

.

4
‘

3 L (
. WAN.

.fii/I‘i'lw

J'

“3‘“. ;.

an“
-4 5 n

.. .

n n.
J .

1

w u(

:4

: 3,1.

1
12,12, .
Ann"

I: -!.._

V Y
I:

'4

MW“! 3
., .1.

41.21:?

4
2
-
;

,
-

r

.
1
m
;

.
‘
c
,
r

”'1;
(.

‘C x
11;

u a
m": 1

r l

1

x
.

.
J
;
_
_
.

,4 ..

E

1‘7
f

'v

v

«d.

, 3.

w :‘x
u't ~.. a

-n,
lr\
21v
4
1

. . ..3

111,4;

1 I:

'I

an,.

i

1'

fl" a
UN,7

(«31

‘ 4
u "

‘r'ng

'5’ ‘1';

w u
03*

~.-. 91 ll

‘

'1 .

11"”.

‘4.

3
4
.
3

.
.
,

.
.
1
"

~
3
;
;

Aw‘

. A

a

_ “.1 "{
n.u{

~

1". ,1"
n.

v .,..

r54- '1

-
;

‘ ‘

fiflcfiy‘
i

«can»!

a 4

«”153
2 IS“! -

“HMS
' x1,!“

5;!

”$3 .5 ‘.‘..

' « mama:, A.,__. _ .

“‘in "”7 h 29’???”
'w‘T 13V". . 1%.»:sz v "’75:,-

‘2 «‘4’ Unvw‘ 52,, n _ u , u‘ m.w ‘ .
d. r

. ‘ ., h ’

' I .‘vnq qw
n —

l I
u

‘7 .,

1 7?}.
7.. a ‘ , «WE

., .qu ' ' u- . ~—: "' Sam
w W”? I l‘

. .
11— ‘4
#7va
1T1}; _~n'?'-‘J E" "‘

. whim:
:w ram".
“‘ ('1 '0‘?“
r Lain-mm-
a», . 3‘ Apr

1: .4
1r; 111' - .e

i

SM:“1"

L

llllllllllllllllllll

This is to certify that the

dissertation entitled

Configuration Management and

Version Data Modeling in VLSI Design

Environments

presented by

Sangchul Kim

has been accepted towards fulfillment

of the requirements for

Ph.D. Computer Science
degree in

@4404?
1.

Major professor <J

Dme March 2, 1994

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

LIBRARY

Michigan State

Unlversity

PLACE IN RETURN BOX to remave this checkout from your record.

TO AVOID FINES return on or before date due.

%

DATE DUE DATE DUE DATE DUE

MSU is An Affirmative Action/Equal Opportunity Institution _

mm”3-9. 1

Configuration Management and Version Data

Modeling in VLSI Design Environments

By

Sangchul Kim

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DEGREE OF PHILOSOHPY

Department of Computer Science

1994

ABSTRACT

Configuration Management and Version Data

Modeling in VLSI Design Environments

By

Sangchul Kim

This thesis presents techniques for version data modeling and configuration man-

agement in VLSI design environments. These techniques are based on an object-

oriented data model, which efficiently captures diverse semantics of VLSI designs and

the design process. Relationships between versions are identified, and formally de-

fined using design constraints. Constraints are also utilized for increasing designers’

control over configuration binding, so designers can ensure the correctness of config-

urations or select components of preferred design styles. An algorithm is presented

which minimizes the total area of a design, resulting from configuration binding under

a maximum allowable delay. This algorithm achieves significantly better performance

than previous work. A workspace model is presented which hierarchically organizes

workspaces, configurations of CAD task-related design objects. Mechanisms for the

model provide the snapshot and inheritance property, which facilitate system support

for change propagation, release control, and design tracking.

Copyright © by

Sangchul Kim

1994

To my parents and my family

ACKNOWLEDGMENTS

I wish to express my gratitude and appreciation to my thesis advisor Dr. Moon

Jung Chung for his consistent guidance and encouragement right from the beginning,

and his financial support. I am grateful for many discussions and invaluable comments

he provided.

I would like to thank my guidance committee members, Dr. Anthony S. Wojcik,

Dr. Lionel M. Ni, Dr. Betty H. C. Cheng, and Dr. Raoul Lepage, for their help and

guidance.

I also thank my wife Hosuk Hoang and my two daughters, Jungmin and Jungju,

for their patience and love during many long days. I must express my heartful thanks

to my parents for their sincere prayer.

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

1.1 Problem Definition and Our Approach 1

1.2 Previous Work 6

1.2.1 Electronic Design Frameworks 6

1.2.2 CASE (Computer-Aided Software Engineering) Systems . . . 10

1.2.3 VHDL Design Environments 12

1.3 Overview of the Thesis 13

2 Data Modeling of VLSI Design Data 14

2.1 Introduction 15

2.2 A Data Model for VHDL Design Objects 17

2.2.1 Four Levels of Abstraction 18

2.2.2 Four Levels of Abstraction in Different Domains 21

2.3 Data Schema 25

2.4 Significance of Our Data Model in Building VLSI CAD systems . . . 28

2.5 Conclusion 3O

3 A Constraint-Driven Methodology for Configuration Management

in VHDL Design Environments 31

3.1 Introduction 32

3.2 Constraint Classification and Specification 33

3.2.1 Four Categories of Constraints 34

3.2.2 Mechanisms for Representing Constraints 35

3.2.3 Manipulation of Constraints Using Abstract Objects 39

3.3 Version Relationships 43

3.3.1 The Version Space of Four Dimensions 43

3.3.2 Relationships between Design Objects 45

vi

3.3.3 The Detailed. Description of Version Relationships 47

3.4 Configuration Binding 51

3.4.1 Dynamic Cell Selection 51

3.4.2 Constraint-Driven Cell Selection 52

3.4.3 A Cell Selection Procedure 54

3.4.4 An Example of a Cell Selection 56

3.5 Conclusion 57

A Path-Oriented Algorithm for the Cell Selection Problem 59

4.1 . Introduction 61

4.2 Preliminaries - 63

4.2.1 Formulation of the Cell Selection Problem 63

4.2.2 A Cell Selection Algorithm for A Series-Parallel Graph Under

Fanout Delay Effect 65

4.3 Strong NP-completeness of the Cell Selection Problem 68

4.4 A Cell Selection Procedure for Finding an Initial Solution to a General

Graph 73

4.4.1 Algorithm Description 73

4.4.2 A Method for Finding a Maximal Series-Parallel Subgraph of a

Network ' 76

4.4.3 Complexity Issues I 80

4.5 A Cloning—Based Improvement Method 81

4.5.1 Basic Concepts and a Cloning Operation 81

4.5.2 Cloning and Cell Selection 85

4.5.3 Complexity Issues 11 90

4.6 Experimental Results 90

4.7 Conclusion 93

Workspace Management in VLSI Design Processes 94

5.1 Introduction 95

5.2 A Workspace Model 97

5.2.1 Modeling Concepts I 97

5.2.2 Modeling Concepts II 103

5.3 Snapshots as a Mechanism for Preserving Design States 104

5.4 Change Propagation among Design Objects 107

5.4.1 Changes to Design Objects in the Design Library 108

5.4.2 Changes touDesign Objects Released in a Workspace 110

5.4.3 Change Notification 113

Vii

5.5 Version Control in Local Workspaces 114 .

5.6 Workspace Operations 117

5.7 Conclusion 118

6 Conclusion and Future Research 119

6.1 Summary and Contributions of This Thesis 119

6.2 Future Research 121

BIBLIOGRAPHY 124

viii

LIST OF TABLES

4.1 A set of binding examples 70

4.2 A summary of experimental results (no. of significant digits 2 3) . . 92

4.3 A comparison of runs with different precisions 93

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

LIST OF FIGURES

The Architecture of a Conceptual CAD Framework 5

Cell Abstraction Hierarchy 18

An Example of Configuration Binding 21

Levels of Abstraction at Various Domains 23

Abstraction Hierarchy across Domains 24

Data Schema 25

A Constraint-Driven Design Methodology 28

Constraints written in extended VHDL 35

An Example of Cell Library 37

A Function-valued Attribute 38

An Example of Abstract Object 40

An Example of Abstract Cell Decomposition 41

Examples of an Attribute Window and a Constraint Window 42

Version Evolution 44

An Example of Hidden Version Derivation 49

Properties of Relationships 50

Control Frame 53

Procedure ModSel 55

An Example of Module Selection 58

Examples of series-parallel graphs 64

A sequence of replacements for a series-parallel graph 67

Variable Structure 69

Clause structure 71

An example W = (1:1 + :r’2 + (cg)(x’1 + :r’2 + x3) 72

Procedure FirsLCelLSelection 74

An example network 75

A Procedure to Find a Maximal Series-Parallel Subgraph 78

An example of finding a series-parallel subgraph 79

4.10

4.11

4.12

4.13

5.1

5.2

5.3

5.4

5.5

5.6

5.7

An example L-graph 83

An example of cloning 86

An improvement example 88

Procedure Improvement_by-Cloning 89

Three Dimensions of Workspace Hierarchy Construction 100

Workspace Hierarchy Changing 102

Snapshot Examples 105

Use of snapshots_ 1 06

An Example of Automatic Configuration Binding 108

An Example of a New Release 111

An Example Design Library 115

xi

CHAPTER 1

Introduction

1.1 Problem Definition and Our Approach

The design of a VLSI system is a complex activity, which involves numerous types of

information and enormous amounts of data. A system-level design is usually broken

down into smaller parts, and a design team cooperates on those parts. Since this

design style is, by its nature, iterative and tentative, different versions of parts of a

design exist over time. An entire design is built from parts developed by different

team members. Designers working on different parts keep track of an entire design,

coordinate updates to the design, and ensure data consistencies among them. With

Computer-Aided Design (CAD) tools, presently designers synthesize a large, complex

circuit from a user—specified description, for example, a VHDL behavioral model.

Designers explore various design alternatives until they obtain a satisfactory output.

Design alternatives result from the choice of values for the design parameters, CAD

tools for the same CAD function, etc. Therefore, designers manage versions of designs

produced from design alternatives, and organize them into a design history.

In VLSI/CAD frameworks, design data management has primarily concentrated

on version control and configuration management [9, 10, 21, 22, 46, 60, 81]. Version

control is a collection of services for tracing the version history and structuring rela-

tionships, such as revisions, between versions [10, 22, 47, 65, 73]. In CAD frameworks

[7, 22, 50] and software engineering [27, 33, 68, 73], a configuration is a collection of

related, versioned components and it is a unit of access. Configuration management is

system support for configuring a large object (i.e., a configuration) from pre-designed

components (called configuration binding), preserving states of components of an en-

tire design, and keeping data consistencies among designers.

Based on types of components, configurations can be classified into the follow—

ing three levels: chip level, process level, and development level (or life-cycle level).

Chip-level configurations are large designs built around smaller designs. Chip-level

configuration binding can be aimed at achieving two challenges. One is to make

CAD frameworks guide designers in configuration binding with respect to compo-

nent selection and constraint checking. The other is to make sure that configured

designs minimize a performance measure, such as delay or area, under limitations

on other measures. CAD tasks are carried out by specifying design processes and

executing them [35]. A design process is defined as a combination of tool invocations

and/or subprocesses that perform a CAD task [35]. Process-related data (data pro—

duced or read during a design process) needs to be placed in areas controlled by data

managers. Process-level configurations denote those areas, called workspaces in the

literature [7, 27, 68, 77].

Development-level configurations are collections of data which are handled

through various stages of the whole life cycle, such as testing, documentation, and im-

plementation. This level of configuration management is primarily studied in software

engineering [56].

This thesis presents the following:

e an object-oriented VLSI data model,

0 a constraint-driven methodology for version modeling and chip-level configura-

tion binding,

0 an area—optimization algorithm for chip-level configuration binding

0 a method of workspace management for design processes.

Since the relational data model is not sufficient for representing the rich semantics

of complex VLSI systems, many researchers have investigated object-oriented VLSI

data modeling [3, 9, 39, 81]. However, few previous object-oriented VLSI data mod-

els can sufficiently capture abstraction relationships between design objects. Such

relationships exist between design objects which result from the stepwise refinement

nature of VLSI design. In our object—oriented data model, design objects are hier—

archically organized based both on abstraction relationships between them and on

design constraints enforced on them. This thesis will show how our data model can

also provide a basis for capturing a rich set of version relationships. Little work,

except for keeping versions of configurations, has been reported on system support

for chip-level configuration binding. In our configuration binding methodology, user-

specified design constraints are utilized to detect design inconsistencies, realize certain

design styles preferred by designers, and enforce user-specified values of design param-

eters. The data model and the configuration binding methodology presented herein

were originally developed for VHDL [42] environments. However, we claim that ba-

sic underlying ideas are general enough to be applicable to other VLSI/CAD design

environments.

One algorithmic problem in chip—level configuration binding [16, 23, 58] is finding

an area-optimal list (called a binding) of technology-specific cells for a circuit with

logic gate-level components. Several algorithms [16, 58] have been suggested which

iteratively choose several components and find a new binding for them. Our algorithm

for this problem iteratively selects paths of gates and finds a solution, and then uses

a cloning method to improve the solution further. In this cloning method, a series-

parallel graph [75] is obtained from a circuit by duplicating nodes (components) into

clones. Together with the cloning method, the path—oriented nature of our algorithm

provides significantly better solutions than previous work.

In the CAD framework literature [7, 10, 22, 60, 77], few workspace models have

been shown which can support team design efficiently. The workspace model pre-

sented herein can capture the way in which the entire task of a project is partitioned

into subtasks. In our workspace model, a workspace is created for each subtask, and

workspaces are organized hierarchically; The content of a workspace is Visible to all

of the designers that work on its descendant workspaces. A mechanism is presented

which preserves design states of a project. This mechanism and the workspace hier-

archy will be shown to enable easy control over design tracking, change propagation,

and release control.

To understand how our techniques for version data modeling and configuration

management fit into CAD frameworks, let us consider a conceptual CAD framework

illustrated in Figure 1.1? In the framework, those techniques are embodied into proce-

dural interfaces to the data store. Designs are archived in the design library, located

at the bottom of the architecture. Workspaces contain designs which designers work

on. After designs are modified in a workspace, they are archived back into the design

library as new versions. Access to designs and workspaces is through three procedural

interfaces. One procedural interface, named “basic access/version control PI”, is a

collection of basic routines for accessing (reading, creating, or deleting) designs in

the design library and workspaces, and performing version control over designs. Two

other procedural interfaces, named “chip-level CM PI” and “process—level CM PI”,

are collections of routines for chip-level configuration management and workspace

management, respectively. CAD tools can be built on top of these three interfaces.

‘In the figure, life—cycle level configuration management is not considered, as in almost all of exist-

ing CAD frameworks. Two terms, CM and PI, stand for configuration management and procedural

interface, respectively.

TOOLS

Browser Data Management Process APPLICATIONS

User Inteface Manager

DESIGN

DATA

MANAGEMENT

DESIGN LIBRARY

DATA STORE

WORKSPACE

Figure 1.1. The Architecture of a Conceptual CAD Framework

Among them, a browser is a tool essentially needed for design data management,

which allows designers to navigate through the design library. A CAD tool named

“data management user interface” provides a user interface through which designers

can explicitly execute data management operations in the three procedural interfaces.

A scenario of how the framework is typically used is as follows. First, a designer in-

teracts with the browser and selects a set of objects to work on. Next, the selected

objects are checked out into a workspace through the user interface. The designer

carries out a CAD task in his workspace by executing CAD tools, such as an editor

or a tool for configuration binding, on checked-out objects. Finally, outputs of tools

(objects that are produced from other objects by CAD tools) are checked into the

design library through the user interface. A variation to the scenario is as follows.

Instead of executing CAD tools manually, the designer runs a process manager, a

CAD tool that executes a sequence of tools for a CAD task [35], on checked-out ob-

jects in his/her workspace. In this scenario, the process manager reads objects in the

workspace through the “process—level CM PI”, invokes CAD tools, and stores outputs

of tools in the workspace through the interface. The process manager can create new

workspaces for subtasks of its target CAD task through the “process-level CM PI”.

1 .2 Previous Work

1.2.1 Electronic Design Frameworks

The techniques presented in the thesis are related to three fields in electronic CAD

frameworks: object-oriented VLSI/CAD version data modeling, configuration binding,

and data management for design process execution.

Since record-based data models do not directly represent the complex semantics

of VLSI circuits, the object-oriented paradigm has been exploited in VLSI/CAD

data modeling. Batory and Kim’s work [9] can be regarded as the first coherent

object-oriented data model for organizing VLSI design data and bridging the concept

of version with other structural concepts. Their model separates a design, called

a molecular object [9], into two levels: an interface (port), and an implementation

description. Versions are defined to be various implementations of an interface. One

limitation of the model is that it forces all implementations of an interface to be placed

at the same level in the design library. Therefore, it cannot distinguish designs in

terms of architecture, technology, constraints, etc. Several approaches have been

proposed that incorporate more abundant concepts in object-oriented data models,

rather than simply identifying design data as objects. They are: 3DIS [3], DMS [81]

and CBASE [39]. 3DIS, adopted in the ADAM system [38], represents multiple views

of designs, such as structural, behavioral, and timing, in a unified data format. DMS,

used in the ICD-NELSIS system developed by Delft University, formally integrates

the high order concepts at the object type level, such as equivalence, composition,

and version, into a single data schema. This integration enables us to unambiguously

recognize all relationships between object types. CBASE has a repository of type

(class) definitions for circuit elements. CBASE models ports and wires as objects.

While 3DIS, DMS and CBASE have increased the data modeling power of the object-

oriented paradigm, they, in common, do not distinguish alternatives and versions.

None of the models separate interfaces and implementations, thus making it difficult

to relate multiple implementations to an interface.

Fred [80] provides a procedural language, Ethel, to represent structural and layout

objects and measurement functions. Ethel has predefined four classes for components,

pins, wires, and wire segments. It supports features of object-oriented modeling,

which include subclassing of the four classes, data typing, and inheritance. Ethel

does not enforce one fixed data model, but enables us to build an arbitrary model

using its language constructs. W. H. Wolf claim that this generality is flexible but

inefficient for data management [80]. Additionally, Fred does not take version control

8

into special consideration. The data model of the PLAYOUT system [71] is similar

to the data model presented in Chapter 2. The model separates the entire data of

a design entity into interface, architecture and configuration. However, the PLAY—

OUT system does not treat constraints as one of the directions along which designs

evolve. As a result, it provides mechanisms neither for controlling configuration bind—

ing nor for clustering design alternatives based on design constraints. Moreover, the

data model of the PLAYOUT system lacks important concepts, such as incompletely

bound configurations, which can serve as a useful vehicle in representing the stepwise

refinement of configuration binding [20, 21].

Previous version models [10, 47, 60, 81] are almost equivalent to each other in the

sense that they organize designs based on three basic relationships: revision, equiv—

alence, and configuration. Among the models, the VERSION SERVER system [47]

introduces various high-level relationships, such as configurations of equivalences and

versions of equivalences. It also has several innovative concepts, such as layers of

versions and dynamic configuration binding. However, since the data model of the

VERSION SERVER system treats entire designs as modeling units, it does not dis—

tinguish interfaces and implementations. As a result, it does not allow revisions and

alternatives of designs at the interface or implementation level.

There are three levels of configuration management — chip level, process level, and

life-cycle level, as mentioned earlier. Life—cycle level configuration management is not

a focus of this thesis, and little work has been published on it. The major task of chip-

level configuration management is configuration binding. Chip-level configuration

binding can apply to two stages of VLSI design: when a designer is building up a

large circuit from predesigned components; when a designer is targeting a technology—

independent, structural object to a technology by binding each generic component to

a technology-specific cell. Few systems, except for the CADENCE DMS [60], have

a configuration binding service for the first stage (i.e. building of a large circuit).

However, configuration binding of the CADENCE DMS is extremely limited in that

a designer is forced to follow fixed dynamic binding schemes, and cannot be assisted

in error detection.

