend to require renewal more

often than forming tools. The renewal processes for cutting tools involves

Sharpening which is usually short in duration (McCall, 1965). Due to forming tools

Size and intricacy, renewal maintenance requires more time which complicates

production scheduling.

The renewal process involves either preventive or corrective maintenance

(Pierskalla and Voelker, 1976). Corrective Maintenance (CM) takes place when a

tool fails, (i.e. when it breaks or no longer yields quality products). Preventive

Maintenance (PM) occurs before tool failure. AS the frequency of PM is increased,

the frequency of CM decreases as Shown in Figure l-2a. The figure indicates a

linear relationship, but a nonlinear shape is possible.

PM is less costly and shorter in duration than CM (Sherif and Smith, 1981).

It has been found that PM helps provide quality outputs at a lower operating cost

than CM (Sutton, 1983). Figure l-2b illustrates maintenance costs (PM plus CM)

versus the costs of breakdown and associated penalties (Newman, 1985; Gallimore

and Penlesky, 1988). As the level of maintenance increases, total costs decrease via

lower failure costs. For each dollar invested in maintenance, failure costs drop by a

greater amount up to a point when it is no longer advantageous to invest in

additional maintenance. The intersection of the maintenance and failure cost curve

is the point of lowest costs. Past the intersection, the costs and time consumed by

maintenance exceed the benefits of reduced failure cost and down time. The
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Figure 1-2a Comparison of Maintenance

Policies and Frequency of Occurrence
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marginal benefit of maintenance at this point is zero or negative.

1.3 PROBLEM STATEMENT

The research question which will be answered is: How do you effectively

manage operations in a dual resource constraint shop where the tooling

constraint has a finite life and where resource life and resource renewal are

described using stochastic distribution? Tooling has traditionally been viewed aS

a component of a machine. Machine specific issues examined in the past have

assumed that results are applicable to both tool and machine. Some researchers and

practitioners have come to realize that tools and machines are separate resources

(Brown et a1., 1981; Gray et a1., 1989). Therefore, this research examines tooling

as a scout; mg! constrained resource in addition to the machine resource. Given

that tools and machines are separate resources, methods to control each resource

must be developed to enhance production Shop performance. The model adopted

here is a variation of previous work conducted in a dual resource constraint (DRC)

job shop (Melnyk et a1., 1989). A DRC job shop has two limited resources which

influences its output. In this research, both tooling and machines must be available

in order to process a job. This work also focuses on forming tools and the unique

nature which affects the control procedures needed in the shop. The scheduling

heuristic developed here will attempt to provide good (not optimal) performance,

given the tooling attributes that cause system variance. It has been Shown that Shop

performance can be improved by reducing components of variance within the
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system (Melnyk, Denzler and Fredendall, 1992). One component of system variance

is whether tooling is available when needed and whether the tool has sufficient life

to process the job in its entirety. The other component of system variance is the

time required to repair tools. The two forms of system variance will be modeled

using stochastic distribution which emulates the real world environment.

With this in mind, more specific questions can be developed. The following

are some of the questions from which hypotheses will follow.

1.3.1 How do wo ghg‘oolo jobs?

The objective of scheduling is to move jobs through the shop as quickly as

possible. At issue is how to process jobs when each Stage of the operation requires

two resources, machine and tool. Since jobs are both machine and tool specific, if

either one of these limited resources is unavailable, the job must remain in queue

until both resources are free. Figure l-3a illustrates the scheduling process. Job

scheduling must consider machine condition (availability and setup), jobs in queue,

and tool condition (availability and life). The rank order of jobs in the queue is

based on priority, which is determined by four factors:

Job Priority = f(Job Traits, Job Interrelationship,

Tool Condition, Shop Condition).

The question of how to schedule jobs, focuses on issues related to the job

with the highest priority. The determination of priority depends on certain

conditions and types of information. The following discussion looks at each of the
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four factors which determines priority.

Job traits refer to attributes specific to each job, such as job arrival,

processing time, or job due date (Blackstone, Phillips and Hogg, 1983). The

information is used in setting priorities for dispatching rules, which have been

shown to improve Shop performance (Conway, Maxwell and Miller, 1967). After

several interviews with manufacturing companies, this researcher determined that

due date dispatching rules are the predominant selection criterion. This held true

whether sequence dependency was present or not.

Job interrelationship refers to traits common to a number of jobs in queue.

The interrelationship of interest in this study is sequence dependency, that is, jobs

requiring the setup (or tool) currently on a machine. The objective of sequence

dependent job processing is to reduce the amount of time consumed by setup/tool

changes. Jobs requiring the same setup/tool will be given higher priority.

Tool condition information help determine job priority on the basis of tool

life and risk of tool failure. The issue involves tradeoffs between tool condition and

job processing. Should a job be processed if the risk of tool failure is very high? If

the processing time for a job exceeds the tool’s estimated usable life (before

maintenance), should it be processed? If so, under what criteria? The tradeoff

involves whether to start processing the job with the possibility of delivering the job

on time versus the risk of tool failure, causing added maintenance time and missed

delivery. The consideration of tool condition in establishing job priority has not

been addressed in the literature.
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Figure 1-3a Information Flows Involved

in Job Selection: Basic Model
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Figure 1-3b Information Involved in

Job Selection: Decision Flow
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Shop condition refers to the status of the shop floor when determining

priority. The idea is to examine the total shop condition before releasing work to

the floor. Order Review Release (ORR) has been found to be beneficial to Shop

performance by leveling work load (Melnyk and Ragatz, 1989). The use of

information for determining due dates has been examined by Bertrand (1983) and

Baker (1984).

Figure 1-3b shows the decision process in setting job priority and selection.

The exact sequence of decision can vary, but for the purposes of this model

decisions will be made according to Figure 1—3b.

1.3.2 How oo wo Soheoolo tools for orgioction go maintenance?

This two part question is combined because the elements of production and

maintenance are interrelated. Both production and maintenance requirements

determine tool usage. More specifically, when to put a tool into production and

when to pull it out. Four factors influence tool usage:

Tool Usage = f(Tool Condition, Demand for Tool, Demand

for Other Tools, Maintenance Activity).

Tool condition determines whether a tool can continue in production. The

tool is either usable or not. If not usable, it is then classified as a tool failure. A

usable tool goes through different stages of life but by definition is still capable of

processing jobs. The issue is whether there is sufficient life on the tool to process a

job.



Der:

high prom:

term in u

occurs (job:

Ber

11 other H

different it:

mmou

agfiiist 1.5

aCCQUm a



16

Demand for tool refers to sequence dependency, that iS, whether there is a

high priority job in queue that requires the tool currently on a machine. A tool will

remain in use as long as there are jobs that require it, except when truncation

occurs (jobs of higher priority are placed in queue).

Demand for other tools arise when truncation requires a different tool setup.

In other words, production of one item Stops temporarily in order to produce a

different item and a tool change takes place. Tool usage in this case is based on

priority as compared to simple demand.

Maintenance activity relates to and uses information about tool condition. If

a tool fails and needs CM, then tool usage is terminated and the tool is sent for

servicing. Termination also occurs during PM. Pulling a tool from production for

PM is a cloudy issue. Strict PM policies dictate that maintenance occurs at a

specified time for a given tool, whereas less restrictive PM policies consider other

factors, such as demand or job priority. 1

Maintenance activity also affects tool usage if the maintenance queue is long,

which reduces tool availability for production. In PM scheduling, managers must

decide whether to pull a tool before its specified time if the maintenance queue is

short. That is, managers must weigh the advantages of a Short servicing period

against the disadvantages of unplanned downtime. The decision also must take into

account any other tools slated for PM.

1.3.3 How oxs vao'ation in tosouroe lifo and ronewal affgt the soheooling god
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assignmont ogisions?

System variation effects shop performance. Variation can be viewed in two

different ways: type of distribution (gamma, log-normal, etc.) and degree of

variation. The focus of this research will be on the degree Of variation on tool life

and maintenance service time. This will be accomplished by testing different levels

of variance for the specific distributions mean value both for tool life and

maintenance service time. The question of how job scheduling and tool control

heuristics perform under different conditions can be examined. The objective of this

question involves the robustness of control heuristic under different environmental

test conditions. It is not the objective to find an Optimal solution or Single best

heuristic. Certain heuristic performance may deteriorate faster or Slower with either

tool life or maintenance variance or their combination. Table 1—3 illustrates the

levels of variance that each heuristic will be subjected to. The goal in testing

heuristic robustness is to develop a framework for tool control.

Table 1-3 Relationship of Tool-Maintenance Variance
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relevant to this research. More specific questions will examine how control

procedures compare under different conditions of variability. In particular,

1. Does additional information used when setting job priority for

scheduling affect shop performance?

2. Does preventive maintenance enhance Shop performance over

corrective maintenance?

3. How does various preventive maintenance policies influence shop

performance.

4. Does variance in tool life and maintenance time affect the

relative performance of different job priority and tool control

heuristics.

1.4 RESEARCH METHODOLOGY

The SIMAN 3.5 simulation package is used to model a flow Shop

environment with additional subroutines written in Fortran (Pegden, 1987). This

method is necessary because of the inability to control conditions in a real

production Shop. An analytical model would not provide the necessary complexity

required to simulate a DRC Shop (Nelson, 1966; Treleven, 1989).

The experimental factors to be examined in Chapter 4, are:

- Job Priority Rules

- Tool Control Policies

- Distribution Variance for Tool Life
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- Distribution Variance for Maintenance Service Time

The research is organized into three phases. Phase one involves model

development of control rules and policies, based on interviews with several

manufacturing firms. Phase two validates and verifies the simulation model. The

run length and batch size will also be determined to assure independence and

normality at this time. Phase three involves full factorial design for the experiment,

including data collection and analysis for the performance measures.

1.5 RESEARCH CONTRIBUTION

This research examines an area that has received little attention. The model

developed extends past work in the DRC shop and on maintenance scheduling by

adding tool control. The model explicitly considers tool life and its variability in the

shop environment, an effect not previously explored.

Several researchers have pointed to gaps in the literature. Melnyk et a1.

(1989) described aspects of tooling that are ripe for research, including the need for

additional tool assignment rules and an analysis of tooling in a detailed shop

environment. Ghosh, Melnyk and Ragatz (1991) point to the need to examine

different tool traits, such as tool life. Browne, Boon and Davis (1981) emphasized

the need to consider availability of tooling, among other resources, in developing

scheduling rules. They found no research in the area of shop scheduling with a

tooling resource.

In Figure 1-4, the Shaded area of the diagram represents the least studied
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issues. Except for a few articles, research on tooling in the DRC shop model is

insufficient. Only recently has the combined issue of FMS and tooling received

much attention. Reasons for the FMS-tooling interest is the need to increase

equipment utilization due to the expense of such an environment. Another reason

for the interest lies in the adoption of JIT and waste elimination. As stated

previously, when waste is curtailed, the effect of tooling becomes much more

prominent.

 

Figure 1-4 Spheres Of Research Focus
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1.6 ORGANIZATION OF THE DISSERTATION

Chapter 2 examines past research, in particular the literature on tooling and

the issues unique to this resource. Reviewed are articles on tool life, scheduling of
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tooling in FMS and job shop environments, and the effect of tooling on Shop

performance. Also examined is similarities to other DRC research such as labor in

a DRC Shop.

Chapter 3 presents a conceptual framework for tool management. An

understanding of how tooling fits into production planning and shop floor control

establishes a foundation for this research. Chapter 4 and 5 lays out the model in

detail, including the hypotheses to be tested, the methodology, and the techniques

used in testing the research hypotheses. This includes determining whether the data

meets the required assumptions of various statistical techniques.

Chapter 6 presents the experimental results. This includes all statistical tests

followed by a discussion of the results. The last part of chapter 6 point to future

research directions and answers the questions developed in chapter 1.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 INTRODUCTION

The issue of tool control received little attention until such methods as J IT

began to eliminate buffers. The two buffers most relevant to tooling are inventory

and capacity. Excess tooling is both a form of higher inventory cost and an unused

capacity resource. With the increase in automation, the cost of under-utilization

increases (Mason, 1991), as is evident in FMS. If tooling is unavailable, automated

equipment cannot be used efficiently. Cost is another factor, as tooling can account

for up to 30 percent of FMS cost. Several articles have pointed to the need to bring

tooling into the mainstream of production control and research (Browne et al.,1981;

and Melnyk et al, 1989).

This chapter focuses on the major tooling issues, including characteristics

common to tooling and control. Recent studies address how tooling affects not just a

single operation, but the whole shop. Gray et a1. (1990) suggest the need to view

tooling in a broader perspective because of its effect on FMS. Gray et a1. (1990)

propose a hierarchy ranging from tool-specific issues to the interrelationships of

tools, scheduling, and system development.

The literature reviewed in this chapter addresses issues involving

maintenance, sequence dependence, and DRC job Shops. Much of this research

lends credence to the values selected for parameters in this study and helps

22



ntersmd 2'1

DRC 00 Silt

resoxees. l

oder st hat

ll TOOL

Figure 1.1,

fillings, Chg“

Clam11$. aut.

Cil‘JIES. and

“it“ prod

1131‘; format.

The:

three are us

071113? 162117;

mafillne (01

01 setup .100

Dies



23

understand how control procedures were derived. In examining the literature on

DRC job Shops, parallels and contrasts will be drawn between labor and tooling

resources. This will assist in understanding how tooling control was developed and

under what conditions.

2.2 TOOLING CHARACTERISTICS

2.2.1 Mao:

The varieties of tooling and their applications were summarized previously in

Figure 1-1, but was not all inclusive. According to Bloom (1967), tooling includes:

fittings, chucks, micrometer rules, patterns, models, template setup tools, spring

clamps, automatic ejectors, magazine feeders, steps and guides, slides, gauges,

chutes, and tool Sharpeners. These are just some of the different tools that are part

of any production shop. The main components of tooling are those used in the direct

transformation process, such as cutting tools, dies, and forms. The most common

forms of tools are defined below.

There are power tools, hand tools, cutting tools, and setup tools. The first

three are used to remove material from a product (chip removal). Examples are:

drills, reamers, rasps, mill cutters, and grinders. Setup tools are used to prepare a

machine (or power tool) for production. There are innumerable types and varieties

of setup tools.

Dies - are metal patterned blocks that shape material through a Stamping or

vacuum process. Stamping dies typically are used to form metal parts and may
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involve a punching or cutting operation. Vacuum dies are used to draw flexible

materials such as heated plastics over the die’s pattern.

Molds - Similar to dies, are used in forming a product. Injection molding

forces molten plastic into molds with a specific pattern. Once the cavity within the

mold is filled, the mold is cooled and the plastic solidified making the part(s).

Gauges - are used to measure some aspect of a manufactured part. Gauges

are a common component of quality inspections. Gauges are used to determine

whether parts meet tolerances.

Fixtures - are used to hold parts on a machine during processing.

Jigs — are used to hold and guide tools during the cutting/processing of a part.

Deis (1983) defines tooling as specific to a particular task. He suggests the

same basic breakdown of tooling types and goes further to define tools as either

special or general in their applications. The specialization or generalization of a tool

is based on the breadth of the tools application. For example, Special purpose tools

are used for a specific task or order, whereas general application tools are more

flexible in how, where, and on what it is used.

2.2.2 Tml Lifo

2.2.2.1m

A tool can be kept in production so long as it is capable of making parts that

meet quality standards, a functional view first expressed by Taylor (1907). Tool life

is related to machining economics, which correlates processing speed with rate of
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tool wear. An increase in cutting speed shortens tool life. Cook (1967) elaborated on

this relationship by including cutting depth and temperature in the equation. As

cutting depth increases, tool wear increases, and tool life is shortened. Furthermore,

an increase in either cutting depth or speed raises the temperature, which can have a

major effect on tools. High temperatures make tools more brittle and cause them to

fail (break) more quickly. Cook also noted that tool vibration (chatter) affects tOOl

life. As chatter increases, tool life tends to decrease.

Cook (1973) defined several determinates (criteria) for the length of time the

tool remains in service. The first criteria, tool failure, consists of a fracture or

breakage which makes the tool incapable of cutting. The second criteria involves

dimensional tolerances. In this case, when a tool is no longer capable of maintaining

product quality, it is no longer used. A tool may not be able to maintain the

necessary tolerances long before it actually fails. The third criteria relates to the

product surface. If their are abnormalities on a product surface, faster tool wear and

shorter life may result.

Cook’s final criterion relates to economic concerns. If a tool can be

sharpened (reground), it may be advisable to remove it from production before it

fails. An estimated average cost per cutting edge can be developed to determine

what a tool’s life should be. Given all these variables, tool life is not an exact

science where predictions are accurate. Cook’s (1973) basic formula for tool life

includes several major variables.

T=AV‘Bt‘Cb‘D
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Where: T = tool life (min)

V = cutting speed (ft/min)

t = feed rate (in/rev)

b = depth of cut (in)

A,B,C,D = constants

This equation applies to cutting tools, about which there is extensive

research. No similar work has been done on tool life estimations for forming tools.

The reason lies in forming tools variation, complexity, and environment.

Based on Deis’s (1983) definition, forming tools are classified as special

purpose and tend to be complex. AS the number of cutting edges, angle of bends,

and number of parts (nuts and bolts) that compose a tool increases, the life of the

tool decreases (Deis, 1983). This is based on the notion that as the number and

complexity of parts on a product rise, so does the risk of product failure.

22.22W

Initial research used deterministic distribution to estimate the life of a tool.

Cook’s (1973) equation has a set of parameters representing the environmental

conditions encountered by a tool. The assumption is that if a cut is repeated under

identical conditions, then the exact same tool life will be obtained for each tool used

in that operation.

Fenton and Joseph (1979) argue that a deterministic tool life gives a distorted

view of machining economics. Optimal policies under this assumption do not hold
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true when stochastic tool life is used. Simulation results using stochastic tOOl life

distributions Show lower production and profits than with deterministic tool life

distribution. The stochastic distributions tested include: normal, uniform and

Weibull.

Bao (1980) studied multiple tool operations and drew the same conclusions as

Fenton and Joseph (1979). Bao’s research entailed having 2 - 6 tools operating at the

same time versus a single tool. The probability of work stoppage is greater with a

multi—tool operation because there are more tools that can fail. The operation is

controlled by the tool with the greatest wear rate. Using three different stochastic

distributions (log-normal, Weibull, and gamma) a dynamic programming model was

developed for determining tool replacement policy. The results Showed that the best

policy is to replace all tools when the first tool wears out.

Several articles have analyzed a metal cutting process with multiple tools

(Ramalingam, 1977; Ramalingam, Peng, and Watson et a1., 1978; Ramalingam and

Watson, 1978). The researchers found that tool failure was characterized by a

Weibull distribution when single tool failure occurred. A gamma distribution was

observed when multiple tool failure was presented, and a log-normal tool life was

possible under certain conditions.

The distributions observed for cutting tools also apply to forming tools. The

same distribution is also found in machine failure as between the two tool types

(Lie, Hwang, and Tillman, 1977).
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2.2.3 Tmling Economios

The economics of processing is determined by two factors, tool life and

speed. AS processing speed increases, production output rises resulting in additional

profit. Tool wear also increases, causing shorter tool life, frequent replacement, and

higher costs.

A number of articles have examined this relationship (Hitomi, 1976a, 1976b;

Levi and Rossetto, 1978; Rossetto and Levi, 1978; Ravignani, Zompi, and Levi,

1979; and Bon, 1980). An important component to these articles involve the

determination of tool life. The more variable (stochastic) the distributions selected,

the more frequent the need to replace tools and the lower the profit. When the

machining environment involves multiple tools simultaneously, the replacement

strategy worsens. The best policy is to replace all tools, when one fails. The benefit

of replacing all tools Simultaneously is that the total number of failures is reduced.

The drawback is that some tools are replaced before their entire processing life is

consumed.

2.2.4 Tooling Chmtog’stio Summm

Figure 2-1 provides a taxonomy of tooling characteristics. The first part of

this section defines the different types of tools and their basic functions (Bloom,

1967). Subsequent discussions centered on tool life. In particular, Cook (1973)

described how tool life is affected by the cutting environment which is composed of

cutting speed, depth, and temperature. Cook also developed a formula, based on
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Taylor’s (1907), for calculating tool life based on these three main components.

When analyzing tool life and machining, both deterministic and stochastic

distributions have been used to model tool life. Fenton and Joseph (1979) argued

that deterministic distributions give an unrealistic view of the cutting environment.

Using stochastic tool life distributions give lower cost performance values than

deterministic distributions. Proper distribution selection also plays an important role

when looking at the economics of processing. Tradeoffs must be made between

processing Speed and tool replacement costs (Levi and Rossetto, 1978). The faster

work is processed, the more frequent the need for tool replacement.

2.3 TOOL SCHEDULING

This section examines the broad set of literature which looks at the allocation

of tooling resources. The tool scheduling process varies depending on the

environment (FMS, DRC, or MRP) it is examined under. The variation can be

attributed to Shop layout and its associated hardware. An element common to all

environments is that of tool characteristics, such as tool life.

2.3.1WW

Tooling is a major concern in a FMS environment because it accounts for

25 - 30 percent of the fixed and variable costs (Ayres, 1988). Kiran and Krason

(1988) point out that tooling has a major effect on FMS performance and that on-

line monitoring of tool wear is needed if performance is to be improved. Gruver and
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Scaninger (1990) also agree that on-line tool monitoring is essential if the benefits Of

FMS are to be fully realized. The main advantage of on-line monitoring are reduced

down time and higher output levels (Kendall and Bayoumi, 1988). Articles by Gray

et a1. (1989, 1990) provide the most comprehensive examination of tooling issues

and past research on FMS tooling. They also divide FMS tool control into three

areas. These are shown in Figure 2-2, which is a hierarchical view of tool

management in FMS.

2.3.1.1 FMS goo Tool Chamotoristios

The major tool characteristics relevant to FMS are: tool life, cutting

economics, Standardization, and number and location of tools (data/information).

Tool life already has been discussed, and suffice it to say that the tool life equation

(Cook, 1973) and distribution issues (Ramalinjam, 1978) are the same in all cutting

environments. What is unique is that FMS can monitor on-line tOol wear and

communicates this information throughout the system. The system can react

automatically when a tool breaks or needs replacement (Turn and Tomizuka, 1989).

The second tool characteristic, cutting economics, is common to any cutting

environment. Primrose and Leonard (1986) looked at the trade off between tools,

materials, and labor costs in an effort to pinpoint variable processing costs.

McCarthey and Hinds (1982) considered demand due dates and processing

speed in an FMS. In their model, the machines in the shop are initially set at

maximum speed, and planned idle time allows process rates to be reduced so that no
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Figure 2-2 FMS Planning and Control Hierarchy

(Groy ot ol.. 1989)

FMS Syotorn Management

(Production otounin. ood tool control)
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Tool Control a Charactoriatico
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idle time remains. The objective is to process all jobs to meet due dates at the

slowest processing time possible in order to limit tool wear and operating costs.

The third tool characteristic, Standardization, while applicable to any

‘ environment is especially important in FMS because of the high cost of cutting tools

(Ayres, 1988). By standardizing, fewer tools are needed, which means substantial

savings in inventory and control costs (Hartley, 1984). Group technology techniques

is one method proposed for finding tool commonality that leads to standardization

(Burbridge, 1975; Chang and Wysh, 1985). Dushin, Jones, and Lowe (1990)

developed an algorithm to find the smallest set of tools necessary to perform an

operation, subject to an FMS tool magazine capacity.

The last tool characteristic issue important to FMS deals with data (number

of duplicate tools and locations). Information is collected regarding tool wear,

number, and location. Tool data is necessary at subsequent levels for replacement



and tool

side SO

1938;.

machine

0
‘
)

"
J
J

—
‘

I
J



33

and tool magazine loading. Tool breakage information can be communicated system

wide so that a possible alternate machine center can be found (Kendall and Bayoumi,

1988). The interface of data among all operations are necessary for tool delivery and

machine loading (Gaymon, 1986; Wick, 1987).

2.3.1.2 EMS ago Individoal Machine Control

At this level of FMS hierarchy, the individual machine is examined (Gray et

a1., 1989). A combination of tool characteristics (constraints) can be combined with

overall system control. At issue is tool loading and placement within the tool

magazine, work sequence, and tool replacement strategy.

The control of work flow is dependant on the loading of tools and job

sequencing. Tang and Demardo (1988) examined a single machine with a limited

tool magazine with known demand. The objective was to reduce the number of tool

changes prior to the start of processing.

Vinod and Sabbagh (1986) also looked at tool allocation to the tool magazine.

They considered an optimal allocation of spare tools. Because tool breakage is the

largest factor that decreases productivity, spare tools will thus increase productivity.

Vinod and Sabbagh proposed a closed queuing network optimization model which

determines allocation of multiple types of tools to machines.

The number of spare tools also relates to another machine level issue, that of

tool replacement. Replacement strategies that consider the variability of tool life and

machining parameter are thought to be more realistic (Bao, 1980; LaCommere,
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Diega, Nota, and Passabbabte, 1983). These models consider the option of changing

several tools simultaneously. This differs from past tool replacement models which

consider only a single tool and machine (Cook, 1966).

Sharit and Elhence (1989) explored a tool replacement strategy for an entire

system rather than a single machine. This model did not seek an optimal solution,

but rather, looked at the human and computer element of tool replacement. Sharit

and Elhence attempted to trade off the economic loss of tool replacement with that

of through-put time. Their tool replacement heuristic allows a tool to be replaced if

its remaining life is less than the job processing time.

A recent study by Amoako—Gyampah, Meredith, and Raturi (1992) examined

four alternative tooling allocation strategies. The first strategy used a bulk exchange

of tools per period. For each period a machine is given all the necessary tools to

process the jobs. This requires batching jobs according to the tools needed. At the

end of each period, the machine gets a new set of tools. One assumption of this rule

is that all tools have sufficient life. The second alternative tooling allocation Strategy

is referred to as tool migration. Tools are allowed to leave or enter a machine

throughout the period. If a job requires a different tool, then it is sent to the

machine. The third tooling allocation strategy is referred to as resident tooling. This

principle is based on group technology methods. The rule attempts to form clusters

of tool combinations at machines and permanently keep the tools at that location.

The last tool allocation strategy used a combination of bulk exchange and resident

tooling. Amoako-Gyampah et a1. (1992) simulation results Showed that rules one and
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four, which group tools so that job batching is possible, out perform the migration

(rule two) and tool clustering (rule three) rules. Bulk exchange performed best in

terms of both flow time and tardiness.

2.3.1.3BMW

Tool system management at the upper level of the control hierarchy, seeks to

integrate the production planning system with tool control (Gray et a1., 1989).

Specifically, tool system management looks at tool inventory and scheduling.

Tool inventory is based on the number of tools and spares required.

Zavanella, Maccarini, and Bugini (1990) examined different replacement strategies

for tools with a stochastic life. The heuristic found to be most effective attempted to

reduce the amount of wasted or unused life of replacement tools. The heuristic

performs best with a limited“ tool supply and tool refurbishment delay.

Kouvelis (1991) sought to determine the optimal number of each tool type by

developing a two-tier planning/allocating procedure. The long-term aspect focused

on the optimal number of tools of each type and the short-term aspect attempted to

minimize tool switches and to balance workloads.

Production planning in an FMS depends on tool capacity, which is affected

by tool type and production part variety. Carrie and Perera (1986) explored how tool

and product variety influences tool changes and tool ware. Tool changes occur for

two reasons, tool wear and product variety. It was found that tool wear has a much

greater effect on the number of tool changes than does product variety. For this
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reason, tool life was a more limiting factor on capacity than is product variety.

