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ABSTRACT
THE APPLICATION OF GIBBS SAMPLING TO

NESTED VARIANCE COMPONENTS MODELS
WITH HETEROGENOUS WITHIN-GROUP VARIANCE

By
Rafa M. Kasim

Research in social sciences such as education,
psychology, and sociology often involves analyzing
hierarchically structured data. The use of Bayesian
procedures with hierarchical linear regression models to
analyze such data helped researchers obtain answers to
questions where standard approaches seem to fail. It also
improved the estimates of the regression coefficients by
obtaining their empirical Bayes estimates.

Empirical Bayes estimates of the regression coefficients
at two levels of hierarchy are usually conditioned on the
maximum likelihood estimates of the variance components, and
often assuming homogeneity of within-group variance. There
are times however, where research interest is focused on
studying the variance components, especially when there exists
a clear evidence of heterogeneity of variance, and there is a
great concern about the effect of the uncertainty in
estimating these variances on the empirical Bayes estimates of
the regression coefficients. A mixed model with random
intercept, which permits heterogenous within-group variances, {3}
for j=1,-,k, across the k units is introduced within the

Bayesian approach. Information about the within-group




variance and the intercept from these k units represent their
prior distributions in a second level of the analysis. The
marginal posterior distributions of the variance components
and regression coefficients parameters are obtained via Gibbs
sampling. The goal is to obtain Bayes estimates of the
parameters of interest, especially those of the within-group
variances, and study the effect of adjusting for the
uncertainty in estimating the variance components on the
estimation of the regression coefficients. Bayes estimates of
the parameters for the specified model, with heterogenous
within-group variance obtained via Gibbs sampling, are
compared to their empirical Bayes estimates obtained via HIM
analysis assuming homogeneity of variance.

The process of Gibbs sampling applied on several
artificial data sets, and on one real data set to obtain the
marginal posterior distributions of the parameters for the
specified model. The real data set represents a nationwide
random sample from the high schools in the U.S. Eighteen
artificial data sets were generated to represent three models.
The variation between the 18 data sets covers the complexity
of the model used (number of predictors at the two levels),
the degree of heterogeneity of within-group variance, and the
number of groups in level-2. These data sets were generated
to reflect the different models used in analyzing the real
data set.

There appears to be no substantial difference between

Bayes estimates (posterior means) and empirical Bayes




estimates of the regression coefficients. Note that empirical
Bayes estimates are based on the assumption of homogeneity of
within-group variance, ¢%=¢2. When it comes to the estimation
of the variance components, HLM estimates of the within-group
variance component, o2 are found to be positively biased,
especially when there exists clear evidence of heterogeneity

of variance.
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CHAPTER 1

Introduction

Social and educational research is usually conducted in
natural settings such as schools or communities rather than in
a controlled experimental setting. Natural settings often
have a hierarchical structure. In education, for example,
students are nested within classrooms, and classrooms are
nested within schools. This hierarchical structure is
reflected in the data collected from these nested levels.
Observations at one level share common characteristics. 1In
teacher-effectiveness studies, for example, students within a
classroom share common characteristics of the teacher and
his/her teaching method.

Student learning may be viewed as a result of social
interaction within the classroom and the school system
(Bandura, 1977). Students are assigned to classrooms, and
they are taught in a planned and structured manner. Even
though individual students respond differently to the same
teaching process, their responses will have commonality.
Therefore, observations on students learning cannot often be
assumed independent. However, independence is one of the
assumptions of many statistical procedures that researchers

often use in their analyses.
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Ignoring the hierarchical structure of the data leads to
other statistical problems (Burstein, 1980; Cooley, Bond and
Mao, 1981; Cronbach and Webb, 1975; Knapp, 1977; and
Raudenbush and Bryk, 1988), such as aggregation bias.
Aggregation bias occurs when the relationship between two
variables varies (in magnitude and sometimes even in
direction) for different levels of data analysis (Cooley, Bond
and Mao, 1981; Cronbach and Webb, 1975; Robinson, 1950). For
example, the relationship between socioeconomic status (SES)
and academic achievement is more likely to be higher in school
level data than it is in student level data. This difference
in the relationship is attributed to the effect of aggregation
of the data in each school. In general, school level
membership is related to SES; schools with higher levels of
SES are likely to have higher quality educational programs
which lead to higher achievement in those schools.

Information loss is another substantive problem that
results from ignoring the hierarchical structure in data
analysis. After the research or the evaluation design is
determined, a type of data analysis is usually chosen to
answer questions related to one level of data. If the
research questions were asked about students, it is likely
that they will be answered with a student-level analysis. If
questions were asked about classrooms, then it is likely that
they will be answered with a classroom-level analysis. When

the analysis is done at the classroom-level (i.e., using the
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classroom as unit of analysis), it is very possible that some
important relationships between variables that were measured
on the student level will be ignored.

However, there has been recent development of statistical
methods which are appropriate for analyzing a hierarchically
structured data based on multi-stage (often two-stage) linear
models (Aitkin and Longford, 1986; Burstein, 1980; Goldstein,
1986; Lindley and Smith, 1972; Smith, 1973; Rao, 1972;
Rosenberg, 1973; Raudenbush and Bryk, 1986). General linear
mixed models or hierarchical linear models (HLM) are some of
the names used to describe the statistical models developed
for analyzing multilevel data.

The multi-stage methods share a common characteristic of
treating the within-unit regression parameters as outcomes for
the between-unit models. They differ, however, in the
procedure for estimating variance components. Some of these
procedures use the iterative generalized least squares method
suggested by Goldstein (1986), some use the EM algorithm
method as applied by Raudenbush and Bryk (1986), and other use
the Fisher scoring approach (Longford, 1987). The estimates
produced by all these numerical procedures are maximum
likelihood point estimates. They are consistent, efficient,
asymptotically unbiased, and normally distributed (Harville,
1977) .

A two stage HLM can be presented in the following general

form. Within unit j, for j =1,-, k units, we have




_ (1.1)
Y= XiBy v ey,

where Y, is an n;x1 vector of observations, X; is an n;xp
matrix of within-unit predictor variables, f; is a px1
parameter vector which captures the relationships between Y;
and X; within each unit, and €; is an n;x1 vector of random
errors which 1is assumed to have a multivariate normal
distribution with mean vector 0 and variance covariance matrix

% that is €;~N(0,Ic3). For X; with rank (X;)=p the

Ic
Ordinary Least Square (OLS) estimate for B; is given by
ﬁj=(XJ/-Xj)-1X_§Yj with a sampling variance of
Var(fijlﬁj) = 0% (Xjx;) .

By allowing the within-unit regression model coefficient
to vary as a function of between-unit variables, we have a

multi-level model that describes hierarchically structured

data. Therefore, in the second (between-unit) stage, we have

By = Wy + U, (1-2)

where W; is a pxg matrix of known between-unit predictors and
Yy is a gx1 vector of parameters that capture the effect of
the between-unit predictors W; on the within-units parameters.
U; is assumed to be N(0,T) , where T 1is the residual
variance-covariance matrix for f; after accounting for the

effects of W;. Thus, we <can have a more general
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representation of the multilevel model by substituting 1.2

into 1.1 to obtain
Y = X;Wy + &5, (1.3)

where §; = X,U;+e;. One might estimate the effects in 1.3 by
using an ordinary least squares (OLS) multiple regression
approach to the estimation of multiple simultaneous effects.
However, one of the basic statistical assumptions for OLS is
the homogeneity of variance for §;. Because §; is equal to
X;U; + €;, this assumption can only be valid when either U; is
set to equal zero or if X;=X for all j. Setting either U,
equal to zero or X;=X , however, implies holding all the
within-unit regression model parameters as a constant across
all units and ignoring the hierarchical structure of the data.
This leads to the violation of the assumption of independence.

The total variance Var(ﬁjIWﬁ of the within-unit

regression estimates is made of their sampling variance

Var(ﬁjlﬁj) plus their residual variance Var (B;|W;) . That is

Var(ﬁjlhg) = o§(2§X})*~+ T . (1.4)

Many applications have been found which can utilize the
statistical model in 1.1 and 1.2. In longitudinal studies
(Bryk and Raudenbush, 1987; Laird and Ware, 1982; Strenio,
Weisberg and Bryk, 1983) the growth model parameters for each

subject become the multivariate outcomes for the between-unit
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models. Subject characteristics (either observed or
controlled) can serve as predictors for these outcomes.

In research synthesis (Raudenbush and Bryk, 1985), a
sinmple measurement model for the observed effect size is set
equal to the true effect size plus some error in each study.
This measurement model is a special form of the within-unit
model in 1.1. The parameter B; becomes the true effect size
in study j and X; becomes a scaler with a value of one. The
true effect sizes vary across studies as a function of known
study characteristics plus error in the form of the between-
unit model in 1.2.

A major benefit of fitting models 1.1 and 1.2 to hierar-
chical data is the possibility of getting empirical Bayes
estimates for the within-unit regression model parameters.
Empirical Bayes estimates are more stable and outperform the
classical estimates with regard to expected mean squared
error. Information from other groups can be used to get
improved estimates for the within-unit regression model
parameters. In providing a prediction equation, Braun, Jones,
Rubin, and Thayer (1983) presented a situation where there are
several predictors and few cases 1in subgroups of the
population which makes it hard to obtain 1least squares
prediction equations. The objective of their study was to
provide separate predictive equations for the Graduate
Management Admission Test (GMAT) for the white and minority

students in each business school. Only 4% of 8500 students
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sampled from 59 business schools were minority students. The
number of minority students within each school ranged from 2
to 10; this made it hard to obtain a prediction equation for
minority students for a particular school. With the HLM
analysis, information from other schools was borrowed to
obtain the predictive equation for the minority students
within each school.

Assuming that o§ and T are known, empirical Bayes

estimates of ﬁj and y are given by

Bj = Ajﬁj + (1-4;) w;y* (1.5)
where
, = T,
A; =T (v;+T) . 6)
v, = 65 (Xjx;) 1.7)
and
Y= {§W§[Var(ﬁjle)]“1wj }1{ ?wj/- [Var(ﬁj]wj)]'lﬁj} . (1.8)

The first component of B in 1.5 is the OLS estimate of B
from the data within each unit weighted by its reliability

A.. The second component, ¥* is an empirical Bayes estimate

)
of the between-unit parameters, Y from 1.2. More
comprehensive presentations of the HIM and different methods

of estimation of the parameters of the model are given by
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Lindley and Smith (1972), Smith (1973), and Raudenbush (1984,
1988) .

Although empirical Bayes methods have been around for a
long time, they became increasingly popular and were applied
to many types of problems in the early 1970s. Efron and
Morris (1972, 1973, 1975, 1977) discussed many applications of
empirical Bayes methods. Empirical Bayes estimates of the
parameters in hierarchical linear models are obtained when the
true values for o§ and T are known. 1In practice, however,
these values are rarely known to practitioners and often are
estimated from the data. Common estimates often used for
these two parameters are their maximum likelihood (ML)
estimates. Since estimates of the regression coefficients of
the HIM are functions of ML estimates of ¢ and T, they are
also considered to be ML estimates (Raudenbush, 1988).