In the logic synthesis literature, a few systems, such as LORES—2 [32], PO-

LARIS [69], and Socrates [37], have been developed which can target a technology-

independent design to a technology. These systems accept a behavioral description

or an equation, transform it into a technology-independent logic design, and finally

produce a technology-specific structure. Since all of those systems are targeting a

logic level design, they are not suitable for system-level designs built around larger

components than gates, for example, RTL-level components. Few systems, except

for VSS [59], can target system-level, technology-independent designs to a technology

through configuration binding. VSS is a high-level synthesis system that accepts a

VHDL description and generates a schematic of technology—independent system-level

components. The schematic is later fed to MILO [76] which obtains a technology-

specific binding and generates a layout. Since VSS does not have a underlying data

model for organizing design data, the representation and retrieval of designs are in—

efficient. Moreover, another limitation of VSS is that a designer cannot guide config-

uration binding with user-specified constraints.

Process-level configuration management is workspace management for design pro-

cesses. A large number of VLSI/CAD frameworks, notably Ulysses [13, 14], Cadweld

[30], NELSIS-CAD [12], Sigma CAD framework [40], the Tzi-cker’s system [18], Min-

erva [43], and VOV[15], have been developed which support process control. They are

primarily aimed at executing a user-specified description of a CAD task by invoking

CAD tools. However, their capability of data management for process executions is

limited. NELSIS-CAD provides only one option that selects whether an old version

of a tool output is kept or overwritten by a new version if the same tool is invoked

again. The Sigma CAD framework has the notion of data set, which is a complete set

10

of files generated by a single run of a design process. If a large task involves more than

one process, keeping data sets of each process separate is not sufficient for preserving

design states of the whole task. VOV and the Tzi-cker’s system provide a capability

that automatically records a history of tool invocations and data dependencies. The

capability is useful for a designer who explores various design alternatives. However,

they enforce all design alternatives of a process to be explored in one workspace,

and provide, little system support for identifying how explored design alternatives

differ from each other. Few CAD frameworks, except for the DDM system [7], use

workspaces as a basis for process-level configuration management. The DDM system

hierarchically organizes workspaces for allowing designers to easily create a workspace

identical to another except for minor variations. However, it does not offer a disci-

pline as to how the entire task of a project should be distributed across workspaces.

Moreover, it lacks control over newly released versions, which makes it difficult for

designers to coordinate changes in the context of a project.

1.2.2 CASE (Computer-Aided Software Engineering) Sys-

tems

Version control and configuration management are active research topics, of CASE

(Computer-Aided Software Engineering). The aim of version control and configu-

ration management in CASE is to help designers manage the evolution of designs

(i.e., source code and object code), texts, and various products generated during the

software life cycle (i.e., manuals, specifications, etc). Instead, version control and con-

figuration management in VLSI/CAD has focused only on designs, which are VLSI

circuits.

There have been a large number of CASE systems for version control and config-

uration management, notably RCS [73], SCCS [66], DSEE [55], Inscape [65], Cedar’s

11

System Modeler [54], Gypse [27], NSE [2], the NuMIL system [63], Winkler’s work [79],

Make [34], and Adele [33]. Most of the CASE systems, such as RCS, SCCS, DSEE,

Gypse, and NSE, trace changes of files in version control. Since units of access

are designs (hardware circuits) in VLSI design, those systems are not adequate for

VLSI/CAD version control.

Inscape, Modeler, and the NuMIL system offer module-level, not file-level, version

control and configuration management, where a configuration is defined as a compo—

sition (combination) of software modules. Inscape includes a module interface speci-

fication language, called Instress, to describe the information about modules, such as

the property of arguments and the behavior of operations. The NuMIL system has

a module interconnection language, called NuMIL, which is functionally similar to

Instress. Inscape and the NuMIL system can analyze the information about modules,

and check the consistency and completeness of a configuration. However, Instress

and NuMIL originally were designed for software module specification. Hence, their

language constructs, such as constructs for specifying conditions on buffer allocation

and file opening, are not adequate for capturing semantics of VLSI systems. Modeler

provides Cedar-language programmers with version control and configuration man-

agement during the development cycle. The data model underlying Modeler is too

restrictive, since versions of a modules are identified by unique names and their cre-

ation dates, and only one line of versioning for a given module is allowed. Adele

utilizes attributes associated with versions of modules, and combines only versions

satisfying constraints into a configuration. Since configurations in Adele are sets of

software modules, constraints to be enforced for configuration binding of hardware

circuits, such as an upper bound on the total area of selected modules, cannot be

specified.

Process-level configuration management is provided by Make [34] and Make-

alikes [6, 26]. These systems keep track of changes to program files and rebuild a

12

system (configuration) once such changes have taken place. Especially, Amoeba [6],

Odin [26], and BiiN [68] automatically find build steps from relationships between

files, such as inclusion and external procedure calls, and file types. The systems have

no notion of version; the consistency, ambiguity, and completeness of a a configu-

ration are left for users to resolve. Moreover, they were developed as a single-user

environment, so they do not provide services for processes that are collaboratively

performed by more than one designer.

Few CASE systems, except for Shape [61] and Gypsy, have introduced the concept

of a workspace as a basis for team design. The notion of a workspace in Shape is

developed to isolate a user from interfering with others’ work. Gypsy enhances the

concept such that a workspace keeps only versions of interest to a user, while other

versions are invisible. The notion of a workspace in the two systems is simple and may

be applicable to a small design team. The systems do not consider how workspaces

for a project should be organized to support important services for team design, such

as change propagation and release control.

1.2.3 VHDL Design Environments

Since the version data modeling and configuration binding presented herein are aimed

at VHDL design environments, let us describe version control and configuration man-

agement of previous VHDL design environments. To date, various VHDL design

environments, notably those of IBM [67], MCC [1], Mentor Graphics [28], CAD Lan-

guage System, Inc. [62] and Intermetrics, have appeared. Those systems integrate

various point tools, including simulators, schematic editors, and high level synthesis

tools, by using a common place for data storage. However, in each of these systems,

its data model is simply a directory/file structure in which the outputs of tools can

be placed. Therefore, the data models of the systems are simply determined from a

collection of point tools are integrated into the systems.

13

For VHDL users, configuration binding is the final step to complete a design. None

of previously developed VHDL environments offer system support for combining ex-

isting components into a configuration. VHDL design environments can inherently

support the methodology for technology-independent design as follows. Designers sep-

arate technology data from VHDL architectures, and represent it in VHDL packages

and VHDL configurations. Then VHDL architectures are technology-independent.

Configuration binding on them can be performed later to map them to a technology.

Previous VHDL environments lack many useful concepts which facilitate configura-

tion binding for technology mapping. For example, none provides stepwise binding

and area (or delay) optimization.

1.3 Overview of the Thesis

The structure of this thesis is as follows. Chapter 2 presents an object-oriented

VLSI data model, on which our methodology for version modeling and configuration

binding is based. Chapter 3 presents a constraint-driven methodology for version

modeling and chip-level configuration binding. In Chapter 4, an algorithm for chip-

level configuration binding is presented which finds a binding of the circuit with gates

under a maximum allowable delay. Chapter 5 describes a methodology for workspace

management in design processes. Chapter 6 concludes with a list of further research

issues.

CHAPTER 2

Data Modeling of VLSI Design

Data

An object-oriented VLSI data model is presented that supports multiple levels of

abstraction, multiple domains, and versioning. This model is originally developed as

a framework for'the logical organization of design data in VHDL design environments.

Our data model is characterized by an abstraction hierarchy of design objects, which

has two major features: each object can be seen as an abstraction of all its descendant

objects; constraints are assigned to design objects and satisfied by their descendants.

This abstraction hierarchy makes it easy to represent the multi—dimensional evolution

of design objects in a seamless manner, locate a design object with certain properties,

and efficiently support data management mechanisms, such as version control and

configuration management. Our data model enables a technology-independent design

methodology, in which only configurations encapsulate technology—specific data and

other design objects are left technology-independent.

14

15

2. 1 Introduction

The designng of VLSI circuits is a complex process that produces design data in

multiple domains such as behavioral and structural. The design process evolves in

multiple dimensions: refinement, composition, revision, and transformation. VLSI

design environments should capture the process of transformations and the relation-

ships between designs at various levels of abstraction and in various domains. They

must provide mechanisms for design library, version control, and configuration man—

agement. The modeling power of a data model determines how conveniently these

mechanisms can be supported.

Since conventional (relational) data model cannot efficiently capture the semantics

of the object, the object-oriented paradigm has recently been employed for model-

ing VLSI objects [3, 8, 9, 21, 38, 39, 47, 80, 81]. The important features supported

by the object-oriented paradigm, such as aggregation, classification, and inheritance,

are used for exploring semantic data models for VLSI objects [9, 81], to simplify the

implementation of design utilities [39], and to compute performance measures [80]

hierarchically. However, the previous data models have limited capabilities of repre-

senting various semantics of designs that evolve in various dimensions and multiple

levels of abstraction.

This chapter presents an object-oriented data model? The proposed data model

can capture design evolution in a seamless way, and support a set of modeling con—

cepts necessary for a constraint-driven approach to version control and configuration

"Our data model is object-oriented from Ullman’s definition of “object-oriented” [74]. In [74],

Ullman says that a system is object-oriented if its capabilities of data modeling include three features:

complex object, encapsulation, and object identity. A complex object denotes an object that is an

aggregation of constituent objects. Encapsulation is the ability to define procedures applying only

to objects of a particular type and the ability to require that all access to those objects is via

application of one of these procedures. An object identity denotes a handle which identifies an

object from others.

16

management, presented in Chapter 3. A basic principle of our data model is that

various abstraction levels of VLSI systems, attributes, and design constraints are

modeled as objects [24], which are the units of access and retrieval. A design entity

is an integral object whose entire data is separated into four levels of abstraction:

functionality (operation type), interface (port description), generic implementation,

and configuration. The projection of a design entity on each level of abstraction is

modeled as an object, called a design object. A “generic implementation,” composed

of generic components)r and interconnections, describes an architecture of the design

entity. A “configuration” is derived from an implementation by configuration bind-

ing, a process of selecting specific design objects for generic components. That is, a

configuration represents the entire data of a design entity. Our concept of “four levels

of abstraction” is uniformly applicable to each of various domains. For each domain,

design objects form an abstraction hierarchy according to their abstraction levels.

Another feature of our data model is that design constraints can be associated

with design objects at any abstraction level, and enforced on their descendants as

well as the objects. Constraints serve as a vehicle to validate the correctness of de-

sign objects. Configurations can be used to encapsulate technology-specific data,

allowing design object at all other levels to remain technology-independent. Then, a

technology-specific design object is obtained by binding all components of an imple-

mentation to technology-specific design objects. The appearance of a new technology

may introduce changes in the design library, thus it requires earlier VLSI systems to

be redesigned. Our technology encapsulation minimizes this problem, since only a

new configuration is needed for retargeting an existing technology-independent design

object to a new technology. Except for the PLAYOUT system [71], there is no previ-

1A component is generic if it can be elaborated into a specific object later. For example, consider

a component X which is an interface object of a design entity 0. If the entity 0 has several

implementations for the interface, the component can be elaborated later by binding X to one of

the implementations.

17

ous data model that was designed to organize system-level VLSI systems adequately

for this design style.

The data model proposed herein was originally developed as a basis for organizing

design objects in a VHDL [42] design environment called SDE [21, 22]. It is assumed

that all design objects in behavioral and structural domain, handled in the data

model, are written in VHDL. Design objects in other domains are also allowed, which

can be written in proper languages, such as EDIF for the layout domain.

The rest of the chapter is structured as follows. Section 2.2 describes an object-

oriented data model for designs in the structural, behavioral, and layout domains.

Section 2.3 describes a data schema of the proposed data model. In Section 2.4,

we briefly highlight advantages of the data model in the development of VLSI/CAD

applications. Section 2.5 concludes.

2.2 A Data Model for VHDL Design Objects

Our data model has six types of VLSI objects: design entity, port, wire, attribute,

constraint, and package. Attributes represent different information characteristics

of designs. They are similar to VHDL attributes except that their values can be

functions as well as literals. A constraint is a special kind of attribute that is evaluated

to a boolean value true or false. It is assigned to design objects, and later serves as

the criteria of verifying their correctness. A package represents a VHDL package that

is a set of definitions for user-defined symbols, such as function names, variable types,

and symbolic constants [42].

18

2.2.1 Four Levels of Abstraction

Our data model captures the data of design entities at multiple levels of abstraction.

Figure 2.1 (a) shows four different levels of abstraction: CLASS, CELL, DESIGN,

and CONF. Those four levels represent the functionality, interface, generic imple-

mentation, and implementation of a design entity, respectively. Objects representing

those levels of design entities are called design objects. Design objects are hierarchi-

cally organized based on abstraction between them. In other words, a design object

at a level is an abstraction of all its child objects in the abstraction hierarchyf This

abstraction hierarchy can be applied to each of the three domains: behavioral, struc-

tural, and layout. First, we describe the four levels in terms of the structural domain

only, and then we will generalize them to the other two domains in Section 2.2.2.

Digital Circuit

CLASS

CLASS

CELL

DESIGN

CONF

(a) Four levels of Abstraction (b) An Example Cell Database

Figure 2.1. Cell Abstraction Hierarchy

1In [78], the interface for a VLSI circuit is modeled as an abstraction of its implementation.

19

e A CLASS-level object (in short, a CLASS object) represents a hardware function

type (such as addition or division). This level is used to group design objects

with similar functionalities and then to facilitate browsing and locating design

objects. A CLASS object does not have a corresponding concept in VHDL.

This object cannot be a component of another design because it does not have

an interface definition.

0 A CELL-level object (for short, a CELL object) is an interface, which is the

description of ports and parameters. CELL objects can be characterized by

constraints that are exported down to all their descendant DESIGN objects in

the abstraction hierarchy. As a result, these DESIGN objects must satisfy the

inherited constraints. A CELL object corresponds to a VHDL entity, but is

different in that it can be associated with general constraints, which all of the

implementations derived from it must satisfy.

0 A DESIGN-level object (for short, a DESIGN object), is a generic implemen-

tation of a CELL object. Such an implementation is a schematic built around

interface objects (i.e., CELL objects)? In this respect, a DESIGN object is

similar to a VHDL architecture description. In addition, designers can enforce

further constraints on a DESIGN object. For example, we can specify for a

DESIGN object that its components must be design objects at certain loca-

tions of the abstraction hierarchy or that its components must satisfy certain

performance constraints. Those constraints are checked to detect the errors of

a DESIGN object, or used later for deriving correct descendant objects (CONF

objects).

§Some DESIGN-level objects in the structural domain, for example a two—input AND gate, are

so primitive that they may not be decomposed into smaller objects. Such DESIGN objects have

empty structural descriptions, but usually have their corresponding objects in other domains. For

example, for an AND gate, a behavioral object exists for its simulation, and a layout object exists

for its geometrical information.

20

e A CONF-level object (for short, a CONF object) is a configuration of a DESIGN

object. That is, CONF objects represent implementations of design entities. A

configuration is generated from a DESIGN object in such a way that its com-

ponents are bound to (in other words, elaborated into) other design objects,

which are DESIGN-level and CONF-level objects. This generation process is

called configuration binding. Depending on selections of design objects for com-

ponents, various CONF objects are generated from the same DESIGN object.

A CONF object corresponds to a VHDL configuration. Constraints can be im-

posed to restrict a set of design objects selectable for components. They include

not only the constraints directly assigned to a CONF object under construction

but also those assigned to the parent (DESIGN object) of the CONF object.

Note that a DESIGN object can have only one CONF object if the constraints

imposed on its component bindings restrict that only one design object can be

selected for each component.

Put more precisely, the components of a design object are references to other

design objects. In our data model, generic components are references to design ob-

jects that can be elaborated into lower-level objects. For example, CELL objects

are used as generic components of a large design since they can be elaborated into

their descendant objects, i.e., DESIGN-level or CONF-level objects. Similarly, DE-

SIGN objects are also used as generic components. We allow CONF objects such

that some of their components are still generic. Such objects are called incompletely

bound CONF objects. An incompletely bound CONF object derives other CONF

objects by elaborating its generic components. This is the reason that CONF objects

can span several layers in the abstraction hierarchy, as illustrated in Figure 2.1 (a).

Incompletely bound objects play an important role in version management.

21

Figure 2.1 (b) illustrates an example of the design library. Figure 2.2 illustrates

that a DESIGN object, Filter01, is built around two components, Carry Lookahead

(CLA) and Shiftioad Register (SLR), which are CELL objects. The DESIGN ob-

ject FilterOl derives two CONF objects, DF01 and DF02, by binding SLR to 6001

and 6002, respectively.

Design Database \ Project Database

CELL

i \ Elliptic_Filter

CLASS CLASS

Adder Reg ist er DESIGN

FilterOl

CONF

m 5°86 —' —or02

*— ABSTRACTION-OF

<°¢°° REFERE‘JCE-TO

Figure 2.2. An Example of Configuration Binding

2.2.2 Four Levels of Abstraction in Different Domains

A design entity can be specified using an interface and an implementation, as dis-

cussed in [9], where an implementation means the contents of a design entity. Since

an interface is seen as an abstraction of an implementation, it may have different im-

plementations. Furthermore, the design data of an implementation can be separated

22

into a generic implementation and a configuration. A generic implementation can be

seen as a template for configurations. By a template, we mean a design composed

of components such that their interfaces are determined but their implementations

are not. In our data model, an interface, a generic implementation, and a config-

uration are represented by a CELL object, a DESIGN object and a CONF object,

respectively.

Our concept of “four levels of abstraction” can be applied to any domain if the

design entities in the domain are represented based on the concept of separating in-

terfaces and implementations. Figure 2.3 summarizes the data of objects over three

different domains. The corresponding VHDL constructs are in parentheses. A VHDL

architecture, in either the behavioral or structural domain, is built around the inter—

faces of smaller design objects (e.g., components). Each of its VHDL configurations

contains the bindings of the interfaces to specific implementations. In the layout do-

main, each CELL object or each DESIGN object does not directly correspond to any

VHDL construct. A CELL object in the domain contains the aspect ratio of it and

the physical positions of its ports. However, the data of the object can be captured

by a VHDL entity and the VHDL attributes attached to its ports: Similarly, the

data of a DESIGN object, such as positions and aspect ratios of components, can be

represented by a VHDL architecture and the attributes for its components.

Figure 2.4 (a) illustrates the levels of abstraction across the three domains, where

solid arrows represent levels of abstraction and dashed arrows represent transforma-

tions across domains. Note that each dashed arrow is directed from a less abstract

design object to a more abstract design object. Consider a CONF object A in the

behavioral domain, and a DESIGN object B in the structural domain. There is an

arrow from A to B, say “A <— B”, since design objects in the behavioral domain are

more abstract than those in the structural domain. This direction of dashed arrows

23

Behavior Structure Layout

CELL ports ports Shape

(entity) (entity) physical information about ports

a collection of components

DESIGN behavioral description schematic

(architecture) (architecture)

positions of components

routes between components

CONF bindings for components bindings for components bindings for components

(configuration) (configuration) routes between components

Figure 2.3. Levels of Abstraction at Various Domains

agrees with that of solid arrows. All the arrows of both types are labeled M: 1 for

many-to-one correspondence or 1:1 for one-to-one correspondence. There is a one-

to-one correspondence for the CELL-level between the behavioral domain and the

structural domain because only one design object is allowed in VHDL for an interface

specification over the two domains. Usually, there are many different transformations

from an interface specification in the structural domain to one in the layout domain.

The selection of the physical attributes of a design, such as shape and pin location,

results in a different CELL object in the layout domain. Figure 2.4 (a) illustrates that

many-to-one correspondence exists between CELL objects in structural and layout

domains. Note that in our data model, the entire data of a design entity is separated

into four levels, and CONF objects represent specific design entities. For this reason,

the arrow between CONF levels in two domains denotes that a design entity in one

domain is transformed into one in the other domain. Generally, once the implementa-

tions of the 'subobjects of DESIGN objects in a domain are determined, giving CONF

objects, these CONF objects are transformed into ones in the next domain.

24

Digital Filter CLASS
.........