Thus, FMS planning Should take tool life into consideration.

Other planning issues related to FMS involve grouping parts and tooling for

effective production. Ventura, Chen, and Wu (1989) developed an algorithm for part

grouping and tool requirements. By grouping parts that require Similar tools, fewer

tool changes are necessary, and larger batching of production is possible. The model

also minimizes idle time, which helps reduce tool redundancy. Another model was

developed by DeSouza and Bell (1991), who used a Rank Order Clustering (ROC)

algorithm to group tools. The groupings are based on the job to be processed and

required tooling. The cluster algorithm reduces the number of tool changes (setup)

in the tool magazine. The model reduces the effort of managing and scheduling tools

in an FMS environment.

2.3.2 Itfmls Sohodoling in Non-FMS Maohino Models

Although most tool scheduling models are set in a FMS environment, a

number of other studies have focused specifically on tooling or incorporated it into

their framework. One such model is the single-plant mold allocation which assigns

molding tools to machines (Love and Vemuganti, 1978). The model attempts to

satisfy production demands while having limited tool capacity and changeover

restrictions. Tool capacity varies by period as new molding tools are added and Old

ones are reworked. The problem is formulated as a mixed integer program.

Another model which uses tooling as an element is by Brown et al. (1981).





37

They looked at production and sales planning for multiple periods with limited

shared tooling. In their model, forming tools (injection molds) were shared because

they could produce a number of similar products with the same dies. Each tool was

specific to a family of Similar parts. Brown et a1. formulated the problem as a mixed

integer linear program, with tooling as a constraint on each periods production. The

model determined how much of each product to produce and sell in each period.

Both Melnyk et a1. (1989) and Ghosh et a1. (1991) examined a single

machine with tooling availability. In their first model, Melnyk et a1. examined tool

availability and its influence on shop performance. Tool availability is determined by

the level of external demand (another machine) for each tool. A tool can remain at a

machine for Y number of jobs. AS Y decreases, tool availability decreases (tight tool

capacity) and all measures of Shop performance decrease. The implication is, the

lower the tool capacity, the worse shop performance becomes. Another contribution

from Melnyk et a1. (1989) involves tool assignment rules, which were found to be

more critical than job priority rules (dispatching). However, rules which consider

both job priority and tool availability performed best. Rules that attempt to avoid

tool changes (sequence dependent) perform poorly, except for tool change

performance measures. If the rule considers a job’s due date, its performance is

improved. It Should be noted that rules which attempt to avoid tool changes will

vary in performance depending on the setup time constraints.

The level of sequence dependency was tested by Ghosh, et a1. (1991) using

the same model as Melnyk et a1. (1989), except that various degrees of sequence
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dependency (severity of setup time between jobs) were added to the model. The

effect of higher levels of sequence dependency (increased setup time) caused shop

utilization to increase and shop performance to decrease. Other findings conformed

to past work (Melnyk et a1., 1989) which concluded that tool assignment rules are

more important than dispatching rule decisions. The best performance was Obtained

when both tool condition and job priority was considered together.

2.3.3 Summary of Tool Sohoouling Litoraturo

As Figure 2-3 shows, the literature on tool scheduling can be broken into:

FMS and non-FMS environments. The majority of tool scheduling literature falls

under the first group, FMS related. The reason for this is because of the high cost

of tooling in FMS (Ayres, 1988). Gray et a1. (1989, 1990) provide an in-depth

review and categorization of the FMS literature. Gray et a1. (1989) breaks decision

making into a three level hierarchy from tool magazine Size to tool

placement/replacement decisions.

At the lowest level of the hierarchy there are a number of issues including:

tool life, cutting economics, tool standardization, and data/information. The last

issue, information, links and drives all three levels of the hierarchy. Information on

tool and shop condition is passed to higher levels of planning.

The second level of Figure 2-2 hierarchy involves Shop scheduling of work

and tool allocation. Tang and Demardo (1988) looked at tool allocation with the

objective of minimizing tool changes during processing. Amoako—Gyampah et a1.
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(1992) considered four different tool allocation strategies and found bulk exchange

to be the best performer.

At the top of the hierarchy is the planning of production and tooling. Ventura

et a1. (1989) developed a means of grouping jobs so as to reduce tool changes. Also

considered at this level is the number of tools necessary for the system to meet

demand (Kouvelis, 1991).

For non-FMS models of tool scheduling, articles by Melnyk et a1 (1989) and

Ghosh et a1. (1991) are the most relevant. Both look at tool control procedures

simultaneously with dispatching rules. Other models by Brown et a1. (1981) and

Love and Vemuganti (1978) viewed tooling as a capacity issue and part of the

production planning process.

2.4 MAINTENANCE

The objective of any maintenance program is to transform equipment

(machines and tools) into a useful capacity. Machines and tools move through

several conditions over time with the probability of failure varying at each stage.

The final state for any equipment is failure. A maintenance program must consider

the varying conditions of the equipment. Equipment maintenance can take place

when one of two conditions exits: 1) pre-failure, or 2) post-failure. Pre-failure

maintenance is usually referred to as preventive maintenance (PM). Post—failure

maintenance is referred to as corrective maintenance (CM). Pre and Post failure are

examples of two maintenance Strategies, PM and CM.
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2.4.1 Maintonmoo Stgatogios

Maintenance strategies are usually grouped into two categories: 1) reduce the

frequency of failure, and 2) reduce the severity of failure (Hardy and Krajewski,

1975; Krajewski and Ritzman, 1988). Preventive maintenance (PM) would be

classified under the first category. Backup or equipment replacement would fall

under the second category and is usually referred to as preparedness maintenance

policy.

Gallimore and PanleSky (1988) defines five maintenance strategies: 1)

Reactive, 2) Preventive, 3) Inspection, 4) Backup, and 5) Upgrade. A reactive

maintenance strategy is identical to CM. Preventive and Inspection is usually

grouped under PM. The difference is, preventive maintenance is based on a regular

schedule while inspection maintenance is irregular and performed when the tools are

being used. Backup is a maintenance strategy based on the availability of redundant

equipment. Such an approach is justified when the cost of equipment breakdown

exceeds the cost of having excess capacity. The last maintenance strategy involves

the upgrade of equipment. With newer equipment, breakdown frequency diminishes,

resulting in less costly maintenance.

2.4.2M'nn M l h riis

2.4.2.1 Classification

A composite of breakdown and maintenance models can be found in a

number of different articles (McCall, 1965; Pierskalla and Voelker, 1976; Sherif and
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Smith, 1981; and Lie at el., 1977). Breakdown is relevant because it often

determines when maintenance activities take place. McCall (1965) conducted the

initial survey which identified the assumptions and relationships found in various

maintenance policies. This initial survey attempted to introduce the problem of

scheduling maintenance when equipment experiences Stochastic failure. Figure 2-4

provides a breakdown of McCall’s various maintenance polices. McCall’s (1965)

two categories, known and unknown distribution Of time to failure, describe

different approaches to maintenance scheduling. The following is a description of the

preventive or preparedness maintenance policies.

1). Periodic Policy: replace or inspect equipment at the time of failure or interval

(age) N, which ever comes first.

2). Sequential Policy: next inspection interval is recalculated just after each

maintenance action.

3). Opportunistic (multiple part - complex) Policy: when one of several component

fails or interval N, which ever comes first. At that point in time all components are

inspected. Each part has a stochastic life. All three of these policies, whether for

preventive or preparedness, assume a known distribution for mean time to failure

(M'I'I‘F).

The following assumptions are utilized by all three models.

a. The system is either operating or has failed.

b. Failure is an absorbing state, partial operation is not possible.

c. Maintenance action renews the system immediately after completion.
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Figure 2-4 Maintenance Policies

(McCall, 1965)

l
 

 

I I

KNOWN DISTRIBUTION UNCERTAIN DISTRIBUTION

OF TIMES TO FAILURE OF TIMES TO FAILURE

1

F I

PREVENTIVE PREPAREDNESS ._ MINIMAX

MAINTENANCE MAINTENANCE

BOUNDING

TECHNIQUES

—— SEQUENTIAL __ _ ADAPTIVE

h— MULTIPLE PARTS _

 
    
 

d. The interval between successive renewal points are independent random

variables.

e. Maintenance costs or time penalty is higher if done after equipment failure

rather than before.

Sherif and Smith (1981) provide information on which policy is optimal

under various assumptions.

- For unlimited life systems, select the periodic policy.

- For systems with constant failure rates (exponential), maintain at failure.

- For systems with increasing failure rates (Weibull & Gamma), maintain a

progressive schedule.

- For systems with a finite life, select the sequential policy.

- For complex multi-part systems, if:

1. Parts are independent: choose periodic or sequential scheduling for
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each part.

2. Parts are not independent: replace all parts when one fails.

McCall’s second category develops maintenance policies when the

distribution of time to failure is unknown. The following is a description of these

three maintenance policies.

1) Minimax: minimizes the maximum maintenance losses, whether it is costs,

downtime, or both. Nothing is known about a system’s failure distribution. The

optimal policy is to maintain at failure.

2) Bounded: partial information on the distribution is known (failure rate).

Chedyshev-type bounds are applied to one of the models previously discussed.

3) Adaptive: if subjective information exists about failure distribution, then the

Bayesian adaptive techniques are used.

Based on available information, either preventive or preparedness policies would be

selected and modified using one of the three techniques mentioned above.

Pierskalla and Voelker (1976) extended McCall’s work and adds maintenance

policy classification as either a discrete or continuous system review. Most of

McCall’s classification would fall under the discrete time model. Pierskalla and

Voelker (1976) separated the continuous time model, which attempts to minimize

costs, into three areas which are presented below.

1) Age dependent: this is a modification of the periodic and sequential maintenance

polices which consider critical threshold costs. Once beyond this cost, it is

advantageous to replace the equipment.
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2) Shock: this model assumes that failure occurs due to an external shock to the

equipment. External shock occurs based on a Poisson process and have an

accumulative effect.

3) Interacting Repair: this is another opportunistic policy which includes

cannibalization, multistage replacement, and variable repair rates. Cannibalization

attempts to maintain equipment based on parts from an identical unit. The Objective

is to provide the best possible configuration for operating equipment given no spare

parts (units).

Multistage replacement differs from cannibalization in that a new part is

always available. The objective with multistage replacement is to place the spare

part where it yields maximum benefit. This tends to be where failure costs are

highest.

Variable repair rates add the element of maintenance capacity as a decision

variable. Maintenance capacity is usually expressed as a service rate (that is, the

number of workers performing the service). The objective is to find a service rate

which minimizes the long run costs.

Sherif and Smith (1981) also discuss deterministic maintenance models and

assumptions. Under deterministic models, equipment life is known with certainty.

The optimal maintenance policy is periodic with equal length maintenance actions.

This is based on the following assumptions.

a. Outcomes of maintenance are non-random.

b. Maintenance restores the system to original condition.



faiiu

(Lie

dist:

C0111

USE

11h:

Sill!

suit;

1811‘.

non

horn

Sllor



46

c. Failure is observable and instantaneous.

d. Identical parts have the same known time to failure.

2.4.2.2 Eg'loro ago Sorvico Timo Distributions

Most models that have examined the two components of maintenance, time to

failure and service time, have modelled the time duration as a stochastic process

(Lie et a1., 1977,; and Sherif and Smith, 1981). Several different types of

distributions have been used to model failure time (MTTF) including: exponential,

Erlang, Weibull, Gamma, Rayleigh, normal, log-normal, uniform, extreme value,

and general. Negative exponential is the most commonly employed distribution

because of it’s constant failure rate. While mathematically easier to use, data

collected from industry support the exponential application (Lie, et a1., 1977). The

use of normal distribution is justified based on data from the aircraft parts industry.

When the failure distribution is skewed, the gamma family is a better choice. For

systems characterized by fatigue failure, like tooling, the Weibull distribution is

suitable. Log-normal is not considered a good choice for mean time to failure, but

rather, fits better as a repair time distribution.

Distributions used to model maintenance renewal time also cover the same

group as mean time to failure: exponential, Erlang, Weibull, gamma, Rayleigh,

normal, uniform, and general (Lie et a1., 1977). The preferred distribution is log-

normal. Exponential is considered a good choice when there is a high frequency Of

Short repairs with a few long repairs. If repairs (renewal) of each item takes an
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equal length of time, then uniform distribution is an appropriate choice.

A few articles use unique distribution to model failure (Sherif and Smith,

1981). One of the few research articles which addresses the issue of tool failure and

maintenance is by Vanderhenst, Van Steelandt, and Gelders (1981). The Objective

was to minimize tool down time. The tool life or time to failure used in this model

was based on historical data which resembled an exponential distribution.

Denzler et al. (1987) modeled an FMS with breakdown uncertainty by using

a deterministic approach. Breakdowns are classified as either major or minor. Major

breakdowns occur once every ten shifts and require ten hours to perform the

maintenance. Minor breakdowns occur once every two shifts for a maintenance

duration of two hours. Deterministic distribution simplifies the model but tends to

over estimate the benefits of scheduling policies.

2.4.2.3 Maiotonaooo ago Tml Availability

The frequency of tool failure and the length of time it takes to repair the

tool, determines the tool’s availability. It should be evident that tool availability

determines system performance. Lie et a1. (1977) classifies availability into three

(Markovian) categories: 1) instantaneous, 2) average uptime, and 3) steady-state.

Each of these three categories look at a different time intervals when estimating

availability. Another means of determining availability is with a ratio of uptime to

total possible time, which can be measured directly or estimated using the expected

value function (Goldman and Slattery, 1964). Two other methods of expressing
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availability is with inherent availability:

: MTBF

1 MTBF+MTTR
 

where: MTBT mean time between failure

MTTR = mean time to repair

and achieved availability;

A _ MTBM
a_____

MTBM+M

where: MTBM = mean time between maintenance

M = mean maintenance time of both CM and PM

The importance of the availability measure stems from the fact that it gives a

means of evaluating or comparing system performance. When different distributions

are used to test systems performance, the same expected value for availability allows

for a more accurate comparison.

2.4.3WWW

2.4.3.1W

There are a number of different models that provide a means of

implementing and controlling a maintenance program. Bojanowski (1984) used the

Materials Requirements Planning (MRP) logic to develop Service Requirements
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Planning (SRP). SRP attempts to establish routine equipment inspections and

monitors wear to prevent machine failure and improve shop performance. By time

phasing maintenance inspections, plans for repair labor and materials can be

determined. Bojanowski (1984) estimates that 70 percent of machine failure is due to

either the lack of awareness of a need for service, or lack of proper service

inspection interval. Bojanowski also stated that equipment failure is especially

common for high wear parts like forming tools.

A maintenance model proposed by Newman (1985) also used MRP logic. He

states that by using a periodic planned inspection, the preventive maintenance

program could reduce the risk of machine failure. Newman (1985) goes farther than

Bojanowski ( 1984) by adding a master maintenance schedule to the preventive

maintenance requirements planning (PMRP). The master maintenance schedule

determines when a service activity needs to occur. For example, service is

performed after X number of products are produced, after a certain number of

operating hours, or when mean time between failure is reached. By selecting one of

these values, the point at which to preform preventive maintenance is determined.

A recent article by Maggard and Rhyne (1992) presents an integrated model

of maintenance. Total productive maintenance is an attempt to integrate all functions

with maintenance, especially production. The benefits obtained with this approach

resulted in a 6 percent increase in machine availability.

A case Study by Christer and Whitelaw (1983) examined the benefits and

requirements of a maintenance program. They point to the critical need for historical
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data and the ability to collect data continuously. Information on the causes and

consequences of machine failure helps prevent future failures. A maintenance

program should not only help eliminate failures, but provide an appropriate PM

schedule. Christer and Whitelaw’s estimate that breakdowns account for up to 20

percent of lost production time.

A subsequent article by Christer and Waller (1984) examined PM applied to

a vehicle fleet, in particular the timing and frequency of PM. A unique feature of

this model is the concept of delayed PM. If a vehicle breaks down, the part that

failed will be repaired, but should other parts that show wear be replaced at the

same time (a form of PM)? If not repaired, should the vehicle be rescheduled for

PM? Christer and Wallerresearch showed the complicated issues involved in

maintenance when multiple parts are present which may be interrelated. Their model

demonstrates that PM must be tailored to each Situation.

2.4.3.2 momma:

Vanderhenst et a1. (1981) explored PM and CM strategies for tools. If

preventive maintenance takes place when ever a changeover or tool change occurs,

then little or no production time is lost because of these conditions. If, however, a

tool or machine Should fail, then unplanned maintenance take places and system

availability decreases. It is estimated that availability loss due to breakdown is 8

percent. Depending on the penalties for CM, Vanderhenst etal. (1981) explored the

trade offs between tools during changeover (setup) and tool changes due to tool
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failure.

Kay (1978) examined whether PM is more effective than CM. The time to

system failure is modeled with a Weibull distribution (where parameter b is

1<b<2.5). The objective is to optimize the percentage decrease in maintenance

costs. It iS found that optimal cost performance does not equate to maximum

availability, which is contrary to many other Studies. In addition, when its cost is

lower PM is preferred over CM because availability is greater. The benefits

associated with PM or CM depend on the values given to both costs and

availability.

Banerjee and Burton (1990) simulated a job shop and examined a number of

different maintenance strategies and maintenance capacity issues. Maintenance

capacity is determined by the number of workers and maintenance allocation rules (6

rules). Corrective maintenance is always given priority over preventive maintenance.

As for PM, the five rules are: (1) No PM performed, (2) PM every .3 periods of

operation, (3) PM every .5 periods of operations, (4) PM every 1 period of

operation, and (5) PM every 1.5 periods of operation. Mean time between failure

was modeled using an Erlang-4 distributions (MTBF mean varied from 70 to 130

hours). CM repair time was modeled with an exponential distribution (mean from 2

to 8 hours) and for PM repair time a uniform distribution was used (average time

from 1 to 4 hours). The findings Show, that as the frequency of PM increases, the

average PM delay decreases, and flow time increases. In addition, as Shop utilization

increases, the maintenance scheduling method used takes on greater importance.
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This is logical, since down-time is more detrimental to shop performance.

2.4.4 Pmttotioo aod Mg'ntonaooo Sohedoling

Few articles have considered the implications of maintenance actions on, or

in the presences of production schedules. Ram and Olumolade (1987) developed

maintenance schedules that consider the production plan, and a total expected costs

formulation that considers capacity per period, given the probability (Weibull

distribution) of machine failure. The model also included the average maintenance

time for PM and CM. The objective was to minimize the costs of PM and CM on a

per period bases. The model does not find an optimal cost, but Simply a means of

evaluating the cost tradeoffs between CM and PM.

Pate-Comell, Lee, and Tagaras (1987) developed combined maintenance and

production rules. The maintenance policy includes: no PM, scheduled maintenance,

and maintenance on demand during inspections. The latter policy is performed using

the production inspection process. If inspection indicates a need for maintenance,

(poor product quality) then maintenance is performed. This policy works well when

the Shop is stable. In an unstable environment, the scheduled maintenance policy

works best. Planned maintenance allows the system to adjust production around

maintenance and machine availability.

An FMS model with machine failure was developed by Denzler Boa, and

Duplaga (1987), to determine the effect of machine failure on system performance.

Machine breakdown is classified as either minor or major, which is associated with
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maintenance severity. Breakdowns do affect performance in a FMS, but short term

production scheduling procedures can lessen the impact of the breakdown.

Hsu ( 1992) examined how PM influences a production system and showed

that the optimal maintenance policy is very sensitive to the system’s monitoring

technology. Monitoring technology includes vision systems and torque sensing

equipment. Should such systems exists in the Shop, it is optimal to perform

maintenance only when the monitoring equipment so indicates. If such monitoring

systems do not exist, then the model found that planned PM can improve system

performance.

The effect of maintenance on production was also analyzed by Wacker

(1987). Wacker looked at the elements of production throughput time of which

down-time is a component. He proposed that a truly effective PM program would

not add to a systems throughput time because it would be performed during setup.

For zero inventory (Hall, 1983) and JIT systems, such an approach is advocated, but

in reality the system is not likely to be this efficient. Variation in duration and

frequency of PM can also add to throughput time. Unscheduled maintenance,

whether CM or PM, will cause queues to increase and an increase in throughput

time. The objective of PM in reducing throughput time is to decrease unplanned

maintenance (CM) while not causing undue delays in production startup after a

setup change.

Finally, Ghosh and Gaimon (1989) considered as part of their model the

effect of various levels of PM on capacity. They found that PM can slow the
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deterioration of machines, which can alleviate bottlenecks, and that higher levels of

PM can provide higher levels of capacity.

2.4.5WW

Figure 2-5 provides a breakdown of the literature reviewed in this section.

The figure does not Show that maintenance tends to be categorized as either

preventive (PM) or corrective (CM). Maintenance can be further broken down in an

attempt to either reduce frequency or severity (Hardy and Krajewski, 1975). Further

refinement of maintenance strategies can be found in Gallimore and Penlesky

(1988). While these articles are descriptive, more analytical models were described

by McCall (1965), whose maintenance scheduling approaches were outlined in

Figure 2—4.

Failure and service time have been modeled in a variety of ways. lee et a1.

(1977) and Sherif and Smith (1981) describe many of the approaches used in

distributions. The most common stochastic distributions used for failure and service

include: exponential, Erlang, Weibull, gamma, normal, log-normal, and uniform.

Stochastic distributions are particularly relevant to tool availability. Methods of

calculating availability is based on mean time to failure and expected service time.

The scheduling of production and maintenance is presented using both

descriptive and analytical models. In the descriptive model, Bojanowski (1984) and

Newman (1985) used MRP logic in the planning of maintenance. For the analytical

models, a number of different PM procedures were examined and compared to CM
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(Vanderhenst et a1., 1981; Banerjee and Burton, 1990). The research found that

when the cost of PM was lower than CM, PM improved performance. Excessive or

frequent PM can also cause tool availability and Shop performance to decrease.

2.5 DUAL RESOURCE CONSTRAINT AND LABOR SCHEDULING

MODELS

A DRC shop involves more than just a machine limited shop environment.

The DRC Shop has two limited resources which must both be available before

processing of work can Start. The simultaneous availability of two resources

differentiates this research from the single constraint machine limited studies which

dominates the literature. Review articles by Blackstone, Phillip, and Hogg (1982),

Day and Hottenstein (1970), Graves (1981), and Panwalker and Iskander ( 1977),

provide an excellent background on machine-limited research. Only Blackstone et a1.

and Day and Hottenstein briefly discuss the DRC research. Treleven (1989) was the

first to provide a detailed review of past research in DRC articles.

In the DRC field, a number of issues have received attention, as indicated in

Figure 2-6. Treleven’s classification of the various DRC models will be applied in

this literature review. The two major issues which have been addressed are operation

and design.

It Should be noted that most DRC models look at machine and labor as the

constraining resources. Melnyk et al. (1989) and Ghosh et a1. (1991) are the

exceptions and consider tooling as yet another limiting resource. Hogg, Phillip,
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Maggard, and Lesso (1975a, 1975b) discuss the possibility that tooling can be a

constraint, but they do not directly address any tooling issues. Instead, what Hogg et

a1. developed was a multiple constraint model which allows for a third constraint

like tooling.

2.5 .1 gmgatigga; Issues in DRC

Operational issues in DRC models look at control procedures such as

dispatching rules, due date assignment, and labor allocation. These procedures are

enacted while the model is in operation. They determine how and when decisions in

the DRC model function. Operational issues are dynamic in that procedures are

enacted when certain conditions are present in the model. What separates the DRC

models from the machine-limited research is that while both are concerned with

dispatching and due date rules, the DRC model must also decide on labor allocation.

2.5.1.1 Wis;

Early DRC models examined various dispatching rules to see how multiple

resources alter performance. LeGrande (1966), Nelson (1967, 1970), Fryer (1973),

Rochette and Sadowski (1976), and Weeks and Fryer (1976, 1977) found that

dispatching rules had a significant affect on shop performance. Nelson found that the

shortest operating time gave the best results in terms of mean flow time, while the

first in system was better with respect to variance of flow time.
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Weeks and Fryer (1976, 1977) found that the relative performance of various

dispatching rules depends on the tightness of the due date procedure. When first

come first served (FCFS), shortest processing time (SPT), and least slack per

remaining operations (SOPN) were tested with tight due dates, SPT was the better

shop performer. As due dates were loosened and limited labor transfers, SOPN

became the best performer.

LaGrande (1966) and Bulkin, Cooley, and Steinhoff (1966) used actual data

in a simulation to determine whether dispatching rules have a major influence on

performance. SPT (MINPRT) was ranked first, minimum slack (MINSOP) ranked

second, which is consistent with Nelson (1966). The ranking was based on an

average of ten performance measures. When the weight of the ten performance

measure were adjusted to favor early job completion, MINSOP became the best

performer. Bulkin et a1. (1966) applied the MINSOP dispatching rule to an actual

operation, orders completed on time rose 10 percent, and both machine and labor

utilization increased.

25.12W

Most DRC models assign due dates based on the total work content rule

(TWK) described by Conway et a]. (1967). As stated previously, Weeks and Fryer

( 1976) examined both dispatching rules and due date assignments. They found that

the due date assignment procedure (TWK) has a significant effect on shop

performance. Due date has the greatest influence on the lateness performance
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measures. The tightness of the due date assignment has a more important effect on

Shep performance than do dispatching rules. A subsequent study by Weeks and

Fryer (1977) examined the effect of the K value used in the Total Work Content

(TWK) due date assignment rule. The objective was to determine the minimum cost

due date multiplier (K) value that enhanced shop performance. They found that the

value selected for K (in TWK) was dependent on cost structure, dispatching method,

and labor assignment rules.

Weeks (1979) further analyzed due date assignment rules in relation to shop

conditions. Seven different rules were tested, three of which used TWK with

different K values. Those rules that include information on shop congestion or job

flow time provided more predictable due dates than previously tested TWK methods.

In addition, it was found that dispatching rules which incorporate due dates (least

slack) perform better than process oriented rules (SPT).

2.5.1.3 WM

Labor assignment is a major factor in all the DRC models. The two most

important issues are when and where labor is assigned. Other relevant issues are;

which worker to select and whether the labor decision is centralized for

decentralized. The latter issues will be addressed under information control.

The decision about when to transfer workers has been shown to be a more

important labor assignment issue than where to send the worker. The when decision

determines the eligibility of the worker to be transferred. Nelson (1966, 1970)
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examined the effect of cross training and the when labor transfer. He found that the

level of cross training, or the ability to move between machines, has a major

influence on shop performance, as does the when labor assignment. The decision of

when to move a worker was based on shop and cross training information.

Fryer (1973, 1974a, 1974b, 1976) and Weeks and Fryer (1976) showed that

the when rule had a significant effect on shop performance. Fryer (1973) found that

when rules, both intra and inter-divisional, were more important than where labor

rules. Fryer also concluded that the when labor rule was more influential on shop

performance than the dispatching rules. From the various studies by Fryer, it was

determined that "when idle" (all jobs in queue are done) labor transfer rules were

consistently better performers.

Treleven (1987) did a more complete comparison of when labor rules by

examining: when idle (QUE), when the current job is done (JOB), and when to pull

worker (PULL). The last rule, an attempt to allocate a worker to. areas of need, is a

combination of where and when to relocate workers. The PULL labor rule

outperformed the other two when rules.

The fact that Treleven’s (1987) PULL labor rule combines issues of when

and where to send workers presents a paradox in the literature. Nelson (1967)

proposed that where labor rules could improve mean and variance of flow time.

