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ABSTRACT

GENETIC ANALYSES OF THE GENES ENCODING THE

MAJOR GLYCOPROTEINS OF FELINE HERPESVIRUS TYPE 1

BY

Stephen Joseph Spatz

The genes encoding six putative glycoproteins of feline

herpesvirus type 1 have been identified and their nucleotide

sequences determined. Predicted translation products of these

genes exhibited significant homology to glycoproteins B, H, G,

D, I and E of herpes simplex type 1. The gene encoding

glycoprotein B of FHV-l was located within the unique long

region of the genome using an HSV-l gB hybridization probe.

Nucleotide sequencing of the g8 gene revealed the presence of

an overlapping gene encoding an ICP18.5 homolog. FHV-l gB

polypeptides of 100, 64 and 58 Rd were detected with antisera

to 98 of HSV-1 in immunoprecipitation and immunoblot assays.

The genomic location of the glycoprotein H gene was

determined using a functional assay for a suspected upstream

genewwhich.encodes thymidine kinase (Tk). The selectability of

the FHV-l thymidine kinase gene in transfected mouse (Tk-

negative) cells under HAT selection allowed for the

localization of the Tk/gH gene cluster. Colonies of mouse Tk+

cells only appeared with Tk negative cells transfected with

DNA from the SalI A clone and a subfragment (6.6 Kb EcoRI-

EcoRI). Nucleotide sequencing of this subfragment from the UL

region has indicated the presence of two ORFs whose predicted



translated. polypeptides share similarities with. the «gene

products of the 9H and TK genes of HSV-l.

The genes encoding a protein kinase and glycoproteins G,

D, E and I have been localized within the unique short region

of the FHV-l genome. Nucleotide sequencing of a 6.2 Kb EcoRI-

SalI fragment from this region allowed for the identification

of these genes.

The gene products of two of these glycoproteins (g8 and

9D) genes were characterized by the generation of poxvirus

recombinants (vaccinia and raccoon poxviruses) expressing

these glycoproteins. High titers of virus neutralizing

antibodies were generated in rabbits inoculated with the

vaccinia recombinants expressing either FHV-l gB or 90.

Western blot analyses with FHV-l virions and antisera against

the vaccinia recombinants have demonstrated the presence of a

60 Rd (98) and a 50 Kd (gD) polypeptide.

The identification of the genes encoding these important

glycoproteins will form the basis for the assessment of these

glycoproteins as potential vaccine antigens.
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INTRODUCTION

Feline viral rhinotracheitis (FVR) is a major cause of

respiratory tract disease in cats and is caused by an

alphaherpesvirus, feline herpesvirus type 1 (FHV-l). Several

vaccines are currently available against FVR, but there is a

need to develop vaccines that are more protective. Current

vaccines protect against the development of clinical signs,

but fail to protect against reinfection. The goal of research

presented in this thesis was to identify the genes encoding

major immunogens of feline herpesvirus and to express their

gene products in a suitable vaccine vector.

Identification of the genes encoding immunodominant FHV-l

glycoproteins (gB, gH, gG, gD, g1 and 9E) is described in

detail in chapters 2-4. Chapter 2 also contains immunological

data on FHV-l polypeptides which cross react with HSV-l gB

antisera. Nucleotide sequencing information presented in

chapters 2-4 formed the basis for expression work described in

chapter 5. In chapter 5, generation of poxvirus recombinants

containing glycoproteins.B.and.D of FHV—l are described, along

with preliminary immunological data.



CHAPTER 1

A REVIEW OF FELINE VIRAL RHINOTRACHEITIS

Stephen J. Spatz and Roger K. Maes



INTRODUCTION

In 1958, Crandell and Maurer reported the isolation of a

viral agent from kittens with acute upper respiratory tract

disease. The disease was later designated feline viral

rhinotracheitis (FVR) and the new virus referred to as feline

rhinotracheitis virus (FRV) . Subsequent work by Ditchfield and

Grinyer (1965) revealed that FRV had the characteristics of a

herpesvirus. Based. on. its biological properties, FRV is

currently classified as a member of the subfamily of

Alphaherpesvirinae and commonly referred to as feline

herpesvirus-1 (FHV-l).

This virus has a world-wide distribution and serological

surveys have shown that 50 - 75% of adult domestic cats have

neutralizing antibodies against FHV-l (Studdert and Martin,

1970; Herbst et al., 1988). Feline herpesvirus-1 and feline

calicivirus (FCV) are responsible for about 80 percent of the

cases of infectious upper respiratory disease in cats (Kahn

and Hoover, 1975). Clinically, it is estimated that up to 45%

of all feline respiratory illness is cause by FHV-l (Studdert,

1978). In a recent study, Harbour et al., (1991) reported on

the isolation of FCV and FHV-l from oropharyngeal swabs

collected from 6866 cats from 1980 through 1989. They

repeatedly isolated the two viruses at an average ratio of

4.8:1.0 (FCV:FHV-l). For individual years, the ratio varied

from 1.3:1.0 to 15.0:1.0. The majority of cats shedding either

virus were under 1 year of age (Harbour et al., 1991). Of

lesser importance as etiological agents in the induction of

3
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viral respiratory disease in cats are feline Reovirus and

Chlamydia psittaci. Feline leukemia virus and feline

immunodeficiency virus, via the immunosuppression they induce,

can indirectly trigger respiratory disease in cats.

VIRAL MORPHOLOGY, HOST RANGE AND CROSS-REACTIVITY WITH OTHER

HERPESVIRUSES

The morphology of FHV-l is identical to that of other

herpesviruses (Ditchfield and Grinyer, 1965). The capsid is

hexagonal and has an average diameter of 108 nm. A membranous

envelope surrounds the capsid, giving the complete virion an

average diameter of 178 nm. The envelope contains viral

glycoprotein antigens that are very important in virus-host

cell interactions. Infectivity of FHV—l is greatly reduced by

exposure to lipid solvents (Johnson, 1966) and FHV-l is more

heat labile than the majority of herpesviruses (Povey, 1979).

For example, virus stored at -50°C will loose 90% of its

infectivity in 5 months.

The in vivo host range of FHV-1 is limited to Felidae

(Povey, 1979). In vitro replication of this virus is also

limited to cells of feline origin. Feline alveolar

macrophages, alveolar pneumocytes (Langloss et ad., 1978),

CD4+ T-lymphoblastoid cells (MYA-l and FL74 cells), felis

catus whole fetus 4 cells (fcwf-4) and Crandell-Reese feline

kidney cells are all suspectable and suitable for FHV-l

propagation.

Interestingly, necrotizing alveolar lesions in infected
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cats, occasionally observed by Love (1971), may indicate that

alveolar macrocytes and pneumocytes are target cells during

natural infection (Kawaguchi et al., 1991 and.HorimotoJet al.,

1991). Since FHV-l can be isolated from feline peripheral

blood leukocytes of experimentally infected cats (Tham et a1. ,

1987), Kawaguchi (1991) investigated whether another T-

lymphotropic virus, feline immunodefiency virus (FIV), could

co-infect T cells in vitro. To accomplish this, MYA-l cells,

a feline'T-lymphoblastoid cell line, were.dually infected with

FHV-l and FIV. A two color indirect immunofluorescence assay

demonstrated that individual cells served as targets for both

viruses. Furthermore, it was reported that FHV-l can

transactivate the LTR's of FIV: FHV-l induced the expression

chloramphenicol acetyl transferase (CAT) from a transfected

plasmid containing a FIV-LTR directed CAT gene expression

cassette (Kawaguchi et al., 1991,1992). This transactivation

was likely to occur via the immediate early gene products as

observed with other herpesviruses and their species-dependent

retroviruses (Yuan et al., 1989). It is not clear whether

coinfection of FHV-l in FIV infected T-lymphocytes is of any

physiological significance in vivo, since a large number of T?

cells are destroyed as a result of FIV infection. What is

significant is that FHV-l can establish latency in neural

tissues. Periodic reactivation of FHV-1 from these tissues may

provide infectious virus for suspectable FIV-infected T cells,

thus contributing to accelerated clinical symptoms in cats

“that are dually infected with FIV and FHV-l.
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Serological studies, using polyclonal antisera and

involving a number of FHV-l isolates from different parts of

the world, have shown that there is only one serotype of FHV-I

(Metianu and Virat, 1974). Differences exist, however, in

virulence of clinical isolates. Furthermore, examination of

vaCcine strains by this approach showed them to be

antigenically very similar to field strains of the virus.

Serological studies have also indicated that there is no

cross-reactivity between FHV-l and other herpesviruses such as

feline cytomegalovirus (FCMV), herpes simplex virus type 1

(HSV-l) , pseudorabies (PRV) , equine herpes virus type 1 (EHV-

1.) and bovine herpesvirus typel (BHV—l) (Fabricant, .1984;

Crandell and Weddington, 1967; Johnson and Thomas, 1966;

Limcumpao et al., 1990). However, FHV-I polyvalent antiserum

has been reported to neutralize the infectivity of canine

herpesvirus (Evermann et al., 1982).

Although feline herpesvirus-1 and canine

herpesvirus-1 (CHV-l) have restriction endonuclease patterns

that are quite distinct from each other, they are

antigenically related. In a study by Xuan et al., (1992)

reciprocal cross-neutralization between the two heterogeneous

viruses was demonstrated, both with polyvalent serum and with

monoclonal antibodies, specific for each virus. It was further

reported that both viruses have hemagglutination capability.

Antibodies to FHV—I's hemagglutinin (60Kd) can neutralize CW-

1 's HA-protein (41Kd) and the reciprocal cross also neutralize

the heterologous virus. Species specificity for FHV-l and
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CHV-l is often regarded as stringent, but FHV-l-like viruses

have been isolated from dogs (Rota et al., 1986; Kramer et

al., 1991).

Since CHV-l and FHV-l seem to be antigenically related

and antisera of either FHV-1 or CHV-I can cross-neutralize

virus, it is interesting to speculate whether a vaccine

against FHV-l could protect not only cats against FVR, but

also protect dogs challenged with CHV-l.

GENETIC CHARACTERIZATION OF THE FHV-l GENOHE

The DNA of FHV-l has been reported to have a density of

1.705 91cm? corresponding to 46% G+C (Roizman, 1980).

Initially, Herrmann (1984) reported that the FHV-l genome was

remarkably stable with respect to restriction polymorphisms.

This was based upon analysis of DNA from 12 isolates and a

vaccine strain of FHV-l. However, from the examination of 59

field isolates of FHV-l, Grail et al., (1991) concluded that

the FHV-l genome is not static and that interstrain variants

occur spontaneously.

The first restriction map of FHV-l reported in the

literature was that.of the C-27 strain of feline.herpesvirus-l

by Rota et al. (1986). The map revealed that the C-27 genome

is approximately 134 Kbi in size and contains a group D genome

similar to PRV, VZV, EHV-l and BHV-l. The longer segment (L)

of the genome is composed of 103 Kb of unique DNA (UL)Jand is

adjacent to a 31 Kb short (S) segment. The short segment

contains 8 Kb of unique DNA (mg flanked by inverted repeats
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(Ik's) of 11 Kb. This genomic structure allows inversion of

the unique short relative to the unique long region, thus

creating two isomeric arrangements.

Recently, a restriction map of the B927 strain of FHV-l

was published by Grail et al.,(1991). A comparison of the two

restriction maps is presented in Figure 1. Although few

differences could be demonstrated in the unique short regions

of the two genomes, major differences were found in the UL

region. An extra SalI band was mapped between the 6.9 and 16

Kb bands, the SalI bands of 4.7 and 16.5 Kb were reversed and

there were differences in the end of the Ulzregion. Since no

hybridization data was presented involving southern blots

containing digests of B927 DNA probed with cloned C-27 DNA, or

vice versa, little can be said about the absolute validity of

the UL1region sequences of either strain.

However, recent nucleic acid sequencing studies involving

approximately 13 Kb of C-27 DNA, 6.2 Kb from the Us region and

two 3.0 Kb sections from theifigregion, confirmed the accuracy

of the restriction map originally proposed by Rota et al.,

(1986). Major differences in both the UL and Us region of

strain B927 could be found when compared to the restriction

map generated from the C—27 strain sequencing data.
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Figure 1. Restriction Bndonuclease maps of DNA representative

of the C-27 and 8927 strains of Feline herpesvirus -1. The 134

Kb genome of FHV-l is represented as a group D genome with a

unique long (UL) region adjacent to a unique short (Us) region.

Inverted repeats flank the II; region. The complete SalI

restriction maps of both genomes are presented along with a

EcoRI restriction maps of the Us regions. Sizes of the

individual restriction fragments are given in kilobases.
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GENE MAPPING STUDIES INVOLVING THE GENOME OF FHV-I (C-27)

Since it has been established that FHV-l has a genomic

organization similar to that of other alphaherpesviruses, an

extensive genetic analysis of the genes encoding the major

immunogens has revealed that FHV—l contains HSV—I homologs to

glycoproteins B, H, D, G, I, and E. The genomic location of

three genes encoding the nonstructural proteins, thymidine

kinase, serine/threonine protein kinase, and ICP18.5 have also

been identified.

The complete nucleotide sequences of the genes encoding

gB, gH, 96, g1 and gE are presented in the accompanying

papers. Predicted translation products of these genes have

revealed extensive homology to glycoproteins found in related

animal.herpesviruses. As shown in'Fable.1, FHV-l glycoproteins

show more similarity to homologs found in the genomes of EHV-

1, PRV, BHV-l than those found in HSV-l and 2, human

cytomegalovirus (HCMV), Epstein-Barr ‘virus (EBV) and

herpesvirus saimiri (HVS). This is also supported

phylogenetically. Evolutionary lineage analyses involving gB

homologs of alphaherpesviruses (Figure 2) have indicated that

FHV-l evolved along lines giving rise to the‘Varicelloviruses,

VZV, PRV, EHV—l and BHV-1. This lineage is also supported by

the extensive homology at the animo acid level between the

other FHV-l glycoproteins (gH, gD, 9G. 91 and gE) and homologs

of varicelloviruses. Analyses of six glycoproteins of FHV-1

are in agreement with classification of FHV-l in the genus
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Varicellovirus of the subfamily, Alphaherpesvirinae.

Interestingly, many of the FHV-l genes encoding

glycoprotein homologs are colinear with those of other

alphaherpesviruses. The genomic organization of unique short

regions in FHV-1 is quite similar to that of PRV, with the

following gene order (5' > 3') Pk, gX(gG), gp50(gD), gp63(gI)

and gl(gE). HSV-l homologs are indicated with parentheses to

eliminate confusion. Relative orientation of the two UL

glycoproteins, B and H, appears to be inverted between FHV-l

and PRV. This inversion in the UL region of PRV has been

reported by Davison and Wilkie (1983) using low-stringency

hybridization analysis.

BIOCHEMICAL AND IMMUNOLOGICAL CHARACTERIZATION OF PRV-1

PROTEINS

Since the genome of FHV-l is 134,000 base pairs in size,

it is estimated that FHV-l is capable of encoding 50-70

polypeptides. Direct SDS-PAGE analysis of 358 methionine or ”C

glucosamine-labeled FHV-l virions indicated the presence of at

least 17 virion-associated proteins, ranging in molecular

weight from >200 Kd to <39 Kd. In a study by Maes et al.,

(1984), three l4C glucosamine-labeled glycoproteins (107-105,

68 and 60 Kd) were detected by immunoprecipitation with goat

anti-FHV-1 antiserum (Figure 3). Two glycoproteins with

molecular weights of 107 and 76 Kd were detected in infected

culture supernatants. Because HSV-I contains at least 10

glycoproteins, it was expected that FHV-l should contain more
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Table 1. Homology analyses of the predicted translation

products of the genes encoding glycoprotein B, B, D, B, I and

G of FRV-1. Amino acid sequences of six putative glycoproteins

of FHV-l were compared to homologous glycoproteins found in

alpha- beta- and gammaherpesviruses using the GAP programs of

the University of Wisconsin package (UWGCG) (Devereux et al.,

1984). The values presented represent the percentage

similarity.
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GLYCOPROTEINS OF FELINE HERPESVIRUS TYPE 1

 

 

98 93 90 98 91 96

EHV-l 73 56 49 65 56 57

EHV-4 73 56 N/A N/A N/A 59

PRV 74 50 50 53 49 56

BHV-l 72 53 54 N/A N/A N/A

vzv 72 so o/c 49 51 D/C

MDV 68 N/A 47 43 47 D/C

8A8 68 N/A N/A N/A N/A N/A

BHV-2 67 N/A N/A N/A N/A N/A

ILTV 61 N/A N/A N/A N/A N/A

HSV-l 64 45 47 47 43 42

HSV-Z 66 N/A 47 43 40 4o

HCMV 49 44 D/C D/C D/C D/C

HHV-6 49 42 N/A N/A N/A N/A

EBV 50 44 0/6 D/C D/C o/c

HVS 47 44 o/c D/C D/C D/C

 

 N/A = NOT AVAILABLE

D/C = DOESN'T CONTAIN THIS GLYCOPROTEIN

Table 1
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Figure 2. Evolutionary relatedness of twelve alpha-

herpesviruses. Amino acid sequences of glycoprotein B, the

most conserved glycoprotein in all subfamily of herpesviridae,

were analyzed for homology and aligned using the GAP and

PILEUP programs of the University of Wisconsin (UWGCG)

(Devereux et al., 1984) . Dendrograms were drawn using the

Phylogeny Interference Package (PHYLIP) (Felsenstein, 1985).
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than three glycoproteins. In a 1984 study by Fargeaud and

others, six FHV-l glycoproteins with MW's of 125, 116, 112,

83, 70 and 62, Kd were detected using lectin chromatography.

Further protein characterization by Compton (1989) identified

five FHV-I glycoproteins present in cell extracts and purified

virions with. MW's of 107, 103, 85, 68 and 59 Kd. Two

glycoproteins (75 and 107 Kd) were also detected in the

culture supernatants with MW's similar to those identified by

Maes et al., (1984) although the 85 Kd glycoprotein was not

identified in the Maes study, the protein profiles betweenithe

two studies are quite similar.

A FHV-l specific protein of 60 Kd has recently been

identified as a hemagglutinin of feline herpesvirus-1

(Horimoto et al., 1989). Although, HA activity is rare in

herpesviruses, PRV and BHV-l have also been reported to

contain hemagglutinating activity.

PATHOGENESIS

Infections with FHV-I result from exposure of susceptible

cats to virus via the oral, intranasal, or conjunctival

routes. From these primary sites of replication, FHV-l spreads

to adjacent sites within the upper respiratory tract,

including the trachea and occasionally the bronchi and

bronchiolus. Primary interstitial pneumonia resulting from

viral replication in the lungs is the exception rather than

the rule. Predilection of FHV-l for the upper respiratory

tract can be explained by the fact that this virus replicates
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Figure 3. Analyses of the polypeptides of feline herpesvirus-1

(A) Crandell Reese Feline Kidney (CRFK) cells were infected

with FHV-l (C-27) at a m.o.i. of > 1.0 in the presence of 35S-

Methionine or l“C-glucosamine. Cytoplasmic extracts were

prepared in 1X PBS containing 1% Triton X-100, 0.5% sodium

deoxycholate and 0.1% SDS. Lysates prepared from FHV-l

infected cells labeled with either 358-methionine (lanes 1 and

2) or l‘C-glucosamine (lane 3) were immunoprecipitated with a

goat anti-FHV-l antisera. The preparation of the goat antisera

is described elsewhere (Maes et al. , 1984) . Immunoprecipitates

were dissociated by boiling in a sample containing SDS and

electrophoresed through 10% polyacrylamide.

(B) Western blot analysis of virions prepared from FHV-l

infected CRFK cells. Virions were purified through 30%

potassium tartrate gradients by the procedure described by

Talens and Zee (1976) and dissociated by boiling in SDS sample

buffer. Polypeptides were separated through 10% polyacrylamide

and electroblotted onto nytran. Blots were blocked with 10%

low-fat milk powder in Tris-buffer saline and incubated with

a goat anti-FHV-l antisera for 1 hr. Visualization of reactive

polypeptides involved using alkaline phosphatase-labeled

rabbit anti-goat conjugates along with the chromogens, BCIP

and NET (Ausubel et al., 1988).
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best at temperatures slightly below the normal body

temperature of cats.

Viral replication in the upper respiratory epithelium of

kittens produces necrosis of the turbinate mucosa and can lead

to osteolysis of the turbinates. This results in recurrent

rhinitis and possibly nasal deformities. Necrosis of the

dorsal tongue surface.is a rare feature of FHV-I infection but

is very common in cats infected with feline calicivirus.

Viremia following FHV-l infection is not at all

extensive, although the presence of the virus has been

demonstrated in mononuclear cells of experimentally infected

cats. When cats are viremic, FHV-l caanroduce necrosis in the

growth regions of the ribs and long bones.

Abortions are not as commonly associated with FHV-l

infections as is the case for other herpesviruses. The low

level of viremia can at least be a partial explanation for

this. In fact, following experimental infection ‘via the

intranasal route transplacental infection could not be

demonstrated (Gaskell and Povey, 1982). Abortions in

association with FHV-l infection are, therefore, more a

secondary effect due to the debilitating effect of the virus

upon pregnant queens than a direct effect of the virus on the

developing fetus.

Like human herpes simplex virus, FHV-1 readily replicates

inicorneal epithelium. Initially this results in the formation

of dendritic ulcers (Bistner, 1971). These tend to coalesce in

a few days , resulting in large irregularly shaped ulcers. In
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more advanced stages, formation of a descemetocele or pro-

gression to panophthalmitis, with complete loss of vision are

possible (Wasisse, 1990).

Following the acute phase of an FHV-l infection, clinical

signs subside and immunity develops. In the case of herpes-

viruses this doesn't lead to complete elimination of the

virus. Viral genomes persist in certain cell types in a latent

form. Latent infections can be reactivated by various natural

and artificial stresses. This results in renewed production of

infectious virus, which can be spread to susceptible cats.

Development of latent infections in sensory neurons and other

nervous tissues can be assumed to result from entry of FHV-l

into nerve endings at the site of replication and retrograde

axonal transport to sensory ganglia. The biochemical bases of

initiation, maintenance and reactivation of latent infections

are unclear at this point. It is likely that both viral and

cellular factors are involved in these processes.

The presence of latent FHV-l infections has thus far been

demonstrated only in a very preliminary way. Latent FHV-

linfections have been. reactivated in 'vivo following' the

administration of corticosteroids. Ellis (1981) showed that

latent FHV-l could be reactivated from 25.8% of healthy cats

by this method. Reactivation can also be induced by so called

natural stressors. In a study by Gaskell and Povey (1982),

rehousing of cats was sufficient to induce virus shedding in

18% of the carrier cats. Corticosteroid administration to the

same group was able to induce reactivation in 64% of latently
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infected carriers. Late lactation stress is also an important

cause of reactivation of latent virus. Approximately 40% of

latently infected queens were found to shed virus at this

time. None of the kittens from these shedders showed clinical

signs, but 50% were found to be latently infected. Since there

is no evidence of in utero infection following natural

exposure, the most logical explanation of these findings is

that the presence of residual passive antibody levels

prevented development of clinical signs but not infection.

Research efforts have also been focused on identification

of the anatomical site(s) of FHV-l latency. Gaskell and Povey

(1979) were able to isolate FHV-1 from homogenized trigeminal

ganglia and olfactory bulbs from carrier cats while they were

actively shedding reactivated virus. Ellis (1982) examined a

number of tissues, including trigeminal nerve ganglia, from

carrier cats by explantation but was unable to show evidence

of latent FHV-l in any of these tissues. However, Gaskell et

al. (1985) and Nasisse (1992) have been able to recover FHV-I

from trigeminal ganglia of acutely and chronically infected

cats using a tissue fragmentation technique.

The inability to consistently detect latent FHV-l by

tissue explantation is probably more a reflection of the

limitations of the method than the actual presence or absence

of latency in the tissues examined. We are currently using a

very sensitive DNA amplification assay to more definitively

determine the tissue tropism of FHV-I latency.
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CLINICAL SIGNS

Pedersen (1988) organized the clinical syndromes

associated with FHV-l under 7 headings. These are given here

in abbreviated form.

1. "Classical" rhinotracheitis in kittens.

This usually occurs when kittens have lost their passive

immunity to FHV-1, between 6 and 12 weeks of age. Clinical

signs associated with this form include sneezing and-presence

of a serous oculonasal discharge which later becomes

mucopurulent. Fever is usually low-grade. These clinical signs

subside after 1 to 2 weeks. In some cases, fever is high and

additional clinical signs seen include pharyngitis, glossitis,

tracheitis, depression, open mouth breathing and drooling.

