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ABSTRACT

THE APPLICATION OF GIBBS SAMPLING TO

NESTED VARIANCE COMPONENTS MODELS

WITH HETEROGENOUS WITHIN-GROUP VARIANCE

BY

Rafa M. Kasim

Research in social sciences such as education,

psychology, and sociology often involves analyzing

hierarchically structured data. The use of Bayesian

procedures ‘with. hierarchical linear' regression :models ‘to

analyze such data helped researchers obtain answers to

questions where standard approaches seem to fail. It also

improved the estimates of the regression coefficients by

obtaining their empirical Bayes estimates.

Empirical Bayes estimates of the regression coefficients

at two levels of hierarchy are usually conditioned on the

maximum likelihood estimates of the variance components, and

often assuming homogeneity of within-group variance. There

are times however, where research interest is focused on

studying the variance components, especially when there exists

a clear evidence of heterogeneity of variance, and there is a

great concern about the effect of the uncertainty in

estimating these variances on the.empirical Bayes estimates of

the regression coefficients. A mixed model with random

intercept, which permits heterogenous within—group variances, {03-}

for j=1,---,k, across the k units is introduced within the

Bayesian approach. Information about the within—group

 

 



 

 

variance and the intercept from these k units represent their

prior distributions in a second level of the analysis. The

marginal posterior distributions of the variance components

and regression coefficients parameters are obtained via Gibbs

sampling. The goal is to obtain Bayes estimates of the

parameters of interest, especially those of the within-group

variances, and study the effect of adjusting for the

uncertainty in estimating the variance components on the

estimation of the regression.coefficientsu IBayes estimates of

the parameters for the specified model, with heterogenous

within-group variance obtained via Gibbs sampling, are

compared to their empirical Bayes estimates obtained via HLM

analysis assuming homogeneity of variance.

The process of Gibbs sampling applied on several

artificial data sets, and on one real data set to obtain the

marginal posterior distributions of the parameters for the

specified model. The real data set represents a nationwide

random sample from the high schools in the U.S. Eighteen

artificial data sets wereigenerated.to represent three models.

The variation between the 18 data sets covers the complexity

of the model used (number of predictors at the two levels),

the degree of heterogeneity of within-group variance, and the

number of groups in level-2. These data sets were generated

to reflect the different models used in analyzing the real

data set.

There appears to be no substantial difference between

Bayes estimates (posterior means) and empirical Bayes

 



 

 

estimates of the regression coefficients. Note that empirical

Bayes estimates are based on the assumption of homogeneity of

‘within-group variance, o§=m£. When it comes to the estimation

of the variance components, HLM estimates of the within-group

variance component, of are found to be positively biased,

especially when there exists clear evidence of heterogeneity

of variance.
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CHAPTER 1

Introduction

Social and educational research is usually conducted in

natural settings such as schools or communities rather than in

a controlled experimental setting. Natural settings often

have a hierarchical structure. In education, for example,

students are nested within classrooms, and classrooms are

nested within schools. This hierarchical structure is

reflected in the data collected from these nested levels.

Observations at one level share common characteristics. In

teacher-effectiveness studies, for example, students within a

classroom share common characteristics of the teacher and

his/her teaching method.

Student learning may be viewed as a result of social

interaction within the classroom and the school system

(Bandura, 1977). Students are assigned to classrooms, and

they are taught in a planned and structured manner. Even

though individual students respond differently to the same

teaching' process, their’ responses 'will have commonality.

Therefore, observations on students learning cannot often be

assumed independent. However, independence is one of the

assumptions of many statistical procedures that researchers

often use in their analyses.
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Ignoring the hierarchical structure of the data leads to

other statistical problems (Burstein, 1980; Cooley, Bond and

Mao, 1981; Cronbach and Webb, 1975; Knapp, 1977; and

Raudenbush and Bryk, 1988), such as aggregation bias.

Aggregation bias occurs when the relationship between two

variables varies (in magnitude and sometimes even in

direction) for different levels oftdata.analysis (Cooley, Bond

and Mao, 1981; Cronbach and Webb, 1975; Robinson, 1950). For

example, the relationship between socioeconomic status (SES)

and academic achievement is more likely to be higher in school

level data than it is in student level data. This difference

in the relationship is attributed to the effect of aggregation

of the. data in each school. In igeneral, school level

membership is related to SES; schools with higher levels of

SES are likely to have higher quality educational programs

which lead to higher achievement in those schools.

Information loss is another substantive problem that

results from ignoring the hierarchical structure in data

analysis. After the research or the evaluation design is

determined, a type of data analysis is usually chosen to

answer questions related to one level of data. If the

research questions were asked about students, it is likely

that they will be answered with a student-level analysis. If

questions were asked about classrooms, then it is likely that

they will be answered with a classroom-level analysis. When

the analysis is done at the classroom-level (i.e., using the
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classroom as unit of analysis), it is very possible that some

important relationships between variables that were measured

on the student level will be ignored.

However, there has been recent development of statistical

methods which are appropriate for analyzing a hierarchically

structured data based on multi-stage (often two-stage) linear

models (Aitkin and Longford, 1986; Burstein, 1980; Goldstein,

1986; Lindley and Smith, 1972; Smith, 1973; Rao, 1972;

Rosenberg, 1973; Raudenbush and Bryk, 1986). General linear

mixed models or hierarchical linear models (HLM) are some of

the names used to describe the statistical models developed

for analyzing multilevel data.

The multi-stage methods share a common characteristic of

treating the within-unit regression parameters as outcomes for

the. between—unit ‘modelsu They differ, however, in the

procedure for estimating variance components. Some of these

procedures use the iterative generalized least squares method

suggested by Goldstein (1986) , some use the EM algorithm

method as applied by Raudenbush and Bryk (1986), and other use

the Fisher scoring approach (Longford, 1987). The estimates

produced by all these numerical procedures are maximum

likelihood point estimates. They are consistent, efficient,

asymptotically unbiased, and normally distributed (Harville,

1977).

A two stage HLMann.be presented in the following general

form. Within unit j, for j =i1, ,k units, we have

 



 

 

_ (1.1)

Yj" Xij + 53' ,

where Y]. is an njxl vector of observations, X]. is an njxp

matrix of within-unit predictor variables, Bj is a pxl

parameter vector which captures the relationships between Yj

and X]. within each unit, and ej is an njxl vector of random

errors which is assumed to have a multivariate normal

distribution with mean vector 0 and variance covariance matrix

10$; that is ej~N(o,Ia§). For Xj with rank (Xj)=p the

Ordinary Least Square (OLS) estimate for Bj is given by

§j=(XJ{Xj)-1XJ’-Yj with a sampling variance of

Var(DjIBj) = o§(XJI-Xj)‘1.

By allowing the within—unit regression model coefficient

to vary as a function of between—unit variables, we have a

multi—level model that describes hierarchically structured

data. Therefore, in the second (between-unit) stage, we have

B,- = ij + Uj , (1.2)

where W]. is a pxq matrix of known between—unit predictors and

y is a qxl vector of parameters that capture the effect of

the between-unit predictors W]. on the within-units parameters.

Uj is assumed to be N(O,T) , where T is the residual

variance—covariance matrix for [3]. after accounting for the

effects of Wj. Thus, we can have a more general
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representation of the nudiilevel model by substituting 1.2

into 1.1 to obtain

Yj = XjoY + 53' .
(1.3)

where Ej==AGU3+ej. One might estimate the effects in 1.3 by

using an ordinary least squares (OLS) multiple regression

approach to the estimation of multiple simultaneous effects.

However, one of the basic statistical assumptions for OLS is

the homogeneity of variance for Ej. Because Ej is equal to

X3U34-ej, this assumption can only be valid when either LG is

set to equal zero or if X3=X’for all j. Setting either [5

equal to zero or Xj=X , however, implies holding all the

within-unit regression model parameters as a constant across

all units and ignoring the hierarchical structure of the data.

This leads to the violation of the assumption of independence.

The total variance var(fij|wp of the within-unit

regression estimates is :made of 'their sampling ‘variance

var(fij|Bj) plus their residual variance var(Bj|W3). That is

Vaufijmj) = o§(X;Xj)-l + T. (1.4)

Many applications have been found which can utilize the

statistical model in 1.1 and 1.2. In longitudinal studies

(Bryk and Raudenbush, 1987; Laird and Ware, 1982; Strenio,

Weisberg and Bryk, 1983) the growth model parameters for each

subject become the multivariate outcomes for the between-unit
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models. Subject characteristics (either observed or

controlled) can serve as predictors for these outcomes.

In research synthesis (Raudenbush and Bryk, 1985), a

simple measurement model for the observed effect size is set

equal to the true effect size plus some error in each study.

This measurement model is a special form of the within-unit

model in 1.1. The parameter fig Ibecomes the true effect size

in study j and .Kj becomes a scaler with a value of‘one. The

true effect sizes vary across studies as a function of known

study characteristics plus error in the form of the between—

unit model in 1.2.

A major benefit of fitting models 1.1 and 1.2 to hierar-

chical data is the possibility of getting empirical Bayes

estimates for the within-unit regression model parameters.

Empirical Bayes estimates are more stable and outperform the

classical estimates with regard to expected mean squared

error. Information from other groups can be used to get

improved estimates for the within-unit regression model

parameters. In providing a prediction equation, Braun, Jones,

Rubin, and Thayer (1983) presented a situation where there are

several predictors and few cases in subgroups of the

population ‘which. makes it hard. to obtain least squares

prediction equations. The objective of their study was to

provide separate predictive equations for the Graduate

Management Admission Test (GMAT) for the white and minority

students in each business school. Only 4% of 8500 students
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sampled from 59 business schools were minority students. The

number of minority students within each school ranged from 2

to 10; this made it hard to obtain a prediction equation for

minority students for a particular school. With the HLM

analysis, information from other schools was borrowed to

obtain the predictive equation for the minority students

within each school.

Assuming that 03: and T are known, empirical Bayes

estimates of Bj and y are given by

[33- = 13-5,- + (1-Aj) ij" ,
(1.5)

where

Aj = T(Vj+T)'1 ,
(1.5)

Vj - o§(X§Xj)‘1
(1.7)

and

y. = {§w§[Var(fij|Wj)]’1Wj)‘1{)J;wj’-[Var(§
j|wj)]'lfij}

. (1.3)

The first component of B; in 1.5 is the OLS estimate of Bj

from the data within each unit weighted by its reliability

Aj. The second component, 7* is an empirical Bayes estimate

of the between-unit parameters, y from 1.2. More

comprehensive presentations of the HLM and different methods

of estimation of the parameters of the model are given by
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Lindley and Smith (1972), Smith (1973), and Raudenbush (1984,

1988).

Although empirical Bayes methods have been around for a

long time, they became increasingly popular and were applied

to many types of problems in the early 1970s. Efron and

Morris (1972, 1973, 1975, 1977) discussed many applications of

empirical Bayes methods. Empirical Bayes estimates of the

parameters in hierarchical linear'models are.obtained.when the

true values for a; and T are known. In practice, however,

these values are rarely known to practitioners and often are

estimated from the data. Common estimates often used for

these two parameters are their maximum likelihood (ML)

estimates. Since estimates of the regression coefficients of

the HLM are functions of ML estimates of a? and T, they are

also considered to be ML estimates (Raudenbush, 1988).

In classical ANOVA procedures 03. and T represent the

within- and between-group variance components, respectively.

In balanced designs these variance components.can.be estimated

by solving a set of simultaneous linear equations obtained

from equating the observed mean squares (which are quadratic

forms of the observations) to their expected values (Searle,

1971). For unbalanced designs, there is more than one set of

quadratic forms to use for estimating these variance

components. Depending on the particular set used,

inconsistent estimates of the variance components may be

obtained (Searle, 1971).
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Introducing HLM to the analysis of educational data can

improve the quality of the data analysis in education. It,

also helps applied statisticians obtain sensible answers to

questions where standard approaches seem to fail. However,

there continue to be obstacles related to HLM applications and

theoretical derivations.

In some applications where the assumption of homogeneity

of variance cannot be verified, drawing inferences on the

variance components becomes part of the research interest,

especially the variances of the within—unit residuals

(Leonard, 1975; Rao, 1970; Raudenbush and Bryk, 1987). The

motivation for making such inferences on the variances can be

attributed to the intrinsic interest in the variances

themselves and to the fact that they are part of the standard

errors of estimates for the regression.coefficientsu In other

applications, where we have small samples within each group

and.a small number of groups, maximum likelihood estimates for

the variance components 03- and T might become unstable.

Substituting these unstable estimates as true values for the

variance components will distort the regression effect

estimates.

Purpose of the Study

The purpose of this study'istto obtain marginal posterior

distributions for all effect parameters and variance
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estimate for the variance. Further,

10

components 111:3 linear mixed model with random intercepts

without relying on the assumption of homogeneity of the

residual variance 0; across groups. Non-informative priors

will be posed on the hyper-parameters that describe the

distributions for random parameters. The marginal posterior

distribution for each parameter will then be approximated

using the Gibbs sampling method (Tanner, 1993).

When research interest is focused on making inferences on

variances, finding the entire posterior distribution for each

of the variance components is more informative than having

onLy a point estimate of the variance. Having the entire

posterior distribution at her/his disposal will allow the

researcher to have the flexibility in choosing an appropriate

s/he can establish

probability intervals around the estimate.

Objectives of the Study

The idea of approximating the marginal posterior

distributions for all parameters in the model leads to the

question of how feasibly to do so. Therefore, the questions

of this study are:

1-
How do the posterior mean (Gibbs) estimates of the

parameters cufaa mixed model with heterogenous within-

group variance differ from their empirical Bayes

estimates which are based on the homogeneity of within—
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group variance assumption? (Empirical Bayes estimates

for the within- and between—unit regression coefficients

were conditiOned on ML estimates of the variance

components with homogeniety of within-group variance).

How do inferences about regression coefficients change

when taking into account the uncertainty in estimating

the variance components?

Can a single estimate be used as typical value for all

the different residual variances kfii?

How precise are the posterior mean (Gibbs) estimates of

the residual variances {0%.} in estimating their single

typical value?

The last two questions focus on the parameters of the prior

distribution of the residual variances {03-}. Inferences can be

made on these two parameters from their approximated marginal

posterior distributions.

Bayes Solution

If reasonable priors are posed for all the unknown

parameters in the model, theoretically, the marginal posterior

distributions of the parameters of interest can be obtained by

integrating out the other nuisance parameters in the model.

Bayes estimates for these parameters can then be derived from

their respective marginal posterior distributions based on a

certain loss function.
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From a Bayesian VieWpoint, estimating a parameter 6,

given its sufficient estimate a from the sample implies

selecting a decision function, say D, so that D(é) is a

predicted value of 0 when both the computed value 8 and the

posterior density function f(0|8) are known. Often, the

researcher predicts an experimental value of any random

variable to be its expected value; however, the median or the

mode can also be used as predicted values. For many cases, it

is desirable that the choice of the decision function

D should depend upon the loss function say L[6, D(é) ], that we

try to minimize (Hogg and Tanis, 1977) . For example, when the

loss function is given by:

L[e,D<é)] =[e —17(?))]2 (1.9)

then Bayes‘ solution that minimizes this loss function is  given by D(8) =E(6|é) . It is also possible to obtain Bayes'

probability confidence intervals for the estimates directly   from their respective marginal posterior distributions.

A problem associated with the application of Bayesian ;

methods to hierarchical models is the difficulty of the

mathematics involved in the derivation of the posterior

distributions (Lindley and Smith, 1972). The multiple

dimensions of the parameter space in the model make it

difficult to express some of the required equations in closed

form. Therefore, certain marginal posterior distributions
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cannot be obtained analytically through direct evaluation of

an integral, and in many applications, integrating out the

nuisance parameters is a difficult job. Consequantlly,

empirical Bayes estimates are used. to approximate truly

Bayesian estimates.

In some situations we might find that the focus of the

research is centered around making inferences about a? and T

rather than the regression coefficients in the model.

Therefore, obtaining the marginal posterior distributions for

these parameters is more informative than obtaining their

single point estimates. Even when concern focuses on the

regression coefficients it will be useful to insure that

posterior uncertainty regarding these coefficients fully

reflects posterior uncertainty about the variance-covariance

components.  
Importance of the Study  

In educational settings, where we have several

classrooms or several schools, interest is mainly focused on

studying the factors that affect students' academic

achievement. Traditionally, student achievement is evaluated

by comparing schools or classrooms on their means on some

measure of academic achievement, usually students‘ test

scores. Often, important decisions such as school funding or

teacher promotion are based on this evaluation. The fairness
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of these decisions depends on whether the test score means in

different schools or classrooms truly represent students'

academic achievement. Many factors that could affect these

means can be controlled statistically through model

specification. However, it is still possible that for a

slightly higher test score mean, one school will get more

funds than others or a specific teacher may get promoted. It

is also possible that the school that got extra funds or the

teacher who got promoted produced higher variability in their

students' academic achievement.

A successful educational program or an effective teacher

should arguably strive not only to increase and facilitate

students' academic achievement, but also to reduce the gap

between students' learning and produce equality in their

achievement (Bloom, 1984). Therefore, the evaluation process

should be based not only on average achievement, but also on

the equity of the achievement. Consequently, any improVement

on the methods of estimating these two criteria certainly

helps the decision maker in his/her evaluation of the

educational system.

Another example is drawn from research syntheses

(Raudenbush and Bryk, 1985; Rubin, 1981) where a simple model

for the observed effect size is set equal to unknown true

effect size plus some error for each study. The objective is

to obtain an efficient estimate of each study effect size as

well as its precision. It is also common in some cases to
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have a number of groups with a small number of observations

for each group which were obtained under the same conditions.

For example, in longitudinal studies, the growth of subjects

from the same age can.be observed.over several points of time.

One might become interested in studying the growth rate of a

particular subject in comparison to other subjects. The

replicate observations on the subject can then be used for

variance estimation.

In all of above examples, there are two sets of

parameters (means and variances) with several parameters of

the same type in each set. Within each set, these parameters

are related by common circumstances; schools or classrooms in

the first example, studies in the second example, and the

individual subject in the last example. Within the Bayesian

framework, it is logical to assume that these many parameters

that share common circumstances would have a common parametric

prior distribution. This distribution summarizes the informa-

tion about these parameters prior to data collection. This

allows the researcher to use such prior knowledge about these

parameters to get their improved estimates.

With the help of modern computers and developments in

simulation'theory, research.interest.is being directed towards

approximating the posterior distributions of the parameters in

the model being investigated and obtaining their Bayesian

estimates (Tanner and Wong, 1987). In his work on

hierarchical linear models, Seltzer (1988) adopted the data
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augmentation method to obtain Bayesian estimates for variance

components. He also investigated Bayes' estimates for the

within-school regression coefficients when they are assumed to

have a t-distribution (see also Seltzer, 1993). Fotiu (1989)

also applied the method of data augmentation in estimating

the joint posterior distributions for the effect parameters

(within- and between-units) when analyzing many groups. Both

Seltzer and Fotiu approximated the posterior distribution of

2
O .3 under the assumption that it is equal to (9 across all

groups. This assumption is usually made for convenience,

rather than because it necessarily holds true. By making this

assumption, the researcher can pool all the observations from

all the groups to get a large-sample point estimate of 02.

However, when the marginal posterior distributions of all the

parameters in the model can be approximated, this assumption

becomes no longer essential to the analysis. In fact,

sometimes the main objectives of the statistical analysis is

to estimate the posterior distribution for each 0?.

In conclusion, the objective of this study is to

investigate the use of a mixed linear model with heterogenous

variances {03-} across groups. A linear regression model with

a random intercept will be used to represent the relationship

between the criterion variable and the predictors in each

group. By obtaining the marginal posterior distribution for

all the parameters in the model, the practitioner can obtain

Bayes estimates for the effect parameters as well as variance-
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covariance components. Based on the theoretical formulation

of the model a number of simulated data sets will be generated

to verify the accuracy of the estimation under different

parameter specifications. These specifications reflect the

degree of heterogeneity of variance, the different numbers of

group sizes, and the complexity of the regression model for

each group. The estimation process will be applied to a

national sample of US high schools where math achievement has

been studied as a function of school and student

characteristics. One important feature of this data set is

the heterogeneity of the residual variance across schools.

Radenbush and Bryk (1987) investigated the heterogeneity of

variance in this data set through the application of

hierarchical linear models.

Organization of the Study

Chapter 2 will present a statement of the problem and

review of literature conducted on the topic. That chapter

will also highlight some of the problems in variance

estimation, and its relation to the HLM. In chapter 3, a

general linear mixed model with a random intercept will be

presented to represent the several applications presented in

this study. In addition, a comprehensive description of the

assumptions associated with the model will be provided within

the Bayesian framework. Chapter 4 will explain the Gibbs
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sampler and its application in achieving the objectives of the

study. An example will be provided to illustrate the

iteration process of Gibbs sampling. Chapter 5 will present

'the derivation of the conditional distributions for the

parameters needed in the iteration process. It will also

provide a: description to the computational steps for the

iteration process presented in chapter 4. Chapter 6 will

presents the results of the small simulation study as well as

the results of an analysis of mathematic achievement data from

US high schools. Discussion of the results for the generated

data and the US high school data, as well as conclusions, will

be presented in chapter 7.

 



  



 

 

CHAPTER 2

Statement of the Problem

Variance estimation plays an important role in almost

every kind of quantitative research. A basic requirement of

nearly all forms of analysis is that a measure of precision be

provided for each estimate derived from the data. The most

commonly used measure of precision of an estimator is the

reciprocal of its variance. The sample variance is used to  estimate the precision of the mean or other location

estimates. It is also used to check for gross errors

affecting' a single observation. Further, it is used to

provide an estimate of a variance component such as a pooled

within sample variance in several kinds of statistical

procedures.

In HLM analysis, the two variance—covariance components

2
0' .J and T are used in obtaining empirical Bayes estimates for

the effect parameters in equations 1.1 and 1.2. Compared to

the Bayesian approach, the empirical Bayes approach does not

require the specification of prior distributions for a; and

T. The two-level hierarchical linear model and its

assumptions for the empirical Bayes approach can be restated

as

19
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Y]. = Xjflj + 6]. , where 6- ~ N(0,Io§-) , (2-1)

for the first level, and

B]. = ij + Uj , where Uj ~ N(O,T) , and 1 ~ N(G),l"), (2.2)

for the second level. The joint posterior distribution for

the effect parameters Dj and y is conditioned on the values

of a; and T (Lindley and Smith, 1972). The joint density

function f1(fij,le3,o§,T) for this posterior distribution can

be expressed as

f1(i3j,lej,o§-,T) o< f2(Yj|pj,o§) f3((3j|o§, y,T) f4(y), (2.3)

where f2(yj|(3j,o§) is the likelihood function of the data,

f3(Bj|o§-, y,T) represents the conditional prior density

function of (33., and f4(y) is the density function for a

noninformative prior for y. The values for a? and T are

often estimated. by one of several methods of numerical

estimation. One common method is the EM algorithm (Dempster,

Laird and Rubin, 1977) which.produces their maximum likelihood

estimates. These estimates are asymptotically normally

distributed, unbiased and efficient estimates.
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Problems Associated with the Estimation of 02 and T

In some applications, the sample size within each group

as well as the number of the groups might not be large enough

to allow the specific estimates of a; and T to obtain the

asymptotic properties. Nevertheless, practitioners often use

maximum likelihood estimates of a; and T to represent their

true values to obtain the conditional posterior distributions

for the effect parameters.

Problems Associated with Estimating T

In 1.2 of the HLM, T represents the residual variance-

covariance matrix for the within-group parameters Dj across

all the groups. The shape of the sampling distribution of

this variance—covariance matrix depends on the number of

groups in the study. Consider the model investigated in this

study, for example, where only the intercept is considered

random. The matrix T , then, becomes scalar 12, which is the

variance of the intercept across all the groups. When the

number of groups is relatively small, say kle, it is

possible that the distribution of an estimate of t2 becomes

highly skewed. Using the mode of that distribution (maximum

likelihood estimate) as an estimate for 12 might not be a good

representation of its true value.

In a validation study conducted on eight law schools,

Rubin (1983) pointed out the problem of using maximum
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likelihood estimates for 12 when there are small number of

schools in the study. He stated that

"The specific problem here is that the likelihood

of 12 is not at all symmetric about the maximum

likelihood estimate, and thus this estimate is not

representative of reasonable values for 12.

Integrating over :2 in such cases is a much more

reasonable way to summarize evidence than to fix 12

at some value" (Rubin, 1983, p. 15).

Notice that the estimated value of 12 is being

substituted in 1.4 to 1.8 to obtain the precision weight for

the empirical Bayes estimates for the regression coefficient

of the HLM model. Consequently, invalid estimation of this

parameter causes the estimates of the regression coefficients

of the HLM model in 1.5 and 1.8 and their reliability

estimates in 1.6 to be distorted.

Problems Associated with an Invalid Assumption of Homogeneity

of Variance

When maximum likelihood estimates are obtained for

variance components, {0?' for ;i= 1, ,k7 are often assumed

homogeneous. Researchers often assume homogeneity of

variances across all groups out of convenience rather than

conviction. This assumption allows the pooling of the

observations from all the groups to get one large sample

maximum likelihood estimate of 02 for all the groups. Berlin

(1984) stated that

"large data sets are rarely homogeneous in their

precision and that usual statistical analysis fails

if it does not take such differences into

consideration.“ (p. 209).
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When the number of observations in each group is large enough

to allow for consistent maximum likelihood estimation, Mason,

Wong and Entwisle (1984) advised that a separate variance

estimate should be obtained for each group.