.........
o...

 0 I I ‘. \

BEHAVIOR; STRUCTURE; FLOORPLAN c EliPfiC\Filter.:\ CELL

/”lXFilterOZ Elmo,‘. DESIGN
Filter_bevl Filter_bev2-

O
’

:i

c't

.‘t

on

‘t

I

I

l

t: F0] DF02

Filter_bCO 1 Ag”,,,,

‘4’ .‘”[structure]

, Filter_bCONF2.

[behavior] . ‘ ’

CONF

\

(a) Levels of Abstraction (b) A Cell Library across Domains

Figure 2.4. Abstraction Hierarchy across Domains

Figure 2.4 (b) illustrates a library of design objects in the behavioral and structural

domains. Since CELL objects have a one-to-one correspondence across the domains,

there is only one named object, such as Elliptic Filter, which designates two

CELL objects in the domains. By following solid arrows (i.e., levels of abstraction)

and dashed arrows (i.e., transformations), a designer can navigate through a design

library built on top of our data model. For example, a CONF object in the structural

domain, DF02, can be browsed as either one of the structural implementations of

Elliptic Filter or one of the structural transformations from Filter_bCONF2.

Our mechanisms for specifying constraints and using them in configuration bind-

ing, described in Chapter 3, are based on the “four levels of abstraction” and devel-

oped for design objects in the structural domain. However, they can be generalized

to the behavioral and layout domains since that concept still holds true in these two

domains, as described above.

25

2.3 Data Schema

Constraint
\

-‘s
\\ ‘

\

Function [1

Package_Def

Pbod
g y

Package_Body

\ \ Pomisl

\ \ i-al CELL_Obj fff ’] Port I

2.»?
T \

’ "> Slot—oi (1 to m)

"" Slot-oi (1 to 1)

9 Class-subclass

o E
.

.
m
.

.
0
)

O .
9
:

‘ \\ \d-cl gpld .ld.’

‘\‘ \ o . 'k

. vq'a' - sameness: . - .
x \ ~\‘ DESIGN_Obj Genenc_Comp_in_DES|GN_Obj

\ ‘ a fi A s”..-

\ I)’ l ' ~~‘~~ .

. ‘..... : aid 2 “~Jl°"'~°"
’ \ --- . ~~~

\
0 .

I

Mp: bindinglist

CONF_Obj ------ ObLbound

Figure 2.5. Data Schema

Any VLSI object in our data model is an instance of a class defined for its data type.

Figure 2.5 illustrates the predefined classes for the data types available in our data

model. Like most of the object-oriented data models [3, 8, 39, 78]}I we use a fixed

number of predefined classes for each data type. In the figure, boxes represent classes,

solid arrows represent class-subclass relationships. Dashed arrows and dotted arrows

1[In [39], for example, VLSI objects of the design-entity type, are instances of several classes, such

as logic, register, and mux, which are specializations of one root class (called Cell).

26

represent slot-of relationships, where the former has l-to-m correspondences and the

latter has l-to-l correspondences. Labels beside the dashed and dotted arrows de-

note slot names. CLASS-level, CELL—level, DESIGN-level, and CONF-level objects

are instances of the four classes, CLASS_0bj, CELL_0bj, DESIGN_0bj, and CONF-0bj,

respectively. Each of the four classes has a slot pid, whose value is a parent ob—

ject. This slot captures the abstraction relationships between design objects. Note

that the arrow for the pid slot of class CONF_0bj is two-headed. This implies that,

since incompletely bound CONF-level objects derive other CONF objects, parents

of CONF—level objects are either DESIGN objects or CONF-level objects. The slot

portlist of class CELL_0bj contains a collection of port descriptions, which are in-

stances of class Port. The slot componentlist of class DESIGN_0bj contains all of

the components to be elaborated. The slot netlist of class DESIGN_0bj contains

a collection of nets. Slot bindinglist of class CONF-0bj ect contains a collection

of component bindings. Each component binding is an instance of class Obj .bound,

whose slot id specifies the design object bound to a component. The value of the

slot is an instance of either DESIGN_0bj or CONF_0bj , implying that a component can

remain generic if it is bound to a DESIGN object with its children CONF objects.

CELL-level, DESIGN-level, and CONF-level objects have their attributes in slots

i-al, d-al, and c-al, respectively. Similarily, they have their constraints in slots

i-cl, d-cl, and c-cl, respectively. Those slots for attributes contain a collection of

instances of class Attribute. There are two subclasses, Literal and Function, of the

Attribute class. The two subclasses represent literal-valued and function-valued at-

tributes, respectively. Since the main objective of our data model is data management

for a VHDL design environment, we have classes Packagejef and Package_Body to

represent VHDL package objects and their body objects, respectively].| When a DE-

“A VHDL package object is a set of user-defined symbols, such as function names and procedure

names. A VHDL package body is a set of definitions of these symbols, such as the body of a function

27

SIGN object written in VHDL makes use of elements, such as VHDL functions or

procedures, in some packages, the pkgid slot of the object is a collection of the pack-

ages.

For a design object, in our data model, its design data is inherited by its de—

scendants in the following sense. CONF objects represent implementations of design

entities, as mentioned earlier. CONF objects keep only component bindings in their

slot bindinglist. The generic implementation of a CONF object is obtained from

slots componentlist and netlist of its parent DESIGN object. The interface of

a DESIGN object is obtained from slot portlist of its parent CELL object. The

functionality of a design object at CELL, DESIGN, or CONF level is obtained from

its ancestor CLASS object. This inheritance between design objects differs from

the “inheritance between classes and subclasses”, a concept in the object-oriented

paradigm. Note that design objects in our data model are instances of certain classes.

In the object oriented literature [64, 78], two concepts of data modeling have been

proposed which support the data sharing between instances. They are “delegation”**

and “instance-inheritance relationship”llrespectively. Our data model employs the

delegation concept to realize the data sharing between design objects.

or a procedure. There may be various VHDL package bodies for one VHDL package object.

"In [64], Parsave, K. et al. describe “delegation” as follows. When a message (6.9., a request for

accessing slot portlist) comes to an object (e.g., a DESIGN object) and the object does not have

a method for the message, the message is delegated to another object (e.g., a CELL object).

TTIn [78], if an instance 11 has the instance-inheritance relationship with 12, this denotes that 12’s

slots and their value are also defined on 11.

28

2.4 Significance of Our Data Model in Building

VLSI CAD systems

Classifying data about design entities into four levels provides several advantages for

building up VLSI CAD systems:

V

I Specification of Design Goals and Parameters]

v

I Interface Specification I

I Specification of Design Constraints I

I Generation of an Architecture I

N
 31

I Specification of Constraints on Selection I

..........................W

I Configuration Binding I

V

I Checking of Dynamic Constraints I

Figure 2.6. A Constraint—Driven Design Methodology

0 This classification supports a constraint-driven design methodology, as illus—

trated in Figure 2.6. In the whole design process, backtracking to previous

design points occurs when designers find a partially designed object incorrect.

The process proceeds by creating a design object for each abstract level. In

29

other words, it starts by creating a CELL object, and then creates DESIGN ob—

jects and CONF objects. Design constraints to be considered after the interface

specification will characterize design goals and design strategies (the selection of

algorithms which measure the attributes, such as size and delay, of a design ob-

ject). Constraints on selection denote the requirements defining the correctness

of a configuration under consideration. For example, they include the selection

of design objects to be used in configuration binding, upper bounds on specific

attributes of selected objects, etc.

In our abstraction hierarchy, it is easy to locate all the design objects with

a given interface or implementation. Since any design written in VHDL is

registered as a design object at a certain level, the hierarchy facilitates brows-

ing the VHDL design library. Also, the hierarchy provides a framework for a

technology-independent design methodology. In the methodology, CELL-level

and DESIGN—level objects are technology independent. We derive a technology-

specific CONF object from a DESIGN object by binding its generic components

to technology—specific design objects.

The four levels of abstraction serve as a mechanism for design-object typing. A

design object can be regarded as a type such that all its descendants are the

members of the type. Our typing concept generalizes the concept of version

typing [9], where design objects with only the same interface form a type.

Update propagation can be handled easily. The update of an interface should

propagate down to its implementations. In our model, interface information is

kept in CELL objects. DESIGN objects inherit all the constraints, including

an interface, from their parent CELL object. They are always sensitive to

updates of the constraints of the CELL objects since the constraints are always

enforced on the design of DESIGN objects. Another kind of update occurs to a

30

design object that is used as a component of other objects. If the structure of

the design object is updated, then several of its attributes may have different

values. In this case, the update is captured by the composite objects where

the updated object is used as one of their components. The reason is that the

composite objects may have the constraints that are defined on the attributes

of the updated design object as a component.

Users can have a clear understanding of how they should use CAD applications.

Consider a VHDL design environment, SDE, which is equipped with one kind

of window for each level of abstraction [21]. Allowable operations of a window

are determined based on the abstraction level of an object under design. The

window for a DESIGN object provides users with a schematic editing operation.

Updating the interface definition of a component is prohibited in such a window,

since this operation must be performed in the window for a CELL—level object.

2.5 Conclusion

We presented an object-oriented paradigm for modeling VLSI design objects. Our

data model, in which various types of design entities are uniformly treated as objects,

is superior to previous object—oriented data models in terms of capturing the seman-

tics of design process and design data. The data model supports incompletely bound

CONF objects, provides a methodology for technology-independent design, and facil-

itates locating design objects with a certain functionality or a set of constraints. It

will be shown to provide a framework for efficient version modeling and configuration

binding in the following chapter.

CHAPTER 3

A Constraint-Driven Methodology

for Configuration Management in

VHDL Design Environments

This chapter presents a. constraint-driven methodology for version modeling and

configuration management in VLSI/CAD design environments. Under our object-

oriented data model from the previous chapter, the methodology utilizes design con-

straints to identify various relationships between versions, provide formal definitions

of those relationships, and to ensure the correctness of configurations. A technique

is also suggested which increases flexibility in configuration binding by using control

information about how to enforce constraints in the process.

31

32

3.1 Introduction

It is generally acknowledged that a. crucial part of VLSI/CAD design environments

is data management [81]. VLSI/CAD applications and designers deal with design

objects that evolve in multiple dimensions: refinement, revision, composition, and

transformation. This is the reason that VLSI/CAD frameworks have placed focus on

version modeling [10, 19, 47, 48] and system support for configuration management [7,

22, 47, 51, 60], among their capabilities for data management. Version modeling,

which is defining various relationships between versions of design objects, is essential

for the understanding of the basic requirements of version control services.

This chapter presents a constraint-driven methodology for version modeling and

configuration management under our object-oriented VLSI data model in Chapter 2.

In a version model proposed herein, design entities are versioned separately at each

abstraction level, implying that multiple revisions and alternatives of design objects

(interfaces, implementations, and configurations) are created and maintained. Our

versioning mechanism not only minimizes the overhead of backtracking to previous

design points, but also allows for a richer set of version relationships than other

models [9, 10, 47, 81]. Constraints serve as a vehicle for formally defining relationships

between versions in our version model. This capability provides a formal framework

for representing and identifying the version relationships, such as compatibility and

alternative.

The primary task of configuration management is to select a specific version for

each generic component of a given object such that the resulting configuration meets

design requirements. Previous works on configuration management [7, 10, 47, 60],

have limitations to both flexibility and integrity. In other words, designers are forced

to follow fixed mechanisms, such as dynamic binding schemes, and to perform con-

33

figuration binding without any systemic support for error detection [15,22,24]. Our

methodology for configuration management exploits constraints to overcome those

limitations, and maximizes flexibility and user interaction with CAD frameworks.

We classify design constraints into four categories. Since the work presented herein

was originally developed for a VHDL design environment SDE, constraints are spec—

ified using VHDL with several additional constructs.

The rest of this chapter is organized as follows. Section 3.2 describes a method for

classifying and specifying design constraints. Various relationships between versions

are discussed in Section 3.3. Section 3.4 describes a mechanism for constraint-driven

configuration binding. Section 3.5 concludes.

3.2 Constraint Classification and Specification

In our data model presented in Chapter 2, design objects can have constraints, which

are conditions on their attributes. We classify design constraints into two categories:

dynamic and static. Note that constraints can be seen as predicates defined on at-

tributes of design objects. We define constraints to be static if we can algorithmically

compute the values of the attributes on which they defined. Static constraints are

further divided into two subcategories: implicit and erplicit. Implicit constraints are

predetermined based on the semantics of data types so that designers need not spec-

ify them. For example, a simple wire should connect two ports with the same width

(no. of bits). Explicit constraints should be specified by designers. Such constraints

are usually related to delays, size, power consumption, etc. Dynamic constraints are

concerned with the dynamic behavior of a design object, and are verified during sim-

ulation. The objects corresponding to constraints are not found in VHDL semantics.

We consider only static constraints in checking the correctness of designs.

34

3.2.1 Four Categories of Constraints

This section describes the explicit constraints needed for ensuring the correctness of

design objects. We classify those constraints into four categories as follows.

Performance: Restrictions on performance measures of a design object. The

measures of interest for practical designs are size, propagation delay, power

consumption, and latency, as mentioned in [80].

Environment: Specifications of the environment where a design object can be

used as components. They include fanout restrictions, operating temperatures,

etc. Such constraints on a design object are different from constraints from

the performance category in that they should be met by any large design with

the design object as a component. In this sense, the enforcement of them on

a large design is similar to module import, a concept well defined in Modula-2

[45], since they are passed to the design along the component hierarchy.

Relativity: Constraints for consistent uses of design objects. Constraints from

this category reflect designers’ experiences or their preferences about using two

different design objects as components of a large design. There are two kinds of

relativity constraints: must-type and cannot-type. A constraint of cannot-type

(must-type) asserts that design objects X1 and X2 cannot (must, respectively)

be used as components of a large design at the same time.

Selection: Restrictions on selecting design objects as components in configura-

tion binding. They specify either a specific design object or a group of design

objects for a component. The latter denotes that one chosen from the group

must be used as a component.

35

We believe that the above four categories cover all types of constraints for the

constraint-driven methodology described in Chapter 2.4. Since constraints are ex-

pressed in a uniform way regardless of their categories, as described in Section 3.2.2,

it is easy to express the new categories of constraints that would be identified later.

configuration rec_conf of z-method is

--+

--+

--+

--+

--+

--+

assert

assert

assert

assert

assert

assert

begin

L1, M1, and M2 are the components of rec_conf.

end

(1)

(2)

(1)

(1)

(1)

(2)

L1’delay < 40ns; -- constraint A

environment’operating.temperature <= 90; -- constraint B

fr0m(L1,alu_r) -> from(M2,cache-1) -- constraint C

from(L1,alu_s) -> not from(L3,cache_2) -- constraint D

from(L_1,alu-1) and from(M1, cache-1)) -- constraint E

Ml’cpu = MC68K; -- constraint F

Figure 3.1. Constraints written in extended VHDL

3.2.2 Mechanisms for Representing Constraints

This section describes how to specify design constraints, especially those that need

to be enforced on configuration binding. We specify constraints by using VHDL with

additional constructs. Written in extended VHDL, constraints are in the form of

VHDL assert statements, and included in the VHDL text as annotations. Anno—

tations are commonly used to include additional features into VHDL [4]. Assume

that z-method is a VHDL architecture of a signal receiving circuit and rec_conf is

a VHDL configuration of the architecture. Figure 3.1 illustrates example constraints

for radiotrans. In this example, we will use a design library shown in Figure 3.2.

All the lines starting with “--+” are constraint specifications, and are syntactically

36

VHDL annotations. Numbers following the keyword assert denote the degrees of

significance, which will be described in Section 4.6.

In VHDL, it is possible to attach arbitrary user—definable attributes to design ob-

jects. The evaluation of constraints requires the attributes of components, where such

attributes are actually attached to the component types of those components. The

component type of a component means the design object to which the component gets

bound. Our extended VHDL allows for the attribute inheritance of a component from

its component type, a feature not found in VHDL. In our extension, for a component

X, the notation X’Z represents an attribute Z of X. If X is bound to a design object

Y, the above notation actually represents attribute Z of Y. For specifying constraints

from the selection or relativity category, we define a boolean function from. Function

from(X,W) is “true” if component X is bound to either design object W or one of W’s

descendants.

Constraint A from the performance category restricts the maximum delay of com-

ponent L1 to 40ns. Therefore, L1 can be bound to design objects only if they have

delay < 40ns. The reserved word environment denotes any design object that uses

as a component a design object under consideration. In this example, the constraint

B specifies that z-method can be a component of design objects only if they have

operating temperature <= 90. Constraints from the must-type relativity category are

in the form of “from (X,W) -> from (X’ ,W’)”, where operator “—>” denotes “im-

plies.” Similarly, constraints from the cannot-type relativity category are in the form

of“‘from(X,W) -> not from(X’ ,W’)”. Based on the library shown in Figure 3.2,

constraint C' specifies that M2 must be bound to one of cache_1’s descendants if L1 is

bound to a1u_r. Constraint D specifies that L3 cannot be bound to cache_2 if L1 is

bound to alu_s.

Constraints from the selection category are represented using the from function or

37

CLASS-level digita|_lib cache

CELL-level alu cache_1 cache_2

DES|GN-leve| alu_1 ‘m' cache_f cache_r....b

T\ cpu::M068020 f \ cpuzzlnte|286

CONF-level alu_r alu_s ca1 ca2

Figure 3.2. An Example of Cell Library

the attributes of individual components. The interpretation of a constraint “assert

from(X,W)” depends on whether design object W has its descendants or not. Therefore,

it depends on the abstraction level of W. The constraint specifies that if W is a design

object, for example a CELL object or a DESIGN object, with its descendants, X must

be bound to one selected from the descendants of W. Instead, if W has no descendant,

component X must be bound to W. In other words, such a constraint from the selection

category specifies the direct coupling between component X and design object W, as

implied by VHDL use statements. In our example, a function from(L1,a1u_1) of

constraint F denotes that component L1 must be bound to one of the two CONF

objects flu; and alu-s.

In addition to CLASS objects, we have introduced the notion of a classification

attribute for further grouping design objects based on various classification criteria.

The collection of possible values for a classification attribute forms a hierarchy of

specialization-generalizations. Assume that cpu is a classification attribute, where

its value hierarchy starts with Intelx86 and MC68K. MCGBK has two specializations,

MC68010 and MC68020, and Intelx86 has also two specializations, Intel286 and

Inte1386. Constraints on classification attributes of an individual component are

38

used to further narrow the selection of components, indicated by constraint F of

Figure 3.1. The constraint F requires M1 be bound to a design object such that the

value of a classification cpu of it is either MCG8K or a specialization of MC68K. Figure

3.2 shows attribute cpu of two design objects cache_f and cache_r. Constraints E

and Fin Figure 3.1 specify that component M1 must be bound to either CONF objects

ca1 or ca2, since attribute cpu of the objects is MC68020, a specialization of MC68K.

--+ assert (1) z-method’size <2 1000;

--+ for size of entity z-method use (size_by_sum(zrmeth0d));

--+ function size_by_sum (C: dobj) return integer;

--+ begin

--+ variable I, S: integer; variable temp_id: dobj

--+ S := 0;
i

--+ for I := C’Low to C’High

--+ loop

--+ temp_id = C’ CompEI];

--+ S := S + temp_id’size;

--+ end loop;

--+ return 5;

--+ end;

Figure 3.3. A Function-valued Attribute

Let us consider a constraint defined on a function-valued attribute, as in Fig-

ure.3.3. Certain attributes are function-valued ones, whose values are obtained by

executing a function. Consider the size of a design object as the total size of its

components. For a function-valued attribute, the function for it sometimes needs to

be described in a structure-independent way. This description style is necessary if

a designer wants to attach a function-valued attribute to a design object when the

structure of the object is not yet fully determined. For supporting this structure-

39

independent description, our extended VHDL adds three reserved attributes and one

type identifier.

The three attrbibutes of CONF objects and DESIGN objects are: Comp, Port,

and Net. They are arrays of components, ports, and interconnections, respectively.