Studies by Fryer (1973), Weeks and Fryer (1976), and Treleven and Elvers (1985)

showed that where rules had little effect on shop performance. Treleven and Elvers

examined several where rules and found that they had no significant effect, except



62

on the number of labor transfers. Holstein and Berry (1972) found that the where

labor rule did have an impact on shop performance. The where rule reduced the

number of transfers without greatly increasing flow time. Where to send workers is

based on the longest queue in the shop. Holstein and Berry‘s where rule is similar to

Treleven’s (1987) PULL rule which seeks to combine when and where labor rules.

Melnyk and Lyman (1991) supported this approach by showing how varying labor

efficiency at work centers makes the decision about where to allocate labor more

important than has been recognized in past research.

The last labor selection issue addressed here is which resource (worker) to

select from. This assumes that more then one worker is idle and that the selection is

made from those available. If the labor resource is homogeneous, then selection is

not an issue. If the labor pool is heterogeneous, then the selection takes on

importance. Hogg, Phillips, and Maggard (1977) found homogeneous work-forces to

be superior to heterogeneous ones. In most cases, it is neither practical nor possible

to have workers or other resources which are equally efficient.

Maggard, Lesso, Hogg, and Phillips (1973, 1976), Maggard, Lesso, Keating,

and Wexler (1974), and Hogg, Phillips, et al. (1977) modeled labor with varying

efficiency. One goal of this research was to illustrate labor blocking which occurs

Only when resource efficiency varies. This occurs when less efficient resources are

allocated to perform work and more efficient resources are prevented or blocked

fl'om performing the work. If labor blocking can be prevented, flow and queue times

can be reduced. As the variation in labor efficiency increases, shop performance
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deteriorates. The key to shop performance depends on the availability of efficient

labor, a conclusion also supported by Melnyk and Lyman (1991).

2.5.2 Design Issugs in DRC

Design issues, like labor flexibility, efficiency, worker to machine ratio, and

information control deal with static aspects of the model. Design issues set the

parameters in which the operational issues must contend and, thus, can have a direct

bearing on Operations.

2.5.2.1 21129;

Design issues related to labor have three components: flexibility (cross

training), efficiency, and machine-staffing levels. These components are interrelated,

for example, the degree of flexibility or cross training can influence the ratio of

workers to machines. Allen (1963) was the first to demonstrate the benefits of

worker cross training. He claimed workers who were cross trained could be used

more efficiently because workers can be allocated where nwded. Nelson (1967) and

Fryer ( 1974) showed that as the level of cross training increases, the machine-

staffing levels can be reduced without decreasing performance.

Nelson (1967, 1968), Fryer (1973, 1976), Hogg et a1. (1977), and Park and

Bobrowski (.1989) found that with increased levels of labor flexibility, shop

performance increased. The benefits of greater flexibility can be achieved with a

small addition in cross training. Beyond a certain point, the benefits of cross training



on shop performance is only slight.

With regard to efficiency and flexibility, Nelson (1968) demonstrated that as

the variability of labor efficiency increases, so does the need for additional

flexibility. This was supported by Hogg et al. (1977) and Maggard et a1. (1980).

Hogg et al. developed three different models: varying efficiency by worker (LD),

varying efficiency of worker by machine (MCD), and varying efficiency of worker

by both machine and worker (L&MCD). L&MCD represents the greatest variance

in efficiency; because of this, labor allocation rules based on the most efficiency

take on greater importance.

Whether the workforce is homogeneous or heterogenous, the level of cross

training affects the machine-staffing requirements. Maggrad et al. (1973), Hogg et

al. (1975), Fryer (1975), Weeks (1979), Elvers and Treleven (1985), and Treleven

and Elvers (1985) all analyzed the effect of staffing levels. In general, they conclude

that the best shop performance for machine-staffing levels is obtained with a worker

to machine ratio of between 1:2 to 2:3. When staffing levels exceed the 2:3 ratio,

worker idleness increases dramatically. At staffing levels less than 1:2, resource

utilization is at their maximum which causes shop congestion and deteriorates

performance.

252.2mm

Control of information as part of the design determines where a decision is

made or how it affects the decision process. For example, the decision to move a
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worker can be either centralized or decentralized. Gunther’s (1979, 1981) work on

transfer delays revealed that as the delay of moving a worker between machines

increases, shop performance (mean and variance of flow time) deteriorates for

traditional labor assignment rules. A parametric rule which considers transfer delay

information cause worker transfers to be delayed and keeps shop performance from

deteriorating.

Another example of information control is found in Fredendall (1991), whose

DRC model used an order review/release (ORR) method to control work on the

shop floor. ORR releases work based on various types of information, such as shop

load. The study revealed that how information is used is more important than what

information is used. It was also found that by using ORR, both dispatching and

labor assignment were not as significant as indicated in past research.

When looking at the control of labor assignments, centralized verse

decentralized information determines the degree of flexibility. Nelson (1967) found

that as control of labor transfer becomes more centralized, mean and variance of

flow time decreases because information regarding the entire shop is used. With

decentralized control, information regarding transfers are localized on divisional

levels and do not consider the needs of the entire operation. Fryer (1974a, 1974b,

1976) reached similar conclusions when he examined the when and where labor

assignment rules.

253W
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The DRC literature, generally centers on labor allocation and enhancing shop

performance. The labor allocation issues focus on when and where to send workers.

Most studies showed that when to move a worker was more important than where to

send the worker (Treleven, 1989). Two basic rules about when are: when idle, and

when the current job is done. A third rule, PULL, which was developed by

Treleven (1987), was also found to be effective. PULL is a combination of the when

and where decisions. As for where to send workers, the rule most commonly used is

the longest queue. A third issue of labor allocation deals with varied labor efficiency

(Nelson, 1967; Hogg et al., 1977). When worker efficiency varies, selection of

either a capable or most efficient worker becomes relevant.

Another major focus in the DRC research looks at shop performance through

dispatching and due date tightness. Both dispatching and due date tightness were

found to have a significant effect on performance (Weeks and Fryer, 1976, Weeks,

1979).

2.6 SEQUENCE DEPENDENT MODELS

Sequence dependency involves examining the relationship between jobs.

Every job requires certain unique resources at each step in its processing. In the

context of this research, the unique resource is the combination of machine and

tooling. The relationship between jobs on a particular machine involves which

tooling resides currently on the machine. Sequence dependent rules examine the

tooling attribute (or other attributes) of jobs to find those requiring the same tooling
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resource and to set their priority ahead of other jobs. The objective behind sequence

dependency is to schedule jobs based on the current tooling setup or commonly

required resources.

It should be noted that sequence dependent scheduling rules and group

scheduling rules are different (Wemmerlov, 1992). Group scheduling attempts to

avoid setups by grouping jobs into families that require similar tooling setups.

Sequence dependent scheduling rules are myopic in that they examine the current

setup and changeover time. Both, however, consider the interrelationship of jobs in

queue.

2.6.1 Seggenge Demndent Scheduling Rules

While the benefits of sequence dependent scheduling are apparent, there is

limited research which examines this environment. Gavett (1965) conducted some of

the earliest research in this area. He looked at selecting the next job based on the

current setup which requires minimum setup time. The objective was to minimize

facility downtime (or setup time) over a finite number of jobs. Using deterministic,

uniform, and normally distributed setup time, Gavett showed that such a selection

procedure performed better than a random job selection rule, although the benefits

depended on the variability of both setup time and batch size.

A study by Hollier (1968) also selected jobs on the basis of current setup.

Hollier compared his current setup dispatching rule to several common dispatching

rules (FCFS, SPT, EDD, etc.). With normally distributed setup times, the model
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found that rules which considered current setup performed better on several

measures, such as machine idle time and job lateness.

Wilbrecht and Prescott (1969) examined dispatching rules that do and do not

consider sequence dependency. Prioritization based on similar setups (SIMSET)

performed significantly better overall than did other dispatching rules. Although

SIMSET did best in only three out of the nine performance measures, its overall

consistency allows it to be the best overall rule.

2.6.1.1 Tmling Seggenge Dexndengy

Sequence dependency is usually a function of the tooling on a machine and

not the machine itself. The machines ability to process, is a function of the tooling

on a machine. This point was made in the discussion on FMS. An FMS tool

magazine determines what jobs can be processed through the work center. For this

reason, attention is focused on determining the optimal magazine load. For less

automated machining systems, like stamping and molding, tool loading is not an

issue but tool changeover (setup) is. White and Wilson (1977) discussed how cutting

tools have various levels of sequence dependency. The levels reflect the degree of

setup changes necessary which may include tool changes, fixture changes, and

machine modifications such as speed. White and Wilson collected actual data on

setup changes to develop an equation for setup time predictions. The data shows

how sequence dependent scheduling can reduce setup time.

Daoud and Purcheck (1981) examined how reducing the number of tool
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changes via sequence dependent scheduling can improve shop performance. They

found that sequence dependent scheduling increases machine utilization and timely

job completion rates. They used a traveling salesman matrix to assign jobs on the

basis of lowest change-over costs. An assumption is that a job is tool specific, not

machine specific, and thus can be processed on any machine which reduces change-

over costs. While this model is useful in the planning process, it does not consider

resource availability or loading. The models objective is to reduce setup time

without considering other issues.

Melnyk et al.(l989) and Ghosh et al.(l99l) developed two models which

looked at tool sequence dependency and resource availability. Melnyk et al. looked

at tool control rules combined with dispatching rules that attempted to avoid setup

changes. One rule attempted to avoid a setup change, while the other incorporated

due date priority. These sequence dependent rules reduced the number of setups as

compared to traditional dispatching rules. The sequence dependent tool rule which

considered due date priority, also performed well in terms of a job tardiness and

flow time (depending on the dispatching rule used).

Ghosh et al. (1991) modified the model to look at the impact of sequence

dependency. The degree of sequence dependency was based on different percentages

of setup time to processing time. The higher the percentage, the longer the time for

setup. As the severity of setup time increased, the number of tool changes

decreased, and the extent of sequence dependency increased.
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2.6.2 group Sshgggling

Group scheduling categorizes jobs according to common attributes. In this

case, the attribute is common setups (major setup changes) with the possibility of

small changes (minor setup changes). This is an important feature in determining

how cellular manufacturing is obtained. While group scheduling has been applied to

cellular manufacturing, group scheduling is also applicable to other environments.

Hitomi and Ham (1977) showed that a flow pattern environment with group

scheduling has a significant effect on shop performance. Their results showed that

rules that seek to reduce setup through job sequencing do improve performance. As

the ratio of setup to processing time increases, so do the benefits of sequence

dependency. -

Baker and Dzielinski (1960) examined a single machine with sequence

dependent family rules. At issue was whether family-oriented rules perform better

than process oriented rules (SPT). The family rules analyzed in this study were

based on an exhaustive procedure which processed all jobs within a family before

changing. Baker and Dzielinski were also interested in the selection process of the

next family. Their research showed that rotating among the families of jobs was

superior to choosing the next family by minimum setup time. Furthermore, they

concluded, that at high levels of shop congestiOn, family (group) rules work better

for flow time measures.

Sawicki (1973) compared Baker’s (1960) exhaustive family rules to rules

that allow truncation. Truncation of the current family setup takes place when a
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certain amount of processing time has elapsed. The objective was to improve due

date performance. This type of truncation process would be applicable to

environments where a resource has a finite life, such as tooling. Sawicki determined

that exhaustive family rules are more efficient in machine utilization and flow time,

but are only slightly better on due date issues.

Three scheduling rules were developed and tested by Mosier, Elvers, and

Kelly (1984) that looked at different information in group selection. The three rules

were: highest average job priority (AVE), highest work content per family (WORK),

and economic benefit of changing setup (ECON). ECON differs from the other two

rules in that it allows switching between families. Results showed that group

scheduling rules perform better on flow time and mean lateness than do regular

dispatching rules. Overall, WORK was the best performer, but ECON was a close

second.

Whereas, Mosier et a1. looked at group selection based on the combined

characteristics of the group, Mahmoodi, Dooley, and Starr (1990) and Mahmoodi,

Tierney, and Mosier (1992) tested group selection based on a single job’s attribute

within the group. The single attribute was based on a priority determined by the

dispatching rule. The rules tested include: first come first served of all families

(FCFAM), earliest due date from all families (DDFAM), and minimize number of

setups from all families (MSFAM). MSFAM attempts to utilize sequence

dependency by selecting the next family which requires the least setup time change.

A comparison of family rules showed that FCFAM was the worst rule, while
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DDFAM was best overall. MSFAM showed excellent performance on average flow

time because it attempted to avoid setup changes more than the other rules. This also

explains why MSFAM was such a poor performer on average tardiness.

The previous group/family selection rules tend to be exhaustive because they

process all jobs within a family before changing setup. The problem is, such rules

ignore other job priorities which may be higher. Mahmoodi and Dooley (1991)

examined this issue by comparing exhaustive versus non-exhaustive family

scheduling heuristics. They compared the exhaustive rules (DDFAM and MSFAM)

to two non-exhaustive rules (SLFAM and DKFAM). SLFAM processes all job

within a family until another family has a job with negative slack, at which time the

setup is changed to the new family. DKFAM processes the current family until the

due date of the first job in the current family reaches C (a constant that is

empirically determined) time units greater than the next most critical job in another

family. As compared to exhaustive rules, both DKFAM and SLFAM attempt to

reduce tardiness. Results show that MSFAM still performs best with respect to mean

flow time and pr0portion of tardiness. DKFAM was best in terms of mean tardiness

but worse with respect to proportion of tardiness. MSFAM and SLFAM were poor

performers regarding mean tardiness. Mahmoodi and Dooley concluded that

exhaustive rules are preferable to non-exhaustive rules in most cases.

Another issue known to influence the affect of group scheduling or sequence

dependency include shop conditions and the ratio of setup to processing time. Ruben

et al. (1991) showed that as shop utilization increases, so do the benefits of group
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scheduling. This also held true when the ratio of setup to processing time increased.

Wemmerlov (1992) showed that as the number of groups diminish, so do the

number of setups with the result being lower mean flow time. Wemmerlov also

showed that when demand patterns are skewed toward one family, setup time is

reduced, resulting in lower flow times.

2.6.3 Semmeg e! the Sequence Demndency Literature

Regardless of whether sequence dependency or group (family) scheduling

terminology is used, the objective is to reduce the frequency of setup changes. By

reducing the number of setup changes, shop performance is enhanced (Baker,

1984b; Mahmoodi et a1., 1990). The current machine setup is compared to the

queue to find the next job which minimizes the setup change. Gavett (1965) and

Mahmoodi et al. (1990) found that this method of selecting the next family of jobs

result in better shop performance.

The difference between sequence dependent rules and group scheduling lies

in how the queue is examined. Group scheduling selects the next group (family)

based on a family characteristics or within group job attribute. If group selection is

based on a job attribute within the group such as processing time or least slack, then

the dispatching rules for job selection should be based on the same attribute for the

best results (Mahmoodi et al., 1990). One assumption of group scheduling involves

major and minor setups (Mosier et al., 1984; Mahmoodi et al., 1990; Mahmoodi

and Dooley, 1991). Major setup time is incurred between groups, while minor setup
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within groups is incurred (and often is ignored). In contrast, sequence dependency

does not distinguish between these two types of setups, but simply models it as a

deterministic or stochastic distribution.

The issue of whether to use sequence dependency or group scheduling is an

important issue in tooling control. Tool setup changes have been modeled as

sequence dependent, and not as group scheduling (White and Wilson, 1977; Ghosh

et al., 1991). To date, no research has examined tool control and group scheduling

techniques together.

2.7 SUMMARY OF LITERATURE REVIEW

While there is extensive body of literature in a number of areas related to

this research, no work has specifically looked at production scheduling and tool

control. The model developed for this research is a result of past research and

includes some of the following variables:

- Tool life distributions,

- Maintenance service time,

- Maintenance policies (CM vs. PM)

- Frequency of Maintenance,

- Tool allocation/scheduling,

- Tool sequence dependency rules.

While the literature provides a foundation from which this research was

derived, it also points out gaps that exist. The following are some of the gaps that
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exist.

- No research in DRC schedules limited resources other than labor.

— DRC research which examines scheduling has not addressed the issue of

finite life resources or maintenance.

- There is a lack of specific shop scheduling procedures for both production

and maintenance.

- Sequence dependencies effectiveness, has not been analyzed in the

presences of tool failure or scheduling maintenance.

By examining these gaps in the research, a better understanding of shop floor

control is possible. Managers of production shops face many of these problems daily

and must resolve them by any means. The intent of this research is to provide

insight into the problems managers face and suggest methods to resolve them.



CHAPTER 3

TOOL PLANNING AND CONTROL: A CONCEPTUAL FRAMEWORK

3.1 INTRODUCTION

In Chapter 1, a brief discussion of tooling and its role in production was

presented. Understanding that role is essential to appreciate how tooling influences

manufacturing. The purpose of this chapter is to view tools within the context of a

firm’s overall planning and control system. This includes a comprehensive

discussion of the planning and control activities necessary for tool management.

Figure 3-1 presents the framework on which the discussion is based.

The first part of this chapter examines how and why a firms long—range

planning must include a tooling strategy. This is especially true for such production

environments as FMS and stamping and injection die shops (forming tools).

Subsequent sections explore the operational aspects of tooling, including scheduling

and control. Such techniques as Materials Requirement Planning (MRP) will be

evaluated. Actual shopfloor control of tooling also will be addressed. In addition, a

major portion of the discussion will focus on analyzing different tool control

scenarios.

3.2 TOOL MANAGEMENT FRAMEWORK

Traditionally, planning and control of tooling has not been viewed as part of

the mainstream of production planning. Although not at issue in this research, an
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understanding of how tooling fits into the planning process demonstrates the full

extent of tooling’s effect. Figure 3-1 is a variation of the manufacturing planning

and control system framework developed by Vollmann, Berry, and Whybark (1988).

The model breaks planning and control into three parts: manufacturing, capacity,

and tooling. Looking vertically, Figure 3-1 shows planning at the top (front end),

the control functions of scheduling in the middle with operations at the backend.

Each segment is discussed in detail in order to explain the importance of tooling.

3.2.1 Plegning ef Tmls

As noted in Figure 3-1, three areas interface at the planning level:

manufacturing, capacity, and tooling. The driving force is manufacturing strategy,

which determines the strategies of both capacity and tooling. At this level, planning

horizons usually are long term, from a minimum of one month to more than a year.

The planning process determines the length of time it takes to implement the

strategies. The production plan dictates what type and how much capacity is needed.

Capacity is composed of available labor, machining time, and tooling. Capacity is

the link between manufacturing planning and tool planning because tooling is a

determining factor in capacity (Blackburn, 1988). If any of the three capacity

resources are insufficient, either more workers must be hired, more machines

purchased, or additional tools obtained. The lead time for adding machines and tools

may range from three months to a year, depending on the tool intricacy. The lead

time may be hours for the purchase of simple cutting tools or up to six months for
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forming tools (Brown et al., 1981). The planning process must consider and

compensate for leadtime. By preplanning capacity through the manufacturing plan,

tooling needs can be integrated at an early stage, which is increasingly desirable as

the manufacturing environment changes, to time-based competition. Companies must

develop products more quickly (Cross, 1986; Stalk, 1988), and firms such as

General Motors have adopted strategies like simultaneous engineering, JIT and other

methods to accomplish this. Tools are developed at a much earlier phase in product

planning to reduce the lead time for product development.

3.2.2 Sehefleling ef Tmls

Tooling decisions are driven by the production plan through the Material

Requirement Plan (MRP) schedule. The MRP schedule determines which products,

and in what quantity, will be produced. However, MRP does not consider whether

the necessary resources are available. These are determined by linking Capacity

Requirements Planning (CRP) to MRP and then developing, detailed Tool

Requirement Planning (TRP) (Wassweiler, 1982; Savoie, 1988). Figure 3-2

illustrates the process. The Bill of Tooling (BOT) defines which tools are to be used

on a product and the tool life expected to be consumed at the end of processing

(Gayman, 1980). It is usually expressed in processing time or number of parts

produced. If this information is not on the BOT, than TRP can not track tool life.

An alternative tracking method proposed by Erhorn (1983), is to combine the

information on the Bill of Materials (BOM) with the BOT. In either case, the main
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Figure 3-2 Tool Scheduling

and Control
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Objective is tO allow the system tO plan tool requirements, monitor tOOl inventory,

and plan tool replacement and purchases. If the amount, location, and life Of tools is

known, substantial savings can result (Huber, 1989; Vasilask, 1990).

In an FMS, the scheduling stage Of production planning involves tOOl ’

selection for the work centers’ magazines. The tools placed in each magazine

determine the capabilities Of that work center. Under FMS, the key tO production

scheduling is tOOl allocation (Carrie and Perera, 1986). Kouvelis (1991) presents a
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two-level decision hierarchy that links tool scheduling with long-term production

planning as a means Of production scheduling.

In a traditional job or flow shop using cutting tools, production scheduling

is affected by tooling to a lesser degree than under FMS. In most cases, the

production schedule or MRP drives the traditional shop, not tool availability. With

only minor exceptions, tooling is treated like any other inventoried material, Erhom

(1983) believes cutting tools need to be controlled with systems like MRP, but not

forming tools, which are considered a capital asset and tend not to be as perishable

as cutting tools. He adds that cutting tools should be controlled as inventory items,

but the remaining useful life Of each tool does not need to be tracked. A major

benefit Of Erhorn’s method is that it is an inexpensive and simple way to monitor

tool control. Savoie (1987) agrees with this approach because it Often is impractical

to track tool life.

The negative aspect of Erhorn’s system is the risk Of accumulating excess

tools in inventory with little remaining useful life. Wassweiler (1982) advocates

tracking tool usage as an inventory control method, which can be accomplished with

a BOT (Wessweiler, 1982). If tool life is tracked, lower or no tool safety stocks are

required (Savoie, 1987).

Unlike labor and machine time, tooling can be inventoried. This unique

feature allows it tO be scheduled and controlled differently than other forms Of

capacity. There are two common ways in which tools are inventoried. The first

method treats tools as a material component controlled like any other MRP item.
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This method does not consider, tool life, only the number of tools currently in

inventory.

The second method is based on tracking tool life and is more costly than the

first method. It may not be cost justifiable for most cutting tools. The advantage is a

more accurate knowledge of available tool capacity and its current condition.

For forming tools, TRP and the scheduling process are the same as used for

cutting tools. Even though Erhom (1983) does not see the need to track and

schedule nonperishable tools (forming tools), there is research that indicates

Otherwise (Brown, et al. 1981; Huber, 1989). TRP can be used to track tool life,

which can aid in production and maintenance scheduling (Newman, 1985; Ram and

Olumolade, 1987).

3.2.3 Shep Flmr genteel ef Tmls

The final stage Of tool management involves detailed scheduling and selection

of tools on the shop floor, where the physical removal or movement of tools takes

place. Tool selection usually is random, especially when tool life is not tracked. In

automated machining systems, like FMS, monitoring Of internal tool wear is

common, in which case random tool selection is easy and non-detrimental to system

performance (Tarn and Tomizuka, 1989). That is, since tool life is being tracked,

random selection is from among tools with sufficient expected life to process a job

in its entirety. Usually there is only one copy of each type of forming tool, selection

is not an issue.
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To date, no research has addressed tool selection policies involving a tool

type (that is, multiple copies of cutting tools). Intuitively, however, it seems that

choice would be based on whether the tool has sufficient life to process the job fully

or on some specific policy. The first policy is straight-forward, select a tool that will

allow job completion without downtime for tool replacement. The second policy

could include such specific policies as selection to achieve lower inventory (by using

Older tools first) or to reduce the risk of tool failure (by using newer tools first).

Using Older tools first would reduce excess tool accumulation and could incorporate

a policy to replace the tool before the full tool life usage is reached (Lyman, 1993),

thus reducing inventory.

Using newer tools would reduce the risk of tool failure as well as product

scrap and through-put time, and machine utilization would be increased (Banerjee

and Burton, 1990). An added benefit would be better use of finite storage capacity.

As noted, no studies have examined tool selection from among multiple

copies. Such research is needed, and a useful extension would be to explore policies

and interactions of multiple cutting tOOl copies under multi-tool job sequencing.

3.3 DETAILED SCHEDULING OF FORMING TOOLS

3.3.1WW

Decisions about when and where to transfer tools resemble similar issues

related to labor as a resource (Nelson, 1965; Fryer, 1975; Treleven & Elvers,

1985). Whereas, past work has treated labor as a limited resource with a finite life,
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tools, on the other hand, need replacement or renewal (refurbishment) after a certain

period of use. The finite life of tools makes them uniquely different from the labor

resource. This is not to say that there are no similarities; rather, they are not fully

interchangeable.

When to place a tool into production service involves control heuristics

typically based on job priority. Since a job is both machine and tool specific for an

Operation, job heuristics determine which tool should be used next for which job. If

the desired tool is not available, lost capacity may result (Mason, 1991). Thus, shOp

control heuristics need to be developed to reduce or eliminate the effect Of lost

capacity. However, to eliminate the problem would require a forward looking

scheduling capability, and the linkage of capacity requirements to expectations of

tool life.

The when tool decision looks at: (1) when to place a tool in production, (2)

when to pull a tool from production, and (3) when to place a tool into maintenance.

In all three cases, the when decision is time oriented. In the first instance, a tool is

placed into production depending on demand. If a job requires a particular tool for

processing, that tool type is removed from storage and placed on the machine.

Removing a tool from production depends on both the lack of demand (no

job requiring the tool) and on the tool’s condition. When a tool fails or comes due

for PM, it is removed from production. Thus, the third instance relates to the

second. Tool failure dictates the need for maintenance (CM), whereas PM usually

takes place at a scheduled moment (or after an accumulated amount of processing
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time. PM also may occur just after tool inspection, which can take place at any time

but usually is done just after a tool is pulled off the machine (when production is

completed or truncated).

The tool placement decision looks at where to place or remove the tool in

production. These where decisions are not as prevalent as the when decision because

where issues depend on certain conditions such as tool flexibility.

Deciding where to place a tool involves demand for a tool type. If there is no

tool flexibility between or among machines, then there is no Option and where is not

a concern. If multiple machines have a demand for a tool type, however, the issue

Of where to place a single tool copy becomes importance. This is also true if

multiple tool copies havedifferent remaining processing life. The where decision

must analyze the tool life for each tool and job processing time. To date, no

research has addressed this matter. DRC research has shown that the decision about

where to place labor does not have a significant effect on shop performance

(Treleven and Elvers, 1987), but whether this holds true for tools remains tO be

investigated.

3.3.2 Examples ef Tee] Centrel

Figures 3-3 a-c illustrates how tools are controlled in a shop. In Figure 3-3a,

the theoretical production shop is empty and idle. There are three work centers, with

four dedicated tools per work center and one maintenance center. T1-3 is tool

number 3 used at machine center one. Tools that need service are sent to the
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Figure 8-33 Shop Layout and Tool Control
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Figure 3-3b Shop Layout and Tool Control
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Figure 3-30 Shop Layout and Tool Control
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maintenance queue and wait until capacity is available. When service is completed,

the tool is sent back to its designated machine center.

Figure 3-3b shows an active production shop. Each machine has a job queue

specific to each work center. I 1 represents a job requiring tool number one. Looking

at work center 1, the current setup is tool number 4, which the second job in the

queue requires. When the current job is done processing, the tool should be changed

to handle the priority job in queue, but Tl-l is on its way to maintenance facility

and is not likely to be available. At work center 2, the current tool setup is number

1, which the next job in the queue (highest priority) requires, so no tool change is

needed.