However, when the number of observations in each group is

not large enough to allow for consistent maximum likelihood

estimation and the parameter variances are not equal, pooling

the observations from all the groups to obtain a single ML

estimate for 02 might give an inaccurate estimate of the

variance. Assuming homogeneity of within—group variance

Bassiri (1988) showed that the within—group variance estimate

becomes unstable when the groups' sample sizes are relatively

small. This could lead to invalid estimates of the regression

coefficients Bj and their precision estimates (see equations

1.4 and 1.5). Consequently, inferences about or confidence

intervals for the regression effects would be invalid.

Equation 1.4 shows when the true values of o; and T were

being used, part of the variability in the estimated variance

of the regression effect Bj stems from the variability inX

across groups. Another part stems from the variability in

og's when no homogeneity of variance assumption is being made.

By assuming homogeneity of variance,o§= 02, we are ignoring

part of the variability in the variances of the regression

effects. The part being ignored is attributable to the

variability in the residual variances.
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For illustrative purposes, consider the case where A; is

assumed equal to X across the k groups for j=14 m, k. Thus,

the within—unit regression coefficient estimates become

[’3‘]. = (X’X)‘1X’Yj. When homogeneity of variance holds, the

variance—covariance matrix for these estimates can be derived

from 1.4 as

Var(i3j|Wj) = 02(X/X)‘l +T. (2.4)

Equation 2.4 implies that the within—unit effects are

estimated with the same precision across all the k groups.

However, if there is a considerable variability in the

residual variances across groups, the estimation of this

precision becomes invalid and those estimates of the

regression effects no longer have the same precision.

In a classical analysis, when. researchers study any

treatment effect, they compare the means of the criterion

variable from different treatments. One of the assumptions

they often make is homogeneity of variance. The justification

of this assumption is to get a single pooled variance estimate

for the within treatment variance to represent the error term

in the analysis so that treatment effect can be tested. Bryk

and Raudenbush (1988) showed that heterogeneity of variance in

the traditional analysis of treatment effects can be seen as

evidence of an interaction between treatment and subject—

specific characteristics. They warned researchers against the

problem of obtaining biased estimates for treatment effect
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when ignoring heterogenous variances in the classical

analysis.

Consider the classical case, often referred to as the

Behrens-Fisher case, of testing the hypothesis pa "ih>= 0 with

unequal population variances, oisoi. Using §;-X; as an

estimate for pa—pb, the sampling distribution of the statistic

z: (Ea—Eb) - (pa-uh)

2 2 (2.5)
0 U

(—a)+ —‘3>
na H):

is 1V(0,1). The given hypothesis cannot be tested without

knowing o: and oi. When the sample sizes ha and nb are both

large enough, we can substitute the unbiased estimates of the

variances, s: and SE, for the corresponding parameters, and

the resulting statistic has a sampling distribution

approximated by N(O,1). In practice, however, when 12a and nb

are both relatively small and noticeably unequal, the

resulting statistic

Z: = (Xa_Xb) _ (pa-p19)

S2 32 (2-6)

(—a)+(—5)

a nb

would have what is known by Behrens—Fisher distribution

(Winer, 1971). Therefore, when there are both heterogeneity

of variance and a noticeable difference in the sample sizes

between treatments, the homogeneity of variances assumption

becomes questionable.
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The Analysis of Many Group Variances a;

A common situation where many variances need to be

estimated arises when there is a heterogeneity of variance in

linear models. Rao (1970) introduced a method called Minimum

Norm.Quadratic Unbiased Estimation (MINQUE) for estimating the

residual variances in linear models when these variances are

found to be heterogeneous. MINQUE estimates are a linear

function of the distinct variances under certain conditions.

These conditions are related to the choice of the matrix that

creates a quadratic form in the outcome variable. If some of

the variances are the same, their corresponding coefficients

in the linear function can be chosen to be the same. The

variances estimated using the MINQUE method can be used to

obtain improved estimates of the coefficients of the linear

model. Further, they can be used in obtaining the estimate of

the precision of the simple least squares estimator of the

regression coefficients or any linear function of these

coefficients.

Cook and Weisberg (1983) modeled the variability in

variances as a function of some explanatory variables. The n

residuals from a linear regression model are assumed to have

a multivariate normal distribution, with mean zero and

variance—covariance matrix 02W, where W is a diagonal matrix

with all diagonal elements wq>0 for i=14. ,n. Estimating the

residual variances implies estimating the elements of W.
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The variability in up, which represents the variability

in the variances, is expressed as a function of a 1 x q row

vector of known explanatory variables zi=(zfi) forj=1, ,q

and q><1 vector of unknown parameters A as in the following

two models

q

%=en{ahflfi)l
(L7)

J:

or

q
w.= exp(§:Ajlog(zfi)). (2.8)

j=1
1

Note that the variables zfi can have negative values in the

first model but not in the second one. The predicted values

of hp, from the above models, can then be used to estimate the

residual variances from their variance—covariance matrix 02W.

Cox and Solomon (1986) have also dealt with the issue of

estimation of many variances. They provided examples

illustrating the problem of estimating many variances from

small samples. One of the examples covers the situation where

there is a systematic difference in variance between samples.

Observations within a sample are assumed to come from. a

N(pi,o§) population where 1:14. ,k. The ith variance 0? is

a function either of an explanatory variable zi,

characterizing the ith population, or of pi. They adopted

similar versions of the models in 2.7 and 2.8 to represent the

systematic change in the variances.

They also presented another example for the case where
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the changes in the variances are considered random. They

consider it a complement to the above case (where changes in

the variances are systematic) and called it the

"overdispersion model", (Cox and Solomon, 1986, p. 544). In

this case, different population variances are considered to be

independent unobserved values of a random variable 02. This

variable has an inverse gamma distribution with density

1 -1

a — Va(ivoof) (032v. exp —O—:° {F [2t°]} , (2.9)

where v, represents the degrees of freedom, and of some

 

constant.

Given the inverse Gamma density in 2.9 and considering

the ith. population :mean pi as ea nuisance parameter, the

estimation of the ith population variance 0% is based on the

marginal likelihood of the ith sample. The underlying idea

of the above model suggested by Cox and Solomon (1986)

coincides very closely with Bayesian thinking.

Bayesian Approach

Lindley (1971) used the Bayesian approach in the

estimation of many different means and variances. In the case

where both means and variances were unknown but have

exchangeable distributions, he used the conjugate priors for

these distributions to derive the joint posterior density for

the means and variances. The joint density of all the

parameters was based on a three—stage model of hierarchy. The
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first stage describes the data, and its likelihood function

given the means and the variances. That is, given {ufl and

{0;} the data Kg are independent and normally distributed with

.E(Yfi) = uj and var(rfi) = a? for i = 1, ,nj; j = 1, ,k. In the

second stage, the means in; and the variances is? are assumed

to be independent with two different exchangeable

distributions. The exchangeable distribution for the means

{uj} is assumed to be normal with mean 6 and variance 1. The

exchangeable distribution for the variances hfi} is an inverse

chi—square, where the variable voof/ofi is distributed as a x2

with v° degrees of freedom and of as a typical value for 0?.

The third stage describes the prior knowledge about the

parameters in the second stage. For the parameters in the

normal distribution a conjugate prior distribution for the

mean 6 with vague prior knowledge produces locally uniform

prior. Similar to 0%, the variance T is assumed to have an

inverse chi—square where vrof/t distributed as x2 with vt

degrees of freedom and of as a typical value for I. Since a?

is distributed as an inverse chi—square, a conjugate prior for

of given V0 is a function of x2 with r and A as two constants

describing the distribution. The parameter V0 is assumed to

have a uniform prior on (O,W).

The joint posterior density for the means in} and the

variances {0? was derived by integrating out all other

parameters (which are 6, T,V° and of) from the overall joint

posterior density function. The derived estimates were based
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on a simple model where there were several groups with

different means and variances. If a more complex linear model

with several predictors were to be used the estimation process

then becomes more complex. The added coefficients for the

predictors in the linear model make integrating the joint

density function of the parameters analytically, extremely

difficult.

Leonard (1975) provided a procedure for modeling the

variability in the means and the variances from several normal

populations using the Bayesian approach. His model for the

means, when the variances are known, represents a general case

of the one presented by Lindley (1971). When populations

means are known, Leonard expressed the log—transformed

variances as a function of some explanatory variables using a

linear model similar to the one for the means. The log-trans—

formed variances were assumed to have an asymptotic normal

exchangeable distribution similar to the one for the means.

Expressing the variances or any transformation of them as

function of other variables is similar to what Cook and

Weisberg (1983) did as shown in equation 2.7. The major

difference here is that Cook and Weisberg consider Aj in 2.7

to be fixed unknown parameters that need to be estimated,

while Leonard proposed the use of prior knowledge about a

similar parameter for the linear model of the log—transformed

variances.

The resulting estimates of the means and variances are

 





 

 

31

shrinkage estimates. They represent a weighted average of the

standard estimate from the sample plus a weighted average of

all the samples estimates. The weights are related to the

reliability of the standard estimate from the sample. The

shrinkage estimates of the variances are found by taking the

exponential of the shrinkage estimates of the log—transformed

variances.

When both means and variances are unknown, Leonard

proposed an iterative method for estimating the joint

posterior mode vectors of the means and the variances. He

substitutes the shrinkage variance estimates in the expression

for the means to obtain their new estimates. The new

estimates of the means are then used to find new shrinkage

estimates for the variances.

Raudenbush and Bryk (1987) tackled the issue of

estimating variances from many groups as a special case of a

more general problem of estimating the parameters of a two—

stage HLM. They provided two different methods for obtaining

empirical Bayes estimates for the variances. The

conceptualization of their models is similar to those

presented by Lindley (1971) and Leonard (1975). In the first

method, estimates were derived using the exact distribution

(chi—square) of the variance estimate within each group. That

is,

sf ~ oixifl/(ni—l) . (2.10)
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Assuming that the variances have an exchangeable prior

distribution, the variable vgof/oi has a chi-square

distribution with vo degrees of freedom and 03 represents the

typical value for the variances prior to observing the data.

This distribution is the natural conjugate prior for the one

in 2.10. Thus, the variance 0% is distributed as vqofxfij,

where xfij denotes a ‘variable with an inverse chi-square

distribution.

In the second method, however, estimates were derived

using the asymptotic normal approximation to the sampling

distribution of the logarithmic transformed variance estimate

within each group. For the first stage of the HLM

di=6i+ei, where ei~.N(0,(ni—1)”/2) for i=1, ,k, (2-11)

where cQ=-%[log(sf)-ci], Ci is a bias correction, and

6i=-%log(o§). For the second stage of the HLM

5. = W/y + U1, where U1” N(O,‘;1) for i=1, ,k , (2.12)
.1

 

where W1 is a Mx1 vector of known predictors, y is a Mx1

vector of effect parameters, and [Q is a random error normally

distributed with mean equals zero and variance equal ¥;. The

use of the normal approximation to the sampling distributions

of the variances permits the use of the above formulation and

allows for the hypothesis testing associated with it.

Estimates from both methods (exact distribution and

normal approximation) are shrinkage estimates. They are
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weighted averages of two components. For the exact

distribution, the conditional posterior mean estimate for the

variance is given by

32 =W , (2.13)

ni+ v0— 3

The first component is the usual estimate of the variance

based on the observations within each group weighted

proportionally by its degrees of freedom. The second is the

typical value of of the variances in their prior distribution

weighted by the concentration of these variances va around

that typical value.

For the normal theory, however, the empirical Bayes

estimate for the logarithmic transformed variance is given by

(2.14)~

51 = Xidi + (1_Xi)Wi/T r

where Ai=(ni-1)/(ni+9-1), and 9 is estimated numerically.

The first component is the ordinary estimate of the

logarithmic transformation of the variance estimate within a

group, weighted proportionally by its degrees of freedom. The

second component is a predicted value based on information

from all groups, weighted proportionally by the concentration

of the parameters estimated by the first component around that

predicted value.

The resulting estimates fronlboth.methods are conditional

estimates. In the method where exact sampling distributions

of the variance estimates are being used, the empirical Bayes
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estimates for the variances are conditioned on knowing the

true 'values for the parameters of and v0. In .practice,

however, the true values of these two parameters are usually

unknown. To obtain the shrinkage estimates of the variances

in 2.13, of and v0 have to be estimated. Based on the EM

algorithm approach by (Dempster, Laird and Rubin, 1977) for

numerical estimation, Kasim (1986) developed a procedure for

estimating of and v“ The complete data for estimating 03 and

v0 are {S§L{o?‘ for j =1” ,k, where only {3;} have been

observed. The parameters of and v, are estimated by

maximizing their likelihood function .Zflo?)v°,ofi (M-step),

assuming that (a? have been observed. The sufficient

statistics for estimating of and v0 are functions of (0?.

Since {0? cannot be observed, the posterior expectations (E-

step) of these sufficient statistics are used to estimate of

and Va. Finding the posterior expectations of the sufficient

statistics, however, depends on knowing the values of of and

v0 as well as the data {sfih This dependency between the

posterior expectations and of and v0 is used in an iterative

process to estimate of and v0. Therefore, given the observed

data {Si} and initial estimates of of and vo, the values of

sufficient statistics are estimated by their posterior

expectations. The estimated sufficient statistics are then

used in maximizing ldofilvucf) to obtain new estimates of of

and v0. Going back and forth between the expectation step and

the maximization step, we get reasonable estimates of 03 and
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v In fact, each step of this iteration process increases

1({09lv°,03), which provides us with better estimates of of and

v0 than those from the step before. The iteration process is

terminated when the absolute change in the values of of and

v0, between any two steps, is sufficiently small.

In the method where the normal approximation to the

sampling distribution of the variance estimates is being used,

the empirical Bayes estimates of the variances are conditioned

on the residual variance V in the second stage model (see

2.15). The true value of this parameter is unknown, and it

must be estimated. Similar to the way that of and v. are

estimated, the maximum likelihood estimate if is obtained

numerically via the EM algorithm.

The work of Lindley (1971), Leonard (1975) and Raudenbush

and Bryk (1987) on estimating variances of many groups share

the characteristic of borrowing information from other groups

to get an improved estimate of the variance for a particular

group. As an application of this idea Singh and Sedransk

(1988) provided an example for obtaining improved estimates of

strata variances when strata sample sizes are small. The

improved variance estimator uses data borrowed from other

strata, initially thought to be similar. The resulting

estimate is a shrinkage variance estimate for the stratum,

which is similar to the one in 2.14.
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Comments on the Analysis of Many Variances

There are still several theoretical and practical

weakness in estimating and investigating the variability in

many variances. Empirical Bayes estimates of the variances,

which were suggested by' Raudenbush and Bryk (1987), for

example, are not adjusted for the uncertainty in estimating

the conditioning parameters of and v6 in the exact method, and

V in the normal approximation method. This is similar to the

problem (Tanner and Wong, 1987) of obtaining empirical Bayes

estimate for the effect parameters in HLM without adjusting

these estimates for the uncertainty in estimating the variance

components.

The focus on obtaining conditional point estimates for

the variances in the model rather than deriving the entire

posterior distribution for each variance can cause some

problems. In some cases, the misrepresentation of the true

values of the conditioning (given) parameters will lead to

obtaining inaccurate conditional estimates of the variances.

For example, in the case of the exact theory of Raudenbush and

Bryk (1987), the variability of the group variances is

inversely proportional to the conditioning parameter v° plus

some constant. Therefore, if there is a clear evidence of

heterogeneity of variance then the likelihood of V0 is not at

all symmetric around its maximum likelihood estimate.

Consequently, this estimate is an inaccurate representation
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for the true value of v“ Conditioning the variance estimates

for the different groups on the estimated ‘value of this

parameters will distort these variance estimates. This

problem is similar to the one presented earlier by Rubin

(1983) for estimating 12 when the number of groups is small.

Normal approximation for the distribution of the

estimated variances is another crucial point in the analysis

of many variances. Bartlett and Kendall (1946) reported that

the normal approximation is sufficiently accurate when the

sample size in each group is at least equal to 10. For

smaller samples, the normal approximation to the distribution

of the estimated variances ‘might be less accurate. The

inaccuracy in the normal approximation can lead to

inappropriate representation of the model. A severe loss of

efficiency in estimation can occur when sample sizes are less

than 5 (Cox and Solomon, 1986).

Adjusting for The Uncertainty in Estimating a; and T

Standard methods do not exist for adjusting the

conditional posterior distribution for the effect parameters

to reflect increased variability due to the uncertainty of

estimating a? and T (Tanner and Wong, 1987). The estimates

of the regression coefficients given in (1.5) to (1.8) are

conditioned on knowing the true values of o? and T . In

practice, however, these parameters are usually unknown, and
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their ML estimates are often used to allow for empirical Bayes

estimation for the regression coefficients. Therefore, part

of the variability in the empirical Bayes estimates for the

regression coefficients should be attributed to the

uncertainty in estimating 03 and T. Having the marginal

posterior distributions for the regression coefficients will

facilitate obtaining their estimates without conditioning on

a? and TH Consequently, the estimates will be correctly

adjusted for the uncertainty of estimating the variance

components a? and T.

In summary, the problem in getting empirical Bayes

estimates for the effect parameters in multilevel models is

centered on getting appropriate estimates for a? and T. When

the sample sizes and the number of groups are large enough,

maximum likelihood estimates of a; and T are a good solution

to the problem of getting those empirical Bayes estimates.

However, when there is heterogeneity of variances and the

number of observations within each group as well as the number

of groups are not large enough to allow asymptotic estimation,

maximum likelihood estimates of 02 and T may not be

appropriate; it is essential that one should move toward being

fully Bayesian in this analysis.

 

 





  

 

CHAPTER 3

Model Specification

This chapter provides a description of the statistical

model used in this study and its underlying theory. The basic

assumptions for this model are provided within the Bayesian

framework. The joint posterior distribution for the

parameters in the model is also presented.

A common characteristic often shared by evaluation

studies that involve social interventions, like a new

educational program, drug rehabilitation, or health care

promotion, is that the data collection process is based on

more than one level of hierarchy. The most common case is

where there are measures for program or group characteristics

and other measures for characteristics of subjects who are

nested within the groups or programs. Any model set up for

investigating relationships between measures from this kind of

data needs to acknowledge the hierarchical structure of the

data.

statistical Model

This section presents a general linear model that

captures the hierarchical structure of nested data. The model

and its assumptions can be described in three stages. The

39
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first stage describes data obtained from k groups, where

j=1,-~, k. Given the set of parameters A, U. and 03:, let YjJ!

be a vector of nj independent observations from a normal

distribution with a mean ZjA + ljUj and a variance Ijog. A

linear model with random intercept and fixed effect parameters

for both group and subject level variables can be specified as

where

2

Uj is a random error for the intercept,

F

  

Y.-

71

l le Wj lel .. lep '

z]. = s s 2 s s , and A = «(Q

1 W71 qu anjl anjp pl (3.2)

Lfipi

The part [27]., qu] of the matrix Zj represents q known group

level variables, the part [X1- ] represents p known fixed
7'1 Xijp

effect subject level variables, and A is p+q+1 vector of

parameters that capture the effect of group and subject level

variables on the outcome variable Yj.

In the second stage both the intercept y°+Uj and the

residual variance 0; are assumed to be independent and vary

randomly across the k groups. Given A and t2, the random

part of the intercept U]. is distributed as normal with mean

zero and variance 12. Given 0.2 as a typical value of 03, the
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02

variable 67'; is distributed as x2,%) with % degrees of

freedom.

The last stage represents vague prior knowledge about the

hyper-parameters A, 12, 6, and of for the two distributions

presented in the second stage. The prior for each one of

these four parameters is assumed proportional to some

constant.

The model in 3.1 and its associated assumptions can be

summarized as follows:

1- The observed data

Given A, Hi and c@ the data I} is distributed as

 

2 / 2

2- The parameters of exchangeable distributions

Here a; and 09 are assumed independent,

Ule,1:2 ~ N(0,1:2) , (3.4)

and

0.2 2

" xii) ' (3.5)
60] 9

3- The prior knowledge about the hyper-parameters.

The joint prior distribution p(A,tz,6,o§) can.be written

as

._....._. ____.‘—-—
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p(),.2,e,e§) « p(1)p(r2)p<e,of), where

pm «X c,

Lfirz) « Cb

p<6,of) .. p<of e)p<e) , where

_p(of 6) a ($3! and

p(6) cc Ce .

 

(3.6)

 

The hierarchical structure of the models in (3.1) and

(3.2) fits nicely within the Bayesian approach. The next

section provides more discussion about the specification of  
the parametric forms for the.distributions of the exchangeable

parameters LG and a? and.the hyper-parameters A,‘fi% 6, and.of.

These specifications are required to obtain Bayes estimates

for the parameters of interest.

 
Assumptions of the Model

There are three sets of assumptions associated with the

model in 3.1. The first assumption is about the data. Given

A,Cg and 03, we assume that the data Y} are normal with mean

equal to Z3A-+]jLG and variance equal to 1}o§.

In the second stage of the model, the intercept yo+CG and

the residual variance 0? are allowed to vary randomly across

the groups. The parametric forms of the distributions for 03

and a? are based on the hierarchical structure of the model.

More explicitly, there are two sets of parameters with several

parameters of the same. type: in each. set (i.e., several
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intercepts and several variances) . The parameters within each

set usually describe a common variable that is shared by all

the groups. In the example of evaluating educational program

in different schools this common ‘variable could. be the

effectiveness of an educational program adopted by each school

within a district. For the meta-analysis example, the common

variable is the effect size that varies in value across all

studies used in meta—analysis. Within each set of parameters

(intercepts or residual variances), one can think of the value  
of each parameter in the set as a single realization of a

random variable that has a common distribution with the rest

of the parameters in the set. When this conceptualization is

translated to a probability structure, each parameter can be

viewed as a random variable having an exchangeable  
distribution with the rest of the parameters in the set.

Another way of saying this is that these parameters are

independently identically distributed random variables with a

prior distribution yet to be specified.

Under the Bayesian approach, the prior knowledge about

the parameters can be used to specify the parametric form of

their prior distributions. Bretthorst (1988) provided general

guidelines for choosing prior distributions. He stated that

"There are two questions one may consider to help

in this. First, one should ask ‘Are the parameters

logically connected?‘ That is, if we gain

additional information about one of the parameters

does it change the estimates we would make about

the others? If the answer is yes, then the

parameters are not logically independent. It will

be useful to find a representation where the
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parameters are independent.

Another useful question is ‘What are the

invariances that the prior probability must obey?‘

That. is, what 'transformation.‘would. convert. the

present problem into one where we have the state of

prior knowledge." (Bretthorst, 1988, p.183).

The first question deals with. issue of independence between

the parameters for which.we seek.prior distributions. For the

model in 3.1 we assumed CG and a? independent. It implies

that knowing the residual variance in each group does not

depend on knowing the random error associated with intercept.

The second question deals with the choice of conjugate prior

distribution for the parameter of interest. Therefore, given

A and 12, we assume that the conjugate prior for the random

part of the intercept.LG is normal with mean equal to zero and

variance equal to wk. Further, given 6 and of,'we assume that

(fi/(Bofi) has a chi-square distribution with -% degrees of

freedom. The hyper-parameter of describes the value that one

expects the residual variance 0? to have, prior to observing

the data. Therefore, 03- is distributed as gxé), where xé)

is an inverse chi-square with %-degrees of freedom. WhileO

is a function of the degrees of freedom, it can also be

thought of as a measure of variability of the variances kfi}.

The probability density function p(o§|0,o§) is found to be

 

2 2 (g5)E 2 —(-%+1) ‘03 (3 7)

p(0j|9.0.) = ———1——- (oj) exp 2 . .

IKE) 260j

The above density function is similar to the one given by

Lindley (1965), with.a minor difference of 6=1¢Hu. As Lindley
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described it,

"For all v°>0 the above density function increases

from zero at 03‘- = O to a maximum ate?- = 03v,/(v,+2)

and then tends to zero as og-ow. The density has

therefore the same general shape for all degrees of

freedom as the chi-square distribution itself has

for degrees of freedom in excess of two." (Lindley,

1965, p. 28).

In his interpretation of the above density as a prior density

for 0%, Lindley said:

"To take it as a prior density for o? is equivalent

to saying that values that are very large or very

small are improbable, the most probable value is

o§==o§vJ%v,+2) and, because the decrease from the

maximum as oj increases2 is less than the

corresponding decrease as 05 diminishes, the values

above the maximum are more probable than those a

similar distance below the maximum." (Lindley, 1965

p. 28).

 
The above interpretation to the prior distribution of og‘makes

 
choosing such a prior more realistic than assuming equal

likelihood for all values of 03- (i.e., a locally uniform

prior).

The mean and the variance of 0% can be easily found by

realizing that the density in 3.7 is an inverse Gamma function

with or = 1/26 and [3 = 26/03. Therefore,
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2

2 2 _ l = O.

E(°jle’°°) _. [3(a — 1) 1 — 20 ’ and 4 (3.8,

Var(o§|9,o§) = 1 = 200°

32(a - 1)2(a - 2) (1 - 28)2(1 — 48)

The results in 3.8 reveal that 6 has to be less than .25 for

the variance of a? to be defined» As 6 gets smaller, the mean

and the variance are approximated to of and 2603.

In many analyses cfiz is used as a measure of precision

for each estimate derived from the data. From 3.7, the prior

distributionofcr}2 is Gamma with a = 1/26 and B = 26/03. Its

mean and variance are found to be

E(o}2|6,o§) = ab = 0:2 , and

(3.9)

Var(o§2|6,o§) = «[32 = 260:4.