Figure 3.3 illustrates that the value of the size attribute is computed by a function

size_by_sum, as specified by the for statement. The result of the function is the total

size of the components of C, which is given as a parameter. The type identifier, dobj,

is one for variables whose values are design objects. Two attributes of Comp (Port

and Net), Low and High, are the lowest and highest index of the Comp (Port and

Net) array, respectively.

3.2.3 Manipulation of Constraints Using Abstract Objects

For manipulating constraints easily, we have developed the concept of an abstract

object [21]. An abstract object is an object that realizes an abstraction for any portion

of a structural design. Typically, an abstract object is defined as a collection of VLSI

objects of a certain data type. Abstract objects help a designer in performing some

CAD operations, such as schematic editing and constraint manipulation, as well as

specifying constraints by hiding design details. The types of abstract objects are as

follows.

Abstract Cell:

An abstract cell is an aggregation of design objects, interconnected by wires. Usu-

ally, it is composed of a subset of the components of a DESIGN object. Figure 3.4

shows an example 3-bit up/down counter. Let S be an abstract cell that denotes

the substructure surrounded by dotted lines. Using this abstract cell can simplify

schematic editing of the counter in a way that S is instantiated three times and then S

40

(a) 3-Bit Up/Down Binary Counter (b) Abstract Cell/Abstract Port

Figure 3.4. An Example of Abstract Object

is decomposed into its original structure. Similarly, related nets and related ports can

be grouped into abstract ports and abstract nets, respectively. These abstract objects

also simplify wiring components while creating or revising a version of a schematic.

For example, the two nets Up and Down, shown in Figure 3.4, are abstracted into an

abstract net called Up/Down. Wiring will first be carried out using the abstract wire,

andthen all the occurrences of the abstract wire can be decomposed into the original

two nets.

Using abstract cells can facilitate specifying constraints which are enforced on only

a substructure of a schematic D. Using abstract cells can simplify the specification of

such a constraint. Suppose a constraint that limits the total size of the substructure

to 100. To enforce it, first an abstract cell 31 is defined from the substructure, and

an attribute size is assigned to $1. The value of the attribute can be a function

41

space_using_sum, shown in Figure 3.3, which computes the total size of D. Then, the

constraint shall be in the form of: “assert Sl’size < 100”. Specifying the constraint

is more difficult if abstract cell Si is not used. That is, a specific function should be

written which computes the total size of the substructure in such a way that each of

D’s components is checked to see whether it is within the substructure.

A

| A3 A2 A1

TC

Q

J T

T [El LJ

CP CP

CLEAR *— CLEAR

0 Up F Up

(a) A Slice of 3-Bit Up Binary Counter (b) 3-Bit Up Binary Counter

F
—
C
o

0
'
4
:
-
o

Figure 3.5. An Example of Abstract Cell Decomposition

For increased flexibility, we relax the constraint that abstract cells with abstract

ports need to be decomposed into their original structure. Note that the main role

of abstract ports is hiding detailed descriptions. Thus, an abstract cell with abstract

ports can be replaced by any structure, if ths structure can be abstracted into an

object that has the same port description as the cell. For example, consider a structure

shown in Figure 3.5 (a). The structure can be abstracted into one with the same port

description as abstract cells in Figure 3.4 (b). We can obtain the counter shown in

(a) of Figure 3.5 after replacing all abstract cells shown in Figure 3.4 (b) with the

42

structure.

Abstract Constraint:

An abstract constraint is a collection of constraints. The concept of an abstract

constraint can ease assigning a set of related constraints to design objects. As an

example, SDE has two types of interactive windows called attribute windows and

constraint windows. Figure 3.6 illustrates the attributes and constraints of a DESIGN

object ClkGen (Clock Generator). The design object ClkGen is currently associated

with only an attribute space, whose value is computed using a user-defined function

size_by_sum written in extended VHDL. This figure shows a pop—up menu composed

of menu items for the manipulation of constraints.

.................................
...............

 H' '

SPACE:

sizc_by_sum 0 53:3.................,

assert (2) ClkGen ‘SPACE < 2500

D ..

assert (2) L10 ‘POWERCONSUMP’I‘ION < 500
D OO

assert (1) L10 ‘SPACE < 400

ooooooooooooooooo

OO

OO

OO

OOO

 Uncombine

Figure 3.6. Examples of an Attribute Window and a Constraint Window

More than one constraint can be grouped as an abstract constraint. An abstract

constraint is treated as a single object for manipulation operations, such as “copy”

or “move,” so designers need not deal with its constituent constraints individually.

43

An abstract constraint power_space can be constructed from the three constraints

of Figure 3.6. Then, assert power-space will replace the three constraints in the

constraint window. Abstract constraints can take parameters. If component L10

needs to be a parameter, an abstract constraint constructed from the three constraints

will be: “assert power-space(comp_id).” The parameter comp_id should be replaced

by some component when this abstract constraint is assigned to design objects. Two

menu items, Combine and Uncombine, are provided for creating an abstract constraint

and decomposing it into its constituents, respectively.

3.3 Version Relationships

A version model presented in this section captures various relationships between the

design objects that have evolved in several dimensions. Constraints can serve as a

mechanism for grouping related versions. They can also be used to define formally

the relationships between design objects. This formalism allows CAD environments

to identify some relationships between a pair of versions.

3.3.1 The Version Space of Four Dimensions

In our version model, a design entity evolves in four orthogonal dimensions: abstrac-

tion, revision, changing of constraints, and transformation. A design object at some

level in the abstraction hierarchy is seen as a type from which the design objects at

lower levels are derived. Modifying a DESIGN object or a CONF object results in

a new object, which is a revision of the original object. Previous VLSI data mod-

els [9, 10, 46, 81] do not distinguish design evolution-in abstraction and revision

dimensions. The models use one term versions to denote the new objects derived in

44

these two dimensions. Another dimension for design evolution is changing of design

constraints, not found in previous VLSI data models [9, 10, 46, 81]. The reason is that

a design object should satisfy constraints on its ancestors in our abstraction hierarchy.

For a design object, if a designer changes only the constraints on the object, a new

object is created which differs from the object only in constraints. Then, the new

object will have a different set of its descendants from its original object. A design

object in one domain is transformed into other domains, as indicated in Figure 2.4

(a).

oooooooooooooooooooooooooooooooooooo

abstraction

% cuss
constraints 3

.> :
x :

‘ ‘ : CELL ‘ transmitter l receiver l

3 revisions transformation

05an IN...l z-.......@2

ooooooooooooooooooooooooooooooooooo

 +- Abstraction-of

4'" Horizontal Derivation

CONF I rec_cont@2 --- rec-mnf I -------ti rec_coan

Figure 3.7. Version Evolution

Since a CLASS object is a named group of functionally-related design entities, it

does not evolve through general design activities, such as modification, transforma-

tion, etc. A group of versions for a design entity, evolving in the four dimensions,

conceptually form a space called version space. Every design object except CLASS-

level objects is located in a version space by a four-element tuple: <space-name,

domain, abstraction-level, object-id>, where space-name designates a design entity,

45

domain is a domain, abstraction-level is a level and object-id identifies the design

object. Our version model uses version numbering as a mechanism for tracing the

evolution history of the design object at the same domain and level. This numbering

convention is similar to those of previous version control systems [73]. Therefore,

the last element object-id is a string designating an initial design object, optionally

followed by a version number. For example, for a DESIGN object in Figure 3.7 which

evolved from an initial DESIGN object z-method, it has the following four-tuple

representation: <receiver, structure, DESIGN, z-method@2>.

In the design library based on our data model, the inheritance of constraints

along the abstraction hierarchy is a feature that clusters design objects made under

the same constraints. This clustering makes it easy to locate all the designs with

given constraints. However, this sometimes leads to what we call a constraint-driven

derivation. For example, a CONF object rec_coan is a derivation of another CONF

object rec-conf, as illustrated in the figure. Suppose that rec_coan does not satisfy

all the constraints on its parent, z-method, so this CONF object cannot be registered

as one of its children. Instead, a new derivation z-methonZ is created, and becomes

the parent of rec-coan. In this case, we call z-methonQ a constraint-driven deriva-

tion introduced by rec_coan. The constraints on z-method02 will be the same as

those on its original object z-method except that all the constraints contradicting

rec_coan are excluded.

3.3.2 Relationships between Design Objects

Let us define notation first. For a design object 0, let ANCESTORS(0) be the set of

all 0’s ancestors. By definition, if two design objects 01 and 02 have the same parent,

ANCESTORS(01) is equal to ANCESTORS(02). Let LEVEL(0) be the abstraction

46

level (i.e., CELL-level, DESIGN-level, and CONF-level) of a design object O, and

CONST(0) be the set of all constraints enforced on 0. CONST(01) C CONST(02)

means that the constraints to be satisfied by design object 02 are stricter than those

by design object 01. We assert CONST(01) C CONST(02) when for each constraint

C in CONST(01), C is in CONST(02) or C subsumes some element in CONST(02).

When a constraint specification is seen as a logical assertion, the term “subsume”

means “generalize” (in other words, “is less restrictive than”), exactly as in predicate

logic [17]. For example, consider three constraints 01, C2 and C3: C1 is “L10 ’ space <

500”; Cg is “L10’space < 400”; C3 is “L20’space < 300 and L10’space < 400”.

Then 01 generalizes 02, and C1 (or Cg) also generalizes C3.

Our version data model supports the following types of relationships between

design objects in the abstraction hierarchy.

0 Alternative: For a design object, if a group of design objects are its different real-

izations at some lower abstraction level, they are called alternatives with respect

to it. Design objects 01 and 02 are alternatives to design object 03 if 03 in

ANCESTORS(01), 03 in ANCESTORS(02) and LEVEL(01) = LEVEL(02).

0 Horizontal Derivation: Design object 02 is a horizontal derivation of design

object 01 if 02 results from modifying 01 or from changing the constraints on

01. By definition, ANCESTOR(01) is equal to ANCESTOR(02).

o Dependency: Design object 01 is dependent on design object 02 if 01 must be

used together with 02 in large designs.

0 Nonpairability: Design objects 01 and 02 are nonpairable if they cannot be used

together in large designs.

0 Compatibility: Design object 01 is compatible with design object 02 if 01 can

replace 0;; in large designs. 01 is partially compatible with 02 if 01 and 02

47

are alternatives with respect to some CELL object and for each constraint C E

CONST(02), C is not contradictory to any element in CONST(01). 01 is fully

compatible with 02 if 01 and 02 are alternatives with respect to some CELL

object and “CONST(02) C CONST(01)” holds.

0 Interchangeability: Design objects 01 and 02 are interchangeable if 01 is fully

compatible with 02 and 02 is fully compatible with 01.

0 Component: Design object 01 has a component relationship with 02 if 01 is a

component of 02.

0 Hidden version: Design object 01 is one of the hidden versions of design object

02 if there is a configuration binding that derives 01 from 02. Hidden versions

do not really exist in the design library. Instead, they are implicitly derived

from an incompletely bound CONF object or a DESIGN object when needed.

3.3.3 The Detailed Description of Version Relationships

Alternative relationship identifies a group of design objects that can be bound to a

component. Suppose that a component of a DESIGN object is an object O. The

component is bound to one of design objects that are alternatives with respect to 0.

We can find easily alternative relationships among design objects by using a graph

form of the design library, illustrated in Figure 2.4. Then, design objects 01 and

02 in a domain are alternatives with respect to design object 03 if LEVEL(01) =

LEVEL(02) and 03 is a common ancestor of 01 and 02.

The definition of horizontal derivation implies that the versions derived by revi-

sion or changing of constraints remain at the same abstraction level as their original

object. Horizontal derivations are different from alternatives in that they have the

48

same parent. In Figure 3.7, for example, three design objects, rec_conf, rec_conf@2,

and rec_coan, are alternatives with respect to CELL object receiver. However,

the horizontal derivation relationship exists between only rec_conf and rec_conf@2.

Since alternative relationships are obtained from abstraction-of and transformation

relationships in the library, as mentioned earlier, our version model uses version num-

bers only for keeping track of horizontal derivations.

Nonpairability and dependency relationships act as relativity constraints in con—

figuration binding. Those relationships between design objects need to be checked

for any large design object that has components bound to the design objects. Our

definition of the compatibility relationship matches the intuitive notion of upward

' compatibility, a concept widely used in software engineering [65] and hardware config-

uration management. The separation of the compatibility into the two subcategories,

such as partially compatible and fully compatible, is based on the degree of replace-

ability. It is a popular method of exploring the design alternative space to substitute

other design objects for components of an existing design. Compatibility plays an

essential role in the substitution because the use of library design objects compatible

with the components will preserve design consistency. Since compatibility and inter-

changeability are formally defined using constraints, versions with these relationships

can be automatically obtained.

The concept of hidden versions as well as the four levels of abstraction are features

that distinguish our version model from others [10, 69, 71]. Hidden versions are useful

for the efficiency of storage. For example, in Figure 3.8, note that CONF object DF01

(or DF02) is incompletely bound if the component CLA has not yet been bound. DF01

could derive two CONF objects, DF01-1 and DF01-2, if the unbound component is

bound to 5046 and 5086, respectively. These two CONF objects are hidden versions

if they are assumed to exist in the library. Thus, a designer need not generate a

49

‘— abstradion-ot

4 ~ - - - reterenoe-to

Design Database Project Database

ME... com:

DF01

l CONF l l m l l m. l l. w l

I DF01_1 I I DF01_2 I I DF02_1 I I DF02_2 I

I I I I I I I I

I-moii Imu Imozu Imozu

I , I I I I , I I , I

I--'...... J I-..‘I I J I

ooooooooooo

oooooooooooooo

ooo

Figure 3.8. An Example of Hidden Version Derivation

. lot of CONF objects explicitly. Hidden versions are also exploited in configuration

binding to provide a richer set of design objects for generic components. Once a

hidden version is selected and bound to a component during configuration binding,

a corresponding design object with all its components bound is registered into the

library.

The number of hidden versions of a design object grows exponentially with the

number of its generic components. Moreover, hidden version derivation can be carried

out hierarchically. In other words, deriving hidden versions of a design object may

require hidden versions of its components. In order to prevent the proliferation of hid-

den versions, we employ two simple strategies: hidden versions derivation is allowed

only for incompletely bound CONF objects that are leaf nodes in the design library;

hierarchical derivation is not performed. The second strategy is partly because once

50

hidden versions are derived, a designer tends to assure their correctness before they

are recursively used in deriving other hidden versions. Also, since hidden versions of

a design object must satisfy constraints on the design object, the number of hidden

versions can decrease if designers enforce more or stricter constraints.

TYPE ABSTRACTION INHERITABILIW

LEVEL

alternative same No

horizontal derivation same No

dependency same/different N0

nonpairabilitv same/different Yes

compatibility same No

interchangeability same No

hidden version same/different N0

Figure 3.9. Properties of Relationships

More detailed properties of the relationships are summarized in Figure 3.9. The

domain property determines whether two design objects involved in a relationship are

in different domains or in the same domain. The abstraction level property determines

whether two design objects involved in a relationship must be at the same abstraction

level or can be at different levels. When design object 01 has a relationship with

design object 02, the inheritability property determines whether 01 still has the

relationship with any of the descendants of 02.

51

3.4 Configuration Binding

Configuration management is a mechanism for cell selection, the process of selecting

design objects for generic components of a large design object from the library such

that the selected objects can satisfy the constraints on the design object. In our

methodology for configuration management, this process is carried out during con-

figuration binding for DESIGN objects or incompletely bound CONF objects. Our

methodology also supports dynamic binding, a mechanism not found in VHDL, for

dynamically determining a specific design object to be bound to a component.

3.4.1 Dynamic Cell Selection

Generic components can be bound in two ways: static and dynamic. In static binding,

a component is a specific version of a design object. Our methodology for configu-

ration management allows two cases in which static binding occurs: CONF objects

are derived from a DESIGN object or an incompletely bound CONF object; hidden

versions are retrieved and explicitly registered into the library. Our methodology

supports dynamic binding as follows. When a design object with generic components

is retrieved (or accessed), a specific object is dynamically chosen from the set of can-

didate design objects for each generic component, and then bound to the component.

We call such a specific object a dynamically chosen version. In the previous work on

cell selection [7, 10, 47, 60], dynamic binding schemes are fixed in that they choose the

newest version or a design object with the most recent version index. The following

features distinguish our dynamic binding from previous work:

0 We determine dynamically chosen versions among all design objects that satisfy

various design parameters represented in terms of constraints.

52

o For increased user interaction, a designer can express arbitrary dynamic bind-

ing schemes. Furthermore, a scheme can be applied for an individual compo-

nent, implying that dynamically chosen versions for different components can

be determined using different schemes. This capability gives a designer ample

flexibility for configuration binding, not found in [10, 47, 60].

A user—defined dynamic binding scheme is in the form of a VHDL function. A

function used as a dynamic binding scheme takes an array of candidate design objects

as one parameter, and finds an object with certain properties (for example, one with

the smallest delay) from the array, and then returns it. Such an array is associated

with each component which is to be dynamically bound, and design environments fill

up the array with candidate objects before executing the function. For clarity, the

following is the definition of an example function nv_strategy with an array objarray

as its parameter:

--+ functionnv_strategy(objarray: array (integer range <>) of dobj)

--+ return dobj ;

3.4.2 Constraint-Driven Cell Selection

There are several options for making up lists of candidate design objects for generic

components. For example, hidden versions can be included into the lists or excluded,

depending on these options. To store this kind of control information, a designer can

associate a control frame with a design object under configuration binding. Our cell

selection is carried out by retrieving the control information from the control frame.

The structure of the control frame is shown in Figure 3.10.

53

Slots Description

Hidden_Versions Decision on the inclusion of hidden versions.

Ch9cking_Level Desrgnatlng a set of constraints to be temporanly turned off.

Temp_Constraints Designating a set of constraints to be temporarily enforced.

|ncomp_bound_Cel|s Decision on the inclusion of incompletely bound objects.

Designating dynamic binding schems for components. Dynamic_Selection

Figure 3.10. Control Frame

The slot Hidden- Versions specifies whether hidden versions must be included

or not.

A designer can turn off some constraints temporarily during use. For example, a

constraint on the maximum size of a design object can be violated during design

because the size may exceed the upper bound temporarily during the optimiza-

tion stage. The slot Checking_Level contains a number such that constraints are

are ignored during configuration binding if their degree of significance is larger

than the number.

The slot Temp_Constraints contains a set of constraints that a designer wants

to enforce temporarily during design.

The slot Incomp_Bound_ Cells specifies whether incompletely bound objects can

also be selected for generic components. By incompletely bound objects, we

mean DESIGN objects or incompletely bound CONF objects. In some case,

a designer may defer the final binding of a generic component by binding the

54

component to an incompletely bound object. Later, the designer will bind the

component to a more elaborated design object.

o The slot Dynamic_Selection specifies dynamic binding schemes for generic com-

ponents.

3.4.3 A Cell Selection Procedure

A cell selection procedure is as follows. Let D be a design object under consideration

in configuration binding. Assume that O has generic components, X1, X2, ..., X”.

For each component Xk, the cell selection proceeds as follows. First, we compute

Sh, the set of candidate design objects satisfying local constraints on Xk, where the

local constraints on a component are the constraints whose evaluation is affected by

the binding of the component alone. A procedure ModS'el, shown in Figure 3.11,

is called with Xk and 0’s control frame, and returns 31,. In the control frame, the

Hidden- Versions, Incomp-Bound_Cells, and Dynamic_Selection slots specify cell se-

lection options for individual components. For convenience, the default option can be

specified using the keyword default. If these slots contain a pair <default, value>

without a pair <Xk,value>, the second element, value, of the first pair denotes the

option for Xk.

Next, every combination of n design objects, one from each Sk, is examined to

determine whether it can satisfy all constraints on design object 0. There are an

exponentially large number of combinations to be examined. This examining is the

dominant factor of the time complexity of the cell selection procedure.

In our methodology, designers have two options. One is that if 3;, contains more

than one design object, a designer selects one design object from Sk. The other is that

all those combinations are enumerated until one combination is found that satisfies all

55

constraints on the design object 0. Moreover, constraints from the selection category

can significantly decrease the search space by considering only appropriate design

objects.

