

This is to certify that the

thesis entitled RATE OF LIPID OXIDATION AT VARYING INITIAL OXYGEN CONCENTRATIONS USING OXYGEN ABSORBING SACHETS IN THE PACKAGES

presented by

Dena Briggs Thomas

has been accepted towards fulfillment of the requirements for

M.S. degree in Packaging

Major professor

<u>6/16/94</u> Date_

MSU is an Affirmative Action/Equal Opportunity Institution

O-7639

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE 092004	DATE DUE	DATE DUE
<u>FFE 0.5 00</u> 0.9.2.0.0	4	
NG1302004		

MSU is An Affirmative Action/Equal Opportunity Institution c/circ/datadua.pm3-p.1

- - -

RATE OF LIPID OXIDATION AT VARYING INITIAL OXYGEN CONCENTRATIONS USING OXYGEN ABSORBING SACHETS IN THE PACKAGES

By

Dena Briggs Thomas

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

School of Packaging

ABSTRACT

RATE OF LIPID OXIDATION AT VARYING INITIAL OXYGEN CONCENTRATIONS USING OXYGEN ABSORBING SACHETS IN THE PACKAGES

By

Dena Briggs Thomas

This study was performed to determine the effect of varying initial oxygen concentrations and the use of oxygen absorbers on the shelf life of potato chips packaged in metallized polyester and metallized polypropylene. Potato chips were stored for 22 weeks. Changes in headspace oxygen concentration, moisture content, and hexanal concentration were measured. The hexanal and sensory data showed that chips in metallized polypropylene at 10% initial oxygen concentration with an absorber were less rancid than chips at lower oxygen concentrations without absorbers and less rancid than chips at 2% initial oxygen concentration with absorbers. The hexanal data also showed that chips in metallized polyester without absorbers produced significantly more hexanal at an initial oxygen concentration of 2% than at an initial oxygen concentration of 0.2%.

ACKNOWLEDGMENTS

Dr. Theron Downes: For his guidance, patience, understanding, and enthusiasm as my major advisor. Dr. Jack Giacin: For sharing his technical expertise and wisdom, and for always being available while serving on my committee.

Dr. William C. Haines: For his jovial spirit and for serving on my committee.

Dr. Hugh Lockhart: For keeping me employed on interesting and challenging projects during the course of my study at the School of Packaging, and for his advice and help with my thesis work.

Dr. Jerry Cash: For his advice and help with potato chip processing.

Dr. Ahmad Shirazi: For use of the Food Science processing pilot plant.

Don Abbott: For being a bright spot during difficult times.

My family, especially my parents: For their encouragement, faith, and continuous moral support.

My husband, Jon Thomas: For his patience and devotion.

iii

TABLE OF CONTENTS

LIST OF TABLES	•	•	•	•	•	vii
LIST OF FIGURES	•	•	•	•	•	xi
NOMENCLATURE	•	•	•	•	•	xii
INTRODUCTION	•	•	•	•	•	1
LITERATURE REVIEW	•	•	•	•	•	3
Mechanism of Lipid Oxidation	•	•	•	•	•	3
Factors Influencing the Rate of Oxidation		•	•	•	•	4
Light	•	•	•	•	•	4
Transition Metals		•	•		•	5
Temperature					•	6
Water Activity				•	•	6
Monolaver Moisture Content						Ř
Avygen Availability	•	•	•	•	•	ä
Drygen Availability	•	•	•	•	•	10
Micloxidants	•	•	•	•	•	10
Methods of Quantifying Oxidation	•	•	•	•	•	10
	•	•	•	٠	•	10
Thiodardituric Acid Reactive Substan	Се	28				
$(TBARS) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	•	٠	٠	٠	٠	11
	•	•	•	•	•	12
Oxygen Scavengers (Absorbers)	•	•	•	•	•	13
Metal-complex Scavengers	•	•	•	٠	٠	13
Non-metal Chemical-complex Scavenger	S	•	•	•	•	15
Photosensitive Dye Scavengers	•	•	•	٠	•	16
Enzyme Scavenger Systems	•	•	•	•	•	17
Synthetic "heme" Scavenger	•	•	•	•	•	18
METHODS					-	19
Potato Chip Manufacture						19
Initial Moisture Content	•		•			20
Sorntion Isotherm	•	•				20
Dackaging	•	•	•	•	•	21
Wator Vapor Transmission Date	•	•	•	•	•	22
Water vapor fransmission Rate	•	•	•	•	•	23
	•	•	•	•	•	24
	•	•	•	•	•	24
Headspace Oxygen Concentration	•	•	•	•	•	24
Storage	•	•	•	•	٠	25
Hexanal Quantification	•	•	•	•	•	27
Apparatus for Trapping of Volatiles	•	•	•	•	•	27

	Trapping of Volatiles	•	• •	•	•	29
	Extraction and Concentration Procedu	ire			•	29
	Percent Recovery of Hexanal From Ter	nax				
	and Concentration Technique			_		31
	Cag Chromatography	•	•••	•	•	31
	Hevenal Calibration Curve Developmen	·+	•••	•	•	51
		16				22
		•	• •	•	•	32
DROIT	TA NO DIAMIGATON					24
RESUI	TS AND DISCUSSION	•	• •	•	•	34
	Product Model	٠	• •	•	•	34
	Storage Environment	•	• •	•	•	34
	Initial Moisture Content	•	• •	•	•	35
	Equilibrium Sorption Isotherm	•	•••	•	•	35
	Using the Brunauer, Emmett, and Teller (E	BET)			
	Monolayer Mathematical Model to Pred	lic	t			
	Product Moisture Content at Specific	3				
	Water Activities	•			•	38
	Brunauer, Emmett, and Teller Monolay	ver	Va	lue	1	39
	Water Vanor Transmission Rate and Permeat	i 1	itv			41
	Chin Weights]	•		43
		•	• •	•	•	47
		•	• •	•	•	4/
	Oxygen Permeability	•	• •	•	•	4/
	Data Collection and Analysis of Headspace	3				
	Sampling	•	• •	٠	•	47
	Headspace Sampling of Oxygen	•	• •	•	•	47
	Collection of Hexanal from Potato Ch	lip	s .	•	•	53
	Hexanal Data and Quantification	•	• •	•	•	53
	Percent Recovery of Hexanal from Ter	nax	-GR	•	•	55
	Statistical Difference Between Group	S				
	According to Hexanal Data	•		•	•	55
	Sensory Evaluation					58
	Discussion of Hexanal and Sensory Results			•	•	59
	Frror Analysis		•••	•	•	60
		•	• •	•	•	00
CIMM	DY AND CONCLUCTONS					67
SOUM	RI AND CONCLUSIONS	•	• •	•	•	62
	BET Monolayer Molsture Content	•	• •	•	•	02
	Headspace Oxygen Concentration	•	• •	•	•	63
	Applicability of Results	•	• •	٠	•	63
APPEN	DICIES	•	• •	•	•	65
	A. Gas Chromatograph Hexanal Calibratic	n				
	Data	•		•	•	65
	B. Chip Initial Moisture Content Data	•		•	•	69
	C. Sorption Isotherm Data	•		•	•	70
	D. WVTR Data, Package Weights					71
	E. WVTR Data, Package Weight Gains .	•				73
	F Weights of Potato Ching	•	•••	•		76
	C Weight Caing of Dotato Ching	•	• •	•	•	94
	U Initial and Dinal Volumes of Detete	~~	••••	•	•	04
	n. Initial and Final Volumes of Potato	CII.	тħ			~~
		•	• •	•	•	92
	1. Headspace Oxygen Concentration Over					-
	Time	•	• •	•	•	97

J. K.	Potato C Percent	hip Reco	He	xar ry	nal Dat	Da ta	ita &	Ca	 lcu	1a	tio	ons		•	•	•	•	· 9)9)8
LIST OF	REFERENCES	5.	•	• •	• •	•	•	•	••	•	•	•	•	•	•	•	•	1()9

LIST OF TABLES

1.	Packaging Characteristics of Different Groups.	•	•	•	22
2.	Equilibrium Moisture Contents at Each Water Activity	•	•	•	36
3.	BET Model Expected Values (X _e) versus Actual Equilibrium Product Moisture Content Values	•	•	•	39
4.	B.E.T. Regression Plot Values for the Sorption Isotherm for Determining Monolayer Value	•	•	•	41
5.	Water Vapor Transmission Rate Data	•	•	•	43
6.	Hexanal Concentration in Potato Chips Over Time (ppm)	•	•	•	54
7.	Hexanal Data for the First Calibration Curve .	•	•	•	65
8.	Hexanal Data for the Second Calibration Curve	•	•	•	67
9.	Chip Initial Moisture Content Data	•	•	•	69
10.	Sorption Isotherm Data	•	•	•	70
11.	Metallized Polyester Package Weights	•	•	•	71
12.	Metallized Polypropylene Package Weights	•	•	•	72
13.	Metallized Polyester Package Weight Gains	•	•	•	73
14.	Metallized Polypropylene Package Weight Gains.	•	•	•	74
15.	Average and Net Package Weight Gains	•	•	•	75
16.	Weights (g) of Potato Chips Packaged in Metallized Polyester at 0% 0 ₂	•	•	•	76
17.	Weights (g) of Potato Chips Packaged in Metallized Polyester at 0% O ₂ with an Absorber	•	•	•	77

18.	Weights (g) of Potato Chips Packaged in Metallized Polyester at 2% 0 ₂	•	•	78
19.	Weights (g) of Potato Chips Packaged in Metallized Polyester at 0% O ₂ with an Absorber .	•	•	79
20.	Weights (g) of Potato Chips Packaged in Metallized Polypropylene at 2% O ₂	•	•	80
21.	Weights (g) of Potato Chips Packaged in Metallized Polypropylene at 2% O ₂ with an Absorber	•	•	81
22.	Weights (g) of Potato Chips Packaged in Metallized Polypropylene at 10% O ₂	•	•	82
23.	Weights (g) of Potato Chips Packaged in Metallized Polypropylene at 10% O ₂ with an Absorber	•	•	83
24.	Weight Gains (g) of Potato Chips Packaged in Metallized Polyester at 0% 0 ₂	•	•	84
25.	Weight Gains (g) of Potato Chips Packaged in Metallized Polyester at 0% O ₂ with an Absorber .	•	•	85
26.	Weight Gains (g) of Potato Chips Packaged in Metallized Polyester at 2% O ₂	•	•	86
27.	Weight Gains (g) of Potato Chips Packaged in Metallized Polyester at 0% O ₂ with an Absorber .	•	•	87
28.	Weight Gains (g) of Potato Chips Packaged in Metallized Polypropylene at 2% O ₂	•	•	88
29.	Weight Gains (g) of Potato Chips Packaged in Metallized Polypropylene at 2% O ₂ with an Absorber	•	•	89
30.	Weight Gains (g) of Potato Chips Packaged in Metallized Polypropylene at 10% O ₂	•	•	90
31.	Weight Gains (g) of Potato Chips Packaged in Metallized Polypropylene at 10% O ₂ with an Absorber	•	•	91
32.	Initial and Final Volumes of Potato Chip Packages of Metallized Polyester Inflated with Nitrogen .		•	92
33.	Initial and Final Volumes of Potato Chip Packages of Metallized Polyester Inflated with Nitrogen and Packaged with Oxygen Absorbers		•	92

34.	Initial and Final Volumes of Potato Chip Packages of Metallized Polyester Inflated with 2% Oxygen/98% Nitrogen	93
35.	Initial and Final Volumes of Potato Chip Packages of Metallized Polyester Inflated with 2% Oxygen/98% Nitrogen and Packaged with Oxygen Absorbers	93
36.	Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 2% Oxygen/98% Nitrogen	94
37.	Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 2% Oxygen/98% Nitrogen and Packaged with Oxygen Absorbers	94
38.	Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 10% Oxygen/90% Nitrogen	95
39.	Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 10% Oxygen/98% Nitrogen and Packaged with Oxygen Absorbers	96
40.	Average Headspace Oxygen Concentrations (%) of Metallized Polyester Packages Over Time	97
41.	Average Headspace Oxygen Concentrations (%) of Metallized Polypropylene Packages Over Time	98
42.	Hexanal Data for Fresh Chips	99
43.	Hexanal Data for Chips in Metallized Polyester; 0% Initial O ₂ ; Without an Absorber	100
44.	Hexanal Data for Chips in Metallized Polyester; 0% Initial O ₂ ; With a 100cc Capacity Absorber	101
45.	Hexanal Data for Chips in Metallized Polyester; 2% Initial O ₂ ; Without an Absorber	102
46.	Hexanal Data for Chips in Metallized Polyester; 2% Initial O ₂ ; With a 200cc Capacity Absorber	103
47.	Hexanal Data for Chips in Metallized Polypropylene; 2% Initial O ₂ ; Without an Absorber	104

48.	Hexanal Data for Chips in Metallized Polypropylene; 2% Initial O ₂ ; With a 200cc Capacity Absorber	105
49.	Hexanal Data for Chips in Metallized Polypropylene; 10% Initial O ₂ ; Without an Absorber	106
50.	Hexanal Data for Chips in Metallized Polypropylene; 10% Initial O ₂ ; With a 400cc Capapcity Absorber	107
51.	Percent Recovery Data & Calculations	108

LIST OF FIGURES

1.	Effect of Water Activity on the Rate of Chemical Reactions in Foods	8
2.	Storage Arrangement of Potato Chip Packages	26
3.	Apparatus for Trapping of Volatiles	28
4.	Sorption Isotherm	37
5	Brunauer, Emmet, and Teller Plot for Determining .	40
6.	Moisture Weight Gain Over Time of Packaging Materials	42
7.	Chip Moisture Content Over Time	45
8.	Chip Moisture Content Over Time; Actual vs. Predicted Values	46
9.	Headspace [O2] Over Time of Metallized Polyester Packages Initially Flushed with Nitrogen	49
10.	Headspace $[O_2]$ Over Time of Metallized Polyester Packages Initially Flushed with 2% O_2 ; 98% N_2	50
11.	Headspace $[O_2]$ Over Time of Metallized Polypropylene Packages Initially Flushed with 2% O_2 ; 98% N_2	51
12.	Headspace $[O_2]$ Over Time of Metallized Polypropylene Packages Initially Flushed with 10% O_2 ; 90% N_2	52
13.	First Hexanal Calibration Curve	66
14.	Second Hexanal Calibration Curve	68

NOMENCLATURE

a _w	water activity
AU	Area Response Units
BET	Brunauer, Emmett, and Teller
С, с	constants
°C	degrees Celcius
cc	cubic centimeters
CCs	Calibration Curve slope
EMC	equilibrium moisture content
ERH	equilibrium relative humidity
°F	degrees Farenheit
g	gram
GC	gas chromatograph
Н _р	concentration of hexanal in product $sample(\mu g/g)$
IMC	initial moisture content
-	
L∎	a free radical
L∎ LH	a free radical any unsaturated fatty acid
L= LH LOO=	a free radical any unsaturated fatty acid the peroxyl radical
L= LH LOO= LOOH	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide
L= LH LOO= LOOH M	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis)
L• LH LOO• LOOH m m ₁	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value
L= LH LOO= LOOH m ^m 1 ml	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value milliliter
L= LH LOO= LOOH m ^m 1 ml mm	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value milliliter millimeter
L LH LOO LOOH m m ₁ ml mm µl	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value milliliter millimeter microliter
L. LH LOO. LOOH m m ₁ ml mn µl 1 _{O2}	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value milliliter millimeter microliter singlet oxygen
L LH LOO LOOH m m ₁ ml mn µ l ¹ O ₂ •OH	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value milliliter millimeter microliter singlet oxygen hydroxyl radical
L. LH LOO. LOOH m m1 m1 mm µ1 102 •OH P	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value milliliter milliliter millimeter microliter singlet oxygen hydroxyl radical product weight
L= LH LOO= LOOH m m_1 ml mm μl $^{1}O_2$ =OH P p	a free radical any unsaturated fatty acid the peroxyl radical a lipid hydroperoxide moisture content (dry basis) monolayer value milliliter millimeter microliter singlet oxygen hydroxyl radical product weight partial pressure of water above the sample

xii

Pp	water vapor permeability of each package
PET	polyester
PP	polypropylene
ppb	parts per billion
Pf	final product weight
Pi	initial product weight
ppm	parts per million
PV	peroxide value
R ₁ , R ₂	relative humidity of the external and internal
	package environments
RH	relative humidity
S	saturation vapor pressure
STP	standard temperature and pressure
TBA	thiobarbituric acid
TBARS	thiobarbituric acid reactive substances
v i	Volume of injection
Vt	Total sample volume
W _c	weight change
Wd	weight of dry product
Wi	initial weight
Wf	dried weight
WVTR	water vapor transmission rate
WVTRp	water vapor transmission rate for each package

INTRODUCTION

Lipid oxidation is a major limiting factor in the shelf-life of potato chips. The major products of lipid oxidation are hydroperoxides, which are colorless, tasteless, and odorless. Hydroperoxides, however, break down to low molecular weight compounds which impart flavors and odors to food products that are associated with rancidity. The secondary products of oxidation are free radicals, peroxides, epoxides, aldehydes, ketones, cyclic monomers, dimers, and polycyclic aromatic hydrocarbons; many of which are toxic (Bidlack et al. 1973).

Several factors can influence the rate of lipid oxidation. Jeon (1983) reports that factors such as light, relative humidity, temperature, type of frying oil used and availability of oxygen affect the production of lipid oxidation products. Quast and Karel (1971) report that lipid oxidation is likely the most common mechanism of oxygen uptake in dried foods such as potato chips. For fried foods, the extent of oxidation of the frying oil also contributes to the product's oxidation.