In Figure 3-3c, a difficult decision can be seen at work center 2. When the

current job is completed, which job should be processed next? Should the tool be

kept on the machine and the third job in the queue run so that a setup is avoided? Or

should the tool be pulled and setup time incurred in order to process J4? The

tradeoff is between the expense Of an additional setup and the possibility Of late

delivery on a higher priority job (Mahmoodi et al., 1990). The situation at work

center 3 is similar except that the two highest priority jobs require the same tool.

Work center 1, the first two jobs in the queue are blocked out of production until

the necessary tool is available from maintenance. Tool blocking, due to the lack of a

tooling resource, is similar to the situation Goodman (1979) noted regarding labor

blocking in a DRC.

Figure 3-4 a and b illustrates how tools are controlled when there is tool
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Figure 3-4a Shop Floor and Tool Control

(Tool flexibility with no duplicate)
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Figure 3-4b Shop Floor and Tool Control

(Tool flexibility with no duplicate)

W01
TOOL

CRIB

 

 

L , T10
 

 

T1

W62

  
  

T3

T4

T6

T7

 

  W03  

 

T8

TOOL ._T2

MAINTENANCE

T6“

    
  

 

 

 

 
 

  
 

 
 



 
flexibility. From

center, so job rou

work center has

needed. If so, th _

crib. If not, it gr

reICEISCd to the s':

the same tool sir

T10). a machinJ

resource, T001 t

F1gtires 1

there are multip

due to excess
di

tradEOff is COS“

capacity, and a

firm vauires c

greater the mm

tool to S€1ect II

should tool life

rese<~lreh.  
 



89

flexibility. From centrally controlled tool crib, tools can be assigned to any work

center, so job routing flexibility is possible. As was the case in Figure 3—3, when a

work center has completed a job, the tool is inspected to determine if servicing is

needed. If so, the tool is sent to the maintenance center and then back to the tool

crib. If not, it goes directly back to the tool crib. Depending on how jobs are

released to the shop floor, it could be possible for different work centers to require

the same tool simultaneously. With no duplicates for each tool type (Tl through

T10), a machine can be blocked from production due to lack of available tool

resource. Tool blocking is a factor in lost capacity (Mason, 1991).

Figures 3-5 a and b shows that the risk of tool blocking is reduced when

there are multiple copies Of each tool type. With one copy per work center, blocking

due to excess demand is unlikely. Less tool blocking means less lost capacity. The

tradeoff is costs, which include: increased tool investment, additional storage

capacity, and a more difficult selection process. The number of duplicate tools a

firm acquires can be constrained by its storage capacity and available capital. The

greater the number of duplicate tools, the more complicate is the decision of which

tool to select next for processing. Should Older tools be chosen over newer tools, or

should tool life be the criterion? This question should be addressed in future

research .
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Figure 3-5a Shop Floor and Tool Control

(Tool flexibility with multiple duplicates)
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Figure 3-5b Shop Floor and Tool Control

(Tool flexibility with multiple duplicates)
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CHAPTER 4

RESEARCH METHODOLOGY AND SIMULATION MODEL

4.1 INTRODUCTION

The research considered in this study focuses on experimentation in a

production shop system which is machine and tool limited. Looking at either one of

these resources separately gives an unrealistic view of shop scheduling. A more

realistic approach is to examine each resource (machine and tool) in combination.

However, this requires that the production system have both tools and machines

available for processing. A vast majority of past research investigating the Dual

Resource Constraint (DRC) environment has examined only machine and labor

availability through dispatching rules and labor assignment (Treleven, 1989). This

research differentiates itself from past research by replacing labor with tooling. The

benefit of examining a DRC environment is the identification of different tooling

factors which could influence shop performance.

To test the effects of finite life tooling, a simulation model is used to gather

data on a hypothetical DRC flow shop. The DRC shop will be analyzed under a

number of different experimental conditions. The output will then be subjected to

analysis of variance (ANOVA) statistical tests for the performance measures and

Tukey HSD multiple comparisons for both a_p;i_o;i, hypotheses and miles tests.

The simulation method of analysis was used in order to better understand

tooling and to develop effective control heuristics. In addition, several firms

91



92

interviewed prior to developing the model expressed several concerns, including: 1)

the need to understand how variance in tool life and maintenance service time affects

the shop and 2) the need for usable and simple control procedures.

4.2 MODEL DEVELOPMENT

Proper development of a simulation experiment necessitates that several steps

be initially considered. An essential part of the simulation development requires that

a detailed evaluation Of the model be conducted on an ongoing basis. Fishman and

Kivint (1968) classify the simulation model evaluation process into three areas: 1)

validation, 2) verification, and 3) problem analysis. A brief description of each is

provided below with a detailed discussion presented later.

1) Validation: Determines if the model accurately represents the real system

or environment.

2) Verification: The process of ensuring that the model behaves the way it

was intended.

3) Problem Analysis: The process of drawing statistically significant

inferences from the data generated by the simulation model.

The order of verification and validation is not paramount as far as research

methodology is concerned (Law and Kelton, 1991). In fact, the two should proceed

simultaneously throughout the model’s development. Problem Analysis, on the other

hand, is related to the output of the model. It can only occur after the model has

been both verified and validated. Problem Analysis will be covered in Chapter 5 in
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Design Of Experiment section.

4.3 VALIDATION OF EXPERIMENT

The validation process attempts to answer two questions, 1) does the model

behaves in the same manner as the real life system?, and 2) what inferences can be

drawn from the model? An interesting component to validity is the fact that models

can never be proven correct, but rather incorrect.

Cook & Campbell (1979) provide four methods which can be used as

validating techniques. These consists of the following forms of validity: (1)

External, (2) Construct, (3) Internal, and (4) Statistical Validity. Each of these forms

Of validity is discussed below in detail with respect to simulation modeling.

4.3. l Extemfl Validity

External validity (face validity) deals with the question of whether the model

represents the real world sufficiently to apply the results. One way to have external

validity is if the model is based on information from an actual production

environment. By using actual shop data, any conclusions drawn or policies

developed can, in general, be applied to the shop. One problem with this approach is

that results frequently tend to be shop specific and may not be generalized to other

conditions or shops.

In developing the shop model for this research, extensive interviews (were

conducted. Discussions with plant managers and shop floor personnel provided
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insight into the workings of flow shops and job shops. Using the information derived

from these interviews, a general model was developed with a high level of external

validity.

4.3.2 Censtgget Validity

Construct validity looks at the causes and effects of manipulated variables

which determine how generalizable the results are. Simulation only considers a

certain number of constructs in the model. Real shops involve many more

constructs. Lack of generalization is due, in part, to the limited constructs in the

simulation model. This is a concern that exists when using simulation. This problem

can be addressed through proper selection of relevant measures and constructs.

4.3.3 Internal Validity

Internal validity deals with the causal relationship between two measured

variables. Does the independent variable cause a variation in the dependant variable?

A causal relationship exists between variable X and variable Y, if Y is a direct

result of X. There are several threats to internal validity which include: history,

testing, instrumentation, and diffusion of treatment (Kirk, 1982). The unique feature

of simulation is that it does not suffer from these concerns. The major concern of

internal validity is whether the model Operates correctly.

4.3.4 Statistieel Qenelesien Validity
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The existence of co-variance between input (x) and output (y) allows for

inferences to be made with regard to the model. The ability to draw conclusions or

inferences about the co-variance is dependant on the following (Cook and Campbell,

1979).

- Statistical Power: Inadequate sample size may cause the Null hypothesis not to be

rejected when there is a true significant difference in means. A minimum sample

size was determined (see Section 4.4.4) to ensure sufficient power. Another means

Of increasing power is the reduction of irrelevant sources of variation by using

common random numbers.

- Violated Assumptions of Statistical Tests: Certain assumptions must be met if data

analysis results can be interpreted. These assumptions include: normal, identical and

independently distributed (IID) variables, and homogeneity of variance (see Section

4.4). Other assumptions which affect statistical validity involves random assignment

of variables and deciding if the model reaches steady state condition.

- Fishing and the Error Rate Problem: As the number Of statistical tests increase, the

probability of drawing an incorrect conclusion increases. Likewise, as the number of

factors and levels in an experiment increase, so does the number of comparisons. To

reduce the likelihood of a false conclusion, a larger confidence interval is needed.

- Random Irrelevancies in the Experimental Setting: Random features, like

processing time, can affect the outcome of the dependent variables and increase

estimated error. The advantage of simulation is that common random number

streams are used, so that appropriate comparisons between treatment effects can be
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made (Law & Kelton, 1991; Kleijnen, 1987).

4.4 SIMULATION DESIGN ISSUES

There are a number Of issues which must be addressed when developing a

simulation model. These included: verification, initialization bias, variance

reduction, and sample size. By examining these issues, proper statistical techniques

can be applied and valid inferences regarding output made.

4.4.1 Verifieegien

As stated previously, verification is an ongoing process that should occur

while the research modelis being developed. Verification centers on whether the

algorithms used Operates correctly and whether the control procedure is modeled

correctly.

Most simulation text books (Pegden, Shannon, and Sadowski, 1990; Law and

Kelton, 1991; and Banks & Carson, 1984) provide the basic steps for verification of

a model. The steps used for this model include:

1. Informal Analysis

Informal analysis starts with a review by individuals who possess the

appropriate knowledge and abilities necessary to find errors. Use of fellow students

aided in this process.

2. Structured Walkthrough

This technique is the debugging process for verification. Advance simulation
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software packages possess the ability to find system error and allow monitoring

during initial runs. The Siman Trace command allows event by event monitoring of

the model and an in-depth analysis of the flow of jobs. Furthermore, the progress of

jobs were plotted to see if they meet expected results.

3. Dynamic Analysis

This technique involves verification by running the model and observing the

models parameters at different levels. This stress testing pushes the model to its

limits and further provides evidence that the model is working properly.

4. Comparison to Known Output

To further verify that the model is operating correctly, comparisons to other

similar models can be made. This measure requires that the model have similar

experimental conditions. The DRC model developed for this research cannot be

compared to other models directly because Of the many differences. Instead, the

results were presented to the interviewed companies for their input and comparison.

Each of the techniques used for verification are iterative.

Each technique was performed on the model as needed to ensure that the model was

verified.

4.4.2 magnum

Non-terminating models must be concerned with start-up conditions. Many

models are started idle and empty which means that machines are free of work and

there are no jobs in queue. For non-terminating systems, the initial condition is not
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representative Of the expected operating conditions and will cause a bias in the

measured parameters. Only after the model is run does it reach an equilibrium or

steady state point. Until that point, the data collected is of little statistically analytic

value due to bias which lower performance values. Once steady state is reached, the

system exhibits long term behavior.

There are a number Of techniques for reducing start-up bias [Wilson &

Pritsher, 1978]. The three most recommended approaches include: A) using a long

simulation run, B) truncating (discarding) a portion of the data and C) selecting

initial model conditions to reduce bias.

Of these three techniques, truncation was selected due to its ease of

application and effectiveness. This technique requires that the initial data be

discarded. By dropping this transient data, the biased data is eliminated from the

study. A good estimate of the start-up condition length is required.

Several methods were used to determine the truncation point (steady state).

The first method used is the visual inspection of a graph (Pegden et al.,l990). This

graphical procedure requires several replications followed by applying a moving

average on the mean values (Welch, 1983). The data is then plotted graphically to

see when the performance variable reaches steady state. Based on this method, it

was estimated that 100 jobs would need to be truncated. While this method is

simple, it lacks statistical proof that initialization bias is eliminated. For this reason,

the Schruben, Singh, and Tierney (1983) technique was used.

This second method is based on the Schruben (1982) and Schruben et al.
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(1983) technique for detecting the presence of initialization bias in a time series. The

technique tries to determine if significant differences exist between batch means

from an initial run. The data is divided into 2 parts (halves) where k < N, with the

second half usually being much larger than the first. The following steps are used in

detecting negative initialization bias on time in system performance measures.

Step 1. Determine the sample variance and degrees of freedom using the batched

_ (,2

var =—<le N

method. The degrees of freedom for t,, is equal to (n/2)-1 where n is the number of

batches.

Step 2. Determine the t statistic based on Schruben et al. (1983).

 t,=< £0): (pawn-7k)

Step 3. If found not significant, the null hypothesis can be rejected, indicating no

difference between YN and Y, means. In addition, if the null hypothesis is rejected,

than the first half of the data is dropped and another batch of jobs (next k jobs) is

used as the first half. This process is repeated until the null hypothesis is accepted

(Kleijnen, 1987)

The Schruben et al. (1983) technique was performed for each treatment (112

cells). The number of jobs needed to be discarded ranged from 85 to 135. The

actual number Of jobs discarded was 2000 for the start of each treatment run because
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this was the value chosen for the batch size. Truncating by batch ensures that all

remaining batches are of equal size which is relevant when statistically analyzing the

data.

4.4.3W

The use of Common Random Numbers (CRN) as a variance reduction

technique in the experimental design can improve the analysis of the results [Nelson,

1990]. CRN can also reduce the number of replications required by a model while

achieving the same level of precision of the model (Pegden et al., 1990). The

Objective of CRN is to reduce variance in the point estimate of the mean response

except for that caused by the treatment. Reducing variance allows for smaller

confidence intervals of the performance measures. Smaller intervals allow for more

confidence in inferences drawn from the interval.

Use of common random numbers starts with a numerical seed value for a

given random number stream. The numerical swd value is the identical starting

point for each treatment. A random number stream is assigned to each unique

distribution (i.e. arrival time, processing time, and set up time) that requires

generating a random variable. This ensures that each varied model configuration will

have matched (synchronized) random numbers.

The use of CRN poses a problem through the loss of independence of

samples. By not synchronizing one random number stream, independence between

treatments is increased (Mihram, 1974). A total Of six random number streams are
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used. The only random number stream not synchronized was that used for defining

which machine a job would be assigned to. Arrival rate, processing time, setup

time, tool life, and maintenance service time were all matched for each treatment.

Another major problem with the use of CRN is the fact that it induces

autocorrelation between batches. This problem can be solved by having sufficiently

large batch sizes (refer to Section 4.4.4.2).

4.4.4 Sample Size

Sample size (or run length) is a key concern for statistical analysis. An

inappropriate sample size may cause biased data and a non-normal distribution.

When the sample size istoo small, autocorrelation becomes a factor which affects

the statistical analysis. A larger sample size can resolve these issues and provide

high statistical power. A pilot run for mean time in system was conducted in order

to determine the sample size for each treatment condition which ensure that the

effects of normality and autocorrelation did not influence the statistical analysis. A

batch size Of 2000 jobs was selected with 100 batches per run (treatment). This size

is considered sufficient by Schmeizer (1982) for estimating confidence intervals.

4.4.4.1 Nermgity

Traditional statistical analysis, like ANOVA, requires that the data be

normally distributed. Some variation in normality is allowed because of the

robustness of ANOVA (Neter, Wasserman, & Kutner, 1990). With small batch
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sizes, it is less likely that observed values will be distributed normally. In

simulation, data tends to be highly correlated, and thus batch sizes have to be

sufficiently large for the means to be normally distributed.

Several methods can be used to determine if data is normally distributed.

The simplest method is to graphically plot the output (mean of n batches) and

visually inspect the results (Pegden et al., 1990; and Wilkinson, 1989). While this

method was used initially, the technique lacks statistical proof.

Instead, the method used for testing normality was Filliben’s (1975)

probability plot correlation coefficient test. Filliben’s method requires testing of the

correlation of batch means by comparing them with Filliben’s critical correlation

tables. If the correlation of the batched means surpasses the critical value from the

table, then the data is considered normal. If not, then the batch size is increased and

the test repeated. After testing each experimental condition, the minimum batch size

needed to ensure normality was between 900 to 1000.

4.4.4.2 mama

Autocorrelation allows the variables of batch K to directly influence the

variables of batch K + 1. The smaller the batch size, the stronger the influence.

Law and Carson ( 1979) and Mihram (1984) suggest that the batch size be increased

until they become uncorrelated. To test for autocorrelation, the Von Neumann

statistic (q) (as recommended by Kleijnen (1987)) was used to test the output (flow

time). The value of q can be computed as a function of the number of batch means
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(n). A single large batch is run and the test statistic divides the run into the greatest

number of batches (n) possible without being autocorrelated. If batch means are not

independent or normally distributed, then the null hypothesis is rejected and the

batch size is increased. Kleijnen (1987) further recommends that a value

corresponding to n= 100 provides the autocorrelation test with sufficient power.

Each treatment was tested using the Von Neumann test. The minimum batch size

necessary to ensure that autocorrelation was not a factor was 500 jobs.

4.5 DESCRIPTION OF SIMULATION ENVIRONMENT

The simulation model is described in the following three sections. In the first

section, a computer simulation using a discrete event model with user written

subroutines is described. The second section discusses the control procedures for

both job and tool, and the final section describes the assumptions made in the design

of the model.

4.5.1SEW

The simulation model is a flow shop in which identical orders (job) follow a

specific path. This is in contrast to a job shop which randomly routes each job for

processing. Discussions with managers from several firms showed that forming

tools, common in stamping or injection model plant, tend to operate using a flow

shop pattern. On the other hand, cutting tools were found to be more common in job

shop environments. Since the focus of this research is on forming tools, a flow shop
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model was selected to enhance the study’s external validity.

Figure 4-1 describes the sequence of events required to process a job. Jobs

arrive based on a Poisson distribution at a negative exponential inter-arrival rate.

Upon arrival, job attributes (parameters) are defined, including: due date, processing

and setup time, and machine and tool requirements. The following sections describe

each Of the parameters in detail. Table 4-1 provides a summary of the values

selected for the different model parameters.

Table 4-1 Summary of Simulation Environment

   

  

 

 

 

 

 

 

 

   

Description

Job Arrival Exponential, Mean based on 90% machine Elimtion

Due Date TWK, k=7

Processing Time Normal Distribution, Mean = 10 hrs., Std.Dev.= 1.5 hr

Setup Time Normal Distribution, Mean = 2 hrs, Std.Dev.=.2 hrs.

Actual Tool Life Normal Distribution, Mean = 120 hrs.

Std.Dev.= 14.12 & 38.2

PM Point of Tool Life Constant, 80% of Mean Tool Life

Preventive Maintenance Service Time Log-normal Distribution with Mean of 3.0 hrs.,

Variance=.3 & .9

Corrective Maintenance Service Time 2.0 * Preventive Maintenance Service Time

fl  
4.5.1.1Wfl2

Due date is determined by taking the jobs arrival date plus a multiple of the

jobs processing time (TWK method). The following equation is used to calculate a

jobs due date (Conway et al., 1967).

DUE DATE = ARRIVAL TIME + K*TOTAL PROCESSING TIME

Where: K = constant

The value for K in the TWK due date assignment procedure is a major
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determinate in the percentage of jobs past their due date. TWK was selected because

it has been shown to be an effective method for setting a due date with respect to

performance measures such as tardiness (Baker, 1984). A K value of 7 was selected

which resulted in 15 to 30 percent Of jobs being tardy (Lyman, 1993). Several past

DRC models have also found K=7 to be a reasonable value (Melnyk & Lyman,

1991).

4.5.1.2 Ergessing Q51 Setup Time

Processing and Setup time is determined from a random normal distribution.

A normal distribution was chosen because demand patterns from customers tend to

vary around a mean value, with equal probability and variance. Conversations with

plant schedulers indicate that processing time per customer varies only slightly. It

was estimated that the typical job (order) took an average of 10 hours Of processing

time. Once processing starts for a job, the machine runs until the job is complete

(unless tool failure occurs).

Setup time was not a major factor for most plants visited because of quick

die changes. Setup time ranged from a low of 3 minutes to as high as 6 hours.

While most setup times were less than an hour, when it does exceed one hour, tool

setups tend to be a key concern. For this reason, setup time was set at two hours (20

percent of processing time) with a normal distribution (see Table 4-1).

4.5.1.3 Maehine and Tml Assignment
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Machine and Tool selection defines the location where a job will be

processed. The job is first randomly assigned a specific tool from a uniform

distribution. Once assigned a tool, the job is assigned a machine based on Table 4-2.

Table 4-2 shows that there are four tools per machine and that a tool is specific to

only one machine as designated by the value of l. A zero value designates that a

tool cannot be assigned to that machine.

Table 4-2 Tool-Machine Assignment Matrix
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Once assigned a machine (based on tool requirements), the job is sent to the

appropriate machine queue. The job will wait in queue until the time when it’s

priority establishes it as the next job for processing. The establishment of priority

within a queue is part Of the job priority control policies which will be discussed in

Section 4.5.2. Once a job is done processing, the job then exits the system and is
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considered complete.

Should a tool fail while a job is being processed, the job must return to the

machine queue. The job’s processing time is decreased by the amount of time the

tool was able to process the job. The failed tool is then sent to the maintenance

queue and waits for Corrective Maintenance (CM) to be performed. The job waits in

the machine queue until such time as the tool becomes available and job priority

rules establish the job as the next for processing. This describes the basic workings

of the simulation model. The next section will discuss how jobs are selected for

processing, and the rules which determine when tools are sent in for corrective or

preventative maintenance.

4.5.1.4 Dispetehing Rele

Only one dispatching rule, minimum slack, was tested in this model.

Minimum Slack (MINSLK) was chosen for several reasons. First, MINSLK has

been shown to be a robust dispatching rule over a number of performance measures,

particularly with mean and standard deviation of tardiness (Conway et al., 1967 ;

Lyman, 1993).

The other reason for the exclusive use of the minimum slack rule was based

on conversations with several plant managers, who were all using due date oriented

rules. Promised delivery dates drive the production planning process throughout the

plant. The choice of either Earliest Due Date (EDD) or MINSLK were considered.

MINSLK was chosen because it considers a job’s processing time.
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4.5.1.5 Shep gentrel Heuristics

In a DRC model, job priority and tool control decisions must be made

simultaneously. To initiate job processing, both machine and tool resources must be

free (idle). Both resources can then be seized and processing started. It is this

availability which is considered when establishing job priority. The specific control

heuristics will be presented in Sections 4.5.2.1 and 4.5.2.2.

4-5-1.6 We

The average tool life, or mean time between tool failures, is based on an

arbitrary value. The arbitrary value is derived from discussions with various plant

personnel and managers. From these discussions, it became clear that few firms or

individuals knew with any certainty what the average time between failures were for

most forming tools. Frequently, companies use a standard life value for maintenance

policies which considers the number of production hours or parts produced. Even

with this information, tool life ranged from as low as fifty hours to a high of one

thousand hours. It was the lower bound of tool life that posed the greatest problems

for shop personnel. For this reason a value of 120 hours was selected for mean tool

life. Banerjee and Burton (1990) used a mean tool life (MTBF) of between 70 and

130 hours. The value of 120 hours was within their range and was considered short

enough to cause significant scheduling problems.

4.5.1.7 Peeveptjye Mg'ntenepee Peint and Pergntege Estimate
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Preventive maintenance (PM point) is usually performed before the mean tool

life. The exact time is difficult to estimate because PM is based on tool inspection

procedures. For this model, sample runs will establish the exact value for the PM

point. A value 20 percent (100 hours) below the mean tool life would not be

unreasonable. This falls on the conservative (low frequency) side Of Banerjee and

Burton’s (1990) PM policies.

For the variable PM heuristics, a value of 10 percent (above and below the

PM point) was selected for the PM range. The value of 10 percent is equivalent to

10 hours for VARHI, VARLO, and JDDTL, and 20 hours for VARPM and

MQBPM. The 10 percent value is that it corresponds to the mean processing time

(10 hours). On average, half the jobs will have a processing time which is less than

or equal to the variable PM range. Should a variable PM range of less than 10

percent be used, the benefits of variable PM would decrease. Future studies should

examine the issue Of appropriate ranges for PM time.

4.5.1.8 Mgiptenapee Segig Time

Like mean tool life, maintenance service time is based on discussions with

production firms. Information on the length Of maintenance service time was

available for both corrective (tool failure) and preventive maintenance. A mean PM

value of three hours was considered reasonable for most moderately complex

forming tools. The CM service time tends to range from no difference from PM, to

three times as long. The middle range (2.0 times) was agreed upon as appropriate.
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This range is also consistent with past research which compare PM and CM (Kay,

1978; Banerjee and Burton, 1990).

4.5. 1.9 Eegmeter Semmeg

It should be noted that several of the parameters discussed in this chapter

(dispatch rules, mean tool life and service time), could also be examined as

experimental factors. This research has focused on control rules under stochastic

environments. Future research could examine variations of these parameters.

4.5 .2 Experimental Eaeter Levels

Four experimental factors will be examined: job priority rules, tool control

rules, tool life distributions, and service time distributions. Table 4-3 illustrates the

factors and the number of levels for each factor. The following sections will describe

each level within a factor.

4.5.2.1 19b Prietjty Hepristies

Job priority heuristics determine which job in queue will be processed next.

Prior to the release Of a machine and tool from production (job completion or tool

failure), the machine queue is reviewed. The review process prioritizes jobs in queue

by considering a number of factors including: dispatching rule, sequence

dependency, and tool condition. Listed below is a detailed explanation of the four

job priority heuristics. It should be noted that all heuristics must consider resource
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Table 4-3 Design of Experiment

 

 

 

 

 

 

FACTORS TREATMENTS "“7““
LEVELS

DIsPATcmNo nuLE

JOB PRIORITY eEODENCE DEPENDENCT

HIURIOTICS PRIORITY eETTINa RULE 4

esousNCE DCHEDULINO

a TOOL LOAD

NO PM PERFORMED

FIXED PM POLICY

\ARIADLE PM - Low

TOOL CONTROL \ARIAELE PM - HIGH 7

HEURISTICS \ARIADLE PM — Lowomou

MAINTENANCE eACItLoo

.Ios DUE DATE - TOOL LIFE

TOOL LIFE Low \ARIANcs

DISTRIBUTION HIGH VARIANCE 2

MAINTENANCE Low VARIANCE

DISTRIBUTION HIGH MARIANCE 2   
 

availability for both machine and tool.

1. Dispatching Rule with Tool Condition Information (DRTC). Priority is given

to the job with the lowest value minimum slack (MINSLK, due date minus

both job processing and current time) given the tool needed has sufficient life

(before PM). No consideration is given to the issue of setup changes, nor the

current machine setup. The Objective is to process those jobs which have the

earliest due date, yet, not risk the possibility of tool failure while processing a

job. This rule is an adaptation of a simple dispatching rule by considering

finite tool life.
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Sequence Dependency and Tool Condition (SDTC).

This rule combines the first job priority rule (DRC) with sequence dependency.

Priority is given to all jobs with the current tool setup (machine setup). Should

there be more than one job requiring the current tool-machine setup, then

priority is based on MINSLK dispatching. The current tool setup will remain,

until: 1) no jobs require the current tool, 2) the tool reaches its PM point, 3)

or the tool fails. If no jobs require the current tool setup, and if the tool has

not reached its PM point or failure, then this heuristic reverts back to job

priority DRTC. This rule attempts to reduce the frequency of tool changes

while still processing jobs based on due dates. It is an exhaustive rule which

attempts to process all jobs requiring the current tool setup prior tO changing

tools. Such exhaustive rules have been found to be effective in past research

(Mahmoodi and Dooley, 1991). The problem with exhaustive rules is that they

tend to delay jobs with earlier due dates but require different tool setups.

Priority Setting Rule (PSR4).

This rule uses four levels of job priority with tool condition information.