In classical ANOVA procedures o5 and T represent the
within- and between-group variance components, respectively.
In balanced designs these variance components can be estimated
by solving a set of simultaneous linear equations obtained
from equating the observed mean squares (which are quadratic
forms of the observations) to their expected values (Searle,
1971). For unbalanced designs, there is more than one set of
quadratic forms to use for estimating these variance
components. Depending on the particular set |used,
inconsistent estimates of the variance components may be

obtained (Searle, 1971).
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Introducing HIM to the analysis of educational data can
improve the quality of the data analysis in education. 1It,
also helps applied statisticians obtain sensible answers to
questions where standard approaches seem to fail. However,
there continue to be obstacles related to HILM applications and
theoretical derivations.

In some applications where the assumption of homogeneity
of variance cannot be verified, drawing inferences on the
variance components becomes part of the research interest,
especially the variances of the within-unit residuals
(Leonard, 1975; Rao, 1970; Raudenbush and Bryk, 1987). The
motivation for making such inferences on the variances can be
attributed to the intrinsic interest 1in the variances
themselves and to the fact that they are part of the standard
errors of estimates for the regression coefficients. In other
applications, where we have small samples within each group
and a small number of groups, maximum likelihood estimates for
the variance components o and T might become unstable.
Substituting these unstable estimates as true values for the
variance components will distort the regression effect

estimates.

Purpose of the Study

The purpose of this study is to obtain marginal posterior

distributions for all effect parameters and variance
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components in a linear mixed model with random intercepts

without relying on the assumption of homogeneity of the

residual variance o§ across groups. Non-informative priors

will be posed on the hyper-parameters that describe the

distributions for random parameters. The marginal posterior

distribution for each parameter will then be approximated

using the Gibbs sampling method (Tanner, 1993).

When research interest is focused on making inferences on
variances, finding the entire posterior distribution for each

of the variance components is more informative than having

only a point estimate of the variance. Having the entire

posterior distribution at her/his disposal will allow the

researcher to have the flexibility in choosing an appropriate

estimate for the variance. Further, s/he can establish

probability intervals around the estimate.

Objectives of the study

The idea of approximating the marginal posterior

distributions for all parameters in the model leads to the

question of how feasibly to do so.

Therefore, the questions

of this study are:

1-

How do the posterior mean (Gibbs) estimates of the

parameters of a mixed model with heterogenous within-

group variance differ from their empirical Bayes

estimates which are based on the homogeneity of within-
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group variance assumption? (Empirical Bayes estimates
for the within- and between-unit regression coefficients
were conditioned on ML estimates of the variance
components with homogeniety of within-group variance).
How do inferences about regression coefficients change
when taking into account the uncertainty in estimating
the variance components?

Can a single estimate be used as typical value for all
the different residual variances {0%?

How precise are the posterior mean (Gibbs) estimates of
the residual variances {63} in estimating their single

typical value?

The last two questions focus on the parameters of the prior

distribution of the residual variances {63}. Inferences can be

made on these two parameters from their approximated marginal

posterior distributions.

Bayes Solution

If reasonable priors are posed for all the unknown

parameters in the model, theoretically, the marginal posterior

distributions of the parameters of interest can be obtained by

integrating out the other nuisance parameters in the model.

Bayes estimates for these parameters can then be derived from

their respective marginal posterior distributions based on a

certain loss function.
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From a Bayesian viewpoint, estimating a parameter 0,
given its sufficient estimate 6 from the sample implies
selecting a decision function, say D, so that D(é) is a
predicted value of 6 when both the computed value 6 and the
posterior density function fﬁelé) are known. Often, the
researcher predicts an experimental value of any random
variable to be its expected value; however, the median or the
mode can also be used as predicted values. For many cases, it
is desirable that the choice of the decision function
D should depend upon the loss function say I{O,D(é)], that we

try to minimize (Hogg and Tanis, 1977). For example, when the

loss function is given by:

L[6,D(6)] =6 - D(8) P (1.9)

then Bayes' solution that minimizes this loss function is

given by D(6)=E(6|6). It is also possible to obtain Bayes'

probability confidence intervals for the estimates directly

from their respective marginal posterior distributions.

A problem associated with the application of Bayesian

methods to hierarchical models is the difficulty of the
mathematics involved in the derivation of the posterior
distributions (Lindley and Smith, 1972). The multiple
dimensions of the parameter space in the model make it
difficult to express some of the required equations in closed

form. Therefore, certain marginal posterior distributions
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cannot be obtained analytically through direct evaluation of
an integral, and in many applications, integrating out the
nuisance parameters is a difficult job. Consequantlly,
empirical Bayes estimates are used to approximate truly
Bayesian estimates.

In some situations we might find that the focus of the
research is centered around making inferences about o5 and T
rather than the regression coefficients in the model.
Therefore, obtaining the marginal posterior distributions for
these parameters is more informative than obtaining their
single point estimates. Even when concern focuses on the
regression coefficients it will be useful to insure that
posterior uncertainty regarding these coefficients fully
reflects posterior uncertainty about the variance-covariance

components.

Importance of the Study

In educational settings, where we have several
classrooms or several schools, interest is mainly focused on
studying the factors that affect students' academic
achievement. Traditionally, student achievement is evaluated
by comparing schools or classrooms on their means on some
measure of academic achievement, usually students' test
scores. Often, important decisions such as school funding or

teacher promotion are based on this evaluation. The fairness
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of these decisions depends on whether the test score means in
different schools or classrooms truly represent students'
academic achievement. Many factors that could affect these
means can be controlled statistically <through model
specification. However, it 1is still possible that for a
slightly higher test score mean, one school will get more
funds than others or a specific teacher may get promoted. It
is also possible that the school that got extra funds or the
teacher who got promoted produced higher variability in their
students' academic achievement.

A successful educational program or an effective teacher
should arguably strive not only to increase and facilitate
students' academic achievement, but also to reduce the gap
between students' 1learning and produce equality in their
achievement (Bloom, 1984). Therefore, the evaluation process
should be based not only on average achievement, but also on
the equity of the achievement. Consequently, any improvement
on the methods of estimating these two criteria certainly
helps the decision maker in his/her evaluation of the
educational system.

Another example 1is drawn from research syntheses
(Raudenbush and Bryk, 1985; Rubin, 1981) where a simple model
for the observed effect size is set equal to unknown true
effect size plus some error for each study. The objective is
to obtain an efficient estimate of each study effect size as

well as its precision. It is also common in some cases to
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have a number of groups with a small number of observations
for each group which were obtained under the same conditions.
For example, in longitudinal studies, the growth of subjects
from the same age can be observed over several points of time.
One might become interested in studying the growth rate of a
particular subject in comparison to other subjects. The
replicate observations on the subject can then be used for
variance estimation.

In all of above examples, there are two sets of
parameters (means and variances) with several parameters of
the same type in each set. Within each set, these parameters
are related by common circumstances; schools or classrooms in
the first example, studies in the second example, and the
individual subject in the last example. Within the Bayesian
framework, it is logical to assume that these many parameters
that share common circumstances would have a common parametric
prior distribution. This distribution summarizes the informa-
tion about these parameters prior to data collection. This
allows the researcher to use such prior knowledge about these
parameters to get their improved estimates.

With the help of modern computers and developments in
simulation theory, research interest is being directed towards
approximating the posterior distributions of the parameters in
the model being investigated and obtaining their Bayesian
estimates (Tanner and Wong, 1987). In his work on

hierarchical linear models, Seltzer (1988) adopted the data
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augmentation method to obtain Bayesian estimates for variance
components. He also investigated Bayes' estimates for the
within-school regression coefficients when they are assumed to
have a t-distribution (see also Seltzer, 1993). Fotiu (1989)
also applied the method of data augmentation in estimating
the joint posterior distributions for the effect parameters
(within- and between-units) when analyzing many groups. Both
Seltzer and Fotiu approximated the posterior distribution of

2

(o )

2 under the assumption that it is equal to o¢? across all

groups. This assumption is usually made for convenience,
rather than because it necessarily holds true. By making this
assumption, the researcher can pool all the observations from
all the groups to get a large-sample point estimate of o?.
However, when the marginal posterior distributions of all the
parameters in the model can be approximated, this assumption
becomes no longer essential to the analysis. In fact,
sometimes the main objectives of the statistical analysis is
to estimate the posterior distribution for each o} .

In conclusion, the objective of this study is to
investigate the use of a mixed linear model with heterogenous
variances {oﬁ across groups. A linear regression model with
a random intercept will be used to represent the relationship
between the criterion variable and the predictors in each
group. By obtaining the marginal posterior distribution for
all the parameters in the model, the practitioner can obtain

Bayes estimates for the effect parameters as well as variance-
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covariance components. Based on the theoretical formulation
of the model a number of simulated data sets will be generated
to verify the accuracy of the estimation under different
parameter specifications. These specifications reflect the
degree of heterogeneity of variance, the different numbers of
group sizes, and the complexity of the regression model for
each group. The estimation process will be applied to a
national sample of US high schools where math achievement has
been studied as a function of school and student
characteristics. One important feature of this data set is
the heterogeneity of the residual variance across schools.
Radenbush and Bryk (1987) investigated the heterogeneity of
variance in this data set through the application of

hierarchical linear models.

Oorganization of the Study

Chapter 2 will present a statement of the problem and
review of literature conducted on the topic. That chapter
will also highlight some of the problems in variance
estimation, and its relation to the HILM. In chapter 3, a
general linear mixed model with a random intercept will be
presented to represent the several applications presented in
this study. In addition, a comprehensive description of the
assumptions associated with the model will be provided within

the Bayesian framework. Chapter 4 will explain the Gibbs
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sampler and its application in achieving the objectives of the
study. An example will be provided to illustrate the
iteration process of Gibbs sampling. Chapter 5 will present
the derivation of the conditional distributions for the
parameters needed in the iteration process. It will also
provide a description to the computational steps for the
iteration process presented in chapter 4. Chapter 6 will
presents the results of the small simulation study as well as
the results of an analysis of mathematic achievement data from
US high schools. Discussion of the results for the generated
data and the US high school data, as well as conclusions, will

be presented in chapter 7.






CHAPTER 2

Statement of the Problem

Variance estimation plays an important role in almost
every kind of quantitative research. A basic requirement of
nearly all forms of analysis is that a measure of precision be
provided for each estimate derived from the data. The most
commonly used measure of precision of an estimator is the
reciprocal of its variance. The sample variance is used to
estimate the precision of the mean or other location
estimates. It is also used to check for gross errors
affecting a single observation. Further, it is used to
provide an estimate of a variance component such as a pooled
within sample variance in several kinds of statistical
procedures.