Over the years, different products of oxidation have been measured as indices of the extent of lipid oxidation. Peroxide value, thiobarbituric acid reactive substances (TBARS), and hexanal are three that are commonly used.

Oxygen absorbers have long been used to reduce oxygen in the headspace of packages to prolong shelf-life without

adding preservatives. Patents for oxygen absorbers have been granted as early as 1938. There are several different types of oxygen absorbers currently being developed. The most common oxygen scavenger on the market today is an iron complex which oxidizes to rust. These absorbers can be adjusted with humidity factors that will make them usable with a variety of products with low to intermediate water activities. That is the type that will be used in this study.

The objectives of this study were to:

1. Determine an initial headspace oxygen concentration above which the rate of lipid oxidation proceeds independent of the oxygen concentration.

2. Determine the extension in shelf-life obtained by using an oxygen absorbing sachet in packages with initial oxygen concentrations of 0%, 2%, and 10%.

3. Determine how using metallized polyester and metallized polypropylene with and without absorbers affects the rate of lipid oxidation.

LITERATURE REVIEW

Mechanism of Lipid Oxidation

The mechanism of oxidation is well documented (Gutteridge and Halliwell, 1990; Nawar, 1985). Lipids oxidize by a free-radical chain process. This process has 3 steps: 1)Initiation, free-radical formation; 2)Propagation, free-radical chain reactions; and 3)Termination, formation of non-radicals.

> Initiation: LH + O_2 --> L= + =OH Propagation: L= + O_2 --> LOO= LOO= + LH --> LOOH + L=; etc. Termination: L= + L= --> LL or L= + LOO= --> LOOL or LOO= + LOO= --> LOOL + O_2

LH is any unsaturated fatty acid, L= is a free radical formed by removing hydrogen from a carbon next to a double bond, LOO= is the peroxyl radical formed, and LOOH is a lipid hydroperoxide, the major primary lipid oxidation byproduct. In linoleic acid, a hydrogen is removed from the doubly allylic methylene on carbon-11 to create a delocalized pentadienyl radical. Oxygen addition at carbons-9 and -13 produces conjugated 9- and 13hydroperoxide isomers (Frankel, 1984). Hydroperoxides readily decompose into the many secondary byproducts of oxidation.

Nawar (1985) points out that the initiation reaction in this process has a high activation energy making the

reaction unlikely without a catalyst. Some catalysts of the initiation step are thought to be transition metals, light, decomposing hydroperoxides, and singlet oxygen ($^{1}O_{2}$). Singlet oxygen is also believed responsible for photosensitized oxidation. Singlet oxygen is electrophilic enough to react directly with a double carbon bond, whereas stable (triple state) oxygen is not (Nawar, 1985). When linoleate is photosensitized by singlet oxygen, four hydroperoxide isomers are formed: conjugated 9- and 13- diene and unconjugated 10- and 12-diene hydroperoxides (Frankel, 1984).

Factors Influencing the Rate of Oxidation

Light, transition metals, temperature, water activity, oxygen availability, antioxidants, and the type and condition of oil all can influence the rate of lipid oxidation in fried foods.

Light

Light has been known to contribute to oxygen uptake and subsequently oxidation for many years. Several have studied the effects of light on lipid oxidation. Quast and Karel (1972) demonstrated that artificial room light or sunlight will increase oxygen uptake by potato chips, and as water activity increases, this effect becomes more significant. A study performed by Columbus Instruments International

Corporation showed that potato chips exposed to a 30 watt lamp light at 43°C consumed oxygen at a rate twenty times greater than potato chips stored in the dark at 22°C (Columbus Instruments International Corporation, 1993). Jeon and Bassette (1984) monitored n-hexanal production in fluorescent light-exposed potato chips and potato chips stored in the dark. They found that light-exposed potato chips produced moderately higher amounts of n-hexanal than control chips over the first 60 hours of the study, and rapid production of n-hexanal occurred in light-exposed potato chips after 60 hours. Fluorescent lighting is commonly used in grocery stores and emits light in wave lengths between 350 and 500 nanometers. Kail (1984) reports that only blue-printed and metallized structures adequately protect snack foods from acceleration of oxidation by light.

Transition Metals

Transition metals, such as copper and iron, can shorten the induction period and increase oxidation rate. Trace amounts of heavy metals are found in most edible oils. They are picked up from the soil during plant growth or from equipment during processing (Nawar, 1985). Because these transition metals can exist in two or more valency states, they have oxidation-reduction potential and are prooxidants. They can act as pro-oxidants in accelerating hydroperoxide decomposition, attacking an unoxidized

substrate to remove a hydrogen and form a free radical, or activating oxygen molecules to the singlet oxygen state.

Temperature

It is well known that increasing temperature increases molecular movement. Thus, logic dictates that a hightemperature storage environment will have oxygen molecules that move quickly and have increased affinity for free radicals in the lipid oxidation process, increasing the oxidation rate. However, Quast and Karel (1972) state that temperature has a weak effect on the rate of oxidation in potato chips, and therefore if accelerated testing is to be done, relatively high temperatures must be used. Berends (1993) found that as oxygen concentration was held constant, greater amounts of hexanal were produced as the temperature increased from 23° C to 40° C to 66° C.

Water Activity

Perishability of foods is strongly related to moisture content. However, different foods with the same moisture content vary greatly in perishability. The difference can be attributed, in part, to how tightly water binds with nonaqueous constituents. Tightly bound water will not support degradative activities, and different foods will allow more or less water to be tightly bound, thereby having different moisture contents at the same level of water

activity (Fennema, 1985). Water activity (a_w) is defined as the partial pressure of water above the sample (p) divided by the vapor pressure of pure water (p_o) at the same defined temperature. This is also equal to the equilibrium relative humidity (ERH) of a food at a given moisture content divided by 100. Water activity is related to moisture content through a sorption isotherm.

The rate of lipid oxidation is greatly affected by a food's water activity. Dried foods and high moisture foods will oxidize at a faster rate than intermediate moisture foods. Oxidation proceeds rapidly at water activities below 0.1, but as water activity increases, oxidation rate decreases. It is believed that this protective effect of water is due to hydrogen bonding of hydroperoxides, deactivation of transition metals, and water interfering with free radicals (Nawar, 1985; Labuza et al., 1970). At water activities between 0.55 and 0.85 the rate of oxidation increases. This is likely due to increased mobilization of catalysts. Several studies of model systems confirmed this and suggested that the high water content also exposed new catalysts sites by swelling the polymeric matrices (Heidelbaugh and Karel, 1970; Heidelbaugh et al., 1971; Labuza et al., 1970; Labuza et al., 1971; Karel and Yong, 1981). At very high water activities catalysts are diluted, thus reducing the oxidation rate. A generalized view of the effect of water activity on the chemical reactions in food

systems is described by the "stability map" given in Figure 1, adopted from Labuza (1971).

Figure 1: Effect of Water Activity on the Rate of Chemical Reactions in Foods

Monolayer Moisture Content

Minimum reaction rates for degradative processes including oxidation occur at what is called the monolayer water content. Below this monolayer water content the rate of oxidation increases. Therefore, the monolayer water content is the water content which provides the maximum stability of a dried food. The monolayer water content of a food can be computed using the sorption isotherm data and the Brunauer, Emmett, and Teller (BET) equation (Brunauer et al. 1938). The BET equation is

$$a_w / [m(1-a_w)] = 1/m_1 c + [(C-1)/(m_1 c)](a_w)$$
 (1)

where a_w equals water activity, m stands for moisture content (dry basis), m_1 is the monolayer value, and C and c are constants. When $a_w/[m(1-a_w)]$ is plotted against a_w for water activities below 0.4, a straight line is generated. From this straight line the monolayer value, m_1 , is found to be 1/(y-intercept + slope). This monolayer water content value will correspond to a specific water activity in the product's sorption isotherm.

Oxygen Availability

The most common mechanism of oxygen uptake in dried foods is probably lipid oxidation as described by Quast and Karel (1971) when studying the rate of oxygen uptake by potato chips fried in sunflower oil with no antioxidants added. They found that in the induction period of oxidation the rate of oxygen uptake is only about one-hundredth of that of chips in the post-induction phase. In 1972, Quast and Karel used 20 g samples of potato chips and found that chips absorb approximately 1200 μ l O₂STP/g during the induction period. The length of the induction period would vary depending on water activity, light, temperature, and frying oil, but the quantity of oxygen absorbed during the induction period appeared independent of these factors. The amount of oxygen absorbed during the induction period was enough for the chips to become significantly rancid from a flavor standpoint. They also found that oxygen diffusion into potato chips is only likely to be an oxidation rate limiting factor at partial pressures below 0.05 atm except when the relative humidity is also very low.

Antioxidants

Antioxidants are substances that can retard the rate of oxidation or lengthen the induction period. Since food processing oils are exposed to many oxidation catalysts throughout processing, antioxidants are commonly used in these oils specifically for this purpose. The most common action of an antioxidant is accepting free radicals to slow the propagation of oxidation. Cavaletto and Yamamoto (1971) found that adding antioxidants to the frying oil used in roasting macadamia nuts increased the stability of the kernels.

Nethods of Quantifying Oxidation

Over the years peroxide value (PV), thiobarbituric acid reactive substances (TBARS), and hexanal have been used to measure the level of oxidative rancidity in food products.

Peroxide Value (PV)

There are numerous analytical procedures for measuring PV. The majority are idometric and they are useful for bulk

lipids and applicable to all normal fats and oils. However, the idometric measurement is highly empirical and any variation in procedure may result in a variation in results (Gray 1991). Other errors that are associated with the idometric measurement are possible adsorption of iodine at unsaturated bonds of fatty acids and liberation of iodine from potassium iodide by oxygen present in the solution to be titrated. Since peroxides are the primary byproduct of lipid oxidation, they are a good measure of oxidation in its initial stage. However, peroxides decompose to secondary oxidation byproducts, making them a poor choice for measurement of oxidation over long periods of time.

Thiobarbituric Acid Reactive Substances (TBARS)

The TBA test was originally meant to measure the level of malonaldehyde (a toxic substance) in a product. However, more substances than just malonaldehyde react with 2thiobarbituric acid (TBA). Therefore, TBARS is a more accurate description of the measured quantities. Problems associated with TBARS values include the fact that some nonlipids react with TBA and that TBARS can be produced during the testing procedure (Gray, 1991). The assay numbers reported as milligrams of malonaldehyde equivalents per kilogram of sample are also operator dependent and method dependent (Gray and Monahan, 1992).

Hexanal

A third method for measuring rancidity is to measure a volatile product of lipid peroxide decomposition using a gas chromatograph (GC). Melton (1983) concluded that direct quantification of peroxide decomposition products by GC may be more accurate than the TBA test for measuring oxidation. Hexanal is one of the major secondary products of linoleic acid oxidation (Frankel et al., 1981), and the predominant precursor of n-hexanal is free linoleic acid (Matoba et al., 1985). Hexanal was found to comprise the largest proportion of steam-volatile compounds formed by autoxidized potato granules (Buttery, 1961). It was four times more concentrated than any other component and ten times more concentrated than most other compounds. In 1965, it was shown that hexanal was the saturated aldehyde that increased the most during storage of potato chips (Mookherjee et al., 1965) and the flavor produced over the storage period was described as "stale," not rancid.

One concern with measuring hexanal as an indication of oxidation is how well it correlates with sensory data. In 1971, Fuller et al. found sensory evaluation to be more sensitive to oxidation than hexanal measurement. However, in 1981 Tang used a Tenax trapping system with potato chips and found good correlation between diminishing sensory hedonic scores over time and increasing n-hexanal concentrations over time. Fritsch and Gale (1977) found

that rancid odors in low fat foods corresponded to hexanal concentrations of five to ten parts per million (ppm).

Oxygen Scavengers (Absorbers)

For many years, people have been trying to extend shelf-life of food products by removing oxygen from the headspace of packages. As early as 1938 a patent was granted in Finland for keeping food in a closed container with zinc dust, iron powder and some other compounds. Oxygen scavengers allow for extended shelf-life without the use of preservatives. Today oxygen scavengers used in packages can be divided into the five major categories of metal-complex scavengers, non-metal chemical-complex scavengers, photo-sensitive dye scavengers, enzyme scavengers, and synthetic heme-complex scavengers.

Metal-complex Scavengers

Iron is the main active component in most metal-complex oxygen scavengers. Iron is relatively inexpensive, safe, has FDA clearance, has a manipulatable reaction rate with oxygen, and has a much greater affinity for oxygen than most food products (Idol and Wagner). Sulfur produces by products which are difficult to control and impart offflavors or odors. Aluminum forms a protective skin of oxidized metal. Palladium and platinum are very expensive (Idol and Wagner). The common iron-complexes are generally

contained in sachets which are dropped into the food package. "Ageless" is the name of the oxygen scavenger distributed by Mitsubishi which controls about 70% of the market share (Sacharow, 1991). These sachets are used in Japan and Europe in many products such as bakery goods, precooked pasta, cured or smoked meats, dried foods, nuts, coffee, cheese, and chocolates (Labuza and Breene, 1989).

The amount of iron needed in a sachet is dependent upon the initial oxygen in the headspace, the amount of dissolved oxygen in the food, and the package permeation rate. In general, 1 gram of iron can react with 0.0136 moles of oxygen (STP) which is equal to approximately 300 cc. The chemical reaction is 4 Fe + 3 O_2 --> 2 Fe₂O₃. Headspace oxygen concentrations have been maintained at less than 0.01% using metal-complex oxygen scavengers. The rate of oxygen absorption is dependent on oxygen concentration and humidity.

Many different complexes have been designed to serve specific needs of food products. Multiform Desiccants, Inc. has specifically designed absorbers for use in moist foods $(a_w>0.65)$, dry foods $(0.0<a_w<0.7)$, and refrigerated foods $(0-5^{\circ}C)$. Multiform has also introduced a "FreshMax" oxygen absorbing label which adheres to a package inner surface. (Idol and Wagner). Some "Ageless" absorbers are designed to scavenge carbon dioxide as well as oxygen for use in coffee packages.

Studies have shown that these metal-complex oxygen scavengers have been successful in significantly extending the shelf-life of many foods including white bread (Nakamura and Hoshino, 1983), pizza crust, snack foods, fried rice cakes, cheese-filled pasta products (Labuza and Breene, 1989), and some intermediate moisture foods for the space program (Waletzko and Labuza, 1976).

Another metal complex that has received some attention is the mix of PET, MXD6 Nylon, and Cobalt. When combined to create a monolayer container, such as a beverage bottle, the cobalt in the form of a carboxylic acid salt acts as the metal catalyst and MXD6 is the oxidizable component. The system is called "Oxbar" and is processable by the same means as standard PET. Bottles formed, flushed with nitrogen, and stored at room temperature showed no oxygen transmission to the inside in 1.5 years. Other tests with this system on beer, juice, and wine have been successful, but the system is not yet being used commercially although it has FDA approval for use as an additive or blend with PET at levels up to 30% at temperatures below 49°C (Rice, 1990).

Non-metal Chemical-complex Scavengers

Some non-metal oxygen absorbers have been developed to eliminate the problem of setting off metal detectors on processing lines. They are formed from organometallic molecules that have an affinity for oxygen. Oxygen does not

react with these molecules, but is irreversibly bound to them, so there are no harmful byproducts. They are useful with liquid and semi-liquid products, and can be blended into polymers as a barrier/scavenging layer (Prepared Foods, 1990).

Photosensitive Dye Scavengers

It has been proposed (Rooney, 1981) that the reaction between ground state oxygen and iron complexes is too slow, and that oxygen should be excited to its singlet state for faster scavenging. Photosensitive dyes impregnated on ethyl cellulose film, when illuminated, activate oxygen to its singlet state which then can react with an acceptor to form an oxide. Some tested singlet oxygen acceptors are difuryllidene erythritol (DFE), difurfurylidenepentaerythritol (PEF), tetraphenylporphine (TPP), dioctyl thallate (DOT), and dimethyl anthracine (DMA). None of these are approved for food contact in the U.S. The reaction scheme follows (Rooney, 1983):

PHOTON + DYE --> DYE(excited state) DYE(excited state) + OXYGEN --> DYE + OXYGEN(excited state) OXYGEN(excited state) + ACCEPTOR --> ACCEPTOR OXIDE OXYGEN(excited state) --> OXYGEN

Rubber has been studied, not only as a matrix for holding acceptors, but also as a highly concentrated acceptor in itself. If acceptors approved for food contact can be developed, the advantages of this system would be

that no sachets would need to be added to the packages and the scavenger system would not become active prior to use as long as they are stored in the dark.

Ensyme Scavenger Systems

Glucose oxidase is a known oxidoreductase, transferring two hydrogens from the -CHOH group of glucose to oxygen forming glucono-delta-lactone and hydrogen peroxide. One mole of glucose reacts with one mole of oxygen. However, catalase is a normal contaminant in glucose oxidase and it decreases the effectiveness of glucose oxidase by half. Pure glucose oxidase is very expensive. Glucose oxidase (with catalase) has GRAS (generally regarded as safe) status and can be added to food products such as beer or wine to eliminate dissolved oxygen in the product (Labuza and Breene, 1989). However, the oxidation reaction forms offflavor by-products which are detectable in beer (Zenner and Salame, 1989). Scott and Hammer (1961) suggested using the glucose oxidase in sachets in dried foods with a humidity factor within the sachet to drive the reaction. They also have a patent for spreading the enzyme in a fine particle matrix throughout food products.

Ethanol oxidase is another enzyme with oxygen scavenging potential. It oxidizes ethanol to acetaldehyde. It has been in use as a breath alcohol analyzer test, but there is no known application for food (Labuza and Breene, 1989).