2. Chronic rhinitis and sinusitis

Both of 'these result from severe upper' respiratory

infection. Bacteria and.Mycoplasma that are part of the normal

flora become more invasive in these cases as a result of

severe FHV-l induced mucosal damage.

3. Herpetic ulcers

During the acute stage, corneal ulcers are large, shallow

and painful. More chronic ulcers look like small white plaques

in the center of the cornea and are less painful. When acute

ulcers are secondarily infected or when topical corticosteroid
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therapy is used, ulcers tend.toideepen, potentially leading to

corneal penetration.

4. Recurrent disease

Recurrent infections with FHV-1 .result either from

reactivation of a latent infection or renewed exposure of cats

whose mucosal immunity is sufficiently lowered. Circumstances

leading to reactivation are discussed under pathogenesis.

Recurrent disease is usually milder in nature and shorter in

duration than a primary infection, except in immunosuppressed

animals.

5; Abortion

Abortion in pregnant queens can be experimentally induced

following intravenous administration of FHV-1. The virus is

then recovered from the placenta 1-2 weeks later and is also

present in fetal tissues at approximately 3 weeks post-

infection, Abortions have been reported after infection via

the natural route. In these cases the virus can not be

recovered from the placenta, uterus or fetal tissues. The

abortion is therefore resulting from a general condition of

the pregnant queen, rather than direct infection of fetal

tissues.

6. Neonatal disease

Neonatal FHV-l infections are rather uncommon. Infections

.are thought to occur during passage through the birth canal or
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shortly after birth.

7. CNS signs, skin lesions , glossitis, pancreatitis

FHV-l has been isolated from the brain of kittens and.has

also been found to induce CNS signs in naturally and

experimentally infected kittens. Other signs infrequently seen

with FHV-l infection include ulcerative glossitis, skin ulcers

pancreatitis and pneumonia.

IMMUNITY

Immunity induced following natural exposure is protective

against clinical disease, but not against reinfection of the

upper respiratory tract. A similar situation is seen after

vaccination with modified live (MLV) vaccines, given either

parenterally or intranasally. A more rapid, and possibly more

solid protection, can be an advantage of using the intranasal

route of administration. This is illustrated by the work of

Slater and York (1976), who attenuated a strain of FHV-l by

serial passage at 25°C in cell culture. Cats intranasally

exposed to the virus at the 171? passage level did not develop

clinical signs and were clinically protected from challenge

'with a virulent strain. Later work (Orr et al., 1980) revealed

that cats given the same type of vaccine via the intramuscular

route did not develop clinical signs but replicated challenge

virus. A proportion of the cats were shown to be latent

carriers. These studies suggest that local immunity elicited
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by antigenic stimulation of mucosal surfaces may have an

important influence on protection against reinfection, and

therefore against the frequency' and intensity' of latent

infections.

The nature of immune responses against FHV-l at mucosal

surfaces was further examined by Cocker (1984). It was found

that cats vaccinated by the intranasal route were specifically

resistant to FHV-I challenge by 6 days post-vaccination.

Analysis of sera and nasal secretions at this point revealed

the presence of only low levels of neutralizing antibodies and

interferon. Lymphocytes from. blood, and ‘tonsil showed. no

proliferative response to FHV-l antigens. The authors

concluded that a "local cytotoxic cell" response in the

tonsil, an important primary replication site of FHV-l, was

responsible for the observed protection against reinfection.

Wardley _ (1976) investigated components of "the immune

response which could play a role in the prevention of

establishment of latent infections. They found that spread of

FHV-1 within the body of a susceptible cat during an acute

infection is kept under control by antibody-complement

mediated lysis and antibody-directed cellular cytotoxicity

(ADCC), involving both lymphocytes and macrophages. The

authors postulated that defects in the immune response needed

to control viral dissemination, may contribute to

testablishment of latent infections and also to more severe

:recrudescent disease. A similar study by Goddard and Gaskell
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(1984) attempted to evaluate immune functions in cats during

reactivation of latent FHV-l infections. Rehousing stress, a

natural stressor, was used to induce reactivation. No specific

suppression of specific or non-specific immunity was

associated with viral reactivation and subsequent shedding. It

has been noted in the study of other herpesvirus infections

that levels of effector functions may be more important than

memory functions but this remains to be examined in FHV-l

infections.

It has been well established that the major immunogens of

herpesviruses are the envelope-bound glycoproteins. These

glycoproteins are the major targets for both humoral and cell-

mediated immunity in the infected host. Natural exposure to

FHV-l results in parallel development of neutralizing

antibodies and an antibody response to the major viral

glycoproteins. Burgener and Maes (1988) have reported that, by

twelve days postinfection, cats which were synchronously

infected with the C-27 strain of FHV-l, had virus neutralizing

(VN)-antibodies. Moveover, only antisera collected at 12 days

P.I. reacted with l4C-glucosamine-labelled glycoproteins of

FHV-l in immuoprecipitation assays. The concurrent development

of virus neutralizing antibodies and glycoprotein specific

immunity indicates that FHV-l glycoproteins, like other viral

glycoproteins, are important in the induction of protective

immunity.
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HERPESVIRUS GLYCOPROTEINS: IMMUNITY AND PATHOBIOLOGY

Because feline herpesvirus type 1 has been classified as

an alphaherpesvirus and contains many glycoprotein homologs to

those of the prototype herpesvirus, HSV-l and other

herpesviruses, a brief description of the immunity to

glycoproteins of herpesviruses is presented.

Over the last ten years, a large amount of information

has accumulated concerning immunity induced by the

glycoproteins of alphaherpesviruses HSV-l, PRV, EHV-I, MDV and

BHV-l and other herpesviruses (i.e. EBV, HCMV, HVS). It has

been established that these glycoproteins can be classified as

either essential or nonessential for replication of the virus.

Because of their biological role in virion absorption and

eggression from infected cells, viral glycoproteins are

generally conserved throughout related subfamilies. Based On

extensive work with HSV-l and the animal herpesviruses, it has

been determined that glycoproteins B, D and C are major

immunogens, eliciting high titers of virus neutralizing (VN)

antibodies and providing protective immunity in vaccinated

animals against lethal challenge. So far, HSV-l is the best

model for comparison of the immune response induced by various

glycoproteins of a specific herpesvirus (Blacklaw et al.

1990). Individual HSV-l glycoproteins (gB, gD, gH, gI, gE and

9G) expressed in vaccinia virus were evaluated for their

ability to (1) elicit neutralizing antibody titers, (2)

increase the rate of HSV-1 clearance and (3) protect against
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lethal challenge and latency. Vaccinia recombinants expressing

98 and gD were reported to be superior in eliciting high

titers of VN-antibodies and full protection from establishment

of latency.

Glycoprotein D has been reported to be essential for

virus entry into cells (Fuller and Spear, 1985; Spear et al.,

1989; Johnson et al., 1990). Although genes encoding gD

homologs are generally conserved throughout herpesvirinae, VZV

and the distantly related herpesvirus, channel catfish

herpesvirus do not contain gD homologs (Davison and Scott,

1986; Davison 1992). Early studies with. monospecific: gD

antisera or monoclonal antibodies have indicated.that ngplays

a role in virus penetration and cell fusion (Noble et al.,

1983). In one study by Johnson et al., (1988) UV-inactivated

(gD+) virions were reported to block entry of WT-HSV-l or HSV-

2 into cells, whereas UV-inactivated virions which are

phenotypically gD- were unable to block WT-HSV-l or HSV-2

entry. Furthermore, mutant (gD-) virions were shown to be able

to adsorb to cellular membranes but could not penetrate into

cells. These competition experiments and the fact that cell

lines expressing high amounts of gD were resistant to

infection, lead to a model that herpesviruses initially bind

to the cell membrane probably through interaction with

glycoprotein C and cellular heparin sulfate moieties on the

cell surface. After this initial attachment to cells, the gD

‘receptor.is sequestered in gD-expressing cells (Petrovskis et

al., 1988; Campadelli-Fiume et al., 1988).
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Biologically, another important glycoprotein of

herpesviruses is glycoprotein B. The genes encoding homologs

to this essential and highly conserved glycoprotein have been

mapped within the genomes of 16 herpesviruses. Like gD,

glycoprotein B has been reported to be important in

penetration of virus capsids into host cells by fusing the

viral envelope with cell membranes. Temperature-sensitive

viruses with mutations in the g8 gene, when propagated at the

nonpermissive temperature attach to cells but fail to

penetrate, unless a fusogenic agent such as polyethylene

glycol is added to the cells (Haffey and Spear, 1980; Little

et al., 1981; Sarmiento et al., 1979; Navarro et al., 1992).

Likewise, engineered virions lacking gB fail to penetrate

susceptible cells (Cai et al, 1988). Interestingly, many

syncytial phenotypes in mutant viruses have been attributed.to

amino acid changes in gB, further supporting gB's role in cell

fusion and cell-to-cell spread. These mutant viruses have also

been reported to display a slower rate of entry into cells

(Bzik et al., 1984).

Besides their biological significance, g8 and gD are the

major immunodominant polypeptides of herpesviruses, capable of

inducing protective immunity. Of all the HSV-l glycoproteins,

only antibodies to glycoprotein D and B can crossreact with

the two types of simplex viruses (Marchioli et al., 1987). It

has also been demonstrated that gD of HSV-1 induces the most

potent monoclonal antibodies with the highest affinity for

HSV-l virions (Para et al., 1985; Iglesias et al., 1990).
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Furthermore, anti-gD monoclonal antibodies have been routinely

generated from animals immunized with crude virion preps of

HSV-1.

There is good evidence that glycoprotein B is as

important an immunogen as 9D. In HCMV seropositive

individuals, for example, 40-70% of total virus-neutralizing

activity in serum has been reported to be directed against gB

(Britt et al., 1990). Such a preferential reactivity of human

sera for a single virion component is unique, due to the fact

that herpesviruses contain many glycoproteins. However, the

bias for the tremendous response against gB may include; (1)

the abundance of gB in the virion, (2) its expression on the

surface of infected cells and (3) its numerous epitopes, due

to its size. In addition, monoclonal antibodies against 9B of

HSV-1 can passively protect animals against acute virus-

induced neurological illness and death when administered i.p.

two hours prior to footpad challenge.

Both glycoproteins D and B of HSV-1, PRV and EHV-l have

been reported to protect mice from lethal challenge (Long et

al., 1984). In one study, mice immunized with gD, affinity-

purified from cells infected with either HSV-l or HSV-Z, were

protected from a lethal intraperitoneal (i.p) challenge by

‘virus-of either serotype (Eisenberg et al., 1985). Similarly,

gp50 of pseudorabies virus, a gD homolog in the porcine

Iherpesvirus, has been reported to elicit VN-antibodies (Eloit

et al., 1990) and when expressed in adenovirus (Wachsman et

al., 1989), vaccinia virus or Chinese hamster ovary cells,
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protect immunized mice or rabbits from virulent challenge with

PRV. In addition, a recombinant gp50 protects pigs, the

natural host, from lethal challenge (Marchioli et al., 1987;

Reviere et al., 1992). Likewise, protection of mice immunized

with recombinant adenoviruses expressing glycoprotein B of

HSV-1 has also been demonstrated. Unlike for gD, correct

glycosylation of gB appears to be essential for optimal

immunogenicity. Mice immunized with recombinant gB isolated

from mammalian cells produced significantly higher titers of

virus-neutralizing antibodies, when compared to animals

immunized with recombinant gB isolated from procaryotes. An

enhanced level of protection from lethal challenge was also

demonstrated in vaccinates receiving the glycosylated

(eukaryotic) recombinant polypeptide. In a study by van Drunen

littel-van den Hurk et al., (1990), deglycoslyation of gI(gB)

of BHV-l resulted in a significant decrease in production of

serum neutralizing antibodies, due to modifications of three

distinct carbohydrate containing continuous epitopes.

Likewise, nonglycosylated HCMV gB produced in recombinant

prokaryotic systems has been reported to be less immunogenic

than the glycosylated protein produced in eukaryotes (Britt et

al. , 1990) . In contrast, nonglycosylated forms of glycoprotein

D, for example gIV of BHV-1, stimulate neutralizing antibodies

at levels similar to those elicited by glycosylated forms.

This comes as no surprise, since the nucleotide sequence of

gp50 (gD) of PRV lacks potential N-linked glycosylation sites

(Petrovskis et al., 1986) . Recently, gD of HSV-1 has been
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expressed at high levels in baculoviruses. Although the

recombinant protein was slightly smaller than 90 in HSV-l

infected Vero cells, due to differences in glycosylation

patterns of the two cell lines, the expressed protein was

present on membranes of SF9 cells and reacted with 90 specific

antibodies. Vaccination with the expressed protein resulted in

production of neutralizing antibodies to HSV-I and complete

protection against lethal HSV-l challenge (Ghiasi et al.,

1991).

Because of these results, gD and gB of HSV-1 are the

prime candidates for subunit vaccines. The genes encoding 90

and 9B of various herpesviruses have been expressed in both

prokaryotic and mammalian cells. Studies on mammalian cells

expressing native and truncated gD polypeptides, along with

synthetic peptides and V8 protease digestion products have

enabled researchers to map its immunologically important

continuous and discontinuous epitopes. Synthetic peptides

representing one continuous epitope (amino acids 9-21) of

gD(HSV-l) conjugated to ovalbumin or BSA were reported to

elicit high titers of antipeptide neutralizing antibodies in

mice after immunization with adjuvants. Resistance to lethal

challenge was also demonstrated in synthetic peptide-immunized

mice (Eisenberg et al., 1985).

From the above, it is clear that humoral immunity to gD

and 9B appears to be a significant contributor to virus

clearance. However, this type of immunity is primarily

important during initial infection. Overall, cell-mediated
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immunity (CMI) appears to be more important. Not only is CMI

essential in the acute phase of a herpesvirus infection but it

is also involved in virus clearance following reactivation or

reinfection. The importance of CMI in resistance to HSV-1 is

apparent by the fact that 80-90% of immunosuppressed patients

have a high incidence of recurrence (Bernstein et al., 1991).

Supporting the role of cell-mediated immunity are numerous

reports of adoptive transfer experiments, conferring

resistance to lethal HSV challenge. In a study by Rooney et

al., (1988), vaccinia recombinants containing the gD(HSV-l)

gene under control of an early vaccinia promoter were reported

to elicit a better T-cell response than recombinants in which

gD expression is controlled by a late vaccinia promoter. Both

recombinant viruses produced potent neutralizing antibodies

and protected immunized mice from lethal HSV-1 challenge and

latency establishment by challenge virus for at least 6 weeks

after immunization (Rooney et al., 1988; Wachsman et al.,

1989; Wachsman et al., 1989). However, reimmunization with

recombinants containing the early vaccinia promoter/9D

construct resulted in a significant increase in neutralizing

antibody titers lasting over 1 year. Vaccinia recombinants

containing the late vaccinia promoter/gDJgene fusion.failed to

protect from cutaneous disease following administration of a

high dose of HSV-1. Protection against cutaneous lesions is

associated with the induction of HSV-1 specific T-cell

responses. Furthermore, proliferation of lymph node cells in

response to HSV-1 antigens was demonstrated only in mice
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immunized with the Vac(early promoter)/gD- and not Vac(late

promoter)/gD-constructs. It appears that temporal expression

of glycoprotein genes in antigen presenting cells is important

in the induction.of immunity to herpes viral disease (Wachsman

et al., 1992).

Additional evidence for the role of these glycoproteins

in cell-mediated immunity response comes from studies

involving immunized mice transplanted with cells expressing

herpesvirus glycoproteins. Nakagama et al., (1991) reported

significant differences in lymphocyte infiltration and antigen

clearance in syngeneic unimmunized mice transplanted with

(HSV-1) gD-transfected BALE/3T3 cells, as compared to mice

immunized with HSV-1. In the later case, transfected cells

elicited massive lymphocyte infiltration of mainly THY1+ and

CD8+ lymphocytes along with a small number of CD5+, CD4+, and

B-lymphocytes in the HSV-1 immunized mice. In contrast, in

unimmunized mice, little evidence of cellular infiltration

could.be.detected and transplanted cells could be detected for

as long as 7 days. In immunized animals however, the

transplanted cells were mostly destroyed by day 4, despite the

presence of anti-HSV-l antibodies at the time of

transplantation. Likewise, cells from the spleen and lymph

nodes of gB-immunized mice have been reported to protect

syngeneic mice against lethal challenge.

It is generally believed that reactivation of latent

herpesvirus occurs more frequently than episodes of recurrent

disease. Administration of gD or gB to latently infected
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animals reduces the frequency of reactivation, the severity of

recurrent disease and the duration of shedding (Bernstein et

al., 1991). In guinea pigs latently infected with HSV-2, the

adoptive transfer of clones expressing either glycoprotein D

or B significantly reduced the number and severity of

subsequent symptomatic recurrent infections with a concomitant

reduction in cervicovaginal HSV-2 shedding. In this study the

author concluded that the reduction in clinical disease was

the result of lymphokine activated cellular immunity in which

transfer of HSV-1 gD or 98 into latently infected animals

resulted in production of other cytokines by HSV-1 sensitized

T-cells. This could further increase critical responses, such

as natural killer cells, needed for clearance of reactivated

virus. Further evidence for involvement of lymphokineiactivity

in CMI elicited by herpesvirus glycoproteins was provided by

Zarling et al., (1986). Administration of 9D or gB, expressed

in mammalian cells to HSV-1 seropositive individuals

stimulated proliferation of their peripheral blood lymphocytes

and interleukin-2 production by these cells. Interestingly,

IL-2 can also significantly enhance cellular and humoral

immunity in cows when included in either a gD subunit or

modified live viral (MLV) vaccine (Reddy et al., 1989; Hughes

et al., 1991). Likewise, high antibody responses and cell

mediated immunity to HSV-1 were recently reported in mice

immunized with a recombinant expressing a glycoprotein

D/Interleukin-z fusion protein (Hinuma et al., 1991).
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Although other glycoproteins (gC, gH, g1 and gE) of

alphaherpesviruses are undoubtedly important for induction of

humoral and cell-mediated immunity in infected animals,

glycoprotein B is the major immunodominant protein found in

members of all subfamilies of Herpesviridae. Glycoprotein D is

also a major immunogen, conserved in most viruses of the

subfamily Alphaherpesvirinae. The finding that animals can be

protected against lethal and latent herpesvirus infections by

immunization with either 9D or gB, suggest that subunits

vaccines containing these glycoproteins will be at least as

protective as currently available inactivated vaccines and

likely safer than modified live viral (MLV) vaccines.

PREVENTION

Because of the prevalence and clinical implications of

FHV-l, various vaccines against feline viral rhinotracheitis

have been deveIOped and licensed. These include inactivated,

modified live (MLV) and subunit vaccines against FHV-l. In a

number of these vaccines, FHV-I is combined with calicivirus

and panleukopenia virus in the form of a trivalent vaccine. In

other instances rabies virus and chlamydia psittaci are also

included. Most recently, two divalent vaccines (generation II)

against feline viral rhinotracheitis and feline leukemia have

ibeen engineered by Cole and others (1991). One vaccine

contained.the (FeLV) genes encoding the envelope env and gag.

'The other contained the gag and protease genes, both inserted
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into the thymidine kinase gene of FHV-l. Cats vaccinated with

various combinations of these recombinant viruses were fully

protected against FeLV challenge (Wardley et al., 1992).

One of the most successful attenuated strains of FHV-1 was

developed by serial passage of FHV-I in Crandell-Reese feline

kidney cells at 3TTL Other MLV vaccines against.FVR.have been

generated using classical tissue culture passage and are

commonly referred to as generation I vacCines. These vaccines

generally protect cats against clinical symptoms when

naturally exposed to the virus, but do not protect against

challenge with a virulent laboratory strain. Although the

duration of clinical signs is lessened in most MLV-vaccinated

cats that are challenged with virulent strains, the route of

administration of MLV vaccines appears to be an important

determinant in eliciting protective immunity. MLV vaccines are

generally administered by the natural route of infection

(intranasally), thereby inducing a more rapid (48-96 hours)

and more solid local immune response such as secretory IgA.

However, parenteral administration of MLV-vaccines is often

preferred in catteries or multiple cat-households due to the

fact that they do not evoke sneezing or other postvaccinal

signs.

The greatest shortcoming of the available MLV vaccines

against FVR, regardless of the route of administration, is

that they do not replicate well in cats. The most common FHV-l

vaccine, a ts-mutant of FHV-l which replicates in the upper
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respiratory tract epithelium rather than the lungs, induces a

rather weak local immune response in vaccinates. Also, MLV

vaccines against FVR may lead to persistent infections in

vaccinates, if the dosage is large enough to allow adequate

replication and seeding of suspectable ganglia.

Inactivated and subunit vaccines against FVR have also

been developed (Benoit-Jeanin, 1983; Limcumpao et al., 1991)

and are inherently safer than MLV vaccines. However, in order

to be sufficiently immunogenic, these vaccines must contain

large amounts of antigen and at least two doses have to be

given in order to elicit a solid immune response. To obtain

immunogens in usable amounts for inactivated vaccines, the

inactivation process has to be gentle enough to not destroy

immunogenic components of the virus. Also, inactivated virus

and subunit vaccines must be combined with an adjuvant that

maximizes the immune response without causing side effects.

Recently, animals immunized with a protein construct

containing HSV-1 gD fused to IL-2 have been reported to be

protected against lethal challenge.

Because of their safety, these vaccines should be giVen

to colostrum-deprived neonates or pregnant, debilitated, or

immunosuppressed animals. Although it has been reported that

intranasal administration of MLV vaccines to pregnant cats did

not- produce ill effects, this practice is generally not

recommended (Pearson et al., 1986).
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CONCLUSION

From this review it is apparent that infections with FHV-

1, especially in young kittens, can be fairly severe and that

latently infected carriers are an important. link in

perpetuation of the virus. Vaccination with currently

available vaccines is protective against clinical disease, but

not against reinfection and latency. There is a need,

therefore, to develop vaccines and vaccination strategies that

offer a more comprehensive protection against different

clinical forms of this important viral disease of cats.



Chapter 2

Immunological Characterization of the

Feline Herpesvirus-1 Glycoprotein B and Determination of its
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ABSTRACT

Feline herpesvirus 1 (FHV-l) is an important viral pathogen of

cats. Like other alphaherpesviruses, FHV-l contains a herpes

simplex 1 (HSV-1) glycoprotein B (gB) homolog. In this study,

monospecific antisera to HSV-1 gB reacted with three FHV-l

proteins (100, 64 and 58 Kd) present in virion lysates using

immunoprecipitation and immunoblot analyses. Reduced

stringency hybridization experiments using a HSV-1 gB probe

localized the FHV-l gB gene to a 9.6 Kb SalI fragment in the

unique long region of the genome. Northern analyses further

localized the entire coding region within a 3.3 Kb SacI

fragment. This fragment was sequenced and analyzed for open

reading frames. The predicted amino acid sequence of the 2,829

b.p. ORF was shown to have a high degree of homology with gB

analogs of HSV-1, EHV-l, BHV-l, EHV-4, and especially PRV; Two

unique characteristics of glycoprotein B of FHV-l were the

unusually long signal sequence of 73 amino acids and two

proteolytic cleavage sites, RTRRS and RSRRS. An evolutionary

tree, based on gB homologs from 12 alphaherpesviruses suggests

that feline herpesvirus-1 evolved along similar lines as

members of the genus Varicellovirus.
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INTRODUCTION

Feline herpesvirus (FHV-l), a member of the genus

alphaherpes virinae, is one of the most important causes of

viral upper respiratory diseases in cats (Povey, 1979; Maes et

al., 1984) . Glycoproteins, present in the envelope of herpes-

viruses play an important role in induction of humoral, cell-

mediated and nonspecific host defense mechanisms (Pereira et

al., 1989; Eberle et al., 1985; Blacklaw et al., 1987; Hanke

et al., 1991). The genome of herpes simplex virus-type 1

codes for at least 10 antigenically distinct glycoproteins:

gB, gC, gD, gE, gG, gH, gI, gJ, gK and gL (Spear, 1984;

Hutchinson et al., 1992). These glycoproteins have been well

characterized and are fairly conserved among related

herpesviruses. Glycoprotein B homologs have been mapped within

the genomes of 14 herpesviruses: herpes simplex virus-1,

herpes simplex virus-2, varicella-zoster virus, Epstein-Barr

virus, human cytomegalovirus, equine herpesvirus-1, equine

herpesvirus-4, bovine herpesvirus-1, bovine herpesVirus-Z,

pseudorabies virus, Marek's disease virus, herpesvirus

saimiri, infectious laryngotracheitis virus and simian agent

type 8 virus (Bzik et al., 1984; Pellett et al., 1985), (Bzik

et al., 1986; Zwaagstra et al., 1987; Stuve et al., 1986),

(Keller et al., 1986), (Pellett et al., 1985; Gong et al.,

1987), (Cranage et al., 1986; Mach et al., 1986), (Whalley et

al., 1989), (Riggio et al., 1989), (Whitbeck et al., 1988;

jMisra et al., 1988; Lawrence et al., 1986), (Hammerschmidt
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et al., 1988), (Robbins et al., 1987), (Ross et al., 1989),

(Albrecht et al., 1990), (Griffin, 1991) and (Borcher, et al.,

1991). This conservation is not surprising since gB, as well

as glycoproteins D, H, K and L, have been shown to be

essential for production of enveloped viruses (Spear, 1984;

Hutchinson et al., 1992; MacLean et al., 1991)

HSV-1 gB and also the g8 homolog of Pseudorabies virus

(gII) have been shown to form a dimeric protein on the surface

of virions and infected cells. (Claesson-Welsh et al., 1986;

Whealy et al., 1990). Furthermore, glycoprotein B has been

implicated in the penetration of the host cell membrane and

also in cell-to-cell spread of virus by fusion (Cai et al.,

1988; Highlander et al., 1988; DeLuca et al., 1982).