In HLM analysis, the two variance-covariance components
0§ and T are used in obtaining empirical Bayes estimates for
the effect parameters in equations 1.1 and 1.2. Compared to
the Bayesian approach, the empirical Bayes approach does not
require the specification of prior distributions for o§ and
T The two-level hierarchical 1linear model and its
assumptions for the empirical Bayes approach can be restated

as

19
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Y; = X;B; + ey, where € ~ N(0, Io%) , (2.1)

for the first level, and

B, =w,y +U; , where U; ~N(0,T), and y ~ N(©,I), (2.2)

for the second level. The joint posterior distribution for
the effect parameters P, and y is conditioned on the values
of o§- and T (Lindley and Smith, 1972). The joint density
function £, (B;, ¥ | Y, o_%,-, T) for this posterior distribution can

be expressed as
£, By v Y5, 05.T) « £,(¥;|B;, 09 £5(B;]05, v.T) £,(v), (2.3)

where f£,(Y,;|B;, 07 is the likelihood function of the data,
f3(Bj|o§, v.T) represents the conditional prior density
function of f,, and £f,(y) is the density function for a
noninformative prior for y. The values for o¢; and T are
often estimated by one of several methods of numerical
estimation. One common method is the EM algorithm (Dempster,
Laird and Rubin, 1977) which produces their maximum likelihood
estimates. These estimates are asymptotically normally

distributed, unbiased and efficient estimates.
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Problems Associated with the Estimation of o2 and T

In some applications, the sample size within each group
as well as the number of the groups might not be large enough
to allow the specific estimates of o§ and T to obtain the
asymptotic properties. Nevertheless, practitioners often use
maximum likelihood estimates of o and T to represent their
true values to obtain the conditional posterior distributions

for the effect parameters.

Problems Associated with Estimating T

In 1.2 of the HIM, T represents the residual variance-
covariance matrix for the within-group parameters P, across
all the groups. The shape of the sampling distribution of
this variance-covariance matrix depends on the number of
groups in the study. Consider the model investigated in this
study, for example, where only the intercept is considered
random. The matrix T , then, becomes scalar t? , which is the
variance of the intercept across all the groups. When the
number of groups is relatively small, say k<10, it is
possible that the distribution of an estimate of 12 becomes
highly skewed. Using the mode of that distribution (maximum
likelihood estimate) as an estimate for t? might not be a good
representation of its true value.

In a validation study conducted on eight law schools,

Rubin (1983) pointed out the problem of using maximum
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likelihood estimates for 12 when there are small number of
schools in the study. He stated that

"The specific problem here is that the likelihood

of t2 is not at all symmetric about the maximum

likelihood estimate, and thus this estimate is not

representative of reasonable values for 1.

Integrating over <2 in such cases is a much more

reasonable way to summarize evidence than to fix t?

at some value" (Rubin, 1983, p. 15).

Notice that the estimated value of 12 is being
substituted in 1.4 to 1.8 to obtain the precision weight for
the empirical Bayes estimates for the regression coefficient
of the HLM model. Consequently, invalid estimation of this
parameter causes the estimates of the regression coefficients

of the HIM model in 1.5 and 1.8 and their reliability

estimates in 1.6 to be distorted.

Problems Associated with an Invalid Assumption of Homogeneity
of Variance

When maximum likelihood estimates are obtained for
variance components, {63 for j =1,-,k, are often assumed
homogeneous. Researchers often assume homogeneity of
variances across all groups out of convenience rather than
conviction. This assumption allows the pooling of the
observations from all the groups to get one large sample
maximum likelihood estimate of o0? for all the groups. Berlin
(1984) stated that

"large data sets are rarely homogeneous in their

precision and that usual statistical analysis fails

if it does not take such differences into
consideration." (p. 209).
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When the number of observations in each group is large enough
to allow for consistent maximum likelihood estimation, Mason,
Wong and Entwisle (1984) advised that a separate variance
estimate should be obtained for each group.

However, when the number of observations in each group is
not large enough to allow for consistent maximum likelihood
estimation and the parameter variances are not equal, pooling
the observations from all the groups to obtain a single ML
estimate for o¢? might give an inaccurate estimate of the
variance. Assuming homogeneity of within-group variance
Bassiri (1988) showed that the within-group variance estimate
becomes unstable when the groups' sample sizes are relatively
small. This could lead to invalid estimates of the regression
coefficients B; and their precision estimates (see equations
1.4 and 1.5). Consequently, inferences about or confidence
intervals for the regression effects would be invalid.

Equation 1.4 shows when the true values of o} and T were
being used, part of the variability in the estimated variance
of the regression effect PB; stems from the variability inXx
across groups. Another part stems from the variability in
o§'s when no homogeneity of variance assumption is being made.
By assuming homogeneity of variance,o§= 0%, we are ignoring
part of the variability in the variances of the regression
effects. The part being ignored is attributable to the

variability in the residual variances.
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For illustrative purposes, consider the case where X; is
assumed equal to X across the k groups for j=1, .., k. Thus,
the within-unit regression coefficient estimates become
ﬁj = (X/X)x'y;. When homogeneity of variance holds, the
variance-covariance matrix for these estimates can be derived

from 1.4 as
Vaz(§j|wj) =02(X'X)1 +T . (2.4)

Equation 2.4 implies that the within-unit effects are
estimated with the same precision across all the k groups.
However, if there is a considerable variability in the
residual variances across groups, the estimation of this
precision becomes invalid and those estimates of the
regression effects no longer have the same precision.

In a classical analysis, when researchers study any
treatment effect, they compare the means of the criterion
variable from different treatments. One of the assumptions
they often make is homogeneity of variance. The justification
of this assumption is to get a single pooled variance estimate
for the within treatment variance to represent the error term
in the analysis so that treatment effect can be tested. Bryk
and Raudenbush (1988) showed that heterogeneity of variance in
the traditional analysis of treatment effects can be seen as
evidence of an interaction between treatment and subject-
specific characteristics. They warned researchers against the

problem of obtaining biased estimates for treatment effect
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when ignoring heterogenous variances in the classical
analysis.
Consider the classical case, often referred to as the
Behrens-Fisher case, of testing the hypothesis p, - g, = 0 with
unequal population variances, oZ#03. Using )_(a —)_(b as an

estimate for p,-p,, the sampling distribution of the statistic
(X,-X,) ~ (Ba= By

Z =
(2.5)

is N(0,1) . The given hypothesis cannot be tested without
knowing 02 and oi. When the sample sizes n, and n, are both
large enough, we can substitute the unbiased estimates of the
variances, S2Z and SZ, for the corresponding parameters, and
the resulting statistic has a sampling distribution
approximated by N(0,1). In practice, however, when n, and n,
are both relatively small and noticeably unequal, the

resulting statistic

(2.6)

would have what is known by Behrens-Fisher distribution
(Winer, 1971). Therefore, when there are both heterogeneity
of variance and a noticeable difference in the sample sizes
between treatments, the homogeneity of variances assumption

becomes questionable.
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The Analysis of Many Group Variances o3

A common situation where many variances need to be
estimated arises when there is a heterogeneity of variance in
linear models. Rao (1970) introduced a method called Minimum
Norm Quadratic Unbiased Estimation (MINQUE) for estimating the
residual variances in linear models when these variances are
found to be heterogeneous. MINQUE estimates are a linear
function of the distinct variances under certain conditions.
These conditions are related to the choice of the matrix that
creates a quadratic form in the outcome variable. If some of
the variances are the same, their corresponding coefficients
in the linear function can be chosen to be the same. The
variances estimated using the MINQUE method can be used to
obtain improved estimates of the coefficients of the linear
model. Further, they can be used in obtaining the estimate of
the precision of the simple least squares estimator of the
regression coefficients or any linear function of these
coefficients.

Cook and Weisberg (1983) modeled the variability in
variances as a function of some explanatory variables. The n
residuals from a linear regression model are assumed to have
a multivariate normal distribution, with mean 2zero and
variance-covariance matrix o?W, where W is a diagonal matrix
with all diagonal elements w,>0 for i=1,..,n. Estimating the

residual variances implies estimating the elements of W.
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The variability in w;, which represents the variability
in the variances, is expressed as a function of a 1 x g row
vector of known explanatory variables z;=(z;;) forj=1,.,q
and g x 1 vector of unknown parameters A as in the following

two models

q
w; = exp(jglkajj) % (2.7)

or

w; = exp()%kjlog(zij)) : (2.8)
=1

Note that the variables z;; can have negative values in the
first model but not in the second one. The predicted values
of w;, from the above models, can then be used to estimate the
residual variances from their variance-covariance matrix o?W.

Cox and Solomon (1986) have also dealt with the issue of
estimation of many variances. They provided examples
illustrating the problem of estimating many variances from
small samples. One of the examples covers the situation where
there is a systematic difference in variance between samples.
Observations within a sample are assumed to come from a
N(pi,oi) population where i=1,.,k. The ith variance ¢} is
a function either of an explanatory variable Zyy
characterizing the ith population, or of p;. They adopted
similar versions of the models in 2.7 and 2.8 to represent the
systematic change in the variances.

They also presented another example for the case where
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the changes in the variances are considered random. They
consider it a complement to the above case (where changes in
the variances are systematic) and called it  the
"overdispersion model”, (Cox and Solomon, 1986, p. 544). 1In
this case, different population variances are considered to be
independent unobserved values of a random variable o5. This

variable has an inverse gamma distribution with density

-y 02 5
—== P(zlv] 3 (2.9)
o B

where v, represents the degrees of freedom, and 02 some

constant.

Given the inverse Gamma density in 2.9 and considering
the ith population mean p; as a nuisance parameter, the
estimation of the ith population variance o3 is based on the
marginal likelihood of the ith sample. The underlying idea
of the above model suggested by Cox and Solomon (1986)

coincides very closely with Bayesian thinking.

Bayesian Approach

Lindley (1971) used the Bayesian approach in the
estimation of many different means and variances. In the case
where both means and variances were unknown but have
exchangeable distributions, he used the conjugate priors for
these distributions to derive the joint posterior density for
the means and variances. The joint density of all the

parameters was based on a three-stage model of hierarchy. The
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first stage describes the data, and its likelihood function
given the means and the variances. That is, given (uj} and
{63} the data Y;; are independent and normally distributed with
E(Y;;) = p; and Var(Y;) = o for i = 1,~,n;; j =1,-,k. Inthe
second stage, the means (uﬁ and the variances (o? are assumed
to be independent with two different exchangeable
distributions. The exchangeable distribution for the means
(uj) is assumed to be normal with mean 6 and variance t. The
exchangeable distribution for the variances {d3} is an inverse
chi-square, where the variable v,02/¢} is distributed as a y?
with v, degrees of freedom and o as a typical value for o§.
The third stage describes the prior knowledge about the
parameters in the second stage. For the parameters in the
normal distribution a conjugate prior distribution for the
mean 6 with vague prior knowledge produces locally uniform
prior. Similar to a?, the variance t is assumed to have an
inverse chi-square where v‘af/r distributed as x* with v,
degrees of freedom and of as a typical value for t. Since o?
is distributed as an inverse chi-square, a conjugate prior for
o given v, is a function of %2 with r and A as two constants
describing the distribution. The parameter v, is assumed to
have a uniform prior on (0, ).