Synthetic "heme" Scavenger

Aquanautics Corporation has developed oxygen binding "heme" complexes which function well with high water activity food products and CO₂ environments (Zenner and Salame, 1989). The complexes are called LONGLIFE® and their chemical structures mimic that of a heme molecule. The complexes are water soluble and so were necessarily immobilized on silica and other supports. As a fixture of the crown closure, they have been successful in reducing oxygen concentration in a package of aqueous solution from over 2000 parts per billion (ppb) to less than 50 ppb within 24 hours. The absorber need not be in contact with the liquid to be effective.

METHODS

Potato Chip Manufacture

Snowden potatoes were harvested in the fall and stored at 13°C for at least two weeks before processing. Processing potatoes into potato chips consisted of washing the potatoes in cold water, abrasion peeling the potatoes for 30 seconds, slicing the potatoes to 1.5 millimeter-thick slices (± 0.25 mm), rinsing the slices in three batches of fresh, cold water, patting slices dry for over one minute, frying each batch until it stopped bubbling (2 to 3 minutes), and spreading the chips out on paper towel to dry before packaging. Potatoes for an entire day's processing were washed, peeled, and sliced in one batch. Fryer batches were about 210-230 grams each. All potatoes remained submerged in cold water between the stages of initial washing and patting dry for frying. Fully refined soybean oil was used for frying. The soybean oil had added TBHQ and citric acid to preserved stability and methyl silicone to inhibit foaming during frying. Fresh oil was poured for frying at the start of each processing day and oil was added as needed throughout the day. All oil came from the same lot number for all processing days.

Initial Moisture Content

The initial moisture content of freshly fried potato chips was determined using a modified vacuum-oven method. Two to three gram samples (accurately weighed) of fresh, dry chips were placed in aluminum weighing dishes and dried in the vacuum oven under conditions of 30 mm Hg vacuum and 100°C for seven hours. After the vacuum was released, samples were placed in a desiccator until they cooled to room temperature at which time they were weighed. The equation

$$((W_i - W_f) / W_f)) \times 100$$
 (2)

where W_i = initial weight of chips and W_f = dried weight of chips was used to calculate moisture content on a dry basis. The reported initial moisture content is the average of nine samples.

Sorption Isotherm

A sorption isotherm was developed to determine the equilibrium moisture content (EMC) of the potato chips at different water activities (a_w) . Salt solutions were developed using the procedure described in Hygrodynamics Technical Bulletin No. 5 (Creating and Maintaining Humidities by Salt Solutions) and placed in seven tightly sealed, reclosable plastic buckets, creating constant relative humidity environments. The bucket environments equilibrated for two weeks before testing began. Isotherm
data were obtained gravimetrically by measuring product weight change over a two week period in constant temperature and relative humidity. Fresh chips were weighed accurately into tared aluminum weighing dishes on an analytical balance. The samples were then placed into the humidity buckets and weighed at intervals until they reached equilibrium weights for their respective environments. All humidity conditions inside storage containers remained constant as indicated by hygrometer sensors installed in each bucket. Temperature in the storage area was measured at $23^{\circ}C \pm 2^{\circ}C$. Three samples were placed in each humidity bucket and the average EMC is reported.

Packaging

Chips were dried in the open air for 30 to 120 minutes before packaging. Over 30 grams of chips were put into metallized polyester and metallized polypropylene bags. Oxygen absorbers were added to some bags. Bags were vacuumed, flushed with a specialty gas of the desired composition, and sealed on a Smith Super Vac vacuum packager, model GK 165R.

Eight different groups were developed. Four groups had metallized polyester packages. Two of these groups were flushed with nitrogen and two were flushed with a 2% oxygen/98% nitrogen specialty gas from Liquid Carbonic. One group of each atmosphere had an oxygen absorbing label,

capacity 200 cc, dropped into the package. Four groups had metallized polypropylene packages. Two of these groups were flushed with a 2% oxygen/98% nitrogen specialty gas from Liquid Carbonic and two were flushed with a 10% oxygen/90% nitrogen specialty gas from Liquid Carbonic. One group flushed with the 2% oxygen gas had an oxygen absorber of capacity 200 cc dropped into each package and one group flushed with the 10% oxygen gas had an oxygen absorber of capacity 400 cc dropped into each package. The materials, initial oxygen concentrations, and use of absorbers for the eight groups are shown in Table 1.

Table 1 Packaging Characteristics of Different Groups Initial [0,] Group Material Absorber metallized polyester 1 08 no metallized polyester 2 0% yes 3 metallized polyester 28 no 4 metallized polyester 28 yes 5 metallized polypropylene 28 no metallized polypropylene 6 28 yes 7 metallized polypropylene 10% no metallized polypropylene 10% 8 yes

After sealing, bags were inflated with the appropriate gas supplied by Liquid Carbonic. Gas cylinder regulators were connected to needles by teflon tubing and after flushing the tubing with the appropriate gas, the needles were inserted through septa attached to the bags and the bags were inflated until they were firm. Septa attached to the bags were made of clear, circular, silicone dabs with radii of approximately 8 millimeters and thickness of approximately 5 millimeters adhered to a section of electrical tape.

Water Vapor Transmission Rate

Water vapor transmission rate was measured gravimetrically. Approximately 100 grams of desiccant was added to three bags of each material. The bags were heat sealed and weighed. Three empty bags of each material were also heat sealed and weighed. Packages were stored at conditions of $72^{\circ}F$ and 50% relative humidity. Packages were weighed every two to three days until a constant rate of moisture gain was obtained. The net moisture weight gain was equal to the difference in weight over time of the packages with desiccant minus the difference in weight of the empty, control packages. The net weight gain was plotted as a function of time. The slope of the straight line portion of the graph equals the water vapor transmission rate for each package (WVTR_p). The water vapor permeability of each

 P_p (g/package/day/mmHg) = WVTR_p/[S(R₁-R₂)/100] (3) where S equals the saturation vapor pressure at test temperature and R₁ and R₂ equal the relative humidity of the external and internal package environments, respectively.

Chip Weights

The weights of chips prior to packaging and directly after were recorded. The weights of chip packages were taken at one or two week intervals for the first few months. Weights of chip packages were taken just prior to destruction for hexanal measurement. This allows measurement of the moisture content of the chips over time, which would correspond to their water activity level over time.

Volume Measurement

The volume of each inflated bag was measured by submersion in water. Each bag was submerged and the water displaced ran into a graduated cylinder for measurement. The volume of each bag was measured within the first 24 hours after packaging and at the time of destruction.

Headspace Oxygen Concentration

Headspace oxygen concentrations were measured with an Illinois Instruments Inc. model 3500 headspace oxygen analyzer. A sampling needle connected to the instrument by a tube was inserted through the septum into each bag. The bag was squeezed to produce a flow rate of approximately 0.05 liter/minute and the oxygen concentration was displayed by the instrument. The oxygen concentration of the headspace was measured on all bags within the first 24 hours after packaging and at the time of destruction. Selected bags from each of the groups with oxygen absorbers were sampled for headspace oxygen concentration periodically over the first few weeks and not used for any other purpose.

Storage

All bags were stored hanging by clothespins on large wooden drying racks in an environmentally controlled room. The bags were hung by the material outside of their seams so that the pouch part of the bags did not touch other bags or the rack. The storage environment was monitored using a portable hygrometer. Temperature and relative humidity were constant at $73^{\circ}F \pm 2^{\circ}F$ and 50% RH ± 2 %. Light exposure was variable in the storage area. The storage arrangement is shown in Figure 2.

Hexanal Quantification

Apparatus for Trapping of Volatiles

A gas flushing/volatile trapping system was designed. A cylinder of compressed nitrogen was connected to 3 flow meters through a series of copper tubing. The flow meters were each connected to a test cell by a combination of copper tubing and tygon tubing. The test cell consisted of a modified gas washing tube and a 450 milliliter (ml) Erlenmeyer flask modified to fit the dispersion tube without leaking. The exit tube of the dispersion tube is a ball joint. A pyrex cylinder trap 11 centimeters long with an inside diameter of 0.6 centimeters and a socket joint end was connected to the ball joint of the dispersion tube by a spring-loaded clamp which held the joint tight so no volatiles would be lost to the atmosphere. The apparatus without the trap attached is shown in Figure 3.

Trapping of Volatiles

Approximately 10 grams of chips weighed accurately were placed in the test cell. The test cell was closed tightly and the trap connected. Each trap was packed with four grams \pm 0.1 grams Tenax-GR (80/100 mesh) between wadded pieces of glass wool. The test cell was then placed in a water bath and covered with aluminum foil to block out light. Nitrogen was flushed through the test cell and Tenax trap at an approximate rate of 25 cubic centimeters (cc) per minute for 22 hours. The test cell was flushed at room temperature for the first hour to remove oxygen from the cell before heating to minimize further oxidation. After one hour the water bath was turned on and allowed one hour to equilibrate to 70°C. The water bath remained at 70°C for the next 20 hours of flushing.

Extraction and Concentration Procedure

The extraction and concentration procedure was developed by Berends (1993). One microliter (μ l) of HPLC grade 2-methylbutane (Aldrich Chemical Co., Milwaukee, WI) was injected into the gas chromatograph to ensure its purity before it was used to wash the hexanal from the pyrex traps. The Tenax traps were placed into a single hole cork stopper that was placed into the end of a 25 ml graduated centrifuge tube. Using disposable transfer pipettes, 1 ml of 2methylbutane (isopentane) was pipetted into the socket end

of the Tenax trap. The centrifuge tube was then placed in a centrifuge to accelerate the extraction of hexanal from the Tenax. The centrifuge (International Equipment Co., Boston, MA) was set at 500 revolutions per minute for 2 minutes, forcing solvent containing hexanal to the bottom of the graduated centrifuge tube. A 1.0 - 1.5 ml aliquot of isopentane was pipetted into the Tenax trap and it was centrifuged again. This was repeated a third time. Three to four ml of extractant were collected in the bottom of the centrifuge tube. Nitrogen was used to concentrate the hexanal by evaporating the extractant to a volume of 1.0 ml. This enabled trace amounts of hexanal to be detected by the gas chromatograph. The one ml in the centrifuge tube was quickly transferred to a 1.8 ml Supelco Screw Cap Vial with a Hole Cap and Septum. The vials were stored in the freezer to prevent evaporation of the isopentane and concentration of the sample. After hexanal was removed, Tenax traps were rinsed with isopentane, centrifuged, and baked in a 100°C oven for more than 12 hours. Tenax was reused four times and then removed. When Tenax was removed the glass traps were washed, rinsed with isopentane, dried in a 100°C oven, cooled, and refilled with fresh Tenax-GR and conditioned.

Percent Recovery of Hexanal From Tenax and Concentration Technique

A recovery study was done to determine the percentage of hexanal that is recoverable from the extraction and concentration procedure. Two solutions of hexanal in isopentane were made and tested in duplicate to determine the percent recoverable.

A 0.9 μ l aliquot of each solution was injected into the programmed GC in triplicate. An average area response was used as a basis for 100% recovery.

One milliliter of each solution was injected into a pyrex trap packed with freshly conditioned Tenax-GR. Then the extraction and concentration procedure was followed. A 0.9 μ l aliquot of each extract was injected into the programmed GC. Injections were done in triplicate. The area responses of the three injections for each extract were averaged. The averages were divided by the area response set as a basis for 100% recovery for that solution to determine the percent recovery using this technique.

Gas Chromatography

A 5 μ l syringe (Hamilton Co., Reno, NV) was placed in a freezer to cool. 0.9 μ l aliquots of sample were injected with the cooled syringe into a Hewlett Packard gas chromatograph (GC), model 5890, equipped with a 60 meter Supelcowax 10 capillary column and a flame ionization

detector (FID). Standard solutions of hexanal in acetonitrile were made prior to injection of samples to ensure consistency of the GC's response. A Hewlett Packard 3392A integrator was interfaced with the GC. The conditions of the GC were programmed at an initial temperature of 40° C for one minute followed by heating at a rate of 5° C per minute to a final temperature of 150° C which was held for 10 minutes. The injection port temperature was 250° C. The range was set at 2 and the attenuation at 0.

Hexanal Calibration Curve Development Procedure

The standards made up for the calibration curve consisted of hexanal and acetonitrile (used due to low boiling point of isopentane). Volumetric flasks used for the procedure were washed, rinsed with distilled water, rinsed again with acetonitrile, and dried in a 100° C air oven. While the flasks were drying, the purity of the acetonitrile was evaluated using the GC. The GC conditions were programmed for an initial temperature of 40° C to be held for 1 minute and then increasing to a final temperature of 150° C at a rate of 5° C per minute. The final temperature was held for 10 minutes. The injection port temperature was 200° C and the detector temperature was 250° C. The range was set at 2 and the attenuation was zero.

Three 0.9 μ l injections of acetonitrile were made into the GC using the same 5 μ l syringe. No peaks near the

retention time of hexanal were observed. After flasks were dry, they were removed and cooled to room temperature and labeled with their appropriate concentrations.

0.01 grams of hexanal were added to a 100 ml volumetric flask providing an initial standard solution with a hexanal concentration of 100 parts per million (ppm).

5 ml of 100 ppm solution were added to 5 ml acetonitrile in a 10 ml volumetric flask for a concentration of 50 ppm. 2 ml of 100 ppm solution were added to 8 ml acetonitrile in a 10 ml volumetric flask for a concentration of 20 ppm. 2.5 ml of 100 ppm solution were added to 22.5 ml acetonitrile in a 25 ml volumetric flask for a concentration of 10 ppm. 2 ml of 100 ppm solution were added to 48 ml acetonitrile in a 50 ml volumetric flask for a concentration of 4 ppm.

0.9 μ l injections into the GC were made in triplicate from each flask using the same 5 μ l Hamilton syringe. After each injection, the syringe was washed with acetone, and placed in a 100°C oven for 10 minutes to evaporate all residual solvent. The results from the three injections at each concentration were averaged and the average values were plotted. During the course of this study, the Supelcowax column was altered. Therefore, different calibration curves were created form the same standard solutions before and after altering the column. Appendix A contains the data and plots for both calibration curves.

RESULTS AND DISCUSSION

Product Model

Potato chips fried in soy bean oil were packaged in metallized polyester and metallized polypropylene bags with and without oxygen absorbers and with varying initial oxygen concentrations. Potato chips are around 30 - 45% fat by weight (Orr and Cash, 1991) and soy bean oil is approximately 54% linoleic acid by weight. As mentioned earlier, linoleic acid is the predominant precursor of nhexanal (Mantoba et al., 1985). This makes the product model around 16 - 24% linoleic acid which is the approximate oxidizing substrate concentration. The initial moisture content was experimentally determined and an equilibrium sorption isotherm was developed to determine the relationship between a_{ω} and the product model. The water vapor transmission rate, water vapor permeability, and the oxygen permeability of the two package materials were tested and calculated.

Storage Environment

The temperature of the storage environment during the study normally fluctuated between 72 and $74^{\circ}F$. The temperature did reach a high of $78^{\circ}F$ and a low of $66^{\circ}F$, but these temperatures were only sustained for brief periods. The relative humidity of the storage environment fluctuated

between 35 and 64%. These lows and highs were not maintained for more than 2 weeks at a time, and for the majority of the time, the relative humidity was near 48%.

Initial Moisture Content

The initial moisture content was determined using the following equation:

$$IMC = (W_c/W_d) *100$$
 (4)

where W_c = weight change (grams) W_d = weight of dry product (grams)

Initial moisture content was 1.52g $H_2O/100$ g dry product weight. Data and calculations are in Appendix B.

Equilibrium Sorption Isotherm

From the constant weight (average of triplicate weighings) that was obtained in each of the relative humidity conditions, the equilibrium moisture content was calculated according to the following equation:

$$EMC = [P_{f}(1+IMC)/P_{i}] - 1 \times 100$$
 (5)

where: Pf = final product weight
Pi = initial product weight
EMC = equilibrium moisture content
IMC = initial moisture content

The sorption isotherm data are in Appendix C. Equilibrium moisture contents at the seven relative humidity environments are in Table 2.

Table 2Equilibrium Moisture Contents at Each Water Activity			
Water Activity	<u>Equilibrium Moisture Content</u>		
0.10	3.16		
0.21	3.76		
0.32	5.46		
0.41	5.98		
0.51	7.89		
0.71	13.29		
0.83	23.26		

A graph of the experimental sorption isotherm data is shown in Figure 4.

Figure 4: Sorption Isotherm

Using the Brunauer, Emmett, and Teller (BET) Monolayer Mathematical Model to Predict Product Moisture Content at Specific Water Activities

The equilibrium sorption isotherm describes the water sorption characteristics of the product. The shape of the curve is a function of the sorption properties of the product. The resultant curve is usually sigmoidal in shape, and can be described by the BET equation among others. From the equilibrium sorption isotherm data, this mathematical model described a linear relationship between water activity and the product equilibrium moisture content up to a water activity of 0.41.

Using Lotus 1-2-3, a statistical analysis was performed for the BET model and a correlation coefficient was calculated. The correlation coefficient estimated the degree of fit between the BET mathematical model and the experimental sorption isotherm. The constant in the BET model was calculated from the linearized form of the equation allowing for determination of the water activity at any product moisture content. The resultant linearized form for the BET model is

 $a_w/(m(1-a_w)) = 1/M_1c + a_w(C-1/m_1c)$ (1) and the correlation coefficient is 0.9931. The predicted equilibrium sorption isotherm values using the BET model versus the experimental values are given in Table 3.