The aim of this work was to immunologically define the

existence of an FHV-l gB homolog, to map its genomic location

and to define its nucleotide sequence. To accomplish this

radiolabeled plasmids containing the HSV-1 gB gene were used

to probe southern blots of cloned fragment of FHV-l DNA. The

coding region of the FHV-l gB homolog was localized within a

3.3 Kb SacI fragment in the unique long region. Two different

rabbit antisera to HSV-1 gB reacted strongly with a 64 and 58

Kd and more faintly with a 100 Kd FHV-l protein from virion

lysates, in immunoprecipitation and western blot analyses. In

this paper we present the nucleotide sequence of FHV-1 gB,

immunoblot and immunoprecipitation analyses of FHV-l poly-

peptides crossreacting with anti-HSV-l gB antisera and an

_evolutionary lineage of 12 gB homologs of alphaherpesviruses.



MATERIALS AND METHODS

Bacterial strains and vectors

Escherichia coli JM101 and JM109 were grown in LB medium

and used to propagate pBluescript-KS and M13 mp18 and mp19.

Viruses, cells, and medium

FHV-I strain (C-27) was obtained from the American Type

Culture Collection. Crandell Reese Feline Kidney (CRFK) cells

were grown in Dulbecco's modified Eagle Medium, containing 100

Units/ml of Penicillin, 100 ug/ml of Streptomycin and 10%

heat-inactivated fetal bovine serum. The CRFK cells were

infected with plaque-purified virions as described previously

(Maes et al., 1984).

In-vitro labelling and Immunoprecipitation of FRV-1 Infected

Cells

Radiolabelling with MC glucosamine and immuno-

precipitation were performed as previously described (Maes et

al., 1984). Briefly, cytoplasmic extracts were prepared in 1X

PBS containing 1.0% Triton X-100, 0.5% sodium deoxycholate and

0.1% SDS (PLB) . Virion lysates were prepared from virions

purified through 30% potassium tartrate cushions. Monospec'ific

rabbit anti-gB (HSV-1) sera (gBl and R69) were obtained from

Drs. N. Balachandran (anti-gBl) and R. Eisenberg (R69).

Immunoprecipitins were boiled in 20 ul of 1.25% SDS Sample

buffer containing 1.0 ul of 2-mercaptoethanol and electro-

phoresed through 10.0% polyacrylamide.
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Western Blot Analyses

FHV-l virions from infected CRFK cells were purified by

rate zonal centrifugation through 10 to 40% potassium tartrate

gradients (Talens and Zee, 1976). The resulting polypeptides

were separated by SDS-PAGE. Immunoblotting was done according

to procedures described by Ausubel et al., 1988, using either

rabbit anti-gB (HSV-1) antisera (981 or R69). Alkaline

phosphatase-labeled mouse anti-rabbit conjugates along with

the chromogens, BCIP and NET were used to visualize the bands.

Recombinant DNA Methods

A recombinant plasmid containing the complete HSV-1 gB

coding domain, pST11 was kindly provided by Dr. Joseph

Glorioso (University of Pennsylvania). The external coding

domain of HSV-1 9B was excised from the plasmid pST11 as a

NcoI-XhoI fragment (Figure 2), radiolabelled and used

extensively as a probe in reduced-stringency hybridizations of

blots containing cloned restriction fragments of FHV-l. Blots

were hybridized at 45°C in standard hybridization solution

‘without formamide and washed under stringent conditions until

the background bands were reduced to an acceptable level.

Blots were often exposed while still wet, then rewashed and

reexposed.

RNA Isolation and Northern Analyses

Total cellular RNA was extracted using the guanidinium

isothiocyanate procedure (Ausubel et al., 1988) from mock
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infected or FRV-1 infected CRFK cells. Cells were infected

with FHV-l at.a m.o.i. of >1.0 pfu/cell. Lysates were prepared

10 hours later. Ten micrograms of RNA.were electrophoresed in

1.2% formaldehyde gels, passively transferred to nitro-

cellulose and hybridized with radiolabeled probes (See Figures

3 and 5).

DNA Isolation and Nucleotide Sequencing

Viral DNA was prepared as described previously (Rota, et

al., 1986). Plasmid DNA was isolated from bacteria by the

alkaline lysis method (Sambrook et al., 1989). Single stranded

DNA from M13 phage was isolated by pelleting the virions

through a cushion containing 25% PEG in BM NaCl. The pellets

were then resuspended.in TES buffer (20mM Tris-HCI, pH 7.5, 20

mM NaCl, 1mM EDTA) and lysed with equal volumes of water

saturated phenol. The DNA was recovered after precipitation

with sodium acetate and ethanol (Ausubel et al., 1988).

Nucleic acid sequencing was performed by the dideoxy chain

termination method (Sanger et al., 1977) with the modified T7

DNA polymerase (Sequenase, US Biochemicals) and with 358 dATP

(NEN) as the label. The analog deoxyinosine. triphosphate

(dITP) was often substituted for dGTP to 'minimize band

compression. In most cases, single stranded M13 DNA was

sequenced, but on occasion sodium hydroxide denatured double

stranded bluescript DNA was also used. Synthetic primers,

along with the universal and reverse primers of M13 were used

to rapidly generate sequencing data. The oligonucleotides used
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were synthesized on a 3808 automated DNA synthesizer (Applied

Biosystems) with a three column upgrade. Electrophoretically

separated sequencing reaction products were visualized by

autoradiography of dried 8% acrylamide/7M urea gels using

Kodak X-AR film. The sequences of both strands of viral DNA

were determined at least twice from individual clones.

Computer Analyses of the DNA Sequence

DNA sequence management was performed on a VAX computer

using versions 5.0 and 5.3 of the University of Wisconsin

package (UWGCG), (Devereuxzet.al., 1984). Secondary structures

of the predicted peptide were investigated using the methods

of Chou and Fasman (1978). Graphic hydrophilicity analyses

were generated by the method of Kyte and Doolittle (1982).

Amino acid homology analyses were conducted using the FASTA

program. The GAP program was used to align the nucleotide and

amino acid sequences. Evolutionary relatedness of 12

alphaherpesviruses was analyzed using a multiple alignment of

gB homologs generated by the LINEUP and PILEUP programs. The

TOFITCH program was used to make the infile for the Phylogeny

Inference Package (PHYLIP), version 3.2 (Felsenstein, 1985).

The tree was drawn using a maximum parsimony method, PROTPARS

and is based on 650 amino acids. The plotfile for the tree was

drawn using DRAWGRAM.



RESULTS

Characterization of the FRV-1 93 protein

Our initial evidence (Figure l) for a HSV-1 homolog of

glycoprotein B consisted of detecting FHV-l proteins by

immunoprecipitation of lysates from infected cells and virion

lysates with monospecific antisera to HSV-1 gB (anti-gBl and

R69). Immunoprecipitation of FHV-l infected cells with either

R69 or anti-gBl sera indicated the presence of crossreactive

proteins with MW's of 120, 100, 64, 58, and 56 Kd. When

virion lysates were immunoprecipitated with either antisera,

two proteins of 64 and 58 Kd were detected. A third protein of

100 dewas also»detected.on overexposed autoradiograghs. It is

noteworthy that the 100, 64 and 58 Rd proteins were immuno-

precipitated exclusively from virion lysates while the 56 Kd

protein was immunoprecipitated when infected cellular lysates

were used.

Western blot analyses provided additional evidence that

FHV-l contains a gB homolog. FHV-l proteins from KT-gradient

purified virions were separated on denaturing gels and

electroblotted onto nylon membranes. After incubation with

either R69 or anti-gBl, three peptides with.MW's of 100 (range

99-100), 64 (range 62-66) and 58 (range 60-57) Kd could be

detected with 125I protein A.
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Figure 1. Analyses of FRV-1 B polypeptides. (A) Lysates from

FHV-lt infected cells (ICL), lanes 1 and 2; lysates from

uninfected cells (UCL),lanes 3 and 4; and lysates from FHV-l

virions (VL), lanes 5 and 6, were immunoprecipitated with

monospecific polyclonal HSV-1 98 specific antisera R69 (odd

lanes) and anti-gBI (even lanes). (B) Lysates from FHV-l

virions (VL) were electroblotted onto nitrocellulose and

probed with R69 (lane 1) and anti-9B1 (lane 2).
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Identification and sequence analysis of the FRV-1 98 gene

Evidence for a FHV-l glyCoprotein B gene initially came

from southern analyses (FigUre 2) showing that a HSV-1 gB

probe specific for the 5' end of the gene hybridized to an

EMBL3 /FHV-1 recombinant containing the 9.6 Kb SalI G fragment.

Southern analyses of FHV-l DNA further localized the gene to

a 3.3 Kb SacI subfragment of the larger SalI G clone (Figure

3). The nucleotide sequence of this 3.3 Kb subfragment was

then determined and analyzed for open reading frames

containing amino acid stretches with similarity to gB homologs

cf other herpesviruses. These analyses (Figure 4) revealed two

overlapping open reading frames, coding for the glycoprotein

B and ICP18.5 genes. An ORF of 2,829 nucleotides capable of

encoding a 98 translation product of 943 amino acids was

identified and there exist a TATA box (AATATATC), 148

nucleotides upstream of the initiation codon ATCATGT (Kozak,

1986) . The sequence ATTG was also found approximately 113 base

pairs 5' of the TATA box. This sequence may function as a CAAT

box, as was thought to be the case for HSV-1 g8 and PRV gII

(Hammerschmidt et al., 1988; Robbins et al., 1987). A

potential Spl binding site, GGCGG was found next to the CAT

box (Gidoni et al., 1984). Downstream of the ORF are two

potential cis-acting elements. A polyadenylation signal,

(AATAAA) was found 46 nucleotides downstream from the stop

codon TAA and was followed by GT-rich sequences. Such GT-rich

regions are similarly associated with many known RNA cleavage

and polyadenlyation sites (Birnstiel et al., 1985).



53

Figure 2. Low stringency hybridizations. (A) The position of

the XhoI-NcoI restriction sites within the gene encoding HSV-1

gB. (B) Southern blots containing restriction digested DNA

isolated from a recombinant clone containing SalI fragment G

(lanes 1-2) and FHV-l infected CRFK's (lanes 3-12). Prior to

electrophoresis the DNA. was digested ‘with the following

restriction endonucleases: HindIII (lane 1), SalI (lane 2),

BamHI (lane 3), EcoRI (lane 4), HindIII (lane 5), KpnI (lane

6), NcoI (lane 7), PstI (lane 8), XhoI (lane 9), XbaI (lane

10), SstI (lane 11) and EcoRV (lane 12).
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Figure 3. Genomic organization of the FRV-1 glycoprotein B

gene. (A) The 134 Kb genome is represented as two unique

sequences (Eh and.LL) and two inverted repeat sequences (IR,

and TRJ flanking the U,region. (B) The SalI restriction map

of FHV-l (C-27) is also presented with a detailed restriction

map of the 9.6 Kb SalI G fragment. Arrows indicate the

location of the 9B and ICP18.5 ORFs within the region

sequenced. (C) The black boxes represent the gB-specific

hybridization probes used to map the gB transcript.
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Figure 4. Nucleotide sequence and predicted amino acid

sequence of the FRV-1 gB polypeptide and part of the FRV-1

gene product analogous to ICP18.5. Putative CAT (ATTG), TATA

(AATATATC) boxes and poly(A) signal sequence (AATAAA) are

shown in bold. Potential N-glycosylation sites are bracketed

by two lines and the predicted hydrophobic N-terminal signal

peptide and C-terminal transmembrane domain are overlined.

Potential proteolytic cleavage recognition sites are indicated

with asterisks.
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I L A G P N L S S T R G G T V K P Q R P Y Y P G D D T S G V T T T 0 R L A N K

I 121 AATTGGCGGGATTTATGTTAAGCTCCACCCGGGGTGGGTGGACGGTGAGTAAATTTCAAAGATTTTACTATTTCGGTGATGATACGTCTGGCGTCACAACAACTCAGCGGTTGGCTTGGA

1 Inc! o---> [put

I Y I R E L I L A S A I P S” S V P N C G E V K L A T L L N R T R P A N T G T Q I C

I 241 AATATATCCGTGAGCTCATTCTAGCATCTGCCATATTTTCCTCCGTGTTTCACTGCGGTGAGGTGAAGCTTGCTACGCTCTTGCATCGCACACGACCGGCTAATACAGGTACCCAGATCT

. P P G I Y L T Y E E 8 C P L V A I L G S G D E G V V G R D T V A I P D R D V P 3

I 1 qB>>> N S T R G D L G K R R R G S R N 0 G H S G Y P R Q R C P P

I 361 GCCCACCCGGCATTTATCTAACATACGAAGAATCATGTCCACTCGTGGCGATCTTWCC"rflcnrnlr““““ ICGTTGGCAGGGACACAGTGGCTATTTTCGACAGAGATCTTTTTT

i

t L L Y S V L Q R L A P D N V T D R R D 9 : 1

i 30 P S L L G I A A T G S R N G N G 3 5 G L T R L A R Y V 3 P I N I V L P L V G P R

: 481 CCCTTCTCTACTCGGTATTGCAGCGACTGGCTCCAGACATGGTAACGGATCGTCGGGATTAACCAGACTAGCTAGATATGTTTCATTTATCTGGATCGTACTATTCTTAGTCGGTCCCCG

I 70 P V E G 0 8 G S T S E Q P R R T V A T P E V G V H N 0 N 0 L Q I P P I C R Y E E

I 601 TCCAGTAGAGGGTCAATCTGGAAGCACATCGGAACAACCCCGGCGGACTGTAGCTACCCCTGAGGTAGGGGTACACCACCAAAACCAACTACAGATCCCACCGATATGTCGATATGAGGA

) 110 A L R A S Q I E A N G P S T P Y M C P P P S G S T V V R L E P P R A C P D Y K L

I 721 AGCTCTCCGTGCGTCCCAAATAGAGGCTAACGGACCATCGACTTTTTATATGTGTCCACCACCTTCAGGATCTACTGTCGTGCGTTTAGAGCCACCACGGGCCTGTCCAGATTATAAACT

I 150 G K _E E I_ E G I A V I P K E N I A P Y K F K A N I Y Y K N I I N T T V N S G 8 8

I 841 AGGGAAAAATTTTACCGAGGGTATAGCTGTAATATTTAAAGAAAATATACCGCCATATAAATTCAAGGCAAATATATACTATAAAAACATTATTATGACAACGGTATGGTCTGGGAGTTC

I 190 Y A V T T N R Y T D R V P V K V O E I T D L I D R R G N C L 3 K A D Y V R N N Y

I 961 CTATGCCGTTACAACCAACCGATATACAGACAGGGTTCCCGTGAAAGTTCAACAGATTACAGATCTCATAGATAGACGGGGTATGTGCCTCTCGAAAGCTGATTACGTTCGTAACAATTA

i 230 Q A P D R D E D P R E L P L K P P S S T L S R V R G N H T H I I T K I V L

I1081 TCAATTTACGGCCTTTGATCGAGACGAGGATCCCAGAGAACTGCCTCTGAAACCTCCAAGTTCAACACTCTCCAGAGTCCGTGGATGGCACACCAATGAAACATACACAAAGATCGTGCT

I

I 270 L D F N N S G T S V N C I V E E V D A R S V Y P Y D S P A I S G D V I H M 8 P

i1201 CCTGGATTTCCACCACTCTGGGACCTCTGTAAATTGCATCGTAGAGGAAGTGGATGCAAGATCTGTATATCCATATCACTCATTTGCTATCTCCACTGGTGACGTGATTCACATGTCTCC

I 310 F P G L R D G A N V E M T S Y S S D R P Q Q I E G Y Y P I D L D T D Y T G A P V

1321 ATTCTTTGGGCTGAGGGATGGAGCCCATGTAGAACATACTAGTTATTCTTCAGACAGATTTCAACAAATCGAGGGATACTATCCAATAGACTTGGATACCGATTACACTGGGGCACCAGT

I 350 S R N P L E T P N V T V A H -N g I_ P K 3 G R V C T L A K N R E I D E H L P N N I

‘1441 TTCTCGCAATTTTTTGGAAACTCCGCATGTGACAGTGGCCTGGAACTGGACCCCAAAGTCTGGTCGGGTATGTACCTTAGCCAAATGGAGGGAAATAGATGAAATGCTACCGATGAATAT

I 390 G 5 Y R P T A K T I S A T F I S _fl__T__§_ Q P E I N R I R L G D C A T K E A A E A I

I1561 AGGCTCCTATAGATTTACAGCCAAGACCATATCCGCTACTTTCATCTCCAATACTTCACAATTTGAAATCAATCGTATCCGTTTGGGGGACTGTGCCACCAAGGAGGCAGCCGAAGCCAT

I ‘30 D R I Y K S K Y S K T N I Q T G T L E T Y L A R G G P L I A P R P M I 3 N E L A

1681 AGACCGGATTTATAAGAGTAAATATAGTAAAACTCATATTCAGACTGCAACCCTGGAGACCTACCTAGCCCGTGGGGGATTTCTAATAGCTTTCCGTCCCATGATCAGCAACGAACTAGC

. e e e e e

. 470 Y I N L A R 5 N R T V V D L S A L L N P S G E T V O R T R R S V P S N O H

j1801 AAAGTTATATATCAATGAATTAGCACGTTCCAATCGCACGGTAGTGGATCTCAGTGCACTCCTCAATCCATCTGGGGAAACAGTACAACGAACTAGAAGATCGGTCCCATCTAATCAACA

e e e 6 e ‘"__ - EcoRI .

510IIRSRRSTTEGGIETVN_LL_A_“$_LLKTTSSVEFAMLQPAYD Q

'1921 TCATAGGTCGCGGCGCAGCACAATAGAGGCGGCTATAGAAACCGTGAACAATGCATCACTCCTCAAGACCACCTCATCTGTGGAATTCGCAATCCTACAATTTGCCTATGACTACATACA

550AIIVNEMLSRIATAHCTLQNREHVLNTETLKLNPGGVVSHA

'2041 AGCCCATGTAAATGAAATGTTGAGTCGGATAGCCACTGCCTGGTGTACACTTCAGAACCGCCAACATOTGCTGTGGACAGAGACCCTAAAACTCAATCCCGGTGGGGTGGTCTCGATGGC

594)LenavsARLLGDAVAVTQev—E:x_sscnvvtousnnvrc

2161 CCTAGAACGTCGTGTATCCGCGCGCCFACTTGGAGATGCCGTCGCCGTAACACAATGTGITAACATTTCTAGCGGACATGTCTATATCCAAAATTCTATGCGGGTGACGGGTTCATCAAC

6mrcvsaprvsrnALng'o—fgfevtecocceuuzLLvenKLIEPcr

2281 GACATCTTACACLLDLLLILFIUIlILL]ILLblbLLLlLAATCACTCCCAATACATACAAGCACAACIAGCCGAAAACAATCAACTTCTCGTGCAACGAAAACTAATTGAGCCTTGCAC

670 V N N K R F P G A D Y V Y P E D Y A Y V R K V P L S E I E L I 5 A Y K

2401 TGTCAATAATAAGCGGTATTTTAAGTTTGGGGCAGATTATGTATATTTTGAGGATTATGCGTATGTCCGTAAAGTCCCGCTATCGGAGATAGAACTGATAAGTGCGTATGTGATTAAATC

710 T L L E D R E P L H S S Y T R A E L E D T G P F D Y S E I O R R N O L N A L K P

2521 TACTCTCCTAGAGGATCGTGAATTTCTCCACTCAAGTTATACACGAGCTGAGCTGGAAGATACCGGCCCTTTTGACTACAGCGAGATTCAACGCCGCAACCAACTCCACGCCTTAAAATT

L Ir,

)50 Y D I D S I V R V D N N L V I H R G H A N F P Q G L G D V Gj A G P G K V V L G A

2641 TTATGATATAGACAGCATAGTCAGAGTGGATAATAATCTTGTCATCATGCGTGGTATGGCAAATTTTTTTCAGCGACTCGGGGATGTGGGGGCTGGTTTCGGCAAGGTGGTCTTAGGGGC

790 A S A V I S T V S G V S S P L‘ll N P'»P G A L A V G L L I L A G I V A A P L A1 Y R

2761 TCCGAGTGCGGTAATCTCAACAGTATCAGGCGTATCATCATTTCTAAACAACCCATTTGGAGCATTGGCCGTGGGACTGTTAATATTAGCTGGCATCGTCGCAGCATTCCTGGCATATCG

Xe!