The joint posterior density for the means (pﬁ and the
variances (o? was derived by integrating out all other
parameters (which are 0, t, v, and ¢2) from the overall joint

posterior density function. The derived estimates were based
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on a simple model where there were several groups with
different means and variances. If a more complex linear model
with several predictors were to be used the estimation process
then becomes more complex. The added coefficients for the
predictors in the linear model make integrating the joint
density function of the parameters analytically, extremely
difficult.

Leonard (1975) provided a procedure for modeling the
variability in the means and the variances from several normal
populations using the Bayesian approach. His model for the
means, when the variances are known, represents a general case
of the one presented by Lindley (1971). When populations
means are known, Leonard expressed the log-transformed
variances as a function of some explanatory variables using a
linear model similar to the one for the means. The log-trans-
formed variances were assumed to have an asymptotic normal
exchangeable distribution similar to the one for the means.
Expressing the variances or any transformation of them as
function of other variables is similar to what Cook and
Weisberg (1983) did as shown in equation 2.7. The major
difference here is that Cook and Weisberg consider 1; in 2.7
to be fixed unknown parameters that need to be estimated,
while Leonard proposed the use of prior knowledge about a
similar parameter for the linear model of the log-transformed
variances.

The resulting estimates of the means and variances are
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shrinkage estimates. They represent a weighted average of the
standard estimate from the sample plus a weighted average of
all the samples estimates. The weights are related to the
reliability of the standard estimate from the sample. The
shrinkage estimates of the variances are found by taking the
exponential of the shrinkage estimates of the log-transformed
variances.

When both means and variances are unknown, Leonard
proposed an iterative method for estimating the joint
posterior mode vectors of the means and the variances. He
substitutes the shrinkage variance estimates in the expression
for the means to obtain their new estimates. The new
estimates of the means are then used to find new shrinkage
estimates for the variances.

Raudenbush and Bryk (1987) tackled the issue of
estimating variances from many groups as a special case of a
more general problem of estimating the parameters of a two-
stage HLM. They provided two different methods for obtaining
empirical Bayes estimates for the variances. The
conceptualization of their models is similar to those
presented by Lindley (1971) and Leonard (1975). In the first
method, estimates were derived using the exact distribution
(chi-square) of the variance estimate within each group. That
is;

s} ~ oixda/(ny-1) . (2.10)
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Assuming that the variances have an exchangeable prior
distribution, the variable v,af/c§ has a chi-square
distribution with v, degrees of freedom and o? represents the
typical value for the variances prior to observing the data.
This distribution is the natural conjugate prior for the one
in 2.10. Thus, the variance o is distributed as v,02%{,,
where x'ﬁ., denotes a variable with an inverse chi-square
distribution.

In the second method, however, estimates were derived
using the asymptotic normal approximation to the sampling
distribution of the logarithmic transformed variance estimate

within each group. For the first stage of the HIM
d;=6;+e; , where e; ~N(0, (n;-1)*/2) for i=1,.,k, (2.11)

where di=%[log(sf)-cil, c; 1is a bias correction, and

6i=%log(0§) . For the second stage of the HIM
8, =w/'y +U;, where U; ~ N(O,"T_l) for. . A=l ek (2.12)

where W; is a Mx1 vector of known predictors, y is a Mx1
vector of effect parameters, and U; is a random error normally

distributed with mean equals zero and variance equal "; . The

use of the normal approximation to the sampling distributions

of the variances permits the use of the above formulation and

allows for the hypothesis testing associated with it.
Estimates from both methods (exact distribution and

normal approximation) are shrinkage estimates. They are
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weighted averages of two components. For the exact
distribution, the conditional posterior mean estimate for the
variance is given by
g2 - (@D st vl (2.13)
ny ¥ v =3
The first component is the usual estimate of the variance
based on the observations within each group weighted
proportionally by its degrees of freedom. The second is the
typical value o’ of the variances in their prior distribution
weighted by the concentration of these variances v, around
that typical value.

For the normal theory, however, the empirical Bayes

estimate for the logarithmic transformed variance is given by

8, =Ad; v -Apw/y (ehe)
where X,=(n;-1)/(n;+¥-1), and ¥ is estimated numerically.

The first component is the ordinary estimate of the
logarithmic transformation of the variance estimate within a
group, weighted proportionally by its degrees of freedom. The
second component is a predicted value based on information
from all groups, weighted proportionally by the concentration
of the parameters estimated by the first component around that
predicted value.

The resulting estimates from both methods are conditional
estimates. In the method where exact sampling distributions

of the variance estimates are being used, the empirical Bayes
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estimates for the variances are conditioned on knowing the
true values for the parameters ¢ and v,. In practice,
however, the true values of these two parameters are usually
unknown. To obtain the shrinkage estimates of the variances
in 2.13, o? and v, have to be estimated. Based on the EM
algorithm approach by (Dempster, Laird and Rubin, 1977) for
numerical estimation, Kasim (1986) developed a procedure for
estimating ¢? and v,. The complete data for estimating ¢? and
v, are {sf},{o% for j=1,-,k, where only {s;} have been
observed. The parameters o2 and v, are estimated by
maximizing their likelihood function lﬂo?]v,,ab (M-step) ,
assuming that (0? have been observed. The sufficient
statistics for estimating o’ and v, are functions of {o%.
Since (0? cannot be observed, the posterior expectations (E-
step) of these sufficient statistics are used to estimate o?
and v,. Finding the posterior expectations of the sufficient
statistics, however, depends on knowing the values of o and
v, as well as the data f{sjl. This dependency between the
posterior expectations and o2 and v, is used in an iterative
process to estimate o? and v,. Therefore, given the observed
data (s}) and initial estimates of o2 and v,, the values of
sufficient statistics are estimated by their posterior
expectations. The estimated sufficient statistics are then
used in maximizing l(b?Hv,,of) to obtain new estimates of o?
and v,. Going back and forth between the expectation step and

the maximization step, we get reasonable estimates of o’ and







35
v,. In fact, each step of this iteration process increases
1({6%}|v., 6%) , which provides us with better estimates of ¢} and
v, than those from the step before. The iteration process is
terminated when the absolute change in the values of o2 and
v,, between any two steps, is sufficiently small.

In the method where the normal approximation to the
sampling distribution of the variance estimates is being used,
the empirical Bayes estimates of the variances are conditioned
on the residual variance v in the second stage model (see
2.15). The true value of this parameter is unknown, and it
must be estimated. Similar to the way that o2 and v, are
estimated, the maximum likelihood estimate v is obtained
numerically via the EM algorithm.

The work of Lindley (1971), Leonard (1975) and Raudenbush
and Bryk (1987) on estimating variances of many groups share
the characteristic of borrowing information from other groups
to get an improved estimate of the variance for a particular
group. As an application of this idea Singh and Sedransk
(1988) provided an example for obtaining improved estimates of
strata variances when strata sample sizes are small. The
improved variance estimator uses data borrowed from other
strata, initially thought to be similar. The resulting
estimate is a shrinkage variance estimate for the stratunm,

which is similar to the one in 2.14.
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Comments on the Analysis of Many Variances

There are still several theoretical and practical
weakness in estimating and investigating the variability in
many variances. Empirical Bayes estimates of the variances,
which were suggested by Raudenbush and Bryk (1987), for
example, are not adjusted for the uncertainty in estimating
the conditioning parameters o and v, in the exact method, and
v in the normal approximation method. This is similar to the
problem (Tanner and Wong, 1987) of obtaining empirical Bayes
estimate for the effect parameters in HLM without adjusting
these estimates for the uncertainty in estimating the variance
components.

The focus on obtaining conditional point estimates for
the variances in the model rather than deriving the entire
posterior distribution for each variance can cause some
problems. In some cases, the misrepresentation of the true
values of the conditioning (given) parameters will lead to
obtaining inaccurate conditional estimates of the variances.
For example, in the case of the exact theory of Raudenbush and
Bryk (1987), the variability of the group variances is
inversely proportional to the conditioning parameter v, plus
some constant. Therefore, if there is a clear evidence of
heterogeneity of variance then the likelihood of v, is not at
all symmetric around its maximum likelihood estimate.

Consequently, this estimate is an inaccurate representation







37

for the true value of v,. Conditioning the variance estimates
for the different groups on the estimated value of this
parameters will distort these variance estimates. This
problem is similar to the one presented earlier by Rubin
(1983) for estimating t? when the number of groups is small.

Normal approximation for the distribution of the
estimated variances is another crucial point in the analysis
of many variances. Bartlett and Kendall (1946) reported that
the normal approximation is sufficiently accurate when the
sample size in each group is at least equal to 10. For
smaller samples, the normal approximation to the distribution
of the estimated variances might be less accurate. The
inaccuracy in the normal approximation <can lead to
inappropriate representation of the model. A severe loss of
efficiency in estimation can occur when sample sizes are less

than 5 (Cox and Solomon, 1986).

Adjusting for The Uncertainty in Estimating c§ and T

Standard methods do not exist for adjusting the
conditional posterior distribution for the effect parameters
to reflect increased variability due to the uncertainty of
estimating c; and T (Tanner and Wong, 1987). The estimates
of the regression coefficients given in (1.5) to (1.8) are
conditioned on knowing the true values of o§ and T . 1In

practice, however, these parameters are usually unknown, and
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their ML estimates are often used to allow for empirical Bayes
estimation for the regression coefficients. Therefore, part
of the variability in the empirical Bayes estimates for the
regression coefficients should be attributed to the
uncertainty in estimating o; and T. Having the marginal
posterior distributions for the regression coefficients will
facilitate obtaining their estimates without conditioning on
o; and T. Consequently, the estimates will be correctly
adjusted for the uncertainty of estimating the variance
components ¢} and T.

In summary, the problem in getting empirical Bayes
estimates for the effect parameters in multilevel models is
centered on getting appropriate estimates for o§ and T. When
the sample sizes and the number of groups are large enough,
maximum likelihood estimates of ¢} and T are a good solution
to the problem of getting those empirical Bayes estimates.
However, when there is heterogeneity of variances and the
number of observations within each group as well as the number
of groups are not large enough to allow asymptotic estimation,
maximum likelihood estimates of o} and T may not be
appropriate; it is essential that one should move toward being

fully Bayesian in this analysis.







CHAPTER 3

Model Specification

This chapter provides a description of the statistical
model used in this study and its underlying theory. The basic
assumptions for this model are provided within the Bayesian
framework. The Jjoint posterior distribution for the
parameters in the model is also presented.

A common characteristic often shared by evaluation
studies that involve social interventions, 1like a new
educational program, drug rehabilitation, or health care
promotion, is that the data collection process is based on
more than one level of hierarchy. The most common case is
where there are measures for program or group characteristics
and other measures for characteristics of subjects who are
nested within the groups or programs. Any model set up for
investigating relationships between measures from this kind of
data needs to acknowledge the hierarchical structure of the

data.