Table 3					
BET Model	Expected Values (X Product Moisture) versus Actual Content Values	Equilibrium		
Water <u>Activity</u>	Experimental	(X _e)	<pre>% Difference</pre>		
0.1	3.16	3.28	3.66		
0.21	3.76	4.36	13.76		
0.32	5.46	5.35	-2.06		
0.41	5.98	6.31	5.23		
0.51	7.89	7.73	-2.07		
0.71	13.29	13.31	0.15		
0.83	23.26	22.88	-1.66		

Brunauer, Emmett, and Teller Monolayer Value

Using the data from the equilibrium sorption isotherm and the B.E.T. equation, the monolayer value was determined. The B.E.T. plot of a_w (x-axis) versus $a_w/M_{eq}(1-a_w)$ (y-axis) shown in Figure 5, yielded the linear regression equation:

$$a_w/M_{eq}(1-a_w) = a_w(0.2722) + 0.0050$$
 (6)

Figure 5: Brunauer, Emmet, and Teller Plot for Determining Monolayer Value

Calculated x- and y-axis values for the B.E.T. plot are given in Table 4.

Table 4B.E.T. Regression Plot Values for theSorption Isotherm for Determining Monolayer Value					
Water Activity	x-axis <u>a_w</u>	y-axis <u>a_w/M_{eq}(1-a_w)</u>			
.41	.41	.1164			
.32	.32	.0862			
.21	.21	.0706			
.10	.10	.0351			

Using the slope and y-intercept values form the B.E.T. regression equation, the monolayer moisture content was determined using the following formula:

Monolayer Value = 1/(y-intercept + slope)The monolayer value was calculated to be 3.608g H₂O/100g dry product. The water activity corresponding to this value found from the sorption isotherm data is 0.197.

Water Vapor Transmission Rate and Permeability

The water vapor transmission rates (WVTR) of the two test packages were found to be 0.002707g/(day*package) for metallized polypropylene and 0.01584g/(day*package) for metallized polyester. Appendix D contains the individual weights of the desiccant and empty packages over time. Appendix E contains the individual weight gains of the desiccant and empty packages over time. The graph of the net weight gain as a function of time is shown in Figure 6.

A regression analysis was done on the straight line portion of the curves to determine the slopes and consequently the WVTR's. The data used in the regression analyses and the output of the analyses are shown in Table 5. The permeability constant for the metallized polypropylene package was found to be 0.000253g/(day*mmHg*pkg). The permeability constant for the metallized polyester package was found to be 0.001572g/(day*mmHg*pkg).

· <u> </u>	Table 5					
Water Vapor Transmission Rate Data						
Time	Moisture Weight Gain of	Moisture W	eight Gain of			
<u>in Days</u>	Metallized Polypropylen	<u>e of Metalli</u>	zed Polvester			
0	0	0				
2	0.000067	0.025767				
8	0.013533	0.117833				
10	0.020400	0.3	0.156400			
12	0.027233	0.195567				
14	0.033200	0.235000				
16	0.043600	0.260467				
18	0.044800	0.290500				
22	0.053700	0.358100				
	Line of Regression	on Output				
	Po	lypropylene	<u>Polvester</u>			
Slope (WVT	Rg/(day pkg)	0.002665	0.016556			
y-intercep	t	-0.00392	-0.00545			
Correlatio	n Coefficient (R ²)	0.978907	0.98097			

Chip Weights

The moisture weight gain of the potato chips in packages was measured gravimetrically. Using the initial moisture content average, the isotherm, and B.E.T. regression data, the moisture content of the chips over time and the corresponding water activities of the chips can be calculated. A graph of the moisture content over time of chips packaged in metallized polypropylene and metallized polyester is shown in Figure 7. The weights of a representative sample of chip packages are reported in Appendix F. The weight gains of these chips over time are reported in Appendix G.

The actual moisture contents of chips packaged in metallized polyester and metallized polypropylene were compared to computer generated expected values for moisture contents. The expected values were computed from a linear shelf-life model using the following inputted data: 1)temperature of 21°C, 2)IMC of 1.58% dry basis, 3)ERH of 5% for IMC, 4)MC at spoilage of 5.46%, 5)ERH of 32% at spoilage MC, 6)product weight of 31 g, 7)package area of 84 in², 8)storage RH of 48%, and the water vapor permeability coefficients for each material. The computer predicted shelf lives of 179 and 1111 days for chips in metallized polyester and metallized polypropylene respectfully, if moisture content is the limiting factor. Figure 8 shows the actual and predicted values.

The predicted values were low for the first 120 days and then high after that for the metallized polyester package. However, the linear shelf life model was very close to the actual for the metallized polypropylene package and may be useful in predicting the moisture content of unsalted potato chips in metallized polypropylene.

MOISTURE CONTENT OVER TIME Potato Chips Stored at 73F; 50%RH

Figure 8: Chip Moisture Content Over Time; Actual Values vs. Predicted Values

Volume Measurement

The volumes measured are only accurate to \pm 5 ml. As the initial volume measurement methodology was not tightly controlled, the volumes recorded as the initial volumes are less accurate than the final volumes. The volume data does show that even though the packages were inflated to firmness (pressurized), they did not lose volume over time. Initial and final volume measurements of bags are given in Appendix H.

Oxygen Permeability

The oxygen permeability of the two films, metallized polyester and metallized polypropylene, were measured using the mocon OX-TRAN 200. The oxygen permeability of the metallized polyester was measured at $0.6374 \text{ cc}/100 \text{in}^2/\text{day}$ and the oxygen permeability of the metallized polypropylene was measured at $1.568 \text{ cc}/100 \text{in}^2/\text{day}$.

Data Collection and Analysis of Headspace Sampling Headspace Sampling of Oxygen

For the groups with oxygen absorbers, headspace oxygen content was sampled daily until a low point was reached. All groups were sampled for headspace oxygen concentration upon destruction of bags for hexanal quantification. Figures 9, 10, 11 and 12 show the oxygen concentrations of the eight groups over time. The oxygen concentration data

over time for the eight groups is reported in Appendix I. For packages with absorbers, the data shows that as the initial oxygen concentration is raised, the time it takes for a package to reach a headspace oxygen concentration of 0% is shortened (assuming that the absorber capacity is adequate).

Collection of Hexanal from Potato Chips

Packages of potato chips were destroyed for hexanal sampling at times judged appropriate according to the initial headspace oxygen concentration. Three bags of potato chips were be sampled at a time.

Hexanal Data and Quantification

Using gas chromatography, area units of hexanal were obtained from each sampling of chips in duplicate. The averaged area units were then used to quantify hexanal concentration for each potato chip sample. Total grams of hexanal per sample were quantified by substitution into the following equation:

$$Hp = AU/(CCs \times Vi \times P) \times V_{+}$$
(7)

where:

Table 6 shows the average concentrations of hexanal in the potato chips over time in micrograms/gram (ppm). Appendix J contains the hexanal data.

Table 6 Hexanal Concentration in Potato Chips Over Time (ppm)					
Mime		Notellind	Deliverter		
TIME	Metallized Polyester				
in	0% Initial O ₂		2% Initial O2		
<u>weeks</u>	<u>w/o_absorber</u>	<u>w/absorber</u>	<u>w/o absorber</u>	<u>w/absorber</u>	
4	0.2859				
6		0.3217	0.4167		
7				0.2546	
12			0.5006		
13	0.3536				
22	0.4264	0.5344	0.6585	0.5617	
Time		Metallized	Polypropylene		
in	2% Initial O ₂		10% Initial O ₂		
weeks	w/o absorber	w/absorber	w/o absorber	w/absorber	
2	0.2778		0.2248		
4	0.2920				
6				0.3235	
8		0.3628		0.3364	
10	0 3568	010020	0 4968	010004	
14	0.3300		0.3946		
14			0.3740		
TO			0.4/83		
22	0.6212	0.4994	0.6277	0.3423	

In normal distribution, potato chips have a shelf life of around 40 days (Keener, 1994). This would indicate that the hexanal levels would be above 5ppm at that time (Fritsch and Gale, 1977). The hexanal concentrations measured in this study were low compared to what was expected. The following factors were contributors to these low values. The storage environment was mild, with a low relative humidity. Only the potato chips in metallized polyester packages reached the monolayer moisture content. This means that the rate of oxidation was highest initially and slowed throughout the study for all other potato chip packages. The potato chips were fried in fresh oil with TBHQ

antioxidant added. In industry, oil that has been "seasoned" is used to maintain a consistent product and to extend the usable life of the oil (Paradis, 1993).

Percent Recovery of Hexanal from Tenax-GR

The percent recovery of hexanal from the Tenax-GR was determined to be 91.2%. The data and calculations are given in Appendix K.

Statistical Difference Between Groups

According to Hexanal Data

The hexanal production at the 22 week sampling interval was compared between groups using a t-test. The t-test was performed on a computer software program called Minitab. At the 95% confidence level, chips packaged in metallized polypropylene at an initial oxygen concentration of 10% with an oxygen absorber produce less hexanal than chips packaged in metallized polyester at an initial oxygen concentration of 2% without an oxygen absorber.

At the 90% confidence level, chips packaged in metallized polypropylene at an initial oxygen concentration of 10% with an oxygen absorber produce less hexanal than chips packaged in metallized polyester at an initial oxygen concentration of 0.2% without an absorber. Also at the 90% confidence level, chips packaged in metallized polyester at an initial oxygen concentration of 0.2% without an oxygen

absorber produce less hexanal than chips packaged in metallized polyester at an initial oxygen concentration of 2% without an absorber.

No other significant differences could be found between the groups at the 22 week sampling interval. A possible explanation for this is that the range of data points within each group produced a large standard deviation making it difficult to determine significant differences between groups. A reason for the large range within groups could be attributed to differences in potato chip packages such as pinholes, seal quality, actual absorber capacity, and amount of handling.

The metallized polypropylene packages with absorbers at the initial oxygen concentration of 10% had significantly lower hexanal values than groups packaged in metallized polyester at 0% and 2% initial oxygen concentrations without absorbers. It is possible that this is due to the rapid reduction to and maintenance of 0% oxygen in the headspace of the polypropylene packages with oxygen absorbers. While both of the polyester groups without absorbers started at low oxygen concentrations, the oxygen concentration steadily increased over the 22 week period allowing oxidation to occur. The polypropylene package with the absorber eliminated headspace oxygen quickly, thus terminating any oxidation reactions. Another factor that is relevant to the higher production of hexanal in chips packaged in polyester

compared to chips packaged in polypropylene is the moisture content of the chips. Chips packaged in polyester reached their protective monolayer moisture content after about 7 weeks of storage and were well above this moisture content at 22 weeks allowing increased rates of oxidation. Chips packaged in polypropylene increased in moisture content throughout the study, but remained below their protective monolayer moisture content for the entire 22 weeks, indicating continually decreasing oxidation rates.

The fact that the chips packaged in polyester at 0.2% initial oxygen concentration without absorbers produced significantly less hexanal at 22 weeks than chips packaged in polyester at 2% initial oxygen concentration without absorbers shows that at 2% headspace oxygen, the stoichiometry allows the oxidation reaction to occur. However, at 0.2% oxygen, the oxidation reaction is severly suppressed.

The polypropylene packages at 10% initial oxygen concentration with absorbers are the only packages with absorbers that showed a significant advantage over other packaging methods. This demonstrates the importance of rapidly reducing the headspace oxygen concentration to near 0% and maintaining the oxygen-free atmosphere. It is important to note that all of the packages with absorbers and initial oxygen concentrations of 10% reduced to an oxygen concentration of 0 ppb, and remained there for the

duration of the study. Therefore, the oxygen absorbers of this group had excessive capacity. The oxygen concentrations of packages within other groups with absorbers varied greatly. This indicates that not all absorbers had the same capacity. If all of the absorbers in all of the groups had excessive oxygen sorption capacity, the oxygen concentrations and hexanal production over time within groups may have deviated less providing better statistical data.

Sensory Evaluation

An untrained, inexpert panel of 3 persons sensory evaluated potato chips from all eight groups after 18 weeks of storage. The panel was in agreement on the flavors and odors of each group of chips. The worst chips were decidedly rancid with a strong, foul odor. The best chips were somewhat stale, but a rancid flavor was not detected. From the best-tasting to the worst-tasting chips, the ranking was as follows:

BEST:

Metallized Polyester; 0% Initial O₂; with absorber Metallized Polypropylene; 10% Initial O₂; with absorber MODERATE: Metallized Polypropylene; 2% Initial O₂; with absorber Metallized Polypropylene; 2% Initial O₂; without absorber WORSE: Metallized Polyester; 2% Initial O₂; without absorber Metallized Polypropylene; 10% Initial O₂; without absorber

WORST:

Metallized Polyester; 2% Initial O₂; with absorber Metallized Polyester; 0% Initial O₂; without absorber

The sensory results agreed somewhat with the statistical analysis. The chips packaged in metallized polypropylene with oxygen absorbers at 10% initial headspace oxygen were determined to be less rancid than chips in polyester without oxygen absorbers at 0.2% and 2% initial oxygen concentrations in both analyses. This is consistent with the argument given above. A discussion of the inferences that might be drawn from some similiarities and differences between the sensory and analytical results is provided in the following section.

Discussion of Hexanal and Sensory Results

While the sensory evaluation was too limited for reliable statistical conclusions, the consistency of the sensory and hexanal results provides some basis for comparison and discussion.

An important observation made by the sensory panel was that the chips packaged at 0% initial oxygen concentration in polyester with an absorber were the least rancid followed by the chips packaged at 10% initial oxygen concentration in polypropylene with an absorber. The hexanal data showed no statistical difference between these two groups. This may be attributable to the large range of the hexanal values in the 0% initial oxygen concentration group. The hexanal data does show that the 10% initial oxygen concentration group produced less hexanal than the 0% initial oxygen
concentration group for all samples at 22 weeks. This does not necessarily mean that the hexanal and sensory data do not correlate. The sensory analysis was done on packages sampled at 18 weeks and the hexanal data was taken at 22 weeks. This gave the 0% initial oxygen concentration group four weeks to increase the headspace oxygen concentration from less than 1% to 3.5% while the 10% initial oxygen concentration group stayed at 0%. It is possible that the hexanal production was less in the 0% initial oxygen concentration group than in the 10% initial oxygen

Error Analysis

The errors associated with the experiments include both operator and instrumental errors, and are considered normal. Sampling times for hexanal trapping are given in weeks and samples were taken on the 7th day, but not always at the same time of day. Therefore, an 8 hour maximum error is possible.

There is a lack of hexanal data throughout the middle of the storage period. During this time, hexanal measurements were taken and they appeared to be rising at a steady rate. However, it was noticed that hexanal values of chips that were only a couple of weeks old and that had oxygen absorbers in the packages were also high. It was then discovered that the glassware being used to trap

volatiles was not getting clean enough between trappings and oil was building up and oxidizing on the glassware. The glassware was then modified to prevent this, but much of the data already collected had to be discarded.

Error associated with concentrating the volume of extract to a 1 ml sample volume in the centrifuge tube is a result of misreading. Syringe error was a result of misreading the syringe calibrations and manufacturer error. The injection volume into the gas chromatograph could also vary due to leakage through the septa and loss due to evaporation of solvent. Retention time of hexanal could also vary due to carrier gas pressure and any variance between injection time and start time. The error associated with the area response of the integrator was due to the flame ionization detector.

SUMMARY AND CONCLUSIONS

The purpose of this study was to determine the effect of varying initial oxygen concentrations and the use of oxygen absorbers on the shelf life of potato chips. Headspace oxygen concentrations of packages containing oxygen absorbers were monitored daily until they reached a low point. Hexanal was used to quantify the extent of lipid oxidation over time.

BET Monolayer Moisture Content

The BET monolayer value is the moisture content which produces a monolayer coverage of water molecules over the highly reactive sites of the substrate, effectively retarding lipid oxidation. Determining the monolayer value in this study provided a guideline for estimating when the rate of lipid oxidation would be the lowest. The BET monolayer value for these chips was found to be 3.608g $H_2O/100g$ dry product. The corresponding a_w was 0.197. All chips started at moisture contents below the monolayer value, and only chips packaged in metallized polyester without oxygen absorbers ever gained enough moisture to be above the monolayer moisture content value. This would indicate that all other groups were experiencing a retardation in oxidation rate over the course of the study.

Headspace Oxygen Concentration

The headspace oxygen concentration of packages with absorbers had initial average values of 0.0722%, 2.096%, 2.12%, and 9.641%. These initial oxygen concentrations were measured within 6 hours of packaging the potato chips. The metallized polypropylene packages with absorbers and the highest initial oxygen concentration decreased to a headspace oxygen concentration of 0.0000% after only 7 days. The packages of metallized polypropylene with absorbers and an initial average oxygen concentration of 2.096% took 10 days to reach 0.000 0_2 . Even though the packages of metallized polyester have a lower oxygen permeability coefficient, they were unable to maintain oxygen concentrations of 0.000% for more than a week and it took the nitrogen flushed packages with absorbers 38 days to reach 0.0000% oxygen while the 2% oxygen flushed packages never reached 0.0000% oxygen.

This data shows that given an absorber of sufficient capacity, oxygen will be depleted from the headspace more quickly with a higher initial oxygen concentration. There is also some indication that a slightly inferior oxygen barrier aids in sustaining the oxygen/absorber reaction.

Applicability of Results

This study indicates the need for more research comparing the effectiveness of nitrogen gas flushing and the

use of absorbers. This study indicates that a combination of gas flushing and using an oxygen absorber would be inefficient since over time lower hexanal values were reported for high initial oxygen concentration packages with oxygen absorbers and for very low initial oxygen concentration packages without absorbers than for intermediate initial oxygen concentration packages with oxygen absorbers.