/* Assume that component Xk is a design object ctype */

ModSel (Xk, controLframe)

Step I)

Step 2)

Step 3)

Step 4)

Step 5)

Compute the set C of local constraints c on Xi. such that the

checking level of c is less than or equal to Checkingievel of

controLframe .

If a constaint from()fk, IV) is in (7, then set r to IV, else set r

to ctype .

If r is a completely bound CONF object, then

if r satisfies CL then return a set consisting of only r, else

return 0.

else go to step 3.

Compute the set D of descendants of r (including r) in the library.

If slot Incomp-bound_Cells of control_frame specifies yes for Xk, then

compute S from design objects of D which satisfy C.

also

compute S from design objects of D which are completely bound

objects and satisfy C.

If slot Hidden_Versions of control. rame specifies yes for Xk, then

for all incompletely bound CONF objects of S, compute set S’ of

all their hidden versions which satisfy C, and then

add S’ to S.

If slot Dynamic_Selection of controLframe specifies a function f for Xk,

then call function f with S, and return an object selected by the

function.

also return S.

Figure 3.ll. Procedure ModSel

56

3.4.4 An Example of a Cell Selection

For clarity, an example of cell selection is illustrated in Figure 3.12. DESIGN ob-

ject DSP1 under configuration binding is a VHDL architecture of a VHDL entity

DSP. DSP1 consists of three generic components: L1 (a clock divider), L2 (an input

filter), and L3 (an encoder). These three components are design objects CLKDIV,

Elliptic-Filter, and ENC, respectively. Following the VHDL syntax, “S => V”

in Figure 3.12 denotes value V of slot S. Let us assume that DSP1 has no con-

straints inherited from its ancestors. Let C1, C2, and C3 be constraints such that

Cl is ‘ ‘(1) L3‘POWERCONSUMPTION <= 50”; C2 is “(1) from(L3,05)"; C3

is ‘ ‘ (1) DSPl’SPACE <= 125". Then C1, C2, and C3 are are all the constraints on

DSP1, since C3 is in the Temp-Constraints slot and the checking levels of the three

constraints are less than the Checking-Level slot. In the figure, 01, 03, 04, and 05

are completely bound CONF objects. As illustrated in Figure 3.8, CONF objects

DF01-1 and DF01-2 are the hidden versions of DF01, and DF02-1 and DF02-2 are the

hidden versions of DF02.

Consider L1 first. There is no local constraint for this component. Only the CONF

objects, 01, 03, and 04, need to be considered, since the slot Incomp_Bound-Cells

specifies that incompletely bound design objects, such as 02 and CLKD1, must be

excluded. Note that (L1 , nv-strategy) is in the slot Dynamic-Selection. Procedure

nv-strategy, chooses the newest version. Then, S1 becomes {01}, since 01 is the

newest of 01, 03, and 04. Consider L2 next. The component has only one local

constraint C1. Since the slot Hidden- Versions specifies “yes” for all components,

the hidden versions of the two incompletely bound CONF objects, DF01 and DF02,

must be considered. Those hidden versions are DF01-1, DF01-2, DFO2-1, and DF02-2.

Then, S2 is {DF01-1, DF02-1}, since they are completely bound design objects and can

satisfy C1. Lastly, consider L3. This component needs to satisfy one local constraint

57

C2. The constraint denotes that CONF object 05 is a sole candidate design object

for the component. Therefore, 53 is {05}. The next step is to find the solutions

satisfying constraint C3. There is only one solution, which is {01 , DF01-1 , 05}.

3.5 Conclusion

We presented a version modeling and a constraint-driven methodology for configura-

tion binding. Using features of the object-oriented paradigm, such as inheritance, our

version model organizes design objects in four dimensions, and can capture a richer

set of relationships between versions, including hidden versions, than the previous

work. Configuration binding is carried out in a constraint-driven fashion so that the

constraints enforced by designers are checked in order to validate design consisten—

cies at early stages. The approach also offers a method for specifying options of cell

selection, and increasing designers’ control over the enforcement of constraints.

58

data_out

data_in ——-] L2:E||iptic_FIlter L32ENC

CLK —'|L1:CLKDIV : I

[Logic Diagram of DSP1]

architecture DSP1 of DSP is

-—+ (1) L2’POWERCONSUMPI'ION <= 50;

-+ (1) from(L3, 05)

begin

--+ for control_frame of entity DSP1 use

--+ (Hidden_Versions => (<default. yes>),

--+ Checking_Level => 2.

--+ Temp_Constraints => ("(1) DSP1’SPACE <= 125 "),

--+ Incomp_Bound_Cells => (<defau1t. no>).

--+ Dynamic_Selection => (<1,1,nv_strategy>))

end

[Control Frame]

Figure 3.12. An Example of Module Selection

Project_A

use CLKDIV Elliptic_FIIter ENC

. /\

DSP1 CLKD1 Filter01 ENC1 5ch

O1 02 DF01 DF02 05

O3 04

[Example Cell Library]

cell power size update

cons. time

01 40 55 Aug/8

02 - -

03 45 so Aug/‘2

O4 60 75 June/22

O5 40 30

DF01_1 45 45

DF01_2 so 57

DF02_1 so 56

DF02_2 so so
[Attribute Values]

CLASS

CELL

DESIGN

CONF

CHAPTER 4

A Path-Oriented Algorithm for

the Cell Selection Problem

An algorithm for the cell selection problem is presented. Given a network G of logic

gates, the problem is to select a library cell for each gate such that the longest delay

through G is at most Tmax and the total area of selected cells is minimum. We first

prove the strong NP-completeness of the problem if the circuit is a general acyclic

graph. The proof implies that there exists no pseudo—polynomial time algorithm

unless P=NP. We next propose a path—oriented, heuristic algorithm that iteratively

chooses paths of gates with delay larger than Tmax, and then selects cells for the paths.

The set of paths chosen induces a maximal series-parallel subgraph. We also present

a cloning method which further improves a solution obtained by the path-oriented

algorithm. In the proposed cloning method, nodes are duplicated into clones such

that the resulting graph becomes a series-parallel graph. Our cloning method is more

efficient in terms of time and space than the tree cloning of Chan [16].

The results of our algorithm are compared to those of Lin’s work [57] and misII

[31]. The algorithm provides significantly better solutions to all the circuits than the

59

previous work.

60

61

4.1 Introduction

Given a network G of logic gates and a cell library, the cell selection problem’is to select

a list of cells (called a binding) for G which minimizes the total area of the selected

cells and restricts the longest delay to the maximum allowable delay Tm” [23]. The

cell library contains multiple cells with discrete sizes for each gate type. If the library

is a collection of standard cells, the cell selection problem corresponds to a cell-based

transistor sizing problem [25, 29, 70]. Technology mapping is generally defined as a

covering problem of all the matches of cellsIover the network. If there are multiple

cells of the same Boolean function with different performances, the cell selection can

follow technology mapping to minimize the total area of all the matches by selecting

a cell for each match.

There has been research on the cell selection problem [16, 57, 58]. Lin [57] and

Li et. al. [58] proposed heuristic methods which iteratively improve a binding of the

network by using cell replacement. Chan [16] presented an algorithm that transforms

the graph into an equivalent tree by duplicating gates of the graph. Since the number

of newly added gates is exponentially large, the algorithm works only for relatively

small-size circuits. Pseudo polynomial time algorithms have been proposed to find

an optimal solution when the network is restricted to a tree or series parallel graph

[16, 58] and when the fanout delay is not considered. The fanout delay of a cell in a

network is the delay due to the load capacitance of the cell. However, it is not known

whether there exists a pseudo-polynomial time algorithm for the problem when the

network is a general graph.

In this chapter, we prove that the time complexity of the problem for a general

*The cell selection problem was also named “the optimal selection of standard cells” [57] or “the

circuit implementation problem” [58].

1‘Each match is a subgraph of the network. Cells are represented by graphs.

62

graph is strongly NP~complete, implying that there is no pseudo-polynomial time

algorithm for the problem unless P=NP. For general networks with fanout delay, we

propose a path-oriented algorithm which iteratively chooses a set of paths, and then

selects cells for the gates on these paths until the longest delay is less than equal to

Tm”. The algorithm employs a method of selecting paths whose new binding will

result in the largest decrease in the longest delay without significantly increasing the

total area.

Our path selection method is based on finding a maximal series-parallel subgraph

that includes all those paths. In the previous heuristic approaches [57, 58], a small

number of gates are considered to improve the current binding for each iteration.

Therefore, the heuristics are more likely to reach a local minimum than our algorithm

which improves the area globally by considering as many gates as possible. Since all

of the gates on a critical path may not be chosen at an iteration, a new binding of

the path can be far from an area minimum selection.

A cloning method is also presented which further improves an initial solution ob-

tained by the path-oriented algorithm. In this method, we construct a series-parallel

graph (called a cloned series-parallel graph) from a given network G by duplicating

some nodes of G into clones, and obtain a binding of the cloned graph.

The structure of this chapter is as follows. In Section 4.2, the cell selection problem

is formulated and a dynamic programming algorithm for a series-parallel graph is

presented. In Section 4.3, we prove the strong NP-completeness of the cell selection

problem. Our cell selection algorithm for a general graph appears in Section 4.4 and

Section 4.5. We tested our algorithm with the LGSynth91 logic synthesis benchmark

circuits [82], and compared the results with Lin’s work [57]. Section 4.6 describes

experimental results. We conclude in Section 4.7.

63

4.2 Preliminaries

In this section, we first formulate the cell selection problem, and then present a cell

selection algorithm for a series—parallel graph. An acyclic network can be modeled as

a Directed Acyclic Graph (DAG) in such a way that nodes and edges represent gates

and interconnections, respectively. We will use two terms network and graph inter—

changeably. Also, we use terms node (edge) and gate (respectively, interconnection)

interchangeably.

4.2.1 Formulation of the Cell Selection Problem

Let G be a DAG of m logic gates, 91, g2, g3, ..., gm, and let Tm“. be the maximum

allowable delay of the network. For each g,- of the DAG, Lg, is the set of library

cells that can realize (i.e., be bound to) gate gg. Library cells differ in area, internal

delay, input capacitances, and driving capabilities. Each cell c in L9,, 1 S i S m, has

discrete area denoted by A(c).

The cell selection problem for G is to select a list of cells (i.e., a binding of G), c1,

c2, ..., cm, and bind each C, to g,,1 S i S m, such that

I. C,‘ 6 L9”

2. S is minimized subject to T S Tm”, where S is the total area of selected cells,

and T is the longest delay through G.

For simplicity, each cell has multiple input ports and one output port. In the

network, there is only one driver that drives a signal to an input port of a gate. Our

delay model is basically identical to the delay calculation method specified in the

LGSynth91 logic synthesis benchmark [82]. The term D(c,g) is the delay of cell c

64

when cell c is bound to a gate g. D(c,g) is sum of the internal delay and the fanout

delay of cell c. The internal delay of cell c, denoted by d(c), is not affected by the

capacitive loading of c. We assume that a cell has one internal delay between all

its input ports and its output port. The output port of a cell has an attribute load

factor, which is the capability of driving an output signal. The unit of load factor is

delay per unit load capacitance. Each input port of a cell has a capacitance, called

an input capacitance. The load capacitance of a cell is the total input capacitance of

the ports to which the cell drives its output signal. When cell c is bound to gate 9,

the fanout delay of c is calculated by the product of the load factor of c and the load

capacitance of c.

Consider a path of cells < c1,c2, ...,cm > which are bound to gates g1,g2, ...,gm

respectively. The delay of the path is computed by 2717;- D(c,-, 9,). For node u, let us

call a node driving an input signal of u a fanin node of u. Let us call a node driven

by the output signal of u a fanout node of u.

(a) a chain (b) a graph containing (c) a series-parallel graph

a set of parallel nodes

Figure 4.1. Examples of series-parallel graphs

65

Let us define several graph-theoretical terms. A graph G’ is a two-terminal graph

if there are two nodes, a source node and a sink node, such that the source node

has no fanin node and the sink node has no fanout node. A series-parallel graph is

recursively defined as follows [75] (a series-parallel graph is a two-terminal graph): (i)

A DAG consisting of two nodes joined by a single edge is a series-parallel graph. (ii)

If G1 and G2 are series-parallel graphs, so are the series-parallel graphs constructed

by each of the following operations (1) and (2): (1) Parallel Composition: Identify

the source node of 01 with the source node of G2 and the sink node of GI with the

sink node of G2. (2) Series Composition: Identify the sink node of G1 with the source

node of G2.

In a series-parallel graph G(V, E), we define set S C V to be a set of parallel nodes

with respect to two nodes v1 and v2 if each u E S, v1 is the only fanin node of u and

v2 is the only fanout node of u.

Figure 4.1 illustrates examples of series-parallel graph. A chain, constructed by

series compositions only, is shown in (a). Parallel compositions are shown in (b), in

which nodes B, C, D, and E are a set of parallel nodes with respect to node A and

node F. A general series-parallel graph is shown in (c).

4.2.2 A Cell Selection Algorithm for A Series-Parallel

Graph Under Fanout Delay Effect

This section describes a dynamic programming algorithm that finds a near optimal

binding of a series-parallel graph when the fanout delay is considered. In [58], Li et

al. proposed an algorithm that finds the optimal binding of a series-parallel graph

when cells are assumed to have no fanout delay. Their algorithm is motivated by the

observation that a series-parallel graph is a composition of two types of subgraphs,

66

chains and sets of parallel nodes. We will explain how their algorithm can be extended

to the case where we consider fanout delay. Note that if the output port of g,- is

connected to an input port of g], then the delay of g, depends on the binding of gj.

Thus, we must compute the binding of the network in the backward direction rather

than forward.

Consider a chain of length m, gm, gm_1, ..., g1, such that gm is the first node, gm_1

the second node, and so on. Let F}: denote the area of the optimal binding of node

g1 through node g,- such that the delay of the binding is at most k. Then, F; is given

by the following formula:

1'

Fk = {Fk’i—l + 14(0)}
ceLg, , glibomig

For m parallel nodes g1,g2, ...,g,,, and their fanout node gm“, the binding can be

computed as follows. We first compute Fflc’] for each c’ E Lm+1, where Fflc’] is the

area of the optimal binding of the m parallel nodes such that the longest delay of

the binding is at most It: when cell c’ is bound to node gm+1. The reason for fixing

gm+1 at a certain cell is that the input capacitance of gm+1 is necessary for the delay

calculation of g,, 1 S i S m. Fflc’] can be obtained by:

iI_ - i—l/

flM—flwghsfllkHMm

We next compute Fk, the area of the optimal binding of the graph induced by m + 1

gates, g1,g2, ...,gm,gm+1, such that the longest delay of the binding is at most It. The

following formula shows the recurrence equation of Fk:

n: {WM+M&}min

dag“, , k’+d(c’)gk

67

A binding of a series-parallel graph is obtained by repeatedly finding a subgraph,

either a chain or a set of parallel nodes and their fanout node, and then replacing

it with its corresponding block. This reduction is repeated until there is only one

node left. The corresponding block of a subgraph can be regarded as a node in the

reduced graph. If the subgraph is a chain of m nodes, then the library cells for its

corresponding block have area Em and delay t, for t S Tm”. Similarly, the block of

parallel nodes with their fanout node has library cells each with area Ft and delay t.

Figure 4.2 illustrates how the series-parallel graph in (a) is reduced to a single

node. In Figure 4.2 (b), nodes J and A5 form a chain while J is the fanout node of a

set of parallel nodes, A2, A3, and A4. In this case, we can combine J with either of

the two subgraphs for the reduction. In this example, node J is used as the fanout

node of the parallel nodes.

(a) (b) (C) ((1)

Figure 4.2. A sequence of replacements for a series-parallel graph

68

4.3 Strong NP-completeness of the Cell Selection

Problem

Li et al. [58] proved that the cell selection problem is NP—complete by showing a

reduction from the partition problem. However, the partition problem can be solved

by a pseudo-polynomial time algorithmibased on a dynamic programming approach

[36]. Indeed, the algorithm presented in [58] for the cell selection problem in a chain

uses a similar dynamic programming approach, and runs in a pseudo-polynomial time.

It is not known whether such a pseudo-polynomial algorithm can be extended to a

general network.

We prove that the cell selection problem is strongly NP-complete for a general

graph even when each cell has delay 1 or 3. Thus, finding a pseudo-polynomial time.

algorithm for the cell selection algorithm in a general network is not possible unless

P=NP.

In the proof we use a reduction from the 3-Satisfiability (3SAT) problem. Let

W = C1C2...C,. be a well formed formula (wff) in a conjunctive normal form over

variables (131,332, ...,.vn. From W, we shall construct a network Gw with maximum

allowable delay Tm” and maximum allowable area Am“ such that Gw has a binding

with the longest delay at most Tm“. and total area at most Am” if and only if W is

satisfiable.

In Gw, there are two types of gates, type 0, and type T. A gate type 0 has one

library cell with delay 1 and area 1. A gate type T has two library cells a1 and a2

with delay(a1) = 1, delay(a2)=3, area(a1)=2, and area(a2)=1. A delay element with

1An algorithm for a problem A is pseudo-polynomial if it solves any instance I of A in time

bounded by a polynomial in the size of instance 1 and the largest integer appearing in I [36]. Thus,

if there is a pseudo-polynomial algorithm for the cell selection problem, then the algorithm will find

a solution in polynomial time if the weight and area of library cells are not exponentially large.

69

A

n A

V U

u u’

(a) widget A used for (b) compact representation

each variable of the A widget

Figure 4.3. Variable Structure

delay w can be implemented by a chain of gates of the type 0 with length w. In the

following figures, a black node with weight w denotes a delay element with delay w.

and all the white nodes are gates with type T. Note that all black nodes have only

one choice of binding, and the total area occupied by them is constant. Thus, we

consider the area of only the white notes in each binding.

We construct a directed graph Gw that is composed of two types of widgets,

which are pieces of of graphs that enforce certain properties. The first widget, used

for each variable, is the subgraph A shown in Figure 4.3. Consider a binding of A

with the longest delay 15 and area 9. If we bind oz to u, then we must bind a1 to

both v and w; if we bind a2 to ufi, then we must bind al to v,’- and w]. Note that any

binding of the structure A must have area at least 9 in order to achieve longest delay

at most 15. I and II in Table 4.1 are the only two bindings with the longest delay

15 and with area 9. In the table, III shows another binding with longest delay 15

but requires area 10. IV, V, VI, and VII show bindings with area 9 but their longest

70

delays are 16. What we shall simulate using widget A for a variable is: the variable

is assigned true (false) in any assignment if and only if node u in the widget is bound

to al (respectively, a2).

Another widget B, used for each clause, is shown in Figure 4.4. Each widget has

three substructures corresponding to three literals of a clause. Each substructure has

nodes 7‘”, pk, and q”, (= 1,2,3). Suppose that the following condition 1 is true for

every k (k =1,2,3).

Condition 1: either (i) it takes delay 4 for a signal to arrive at pk and

delay 2 to arrive at r”, or (ii) it takes delay 2 for a signal to arrive at p"

and delay 4 to arrive at r”.

For case (i), a1 must be bound to p’c to meet the maximum delay 15. For case (ii),

the maximum delay for a signal to arrive at q” (through node 7‘”) will be 7 for k = 1,

10 for ls: = 2 and 13 for k = 3. Thus, a1 must be bound to qk to meet the maximum

delay. Note that if q1, q; and q3 are all assigned a2, then the longest delay will be 16

(the delay from s to q;;).