Another measure that describes 03- and has the

characteristics of being invariant to the change in the mean

of its distribution, and depending only on 6, is the

coefficient of variation (Linhart, 1965). From 3.8 and 3.9

this coefficient is found to be 1:46 for a? and J23 for 032. 

Small values of 6 indicate precise knowledge about a? prior

to observing the data.

The last set of assumptions concerns the prior knowledge

about the parameters A,1:2,6, and of. They are the hyper-

parameters for the exchangeable distributions for the

parameters {Uj} and {03.}.

The two questions presented earlier by Bretthorst (1988)

might serve as general guidelines for choosing prior

distributions. However, when. the model in 3.1 is being

  

 





 

  

47

applied, prior knowledge about the state of the hyper-

parameters A, 1:2, 6, and of is usually limited or non-existent.

That is, the higher we move in the hierarchical structure of

the parameters in the model, the less information we have

about those parameters prior to observing the data. In other

words, one is usually more informed about the distribution of

the {Uj} and the {0%}, prior to observing the data, than about

the distribution of A,t2,6, and 03. Therefore, the prior

distributions for A, t2, 6, and of should have the

characteristic of being non-informative priors. This implies

that the posterior distributions for these parameters should

rely heavily on the information obtained from the data, with

little or no weight given to the prior knowledge about the

parameters.

For the parameter A, we take its conjugate prior

distribution, (which is normal) with vague prior knowledge

about the parameter itself. Therefore, A is distributed

uniformly over its parameter space R that is p(A) °< CA,
q+p+1'

where C). is constant. The subscript A is being used with the

constant to identify it with the parameter.

Similar to 0;, a natural conjugate prior for 12 would be

an inverse chi-square with v12 degrees of freedom. A vague

prior for “t2 implies v12 = 0, which produces what is often

called Jeffery's prior (i.e., p(tz) °<1/1:2). This prior

distribution is found to cause some difficulties when the

number of groups is relatively small (Seltzer, 1988). The
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effect of this prior with t2 near zero has a great influence

on the density function of the data such that the marginal

posterior distribution of 1:2 becomes heavily concentrated

around 12 = 0 (Morris, 1983 and Lindley, 1983). As an

alternative, a uniform prior distribution is chosen for‘l:2

(Seltzer 1989). That is p(tz) °< 0,2 for (1:2 > 0), where C12 is

a constant. The prior distributions for both A and 1:2 will

then become insignificant in their contribution to their

posterior distributions.

For 6 and of, we write their joint prior distribution

proportional to the product of the conditional prior

distribution of of given 6 and the prior distribution of 6.

That is

6)pfl6). (3.10)

 

p(of, 6) °< p(o.2

We specify p(of [6) to have conjugate prior to the density

in 3.7, which is of a chi-square form as

 

 

_ 2

PM.2 6,I,w) °< (01.2)“1 exp[ (mo) , (3.11)

26

where r and w are two parameters describing the prior for of

(Lindley, 1971). A vague prior for of implies setting r=0

and (0:0 which will produce what is known as Jeffrey's prior.

However, the fact that the marginal posterior distribution of of

is heavily dominated by the data undermines the effect of the

prior of 0.2 on its marginal posterior distribution. Thus, for

mathematical convenience, a constant prior Co? is specified
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for 0.2 .

In the second set of the assumptions, the hyper-parameter

6 is presented as a function of the degrees of freedom for the

exchangeable distributions for {03-}. It also, represents the

variability of {03.}, and mathematically there is no reason why

it should not be any positive number (Lindley, 1971).

Therefore, we assume that p(6) has a uniform distribution on

the real line. That is p(6) °< Ce: where C6 is a constant.

The Joint Density Function of the Parameters in the Model

Applying the Bayesian approach to the model in 3.1

allowed the parameters in the last two stages of the model to

be treated as unknown parameters. In the first stage Hid and

{03-} for j = 1,---,k are the parameters with exchangeable priors.

The second stage covers the hyper-parameters A, 1:2, 6, and of,

where A is defined in 3.2. They are the parameters of the

prior distributions for id; and (0?. Vague prior

distributions for A” 12,6L and.o§ are taken from their usual

conjugate families.

Treating all the parameters in the model as unknown

parameters, allows their joint distribution along with the

data I“ to be distributed as a product of conditional
.7

distributions as follows:

2 2 2 2 2

jfi1p(yjilr thoj)p(Uj|A"1'-2)p(ojle’ WPW‘ '9'°°)- (3.12)

Substituting the density functions for the assumed
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distributions from the previous section for each of the above

conditional distributions produces a joint density function

proportional to

-n

fi ( 2)Tj 1f / -2
.=1 Oj exp -§j=1(Yj—ZjA—ljUj) Oj (Yj—ZjA—ljUj)

 

___k l

x (1:2) 2 exp - U]?

21:2 j=1

 

(3.13)

 

Theoretically, the marginal posterior distribution of any

parameter in the model can be obtained by integrating the

joint density function in 3.13 over the space of the other

parameters.

Being able to obtain the marginal posterior distribution

of any parameter in the model implies being able to obtain

interval and point posterior estimates of that.parameteru For

example, an estimate of A based on its marginal posterior

distribution will not be affected by the uncertainty in

estimating the variance components, avoiding an undesirable

characteristic of empirical Bayes estimates of A. Further,

individual group estimates of {03-} for j =l,-~-,k become useful

when we are investigating groups' heterogeneity of variance.

Also, individual estimates of‘iqfi become useful for checking

the normality assumption for the error term associated with

each group intercept. Moreover, inferences on the hyper-
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parameters 12, of, and 6 can be made using their respective

marginal posterior distributions.

With the help of modern computers and developments in

simulation theories, we are now able to approximate these

marginal posterior distribution numerically, to the desired

degree of accuracy. The methods of Data Augmentation (Tanner

and Wong, 1987) and Gibbs sampling (Tanner, 1993) are being

used for numerical integration to obtain marginal

distributions. Morris (1987) shows how one can use these

methods for hierarchical Bayes models.

 

 





 

CHAPTER 4

 

Obtaining Marginal Posterior Distributions

Via Gibbs Sampling

This chapter presents the method of Gibbs sampling as an

procedure for calculating marginal posterioriterative

The process of Gibbs sampling is bestdistributions.

understood within the context of data augmentation (Tanner and

the basic idea of the data

An example, using

A

Wong, 1987). Therefore,

augmentation procedure will be explained.

the normal distribution, will illustrate its application.

 simple modification to the idea of data augmentation will

facilitate the understanding of Gibbs sampling procedure.

This procedure will then be used in chapter 5 to approximate

the marginal posterior distributions of the parameters in the

model in 3.1.

Data Augmentation

(1964) made in theirThe argument that Box and Tiao

investigation of the importance of the assumptions applied.to

the comparison of variances, using the Bayesian approach, can

facilitate our understanding of data augmentation. Very often

the distribution of observations Y depends on more than one

and Z2, one of which, saysay two parameters Z1

For'non-Bayesianmmethods,

parameter,

2&, is of immediate interest to us.
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this could cause an extremely difficult problem in dealing

However, under the Bayesianwith the other parameter Z2.

approach making inferences about Z1 is simplified by finding

the marginal posterior distribution LMZIIY). This marginal

posterior distribution can be obtained by integrating out the

of parameters Z2 from the joint posteriorother set

«distribution p(Zl,Z2|Y). In the data augmentation process, Z2

latent variable or missing datacan be thought of as

1987).augmenting the observed data Y (Tanner and Wong,

In the following discussion all distributions are

posterior distributions, therefore, the term "posterior" is

deleted from the names of the distributions for simplicity.

If we write the joint distribution p(Z1,Z2|Y) as a product of

the conditional distribution of Z1 and the marginal

distribution of Z2,

p(Z1,ZzlY) =p<ZliZ2.Y> p<Z2|Y> . (4.1)

the marginal distribution of Z1 can then be written as

p(ZIIY) =fTP(Z1iZ2I Y) p(ZzlY) aZ2 ’ (4-2)

where T is the parameter space for Z2. As Box and Tiao (1964)

pointed out:

the marginal posterior distribution of the

parameter ,p(Z2|Y) acts as a weight function

multiplying the conditional distribution

P(Z1IZ2r Y) of the parameter of interest. It is

frequently helpful in understanding the problem and

the nature of the conclusions which can safely be

drawn to consider not only p(Z1|Y) but also the

components of the integral on the right-hand side

One is thus led to consider the

of Z1 for particular

of equation [4.2].

conditional distribution
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values of the nuisance parameter Z2 in relation to

the probability of occurrence of the postulated

values of the nuisance parameter." (p. 153).

These two basic ideas, integrating out the nuisance

parameter Z2 from the joint distribution p (Z1, Z2 I Y) , and using

the marginal distribution of the nuisance parameterp(Z2|Y)

as a weight function in that integral, can be generalized to

the process of data augmentation when a direct solution to the

integral in 4.2 can not be found. Tanner (1993) defines

p(ZZIY) in the integral in 4.2 as the predictive distribution

which can be used with the observed data Y to obtain the

posterior distribution p(leY) . In many cases however,

p(ZZIY) is not known, which makes it impossible to obtain  p(leY) . The joint distribution of Z1 and Z2 as in 4.1 and

4.2 can then be used to obtain the marginal distribution

,p(Z2[Y). In other words, the joint distribution of Z1 andZ2

in 4.1 can be written as:

p(Z1.Z2IY) =p<zziZ..Y> p(Z.|Y> (4.3)

The marginal distribution for the second parameter p (Z2\Y) can

be obtained by integrating the joint distribution in 4.3 over

the parameter space R of the first parameter le

p(ZZIY) =pr(Z2!Z1,Y)p(Z1|Y)6Z1. (4.4)

the marginal distribution of theJust as in 4.2,

in 4.4 can be thought of as a weightparameter p(leY)

function multiplying the conditional distribution of the

parameter P(Z.2(Z1r Y) . Integrating this weighted conditional
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distribution over all admissible values of Z1 will give us the

marginal distribution of Z2.

Carrying out the integration in equation 4.4 analytically

requires knowing the parametric form of the marginal

distribution of the first parameter p (leY) . Likewise,

carrying out the integration in equation 4.2 analytically

requires knowing the parametric form of the marginal

distribution of the second parameter p(ZZIY) . But these two

marginal distributions are unknown to us and we are interested

in finding them. Therefore, this dependency between the two

marginal distributions for the two parameter becomes the key

point of the iteration process of data augmentation.

In 4.1 and 4.3, the joint distribution of Z1 and Z2 is

being expressed as a function of four other distributions,

two of which have unknown parametric forms. Therefore, it is

hard to sample from them. They are the marginal distributions

p(leY) and p(Z2|Y) . The other two have known parametric

forms, and one can easily sample from them. They are the

conditional distributions p (Z1|Z2, Y) and p (Z2 IZ1, Y) . The

iteration process, therefore, involves repeated sampling of Z1

and Z2 from their conditional distributions p(lezz, Y) and

p(ZZIZI, Y), which accomplishes the numerical integration of

the joint distributions in 4.2 and 4.4, and produces numerical

approximations to the marginal distributions for Z1 and Z2.

To exploit the dependency between the two distributions

in 4.2 and 4.4, we start with an initial estimate of Z1. One
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can think of this initial estimate as being sampled from a

poor approximation of its marginal posterior distribution,

p(leY) . A sample of M values of Z2 can then be drawn from

its conditional distribution p(ZZIZ1,Y) , where the initial

estimate of Z1 is used along with data Y. For each of theM

values of Z2, we form a conditional distribution of Z1 given

Z2=Z2m defined as p(ZIIZZm, Y) , for m=1, «-,M. The weighing of

each of these conditional distributions is done empirically by

the sampling process from the marginal posterior distribution

p(ZzlY) in 4.2. That is, a large proportion of M of these

conditional distributions are conditioned on values of Z2

which are near the mode of p(ZZIY) . Rubin (1987) refers to

the process of sampling Z2 from p (ZZIY) , in order to form the

conditional distribution of the first set of parameters

p(ZIIZZ, Y) as a multiple imputation process. The mixture of

the M conditional distributions of Z1 given Z21", m=1,~~-,M

represented by their weighted average, where the weighing

process is done empirically (as explained previously),

produces the marginal posterior distribution p(leY) at the

tth iteration

M

P"<Z.IY> x M‘1 Zp<leZZml Y) - W5)
m=1

To simulate the marginal distribution of Zl given in 4.5,

we simply sample M values of Z1; one from each of the M

conditional distributions given in the mixture. These M

values of Z1 represent an approximation to the marginal
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distribution of the first parameter p1(Z1)Y) at time t=1 of

the iteration process. However, this approximation is a poor

one since the sampled values of Z2 came from a rough guess of

its marginal distribution p(ZzlY) . Representing the M

weighted conditional distributions by their average captures

the idea of integrating the joint distribution of Z1 and Z2 in

4.2 over the parameter space of Z2 to produce the marginal

distribution of Z1, when M is relatively large (say M =

4000). An estimate of the density function for the marginal

posterior distribution of Z1 can be obtained by averaging the

conditional densities in 4.5 (Gelfand and Smith, 1990).

For each of the M values of Z1, which are sampled from

4.5, a conditional distribution of Z2," given Z1=Z1m, can be

formed as p(ZZIZm, Y) , for m=1,-«,M. By adopting the same

logic for approximating p (Z1 | Y) , the marginal distribution for

the second parameter can be approximated by

pt(Z2lY) x M‘1 f: p(Zzlzlm, Y) , (4-6)

m=1

where p1(Z2|Y) is an approximation of the marginal

distribution of Z2 at iteration t=1. We then sample M new

values of Z2 for iteration t=2 from the resulting

distribution in 4.6 to get a new approximation to the marginal

distribution of Z1 in 4.5.

By iterating between 4.5 and 4.6, the two marginal

distributions p(leY) and p(ZzlY) stabilize (Tanner and Wong,

1987) . Sampling the values of Z1 and Z2 from their respective
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stabilized distributions is virtually identical to sampling

from the true marginal distributions of Z1 and Z2.

Tanner and Wong (1987) pointed out that one can select

any value for M'(the sample size for each Z1 and Z2 in each

iteration) to carry out the iteration process. They stated:

"Even when it is as small as 1, the iteration is

still 'in the right direction' in the sense that

the average of p(ZIIZZm' Y) over the augmented data

patterns generated across iterations will converge

to p(leY) ." (Tanner and Wong, 1987, p. 530).

Moreover, they argued that the value of M can be changed

between iterations. In fact they recommended that one Should

start with a small value for M'in the first few iterations and

increase this value as the number of iterations increases.

They stated:

"In practice, however, it is inefficient to take A!

large during the first few iterations when the

estimated posterior distribution is far from the

true distribution. Rather, it is suggested that A!

initially be small and then increased with

successive iterations." (Tanner and Wong, 1987, p.

539).

Example

Let Y'be a random sample of n independent observations

drawn from a normal distribution with mean u and variance 02,

where both parameters are unknown. The sample mean ysrrigbg

and the sample variance 32 = (n—l)“11:31071-17)2 are jointly

sufficient for (u,cfi). The likelihood for (u,02), therefore,

is given by (Box and Tiao, 1973)
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UHIOZIFISZ) °< (02)“2- exp{-2—_lz-[(n—1)s2 + n(u—37)2]} . (4-7)

a

The likelihood in 4.7 reveals that the distribution of Y

depends on the two parameters (1 and 02. From the Bayesian

viewpoint, making inferences on any one of these two

parameters requires finding its marginal posterior distribu-

tion by integrating out the other parameter from their joint

posterior distribution.

The joint posterior distribution of p. and 02 can be

written proportional to the product of their likelihood

function Up, 0257, $2) and the prior knowledge about u. and 02.

Mathematically stated

P(|J,02|Y) °< 0(u,02|37,sz)p(p,02)
(4.8)

The second part of the right-hand side of 4.8 represents the

prior knowledge about the two parameters )1 and 02 . It can be

assumed priori that p. and o2 are independent, and the form of

this prior knowledge can be specified by the usual conjugate

priors of these two parameters. A vague prior knowledge about

)1 produces a prior distribution which is proportional to a

constant C. Similarly, a vague prior knowledge about 02

produces a prior distribution proportional to 0‘2 (Box and

Tiao, 1973).

Substituting the assumed forms for the likelihood

function Up, 02 |37, 52) and the prior distributions for p. ando2

in 4.8 produces the joint posterior density for u and 02.





 

6O

p(il,02lY) .. (.2)-<%+1>.xp{2-_12[(.-n.2 + nut—7m} . (4.9)
0

Based on 4.9, and where 02 is known the conditional

distribution p(IJ-loz, Y) is normal with mean 57 and variance

02/11. When 02 is unknown, however, P(l-|v|Y) represents a t-

distribution with mean )7 and variance Sz/n and (n-1) degrees

of freedom, resulting from the integration of 4.9 with respect

to 02 (Box and Tiao, 1973).

When p. is known, the sample variance is defined to be

5'2 = 1nd};1 (yi - (1)2. The variable n.5'3/o2 is therefore

distributed as chi-square with 11 degrees of freedom.

Consequently, ozlu, Y is distributed as nszxfi) where xii, is an

inverted chi-square variable with 11 degrees of freedom. When

u is unknown however, p(ozlY) represents the probability

density of (n-1)Szx2,2,-1) , where x7534) is an inverted chi—square

variable with (n-l) degrees of freedom, resulting from the

integration of 4.9 with respect to n.

For illustrative purpose, let us assume that the forms

for the distributions of p(ply) and p(ozlY) are unknown, and

need to be approximated. Our objective in this example is to

show how these two distributions can be numerically

approximated, using the process of data augmentation presented

in the previous section.

The joint posterior distribution of p. and 02 is written

as a product of the conditional distribution of p. and the

marginal posterior distribution of 02
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p(wzm =p(p.|02,Y) p(ozly) . (4.10)

Then the marginal posterior distribution of u can be defined

by

p(plY) =fozp()1|02,Y) p(ozlY)d02. (4-11)

Similarly, the joint.posterior distribution.in 4.10 is written

as a product of two new distributions

p(p.02|Y) =p(02|u,y) P(|J,|Y) (4.12)

Then the marginal posterior distribution of 02 can be defined

by

p(ozlY) =f p(ozlp,Y)p(plY>du. (4-13)
p.

Examining 4.11 and 4.13 reveals that obtaining' the

marginal posterior distribution of one parameter depends on

obtaining the marginal posterior distribution of the other

parameter. Therefore, this dependency between the two

equations can be used to ShOW' how the method of data

augmentation can be used to approximate the two marginal

posterior distributions in the following steps.

1. As a starting point for the iteration process, u can be

estimated from the data Y by )1 = gin/fl. This estimate

can be thought of as p, which has been sampled from the

current approximation of its marginal posterior

distribution p(ulY).
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Using the current estimate ii to represent the true value

of u, find the sample variance as S2 =n’1£1(yi - (1)2.

1-

This variance estimate will be used, in conjunction with

the sampled values of a chi-square random variable, in

the next step to sample 02 from its conditional

distribution p(02 In, Y) .

Sample M values of x201)”, for m=1,~,M from a chi-square

distribution with 11 degrees of freedom. For each

sampled value of )(Zm)m find 63,, as 83,, = nSz/xinm. Applying

steps 2 and 3 resembles the process of sampling M values

of 02 from its conditional posterior distribution

p(ozlil ,y) . The mixture of these M conditioned values of

02 forms an initial approximation to the marginal

posterior distribution p(ozlY) . This approximation,

however, is an inaccurate one since the sampled values of

02 are conditioned on a poor estimate of p.

Given the data Y and the M values of 0,3, which are

sampled in step 3, we sample M new values of pm from

p(plog, Y) , which is N(iog/n) , where 57 is the sample

mean from the data. The mixture of the M sampled values

of the mean pm represents an approximation to its

marginal posterior distribution p(p. | Y) .

These new sampled values of pm from step 4 can then be

used to get M new estimates of 8; as in step 2 for a new

cycle of approximation. As we continue iterating between

steps 2 to 5, the mixture of the M values of 0,3, which

 



 

 

63

are sampled in step 3, and the mixture of the M'values

of p” which are sampled in step 4 become increasingly

accurate in representing the marginal posterior

distributions of u and 02.

Gibbs Sampling

The process of data augmentation was presented for the

case:of approximating the marginal.posterior distributions for

only two parameters, Z1 and Z2 with M >1. When M=1, Tanner

(1993) defines the iteration process as "chained data

augmentation". In the normal data example given above, the

two parameters were represented by p and 02‘with.At>1. There

are cases however, where there are more than two parameters

for which we require numerical approximations to their

marginal posterior distributions. To obtain them, a simple

modification to the logic of data augmentation process can be

used.

When. the iteration. process. of data augmentation is

generalized to more than two parameters with M'set equal to

one, the process is called "multivariate chained data

augmentation” (Tannery 1993) or' Gibbs sampling" (Gelfand,

Hills, Racine-Poon and Smith, 1990).

Consider the previous case, where the distribution of the

observations Y depends not only on Z1 and Z2 but also on a

third parameter say Z3. Under the Bayesian approach, making
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inferences about any of the three parameters is simplified by

finding its marginal posterior distribution, by integrating

out the other sets of parameters from the joint distribution

of Z1, Z2 and Z3.

The joint distribution of Z1, Z2 and Z3 can be written as

a product of the conditional distribution of Z1 and the joint

distribution of Z2 and Z3,

p(Z1,Z2,Z3|Y) =p(Z1|Z2,Z3,Y) p(Z2,Z3|Y) . (4.“)

Then, the marginal posterior distribution of Z1 can be written

as

P(Z1)Y) = foWp(Z1]Z2,Z3,Y) p(Z2,Z3lY) 6Z3 8Z2 ’ (4-15)

where T and W are the parameter spaces for Z2 and Z3,

respectively.

Similar to 4.2, the joint distribution p(Z2,Z3|Y) can be

thought of as a weight function multiplying the conditional

distribution of the parameter of interest p(ZIIZ2,Z3, Y) . In

other words, we consider the conditional distribution of Z1

for particular values of parameters Z2 and Z3 in relation to

the probability of getting those values of Z2 and Z3.

Similarly, the marginal posterior distribution for each

of Z2 and Z3 can be obtained by integrating out the other

parameters from the joint.posterior distribution of Z1, Z2.and

Z3 as follows :

p(ZzlY) = IR pr(Z2lZ1,Z3. Y) P(Z1IZ:))Y) 6Z3 621 ' (4,15)

and
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p(ZBIY) = f. pr(z3|zl,z2,y) p(Z1,Z2IY) az2 azl. “.17,

As in data augmentation, the three equations 4.15, 4.16

and 4.17 define the iteration process of Gibbs sampling.

Further, it is assumed.that there are only three distributions

that are easy to sample from. They are the three conditional

distributions of Z1, Z2 and Z3, represented by the first part

of the right-hand side in each of 4.15, 4.16, and 4.17. The

iteration process therefore involves repeated sampling of Z1 ,

Z2, and Z3 from these conditional distributions to accomplish

the. numerical approximations of 'their’2marginal posterior

distributions.

Starting with initial values of ZS”, ZS”, and the data

Y, sample ZFJ from its conditional distribution

p(z1|z2‘°’, Z3)”, Y) . Given the values of Z)” , ZS” , and the data

2(1) from its conditional distributionY, sample

P(Z2(ZFJ,Z§”,IO. Finally, given the values of Z9), ZEJ, and

the data Y, sample Z?) from its conditional distribution

P(Z3IZ1(1),Z2(1), Y). The three sampling processes complete one

iteration of Gibbs sampling. After a large number of

iterations say X, sampling' any' of’ the three ‘parameters

resemble sampling that parameter from its marginal posterior

distributitwn To simulate a marginal distribution for Z3, for

example, after an X iterations, sample m values of Z3 from

(Z3 |Z{X), Z2(X),Y) . The mixture of these m sampled values of Z3

represents a numerical approximation to its marginal

distribution. That is, the sampled values Z3901, ...... , Z3“), can be
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viewed as a numerical approximation to the marginal posterior

distribution _p(Z3|Y). Similarly; the :marginal. posterior

distributions for Z1 and Z2 can be approximated.

Gibbs sampling can be generalized to as many parameters

as the investigated model has. The basic idea is to write the

joint distribution of all parameters in forms similar to 4.15

to 4.17. Repeated sampling of the parameters from their

corresponding conditional distributions results in

approximation of their marginal distribution.

A special case of Gibbs sampling is found for certain

applications, where some of the parameters depend only on a

selected number of other parameters. For instance, in the

case of approximating the marginal posterior distributions for

the three sets of parameters Z1, Z2 and Z3, it is possible

that the conditional distribution of say, Z3 depends only on

Z2 and the data 1%. While equations 4.15 and 4.16 for the

marginal distributions for Z1 and Z2 do not change, equation

4.17, however, becomes

p(Z3IY) =pr(Z3|Z2,Y) P<Z2|Y) 5Z2 - (4.18)

A repeated sampling of Z1, Z2 and Z3 from their conditional

distributions in 4.15, 4.16 and 4.18 will approximate their

marginal posterior distributions. Chapter 5 will show how the

special case of Gibbs sampling is being used for approximating

the marginal posterior distributions of the parameters in the

model presented in 3.1.

  

««.__ _,_...-~—

 

 





CHAPTER 5

 

The Application of Gibbs Sampling to The Model of The study

Two sections make up this chapter. The first section

presents the application of Gibbs sampling for obtaining the

marginal posterior distributions of the parameters of the

model in 3.1. The conditional distributions of these

parameters are also derived so they can be used in the

application of Gibbs sampling. The second section presents

the steps taken to empirically test the application of Gibbs

sampling. These steps include setting the model, specifying

and generating artificial data sets, assessing the

heterogeneity of variance, obtaining initial estimates for the

parameters to start the iteration process, assessing

convergence of the iterative program, and describing the real

data used in this study.