This study also indicates that a nitrogen gas flushing system must reduce the initial headspace oxygen concentration below 2% in order to be effective. The data supporting this is the hexanal data which shows no significant difference between hexanal production of chips with 2% initial oxygen concentration and 10% initial oxygen concentration.

The economics of the two separate headspace oxygen reducing systems also needs to be compared. It may be found that using absorbers is more economical than nitrogen gas flushing.

APPENDICES

,

APPENDIX A

Gas Chromatograph Hexanal Calibration Data

Table 7

Hexanal Data for the First Calibration Curve

	Grams of Hexanal	
<u>Sample</u>	Injected	<u>Area Response</u>
1a	3.40E-09	4133
1b	3.40E-09	4014
1c	3.40E-09	4105
Average		4084
2a	8.30E-09	10604
2b	8.30E-09	9594
2c	8.30E-09	12177
Average		10099
3a	1.70E-08	19825
3b	1.70E-08	20220
3c	1.70E-08	22106
Average		20717
4a	2.50E-08	31548
4b	2.50E-08	30331
4c	2.50E-08	34721
Average		32200
5a	4.30E-08	55258
5b	4.30E-08	53823
5c	4.30E-08	56788
Average		55290

Figure 13: First Hexanal Calibration Curve

APPENDIX A

Gas Chromatograph Hexanal Calibration Data

Table 8

Hexanal Data for the Second Calibration Curve

	Grams of Hexanal	
<u>Sample</u>	Injected	<u>Area Response</u>
1a	3.40E-09	8743
1b	3.40E-09	8556
1c	3.40E-09	8616
Average		8639
2a	8.30E-09	27190
2b	8.30E-09	26197
Average		26694
3a	1.70E-08	56498
3b	1.70E-08	56528
Average		56513
4a	2.50E-08	93025
4b	2.50E-08	88759
Average		90892
5 a	4.30E-08	154790
5b	4.30E-08	151940
Average		153365

Figure 14: Second Hexanal Calibration Curve

APPENDIX B

Table 9

Chip Initial Moisture Content Data

Sample <u>Number</u>	Initial <u>Chip Wt.</u>	Dried <u>Chip Wt.</u>	Initial Moisture <u>Content</u>
1	2.5356g	2.4698g	2.66%
2	2.8179g	2.7467g	2.59%
3	2.9587g	2.9449g	0.47%
4	2.3591g	2.3391g	0.86%
5	2.0309g	2.0029g	1.40%
6	2.5151g	2.4767g	1.55%
7	2.2375g	2.2084g	1.32%
8	2.2608g	2.2298g	1.39%
9	2.2261g	2.1944g	1.44%

Range = 0.47% - 2.66%

Average = 1.52%

Sample Standard Deviation = ± 0.715

APPENDIX C

Table 10

Sorption Isotherm Data

Water <u>Activity</u>	Initial Chip <u>Weight(g)</u>	Equilibrium Chip <u>Weight(g)</u>	Equilibrium Moisture <u>Content(EMC)%</u>	Average <u>EMC(%)</u>
0.1	2.1278	2.1701	3.5382	3.1634
0.1	2.1423	2.1748	3.0601	
0.1	2.2127	2.2426	2.8918	
0.21	2.2938	2.3440	3.7418	3.7626
0.21	2.2723	2.3237	3.8164	
0.21	2.0812	2.1265	3.7297	
0.32	2.0182	2.0954	5.4033	5.4567
0.32	2.3088	2.3906	5.1168	
0.32	2.2930	2.3908	5.8500	
0.41	2.1382	2.2314	5.9451	5.9721
0.41	2.2225	2.3184	5.9005	
0.41	2.0858	2.1793	6.0708	
0.51	2.3656	2.5086	7.6569	7.8884
0.51	2.1812	2.3180	7.8871	
0.51	2.0608	2.1948	8.1212	
0.71	2.2210	2.5597	17.0017	13.2903
0.71	2.1837	2.3928	11.2410	
0.71	2.0438	2.2473	11.6283	
0.83	2.0517	2.5016	23.7815	23.2586
0.83	2.2978	2.7315	20.6815	
0.83	2.0916	2.5818	25.3128	

APPENDIX D

WVTR Data, Package Weights

Table 11

Netallized Polyester Package Weights

Time <u>(Days)</u>	Desiccant	Package	Weights	Empty Pa 1	ackage We: 2	ights 3
ο	127.51	115.28	112.42	3.6606	3.6395	3.7166
2	127.54	115.30	112.45	3.6618	3.6404	3.7173
8	127.63	115.39	112.54	3.6628	3.6412	3.7175
10	127.67	115.42	112.58	3.6576	3.6422	3.7413
12	127.71	115.46	112.61	3.6580	3.6350	3.7092
14	127.76	115.49	112.65	3.6588	3.6362	3.7105
16	127.79	115.52	112.68	3.6604	3.6386	3.7177
18	127.82	115.55	112.71	3.6615	3.6416	3.7154
22	127.89	115.61	112.77	3.6656	3.6372	3.7171

APPENDIX D

WVTR Data, Package Weights

Table 12

Metallized Polypropylene Package Weights

Time <u>(Days)</u>	Desiccant	E Package	Weights 3	Empty Pa	ackage We: 2	ights 3
0	145.16	120.83	99.70	3.8268	3.8219	3.9526
2	145.16	120.82	99.70	3.8273	3.8221	3.9516
8	145.17	120.84	99.72	3.8273	3.8226	3.9537
10	145.18	120.84	99.74	3.8275	3.8207	3.9531
12	145.18	120.84	99.75	3.8258	3.8224	3.9485
14	145.18	120.85	99.76	3.8297	3.8214	3.9502
16	145.19	120.85	99.77	3.8209	3.8180	3.9468
18	145.19	120.85	99.78	3.8264	3.8155	3.9491
22	145.19	120.86	99.79	3.8258	3.8235	3.9503

.

APPENDIX E

WVTR Data, Package Weight Gains

Table 13

	Netalli	sed Polye	ster Pack	age Weigh	t Gains	
Time (Days)	Desicca 1	nt Package	es3	Empty Pa	ackages 2	3
ο	0	0	0	0	0	0
2	0.0267	0.0247	0.0278	0.0012	0.0009	0.0007
8	0.1234	0.1153	0.1196	0.0022	0.0017	0.0009
10	0.1641	0.1463	0.1562	-0.003	0.0027	-0.002
12	0.2043	0.1792	0.1887	-0.003	-0.005	-0.007
14	0.2501	0.2150	0.2287	-0.002	-0.003	-0.006
16	0.2809	0.2441	0.2564	-0.002	-0.001	0.0011
18	0.3158	0.2714	0.2861	0.0009	0.0021	-0.001
22	0.3866	0.3331	0.3487	-0.004	-0.002	0.0005

APPENDIX E

WVTR Data, Package Weight Gains

Table 14

Metallised Polypropylene Package Weight Gains

Time	Desicca	nt Packag	es	Empty Pa	pty Packages					
(Days)		2	3		2	3				
0	0	0	0	0	0	0				
2	-0.001	-0.002	0.0030	0.0005	0.0002	-0.001				
8	0.0080	0.0095	0.0254	0.0005	0.0007	0.0011				
10	0.0117	0.0123	0.0372	0.0007	-0.001	0.0005				
12	0.0135	0.0169	0.0467	-0.001	0.0005	-0.004				
14	0.0195	0.0208	0.0593	0.0029	-0.001	-0.002				
16	0.0239	0.0223	0.0690	-0.006	-0.004	-0.006				
18	0.0242	0.0239	0.0760	-0.000	-0.006	-0.004				
22	0.0302	0.0337	0.0955	-0.001	0.0016	-0.002				

APPENDIX E

WVTR Data, Package Weight Gains

Table 15

Average and Net Package Weight Gains

	Metalli	zed Polyes	ster	Metalliz	ed Polypr	Polypropylene				
Time <u>(Days)</u>	Avg Desicca <u>Gain</u>	Avg nt Empty <u>Gain</u>	Net Package <u>Gain</u>	Avg Desiccan <u>Gain</u>	Avg t Empty <u>Gain</u>	Net Pkg <u>Gain</u>				
2	0.0267	0.0009	0.0258	-3.3E-05	-1E-04	.00007				
8	0.1194	0.0016	0.1178	0.0143	0.0008	0.0135				
10	0.1555	-0.0009	0.1564	0.0204	7.2E-20	0.0204				
12	0.1907	-0.0048	0.1956	0.0257	-0.0015	0.0272				
14	0.2313	-0.0037	0.2350	0.0332	0.0000	0.0332				
16	0.2605	0.0000	0.2605	0.0384	-0.0052	0.0436				
18	0.2911	0.0006	0.2905	0.0414	-0.0034	0.0448				
22	0.3561	-0.0020	0.3581	0.0531	-0.0006	0.0537				

1		-
1	>	4
I		ł.
(ſ	
j	í	5
	i	
	2	2

Weights of Potato Chips

Table 16

Weights (g) of Potato Chips Packaged in Metallised Polyester at 0% O2

		<u>ay 154</u>						38.02			37.15									37.38	
		Day 98 D				36.98	37.78	37.84		36.83	36.93						39.33	39.42		37.16	38.4
		<u>Day 83</u>			37.46	36.91	37.70	37.78		36.76	36.87		36.78				39.26	39.35	36.68	37.09	38.32
		<u>Day 69</u>			37.37	36.79	37.61	37.67		36.67	36.79		36.69				39.19	39.25	36.57	37.01	38.24
		Day 62			37.34	36.75	37.54	37.64		36.62	36.75		36.66				39.15	39.22	36.54	36.96	38.19
		<u>Day 48</u>		38.46	37.21	36.63	37.44	37.53	37.29	36.52	36.64		36.56			36.60	39.01	39.11	36.41	36.88	38.08
		<u>Day 35</u>		38.33	37.10	36.51	37.31	37.44	37.19	36.41	36.52		36.45			36.50	38.90	38.98	36.34	36.77	37.98
m		Day 27	35.88	38.28	36.99	36.42	37.22	37.32	37.07	36.38	36.46	35.61	36.36		37.22	36.39	38.83	38.90	36.19	36.70	37.88
e Weights	I	<u>Day 13</u>	35.27	38.07	36.80	36.21	37.06	37.15	36.93	36.16	36.28	35.46	36.17	37.89	37.09	36.25	38.66	38.72	36.07	36.55	37.76
Package	I	Day O	35.46	37.80	36.55	35.95	36.78	36.93	36.65	35.97	36.03	35.22	35.97	37.58	36.81	35.99	37.54	38.46	35.81	36.26	37.51
Chip	Wt	Day O	30.48	32.53	31.51	30.78	31.52	31.75	31.55	30.80	30.84	30.07	31.13	31.80	31.85	30.79	32.72	33.41	30.83	30.67	32.42
	Bag	-	-1	7	ო	4	ß	9	2	œ	σ	10	11	12	13	14	16	17	18	19	20

rber																						
Abso		154	.51			.15													.29		. 89	
		Day	6 C			40													40		40	
with		26												48		91						
0.			I											39.		39.						
<u>о</u>		Da																				
lyester a		<u>Day 50</u>						40.04					40.18				40.14			39.75		
lised Pol		<u>Day 41</u>	39.23	39.76	39.63	39.87	39.72	39.95	40.27	40.15	39.48	40.39	40.11	39.30	39.77	39.73	40.09	39.72	39.97	39.69	40.61	
in Metal		Day 34	39.24	39.80	39.60	39.88	39.74	39.97	40.27	40.14	39.48	40.35	40.10	39.31	39.79	39.75	40.09	39.64	39.98	39.68	40.65	39.67
Packaged		Day 20	39.18	39.72	39.52	39.78	39.68	39.90	40.19	40.06	39.41	40.31	40.03	39.28	39.77	39.69	40.03	39.58	39.92	39.62	40.60	39.64
ato chips Weights	h	Day 6	39.08	39.51	39.42	39.27	39.57	39.03	40.03	39.98	39.28	40.22	39.92	39.22	39.67	39.65	39.93	39.30	39.80	39.52	39.55	
of Potu ackage W	h	Day O	39.07	39.52	39.36	39.61	39.53	39.76	39.69	39.98	39.28	40.20	39.88	39.22	39.72	39.63	39.93	39.42	39.76	39.51	40.52	39.58
ights (g) Chip Pa	Wt	Day 0	30.16	30.40	30.28	30.40	30.54	30.57	30.40	30.64	30.18	30.87	30.80	30.10	30.66	30.39	31.05	30.10	30.90	30.37	31.06	30.44
	Bag	*	ч	2	ო	4	Ŋ	9	2	8	σ	10	11	12	13	14	15	16	17	18	19	20

Weights of Potato Chips

Table 17

		Day 154	38.83	37.80																36.90
2 % 0 ₂		Day 98	38.60	37.59	37.91					37.01	36.80		37.38		35.90		36.65			36.70
ster at		Day 83	38.55	37.53	37.83		38.96		39.13	36.95	36.74		37.33		35.84		36.60	38.67		36.64
sed Poly		Day 69	38.46	37.45	37.76		38.88		39.05	36.88	36.66		37.24		35.77		36.55	38.57		36.55
Metallíi		Day 62	38.42	37.40	37.69		38.85		39.00	36.82	36.62		37.21		35.75		36.50	38.53		36.51
aged in		Day 48	38.27	37.31	37.58		38.75		38.89	36.73	36.52		37.09		35.65		36.39	38.42		36.39
lips Pack		Day 35	38.20	37.21	37.45		38.60	38.44	38.77	36.61	36.42	36.69	36.98			36.16	36.31	38.31		36.32
otato Ch	Đ	Day 27	38.10	37.11	37.37	36.87	38.53	38.27	38.70	36.50	36.34	36.56	36.88	36.61	35.46	36.05	36.18	38.20	37.62	36.21
(d) of I	e Weight	Day 13	37.92	36.95	37.20	36.71	38.37		38.54	36.34	36.15	36.44	36.70	36.46	35.30	35.88	36.04	38.05	37.49	36.05
Weights	Package	Day 0	37.81	36.80	37.00	36.52	38.23	37.97	38.37	36.17	36.00	36.27	36.50	36.27	35.10	35.66	35.85	37.87	37.32	35.91
-	chip Wt	Day 0	32.60	31.47	31.86	31.24	32.66	31.48	31.80	30.97	31.74	30.92	31.11	30.59	30.12	30.22	30.51	32.30	32.15	30.73
	Baq	•	٦	2	ო	4	ß	9	2	œ	σ	10	11	12	13	14	16	17	19	20

APPENDIX F

Weights of Potato Chips

Table 18

							Table	19				
M	aights Chin	(g)	Of L	Potat 'e We	to Chips	Packaged	in Metal	lised Pol	lyester at	ot o ₂ with	4	Absorber
Baq	Wt	4			en tifte							
•	Day (o	Day	0	Day 6	Day 20	Day 34	Day 41	Day 50	Day 126	Day	154
Ч	30.85	6	40	11	40.67	40.78	40.82	40.83				
3	30.42	2	39.1	36	39.87	39.88	40.02	40.04				
e	30.35	പ	40.1	00	40.02	40.10	40.14	40.16	40.2			
ഗ	30.2(0	39.	74	39.71	39.78	39.84	39.86				
9	32.01		41.(57	41.74	41.84	41.91	41.92		42.14		
2	30.64	4	40.4	18	40.51	40.63	40.71	40.75				
œ	30.94	4	40.	90	40.93	41.04	41.09	41.10			41.	.34
6	30.72	2	40.1	02	34.38	40.07	40.10	40.10	40.13			
10	30.61	ч	40.4	58	40.69	40.76	40.80	40.82				
11	30.94	4	40.1	34	40.84	40.93	40.97	40.97				
12	30.25	പ	39.1	54	39.35	39.67	39.73	39.77			40.	00
13	30.75	പ	39.1	53	39.54	39.67	39.74	39.78				
14	30.01	ч	39.	37	39.44	39.52	39.58	39.61				
15	30.84	4	40.(J 6	40.09	40.16	40.21	40.23		40.43		
16	30.25	6	39.	33	39.35	39.44	39.49	39.52				
17	30.2(9	39.	77	39.81	39.93	39.99	40.02				
18	30.95	6	40	77	40.79	40.90	40.97	40.99	41.05			
19	30.15	6	40	20	40.22	40.35	40.41	40.43				
20	30.2	2	40.4	47	40.44	40.63	40.71	40.74	39.75		41.	.01

APPENDIX F

Weights of Potato Chips

						Tabl	• 20		- - -		
		ights	(B)	of Potato	chips	Packaged	in Metall	ised Poly	vpropyle:	10 at 2% (ć
	chip	Packa	e	Weights	I	I)))		•
Bag	Wt										
*	Day 0	Day	ବ	Day 6 D	<u>ay 13</u>	Day 20	<u>Day 34</u>	Day 48	Day 70	Day 126	Day 154
-	30.45	36.5	4	36.55	36.52	36.54					
2	30.83	36.7	0	36.70	36.72	36.75	36.72	36.78		36.87	
ო	31.10	37.0	ñ	37.05	37.05						
4	30.68	36.9	ñ	36.94	36.94	37.00	37.00				
9	30.68	37.5	0	37.47	37.48						
2	30.79	36.6	8	36.66	36.68	36.69					
œ	30.61	36.8	0	36.82	36.83	36.85	36.84		36.88		
σ	30.98	37.7	2	37.72	37.74	37.75	37.75		37.80		
10	31.07	37.1	Ņ	37.09	37.10						
11	30.31	36.1	2	36.21	36.22	36.21	36.22				36.38
13	30.66	36.6	0	36.59	36.62	36.63					
14	30.13	36.3	8	36.40	36.42	36.43	36.45				
15	30.47	36.7	9	36.78	36.80	36.80	36.80				36.98
16	30.57	37.0	6	37.08	37.10	37.10	37.14	37.15			
17	30.90	37.2	H	37.18	37.20	37.19	37.23	37.25			37.39
18	30.91	37.1	ч.	37.09	37.09	37.11	37.11		37.15		
19	30.89	37.2	9	37.23	37.25	37.25	37.28	37.29			
20	31.45	37.2	0	37.23	37.28	37.28	37.28				