The graph Gw that we shall construct consists of copies of these two widgets. For

each variable am, we include a copy A,- of widget A, and for each clause 03-, we include

a copy Bj of widget B. For any node n in either widget, let n,- denote the copy of

fl

C
)
“
L

0
*
:

O
n

C
)

.3

(
>
4
:

t
”
"
0

(a) widget B used for each clause (b) compact representation

of the widget B

Figure 4.4. Clause structure

node n in the ith copy of the widget. For example, u,- is the copy of node u in the ith

copy (which corresponds to variable 17,) of widget A, and p17 is the copy of node pk in

 jth copy of widget B. Now we connect the copies of widget A and B as follows. If the

k-th literal of C, is 12,-, then connect u; with p19, and u1 with r19. If the k-th literal of

C,- is 3:1 then connect u1— with p19, and u,- with r19. For example, Figure 4.5 shows the

network G’w for W = C1C2, where C1 = (x1+a:’2+a:g) and C2 = (:c’1+:c’2+:r3). What

we shall simulate using A], (k=1,2,3) in widget B for a clause is: the k-th literal of the

clause is true (false) in any assignment if and only if q" is bound to al (respectively,

0.2).

Now we can claim the followings.

Lemma 1. A wff W is satisfiable if and only if there is a binding of Gw with area

9n + 9 X r and maximum allowable delay 15.

Proof: Suppose W is satisfiable. Let f: (3:1,...,:1:,,} —> {true,false} be an

assignment which makes W satisfiable. For each xi, if f(33,) = true then bind al to

u,- and oz to u1-; if f(:c,) = false then bind oz to u,- and al to u1. All remaining nodes

72

widget A for 3:1 widget A for :52 widget A for .13

U1 u’l U2 u’2 u3 ug

n m m n n m

V V V V V V V V V V V V

r1 1 r2 2 r3 3 1 1 2 2 3 3
1 P1 1 P1 1 P1 r2 p2 r2 p2 r2 p2

widget B for C1 widget B for Cg

Figure 4.5. An example W = (3:, + :r’2 + x13)(x’1 + :c’2 + 1:3)

of A,- can be bound accordingly such that the area of A,- is 9 and longest delay is 15.

For each clause C,- = l1 + l2 + l3, if a literal lk is true under assignment f, then bind

a2 to p17 and al to q1-c; otherwise bind al to p1? and a; to q1-°. Under this binding, the

total area of Gw is 9n+ 9r. Since W is satisfiable, for each clause Cj, there is at least

one literal that is true. Thus, the longest path from Sj to q? is at most 15. Note that

under this binding, one of the cases described in the condition (A) is true. Thus the

longest delay of Gw is 15.

Conversely, suppose that G'w has a binding with area at most 9n + 9r and delay

at most 15. Then each A, must have at least area 9 to meet the maximum delay.

Thus, each B, has area at most 9 to meet Amax=9n + 9r. That is, for each Ag, either

u, or u1 must be assigned to al. If u, is connected to p1F (that is, :12,- is the kth literal

of clause j) then u,- and q1-° must have the same binding to meet the maximum delay.

Note that, for each j, at least one of q}, qf, and q} must be assigned to a1 to meet

the maximum delay 15. Thus, any assignment that assigns x,- to true if a1 is bound

to u,- and false if a2 is bound to u,, makes W satisfiable. El

73

From Lemma 1, we have the following theorem.

Theorem 1. The cell selection problem is strongly NP—complete. That is, the

problem is NP-complete even when each gate has two library cells with delay either

lor 3.

Proof. The cell selection problem is NP is trivial. The NP-hardness comes from

Lemma 1. In the reduction, each gate has only two choices, and each library cell has

either delay 1 or 3. CI

4.4 A Cell Selection Procedure for Finding an

Initial Solution to a General Graph

Our cell selection algorithm for a general DAG consists of two parts. In the first

part, we iteratively pick several paths of gates and then obtain a new binding of the

paths until the longest delay is smaller than or equal to Tm”. In the second part, we

further improve the initial solution by a cloning method. This section describes the

first part of the algorithm. The second part will be described in Section 4.5.

4.4.1 Algorithm Description

A procedure for finding an initial solution, named First-Cell-Selection, is shown in

Figure 4.6.

In Step 1.1, each redundant edge < v, w > is removed from G’ if there is another

path from node v to node w. In Step 1.2, we repeatedly identify a reducible subgraph,

which is either a chain of nodes or a set of parallel nodes and their fanout node, and

then replace it with the corresponding block as described in Section 4.2.2.

74

/* G is a network of gates. Tm” is the maximum delay. */

Algorithm First-Cell-Selection (G, Tm”)

begin

Step [(Preprocessing)

1.1 Remove redundant edges.

1.2 Obtain an irreducible graph by replacing each reducible subgraph

with a single node. .

Step 2 (Initial Binding) Bind the smallest (i.e. minimum area) cell to each

node of G.

While (the longest delay through G is larger than Tm”)

begin

Step 5’ {SubGraph Construction) Find G’, a maximal series—parallel

subgraph of G.

Step 4 {Cell Selection) Obtain a binding 8 of G’.

Nodes not in G’ are bound as in previous iterations.

end

end First-Cell-Selection

Figure 4.6. Procedure First-Cell-Selection

In Step 2, we initially bind the smallest cell to each node of G. Steps 3 and 4

are repeated as long as the longest delay under the current binding of G is larger

than Tm”. In Step 3, we choose a set of paths of gates which has the following

two properties: (i) the binding of the paths needs to be changed to satisfy the delay

constraint Tm”, and (ii) the paths can induce a maximal series—parallel subgraph of

G. A maximal series-parallel graph is a series-parallel subgraph such that if any edge

is added to the subgraph, the resulting graph is no longer a series-parallel subgraph.

The reason for finding a maximal series-parallel subgraph of G is obvious: if more

nodes and edges are considered for replacement, a new binding of G is likely to be

closer to the optimal.

In Step 4, we find a binding [3 of G’ using the algorithm described in Section 4.2.2,

where G’ is the series-parallel graph constructed in Step 3. Note that the fanout

delay of a node u in G’ depends on the load capacitance of u, which is the total

75

(a) A Network (b) A Maximal Series-Parallel Subgraph

Figure 4.7. An example network

input capacitance of all u’s fanout nodes. In computing the load capacitance of u, we

consider all its fanout nodes in G, not restricted to G’. That is, the input capacitance

of each fanout node not in G’ is added to the load'capacitance of u. In this case, the

input capacitance will be that of the cell currently bound to the node. For example,

consider node A in Figure 4.7. Although the graph of (b) contains only node B,

the load capacitance of A is the sum of the input capacitances of nodes B and C.

Thus, the input capacitance of the cell currently bound to C is added to the load

capacitance of A.

After Step 3 and Step 4 are executed, some paths not included in G’ may become

critical (i.e. delay > Tm”). If this occurs, Step 3 and Step 4 are repeated.

There may be a case when a node selection is oscillating in Step 3: a node was

first selected, then became unselected, and eventually is reselected. For such node u,

the cell with the largest delay is removed from Lu. Thus, for a node whose selection

oscillates as the while loop iterates, the cells for the node are removed from the

library in decreasing order of their internal delays. This removal enables the loop to

terminate.

76

4.4.2 A Method for Finding a Maximal Series-Parallel Sub-

graph of a Network

In the procedure First-CelLSelection, if the longest delay of the network under the

current binding is larger than Tm”, Step 3 is applied to find a maximal series-parallel

subgraph. The subgraph must contain as many nodes as possible whose binding

affects the longest delay and area.

For a DAG G(V, E), we construct a maximal series-parallel subgraph of G by

picking up a set of edges from E (the set of edges in G). Edges are picked up

in nonincreasing order of their weights. This section first describes a method for

computing the weights of edges, and then how to find such a subgraph of G.

Weights of Edges

For a given a binding of the network, the weight of an edge is computed based on the

following three factors.

1. Slack: The slack of an edge is defined to be an amount of time by which the

longest delay through the edge is larger than Tm”. When we select edges, edges

on a path with delay much larger than Tm” should have higher priority than

those on a path with delay slightly larger or smaller than Tm”.

2. Heaviness: The heaviness of node u is defined to be the average size of library

cells for u. Consider two nodes that differ in heaviness considerably. Since the

heavier of the two nodes affects the total area more significantly than other

node, the binding of the heavier node is more important than that of the other

node. We define the heaviness of an edge to be the average heaviness of the two

nodes incident to the edge.

77

3. Sensitivity: The sensitivity of node u is defined to be the average area-to-

delay ratio of cells in Lu. This area-to-delay ratio measures an amount of area

increment per unit delay of the binding of u. If we change the binding of nodes

with high sensitivity to reduce the delay of a critical path to Tmax, we can expect

on average a smallest area increment. Similar to heaviness, the sensitivity of

an edge is defined to be the average sensitivity of the two nodes incident to the

edge.

For edge e = < u,v >, let 8(6), H(e), and y(e) denote its slack, heaviness, and

sensitivity, respectively. For node w, let h(w) and y(w) denote its heaviness and sen-

sitivity, respectively. More formally, the factors are defined as follows.

_ h(u)+h(v)_1

“(6’ ‘ 2 2(ILI..I.§:A“)+IWEA(6))

e _ y(u)+y(v):1 1 A(c)
3%) — 2 2(ILuICEZL D(u, c) +|va|c€ZIED(u,c))

where T(e) is the delay of the longest path that passes through edge e.

The weight of an edge is obtained from the normalized values of the three factors.

To normalize 8(e), H(e), and 37(e), we simply divide them by 8mm, ’l'tmax, and 32",“,

respectively, where Sm“ is the maximum slack of the edges in the network, ’Hmax

the maximum heaviness, and 3?me the maximum sensitivity. The weight of edge e,

denoted by W(e), is given by the following formula:

_ __ H(e)_ We)

asmaa; + fl7.1771411? 7ymaa:

78

In the above formula, 01, 6, and 7 are constant parameters, which shall be determined

experimentally. We used the following values in our experiment: a = 1, fl = 0.7, and

7 : 0.5. Note that the larger S(e) is, the less efficient edge e is. This is the reason

that we have a minus (“-”) sign in front of VIE);

Construction of a Maximal Series-Parallel Subgraph

The following procedure finds a maximal series-parallel subgraph of graph G(V, E).

Subroutine Find-Maz_Series-Parallel-Subgraph (G)

begin

Step 1: Initialize S to be the collection of edges that are on the longest and the

second longest path.

Step 2: For all edges of G not in S, compute their weights.

Step 3: Consider the edges in nonincreasing order of their weights.

When an edge is considered, add it to S if the resulting S can still lead

to a series-parallel graph.

Step 4: Remove all unnecessary edges from S.

Step 5: Add a dummy source and a dummy sink node to G.

end Find-Maz-Series- Parallel-Subgraph

Figure 4.8. A Procedure to Find a Maximal Series—Parallel Subgraph

In the procedure, S contains a set of edges of G. In Step 1, S is initialized to the

edges of two paths, the longest and the second longest path through G. Note that

the union of any two paths leads to a series-parallel graph in a way that we add one

dummy source and one dummy sink node to the union. In Step 2, we compute the

weights of the edges of G not in S by using the method described in Section 4.4.2.

To minimize the area increment for decreasing path delays greater than Tm”, we

need to find a set of edges of maximum total weight which induces a series-parallel

79

graph. The problem of finding such a set is NP—complete by reducing the edge-deletion

problem to the problem [5]. Therefore, we have developed a heuristic method for

finding such a set, as described in Step 3 through Step 5.

In Step 3, edges are considered in nonincreasing order of their weights. For each

edge, we should check whether set S can still lead to a series-parallel graph after

adding the edge to S. This checking can be done in linear time by using the algorithm

of Valdes [75]. In Step 4, unnecessary edges, which are not on paths from primary

inputs to primary outputs, are removed from S. In Step 5, S is augmented with a

dummy source and a dummy sink node to induce a series-parallel graph. A dummy

node has a library cell with both delay and area zero.

(a) A Network G (b) S after Step 3 (c) S after Step 5

Figure 4.9. An example of finding a series-parallel subgraph

Figure 4.9 illustrates how to construct a maximal series-parallel subgraph. The

graph in (b) illustrates the set S after Step 3. In Step 4, node 4 is eliminated from S

since edge < 4,10 > is not on any path from a primary input to a primary output.

Similarly, node 8 is eliminated from S. A series-parallel subgraph as shown in (c) is

obtained after adding two dummy nodes D1 and D2 to S.

80

4.4.3 Complexity Issues I

Let us discuss the time complexity of the procedure First-Cell-Selection. Consider a

network G(V, E). Let L be UuEV Lu. Step 1.1 is equivalent to finding the transitive

closure of G, which takes polynomial time. Step 1.2 can be done in pseudo-polynomial

time as described in Section 4.2.2. In Step 2, the smallest cell for each gate can be

found in 0(ILI) time. Step 3 consists of two parts: computing the weights of edges

and sorting them. To compute the edge weights, the longest path which uses e

must be found for each edge e. This step can be performed in O(|V| + |E|) time

by considering the nodes in topological and reverse topological order [41]. Thus, the

weight computation takes 0(IVI + [E] + |L|) time. The sorting of weights can be done

in 0(IEIX logIEl) time. The worst time complexity of Step 4 is T3103 X [V], which is

pseudo polynomial.

For every |V| iterations of while loop, there is at least one node such that the

node was first selected, then unselected, and eventually reselected. For such node u,

we remove the cell with the largest delay from Lu. Therefore, the while loop requires

at most [L] X [VI iterations in total.

Our algorithm handles only integer delay values, including Tmax. If a delay value

is a real number (as usual), not an integer, the algorithm takes the integer part after

multiplying the delay value by an integer M. As a result, M determines the precision

of delay values. The larger the number of significant digits we need in representing

delay values, the larger M we should use. As shown in Section 4.6, in the general

case, the precision loss of delay values minimally affects quality of the solutions.

81

4.5 A Cloning-Based Improvement Method

In this section, we present a cloning-based method for improving the initial solution

of graph G(V, E), resulting from the procedure First-Cell-Selection. Cloning is a

process of duplicating nodes and spreading their in-coming or out-going edges over

the duplicated nodes (called clones). In our proposed method, graph G is transformed

into a cloned series-parallel graph by cloning, and then a binding of the cloned graph

is obtained using the algorithm described in Section 4.2.2.

Chan [16] proposed a cloning-based cell selection technique, in which a cloned tree

is constructed from the graph by repeatedly duplicating every node into as many

clones as the number of its fanout nodes. Therefore, the number of clones of a node

grows exponentially with the depth of the node in the graph. However, in our cloning

method, a cloned series-parallel graph is constructed and the number of nodes (clones)

added increases just linearly with the number of nodes of a graph. When a node is

cloned several times, the binding of the node must be consistent among all its clones.

Chan’s algorithm uses an exhaustive search mechanism which chooses the same cell

for the clones for enforcing this consistency. In our method, the binding of the clones

is fixed to the solution obtained in Section 4.4. From this improvement method, we

shall obtain a new binding of the nodes not being cloned, which improves their old

binding.

4.5.1 Basic Concepts and a Cloning Operation

Let us define basic concepts and terms of the cloning operation. The details of our

improvement method will be described in Section 4.5.2.

82

Definition of Terms

Let G(V, E) be a directed acyclic graph (DAG). For nodes w and v of G, w is a

predecessor of v if there is a path (of length at least 0) from w to v. Especially, if the

length of the path is 1, w is called an immediate predecessor of v. If w is an immediate

predecessor of v, then v is a immediate descendant of w. For V’ C V, w is a nearest

common predecessor of V’ if 1) w is a predecessor of u for all u E V’ and 2) :1: is a

predecessor of u for all u E V’ and w is a predecessor of :r implies that w = 3:. Note

that, for a set of nodes, more than one nearest common predecessor may exist.

Definition 1: Given a DAG G(V, E), a node in V is a join node if it has more

than one in-coming edge. A node in V is a fork node if it has more than one out-going

edge.

Definition 2: Let G(V, E) be a two-terminal DAG and v be a join node. For node

w, which is a nearest common predecessor of all v’s immediate predecessors, let V’

be the set of all the nodes that are on paths from w to v. The subgraph induced by

set V’ is called a local graph (L-graph) of v (which depends on w). Node :1: E V’ —

{v,w} is an outward node (O-node) of the L-graph if as has an outgoing edge to a

node not in V’.

For example, in Figure 4.10, node 8 is a join node with its immediate predecessors

5 and 7. The nodes 5 and 7 have only one nearest common predecessor, which is

node 2. Thus, there is one L-graph G’(V’, E') of node 8, where V’ = {2, 3,4, 5, 6, 7, 8}

and E’ = {< 2,3 >,< 2,5 >,< 3,4 >,< 4,6 >,< 6,7 >,< 7,8 >,< 5,8 >}. The

L-graph G’ contains two O-nodes, nodes 4 and 6.

The following two lemmas show the properties of the L-graph.

Lemma 2: Let G(V, E) be a two-terminal DAG and v E V be a join node. If no

predecessor of v is a join node, then there is only one L—graph of v.

83

OOOOOOOOOOOOOOOOO

f L—graph of node 8

Figure 4.10. An example L—graph

Proof: Since no predecessor of v is a join node, there is only one nearest common

predecessor for all v’s immediate predecessors. Thus, there is only one L-graph. Cl

Lemma 3: Let G(V, E) be a two-terminal DAG and v E V a join node such that

no predecessor of v is a join node. If there does not exist an O-node is in the L-graph

G, of v, then G, is a series-parallel graph.

Proof: Note that there is only one nearest common predecessor w of all v’s

immediate predecessors since no predecessor of v is a join node. Let Gv(V,,, E.) be

the L-graph of v. Since there is no O—node in G1,, for every :1: in V,, such that a: 79 w,

($,y) E E implies that (3:, y) E E, for any y. We prove the lemma by induction on

n, where n is the number of fork nodes of GU. For n21, the only fork node in G,

is w, and G1, can be constructed from chains by parallel compositions. Suppose that

the lemma holds for all n < k. We will prove the case when n = k, where k 2 2.

Let u1,u2, ..., u, be the immediate descendants of w. For each u,, define D,- to be the

84

collection of all nodes of G, which are descendants of u,-. If a: is a common descendant

of u,- and uj, then a: is a join node. Since G, does not have a join node except v,

D, (‘I DJ- 2 {v} for all i 76 j. Since n 2 2, there is some I such that D; has at least

one fork node. Consider the subgraph H induced by (V, — D1).U {v}. H has fewer

than k fork nodes. By inductive hypothesis, H is a series-parallel graph. Note that

the subgraph induced by D; is a series parallel graph, and the subgraph H’ induced

by D; cup {w} is also a series-parallel graph. G, is a parallel composition of H and

H’. Therefore, G, is a series—parallel graph. Cl

Lemma 3 implies that we can apply the cell selection algorithm of Section 4.2.2

to the L-graph GUN/L, E.) of the join node v if V, has neither an O-node nor a join

node except v.

A Cloning Operation

Let G(V,E) be a two-terminal directed acyclic graph. Consider a join node v of

G such that no predecessor of v is a join node. By Lemma 2, there is only one

L-graph of v. Let GU(V..,,E,,) be the L-graph of v, and let u be an O-node of G”.

Since no predecessor of v is a join node, u has only one immediate predecessor, say

:13. Let {y1,y2, ...,yk} be the immediate descendants of u which are not in V”, and

{21, 22, ..., 2,} be the immediate descendants of u which are in V,,. Cloning u is carried

out by duplicating it into two clones, say uA and uB, and then spreading the k + r

outgoing edges of it over uA and uB. More formally, G(V, E) is updated as follows

after cloning u:

V +— V U {it/1} U {11,3} — {u}.

E <— E U {< x,u,4 >} U {< uA,y1 >, < uA,y2 >, ..., < uA,yk >}

U {< 2:,uB >} U {< uB,21 >, < uB,22 >, ..., < uB,z,. >}

85

— {< :13,u>}

— {< 11,111 >,<u,y2 >,...,<u,yk >} — {< 11,21 >,< 11,22 >,...,<u,z,. >}

The L-graph GU is also updated accordingly. G1 will not be in G, and uB will

be in G”. Since a node uA together with an edge < :r,uA > has been added to G

as the result of cloning u, :1: (which is the immediate predecessor of u) will become

a new O—node if :1: is not the source node of G, (a nearest common predecessor of

all v’s immediate predecessors). To remove all O-nodes from the L-graph of v, we

visit O-nodes of the L—graph repeatedly in reverse topological order and apply cloning

operations to them.