Statistical Model

This section presents a general 1linear model that
captures the hierarchical structure of nested data. The model

and its assumptions can be described in three stages. The

39
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first stage describes data obtained from k groups, where

j=1,~, k. Given the set of parameters A, U;, and ¢3, let ¥,

_7!
be a vector of ny independent observations from a normal
distribution with a mean Zj). + 1;U; and a variance Ijo§. A

linear model with random intercept and fixed effect parameters

for both group and subject level variables can be specified as

Y, = Z;h+1,U; + e, (3.1)

where

2
Gj ~ N(O, Ijo]'),

U; is a random error for the intercept,

]
Y1
1 Wiy~ Wig X5+ Xigp :
Z; = : P : , and A =1¥q
1 Wy~ Wy anjl anjp B, (3.2)
B

The part [W;; - W;Jl of the matrix Z; represents g known group
level variables, the part [X;;, - X;;,] represents p known fixed
effect subject level variables, and A is p+g+1l vector of
parameters that capture the effect of group and subject level
variables on the outcome variable Y;.

In the second stage both the intercept v.+U; and the
residual variance o§- are assumed to be independent and vary
randomly across the k groups. Given A and 12, the random
part of the intercept U; is distributed as normal with mean

zero and variance t2. Given ¢ as a typical value of 0§, the
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variable -i% is distributed as xi? with 2 degrees of
freedom.

The last stage represents vague prior knowledge about the
hyper-parameters A, t?, 0, and o for the two distributions
presented in the second stage. The prior for each one of
these four parameters is assumed proportional to some
constant.

The model in 3.1 and its associated assumptions can be

summarized as follows:

1- The observed data

Given A, Uy and 0§ the data Y; is distributed as

(3.3)
2- The parameters of exchangeable distributions
Here a§ and Lg are assumed independent,
U;|r, 2~ N(O,T?) , (3.4)
and
o? 2
~ s . 3.5
eO'j (9) ( )

3- The prior knowledge about the hyper-parameters.

The joint prior distribution p (A, 72%,0,0%) can be written

as
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p(A,t2,0,062) « p(A)p(z?)p(O,06?) , where
pA) < G
p(fz) o< Ctz
p(0,0%) = p(c?|0)p(B) , where
p(o2|8) « C., and
p(e) x Ce .

(3.6)

The hierarchical structure of the models in (3.1) and
(3.2) fits nicely within the Bayesian approach. The next
section provides more discussion about the specification of
the parametric forms for the distributions of the exchangeable
parameters U; and o§ and the hyper-parameters A, t2, 0, and o2.
These specifications are required to obtain Bayes estimates

for the parameters of interest.
Assumptions of the Model

There are three sets of assumptions associated with the
model in 3.1. The first assumption is about the data. Given
A, U; and oi-, we assume that the data Y; are normal with mean
equal to Z;A + 1,U; and variance equal to Ijaﬁ».

In the second stage of the model, the intercept y,+ U; and
the residual variance o§- are allowed to vary randomly across
the groups. The parametric forms of the distributions for U;
and 03- are based on the hierarchical structure of the model.
More explicitly, there are two sets of parameters with several

parameters of the same type in each set (i.e., several

—— e
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intercepts and several variances). The parameters within each
set usually describe a common variable that is shared by all
the groups. In the example of evaluating educational program
in different schools this common variable could be the
effectiveness of an educational program adopted by each school
within a district. For the meta-analysis example, the common
variable is the effect size that varies in value across all
studies used in meta-analysis. Within each set of parameters

(intercepts or residual variances), one can think of the value

of each parameter in the set as a single realization of a
random variable that has a common distribution with the rest
of the parameters in the set. When this conceptualization is
translated to a probability structure, each parameter can be

viewed as a random variable having an exchangeable

distribution with the rest of the parameters in the set.
Another way of saying this is that these parameters are
independently identically distributed random variables with a
prior distribution yet to be specified.

Under the Bayesian approach, the prior knowledge about
the parameters can be used to specify the parametric form of
their prior distributions. Bretthorst (1988) provided general
guidelines for choosing prior distributions. He stated that

"There are two questions one may consider to help

in this. First, one should ask ‘Are the parameters

logically connected?' That 1is, if we gain

additional information about one of the parameters
does it change the estimates we would make about

the others? If the answer 1is yes, then the

parameters are not logically independent. It will
be useful to find a representation where the
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parameters are independent.
Another useful question is ‘What are the
invariances that the prior probability must obey?'
That is, what transformation would convert the
present problem into one where we have the state of
prior knowledge." (Bretthorst, 1988, p.183).
The first question deals with. issue of independence between
the parameters for which we seek prior distributions. For the
model in 3.1 we assumed U; and o§ independent. It implies
that knowing the residual variance in each group does not
depend on knowing the random error associated with intercept.
The second question deals with the choice of conjugate prior
distribution for the parameter of interest. Therefore, given
A and 1%, we assume that the conjugate prior for the random
part of the intercept U, is normal with mean equal to zero and
variance equal to t2. Further, given 0 and of, we assume that

02/(80%) has a chi-square distribution with degrees of

i
)
freedom. The hyper-parameter o’ describes the value that one
expects the residual variance 0§ to have, prior to observing
-2

2
the data. Therefore, o3 is distributed as igxe), where x;)
[} ]

is an inverse chi-square with degrees of freedom. While0

1
)
is a function of the degrees of freedom, it can also be
thought of as a measure of variability of the variances ({¢3}.
The probability density function p(o?le,of) is found to be

of)ﬁ 2

—a - _1_+ =0,

I‘(z—e) 260j

The above density function is similar to the one given by

Lindley (1965), with a minor difference of 6=1/v,. As Lindley
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described it,

"For all v,>0 the above density function increases
from zero at ¢ =0 to a maximum ato3 = o2v,/(v,+2)
and then tends to zero as o§-'w. The density has
therefore the same general shape for all degrees of
freedom as the chi-square distribution itself has
for degrees of freedom in excess of two." (Lindley,

1965, p. 28).

In his interpretation of the above density as a prior density
for ¢4, Lindley said:

"To take it as a prior density for o§ is equivalent
to saying that values that are very large or very
small are improbable, the most probable value is
o§= o2v,/(v,+2) and, because the decrease from the
maximum as a§ increase§ is 1less than the
corresponding decrease as ¢; diminishes, the values
above the maximum are more probable than those a
similar distance below the maximum." (Lindley, 1965
pP. 28).

The above interpretation to the prior distribution of ¢ makes

choosing such a prior more realistic than assuming equal
likelihood for all values of 6% (i.e., a locally uniform
prior).

The mean and the variance of ¢ can be easily found by
realizing that the density in 3.7 is an inverse Gamma function

with « = 1/20 and P = 20/¢2. Therefore,
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2
2 2y - 1 - (B
E(O'jle, 00) = B(a — 1) =38 , and
4
Var (63|60, 0?) = 1 _ 200,
B (a - 1)2(a - 2) (1 - 20)2(1 - 46)

(3.8)

The results in 3.8 reveal that 0 has to be less than .25 for
the variance of ¢% to be defined. As 0 gets smaller, the mean
and the variance are approximated to ¢? and 200:.

In many analyses 0;-2 is used as a measure of precision
for each estimate derived from the data. From 3.7, the prior
distribution of 0}2 is Gamma with &« = 1/20 and B = 20/0%. 1Its

mean and variance are found to be

E(6}°|0,0%) = a«p = 0.2, and

(309)
var(c;|0,0%) = aP? = 200" .

Another measure that describes o§~ and has the

characteristics of being invariant to the change in the mean
of its distribution, and depending only on 6, is the

coefficient of variation (Linhart, 1965). From 3.8 and 3.9

this coefficient is found to be 1%40 for ¢ and 20 for oj’.
Small values of O indicate precise knowledge about ¢3 prior
to observing the data.

The last set of assumptions concerns the prior knowledge
about the parameters A, 12,0, and 2. They are the hyper-
parameters for the exchangeable distributions for the
parameters {U;} and {o%.

The two questions presented earlier by Bretthorst (1988)

might serve as general guidelines for choosing prior

distributions. However, when the model in 3.1 is being
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applied, prior knowledge about the state of the hyper-
parameters A, 12,0, and ¢? is usually limited or non-existent.
That is, the higher we move in the hierarchical structure of
the parameters in the model, the less information we have
about those parameters prior to observing the data. In other
words, one is usually more informed about the distribution of
the {U} and the {c?}, prior to observing the data, than about
the distribution of A, 12,0, and o2. Therefore, the prior
distributions for A, 2,0, and o’ should have the
characteristic of being non-informative priors. This implies
that the posterior distributions for these parameters should
rely heavily on the information obtained from the data, with
little or no weight given to the prior knowledge about the
parameters.

For the parameter A, we take its conjugate prior
distribution, (which is normal) with vague prior knowledge
about the parameter itself. Therefore, A 1is distributed

uniformly over its parameter space R that is p(A) « ¢,

g+p+l’
where C, is constant. The subscript A is being used with the
constant to identify it with the parameter.

Similar to oﬁ, a natural conjugate prior for 12 would be
an inverse chi-square with v_. degrees of freedom. A vague
prior for <2 implies v_. = 0, which produces what is often
called Jeffery's prior (i.e., p(1?) «1/12). This prior

distribution is found to cause some difficulties when the

number of groups is relatively small (Seltzer, 1988). The
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effect of this prior with t? near zero has a great influence
on the density function of the data such that the marginal
posterior distribution of 1?2 becomes heavily concentrated
around t2 =0 (Morris, 1983 and Lindley, 1983). As an
alternative, a uniform prior distribution is chosen fort?
(Seltzer 1989). That is p(12?) « C,. for (%2> 0), where C. is
a constant. The prior distributions for both A and t? will
then become insignificant in their contribution to their
posterior distributions.

For 0 and o2, we write their joint prior distribution
proportional to the product of the conditional prior
distribution of o2 given 0 and the prior distribution of 8.

That is

p(c?,0) = p(a2|6) p(B) . (3.10)

We specify p(ofle) to have conjugate prior to the density

in 3.7, which is of a chi-square form as

2
p(c?]0, r, ©) « (of)r”-exp( ;bw) , (3.11)

where r and ® are two parameters describing the prior for o2
(Lindley, 1971). A vague prior for o2 implies setting r=0
and w=0 which will produce what is known as Jeffrey's prior.
However, the fact that the marginal posterior distribution of¢?
is heavily dominated by the data undermines the effect of the
prior of ¢? on its marginal posterior distribution. Thus, for

mathematical convenience, a constant prior C;: is specified
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for o?.