Where SDTC can inflict delays in meeting job due dates because it is

exhaustive, this rule attempts to elevate this problem. PSR4 attempts to utilize

current setups and reduce excessive tool changes while simultaneously

considering the job’s due date. Should a job become past due (negative slack),

it is given priority over all other jobs regardless of the tool setup. Table 4-4
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illustrates the four priorities.

As can be seen in Table 4-4, the first priority is given to past due jobs

which require the current setup. Second priority is given to those negative

slack jobs requiring a tool change. Jobs that are not past due are given lower

priority. This includes third priority for jobs requiring the current setup, and

fourth priority for jobs requiring a tool change. Melnyk et al. (1989) and

Ghosh et al. (1991) found this to be an effective rule, both in flow time and

due date performance. An element not considered by either Ghosh et al. or

Melnyk et al., that this rule considers, is tool condition (PM point). This rule

follows the same procedures as specified in SDTC. MINSLK dispatching is

used when more than one job exists within a priority.

Table 44 Priority Levels For Job Priority Rule PSR4.

  

 

 

 

 

Job Due Date Status

Tool Setup Past Due Not Past Due

Condition Negative Slack Positive Slack

Current Setup 1 3

Change Setup 2 4    
 

Sequence Scheduling based on Tool Load (SSTL).

This rule is comparable to SDTC when sequencing jobs based on the current

setup. SSTL selects the job which requires the same tool setup based on

MINSLK and tool condition. However, it differs in the job selection process
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when a tool change takes place. An analysis of the machine queue for

production time per tool is performed. The job processing time is summed for

each tool. The total processing time is then compared to the remaining tool life

(PM point) for each tool. Should total processing time be less than the

remaining tool life, then the algorithm continues to add job processing time

until either all jobs are exhausted or total processing time exceeds remaining

tool life. If total processing time is greater than remaining tool life, then the

algorithm subtracts the lowest priority job’s processing time from total

processing time for each needed tool. The closest match between processing

time and tool life without exceeding the tool life (PM point) is the next tool

selected for production. Jobs are then dispatched according to the MINSLK

dispatching rule.

The intent of this rule is to compare production demand to tool life.

This will reduce the number of tool setup changes and allow sequence

dependency to consider production demand.

45.2.2W

Tool control heuristics determine when a tool is to be sent in for maintenance

(CM and PM). By controlling when a tool is sent in for maintenance, the rule

effectively controls tool availability. It should be noted that all tool control rules

examine a single tool at a time. Listed below is a detailed explanation of the seven

tool control rules.
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NO decision, allow tools to fail and perform CM (NOPM). The tool is

removed from production only when it has failed. PM is not considered. While

a penalty is incurred by a tool requiring CM, the frequency of maintenance

will be less than those rules which allow for PM. Several models have found

that a CM policy is preferred over PM policies (McCall, 1966).

Fixed Point In Time PM policy (FPTPM). This myopic PM policy uses a

single fixed value in the maintenance decision. Any time at or after this point

in time, the tool will be sent in for maintenance. If a tool is in production and

the tool researches the PM point, the tool will continue processing until the job

is completed. Oncecthe job is completed, the tool is then send in for PM. If,

however, the tool life is less than the PM point, the tool is kept available for

production.

Variable PM point with Low Frequency of Maintenance (VARLO). This

policy uses a range of time for the designated maintenance point. The range

for the variable point is a*PM past the tools normal fixed PM point where a

= 10%. With PM point being equal to 100 hours of processing time, this rule

allows an extra 10 hours (100*10%) Of tool usage. If the tool is past its PM

point, there are two options. First, if no job exists which can utilize the extra

time (past PM), then the tool is sent in for maintenance. The second Option is

that if there is a job which can utilize the extra tool usage, then the tool
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remains in production. If the current tool life is prior to the PM point, then the

tool remains in production.

The intent of this rule, as compared to FPTPM, is to allow more jobs

to be processed before a tool needs maintenance. While this rule increases the

risk of tool failure, a benefit is earlier job completion.

Variable PM point with high frequency of PM (VARHI). VARHI is the

opposite Of VARLO in that it allows a tool to be sent in for maintenance prior

to the fixed PM point. The same a level is chosen (10%) as in VARLO. A

tool can be pulled for PM after 90 hours (PM-PM*a) of processing time. If

there exists a job which can utilize the tool for this time (up to PM point), then

the tool remains in production. If tool life is equal to or past 90 hours with no

job capable Of utilizing the remaining time up to PM, then the tool is sent in

for PM. If the tools life is less than 90 hours, the tool remains in production

service.

The Objective of this tool rule is to see whether early PM improves

performance over allowing a tool to continue processing. The tradeoff is, the

lower risk of tool failure versus more jobs past due because of tool availability.

Variable PM point (VARPM) combines VARLO and VARHI. This rule allows

for either early of late PM because the range for the maintenance decision

include 90 to 110 hours. If tool life is less than 90 hours, the tool remains in
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production. If the tool life is greater than or equal to 110 hours, the tool is sent

in for maintenance. This leaves a 20 hour range in which the tool can remain

in production or be sent in for PM. Should no jobs exist which can use this

time (20 hours), then the tool is sent in for maintenance.

The purpose of this rule is to determine whether the combination of

VARLO and VARHI is better than either rule alone. By allowing greater

flexibility in the PM decision, the positive attributes of each rule are

incorporated.

Maintenance Queue Backlog and variable PM point (MQBPM). This rule

combines tool control VARPM with an additional consideration of the

maintenance queue. This rule preempts the selection of a job which, under

VARPM, would have utilized the time between 90 and 110 hours depending on

maintenance queue. If the maintenance queue is empty, the tool is sent in for

PM, regardless of whether a job is available to utilize the tool. The one

exception to this is if there is a job past due that can utilize the tool. The tool

is then used for processing. This rule is attempting to consider the possibility

of quick PM turn around as a means of reducing lost tool availability.

MQBPM also tends to stabilize the work load for the maintenance process.

MQBPM allows flexibility in PM decision which occurs at the shop

floor. Considering tool and shop conditions when deciding PM lowers the

decision making to the shop level where information is available.
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7. Compare Job Due Date to Tool Life (JDDTL). This rule looks at the job’s due

date when deciding when to send a tool in for PM. JDDTL operates identically

as VARLO, with the exception of jobs which are past their due dates. JDDTL

keeps the tool in production until all past due jobs are processed, regardless of

tool life. Once all past due jobs are completed, the tool is then sent in for PM.

Processing of late jobs may take the tool life far beyond the PM point. This

assumes that the tool has not failed, in which case, the tool would be sent on

for CM. While this rule increases the risk of tool failure, it attempts to process

jobs which are late. JDDTL is the only rule which considers the due date

status of jobs.

4.5.2.3 Tml Life Distfipgtien

Two levels of variance will be examined using a Normal distribution with a

mean value of 120 hours. The first level will look at low tool life variance (LOW).

The second level will consider the impact of high variance on system performance

(HIGH). The two levels, low and high, allow for comparison of the impact of

variance in tool life on shop performance. The LOW value corresponds to a 10

percent chance of a tool failure prior to the PM point. The HIGH value corresponds

to a 30 percent chance of tool failure prior to the PM point.

4.5.2.4WWW

As with tool life, maintenance service time will have two levels Of variance
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using the log-normal distribution. The first level will examine low variance (LOW),

and the second level looks at high variance (HIGH). Using these two levels, a

comparison of the impact of maintenance time variance on shop performance will be

examined.

4.5.3 ModeLAssiunntiQm

The assumptions made in this model are similar to other hypothetical job

shops. The shop is composed of five non-identical machines and twenty non-identical

tools. Four tools are assigned to each machine with no flexibility or movement

between machines (see Table 4-2). Table 4-5 provides the assumptions used in this

research.

Table 4-5 Model Assumptions

 

Assumptions
 

Tools are machine specific, with no cross machine movement.
 

Once a tool fails, processing stops and the tool is sent in for maintenance.
 

Actual tool life is never known under a stochastic distribution.

 

Only tools fail, no machine failures.
 

Job preemption by other jobs is not allowed.
 

Upon tool failure, no damage occurs to either the job or machine.
 

Setup time is incurred only when tools are removed from a machine.
 

NO setup time is incurred when changing jobs on a machine as long as

they are using the same tool (Kannan & Lyman, 1992).  
Should a tool fail while processing a job, the job’s processing time is
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decreased by the amount of time the job was in for processing until tool failure

occurred. The job’s remaining processing time will consist of the unfinished portion

of its total processing time. A job is not considered complete until it is fully

processed.

These assumptions parallel the assumptions of past DRC research, but contain

some noticeable exceptions regarding finite tool life. Parallel assumption can be

found in Melnyk et al. (1989), Melnyk and Lyman (1991), Kannan and Lyman

(1992), and Lyman (1993).

4.6 PERFORMANCE MEASURES

The performance measures selected in this study are those measures

considered to be common means of evaluating shop performance. The use of time in

system (mean and standard deviation) is a common measure Of shop performance.

The use Of time in system measures, provide an avenue for comparison to past DRC

results. For this reason, mean and standard deviation time in system measures were

used.

When discussing performance criteria with the interviewed managers, they

placed a high emphasis on meeting due dates. This ability to meet promised due

dates has also been emphasized by other researchers (Mahmoodi et al., 1991). For

this reason, the next three measures (three to five) focus on issues relating to

delivery performance.

The last measure, percentage of tool failures, tracks the ratio Of CM to total
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maintenances (CM plus PM). The uniqueness of this measure focuses on how it

should help explain variations in the other five performance measures. Percentage of

tool failures also allow a comparison of tool control heuristics with respect to tool

failures.

The six performance measures are:

1. Mean Time in System

2. Standard Deviation of Time in System

3. Mean Tardiness

4. Standard Deviation of Tardiness

5. Percentage of Jobs Late

6. Percentage of Tool Failures

The use of cost as a performance measure was not considered due to the

complex nature of forming tool costs (materials, etc.) and proprietary concerns.

Future research is needed to compare the costs of corrective maintenance (CM)

verses preventive maintenance (PM).

4.7 DATA COLLECTION

The simulation was conducted using SIMAN 3.5 software package on a

microcomputer. Fortran subroutines were used to customize the model and to collect

output data. The use of common random numbers were used for five of six random

number streams to reduce variance. A batch size Of 2000 jobs was used to collect

data with 100 batches per run. This ensured both independence and normality so that
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inferences are meaningful.

4.8 SUMMARY

The hypothetical DRC flow shop proposed for this study will be examined

using a simulation package. Issues pertinent to simulation methodology such as shop

Operations, model assumptions, parameters, and performance measures were

presented. Other issues covered pertain to validity and statistical inferences (variance

reduction, normality, etc.).

The hypothesis and data analysis will be covered in Chapter 5. In addition,

Chapter 5 will also describe the statistical analysis of the data and residuals for

normality and homogeneity of variance.



CHAPTER 5

RESEARCH HYPOTHESES AND DATA ANALYSIS

5.1 INTRODUCTION

As outlined in Chapter 1, this research will investigate the effects that a finite

life resource has on a DRC shop. In addition, both job and tool heuristics which

consider finite resource life have been developed to evaluate shop performance. This

investigation will provide insights into how finite tool life impacts shop performance

and what control methods work best under varied conditions.

The first two sections of Chapter 5 describe the questions and hypotheses that

will provide the insight into the finite life resource and DRC shop that will be

discussed in Chapter 6. The last section of this chapter will entail an analysis of the

simulation data. This includes checking the residuals for normality and homogeneity

of variance, as well as describe the data transformation process. These steps are an

essential part of the process, so that conclusions regarding the hypotheses are

validated.

5.2 ANALYSIS OF EFFECTS

Each of the six performance measures, as described in Chapter 4, will be

statistically analyzed. This will include analysis of variance and multiple

comparisons. The questions to be answered by the analysis, is what factors (main

effects) significantly effect each measure. The expected results will show that all

124
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four factors do significantly effect each of the six performance measures.

Also, higher order interaction will be examined for each measure. Should

higher order interactions be significant, then the use of linear contrasts will be used

to aid in explaining or understanding the interaction. By examining the performance

measures prior to answering the hypotheses, this will assist in the hypotheses tests

and conclusions.

5.3 RESEARCH HYPOTHESES

The hypotheses to be examined are based on answers obtained from the

questions developed in Section 1.3. These hypotheses were developed a_p;io_ri to the

simulation experiment and are non-orthogonal linear contrasts with a confidence

level of 0.05 for each comparison. The following hypotheses will examine: 1)

whether increased information in setting job priority for scheduling improves shop

performance, 2) which maintenance policy significantly affects shop performance,

and 3) whether the effects of tool and/or maintenance time alters the relative

performance of the various heuristics. The expected outcome will be discussed with

each specific hypothesis.

The following hypotheses will be tested using analysis of variance (ANOVA)

and linear contrasts using Tukey HSD multiple comparisons. Treatment means are

defined in Table 5-1 with i and j subscripts representing columns and rows from the

table respectively.

Hypethesisl: There is no significant difference between sequence dependent
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Table 5-1 Treatments in Experiment: Labeled by Column, Row
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Tool Life Variance ||

Low High

Maintenance Variance Maintenance Variance I

TOOI Control LOW High LOW High

NOPM #101 #111 #301 #401 l

FPTPM #102 #202 #302 #402 2

VARLO #103 #203 #303 #403 3

VARHI #104 #134 #304 #404 4

VARPM #105 #2115 #305 #403 5

MQBPM #100 #210 #300 #400 6

JDDTL #107 #207 #307 #407 .i 7

NOPM #108 #ms #308 #408 8

FPTPM II #109 #309 #309 #409 9

VARLO II #110 #210 #310 #410 10

VARHI II #111 #211 #311 #411 ll

VARPM I #112 #212 #312 #412 '2

MQBPM #113 #213 #313 #413 13

JDDTL i #114 #214 #314 #414 14

NOPM I #115 #215

FPTPM E #116 #210

VARLO #117 #217 #317 #417 17

VARHI I #118 #218 #318 #418 18

VARPM4 #119 #219 #319 #419 19

MQBPM #120 #220 #320 #420 20

JDDTL : #121 #221 #321 #421 1 21

NOPM I #122 #222 #322 #422 22

FPTPM I #123 #223 #323 #423 23

VARLO I #m #224 #324 #424 24

VARHI H #123 #223 #325 #425 25

VARPM “ #1311 #m #325 #426 26

MQBPM l #127 #221 #327 #421 27

JDDTL I #128 #228 #328 #428 28

COLUMN 1 2 3 4
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job priority rules which considers job due date versus tool condition when selecting

the next tool.

8 14 4 28

Ho:¢,=;;pij/2B-z z pij/28=O

ng¢1¢0 i=1 j=22

This hypothesis attempts to answer whether the selection of the next job for

processing should be based on tool or due date, given that a tool change will take

place. The objective of sequence dependent rules is to enhance performance by

reducing the time consumed by setups. Job rules which reduce the number or

amount of setup time have been found to improve shop performance (Mahmoodi et

al., 1990, Kannan and Lyman, 1992). Consideration Of tool condition (tool life)

first, permits the system to fully exploit the benefits of reduced setups. A study by

Lyman (1993) found that selecting jobs by looking at tool condition first enhance

performance over two other rules which examined a job’s due date first. The tool

condition first rule, TOOIJOB, performed best for all performance measures

because it tended to reduce the number of setups. Lyman’s model differs from this

research because tool life was deterministic with instantaneous replacement. For this

reason, the question of whether the same result was true with stochastic tool life and

tool maintenance delays was examined.

The expected outcome will reject the null hypothesis which indicates that

considering tool condition first, before job priority, does improve flow time

performance. The exception will be due date based performance measures. By

placing tool condition priority over job due date, delays in jobs requiring different
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tools are expected.

Hmthesisl: The addition of information, specifically late due date status

and job interrelationship, does not significantly influence shop performance.

I 7 4 14 4 21

Ho:¢2=£ Z tin/2812232; tin/28:2 .2 tin/28:0

2:1 j=1 2:1 1:15

115:1be

This hypothesis will examine what effects, if any, each incremental form of

information used in job priority scheduling has on shop performance. The three job

rules which select jobs based on due date, and not tool condition are compared.

ANOVA will test to see if there is a significant difference between the three job

priority heuristics. Multiple comparison tests compare rules and show whether

additional information improves performance for job rules.

Use of information such as job interrelationships (tool requirement/sequence

dependency) allow the heuristic to reduce the number of tool setups. Hollier (1968),

Ghosh et al. (1991), and Lyman (1993) have shown that certain forms of

information, such as job interrelationship, can enhance shop performance.

The use of due date status, like negative verse positive slack, has been shown

to be effective in improving shop tardiness (Melnyk et a1. 1989). This hypothesis

will determine if multi-level priority information used in the job’s selection (PSR4),

enhances shop performance over less information intense job priority heuristics

(DRTC and SDTC).

The outcome for this hypothesis is expected to show that additional
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information used in setting job priority due dates has a significant benefit. Thus, the

null hypothesis will be rejected. By rejecting the null hypothesis, the incremental

benefit of additional information in setting job priority will surpass the benefits of

simplicity. In addition, results will show that PSR4 is better than SDTC, which is

better than DRTC. This ranking is dependent on the specific performance measure.

Hmthesisj: There is no significant difference between preventive

maintenance (PM) and corrective maintenance (CM).

While this hypothesis seems intuitively correct and of unquestionable

1:1 1:2 2:1 1:9 1:1 j=16 2:1 1:23

I I I I

' (2 “11* II 28*; I1 115* I" 122) /16‘O

2=1 2:1 2:1 1:1

outcome, this has not always been the case. Cases presented by Bojanowski (1984)

and Christer and Whitelaw (1983) cite the benefits of preventive maintenance over

corrective maintenance. The question of whether PM is preferred over CM also has

been addressed by Kay (1978) and Banerjee and Burton (1990). Kay showed that if

the penalty (added repair time for CM) was high enough, PM was preferred.

Banerjee and Burton’s model showed that, in many cases, PM decreased shop

performance (flowtime) over CM. They varied the PM point and found that PM

caused more delays than CM.
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The expected outcome is that PM is significantly better than CM. When

looking at the test hypothesis, the predicted outcome is that PM policies (FPTPM

through JDDTL) are different than NOPM. Examining this question involves the use

Of multiple comparisons to see which PM heuristic improves performance over CM.

am: There is no significant difference between using a fixed point

in time for preventive maintenance versus a variable (range) time.

I
.
”

4 4 4 4 4

Hoi¢4=(£ “12+: “1'9"; “116+: p123)/16-(2 "13'

2:1 2:1 2:1 i=1 'i=1 J=3

I 12 4 19 4 26

+2 ”if: “if; E 1‘13) ”8‘0
2:1 =10 2:1 j=17 i=1 j=24

H1 : tbfiO

Several articles have modeled the PM point as fixed in time (Kay, 1976;

Wells and Bryant, 1985; Banerjee and Burton, 1990). Under a fixed point in time

policy, PM can only take place after the fixed point in time is reached. Banerjee and

Burton (1990) tested several different fixed PM points and found that the shorter the

duration between PM points, the worse the shop performed.

Discussions with several plant personnel showed a more flexible policy. The

PM point was only a target or reference point. Scheduled PM dates tended to vary

around the designated PM point, depending on demand. This hypothesis will be used

to determine if a fixed PM point (FPTPM) performs as well as a variable PM point

(VARLO, VARHI, and VARPM).

The expected outcome rejects the null hypothesis. This would add credence
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to the shop personnel use of flexible PM points. The reason the null is rejected is

because variable PM considers job demand in queue. If work exists for the tool,

VARLO and VARPM allow temporary postponement of the PM point, while

FPTPM does not. Also, VARHI and VARPM allow early PM if no demand exist

for the tool. Early PM can result in higher tool availability when production demand

exist.

Hypethesjsj: There is no significant difference between early (VARHI) and

postponed (VARLO) variable preventive maintenance policies.

4 4 4 4

I-IOIIbS==(Z1 I“ 13*2 I:I MHz-:1 I-I 1'17‘*Z:1 p 124I/16

4 4 4 4

- (2 “14+; II 1111+: "113+: p125) /16=O

i=1 2:1 i=1 i=1

111:1»er

This hypothesis explores whether the policies of early tool withdrawal verses

postponed removal perform differently. Hypothesis 5 extends hypothesis 4 by

exploring the differences which exist between variable PM policies. An issue that

became apparent during the plant trip interviews was the lack of a clearly defined

range for the variable PM point. Since past research has not examined this issue,

hypothesis 5 will determine whether there is a significant difference between

performing PM early or late.

The difference between the early variable PM (VARHI) from the postponed

or late PM rule (VARLO) involves risk. VARLO increases the risk of tool failure

because the PM point is surpassed if the tool is needed. The benefit is a greater
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utilization of the tool’s full life. The risk is the down time due to tool failure.

Results will show that the added risk is beneficial and thus rejects the null

hypothesis. VARLO adds sufficient benefits over the added risk of tool failure.

Hypgthesis e: The preventive maintenance policy which examines

maintenance queue performs significantly better than the variable preventive

maintenance policies, which does not.

This hypothesis tests whether the addition of maintenance queue information

Hlubsro

in the PM decision helps elevate performance over the basic variable PM rule

(VARPM). Pate-Cornell et al. (1987) showed that unplanned early maintenance was

beneficial only when the shop was stable. Unplanned early maintenance performance

deteriorates quickly when shop variability (demand and maintenance time) increased.

The MQBPM rule attempts to elevate the impact of variability by reducing

maintenance delay. By allowing early maintenance only when the maintenance queue

is empty, tool maintenance delays are reduced.

Expected results will show that the null hypothesis will be rejected. This will

demonstrate that early PM based on maintenance queue can be beneficial. The
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frequency of PM will increase slightly with the result of decreased maintenance

delay. Past studies by Banerjee and Burton (1990) and Pate-Cornell et al. (1987)

have shown that increased PM frequency causes shop performance to decrease. The

reason for this was that the models did not explicitly consider maintenance delays.

Hymthesis 7: The use of job due date in the decision of when to perform

PM significantly improve shop performance.

As with hypothesis 6, this hypothesis tests whether additional information in

the PM decision is beneficial. The additional information in this case is the status

(negative slack) of job’s in queue. With due dates being so critical a factor in

customer satisfaction, JDDTL rule is an attempt to enhance delivery performance.

The rule delays PM in favor of processing past due jobs. In effect, JDDTL is

increasing the risk of tool failure for the gains in improved delivery performance.

The expected outcome will show that the gains in delivery performance

outweigh the drawbacks of higher risk of tool failure (reject null hypothesis). By

considering issues external to the tool condition, information will improve shop

performance.
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Hymthesis 3: There is no significant difference between the performance of

the shop under low or high tool life variance.

2 28 4 28

troupe: (2;; 1‘11) /S6- (1);; P13) /S6=0

H1:¢8#0

Hypothesis 8 tests whether tool life variance impacts shop performance. The

expected outcome is that tool life variance will significantly affect shop

performance, rejecting the null hypothesis. The variability of tool life will cause

increased tool failures that will result in the deterioration of all performance

measures. Tool failures will decrease tool availability. Past research has shown that

lower tool availability significantly impacts shop performance (Melnyk et al., 1989;

Ghosh et al., 1991).

Hymthesis 2: There is no significant difference between the high or low

maintenance service time variance.

28 28 28 28

Ho=¢9= If, “13“.: #371/55‘Iz P2j+£ 1143') /56=o
j=1 J=1 1:1 j=1

111:4)97'0

As in hypothesis 8, this hypothesis test will determine if maintenance service

time significantly impacts performance under high and low variance. As is the case

with tool life variance, maintenance time variance can play an important role in shop

performance (Banerjee and Burton, 1990). Maintenance service time represents tool
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down time (availability). As the down time variance increases, system performance

decreases (Vanderhenst et al., 1981), because tools are less available for production.

Variance increases maintenance queue causing greater waiting delays and lowers tool

availability. The expected outcome will be to reject the null hypothesis which

indicates that maintenance time is a significant factor in shop performance.

The nine hypotheses just discussed are based on the issues and questions

presented in Chapter 1. Table 5-2 shows the progression from the initial research

issues to hypotheses. Each step in the process involves refinement of the questions

until they become a focused hypothesis. The answers to these hypotheses can then be

directed back to the initial research question: How do we effective manage

operation in a DRC shop where the tooling constraint has a finite life and where

resource life and mource renewal are described using stochastic distribution?

5.4 POST HOC ANALYSIS

Hypotheses 8 and 9 address whether tool life and maintenance

variance are significant factors. What they do not consider is the impact of these two

forms of variance on the relative performance of the various heuristic. The ME

analysis will examine the relative performance and thus, determine the robustness of

the various heuristics. The use of multiple comparisons will assist in this analysis.

5.4.1 Teel Life Vap'mee Andysis

By examining the relative performance of tool and job heuristics under two
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Table 5-2 Refinement of Research Issues to Hypotheses.

  

 |

_——1

Questions Hypotheses

mm

There is no significant difference

between job priority rules which

considers job due date before tool

 

How do we schedule How does additional information condition versus the a rule that looks

jobs? used in setting job priority affect at tool condition first. then job‘s due

shop performance? date.

 

The addition of information, like late

due date status and job

interrelationship. does not

significantly influence shop

  

performance.

I“ =

There is no significant difference

Does PM enhance performance between preventive maintenance and

over CM? corrective maintenance.

 

There is no significant difference

between using a fixed point in time

for preventive maintenance versus a

variable (range) time.
 

There is no significant difference

How do we schedule between early (VARHI) and

tools for production and How do various PM policies affect postponed (VARLO) variable

maintenance? sh0p performance? preventive maintenance policies.

 

The preventive maintenance policy

which examines maintenance queue

performs significantly better than

other variable preventive maintenance

policies.
 

The use ijob due date in the

decision of when to perform PM

significantly improve shop

 

performance.
I I

How does variation in Does variance in tool life and There is no significant difference

resource life and renewal maintenance time affect the relative between shop performance under low

affect scheduling and performance of different job or high tool life variance.

assignment decisions? priority and tool control heuristics?
 

There is no significant difference

between shop performance under low

or high maintenance service time

variance.    

  

levels of tool life variance, the robustness of the rules can be established. The
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objective is to find out whether rules which consider more information in their

decision process perform as well under higher or lower tool life variation. This

objective is achieved by comparing job priority and tool control heuristics for low

tool life variance, to the relative performance of the heuristics for high variance.

Any change in relative performance indicates the rules are sensitive to tool life

variance.

Tool control heuristics which tend to increase tool failure risk (VARLO,

VARPM, and JDDTL) will diminish in the relative performance with increased tool

life variance. This conclusion is based on Levi and Rossetto (1978) and Bon (1980)

who determined that conservative tool strategies (reduce tool failure risk) remain

effective as tool life variance increases. Also, Vanderhenst et al. (1981) found that

strategies which increase CM over PM caused shop performance to deteriorate.

5.4.2 Maintenagee Serviee Vag'agee Analygis

The objective is to determine which rules are robust under maintenance time

variance. Job and tool heuristics will be compared under low and high maintenance

variance. Any change in relative performance indicates the rules are sensitive to tool

life variance, thus, lacks robustness.

Job priority heuristic do not consider the maintenance process in establishing

priority. Thus, the relative ranking of job priority rules will not likely be effected.

As for tool control heuristics, maintenance service time variance will alter

the relative performance. MQBPM explicitly considers maintenance backlog and
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should improve its relative performance as variance of maintenance time increases.

JDDTL, on the other hand, causes an increased risk of tool failure, thus higher

maintenance time lowers its performance. In addition, any rules (VARHI and

VARPM) which cause more frequent PM’s will increase in the relative performance

to other rules (Banerjee and Burton, 1990).