Figure 4.11 illustrates how to eliminate O-nodes from the L-graph of node 8 shown

in Figure 4.10. The L-graph in (a) has been obtained from the L—graph in Figure 4.10

by duplicating an O-node 6 into clones 6A and 6B. The L-graph in (b) has been

obtained from the L-graph in (a) by duplicating an O-node 4 into clones 4A and 4B.

Note that cloning a node may introduce a new O-node, which is the parent of the

cloned node. In this example, node 3 becomes a new O-node after cloning node 4.

The L-graph in (c) is obtained from the L-graph in (b) by duplicating node 3 into

clones 3A and 33.

4.5.2 Cloning and Cell Selection

Our cloning-based improvement method is basically comprised of two tasks: con-

structing a cloned series-parallel from a given network G and performing cell selec-

tion for the cloned graph. If we try to perform all the cloning operations to obtain

a series parallel graph, the resulting graph may have an exponentially large number

of nodes. To avoid the exponential growth, the two tasks are interleaved as follows.

After cloning the L—graph of each join node, the dynamic programming algorithm in

86

L-graph of

................. node 8

L—graph of

node 8

“- L-graph of

node 8

(a) after cloning node 6 (b) after cloning node 4 (c) after cloning node 3

Figure 4.11. An example of cloning

87

Section 4.2.2 is performed on the cloned L-graph. As a result, the cloned L~graph

(which is a series parallel graph) can be reduced to a single node with corresponding

library cells.

When a node is cloned into several clones, the binding of the node must be con-

sistent among its clones. To enforce this consistency, if u is cloned to ul, u2,..., u,,

then the binding of the r clones is fixed to the binding of u, which is produced by the

algorithm in Section 4.4.

Figure 4.13 shows a procedure, named Improvement-by-Cloning, which imple-

ments the cloning—based improvement method. Step 0 is a preprocessing step whose

process is similar to that of Steps 1 through 3. That is, we visit all join nodes of

G, apply cloning, and reduce cloned L-graphs to blocks until there is only one node.

The only difference is that in the preprocessing step, we do not find bindings of the

blocks. Even though some node n of G is not cloned directly, the binding of 71 must

be fixed if a block to which n is reduced is cloned later. Therefore, the binding of n

will be used for all clones of n. Step 2 is carried out using the operation described

in Section 4.5.1. Step 3 is to apply the algorithm of Section 4.2.2 for the L-graph of

join node v. In this step, it should be noted that the area of clones must be counted

only once.

Figure 4.12 illustrates an example improvement. In (a), the L-graph of join node

5 has only O-node, node 3. Node 3 is duplicated into two clones 3A and 33, as shown

in (b). A subgraph (the graph induced by nodes 3B, 4, and 5) of the L-graph of node

5 in (b) is replaced by a single node X, as shown in (c). As a result, there is one

O-node, node X, in the L—graph of node 10 in (c). Node X is duplicated into nodes

XA and XB, as shown in (d). Node Y in (e) corresponds to the block of 3A, XA,

6, 8, and 10. Finally, the L-graph of node 11 in (e) is reduced to a single node Z, as

shown in (f). In this example, the binding of nodes 4 and 5 as well as node 3 should

88

L-graph of node 5
L-graph of node 5 L-graph of node 10

(a) (b) (C)

(d) (e, (0

Figure 4.12. An improvement example

89

Algorithm Improvement-by_Cloning (G)

begin

Step 0. Find all nodes of G whose binding must be fixed.

Step 1. Visit each join-node v of G in topological order, and perform Step 2

and Step 3.

Step 2. Eliminate the O-nodes from the L-graph G’(V’, E’) of v by

cloning.

Step 3. Apply “the cell selection algorithm for a series-parallel graph”

to the L-graph of v.

end Improvement-by-Cloning

Figure 4.13. Procedure Improvement-by-Cloning

be fixed since the node X, which includes 4 and 5, is cloned.

Theorem 2 asserts the correctness of the procedure in Figure 4.13.

Theorem 2: Let G(V, E) be a two-terminal DAG such that the sink node of G is

a join node. When the procedure of Figure 4.13 is applied to G, the following (1)-(iv)

hold.

(i) Just before executing Step 2, there is only one L-graph of v.

(ii) After finishing Step 2, the resulting L-graph of v is a series-parallel graph.

(iii) After Step 3, the resulting L-graph of v produced by Step 2 is reduced to either

a single node or a chain of two nodes.

(iv) After processing the last join node, which is the sink node of G, the resulting

graph has only one node.

Proof:

(i): If v is the first join node of G in topological order, there is no predecessor of

v which is a join node. Therefore, there is only L-graph of v by Lemma 2. Since

we remove join nodes in topological order, when a node v is visited, there is no

predecessor of v which is a join node. Thus, (1) holds.

(ii): When v is visited, there is no predecessor of v which is a join node. Note that

90

Step 2 eliminates O-nodes from the L-graph of v and does not introduce any new join

node. Thus, (ii) holds from Lemma 3.

(iii): Immediately follows from the behavior of the cell selection algorithm of Section

4.2.2. Let w be the nearest common predecessor of all the immediate predecessors of

v. If w has no out-going edge to a node not in L—graph of v, the L—graph is reduced to

a single node. Otherwise, the L-graph of v except for w is reduced to a single node,

implying that the L-graph is reduced to a two-node chain.

(iv): Trivially holds. Cl

4.5.3 Complexity Issues II

The number of nodes in G is 0(|V|) at any time during execution of Improve-

ment-by-Cloning. For a join node v, the number of the nodes to be cloned is at

most the number of nodes in the L-graph of v. Thus, each Step 2 can be done in

O(|V] + |E|). At Step 3, the resulting L—graph of v is reduced to either a single node

or a chain of length 2, which can be done in pseudo-polynomial time. Since Step 2

and Step 3 must be repeated as many times as the number of the join nodes of G,

the time complexity of Improvement-by_Cloning is pseudo polynomial.

4.6 Experimental Results

This section presents the experimental results of our algorithm with the LGSynth91

logic synthesis benchmark circuits. We compare our results with the outputs of misII,

a technology mapping system from UC Berkeley, and Lin’s work [57]. For each of

the benchmark circuits, we first ran misII on it using an example technology library.

The technology library used in this experimentation is a variation of a technology

91

library in the LGSynth91 logic synthesis benchmark package. Our algorithm is then

tested using the technology library and the network of gates. In misII, there is a user-

determined parameter called m. For m = 0, misII produces an area optimal solution

while ignoring the maximum allowable delay. In contrast, for m=1, misII produces a

solution with the longest delay less than the maximum allowable delay, but does not

optimize the area of the output. We used m=0.75 to avoid those extreme cases and

to compare with Lin’s work in which m is around 0.75. For each circuit, Tm” was

set to the longest delay of the circuit obtained from misII.

Table 4.2 shows our results, produced before and after the second part of our

algorithm (i.e., improvement by cloning). The column size contains the number of

gates in each circuit obtained from misII. The cloning ratio of a graph refers to the

ratio of “the number of gates to be cloned” to “the total number of gates”. For each

circuit, the CPU time was measured on a SUN 4 Sparcstation. No of iterations is the

number of iterations made from Steps 3 through 5. The outputs of Lin’s work shown

in this table are the area improvements over misII, reported in [57].

For almost all of the circuits, our algorithm achieves a significantly better area

improvement over the outputs of misII than Lin’s work. The area improvement over

misII ranges between 27% and 59%. In all cases, our algorithm produces solutions in

'a reasonable time. The CPU time depends on Tm”. as well as the number of gates.

The run time of our algorithm depends on N, which is the number of significant

digits of delay values. The results in table 4.2 are obtained when N = 3. Table 4.3

illustrates the comparison of the results for different N’s, where A1 and A2 are the

area of each circuit obtained for N = 3 and N = 4, respectively. As shown in the

table, the area improvement gained by the more accurate delay representation is

negligible.

The cloning method improves the initial solution further. The improvement is

B
e
n
c
h
m
a
r
k
C
i
r
c
u
i
t
s

m
i
s
I
I

A
l
g
o
r
i
t
h
m

L
i
n
’
s
W
o
r
k

[I

N
a
m
e

F
u
n
c
t
i
o
n

S
i
z
e

A
r
e
a

D
e
l
a
y

A
r
e
a
i
m
p
r
o
v
e
m
e
n
t

N
o
.
o
f

C
l
o
n
i
n
g

C
P
U

A
r
e
a

B
e
f
o
r
e

A
f
t
e
r

i
t
e
r
a
t
i
o
n
s

r
a
t
i
o

t
i
m
e

i
m
p
r
o
v
e
m
e
n
t

 p
o
s
t
p
r
o
c
e
s
s
i
n
g

p
o
s
t
p
r
o
c
e
s
s
i
n
g

b
9

L
o
g
i
c

8
6

4
2
2
4

1
7
.
3
9

2
6
1
8
(
3
8
%
)

2
3
9
9
(
4
3
%
)

7
5
%

1
s
e
c

-
0
.
2
%

C
4
3
2

P
r
i
o
r
i
t
y
D
e
c
o
d
e
r

1
4
9

7
3
1
9

5
3
.
6
7

4
9
0
3
(
3
3
%
)

4
3
5
3
(
4
0
%
)

5
0
%

1
.
5
s
e
c

3
5
%

C
4
9
9

E
r
r
o
r
C
o
r
r
e
c
t
i
n
g

3
1
0

1
5
1
2
6

4
4
.
3
9

1
1
1
9
3
(
2
6
%
)

1
0
9
7
6
(
2
7
%
)

7
0
%

3
s
e
c

2
9
%

C
8
8
0

A
L
U

a
n
d
C
o
n
t
r
o
l

2
4
5

1
2
1
5
0

4
1
.
2
0

6
6
8
2
(
4
5
%
)

6
0
4
0
(
5
0
%
)

7
0
%

2
s
e
c

i
N
/
A

0
1
3
5
5

E
r
r
o
r
C
o
r
r
e
c
t
i
n
g

4
7
0

2
3
0
8
6

5
0
.
4
2

1
3
3
8
9
(
4
2
%
)

1
2
7
0
3
(
4
4
%
)

9
0
%

5
s
e
c

N
/
A

C
1
9
0
8

E
r
r
o
r
C
o
r
r
e
c
t
i
n
g

3
9
8

2
1
1
2
6

5
8
.
7
0

1
2
0
4
1
(
4
3
%
)

1
1
2
2
9
(
4
6
%
)

8
0
%

5
s
e
c

1
5
%

C
2
6
7
0

A
L
U

a
n
d
C
o
n
t
r
o
l

5
6
1

2
9
0
1
8

5
9
.
7
5

1
6
2
5
0
(
4
4
%
)

1
4
9
9
0
(
4
8
%
)

7
8
%

6
s
e
c

1
3
%

C
3
5
4
0

A
L
U

a
n
d
C
o
n
t
r
o
l

7
9
3

4
2
0
3
9

7
7
.
3
8

1
6
2
5
0
(
4
4
%
)

2
1
8
1
0
(
4
8
%
)

8
4
%

8
.
5
s
e
c

N
/
A

C
5
3
1
5

A
L
U

a
n
d

S
e
l
e
c
t
o
r

1
3
0
5

6
8
9
5
0

6
8
.
0
3

3
7
2
3
3
(
4
6
%
)

3
6
1
5
2
(
4
7
%
)

9
0
%

1
5

s
e
c

N
/
A

C
6
2
8
8

1
6
-
b
i
t
M
u
l
t
i
p
l
i
e
r

2
3
4
1

1
1
6
9
3
8

1
8
1
.
4
5

4
7
9
4
4
(
5
9
%
)

4
7
2
3
0
(
5
9
%
)

9
5
%

3
0

s
e
c

N
/
A

C
7
5
5
2

A
L
U

a
n
d
C
o
n
t
r
o
l

1
8
1
3

9
0
5
7
1

9
7
.
3
8

5
0
7
1
9
(
4
4
%
)

4
5
9
1
0
(
4
9
%
)

8
0
%

2
5

s
e
c

2
0
%

a
l
u
2

A
L
U

2
4
5

1
3
0
7
3

6
9
.
6
2

8
2
3
5
(
3
7
%
)

7
4
7
4
(
4
3
%
)

6
6
%

3
.
5
s
e
c

2
0
%

a
l
u
4

A
L
U

4
6
3

2
4
1
1
2

7
0
.
6
6

1
4
9
4
9
(
3
8
%
)

1
3
8
9
8
(
4
2
%
)

7
5
%

8
.
5
s
e
c

1
6
%

d
a
l
u

D
e
l
i
c
a
t
e
d
A
L
U

1
1
9
7

6
2
5
3
9

8
9
.
8
4

3
4
3
9
6
(
4
5
%
)

3
3
4
1
6
(
4
7
%
)

 64%

 1
9
s
e
c

 16%

T
a
b
l
e

4
.
2
.
A
s
u
m
m
a
r
y

o
f
e
x
p
e
r
i
m
e
n
t
a
l

r
e
s
u
l
t
s

(
n
o
.

o
f
s
i
g
n
i
fi
c
a
n
t

d
i
g
i
t
s
2

3
)

92

93

1

Table 4.3. A comparison of runs with different precisions

more effective when the cloning ratio is low. The lower the cloning ratio of a circuit,

the more gates will have optimal bindings.

4. 7 Conclusion

In this chapter, we presented the time complexity of the cell selection problem and a

path—oriented algorithm. We proved that the cell selection problem is strongly NP-

complete for a general acyclic graph even when there are only two library cells for

each gate. Our cell selection algorithm iteratively picks paths of gates and finds a

new binding of the paths until the longest delay decreases to a user-defined upper

bound. After finding a solution, the algorithm improves it by constructing a cloned

series-parallel graph and then obtaining a new binding of the graph.

In the experimentation with the LGSynth91 logic synthesis benchmark circuits,

the path-oriented feature of our algorithm is shown to be effective. On an average,

the results of our algorithm improve the outputs of misII by 45%. The results are

significantly better than those of Lin’s work.

CHAPTER 5

Workspace Management in VLSI

Design Processes

This chapter presents a methodology for workspace management in VLSI design pro—

cesses. A workspace model is proposed which reflects the way that the entire process

of the project is hierarchically sub-divided into subprocesses. Our proposed workspace

model captures data dependencies between workspaces, created separately for sub-

processes of a project. This feature facilitates change propagation, since designers can

easily recognize whether their work is affected by design objects released by someone

else. Under our workspace model, we present a mechanism for preserving and keeping

consistent states of an in-progress project. In most of previous VLSI/CAD frame-

works, keeping data consistencies among workspaces is left to designers. We present

mechanisms for version control over the outputs of CAD tools, and their variations

from previous work.

94

95

5.1 Introduction

The electronic design automation community has recently placed its emphasis on

the process of design creation and evolution. A VLSI design process is defined as a

sequence of tools and subprocesses which performs a CAD task [35], for example a

high-level synthesis on a VHDL behavioral object. The execution of a VLSI design

process is iterative and tentative [47], resulting in many versions. With a large design

process, a design team hierarchically sub-divides it into smallprocesses in terms

of its target CAD function and its target design, and cooperatively works on them.

Therefore, CAD frameworks [7, 47, 49, 77] support the concept of workspaces in order

to manage design objects separately for subprocesses, and provide version control over

design objects in workspaces. Workspaces can be defined as areas in which process-

related design objects are placed [47, 77].

This chapter presents a workspace model and workspace management mechanisms

for VLSI design processes. In the VLSI/CAD literature, litte research, except for

[7, 47], have been reported on workspace modeling. The main contribution of the

previous workspace models [7, 47] is to organize workspaces into a three-level hierarchy

and define the concept of release. In the previous models, workspaces are named

private (for the process performed by an individual designer), group (for the process

performed by a group of designers), or project workspaces, depending on their levels in

a hierarchy. Design objects are released (meaning “relocated”) from a private (group)

workspace to a group (project, respectively) workspace after they are validated and

ready for others to use. The previous models are limited in sufficiently capturing how

more than one designer cooperate to carry out a project. For example, when design

objects are released by some designer, it is unclear which designers should be notified

of them. It is also unclear how far design objects designed by designers should be

released. That is, designers cannot easily recognize whether these objects should be

96

released into only a group workspace or into a project workspace.

One principle of our workspace model presented herein is that a workspace hi-

erarchy should reflect the way that the entire process of a project is hierarchically

partitioned into subprocesses. Workspaces are separately created for these subpro—

cesses. Our model captures data dependencies between subprocesses, i.e., input and

output relationships between subprocesses, and can overcome the shortcomings of

previous models. CAD frameworks provide various mechanisms for efficiently man-

aging design objects in workspaces. They include mechanisms for the preserving of

design states [7], change propagation among design objects [19, 27, 46], version con-

trol over design objects produced by tool invocations [12, 44, 40], and and other basic

operations (such as check—in and check-out). The chapter also presents such mech-

anisms which are based on our workspace model. Few CAD frameworks, except for

the DDM system [7], provide mechanisms for preserving of design states. However,

the mechanism provided by the DDM system is minimal in that the framework can

only records states of an individual workspace. Our mechanism for preserving design

states allows designers to preserve states of an entire project, compare two different

states for seeing design tradeoffs, and restore a workspace (or a entire project) to a

preserved state.

Change propagation is system support for triggering proper actions against

changes made to design objects. This system support serves as a vehicle for keep-

ing data consistencies among workspaces. The major difference between our change

propagation method and previous work [19, 27, 46] is that in our method, changes

are reported to workspaces, not designers as in the previous work. This feature en-

ables designers to easily identify the changes affecting a particular workspace, when

a designer is working in more than one workspace. In the literature, several CAD

frameworks, notably Ulysses [13, 14], Cadweld [30], NELSIS-CAD [12], Monitor [44],

97

Tzi-cker’s system [18], and Minerva [43], have been developed which provide design

process management. These frameworks are primarily aimed at executing a user-

specified sequence of CAD tools, and provide a limited capability of data manage-

ment for tool executions. Their only capability is versioning to distinguish an old

output and a new output of the same tool when the tool is executed more than once.

This capability alone is not sufficient for meeting various designers’ needs, such as

capturing a design history or preventing the proliferation of temporary data resulting

from “what if”-style design. Lastly, this chapter also presents basic mechanisms and

their variations from previous work.

This chapter is organized as follows. Section 5.2 describes structuring concepts

of our workspace model. Section 5.3 describes a mechanism for preserving design

states and using them in the design process. Section 5.4 shows how efficiently change

propagation are handled in the workspace model. Section 5.5 describes techniques for

version control over outputs of tool executions. Section 5.6 presents basic workspace

management mechanisms. Section 5.7 concludes.

5.2 A Workspace Model

5.2.1 Modeling Concepts I

Workspaces provide an environment for carrying out tasks in VLSI/CAD frameworks

and CASE (Computer—Aided Software Engineering) systems. In CAD frameworks

and CASE systems, workspaces are used in two ways. One is that workspaces act

as a medium for communication between designers [7]. That is, designers release

design objects into a workspace, from which other designers access the objects for

their work. The other is that workspaces are a place to which a particular design

98

process (or a designer) is allowed read/write privilege [27, 47, 77]. This implies

that a workspace corresponds to a directory of the UNIX file system, in which files

are created and updated. In our workspace model, workspaces for a project are

hierarchically organized, as illustrated in Figure 5.1. Workspaces in a workspace

hierarchy are classified into two categories, depending on how they are used.

The two categories are:

0 Local workspace: A leaf node, i.e., a workspace with no child workspace, is a

local workspace. Local workspaces are ones in which CAD tools are executed

to accomplish tasks.

0 Shared workspace: A non leaf node is a shared workspace. A shared workspace

is one which contains design objects released from its child workspaces.

After a design object is initially created, new versions can be derived from it by

modifying it or by changing its constraints, and new versions can in turn be derived

from them. In this chapter, we will call all of these versions, including the object itself,

a version group for the object? The major role of workspaces is to specify which version

is the currently used one. Therefore, workspaces, local or shared, contain only one

version in a version group. A shared workspace corresponds to a group workspace in

the terminology of previous workspace models [7, 47, 52]. A workspace and its parent

workspace can have different versions in the same version group, as in the previous

workspace models. The content of a shared workspace is inherited by all descendants

of the workspace, as in [7]. This inheritance means that for a version group G for an

initial object D, if a local workspace W does not contain a version in G, a reference

to D made within W is resolved by any version in G within the nearest ancestor

‘Versions in a version group for an inital object have same name as the object but different

version numbers.