In the second set of the assumptions, the hyper-parameter
0 is presented as a function of the degrees of freedom for the
exchangeable distributions for {o?. It also, represents the
variability of {63}, and mathematically there is no reason why
it should not be any positive number (Lindley, 1971).
Therefore, we assume that p(0) has a uniform distribution on

the real line. That is p(6) « C;, where (; is a constant.
The Joint Density Function of the Parameters in the Model

Applying the Bayesian approach to the model in 3.1
allowed the parameters in the last two stages of the model to
be treated as unknown parameters. In the first stage {U;} and
{6 for j = 1,-,k are the parameters with exchangeable priors.
The second stage covers the hyper-parameters A, t2, 0, and o?,
where A is defined in 3.2. They are the parameters of the
prior distributions for {U} and {o3}. Vague prior
distributions for A, t2, 0, and ¢? are taken from their usual
conjugate families.

Treating all the parameters in the model as unknown
parameters, allows their joint distribution along with the
data Y; to be distributed as a product of conditional

distributions as follows:

ﬁp(YjM, U;, 05) p(U;|A, 7)) p(63]8, 02) p(A, 12,0, 03) . (3.12)

Substituting the density functions for the assumed
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distributions from the previous section for each of the above
conditional distributions produces a joint density function

proportional to
2 =2 1 -2

_k
x (t2) 2 exp -1 f U_,?
212 j=1

(3.13)

Theoretically, the marginal posterior distribution of any
parameter in the model can be obtained by integrating the
joint density function in 3.13 over the space of the other
parameters.

Being able to obtain the marginal posterior distribution
of any parameter in the model implies being able to obtain
interval and point posterior estimates of that parameter. For
example, an estimate of A based on its marginal posterior
distribution will not be affected by the uncertainty in
estimating the variance components, avoiding an undesirable
characteristic of empirical Bayes estimates of A. Further,
individual group estimates of {o? for j =1,-,k become useful
when we are investigating groups' heterogeneity of variance.
Also, individual estimates of {Uj} become useful for checking

the normality assumption for the error term associated with

each group intercept. Moreover, inferences on the hyper-
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parameters 12, o7, and O can be made using their respective
marginal posterior distributions.

With the help of modern computers and developments in
simulation theories, we are now able to approximate these
marginal posterior distribution numerically, to the desired
degree of accuracy. The methods of Data Augmentation (Tanner
and Wong, 1987) and Gibbs sampling (Tanner, 1993) are being
used for numerical integration to obtain marginal
distributions. Morris (1987) shows how one can use these

methods for hierarchical Bayes models.







CHAPTER 4

Obtaining Marginal Posterior Distributions

Via Gibbs Sampling

This chapter presents the method of Gibbs sampling as an

procedure for calculating marginal posterior

iterative

distributions. The process of Gibbs sampling is best
understood within the context of data augmentation (Tanner and
the basic idea of the data
An example, using

A

Wong, 1987). Therefore,

augmentation procedure will be explained.
the normal distribution, will illustrate its application.

simple modification to the idea of data augmentation will

facilitate the understanding of Gibbs sampling procedure.

This procedure will then be used in chapter 5 to approximate

the marginal posterior distributions of the parameters in the

model in 3.1.
Data Augmentation

The argument that Box and Tiao (1964) made in their

investigation of the importance of the assumptions applied to
the comparison of variances, using the Bayesian approach, can
facilitate our understanding of data augmentation. Very often

the distribution of observations Y depends on more than one

and Z,, one of which, say

say two parameters Z,
For non-Bayesian methods,

parameter,
Z, , is of immediate interest to us.

52
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this could cause an extremely difficult problem in dealing

with the other parameter Z,. However, under the Bayesian

approach making inferences about Z, is simplified by finding

the marginal posterior distribution p(Z,|Y). This marginal

posterior distribution can be obtained by integrating out the

other set of parameters Z, from the joint posterior

distribution p(Z,,Z,|Y) . In the data augmentation process, Z,

can be thought of as latent variable or missing data

augmenting the observed data Y (Tanner and Wong, 1987).

In the following discussion all distributions are

posterior distributions, therefore, the term "posterior" is

deleted from the names of the distributions for simplicity.

If we write the joint distribution p(Z,,Z,|Y) as a product of

the conditional distribution of Z;, and the marginal

distribution of Z,,

p(Z]_lZz’Y) =p(zllZ21 Y) p(Zzly) ’ (4.1)

the marginal distribution of Z, can then be written as

p(Z, |V =pr(leZ2, Y) p(Z,|Y) 92, , (4.2)

where 7T is the parameter space for Z,. As Box and Tiao (1964)

pointed out:

".,.. the marginal posterior distribution of the

parameter p(Z,|Y) acts as a weight function
multiplying the conditional distribution
p(Z,|Z,, Y) of the parameter of interest. It is

frequently helpful in understanding the problem and
the nature of the conclusions which can safely be
drawn to consider not only p(Z1|Y) but also +the
components of the integral on the right-hand side
of equation [4.2]. One is thus led to consider the
conditional distribution of Z, for particular
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values of the nuisance parameter Z, in relation to
the probability of occurrence of the postulated

values of the nuisance parameter." (p. 153).

These two basic ideas, integrating out the nuisance

parameter Z, from the joint distribution p(Z,,Z,|Y) , and using
the marginal distribution of the nuisance parameterp (Z,|Y)
as a weight function in that integral, can be generalized to

the process of data augmentation when a direct solution to the

integral in 4.2 can not be found. Tanner (1993) defines

p(Z,|Y) in the integral in 4.2 as the predictive distribution
which can be used with the observed data Y to obtain the

posterior distribution p(Z,|Y). In many cases however,

p(Z,|Y) is not known, which makes it impossible to obtain

p(Z,|Y). The joint distribution of Z, and Z, as in 4.1 and
4.2 can then be used to obtain the marginal distribution

p(Z,|Y). 1In other words, the joint distribution of Z, andZ,
in 4.1 can be written as:

p(Z ,Z,|y) =p(Z,|Z,,Y) p(Z|Y) (4.3)
The marginal distribution for the second parameter p(Z,|Y) can
be obtained by integrating the joint distribution in 4.3 over

the parameter space R of the first parameter Z,:

p(2,|¥) = [ p(Z,]2,, V) p(Z|Y) 02, . (4.4)

the marginal distribution of +the

Just as 1in 4.2,
parameter p(Z,|Y) in 4.4 can be thought of as a weight
function multiplying the conditional distribution of <the
parameter p(Z,|Z,, ¥). Integrating this weighted conditional
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distribution over all admissible values of Z; will give us the
marginal distribution of Z,.

Carrying out the integration in equation 4.4 analytically
requires knowing the parametric form of the marginal
distribution of the first parameter .p(Z1|Y). Likewise,
carrying out the integration in equation 4.2 analytically
requires knowing the parametric form of the marginal
distribution of the second parameter p(Z,|Y) . But these two
marginal distributions are unknown to us and we are interested
in finding them. Therefore, this dependency between the two
marginal distributions for the two parameter becomes the key
point of the iteration process of data augmentation.

In 4.1 and 4.3, the joint distribution of Z, and Z, is
being expressed as a function of four other distributions,
two of which have unknown parametric forms. Therefore, it is
hard to sample from them. They are the marginal distributions
p(Z,|Y) and p(Z,|Y). The other two have known parametric
forms, and one can easily sample from themn. They are the
conditional distributions p(Z,|Z,,Y) and p(Z,|Z,,Y). The
iteration process, therefore, involves repeated sampling of Z,
and Z, from their conditional distributions p(Z,|Z,, ¥) and
p(Z,|Z,, vY), which accomplishes the numerical integration of
the joint distributions in 4.2 and 4.4, and produces numerical
approximations to the marginal distributions for Z, and Z,.

To exploit the dependency between the two distributions

in 4.2 and 4.4, we start with an initial estimate of Z,. One
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can think of this initial estimate as being sampled from a
poor approximation of its marginal posterior distribution,
p(Z,|Y). A sample of M values of Z, can then be drawn from
its conditional distribution p(Z,|Z,, ¥), where the initial
estimate of Z, is used along with data Y. For each of theM
values of Z,, we form a conditional distribution of Z, given
Z,=Z,, defined as p(Z,|Z,,, ¥), for m=1,-,M. The weighing of
each of these conditional distributions is done empirically by
the sampling process from the marginal posterior distribution
p(Z,|Y) in 4.2. That is, a large proportion of M of these
conditional distributions are conditioned on values of Z,
which are near the mode of p(Z,|Y). Rubin (1987) refers to
the process of sampling Z, from p(Z,|Y), in order to form the
conditional distribution of the first set of parameters
p(Z,|Z,, Y) as a multiple imputation process. The mixture of
the M conditional distributions of Z, given Z,,, m=1,-,M
represented by their weighted average, where the weighing
process 1is done empirically (as explained previously),
produces the marginal posterior distribution p(Z,|Y) at the
tth iteration
M
PS(Z,|Y) = M* Y p(Z,|Z,,, V) . (4.5)
m=1

To simulate the marginal distribution of Z, given in 4.5,
we simply sample M values of Z,; one from each of the M
conditional distributions given in the mixture. These M

values of Z, represent an approximation to the marginal
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distribution of the first parameter p(Z,|¥) at time ¢t=1 of
the iteration process. However, this approximation is a poor
one since the sampled values of Z, came from a rough guess of
its marginal distribution p(Z,|Y). Representing the M
weighted conditional distributions by their average captures
the idea of integrating the joint distribution of Z, and Z, in
4.2 over the parameter space of Z, to produce the marginal
distribution of Z,, when M is relatively large (say M =
4000). An estimate of the density function for the marginal
posterior distribution of Z, can be obtained by averaging the
conditional densities in 4.5 (Gelfand and Smith, 1990).

For each of the M values of Z,, which are sampled from
4.5, a conditional distribution of Z,, given Z,=Z, , can be
formed as p(Z,|Z,, Y), for m=1,-,M. By adopting the same
logic for approximating p(Z,|Y), the marginal distribution for

the second parameter can be approximated by

M
PHZ,|Y) = MY p(Z,|Z,, V) , (4.6)
m=1
where p*(Z,|Y) is an approximation of the marginal
distribution of Z, at iteration t=1. We then sample M new
values of Z, for iteration ¢t=2 from the resulting

distribution in 4.6 to get a new approximation to the marginal
distribution of Z; in 4.5.

By iterating between 4.5 and 4.6, the two marginal
distributions p(Z,|Y) and p(Z,|Y) stabilize (Tanner and Wong,

1987) . sSampling the values of Z, and Z, from their respective
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stabilized distributions is virtually identical to sampling
from the true marginal distributions of Z, and Z,.

Tanner and Wong (1987) pointed out that one can select
any value for M (the sample size for each Z, and Z, in each
iteration) to carry out the iteration process. They stated:

"Even when M is as small as 1, the iteration is

still 'in the right direction' in the sense that

the average of p(Z,|Z,,, Y) over the augmented data

patterns generated across iterations will converge

to p(Z,|Y) ." (Tanner and Wong, 1987, p. 530).