Obtaining Marginal Posterior Distributions of Parameters of

the Model in 3.1

The proposed model in 3.1 involves two sets of

parameters: those which have exchangeable prior distributions

{UT and {0? for j=1, ,k (i.e., {My =(Q,LQ,W,CQ and

{02}: 0i,0§,m,oi) and the hyper-parameters 12, A, 6, and 03

where AH%Y°,Y1,m,Yq,Blf”,Bp}. Our objective is to approximate,

67
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numerically, the marginal posterior distribution for each one

of these parameters using Gibbs sampling.

In general, the marginal posterior distribution for each

one of these parameters can be found by integrating its joint

posterior distribution with the other parameters over the

parameter spaces of all other parameters. Mathematically

stated, given the joint distribution in 3.12, the marginal

distribution for each of the parameters of the model in 3.1

can be written as follows:

p({Uj}lY) = £!{!§)p({Uj}|t2,A,{0§},Y)p(1:2,A,{0§-}|Y)

x 6{0§}6(A)6(12) , (5.1)

p({o§}|y) = [ff

6A
fl

[Whig-HOE, 6, A, {Uj}, Y)p(o§, 6, A, {Uj}l Y)

W)
J

x a{Uj}a<1)a(e)a(o§) , (5.2)

p(AlY) = ffp(A|{0§),{UJ-}, Y)p({o§-},{Uj}|Y)6{Uj} diofi} ,
(5.3)

(03.1%}

p(rZIY) = fp(12){Uj}, Y)p({Uj}lY) ain} , (5.4)

(g)

p(6 Y) = p(6 0.2,{02}, Y)p(0§,{02-} Y) 6{02-} 6(03) ,

l ff I J J I J (5.5)
of (a?)
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mean = Hurling), Y)p(e,{o§}m aieg} m)
5.6

6 (a?)
( )

Clearly, any one of the above marginal posterior distributions

depends only on some of the parameters in the joint posterior

distribution in 3.12. More specifically, the marginal

posterior distribution for {U} in 5.1 for example, does not

depend on 03 and 6. Similarly, the marginal posterior

distribution for t2 in 5.4 depends only on {U}. This is true

for the rest of the parameters.

The first term of each integral in 5.1 to 5.6 represents

the conditional distribution for one of the parameter(s) of

interest, which usually has a known parametric form and from

which we can sample. The second term of the integral can be

thought of as a weight function multiplying the conditional

distribution of the parameter of interest. Integrating the

weighted conditional distribution over all the admissible

values of the parameters in the second term will produce the

marginal posterior distribution of the parameter of interest.

To exploit the dependency between the marginal posterior

distributions in 5.1 to 5.6, two things must be known: the

parametric forms of the conditional distributions in the

integral in 5.1 to 5.5 and initial approximations to the

values of the parameters A”), 02w), hpOW, and hfi‘m}. The

superscript "(0)" used with each of those parameters

represents the initial value of the parameters. More

discussion will be given later on the derivation. of the
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parametric forms of the conditional distributions of the

parameters and the method of obtaining initial values for the

specified parameters. Let us now assume that we know the

parametric forms for the conditional distribution and we can

sample from them. Given current estimates (start with initial

values) of the parameters A“), 03”), RED”, and {03wU, the

iteration process starts as follows:

1- Given HMO” and the data Y, sample one value of 12”) from

_p(12HUjm},Y) in 5.4. Notice that the superscript "(1)"

used with 12 refers to the first cycle of the iteration

process.

2— Given {0§WU, 03m) and the data Y, sample one value of

6”) from its conditional distribution p(6l03m),hfi(m},Y)

in 5.5.

3- Given the sampled value of 6”) from step 2, {0§WU, and

0.3 (1)

the data Y, sample one value of from its

conditional distribution p(og 6“’,hfi(m),Y) in 5.6.
 

4- Given the sampled value of 12”) from step 1, {ofimd,

A‘m, and the data Y, sample one set of values of

{0910-= H41),U§”,o~,0fi“} for j=1q-~,k from its conditional

distribution p(QGHA(M,IzuH{0§mU,Y) in 5.1.

5— Given the sampled values of Qfilw, the sampled value of

6”), the sampled value of of”) from steps 4, 2 and 3

respectively, the initial value of A‘m, and the data Y,

sample one set of values of{0§”U ={0iu),0§u),m,0iuU for
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i=1, ,k from its conditional distribution

p({0§}|0.2(1),6‘1),A‘O’,{Uj(1)}, Y) in 5.2.

6- Given the set of Hg”), the set kfidu}, and the data Y,

sample one value of A”) from its conditional

distribution p(Alin‘“},{o§-‘“}, y) in 5.3.

Going through these six steps of sampling from the given

conditional distributions finishes one cycle of the iteration

process in Gibbs sampling. This cycle produces the first

sampled value of each of the parameters, which can then be

used to produce new sampled values of the same parameters in

the second cycle. In the second cycle, starting with step 1

again and given {Ufu}, generate new value of t2”) where the

superscript "(2)" used with 12 refers to the second cycle of

the iteration process. As we continue iterating between the

above six steps, the mixture of the values of any one of these

six sets of‘ parameters becomes increasingly accurate in

representing its marginal posterior distribution.

Finding the Conditional Distributions for the Parameters

of the Model in 3.1

One of the requisites for obtaining the marginal

posterior distributions in 5.1 to 5.6 through the iteration

process of Gibbs sampling is to be able to sample from the

conditional distributions for the respective parameters. This

implies the need for identifying the parametric forms for
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these conditional distributions. Within the Bayesian approach

the elements of the set {U} =CQ,Lg,m,Uk are assumed

independent and identically distributed with respect to their

conditional distribution as defined in (5.1).. Identifying the

conditional distribution of any element of this set therefore,

can be generalized to the other elements of the set” The same

logic applies in determining the conditional distribution for

{0;} = of, 03, m, 0%.

The conditional distribution of U]. given A, 12, {02}, and Y

From lines 1 and 2 of the joint density function in 3.13,

the conditional distribution of Ule, 172, {03-}, Y is found to have

a density function proportional to

"j__ 1
_

 

5 “fUJ? (5.7)

j=1
x (1:2) 2 exp

21:2

Since Uj appears only in the exponential parts of the

expression in 5.7, the density function in 5.7, can be written

proportional to

2

l -2 U7"
exp --§ng (dj-ljUj)/oj (dj-ljUj) + :5. ,

(5.8)

where Yj-ZjA = dj. Ignoring the terms that do not depend on

the above expression can be simplified toUj,
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exp{-%)§(—2(UJ/-1§dj)o;2 + U]? (133,032 + 14”} . (5.9)

l

Completing the square in 5.9 results in

_l _ -2 _ - / -22 -2 -2 5.10

exp( Egajj (HjO'j + T 2) lljdjO'j) (DJ-0:] + T )) . ( )

Substituting for 1§dj==nj(Y3—Z5A) in 5.10 results in

exp(-%$<Uj-njo;2 (111.032 +1—2)‘1(Yj—§]/.A))2(njo;2+1:‘2)). (5.11)

The expression in 5.11 represents a kernel of‘a normal density

function. Therefore, £5|A,t2,kfih Y is distributed as normal

with mean U? and variance Vé, where

. _ —2 -2 _ _ _ —/ __ -2 — —

Uj - 133-0: (njoj +1: 2) l(Yj—zji) . Va, — (njoj +1: 2) 1. (5.12)

The conditional distribution of 0% given A, 6, cf, {@3, and Y

From lines 1 and 3 of the joint density in 3.13, the

conditional distribution of 0§|A,v°,03,&gLIY is found to have

a density function proportional to
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l _

exp(-§ (Y,- - zjk - 1,-ija,2(yj - zji - 13%))

(5.13)

 

1 02 % -(—1-+1) —02

1 (26) (03-) 2" exp —-°—

rim)

_ _ / _ _ _ 2

rewritten as

5.13 can be

 
2 2

2__ j 26 ) exp _ anj + 0.

]TEL) 20? 260;

 
(5.14)

Ignoring the terms that do not involve 0;, results in writing

the expression in 5.14 proportional to

2

n' 2 2

(0%)“(73—4'31-54'1) 1(I1jsje + 0'.)

Ci

exp-—— 26 (5.15)

In general, a continuous random variable X with a density

function f’is said to have an Inverse Gamma distribution with

parameters a and B if

f(X)==——¥L——.X*“”)exp(~3;)
, Osxsw

F(a)pa KB (5.16)

The expression in 5.15 therefore, represents a kernel of a

Inverse Gamma density with the two parameters

.n. 1 _ 26
a = .7 + I 2' — I (5.17)

a; 2 26 (303 an§6 + 0..2

 

To sample 03. from its conditional distribution, the

following strategy can be adOpted: define 03- = h(0}2) , where h
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is a one to one function defined as 11(032) = (032)‘1. The

conditional density function of 032 is found to be

 

 

'2

g<o§2|1,e,os,{u,},n «f(a§.|),e,oi,w,},y> ah‘—‘i;) , (5.1.,
6(0j)

6h 72

where (—C::) = (032)”. Therefore,

6(0j)

 

 

31.1- - I? 3
g(0}2|A,6,0§,{Uj}, Y) °< (032) 2 2° leXP{_°72(szg+i)}

I (5.19)

In general, a continuous random variable X with a density

function f is said to have a Gamma distribution with

parameters a and [5 if

f(x) = X“—1 exp(——pi{) , O s X 3 9° . (5.20)__1_

PM) B“

The expected value and the variance of X are given by

(5.21)

E(X) = a6 , Var(X) = «(32.

The expression in 5.21, therefore has the kernel of Gamma

density function. Thus, given A, 6, 0.2, {Uj}, and Y, the parameter 032

is distributed as Gamma with

a -2 = E + _1_ , (30.. = ’2—6—7 (5.22)

“i 2 26 J 11].st + 0,,

To sample 03-, simply sample 0? from 5.21 then use the

_ — _ 2

relation h(0j2) = (of) 1 to get 03-.

'
- a

The conditional expectation and the variance of oj are

easily found by applying 5.21,
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E(O}2|1,0,03,{Uj}, Y) =((u)jSJa + (1—(i)j)0..2)'1 , and

Var(072|A e 02 {U} Y) = 2"” 32 + (1 — ) 2'2J I I 0] j] n. [(1)-7' j Qj 0.] , (5023)

.7

where wj =-——£fi——

nj + 6‘1

The conditional expectation in 5.23 has a form similar to

Stein's (1956) shrinkage estimate. It is a form of a weighted

estimate of the variance Si, and the asymptotic overall mean

of the variances 03. The weights depend, in a natural way,

on the degrees of freedom for obtaining S? and 03. As 6

approaches zero, indicating homogenous variances, so does wj

leaving the expected value of of equal to 0?. When 6 gets

very large however, the value of wj approaches one, leaving

the expected value of 032 equal to the inverse of the sample

variance 392.

The operational definition of reliability is the ratio of

the "true" variance to the observed variance. Therefore, one

——£::—— as a reliability index for 032,

nj + 6'1

expressed in terms of its precision.

can think of 1 - wj =

It represents the

. - 4

proportion of the precision in the OLS estimates of oj that

is parameter precision.

- 2

The conditional distribution of A g1ven {U}, {0fi, and Y

From line 1 of the joint density in 3.13, the conditional

distribution of AIQGL{O?,Y' iS found to have a denSIty

function proportional to
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exp()5—.l (ir'.—z.A—1.U.)/0’.2 (y —Z )_1 (1)) (5.24)

1 2 .7 .7 .7 J J j j j j '

Let Yj-lj Uj = Dj. The expression in 5.24 can now be written

as

eXp{-%€3[(Dj—zji)’o;2(Dj—ZjA)]} . (5.25)

Multiplying the terms inside the exponential, and ignoring the

terms that do not depend on A, the conditional distribution

of A becomes proportional to

eXp(--%€3 032 (A’Zj-ZjA — zit/25%)) . (5.26)

By completing the square, 5.26 is rewritten as

-1 I

exp [—%[A - (g (Zj-Zj) 0332) )::(z,’.o,) of] $(zj4zj) of

(5.27)

-1

x {A - ($2,421.) of) $2,419,) 052)]
1

When Yj—lj Uj is substituted back for Dj in 5.27, the resulting

expression represents a kernel of a normal density. Thus

A |{Uj}, {03-}, Y is distributed as normal with mean A“ and variance

V,“ where

-1

1* = (gm/.21.) of] (ganja?) — $Z§1jUj<732J ,
.7

-1

V, = (fir/.21.) of) .
1

(5.28)
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The mean in 5.28 is a weighted least square estimate with

Yj-ljUj as an outcome, Z- as predictors, and 032 as the
.7

weighing factor.

The conditional distribution of t2 given UL; and 1’

From line 2 of the joint density in 3.13, the conditional

distribution of tzlflgh Y is found to have a density function

proportional to

1. 9:50,?
(5.29)

(12) 2 exp
 

212

Compared to the general form of an Inverse Gamma function in

5.16, the expression in 5.29 has a similar density function.

Therefore, tzlhgh Y is distributed as an Inverse Gamma

variable with

“:2 =

k
——1 fi2=—— -

' t (5.30)

2 iv

The conditional expectation and the variance of 12 are

easily found to be
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EU]?

E(1:2|{Uj}, Y) = 1:_4 , and

2

262%?)
1

(k-4)2(k-6)

 

(5.31)

Vartc2 I{Uj), Y) = 

To sample 1:2 from its conditional distribution, adopt the

same strategy used for sampling 0?; that is, let

 

  

1:2 = h(’E-2) = (.c-Z)-1 . (5.32)

The density function for t“ can then be found as

- 6h(t’2)(1: 2 {U.}, r) = rd?- {0.}, Y) ,_ (5.33)

where M = (t‘2)‘2. Therefore,

6(1‘2)

_1_<_2 “17—sz3g

h(t‘2|{Uj}, Y) °< (t’z)2 exp 21 (5'34)

Compared to the general form of a Gamma function in 5.20, the

expression in 5.34 is similar. Therefore, t‘2|{Uj},Y is

distributed as Gamma variable with

 

- 1 , [3.4 = - (5.35)

{‘Uj

The conditional expectation and the variance of 1‘2 are
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E(t‘2|{Uj}, Y) = k—2 and

 

(5.35)

Var(t‘2|{Uj}, y) = 2(k-2)

($412

To sample 1:2, simply sample 1'2 from 5.34, then use the

relation in 5.32 to get 12.

The conditional distribution of of given 6 and k@}

From line 3 of the joint density in 3.13, the conditional

distribution of 03
 
(L{0? is found to have a density function

proportional to

 

 

.2 a 1
20 exp -0. 1_2 fi(0§_)“—26*1’ _ (5.37)

0.,iL))k 26 1 o§ 1

26

Let G and H represent the geometric and the harmonic means of

0§'s as follows:

G: fi(0971‘, Thus flog-=61c

l

(5.38)
k

H: k , Thus 20

1

2.5

 

a
l
e I

m
l
»

Q e
e
l
s

Substituting the equalities of 5.38 into 5.37 produces
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J
”

(ale-)2

we)" 9"“

 

 

1 -k02
3 ” ° (5.39)(0 ) exp( 26H) .

The first term of the above expression does not involve 03,

therefore, the above expression can be rewritten proportional

to

(of)?!£6

 

‘kOEJ, (5.40)

exp( 26H

The above expression represents the kernel of a Gamma density

with

k 26E!
“0.2 = 2—6 + l I pa? = T . (5041)

c o c c 2

The cond1t1onal expectation and variance for (n

therefore, are

 
E(of e,{o§}) = H+ 3; , and

(5.42)

Var(0§|6,{0§}) = (H + 3;)3-2-5 .

Notice that the first.part of the above expectation represents

information depicted by the harmonic mean of the groups

variances {03.}. The second part involves 6, which reflects the

variability of these variances. As 6 approaches the zero,

implying homogeneity of variance situation, the second.part in

that expectation diminishes, and the conditional expectation
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of 0.2 becomes equal to the harmonic mean of the group

variances.

Similar to 03- and 1:2, we can find the conditional

distribution of 0:2 by letting

 

   

02 = 9(0‘2) = (0-2)-1
(5.43)

The density function for 0:2 can then be found as

'2 5.44
h(0§2|{0§-},6) = f(0§ (03),.) Ml < >

am?)

-2

where M =(O;Z)‘2. Therefore,

6(0Z2)

k- _

h(o;2l{o§},e) o. (0J2)7’32exp(——k—:-2-) _ (5.45)

26H0.

The expression above has the same general form as the inverse

Gamma function in 5.16. Therefore, 0Z2l{0§},6 is distributed

as an Inverse Gamma variable with «0:2 and (30:2 given in 5.41.

o '2

The mean and variance of 0. are

E (0:2 H03}, 6) , and_1_

H (5.46)

HVar(0.f2 H02), 6) -——-l-———

1 His-1)26

e o 2

The Conditional Distribution of 6 g1ven 03 and {oj}

From line 3 of the joint density in 3.13, the conditional

distribution of 6|03,{0§-} is found to have a density function

proportional to
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k

(03) 2—0 1 2 1 -(i+1)__ 0 ex —2§_ fi 02. 23 .
(5047)——P ( ) p 2—6 1 a; 1< 3)

Let G and H be defined as in 5.38. Further, to simplify the

term 1"(2—10) in 5.47 we use the first term of Stirling's

approximation. The general expression for Stirling‘s

approximation for a variable P is given by

l + 1 _ 139 ,(5.48)

12p 288p2 51840p3

 NP) a (21:) %p (p-é) exp (-p) [1 +

Substituting 1/26 for p in the first term of 5.48 will

produces the following approximation.

k

(F(-§%))k z ((21):)3 (2_16.)2_°3 exp(%6.)) _ (5.49)

Substituting G, H, and 5.49 in 5.47 results in

 

k

i 2" (<33)E - i+ —ko§
(20)

G 1((29 1) exp( 26H . (5050)

The expression in 5.50 reduces to

2i

——1 [°°)”(-1-)1.“; G 6
(26)

u
l
n
-

 

—.I<o..2 k
_ 5.51

exp( 26H + 26] ( )

The first term of 5.51 does not involve 6, therefore, the

above expression is rewritten proportional to

(5.52)
 

02

(é)2kexp[—k (0°H — 1 - log(03) + 109(G))]
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The above expression has kernel of an Inverse Gamma density.

Therefore, 6lof,{o§-} has an inverse Gamma distribution with

 

 

 

 

k 2
a - — — 1, =
9 2 B9 03 2 (5.53)

k H - log(o.) + log(G) — 1

The conditional expectation and variance of 6 are found

to be

k 022 2 ° 2

E(6|0.,{oj}) = k-4[H —log(o.) +log(G) -1) , and

02 2 (5.54)

2k2(7° — 109m?) + log(G) — 1)

V 6 §,{2.} =ar( lo 0]) (k-6)(k-4)2 

Notice that as k-wo, the above conditional expectation and

variance will be

E(6|o§,{o§}) = H“ . and
(5 55)

Var(6la§,{o§-}) = 2—(%:)—2- ,

where u.” = log (G) —log (H) .

Sampling 6 from its conditional distribution is done

using the same strategy used in sampling the groups' variances

from their conditional distributions. That is, define

6 =h(6'1) , where h is a one to one function defined as

h(6‘1) = (6‘1)‘1. The conditional density function

9(6"1|o§,{o§}) is found as follows:
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g(6'1|03,{a§-}) °< f(6|0‘3,{o§}) lgfigt—L , (5.55)

where -Q§19:2-==(6‘U‘2. Therefore,

6(6'1)

f(6’1|o‘3,{o§}) °< (6‘1)§-2exp[ —6:k((: -1-log(o§) +log(G)]] (5'57)

The above expression is the kernel of Gamma density. Thus,

eflficf,{o? has a Gamma distribution with

k
.
-

2
 

a6—1=——1, 56-1:

2 (5.58)

 

02

1((1’1: — log(o§) + log(G) - 1)

To sample 6, simply sample 6'1 from 5.51, then use the

relation h(6‘1) = (6‘1)‘l to get 6.

Empirical Applications of Gibbs Sampling

The procedures presented in the previous section for

obtaining the marginal posterior distributions for the

parameters of the model in 3.1 were next tested empirically.

This section presents the processes for this test in two

phases. The first phase involves the use of artificial data

sets with pre—specified values of parameters in a FORTRAN

computer program that implements the controlled statistical

 sampling technique. One of the objectives at this phase was

to validate the theoretical aspects of the statistical

techniques used. The :resulting' :marginal posterior
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distributions of the parameters in the model can be examined

against their true values, which are used in generating the

artificial data set and their parameter. spaces. Another

objective is to check the integrity of the computation of the

computer program so that it can be used with confidence on

real data in the second phase.

{A real data set used by Raudenbush and Bryk (1987) is

analyzed in the second phase of the empirical testing of the

procedure. The data set comes from a sample of 160 U.S. high

schools. It includes 83 catholic schools and a random sample

of 77 public schools drawn from the High School and Beyond

data base. Sample sizes range from 14 to 66 student per

school with an average of 44.5 student per school.

Artificial Data Analysis

The general model presented in 3.1 allows for Q'between-

unit variables W’ and p within-unit variables X)

Theoretically, the statistical procedure presented in the

previous chapter works with any number of between and within-

unit variables as long as k>q and nj>p. However, for

practicality; three versions of that model will be presented.

In the first version, no between and within-unit variables

were specified” This is the simplest case, where the model in

3.1 reduces to a simple ANOVA model. One between and one

within-unit.variable will be included.in the second version of
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the model with a random intercept and fixed effects

predictors, i.e., q==g3= 1. The last version covers the case

of two between and three within-unit variables with random

intercept and fixed effects predictors , i.e., q = 2 and

;)= 3 (see Table 5.1).

The above three models range in their complexity to

represent. conditions often found. in. educational research

projects. The first is a simple version of the model, used to

facilitate the understanding of the statistical procedure and

its application, The third version of the model is similar to

the example of the real data used in the study.

Data Specifications

Two primary but not completely mutually exclusive

criteria were used to create the data. The first deals with

the degree of heterogeneity of variance. The second criterion

deals with the number of groups k to be generated. For each

combination of these two criteria along with each of the three

versions of the model a data set was generated.

Based on the first criterion (degree of heterogeneity of

variance) and given that the coefficient of variation (C.V.)

Ikur{o? is equal to where O<6<O.25, two alternatives_1_

1-46’

were chosen. The first reflects the case of heterogenous

variances based on a large value of 6:0.2 with C.V. = 1.41.

The other alternative reflects the case of not so heteroge-
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nous variances (i.e., small 6=0.02) with C.V. = 0.21. This

data set is used to test the applicability of holding 6 to a

very small value (close to zero) to reflect the homogeneity of

variance.

For the second criteria, number of groups (k) generated

three values of k, 100, 40 and 15, were chosen. These values

reflect large, moderate, and small numbers of groups.

The combination of the three versions of the model with

the two choices of the first criterion and the three group

sample sizes in the second criterion creates 18 data sets.

Variations of the values of the other parameters (like A, 12,

and of) in the model were arbitrarily controlled based on how

many between- and within—unit variables exist in the model

(i.e., different versions of the model). Table 5.1 presents

a summary of the three models used with eighteen data sets.

Except for the intercept, regression coefficients in these

three models are assumed to be fixed effects.
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Table 5.1

Models used in generating the artificial data

 

 

 

 

 

 

 

 

 

 

 

 

 

Model (1) k=1oo

Heterogeneity

case _

(6=0.2) k'40

Yj = Zj); + ljUj + Ej I fOI j = l, ',k k=15

1 . k=100

_ Homogeneity

Zj = : , and A = Y. case

1 (6=0.02) k=40

k=15

. k=100

Model (2) Heterogeneity

case =

_ A f <0=0-2> “0......

1 Wj le Yo k=100

. Homogeneity

Zj : : I and A : Yl case k=40

1 W5 X%J p (6—0.02)

k=15

k=100

Model (3) Heterogeneity

f case k=40

Yj = sz + ijUj + ej, or (6=0.2)

(Yo. k=l5

71

l le sz X1j1 X1j2 X1j3 72 k=100

Zj : . I . : 1 and l: B I H mogeneity1 o
l le sz anjl anjg anj3 p2 (eggsgz) k=40

.ij  

 

 

 

 
 

 

k=15   
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Data Creation

Given the model in 3.1, all eighteen data sets were

generated in two general steps. The first step covered the

generation of data for the group level variables. The second

step covered the generation of data within each group based on

the data generated for the group level variables in the first

step. These two steps reflect the inherent nesting of the two

levels of the model.

step one - Between-group data

The following random vectors with k elements (k = number

of groups) in each vector were generated:

1. Within-group sample sizes nj vector, for j = 1, ..., k.

First, k random numbers were generated from a UNIFORM

distribution between 5 and.60. Each number was rounded to the

nearest integer to represent a sample size nj for each of the

k groups. Variation in sample sizes are considered to include

a wide range from small (nj=5) to large (raj-=60). The

following is an example of sample size vector:

Group Sample size nj

1 n1=40

2 n2=15
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2. Within-group variances {0;} vector. For pre-specified

values of 6 and 0.2 the variances {03-} were generated from their

respective distribution.

f(o§-|6,o§) ~ I“1(a,[3), where

(5.59)

a z i = 2_6
26 ’ a:

3. Based on 3.9, the k elements of the {Uj} vector were

generated from a normal distribution with mean equal zero and

variance equal 12.