Weights of Potato Chips

Table 21Table 21chip Package WeightsChip Package WeightsChip Package WeightsChip Package WeightsChip Package WeightsChip Package WeightsDay 0Day 20Day 39.7739.7739.7739.7739.7739.7739.7739.7739.7839.7839.8439.8430.1939.7739.7739.7839.8439.8430.1939.7739.7839.8439.8430.1939.7739.7839.8439.8430.1939.7739.7339.8439.8430.1939.7739.7339.7339.8439.8430.1939.7139.7339.8439.8430.1939.7140.4140.4140.1240.1340.1340.4140.1240.1340.1530.6539.6439.64 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>ghts of P</th> <th>otato Chi</th> <th>8.</th> <th></th> <th></th>						ghts of P	otato Chi	8 .		
eights (f) of Poctacy Chips Package In Name A Dip Package Meights Package Meights Package Meth Package Package						Table	• 21			
Arr Chip Package Meights 39 Wt. Day 0 Day 0 Day 0 Day 1 39.77 39.77 39.77 39.77 39.77 39.77 39.77 39.77 39.77 39.77 39.77 39.77 39.77 39.78 39.81 40.14 40.18 39.81 40.14 40.18 40.14 40.18 40.13 40.14 40.13 40.14 40.18 40.28 40.31 40.13 40.13 40.14 40.28 39.83 40.41 40.28 39.64 40.28 40.41 40.28 40.14 40.28 40.14 40.28 40.14 40.28 40.14 40.28 40.14 40.28 40.14 40.28 40.41 40.28 40.41 40.28 40.41 40.28 40.41 40.28 40.21 40.28 40.41 40.28 40.41 40.28 40.41 40.28 40.41 40.28 40.41 40.28 40.41 40.28 40.41 40.28 40.41 40.28 4	leigh	its (g)	of Potato	Chips	Packaged	in Metall	ised Poly	propylene	at 2% 02	with an Absorber
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Chip	Package 1	Weights						
	бр. ж	Day 0	Day 0	Day 6	Day 20	Day 34	Day 41	Day 56	Day 126	Day 154
2 30.19 39.80 39.78 39.82 39.84 39.83 4 30.15 39.81 40.14 40.18 40.23 40.23 5 30.55 37.30 40.13 40.17 40.18 40.13 5 30.56 37.30 40.13 40.17 40.18 40.18 7 30.35 40.12 40.013 40.17 40.18 40.18 7 30.35 39.54 39.57 39.59 39.57 39.57 8 30.13 40.06 40.10 40.10 40.10 9 30.62 39.99 39.97 39.95 39.57 9 30.66 40.66 40.65 40.66 40.67 11 30.49 40.36 40.67 40.67 40.13 12 30.67 39.96 40.66 40.67 40.13 13 30.74 40.36 40.65 40.65 40.65 13 30.67 39	-	30.48	39.77	39.75	39.77	39.77	39.78			39.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	30.19	39.80	39.78	39.82	39.84	39.83			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ო	30.15	39.81	40.14	40.18	40.23	40.23			40.28
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4	30.40	40.31	40.28	40.33	40.34	40.35		40.41	
	S	30.59	37.30	40.13	40.17	40.18	40.18			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	30.36	40.12	40.09	40.13	40.15	40.15			
	2	30.32	39.54	39.54	39.57	39.59	39.57			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	œ	30.13	40.06		40.09	40.10	40.10			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	σ	30.62	39.95	39.91	39.97	39.97	39.96			
11 30.43 40.91 40.93 40.93 40.93 40.95 40.52 40.52 40.52 40.52 12 30.85 40.29 40.36 40.51 40.52 40.52 40.52 40.52 13 30.07 40.02 40.04 40.08 40.09 40.10 40.13 15 30.966 39.67 39.67 39.67 39.74 15 30.996 40.57 40.63 40.63 40.65 39.74 16 30.43 39.997 40.63 40.63 40.65 39.74 17 30.866 40.41 40.39 40.47 40.65 40.65 18 30.22 40.41 40.73 40.73 40.73 19 30.74 40.71 40.73 40.73 40.73 19 30.74 40.50 40.51 40.73 40.62 19 30.74 40.56 40.53 40.55 40.62	10	30.96	40.61	40.60	40.64	40.65	40.66	40.67		
12 30.85 40.29 40.36 40.51 40.52 40.52 40.52 13 30.07 40.02 40.04 40.08 40.09 40.10 40.13 14 30.40 39.60 39.65 39.67 39.67 39.74 15 30.96 40.58 40.63 40.63 40.65 39.74 16 30.43 39.99 39.97 40.63 40.65 40.65 17 30.86 40.41 40.39 40.47 40.65 40.07 18 30.22 40.47 40.51 40.51 40.51 19 30.74 40.70 40.73 40.53 40.55 20 30.45 40.50 40.54 40.53 40.55	11	30.43	40.91		40.93	40.93	40.95			
13 30.07 40.02 40.04 40.08 40.09 40.10 40.13 14 30.40 39.60 39.65 39.67 39.67 39.67 39.74 15 30.96 40.58 40.57 40.63 40.65 39.74 16 30.43 39.99 39.97 40.63 40.65 39.74 17 30.86 40.41 40.02 40.04 40.06 40.07 18 30.22 40.47 40.51 40.51 40.51 19 30.74 40.70 40.73 40.73 40.73 19 30.74 40.50 40.51 40.51 40.51 20 30.45 40.50 40.54 40.53 40.55 40.62	12	30.85	40.29	40.36	40.51	40.52	40.52			
14 30.40 39.60 39.65 39.67 39.67 39.67 39.74 15 30.96 40.58 40.57 40.63 40.63 40.65 39.74 16 30.43 39.99 39.97 40.63 40.65 40.07 17 30.86 40.41 40.02 40.04 40.06 40.07 18 30.22 40.47 40.51 40.51 40.51 40.73 19 30.74 40.70 40.73 40.73 40.73 40.65 20 30.45 40.50 40.53 40.55 40.55 40.55	13	30.07	40.02	40.04	40.08	40.09	40.10			40.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	30.40	39.60		39.65	39.67	39.67			39.74
16 30.43 39.99 39.97 40.02 40.04 40.06 40.07 17 30.86 40.41 40.39 40.47 40.45 18 30.22 40.47 40.51 40.51 40.51 19 30.74 40.70 40.71 40.73 40.73 40.73 20 30.45 40.50 40.54 40.53 40.55 40.62	15	30.96	40.58	40.57	40.63	40.63	40.63	40.65		
17 30.86 40.41 40.39 40.47 40.45 18 30.22 40.47 40.51 40.51 40.51 19 30.74 40.70 40.71 40.73 40.73 40.73 20 30.45 40.50 40.54 40.53 40.55 40.62	16	30.43	39.99	39.97	40.02	40.04	40.06	40.07		
18 30.22 40.47 40.51 40.51 40.51 40.51 19 30.74 40.70 40.71 40.73 40.73 40.73 20 30.45 40.50 40.54 40.53 40.55 40.62	17	30.86	40.41	40.39	40.47	40.45				
19 30.74 40.70 40.71 40.73 40.73 40.73 40.73 20 30.45 40.50 40.54 40.53 40.55 40.62	18	30.22	40.47		40.51	40.51	40.51			
20 30.45 40.50 40.54 40.53 40.55 40.62	19	30.74	40.70	40.71	40.73	40.73	40.73			
	20	30.45	40.50		40.54	40.53	40.55		40.62	

740 • 4 ģ • Ì

t 10% 0 ₂																			
opylene a																			
sed Polypr		<u>Day 48</u>		36.78											37.15	37.25		37.29	
n Metalli		Day 34		36.72		37.00			36.84	37.75		36.22		36.45	37.14	37.23	37.11	37.28	37.28
Packaged i		Day 20	36.54	36.75		37.00		36.69	36.85	37.75		36.21	36.63	36.43	37.10	37.19	37.11	37.25	37.28
chips 1		<u>Day 13</u>	36.52	36.72	37.05	36.94	37.48	36.68	36.83	37.74	37.10	36.22	36.62	36.42	37.10	37.20	37.09	37.25	37.28
of Potato Weights		Day 6	36.55	36.70	37.05	36.94	37.47	36.66	36.82	37.72	37.09	36.21	36.59	36.40	37.08	37.18	37.09	37.23	37.23
ghts (g) Package		Day 0	36.54	36.70	37.03	36.93	37.50	36.68	36.80	37.72	37.12	36.17	36.60	36.38	37.09	37.21	37.11	37.26	37.20
Wei Chip	Wt	Day 0	30.45	30.83	31.10	30.68	30.68	30.79	30.61	30.98	31.07	30.31	30.66	30.13	30.57	30.90	30.91	30.89	31.45
	Bag	-	Ч	2	ო	4	9	2	Ø	σ	10	11	13	14	16	17	18	19	20

Weights of Potato Chips

Table 22

๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	Chip Wt 31.07 30.34 30.64 30.51 30.51 30.51 30.51 30.51 30.51	Weight Package Package 44.46 43.52 44.12 44.26 44.26 44.08 44.08 44.08 44.08 43.95	(g) of Weights <u>Day 6</u> 43.78 43.78 44.44 44.44 44.39 44.17	Potato Day 20 44.51 44.51 44.57 44.57 44.57 44.72 44.72 44.72 44.72	Tabl Tabl Tabl Tabl Chips Pack 10% 02 wit 10% 02 wit 44.51 44.51 44.51 44.53 44.53 44.72 44.72 44.72 44.72 44.73 44.73 44.73 44.73 44.73 44.73 44.73 44.73	• 23 aged in M Day 41 43.69 44.68	tallised rber <u>Day 126</u> 43.96 44.45	Polypropylene Day 154 43.85 44.31 44.70
407800	30.52 30.56 30.58 30.37 30.43 30.65	44.36 43.89 44.91 44.91 43.95 44.84	44.39 43.99 44.94 44.00	44 . 47 44 . 61 44 . 61 44 . 98 44 . 03 44 . 03 44 . 03	44.45 44.01 444.01 444.03 444.03 444.03 44.03			43.59

pit Gains (g) of Potato Chips Packaged in Metallised Polyester at 0t 0 pit Gains (g) of Potato Chips Packaged in Metallised Polyester at 0t 0 Dav 13 Dav 20 Dav 27 Dav 35 Dav 48 Dav 62 Dav 69 Dav 98 Dav 98 Dav 98 Dav 98 Dav 98 Dav 19 Dav 98					4	b1e 24					
13 Day 20 Day 27 Day 35 Day 37 Day 27 Day 35 Day 27 Day 37 Day 37 Day 37 Day 37 D $\frac{13}{10}$ Day 27 D $\frac{13}{10}$ D $\frac{11}{10}$ D $\frac{11}{10}$ 28 0.33 0.41 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.5	ght	Gains	(d) of	Potato	chips Pa	ckaged i	n Metall	ised Pol	yester a	t 0 % 0,	
26 0.35 0.42 27 0.34 0.48 0.55 0.66 0.79 0.82 0.91 26 0.37 0.44 0.55 0.66 0.79 0.82 0.91 28 0.37 0.44 0.55 0.66 0.76 0.83 0.92 1.00 28 0.35 0.41 0.53 0.66 0.71 0.74 0.85 0.91 1.03 28 0.35 0.49 0.51 0.66 0.71 0.74 0.85 0.91 1.03 29 0.36 0.49 0.55 0.65 0.77 0.84 0.90 1.10 29 0.30 0.49 0.55 0.65 0.77 0.84 0.90 29 0.34 0.49 0.51 0.76 0.84 0.90 1.1.0 21 0.33 0.49 0.59 0.61 0.72 0.84 0.90 1.1.0 21 0.33 0.49 0.59 0.65 0.76 0.84 0.90 1.1.0 21 <th>Day</th> <th>13</th> <th>Day 20</th> <th>Day 27</th> <th>Day 35</th> <th>Day 48</th> <th>Day 62</th> <th>Day 69</th> <th>Day 83</th> <th>Day 98</th> <th>Day 154</th>	Day	13	Day 20	Day 27	Day 35	Day 48	Day 62	Day 69	Day 83	Day 98	Day 154
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	26	0.35	0.42)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ö	.27	0.34	0.48	0.53	0.66					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.25	0.33	0.44	0.55	0.66	0.79	0.82	0.91		
28 0.35 0.44 0.53 0.66 0.71 0.92 1.00 22 0.32 0.39 0.51 0.60 0.71 0.74 0.85 0.91 1.0 28 0.36 0.42 0.51 0.60 0.71 0.74 0.85 0.91 1.0 28 0.36 0.41 0.55 0.61 0.72 0.74 0.85 0.91 1.0 25 0.34 0.43 0.49 0.61 0.72 0.76 0.84 0.90 1.1 24 0.33 0.39 0.48 0.59 0.61 0.72 0.81 0.90 1.1 21 0.30 0.39 0.48 0.59 0.61 1.47 1.1 26 0.34 0.51 0.61 1.61 1.65 1.72 1.79 25 0.32 0.38 0.53 0.66 0.70 0.89 0.96 212 1.20 1.61 1.61 1.65 1.72 0.81 0.96 26 0.33 0.44	0	.26	0.37	0.47		0.68		0.84	0.96	1.03	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.28	0.35	0.44	0.53	0.66	0.76	0.83	0.92	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.22	0.32	0.39	0.51	0.60	0.71	0.74	0.85	0.91	1.09
0.19 0.30 0.41 0.44 0.55 0.65 0.70 0.79 0.86 1.25 0.34 0.43 0.49 0.61 0.72 0.76 0.84 0.90 1.15 1.24 0.33 0.39 0.49 0.61 0.72 0.76 0.84 0.90 1.15 1.20 0.33 0.39 0.48 0.59 0.69 0.72 0.81 0.90 1.15 1.28 0.33 0.41 0.51 0.61 1.61 1.65 1.72 1.79 1.26 0.33 0.44 0.51 0.61 1.67 1.65 1.72 1.79 1.26 0.36 0.44 0.52 0.65 0.76 0.89 0.96 0.26 0.37 0.44 0.51 0.65 0.77 0.83 0.96 0.29 0.37 0.47 0.57 0.68 0.73 0.91 0.90 1.1	0	.28	0.36	0.42	0.54	0.64					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.19	0.30	0.41	0.44	0.55	0.65	0.70	0.79	0.86	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.25	0.34	0.43	0.49	0.61	0.72	0.76	0.84	0.90	1.12
0.20 0.30 0.39 0.48 0.59 0.69 0.72 0.81 0.31 0.33 0.41 0.51 0.61 1.61 1.65 1.72 1.79 0.26 0.33 0.44 0.51 0.61 1.61 1.65 1.72 1.79 0.26 0.36 0.44 0.52 0.65 0.76 0.79 0.89 0.96 0.26 0.32 0.38 0.52 0.65 0.76 0.79 0.89 0.96 0.26 0.37 0.44 0.52 0.60 0.73 0.79 0.89 0.96 0.26 0.32 0.60 0.73 0.79 0.89 0.96 0.29 0.37 0.47 0.57 0.68 0.73 0.90 1.1 0.30 0.32 0.37 0.47 0.57 0.68 0.73 0.90 1.1	Ŭ	0.24	0.33	0.39							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ŭ	0.20	0.30	0.39	0.48	0.59	0.69	0.72	0.81		
0.28 0.33 0.41 0.26 0.34 0.40 0.51 0.61 1.12 1.20 1.29 1.36 1.47 1.61 1.65 1.72 1.79 1.12 1.20 1.29 1.36 1.47 1.61 1.65 1.72 1.79 0.26 0.36 0.44 0.52 0.65 0.76 0.89 0.96 0.26 0.37 0.38 0.53 0.60 0.73 0.76 0.87 0.29 0.37 0.44 0.51 0.62 0.70 0.75 0.83 0.90 0.25 0.32 0.47 0.57 0.68 0.73 0.73 0.81 0.90 0.32 0.32 0.47 0.57 0.68 0.73 0.81 0.90 1.1	Ŭ	0.31									
0.26 0.34 0.40 0.51 0.61 1.12 1.20 1.29 1.36 1.47 1.61 1.65 1.72 1.79 0.26 0.36 0.44 0.52 0.65 0.76 0.79 0.89 0.96 0.26 0.32 0.38 0.53 0.60 0.73 0.76 0.87 0.29 0.37 0.44 0.51 0.62 0.73 0.76 0.87 0.29 0.37 0.44 0.51 0.62 0.70 0.75 0.83 0.90 0.29 0.37 0.47 0.57 0.68 0.73 0.73 0.91 0.90 0.20 0.32 0.47 0.57 0.68 0.73 0.81 0.89 0.30 0.32 0.47 0.57 0.68 0.93 1.03 1.11	-	0.28	0.33	0.41							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.26	0.34	0.40	0.51	0.61					
0.26 0.36 0.44 0.52 0.65 0.76 0.89 0.96 0.26 0.32 0.38 0.53 0.60 0.73 0.76 0.87 0.29 0.37 0.44 0.51 0.62 0.70 0.75 0.83 0.90 0.29 0.37 0.44 0.51 0.62 0.70 0.75 0.83 0.90 0.25 0.32 0.37 0.47 0.57 0.68 0.73 0.81 0.89 0.30 0.32 0.37 0.47 0.57 0.68 0.73 0.81 0.89		1.12	1.20	1.29	1.36	1.47	1.61	1.65	1.72	1.79	
0.26 0.32 0.38 0.53 0.60 0.73 0.76 0.87 0.29 0.37 0.44 0.51 0.62 0.70 0.75 0.83 0.90 1.1 0.25 0.32 0.37 0.47 0.57 0.68 0.73 0.81 0.89 0.30 0.39 0.47 0.57 0.68 0.80 0.84 0.93 1.03 1.1	-	0.26	0.36	0.44	0.52	0.65	0.76	0.79	0.89	0.96	
0.29 0.37 0.44 0.51 0.62 0.70 0.75 0.83 0.90 1.1 0.25 0.32 0.37 0.47 0.57 0.68 0.73 0.81 0.89 0.30 0.39 0.47 0.57 0.68 0.80 0.84 0.93 1.03 1.1	-	0.26	0.32	0.38	0.53	0.60	0.73	0.76	0.87		
0.25 0.32 0.37 0.47 0.57 0.68 0.73 0.81 0.89 0.30 0.39 0.47 0.57 0.68 0.80 0.84 0.93 1.03 1.1		0.29	0.37	0.44	0.51	0.62	0.70	0.75	0.83	0.90	1.12
0.30 0.39 0.47 0.57 0.68 0.80 0.84 0.93 1.03 1.1	Ŭ	0.25	0.32	0.37	0.47	0.57	0.68	0.73	0.81	0.89	
	U	0.30	0.39	0.47	0.57	0.68	0.80	0.84	0.93	1.03	1.11