830Y1SRLRANPMKALYPV’T'TRNLKQ'I'AKSPASTAGGDSDPGV

2381 CTATATATCTAGATTACGTGCAAATCCAATCAAAGCCTTATATCCTGTGACGACTAGGAATTTGAAACAGACGGCTAAGAGCCCCGCCTCAACGGCTGGTGGGGATAGCGACCCGGGAGT

870 D D P D E E K L M Q A R E N I K Y N S L V S A N E Q Q E N K A N K K N K G P A I

3001 CGATGACTTCGATGAGGAAAAGCTAATGCAGGCAAGGGAGATGATAAAATATATGTCCCTCGTATCGGCTATGGAGCAACAAGAACATAAGGCGATGAAAAAGAATAAGGGCCCAGCGAT

"’10LTSNLTNHALRRRGPKYQRLNHLDSGDDTETNLV‘943

3121 CCTAACGAGTCATCTCACTAACATGCCCCTCCGTCGCCGTGGACCTAAATACCAACGCCTCAATAAICTTCATACCGGTGATGATACTGAAACAAATCTTGTCTAACCAACCAGACCATC

3241 TCTAAATTTTTATCCACAAAAAAACTTAGACATAATAAAITTTGATCTCAAAATATCCTGTATGTCATCATTCTCCGCCCATTCACGTCACGGGAAATTC 3340
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TTTTTGAGCTGGTGAACGGGCCTCTATTCGACCACGACAGTCATAACTTTGCCCAACCCCCCAACACAGCGTTTTATTTCAGTGTTGAGAACGTTOGTCTGCTTCCACATTTAAAAGAAG

L A G F H L S S T R G G T V 8 K P Q R F Y Y F G D D T S G V T T T Q R L A H K

AATTOGCGGGATTTATCTTAAGCTCCACCCGGGGTGGGTGGACGGTCAGTAAATTTCAAAGATTTTACTATTTCGGTGATGATACGTCTGGCGTCACAACAACTCAGCGCTTCGCTTGGA
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1 1 R P L I L A s A 1 P s‘ s v P H c c a v x L A T L L n R T a P A u T c T o I c

241 hAhnuLALAA1LxAGCATCTGCCATATTTTCCTCCGTGTTTCACTGCGGTGAGGTGAAGCTTCCTACCCTCTTGCATCGCACACGACCGGCTAATACAGGTACCCAGATCT

P P a 1 y L T v z E s c P L v A 1 L a s a o P c v v c a n T v A 1 P o P o v P s

1 gB>>> n s T R a o L c x R R R c s A w o c u s a Y P R o P c P P

361 cCCCAcccccCATTTATCTAACATAccAAcAATCATGTCCACchchCGATCTchcAAccccccACGAcccAcchTchCAcccACACAcchCTATTTchACAcAcATcTTTTTT

L L T s v L o R L A P n u cv NT Go SR SR Ho0 ;;i A:

30 P s L L c T A T a s R u T P L A R 1 v s P I w 1 v L P L v a P R

431 cCCTTCTCTACchcTATTGCAcccACchcTCCAcACAchTAAcccAchchccATTAACCAGACTAcCTAcATATcTTTCATTTATCchAchTACTATTCTTAcchcchccc

70 P v P c Q s c s T s a o P R R T A T P P v c v a u 0 Q 0 P I c a T I L

601 TcCAcTAcAcccTCAATCchAAGCACAchcAACAAcccccccccACTcTAGCTACCCCTcAccTAccccTACACCACCAAAACCAACTACAcATCCCAcccATATcchATATcAacA

110 A L R A s o I a A u c P T P v P P P s c s T v v n L a P P R A c P D Y K L

721 AGCTCTcccTcCGTCCCAAATAGAccCTAAcccACCAchACTTTTTATATcTcTcCAccACCTTCAccATCTACTcchTcccTTTAcAcCCACCAccccCCTcTCCAcATTATAAACT

150 c K ,5 E I. a c I A K a N 1 A P v x P K A T u 1 I T v u s c s s

541 AccGAAAAATTTTAcccAcccTATAcCTCTAATATTTAAAGAAAATATAcCGCCATATAAATTCAAccCAAATATATACTATAAAAACATTATTATGACAAcccTAchTCchcAcTTc

190 Y A v T T u a v T o R v P v x v o a 1 T o L I o R R c u c L 5 Y v n u A Y

961 CTAchCGTTACAAcCAAcccATATACAcACAcccTTccccTcAAAcTTCAAcAcATTACAcATCTcATAcATAcAcaccGTATcTccCTCchAAAGCTcATTACGTchTAACAATTA

210 o P T A P o a o E o P R P L P L K P P s s T L s R v a c u a T u a x T T A I v L

1031 TcAATTTACGGCCTTTGAchAcACGAccATCCCAcAcAACTGCCTCTGAAACCTCCAAGTTCAACACTCTCCAcAcchcchATGGCACAccAATcAAACATACACAAAGATCGTGCT

270 L o P n u s c T s v a c 1 v s x v o A R s v v P Y o s P A T s T c o v n s P

1201 GCchATTTCCACCACTCchcACCTCTcTAAATTGCAchTAcAccAAcchATGCAAcATCTcTATATccATATcACTCATTTcCTATCTCCACchTcACGTGATTCACATGTCch

110 P P a L A o c A u v e u T s v s s o R P o o 1 a c y Y P I o o o v T c

1121 ATTCTTTGGGCTcAcccATcaAGCCCATGTAGAACATACTAGTTATTCTTCAcACAcATTTCAACAAAchAcccATACTATcCAATAcACTchATAcccATTACACchcGCACCAGT

350 s n N P L a T P n v T v A u .u- u 1_ P K s c R c T L A K H P P I D B A L P

1441 TTCchCAATTTTTchAAACTCCGCATcTcACAcTaccCchAACchAcCCCAAAcTCchchccTATcTACCTTAGCCAAAchAcccAAATAcATcAAATcCTAcccATcAATAT

390 c s v a P T A K T 1 s A T P 1 s u T__§- 0 P E I u R 1 a L c o c A T x P A A P A I

1561 AccCTCCTATAGATTTACAGccAAGACCATAchcCTACTTTCATCTCCAATACTTCACAATTTcAAATCAAchTAchcTTchoccACTcTccCACCAAccAGGCAccccAAGCCAT

.10 o R I y K s x Y s x T n 1 a T a T L a T y L A P c c P L 1 A P R P n 1 s n a L A

1681 AGAccccATTTATAAcAcTAAATATAcTAAAACTCATATTCAGACchAACCCchAcAcCTAcCTAcccccToccccATTTCTAATAcCTTchcTCCCATGATCAGCAAccAACTAcc

I I O 0 Q

470 x L v 1 N a L A a s u a T v v o L s A L L n P s c a T v o a T R A s v P s u o n

1901 AAAGTTATATATcAATcAATTAGCAccTTCCAATCGCAcccTAcchATCTCAGTGCACTcCTcAATCCATCchccAAACAcTAcAAccAACTAcAAGAchcTCCCATCTAATCAACA

a a a o a ____ _ Icon!

510 u n s n a s T 1 E c a 1 a T v n -fl- -5S- L L x T T s s v a P A n L o P A Y n Y 1 o

1921 TCATAGGTCGCGGCGCAGCACAATAGAGGGGGGTATAGAAACCCTGAACAATGCATCACTCCTCAAGACCACCTCATCTGTGGAATTCGCAATGCTACAATTTGCCTATGACTACATACA

550 A n v N E n L s R 1 A T A w c T L o u R E u v L w T a T L A L N P a a v v s n A

20a1 AccCCATcTAAATcAAATcTTcACchcATAGCCACTcCCchTcTACACTTCAcAAcccccAAcATGTcCTcchACAcAcAccCTAAAACTCAATcccccchccchTCchAchc

590 1 a n R v s A n L L c o A v A v T o c v :ET:I;‘5 s c H v v 1 o n s n a v T a s s T

2161 CCTAGAACGTCGTGTATCCGCGCGCCTACTTGGAGATGCCGTCGCCGTAACACAATGTGTTAACATTTCTAGCGCACATGTCTATATCCAAAATTCTATGCGGGTGACGGGTTCATCAAC

630 T c v s R P L v s P n A L :E;_Q 05f 8 v 1 E c o L c N u a L L v L R K L x a P c T

2231 cAcATcTTACAccCGCCCTCTTGTTchTchcchcCTCAATcACchcAATACATAcAAccACAACPAcoccAAAACAATcAACTTCchchAAccAAAACTAATTcAGCCTTcCAc
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2521 TACTcTCCTAcAGGAchTcAATTTCTCCACTcAAcTTATACAccAGCTcAGCchAAcATAccccccCTTTTGACTACAcccAcATTCAACGCCGCAACCAACTCCACGCCTTAAAATT
g Ar,

150 v o 1 o s 1 v R v o n N L v 1 n n c n A n P P o c L c o v 60 A c P a A v v L a A

2611 TTATcATATAcACAGCATAGTCAGAGchATAATAATCTTGTCATCATGccchTATcccAAATTTTTTTCAcccACchcccATcchcccCchTTchcCAAccchTCTTAccccc

790 A s A v 1 s T v s c v s s P L' n n P P c A L A v c L L 1 L A c 1 v A A P L A Y n

2761 TCCGAGTGCGGTAATCTCAACAGTATCAGGCGTATCATCATTTCTAAACAACCCATTTGGAGCATTGGCCGTGGGACTGTTAATATTAGCTGGCATCGTCGCAGCATTCCTGGCATATCG

Xbll

610 v 1 s n L a A N P n x A L T P v T T n u L x o T A x s P A s T A c c o s o P a v

2881 cTATATATCTAcATTAccTcCAAATcCAATcAAAGCCTTATATcCTcTcAcGACTAccAATTTcAAACAcACGGCTAAcAcccccccCTCAACGGCchchccATAcccAccccacAcT

370 o o P o E a x L n o A R a H 1 x v n s L v s A H a o o P H x A u x x n K c P A 1

1001 CGATGACTTCGATGACGAAAAGCTAATGCAGGCAAGGGAGATGATAAAATATATGTCCCTCGTATCGGCTATGGAGCAACAAGAACATAAGGCGATGAAAAAGAATAAGGGCCCAGCOAT

010 L T s u L T N n A L R n a c P K v o n L n u L o s c o o T a T n L v - 943

1121 CCTAACGAGTCATCTCACTAACATGCCCCTCCGTCGCCGTGGACCTAAATACCAACGCCTCAATAATCTTGATAGCGGTCATGATACTGAAACAAATCTTGTCTAACCAACCAGACCATC

1241 TCTAAATTTTTATCCACAAAAAAAGTTAGACATAATAAATTTTGATCTCAAAATATCCTGTATGTCATCATTCTCCGCCCATTCACGTCACGGGAAATTC 3340
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An ORF encoding a polypeptide with homology to ICP18.5 of

HSV-1 (UL28) was found to overlap the FHV-l 98 gene by 48

codons. Since no obvious polyadenylation signal was found 3'

to the FHV-l ICP18.5 ORF, the 3' terminus of this transcript

may be coterminal with that of the 98 mRNA.

Transcriptional analysis of the 98 gene

Northern blot analyses (Figure 5) using four probes that

span the entire FHV-l gB gene (Figure 3) has indicated the

presence of 3 transcripts; 4.0, 3.2, and 1.5 Kb. As shown in

Figure 5, both the EcoRI-KpnI fragment (probe B) and the

BamHI-EcoRI fragment (probe C) hybridized to the 4.0, 3.2 and

1.5 Kb transcripts, while the KpnI-EcoRI probe (D) only

hybridized to the 4.0 Kb transcript. These results indicate

that the g3 gene (3.2 Kb) is confined between the KpnI and

SalI restriction sites and the transcription start site occurs

between the KpnI and BamHI restriction sites.

Amino acid sequence and secondary structure of 93 (FHV-l)

Hydrophilicity analyses of the 943 amino acid FHV-l gB

translation product indicated the presence of a hydrophilic

surface domain at the amino-terminus with 7 potential glyco-

sylation sites. Two hydrophobic domains were also predicted at

lurch ends of the polypeptide (Figure 6). A signal cleavage

asite (residues 58 to 66) consisting of 9 consecutive hydro-

phobic residues, FIWIVLFLV, followed by a helix-breaking

residue glycine was found near the amino-terminus. This
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Figure 5. Northern blot analyses of RNA extracted from anél

infected CRFK cells. Total cytoplasmic RNA was isolated from

uninfected and FHV-l infected cells. The RNA was fractionated

in an agarose-formaldehyde gel, transferred to nitrocellulose

paper and hybridized with 32P-labeled probes (Fig. 1). Lanes:

1-4, RNA extracted from FHV-l infected cells; 5, RNA extracted

from uninfected cells. The blots in lanes 1,2,3 and 4 were

hybridized with 32P-labeled fragment A (SalI-EcoRI, 4.0 Kb), B

(EcoRI-KpnI, 1.6 Kb), C (BamHI-EcoRI, 3.0 Kb) and D (KpnI-

EcoRI, 3.1 Kb), respectively. The blot in lane 5 was

hybridized with the 9.6 Kb SalI G fragment.
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hydrophobic core was preceded by a region containing 10

arginine residues. A potential signal peptide cleavage site

(VEG Q), residues 71-74, shares several consensus features

described by von Heijne (1986) and McGeoch (1985): cleavage

after a small amino acid at position -1 (glycine), a charged

residue at position -2 (glutamic acid) and valine at position

-3. Chou and Fasman analyses showed that the cleavage site is

followed.by'aibeta-turn (data not shown). Hydrophilicity plots

(Figure 6) also indicated a second hydrophobic domain

(residues 758 to 827) located near the COOH-terminus. Three

distinct hydro-phobic peaks in this area fulfill the criteria

for a trans-membrane region. Three similar peaks have been

reported in the corresponding regions of gB homologs of other

herpesviruses. Based on Chou and Fasman analyses, this

transmembrane domain was predicted to contain three

antiparallel hydrophobic segments. Each segment, connected to

the others by very short turn regions, transverses the

membrane three times and provides the anchoring sequence for

glycoprotein B.

A putative cytoplasmic domain (residues 828-911),

characterized by a high hydrophilicity value, was predicted at

the COOH terminus and is typical of cytoplasmic regions of

‘transmembrane glycoproteins.
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Figure 6. Hydrophilicity plot of the predicted 93 protein. The

hydropathy value was calculated by the methods of Kyte and

Doolittle (1982). The hydropathy'window'was seven.amino acids,

with a plus sign indicating increasing hydrophilicity and a

minus sign representing increasing hydrophobicity.
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Comparison of 93 (FRV-1) to 93 homologs of other

herpesviruses

Compared to 98 of other related herpesviruses, FHV-l 93

shows more relatedness to gB homologs of PRV, EHV-l EHV-4, and

BHV-1 (73.9, 73.5, 72.7 and 72.3% similarity, respectively)

than to those of HSV-1, EBV, HCMV and HVS (64.6, 49.7, 48.9

and 47.7% similarity, respectively). There.are:majorfiblocks of

conserved amino acids in the alignment of the 15 herpesvirus

gB homologs. The first block of conservation occurs at

position 298-348 (Figures 7 and 8) ‘with the consensus,

CiveeveArSvyPydsFalstGdivymBPFyglr.gahreht.sya.drf. The second

block, having the consensus, leftYdhigrthemlgriataWCelQreltw

neark.NPsaiasatlgrrvsarmlGDv.avsthe.va.dnvi.lqnsmrvpgspgtCYsR

Plvs, occurs at position 601-701. When aligning FHV-l gB toIgB

homologs of the other 15 herpesviruses, ten of the eleven

cysteine residues are perfectly conserved. Also, the positions

of the 7 glyco-sylation sites (Asn-X-Thr/Ser, with X being any

amino acid except proline or aspartic acid) and proline

residues are well conserved. This suggests that the secondary

and tertiary structures of FHV-l 98 and other gB homologs are

fairly similar.

Results from the evolutionary relatedness study are

depicted in Figure 9.
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Figure 7. Comparison of 98 polypeptides of 15 herpesviruses.

The number of amino acids are indicated to the right. Sizes of

gijroteins are drawn to scale and aligned to maximize residue

homology. Potential N-glycosylation sites are indicated by a

triangle and aligned cysteine residues are indicated. by

vertical lines. Two highly conserved regions, indicated by

closed boxes (A and B), are given in detail in Figure 8.

Aligned proteolytic cleavage recognition sites are designated

by an arrow.
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Figure28. .Amino acid sequence of two highly conserved regions

in the 98 proteins of 15 alpha-, gamma-, and beta-herpes-

viruses. (A) Amino acids 298-348 (Box A in Fig.7). (B) Amino

acids 601-701 (Box B in Fig. 7). Amino acid residues identical

to those found in FHV-l are in bold. Numbers flanking the

individual sequence indicate the position of the depicted

amino acideith respect to the initial methionine. A consensus

sequence is indicated at the bottom of the aligned sequences.

Uppercase letters represent amino acids conserved in all 15 98

homologs, while lower case letters denote semi-conservation.





FHVl 236

PRV 235

EHVl 313
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Figure 9. Evolutionary tree compiled using 12 alphaherpesvirus

98 amino acid sequences. Individual gB polypeptides were

aligned using the LINEUP and PILEUP programs (UWGCG).

Evolutionary relatedness was analyzed using the Phylogeny

Interference Package (PHYLIP).
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DISCUSSION

The FHV-l homolog' of the HSV-1 gB» gene ‘was first

identified using a 5' HSV-1 gB DNA probe in reduced-stringency

hybridization experiments. The gene localized to a 3.3 Kb SacI

subfragment of the larger SalI G fragment. Nucleotide

sequencing of the SacI fragment has identified two open

reading frames, one with characteristics typical of a

glycoprotein gene. A unique characteristic of the FHV-l gB

polypeptide is the unusually long signal sequence of 73

residues. Although this is a deviation from the consensus

length (16-29 amino acids) of a class I glycoprotein, it is

not unprecedented for gB polypeptides. The constraints imposed

by the 9B gene and an overlapping gene (ICP18.5) (Pederson et

al., 1991; Addison et al., 1990) has allowed for such a long

signal sequence as evidence, in the genomes of PRV, BHV-l and

EHV-l. The genomes of these viruses contain overlapping genes

with unusually lengthy signal sequences for the gB homologs.

Using N-terminal sequencing, Wolfer et al., (1990) has

reported the cleavage of gII of PRV occurs after residue 58.

Likewise, cleavage of gB of EHV-l is predicted to occur after

residue 85 on the nascent polypeptide (Whalley et al., 1989).

(Northern analyses have indicated that [the 3.2 Kb

‘transcript.is most likely to represent the RNA encoding for 9B

for two reasons: the ORF of FHV-l is 2.8 Kb and mRNA of 9B

homologs are generally 3.0 Kb. It is proposed that the larger

‘4-0 Kb transcript and the 3.3 Kb gB transcript share common 3'
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termini, since no obvious poly(A) signal was evident down-

streamIfrom FHV-l ICP18.5 ORFu A similar transcription pattern

for glycoprotein B and ICP18.5 has been reported for herpes-

virus genomes containing a similar ICP18.5/9B allele (Bell et

al., 1990). ICP18.5 has been reported to be a nuclear protein

essential in capsid maturation, therefore it is logical that

FHV-l would contain a homolog (Pederson et al., 1991; Addison

et al., 1990).

[We compared 15 gB homologs of various herpesviruses and

present a schematic diagram in Figure 7. Gaps were introduced

to maximize amino acid similarities. The 10 cysteine residues,

typical of glycoprotein B, can be perfectly aligned in all 15

homologs. Thirty eight additional residues can also be

aligned. Although the number of potential glycosylation sites

varies from 5 (PRV and BHV-l) to 19 (HCMV), the relative

position of 4 sites (triangles in Figure 7) seems to be

largely conserved. Since these positions also occur in areas

of hydrophilicity, there is a high probability that these

sites are used and important for glycan addition. Two major

blocks of conserved amino acids are also present at positions

298-348 and 601-701 (Figure 7). Chou and Fasman predictions

indicated that these stretches parallel each other. Recent

Studies involving epitope mapping of HSV-1 gB have indicated

that.amino acids surrounding Box 1, Figure 7 are involved in

the rate of virion penetration and spread to adjacent cells

(Highlander et al., 1988; Qadri et al., 1991: Navarro et al.,

1992). Specifically, residues 241-441 on the HSV-1 gB
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polypeptide are involved in this function. AminoIacid residues

600-690 of HSV-1 gB'(just right of Box 2, Figure 7) have been

shown to be involved in dimerization. This region is highly

antigenic and contains residues that specify 8 continuous

epitopes which affect the conformation of 12 discontinuous

epitopes (Qadri et al., 1991; Navarro et al., 1992). As is

typical of a glycoprotein, two hydrophobic regions .are

evident: the signal peptide sequence at the amino terminus and

the transmembrane sequence at the carboxyl terminus. When

comparing the gB homologs of alphaherpesviruses, a high degree

of amino acid similarity can be found in the transmembrane

domain. The degree of similarity, within this area, decreases

substantially, when gB homologs found in gamma and beta

herpesviruses are included. Kyte and Doolittle analyses have

indicated that 98 homologs probably transverse the membrane

three times.

With respect to evolutionary relatedness, a tree diagram

is presented in Figure 9. Since glycoprotein B is the most

conserved glycoprotein among herpesviruses, it is the prime

candidate for such an analysis. From the evolutionary tree and

the GAP analyses, FHV-l diverged from a pseudorabies lineage

and through a common ancestral virus, is related to EHV-l and

BHV-l. 7

Glycoprotein B homologs in VZV, EHV-l, EHV-4, PRV, and

HCMV have been shown to be processed by an internal

proteolytic cleavage at the sequence [RX(K/R)R'S]. Using the

gene encoding glycoprotein gII of PRV, Whealy et al. , (1990)
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localized the cleavage recognition sequence to an 11 amino

acid stretch containing the sequence PAAARRARRSP, with

cleavage occurring between the arginine and the serine

residues. This cleavage site was also determined by N-terminal

sequencing the precursor and cleavage products of gII (PRV)

(Wolfer, 1990). Two sequences, at.positions 499 and 511 (RTRRS

and RSRRS, respectively) are present in 9B of FHV-l. Similar

sequences have been found in VZV (RSRRS, 427), EHV-l (RRRRS,

517), BHV-4 (RTRRS, 512), PRV (RARRS, 499), and HCMV (RTRRS,

455). This recognition signal is generally located in the

middle of 9B and is absent in the gB-equivalent sequences of

MDV, HSV-1, HSV-2, EBV, and HSV. The latter four herpes-

viruses have the uncleaved.gene product in the envelope, while

the 9B homolog of Marek's Disease herpesvirus appears to be

cleaved into two peptides (62 and 47 Kd). Recently, Misra and

Blewett (1990) using pseudodiploid recombinants of gB of BHV-l

and HSV-1 reported that cleavage and oligomerization is not

necessary for virion production. 0n the other hand, Brucher,

et al., (1990) demonstrated that cleavage of 9B of HCMV was

inhibited by palitoylated peptidly-chloromethyl ketone and

release of -infectious virus from human fibroblasts was

impaired, although production of intracellular infectious

viral progeny was unaffected.

It is interesting to speculate the FHV-l 98, like gII-of

PRV and VZV, could exist as a disulfide linked dimer resulting

from proteolytic cleavage at either recognition site. Based on

immunbprecipitation and western blot analyses it is possible
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to speculate that the 120 Kd protein is the glycosylated form,

which subsequently gets trimmed to the 100 Kd form. The 64 and

58 Kd proteins are likely cleavage products of the 100 Kd

trimmed precursor. The proteolytic cleavage of the 100 Kd

precursor is probably incomplete, since both the uncleaved

(100 Kd) and the cleaved (64 and 58 Kd) forms were detected

when virion lysates were used in the immunoprecipitation and

western blot analyses. Incomplete cleavage patterns have also

been noted for other cleaved-gB homologs using pulse-chase

experiments (Whealy et al., 1990). The 56 Kd protein immuno-

precipitated from FHV-l infected cellular lysates, appears to

be a viral or cellular protein induced upon infection.

Similarly, a protein of 44 Kd was detected in MDV (Marek's

disease virus) infected cellular lysates when immuno-

precipitated with antisera specific for MDV glycoprotein B

(Chen and Velicer, 1992).

Based on the assumption that gB of FHV-l contains 943

residues, cleavage of the signal peptide occurs after amino

Iacid 69 and.that.7 jpotential glycosylation sites are used, it

is possible to calculate a MW of 114.5 Kd. If proteolytic

(Ileavage occurs at amino acid 502, then two peptides with MW's

of? 60.5 and 54.0 Kd could result. If cleavage occurs at amino

aczid 513 then the two resulting peptides would have the MW's

°f7 61.9 and 52.6 Kd. These numbers are in good agreement with

the observed Mr values obtained by the immunoprecipitation and

weS-tern blotting experiments.

Interestingly, a similar protein profile was achieved by
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Horimoto et al., (1990) during attempts to isolate the

hemagglutinin of FHV-l. Using Con-A chromatography [on

detergent-soluble protein lysates from FHV-l infected fcwf-4

cells, they found three proteins, which showed HA activity and

had MW's of 59Kd, 65Kd and 105Kd were detected using SDS-PAGE

analysis of protein purified by Con A-chromatography. Two

majorHA-proteins (59Kd and 105 Kd), purified by ion-exchange

chromatography were also visualized using silver staining.

Using the third chromatographic technique, gel-exclusion

chromatography, two fractions showed HA activity with MW's

estimated to be approximately 110-130 Kd and 68 Kd. Although

it is not known whether gB is the hemagglutinin, the

similarities in the protein profiles are most striking.

Based upon these results and observations, it is now

possible to express this glycoprotein, to assess its possible

role as a hemagglutinin and to define its role in the

induction of humoral and cell-mediated immunity in cats, the

natural host of FHV-l.



Chapter 3

Sequence Analysis of the Unique Short Region of Feline

Herpesvirus-1: Identification of the Genes Encoding

Glycoproteins G, D, I and E

Stephen J. Spatz
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ABSTRACT

Feline herpesvirus-l, a common viral pathogen of cats, has

been reported to contain a group D genome. Restriction mapping

studies have indicated that the size of the US region is

approximately 8.0 Kb. We now report the nucleotide sequence of

a 6.2 Kb portion of this region. Analyses of this sequence has

identified 5 open reading frames capable of encoding homologs

to HSV-1 Protein kinase and glycoproteins gG, gD, g1 and gE.