4. Now, q vectors of W = [W1, W2, ---, Wq] and p vectors of

2?: [§1,)?2,~~,5{_p] each has k elements were generated from a

multivariate normal distribution with mean vector of zero and

pre-specified variance-covariance matrix 2. The values of

the p vectors of §= [§1,)?z,m,fp] , were then used, in step

two, as means of the p vectors for the within-group predictors

Xj = [Xj1,Xj2, -~,ij] in the design matrix Z in 3.2.

Step two - Within-group data

The generated data in the second step is for the within-

group variables. It depends on the values of the between-

group variables generated in the first step. For each j,

where j = 1, ~--, k groups, an p variables ofXj = [Xj1,Xj2,o--,ij]

within-group predictors and an error term ej were generated.

The number of observations for these variables within each

group is equal to the sample size nj generated in the first

data set.

. -._—._———_—____._ —.—
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1. Based on the model in 3.1, e1.j ~ N(O,Io§-) . Therefore,

given {03-} for j = 1,2,---,k, which are generated in the first

step, nj values of eij, for i = 1,2,---,nj, are generated for

every one of the k groups. The eij's are normal with mean

zero and variance 0?.

2. For each of the k elements of the p vectors of

I? = [§1,)?2,---,)?p] generated in the first step, 12]. vectors of

observations were generated for each of Xij = [Xv-1, X1721“! Xijp] ,

where 1' = 1, 2, ~--, nj and j = 1, 2, --~, k, from normal distribution

with mean fjp and a pre-specified value for the variance air,»-

3. For pre—specified values of the parameter Vector

A’ = [yu yl, ..., yq, [31, [32, ..., [3p] the values of the outcome variable

Y1-j in a particular data set were then generated by

substituting the generated values of all the between- and

within-group variables in the right hand side of equation 3.1.

In summary, one artificial data set for a model with one

between and one within-group variables, for example, can have

the following form:

1- k = 40 number of groups , nj ~ Uniform(5, 60)

2- 0:0.2, 03:50.

1 26
_ 2, ~ _1 -_- :I I a = __ I = —

3 a] I‘ (a 2.5 , [3 008) y 26 0.2

2 - Var(Uj) = 9.0 , Thus Uj ~ N(0,9.0)
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2 = COV(W,X) =( ), oi“, = 81 , thus W~N(0,4) ,

81) , and eij~N(0,o§-)

6- y°=5.0, 71:3.0, B=O.5, where p=q=l

7- Yij ~ N( 5+3wj+.5Xij+Uj , 03- )

Tables 5.2, 5.3 and 5.4 presents the true values of the

parameters used to generate the 18 artificial data sets used

in this study. Note that the within-group sample sizes nj is

a random sample from uniform (5, 60) for all the artificial

data sets.
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Table 5.2

The true values of the parameters used to generate the

artificial data sets with k = 100

 

 

 

 

 

  

    
  

  

k = 100

e = 0.2
e = 0.02

MOdel (1) Model (1)

03:30 12:6.25 A=yg=6 03:15 12:9 A=Yg=5

Model (2) Model (2)

03:30 12:4.00 03:35 12:6.25

Y°=3 . 00
Yo=12 . 5

A=yl=l.50 A=yl=6,00

31:3-50 81:2.50

4.00 8.00

E:

2:
]

0.21 3.00 0.70 4.00

0i = 400 a; = 400

Model (3) Model (3)

03:30 12:6.25 03:30 12:3.0625

ry,,=8.00'
3158.00)

71:3-50 yl=3.50

A =YZ=2'7S
A::72=2.75

01:1.00 01:1.00

82:3.50
82:3.50

03:0.75) _ _p3=0.75)

V4.00 “ 3.00

0.21 3.00
0.11 1.50

E==0.72 0.33 7.00 2==0.32 0.35 2.50

0.62 0.21 0.20 4.00 0.09 0.22 0.20 3.00

_0.30 0.20 0.21 0.11 5.00) _0.42 0.20 0.14 0.11 1.00“

2_ 2_

og=676 02:400 02=484 02:225 ofi—289 qa—loo

 

O
0

'
—'

12 is the variance—covariance matrix between the W s and.X s
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Table 5.3

The true values of the parameters used to generate the

artificial data sets with k = 40

 

 

 

 

  

 

  

    
  

  

k = 40

6 = 0.2 6 = 0.02

Model (1) Model (1)

03:25 12:2.25 A=yy=8 03:15 12:9 X=Yg=5

Model (2) Model (2)

03:40 12:2.25 03:30 12:9

Yo=3.00
Y°=l2

A==yl=1.50 1: 71:4

fi1=3.50

61:2

_4b0 2_6.00 J

0.21 3.00 0.30 4.00

a; = 169 a; = 400

Model (3) Model (3)

03:25 13:2.25 03:15 12:6.25

Fy°=8.oo' 'y.=8.00'

Yl=3-50
Y1=3.50

=2.75 Y =2 75

A=Y2
A: 2

01:1.00
31:1.00

02:3.50
02:3.50

p3=o_75 _ _B3=O.75‘

F6.00 ' ‘ 2.00

0.11 3.00
0.13 2.50

2==0.32 0.35 3.50 2==0.12 0.15 1.50

0.12 0.22 0.20 4.00 0.09 0.05 0.10 3.00

0.30 0.20 0.21 0.11 5.00, _0.02 0.20 0.14 0.11 1.00,

2 2‘_

02:121 02:169 02:196 02:64 oa=121 ofi—lOO

 

2 is the variance-covariance matrix between the W's and X's
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Table 5.4

The true values of the parameters used to generate the

artificial data sets with k = 15

 

 

 

 

 

  

   
  

  

= 15

6 = 0.2 0 = 0.02

Model (1) Model (1)

03:10 12:1 A=Y°=5
03:10 t2=300625

l=yo=5

Model (2) Model (2)

03:20 12:16 03:10 12:36

Yo=8'00
Y°:8.0

A=yl=3.50
1:71:35

51:1.50

61:1'5

3.00 3.00

2:

2:
]

0.11 2.00 0.11 2.00

2

2 _

ox1 = 49 0x1 — 49

Model (3) Model (3)

03:10 12:2.25 03:30 12:4

'Y.=8 . 00'
(756 . 00'

7123-50
Y1=4.50

72: .75 lY2=2.50

A:
A: _

pl: .00
81—2.00

82:3.50
82:3.50

p3=0.75) . _BB=1.75) 1

'6.00 '
2.00

0.11 3.00
0.13 2.50

2==0.32 0.35 3.50 2==0.12 0.15 1.50

0.12 0.22 0.20 4.00 0.09 0.05 0.10 3.00

0.30 0.20 0.21 0.11 5.00) _0.02 0.20 0.14 0.11 1.00,

2 2.. 2..

02:121 og=169 ag=196 ofi=25 qh—49 ofi—ie 
 

9 ' ' —'

2} is the variance-covariance matrix between the W s and X S
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Initial Estimates for Gibbs Sampling

We recall from the section titled "Empirical Application

of Gibbs Sampling" on page 87, that initial estimates for A,

of, {Ufi' and. (a? are required to start the iteration process

of Gibbs sampling. Reasonable initial estimates for these

parameters could be their empirical Bayes estimates. However,

to avoid the dependency in comparing empirical Bays estimates

of these parameters with those produced by Gibbs sampling, the

formal estimates will not be used as initial estimates for

Gibbs sampling. Alternatively, least square estimates are

used as initial estimates for these parameters as follows:

1- Using the data Y and the design matrix Zlin 3.2, The

parameter A. is estimated by A“) =(J§1Z§Zj) 124le. The

superscript (O) is used with the parameter A to

represents the initial estimate of the parameter.

2- Given the data Y and the computed value of A”) from the

previous step, each element of the set {U9 is estimated

n- n

m)__ l 2 _ i m)
b U- - —— Y- Z-A ).

Y 3 nj 14 1 id 3

3- Similarly, each element of the set {0? is estimated by

03(0) = nj‘l(yj _ 21.1w) — Uj‘°>)/(yj — zjl<°> — Uj‘”) . The values

of A”) and (#0) were computed from the previous two

steps.

4- Finally, given the set of estimated values {ojmn from

step 3, of is estimated by{fhe harmonic mean H'of {ofiww

as follow 02(0) = k 2092(0)) .

The above estimates can be thought of as sampled values
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of the parameters from the current approximation to their

marginal posterior distributions. These sampled values are

then used to simulate the distributions for the rest of the

parameters. The simulated distributions however, are poor

ones because they are based on poor estimates of A, of, {Uj},

and {03-}. Going through several iterations should improve the

approximations of all the marginal posterior distributions.

Another parameter estimated from the data is 6. While

the estimate of this parameter was not needed to start the

iteration process of Gibbs sampling, its estimated value,

however, is used for empirical confirmation of its Gibbs

(posterior mean) estimate. Except for 6, empirical Bayes

estimates for all other parameters of the model in 3.1 can be

easily found and compared to their counter part estimates from

Gibbs sampling. Therefore, an estimate of 6 from Gibbs

sampling can be compared to a one that is based on the log

transformation of the estimated group variances (Raudenbush

and Bryk, 1987). That is, when S]? for j=1,~-,k is used to

estimate the group residual variance with vj degrees of

freedom, the transformation dj, where

1 _ 5.60

is used to estimate 6]. =—:—109(O§-). Each dj is approximately

distributed as N[5j, 1/ (2Vj—1)], for j=1, ..., k. Similarly, using

the assumption in 3.5, where (IE/(60%) is distributed as a chi-

square variable with 6‘1 degrees of freedom, 5. is distributed
J

as NHL-g) , where A is the average of all 6]..

  

 



')  
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A total variance estimate of dj approximately consists

of a sampling variance and a residual parameter variance

  

Var(dj|A) = Var(dj|6j) + Var(6j|A) , and

f<d - (1)2 (5°61)

E[1 j J = l + .9

When A and 1/(2VJ71) in 5.67 are approximated by

A

A = k“1fdj and V = k'lfz—t— respectively, 6 can be estimated by

1 j

 

f(dj — A)2 (5.62)

6“” = 2 1 k — V .
— 1

Assessing the Heterogeneity of Variance

The primary interest of this research is to study the

analysis of hierarchically structured data when there is

evidence of heterogeneity of variance. Therefore, a measure

for assessing homogeneity of variance was needed. Based on

the results from the previous section, 6]. = glogkfi) is

approximately distributed as N(A, g) , where A is an average

of 6]. for j=1, -~-, k. Therefore, a natural way of assessing the

homogeneity of group variances is to test the hypothesis

Ho:6j = A , j=1,---,k by the statistic

A 5.

zfvjm] A)2 < 63>
j=1

which has a large sample chi-square distribution withk-l

degrees of freedom (Raudenbush and Bryk, 1987).
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Random number generation

Three computer programs, using the FORTRAN language, were

written to implement the generation of the data and the

iteration process of Gibbs sampling. The first two programs

are for creating the artificial data sets in two steps. The

third program applies the iterative steps of Gibbs sampling.

In this program sufficient statistics are calculated from an

input data file (either the artificial data created by the

first two programs or the real data) and used to calculate the

initial estimates of the parameters A, of, HG},anui {0%, the

chi-square statistic for testing the hypothesis of homogeneity

of variance as well as the moment estimate of 6. The initial

estimates of the hyper-parameters are then treated as being

sampled from the current approximation of their marginal

posterior distributions and. they are 'used to start the

iteration process between six subroutines. Each subroutine is

written to sample one value of each of the parameters 6, 03,

12, A and one set of {Uj} and {03-} for j=1,---,k from its

corresponding conditional distribution. The iteration process

is then terminated when the number of iterations required for

convergence is reached.

The conditional distributions of the parameters involved

in the iteration process of Gibbs sampling have three general

parametric forms: normal, gamma and inverse gamma. The

International mathematical and Statistical library (IMSL),
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Version 10 is used with the programs to generate random

numbers from these distributions. Sampling a random variable

from an inverse gamma distribution with certain parameters was

established by inverting a random variable that was sampled

from gamma distribution with the same parameters.

Only 600 observations are printed out for each of the

parameters as a final representation of its marginal posterior

distribution. To avoid the dependency between two successive

iterations, the 600 observations are drawn from the last 3600

iteration of the program in a systematic order with a 6

iterations jump between selected observations.

Specifying the Criteria for Convergence

Gelfand, Hills, Racine-Poon and Smith (1990) have listed

several procedures for checking convergence in Gibbs sampling.

One of these procedures, they recommend, is the overlay

plotting of the estimated density of the simulated

distribution at several points of the iteration process. One

can assume convergence when these plots become equivalent.

Another procedure is the use of a Quantile-Quantile plot. Two

equal size samples, each drawn several iterations away from

the other, are ordered and plotted. As the number of

iterations before drawing the two samples increases, the plot

of the ordered samples moves toward a 45° line as an

indication of convergence. The above two procedures were used
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in this study for checking the convergence in approximating

the marginal posterior distributions. The number of

iterations required for convergence for model 3 with 6=0.2

and k=15 was used for the subsequent runs.

Real Data Analysis

Description of the variables available in the High School

and Beyond data set is given in table 5.5.

Table 5.5

Description of Variables in High School and Beyond data

 

Variable Description

 

Student Characteristics

MATHACH Mathematic achievement (outcome).

SES A measure of socioeconomic status.

MINORITY An indicator of minority status.

GENDER An indicator for females.

 

School Characteristics

SECTOR School affiliation, Public VS. Catholic.

MEANSES Mean Of SES.    
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Previous research (Raudenbush and Bryk, 1987) has

demonstrated the use of hierarchical linear model in studying

the effect of the organizational characteristics of schools on

dispersion in mathematics achievement (MATHACH). They have

used the model for estimating the residual dispersion in

mathematics achievement for each school using information from

the whole sample. The resulting estimates of the residual

dispersions are empirical Bayes estimates, which are

conditioned on ML estimates of the hyper-parameters of their

assumed distribution.

This study goes beyond getting a single estimate of the

residual dispersion for each school by approximating not just

the marginal distribution for the dispersions but also the

marginal distribution for every parameter in the 3.1 model,

including the hyper-parameters. Clearly, this will give the

researcher more flexibility in doing her/his inferences about

any parameter of the model. Table 5.6 presents the different

models used with the High School and Beyond data set.
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Table 5.6

Models used with the High School and Beyond data set

 

   BASE + SECTOR + MEANSES + MINORITY

+ GENDER + SES

 

2 MATHACH = BASE + SECTOR + GENDER + SES

 

3 MATHACH = BASE + MEANSES + GENDER + SES

 

4 MATHACH = BASE + SECTOR + SES

 

5 MATHACH = BASE + SECTOR + GENDER

 

6 MATHACH = BASE + MEANSES + SES

 

7 MATHACH = BASE + SECTOR

 

8 MATHACH = BASE + SES

 

9 MATHACH = BASE   
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Similar to the models in table 5.1, all school and

student level variables in any of the models in table 5.6 are

assumed to be fixed effects except the intercept, it is

assumed random.
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CHAPTER 6

Results

This chapter provides a discussion of the results of the

empirical application of Gibbs sampling. The discussion

covers the results from the artificial data and the High

School and Beyond data set. .Answers to the questions

concerning the objectives of this study which were presented

in chapter 1 are provided through this discussion.

Required Number of Iterations for Convergence

Several procedures have been suggested for checking the

convergence of the iteration process of Gibbs sampling

(Casella & George, 1992; Gelfand, Hills, Racine-Poon and

Smith, 1990 and Iewis and Orav, 1989). In this study two

graphical criteria were used in deciding about the convergence

of the iteration process of the program. The first criterion

is the overlay plotting of the density function for each

parameter approximated by different samples. These samples

were generated from several runs of the program on the same

data set with different number of iterations in each run" The

second criterion is based on "Quantile-Quantile" (Q-Q) plots.

Observations from two different samples based on the same

model, but different number of iterations are sorted and
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plotted against each other in.a scatter plota “Using the first

criterion, one can assume convergence when the graphs of the

density, from different samples, for the marginal posterior

distribution of a particular parameter become very close or

identical to each other. Using ithe second criterion,

convergence can be detected when the scatter plot of the

sorted observations from two samples forms a 45 degree line.

Model 3 from table 5.1 with 6=0.2 and k=15 was used as

a reference to decide about the appropriate number of

iterations required for convergence for all data sets. It is

assumed.that this model represents the scenario of the largest

number of iterations required for convergence because it has

the largest number of parameters and the smallest number of

groups, k=15, with.heterogeneous variances.

Using the specified model the program was run 4 times.

The total number of iterations in each run were 4600, 8600,

10600 and 15600 iterations respectively. Four samples, one

from each run of the program, with 600 observations in each

sample were generated. To avoid dependency between

consecutive observations within each sample (Casella & George,

1992) the 600 observations were systematically drawn from the

last 3600 iterations in each run. Thus, the first sample is

made of 600 observations drawn systematically from the last

3600 iterations after 1000 iterations in the first run. The

second sample is made of another 600 observations drawn

systematically" from. the last 3600 iterations after 5000
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iterations in the second run. The third sample is also made

of 600 observations drawn systematically from the last 3600

iterations but after 7000 iterations in the third run. And

finally the fourth sample is made of another 600 observations

drawn systematically form the last 3600 iterations after 12000

iterations in the last run.

Figures 1 and 2 show the overlay graphs of the densities

for the marginal posterior distributions of the hyper-

parameters in model 3 of table 5.1. Four densities, each

based on one sample, were drawn for each parameter. These

densities are smoothed by the "kernel" method (Silverman,

1986), which superimposes a univariate nonparametric kernel

density estimator. The estimator shows areas where the

observations are most concentrated in the sample.

Figures 3 and. 4 jpresent. two Q-Q jplots for each. hyper-

parameter. One plot is based on the samples generated from

the runs of 8600 and 10600 iterations and the other plot is

based on the samples generated from the runs of 8600 and 15600

iterations.

Density graphs for the exchangeable parameters {U} and

{0? for j=fiL,~,15 of all the 15 groups in the chosen data set

are considered in deciding about the convergence of the

iteration process. However, only 4 groups, selected at

random, were presented.here for illustrative;purposeq IFigures

5 and 6 provide the overlay graphs of the densities of the

marginal posterior distributions and the Q—Q plots for a; for
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the 4 selected groups. The overlay graphs of the densities

and the Q-Q plots for 09 are provided in figures 7 and 8.

In general the overlay graphs show that densities from

the four samples are almost identical for' most of the

parameters. Densities for 6, of, 12 and 63 based on the 4600

iterations sample show little divergence from the rest of the

samples. Considering the overlay graphs and the Q-Q plots of

all parameters, it is decided that 8600 iterations is

sufficient to achieve convergence. The Q-Q plots show that

observations from the sample based on 8600 iterations form a

45 degree line when they are plotted against the observations

of the samples based on 10600 and 15600 iterations.

Divergence from the 45 degree line occurs only for small

number of observations that fall at the tail of the

distribution for every parameter. These observations can be

thought of as outliers. They have much lower probabilities of

being in the distribution than the majority of the

observations.
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Figure 6.1

Overlay graphs of the estimated densities of the marginal

posterior distributions for the hyper-parameters

6, 0.2, 12, and Y.
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Figure 6.2

Overlay graphs of the estimated densities of the marginal

posterior distributions for the hyper-parameters

“(1, 131, [32, and B3
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Figure 6.3

 

Q-Q plots of the observation of the marginal posterior

distributions for the hyper-parameters
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Figure 6.4

Q-Q plots of the observation of the marginal posterior

distributions for the hyper-parameters

71' 51! 62! and B3
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Figure 6.5

Overlay graphs of the estimated densities of the marginal

posterior distributions of selected groups' variances {0?
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Figure 6.6

Q-Q plots of the points of the marginal posterior

distributions of selected groups' variances {03-}
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Figure 6.7

Overlay graphs of the estimated densities of the marginal

posterior distributions of selected groups' intercept errors

{Uj}

  

  

 

 

 





 

8
6
0
0

i
t
e
r
a
t
i
o
n

8
6
0
0

i
t
e
r
a
t
i
o
n

8
6
0
0

i
t
e
r
a
t
i
o
n

8
6
0
0

i
t
e
r
a
t
i
o
n

 

117

Figure 6 . 8

Q-Q plots of the points of the marginal posterior

distributions of selected groups' intercept errors {Uji
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Artificial Data

There are 18 data sets (see table 5.1) created by the

combination of the three models, the two values chosen for 6,

and the three choices of k. The marginal posterior

distributions for 6, of, “:2, A, {03-}, and {Uj} where j=1,~--,k

in each model are calculated for each data set. Posterior

means and standard deviations are calculated from the

approximated marginal posterior distributions. Information

about the exchangeable parameters {03'} and {Uji are presented

for only 10 groups selected in systematic sampling for data

sets with k=1oo or 40. Information about these parameters in

data sets with k=15 groups are presented for only 8 groups .

That is, Iknr.k=100, groupl, groupll, group21, ..., group91

were presented, for k=40, groupl, group5, group9, ..., group37

were presented, and for k=15, groupl, group3, group5, ...,

group15 were presented.

Empirical Bayes estimates for the regression coefficients

(i.e., A) with their standard.error'of‘estimateS'were obtained

for each of the 18 data sets using the HLM program. Maximum

likelihood (ML) estimates for the variance components, t2 and

03 were also obtained from the HLM analysis. (Note that the

HLM estimate of of represents a pooled within-group variance

ML estimate.)

Because of the large cost of analysis, the limited time

and resources available, each of the 18 data sets represents
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just one sample generated from.a population that is different

from the other data sets' populations. Therefore, there is a

chance that any of the data sets might not be a good

representative to its true population and the associated

parameters. This has the implication that estimates from a

given data set are based on one sample, which limit our

assessment of error. A more complete study would involve

generating multiple data sets from the same population.

Estimates of a given parameter can then be obtained from each

generated sample via Gibbs sampling. Given these different

estimates, mean squared errors for example, could be

calculated for the given parameter.

High School and Beyond data

As pointed earlier, this data is from a probability

sample of 160 U.S. high schools. Table 5.5 describes the

variables in this data set. The outcome variable used in all

of the models is a standardized mathematics achievement score.

Nine models (see Table 5.6) were applied to HSB data.

Variations between these models are based on the number and

type (school vs. student) of variables. Variations in school—

level variables are expected to influence mainly the estimated

value of 1:2, while variations in student-level variables

affect all estimates of variance components. Gibbs sampling

was used with 8600 iterations for all of the models. Similar
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to the artificial data, information about the exchangeable

parameters {03-} and {Uj} are presented for only 10 schools

selected in systematic sampling. Empirical Bayes estimates

for the regression coefficients in all models were also

obtained via the HLM program.

Comparing Estimates of Variance Components

Part A of Table 6.1 to Table 6.18 provides estimates for

the variance components of, 6, tzanuito? for each of the 18

artificial data sets. Variance component estimates for the

High School and Beyond data set are provided in part A of

table 6.19 to table 6.27.

Estimates of of

The hyper-parameter 03 represents the typical value that

any of the parameters {03} for j=1, ---, k can take in their prior

distribution. One objective of this study is to find a way of

estimating that typical value without assuming homogeneity of

variance. Taking the fully Baysian approach and letting of

be random facilitated the:derivation.of its:marginal.posterior

distribution as well as the marginal posterior distributions

for each of the groups' residual variances.

The fact that the marginal posterior distribution of of

is not far from being symmetric even when k is small (see
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figure 6.1), makes the difference between the posterior mean

and the posterior mode estimates insignificant. If the

marginal posterior distribution of of is far from being

symmetric, it has to be positively skewed, and the posterior

mean is larger than the posterior mode» ‘With.this in.mind, we

find that HLM estimates of of are larger than Gibbs posterior

mean estimates of of in all data sets including high school

and beyond data set. When they are compared to the actual

values of of (part A table 1 to table 18) HLM estimates of of

are still found to be larger than the actual value of the

parameter in all data sets. Furthermore, the over estimation

of of in HLM analysis is more pronounced for data sets with

extreme heterogeneity of variance (see tables with 0:0.20).

This indicates that the HLM estimate of the within-group

residual variance of is over estimated when there is clear

evidence of heterogeneity of variances.

One obvious implication of over estimating the within-

group residual variance is the effect on empirical Bayes

estimates of the regression coefficients. As we see in

equations 1.5 to 1.7 and under the homogeneity of variance

assumption (i.e. o§=o§ , .j=1,m,k) that larger value of of

causes Aj in equation 1.5 to be smaller therefore giving less

A

weight to B in obtaining B}. Another implication stems from
3'

the homogeneity of variance assumption itself, where some of

the groups with smaller actual values of their residual

variance 0% are assumed to have an inflated residual variance
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which is equal to of because of the homogeneity of variance

assumption.

Estimates of 6

The hyper-parameter 6 represents a scale parameter of the

prior distribution for the exchangeable parameters {03-} for

j=14-u,k. It is inversely proportional to the concentration

cflfto? around their typical value 03. Finding the posterior

distribution of 6 and its estimate provides an answer to the

question: “How precise are the posterior mean estimates of the

exchangeable parameters.{¢? in estimating the typical value

of?" The marginal posterior distribution of 6 is fOund to

cover its actual value within 95 percent confidence interval

in all of the artificial data sets. In.most of the data sets,

and especially in the High School and Beyond data set, Gibbs

estimates of 8 are found to be of the same magnitude of its

moment estimates, which.areibased.on the log transformation of

the residual variances (see chapter 5 for derivation).