Moreover, they argued that the value of M can be changed
between iterations. In fact they recommended that one should
start with a small value for M in the first few iterations and
increase this value as the number of iterations increases.
They stated:

"In practice, however, it is inefficient to take M

large during the first few iterations when the

estimated posterior distribution is far from the

true distribution. Rather, it is suggested that M

initially be small and then increased with

successive iterations." (Tanner and Wong, 1987, p.
539) .

Example

Let Y be a random sample of n independent observations
drawn from a normal distribution with mean p and variance ¢?,
where both parameters are unknown. The sample mean ?ﬁrrigbg
and the sample variance s? = 02—1)’122(y3—332 are Jjointly
sufficient for (g, 0%?). The likelihood for (p, 02), therefore,

is given by (Box and Tiao, 1973)
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Uu, 02|y, s?) = (0?) 2 exp{z——lz[(ﬂ-l)s2 + n(u-?)zl} : (4.7)
g

The likelihood in 4.7 reveals that the distribution of Y
depends on the two parameters p and o¢2. From the Bayesian
viewpoint, making inferences on any one of these two
parameters requires finding its marginal posterior distribu-
tion by integrating out the other parameter from their joint
posterior distribution.

The joint posterior distribution of p and o¢? can be
written proportional to the product of their 1likelihood

function 0(p, 0%|y, s?) and the prior knowledge about p and o2.

Mathematically stated

p(p,02|Y) o« U(p,0?|y, s?)p(p, 0?) (4.8)

The second part of the right-hand side of 4.8 represents the
prior knowledge about the two parameters p and 6?2, It can be
assumed priori that p and o? are independent, and the form of
this prior knowledge can be specified by the usual conjugate
priors of these two parameters. A vague prior knowledge about
p produces a prior distribution which is proportional to a
constant C. Similarly, a vague prior knowledge about o¢?
produces a prior distribution proportional to 6”2 (Box and
Tiao, 1973).

Substituting the assumed forms for the 1likelihood
function ¢(p, 62|y, s?) and the prior distributions for p andg?

in 4.8 produces the joint posterior density for p and o2.
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p(p, 02| V) « (02) 3" exp{z;le-[(n—l)sz + n(p-y)z]} . (4.9)
g

Based on 4.9, and where o2 is known the conditional
distribution p(p|e6?,Y) is normal with mean ¥y and variance
6?’/n. When o? is unknown, however, p(p|y) represents a t-
distribution with mean y and variance $2?/n and (n-1) degrees
of freedom, resulting from the integration of 4.9 with respect
to 02 (Box and Tiao, 1973).

When p 1is known, the sample variance is defined to be
S2 = n‘lig (yv; - p)2. The variable nS?/0? is therefore
distributed as chi-square with n degrees of freedom.
Consequently, o2|u,Y is distributed as nsS?x(3 where %% is an
inverted chi-square variable with n degrees of freedom. When
p is unknown however, p(c?|Y) represents the probability
density of (n-1)S2x(2., , where X, is an inverted chi-square
variable with (n-1) degrees of freedom, resulting from the
integration of 4.9 with respect to p.

For illustrative purpose, let us assume that the forms

for the distributions of p(p|y) and p(¢?|Y) are unknown, and
need to be approximated. Our objective in this example is to
show how these two distributions can be numerically
approximated, using the process of data augmentation presented
in the previous section.

The joint posterior distribution of p and 0? is written

as a product of the conditional distribution of p and the

marginal posterior distribution of o?
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p(u,0?|Y) = p(plo?,¥) p(a?|y) . (4.10)

Then the marginal posterior distribution of ik can be defined

by
p(pl|Y) =fozp(p|02,Y) p(c?|Y) do? . (4.11)

Similarly, the joint posterior distribution in 4.10 is written

as a product of two new distributions

p(p,0%|Y) = p(o?|u,Y) P(p|Y) (4.12)

Then the marginal posterior distribution of 62 can be defined

by
p(o?|Y) =.£lp(02|p,Y)p(p|Y)dp . (4.13)

Examining 4.11 and 4.13 reveals that obtaining the
marginal posterior distribution of one parameter depends on
obtaining the marginal posterior distribution of the other
parameter. Therefore, this dependency between the two
equations can be used to show how the method of data
augmentation can be used to approximate the two marginal
posterior distributions in the following steps.

1. As a starting point for the iteration process, p can be
estimated from the data Y by p = igyi/n' This estimate
can be thought of as p, which has been sampled from the

current approximation of its marginal posterior

distribution p(p|Y).
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Using the current estimate i to represent the true value
of p, find the sample variance as S?2 =n‘1if:1(yi - p)2.
This variance estimate will be used, in conjunction with
the sampled values of a chi-square random variable, in
the next step to sample o¢2 from its conditional
distribution p(o?|p, V).
Sample M values of xz(n)m for m=1,-,M from a chi-square
distribution with n degrees of freedomn. For each
sampled value of X%y, find 6% as 62 = nS2/x%ym- ApPpPlying
steps 2 and 3 resembles the process of sampling M values
of 02 from its conditional posterior distribution
p(6?|p,y) . The mixture of these M conditioned values of
0?2 forms an initial approximation to the marginal
posterior distribution p(¢?|Y). This approximation,
however, is an inaccurate one since the sampled values of
02 are conditioned on a poor estimate of ju.
Given the data Y and the M values of 02 which are
sampled in step 3, we sample M new values of p, from
p(pl|ol, v), which is N(¥, ¢2/n), where y is the sample
mean from the data. The mixture of the M sampled values
of the mean p, represents an approximation to its
marginal posterior distribution ppl|y) .
These new sampled values of p, from step 4 can then be

used to get M new estimates of 52 as in step 2 for a new

cycle of approximation. As we continue iterating between

steps 2 to 5, the mixture of the M values of o which
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are sampled in step 3, and the mixture of the M values
of p, which are sampled in step 4 become increasingly
accurate in representing the marginal posterior

distributions of p and o?.
Gibbs Sampling

The process of data augmentation was presented for the
case of approximating the marginal posterior distributions for
only two parameters, Z, and Z, with M>1. When M=1, Tanner
(1993) defines the iteration process as "chained data
augmentation". In the normal data example given above, the
two parameters were represented by p and 62 with M>1. There
are cases however, where there are more than two parameters
for which we require numerical approximations to their
marginal posterior distributions. To obtain them, a simple
modification to the logic of data augmentation process can be
used.

When the iteration process of data augmentation is
generalized to more than two parameters with M set equal to
one, the process is called "multivariate chained data
augmentation” (Tanner, 1993) or Gibbs sampling (Gelfand,
Hills, Racine-Poon and Smith, 1990).

Consider the previous case, where the distribution of the
observations Y depends not only on Z;, and Z, but also on a

third parameter say Z,. Under the Bayesian approach, making
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inferences about any of the three parameters is simplified by
finding its marginal posterior distribution, by integrating
out the other sets of parameters from the joint distribution
of Z,, Z, and Z,.
The joint distribution of Z,, Z, and Z, can be written as
a product of the conditional distribution of Z, and the joint

distribution of Z, and Z,,

Then, the marginal posterior distribution of Z, can be written

as

p(Z, |V =foWp(Z1|Z2,Z3,Y) p(Z,,Z,|Y) 0Z, 0Z, , (4.15)

where T and W are the parameter spaces for Z, and Z,,
respectively.

Similar to 4.2, the joint distribution p(Z,, Z,|Y) can be
thought of as a weight function multiplying the conditional
distribution of the parameter of interest p(Z,|Z,,Z,,Y). 1In
other words, we consider the conditional distribution of Z,
for particular values of parameters Z, and Z; in relation to
the probability of getting those values of Z, and Z,.

Similarly, the marginal posterior distribution for each
of Z, and Z, can be obtained by integrating out the other
parameters from the joint posterior distribution of Z,, Z, and

Z, as follows :

p(Z,|Y) = fR pr(zzlzl,za, Y) p(Z,,%,|Y) 8Z, 8%, , (4.16)

and
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p(Z,|Y) = fR pr(z3|z1,z2, Y) p(%,,L,|Y) 9Z, 8Z, . (4.17)

As in data augmentation, the three equations 4.15, 4.16
and 4.17 define the iteration process of Gibbs sampling.
Further, it is assumed that there are only three distributions
that are easy to sample from. They are the three conditional
distributions of Z,, Z, and Z,, represented by the first part
of the right-hand side in each of 4.15, 4.16, and 4.17. The
iteration process therefore involves repeated sampling of Z,,
Z,, and Z, from these conditional distributions to accomplish
the numerical approximations of their marginal posterior
distributions.

Starting with initial values of Z!®, Z{”, and the data
Y, sample Z{* from its conditional distribution
p(Z, 2,2, v). Given the values of Z{¥, Z{®, and the data
Y, sample ZY from its conditional distribution
p(Z,|Z",2{”,v). Finally, given the values of Z\*, Z{¥, ana
the data Y, sample Z{¥ from its conditional distribution
p(Z, |2, 27, v) . The three sampling processes complete one
iteration of Gibbs sampling. After a large number of
iterations say X, sampling any of the three parameters
resemble sampling that parameter from its marginal posterior
distribution. To simulate a marginal distribution for Z,, for
example, after an X iterations, sample m values of Z, from
(Z,|2{¥, 2" ,v). The mixture of these m sampled values of Z,
represents a numerical approximation to its marginal

distribution. That is, the sampled values Z31, ...... Z3m can be
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viewed as a numerical approximation to the marginal posterior
distribution p(Z,|Y). Similarly, the marginal posterior
distributions for Z, and Z, can be approximated.

Gibbs sampling can be generalized to as many parameters
as the investigated model has. The basic idea is to write the
joint distribution of all parameters in forms similar to 4.15
to 4.17. Repeated sampling of the parameters from their
corresponding conditional distributions results in
approximation of their marginal distribution.

A special case of Gibbs sampling is found for certain
applications, where some of the parameters depend only on a
selected number of other parameters. For instance, in the
case of approximating the marginal posterior distributions for
the three sets of parameters Z,, Z, and Z,, it is possible
that the conditional distribution of say, Z, depends only on
Z, and the data Y. While equations 4.15 and 4.16 for the
marginal distributions for Z, and Z, do not change, equation

4.17, however, becomes

p(Z|Y) = [ p(Z|%,, ¥) P(Z|V) 0Z, . (4.18)

A repeated sampling of Z,, Z, and Z; from their conditional
distributions in 4.15, 4.16 and 4.18 will approximate their
marginal posterior distributions. Chapter 5 will show how the
special case of Gibbs sampling is being used for approximating

the marginal posterior distributions of the parameters in the

model presented in 3.1.







CHAPTER 5

The Application of Gibbs Sampling to The Model of The Study

Two sections make up this chapter. The first section
presents the application of Gibbs sampling for obtaining the
marginal posterior distributions of the parameters of the
model in 3.1. The conditional distributions of these
parameters are also derived so they can be used in the
application of Gibbs sampling. The second section presents
the steps taken to empirically test the application of Gibbs
sampling. These steps include setting the model, specifying
and generating artificial data sets, assessing the
heterogeneity of variance, obtaining initial estimates for the
parameters to start the iteration process, assessing
convergence of the iterative program, and describing the real

data used in this study.