Hydropathic analysis has shown that FHV-l glycoprotein G, D,

I and E exhibit features typical of a membrane-bound

glycoprotein: a hydrophobic signal sequence at the N-

terminus, potential N-linked glycosylation sites and a

hydrophobic transmembrane domain near the C-terminus. Homologs

to these glycoproteins have been found in a number of other

alphaherpesviruses and at the amino acid level the Us gene

products of FHV-l are most similar to those of HIV-1. The

exception is glycoprotein D, which shows more homology with gD

of BHV-l. Although glycoprotein G of FHV-l has features

displayed by membrane proteins, it maybe a secreted protein.

Glycoprotein G homologs of the varicelloviruses (EHV-4 and

PRV) have been reported to be secreted and extensive homology

GXist between this secretory glycoprotein and gG of FHV-l.

Surprisingly, homology between the individual polypeptides of

gG, 9D and gI can be demonstrated which may indicate that

these genes evolved as a result of duplication and divergence

Of an ancestral gene family. Northern analyses of the unique

Short genes of FHV-l point to the likelihood of numerous
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co-terminal transcripts. One gene cluster (3.5 and 1.8 Kb)

consists of the PK/gG genes, another cluster is the gD/gI,

while gE appears to be encoded in a monocistronic 2.5 Kb

transcript.



INTRODUCTION

Feline herpesvirus-1, an alphaherpesvirus is a

predominant cause of upper respiratory disease in cats. As is

typical of other herpesviruses, numerous FHV-l glycoproteins

are synthesized and incorporated into cell membranes of

infected cells and in the virion envelope. Functionally, these

glycoproteins have been shown to be involved in membrane

attachment, penetration of the virion into cells via cell-to-

cell spread, complement binding, virus neutralization and

immune destruction of infected cells (Courtney, 1991).

Immunological and biochemical studies of the polypeptides

of FRV-1 have shown the presence of at least 7 glycoproteins.

In studies involving 1“C- and 3H-glucosamine, Maes et al.,

(1984) and Compton et al., (1989) have identified a group of

closely migrating glycoproteins with molecular weight ranging

from 103-107 kd. Three additional glycoproteins (85, 68 and 59

Kd) were also identified, while two glycoproteins (107 and 75

Kd) were detected in the culture medium harvested from FHV-l

infected cells. Similar protein profiles have also been

observed by Fargeaud et al., (1984) and Limcumpao et al.,

(1990). In addition, Horimoto and coworkers (1990) have

identified a 60 Kd protein that elicits virus neutralizing

antibodies and is capable of hemagglutination. Recently, we

have identified the gene encoding FHV-l glycoprotein B and

ha Ve characterized its gene product. Immunoblot and immuno-

Precipitation data have indicated FHV-l virions contain a
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cleaved gB polypeptide with the MW's of 105, 64, and 58 Kd.

In order to expand the genetic characterization of FHV-l

glycoprotein genes, we sought to identify the genes encoded in

the unique short region of the FHV-l genome. Based on the

complete nucleic acid sequences of the genomes of HSV-1, VZV

and EHV-l, a glycoprotein gene cluster in the Us region

appears to be conserved 7 throughout the subfamily of

Alphaherpesvirinae (McGeoch et al., 1985; Davison, 1984;

Telford et al., 1992; Elton et al., 1991; Flowers at al.,

1991; Audonnet et al., 1990). In addition, partial DNA

sequencing of the Us region of PRV, MDV and BHV-l have

revealed minor differences in the genetic organization of the

Us gene cluster (Petrovskis et al., 1986; Ross and Binns,

1991) . These variations range from the lack of a 9D homolog in

VZV to the presence of additional glycoprotein genes in MDV

and EHV-l. The majority of these Us glycoprotein genes have

been reported to be dispensable for replication of the virus

in cell culture (Mettenleiter et al., 1990). In the case of

HSV-1, 11 of the 12 Us genes can in fact be deleted,

(Longnecker, 1987) . Glycoprotein D is the only Us glycoprotein

essential for virion production. Through continuous passage in

tissue culture, many of the Us genes of animal herpesviruses

have been naturally deleted, resulting in reduced virulent

strains (Kimman et al., 1992; Petrovskis et al., 1986).

In this communication, we report the nucleotide sequence

Of a 6.2 Kb fragment from the unique short region of the FHV-l

genome and the identification of 5 major open reading frames.
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Four of these ORF's display homology to HSV-1 gG, gD, 91 and

gE and partial sequencing analysis of the fifth ORF reveals

significant homology to the COOH- terminus of the HSV-1 Us

protein kinase.



MATERIAL AND METHODS

Viral and bacterial strains

FHV-l (strain C-27) was obtained from the American Type

Culture Collection and propagated in Crandell Reese Feline

Kidney (CRFK) cells as described previously (Maes et al.,

(1984). Cellular lysates from FHV-l-infected cells were used

as the source for viral DNA. Escherichia coli strain JM 101

and JM101 were grown in LB medium and used to propagate

recombinant M13 mp18 and mp19 clones.

Cloning and DNA Sequencing

The complete nucleotide sequence of a 6,208 bp portion of

the E5 region was determined (Figure 1). The 4.3 Kb EcoRI-

EcoRI fragment and the adjacent 1.9 Kb EcoRI-SalI fragment

located at the right terminus of the SalI B fragment were

chosen for DNA sequence analyses. Hybridization analysis have

indicated that these two restriction fragments solely contain

unique short region DNA.

In order to rapidly generate sequencing data, 4

individual M13 libraries were created using HAEIII, RSAI, TAQI

311d SAU3A restriction digestions of the 4.3 Kb EcoRI-EcoRI and

1 -53 Kb EcoRI-SalI fragments. Single stranded DNA from

recombinant M13 phage was isolated according to Ausubel, et

al- , (1988) and sequenced using standard dideoxynucleotide

Chitin termination reactions with the modified T7 polymerase,

Sequenase (US Biochemical). 3SS-dATP (NEN) was used as the
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label and dITP was used to resolve band compressions.

Synthetic oligonucleotides, along ‘with ‘the ‘Universal, and

l7'mer M13 primers were used to obtain sequencing information

from both strands. Reaction products were electrophoretically

separated and ‘visualized. by autoradiography’ of’ dried 8%

acrylamide/7.0 M urea gels on Kodak X-AR film.

Analyses of Sequence Data

DNA sequences were compiled on a VAX computer using

versions 6.2 and 7.0. of the University of Wisconsin GCG

package (Devereux et al., 1984). Computer management of the

sequences verified that both strands of the 6.2 Kb fragments

were sequenced. Hydrophilicity analyses of individual

predicted translation.productswwere generated by the:method.of

Kyte and Doolittle (1982). Amino acid homology searches of the

Swissprot (Release 18.0, 5/91) data bases were.conducted.using

the FASTA program (UWGCG). The GAP, LINEUP, PILEUP programs

were used to generate multiple alignments between FHV-l Us

predicted polypeptides and homologs found in related

herpesviruses.

Northern Analysis of FRV-1 Us Transcripts 7 7

Crandell-Reese feline kidney cells were infected with

[plaque-purified FHV-l using a m.o.i. of >1.0. At 12 hours post

infection, infected cells were harvested and RNA isolated

using the guanidium thiocyanate-CsCl method (Ausubel et al.,

1988). Gradient-purified RNA was denatured in formamide and
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formaldehyde and electrophoresed in formaldehyde-agarose gels.

Separated RNA was passively transferred to nytran and

hybridized to radiolabeled plasmid probes (Figure 1). RNA.was

also isolated from thymidine kinase producing mouse L cells

and subjected to a similar analysis. Northern bolts were

visualized 'using' a Betagen betascope and standard, auto-

radiography.



RESULTS

Restriction map of the Unique Short Region of the FRV-l Genome

As shown in Figure 1, the 14.5 Kb SalI B fragment

contains 3 EcoRI restriction sites. The complete restriction

maps of the 4.3 EcoRI-EcoRI and the 1.9 Kb EcoRI-SalI sub-

fragments were generated using the results from digestions

with the restriction endonucleases EcoRI, NdeI, BamHI, XbaI

and EcoRV.

DNA Sequence Analysis of a 6.2 Kb portion of FRV-1 Us DNA

Sequence data obtained from the 6.2 Kb region of the SalI

B fragment are presented in Figure 2. Examination of the

nucleotide sequence revealed the presence of 5 major open

reading frames (ORF's) and 3 minor ORF's. Although these minor

ORF's are >80 and <100 amino acids and contain the appropriate

cis-acting transcription regulatory sequences, they shown no

homology to peptides found in the data base of Swissprot.

AnalySis of the Major ORF's

(a) Protein Kinase

The first reading frame extending from the EcoRI site at

position 1 to position. 211 encodes the last 69 amino acid

residues of a suspected protein kinase. A search for amino

acid similarities using FASTA and the Swissprot.database have

shown that this ORF contains the sequence RPSA, a sequence

found in all known Us protein kinases. FASTA scores were
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Figure 1. Genomic organization of the FIN-1 unique short genes

encoding a putative protein kinase and glycoproteins 96, 90,

91, and g8. (A) The 134 Kb genome is represented as two unique

sequences (Eh and.tg) and two inverted repeat region (IR and

TR) flanking the unique short region. (B) The SalI and EcoRI

restriction maps of 13 Kb of FHV-l DNA including the t5 and

inverted repeats. (C) Amdetailed restriction map of the unique

short7 region is presented along with the position and

transcriptional direction of the genes encoding the putative

PK , gG, gD, gI and 9E. (D) The black boxes (1-6) represent

the hybridization probes used to map the Us transcripts.
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Figure 2. Nucleotide sequence and predicted amino acid

sequences of the FRV-1 polypeptides, 96, 90, g! and 98 and

part of the putative threonine/serine protein kinase. Cis-

acting sites (CAAT, TATA) boxes and polyadenylation sites are

shown in bold. Potential N-linked glycosylation sites are

bracketed by two lines. Direct repeats of the sequence GGG GCT

GTG GGG ACG A are indicated with a partitionary line.
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CTACGAGTAAGAACTTCAATCACTCAACTI‘GGAAGAAAAATGGGAAATCGTATACATA'I'H‘TAATATGCATTGCAGCATTCTACATAACCATOGCGGCTG

R N A P N D L C Y A D P R D T 8 P Q P I C N P N Y R C V fl__1__1 I N

CTAGGAATGCCCCAATGGATCTCTGTTACGCCGACCCCACAGATACATCACCACAACCCATAGGACATCCTAATTATAAACAACTCAATATAACCATCCA

Y P A P N N G Y V I N 5 8 G C R L R L L D P R V D V S L O D N C R

CTACCCCGCACCAAAGTGGGGATATCTTCAACATTCCAGTGGATGTGAATTACGTTTATTGGACCCGAGAGTTGATCTCTCTCTTCAAGATCACCAGAGA

R A D A T I A N T P D L G T C Q I P I A Y R I Y Y fl 9 I G N L I P S

A666CAGACGCTACGATTGCTTGGACTTTTGATCTCGGAACATGTCAAATACCTATCGCGTATAGAGAATATTATAACTCTACTCGGAATTTAATACCCT

P B T C B G Y S A T S I R P I 6 L T I Y T L V fl__1__§ L L L O P C I

CCCCAGAAACTTGCGAAGGGTATTCCCCCACCTCCATACGCTTCGAAGGTCTAACCATCTATACCTTGGTAAATATAAGTCTACTCCTTCAACCACGAAT

P D S G S P L Y S P I Y 6 Q N R Y N G R I I V N V I K N T D Y P C

ATTCGATTCCGGGAGTTTCCTGTATTCATTTATATATGGTCAAAATAGATACAATGGACCTATTATAGTTCATGTAGAAAAAAATACTCATTATCCCTGC

K N Y N G L N A P P D N N P Q S N V B T P N D N N N R R G R G C P P

AAAATGTATCATGGACTCATGGCTCCATTTGACCATCATCCCCAAAGCCACCTTCAAACTCCGAATGATAAGAATCATCGTAGAGGGCGGGGATGTTTTC

E L V B P V L N V u__1__§ S D L I G G P P P D Y N N E D I A D I R S

CCGAATTGGTGGAACCTGTTCTATGGGTTAATATCAGCAGTCATCTTATTGGTGGTCCACCTTTCGACTATAATCATGAAGATCAGGCTGATATTGAGAG

D 2 L P B Z I Y I T T O I V V R L I C L P R 8 5 P 8 V R V L O 8 Q

TGA‘GAGCTCCCGGAGGAGATATACATAACTACTCAGATTCTCGTGCGACTAATATGTTTGTTCCGAGAGAGCCCCTCAGTCAAAGTTCTTGGTTCTCAA

S L L V G 5 L C P Q I I T Q P N 0 L K 0 N__£__§ Y D G L R fl__A__fi L 3 P

AGTCTACTCGTTCGTAGTTTAGGTTTCCAGATAATTACTCAACCCTGGCAACTGAAGCAGAATGAAAGTTATGATGGACTAACAAATGCCTCTCTTGAAC

R N L D 8 S N D R D L L D I T R N I G 8 I I T T P P P T N P R C V

CCCGACACCTTCACTCCAGTAACGATCGTCATCTACTAGATCAAACTGAAATGATTCGATCGATTATTACGACTCCACCACCAACCCATCCAAAAGGTGT

N G G P L 0 D L P I I I P T T R P C L V N T X I I G I C T V V V V

CAATGGGGGTTTCCTCCAAGATCTACCAATTATCGAGCCTACCACCCAACCATCCTTAGTACATACAAAGATCATTGGGATCDGAACAOTAGTCGTTGTA

P L L P I L I 8 L C V Y T C V L R 8 R I C N V D R A Y V R O V R P N

TTTTTGTTATTTATTCTCATATCCCTATGTGTTTATACTTCCGTTCTACGATCCCGCATCGGTATCGTAGATCCCGCCTAATGTCAAACAAGTACGATTTA

| I g

8 N P 3 Y Q Q L T R Y P Q P ' 435

ATTCCAATCCATCATATCAACAGTTCACAAGATACCCCCAACCATAATAAACTCATTAAATTTAATTAAAGTCTCATATCTGGGCCTGTCGGGACCAGGG
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qD>>>N N T R L N P N N C C I P A

GCCCTCCATTCTACTCAAATCAGTOGTGGTGTCTGGCATATTACAACCATTTCGTCTAATCATCACACUTCTACATTTTTCCTCCTCTCCAA

V L R Y L V C T 5 5 L T T T P R T T T V Y V R C P N I P P L R Y IL_X

GTCCTCAAATATCTGGTATCTACTTCAAGCCTTACCACCACCCCAAAAACAACTACGGTTTATCTGAAGGGATTTAATATACCTCCACTACCCTACAATT

..2 Q A R I V P R I P Q A N D P R I T A R V R Y V T 5 N D 5 C C N V

ATACTCAAGCCAGAATCGTCCCAAAAATTCCCCAGGCGATCGATCOGAACATAACAGCTCAACTACCTTATGTAACATCAATCCATTCATGTGGCATCGT

A L I 5 5 P D I D A T I R T I O L 5 Q R R T Y N__A__1 I 5 N P R V T

GGCATTCATATCAGAGCCGGATATACACGCTACTATTCGAACCATACAACTATCTCAAAAAAAAACATATAACCCCACTATAACTTCGTTTAAGGTAACC

Q C C 5 Y P N P L N D N R L C D P R R 5 P C I C A L R 5 P 5 Y N L R

CAGGGTTCTCAATACCCTATCTTTCTTATCGATATGAGACTTTGTGATCCTAAACCGGAATTTCCAATATGTCCTTTACCGTCCCCTTCATATTCCTTCC

P L T R Y N P L T D D 5 L C L I N N A P A Q P N O C O Y R R V I T

AACCTTTAACAAACTATATCTTCCTAACAGACCATGAACTGCGTTTCATTATCATCCCCCCCGCCCAATTTAATCAAGGACAATATCOAACACTTATAAC

I D G 5 N P Y T D P N V O L 5 P T P C N P A R P D R Y R R I L N R

CATCCATGGTTCCATGTTTTATACACATTTTATGGTACAACTATCTCCAACGCCATCTTGGTTCCCAAAACCCCATACATACCAAGACATTCTACATGAA

N C R N V R T I G L D G A R D Y N Y Y N V P Y N P Q P N N R A V L L

TCGTGTCGAAATGTTAAAACTATTGGCCTTCATCCAGCTCGTGATTACCACTATTATTCGGTACCCTATAACCCACAACCTCACCATAAAGCCCTACTCT

N Y R T N 0 R 5 P P V R P Q 5 A I R Y D R P A I P 5 C 5 5 D 5 R

TATATTGGTATCGGACTCATCCCCCAGAACCCCCAGTAAGATTCCAAGAGGCCATTCCATATGATCGTCCCCCCATACCGTCTCGCAGTCAGCATTCGAA

R 5 N D 5 R G 5 5 5 0 P N N I D I 5 N__X__I P R N N V P I I I 5 D D

ACGGTCCAACCACTCTAGAGGAGAATCCAGTCGACCCAATTCGATAGACATTCAAAATTACACTCCTAAAAATAATCTCCCTATTATAATATCTGACOAT

D V 7P T A P P R G N N fl__Q__fi V V I P A I V L 5 C L I I A L I L C V I

GACGTTCCTACAGCCCCTCCCAAGGGCATCAATAATCAGTCAGTACTCATACCCGCAATCCTACTAAGTTCTCTTATAATAGCACTGATTCTAGGAGTCA

Y Y I L R V R R 5 R 5 T A Y Q Q L P I I N T T N N P 0 374

TATATTATATTTTCAGGGTAAAGAGGTCTCGATCAACTCCATATCAACAACTTCCTATAATACATACAACTCACCATCCTTAACTCCACATTCCAATCGA

GTTGGTAGCCAACATATCAAGTCGGCGGTACCAACCATCATAAAATAGGTTCGAGTCTCGACCAACCTTCACTCTTTTCACTCTAAACOACCACAGCATA

91>>> N 5 5 I A P I Y I L N A I C T V Y 6 I V Y R C D N V 5 L N V D

ATACTTAATATCTCCTCCATAGCCTTCATCTATATATTGATCGCCATTGGAACAGTTTATGGGATTCTCTATCCTCOACATCATCTAAGTCTTCATGTTC

T 5 5 G P V. I Y P T L R fl__z__27 I Y C N L I P L D D Q P L P V N N Y

ATACAAGCTCCGGCTTTGTAATATATCCAACACTCGAGAATTTTRCCATCTACGGCCATCTAATCTTTCTCCACCACCAACCATTACCAGTAAACAATTA

N G I L 5 I I N Y N N N 5 5 C Y R I V O V I R Y 5 5 C P R V R N N

TAATGGAACCCTCCAGATTATACATTACAACCATCACTCTTCTTCCTATAAAATCGTTCAACTAATAGAATATTCATCATGTCCACCTCTACGCAATAAT

A P R 5 C L N R T 5 N N 0 Y D O L 5 I fl__2__fi V R T C N L L T I T 5 P

GCTTTCCGGTCCTGTCTCCACAACACCTCTATCCACCAATACCATCACCTTTCCATAAACACATCCCTTCAAACCGCGATGTTATTCACAATAACATCTC

R N 5 D C 6 I Y A L R V R P N N N N R A D V P C L 5 V P V Y 5 P D

CCAAAATGGAAGATCGTGGAATCTACCCACTCCCGGTAAGATTTAACCATAATAACAAAGCTCATCTATTTCGCCTTTCGGTCTTTCTTTACTCATTCGA

T R G N R N N A D 5 N L N G R I L T T P 5 P N 5 T Y V R V N T P I

TACGCCTGGTCATCGACATCATCCGGACCAAAATTTCAATGGTCAAATTCTTACTACTCCATCACCGATGGAAACATATCTTAAAGTTAACACACCAATA

Y D N N V T T Q T T 5 fl__x__fi N 5 5 R P 5 fl__x__§ I 5 C N T P Q N D P N

TATGATCATATGGTGACAACTCAAACAACTTCTAATAAATCGATGGAGTCTCAACCATCAAATACATCAATATCATGCCATACATTTCAAAATCACCCGA

Figure 2 (Cont)
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5 C 5 T L Y T N L L N I A C fl__1__2 Y D D N V N D C T T L R P R L I

ATCAGGCTCACACTTTATATACACACTTATTCAACATCGCTCCAAATATAACATATCATCACATCGTTATCCATCGCACCACATTCAAACCCACATTAAT

D N C L fl__L__§ V T 5 5 P R N C N N A R N D T R Q R C C P C Y 5 N L

CGATATCGGACTTAACTTCTCTCTTACATCTTCCTTTAAAAATCCAAACCACCCAAAAATGCACACCAGACACAAAGGTGGGTTTTCTTATACTAATCTC

fl__3__fi P T T L A V I G 5 I I N 5 A I R R N I N V C A C R R I Y I P N

AATCCCAGTTTTACTACTCTTCCGGTCATCGCATCCATCATCAATAGTCCAATACGCAACCATATAATCGTCTGTCCTCCGCGGCCCATCTATATACCAA

N D C R P 5 T 5 N T R P T R Q T R P 5 N__§__I P T D C V 5 R 5 Q L T

ACAACGATGGGCGACCATCAACOGAAATCACACCGTTTACTCCCCAGACTAAACCATCCAATTCCACCCCAACCCATCGCCTCTCTACAACTCAGTTAAC

v I N l 8 T ' 370

CGTAATTAAccAAGAAACCTAA?A?ATTTATAAACAAATAAAATACTTTTCAAAATGGATATCTGGTCATGTCTAATGTTCACGCATAGTGGGTGGTGAC

92>)»

CTAACATTATATTAAAATGTAGAAGGTTTTATGCCCAGTTCACA6TATCTACTCTCACCTACCCCGGGGTGGTAATAACAATACTATCCAATACCCAACA

N G L L V T I L V I L L I V T 5 5 5 5 T I N O V T N T 5 C A A L L V

ATGGGACTCCTTCTTACCATCCTCGTGATATTATTCATTCTTACTTCATCAAGTTCTACTATTCATCAAGTAACCATCACAGAAGGTCCCGCACTTTTAC

D G D G I D P P L H__R__I 5 N P L R G N T P L 5 T P R C C T C 5 V 5

TCGATGGCGATGGGATCGACCCACCTTTAAACAAAACTTCACATTTTTTCCCAGGTTGGACATTTCTAGAGACTCCGAAAGCATCTACAGGAGAGGTCAG

V L R V C I D R G V C P D D I V I N R R C C N R N L R T P L A L C

TGTTCTAAAAGTATGTATAGATCGTGGGGTATCTCCGGATGATATCGTTATAAATAAGAGATGTCGTCACAAAATGCTTCAAACCCCACTAGCGTTCGGC

5 P C I 5 fl 5 5 L I R T R D V Y V N R I

GAATTTGGAATTTCTAATAGTTCTCTCATCAGAACCAAAGACGTATATTTCOTGAATAAGA

I Q G A T T fl__1__§ G I Y T L N 5 N C D N G N 5 N O 5 T P P V T V R

GTATTCAGGGGGCCACTACCAATATATCCGGGATATATACCCTGCATGAGCACGGTGATAATGGATCCAGTCATCAATCTACATTTTTTCTCACCGTAAA

P P I L T P R R 5 C L C

TTCTCACACCCCAAAAAAGTCGCCTTC

A R N P G P S L T P A P V N L I T P N R N C A N P N V R N Y N

GGCAAAACATCCCGCACCATCGTTAACCCCAGCACCCGTTCACTTAATAACACCACATCGCCATGGGCCACATTTCCACCTAACAAACTATCATTCCCAT

V Y I P C D R P L L 5 N N L R 5 D I Y D P 5 P 5 A T I D N Y P N R T

CTCTACATTCCGGCAGATAAGTTCTTATTAGAAATCCACCTCAAATCAGATATCTATCATCCAGAATTTTCAGCAACAATACACTCGTATTTTATCGACA

D I R C P V P R I Y R T C I P N P N A A 5 C L N P 5 D P 5 C 5 P T

CTCATATAAAATCCCCAGTTTTTAGAATTTATCAAACTTCTATATTTCACCCCCATCCCCCATCCTCTCTACATCCGCAAGATCCCTCATCCACTTTTAC

5 P L R A V 5 L I N R P Y P R C D N R Y A D N T 5 R C I N T P

ATCACCACTTCCAGCGGTATCTTTAATTAATAGATTTTATCCAAAATGCCATCACACATATGCCCATTCGACATCCAGATCTATCAACACTCCAACTATA

N N N P Y I 5 Q P A N N V D L R P I N V P T N A 5 C L Y V P I L R Y

AATCATATCCCATATATCCAACACCCGGCCAATAACCTCGATCTAAACTTTATCAATCTACCCACCAACCCTTCTGGGTTCTACCTATTCATACTTCCTT

N G N P 5 5 N T Y T L I 5 T C A R P L N V I R D L T R P R L G 5 N

ATAATCGACATCCGGAAGAATCGACCTATACACTCATATCAACAGGA6CTAAATTTTTCAATCTCATTAGGCATCTGACACCCCCACCTCTTCGTACTCA

O I 5 T D I 5 T 5 5 5 5 P T T 5 T P R N I N I T N A R R Y L R V I

TCAAATACAGACCCATATTA6CACATCTTCCCAGTCGCCTACCACGGACACACCACCAAACATACATATAACCTGGGCGAGACCTTATCTAAAGGTTATC

I G I I C V A C I L L I V I 5 I T C Y I R P R N N R Y R P Y 5 V I N

ATAGGAATAATTTCCGTAGCTGGTATCCTTTTGATTGTAATCTCTATCACATCTTATATTCCATTTCGTCATATGCCATATAAACCATATGAAGTGATCA

P P P A V Y T 5 I P 5 N D P D 5 L Y P 5 R I A 5 N D 5 R 5 A D D 5

ACCCATTCCCTGCCGTATATACCAGCATTCCTAGTAACCATCCCGACGAACTCTACTTTCAACGTATCGCATCGAACCACCAACAATCGGCAGATCATTC

P D 5 5 D 5 2 5 P L N N N N I 5 T T O N T D I N P 5 R 5 G 5 C Y 5

T1110ATGAATCAGATCAGGAGGAGCCATTCAATAATCATCATATTTCAACAACCCAACATACTCATATTAATCCAGAAAAATCCGGATCTGGGTACAGT

v w P R 0 T a D T s P Q P L H A P P D Y s R V V x R L x s I L x 0532

GTATGGTTTCGTGATACAGAAGATACATCACCTCAGCCCCTACACGCTCCTCCAGATTACAGTCGCGTAGTTAAAAGATTAAAGTCTATTTTAAAATCAC

SalI

CCGTCGAC 6200

Figure 2 (Cont)
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greater than 100 when compared to the protein kinases of PRV,

HSV-1, HSV-1 and VZV. Other stretches of amino acid

similarities could also be demonstrated. No evidence for a

polyadenylation site was found downstream of the termination

codon, TAG. It is estimated that the gene encoding FHV-l PR is

at least 1.2 Kb.