Although.they are close in‘theirtmagnitude, Gibbs estimates of

6 derived from data sets with k=15 are found to be larger

than their moment estimates (see tables with k=15). This

finding is expected because when the number of groups is

relatively small the marginal posterior distribution of 8

becomes more positively skewed which causes the posterior mean

(Gibbs estimate) to get larger.
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Estimates of t2

The hyper—parameter t2 represents the variance of the

prior distribution of the exchangeable parameters {U}; In

general, Gibbs estimates of 12 are found to be of the same

magnitude of the HLM estimates for both the artificial data

sets and the High School and Beyond data set. However, in

most of the data sets, Gibbs estimates of t2 are found to be

slightly higher than HLM estimates. In fact, Gibbs estimates

of 12 for artificial data sets with small number of groups

(k=15) are found to be noticeably higher than HLM estimates.

That is because as the number of groups get smaller the

marginal posterior distribution 12 becomes more positively

skewed causing the posterior mean estimate of 1:2 (Gibbs

estimate) to be larger than the posterior mode of HLM.

Estimates of kfii

One advantage of this study is the ability to obtain the

marginal posterior distribution for each of the within—group

residual variance {03-} for j=1, ---,k. In all of the artificial

data sets the actual values of {03:} were found to fall within

the 95 percent confidence intervals which were derived from

their marginal posterior distributions. The posterior means

(Gibbs estimates of {031) , the actual values of {03-}, the

standard deviations, the coefficient of variations (C.V.) , and
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the sample sizes, nj, for the selected groups in each of the

artificial data sets were presented. When compared to their

actual values, Gibbs' estimates<xfio?'were found to have the

same magnitude in most of the data sets. We also found that

Gibbs estimates of {03-} in groups with small sample size have

higher C.V. than estimates with larger sample sizes. This

indicates that estimates of {03'} which are based on small

samples are less stable than those based on a large sample

sizes.

Comparing Estimates of the Regression Coefficients

Part B of table 6.1 to table 6.18 provide estimates for

the regression coefficients in A’= Ho, 'er“'qu: 131,-",Bp] as

well as estimates for {Uj} for j=1, ~-,k in the selected groups

for the 18 artificial data sets. Regression coefficients and

{Uji estimates for the high school and beyond data set are

provided in part B of table 6.19 to table 6.27.

As mentioned earlier, unlike Bayes estimates, which are

derived from their marginal posterior distributions via Gibbs

sampling, empirical Bayes estimates it are conditioned on

knowing the true values of the variance components of and 12.

In practice, these components are unknown and need to be

estimated. One obvious problem with empirical Bayes estimates

is that they do not account for the uncertainty in estimating

the variance components. Consequently one can ask: "How do
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Gibbs estimates of the regression coefficient differ from

their empirical Bayes estimates?" And "How do inferences

about regression coefficients change when taking into account

the uncertainty about the estimation of variance components,

especially when there is a heterogeneity of variance?"

Estimates of A

The vector A has two types of regression coefficients.

The first includes {7“ army, for the intercept and between-

group variable effects. Variables like SECTOR and MEANSES in

the High School and Beyond data are examples of this type.

The second includes {BLV~,flQ, for the within-group variable

effects. Variables like MINORITY, GENDER and SES in the High

School and Beyond data set are examples of this type. Except

for the intercept, between— and within-group regression

coefficients are assumed fixed for both the artificial data

sets and the High School and Beyond data set.

In general, Gibbs estimates (posterior means) and HLM

estimates (posterior Modes) of the regression coefficients are

very close to the actual values of the coefficients for the

artificial data sets. There are few cases where the two

estimates are noticeably different from the actual value of

the coefficients, but when compared to each other, Gibbs and

HLM estimates are found to be very close in their values. In

part B of table 6.8, for example, the actual value for ya is
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set to be 3.00, while: Gibbs and. HLM: estimates of that

coefficient are 2.598 and 2.609 respectively. Similarly, part

B of table 6.17 shows that the actual value for Y1 is equal to

3.50, while Gibbs and HLM estimates of that coefficient are

4.603 and 4.579 respectively; Large deviations in the

estimates of the regression coefficients from their actual

values are very few and seem to have a random pattern that

could be attributed to the selected random samples. Similar

findings are obtained when using high school and beyond data

set. Gibbs and HLM estimates for the regression coefficients

are found to be of the same magnitude in all the models for

High Schools and Beyond data set.

A standard deviation computed from the marginal posterior

distribution produced by Gibbs sampling for each regression

coefficient is compared to the standard error of the estimate

from HLM. In general we find that both the posterior standard

deviations of Gibbs sampling (standard error of Gibbs

estimates) and the standard error of the estimates from HLM

are very close in their values and in some cases they are

equal. Since Gibbs estimates of the regression coefficients

are close in their 'values and. their standard error of

estimates to their counterpart estimates from.HLM, inferences

(t-test statistics) about. these. coefficients 'using' Gibbs

estimates are not drastically different from the HLM

inferences. This is found to be interesting especially for

the cases were there is a:noticeable heterogeneity of variance
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and of is being over estimated in HLM analysis.

Estimates of {Uj}

Based on their marginal posterior distributions, Gibbs

estimates (posterior means) of {Uj}, where j=l,u-,k and the

standard deviations for the selected groups in each of the

artificial data sets are presented with their actual values.

. Because Gibbs estimates of {Uji are derived from one sample in

each data set, qualities of the estimates are difficult to

evaluate. However, in most cases we find that these estimates

are close in their magnitude and their sign to the actual

values of {Uj} .

 

 





 

128

Table 6.1-A

Generated data: Model 1, 6 = 0.20 and k = 100

Variance components estimates

Hyper-parameters

 

 

6 of 1'2

GIBBS““ 0.242 GIBBS““ 29.700“ 7.079

MOMENT EST. 0.317 HLM 48.512 7.550

ACTUAL 0.200 ACTUAL * 30.000 6.250

GIBBS s.0.* 0.042 GIBBS S.D. 2.313 1.251

CHI-SQUARE 809.349 D.F. = 99 P-value = 0.000

Within-groups residual variances

 

 

 

01 011 0:1 0:1 0:1

GIBBs*“* 12.144 136.379 29.342 16.480 ' 35.496

ACTUAL * 7.018 147.361 23.720 19.950 73.466

GIBB§*S.D. 5.239 26.185 5.600 3.714 20.162

C.V. 0.431 0.192 0.191 0.225 0.568

nj 12 55 59 43 9

2 2

0.3.1 0:1 071 081 0:1

GIBBs*“* 30.851 35.306 30.168 16.077 534.123

ACTUAL 26.693 27.382 30.924 11.768 508.802

GIBB§*S.D.* 6.804 16.158 6.200 3.518 202.966

C.V. 0.221 0.458 0.206 0.219 0.380

n. 36 9 49 42 14
.7

 

Standard deviation of the marginal posterior distribution

Pooled within—group variance estimate

Coefficient of variation

Posterior Mean

****
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Table 6.1-B

Model 1, 8 = 0.20 and k = 100

Regression coefficient and random error CG estimates

Regression coefficient

 

 

 

 

 

YO

GIBBSH’" 5 . 978

HLM 5.905

ACTUAL 5_ooo

GIBBS s.D.* 0.293

HLM s.E.** 0,309

Random error CG

U1 U11 U21 U31 U41

GIBBs**** —0.750 1.399 0.627 —3.o44 -3.218

ACTUAL -0.531 2.102 0.289 —2.077 —3.807

GIBBS s.D.* 0.944 1.298 0.718 0.673 1.637

5%1 [Q1 £41 [Q1 £51

GIBBS**** —1.550 0.685 0.405 1.188 -0.793

ACTUAL -2.935 2.678 -0.795 1.525 -2.614

GIBBS 8.0.* 0.917 1.616 0.779 0.647 2.459

 

Standard deviation of the marginal posterior'distribution

H Standard error of the HLM estimate of the parameter

Posterior Mean
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Table 6.2-A

 

 

 

 

  

 

 

 

Generated data: Model 1, 0 = 0.20 and k = 40

Variance components estimates

Hyper-parameters

6 t2

GIBBS**** 0.178 GIBBs**** 24 . 553" 3 . 248

MOMENT EST 0.181 HLM 34.201 3.524

ACTUAL 0.200 ACTUAL * 25.000 2.250

GIBBS S.D.* 0.052 GIBBS S.D. 2.657 1.124

CHI-SQUARE 229.232 D.F. = 39 P-value = 0.000

Within—groups residual variances

01 a: a: 0:3 017

GIBBs**** 23.474 111.119 36.078 32.839 31.858

ACTUAL 37.935 172.278 39.534 29.618 24.233

GIBBS S.D.* 8.440 37.033 8.530 8.794 11.685

C.v.*** 0.360 0.333 0.236 0.268 0.367

nj 12 17 34 29 16

2

0:1 0:5 0:9 0:3 037

* . 57
GIBBS *** 19.849 66.245 14.515 16.994 18 9

ACTUAL 15.690 53.687 20.660 12.568 16.566

GIBBS S.D.* 3.647 17.411 3.296 7.929 3.351

C.V.*** 0.184 0.263 0.227 0.467 0.177

nj 59 27 42 10 58

* Standard deviation of the marginal posterior distrlbution

" Pooled within—group varlance est1mate

Coefficient of variation

Posterior Mean  
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Table 6.2-B

Generated data: Model 1, 6 = 0.20 and k = 40

Regression coefficient and random error CG estimates

Regression coefficient

 

 

 

 

 

YB

GIBBs**** 7 . 7 80

HLM 7.800

ACTUAL 8.000

GIBBS S.D.* 0,349

HLM S.E.** 0.347

Random error CG

U1 U5 U9 U13 U17

GIBBs**** -1.804 -l.785 —2.445 3.204 2.490

ACTUAL -2.259 -2.884 -2.816 3.721 1.602

GIBBS S.D.* 1.143 1.620 0.897 0.948 1.168

U21 U25 U29 U33 U37

GIBBs**** —1.490 —0.469 1.913 —o.903 3.3%

ACTUAL -2.116 -0.850 1.459 —o.961 0.680

GIBBS S.D.* 0.660 1.182 0.646 1.03 .

 

Standard deviation of the marginal posterior distribution

H Standard error of the HLM estimate of the parameter

Posterior Mean
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Generated data: Model 1, 6 = 0,20 and k = 15

Variance components estimates

Hyper—parameters

0 o. :2

GIBBS**** 0 . 309 GIBBs**** 12 . 755 1. 439

MOMENT EST 0.229 HLM 20.544“ 1.036

ACTUAL * 0.200 ACTUAL 10.000 1.000

GIBBS S.D. 0.181 GIBBS S.D.* 2.997 0.882

CHI-SQUARE 90.567 D.F. = 14 P-value = 0.000

Within-groups residual variances

01 03 a: 03 09

GIBBS**** 8.226 16.472 6.023 26.187 31.382

ACTUAL 10.489 14.213 4.842 17.763 35.425

GIBBS S.D.* 3.744 3.477 2.494 6.481 7.892

C.V. ** 0.455 0.211 0.414 0.247 0.251

I1]. 12 42 17 37 34

Oil 0:3 0.5.5

GIBBS**** 36.008 36.058 17.321

ACTUAL 37.924 35.642 18.583

GIBBS S.D.* 6.959 9.575 4.712

C.v.*** 0.193 0.266 0.272

nj 55 29 29

:* Standard deviation of the marginal posterior distribution

Pooled within—group variance est1mate

****

Coefficient of variation

Posterior Mean  





133

Table 6.3-3

Generated data: Model 1, 6 = 0.20 and k = 15

Regression coefficient and random error CG estimates

Regression coefficient

 

Ya

GIBBS*“* 5.129

HLM 5.051

ACTUAL 5.000

GIBBS s.g.* 0.362

HLM s.E. 0.346

 

Random error [5

 

 

 

 

U1 U3 U5 U7 U9

GIBBS*“* 1.068 -0.310 —0.854 -0.178 0.125

ACTUAL 2.184 —0.629 -0.526 —0.661 1.001

GIBBS S.D.* 0.722 0.583 0.615 0.699 0.737

U11 U13 U15

GIBBS*“* 0.801 —0.281 0.436

ACTUAL 1.491 -1.015 0.205

GIBBS S.D.* 0.713 0.799 0.689

* Standard deviation of the marginal posterior distribution

M Standard error of the HLM estimate of the parameter

Posterior Mean  
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Table 6.4-A

Generated data: Model 1, 6 = 0.02 and k = 10°

Variance components estimates

Hyper—parameters

6 0. 12

GIBBS**** 0 . 037 GIBBS**** 15 . 147 9 . 917

MOMENT EST 0.040 HLM 16.162" 9.837

ACTUAL * 0.020 ACTUAL 15.000 9.000

GIBBS S.D. 0.010 GIBBS S.D.* 0.599 1.531

CHI—SQUARE 210.674 D.F. = 99 P—value 0.000

Within-groups residual variances

Oi 011 0:1 031 0:1

GIBBS**** 13.155 14.107 17.298 12.285 14.344

ACTUAL 11.426 13.504 14.683 13.404 18.347

GIBBS S.D.* 3.241 2.280 2.721 2.270 3.791

C.v.*** 0.246 0.162 0.157 0.185 0.264

nj 12 55 59 43 9

2 2

05231 0:1 071 081 091

GIBBS**** 17.973 16.501 18.226 19.889 17.447

ACTUAL 17.665 14.297 20.474 18.957 15.502

GIBBS S.D.* 3.528 4.244 3.030 3.598 4.237

C.v.*** 0.196 0.257 0.166 0.181 0.243

nj 36 9 49 42 14

:* Standard deviation of the‘marginalzposterior'distribution

Pooled within—group varlance estlmate

****

Coefficient of variation

Posterior Mean  
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Table 6. 4-B

Generated data: Model 1, 6 = 0.02 and k = 100

Regression coefficient and random error CG estimates

Regression coefficient

 

Y.

GIBBS*“* 4.986

HLM 4.977

ACTUAL 5.000

GIBBS S.D.* 0.281

HLM s.E.“ 0.325

 

Random error CG

 

 

   

 

U1 U11 U21 U3 1 U41

GIBBS*“* -0.852 2.395 0.589 —3.340 -4.346

ACTUAL -0.637 2.522 0.347 -2.493 —4.568

GIBBS S.D.* 1.053 0.584 0.604 0.582 1.140

U51 Us 1 U7 1 U81 U9 1

. . —3.302
GIBBS*** -2.380 1.828 0.001 1 :12 _3 137

ACTUAL —3.522 3.213 -0.954 3.705 1.013

GIBBS S.D.* 0.745 1.240 0.658 . .

  

 

ginal posterior distribution
' ‘ the mar

Standard.dev1at1on.of
meter

M Standard error of the HLM estimate of the para

Posterior Mean  
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Table 6.5-A

Model 1, 8 = 0.02 and k = 40

Variance components estimates

Hyper-parameters

 

 

 

 

  

 

 

0 of 12

GIBBS““ 0.026 GIBBS““ 15.961“ 13.485

MOMENT EST 0.020 HLM 16.777 12.800

ACTUAL 0.020 ACTUAL * 15.000 9.000

GIBBS S.D.* 0.014 GIBBS S.D. 0.934 3.455

CHI-SQUARE 62.049 D.F. = 39 P-value = 0.009

Within—groups residual variances

Ci 05 a: 013 017

GIBBS*“* 14.304 14.116 16.287 15.650 19.158

ACTUAL 13.883 11.068 16.891 12.937 20.906

GIBBS S.D.* 3.056 2.850 2.730 2.931 3.976

C.V.“* 0.214 0.202 0.168 0.187 0.208

nj 12 17 34 29 16

2 2

0:1 0:5 0:9 c‘33 037

17.387
GIBBS*“* 18.359 21.648 13.340 15.458

ACTUAL 16.387 22.196 16.551 11.647 16.846

GIBBS S D * 2 676 4.415 2.269 3.496 2-558
. . . 47

C.V.“* 0.146 0.204 0.170 0.226 0.1

nj 59 27 42 10 58

* Standard deviation of the marginal posterior d15tr1but1on

M Pooled within—group variance est1mate.

Coefficient of variation

Posterior Mean  
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Table 6. 5-B

Generated data: Model 1, 6 = 0.02 and k = 40

Regression coefficient and random error CG estimates

Regression coefficient

 

 

 

 

 

 

 

Y.

GIBBS"" 4.890

HLM 4.808

ACTUAL 5 , o 0 o

GIBBS S.D.* 0.589

HLM s.E.“ 0.581

Random error LG

U1 U5 U9 U13 U17

GIBBS*"* -4.450 -5.957 -5.805 7.551 4.774

- 18 -5.768 —5.631 7.441 3.205
ACTUAL * 4.5 0 873 1 178

GIBBS S.D. 1.218 1.045 0.876 . .

U21 U25 U29 U33 U37

**
-2.143 —3.455

_GIBBS* * —3.773 -l.536 3.329 _ 3 _3 939

—1 699 2.919 1.92 .

ACTUAL * -4'232 .009 0 801 1.355 0.752
GIBBS S.D. 0.788 1. .

 

e marginal posterior‘distributi
on

Standard deviation of th parameter

H Standard error of the HLM estimate of the

*“* Posterior Mean  
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Model 1,

Variance components estimates

Hyper-parameters

6 = 0.02 and k = 15

 

 

 

 

 

 

e
of 1:2

GIBBS””* 0.050 GIBBS 11.288“ 5.771

MOMENT EST 0.039 HLM 12.243 4.747

ACTUAL 0.020 ACTUAL * 10.000 3.063

GIBBS S.D.* 0.051 GIBBS S.D. 1.253 2.778

CHI-SQUARE 24.469 D.F. 14 P-value 0.032

Within—groups residual variances

of 03 O5 03 a:

GIBBS*“* 9.864 12.575 9.934 14.300 9.744

ACTUAL 9.080 11.087 8.585 10.694 8.563

GIBBS S.D.* 2.724 2.228 2.588 2.800 2.007

C.V.“* 0.276 0.177 0.261 0.196 0.206

nj 12 42 17 37 34

Oil Oi}; 02:5

GIBBS*“* 14.705 9.318 10.911

ACTUAL 17.018 6.224 10.676

GIBBS S.D.* 2.530 2.120 2.215

C.V.“* 0.172 0.228 0.203

nj 55 29 29

*
' ' inal osterior‘distribution

Standard dev1at10n of the marg .p

“ Pooled within—group var1ance est1mate

Coefficient of variation

Posterior Mean  
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Table 6 . 6-B

Generated data: Model 1, 0 = 0.02 and k = 15

Regression coefficient and random error CG estimates

Regression coefficient

 

Yo

GIBBS*“* 5.098

HLM 5.092

ACTUAL 5.000

GIBBS S.D.* 0.653

HLM s.E.“ 0.590

 

Random error CG

 

 

 

 

 

U1 U3 U5 U7 U9

GIBBS*”* 2.915 —0.840 —1.489 -0.815 1.228

ACTUAL 3.822 —1.101 —0.920 -1.157 1.751

GIBBS S.D.* 1.013 0.813 0.981 0.878 0.815

U11 U1 3 U1 5

GIBBS*“* 2.304 —1.564 0.660

ACTUAL 2.611 -1.776 0.25:

GIBBS S.D.* 0.825 0.830 0.

* Standard deviation Of the marginal posterior'distribut1on

M Standard error of the HLM est1mate of the parame er

Posterior Mean  
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Table 6.7-A

Generated data: Model 2, 6 = 0.20 and k = 100

Variance components estimates

Hyper-parameters

 

 

6 of :2

GIBBS*“* 0.216 GIBBS“”* 33.081“ 4.715

MOMENT EST 0.247 HLM 56.951 4.116

ACTUAL 0.200 ACTUAL * 30.000 4.000

GIBBS S.D.* 0.037 GIBBS S.D. 2.603 0.922

CHI-SQUARE 863.006 D.F. = 99 P-value = 0.000

Within-groups residual variances

 

 

 

 

 

 

Oi 011 0:1 031 0:1

GIBBS““ 16.329 41.471 24.863 25.736 21.571

ACTUAL 12.933 32.057 24.293 32.472 17.323

GIBBS S.D.* 7.083 8.120 4.858 5.365 11.159

C-V.“* 0.434 0.196 0.195 0.208 0.517

nj 12 55 59 43 9

2

051 061 071 0:1 091

GIBBS“" 70.313 23.057 414.811 43.554 25.085

ACTUAL 59.509 18.808 341.339 37.248 16.019

* 53 12.659 82.279 9.882 10.227
GIBBS S.D. 16.2

408

C.V.“* 0.231 0.549 0.198 0.227 0.

nj 36 9 49 42 14

* Standard deviation of the‘marginallposterior'distribution

“ Pooled within—group variance est1mate

Coefficient of variation

Posterior Mean  
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Model 2, 6 = 0.20 and k = 100

Regression coefficients and random error cg estimates

Regression coefficients

 

 

 

 

 

 

Y. Y1 Bl

GIBBS*“* 2.880 1.623 3.493

HLM 2.927 1.629 3.493

ACTUAL 3.000 1.500 3.500

GIBBS S.D.* 0.254 0.112 0.004

HLM s.E.“ 0.254 0.115 0.005

Random error CG

CG £51 £51 [51 C51

GIBBS*“* -2.281 0.692 3.165 -0.925 3.678

ACTUAL —2.371 0.245 3.314 —0.418 3.625

GIBBS S.D.* 1.118 0.885 0.667 0.782 1.295

[£1 [51 Uh £51 £51

— - . 0.607
GIBBS*“* 1.074 2.349 0.475 1 842 1 560

90 -1.741 —2.601 .
ACTUAL —0.691 2.2 1 109

GIBBS S.D.* 1.179 1.277 1.808 0.984 .

 

* Standard deviation of t .

H Standard error of the HLM est1mate of t

Posterior Mean

 

he marginal posterior distribution

he parameter  
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Model 2, 0 = 0.20 and k = 40

Variance components estimates

Hyper-parameters

2

 

 

 

 

 

 

 

 

6 O. t

GIBBS*“* 0.254 GIBBS“”* 39.420“ 1.336

MOMENT EST 0.269 HLM 74.133 1.041

ACTUAL 0.200 ACTUAL * 40.000 2.250

GIBBS S.D.* 0.066 GIBBS S.D. 4.913 0.636

CHI-SQUARE 319.225 D.F. = 39 P—value = 0.000

Within—groups residual variances

oi a: oi oi. 0%

GIBBS*“* 27.456 47.465 21.786 38.281 28.705

ACTUAL 35.656 34.510 14.777 24.560 27.952

GIBBS S.D.* 11.696 16.689 5.734 10.126 10.606

C.V.“* 0.426 0.352 0.263 0.265 0.369

nj 12 17 34 29 16

2 2

0:1 0:5 0:9 033 037

GIBBS““ 75.117 31.557 31.286 51.772 80.495

ACTUAL 76.792 52.517 39.124 85.585 90.053

GIBBS S.D.* 13.517 8.694 7.126 25.840 14.678

C.V.“* 0.180 0.275 0.228 0.499 0.182

nj 59 27 42 10 58

* Standard deviation Of the marginal posterior dlstr1bution

H Pooled within—group var1ance est1mate

Coefficient of variation

Posterior Mean
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Table 6.8-B

e = 0.20 and k = 40Generated data: Model 2,

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

 

 

Y. 71 pl

GIBBS*“* 2.598 1.412 3.489

HLM 2.609 1.575 3.478

ACTUAL * 3.000 1.500 3.500

GIBBS 8.3. 0.260 0.154 0.009

HLM S.E. 0.306 0.167 0.010

Random error CG

U1 U5 U9 U13 U17

GIBBS*“* —0.792 —0.311 1.713 0.274 0.077

ACTUAL -1.729 —0.517 2.001 0.608 0.416

GIBBS S.D.* 0.946 0.933 0.778 0.834 0.849

U21 U25 U29 U33 U37

GIBBS*“* 1.292 0.502 —0.286 -O.808 0.101

ACTUAL 2.023 1.551 —1.673 —1.383 —1.162

GIBBS S.D.* 0.818 0.827 0.695 1.084 0.841

 

Standard deviation 0 .

“ Standard error of the HLM est1mate o

Posterior Mean

f the marginal posterior distribution

f the parameter
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Table 6.9-A

 

 

 

  

 

 

Generated data: Model 2, 6 = 0.20 and k = 15

Variance components estimates

Hyper—parameters

6 of 12

GIBBs“”* 0.206 GIBBS“" 20.978“ 26.121

MOMENT EST 0.136 HLM 32.276 21.553

ACTUAL * 0.200 ACTUAL * 20.000 16.000

GIBBS S.D. 0.112 GIBBS S.D. 3.699 12.460

CHI-SQUARE 94.728 D.F. = 14 P-Value = 0.000

Within-groups residual variances

01 03 a: 07 09

GIBBS*“* 19.828 14.153 32.483 18.957 18.681

ACTUAL 34.028 9.497 25.433 14.237 14.756

GIBBS S.D.* 8.519 3.090 11.107 4.483 4.261

C.V.“* 0.430 0.218 0.342 0.237 0.228

nj 12 42 17 37 34

2

011 013 015

GIBBS*“* 90.083 38.498 15.047

ACTUAL 75.116 27.346 13.960

GIBBS S.D.* 17.875 9.963 4.210

C.V.”* 0.198 0.259 0.280

n 55 29 29

J

:* Standard dev . . t

Pooled within—group var1ance estlma e

“* Coefficient of variatlon

Posterior Mean

****

iation of the marginal posterior distribution  
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Table 6. 9-B

Generated data: Model 2, 6 = 0.20 and k = 15

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

Yo Y1 pl

GIBBS**** 8.360 3.471 1.489

HIM 8.469 3.456 1.496

ACTUAL 8.000 3.500 1.500

GIBBS S.D.* 1.353 0.565 0.032

HLM s.E.“ 1.314 0.498 0.037

Random error CG

U1 U3 U5 U7 U9

GIBBS**** 1.199 —2.392 4.201 —4.396 3.303

ACTUAL 2.455 -2.504 5.519 —4.095 3.339

GIBBS S.D.* 2.744 3.532 2.052 1.553 1.535

U11 U13 U15

GIBBS**** -0.561 2.127 4.4%;

ACTUAL -0.809 2.790 0.47187

GIBBS S.D.* 1.952 1.866 1.