Obtaining Marginal Posterior Distributions of Parameters of

the Model in 3.1

The proposed model in 3.1 involves two sets of
parameters: those which have exchangeable prior distributions
(v} ana {63 for j=1,-,k (i.e., (U}=0, U, U and
{0 = o2, 6%, -, 0%) and the hyper-parameters t2, A, 0, and o’

where A'={y,, y,, =, Yq By, . Bp). Our objective is to approximate,
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numerically, the marginal posterior distribution for each one
of these parameters using Gibbs sampling.

In general, the marginal posterior distribution for each
one of these parameters can be found by integrating its joint
posterior distribution with the other parameters over the
parameter spaces of all other parameters. Mathematically
stated, given the joint distribution in 3.12, the marginal
distribution for each of the parameters of the model in 3.1

can be written as follows:

pUu)[v = [[[pw}e, 2,65, npG2, 2, 6P D
22 (03

x  dlePa(n) a(e?) , (5.1)

ple?|y) = p(o?|o?,0,1,{U), Y)p(c?, 0,4, (U} v
g ;rz[’[(!,) 7 % ]

x olu}aace)alal) , (5.2)

p( v = [ [P}, W), pUed, (U)|v)8lu) 8led ,

(5.3)
(0305
p(s*|n = [p?|lu), npUu}n oy, (5.4)
oy

p8|y) = ffp(9|of,(o§), V) p(o?, {0%)|v) dlo3} 3 (a?) ,

a?{o%)

(5.5)
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p(o? |1 = [ [ pla2o, o}, n1pe, o3| ¥) dla} 2(8)

e (5.6)

Clearly, any one of the above marginal posterior distributions
depends only on some of the parameters in the joint posterior
distribution in 3.12. More specifically, the marginal
posterior distribution for {U} in 5.1 for example, does not
depend on ¢’ and 6. Similarly, the marginal posterior
distribution for t? in 5.4 depends only on {U;}. This is true
for the rest of the parameters.

The first term of each integral in 5.1 to 5.6 represents
the conditional distribution for one of the parameter(s) of
interest, which usually has a known parametric form and from
which we can sample. The second term of the integral can be
thought of as a weight function multiplying the conditional
distribution of the parameter of interest. Integrating the
weighted conditional distribution over all the admissible
values of the parameters in the second term will produce the
marginal posterior distribution of the parameter of interest.

To exploit the dependency between the marginal posterior
distributions in 5.1 to 5.6, two things must be known: the
parametric forms of the conditional distributions in the

integral in 5.1 to 5.5 and initial approximations to the

values of the parameters A, ¢, (uf”}, and {63'”}). The
superscript " (0)" wused with each of those parameters
represents the initial value of the parameters. More

discussion will be given later on the derivation of the
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parametric forms of the conditional distributions of the

parameters and the method of obtaining initial values for the

specified parameters. Let us now assume that we know the

parametric forms for the conditional distribution and we can

sample from them. Given current estimates (start with initial

values) of the parameters A, o2, (Uf”}, and (63}, the

iteration process starts as follows:

G

Given (U{”} and the data Y, sample one value of t2™) from
p (2 [{Uf*}, v) in 5.4. Notice that the superscript " (1)"
used with 12 refers to the first cycle of the iteration
process.

Given {62!}, ¢ and the data Y, sample one value of
0V from its conditional distribution p(8|c?!”,{c%”}, v)
in 5.5.

),

Given the sampled value of 6 from step 2, (o and

o™ from its

the data Y, sample one value of
conditional distribution p(of]e(”,(a?m), Y) in 5.6.
Given the sampled value of 12 from step 1, (o3},
A®, and the data Y, sample one set of values of
o™ = ™, u®, ., M} for j=1,-, k from its conditional
distribution p((Uj)IA“”,1""”,(0_27‘(“)), Y) in s.1.

Given the sampled values of {(Uf"}, the sampled value of
0, the sampled value of o2 from steps 4, 2 and 3

respectively, the initial value of A(”, and the data VY,

sample one set of values of {62} = {(a2®, 62V, .., 62V} for
P j k
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Jj=1,-,k from its conditional distribution
plc}|e2™,0m, 2@ {g/}, ¥) in 5.2.

6- Given the set of {U/"}, the set {65}, and the data v,
sample one value of A® from its conditional
distribution p(a|{t/!}, (63"}, v) in 5.3.

Going through these six steps of sampling from the given

conditional distributions finishes one cycle of the iteration

process in Gibbs sampling. This cycle produces the first
sampled value of each of the parameters, which can then be
used to produce new sampled values of the same parameters in

the second cycle. 1In the second cycle, starting with step 1

again and given {Uj"}, generate new value of t2®* where the

superscript " (2) " used with 12 refers to the second cycle of
the iteration process. As we continue iterating between the
above six steps, the mixture of the values of any one of these
six sets of parameters becomes increasingly accurate 1in

representing its marginal posterior distribution.

Finding the Conditional Distributions for the Parameters

of the Model in 3.1

One of the requisites for obtaining the marginal
posterior distributions in 5.1 to 5.6 through the iteration
process of Gibbs sampling is to be able to sample from the
conditional distributions for the respective parameters. This

implies the need for identifying the parametric forms for
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these conditional distributions. Within the Bayesian approach
the elements of the set {Uy =U,U,~, U, are assumed
independent and identically distributed with respect to their
conditional distribution as defined in (5.1); Identifying the
conditional distribution of any element of this set therefore,
can be generalized to the other elements of the set. The same
logic applies in determining the conditional distribution for

{03 = 62, 6%, -, 0}.
The conditional distribution of U, given A, 12, {c3}, and v

From lines 1 and 2 of the joint density function in 3.13,
the conditional distribution of U;|A,12,{6%}, ¥ is found to have

a density function proportional to

Jj=1

-4
ﬁ[(o?) 2 exp(—%(Yj—ZjA—ljUj)’o_;z(Yj—ZjA—ljUj))
(5.7)

k -2 Uj
x (12) 2 1

exp _J=1
212

Since U; appears only in the exponential parts of the

expression in 5.7, the density function in 5.7, can be written

proportional to

Us (5.8)

-1 _ /2 _ i
exp -Ejg:l (dj 1,0;) 05 (d; 1;0;) + ? ,

Ignoring the terms that do not depend on

the above expression can be simplified to
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exp{——:zl-?(—z (Uj15d;) 67 + UF (njof + T-z))} _ (5.9)
Completing the square in 5.9 results in
eXp(_%ﬁ; (U; - (ny03" + v2) 215d; 05 (n;05° + 1'2)) : (5.10)
Substituting for 1§dj= nj(f;—igl) in 5.10 results in
(5.11)

exp(—%?(Uj—njo;Z (nj07°+172) " (Y;-Z[A))* (n; 05 +¢—2)) .

The expression in 5.11 represents a kernel of a normal density

function. Therefore, U,|A,t?% {063}, ¥ is distributed as normal

with mean Uj and variance V, , where

Uj = nyo* (ny0f v ) (Y- Z5A) LV, = (mgefer. (5.12)

The conditional distribution of o§ given A, 0, o?, {Uj}, and Y

From lines 1 and 3 of the joint density in 3.13, the
conditional distribution of ¢%|A,v,, 02,{U}, ¥ is found to have

a density function proportional to
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ny
2y "2 _1 _ _ /-2
(5.13)
2\_1 1 2
1 G. |26 2 ‘(1"‘1) =0,
X (63) 2 exp| ——1| .
1 (26) 7
[(_ [zeoﬁ]
20
- _ Iy _ _ 2
Let (Yj Zjl ljUj)(Yj Zji\. 1jUj) —anj. Thus, 5.13 can be
rewritten as
128 (6%) (%) exp |- anzj + 0.2 . (5.14)
20'j 260'_-,'

Ignoring the terms that do not involve 63, results in writing

the expression in 5.14 proportional to

(B2 n,8%0 + o2
(65) 7 % exp —4%(—4—155———— (5.15)
g,

In general, a continuous random variable X with a density

function f is said to have an Inverse Gamma distribution with

parameters o and P if

f(x) = 1 x~(a+1) exp(—-x—lﬁ—) ’ 0<x<o . (5.16)

I'(a) B*
The expression in 5.15 therefore, represents a kernel of a

Inverse Gamma density with the two parameters

n; 1 20
0. = &, , . L. A (5.17)
o 2 20 Bos n,;s36 + ol

To sample o) from its conditional distribution, the

following strategy can be adopted: define 0% = h(o}’) , where h






75
is a one to one function defined as h(oj’) = (6;*)*. The

conditional density function of 032 is found to be

J dh (a5*)
g(o7* |, 0,02, {U}, v) = £(%|A,0,0%,{U), V) |[—2 7|,
£ 3 5 3007 (5.18)
dh (o7
where (—CZ) = (0j%) 2. Therefore,
9 (a5

3 ot g5 B g2 2
g(677|%,0,02,(U), ) « (67 ® iexp{—o}z(%?l]} . (5.19)

In general, a continuous random variable x with a density

function f is said to have a Gamma distribution with

parameters « and f if

f(x) = 2 gk exp(

Feeeie P 0<xso. 5.20
T(a) B° ( )

The expected value and the variance of X are given by

5.21
E(X) = af , var(X) = ap? . ¢ )

The expression in 5.21, therefore has the kernel of Gamma
density function. Thus, given 4,6, o:, (), and v, the parameter e

is distributed as Gamma with

1 206
=, 2 = 5.22
T28 By 0,20 + ol y ;
p et
To sample o?, simply sample 0;2 from 5.21 then use the
relation h(uf) = (a;z)’1 to get a?.
? are

The conditional expectation and the variance of o

easily found by applying 5.21,
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E(07* (1,8, 6l,{U}, v) = (©;87 + (1-0,) o)™, and

var (o3 [4, 0, oL Ut 1) = Z[o;s] ¢ (1 - ) el]?, (5.23)
where o = R 3
? n; + 67

The conditional expectation in 5.23 has a form similar to
Stein's (1956) shrinkage estimate. It is a form of a weighted
estimate of the variance SJ?, and the asymptotic overall mean
of the variances o¢?. The weights depend, in a natural way,
on the degrees of freedom for obtaining S; and o¢l. As 6
approaches zero, indicating homogenous variances, so does ®;
leaving the expected value of 0;2 equal to ¢.°. When 0 gets
very large however, the value of w; approaches one, leaving
the expected value of 0}2 equal to the inverse of the sample
variance S;°.

The operational definition of reliability is the ratio of
the "true" variance to the observed variance. Therefore, one

B as a reliability index for cf,

can think of 1 - w; = ———
n; +0
expressed in terms of its precision. It represents the

proportion of the precision in the OLS estimates of o7 that

is parameter precision.

: 2
The conditional distribution of A given {Uj}, {63}, ana ¥

From line 1 of the joint density in 3.13, the conditional
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