(b) Glyc0protein G

The deduced amino acid sequence of ORF 2 consists of 435

amino acids from nucleotide positions 340-1645. This ORF has

several features in common with glycoprotein G of HSV-1 and 9X

of PRV. Two possible initiation codons (AAAATGG and CCAATGG)

were located at positions 340-415. However, only the

initiation codon at 340 is in favored by Kozak's rules (purine

residue in the -3 position). No major cis-acting transcription

sites (TATA-like elements) were found 5' to the‘gene, although

3 CAAT boxes were apparent. A polyadenylation signal AATAAA

‘was found 3' to the stop codon TAA. Hydrophilicity analyses of

‘the 435 amino.acid.polypeptide have identified two hydrophobic

sequences at both termini of the polypeptide. Six potential N-

linked glycosylation sites were also predicted from the

deduced amino acid sequence which has a calculated MW of 57

Rd. This is assuming that cleavage of the signal peptide

occurs between Alafl and Argn.
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(c) Glycoprotein D

Open reading frame 3, capable of encoding a polypeptide

of 374 amino acid residues, extends from nucleotide positions

2062-3180. Two potential initiation codons (CTAATGA and

ATGATGA), which are adjacent to each other, can be used a

start codons, although the latter sequence has the critical

purine at position -3. If this second initiation-codon is

used, then the expected polypeptide would be 373 amino acids

long. A TATA-like element at position 1908 to 1912 is the only

potential cis-acting promoter element. A stop codon TAA at

positions 3181-3183 is present, in the absence of any

downstream polyadenylation signal. Hydropathy plots have also

indicated the presence of two hydrophobic sequences close to

the N- and C-termini. The first region FWWCGIFAVL (position

2077-2104) corresponds to the signal sequence and the second

region WIPAIVLSCLIIALILGVI near the C-terminus could function

as a membrane anchoring sequence. Four potential N-linked

glycosylation sites are possible in the predicted translation

product of ORF 3. An MW of 46 Kd can be calculated, assuming

cleavage of the nascent polypeptide occurs between Alal3 and

Vall4

Comparison of .the amino acid sequence of ORF 3 with

proteins in the Swissprot data base has revealed extensive

homology with gD analogs of other alphaherpesviruses. FASTA

scores greater than 400 were achieved when these analyses

included gD of BHV-l, PRV and EHV-1.
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(d) glycoprotein I

A 370 amino acid residue predicted protein product of the

ORF 4 shares common features of glycoproteins. In fact, amino

acid similarity studies have indicated that this ORF encodes

a protein with extensive homology to gI of HSV-1 and to gp63

of PRV. An initiation codon (AATATGT) at position 3307 - 3312

is favored by Kozak's rules. Three potential TATA-like

elements at positions 3101-3112 and 3156-3162 exist with a

CAAT box at position 3056. A poly (A) site (AATAAA) at

position 4437-4442 is located downstream from the termination

codon TAA at position 4420. As is typical. of an anchored

membrane protein, two hydrophobic amino acid stretches were

apparent from analyses of the translation product. These

stretches are likely to encode the signal sequence and the

transmembrane domains. Also, 9 potential N-glycosylation sites

can be determined yielding a calculated MW of 57.7 Kd,

assuming signal sequence cleavage occurs after Glyn.

(e) glycoprotein E

The fifth ORF (ORF 5) extends from nucleotide position

4601-6200 and encodes a polypeptide exhibiting similarities to

gE of HSV-1 and g1 of PRV. Two initiation codons, (ACAATGG) at

position 4598 and (ACGATGA) at position 4673, were predicted.

The former is favored by Kozak's rules. Putative transcription

regulatory signals were found 5' of the initiation codon at

position 4423 and 4508. A termination codon is located at

position 6197-6199, three base pairs 5' of the SalI site.
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Since this is the limit of the sequencing analysis, no

information about polyadenylation of the gE transcript is

available. ORF 5 encodes a protein of 532 amino acids,

contains 4 potential N-linked glycosylation sites and. if

cleavage of the signal sequence occurs between Serm and Sern

then a MW of 61.6 Kd can be calculated.

Comparison of the FIN-1 Us glycoproteins: 96, 90,“ 91 and 93.

Similarities at the amino acid level between‘ the

individual US glycoproteins of FHV-l and those homologous

polypeptides of related herpesviruses, investigated using the

UWCGC program GAP are given in Table 1. Overall, extensive

homology could be demonstrated between predicted translation

products of the genes encoding gG, gD, gI and gE of FHV-l and

those of the related varicelloviruses, equine herpesvirus type

1 and pseudorabies (Figure 3).

Analysis of the transcripts encoding PK, 96, 90, 91. 98 of

PRV-1

Northern analyses, using probes specific for each of the

genes encoding gG, gD, g1 and 9E, has added additional support

for co-terminal US transcripts. As shown in Figure 3, only

three transcripts could be detected with probes spanning the

entire 6.2 Kb region. One transcript (2.5 Kb), thought to

encode gE, was localized to the 1.7 Kb EcoRI-SalI fragment at

the right terminus of the 14.5 Kb SalI B fragment. Two tran-

scripts (3.5 and 1.8 Kb) were detected using probes specific
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for the genes encoding gG, gD and 91. The three 1.8 Kb

transcripts are thought to encode monocistronic transcripts

specifying gG, 90 and gI. It is not known if the 1.8 Kb

transcript, detected with probes specific for 90, is poly-

adenylated. Northern analysis of the [5 region of FHV-l has

been difficult to interpret due to the similar sizes of the

transcripts and suspected bicistronic nature of the

transcripts.
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Table 1. GAP analyses of putative glycoproteins whose genes

map within the US region of the FRV-1 genome. Values are

represented as the percentage similarities/percentage

identities.



NONOLOGY COMPARISON OF THE US GLYCOPROTBINS

OP FELINE NERPESVIRUB -1

100
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i

 

 

 

96 go 91 98

:EHV-l 57/36 49/28 56/40 65/47

EHV-4 59/36 N/A N/A N/A

PRV 56/33 50/29 49/29 53/30

lBHV-l N/A 54/33 N/A N/A

vzv D/C D/C 51/30 49/28

HSV-2 40/21 47/25 40/24 43/22

HSV-1 42/13 47/25 43/26 47/24

.MDV D/C 47/24 47/24 43/22

 

; N/A = nor AVAILABLE

i

' D/C = DOESN'T CONTAIN THIS GLYCOPROTEIN

Table 1
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Figure 3. Northern blot analyses of RNA with probes

representative of the Us glycoprotein genes. Total cytoplasmic

RNA isolated from FHV-l infected cells was separated in

agarose/formaldehyde as described in methods. Strips blots

were hybridized with radiolabeled restriction fragments as

depicted in Figure 1,D. Blots 1-6 were probed with the

following restriction fragments: Blot 1, 0.16 Kb Tan-Tan

(gG-specific) , Blot 2, 2.3 Kb EcoRI-EcoRV (PK/gG/gD-specific) ,

Blot 3, 0.42 Kb RsaI-RsaI (go-specific), Blot 4, 2.0 Kb EcoRV-

EcoRI (gD/gI-specific), Blot 5, 0.85 Kb XhoI-EcoRI (91-

specific) and Blot 6, 1.8 Kb EcoRI-SalI (gI/gE specific).
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Figure 4 (Parts A-D) . Multiple alignments of Us glycoproteins

of alphaherpesviruses. Conserved residues are shown in bold.

Amino acid.residues.conserved throughout.(*) and.semiconserved

residues (.) are illustrated at the bottom of the alignment.
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DISCUSSION

In this report, we present 6.2 kb of DNA sequence located

within the 8.0 kb unique short region of the FHV-l genome.

This sequence contains ORFs capable of encoding polypeptides

with homology to the protein kinase and glycoproteins G, D, I

and E of HSV-1. All five open reading frames for these glyco-

proteins are encoded by the same strand of DNA and are

oriented in the same direction. The gene order is identical to

that of Pseudorabies virus. Based on these results and great

homology to related alphaherpesvirus proteins, we propose to

designate the 5 putative FHV-l gene products as the protein

kinase (ORF 1) and glycoprotein G, D, E, and I (ORF's 2, 3, 4

and 5).

FHV-l ORF 1 encodes a truncated polypeptide of 69 amino

acid residues which exhibits homology to a serine/threonine

protein kinase. FASTA and GAP analyses of the truncated

polypeptide have indicated that the FHV-l PK is more closely

related to kinases of alphaherpesviruses than those of

cellular kinases.

Inspection of the multiple alignments of the protein

kinases from the Lg region of HSV-1, HSV-2, EHV-l, PRV, VZV

and MDV has revealed good overall conservation of residues at

the COOH-terminus. Eight amino acids are perfectly conserved

in the last 70 amino acids of the Us protein kinases. Since no

poly(A) signal was found 3' to the PK termination codon, it is

probable that the PK mRNA overlaps the 96 (the downstream

108
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gene) mRNA and terminates at the same polyadenylation signal.

A similar transcriptional organization has been reported for

HSV-1, in which many families of overlapping mRNA with unique

5' ends share common 3' ends (van Zijl et al., 1990; Rixon,

1985; Wagner, 1985). In a study by van Zijl et al., (1990)

the protein kinase of PRV is encoded in.a mRNA of 2.7 Kb‘while

a 1.6 Kb message encodes gX (HSV-1 gG homolog). Both co-

terminate at the poly(A) signal downstream from the gx gene.

The reading frame downstream of the PK gene encodes a

protein with homology to 9G of HSV-2 and 9X of PRV. A TATA-

like element (TATAAAG) was found 5' to the methionine Start

codon. A poly(A) signal was found downstream of the

termination codon. This site is likely to be used both the PK

and 9G transcripts: one transcript originating from the

promoter region of the PK gene and the other originating

upstream of the 96 initiation codon.

Another group of suspected co-terminal transcripts encode

glycoprotein D and I. As in the case of the PK/gG gene

cluster, there is no AATAAA or ATTAAA polyadenylation]

processing signal between these two glycoprotein genes.

Likewise, TATA elements were found 5' to the 9G gene and

numerous TATA transcriptional elements could be identified

upstream of the initiation codon of the gI transcript.

Over the last few years, a large amount of nucleic acid

sequencing information concerning the Us regions of HSV-1,

VZV, EHV-l, PRV and MDV has become available (McGeoch et al.,

1985; Davison and Scott, 1986; Telford et al., 1992;
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Petrovskis et al., 1986; Petrovskis et al., 1986). Review of

the genes encoded within these regions have revealed many

similarities. The greatest similarity is that the gene order

is always Protein Kinase, (glycoprotein G), (glycoprotein D),

glycoprotein I and glycoprotein E (5'>3'). All alpha-

herpesviruses sequenced to date, excluding channel catfish

herpesvirus, contain genes encoding homologs to g1 and 9E

(Davison, 1992). Genes encoding homologs to HSV-1 gD are also

highly represented, the exception being VZV. Besides the

absence of a 9D gene, VZV also lacks the gene encoding the

semiconserved homolog, glycoprotein G (Davison, 1984). HSV-1

and the oncogenic herpesvirus MDV (previously classified as a

gammaherpesvirus) contain similar genetic organization within

their'tk regions. Each contain genes encoding homologs to PK,

gD, gI and.gE and contain potential glycoprotein.genes between

the protein kinase and glycoprotein D. In HSV-1, this region

contains Us 4 (gG) and a short gene called Us 5. A short open

reading frame (sorf 4) is located between the protein kinase

and 9D genes of MDV (Peter Brunovskis, Michigan State

University, Personal Communication).

’Cis-acting transcriptional regulatory sequences of FHV-

1's Us region are highly collinear with sequences in the

regulatory region. of genes in the 1%; region of alpha-

herpesviruses. This allows for many co-terminal transcripts.

The polyadenlyation sequences, AATAAA/ATTAAA are absent in. the

transcript termination regions of genes encoding homologs to

the protein kinase and glycoprotein D. VZV does contain a
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poly(A) signal downstream of its PK gene, but this genome also

lacks a homologous gene to glycoprotein G. All TATA-like

elements of the Us genes of FRV-1 contain the consensus

TATA(A/T)N(T/A), with N=T in most cases. Polyadenylation

signals are only apparent downstream of the termination codons

for the 96, gl and 9E genes of FHV-l.

This duplication of promoter elements for downstream

genes in a gene cluster encoding co-terminal transcripts may

be important in expression of'tk genes. Northern analysis of

Us transcripts of FRV-1, using a radioimaging system, has

indicated that there are noticeablezdifferences in the amounts

of bicistronic vs. monocistronic transcripts specific for a

gene cluster. Two transcripts, 3.0 and 1.8 Kb can be detected

using probes specific for either the PK/gG or the gD/gI gene

clusters. The full length transcripts were determined to be

quantitatively' more abundant then the individual 1.8 Kb

transcripts. The 1.8 Kb transcript was weakly detected with

the XhoI-EcoRI (gI) probe, while the 3.0 and 1.8 Kb

transcripts detected.withia probe specific for gD appear to be

present in equal amounts late in infection.

The most striking result in homology analyses (Table 1)

was the fact that reasonable homology could be demonstrated

between individual glycoproteins (G, D and I) within a

specific virus. GAP analyses of the homologs of gG, gD and 91

have revealed a conserved area of 110 amino acid residues

representing external coding domains of the glycoproteins. As

depicted in Figure 5, three cysteine residues can be aligned
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without the introduction of major blocks of spaces. Twelve

amino acid residues exist between the first and the second

cysteine residues, while 11 residues are between the second

and the third cysteine. In this region, numerous stretches of

similar amino acids can be noted between the protein products

of these genes.

This conservation between gG, gD, and 91 has led to the

hypothesis that gG, gD and gI arose as a result of gene

duplication and divergence. In a recent study, Ross et al.,

(1991) illustrated evolutionary relationships of MDV ‘Us

glycoproteins using the CLUSTRAL program (Higgins and Sharp,

1988) Dendrograms revealed three main glycoprotein families;

(i) the 91 family (ii) the gG/gD family and (ii) the HSV-1

gG/MDV ORF4. Clusters of 91 homologs and those of gG/gD

homologs ‘are thought to have evolved independently from a

common ancestral gene family. The HSV-1 gG/MDV ORF4 cluster is

likely to have evolved from this common ancestral. gene family.

As illustrated in Figure 5, 96 and gD homologs share many

amino acid similarities. This homology diminishes when 91

homologs are included. This could indicate that the gD gene

family may have evolved as a duplication of ang-like gene

family. The gI gene family, in turn, could have evolved

independently from the common gG-like gene family. The

attractiveness of this model is based upon the presence of

(i) conserved cysteine residues between gG, gD' and, 91,

homologs that are involved in penetration of the virion and

neurovirulence and (ii) the tissue tropisms of indiVidual
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Figure 5. Multiple alignment of conserved regions of glyco-

proteins g6, 90 and g: of the subfamily Alphaherpesviridae.
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herpesviruses. The ability of viruses to infect a broad range

of tissue types or subtypes is dependent on virion receptors

present in the envelope. Some of these receptors, gD, gI, gE

for example, have been reported to be involved in

neurovirulence (Izumi and Stevens, 1990; Card et al., 1992;

Zuckermann et al., 1988; Petrovskis et al., 1986). While the

function of 9G is unknown, it is conceivable that duplication

of an ancestral gG gene enabled the mutant to productively

infect and, perhaps, even establish latency in a new range of

tissue types.

Recently, the functional importance of individual herpes

virus. glycoproteins is being addressed. by'igeneration. of

chimeric herpesviruses. For example, Kopp and Mettenleiter

(1992) have created.a gB- PRV mutant by incorporating the BHV-

1 9B gene into the PRV genome. This recombinant expressed the

BHV-l glycoprotein and in cells of pig, rabbit, canine,

monkey, or human origin, had growth characteristics, similar

to its PRV parent. However, altered penetration kinetics of

the gB(BHV-l) recombinant PRV were reported in Madin-Darby

bovine kidney (MDBK) cells. The exchange of gB(PRV) for

gB(BHV-l) slowed the penetration of the viruses to a level

intermediate between those of wild-type PRV and BHV-l.

Similarly, a gC(PRV) recombinant BHV-l has been generated by

Liang et al., 1991. In penetration studies with MDBK cells,

this recombinant had significantly higher penetration rates

than wt or gC-(BHV-l) viruses. The generation of recombinants,

with altered envelope receptors, will provide the tools for a
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thorough investigation of glycoprotein functional domains.

These recombinants will also aid in defining which glyco-

proteins are involved in various cell tropisms. Since FHV-l

can only infected cells of feline origin and PRV can infect a

wide variety of cells, it would be interesting to use the

genome of FHV-l as a host for various combinations of PRV

glycoprotein gene. Deleting the endogenous FHV-l homolog gene

before addition of PRV homologs can facilitate determination

of viral receptors necessary to bind and infect certain cells,

previously nonpermissive to FHV-l.

There is little doubt that the Us glycoproteins are

important in the survival and spread of the virus in infected

animals. Avirulent strains of PRV (i.e. Bartha) (and HIV-1

(i.e. KyA) containing deletions in theatg glycoprotein genes

have been generated, and their protective immunity is well

documented (Mettenleiter et al., 1985; Vandeputte et al.,

1990; van Oirschot et al., 1991; Wardley et al., 1991).

Interestingly, all these vaccine strains contain deletions in

the gE gene and have reduced neurovirulence (Petrovskis et

al., 1986: Flowers and O'Callaghan, 1992). Animal studies with

the Bartha strain of PRV (Card et al., 1992) have

demonstrated that this virus is unable to infect certain

neurons" that were readily susceptible to the parent stain

containing gE. Although PRV mutant viruses containing

deletions in the PK, gx, 91 and 9E genes have been engineered

and replicate in vitro, these viruses do not replicate well in

the host'(Mettenleiter et al., 1990). Genetic analyses of DNA
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isolated from vaccine strains of FHV-l (Solvay and Fermenta)

have indicated the lack of genetic alterations (i.e.deletions)

within the gE gene (unpublished data).

The role of the unique short glycoproteins of FHV-l in

the pathogenesis of FVR is currently being addressed by the

generation of modified live vaccines containing deletions in

both the gI and gE genes and poxvirus recombinants expressing

gD. Assessment of these.gE deletion mutants of FRV-1 in kitten

may provide useful information on the role of this suspected

neurovirulence factor in FVR. Infection of the CNS and

generalization of the virus in the lung and liver, are rarely

observed in adult cats but ‘often seen in naturally or

experimentally infected kittens (Shields and Gaskin, 1977).

The identification of the genes encoding these important

glycoproteins has laid down the foundation. for the

immunological characterization of their gene products and the

role of these products in feline viral rhinotracheitis.



Chapter 4

The Nucleotide Sequence of the Gene encoding

Glycoprotein H of Feline Herpesvirus-1

Stephen J. Spatz
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ABSTRACT

Feline herpesvirus-1, which is classified as an alpha-

herpesvirus causes a major respiratory disease in cats and is

often fatal in kittens. Similar to other herpesviruses, FHV-l

contains immunologically important glycoproteins. Recently,

the genes encoding glycoproteins homologous to gB, gD, gI, 9E

and gG of HSV-1, have been localized within the genome of FHV-

1 (C-27). To further expand this work, we defined the genomic

position of the essential and conserved glycoprotein gene

encoding gH. In all herpesviruses characterized thus far, the

gene coding for glycoprotein H is located downstream cf the

thymidine kinase gene. The selectability of the FHV-l

thymidine kinase gene in transfected mouse TK- cells, allowed

for the localization of the TK/gH gene cluster. DNA from

recombinant EMBL3 clones, representing 85% of the genome, was

transfected into mouse‘TK- cells under HAT selection. Colonies

of cells only appeared with cells transfected with DNA from

the SALI A clone. DNA from a 6.6 Kb EcoRI subfragment of SalI

A was then used in transfection assays to pinpoint the TK/gH

genes. Nucleic acid sequencing of this subfragment has

indicated the presence of 2 open reading frames. Computer

predicted translation products from each reading frame were

shown to share similarities with the gene products of the TK

and 9H genes of VZV. The 813 amino acid translation product

(glycoprotein H of FHV-l) shows many features typical of a

glycoprotein. Northern blot analyses of RNA isolated from

119



120

FHV-l infected CRFK cells had indicated the likelihood of co-

terminal transcripts. Two transcripts (4.0 and 1.2 Kb) were

detected with probes specific for the thymidine kinase gene.

Similarly, two transcripts (4.0 and 2.7 Kb) were detected with

gH-specific probes. It is likely that the 2.7 and 1.5 Kb

transcripts encode gH and TK, respectively. The larger 4.0 Kb

transcript may be a bicistronic transcript. On northern blots

containing RNA isolated from the TK/gH-transfected mouse

cells, only4the 4.0 and the 1.2 Kb transcripts could be

detected.



INTRODUCTION

Glycoprotein H (gH) of herpesvirus simplex -1 (HSV-1) , as

well as glycoproteins B and D, are three envelope proteins

that are essential for virus penetration (Spear, 1989; Klupp

and Mettenleiter, 1991). Their immunological importance has

been shown by their ability to elicit complement independent

virus-neutralizing antibodies (Fuller’and.Spear, 1985; Long et

al., 1984; McDermott. et al., 1989; Britt et. al., 1990;

Buckmaster and Minson, 1984; Fuller et al., 1989.

Temperature-sensitive gH mutants of HSV-1, have been generated

and produce noninfectious viruses at the nonpermissive

temperature (Desai et al., 1988). Likewise, deletion mutants

of 9H (HSV-1) have been constructed that are noninfectious in

non-complementing cell lines. Biologically, this glycoprotein

appears to be involved in fusion of the virion envelope to the

plasma membrane. Using the fusogenic agent polyethylene

glycol, Forrester and coworkers (1992), reported that pheno-

typically gH-negative mutants could be obtained by a single

growth cycle in non-complementing Vero cells.

Electron microscopy studies by Fuller et al.,(1989) have

also demonstrated the role of gH(HSV-1) in cell fusion.

Electron micrographs of infected cells in the presence of

anti-gH monoclonal antibodies, have revealed neutralized

virions bound to the cell surfaces and the absence of

nucleocapsids within the cytoplasm of susceptible cells.