 

Standard deviation o _

M Standard error of the HLM est1mat

Posterior Mean

e of the parameter

f the marginal posterior distribution  
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Table 6.10-A

Generated data: Model 2, 6 = 0.02 and k = 100

Variance components estimates

Hyper—parameters

 

 

 

 

 

 

 

6 o. t2

GIBBS**** 0 . 017 GIBBS**** 35.539 7.145

MOMENT EST 0.011 HLM 36.606** 7.018

ACTUAL * 0.020 ACTUAL * 35.000 6.250

GIBBS S.D. 0.007 GIBBS S.D. 1.238 1.265

CHI-SQUARE 147.231 D.F. = 99 P-value = 0.001

Within-groups residual variances

Ci 0:1 5:1 031 521

GIBBS**** 35.437 43.223 35.010 32.267 35.255

ACTUAL 64.585 39.928 34.088 34.930 29.343

GIBBS S.D.* 5.708 6.309 4.788 4.625 6.840

C.v.*** 0.161 0.146 0.137 0.143 0.194

12]. 12 55 59 43 9

2

0:1 0:1 031 0:1 091

GIBBS**** 38.987 34.889 36.209 35.478 40.695

ACTUAL 36.968 43.337 26.444 30.017 49.005

GIBBS S.D.* 5.997 6.333 5.013 4.751 7.505

C.v.*** 0.154 0.182 0.138 0.134 0.184

n, 36 9 49 42 14

.7

* Standard deviation Of the‘marginal;posterior'distribution

M Pooled within-group variance est1mate

Coefficient of variation

Posterior Mean

****

 



 

 

 



Generated data: Model 2,
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Table 6.10-B

6 = 0.02 and k = 100

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

y. 7. Bl

GIBBS**** 12.402 6.114 2.494

HLM 12.423 6.103 2.492

ACTUAL * 12.500 6.000 2.500

GIBBS 5.3. 0.303 0.092 0.005

HIM s.E. 0.296 0.094 0.005

Random error CG

U1 U11 U21 U31 U41

GIBBS**** —3.010 0.762 3.940 —1.147 4.319

ACTUAL —2.963 0.306 4.143 -0.523 4.532

GIBBS S.D.* 1.538 0.893 0.824 0.871 1.665

U51 U61 U71 U81 U91

GIBBS**** 0.891 2.876 -1.608 —2.707 0.419

ACTUAL —0.863 2.863 —2.176 —3.251 1.949

GIBBS S.D.* 1.088 1.577 0.826 0.938 1.484

 

Standard deviation of the marginal posterior distribution

M Standard error of the HLM estimate of the parameter

Posterior Mean  
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Table 6.11-A

 

 

 

 

 

 

 

Generated data: Model 2, 6 = 0.02 and k = 40

Variance components estimates

Hyper—parameters

6 12

GIBBS**** 0.035 GIBBs**** 29.917” 7.263

MOMENT EST 0.032 HLM 32.254 6.721

ACTUAL * 0.020 ACTUAL 30.000 9.000

GIBBS S.D. 0.018 GIBBS S.D.* 1.948 2.043

CHI-SQUARE 77.033 D.F. = 39 P-value = 0.000

Within-groups residual variances

oi oi oi oi. oi7

GIBBs**** 26.545 33.325 27.540 41.700 29.654

ACTUAL 25.764 27.759 20.545 35.204 32.972

GIBBS S.D.* 6.314 7.933 5.057 8.774 6.750

C.v.*** 0.238 0.238 0.184 0.210 0.228

nj 12 17 34 29 16

2

0:1 035 0:9 033 037

32.862GIBBS**** 26.641 23.280 26.810 27.529

ACTUAL 24.737 23.238 31.347 28.753 36.224

GIBBS S.D.* 4.310 5.255 4.580 7.098 5.119

C.v.*** 0.162 0.226 0.171 0.258 0.156

27 42 10 58
nj 59

* Standard deviation of the marginal posterior distrIbution

H Pooled within-group
var1ance est1mate

Coefficient of variation

Posterior Mean  
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Table 6.11-B

Generated data: Model 2, 6 = 0.02 and k = 40

Regression coefficients and random error Cg estimates

Regression coefficients

 

 

 

 

 

Y. 71 [31

GIBBS**** 11.437 3.925 1.993

HIM 11.437 3.945 1.992

ACTUAL * 12.000 4.000 2.000

GIBBS 8'2: 0.446 0.205 0.006

HLM s.E. 0.453 0.190 0.006

Random error (G

U1 U5 U9 U13 U17

GIBBS**** —2.712 —0.781 4.310 1.104 0.671

ACTUAL -3.458 —1.034 4.003 1.215 0.832

GIBBS S.D.* 1.580 1.268 1.149 1.192 1.311

U21 U25 U29 U33 U37

GIBBS**** 4.498 2.814 —1.766 -2.587 3.32;)

ACTUAL 4.046 3.102 —3.346 -2.766 .

GIBBS S.D.* 0.884 1.012 0.952 1.756 0.996

 
 

Standard deviation of the marginal posterior distribution

“ Standard error of the HLM estimate of the parameter

Posterior Mean  
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Table 6.12-A

 

 

 

 

 

 

 

Generated data: Model 2, = 0.02 and k = 15

Variance components estimates

Hyper-parameters

0 of 12

GIBBS*“* 0.022 GIBBS*“* 12.254“ 57.949

MOMENT EST 0.007 HLM 12.661 50.305

ACTUAL * 0.020 ACTUAL * 10.000 36.000

GIBBS S.D. 0.023 GIBSS S.D. 1.190 26.081

CHI—SQUARE 13.851 D.F. = 14 P-value = 0.266

Within—groups residual variances

of a; 0% 03 a:

GIBBS*“* 11.264 14.066 12.354 12.040 13.844

ACTUAL 10.470 12.036 8.624 8.755 13.937

GIBBS S.D.* 2.423 2.263 2.194 1.866 2.199

c.v.*“‘ 0.215 0.161 0.178 0.155 0.159

nj 12 42 17 37 34

2

0:1 032.3 015

GIBBS*“* 13.817 13.743 11.593

ACTUAL 12.099 10.924 10.002

GIBBS S.D.* 1.990 2.324 1.927

C.V.“* 0.144 0.169 0.166

n. 55 29 29
J

* Standard deviation of the marginal posterior dlstribution

Pooled within—group variance estimate

Coefficient of variatlon

Posterior Mean  
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Table 6 . 12-B

Generated data: Model 2, 6 = 0.02 and k = 15

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

Ya 71 B1

GIBBS**** 8.485 3.661 1.493

HIM 8.792 3.471 1.493

ACTUAL 8.000 3.500 1.500

GIBBS S.D.* 2.162 0.710 0.025

HIM S.E.** 1.961 0.740 0.024

Random error (9

U1 U3 U5 U7 U9

GIBBS**** 1.899 —5.080 7.603 —6.932 4.577

ACTUAL 3.683 —3.755 8.279 —6.142 5.008

GIBBS S.D.* 3.494 4.444 2.636 2.207 2.178

U11 U13 U15

GIBBS**** -1.349 3.609 «.ng

ACTUAL -1.213 4.185 0.528

GIBBS S.D.* 2.482 2.314 2.

 

Standard deviation of the marginal posterior distribution

Standard error of the HLM estimate of the parameter

Posterior Mean  
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Table 6.13-A

Generated data: Model 3, 6 = 0.2 and k = 100

Variance components estimates

Hyper-parameters

 

 

3 of 12

GIBBS””* 0.294 GIBBS“” 28.457“ 6.244
MOMENT EST 0.364 HLM 81.360 5.433
ACTUAL 0.200 ACTUAL * 30.000 6.250

GIBBS S.D.* 0.050 GIBBS S.D. 2.542 1.097

CHI-SQUARE 1368.057 D.F. = 99 P—value = 0.000

Within—groups residual variances

 

 

 

 

2

oi oil 0:1 0'31 041

GIBBS*“* 16.973 23.737 11.577 26.024 20.127

ACTUAL 22.335 22.998 16.267 32.926 12.840

GIBBS S.D.* 7.233 4.809 2.224 5.754 9.068

C.v.*“' 0.426 0.203 0.192 0.221 0.451

nj 12 55 59 43 9

2

051 061 071 081 091

GIBBs*"* 16.712 23.608 35.107 46.319 30.096

ACTUAL 18.524 32.182 26.896 30.733 23.624

GIBBS S.D.* 4.018 11.181 7.283 10.596 11.934

C V “* 0.240 0.474 0.207 0.229 0.397

. . 9 49 42 14
nj 36

t ' I ' . I n

* Standard deviation of the marginal posterior dlStrlbuth

M Pooled within-group var1ance est1mate.

Coefficient of variation

Posterior Mean  





Generated data:
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Table 6.13-B

Model 3, 6 = 0.20 and k = 100

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

 

Y5 Y1 Y2 pl [32 B3

GIBBS*“* 7.694 3.769 2.856 1.001 3.491 0.748

HLM 7 896 3.743 2.782 1.003 3.494 0.742

ACTUAL 8.000 3.500 2.750 1.000 3.500 0.750

GIBBS S.D.* 0.307 0.131 0.180 0.003 0.004 0.004

HLM s.E.“ 0.299 0.135 0.186 0.003 0.006 0.005

Random error CG

U1 U11 U21 U31 U41

GIBBS““ -2.435 2.122 —2.429 1.271 2.331

ACTUAL -1.797 0.936 —3.079 0.558 3.604

GIBBS S.D.* 1.189 0.792 0.647 0.829 1.399

(%1 5&1 C51 [51 £51

GIBBS““ —1.346 1.175 3.343 3.266 0.095

ACTUAL —2.548 0.713 1.216 3.795 —$.§g§

GIBBS S.D.* 0.916 1.383 0.883 1.037 .

* Standard deviation of the marginal posterior distribution

H Standard error of the HLM est1mate of the parame er

Posterior Mean  





154

Table 6.14-A

Generated data: Model 3, 6 = 0.20 and k = 40

Variance components estimates

Hyper—parameters

 

 

0 a. t

GIBBS“" 0.313 GIBBS““ 25.840 1.869

MOMENT EST 0.322 HLM 47.353“ 2.340

ACTUAL * 0.200 ACTUAL 25.000 2.250

GIBBS S.D. 0.093 GIBBS S.D.* 3.601 0.940

CHI—SQUARE 405.029 D.F. = 39 P-value = 0.000

Within-groups residual variances

 

 

 

 

01 05 a: 013 017

GIBBS*“* 14.152 35.146 52.942 16.728 28.825

ACTUAL 16.970 33.372 67.623 17.316 21.081

GIBBS S.D.* 6.476 13.091 13.311 4.566 10.611

C.V.”* 0.458 0.372 0.251 0.273 0.368

H, 12 17 34 29 16

2 2

0:1 035 039 033 037

GIBBS*“* 26.171 39.628 190.809 11.235 15.297

ACTUAL 40.242 64.957 184.955 12.052 10.423

GIBBS S.D.* 4.754 10.809 43.059 5.450 2.906

C.v.*“ 0.182 0.273 0.226 0.485 0.190

nj 59 27 42 10 58

* Standard deviation of the marginal posterior distribution

H Pooled within—group variance est1mate
* I I

** Coefficient of variation
****

Posterior Mean
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Table 6.14-B

Generated data: Model 3, 6 = 0.20 and k = 40

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

 

 

7° Y1 Y2 [31 [32 p3

GIBBS**** 7.977 3.932 2.780 1.002 3.490 0.746

HLM 8.112 3.952 2.831 1.000 3.476 0.750

ACTUAL * 8.000 3.500 2.750 1.000 3.500 0.750

GIBBS S.D. 0.285 0.124 0.136 0.009 0.009 0.007

HLM S.E.H 0.333 0.152 0.166 0.012 0.011 0.009

Random error CG

U1 U5 U9 U13 U17

GIBBS**** -1.024 0.357 -1.175 1.889 0.171

ACTUAL -2.831 0.945 -1.059 2.246 0.568

GIBBS S.D.* 1.019 0.950 0.993 0.826 0.973

£51 £55 £59 £53 £57

GIBBs**** 1.289 0.533 0.453 0.529 -0.333

ACTUAL 1.755 2.368 -0.490 1.533 -8.370

GIBBS S.D.* 0.687 0.934 1.079 1.05 .

* Standard deviation of the marginal posterior'distribution

M Standard error of the HLM est1mate of the parame er

Posterior Mean
 



 

 

 



Generated data:
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Table 6.15-A

Model 3, 6 = 0.20 and k = 15

Variance components estimates

Hyper-parameters

 

 

 

 

 

 

0 03 12

GIBBs**** 0 . 435 GIBBS**** 8 . 719 2 . 064

MOMENT EST 0.319 HLM 16.590“ 2.061

ACTUAL * 0.200 ACTUAL 10.000 2.250

GIBBS S.D. 0.226 GIBBS S.D.* 2.309 1.209

CHI-SQUARE 106.600 D.F. = 14 P-value = 0.000

Within-groups residual variances

0i cg a: 05 03

GIBBS“”* 3.796 10.678 3.858 37.938 12.871

ACTUAL 3.559 6.980 2.339 31.373 16.116

GIBBS S.D.* 1.834 2.302 1.603 9.166 3.378

C.V.“” 0.483 0.216 0.416 0.242 0.262

nj 12 42 17 37 34

CI]. 0:3 015

GIBBS“”* 19.420 9.881 46.783

ACTUAL 19.165 11.071 49.120

GIBBS S.D.* 3.763 2.869 13.431

C.V.“* 0.194 0.290 0.287

nj 55 29 29

* Standard deviation of the marginal posterior distribution

** Pooled within—grOUp var1ance est1mate

‘“* Coefficient of variation
***‘k

Posterior Mean

 

 



Generated data:
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Table 6 . 15-B

Model 3, 8 = 0.20 and k = 15

Regression coefficients and random error CG estimates

Regression coefficients

 

 

 

 

 

Y” Y1 72 [31 92 p3

GIBBS**** 7.774 3.512 2.947 1.004 3.488 0.743

HLM 7.566 3.525 2.975 1.015 3.484 0.744

ACTUAL * 8.000 3.500 2.750 1.000 3.500 0.750

GIBBS 5'2: 0.490 0.115 0.218 0.013 0.011 0.009

HIM s.E. 0.503 0.130 0.246 0.015 0.012 0.011

Random error CG

U1 U3 U5 U7 U9

GIBBS**** 0.875 0.486 0.557 -0.320 1.079

ACTUAL 0.149 0.915 0.478 -O.556 2.500

GIBBS S.D.* 1.095 1.140 0.714 0.911 0.755

U11 U13 U15

GIBBS**** -1.920 —0.911 1.137

ACTUAL -2.992 -1.568 1.961

GIBBS S.D.* 0.813 1.006 1.040

 

Standard deviation Of the marginal posterior distribution

H Standard error of the HLM estimate of the parameter

Posterior Mean  





Generated data:
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Model 3, 6 = 0.02 and k = 100

Table 6.16-A

Variance components estimates

Hyper-parameters

 

 

 

 

 

 

9
12

GIBBS**** 0 . 029 GIBBs**** 30 . 205 3 . 361

MOMENT EST 0.054 HIM 32.231“ 3.290

ACTUAL * 0.020 ACTUAL * 30.000 3.063

GIBBS S.D. 0.010 GIBBS S.D. 1.184 0.683

CHI-SQUARE 206.971 D.F. = 99 P-value = 0.000

Within—groups residual variances

Ci 0:1 031 031 021

GIBBS**** 27.289 28.398 22.138 25.187 30.355

ACTUAL 27.242 26.377 26.066 25.761 29.086

GIBBS S.D.* 5.976 4.280 3.510 4.057 6.672

C.V.*** 0.219 0.151 0.159 0.161 0.220

nj 12 55 59 43 9

2

051 061 031 081 091

GIBBS**** 31.380 28.421 32.066 37.254 33.112

ACTUAL 38.593 28.148 25.195 28.179 32.216

GIBBS S.D.* 5.334 6.337 4.800 6.000 6.805

C.V.*** 0.170 0.223 0.150 0.161 0.206

11]. 36 9 49 42 14

* Standard deviation of the marginal posterior distribution

‘” Pooled within group-var1ance est1mate

‘"* Coefficient of variation

****

Posterior Mean
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Table 6 . 16-B

Generated data: Model 3, 0 = 0.02 and k = 100

Regression coefficients and random error CG estimates

Regression coefficients

 

Ya Y1 Y2 B1 92 p3

GIBBS*“* 7.863 3.724 2.855 1.002 3.490 0.744

HLM 7.864 3.722 2.860 1.002 3.492 0.742

ACTUAL 8.000 3.500 2.750 1.000 3.500 0.750

GIBBS S.D.* 0.225 0.116 0.200 0.005 0.005 0.009

HLM s.E.“ 0.219 0.113 0.193 0.005 0.005 0.009

 

Random error CG

 

 

 

U1 U1 1 U2 1 U3 1 U4 1

GIBBS““ —1.423 1.450 —1.360 0.834 1.150

ACTUAL -1.258 0.656 —2.155 0.390 2.523

GIBBS S.D.* 1.169 0.713 0.665 0.805 1.252

U5 1 U6 1 U7 1 U81 U9 1

GIBBs*”* -1.080 0.618 2.432 2.268 0.134

ACTUAL —1.783 0.499 0.851 2.656 -0.328

GIBBS S.D.* 0.937 1.353 0.805 0.875 1.238

 

 

Standard deviation of the marginal posterior distribution

H Standard error of the HLM estimate of the parameter

Posterior Mean  
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Table 6.17-A

 

 

 

 

 

 

Generated data: Model 3, 9 = 0,02 and k = 40

Variance components estimates

Hyper—parameters

e
of t2

GIBBS“"' 0.031 GIBBS““ 15.104 5.922

MOMENT EST 0.020 HLM 16.084“ 5.389

ACTUAL * 0.020 ACTUAL 15.000 6.250

GIBBS S.D. 0.017 GIBBS S.D.* 0.974 1.599

CHI-SQUARE 66.218 D.F. = 39 P-value = 0.003

Within-groups residual variances

oi as 09 013 017

GIBBS*“* 13.732 15.412 14.665 14.005 16.535

ACTUAL 13.445 14.186 17.284 13.484 13.841

GIBBS S.D.* 3.229 3.482 2.548 2.665 3.459

C.V.*“ 0.235 0.226 0.174 0.190 0.209

nj 12 17 34 29 16

2

0:1 035 039 0:3 037

GIBBS*“* 13.157 12.930 18.131 13.852 18.624

ACTUAL 18.566 14.631 19.086 19.518 14.904

GIBBS S.D.* 2.113 2.569 3.093 3.288 2.892

C.V.“* 0.161 0.199 0.171 0.237 0.155

nj 59 27 42 10 58

* Standard deviation of the'marginaI;posterior'distribution

H Pooled within—group variance est1mate

Coefficient of variation

Posterior Mean  
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Table 6 . 17-B

Generated data: Model 3, 6 = 0.02 and k = 40

Regression coefficients and random error LG estimates

Regression coefficients

 

7.. Y1 Yz pl pz [33

GIBBS*“* 8.297 4.603 2.837 0.996 3.484 0.749

HLM 8.319 4.579 2.831 0.999 3.483 0.748

ACTUAL 8.000 3.500 2.750 1.000 3.500 0.750

GIBBS S.D.* 0.422 0.326 0.218 0.014 0.010 0.011

HLM s.E.“ 0.397 0.289 0.218 0.014 0.010 0.011

 

Random error LG

 

 

   

 

U1 U5 U9 U13 U17

GIBBS*“* -2.482 1.192 —1.502 3.093 0.660

ACTUAL -4.718 1.575 -l.765 3.744 0.946

GIBBS S.D.* 1.399 1.032 1.020 0.782 1.098

U2 1 U2 5 U29 U3 3 U3 7

GIBBS*”* 1.594 1.856 —1.293 0.369 —0.901

ACTUAL 2.925 3.947 -0.817 2.566 —0.634

GIBBS S.D.* 0.741 0.845 0.826 1.594 1.028

 

 

f the marginal posterior distribution
' 'On 0

Standard dev1at1 he parameter

" Standard error Of the HLM estimate of t

Posterior Mean  
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Table 6.18-A

Generated data: Model 3, 6 = 0.02 and k = 15

Variance components estimates

Hyper-parameters

 

 

9 03 t2

GIBBS“”' 0.067 GIBBS“" 32.417 3.363

MOMENT EST 0.060 HLM 35.615“ 3.104

ACTUAL * 0.020 ACTUAL 30.000 4.000

GIBBS S.D. 0.051 GIBBS S.D.* 4.231 2.253

CHI-SQUARE 29.843 D.F. = 14 P-value = 0.006

Within-groups residual variances

 

 

 

 

of a: 0% 03 a;

GIBBS*“* 25.497 55.196 30.492 32.398 28.137

ACTUAL 20.225 42.615 22.852 25.591 30.396

GIBBS S.D.* 8.123 11.692 8.370 6.365 5.662

C.V.“* 0.319 0.212 0.274 0.196 0.201

nj 12 42 17 37 34

Oil 013 015

GIBBS*“* 33.894 37.273 30.061

ACTUAL 33.129 44.566 27.008

GIBBS S.D.* 5.721 8.680 6.977

C.V.”* 0.169 0.233 0.232

nj 55 29 29

:* Standard deviation of the marginal posterior‘distribution

Pooled within-group var1ance est1mate

Coefficient of variation

Posterior Mean

****  
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Table 6.18-B

Generated data: Model 3, 6 = 0.02 and k = 15

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

Y“ Y1 Y2 [31 [32 p3

GIBBS*“* 5.487 4.505 2.910 2.040 3.451 1.712

5.504 4.507 2.933 2.035 3.452 1.705

ACTUAL . 6.000 4.500 2.500 2.000 3.500 1.750

GIBBS S'R' 0.637 0.303 0.370 0.054 0.034 0.065

HLM s.E. 0.622 0.281 0.346 0.052 0.033 0.067

Random error [E

cg Lg cg I; I;

GIBBS*“* 1.023 0.680 0.705 -0.583 1.266

ACTUAL 0.199 1.220 0.638 —0.742 3.333

GIBBS S.D.* 1.506 1.566 1.221 1.124 1.045

£51 Uh Uh

GIBBS*“* —2.152 —1.205 1.834

ACTUAL -3.990 -2.091 2.615

GIBBS S.D.* 1.122 1.290 1.167

 

of the marginal posterior distribution

Standard deviation

the HLM estimate of the parameter
Standard error of

Posterior Mean
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Table 6.19-A

HSB data: Model 1: MATHACH = BASE + SECTOR + MEANSES

MINORITY + GENDER + SES

Variance components estimates

Hyper—parameters

 

 

0 O. t

GIBBS“* 0.007 GIBBS“* 35.502 1.824

MOMENT EST* 0.010 HLM 35.908“ 1.790

GIBBS S.D. 0.004 GIBBS S.D.* 0.751 0.319

CHI-SQUARE 233.039 D.F. = 159 P—Value = 0.000

Within-groups residual variances

2 2 2 2 2

01 017 033 049 065

 

35.339 33.639 36.259

 

 

GIBBS“* 39.826 35.557

GIBBS S.D.* 4.557 3.902 3.749 3.637 3.609

nj 47 29 47 53 58

2
2 2

2
2

081 097 0113 0129 0145

GIBBS“* 38.854 36.921 35.065 34.116 35.909

GIBBS S.D.* 3.986 3.927 3.857 3.748 3.998

49 36

nj 66 35 44

___________________
___________________

___________________
________

n of the marginal posterior distribution

:* Standard.deviatio
_

Pooled within group—variance est1mate

Posterior mean
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Table 6.19-B

HSB data: Model 1: MATHACH = BASE + SECTOR + MEANSES

MINORITY + GENDER + SES

Regression coefficients and random error lg estimates

Regression coefficients

BASE SECTOR MEANSES MINORITY GENDER SES

 

 

 

 

 

Y. Y1 72 I31 [32 Ba

GIBBS*“ 13.310 1.727 2.152 —2 826 —1.245 1.892

HLM * 13.316 1.718 2.106 —2.838 -1.244 1.917

GIBBS S'R' 0.212 0.287 0.357 0.211 0.161 0.115

HLM S.E. 0.202 0.278 0.356 0.201 0.159 0.108

Random error CG

U.1 U17 U33 U49 U6 5

GIBBS“* -0.604 1.747 0.161 —0.425 —1.038

GIBBS S.D.* 0.732 0.857 0.769 0.687 0.755

U81
U97 U113

U129
U145

GIBBS“* —0.605 1.148 -1.742 0.230 1.229

GIBBS S.D.* 0.700 0.826 0.776 0.703 0.833

_/
/

Standard deviatio

H Standard error of the HLM estimate

Posterior mean

n of the marginal posterior distribution

of the parameter  
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Table 6.20-A

HSB data: Model 2: MATHACH = BASE + SECTOR + GENDER + SES

Variance components estimates

Hyper—parameters

2

 

 

0 O. t

GIBBS”* 0.008 GIBBS“* 36.402“ 3.550

MOMENT EST 0.008 HLM * 36.818 3.396

GIBBS S.D.* 0.004 GIBBS S.D. 0.699 0.515

CHI-SQUARE 219.569 D.F. = 159 P—Value = 0.000

Within—groups residual variances

 

 

 

2

01 017 533 0:9 065

GIBBS“* 41.255 36.181 37.185 34.213 36.626

GIBBS S.D.* 4.990 4.247 3.946 3.496 3.931

nj 47 29 47 53 58

2 2 2 02 02

081 097 0113
129 145

 

 

GIBBS“* 39.494 37.160 35.774 34.270 37.458

GIBBS S.D.* 4.030 4.298 3.777 3.416 4.289

n
66 35 44 49 36

j

_________________________________________________________________

Standard deviation of the marginal posterior distribut1on

H Pooled within group-variance est1mate

Posterior mean   
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Table 6.20-B

HSB data: Model 2: MATHACH = BASE + SECTOR + GENDER + SES

Regression coefficients and random error CG estimates

Regression coefficients

  

BASE SECTOR GENDER SES

7. 71 B. (32

GIBBS*” 12.323 2.116 —1.207 2.309
HLM 12.347 2.100 -1.203 2.341
GIBBS S.D.* 0.229 0.336 0.161 0.112
HLM s.E.“ 0.237 0.330 0.164 0.105

 

Random error CG

 

 

 

 

Q. £57 £53 (Q9 [Q5

GIBBS*“ -0.678 3.644 0.643 0.842 —3.512

GIBBS S.D.* 0.871 0.981 0.816 0.778 0.742

U81 U97 U113 U129 U145

GIBBs“* 0.468 -0.151 -4.173 1.087 0.3::

GIBBS S.D.* 0.717 0.917 0.901 0.802 O.