5.4.3 19b-T991 Interaetion Analysis

The objective of this analysis is to determine which combination of job and

tool rules provides robust performance. By examining the combined rules, it will

become apparent which factors, job priority or tool control, influences the relative

performance for each specific measure. Also, results will show how the different

combination of rules can alter the relative performance of either a good performing

job or tool rule.

5.5 DATA ANALYSIS PROCEDURES

Once the data for each experimental condition has been collected, the data is

analyzed to determine if it meets certain conditions for the statistical tests to be

valid. These conditions or assumptions must be met before the research questions

and am hypotheses andmanalysis can be performed. A check of the

residuals for normality and homogeneity of variance is done to ensure that ANOVA

and other statistical tests are valid. For the data that violate these assumptions,

transformation using one of three methods was selected.
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The validity of ANOVA is dependant on normality and homogeneity of

variance and, thus, requires additional analysis to ensure that the statistical tests are

meaningful. Minor violations of these assumptions do not preclude the use of

ANOVA (Neter et al., 1990). Should the residuals be non—normally distributed (by a

minor amount), the impact is a small decrease in the tests power. The implications

of reduced power occurs when the ANOVA p values are close to .05, resulting in

false conclusions.

5.5.1 Testing fer Nermality

To test for the assumptions of normality, the residuals were first analyzed

using a normal probability plot. The plot pits expected values against residuals.

While this method is helpful, it does not provide statistical proof. For this reason,

each treatment was tested using Filliben’s (1975) Probability Correlation Coefficient

Test (PCCT). The test uses the normal probability plot correlation coefficient which

is the product moment correlation coefficient between the ordered observation

residual X and ordered statistic medians M, which forms a normal distribution. The

rationale behind this test is that normality will tend to yield near linear normal

probability plots which will give near unity values for the probability plot correlation

coefficient. Comparison of the correlation with percentage points from the normal

probability plot correlation coefficient is evaluated. A statistically significant

correlation indicates that the data is normally distributed.
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5.5 .2 Testing fer flemegeneity ef Variance

Bartlett’s test was used to test for homogeneity of variance. The test

determines if there is a significant difference between sample variances. A major

concern for Bartlett’s test is any departure of the residuals from normality. In such

cases, Bartlett's test can not be considered valid. If the performance measures were

non-normally distributed, the data was transformed and retested. The statistical

package SPSS 5.1 uses Barlett’s test as its mean for testing homogeneity of variance.

5.5.3 flfmsfermatien ef Dag

Should either assumption of normality or homogeneity of variance be

violated, the data for that performance measure was transformed. Neter et al. (1990)

recommends transforming data using one of three methods: log, square root, or

reciprocal. All three methods are used and the best method which provides a normal

distribution for residual is selected.

5 .5 .4 Residgal Anflysis

Each treatment residual was examined for normality and homogeneity of

variance. The subscript values from Table 5-1 will be used as the treatment

reference for the following discussion.

For mean time in system, all but twelve treatments (301, 307, 308, 315, 322,

328, 401, 407, 408, 415, 422, 428) were normally distributed. The twelve

combinations of rules were all within 4% of what was required to accept the
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hypothesis of normality. All but five (301, 307, 407, 415, 428) of the twelve

treatments had residual variances that were homogenous. Those treatments that

were heterogenous were among the worst performers for this measure.

For standard deviation of time in system, all but four treatments (314, 328,

414, 428) were non-normally distributed. These four treatments had PCCT values

within 3% of that required to accept the hypothesis of normality. All treatments had

equal variances for the residuals.

For mean tardiness, all treatment residuals were normally distributed. Twenty

treatments (102, 107, 114, 122, 128, 201, 207, 222, 228, 301, 307, 314, 322, 401,

407, 409, 410, 414, 422, 428) had heterogenous variance, but once again they were

among the worse performers.

For standard deviation of tardiness, all but fifteen treatments had normally

distributed residuals. Of these non-normal treatments, eight (102, 109, 209, 307 ,

309, 328, 405, 407) had PCCT values within 2% of that required to accept the

hypothesis of normality. The remaining seven (107, 207, 114, 128, 214, 314, 414)

were within 7% of the critical value. As for homogeneity of variance, only a few

treatments (110, 128, 227, 315 , 327, 415 , 427) violated this assumption and were

not among the top performers.

For percentage of jobs late, all but twenty four treatments had normally

distributed residuals. Seventeen of the non-normally distributed treatments (103,

108, 116, 120, 124, 203, 208, 216, 220, 224, 305, 308, 316, 324, 403, 405, 408)

were within 5% of the critical value. The remaining seven treatments (201, 303,
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330, 405, 416, 420, 424) were within 7% of the critical value. The heterogenous

variances again came from treatments (115, 116, 120, 121, 203, 216, 220, 221,

315, 321, 330, 403, 415, 421) which performed poorly.

For percentage of tool failures, only 41 treatments had normally distributed

residuals, with another 11 having PCCT values within 6% of the critical value. With

so few treatments normally distributed, the data was transformed. Of the three

methods used, log transformation significantly improved the fit of the data. Thirty

one treatments were non-normally distributed, but twenty six (102, 103, 107, 109,

110, 112, 114, 116, 121, 123, 124, 126, 128,202,203, 209, 307, 221, 228, 302,

323, 324, 326, 328, 402, 428) had PCCT values within 3% of that required to

accept the hypothesis of normality. The remaining five treatments (303, 321, 403,

409, 421) were within 6% of the critical value. Again, the treatments which violate

the assumption of homogeneity of variance tend to be poor performers (103, 107,

203, 207, 222, 223, 228, 322, 403, 407, 421, 423, 428).

5.5.5 Data Analysis Summag

The impact of non-normal residual distributions cause a small increase in the

significance level while decreasing the power of the ANOVA test slightly. The large

sample size used in this model reduces the significance of non-normality. This also

hold true for heterogeneity of variance. ANOVA is still valid even when minor

violations in these assumptions are present. Only when p values are close to .05 will

false conclusion likely results. As for the large violations of the ANOVA
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assumptions (percentage of tool failures), the data was transformed.

5.6 SUMMARY

This chapter discussed the issues and questions that the model will examine

in Chapter 6. A full factorial design was used in analyzing the model. A_pr_io_r_i

hypotheses is presented with an explanation and expected outcome. In the next

chapter, the use of ANOVA and Tukey HSD multiple comparisons will be used to

test the hypotheses and answer questions that were developed.



CHAPTER 6

EXPERIL'IENTAL ANALYSIS AND CONCLUSIONS

6.1 INTRODUCTION

After assuring the assumptions of ANOVA were not violated in Chapter 5,

this chapter will use three parts to analyze the data. This includes:

The significance of the main effects and interactions for each performance

measure. This will include both statistical (ANOVA tables) and graphical

(figures) analysis. Examining the questions of which factors significantly

impact performance will assist the hypotheses test. The identification of

specific heuristics and conditions which improve performance will be made.

Them hypotheses, which were expressed as non-orthogonal linear

contrasts, will require the use of multiple comparisons in their analysis if

higher order interactions are present. All of the hypotheses compare treatments

(levels) within a factor. While ANOVA will detect differences (main effect

significance), it does not lend itself to comparisons of levels within a factor.

For this reason, multiple comparisons will be used in the analysis.

EesLhm analysis will require further use of multiple comparisons. Specific

issues relating to the interactions of factors (tool control rules with job priority

rules under different variance) will be analyzed. The objective is to provide

144
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insight into performance patterns of the various heuristics.

Upon completion of the analysis, specific conclusions will be drawn. This

includes a comparison to past research as well as new findings. The last part of this

chapter will discuss the direction that future research should consider.

6.2 ANALYSIS OF EFFECTS FOR PERFORMANCE MEASURES

The results presented are based on a full factorial design consisting of 112

treatment conditions. All statistical tests were performed with a confidence level (a)

of .05. The statistical package, SPSS 5.01 for Windows, was used to perform all

tests.

Common random number streams, as described in Chapter 4, are used as a

blocking factor in ANOVA. If the blocking variable is significant, experimental

error variance is reduced (Neter et al., 1990). NBATCH was used as the blocking

factor. If significant, then the batches are independent which.is airequirement of

ANOVA. In the ANOVA tests performed, NBATCH is significant for all

performance measures which demonstrates higher levels of treatment independence

(Mihram, 1974). The following discussion will examine the ANOVA tables and

figures (graphs) for each performance measure. Also provided is the treatment

means from which the figures are derived.

6.2.1 Mega Time in Sysmm

Table 6-1 contain the ANOVA results for time in system. Only two main
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Table 6-1 Analysis of Variance for Mean Time in System

Source of Variation 5 D MS F
P

BATCH 146741.96 99 16304.66 4279.71 .000

MTOOL 9385.46 6 1564.24 410.59 .000

NLIFE 6.23 1 6.23 1.63 .201

NRULE 331.71 3 110.57 29.02 .000

NSERVE .01 1 .01 .00 .971

MTOOL*NLIPE 146.09 6 24.35 6.39 .000

MTOOL*NRULE 311.13 18 17.28 4.54 .000

MTOOL*NSERVE 10.28 6 1.71 .45 .845

NLIFE*NRULE 10.12 3 3.37 .89 .448

NLIFE*NSERVE .34 1 .34 .09 .765

NRULE*NSERVE 2.96 3 .99 .26 .855

MTOOL*NLIFE*NRULE 71.20 18 3.96 1.04 .413

MTOOL*NRULE*NSERVE 22.13 18 1.23 .32 .997

NLIFE*NRULE*NSERVE 1.52 3 .51 .13 .940

MTOOL*NLIFE*NSERVE 10.19 6 1.70 .45 .848

MTOOL*NLIFE*NRULE*NSERVE 41.45 17 2.44 .64 .862

(Model) 159429.2 119 1339.74 351.66 .000

(Total) 163239.02 11199 145.88

R—Squared a .977

Adjusted R-Squared = .974

effects, tool control rules (MTOOL) and job priority rules (NRULE), are significant.

The higher order interactions of MTOOL by NRULE and MTOOL by NLIFE were

also significant. All other main effects and interaction are not significant. Figure 6-

1(a-d) illustrate how the different tool control rules and job priority rules influence

mean time in system. The figures show that tool control rules cause more

fluctuations in performance than other factors. Those tool rules which provide

greater PM flexibility, such as VARHI, VARPM, and MQBPM, reduce mean time

in system. This holds true for all tool life and maintenance time variances. The

worst performing tool control rule is NOPM.

As for job priority rules, SSTL consistently performs worse than any of the

other job rules. This holds for most tool control rules or variance levels. The best
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Table 6-2 Treatment Mean for Mean Time in System

TOOUMAINT JOB TOOL RULES

VARIABILITY RULE NOPM mm VARLO I VARHI VARPM MQBPM JDDTL__I|

DRTC 61.90 56.28 58.29 53.27 54.80 54.42 59.21

TOOL-LOW SDTC 63.39 56.18 58.96 53.55 53.67 53.44 59.77

MAM-LOW PSR4 62.99 60.77 58.98 53.37 54.76 53.33 56.82

SSTL 66.04 56.34 59.78 53.96 56.65 54.17 60.47 1'

DRTC 62.67 57.77 59.39 54.71 55.61 54.48 60.05

TOOL-HIGH SDTC 65 .80 58.27 59.53 54.29 54.70 54.24 59.57

MAINT-LOW PSR4 62.29 57.68 58.76 54.54 55.74 54.15 58.41

SSTL 64.04 58.58 59.99 55.02 56.77 54.55 60.98

=— in:

DRTC 62.07 55.46 58.32 53.27 54.96 54.90 59.73

TOOL-LOW SDTC 64.42 56.87 58.98 53.55 53.67 53.44 58.80

MAINT-HIGH PSR4 63.33 55.50 58.65 53.37 54.73 53.32 57.79

I SSTL 66.69 56.41% 59.44 53.93 56.66 54.27 61.35

DRTC 62.71 58.27 58.21 55.55 55.59 54.55 59.78

TOOL-HIGH SDTC 63 .36 59 .03 59.10 54.30 54.70 54.07 60.25

MAINT-HIGH PSR4 63.10 57.72 59.77 54.54 55.04 54.12 58.57

‘ SSTL 63.76 58.57 59.84 55.59 57.39 54.41 62.13

Legend:

Tool Control Rules: NOPM - no PM performed. allow tool to fail.

FPTPM - fixed PM point, PM occurs only after PM point.

VARLO - variable PM point, allow postponed PM up to 10% beyond.

VARHI - variable PM point, allow early PM up to 10% before.

VARPM - variable PM point, allow early or postponed PM, 10%.

MQBPM - use VARPM rule but consider maintenance queue

JDDTL - use FPTPM but consider job due date.

DRTC - prioritized by due date

SDTC - prioritized by sequence dependency, then due date.

PSR4 - prioritized using four priority levels

SSTL - prioritized by sequence dependency. then by tool condition.

TOOL-LOW: low tool life variance.

TOOL-HIGH: high tool life variance.

MAlNT-LOW: low maintenance service time variance.

MAINT-HIGH: high maintenance service time variance.

—

Job Priority Rules:

performing job priority rule is PSR4, followed by DRTC (Table 6-2). However, this

rule does not hold true in all cases (Figures 6-1 a-d).
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6.2.2 Smears Devistien of Time in System

Table 6-3

of Time in System

Analysis of Variance for Standard Deviation

Source of Variation 8 D MS F p

BATCH 290635.78 99 32292.86 3127.17 .000

MTOOL 14698.24 6 2449.71 237.22 .000

NLIFE 7.15 1 7.15 .69 .405

NRULE 19202.93 3 6400.98 619.86 .000

NSERVE .00 1 .00 .00 .993

MTOOL*NLIFE 98.00 6 16.33 1.58 .149

MTOOL*NRULE 8758.29 18 486.57 47.12 .000

MTOOL*NSERVE 18.21 6 3.04 .29 .940

NLIFE*NRULE 10.57 3 3.52 .34 .796

NLIFE*NSERVE .31 1 .31 .03 .862

NRULE*NSERVE .83 3 .28 .03 .994

MTOOL*NLIFE*NRULE 123.12 18 6.84 .66 .850

MTOOL*NRULE*NSERVE 137.48 18 7.64 .74 .772

NLIFE*NRULE*NSERVE 1.42 3 .47 .05 .987

MTOOL*NLIFE*NSERVE 36.25 6 6.04 .59 .742

MTOOL*NLIFE*NRULE*NSERVE 149.65 17 8.80 .85 .632

(Model) 341908.01 119 2873.18 278.23 .000

(Total) 352234.56 11199 314.78

R-Squared = .971

Adjusted R-Squared a .967

The ANOVA Table 6-3 provides an analysis for standard deviation of time in

system. The main effects of MTOOL and NRULE are significant as well as higher

order interactions between MTOOL and NRULE. All other main effects and

interactions are not significant. Figures 6—2 (a—d) show that job priority rules which

are due date based (DRTC and PSR4) cause less variation (standard deviation) in the

time in system than rules which promote sequence dependency (SDTC and SSTL).

The standard deviation of time in system is reduced by tool control rules

which promote more frequent (early) PM (Table 6-4). Figures 6-2 (a-d) show that

the combination of job due date based priority rules with frequent PM tool rules

consistently provide better performance. This combination includes: DRTC with
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Table 6-4 Treatment Means for Standard Deviation for

Time in System

 

TOOUMAINT .IOB TOOL RULES —||

VARIABILITY RULE

 

 

  

   

 

VARHI

       DRTC 46.46 55.77 44.95 42.79 59.50

 

TOOL-LOW SDTC 57.79 60.46 55.33 49.37 50.21 50.12 65.53

 

MAINT-LOW PSR4 47.47 45 .99 49.26 43 .95 46.67 44.02 48.57

 

4.57SSTL 6 56.29 55.55 54.35 53.39 52.38 63.41

I#—-—AFF=é=l====l=fi=g=

DRTC 46.08 57.80 45.71 41.95 43.46 46.14 61.87

-
_
7

 

TOOL-HIGH SDTC 61.57 60.98 56.20 50.27 51.38 51.16 63.44

 

MAM-LOW PSR4 47.29 47.36 49.01 45.34 47.26 44.81 48.87

 

 

 

 

SSTL 65.33 58.57 55.01 55.91 52.84 55.78 65.64

{M===—_.,-*——-‘— ,___=_—‘_r

DRTC 45.95 54.63 44.98 40.88 42.99 49.67 62.14

 

TOOL-LOW SDTC 59.55 60.59 55.34 49.37 50.21 50.06 64.17

 

MAINT-HIGH PSR4 47.43 46.01 48.81 43.95 46.60 44.07 49.34

SSTL 65 .34 56.24 55.85 54.04 53 .45 51.58 64.08

F Ea ;

DRTC 45.99 57.43 43.97 43.35 57.17 49.47 62.40

 

 

 

TOOL-HIGH SDTC 57.90 62.88 54.91 50.29 51.44 50.91 65 .22

 

MAINT-HIGH PSR4 47.64 47.34 49.02 45.32 46.69 45 .21 48.82

' SSTL 63.72 58.89 55.70 57.16 54.28 53.07 63.94

Legend:

Tool Control Rules: NOPM - no PM performed, allow tool to fail.

FPTPM - fixed PM point, PM occurs only after PM point.

VARLO - variable PM point. allow postponed PM up to 10% beyond.

VARHI - variable PM point, allow early PM up to 10% before.

VARPM - variable PM point, allow early or postponed PM, 10%.

MQBPM - use VARPM rule but consider maintenance queue

JDDTL - use FPTPM but consider job due date.

lob Priority Rules: DRTC - prioritized by due date

SDTC - prioritized by sequence dependency, then due date.

PSR4 - prioritized using four priority levels

SSTL - prioritized by sequence dependency, then by tool condition.

TOOL-LOW: low tool life variance.

TOOL-HIGH: high tool life variance.

MAINT-LOW: low maintenance service time variance.

MAINT-I-IIGH: high maintenance service time variance.

—

           

VARHI, MQBPM, VARLO, and VARPM; and PSR4 with VARHI and MQBPM.
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Figure 6-2c Comparison of Control Rules
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The tool control rule, JDDTL, consistently caused poorer performance when

combined with all, but PSR4 job priority rules. Tool rule, NOPM, also performed

poorly when combined with sequence dependent rules SDTC and SSTL (Figure 6-

2a).

6.2.3 Mmlardiaess

Table 6-5 Analysis of Variance for Mean Tardiness

Source of Variation S D MS F p

BATCH 432155.42 99 48017.27 3241.60 .000

MTOOL 37338.53 6 6223.09 420.11 .000

NLIFE 8.41 1 8.41 .57 .451

NRULE 105296.46 3 35098.82 2369.49 .000

NSERVE - 1.18 1 1.18 .08 .778

MTOOL*NLIFE 186.09 6 31.01 2.09 .052

MTOOL*NRULE 23867.35 18 1325.96 89.51 .000

MTOOL*NSERVE 71.98 6 12.00 .81 .562

NLIFE*NRULE 11.56 3 3.85 .26 .854

NLIFE*NSERVB .83 1 .83 .06 .813

NRULE*NSERVE 1.20 3 .40 .03 .994

MTOOL*NLIFE*NRULE 303.71 18 16.87 1.14 .308

MTOOL*NRULE*NSERVE 137.89 18 7.66 .52 .951

NLIFE*NRULE*NSERVE .16 3 .05 .00 1.000

MTOOL*NLIFE*NSERVE 24.38 6 4.06 .27 .949

MTOOL*NLIFE*NRULE*NSERVE 267.48 17 15.73 1.06 .387

(Model) 609399.55 119 5121.00 345.71 .000

(Total) 624212.39 11199 557.83

R-Squared x .976

Adjusted R-Squared - .973

Table 6-5 shows the results of the ANOVA test for mean tardiness. The only

main effects and interactions that are significant is MTOOL and NRULE and

MTOOL by NRULE. Figures 6-3 (a-d) show that due date oriented job priority rules

(DRTC and PSR4) tend to lower mean tardiness more than sequence dependant rules

(SDTC and SSTL). The PSR4 rule performed best among job priority rules (Table

6-6). The figures also illustrate how SDTC and SSTL rules are consistently poor
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Table 6-6 Treatment Means for Mean Tardiness

TOOUMAINT TOOL RULES jl

VARIABILn'Y NOPM FPTPM VARLO VARHI MEI

=——T'——'_—_'

44.61 61.39 43.52 38.64 40.74 41.95 69.79

TOOL-LOW 59.35 65.30 60.23 52.90 53.61 54.17 72.84

MAINT-LOW 41.25 35 .73 40.45 34.45 37.56 34.35 37.74

70.21 61.67 59.40 58.38 57.59 53.57 73.99

w*=—_—_——

DRTC 44.10 66.64 44.09 39.59 41.48 39.57 73.27

TOOL-HIGH SDTC 64.97 65.79 59.92 53.61 55.17 54.56 68.81

MAINT-LOW PSR4 41.05 37.98 39.87 36.98 38.65 35 .62 38.30

1 SSTL 71.79 63.68 58.20 if: 57.14 56.00 77.20

DRTC 43.54 63.86 43.55 38.64 40.96 43.60 73.79

TOOL—LOW SDTC 62.27 65.21 60.16 52.90 53.61 53.66 72.77

MAINT-HIGH PSR4 41.03 36.07 39.91 34.45 37.71 34.24 40.12

I SSTL 70.76 63.05 59.72 58.39 57.55 53.85 74.75 1

DRTC 44.83 65.09 42.26 41.27 59.93 41.29 74.79

TOOL-HIGH SDTC 60.17 68.24 58.75 53.76 55.48 54.60 71.64

MAINT-HIGH PSR4 41.58 37.24 39.92 36.96 38.07 , 35.72 39.08

SSTL 70.69 66.10 59.13 59.93 58.21 ___55.50 74.50 g 
Legend:

Tool Control Rules: NOPM - no PM performed, allow tool to fail.

FPTPM - fixed PM point, PM occurs only afier PM point.

VARLO — variable PM point, allow postponed PM up to 10% beyond.

VARHI - variable PM point, allow early PM up to 10% before.

VARPM - variable PM point, allow early or postponed PM, 10%.

MQBPM - use VARPM rule but consider maintenance queue

JDDTL - use FPTPM but consider job due date.

DRTC - prioritized by due date

SDTC - prioritized by sequence dependency. then due date.

Job Priority Rules:

    

PSR4 - prioritized using four priority levels

SSTL - prioritized by sequence dependency. then by tool condition.

TOOL-LOW: low tool life variance.

TOOL-HIGH: high tool life variance.

MAINT-LOW: low maintenance service time variance.

MAINT-HIGH: high maintenance service time variance.

—

performers. This holds for all tool control rules.

When tool control rules were combined with job priority rules, DRTC,
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Figure 643a Comparison of Control Rules
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SDTC, and SSTL, results showed that flexible PM point rules (VARHI and

VARPM) work better than when combined with FPTPM or NOPM tool rules. The

exception to this situation involves the PSR4 job rule. The PSR4 rule tends to

equalize tardiness performance of all tool control rules.

6.2.4 Standgd Deviation of Tardiness

Table 6-7 Analysis of Variance for Standard Deviation

of Tardiness

Source of Variation S D MS F p

BATCH 710918.21 99 78990.91 1932.57 .000

MTOOL 43265.75 6 7210.96 176.42 .000

NLIFE 23.11 1 23.11 .57 .452

NRULE 71851.41 3 23950.47 585.96 .000

NSERVE .01 1 .01 .00 .985

MTOOL*NLIFE 191.34 6 31.89 .78 .585

MTOOL*NRULE 35981.86 18 1998.99 48.91 .000

MTOOL*NSERVE 48.12 6 8.02 .20 .978

NLIFE*NRULE 169.78 3 56.59 1.38 .246

NRULE*NSERVE 14.51 3 4.84 .12 .949

NLIFE*NSERVE .43 1 .43 .01 .919

MTOOL*NLIFE*NRULE 521.23 18 28.96 .71 .805

MTOOL*NRULE*NSERVE 588.13 18 32.67 .80 .703

MTOOL*NLIFE*NSERVB 90.85 6 15.14 .37 .898

NLIFE*NRULE*NSERVE 13.60 3 4.53 .11 .954

MTOOL*NLIFE*NRULE*NSERVE 445.63 17 26.21 .64 .860

(Model) 884508.81 119 7432.85 181.85 .000

(Total) 925382.40 11199 826.97

R-Squared x .956

Adjusted R-Squared = .951

 

Table 6—7 shows the ANOVA results for standard deviation of tardiness. The

only significant main effects and interactions are MTOOL, NRULE, and NRULE by

MTOOL respectively. The due date based job priority rules, DRTC and PSR4,

perform better than sequence dependent rules SDTC and SSTL (Table 6-8). As was

the case with mean tardiness, the PSR4 job rule provides consistent performance,
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Table 6-8 Treatment Means for Standard Deviation of

 

Tardiness

TOOL/MAINT JOB TOOL RULES

VARIABILU‘Y RULE NOPM FPTPM vamp VARHI VARPM MQBPM JDDTL ll

 

39.62 63.74 38.10 34.42 37.57 51.51 67.41

 

TOOL-LOW SDTC II 58.21 74.68 57.07 50.10 52.65 52.80 78.70

 

MAINT-LOW 44.93 40.29 46.83

 

57.28 61.56 69.07

37.58 47.38 72.03

 

 

TOOL-HIGH SDTC 63.77 73.54 58.32 51.15 54.06 54.41 76.79

 

MAM-LOW PSR4 38.37 43.14 46.11 41.95 44.90 41.12 46.44

 

SSTL 69.64 64.01 57.54 66.44 56.15 70.43 74.27

—_.____J

 

 

DRTC 38.62 63.03 38.10 34.42 37.77 53 .73 71.27

 

TOOL-LOW SDTC 60.86 73.62 57.03 50.10 52.65 52.68 77.28

 

MAINT-HIGH PSR4 38.31 42.32 45.77 39.76 44.51 40.38 47.73

 

   

 
 

SSTL 64.88 60.82 59.49 64.14 57.37 59.54 70.12

— — ———————— EI==__= —-._ .____.r

DRTC 38.39 67.31 36.69 37.55 68.94 55.85 73.22

 

TOOL-HIGH SDTC 58.96 76.14 56.17 51.11 54.10 53.58 79.77

 

MAINT-HIGH PSR4 38.31 43.50 46.16 41.87 44.15 42.23 46.06

 

SSTL 66.20 64.26 59.07 68.94 58.20 64.22 69.42

a., -, -~—- --—~—~ - »———————- == ==

Legend:

Tool Control Rules: NOPM - no PM performed, allow tool to fail.

FPTPM - fixed PM point. PM occurs only afier PM point.

VARLO - variable PM point, allow postponed PM up to 10% beyond.

VARHI - variable PM point, allow early PM up to 10% before.

VARPM - variable PM point, allow early or postponed PM. 10%.

MQBPM - use VARPM rule but consider maintenance queue

JDDTL - use FPTPM but consider job due date.

lob Priority Rules: DRTC - prioritized by due date

SDTC - prioritized by sequence dependency, then due date.

PSR4 - prioritized using four priority levels

SSTL - prioritized by sequence dependency. then by tool condition.

TOOL-LOW: low tool life variance.

TOOL-HIGH: high tool life variance.

MAINT-LOW: low maintenance service time variance.

MAINT-HIGH: high maintenance service time variance.

         

regardless of the tool control rule used (Figure 6-4a). The worst performing job
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Figure 6-4a Comparison of Control Rules
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Figure 6-4c Comparison of Control Rules

Low Tool/Kali Maintenance Variance
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priority rule was SSTL.