Although fusion bridges could be demonstrated, no expansion of
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these bridges nor rearrangement of the envelope or Vthe

tegument was observed.

Proteins homologous to glycoproteins.H‘and.B‘are the only

two essential membrane proteins which have been described in

all three subfamilies of Herpesvirinae (Buckmaster et al.,

1984; Davison and Scott, 1986; Cranage et al., 1988; Gompels,

et al., 1988; Heineman et al., 1988; Joseph et al., (1991);

Keller et al., 1987; Klupp and.Mettenleiter, 1991; McGeoch and

Davison, 1986; Meyer et al., 1991; Nicolson et al., 1990;

Pachl et al., 1989). A high degree of amino acid conservation

exists between homologs of glycoprotein H, second only to

glycoprotein B homologs (Klupp and Mettenleiter, 1991).

Attempts to express glycoprotein H in mammalian expression

systems have generally resulted in the expression of a

recombinant gH that requires interactions with other herpes

viral factors for proper formation of its tertiary antigenic

structure and cell surface localization (Gompels and Minson,

1989).

In mammalian expression systems, gH of HSV-1 was reported

to be antigenically different from gH produced during

infection. Only one out of three monoclonal antibodies that

recognize conformational epitopes of gH could immuno-

precipitate the expressed gH. However, equal recognition of

the transfected gH product by all three monoclonal antibodies

could be demonstrated if the gH-transfected cells were

previously superinfected with HSV-1 or HSV-2 (Gompels and

Minson, 1989; Foa-Tomasi et al., 1991). Superinfection
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resulted in the proper transport of expressed gH to the

infected cell surface, a result not noticed in the cytoplasm

of 9H expressing cells (Gompels and Minson, 1989). Similar

results have been found with vaccinia viruses expressing

either gH of HSV-1 or HCMV (Forrester et al., 1991; Cranage et

al., 1988). In HCMV-infected cells, gH is present On the

nuclear and cytoplasmic membranes. However, when recombinant

gH is expressed in cells, gH accumulates predominantly on the

nuclear membrane.

The failure to obtain surface expression of 9H in

vaccinia virus and mammalian expression systems suggests that

there is a block in the transport of gH to the cell surface,

as.evident.by pronounced nuclear'membrane staining; This block

could be overcome by superinfection, leading to the hypothesis

that the correct synthesis, processing and antigenic

presentation of gH is dependent on additional viral factors,

perhaps other glycoproteins. Using glycoprotein mutants of

HSV-1, Roberts et al., (1991) and Foa-Tomasi et al., (1991)

reported that glycoproteins gB, gC, gD, gG, gE, and 91 are not

required for antigenic maturation and cell surface transport

of 9H. Recently, the gene encoding a likely factor needed for

the correct folding and processing of gH has been identified.

Huthinson et al., (1992) reported that coexpression of HSV-1

9H and the U1 1 gene product (gL) in vaccinia virus resulted

in. the correct cellular localization and antigenic

presentation of the recombinant protein.

The objective of the work described here was to localize
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the thymidine kinase/glycoprotein H gene cluster of FHV-l and

sequence the gene encoding gH. During the course of this work,

Nunberg et al., (1989) reported the location of the TK gene

within the genome of FHV-l. Expanding on this work, we present

the complete nucleic acid sequence .of the 9H gene and

similarities of its gene product to! gH polypeptides of

herpesviruses.



NETNODS

Cells and Viruses

Crandell Reese feline kidney cells were grown in

Dulbecco's modified Eagle medium (Gibco Laboratories),

containing 100 Units/ml of Penicillin, 100 ug/ml of

Streptomycin and 10% heat-inactivated fetal bovine serum. FHV-

1 strain (C-27) was obtained from the American Type Culture

Collection.

Recombinant DNA

The 6.6 Kb EcoRI subfragment was purified from a

recombinant FHV-l/lambda EMBL3 clone containing the 19 Kb Sell

A fragment and subcloned into pBluescript-KS. Various

restriction fragments were generated and cloned into M13 mp18

and mp19. These recombinants were then used as probes in

northern analyses and as templates for nucleic acid

sequencing.

Transfection of Mouse and Human TK- cells

Initially, SalI-digested DNA fragments of FHV-l (SalI A,

B, C, D, E, G, H, I, J, and K) were used to transfect both

mouse L (TK-) and human (TK-) cells (Rota et al., 1986). This

approach was extended using subclones of the recombinant

EMBL3/SalI A construct to pinpoint the TK/gH gene cluster.

Transfections were done by the calcium phosphate technique

(Graham and van der Eb, 1973). Plasmid and EMBL3 DNA were
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isolated via standard procedures (Ausubel et al., 1988).‘Mouse

and human cells were plated 48 hours prior to transfection at

a density which gave 80 -90% confluency. Ca(Pmu) precipitates

of 20.0 ug of DNA were added to cells in 25 cm2 tissue culture

flask. TK+ colonies were selected in HAT-supplemented medium

(hypoxanthine 1 X 104 M, aminopterin 4 X 10'5 M, thymidine 1.6

x 10" M).

Northern Blot analyses

Crandell-Reese feline kidney cells were infected with

plaque-purified FHV-l, using a m.o.i. of >1.0. At 12 hours

post infection, infected cells were harvested and RNA was

isolated using the guanidium thiocyanate-CsCl method (Ausubel

et al., 1988). Gradient-purified RNA was denatured in

formamide and formaldehyde and electrophoresed in

formaldehyde-agarose gels. Separated RNA was .passively

transferred to Nytran membranes and hybridized to radiolabeled

plasmid probes. RNA isolated from TK+ transfected mouse L

cells was also subjected to northern blot analysis.

Nucleotide Sequence Determination

Single-stranded M13 DNA was used as a template for

dideoxynucleotide sequencing. The sequence from both strands

was determined with Sequenase (US Biochemicals) using 3SS-dATP

as the radiolabel. The reaction products were separated on

TBE-buffered acrylamide gels containing 7.0 M Urea. Synthetic

oligonucleotides were used to extend sequencing information.
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These oligonucleotides were synthesized by solid phase

phosphoramidite chemistry on a 380 A DNA Synthesizer (Applied

Biosystems), based on previously determined FHV-l sequences.

Analysis of Sequence Information

_Nucleic Acid sequences were assembled and analyzed using

a VAX computer and versions 5.0 and 5.3 of the University of

Wisconsin Genetic Computer Package (UWGCG), (Devereux et al.,

1984). The GAP program was used to align the nucleotide and

amino acid sequences. Graphic hydrophilicity analyses were

generated by the method of Kyte and Doolittle (1982). Amino

acid homology analyses were conducted using the FASTA and GAP

programs. The LINEUP and PILEUP programs were used to«generate

multiple alignments of 9H polypeptides, representative of the

three herpesvirus subfamilies.



RESULTS

Localization of the genes encoding thymidine kinase and

glycoprotein H.

The thymidine kinase gene of FHV-l was functionally

localized to a 19.0 Kb SalI A restriction fragment (Rota et

al., 1986). TK activity was only produced in transfected mouse

L cells and not in the human cell line. A restriction

subfragment (EcoRI-EcoRI, 6.6 Kb) of the 19.0 Kb SalI A

fragment further pinpointed the TK gene. A large portion of

this subfragment was sequenced using dideoxynucleotide chain

termination (Sanger et al., 1977). An overall map of the

corresponding genomic region is shown in Figure 1. Analysis of

the computer predicted open reading frames revealed two major

ORF's, capable of encoding the thymidine kinase and glyco-

protein H. The complete sequence for the glycoprotein H gene

is presented in Figure 2. The DNA sequence for the thymidine

kinase gene has already been reported by Nunberg et al.,

(1989).

Sequence analysis of the 9H gene of FRV-1

The nucleotide sequence of the 9H (FHV-l) gene is given

in Figure 2. Examination of the DNA sequence analysis for cis-

acting transcriptional elements revealed a TATA box (TATAAGC)

(Corden et al., 1980) , 90 bp 5' to the initiation codon,

(CTTATGATGTG). The sequence, TAATTGA, located 125 nucleotides

upstream of the initiation codon, when reverse complemented,

show similarities to the CAAT box consensus, TCAATCT. A
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Figure 1. Genomic organization.of the gene encoding gH of FEV-

1. (A) The 134 Kb genome is represent as a group D genome. (B)

The SalI restriction map of FHV-l (C-27) DNA. A restriction

map of the EMBL3 recombinant representing SalI A (19 Kb) is

also presented with a detailed map (C) of a 6.6 Kb EcoRI-EcoRI

subfragment. (D) Solid. boxes represent. the Ihybridization

probes used to map the gH and TK transcripts.
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Figure 2. Nucleotide sequence and predicted amino acid

sequence of the FRV-1 gn polypeptide and part of the PRV-1

gene product analogous to the thymidine kinase. Putative CAAT

(TAATTGA) , TATA (TT‘I‘ATAA) boxes and polyadenylation sites

(AATAAA;TK) and (TATTAAA;gH) are shown in bold. Potential N-

glycosylation sites are bracketed by two lines. Two stretches

of hydrophobic amino acid residues representing the N-terminal

signal peptide and the Cbterminal transmembrane domain are

overlined.
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CTTPTTATTCCCCAAGGCTGGGTTTGTACAACCAACACCCGCGAAGGTTCGCCATCAAGCGCGGCCCGCCCCATTTGGGTTTATATCCCCTGTATATCCACTATCGAGTCTTTTATTTAA

lcol'

P Y N G R Y L T T R H L I A P I V T P 8 S S L H D H Y P A R s P T T A T O T Q P

TCCATACAATGGGAGATATCTCACGACACGCCATCTGATTCCCTTTCAGGTAACCCCGGAATCCTCTCTTCATGATTGGTATTTTGCACGATCACCAACAACTGCTACTCAGACACAGCC

L G H I T H P P R R S P R D R P T T S G H T D L I I R Y C A L I L D P P 0 D T R

ATTAGGACATATAACTAACCCCCCCCGACGATCGCCAAAAGACAAACCCACCACCTCCGGCCATACAGATTTAATTATACGCTATTCCCCATTGGAGTTGGATTTTTTCCAGGACACAAG

R Q R D G I Y L P H Y B A V R P L A H R P L P G H H I R S E B I L V E V I I G V

ACCACAGCGTCATCGAATATATTTACCTAATTACGAGGCCGTATGGCCATTCGCAATGAATTTTTTCCAGGGGATCTGGATATOGAGTAATCCTACTTTAGTCAATCTAACGATCGGTGT

DtII

G P H G P S L T S I S Y P P L E I I V T P H Y T H A R H I T R P R S S L V L D P

TGGCTTTATGGGGTTTTCTTTAACCTCCATCTCTTATCCACCCTTGGAGATTATCGTCACACCTCACTACACCAATGCAAGAATGATAACACGATTTAAATCTAGTCTAGTATTAGATCC

P 6 P S E G P L Y K V Y V L G Y C H H R I E__§__§ P Y K T H R T I A S Y P I Q S L
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T A L P S L S E V R R L S G Y V A I D E L I D L D P N T R L L A H T L L A D G H

AACTGCTCTTTTWTCTCTTTCTGAAGTACGGAGATTGACTGGATATGTCGCCATTGATGAGCTAATAGACTTCGATTTTAACACCCGTCTTCTCGCTAATACATTACTCGCCGATGGAAT

Baal!

Q N P 0 D P I E 1 I Y Y Y N s D V G R T H L R D A L D T I D a 0 H V s H G s L I

GCAAAATTTCCAGGATCCAATCAACATTACATATTATTATAATTCGGATCTTCGTAGGACACATCTTCGCGATcCATTGGACACTATCGATCATCAACACGTTTCACATGGGAGCCTTAT

T R A R Y L R V N L Y Y I Y K A I Q L S L K L S G D I V K D L Y L E T L Y S
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TCATGTTGTCAGATGGAACACAACOGCCAAGCAGGCATTATTTCTCAGTTCGATGCTGATCTATATAGCTGGAAATATACAGAGTTCTGTGGAGCAAGAGGCGATTAACCCAGGTCGTAT

L P L O C T S H C T T B H A S T V R H T T T I L Y D L T R S S T R P L H P S

CTTATTTCTACAATCTACGTCAAT3TCTACCACAGAACACGCTTCTACCGTTAGGTGGACCACAACAATTCTCTATGATCTAACCAAATCATCGACAAGATTT:ATATTTTCATCTTTTC

P H A H R Y D I I S T Y C I L D L P S A P P I S S Y R S I I R P A V D S I T

ACCGTCTATGGCATCTAATAGATATGATATAATATCAACTTATCGAATCCTCGATCTCTTCTCGGCATTTCCCATTTCATCGTATCGGTCCATAGAAAAGCCGGCAGTTGATTCTAATAC

H H 1 I P H L R H L Y T P I P R L P 8 C P G V 8 S H H 0 R P I A V L P I G I I Q

CCATAACATAATATTTAATCTGCGAAACCTTTACACGTTCATTCCGGAGCTATTTTCITCTCCGGGTCTTTCATCTAATCATCAGAGACLVAInn»Iv.I..ncuan; .nACTc

:5 Y L I T R R D P R R G T L Y I V D G I D V S I P I I I 8 Y L R S G I C C I I
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G I L P G H L H H P I H T D Q C L Y C G V P H R Y R S S G I I V D L L L I H D

TGGGATAATATTICCCGGCAATCTTAATAACCCGGAGAACACAGACCAGTCTCTATACTGCGGTGTGTTTITGCGTTATAAATCATCCGGAGAAATTCTGGATCT‘KflfflTCATCAA

K A V I R E L V A G E E S I I S A P H P T R Y S R L V L I Y S I T I V T Y 6 L
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distance of 85 to 95 bp between the CAT box and the mRNA start

site has been observed for HSV mRNA (Wagner, 1983). The poly-

adenylation signal AATAAA is not specified within the 3' non-

coding region proximal to the termination codon, TAA. However,

a minor polyadenylation signal, (CTATTAAAT), was specified

within the extreme 3' terminal coding region of the gene.

Amino acid sequence and comparison to 911 analogous proteins in

Herpesviridae

Two initiation codons, (CTTATGATGTG) were predicted,

however only the second codon exhibits features of a strong

translation initiation signal; a purine.at position -3 (Kozak,

1986). The 2,439 bp ORF encodes a protein 813 amino acids in

length. The translated sequence has many characteristics of a

transmembrane glycoprotein. Hydrophobicity analyses has

identified a hydrophobic sequence near the amino-terminus

corresponding to the signal sequence and a region of

hydrophobic amino acids (residues 778-796) close to 'the

carboxyl-terminus which may function as a transmembrane anchor

sequence.

The putative signal sequence of FRV-1 gH (positions 1-20)

is similar in length and composition to other described

eukaryotic signal sequences (McGeoch, 1985, von Heijne, 1985).

Application of the weight matrix developed by von Heijne

(1986) for the prediction of signal cleavage sites indicate

that cleavage might occur at Glyn, with leucine, threonine,

and glycine at positions -3, -2 and -1, respectively. Cleavage
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at this site would result in a nonglycosylated protein of 793

amino acids with a predicted MW of 87300. The proposed 91-!

(FHV-l) hydrophilitzexternal.domain,:residues 21-777, contains

eight potential N-glycosylation sites, Asn-X-Thr/Ser, with X

being any animo acid except proline and aspartic acid. These

sites are bracketed in Fig. 2. One potential gH glycosylation

site (NGTV), highly conserved among 10 other herpesviruses, is

absent from the polypeptide of gH of FHV-l (Fig. 3). The poly-

peptide contains twelve cysteine residues, 59 of which are

located in the proposed extracellular domain. Like other 98

proteins, the peptide sequence of gB(FHV-l) has a short

carboxyl-terminal cytoplasmic region.

Comparison of the predicted amino acid sequence of

glycoprotein H of FHV—l to gHs of other herpesvirus (Table 1)

has revealed similarities (GAP program;UWGCG) as follows: 56%

with either gH homologs of equine herpesviruses type 1 and 4,

53 to 50% with the gHS of BHV-l, PRV and VZV, and 45% with

HSV-1 gH. Comparison to gamma- and betaherpesviruses indicated

similarities of 44% with EBV, HVS, and HCMV and of 42% with

HHV-G.

Multiple alignments of glycoprotein H homologs of alpha-,

beta, and. gammaherpesviruses .have indicated. the: greatest

diversity of sequence is in the N-terminal region of.the

proteins. There is a high degree of homology regarding the

location of cysteine residues and N-linked glycosylation sites

in the carboxyl-terminus. Out of the 11 cysteine residues in

gH of FHV-l, 9 are found at colinear positions in gHs of
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Table 1. Homology analyses of 9H polypeptides from alpha-,

beta-, and gammaherpesviruses. The GAP program from the

genetics package (UWGCG) were used to compare the poly-

peptides. The values reported indicate the percentage

similarities/percentage identities.
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Figure 3. Multiple alignments of two highly conserved regions

of glycoprotein H polypeptides for herpesviruses. Highly con—

served residues (>5 residues aligned) are in bold. Totally

conserved residues are denoted with asterisks at the bottom of

the alignments. The position of the homologous regions on the

nascent chain of individual polypeptides is given at the

beginning and end of each sequence.
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BHV-l, EHV—l, and EHV-4. Although two regions (Figure 3) of

amino acid homology, SPC and NGTV, are generally conserved in

the gHs identified thus far, FHV-l does not contain the glyco-

sylation site, NGTV. However, FHV-l gH does contain the three

amino acids stretch, SPC.

To identify transcripts originating from the FHV-l gH

gene, a northern blot (Figure 4) containing total cytoplasmic

RNA prepared from FHV-l-infected cells was hybridized with a

probe specific for the 3'end of the 9H coding region. A major

transcript of 2.7 and a minor transcript of 4.0 Kb were

detected in RNA isolated late in infection. Based on the

nucleotide sequence, the 2.7 Kb transcript is most likely the

mRNA encoding gH. No hybridization to uninfected cellular RNA

could be demonstrated. On northern blots hybridized with a

probe specific for the thymidine kinase gene, two transcripts,

1.5 and 4.0 Kb were detected. Similarly, three transcripts

(4.0, 2.7 and 1.5 Kb) were detected on northern blots with

probes specific for both the gH and TK genes.
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Figure 4. Northern blot analyses of transcripts detected with

gn and TK-specific hybridization probes. Cytoplasmic RNA was

isolated from FRV-1 infected Crandell-Reese feline kidney

cells at 10 hrs postinfection. The RNA was fractionated in

agarose/formaldehyde gels and electroblotted onto Nytran.

Individual blots were hybridized with 32P-labeled probes as

depicted in Figure 1,D. The blots in lanes 1, 2, 3 and 4 were

hybridized with radiolabeled fragments (A) 2.5 Kb EcoRI-EcoRV,

(B) 2.3 Kb EcoRV—EcoRV (gH-specific), (C) 1.4 Kb EcoRV-EcoRV

(TK/gH-specific) and (D) 0.4 Kb EcoRV-EcoRV (TK-specific),

respectively.
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DISCUSSION

The gene encoding glycoprotein H is the sixth

glycoprotein gene localized within the genome of FHV-l. The

map location of the FHV-l gH gene is consistent with the

general colinearity of herpesvirus genomes (Davison and

Wilkie, 1983). Transcript. mapping of the FHV-l gH :mRNA

revealed several features. From northern analyses, two

transcripts (4.0 and 2.7 Kb) were detected with a gH-specific

probe. A TK-specific probe also detected two transcripts of

4.0 and 1.5 Kb. The 2.7 Kb transcript is likely to represent

the RNA coding for gH due to the size of the 9H ORF (2439 bp)

and size range of the mRNA encoding gH of related herpes-

viruses (2.3-2.7 Kb) (Klupp and Mettenleiter, 1991). It is

proposed that the 4.0 Kb transcript detected.with both the.gH-

and TK-specific probes might constitute a bicistronic RNA

originating at the TK promoter and terminating at the 3' end

of the gH gene. This hybridization pattern, consistent with

the occurrence of two overlapping' transcripts, has been

reported for other herpesvirus glycoprotein genes (Holland et

al., 1984; Wagner, 1985; Bell et al., 1990) The occurrence of

overlapping transcripts, resulting when the promoter for one

mRNA is located within the interior of an upstream mRNA, is

suspected to occur for other glycoprotein genes of FI-IV-l

including ICP18.5/gB, protein kinase/gG, and gD/gI. In these

cases, however, terminal mRNA processing signals were absent

immediately 3' to the first gene. These signals were clearly
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present following the FHV-l TK ORF. Whether the 4.0 KbmmRNA is

the product of accidental transcriptional readthrough and

whether it is functional in translating both genes remains to

be established. The predicted amino acid sequence of the FHV-l

gene has characteristics of the gHs reported for equine

herpesvirus types 1 and 4, bovine herpesvirus-1 and

pseudorabies. A high degree of homology could be demonstrated

between gHs of FHV-l and varicella-zoster virus. These

similarities between FHV-l and VZV's glycoproteins were not

limited to their gH homologs. Glycoproteins B, I and.E of FHV-

1 also show surprising relatedness to homologs found in VZV

(an alpha-2 herpesvirus), actually greater than that demon-

strated with homologs of the herpes simplex viruses (alpha-1

herpesviruses).

Despite a wide variation in base composition among the

genomes of the different herpesviruses, which also occurs in

their gH genes, alignment of the gH amino acid sequences has

demonstrated a pattern of conserved regions or blocks which is

likely to have functional significance. Even within divergent

sequences near the amino and carboxyl termini all of the

eleven gH homologs analyzed have strong hydrophobic domains in

the same locations relative to the conserved regions. Four

cysteine residues at similar positions relative to the

putative transmembrane domain and within conserved local

sequences are characteristically conserved in all gHs.

However, only two cysteine residues are conserved in this

region in HSV-1. Numerous regions of conserved amino acids
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could be demonstrated between gHs of herpesviruses within a

specific subfamily. This strong conservation between the gHs,

second only to the homology found among the gB homologs

(Fuller et al., 1989), implies some degree of conservation of

the secondary and tertiary structure of these proteins. The

tertiary structure of 9H is likely to be important in terms of

recent reports that (i) recombinant gH of HSV—1 is retained on

the nuclear membrane of expressing cells and not present on

cytoplasmic membranes, (ii) recombinant gH (HSV-1) is folded

incorrectly and not recognized by characterized monoclonal

antibodies which recognize conformational epitopes, and (iii)

glycoprotein H of HSV-1 forms a complex with gL and this

complex is essential for normal folding and surface expression

of gH.

Although no immunological or biochemical studies of gH of

FHV—l are presented in this papery a molecular weight for FHV-

1 gH of 107.3 Kd can been calculated for the predicted

translation product. This is based upon the fact that gH

contains 793 residues and eight.glycosylation sites, with.each

glycan having a MW of 2.5 Kd (Klenk and Rott, 1980). Two FHV-l

glycoproteins of 107-103 Kb are the likely candidates for gH.

It is suspected that the 107 Kd protein is gH, since the

uncleaved-gB(FHV-1) is likely the 103 Kd glycoprotein.

Although it is not known whether the TK/gH transfected cells

express glycoprotein H, a 4.0 Kb transcript was detected on

northern blots containing RNA isolated from these cells (Data

not shown). The 2.7 Kb transcript, thought to encode gH was
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not detected on these blots.

The identification and sequence analysis of the FHV-l gH

gene will form the basis for the assessment of the gH protein

as a potential vaccine antigen through, for example, the use

of poxvirus-vectors or synthetic peptides. In addition,

sequence data on conserved genes such as those of the gH

family described here are of value in determining evolutionary

relationship among the herpesviruses.



Chapter 5

Expression of Glycoproteins B and D of Feline Herpesvirus'

Type 1 in Vaccinia and Raccoon Poxviruses

Stephen Spatz
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ABSTRACT

The genome of feline herpesvirus —1, the major cause of viral

upper respiratory disease in cats, contains several genes

encoding HSV-1 homologs of glycoprotein B, D, H, G, I and E.

Research involving HSV-1, PRV, EHV-l and other alpha-

herpesviruses has indicated that both glycoproteins B and D

are important immunogens, eliciting high titers of virus

neutralizing antibodies and cell-mediated immunity. Animals

vaccinated with adeno- or poxviruses expressing these glyco-

proteins have been reported to be protected against the

establishment of latency by the virulent challenge strain. To

improve:on current modified live viral vaccines against feline

rhinotracheitis, we have amplified the gB and gD genes of FHV-

1 using PCR, and cloned the amplified products into a donor

plasmid containing the right and left termini of the vaccinia

thymidine kinase gene. Rescue of these constructs into the

genome of either vaccinia. or raccoon. poxvirus. generated

recombinants that reacted with rabbit anti-FHV-l serum in an

indirect fluorescent antibody test. High titers of virus

neutralizing antibodies were generated in rabbits inoculated

with vaccinia recombinants expressing either FHV-l gD or gB.