APPENDIX G

Weight Gains of Potato Chips

	1		•				•		
		eight	Gains	о (б)	r Potato Ch	ips Packa	ged in Met	allised Polyester	
					at 0% 02	vith an N	bsorber		
Bagé	Day 6	Day	20	Day 34	Day 41	<u>Day 50</u>	<u>Day 126</u>	Day 154	
г	0.01	0	11	0.17	0.16			0.44	
7		0	20	0.28	0.24				
e	0.06	•	16	0.24	0.27				
4		•	17	0.27	0.26			0.54	
5	0.04	•	15	0.21	0.19				
9		•	14	0.21	0.19	0.28			
7	0.34	0	50	0.58	0.58				
8	0.00	•	08	0.16	0.17				
6	0.00	•	13	0.20	0.20				
10	0.02	•	11	0.15	0.19				
11	0.04	•	15	0.22	0.23	0.30			
12	0.00	•	06				0.26		
13				0.05	0.07	0.05			
14	0.02	•	06	0.12	0.10		0.28		
15	0.00	•	10	0.16	0.16	0.21			
16		•	16	0.22	0.30				
17	0.04	•	16	0.22	0.21			0.53	
18	0.01	•	11	0.17	0.18	0.24			
19		••	08	0.13	0.09			0.37	
20		••	06	0.09					
Av.									
Gain	0.04	•••	14	0.20	0.21	0.26	0.27	0.47	

APPENDIX G Weight Gains of Potato Chips

	G	
1	M	
ĺ	H	
Í	2	
Ì		
ì	2	
i	A,	
1	4	

Ipe
ä
ato
Pot
Ho
ins
3
ght
Wei

Table 26

2
Ļ
H
ä
Š.
10
Ă
7
Ĭ
Ξ
3
ĕ
A
H
٦
5
ğ
Ã
T
บิ
0
Ĭ
õ
H
5
2
5
9
1 I
9
Ļ
q
10
P

	Vei	ght Gains	jo (5)	Potato	Chips Pa	ickaged i	n Metall	ised Pol	yester a	t 2% 0,	
Bag					I				ł	•	
-	Day 6	Day 13	Day 20	Day 27	Day 35	Day 48	Day 62	Day 69	Day 83	Day 98	Day 154
-	0.01	0.11	0.24	0.29	0.39	0.46	0.61	0.65	0.74	0.79	1.02
7	0.03	0.15	0.25	0.31	0.41	0.51	0.60	0.65	0.73	0.79	1.00
ო	0.06	0.20	0.28	0.37	0.45	0.58	0.69	0.76	0.83	0.91	
4	0.07	0.19	0.26	0.35							
ഗ	0.03	0.14	0.23	0.30	0.37	0.52	0.62	0.65	0.73		
9	0.06		0.27	0.30	0.47						
2	0.04	0.17	0.26	0.33	0.40	0.52	0.63	0.68	0.76		
æ	0.07	0.17	0.23	0.33	0.44	0.56	0.65	0.71	0.78	0.84	
6	0.08	0.15	0.24	0.34	0.42	0.52	0.62	0.66	0.74	0.80	
10	0.07	0.17	0.26	0.29	0.42						
11	0.07	0.20	0.30	0.38	0.48	0.59	0.71	0.74	0.83	0.88	
12	0.07	0.19	0.23	0.34							
13	0.10	0.20	0.25	0.36							
14	0.07	0.22	0.28	0.39	0.50						
16	0.04	0.19	0.27	0.33	0.46	0.54	0.65	0.70	0.75	0.80	
17	0.05	0.18	0.26	0.33	0.44	0.55	0.66	0.70	0.80		
19	0.05	0.17	0.29	0.30							
20	0.05	0.14	0.23	0.30	0.41	0.48	0.60	0.64	0.73	0.79	0.99
Avg.											
Gain	0.06	0.17	0.26	0.33	0.43	0.53	0.64	0.69	0.77	0.83	1.00

APPENDIX G

Weight Gains of Potato Chips

	Wpropylene at 2% 0₂		Day 154								0.21			0.22		0.18				0.20
	lised Pol		Day 126		0.17								0.20							0.19
Table 28	in Metal		Day 70						0.08	0.08							0.04			0.07
	Packaged		<u>Day 48</u>		0.08										0.06	0.04				0.06
	to Chips		<u>Day 34</u>		0.02				0.04	0.03	0.05				0.05	0.02	0.00	0.08		0.04
	of Potal		Day 20	0.00	0.05		0.07	0.01	0.05	0.03	0.04	0.03	0.05	0.04	0.01		0.00	0.08		0.04
	Gains (g)		Day 13		0.02	0.02	0.01		0.03	0.02	0.05	0.02	0.04	0.04	0.01			0.08		0.03
	Weight		Day 6	0.01	0.00	0.02	0.01		0.02	0.00	0.04		0.02	0.02				0.03		0.02
		Bag	•••		2	ო	4	2	œ	σ	11	13	14	15	16	17	18	20	Avg.	Gain

Weight Gains of Potato Chips

APPENDIX G

			d Polypropylene	P.	1.												_								
	t pe		etallise c	Dav 15	0.07		0.47									0.11	0.14						0.12		0.20
0 M	Potato Chi	29	taged in M Absorbei	Dav 126				0.10																	0.11
APPENDI	Gains of	Table	Chips Pach O. with a	Dav 56									0.06					0.07	0.08						0.07
	Weight		Potato	Dav 41	0.01	0.03	0.42	0.04	0.03	0.03	0.04	0.01	0.05	0.04	0.23	0.08	0.07	0.05	0.07	0.04	0.04	0.03	0.05		0.07
			ns (g) of	Dav 34	0.00	0.04	0.42	0.03	0.03	0.05	0.04	0.02	0.04	0.02	0.23	0.07	0.07	0.05	0.05	0.05	0.04	0.03	0.03		0.07
			eight Gai	Dav 20	0.00	0.02	0.37	0.02	0.01	0.03	0.03	0.02	0.03	0.02	0.22	0.06	0.05	0.05	0.03	0.06	0.04	0.03	0.04		0.06
			F	Dav 6	-0.02	-0.02	0.33	-0.03	-0.03	0.00		-0.04	-0.01		0.07	0.02		-0.01	-0.02	-0.02		0.01			0.02
				Bag #		2	m	4	9	2	œ	ი	10	11	12	13	14	15	16	17	18	19	20	Avg.	Gain

Day 6 0.01 0.02 0.02 0.02 0.03 0.03 0.03
 The ight Day 6 0.01 0.02 0.0

APPENDIX G

		d Polypropylene																					
Ū	otato Chips	l ged in Metallize n Absorber	<u>Day 154</u>	0.16		0.19				0.04						0.04						0.11	
APPENDIX	Gains of Pc	Table 31 Chips Packa t O. with a	Day 126						0.35		0.16											0.26	
	Weight	Potato (at 10	<u>Day 41</u>		0.17		0.42															0.30	
		ns (g) of	Day 34	0.09	0.14	0.11	0.41	0.08		0.06	0.09	0.10	0.08	0.09	0.12	0.06	0.06	0.08	0.08	0.09		0.12	
		eight Gei	Day 20	0.10	0.12	0.09	0.31	0.09	0.31	0.06	0.11	0.12	0.07	0.11	0.11	0.06	0.07	0.08	0.08	0.10		0.11	•
			Day 6	0.09	0.09		0.18		0.31		0.10	0.09		0.03	0.10		0.03	0.05				0.08	
			Bag #	10	ო	4	2	œ	6	10	11	12	13	14	15	16	17	18	19	20	Avg.	Gain	

APPENDIX H

Table 32

Initial and Final Volumes of Potato Chip Packages of Metallised Polyester Inflated with Nitrogen

<u>Package Number</u>	<u>Initial Volume (cc)</u>	<u>Final Volume (cc)</u>
2	940	910
3	815	890
4	840	880
7	920	900
8	835	910
9	800	970
11	830	1000
14	890	940
18	920	870
19	915	920
20	820	910

Table 33

Initial and Final Volumes of Potato Chip Packages of Metallized Polyester Inflated with Nitrogen and Packaged with Oxygen Absorbers

<u>Package Number</u>	<u>Initial Volume (cc)</u>	<u>Final Volume (cc)</u>
1	860	950
2	730	760
4	965	970
9	860	940
10	800	850
11	910	855
12	925	930
14	910	970
15	810	810
16	760	910
17	855	900
18	790	880
19	820	820

APPENDIX H

Table 34

Initial and Final Volumes of Potato Chip Packages of Netallized Polyester Inflated with 2% Oxygen/98% Nitrogen

<u>Package Number</u>	Initial Volume (cc)	<u>Final Volume (cc)</u>
1	860	940
2	905	910
3	975	940
5	885	890
6	920	910
7	940	950
9	900	890
10	840	830
14	960	960
17	880	890
20	920	930

Table 35

Initial and Final Volumes of Potato Chip Packages of Metallized Polyester Inflated with 2% Oxygen/98% Mitrogen and Packaged with Oxygen Absorbers

<u>Package Number</u>	<u>Initial Volume (cc)</u>	<u>Final Volume (cc)</u>
2	790	790
3	875	950
6	830	920
7	890	830
8	885	940
9	810	905
12	835	940
15	850	960
16	850	805
17	835	920
18	840	1000
20	930	930

APPENDIX H

Table 36

Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 2% Oxygen/98% Nitrogen

<u>Package Number</u>	<u>Initial Volume (cc)</u>	<u>Final Volume (cc)</u>
1	670	790
2	860	940
7	880	850
8	845	870
9	845	890
11	760	820
13	810	830
14	875	860
15	840	810
17	860	910
18	945	960

Table 37

Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 2% Oxygen/98% Witrogen and Packaged with Oxygen Absorbers

<u>Package Number</u>	<u>Initial Volume (cc)</u>	<u>Final Volume (cc)</u>
1	620	820
2	585	850
3	485	770
4	640	850
5	530	820
6	590	810
10	585	750
11	595	850
12	555	780
13	555	750
14	670	780
15	595	850
16	540	730
20	660	820
APPENDIX H

Table 38

Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 10% Oxygen/90% Nitrogen

<u>Package Number</u>	<u>Initial Volume (cc)</u>	<u>Final Volume (cc)</u>
1	840	830
3	760	870
4	820	830
5	630	760
6	850	825
7	705	805
8	730	710
9	850	820
10	760	890
11	550	590
12	680	780
13	680	730
14	830	975
15	730	730
16	775	900
17	870	855
18	810	890
19	690	680
20	830	890

APPENDIX H

Table 39

Initial and Final Volumes of Potato Chip Packages of Metallized Polypropylene Inflated with 10% Oxygen/98% Mitrogen and Packaged with Oxygen Absorbers

<u>Package Number</u>	<u>Initial Volume (cc)</u>	<u>Final Volume (cc)</u>
2	750	840
3	680	720
4	770	870
9	710	850
10	755	840
11	710	890
12	640	750
13	660	910
14	705	720
16	615	750
17	760	810
18	685	850
20	675	800

APPENDIX I

Headspace Oxygen Concentration Over Time

Table 40

Average Headspace Oxygen Concentrations (%) of Metallised Polyester Packages Over Time

	0% O ₂ Flushed		2% O ₂ Flushed		
<u>Days</u>	<u>w/o Absorber</u>	<u>w/Absorber</u>	<u>w/o Absorber</u>	<u>w/Absorber</u>	
0	0.1655	0.0722	2.262	2.12	
1		0.0989		0.8238	
2		0.1059		0.2267	
3		0.092		0.0582	
4		0.08295		0.0444	
7		0.0503		0.03128	
8		0.0402		0.01796	
17		0.0134		0.00046	
24				0.0085	
28	2.667		4.103		
31				0.0296	
38		0.0000		0.08482	
42		0.2633	5.663	0.3263	
49	4.31	0.1805		0.1323	
84			7.99		
91	7.1				
98		3.77		1.264	
126	8.355	0.8827	10.93	2.284	
154	10.32	3.52	10.47	6.26	

APPENDIX I

Headspace Oxygen Concentration Over Time

Table 41

Average Headspace Oxygen Concentrations (%) of Metallised Polypropylene Packages Over Time

	28 0 ₂	Flushed	10% O2	Flushed
<u>Days</u>	<u>w/o Absorber</u>	<u>w/Absorber</u>	<u>w/o Absorber</u>	<u>w/Absorber</u>
0	2.298	2.096	9.998	9.641
1		0.971		0.7204
2		0.2403		0.03902
3		0.374		0.01404
4		0.0188		0.00092
7		0.00278		0.00000
8		0.0000		0.0000
14	3.493		11.083	
17		0.00000		0.0000
24		0.00000		0.00000
28	4.1		11.873	
31		0.0723		0.00000
38		0.3167		0.00000
42		0.0000	11.593	0.00000
56		0.2775		0.00000
70	6.56		12.24	
98		0.166	15.9	0.0000
112			13.96	
126	10.9	0.0000	17.36	0.0000
154	12.14	8.13	14.14	0.0000

Potato Chip Hexanal Data

Table 42

Hexanal Data for Fresh Chips						
Sampling Time <u>(weeks)</u>	Chip Weight (g)	Area <u>Resp</u>	Are 1 <u>Res</u> r	a ∋ <u>#2</u> F	verage Area Response	
0 0	10.021 10.111	2 2460 9 1692	24 14	60 27	2460 1559.5	
Sampling Time <u>(weeks)</u>	Inj. <u>Size(ml)</u>	Q Hex. <u>Inj.(g)</u>	Q Hex. <u>Total(g)</u>	Q Hex. (µg/g)	Average Q Hex (ug/g)	
0 0	0.00095 0.00093	2.35e-09 1.65e-09	0.000002	0.246371 0.175874	0.211122	

Potato Chip Hexanal Data

Table 43

Hexanal Data for Chips in Metallized Polyester; 0% Initial O₂; Without an Absorber

Sampling Time <u>(weeks)</u>	Chip Weight (g)	Area <u>Resp</u> #	Are 1 <u>Res</u> r	a 2 # 2]	Average Area Response
4	10.045	57 1777	15	561	1669
4	10.081	.7 4023	42	274	4148.5
4	10.021	.7 2798	28	303	2800.5
13	10.349	5 4911	43	845	4628
13	10.292	3044	32	207	3125.5
13	10.142	5 3444	33	868	3406
22	9.971	.9 4311	43	63	4337
22	10.049	5 5010	49	34	4972
22	10.087	4244	37	88	4016
Sampling Time (weeks)	Inj. Size(ml)	Q Hex. Ini.(g)	Q Hex. Total(g)	Q Hex.	Average Q Hex (µg/g)
		<u>===, , , , , , , , , , , , , , , , , , </u>			
4	0.000925	1.74e-09	0.00002	0.187713	3 0.285925
4	0.000925	3.63e-09	0.000004	0.38912	7
4	0.000925	2.60e-09	0.00003	0.280934	4
13	0.000925	3.99e-09	0.00004	0.41712	7 0.353555
13	0.0009	2.85e-09	0.00003	0.307823	3
13	0.0009	3.06e-09	0.00003	0.33571	5
22	0.0009	3.77e-09	0.00004	0.420304	4 0.426443
22	0.0009	4.25e-09	0.000005	0.47042	
22	0.0009	3.53e-09	0.000004	0.38860	5

Potato Chip Hexanal Data

Table 44

Hexanal Data for Chips in Metallized Polyester; 0% Initial O₂; With a 100cc Capacity Absorber