Variable PM tool control rules, VARHI, VARLO, and VARPM, performed

best when combined with due date job priority rules DRTC and PSR4 (Figures 6-4

a-d). As for SDTC, this rule tends to perform worse when combined with fixed PM

point rules (FPTPM and JDDTL).

62.5W

Table 6-9 Analysis of Variance for Percentage of Jobs

Late

Source of Variation S D MS F p

BATCH .51 99 .06 53.27 .000

MTOOL 106.90 6 17.82 16780.70 .000

NLIFE .03 1 .03 31.39 .000

NRULE .16 3 .05 49.01 .000

NSERVE .00 1 .00 .01 .925

MTOOL*NLIFE .81 6 .14 127.55 .000

MTOOL*NRULE .33 18 .02 17.17 .000

MTOOL*NSERVE .00 6 .00 .07 .999

NLIFE*NRULE .00 3 .00 .19 .903

NLIFE*NSERVE .00 1 .00 .01 .911

NRULE*NSERVE .00 3 .00 .04 .990

MTOOL*NLIFE*NRULE .01 18 .00 .54 .942

MTOOL*NRULE*NSERVE .00 18 .00 .05 1.000

NLIFE*NRULE*NSERVE .00 3 .00 .00 1.000

MTOOL*NLIFE*NSERVE .00 6 .00 .07 .999

MTOOL*NLIFE*NRULE*NSERVE .00 17 .00 .04 1.000

(Model) 125.69 119 1.06 994.82 .000

(Total) 126.75 11199 .11

R-Squared . .992

Adjusted R-Squared a .991

Table 6-9 shows the ANOVA results for percentage of jobs late. All the main

effects, except NSERVE, are significant. The higher order interactions of MTOOL

by NLIFE and MTOOL by NRULE are also significant. The sequence dependent

rules, SDTC and SSTL, provide lower percentage of jobs late for most treatments.
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Table 6-10 Treatment Means for Percentage of Jobs Late

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

          

TOOUMAINT JOB TOOL RULES

VARIABILITY RULE NOPM FPTPM VARLO VARHI VARPM MQBPM l JDDTL I

DRTC 33.1 24.3 30.2 26.3 27.4 27.0 25.2

TOOL-LOW SDTC 31.4 24.2 27.5 24.7 24.6 24.3 25 .4

MAM-LOW PSR4 38.3 33.1 34.8 31.4 31.7 31.2 34.3

28.6 . 26.5 24.2 26.5 j

DRTC 34.0 24.0 31.1 27.9 28.3 27.9 24.7

TOOL-HIGH SDTC “ 32.2 25.8 28.3 25.2 25.3 24.9 26.4

MAINT-LOW PSR4 37.7 35.1 35 .0 31.7 32.4 31.7 35.3

SSTL 30.1 27.1 29.1 24.5 26.6 24.0 26.3

===— F

DRTC 33.8 23.2 30.2 26.3 27.6 27.0 24.7

TOOL-LOW SDTC 31.6 24.9 27.6 24.7 24.6 24.4 24.9

MAINT-I-IIGH PSR4 38.8 33.1 34.7 31.4 31.7 31.3 34.3

SSTL 32.3 25.4 28.1 23.8 26.5 24.2 27.1 J

1 DRTC 33.8 24.8 30.7 28.2 24.9 27.7 24.0

TOOL-HIGH SDTC 31.0 25 .8 27.9 25 .2 25 .3 24.8 26.1

MAINT-HIGH PSR4 38.3 35.1 35.0 31.6 31.8 31.5 35.3

SSTL 29.9 26.2 28.8 24.9 27.0 24.0 27.8  

Legend:

Tool Control Rules: NOPM - no PM performed, allow tool to fail.

FPTPM - fixed PM point, PM occurs only after PM point.

VARLO - variable PM point. allow postponed PM up to 10% beyond.

VARHI - variable PM point, allow early PM up to 10% before.

VARPM - variable PM point, allow early or postponed PM, 10%.

MQBPM - use VARPM rule but consider maintenance queue

JDDTL - use FPTPM but consider job due date.

lob Priority Rules: DRTC - prioritized by due date

SDTC - prioritized by sequence dependency. then due date.

PSR4 — prioritized using four priority levels

SSTL - prioritized by sequence dependency. then by 1001 condition.

TOOL-LOW: low tool life variance.

TOOL-HIGH: high tool life variance.

MAINT-LOW: low maintenance service time variance.

MAINT—HIGH: high maintenance service time variance.

—

The PSR4 job priority rule performs worse than any other job rule. This is a sharp

contrast to PSR4’s performance on mean and standard deviation of tardiness. The
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FigureLo6-5a Comparison of Control Rules
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Figure 6-5c Comparison of Control Rules

Low Tool/Hall Mamiemnce V ariance
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reason for the abrupt difference between tardiness measures and percentage of jobs

late involves the specifics of the measure. The percentage of jobs late measurement

only counts whether a job is late or not. Whereas, the mean and standard deviation

of tardiness measures the degree of late jobs. Thus, the job priority rule, PSR4, has

a greater percentage of jobs late, but the mean and standard deviation of late jobs is

lower (Figure 6—5a). The reverse is true of the sequence dependent rules, SDTC and

SSTL, which cause fewer late jobs but tend to be much later (Figures 6-5 a-d).

The tool control rules which allow PM perform better than the tool rule

NOPM (Table 6-10). The best performing tool control rules are those which

promote early PM (VARHI, VARPM, and MQBPM).

6.2.6 Percentage of 1m] Failures

Table 6-11 shows the ANOVA results for log percentage of tool failure. All

the main effects, except NSERVE, are significant. The higher order interactions of

MTOOL by NRULE and MT00L by NLIFE are also significant. The SSTL job

priority rule performs worse than the other job rules when combined with the service

PM tool rules: VARLO, VARHI, and VARPM (Table 6-12). The job rule, DRTC,

also performs poorly when combined with MQBPM and JDDTL tool rules.

Figures 6-6 (a-d) show how the different tool control rules perform for

percentage of tool failures. The tool control rule, NOPM, causes 100 percent tool

failure, as expected. The tool control rules, VARLO, JDDTL, and FPTPM, all have

higher levels of tool failure. These tool rules do not provide for early PM as do the
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Table 6-11 Analysis of Variance for the Log of Percentage

of Tool Failures

Source of Variation S D Ms F p

BATCH 4.42 99 .49 41.11 .000

MTOOL 238.66 6 39.78 3326.38 .000

NLIFE .89 l .89 74.83 .000

NRULE 1.58 3 .53 43.96 .000

NSERVE .00 1 .00 .22 .638

MTOOL*NLIFE 2.28 6 .38 31.74 .000

MTOOL*NRULE 4.84 18 .27 22. 50 .000

MTOOL*NSERVE .00 6 .00 .07 .999

NLIFE*NRULE .00 3 .00 .11 .955

NLIFE*NSERVE .00 l .00 .41 .524

NRULE*NSERVE .00 3 .00 .11 .957

MTOOL*NLIFE*NRULE .28 16 .02 1.48 .100

MTOOL*NLIFE*NSERVE .01 6 .OO . 12 .994

MTOOL*NRULE*NSERVE .03 18 .00 . 15 1.000

NLIFE*NRULE*NSERVE .00 3 .00 .08 .972

MTOOL*NLIFE*NRULE*NSERVE .01 15 .00 .03 1.000

(Model) 450.55 119 3.92 327.63 .000

(Total) 460.58 11199 .48

R-Squared = .978

Adjusted R-Squared = .975

rules: VARHI, VARPM, and MQBPM (Figure 6-6a). Another feature of these tool

control rules is, they all deteriorate in performance as tool life variance increases

(Figures 6-6 a—b).

6.2.7 Angysis of Effects Summm

The following is a summary of the significant effects for the six performance

measures.

- The main effects of tool control rules (MTOOL) and job priority rules

(NRULE) is significant for all performance measures. Table 6-13 provides a

synopsis of the ANOVA test results for significant main effects and interaction.

The higher order interaction between tool control rules (MTOOL) and job priority
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Table 6-12 Treatment Means for Percentage of Tool

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           
  

Failures

TOOL RULES

FPTPM VARLO VARHI VARPM M.“

.___. T-lfi _..__* _..___ _.__ .__ .__. ._____.

' 17.2 46.3 0.2 3.0 0.4 37.4

TOOL-LOW sore 100 17.5 39.6 0.1 0.3 0.0 33.3

MAINT-LOW 959.4 I 100 16.8 44.7 0.3 2.0 0.0 29.6

ssrr. ' 100 16.9 53.7 0.3 6.0 0.2 36.5

|-—-— — —7 - ~ --—» -————~ ‘____ —- ~- ~- ===$=E=l

DRTC 100 33.5 49.5 2.6 4.1 1.3 46.7

TOOL-HIGH smc 100 33.9 43.8 1.6 1.9 0.8 42.2

MAM-LOW PSR4 100 33.0 47.5 2.0 3.5 0.8 39.5

SSTL 100 33.0 54.3 3.1 7.3 0.8 45.9

mm==w

i DRTC 100 17.4 46.3 0.2 3.1 0.3 37.8

TOOL-Low smc 100 17.1 39.6 0.1 0.3 0.0 33.2

MAINT-HIGH psru 100 17.3 44.4 0.3 2.0 0.0 29.7

ssn. 100 16.6 53.6 0.2 5.9 0.2 36.4

_an: ==T

DRTC 100 32.9 49.5 4.2 2.9 1.0 46.3

TOOL-HIGH smc 100 32.7 44.7 1.6 1.9 0.7 42.8

MAINT-HIGH 175114 100 32.9 47.8 2.0 3 4 0.6 40.6

SSTL 100 33.3 54.3 2.9 6.9 0.8 46.0

m—fl—

Legend:

Tool Control Rules: NOPM - no PM performed, allow tool to fail.

FPTPM - fixed PM point, PM occurs only after PM point.

VARLO - variable PM point, allow postponed PM up to 10% beyond.

VARHI - variable PM point, allow early PM up to 10% before.

VARPM - variable PM point, allow early or postponed PM, 10%.

MQBPM - use VARPM rule but consider maintenance queue

JDDTL - use FPTPM but considerjob due date.

Job Priority Rules: DRTC - prioritized by due date

SDTC - prioritized by sequence dependency. then due date.

PSR4 - prioritized using four priority levels

SSTL - prioritized by sequence dependency. then by tool condition.

TOOL—LOW: low tool life variance.

TOOL-HIGH: high tool life variance.

MAINT—LOW: low maintenance service time variance.

MAM-HIGH: high maintenance service time variance.

rules (NRULE) is significant for all performance measures.



169
 

 

P
e
r
c
e
n
t
a
g
e
o
f
T
o
o
l
fi
a
r
l
u
r
e
s

O a

D ‘

 

Figure 6-6a Comparison of Control Rules
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Fogure 6-6b Comparison of Control Rules
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Figure 6-6c Comparison of Control Rules

Low Tool/th Maintenance V ariance
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Figure 6-6d Comparison of Control Rules

High Tool/th Maintenance Variance
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Table 6-13 Synopsis of ANOVA Results from Analysis of Effects

fi

 

 

 

 

 

 

SOURCE OF VARIATION TSY srs TRD STD PLT PCM

NBATCH 4 4 4 4 4 ..

MTOOL 4 4 4 4 4 4

NLIFE 4 4

NRULE 4 4 4 4 4 4

NSERVE

MTOOL '1 NLIFE 4 4 4

MTOOL * NRULE 4 4 4 4 4 ..

 

MTOOL "‘ NSERVE
 

NLIFE * NRULE
 

NLIFE * NSERVE
 

NRULE * NSERVE
 

MTOOL * NLIFE "' NRULE
 

MTOOL * NRULE "' NSERVE
 

NLIFE * NRULE * NSERVE
 

MTOOL * NLIFE * NSERVE

         MTOOL * NLIFE * NRULE * NSERVE

w ——-———— ll

Legend: "' - Significant Effect

TSY - Mean Time in System

STS - Standard Deviation Time in System

TRD - Mean Tardiness

STD - Standard Deviation Tardiness

PLT - Percentage of Jobs Late

PCM - Percentage of Tool Failures

 

- The main effects of tool life variance (NLIFE) is significant for

performance measures dealing with percentage of jobs late and percentage of tool

failures.

- The higher order interaction between tool control rules (MTOOL) and tool
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life variance (NLIFE) is significant for mean time in system, percentage of jobs late,

and percentage of tool failures.

- All other main effects and interactions are not significant. This includes all

three and four way interactions.

An analysis of these effects for the performance measures allow a number of

conclusions and observations to be made. These conclusions include:

- Tool control rules which allow variable PM perform better than others,

particularly PM rules which promote early maintenance prior to the PM point.

- Job priority rules which are due date based (DRTC and PSR4) perform

better than sequence dependent rules (SDTC and SSTL). This is attributed to the fact

that due date rules evaluate all jobs in queue every time a job is done processing or

tool failure occurs. By prioritizing all jobs in queue, a more efficient evaluation of

jobs in queue is made.

- Maintenance service time (NSERVE) does not significantly influence shop

performance. The reason is that maintenance utilization is too low to cause delays in

tool repair. Higher maintenance utilization would cause maintenance queue to

increase resulting in longer delays and lower tool availability. Increasing mean

service time would likely change this result.

- Tool life variance (NLIFE) is only significant for two out of six

performance measures. While this result may seem surprising, the reason can be

attributed to tool availability. Availability can be viewed as the time the tool is not in

maintenance (down time). On average, a tool is in maintenance 3 hours for every
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100 hours of processing time (3% down time) based on a preventive maintenance

(PM) heuristic. In the worst case scenario, that of corrective maintenance (CM),

down time occurs on average 6 hours for every 120 hours of processing time (5%).

Should tool availability decrease substantially, this factor would become significant.

In general, the influence of NSERVE and NLIFE on the shop performance measures

is not very strong. This indicates that the control rules (MTOOL and NRULE) are

the main decision rules that affect shop performance. However, if the means are

large, NSERVE and NLIFE can also affect shop performance.

- The best combination of rules consisted of: PSR4-MQBPM, PSR4-VARHI,

DRTC-MQBPM and DRTC-VARHI. This is attributed to the fact that PSR4 and

DRTC, and MQBPM and VARHI are consistently the better performing job priority

rules and tool control rules respectively.

6.3 A PRIOR] HYPOTHESES ANALYSIS

When higher order interactions are significant, as indicated in the ANOVA

analysis, interpretation of linear contrasts may not be valid. One Way ANOVA is

used when comparing two treatment means. Also used, is multiple comparison

(Tukey HSD) to analyze am hypotheses (Neter et al., 1990). This involves

comparing appropriate treatment means as discussed in Chapter 5. The use of Tukey

multiple comparison will show which treatments, if any, are significantly different.

With significant higher order interaction between job priority rules (NRULE) and

tool control rules (MTOOL), multiple comparisons of job rules for each tool rule
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and comparison of tool rules for each job rules is necessary. It should be noted that

the significant higher order interaction between tool rules (MTOOL) and tool life

(NLIFE) did not alter the rank order significant groups for the multiple comparison.

6.3.1 Hymthesis l

Hypothesis 1 tests whether sequence dependant job priority rules used to

select the next group of jobs is affected by the decision to use job due date or tool

condition information. When replacing a tool on a machine, is it better to select the

next tool based on job due date (SDTC) the tool which can be utilized the longest on

the machine (SSTL). The objective is to fully utilize the advantages of sequence

dependency which reduces setup time.

In summary, there is no difference between sequencing dependant rules,

accept the null hypothesis. The results of Tables 6-14(a-g) and Table 6-15 show that

for any of the performance measures, there is a significant difference between SDTC

and SSTL. This holds for all six performance measures. Examining Tables 6-14(a-g)

and Figures 6-7(a-f), it can be seen that the rank order shows SDTC performs

slightly better than SSTL on every measure. The results show that there is no

significant difference between using due date or tool condition information when

selecting the next tool for a machine.

632 W812.

Hypothesis 2 continues the examination of job priority rules by examining the
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Figure 6-7b Mean Values for Standard Deviation of Time in System

 

 

  

 

Job Priority Rules

 

 

 



176

 

 

M
e
a
n
T
a
r
d
i
n
e
s
s

Figure 6-7c Mean Values for Tardiness
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Figure 6-7d Mean Values for Standard Deviation of Tardiness
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Figure 6-7f Mean Values for Percentage of Tool Failures
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differences between the first three rules: DRTC, PSR4, and SDTC. The analysis of

these three rules allow a comparison of different job due date based rules. This

differs from the job priority rule SSTL which used tool load as a criteria for

selection and not due date.

For Hypothesis 2, the null is rejected because there is a significant difference

between the three job priority rules. Tables 6—14(a-g) and Figures 6-8(a-f) show that

rules PSR4 and DRTC are significantly different for most performance measure. For

mean time in system, there is no significant difference between the three rules. As

for standard deviation of time in system and standard deviation of tardiness, PSR4

and DRTC are both significantly different than SDTC, but are not significantly

different than each other. For mean tardiness and percentage of jobs late, all three

job rules are significantly different from each other (in most cases). For mean

tardiness, PSR4 is the best performing rule followed by DRTC and the SDTC

(Figure 6-8c), whereas, the opposite ranking is observed for percentage of jobs late

(Figure 6—8d). The log percentage of tool failures shows that SDTC and PSR4 are

significantly different than DRTC (except for NOPM tool rule), but are not

significantly different than each other.

Figures 6—8(aod) show that PSR4 is the best performing job priority rule,

followed by DRTC and SDTC respectively. In Figure 6-8e, the rank order is

reversed with PSR4 being the worst performer. Only in log percentage of tool

failures (Figure 6-8t) does the order of the job rules change where SDTC is first,

followed by PSR4 and then DRTC in performance (except under FPTPM tool rule).
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6.3.3 Hmthesis 3

Hypothesis 3 tests whether there is any benefit to preventative maintenance

over corrective maintenance. Do PM tool control rules perform better the CM rule

(NOPM)? The conclusion is, PM does improve performance significantly (Tables 6-

16 a-d), thus rejecting the null hypothesis. The rule NOPM is usually the worst

performing tool rule formean time in system, percentage of jobs late, and log

percentage of tool failures. For standard deviation time in system, mean tardiness,

standard deviation of tardiness, NOPM is a significantly worse performer than tool

rules VARLO, VARHI, VARPM, and MQBPM (in most cases). The PM tool rules,

FPTPM and JDDTL, perform significantly worse than NOPM for mean and

standard deviation of tardiness. JDDTL performed significantly worse than NOPM

for standard deviation of time in system. While there is no significant difference

between NOPM and FPTPM, NOPM is only ranked lower for standard deviation of

time in system under job rule SSTL.

Overall, PM tool control rules perform better than NOPM, but there are a

number of exceptions. NOPM tool rule never performs better than the variable PM

tool control rules: VARPM, VARHI, and MQBPM (Figures 6—9 a-f). The two fixed

PM point tool rules: FPTPM and JDDTL, performed worse on half of the

performance measures (Figures 6-9 b-d).

6.3.4 ammo:

Hypothesis 4 answers whether a fixed PM policy is better than a variable PM
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policy. This test requires the comparison of three variable PM tool control rules:

VARLO, VARHI, and VARPM, to the fixed PM rule FPTPM.

FPTPM rules were significantly different than the variable PM rules (Tables

6-16 a-d) except for percentage of jobs late. Tool control rule VARHI performed

significantly better than FPTPM for all measures except percentage of jobs late and

tardiness (when using PSR4 job rule). For this performance measure (Figures 6-10

a—f), VARHI is not significantly different but does perform better (Figure 6-10c).

FPTPM performs significantly worse than any variable PM tool rule for standard

deviation of time in system, and mean and standard deviation of tardiness. The

exception to this is when job priority rule PSR4 is used. FPTPM tool rule performs

significantly better than variable PM rule VARLO for mean time in system, log

percentage of tool failures, and percentage of jobs late. FPTPM tool rule performed

significantly worse than VARPM for all performance measures except percentage of

jobs late. For this measure, FPTPM outperforms VARPM (Figure 6-10c).

The results show that variable PM rules outperform fixed point PM rules.

The PM tool rules, VARHI and VARPM consistently outperformed FPTPM. These

two PM tool rules allow for early PM. The third PM tool rule, VARLO, allows PM

to be postponed past the PM point causing more tool failures (Figure 6-lOf). This

explains why VARLO performs worse than FPTPM three of six performance

measures (Figures 6-10 b-d).
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6.3.5 Hymthesis 5

Hypothesis 5 tests whether there is a significant difference between early

variable PM tool rule (VARHI) and postponed variable PM tool rule (VARLO). The

question attempts to answer whether it is advantageous to allow early or postponed

tool PM. The results show that the null hypothesis is rejected, there is a significant

difference between early versus postponed variable PM tool control rules (Table 6-

17). For all performance measures, VARHI performs better (Figures 6-11 a-f and

Tables 6-16 a-d). Only performance measures, mean and standard deviation is there

no significant differences between VARHI and VARLO tool rules (Table 6-17).

While these two measures are not significantly different, VARHI still outperforms

VARLO (Figure 6-10 c-d).

VARHI performs better than VARLO because of the lower percentage of tool

failures. This shows that early PM is preferred to that of postponed PM. The only

time that postponed PM does not worsen performance is with tardiness (mean and

standard deviation).

6.3.6 Iimhssisfi

Hypothesis 6 compares a variable PM tool control rule which allows both

early or postponed PM when maintenance queue is empty (MQBPM) with that of

variable PM (VARPM). The null hypothesis tests whether there is a significant

difference between tool rules which considers maintenance queues versus a tool rule

that does not.
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Figure 6-113 Mean Values for Time in System
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The null hypothesis is rejected, there is a significant difference between

VARPM and MQBPM. MQBPM performs significantly better than VARPM for

percentage of jobs late and log percentage of tool failures (Table 6-18). VARPM

performs significantly better than MQBPM for standard deviation of time in system

(Table 6—18 and Figure 6—12b).

For the next three performance measures, mean time in system, mean

tardiness, and standard deviation of tardiness, there was no significant differences

(Table 6-18). Of these three non-significant performance measures, the MQBPM

rule performed best for mean time in system and mean tardiness (Figure 6-12 b-c).

For standard deviation of tardiness, VARPM performs better than MQBPM for the

two measures of variance, standard deviation of time in system and tardiness. While

VARPM causes less variation, it performs worse on all other measures.

6.3.7 Hymthesis 7

Hypothesis 7 looks at whether a tool rule which considers past due jobs

performs significantly different than PM rules which do not. The hypothesis tests

whether tool control rule JDDTL is significantly different than FPTPM. JDDTL is a

modified version of the tool rule FPTPM. Only JDDTL considers job due date status

and will keep a tool in production until all past due jobs are processed or until the

tool fails.

The null hypothesis is rejected, there is a significant difference between the

two tool control rules (FPTPM and JDDTL). FPTPM performs significantly better
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than JDDTL for all performance measures except standard deviation of tardiness and

percentage of jobs late (Table 6-19). While FPTPM did not perform significantly

different than JDDTL, FPTPM still outperformed JDDTL for both standard

deviation of tardiness and percentage of jobs late (Figure 6-13e).

The poor performance of JDDTL can be contributed to the greater percentage

of tool failures. The fact that JDDTL continues processing past due jobs causes the

risk (and number) of tool failures to rise. The added risk is only incurred for past

due jobs.

The conclusion is, using job due date as a means of tool control is not

beneficial. Allowing past due jobs the ability to keep a tool in production in excess

of its PM point does not improve shop performance. The additional risk of tool

failure outweighs the benefit of job completion.

6.3.8 11171261116383

Hypothesis 8 examines whether tool life variance effects the performance of

the shop. The null hypothesis tests whether there is a significant difference between

LOW and HIGH tool life variance. Only performance measures, percentage of jobs

late and log percentage of tool failures performance, are significantly influenced by

tool life variance (Table 620). The logic that tool life variance has a significant

effect on percentage of tool failures is apparent (Figures 6-14 a-f). What is

surprising is the limited effect tool life had on mean and standard deviation of

tardiness and time in system. The explanation relates to the amount of lost tool
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availability which is not impacted significantly by tool life variance.

6.3.9W2

Hypothesis 9 is similar to Hypothesis 8 but looks at how maintenance service

time variance effects shop performance. The hypothesis tests whether there is a

significant difference between LOW and HIGH maintenance time variance. The null

hypothesis is accepted, there is no significant difference for all six performance

measures (Table 6-21). Figures 615 (a-t) clearly show that each performance

measure has nearly identical results under both LOW and HIGH maintenance

variance. The unexpected result can be contributed to the low utilization of the

maintenance process (ranging from 11% to 22%). With a low utilization rate, the

maintenance queue waiting time is minimal, resulting in less loss tool availability is

higher. Should maintenance variance increase or frequency of tool failure increase,

maintenance utilization would increase causing increased queue delay. Only when

utilization exceeds 60% would maintenance variance become a significant factor.

The problem with this utilization rate is that it would not emulate the visited shop

floors.

6.3.10Wm

A summary of the hypothesis results are provided in Table 6-22. The results

show that of the tool control rules, MQBPM and VARPM, consistently provide the

best performance. The most consistent performer for the job priority rules is PSR4,
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Table 6-22 Summary of Hypothesis Results

 

Hypotheses Conclusion

 

1. Sequence dependent job rules based on due

date or tool load are equal.

Accept Ho, sequence dependent job rule based

on due date perform only slightly better.

 

2. Job rules which prioritize by due date are

equal. regardless of additional information.

Reject H0, only certain forms of information

enhances performance not.

 

3. CM tool rule is equal to PM tool rules. Reject 110, most PM tool rules perform better,

but not all.

 

4. Fixed PM point tool rules equals variable

PM tool rules.

Reject Ho, variable PM rules with early PM

perform better than fixed PM point rules.

 

5. Early variable PM tool rule equals

postponed variable PM tool rules.

Reject Ho, early PM performs better than

postponed PM tool rule.

 

6. Variable PM tool rule which does and does

not consider maintenance queue information

are equal.

Reject H0, using maintenance queue in

variable PM rule improves performance.

 

7. Fixed PM point tool rule equals fixed PM

point tool rules which considers past due jobs.

Reject H0, considering past due jobs decreases

performance for fixed PM point rule.
 

8. Tool life variance does not impact shop

performance.

Accept Ho.

  9. Maintenance service variance does not

impact performance.  Accept l-Io.

 

 

 
which confirms finding by Melnyk et al. (1989). Specific results found in the

analysis which bare mentioning include:

- The sequence dependent rules SDTC and SSTL, while showing promise in

past research (Kannan and Lyman, 1992; Lyman, 1993), fail to benefit an

environment with stochastic life tooling. This may be attributed to the fact that the

ratio of setup time to processing time is 20%. Higher levels of this ratio are likely to

change these findings.

- The due date rule PSR4 which utilizes sequence dependency while
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considering job slack, performs best. The job rule DRTC, which looks at job due

date when prioritizing, performs second best. The results show that while sequence

dependency can reduce the number of tool changes, job due date is more important

to shop performance. This outcome is most apparent in the tardiness measures.

- PM tool rules perform better than the non-PM rule (NOPM) in most cases.

PM rules reduce the amount of tool failures and thus maintenance delays. It should

be noted that the NOPM tool rule performs better than tool rules VARLO and

JDDTL on several measures.