Western blot analyses with potassium tartrate-purified virions

and antisera against the vaccinia recombinants have indicated

the presence of a 60 Kd (gB) and a 50 Kd (gD) polypeptide.

Presented in this report are the construction of the

recombinants and preliminary immunological studies.
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INTRODUCTION

Feline rhinotracheitis is a common viral infection in

cats, occurring worldwide. The cause is an alphaherpesvirus

designated feline herpesvirus-1 (FHV-l). Clinical signs are

mostly upper respiratory in nature (Povey, 1979; Maes et al.,

1984). Serological studies have indicated that 50-70% of adult

domestic cats have detectable antibodies to this virus (Tham

et al., 1987). The pathobiology of the virus has been reviewed

by Povery (1979). Like other herpesviruses, FHV-l establishes

a latent infection in ganglia. In the case of FHV-l these

latent infections are very easily reactivated. The prevalence

and seriousness of the disease is largely controlled by the

use of licensed modified-live virus (MLV) vaccines. Although

clinical disease is less severe and of shorter duration in

vaccinated cats, vaccinates can still develop clinical signs

when exposed to challenge virus. Another shortcoming of the

existing vaccines is that they do not.prevent reinfection. The

result of this is that vaccinated, asymptomatic cats that are

exposed to virulent virus will become latently infected with

the virulent virus. Reactivation and subsequent shedding of

this virulent virus results in the perpetuation of the

disease, especially in multiple cat households.

Recent.advances in molecular biology have been‘applied.to

developing new strategies to vaccinate cats against feline

viral rhinotracheitis. Using affinity chromatography with FHV-

1 specific monoclonal antibodies against the glycoproteins,
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Limcumpao et al., (1991) isolated three glycoproteins and

ascertained their relative immunogenicity in mice. All

glycoproteins (143/108 Kd, 113 Kd and 60 Kd) induced

detectable levels of neutralizing antibodies. Although no

challenge studies.in.cats were conducted.by this group, Benoit

et al., (1983) was able to induce a high level of protection

in cats vaccinated with a hydrosoluble fraction of the FHV-l

virus particle.

We have previously identified the genes encoding the

major immunogens of FHV-l: gB, gD, gE, gH, gG, g1 and 9E, all

of which are generally conserved in alphaherpeviruses. Studies

involving immunogenicity and induction of protective immunity

of the individual glycoproteins of HSV-1 and PRV have

indicated that glycoprotein D recombinants (1) induced the

highest neutralizing antibodies titers, (ii) increased the

rate of HSV-1 clearance and (iii) provided good protection

against latency. Glycoprotein B also stimulated 'good

neutralizing antibody titers and as good a protection from the

establishment of latency. The rate of virus clearance in

animals vaccinated with gB/vaccinia recombinants was, however,

not as great as after gD/vaccinia immunization. Based upon

these previously reported results, we have expressed the genes

encoding FHV-l g3 and gD in vaccinia and the related ortho-

poxvirus Raccoon Poxvirus (RPV) (Moss and Flexner, 1987;

Knight et al., 1992). Selection of raccoon poxvirus as a

vector was based Upon a report that high titers of

neutralizing antibodies were generated in cats infected with
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raccoon poxvirus. Furthermore, no adverse reactions were

observed in the vaccinated cats (Scott, 1988). Recently, the

usefulness of raccoon poxvirus as a vaccine vector' was

demonstrated by the generation of RPV recombinants expressing

the nucleocapsid and G glycoprotein of rabies (Esposito, et

al., 1988; Lodmel et al., 1991). Raccoon, skunks, and mice

immunized with the either recombinant were protected when

challenged with lethal raccoon rabies street virus (STV)

(Fekdau et al., 1991). Oral rabies immunization of free-

ranging raccoons with these recombinants has recently been

approved for release on the barrier islands of South Carolina

(Hable et al., 1992; Linhart et al., 1991).

The FHV-l gB/gD raccoon poxvirus recombinants described

in this paper are expected to be more immunogenic than MLV

vaccines. In addition they should elicit better protection

against reinfection and subsequent latency establishment.

Poxvirus recombinants will also offer additional savings in

storage and shipment costs of FVR vaccine, due to the higher

stability of these recombinants over MLV vaccines.



MATERIAL AND METHODS

cells and viruses

Crandell Reese feline kidney (CRFK) cells cultured in

Eagle's Minimum Essential Medium (MEM), supplemented with

antibiotics (100 Units/ml Penicillin and 100 ug/ml

Streptomycin) and 10% fetal bovine serum (PBS) were used to

propagate FHV-l, strain C-27. Rat-2 and human 143B cells, both

thymidine kinase negative (TK-), were grown in the same

medium. Vaccinia virus strain Wyeth, raccoon poxvirus and

recombinant viruses derived from both were propagated

initially on 143B cells and plaque purified on Rat-2 cells in

the presence of 25 ug/ml of S-bromo-Z'deoxyuridine (BUdR).

FOR-amplification and Plasmid Construction

The complete coding sequences of FHV-l glycoproteins B

and D were amplified using flanking oligonucleotides specific

for the 5' and 3' ends of each gene. Oligonucleotides were

synthesized using a 38GB automated DNA synthesizer (Applied

Biosystems) with a three column upgrade.

The gene encoding glycoprotein B was amplified using two

primers, 5' TAC CTC GAG TCA TGT CCA CTC GTG GCG ATC 3' and 5'

GGT CTC GAG GGT TAG ACA AGA TTT G 3'. Each primer contained an

XhoI recognition sequence, which facilitated the cloning of

the amplified 2.8 Kb product. A 3.3 Kb SstI fragment

containing the complete gB gene was excised from agarose gels

and used as the amplification template. The template (100ng)
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was boiled for 2 minutes and 50 pmoles of each primer was

allowed to anneal to the template until the temperature was

50%:. The conditions for 37 cycles of amplification were as

follows: 2 minutes at 53° C, 5 minutes at 72°C and 1 minute at

95°C. One unit of pfu polymerase (Stratagene) was used in a

buffer containing 20 mM Tris-HCl (pH 8.2), 10 mM KCl, 6.0 mM

(NH,)2so,, 2.0 mM MgC12. 0.1% Triton x-1oo and 10 ug/ml BSA.

To amplify the gene encoding gD of FHV-l, two oligo-

nucleotides, 5' CAT CTC GAG TAA TGA TGA CAC GTC TAC A 3'and 5'

TGT GAA TTC AAG GAT GGT GAG TTG TA 3' were used. The later

oligonucleotide contained an XhoI recognition site, while the

former contained an EcoRI recognition site. Incorporation of

these two restriction sites into the amplified PCR-product

facilitated directional cloning. The PCR buffer was identical

to the one mentioned above, while the PCR conditions differed

slightly; 1 minute at 60°C, 2 minutes at 72°C and 1 minute at

95%: for 37 cycles with one unit of pfu polymerase

(Stratagene).

Both gB and 9D PCR-amplified products were digested with

the appropriate restriction endonucleases (XhoI for the 98

gene and XhoI/EcoRI for the gD gene) and cloned into pKGlQ (a

gift from Dr. Paul Rota).

Transfections and Selection

Recombinant plasmid DNA was purified from transformed DHS

alpha cells using alkaline lysis (Ausubel et al., 1988). These

DNA were further purified by centrifugation in cesium chloride
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ethidium bromide gradients. The purified plasmid DNA was then

used to transfect human 143B TK- cells using the lipofectin

method (BRL). One hour prior to transfection, the cells grown

to 75% confluency in 35 mm plates, were washed with 2X OptiMEM

I medium without serum. The cells were then infected with

either vaccinia or raccoon poxvirus using a m.o.i. of <1.0.

Lipid/DNA complexes were created by mixing 25 ul of H20, 25 ul

of lipofectin (approx. 30 ug) and 50 ul of recombinant.p1asmid

DNA containing 20 ug. This mixture was incubated for 15

minutes at room temperature before addition to the infected

cells. After absorption at 37°C for 4-6 hours in a 4% CO2

atmosphere, the cells were fed.with MEM containing 10% FCS and

incubation was continued for 48 hours. Transfected cells were

then pelleted using low-speed centrifugation and resuspended

in 1.0 ml of Mandel's solution. Three cycles of freeze/thawing

with vortexing between each cycle were used to release the

cell-associated virions. Serial 10-fold dilutions of the viral

supernatants were made and Rat-2 cells were infected for 1

hour at 37°C. Following this, 3.0 ml of 1% LMP agarose (45°C)

containing 1X MEM and 25 ug/ml BUdR were overlaid on the

cells. After an incubation at 37%: for 48 hours, 3.0 m1 of

0.5% neutral red in 1X PBS) was added and the cells were

stained for < 3.0 hours. Visible plaques were picked and

resuspended in 500 ul of 1X Mandel's solution. Three cycles of

freeze/thawing were used to release cell-associated virions.

Recombinants were plaque purified 3 times, always in the

presence of BUdR.
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Immunofluorescence

Indirect immunofluorescence tests were carried out on

transfected cells cytocentrifuged onto glass slides. Cells

were fixed.with cold absolute methanol for 15 minutes and then

blocked with 5% low—fat milk powder in 1X PBS for 1 hour. The

cells were incubated with a 1/100 dilution of rabbit anti-FHV-

1 diluted in 1X PBS. After an hour incubation at room

temperature, the cells were washed twice with 1X PBS for 15

minutes each. A goat anti Rabbit FITC conjugate was diluted in

1X PBS containing 0.1% Evan's Blue and applied to the cells

for 30 minutes. The cells were then washed and fluorescence

was observed using a Zeiss UV microscope. Photographs were

taken with Kodak Ektachrome daylight 1,000 ASA film.

Production of Anti-vaccinia Recombinant and Anti-FHV-i Bera

Female New Zealand white rabbits were injected

intraperitoneally with 10’PFU of vaccinia recombinants (VVgB

and VVgD) in 500 ul of 1X PBS. Serum was collected 14 days

after inoculation and analyzed on immunoblots containing wild-

type vaccinia. The rabbits were then boosted with 107 PFU of

the respective recombinant and bled 2 weeks later. Similarly,

rabbits were injected (i.p.) with.1£P TCIDS0 of FHV-l (C-27)

and boosted three weeks later.

Western Blot Analyses

FHV-l virions from infected CRFK cells were purified by

rate zonal centrifugation through 10-40% potassium tartrate
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gradients (Talens and Zee, 1976). Purified virions were

resuspended in 1X PBS and separated by SDS-PAGE. Immuno-

blotting was done according tijrocedures described by Ausubel

et al., 1988, using 5.0% low fat milk powder as a blocking

agent. Alkaline phosphatase-labeled anti rabbit conjugates,

along with the chromogens BCIP and NET, were used to visualize

the bands.

Virus Neutralization Assay

Antisera, each specific for the vaccinia recombinants

(VVgB and WgD), were assayed for the presence of virus-

neutralizing antibodies by a microneutralization assay.

Briefly, heat inactivated (56°C, 30') sera were used to make

a two-fold dilution series. Approximately 100 TCID,0 of FHV-l

(C-27) was added to each dilution. The virus-serum mixtures

were incubated for 1 hour at 37°C. CRFK cells (15,000) were

added to each well and the plates were incubated at 37°C in an

atmosphere of 5% CO2 in air. The VN titers were expressed as

the reciprocal of the highest serum dilution resulting in

complete inhibition in CPR.



RESULTS

Construction of recombinants vaccinia and raccoon poxviruses

expressing glycoprotein B and D of FRV-1

The genomic location of the genes encoding glycoproteins

B and D of FHV-l is illustrated in Figure 1. The gene encoding

FHV-l gB is located within a 3.3 Kb SstI subfragment of the

larger SalI G. The SalI B (14.5 Kb) fragment from the unique

short region encodes glycoprotein D. The gene is confined to

a 1.5 Kb HincII-XhoI subfragment. These subfragments were

purified and used as the templates for the amplification of

both genes. Amplification of the gB and gD genes resulted in

a. 2.8 and 1.1 Kb PCR-product, respectively (Figure 2).

Restriction analyses of the gD PCR-product is presented in

Figure 3. Both amplified products were cloned into 'the

vaccinia-thymidine kinase donor plasmid (pKG19) as depicted in

Figure 4. Restriction endonuclease analysis (Figures 5 and 6)

of the recombinants (pKGgD and pKGgB), respectively, verified

the authenticity of the cloned gD gene (pKGgD) and indicated

the two possible orientations of the cloned gB product.

Recombinant donor plasmids were transfected into vaccinia

or raccoon poxvirus infected Human 143B TK- cells. The number

of BUdR resistant recombinants obtained was higher for

vaccinia than the slower growing raccoon poxvirus. Actually,

due to the slow growth of recombinants in the human cells and

the fact that plaquing morphology was difficult to determine,

RPV-recombinants were plaqued on Rat-2 TK- cells. Compared to
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Figure 1. The genomic organization of the genes encoding

glycoproteins B and D of FHv-l (c-27). The genome of FRV-1,

containing two unique regions (UL and Us) with inverted repeats

bracketing the US region (Rota et al., 1986) is presented

along with the genomic positions of the genes encoding gD and

gB.

(A) A detailed restriction map of the 2.9 Kb HincII-EcoRV

fragment from the 1%; region of the genome. This region

contains the genes encoding gD, gI and part of gE. (B) A

restriction map of the 3.3 Kb SacI fragment containing the

genes encoding gB. This fragment maps within the UL region of

the FHV-l genome.
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Figure 2. Visualization of the PCR-amplified gD and 98

products. Presented are a photographs of an EtBr-stained

agarose gel containing electrophoretically separated fragments

from the amplification of 1.14 Kb gD (A) and 2.8 Kb gB (B)

lanes 1—3. Molecular weight standards are in lanes 4 (A and

B).
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Figure 3. Restriction analysis of the 9D PCR-product.

(A) Computer-predicted restriction maps based on nucleotide

sequencing of the gD gene. (B) Visualization of an agarose gel

containing restriction endonuclease digested PCR-products.

Prior to electrophoresis, these products were digested with

the following enzymes: BamHI (lane A), EcoRI (lane B), ClaI

(lane C), SstI (lane D) and KpnI (lane E).
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Figure 4. Constructs of the recombinant plasmids pKGgD and

pKGgB. Recombinants were generated via cloning restriction

digested PCR-amplified products into the donor plasmid pKGl9.

Relative restriction sites are indicated along' with. the

molecular size of each construct.
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Figure 5. Restriction analysis of the recombinant plasmid,

pKGgD. Visualization of an EtBr-stained agarose gel containing

digested recombinant plasmid, pKGgD. Prior to electrophoresis,

the recombinant DNA was digested with restriction

endonucleases XhoI and EcoRI (lanes 1-6; MW standard, lane 7) .
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Figure 6. Analyses of the recombinant donor plasmids, pKGgB

and pKGrgB. Restriction endonuclease analyses of the PCR-

amplified FHV-l gB gene cloned into the donor plasmid pKGl9.

Recombinant plasmid (A) pKGgB, contained an insert in the

correct orientation with respect to the Vac Rm promoter. The

control plasmid (B) pKGrgB, contained an inverted insert.

Computer-generated restriction maps of the recombinant

plasmids are shown with a photograph of an EtBr-stained

agarose gel containing the results of various restriction

digestions.
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to the human 1438 cells, the Rat-2 cells formed a better cell

monolayer and RPV formed plaques in these cells within 4-5

days.

Expression of glycoproteins B and D in transfected Rat-2 cells

Transfected cells were analyzed for the expression of

FHV-l gB and gD using an indirect fluorescent antibody assay.

As shown in Figure 7, cytoplasmic staining was observed only

in transfected cells previously infected with either vaccinia

or raccoon poxviruses. Fluorescence was not observed in the

controls. Cells infected with wild type vaccinia and raccoon

poxvirus served as one form of negative control. The other

control consisted. of cells transfected 'with ‘vaccinia, or

raccoon poxvirus donor plasmids containing an inverted gB gene

with respect to the vaccinia 7.5 promoter.

Western blot analyses (Figure 8) were done with rabbit

antisera against VVgB and VVgD and potassium tartrate-

purified FHV-l virions. Major immunodominant bands of 60 Kd

(cleaved form of gB) and 50 Kd (gD) were detected at a 1/400

dilution.of theszolyclonal sera. FHV-l proteins did not react

with an antiserum specific for WT- vaccinia virus (Data not

shown). Rabbits immunized with VVgB or VVgD had VN titers of

64 and 1024, respectively in a microneutralization assay.
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Figure 7. Indirect fluorescent antibody assay. Visualization

by immunofluorescence of gB and gD synthesized in vaccinia or

raccoon poxviruses infected Rat-2 cells. Photographs (A—C)

represent cells infected with Vaccinia virus and then

transfected with DNA from plasmids; pKGgB (panel A), pKGgD

(panel B) and pKGrgB (panel C). Photographs (D-F) represent

cells infected with Raccoon poxvirus and then transfected‘with

pKGgB (panel D), pKGgD (panel E),and pKGrgB (panel F). Fixed

cells were treated with a rabbit anti-FHV-I antibody, followed

by a fluorescein isothiocyanate conjugated goat anti-rabbit

antibody. The final magnification was 250x.
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Figure 8. Western blot analyses of FHV—l polypeptides with

rabbit antisera against VVgB and VVgD. Denatured purified

virions were separated using SDS-PAGE and electrophoretically

transferred to Nytran. Rabbit anti—WgB and anti-VVgD sera

were used to probe blots A and B, respectively. A rabbit anti-

FHV-l sera was used to probe blot C. Mouse anti-rabbit

alkaline phosphatase labelled conjugates were used as the

secondary antibody .
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DISCUSSION

Feline herpesvirus-1 is an important viral pathogen of

cats. Current vaccines can protect against clinical disease,

but not against infection and latency. It is clear from work

with other herpesviruses that viral glycoproteins are the

obvious candidates for inclusion in newer vaccines. The

development of poxvirus as a eukaryotic expression vector

Capable of adequate expression of a variety of herpesvirus

genes has resulted in the construction of live poxvirus

recombinants that are capable of protecting immunized animals

against infection with HSV-1, HSV-2, PRV, EHV-l and MDV

( Cantin et al. , 1987; Paoletti et al., 1984; Marchioli et al.,

1987; Yanagida et al., 1992; Britt et al., 1990; Bell et al.,

1990; Blacklaws et al., 1990)

Extensive research involving glycoproteins B and D of

HSV-1 and their respective homologs in animal herpesviruses

has demonstrated the importance of these glycoproteins in both

humoral and cell-mediated immunity. A recombinant vaccinia

virUS expressing glycoprotein D of HSV-1 was the first

gel"e‘tically engineered vaccine which could prevent the

de"elopment of latency in mice by virulent challenge (Cantin

at al., 1987)

In this report, we describe the construction of four

I~QQOmbinant poxviruses expressing either gB or gD of FHV-l.

The genes encoding these glycoproteins were rescued via

tioluOlogous recombination into the genomes of both vaccinia and
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raccoon poxviruses. Donor plasmids used were derived via

cloning of gB- and gD-PCR products into the donor plasmid

pKG19. Transfected Rat-2 (TK-) cells, previously infected with

either vaccinia or RPV, expressed the appropriate glycoprotein

as detected by immunofluorescence with rabbit antii-FHV-l sera.

The fact that donor plasmids containing an inverted gB gene

could be rescued into the genomes of these two poxviruses

demonstrated the success of the BUdR selection.

Immunogenicity of recombinant gB and gD polypeptides was

demonstrated by the response of immunized rabbits whose sera

reacted specifically to proteins of KT- purified FHV-l. Using

western blot analysis, two polypeptides (60 and 50 Kd) from

purified virions were detected using antisera from rabbits

inoculated with either WgB or VVgD, respectively. Previously,

We have reported that two endoproteolytic cleavage sites were

predicted from the DNA sequence of FHV-l gB, producing two

1cD‘Mer MW forms of 62 and 58 Kd as detected by western and

ir"ll'tlunoprecipitation assays with anti-HSV-lgB sera. Although

the uncleaved FHV-1 gB can be detected with this crossreactive

a1Fr'iisera, only the cleaved form (a doublet of 60 Kd) could be

tie‘tected with antisera against recombinant WgB. The uncleaved

FHV‘I gB polypeptides could only be detected on overexposed

we.stern blots.

This is the first report of a FHV-l polypeptide of 50 Kd

tlortuDllogous to glycoprotein D of HSV-1. The diffuse nature of

the gD band may indicate incorporation of partially trimmed

g:Ll’CBOprotein D in the virion. This heterogeneity in the
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glycan moieties of gD may have little influence on the

protein's immunogenicity, since gD of HSV-1 expressed in

prokaryotic or taculovirus expression vectors elicits high

titers of virus neutralizing antibodies.

A significant complement-independent ' neutralizing

antibody response to ‘virulent FHV-l. was demonstrated in

rabbits immunized with either vaccinia recombinant (VVgB or

VVgD). High titers of VN-antibodies to FHV-l glycoproteins

have also been reported in animals immunized with affinity-

purified FHV-l glycoproteins (Limcumpoa et al.., 1991).

Likewise, there is a correlation between the onset of virus-

neutralizing antibody response and the detection of

glycoprotein-specific immunoprecipitins. Cats naturally

exposed to FHV-l (C-27) develop VN antibodies against FHVel

glycoproteins by two weeks postinfection (Bergener and Maes,

1988). The successful generation of these poxvirus recom-

binants expressing gB and gD (FHV-l) will aid in the

assessment of these glycoproteins in the induction of humoral

and cell-mediated immunity in immunized animals. Protection

studies with SPF cats inoculated with either RPV recombinant

or a cocktail of _ both are needed to address the immune

response to these glycoproteins in curtailing the replication

of virulent challenge virus and therefore latency

establishment. This would be very significant since current

vaccines.cannot.prevent.reinfection, Moreover, latent.FHV-1 in

carriers is very easily reactivated, thus a continuous source

of virulent virus is available to infect susceptible cats.



SUMMARY

Feline herpesvirus is the major cause of viral rhino-

tracheitis in cats worldwide. Because of this, the genes

encoding major immunogens of FHV-l, glycoproteins B, D, H, G,

I and E, have been identified and will be of significant value

in the assessment of the immune response_ to these

glycoproteins. The generation of vaccinia and raccoon poxvirus

recombinants containing gB.and gD is a practical application

of the data generated from nucleic acid sequencing of the FHV-

1 genome. Antisera generated against the vaccinia .gD

recombinant is currently being used for diagnostic purposes.

The antisera generated against the poxvirus recombinants along

with monoclonal antibodies recently generated.by DrswiMaes and

Deheck will be of value in future characterization of these

glycoproteins. Future cat studies are planned to investigate

the protective nature of the raccoon poxvirus recombinants.

Other applications of the research data presented. in this

thesis involve the generation of "engineered" modified live

viral vaccines against feline rhinotracheitis. Many of the

glycoprotein genes identified encode glycoproteins that are

Suspected to be nonessential for viral replication.

Glycoproteins G, I and E of HSV-1 and homologs found in PRV

and EHV-l have been reported to fit into this categorization.

More importantly, g1 (gE) of PRV has been reported to be

involved in neurovirulence and neuroinvasiveness. It would be

of great value to generate FHV-l recombinants containing
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deletions in this gene. In order to accomplish this, a

suitable marker gene (i.e. beta-galactosidase) can be rescued

into the gene encoding gE of FHV-l. Assessment of these gE

deletion mutants of FHV-l in kittens may provide useful

information on the role of this suspected neurovirulence

factor. Infection of the CNS is often seen in naturally or

experimentally infected kittens. This results is rarely

observed in adult cats.

The transcriptional analysis of RNA originating from

these six glycoprotein genes is far from complete. The main

conclusion from the northern analysis is that .co-terminal

transcripts have been detected for the majority of the six gp

genes. Shénuclease and primer extension experiments, as well

as a functional assay for the transcripts, are needed for a

more thorough investigation into the transcriptional pattern

of these genes.

Finally, an. evolutionary lineage .between, (alpha-

herpesviruses was generated illustrating the relationship of

FHV-l and viruses of the genus Varicellovirinae.
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