Sampl Time <u>(week</u>	ling (s)	Chip Weight (g)	Area <u>Resp</u>	Ar 1 Res	ea p_#2	Average Area <u>Response</u>
6		10.101	.2 335	3 3	304	3328.5
DATA	BELOW	THIS LIN	IE IS FOR '	THE SECOND	CALIBRA	ATION CURVE
22		10.009	6 1058	5 9	874	10229.5
22		10.002	4 2149	6 20-	471	20983.5
22		10.061	. 809	4 7	798	7946
Sampl Time	ling	Ini.	O Hex.	O Hex.	O Hex.	Average O Hex
(week	(8)	Size(ml)	Inj.(q)	Total(q)	(ha/a)	(µa/a)
6 DATA	BELOW	0.000925 THIS LIN	3.01e-09 E IS FOR '	0.000003 THE SECOND	0.3216 CALIBRA	573 0.321673 ATION CURVE
22		0.0009	4.06e-09	0.000005	0.4506	521 0.534409
22		0.0009	6.95 e- 09	0.00008	0.7720)82
22		0.0009	3.45e-09	0.00004	0.3805	526

Potato Chip Hexanal Data

Table 45 Hexanal Data for Chips in Metallised Polyester; 2% Initial O₂; Without an Absorber Sampling Chip Average Weight Time Area Area Area (weeks) _(q)___ Resp #1 Resp #2 Response 6 10.0206 3938 3912 3925 6 10.0824 5044 5000 5022 12 10.0792 4076 4101.5 4127 12 10.02755 6545 6572 6558.5 22 10.0299 8713 8332 8522.5 22 10.1864 7499 7541 7520 22 10.0816 5875 5522 5698.5 Sampling Average Time Inj. Q Hex. Q Hex. Q Hex. Q Hex (weeks) <u>Size(ml)</u> <u>Inj.(q)</u> Total(q) $(\mu q/q)$ <u>(#a/a)</u> 6 0.000925 3.46e-09 0.000004 0.373173 0.41673 6 0.000925 4.29e-09 0.000005 0.460288 0.0009 12 3.59e-09 0.000004 0.396098 0.50058 12 0.0009 5.46e-09 0.000006 0.605063 22 0.0009 6.95e-09 0.00008 0.770287 0.658469 22 0.0009 6.19e-09 0.000007 0.675341 22 0.0009 4.81e-09 0.529779 0.000005

Potato Chip Hexanal Data

Table 46

Hexanal Data for Chips in Metallized Polyester; 2% Initial O₂; With a 200cc Capacity Absorber

Sampling Time (weeks)	Chip Weight _(q)	Area Resp #1	Area Resp #2	Average Area Response
7	10.0366	2402	2354	2378
7	10.1513	4486	4427	4456.5
DATA BELO	W THIS LINE	IS FOR THE	SECOND CALL	BRATION CURVE
22	10.0221	10222	10506	10364
22	10.1873	23526.5	24700	24113.25
22	10.1318	8354	7768	8061
Sampling	Thi		Hoy O F	Average

Time (weeks	Inj. s) Size(ml)	Q H ex. Ini.(q)	Q Hex. Total(g)	Q Hex. (μα/α)	Q Hex (µa/a)
					
7	0.0009	2.28e-09	0.00003	0.252759	0.254596
7	0.0009	2.34e-09	0.00003	0.256434	
DATA B	BELOW THIS LIN	E IS FOR T	HE SECOND	CALIBRATIO	N CURVE
22	0.0009	4.10e-09	0.000005	0.454067	0.561719
22	0.0009	7.79 e- 09	0.00009	0.849834	
22	0.0009	3.48e-09	0.000004	0.381257	

Potato Chip Hexanal Data

Table 47

Hexanal Data for Chips in Metallised Polypropylene; 2% Initial O₂; Without an Absorber

Sampling	Chip			1	Average
Time	Weight	Area	Are	a	Area
<u>(weeks)</u>	<u>(a)</u>	<u>Resp #1</u>	<u>Res</u>	<u>⊳ #2</u> I	Response
2	10.0018	3 2570	20	592	2631
2	10.0027	7 2689	27	729	2709
4	10.068	2953	29	952	2952.5
10	10.0886	5 4782	40	595	4738.5
10	10.0874	2642	27	788	2715
10	10.2044	3497	35	508	3502.5
22	10.0405	5 9487	101	L 4 8	9817.5
DATA BELO	W THIS LINH	E IS FOR TH	IE SECOND	CALIBRAT	ION CURVE
22	10.2478	3 13334	136	554	13494
22	10.0926	5 9930	107	/31	10330.5
Sampling					Average
Time	Inj.	Q Hex.	Q Hex.	Q Hex.	Q Hex
<u>(weeks)</u>	<u>Size(ml)</u>	<u>Inj.(g)</u>	<u>Total(g)</u>	<u>(#a\a)</u>	<u>(#a\a)</u>
2	0.000925	2.48e-09	0.00003	0.267568	3 0.27076
2	0.000925	2.53e-09	0.00003	0.273951	L
4	0.000925	2.72e-09	0.00003	0.292047	0.292047
10	0.0009	4.08e-09	0.000005	0.449051	0.356805
10	0.0009	2.54e-09	0.00003	0.279699	
10	0.0009	3.14e-09	0.00003	0.341665	5
22	0.0009	7.94e-09	0.00009	0.878397	0.621199
DATA BELO	W THIS LINE	E IS FOR TH	IE SECOND	CALIBRATI	ION CURVE
22	0.0009	4.94e-09	0.00005	0.535297	7
22	0.0009	4.09e-09	0.00005	0.449904	ł

Potato Chip Hexanal Data

Table 48

Hexanal Data for Chips in Metallised Polypropylene; 2% Initial O₂; With a 200cc Capacity Absorber

Sampi Time <u>(wee</u>]	ling <u>ks)</u>	Chip Weight _(g)	t _ R	Area Resp	<u>#1</u>	Are <u>Res</u> i	a ∋ #2	Aver Ar <u>Resr</u>	:age :ea <u>)onse</u>
8		10.04	10	386	8	37	748	38	308
DATA	BELOW	THIS LI	NE IS	FOR	THE	SECOND	CALIBRA	TION	CURVE
22		11.11	21	1288	1	127	792	128	36.5
22		10.20	38	1856	5	180)79	183	322
22		10.32	35	723	6	67	42	69	189
Samp	ling							P	verage
Time	-	Inj.	Q He	ex.	Q	Hex.	Q Hex.		Q Hex
<u>(wee</u>]	<u>ks)</u>	<u>Size(ml)</u>	Īnj.	<u>(a)</u>	T	tal(g)	(ha\a)		(ha/a)
8		0.000925	3.37	e-09	0.	000004	0.3628	41 0	.362841
DATA	BELOW	THIS LI	NE IS	FOR	THE	SECOND	CALIBRA	TION	CURVE
22		0.0009	4.76	ie-09	0.	000005	0.4759	88 0	.499361
22		0.0009	6.23	e-09	0.	000007	0.6789	34	
22		0.0009	3.19	e-09	0.	000004	0.3431	61	

Potato Chip Hexanal Data

Table 49

Hexanal Data for Chips in Metallised Polypropylene; 10% Initial O₂; Without an Absorber

Sampling Time <u>(weeks)</u> 2	Chip Weight 10.0954	Area <u>Resp #1</u> 2506	Area <u>Resp</u> 2168	Aver Ar <u>#2 Respo</u> 3 233	age ea <u>nse</u> 7
2	10.0575	5 1917	1933	3 192	5
10 10	10.0798 10.0506	5709 555916	5727 6107	7 571 7 601	8 1.5
10	10.0024	4123	4127	412	5
14	10.0366	5 3941	4187	406	4
16	10.0184	4922	5174	504	8
DATA BELOW	THIS LINE	E IS FOR TH	ie second o	CALIBRATION	CURVE
22	10.0794	15628	8 14565	5 1509	6.5
22	10.0350) 11054	10644	1084	9
22	10.2494	23459	23315	5 2338	7
Sampling				A	verage
Time	Inj.	Q Hex.	Q Hex.	Q Hex.	Q Hex
(weeks)	<u>Size(ml)</u>	<u>Inj.(g)</u>	<u>Total(g)</u>	<u>(ma\a)</u>	<u>(ha\a)</u>
2	0.000925	2.25e-09	0.000002	0.241158 0	.224783
2	0.000925	1.940-09	0.000002	0.208407	
10	0.0009	4.82e-09	0.000005	0.531508 0	.496781
10	0.0009	3.610-09	0.000000	0.337713	
10	0.0009	J.016 09	0.000004	0.401125	
14	0.0009	3.56e-09	0.00004	0.394623 0	.394623
16	0.0009	4.31e-09	0.000005	0.478287 0	.478287
DATA BELOW	THIS LINE	E IS FOR TH	ie second o	CALIBRATION	CURVE
22	0.0009	5.37 e- 09	0.000006	0.591729 0	.627723
22	0.0009	4.23e-09	0.000005	0.46792	
22	0.0009	7.60e-09	0.00008	0.82352	

Potato Chip Hexanal Data

Table 50

Hexanal Data for Chips in Metallised Polypropylene; 10% Initial O₂; With a 400cc Capapeity Absorber

Sampi Time <u>(wee</u>)	ling <u>ks)</u>	Chip Weight _(g)	. F	Area lesp	1	Area <u>Resp</u>	Av #2 Re	/erage Area esponse
6		10.096	3	3004	ł	369	5	3349.5
8 גדגת	BELOW	10.041 THIS LIN	5 E TS	3764	HE SEC	320	5 AT.TBRATTO	3484.5
22		10.094	1	6911		665	1	6781
22		10.460	ō	7090		718	ō	7135
22		10.244	6	6959)	655	9	6759
Samp	ling							Average
Time	-	Inj.	Q He	х.	Q Hex	•	Q Hex.	Q Hex
<u>(wee</u>]	<u>ks)</u>	<u>Size(ml)</u>	Inj.	<u>(a)</u>	<u>Total</u>	<u>(a)</u>	(ma\a)	<u>(ħa\a)</u>
6		0.000925	3.02	e-09	0.000	003	0.323538	0.323538
8		0.000925	3.12	e-09	0.000	003	0.336351	0.336351
DATA	BELOW	THIS LIN	E IS	FOR I	HE SEC	OND C	ALIBRATIC	ON CURVE
22		0.0009	3.13	e-09	0.000	003	0.344804	0.342251
22		0.0009	3.23	e-09	0.000	004	0.342852	
22		0.0009	3.13	e-09	0.000	003	0.339098	

APPENDIX K

Table 51

Percent Recovery Data & Calculations

Solution 1:

	Solution for Basis	Extract 1	Extract 2	
Injection	<u>Area Response</u>	<u>Area Response</u>	<u>Area Response</u>	
1	24442	21576	23340	
2	23260	18555	20608	
3	22960	17404	21497	
Average	23554	19178	21815	
Recovery		81.4%	92.6%	
Average Rec	overy		87%	

Solution 2:

Average Rec	overy	91.9%		
Recovery		92.0%	91.9%	
Average	9469	8714	8699	
3	9702	9385	8827	
2	9121	8141	8400	
<u>Injection</u> 1	<u>Area Response</u> 9585	<u>Area Response</u> 8617	<u>Area Response</u> 8869	
	Solution for Basis	Extract 1	Extract 2	

LIST OF REFERENCES

LIST OF REFERENCES

- Anonymous. August 1990. The packaging activists. Prepared Foods. pp. 172.
- Berends, C.L. 1993. Measurement of the effect of water activity on the rate of lipid oxidation at constant oxygen concentration. M.S. thesis. Michigan State University, East Lansing.
- Bidlack, W.R. and Tappel, A.L. 1973. Fluorescent products of phospholipids during lipid peroxidation. Lipids. 8:203-207.
- Brunauer, S., Emmett, H.P. and Teller, E. 1938. Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc. 60:309-319.
- Buttery, R.G. 1961. Autoxidation of Potato Granules. Agricultural and Food Chemistry. 9(3):245-252.
- Cavaletto, C.G. and Yamamoto, H.Y. 1971. Factors affecting macadamia nut stability. 3. Effects of roasting oil quality and antioxidants. Journal of Food Science. 36:81.
- Columbus Instruments International Corporation. 1993. Lipid Peroxidation in Potato Chips. 1993 Promotional Leaflet. Columbus Instruments International Corporation, Columbus, Ohio.
- Fennema, O.R. 1985. Lipids. In Food Chemistry, O.R. Fennema (Ed.),23-67. Marcel Dekker, New York.
- Frankel, E.N. 1984. Lipid Oxidation: Mechanisms, products and biological significance. JAOCS. 61(12):1908-1915.
- Frankel, E.N., Neff, W.E. and Selke, E. 1981. Lipids. 16:279-285.
- Fritsch, C.W. and Gale, J.A. 1977. Hexanal as a measure of rancidity in low-fat foods. J. Amer. Oil Chem. Soc. 54:225-228.
- Fuller, G., Guadagni, D.G., Weaver, M.L., Notter, G. and Horvat, R.J. 1971. Evaluation of oleic safflower oil in frying of potato chips. J. Food Sci. 36:43-44.

- Gray, J.I. 1991. Measurement of Lipid Oxidation. Presented at AOCS short course on Lipid Oxidation, May 1992.
- Gray, J.I. and Monahan, F.J. 1992. Measurement of lipid oxidation in meat and meat products. Trends in food Science & Technology. 3:315-319.
- Gutteridge, John M.C. and Halliwell, Barry. 1990. The measurement and mechanism of lipid peroxidation in biological systems. TIBS 15 April 129-134.
- Heidelbaugh, N.D. and Karel, M. 1970. Effect of water binding agents on catalyzed oxidation of methyl linoleate. JAOCS 47:539.
- Heidelbaugh, N.D., Yeh, C.P. and Karel, M. 1971. Effects of model system composition on autoxidation of methyl linoleate. J. Ag. Food Chem. 19:140.
- Idol, R.C. and Wagner, B.F. Evolution of oxygen absorbers.
- Jeon, I.J. and Bassette, R. 1984. Analysis of n-Pentanal and n-Hexanal as Indices of Potato Chip Shelf-Life. J. of Food Quality. 7:97-105
- Kail, J.A.E. 1984. Flavor Barrier Evaluation Enhances Material Selection. Packaging. Sept. 1984:68-70.
- Karel, M., and Yong, S. 1981. Autoxidation-initiated reactions in food. In Water Activity: Influences on Food Quality, L.B. Rockland and G.F. Stewart (Eds.), 511-529. Academic Press, New York.
- Keener, John. 1994. Personal communication. Frito-Lay, Wooster, OH.
- Koelsch, C.M. 1989. A system for the measurement of the rate of lipid oxidation at constant oxygen concentrations and relative humidity. M.S. thesis. Michigan State University, East Lansing.
- Labuza, T.P., Tannenbaum, S.R. and Karel, M. 1970. Water content and stability of low moisture and intermediate moisture foods. Food Technology 24:543.
- Labuza, T.P., Heidelbaugh, N.D., Silver, M. and Karel, M. 1971. Oxidation at intermediate moisture content. JAOCS 48:86.

- Labuza, T.P. and Breene, W.M. 1989. Application of "Active Packaging" for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. Journal of Food Processing & Preservation. 13:1-69.
- Matoba, T., Hidaka, H., Narita, H., Kitamura, K., Kaizuma, N. and Kito, M. 1985. Lipoxygenase-2 isozyme is responsible for generation of n-hexanal in soybean homogenate. J. Agric. Food Chem. 33:852-855

Melton, S.L. 1983. Food Technology. 37(7):105-111.

- Mookherjee, B.D., Deck, R.E. and Chang, S.S. 1965. Relationship between monocarbonyl compounds and flavor of potato chips. J. Agric. Food Chem. 13(2):131-134.
- Nakamura, H. and Hoshino, J. 1983. Chapter XII. Techniques for the preservation of food by employment of an oxygen absorber. In Sanitation Control for Food Sterilizing Techniques, Sanyo Pub. Co., Tokyo, Japan.
- Nawar, Wassef W. 1985. Lipids. In Food Chemistry, O.R. Fennema (Ed.), 139-244. Marcel Dekker, New York.
- Orr, P.H. and Cash, J.N. 1991. Potatoes and Potato Processing. In Encyclopedia of Food Science and Technology, 4 Volume Set. 2132-2136. Jon Wiley and Sons, Inc.
- Paradis, Armand. 1993. Personal communication. Liquid Carbonic, Chicago, IL.
- Quast, D. and Karel, M. 1971. Effects of oxygen diffusion on oxidation of some dry foods. Journal of Food Technology. 6:95-106.
- Quast, D.G. and Karel, M. 1972. Effects of Environmental Factors on the Oxidation of Potato Chips. J. of Food Science. 37:584-588.
- Rice, J. 1990. Polymeric oxygen scavenger system. Food Processing. July 1990. pp. 44,46.
- Rooney, M. 1981. Oxygen scavenging from air in package headspaces by singlet oxygen reactions in polymer media. J. Food Sci. 47:291.
- Rooney, M. 1983. Photosensitive oxygen scavenger films: an alternative to vacuum packaging. CSIRO Fd. Res. Q. 43:9-11.

- Sacharow, S. 1991. Packaging meets 1990s needs through active technology. Paper, Film & Foil Converter. July 1991. pp. 52-53.
- Scott, D. and Hammer, F. 1961. Oxygen scavenging packet for in package deoxygenation. Food Technology 15:99
- Tang, J., Ma, M., Street, J., Warren, L., Schroeder, O.E. and Wohlman, A. 1981. Studies on potato chip flavor stability. J. Amer. Oil Chem. Soc. 58:576A (Abst.)
- Waletzko, P. and Labuza, T.P. 1976. Accelerated shelf-life testing of an intermediate moisture food. J. Food Sci. 41:1338.
- Zenner, B.D. and Salame, M. 1989. A new oxygen absorbing system to extend the shelf-life of oxygen sensitive beverages. Presented at BEV-PAK '89 Thirteenth International Ryder Conference on Beverage Packaging, April 3-5, 9.