* Standard deviation of the marginal posterior distribution

“ Standard error of the HLM estimate of the parameter

Posterior mean  





168

Table 6.21-A

HSB data: Model 3: MATHACH = BASE + MEANSES + GENDER + SES

Variance components estimates

Hyper—parameters

 

 

6 03 12

GIBBS“* 0.008 GIBBS“* 36.303“ 2.580

MOMENT EST 0.011 HLM * 36.798 2.496

GIBBS S.D.* 0.004 GIBBS S.D. 0.712 0.395

CHI-SQUARE 238.342 D.F. = 159 P-Value = 0.000

Within—groups residual variances

 

 

 

2

Ci 017 033 0:9 065

GIBBS”* 41.358 35.680 36.938 33.793 36.397

GIBBS S.D.* 5.063 4.028 3.858 3.765 3.979

nj 47 29 47 53 58

2 2

081 0:7 0113 0129 0145

GIBBS“* 40.024 37.082 35.367 34.199 32.33:

GIBBS S.D.* 4.498 4.074 3.812 3.530 . 6

n-
66 35 44 49 3

J

_____________________________________
____________________.__._

Standard deviation of the marginal posterior'distribu
tion

Pooled within group-variance
est1mate

Posterior mean
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Table 6.21-B

HSB data: Model 3: MATHACH = BASE + MEANSES + GENDER + SES

Regression coefficients and random error CG estimates

Regression coefficients

 

BASE MEANSES GENDER SES

Yo Y1 Bl p2

GIBBS"* 13.278 3.668 —1.185 2.123
HLM * 13.280 3.610 —1.183 2.153
GIBBS 3.3. 0.170 0.358 0.167 0.111
HLM S.E. 0.168 0.368 0.163 0.108

 

Random error (G

 

 

 

 

U'1 U17 U33 [J49 [JG 5

GIBBS*“ -0.294 1.026 -0.021 —0.114 -1.339

GIBBS S.D.* 0.869 0.888 0.761 0.717 0.715

U81 U97 U113 U129 U145

GIBBS“* 0.236 0.459 -2.260 1.054 1.001

GIBBS S.D.* 0.737 0.896 0.783 0.759 0.898

* Standard deviation of the marginal posterior'distribution

M Standard error of the HLM estimate of the parameter
***

Posterior mean
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Table 6.22-A

HSB data: Model 4: MATHACH = BASE + SECTOR + SES

Variance components estimates

Hyper-parameters

 

 

6
of 12

GIBBS”* 0.008 GIBBS”* 36.564 3.799
MOMENT EST* 0.008 HLM 37.037" 3.685
GIBBS S.D. 0.004 GIBBS S.D.* 0.724 0.564

CHI-SQUARE 220.466 D.F. = 159 P—value = 0.000

Within—groups residual variances

 

 

Ci 0:7 033 0:9 025

GIBBS“* 41.847 36.353 37.309 34.250 36.847

GIBBS S.D.* 5.183 4.103 4.086 3.503 3.844

nj 47 29 47 53 58

2 2 2 2 2

081 097 0113 0129 0145

 

37.522 35.941 34.406 37.989

3.929 3.513 4.355

36

GIBBS“* 39.946

GIBBS S.D.* 4.159 4.573

n- 66 35 44 49

Standard deviation of the marginal posterior'distribution

H Pooled within group-variance est1mate

Posterior mean
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Table 6.22-B

HSB data: Model 4: MATHACH = BASE + SECTOR + SES

Regression coefficients and random error LG estimates

Regression coefficients

 

BASE SECTOR SES

Yo Y1 pl

GIBBS“* 11.703 2.103 2.350
HLM * 11.719 2.101 2.375
GIBBS S'R‘ 0.222 0.332 0.108
HLM s.E. 0.228 0.341 0.105

 

Random error (G

 

 

 

U1 U17 [J33 U49 U65

GIBBS”* -0.801 3.555 1.095 0.877 -2.967

GIBBS S.D.* 0.884 0.970 0.818 0.735 0.776

U81 U97 U113 U129 U145

GIBBS“* 0.561 -0.311 —4.171 1.593 0.884

GIBBS S.D.* 0.783 0.919 0.873 0.812 0.934

 
* Standard deviation of the marginal posterior distribution

H ' f the arameterStandard error Of the HLM est1mate O p

Posterior mean
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Table 6.23-A

HSB data: Model 5: MATHACH = BASE + SECTOR + GENDER

Variance components estimates

Hyper-parameters

 

 

0
of 12

GIBBS‘“ 0 016 GIBBS“* 37 998
.

. 6.424MOMENT EST* 0.019 HLM 38.854“ 6.242
GIBBS S.D. 0.005 GIBBS S.D.* 0.851 0.861

CHI-SQUARE 291.573 D.F. = 159 P-value = 0.000

Within-groups residual variances

 

 

2 2 2 2

01 017 033 049 0:5

GIBBS*“ * 46.613 36.517 38.510 32.513 35.701

GIBBS S.D. 6.900 5.451 5.469 4.703 4.778

nj 47 29 47 53 58

2 2

081 037 0113 0129 014s

 

GIBBS*” 45.759 40.558 35.976 34.322 41.787

GIBBS S.D.* 5.768 6.166 4.827 4.446 5.936

n 66 35 44 49 36
j

 

Standard deviation of the marginal posterior distribution

M Pooled within group-variance estimate

Posterior mean

 





HSB data:
Model 5:
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Table 6.23-B

MATHACH = BASE + SECTOR + GENDER

Regression coefficients and random error LG estimates

Regression coefficients

 

 

 

 

 

 

BASE SECTOR GENDER

Yo Y1 Bl

GIBBS*** 12.080 2.807 -1.337
HLM * 12.113 2.791 -1.371
GIBBS S.E. 0.312 0.448 0.171

HLM S.E. 0.298 0.426 0.171

Random error (G

Ul Ul7 [J33 U49 U65

GIBBS*** -l.388 5.665 1.459 1.940 —4.969
GIBBS S.D.* 0.952 1.068 0.900 0.808 0.835

U81 U97 U113 U129 U145

GIBBS*** 1.023 —0.900 -5.504 1.439 0.6:):

GIBBS S.D.* 0.879 1.023 0.948 0.828 1.0

* Standard deviation of the marginal posterior'distributlon

" Standard error of the HLM est1mate of the parameter
** a

* PosterIOr mean
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Table 6.24-A

  

 

HSB da : - —
ta Model 6. MATHACH _ BASE + MEANSES + SES

Variance components estimates

Hyper-parameters

0
03 :2

GIBBS*“ 0.009 GIBBs“* 36.533 2.753MOMENT EST* 0.012 HLM 37.019“ 2.692
GIBBS S.D. 0.005 GIBBS S.D.* 0.761 0.400

CHI-SQUARE 240.750 D.F. = 159 P—value = 0.000

Within—groups residual variances

2 2 2 2 2

01 017 033 O49 O65

 

GIBBS“*

GIBBS S.D.*

 

42.197 35.813 37.292 34.027 36.388

4.923 4.028 4.079 3.891 3.901

47 29 47 53 58

2 2

0:1 0:7 0113 0129 0145

 

GIBBS“* 40.194 37.526 35.623 34.302 38.145

 

GIBBS S.D.* 4.301 4.543 4.098 3.796 4.424

Hj 66 35 44 49 36

:* Standard deviation of the marginal posterior'distribution

Pooled within group—variance estimate

Posterior mean
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Table 6 . 24-B

HSB data: Model 6: MATHACH = BASE + MEANSES + SES

Regression coefficients and random error LG estimates

Regression coefficients

 

BASE MEANSES SES

Yo Y1 pl

GIBBS“* 12.651 3.740 2.160
HLM * 12.661 3.675 2.191
GIBBS S.E. 0.149 0.403 0.114
HLM S.E. 0.149 0.378 0.109

 

Random error LG

 

 

 

U1 U17 U33 U49 U65

GIBBS*“ -0.315 0.957 0.362 —0.159 -0.817

GIBBS S.D.* 0.895 0.872 0.833 0.734 0.726

U81 U97 U113 U129 U145

GIBBS“* 0.200 0.409 —2.202 1.508 1.028

GIBBS S.D.* 0.740 0.870 0.786 0.745 0.885

 
* Standard deviation of the marginal posterior distribution

M Standard error of the HLM estimate of the parameter

Posterior mean
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Table 6.25-A

HSB data: Model 7: MATHACH = BASE + SECTOR

Variance components estimates

Hyper-parameters

 

 

0

of
2c 2

***

***

GIBBS 0.017 GIBBS 38.243 6.871

MOMENT EST* 0.020 HLM 39.151" 6.680

GIBBS S.D. 0.005 GIBBS S.D.* 0.925 0.930

CHI-SQUARE 299.157 D.F. = 159 P-value = 0.000

Within-grou
ps residual variances

2 2 2 2 2

01 G17 O33
O49 065

38.249 32.763 36.508

GIBBS“* 47.627 36.521

GIBBS S.D.* 6.670 5.717 5.185 4.435 5.064

n
47 29 47 53 58

i_/
,/

2
2

2
2

2

O81
097

0113
0129

0145

__
//

34.949
43.323

 GIBBS“*
46.460 40.872 36.236

GIBBS S.D.* 5.865 5.905 5.293 4.869 7.007

nj
66

35
44

49
36

distributi
on

ion of the marginal posterior

Standard.de
viat

.

p-variance
est1mate

H Pooled within grou

Posterior mean

_—“-“I
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Table 6.25-B

HSB data: Model 7: MATHACH = BASE + SECTOR

Regression coefficients and random error LG estimates

Regression coefficients

 

BASE SECTOR

Yo YI

GIBBS“* 11.398 2.790
HLM * 11.393 2.805
GIBBS S.E. 0.294 0.442
HLM S.E. 0.293 0.439

 

Random error LG

 

 

 

U1 U17 U3 3 U49 U65

GIBBS"* —1.455 5.739 2.113 2.037 —4.376

GIBBS S.D.* 1.006 1.105 0.934 0.840 0.830

U81 U97 U113 U129 U145

GIBBS”* 1.115 —1.163 -5.459 2.055 0.568

GIBBS S.D.* 0.877 1.043 0.907 0.847 1.076

 
** Standard deviation of the marginal posterior‘distribution

Standard error of the HLM estimate of the parameter

Posterior mean
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Table 6.26-A

HSB data: Model 8: MATHACH = BASE + SES

Variance components estimates

Hyper-parameters

 

 

9
o. r

GIBBS“* 0.007 GIBBs"* 36.621 4.944

MOMENT EST* 0.007 HLM 37.034“ 4.768

GIBBS S.D. 0.003 GIBBS S.D.* 0.739 0.713

CHI-SQUARE 214.629 D.F. = 159 P-value = 0.000

Within-groups
residual variances

01 “i7 033 0:9 0:5

_________________
_________________

_________________
_______________

GIBBS*“ 41.826 36.284 37.445 34.474 36.657

GIBBS S.D.* 4.728 4.176 3.898 3.621 3.474

n.
47 29 47 53 58

J

_______________
_______________

_______________
_____________

2
2 2

2 2

O81 097 0113
0129 0145

__
//

GIBBS"*
39.659 37.365 36.274 34.900 37.725

GIBBS S.D.* 3.791 4.028 3.803 3.673 3.847

n-
66 35 44 49 36

.7  
of the marginal posterior distribution

* Standard deviation
'

est1mate

**

I l

l

Pooled w1th1n group—var1
ance

Posterior mean

—““i
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Table 6 . 2 6-B

HSB data: Model 8: MATHACH = BASE + SES

Regression coefficients and random error [9 estimates

Regression coefficients

 

BASE SES

Yo pl

GIBBS”* 12.640 2.358

HLM * 12.657 2.390

GIBBS S.E. 0.189 0.112

HLM S.E. 0.188 0.106

 

Random error CG

 

 

 

U1 U17 U33 U49 U55

GIBBS“* —1.600 3.137 2.160 1.972 -2.071

GIBBS S.D.* 0.904 1.007 0.810 0.807 0.755

U81
U97

U113
U129

U145

_________,______
________________

________________
________

GIBBS“*
1.586 -1.110 —3.379 2.693 0.163

GIBBS S.D.* 0.757 1.010 0.902 0.809 0.931  
on of the marginal posterior distribution

d deviati

Standar
e of the parameter

“ Standard errorthe HLM estimat

Posterior mean



___TF1____442222444 44———————————————————------‘---II
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Table 6.27-A

HSB data: Model 9: MATHACH = BASE

Variance components estimates

Hyper—parameters

 

 

e 002 t2

GIBBS“* 0.016 GIBBS“* 38.189 8.943

MOMENT EST* 0.020 HLM * 39.148“ 8.615

GIBBS S.D. 0.005 GIBBS S.D. 0.868 1.146

CHI-SQUARE 299.157 D.F. = 159 P-Value = 0.000

Within-groups residual variances

 

 

  

01 017 033 0:9 065

GIBBS“* 47.229 36.496 38.592 32.718 36.002

GIBBS S.D.* 7.184 5.733 5.258 4.268 4.959

nj 47 29 47 53 58

2

0:1 037 0113 0129 0145

GIBBS“* 46.327 41.056 36.334 34.998 42.652

GIBBS S.D.* 5.972 6.164 5.137 5.077 6.185

n. 66 35 44 49 36
.7

 

Standard deviation of the marginal posterior distribution

Pooled within group—variance estimate

Posterior mean
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Table 6.27-B

HSB data: Model 9: MATHACH = BASE

Regression coefficient and random error CG estimates

Regression coefficient

 

 

 

 

 

BASE

Y.

GIBBS“* 12.638

HLM 12.637

GIBBS S.E.* 0.249

HLM S.E. 0.244

Random error CG

U1 U17 U33 U49 U65

GIBBS“* —2.625 4.817 3.499 3.509 -3.054

GIBBS S.D.* 0.967 1.062 0.842 0.769 0.810

U81 U97 U113 U129 U145

i GIBBS"* 2.568 —2.244 —4.114 3.496 —0.507

GIBBS S.D.* 0.797 1.115 0.943 0.875 1.033

 

Standard deviation of the marginal posterior distribution

Standard error of the HLM estimate of the parameter

Posterior mean

 

 



CHAPTER 7

Discussion

Discussion of the results is presented in this chapter.

It is focused on comparing the application of Bayesian

approach via Gibbs sampling in multi—level analysis to the

empirical Bayes approach via HLM analysis when there is

heterogeneity of variance in the first level. Suggestions and

recommendations for future research are also presented in this

chapter.

Bayes and Empirical Bayes Estimation

The main purpose of this empirical study was to apply the

fully Bayesian approach to the analysis of multi—level data

for the cases where the homogeneity of variance assumption can

not be granted and when interest of the research is focused on

making inferences on some or all of the groups variances.

Available empirical Bayes methods for analyzing multi—level

data often assume homogeneity of variance and concentrate on

obtaining empirical Bayes estimates for the regression

coefficients. The question here is: "How do Bayes estimates

of variance components and regression coefficients behave when

computed via Gibbs sampling?"
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In general, the results presented in the previous chapter

suggest that there are no substantial differences between the

two approaches in the estimation and inferences about the

regression coefficients. This finding suggests that. HLM

estimates of the regression coefficients, particularly for

group effects are robust to the violation of homogeneity of

variance. However, when it comes to the estimation of the

variance components, HLM estimates of of are found to be

positively biased especially when there exists clear evidence

of heterogeneity of variance. A moderate heterogeneity of

variance with large number of groups seems to have little

effect on the HLM estimate of 03. This was demonstrated in

all models used on the High School and Beyond data set.

Since empirical Bayes estimates of the regression

coefficients are conditioned on estimating the variance

components, it was anticipated that the regression coefficient

estimates will be affected by the uncertainty in estimating

those variance components, especially in the cases when the

HLM estimate of of is quite different from its true value.

However, when they are compared to the Bayes estimates and the

actual values of the regression coefficients they were found

to be within the same range of values with about the same

random error of estimate. What appears to happen is that

larger HLM estimates of of help compensate for the

heterogeneity of variance, 0; when it comes to the estimation  
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of regression coefficients, and their standard errors of

estimate.

One advantage of applying the Bayesian approach to the

analysis of multi-level data is the ability to obtain the full

posterior distribution for each parameter involved in the

model under study. A wide rage of statistics describing a

particular parameter and its distribution such as mean, mode,

percentile points and. variance can be obtained from ‘the

posterior distribution of the parameter.

Furthermore the ability to Obtain the marginal posterior

distribution for each of the residual variances and the

parameters 0 and of of their prior distribution becomes quite

important when research interest is focused on the residual

variances themselves and their heterogeneity. To assess this

heterogeneity, a coefficient of variation (C.V.) for 'the

 residual variance can be easily found as 1320 (lindley,

1965). Inferences about a particular group residual variance

also can be made using its marginal posterior distribution.

The application of the Bayesian approach to the analysis

of multi-level data involved the use of Gibbs sampling. One

disadvantage of this procedure is the time and cost involved

in the process. This problem is reflected in this study by

having only one sample for each of the 18 conditions used in

the study. Limiting the analysis to one sample prevented us

from carefully studying the characteristics of the parameter
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estimates using their mean squared errors and statistical

tests against their true values.

The idea of getting the marginal distribution of a

variable from its conditional distribution on another variable

is very appealing. Gibbs sampling and Data augmentation are

two approaches which adopt that idea in many classical and

Bayesian. analyses. However, developments :h1 their

applications are limited to certain research problems.

General algorithms and software that utilize these approaches

are not widely available to practitioners for use in their

practices.

Suggestions and Recommendations for Future Research

To investigate the differences between the fully Bayesian

approach and the empirical Bayes approach more closely, it is

recommended to use the empirical Bayes model that allows for

heterogeneity of variance, Mfi}, in a simulation study where

many estimates of the same parameters in a given model are

derived from several samples. Based on those many estimates

of the parameters, a probability statement and mean squared

errors can be used to compare the two approaches in parameter

estimation.

Simulating several samples for a given model might seem

straightforward in studying the hyper-parameters 6, 03 , :2 and

K, where their values can be pre—specified for the data
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generation. However, it becomes more complex in studying the

parameters {02} and {Uj} where j=1,-~,k. That is because the

true values for both sets Of parameters, {0?} and {Uj}

represent two random samples (see "Data creation" section in

chapter 5) from their prior distributions with pre-specified

values of the hyper-parameters. This means that we have no

direct control on the actual true values of {0%} and {Uj}. The

only way that one can alter the true values of {03'} and {Uj} is

by either respecifying the values of the hyper-parameters of

their prior distributions or respecifying totally different

parametric forms for their priors. More specifically, the

true values for {0;} represent a'random sample drawn from an

inverse gamma distribution with a=—2% and (i=4? (see equation

5.59) . To alter these true values we need either to respecify

the values of 03 and 6 in the prior distribution of {03} in

5.59, or chose different parametric form for their prior.

Similarly, the true values for {Uj} represent a random

sample drawn from a normal distribution with mean equal to

zero and variance equal to 1:2. To alter these true values we

either respecify the value of t2 in the prior distribution of{Uj}

or chose different parametric form of the prior such as t—

distribution (see Seltzer, 1993).

Realizations of the outcome variable Y and the predictors

in Z are based on the generated values of {02} and {Uj} in the

above steps and the pre-specified values Of A. Thus,

randomness in Y and Z, took place in two steps: in the
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generation of the true values of {0? and {U}, and in the

generation of Y and Z which are based on the generated values

of kfi}, Hg} in the first step and 1. Therefore, the posterior

estimates of the hyper—parameters, 6, of, t2 and 1 based on

a given sample of Y and Z can only be as "good" (close to the

true values of 0, of, t2 and A) as those estimates of 0, 03,12

and 1 produced by the parameters,{o? and MGL Another way of

explaining this is that if we define 6*, 03*, A‘ and 12* as

estimates of 0, of, A and 12, which are based only on the

true values of {0? and {03; also we define 0’, 0?, 1’ andty

as estimates for the same parameters which are based on the

parameters {03,-} and {Uj} and the data Y and Z, then the

estimates 0’, 0?, 1’ and I” cannot be as good as 0*, 03*,1*

and 12* in estimating the true values of 0, of, A and 12.

That is because Of the extra randomness in Y and Z added

through the generation of (a? and MEL

When several (say G) samples of {0? and {0; are being

generated for the same model, the chance of misrepresenting

the true values of the hyper—parameters by one bad sample will

be greatly reduced by the presence of the other samples offifi}

and.{Ufi. A mean squared error of estimates and a distribution

of the estimates derived from these samples can be used to

make inferences about the hyper-parameters.

If only one set of realization of Y and Z is generated

for each of the G samples of the true values Of{o$ and Ugh

then the problem of having only one set of estimates of (a?
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and.tqfi will be the same as in the hyper-parameters. That is

because for each one of these G samples of {03'} and {Uj} we only

have one set of realizations for the variables Y and Z.

Therefore, we can only Obtain one set of estimates of {0;} and

{QB for each of the G samples of Y and Z.

To overcome this problem we simply generate several (say

.1) samples of the variables Y'and Z, for each of the G sample

of the true values of {0;} and {Uj}. This allows us to obtain

a distribution of J estimates of {03:} and {Uj}, which can be

used to make inferences about the two sets of parameterskfi}

and.{qfi. Therefore, the total number of samples that need to

be generated to estimate all the parameters in the model is

equal to GU'samples.

One of the debatable issues in Bayesian analysis is the

choice of the prior distributions (Deely and Lindley, 1981).

In this study conjugate priors for the second stage

(exchangeable) parameters were normal (0 , 'cz) for the {Uj},

and inverse gamma 1"1(-é%,3‘g) for {03.}. Priors for the third

00

stage parameters (hyper-parameters) were chosen to be

proportional to constants to reflect noninformative priors.

It would be extremely useful to know how inferences about all

parameters of the model change when different priors are being

used in both stages.

In this study, densities of the produced marginal

posterior distributions were approximated using the kernel

method. These estimates were used graphically in determining
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the stopping point for the iteration process of Gibbs

sampling. Another method of estimating a density of a

marginal posterior distribution for a particular parameter is

by using equation 4.5 on the mixture of the conditional

densities for a particular parameter. Zeger and Karim (1991)

recommended the use of this method for getting better

estimates for the tail of the distribution. Gelfand, Smith

and Lee (1992) argued that using the mixture of the

conditional density produces a more accurate representation of

the density function than the kernel estimate. It would be

'Very useful to know if overlay graphs of densities produced.by

(4.5) are more efficient.in determining the stopping point for

Gibbs sampling; This is important because of the large amount

of computer resources required by Gibbs sampling.

This study attempted to model conditions often found in

many education research projects where only intercepts from

regression models of many groups were allowed to be random in

multi-level analysis. Interactions between individual

characteristics and group characteristics were not considered

in this study. As a result of this layout, the variance-

covariance matrix of the regression coefficients T reduced to

a scaler 12 which represents the variance of the intercept.

It is possible that as more elements added to this variance-

covariance matrix (i.e., allowing some of the within-group

effects to be random), the Bayesian estimates of these effects

might then become different from their empirical Bayes
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estimates. Thus, it would be extremely informative if the

analysis in this study were expanded to allow some of the

within-group regression coefficients to be random with the

possibility of them being related to the group level

‘variables. This will change the scalar:2 to a full variance—

covariance matrix, T. Investigating such models provides some

insight on what conditions the Gibbs sampling is superior and

what conditions other statistical procedures are adequate.

Based on the result Of this study, investigators who are

only interested in the regression coefficients when analyzing

data similar to the one in this study are advised to use

empirical Bayes procedures, with assumption.of homogeneity of

variance, and for the cases with large number of groups, k.

Note in table 6.9—B that when k=15 and 0:0.20, the HLM

standard errors Of the 7's are too small. However, when

k=100 and 8:0.20, (table 6.13—B), the HLM standard errors of

the y's are nearly perfect. For these cases (large k)

empirical Bayes estimates of the regression coefficients and

their associated tests are not that different from those

obtained by fully Bayesian procedures. Also, computer

programs and application software that utilize empirical Bayes

procedure are widely available. When there is a clear

evidence of heterogeneity of variance and.research interest is

focused on studying group variances, applying the fully

Bayesian procedure might become more informative than

empirical Bayes procedure.
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