Vanderhenst et a1. (1981), and Banerjee and Burton (1990) point out that CM

allow for a more efficient utilization of the tooling resource. The maintenance delay

incurred by NOPM is less than the tool rules VARLO and JDDTL, which allow for

PM. Their total time in maintenance (CM + PM + maintenance queue time) is

greater than that incurred by NOPM. VARLO and JDDTL thus suffers from the

worse conditions associated with both CM and PM. For example, frequently there is

not enough PM to reduce tool failures, yet too much causes a higher level of total

maintenance time.

- Fixed PM point (FPTPM) does not perform as well as variable PM rules.

The exception is, when the variable PM tool rule allows for postponed PM. Once

again, the superior performance of VARHI and VARPM over FPTPM can be

attributed to total maintenance time (tool failure). The FPTPM tool rule forces a tool

to remain available for production until it passes the PM point, after which, it can

go in for maintenance. This inflexibility causes the risk and number of tool failures
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to increase. Both VARHI and VARPM allow for early removal of tools for PM,

thus reducing tool failures.

- The form of variable PM, whether early or late, is a major factor in shop

performance. The early PM rule VARHI consistently gives better performance than

the postponed PM tool rule VARLO. While both rules consider shop demand, the

difference in performance can be contributed to tool failure risk. The higher risk

results in greater frequency of tool failures and higher total maintenance time.

- The use of maintenance queue information improves the performance of a

variable PM tool rule. The MQBPM rule is a modified VARPM tool rule with the

addition of maintenance queue information. Examining maintenance queue and

allowing removal of tools for PM causes reduced tool failure risk. Total maintenance

time is also lower for MQBPM than for VARPM. While the use of maintenance

queue information improves performance on a number of measures, it causes a

greater variation in performance. Thus, MQBPM performs worse than VARPM for

the standard deviation performance measures.

- Allowing tools to remain in production until all past due jobs are done does

not improve delivery performance (tardiness and percentage of jobs late). The tool

rule JDDTL performed significantly worse than FPTPM because it forces a tool to

remain in production. The high risks of tool failures negates any benefit that delayed

PM could provide. Whenever presented with the choice to perform PM or process a

job when past the PM point, the results show that the tool should be removed for

PM.
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- The last issue, the effects of variance, is not as clear-cut as this research

might indicate. While tool life and maintenance variance is inconsequential, this only

reflects the parameters used in the model.

6.4 Post Hoe Analysis

The following analysis consists of two parts. The first part will examine the

relative performance of tool control and job priority rules since these rules dominate

the influence on shop performance. The control rules will be examined under low

and high tool life and maintenance service variance. The objective is to determine

the robustness of the control rules and further investigate their affect.

The second part will examine the performance of combined tool control rules

and job priority rules. The objective here is to determine what combination of rules

provide the best overall performance.

While who; analysis does not provide the same level of construct validity

as am analysis, it does allow further investigation and insights. The purpose of

theManalysis is to provide insight into how the tool and job heuristics

perform. Tukey HSD multiple comparisons will be used to conduct the analysis. The

significant differences found in the Tukey test which are not found in the ANOVA

tests can be attributed to the techniques used in comparing treatments. ANOVA

compares the mean of the means to each treatment mean. Whereas, Tukey compares

each treatment mean to each other.
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6.4.1 Relative Pgrfgrmancg of Heuristics

The introduction and HIGH and LOW variance consist of two parts: 1) tool

life, and 2) maintenance. Two specific items will be examined when analyzing the

multiple comparison tables. The first concern looks at how the relative performance

of each heuristic is affected by variance. Does the rule perform well under LOW or

HIGH variance? The second issue, is there any cross over effect to different levels

of variance? This looks at whether a heuristic performs better for HIGH variance

than LOW variance.

6.4.1.1 213521 Life Variflce

Each performance measure, except mean time in system, show significantly

different groups of job priority rules (Table 6-23a). The rank order of the job rules

show that those job rules which perform well under LOW variance do equally well

under HIGH variance. The exception is, mean time in system and log percentage of

tool failures (Table 6—23a). What is seen for these two performance measures is

grouping of job rules under LOW and HIGH variance. Also, in no case does a job

rule perform better under HIGH variance than under LOW variance (Figures 6—16 a-

1).

When examining tool control rules by tool life variance, there are significant

differences between certain rules (Table 6-23b). The tool rules which perform well

under LOW variance also do so under HIGH tool life variance. Tool rules perform

better under LOW variance than HIGH variance.
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Figure 6-16a Con'parison of Job Priority Rites by Tool Life Variance

for Mean Time in System
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for Standard Devxation Tune In System
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Figure 6-16c Comparison of Job Riority Rules by Tool Life Variance

ror M can Tardiness
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Figure 6-17a Corrparison of Tool Control Rules by Tool Life Variance

for Mean Time in System
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Figure 6-17b Comparison of Tool Control Rules by Tool Life Variance
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Figure 6-17c Carparison of Tool Control Riles by Tool Life Variance

for Mean Tardiness
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Figaro 6-17e Corrparison d Tod Control Rules by Tool Life Variance

for Peuentage ofJobs Late
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6.4.1.2 Maintenagge Servigg Time Variance

All performance measures except, mean time in system and log percentage of

tool failures show significant differences between treatments for job rule by

maintenance variance (Table 6-24a). lob priority rules do not differ significantly in

performance between LOW and HIGH variance (Figures 6-18 a-f). Job rules which

perform well under LOW variance do so under HIGH maintenance variance. There

is no cross over effect where a rule under HIGH variance performs better than LOW

variance (Figure 6-18 a-f).

All performance measures show groupings of significant differences between

tool rule by maintenance variance (Table 6—24b). Tool control rules do not

significantly differ between HIGH and LOW maintenance variance (Table 6-24b).

Tool rules which perform well under LOW variance, also perform almost equally as

well under HIGH variance. No tool rule exhibited cross over effect.

6.4.2 1912 Prigg'ty Rule by [ml antml Rt_11§

All performance measures show significant groupings of various tool control

by job priority rules (Table 6-25). The higher order interaction of MTOOL by

NRULE is also significant for ANOVA on all performance measures in the analysis

of effects. The groupings of significantly different job-tool rules make comparisons

difficult. For this reason, the rank order of combined rules will be used to draw

conclusions.

For mean time in system measure, the tool control rule has more influence on
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Figure 6-18a Corrparison of Job Priority Rules by Maintenance Service Variance

for Time in System
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Figure 6-18b Carparison of Job Pi'iority Rules by Maintenance Service Variance

for Standard Deviation Time in System
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Figure 6—18c Comparison of Job Ftiority Rules by Maintenance Service Variance

for Mean Tardiness
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Figure 6-18d Corrparison of Job Ftiority Rules by Maintenance Service Variance

for Standard Deviation Tardiness
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Figure 6-18e Corrparison of Job Riority Rules by Maintenance Service Variance

for Percentage ofJobs Late
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Figure 6-19a Corrparison of Tool Control Rules by Nbintenance Service Variance

for Mean Tune in System
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Figure 6-19b Corrparison of Tool Control Rules by Nhintenanee Service Variance

for Standard Deflation Time in System
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figure 6-19c Carparison of Tool Control miles by Maintenance Service Variance

fztr Mean Tirizness
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figure 6-19d Con'parison of Tool Control Rules by Maintenance service Variance

for Standard Cevmtion Tardiness
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figure 6-19e Carparison of Tool Control Rules by Nhintenance Service Variance

for Percentage ofJobs Late
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figure 6-19f Comparison of Tool Control Rules by Maintenance Service Variance

for Percentage ofToolFaIlures
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performance. The tool rules, MQBPM, VARHI, and VARPM are the best

performers regardless of job priority rule. The job priority rules influence cause

variation in the relative performance. For example, when job rules PSR4 and SDTC

are combined with MQBPM, VARHI, and VARPM, performance for mean time in

system tends to be the best. The worst tool control rule performers are NOPM,

JDDTL, and VARLO. Once again, the job priority rule causes only small increases

or decreases in the relative position.

For standard deviation of time in system, the consistency of performance of

the rules is less certain. The job priority rules tend to play a larger role in relative

performance for this measure. Job priority rules PSR4 and DRTC improve

performance the most. When these two job rules are combined with VARHI and

MQBPM tool rules, the best performance results. The job rules SSTL and SDTC

tend to cause performance to worsen. Only the JDDTL tool control rule showed

consistently poor performance.

For mean tardiness, job priority rules are more influential than tool control

rules in determining performance. The first group (top) of significantly different

combined rules is dominated by the PSR4 job rule, followed by DRTC. This

outcome is what would be expected for job rules which prioritize by due date. It

should also be noted that the first significant group contained all seven tool control

rules because they were combined with job rule PSR4 (Table 6-25). The

combination of SSTL and SDTC job rules with JDDTL and FPTPM tool rules

results in the worst performance.
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For standard deviation of tardiness, the job priority rules are also more

influential than tool control rules. The job rules which promote better performance

are PSR4 and DRTC, with SDTC and SSTL resulting in poorer performance (Table

6-25). As for the tool control rules, there is no clear dominate rule.

For percentage of jobs late, job priority rules SDTC provides consistently

high performance, while PSR4 gives the worst performance. No clear combination

of job priority and tool control rules perform best for this measure.

For log percentage of tool failures, the tool control rules influence

performance more than job priority rules. The first two significantly different

groupings are dominated by the tool control rules, MQBPM and VARHI. The worse

performing tool rules are NOPM, VARLO, and JDDTL. No clear dominate job

priority rule can be found (Table 6—25).

6.4.3 Summag gf 29st Hm Analysis

Results from the 13M analysis confirm findings found in the analysis of

effects and a prior analysis. The following is a summary of them analysis.

- The relative performance of both job priority and tool control rules are not

affected by tool life and maintenance service variance (also evidenced in the

ANOVA results). Control rules perform better under LOW variances than HIGH

with little difference between each level. This is to be expected since shop

performance generally deteriorates under high variance. The better performing tool

rules (MQBPM and VARHI) exhibit robustness for both forms of variance. MQBPM
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and VARHI tool rules also exhibit robustness across performance measures. The job

priority rules (PSR4 and DRTC) also exhibit robustness in the presences of variance.

The job priority rules do not exhibit robustness with respect to performance

measures. The PSR4 rule gives the best performance on most measures, except

percentage of jobs late where it performs worse.

- No job priority or tool control rule exhibited cross-over effect. While the

result was expected, this may not always hold true under different model parameters.

- No single combination of tool and job rules perform best for all

performance measures. The most consistently high performance is obtained when the

PSR4 job rule is combined with either MQBPM or VARHI tool rules. It should be

noted that both PSR4 job rule and MQBPM tool rules are information intensive.

Both heuristics consider more conditions in their decision process then most other

rules. Clearly, this shows additional information is beneficial.

6.5 Discussion of Results

The analysis of effects,m hypothesis, andManalysis found that

two tool control rules, MQBPM and VARHI, consistently outperform all other tool

rules. As for job priority rules, PSR4 provides the best performance except for

percentage of jobs late. There are however, a number of results which did not

conform to expectations. The following is a discussion of why the outcomes

differed.

The expected outcome that SSTL job rule would outperform SDTC rule was
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based on past research (Lyman, 1993). Job rules which considered tool utilization

improved performance under deterministic tool life. This model used stochastic

(unknown) tool life. By selecting the tool which can be utilized the longest on a

machine, a slight increase in tool failures was observed. This lowered the

performance of SSTL. The other reason SSTL performed poorly is that it did not

give consideration to job due date when tool change took place. This causes further

worsening of SSTL's performance.

 

The job rule SDTC considers due date for all jobs in queue when tool

changes take place. For this reason, SDTC performed slightly better than SSTL.

Both SDTC and SSTL suffer because they are myopic. They attempt to fully utilize

an existing tool setup without considering all jobs in queue due dates.

Neither SDTC nor SSTL perform better than the PSR4 job rule. PSR4 rule,

like SSTL and SDTC, allow sequence dependency to utilize existing tool setup

(Melnyk et al., 1989). The advantage of PSR4 is the rule re-examines the machine

queue in its entirety after each job is completed. The re-examination allows the

PSR4 rule more information in its decision process, thus giving it top performance

among all the job rules.

The exception for PSR4 job rule is the percentage of jobs late performance

measure. The reason for this poor performance can be explained by the priority

setting. Priorities are set by job slack and setup requirements. While PSR4 rule

responds quickly to jobs which are past due (negative slack), this increases the

number of jobs late while simultaneously keeping mean and standard deviation of
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tardiness low. To improve PSR4 job rule on percentage of jobs late requires only a

minor modification to the job slack value.

The use of due date information is essential in shop performance. Both PSR4

and DRTC job priority rules use due date status of all jobs when deciding which job

to process next. Both rules perform consistently well on the performance measures

as well as being robust to system variance. The evidence shows that the key piece of

information for job priority rules is due date status with setup requirements playing a

minor role in performance.

While results in this study generally confirms results from past research

(Melnyk et al., 1989; Lyman, 1993), it also contradicts certain research. The

conclusions that sequence dependency is a key determinate in shop performance is

not supported in this model. Articles by Mahmoodi et a1. (1990), Mahmoodi and

Dooley (1991), and Kannan and Lyman (1992) support the position that sequence

dependant rules (family rules) improve performance. In the model used for this

research, sequence dependant job rules result in worse performance. This conclusion

is based on a lower setup time to processing time ratio (20% vs. 33%) and in the

presences of finite life tooling resource.

There were a number of surprising results that occurred with the tool control

heuristics. While it was expected that PM tool rules would outperform the CM tool

rule, there are a number of exceptions. The results confirm past research of Kay

(1978) and Banerjee and Burton (1990) by pointing out that PM is preferred in most

cases. Banerjee and Burton showed that some PM rules can decrease performance

 

 



because of maintenance frequency.

The poor performing PM tool rules, JDDTL and FPTPM, suffer from higher

total maintenance time. These rules cause high frequency of tool failures and thus

suffer the plight that NOPM tool rule does. JDDTL and FPTPM tool rules also do

not benefit from PM to the extent that tool rules MQBPM and VARHI do. The

result is higher maintenance time due to tool failures compared to VARHI and more

frequent maintenance trips than NOPM. The higher frequency allows NOPM to

outperform JDDTL and FPTPM on several performance measures. Table 6-26

provide an illustration of how PM tool rule can perform better or worse than the

CM tool rule.

—

Table 6-26 Example of Total Maintenance Time

 

 

 

 

TOOL NUMBER MAINTENANCE NUMBER MAINTENANCE TOTAL TIME

RULE OF CM TIME FOR CM OF PM TIME FOR PM

(6 Hours) (3 Hours)

NOPM 30 180 0 0 180

JDDTL 17 102 30 90 192

VARHI 2 12 45 135 147       
 

Other results which did not conform to expectations was that of hypothesis 4.

Results showed that allowing early PM (VARHI and VARPM) outperform the fixed

point PM rule (FPTPM). The unexpected result is that variable PM rule VARLO

does not outperform FPTPM. This points out an interesting conclusion. Early PM

reduces the risk of tool failure, which increases tool availability via less maintenance

delay. Higher tool availability increases shop performance. Past work by Banerjee
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and Burton (1990) and Pete-Cornell et al. (1987) found that shop performance

decreases with high PM frequency. Conversely, the more frequent PM under tool

rules VARHI and VARPM contradict these past findings. The tool rules VARLO

and FPTPM cause a higher frequency of tool failures, thus lowering performance.

As stated previously, VARHI tool rule outperforms VARLO for the reason I]

cited above. In Hypothesis 5, it is stated that the reverse would hold true, VARLO i

would outperform VARHI. Clearly, the added risk to process an additional job is not

 
beneficial, but detrimental to performance. This same conclusion can also be applied b

to Hypothesis 7. The added tool failure risk that rule JDDTL allows, actually causes

all performance measures to worsen when compared to FPTPM.

The results of Hypothesis 6 are as expected, the use of maintenance queue

information does improve shop performance. The logic behind MQBPM tool rule is

similar to that of VARHI, which encourages early PM when conditions permit.

While these two rules may not operate identically, the results show they perform

equally well.

The key component to shop performance for this model as well as in past

models is tool (resource) availability (Melnyk et al., 1989). This conclusion can be

seen in the performance of the various tool control rules. The tool rules, MQBPM

and VARHI, cause the least tool failures and thus the shortest total maintenance

service delay. The less time spent in the maintenance process the greater tool

availability. If PM is too frequent, the result will be decrease shop performance

(Banerjee and Burton, 1990).
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The tool heuristics developed for this model take the perspective actually used

on shop floors. If there is a past due job which needs a tool, keep the tool in

production as long as the tool's limits have not been surpassed. When the choice is

between processing jobs early (prior to due date) versus sending a tool in for

maintenance, choose maintenance. This is especially true for the MQBPM tool rule

which uses maintenance queue information. If there is no backlog of tools (queue is

empty) waiting for maintenance. then its advantageous to seize the opportunity. The

other advantage to the use of maintenance queue information is that tool repairs can

be spread out, allowing balanced maintenance workload.

This last point brings up the issue of planned and unplanned maintenance.

While not considered explicitly by the PM tool rules, they do implicitly plan

maintenance. Past articles have pointed to the need and benefits of planned

maintenance (Bojanowski, 1984; Christer and Whitelaw, 1988). This research has

demonstrated that PM is beneficial compared to CM. Further, the ability to balance

maintenance workload through the MQBPM tool rule is similar to planned

maintenance. If planned maintenance is to be truly effective, then it must balance

maintenance workload while simultaneously considering shop floor demand. Linking

the maintenance process to the shop floor schedule or MRP schedule would

accomplish this task.

The results from this experiment has contributed to further understanding in a

number of ways. The use of information, both type and frequency, can improve

shop performance. While past research supports this proposition (e. g. Fredendall,
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1991), this research highlights the benefits of information in a stochastic

environment. This includes the use ofjob due date status and setup requirements.

When job due date is checked intermittently, shop performance deteriorates

significantly.

The use of information in the tool decision is also a major factor in shOp r]

performance. Maintenance queue backlog information allows the tool rule MQBPM -‘-:

to significantly out perform rule VARPM. Information on shop floor demand also

-
‘

 
leads to the success of the variable PM rules. By evaluating job demand, the tool J

rules can evaluate whether there is a need to keep the tool in production or allow for

early PM.

This research has also contributed by developing a number of unique tool

control rules. Past research has focused almost exclusively on fixed point PM rules

(Banerjee and Burton, 1990; Christer and Whitelaw, 1984). The results from this

research indicate that variability in the PM decision can improve performance over

the fixed PM point rules. The variability allows for consideration of such factors as:

shop demand, tool condition and maintenance load. This provides the decision maker

the opportunity to evaluate the environment and make an informed decision.

The last contribution of this research is the recognition that control of a finite

life resource requires a different approach. Whereas past DRC research has viewed

the resources of labor and machine as having infinite life, this model replaces labor

with a finite life resource (tooling). This changes the characteristics of the DRC

model. To control a finite life resource requires the development of new heuristics.
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Control heuristics which work for labor are inappropriate for tooling. Research by

Nelson (1966), Goodman (1972) and Fryer (1974, 1978) point out that the where to

send and when to send a resource. With finite life resource, an additional series of

questions must be asked: 1) is the resource available, 2) how much of the resource is

remaining, and 3) is that sufficient life? While this adds complexity to the control

heuristics, these rules are more representative of the real decision made on the shop

floor.

6.6 Summary of Analysis

Results show that the factors, tool control rules (MTOOL) and job priority

rules (NRULE), are the determinates of shop performance. Of these rules, several

stand out as effective and robust. The early variable PM rules, MQBPM and

VARHI, when combined with PSR4 job rule provide consistently high performance.

While variable PM gives better performance over fixed point PM tool rules FPTPM

and JDDTL, this flexibility is not totally beneficial. The expectation that variable

PM tool rules which postpones PM would improve performance, especially

tardiness, was not realized. In fact, the opposite was true.

The expectation that sequence dependant job priority rules SSTL and SDTC

would improve performance was not realized. The poor performance is attributed to

the fact that: l) the setup to processing ratio is 20 percent, and 2) to their myopic

focus on machine/tool setup. The job priority rule DRTC, while not performing as

well as PSR4 rule, does provide fairly robust performance. DRTC focuses on job
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due date as its priority and thus performs better on those measures which focus on

delivery performance.

6.7 Future Research Directions

The experimental condition and results suggest several future research 1

avenues. The following is a brief description of possible extensions.

- The relationship of the PM point to mean tool life needs further

 examination. This can be accomplished by adjusting the PM point relative to mean H

tool life. By changing the parameters of the model, examination of the tool control

rules will illustrate how they differ under various environments. Should the PM

point be moved further from mean tool life, such tool rules as VARLO or FPTPM

may improve in their performance. Examining different PM points will allow for a

more appropriate placement of the PM point or aid in the development of simpler

yet effective PM tool rules. While Banerjee and Burton (1990) varied the PM point,

they only examine the effect of such a change on a fixed PM point rule.

- Another tool control rule issue which needs to be explored further involves

the degree of variability in the variable PM tool rules. The results of this study has

found that the use of variable PM proVides the best performance. Since this research

is the first known work which tests a variable range for the PM decision, additional

tests are needed. Adjusting the current 10% range for variable PM to several values

both higher and lower will be necessary. This will provide a wider range of

information on what is an appropriate range for a variable PM tool control rule.
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Such information would benefit managers who are establishing parameters for a

maintenance program.

- A third issue which must be explored is tool life distribution. The use of a

normal distribution was selected because of discussions during plant visits and

several articles (Lie et al., 1977; Fenton and Joseph, 1979). Past research has shown

that varied tool life distributions like log-normal, Weibull, and gamma can alter

results (Ramalingam et al., 1978; Bao, 1980). Examining the tool heuristics under

different distributions will test the robustness of the control rules. Once again, the

benefits to this analysis would be to provide a manager information from which to

make a decision.

- The frequency of maintenance issue needs to be examined in greater detail.

The results of this research contradicts the outcome found by Banerjee and Burton

(1990). Figure 6-19 illustrates how frequency of maintenance and total maintenance
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time are related. While this relationship seem straight forward, the variable PM tool

rules seem to alter the shape of the total maintenance curve. Additional research

needs to focus on how the various tool rules influence the relationship.

- Results from this research has shown PSR4 rule is effective for all

measures, but percentage of jobs late. Modification of PSR4, plus the addition of job "I

priority rules which consider tool availability, should be studied. While the job i it

priority rules studied in this model considered the PM point, future job priority rules

 should examine remaining tool life and maintenance status. The addition of these u

forms of information are likely to improve performance.

- Other parameters that should be altered to develop a comprehensive

understanding of tool control is tool flexibility. The use of flexibility in the PM rule

has been found to improve shop performance. Would the ability to move tools

between machines improve performance? Past DRC research has found labor

flexibility to be beneficial (e. g. Fryer, 1974; Goodman, 1972). The likely results

will show that the addition of flexibility to a resource improves performance

(Swamidass, 1988). Past DRC models (e.g. Melnyk and Lyman, 1991) have

developed control heuristics which are useful for labor control but are not likely to

be useful with finite tool life. New control heuristics will need to be developed

which consider tool life and maintenance delay.

- Another parameter issue which needs further study involves multiple c0pies

of each tool. While this has been studied in past research (e. g. Bao, 1980; David

and Purcheck, 1981). Multiple tool copies have never been studied in a DRC
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environment or when maintenance (PM or CM) needs to be performed. Once again,

heuristics will need to be developed which incorporates the additional information.

Such information as location, remaining life, and specific application will need to be

considered for the effective management of the shop floor.

- The last research issue which needs further investigation is that of shop

floor performance measures. The traditional DRC model has focused on measures

specific to job performance (Treleven, 1988). Such measures as time in system and

tardiness, while important, are not the only consideration. Fredendall (1992) used

labor cost data to evaluate shop performance. The cost of tool changes and

maintenance needs to be considered to evaluate the appropriateness of both tool and

job heuristics. Other non-job oriented performance measures that will aide in

comprehending tool rule influence includes: total maintenance time, maintenance

utilization rate, and utilization rate. The different measures provide a means to

further evaluate shop performance.

6.8 Conclusion

The main findings of this study consist of the following:

- Preventive maintenance improves performance over corrective maintenance

in most cases.

- Preventive maintenance policies which promote early or frequent

maintenance improve performance over fixed point or postponed PM policies.

- The use of certain forms of information, both in job priority and tool
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control rules, can improve shop performance.

- Tool life and maintenance service variance is not an influence on shop

performance due to the small loss of tool availability from maintenance delay.

- Job priority rules which consider due date and setup requirements prior to

job processing enhances performance the most.

The above results are the conclusions drawn from the analysis. To complete ”—1

the purpose of this research there are a number of questions which must be answered

 
that were developed in Chapter 1.

The first question: how do we schedule jobs, can be answered by examining

the results of job priority rules. The PSR4 job priority rule provides the best

example of how to schedule jobs in the most effective manner. The PSR4 rule

considers due date, setup requirements, and tool availability when selecting a job.

Scheduling of jobs requires that tool be available and then prioritizes based on either

due date or setup requirements or both. The use of all three sources of information

provides the best method of scheduling jobs.

The second question examines how do we effectively schedule tools for

production and maintenance? The scheduling of tools for production is determined

by the job priority rules. The scheduling of maintenance is determined by the tool

control rules. Those rules which promote early PM or frequent maintenance provide

the best performance. Allowing tools to remain in production until they fail cause

shop performance to deteriorate.

Thus, tool rules provide the best means of scheduling tools for maintenance. The

 



254

tool rule JDDTL, which attempts to schedule tools to be available for production at

the expense of maintenance, also cause shop performance to deteriorate. Additional

research needs to be conducted to explore tool scheduling that considers both

production demand and planned maintenance. No rule was able to consider more

than one tool at a time. By considering multiple tools simultaneously, scheduling of

production and maintenance is likely to improve performance. P}

The third question is, how does tool life and maintenance variation affect

scheduling decisions? Based on theM analysis, the control heuristics exhibited

 
robust behavior and is not influenced by either form of variance. Li

By answering these three specific questions, the general research question:

how do we effectively manage a DRC shop given stochastic tool life and

maintenance service, can be resolved. To answer this question, the most effective

means to managing a DRC shop is to divide the decision process into two segments.

The first segment is job selection. The use of PSR4 job priority rule provides the

highest level of performance. The second segment consists of tool allocation via tool

control rules. The most effective means of improving performance is through the use

of variable PM rules which promote early maintenance. The best rules are VARHI

and MQBPM. The combined rules PSR4-VARHI and PSR4-MQBPM provide the

 best and most robust set of rules. What this points to is additional information and

frequent/early maintenance enhances performance.

The final part of this conclusion will focus on the application of the results

obtained from this model. The model is based on information obtained from two
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flow shops. Thus, the results from this research are generally applicable to these two

manufacturing environments. Results are not specifically applicable because the

model is a combination of both environments. While both shops were similar, they

differed in several ways. This includes their approach to preventive maintenance and

tool control. The results do indicate that the shop which promotes frequent PM is

following the best approach. To confirm these results, additional tests will be

necessary using assumptions which more closely simulate the specific environment.

The generalizability of the results obtained from this study is limited to those

shop environments which emulate the assumptions used. The DRC model is not

indicative of shop environments because there are only two constrained resources.

The shops which were visited have additional constraints like labor and materials.

These shops also operated under different assumptions, like machine failure and tool

flexibility, than those used in this model. To conclude that the results from this study

are applicable under all constraints and assumptions, would not be valid. It should

also be noted, that the results from this flow shop model may not be applicable to

job shops. What this illustrates is the need for additional research. By adding

additional constraints and modifying the assumptions, it may then be possible to

apply the results to a specific shop or develop a framework from which results can

be generalized to all shop environments.
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