99

workspace W. With a design object, workspaces contain either an actual copy of it

or a reference (or a pointer) to it. Actual copies of design objects can be modified

in a workspace, but references to design objects denote that the design objects are

read-only. Actual copies of design objects pointed by references are stored in a design

libraryir References are specialized into two types, static and dynamic, depending on

whether design objects pointed by them change over time. Dynamic references point

to the latest versions as new versions are checked in a design libraryf They are useful

for enabling designers to automatically use up-to-date design objects.

IA design library is an archive of design objects, which are created and modified within a

workspace.

iIn CAD frameworks and CASE systems, the operation check-in is the registration of a version

into a design library from a workspace. An operation complimentary to check-in is called check-out,

which adds a version (which is either an actual copy or a reference), which has been registered in a

design library, to a workspace. Section 5.6 will describe more detail about the two operations.

100

BY FUNCTION

engine_proj

” ‘ ’0. .0.

II” “\ o". .‘c...
I .0 c

Figure 5.1. Three Dimensions of Workspace Hierarchy Construction

A workspace hierarchy usually exists for a project. The entire design process

(i.e., work) of a large project is usually hierarchically partitioned into small processes,

which are cooperatively carried out by a design team. A basic principle underlying

our workspace model is that a workspace is created for each process at a level. A

workspace hierarchy is constructed along three orthogonal directions: by-component,

by-function, and by-alternative. These three directions are the ways of decompos—

ing an entire design process. With a project, if the target design of the project is

large, the design can be hierarchically partitioned into components. Then different

workspaces are created for all the components (by-component direction). If the target

function of the project is large, the function can be hierarchically decomposed into

small functions. Small functions are performed in different workspaces (by-function

101

direction). In performing a task, a designer tends to try alternative ways of designing

(called design alternatives) and evaluate their tradeoffs. Different workspaces are cre—

ated for those alternative ways (by-alternative). Thus, a workspace hierarchy consists

of workspaces at various levels. A workspace at any level can have child workspaces

along any of the three directions.

Note that with a non—leaf workspace for a design process P, child workspaces

are created for P’s subprocesses. Therefore, we can easily obtain data dependencies

among the child workspaces. Data dependencies among workspaces are input-and-

output dependencies between P’s subprocesses. These dependencies are useful for

designers who are cooperatively carrying out the process P. Such designers will

communicate with each other by releasing and use design objects through the non-

leaf workspace. From these dependencies among the child workspaces, they can easily

recognize whether the new release of design objects from a child workspace affects

their work. Our data model allows designers to specify data dependencies among

child workspaces.

Consider a project that is aimed at synthesizing an RTL-level structural descrip-

tion of an engine control unit. The entire process of the project is first sub-divided

into three subprocesses, which are for writing a VHDL model, engine.vhd, of the

control unit, executing high-level synthesis tools with the VHDL model, and checking

whether the VHDL model matches a synthesized, structural description, respectively.

Since the VHDL model engine.vhd is large, the process for writing it is further

sub-divided into two subprocesses, which are for writing components and building

an entire design from the components, respectively. To see tradeoffs between two

high-level synthesis tools, called the SAW system [72] and the OLYMPUS system [53],

the process for synthesis is further sub-divided into two subprocesses for the two

tools. A workspace hierarchy of the project shown in Figure 5.1. Solid, dashed, and

102

dotted lines denote by-function, by-component, and by-alternative decompositions,

respectively.

The top level workspace, engine-proj, is for the whole project. Components of

the VHDL model engine.vhd are designed in workspace comps. They are released

into the workspace build, from which the workspace engine inherits them. Once

the entire VHDL model is built in the workspace engine, it is released into the

workspace build. After the components and the VHDL model in the workspace

build are validated by designers working in engine and comps, they are released

into the workspace engine-proj. Then, they become visible to designers working in

the workspaces SAW and OLYMPUS. Once two structural descriptions are released from

the workspaces SAW and OLYMPUS into the workspace tool syn, they are evaluated.

Among them, a better one, for example one with smaller area, is selected and released

into the workspace engine-proj. The workspace checking is used for the checking

process.

0
o

O
c. ‘.

SAW OLYIVIPUS

...,.- 3%...

o. ‘ *

a

Figure 5.2. Workspace Hierarchy Changing

103

5.2.2 Modeling Concepts II

A workspace hierarchy is initially constructed in the beginning of a project. Leaf-

node workspaces are assigned to designers. Our workspace model allows a designer

to have more than one leaf-node workspace. It is assumed in previous workspace

models [7, 27, 47] that each designer can have only one leaf—node (private workspace

in their terminology) workspace. This assumption is inadequate for a situation when

a designer is involved in two or more different design processes. Then, the private

workspace for such a designer will contain the objects produced by these design pro-

cesses.

A design process operating on a leaf node may need to be partitioned further

into subprocesses during the project. To handle this, our workspace model allows

a workspace hierarchy to be dynamically changed in a way that workspaces for new

subprocesses are created, and added as new leaf nodes. For example, Figure 5.2 shows

new workspaces which are added to the workspace hierarchy of Figure 5.1. The new

workspaces denote the following. Using the SAW system, a designer explores two design

styles, mux-based and bus-based design, in workspaces Mux and Bus, respectively, as

alternatives. A designer, working in the workspace OLYMPUS, partitions his entire work

into two subprocesses, and creates two workspaces. One workspace, HC, is for writing

an HC (Hardware-C) model from the VHDL model in the workspace engine-proji

The other workspace, run, is for actually running the OLYMPUS system.

When a process is sub-divided into subprocesses, if a subprocess produces design

objects that are used only within the process, the design objects need not be accessible

from other processes. It is enough to release the design objects into the workspace for

the process. That is, they need not be released further along the workspace hierarchy.

§The OLYMPUS system accepts a Hardware—C behavioral description.

104

Our workspace model distinguishes such a subprocess from others by marking the

workspace for it with a star (‘*’). An example of such a subprocess is in Figure 5.2,

where an HC model is used only as an input to the OLYMPUS system.

The way of releasing design objects in our workspace hierarchy is as follows. De-

signers work in local workspaces until they have design objects ready for others to

use. Then, the design objects are released into a parent, shared workspace, and held

until approval is received. After approval, all of them, except for ones released from

star-marked child workspaces, can be released further into an upper-level, shared

workspace. This approval-and—release is repeated until they are in the top workspace.

A workspace hierarchy in previous workspace models are adequate only when

an entire process is partitioned along the by-function or by-component direction.

Instead, our workspace hierarchy can capture the structure of the search space, since

design alternatives can be explored in separate workspaces. If a design alternative,

say A, is sub-divided into more specific alternatives, separate workspaces for these

alternatives are created as children of the workspace for alternative A. For example,

in Figure 5.2, two alternatives, bus-based and mux-based design, are explored for

high-level synthesis using the SAW system. This feature of our workspace model

enables designers to easily find what design alternatives were explored, and how they

are related within an entire design process.

5.3 Snapshots as a Mechanism for Preserving De-

sign States

At any design point, the state of a project can be described by the design objects of

the project [60]. Keeping design states is important for many reasons. For example,

105

a design team can restore the state of a project to some point in the past. Also,

preserved states of a project can be used as checkpoints (review points) of the project.

2-23-93Ep engine-prOj ---------- 1-23-93:EP

: \~“ 0...°o.....

I ‘S‘ .'. “...,

a SAW OLYMPUS 1-5-93.0

Figure 5.3. Snapshot Examples

Our workspace model provides the notion of “snapshot” as a mechanism for pre-

serving design states. Our workspace model supports three ways in which snapshots

are taken from a workspace hierarchy. Snapshots are called simple, top-down hier-

archical, or bottom-up hierarchical, according to their way of construction. A simple

snapshot is a collection of design objects which are present in a workspace at a cer-

tain point. Since the contents of workspaces, local or shared, vary with time, simple

snapshots can be regarded as permanent records of workspaces. They contain static

references to design objects. Top—down hierarchical snapshots are possible for only

shared workspaces, and bottom-up ones are for only local workspaces. A top-down

hierarchical snapshot of a shared workspace W is a simple snapshot of W together

with simple snapshots of all W’s descendant workspaces. Since workspaces are created

for portions (or the entire work) of a project, this snapshot of a workspace captures

106

an overall state of the portion of a project for which the workspace is created. A

bottom-up hierarchical snapshot of a local workspace W is a simple snapshot of W

together with simple snapshots of all W’s ancestor workspaces. Since design objects

are inherited, this snapshot of a workspace captures all design objects that affect a

design process operating on the workspace.

Figure 5.3 illustrates three example snapshots. Node 1-23-93zEP (a snapshot

made on January 23, 1993) is a simple snapshot of workspace engine-proj. A top-

down hierarchical snapshot of workspace engine-proj is shown, which is made up

of the node 1-23-93zEP and all its descendant nodes. A bottom-up hierarchical

snapshot of workspace OLYMPUS consists of the node 1-5-93:O and all its ancestor

nodes.

......... 1-23-93zEP

.0
a....

'.

Figure 5.4. Use of snapshots

When designers have lost data consistencies among objects in workspaces, they

will want to backtrack to a previous, consistent state. In our workspace model, a

workspace can return to a previous design state by loading a snapshot, simple or

107

hierarchical, which preserves the design state. For example, in Figure 5.4, workspace

engine-proj can return to the design state of January 23, 1993 by loading sim—

ple snapshot 1-23-93zEP. A special consideration is necessary for loading a local

workspace with a bottom—up, hierarchical snapshot. Consider workspace OLYMPUS

and a bottom-up, hierarchical snapshot in Figure 5.4. Workspace OLYMPUS must be

filled up with all design objects accessible from simple snapshot 1-5-93. Such ob—

jects are all objects in simple snapshot 1-5-93 together with all objects inherited

from simple snapshots A and B. If two versions in the same version group appear

in snapshots A and B, respectively, only the version in snapshot B is inherited by

workspace OLYMPUS.

By comparing preserved states of a project, designers can obtain information about

how differently design processes were performed at the states. Such information is

useful for designers which want to understand why different sets of design objects

were produced at design states. Our workspace management methodology includes

a mechanism for comparing snapshots and identifying differences between their con—

tents. Comparison between two simple snapshots produces two lists of versions. One

is a list of design objects that are in only One of the two snapshots. The other is a

list of pairs of design objects D1 and D2 such that D1 is in one snapshot, D2 is in

the other snapshot, and D1 and D2 are different versions in the same version group.

Comparison between two hierarchical (bottom—up or top-down) snapshots is carried

out by comparing each pair of corresponding nodes (which are simple snapshots).

5.4 Change Propagation among Design Objects

We define change propagation as system support for monitoring changes to design

objects and taking actions for keeping consistencies among design objects [19, 47]. In

108

our workspace model, changes within a local workspace (i.e., creation or modification

of design objects) are not seen from any other workspace. Therefore, changes are

propagated to other workspaces only if they are from the following four categories.

(1) checking in a design object (into the design library), (2) destroying a design object

from the design library, (3) releasing design objects into a shared workspace, and (4)

removing design objects from a shared workspace.

- - - -> component-of

CELL] encode.vhd@1[ILdecode.vhd@1]

DESIGN] encode_A.vhd@1[[decode_A.vhd@1[decode__A.vhd@2

-CONF

Figure 5.5. An Example of Automatic Configuration Binding

5.4.1 Changes to Design Objects in the Design Library

This subsection describes our change propagation method for changes from category

1 and 2. For a dynamic reference pointing to a design object, if a new version of the

object is checked-in (category 1), the reference is adjusted so it points to the new

version. The appearance of a new version can be propagated further. Our workspace

management methodology includes a mechanism which automatically performs con-

figuration binding on a DESIGN object, say 0, when a new version of a component

109

of O is created. This mechanism is useful for a circuit in which various versions of

0’s components are under design. A designer need not explicitly obtain a complete

design from O and a new version of its component. To support this mechanism, DE—

SIGN objects have a reserved, boolean attribute, called dynamic-flag, which specifies

whether configuration binding must be triggered. More specifically, automatic con—

figuration binding on a DESIGN object is performed in a way that, if more than one

design object is a candidate for a component, the newest one is selected and bound

to the component. The reason for selecting the newest one is that this mechanism is

primarily aimed at helping designers integrate a newly created version of a component

into the entire design. For example, consider a DESIGN object ecc-F.vhd©1 (a sig-

nal encoding-decoding circuit) with dynamic-flag being true, shown in Figure 5.5. As

illustrated in the figure, the DESIGN object has two components, which are instances

of CELL objects encode.vhd@1 (a signal encoder) and decode.vhd©1 (a signal de-

coder). A CONF object ecc-FA .vthl was automatically derived from ecc_.F.vhd@1,

when DESIGN objects encode-A . vthl and decode-A . vhdol, implementations of the

two components of eccj‘.vhd(01, were created. If a new version, decode-A.vhd@2,

is created as a child of decode.vhd@1, the version, together with encode-A.vhd@1,

will lead to a new version, say ecc_FA.vhd@2, of ecc_.FA.vhd. If dynamic references

to ecc-FA.vhd(01 are currently in a workspace, they will be updated to point to

ecc-FA.vhd@2. Our mechanism for automatic configuration binding corresponds to

the notion of change propagation along the component hierarchy, found in previous

work [47]; when a new version of a component of a configuration is created, a new

version of the configuration is automatically created by replacing an old version of

the component with the new one. In addition to the creation of a new configuration,

our mechanism allows designers to limit the scope of change propagation, a feature

not supported by the notion. By imposing constraints on configuration binding, a

designer can obtain only those configurations of interest. For example, when DESIGN

110

object ecc_F.vhd©1 in Figure 5.5 has a constraint that restricts the total size to 1000,

configurations with total size over 1000 will not be derived from ecc-F.vhd@1.

Next let us consider changes from category 2. If a design object is to be deleted,

the deletion is allowed only when it (either an actual copy of it or a reference to it) is

not in any workspace, and it is used not as a component of other design objects. This

restriction is necessary to keep all design data in the design library and workspaces

complete.

5.4.2 Changes to Design Objects Released in a Workspace

This subsection describes change propagation for changes from category 3 and 4.

The release of versions tends to be iterative in the following sense: various versions

are sequentially released into a shared workspace from a child workspace until the

latest released is approved by the designers who use it. There can be a situation

in which designers want to postpone the effect of a new release on their in-progress

work, and to keep using the previous version. This situation may occur when a long-

duration task is in progress. For example, consider a designer, working in workspace

SAW of Figure 5.1, who knows little of how to use the SAW system. Suppose that

the designer is just learning the SAW system with a VHDL model inherited from

workspace engine-proj. When a new version of the VHDL model is released, the

designer will not use it immediately, since the designer needs to understand it first.

Our workspace management methodology includes a mechanism for enabling a de-

signer to keep using the latest released versions. Design objects in shared workspaces

are associated with an attribute called static-inheritance. The value of this attribute is

a list of local workspaces. We will use an example to explain this attribute. Suppose

that a design object D is in a shared workspace, and that the value of its static—

111

engine_proj engine_proj

{engine.vhd@1

engine_str.vhd@1}

{engine.vhd@2

engine_str.vhd@1}

syn

c o ’ a"°'O.

I” ‘ \ '. “"u 1’ ‘\ " °"'-.

SAW OLYMPUS SAW l OLYMPUS]

' {engine.vhd@1}

(a) Before release of engine.vhd@2 (b) After release of engine.vhd@2

Figure 5.6. An Example of a New Release

inheritance attribute is a list of two workspaces W1 and W2. When a new version

V of D is released into the shared workspace by a designer, the object D is auto—

matically copied into workspaces W1 and W2 prior to the release. In our workspace

management methodology, the value of its static—inheritance attribute is updated by

designers.

Designers will remove an object from a shared workspace if they would find it

inappropriate for the release into the workspace. Also, when a design object is in a

workspace, if a new version of the object is released into the workspace, the release

will lead to the removal of that object. When a design object is removed from a

shared workspace, all designers working in descendant, local workspaces of the shared

workspace should recognize the removal. Then they will take proper actions against

the removal.

Changes from categories 3 and 4 may cause objects in shared workspaces to be

112

invalid. Consider two design objects, say D1 and D2, in shared workspaces such that

D1 has been used in the design of D2. If D1 is removed because of a change from

category 3 or 4, D2 will become invalid. In our workspace management methodology,

design objects in a shared workspace have an attribute, called use, for keeping “used”

relationships between two objects. For an object, the value of its use attribute is

a list of design objects in shared workspaces that are used in the design of it. The

value of the use attribute is given by a designer, enabling the attribute to capture

any application—specific “used” relationship, including “component-of” (one is a com-

ponent of the other) and “produced—from” (one was used as an input of a CAD tool

which has produced the other), between two objects. If a change from category 3 or

4 is made to a design object D in a shared workspace, all design objects in a shared

workspace which have D in their use attribute, are marked “invalid.” Also, if design

objects in shared workspaces have any “invalid”-marked object in their use attribute,

they are also marked “invalid”. This marking prevents designers from accessing in-

valid objects, helping them maintain data consistencies among released objects.

For example, consider Figure 5.6 (a), where a released object engine-str.vhd@1

(an RTL-level structural description synthesized from engine . vhdol) is in the use at—

tribute of a released object engine . vhd@1. Workspace SAW is in the static—inheritance

attribute of the object engine.vthl. When a new version, engine.vhd02, is re—

leased into workspace engine-proj, the previous version (i.e., engine.vhd02) is

copied into workspace SAW, as shown in Figure 5.6 (b). Also, the released object

engine-str.vhd@1 is marked “invalid.”

113

5.4.3 Change Notification

Since CAD frameworks can hardly understand the full effects of changes, designers

are eventually responsible for responses to changes. Our workspace management

methodology includes a mechanism for notifying relevant designers of changes, as

in [19, 27, 46]. Changes are reported directly to designers in previous work, but

this method has a limitation. If a designer works in more than one workspace, the

designer should identify which changes are related to each of his workspaces. To relieve

designers from this burden, our mechanism for change notification is workspace-based.

In other words, changes are reported to workspaces affected by them.

The registration of new versions into the design library, changes from category

1, is reported to all workspaces with their old versions checked—in. Releasing new

versions or deleting versions from a shared workspace, changes from category 3 or 4,

are reported to all descendant, local workspaces of the shared workspace.

Our workspace management methodology also includes a mechanism which queries

a workspace and retrieves those of interest among all new versions reported to the

workspace. A query is a set of conditions, which are boolean predicates defined on at-

tributes of design objects. Each condition is in the form of A=V (e.g., author=John),

where A is an attribute, and V a value. The value A can be one of two reserved strings,

up and down, if attribute A is one that measures an electrical or geometrical property,

such as size, delay, or power. Consider an example condition size=down. Among ver—

sions reported to a workspace, this condition is true for only those with size smaller

than their old versions contained in the workspace. When a designer is optimizing

the area of a design, the designer will focus on only new versions of components with

size smaller than those in the workspace.

114

5.5 Version Control in Local Workspaces

A VLSI design process is executed by invoking CAD tools in a local workspace. As

the process is iteratively executed, it will result in various versions. Version control

in a local workspace should be process-oriented , in that it is automatically exerted

during a process execution. Process—oriented version control is not a well-defined

concept in the CAD framework literature. This section defines essential mechanisms

that, we believe, need to be supported for this style of version control.

"'> Transformation of Representation Scheme

_[_S_t_ruct:ural]

[behavioral

,------‘\

’l
\‘

CELL .,,,,,,,
\ .' ‘.

x .' l

”
l l l

1' '. I 1
DESIGN ,]ecc_F.vhd@1]]ecc_S.vhd@2] 5’] ecc_FA.sif@1]._I, 1,] eoc_FA.vhd@1] :

" s 1.: :

I,

’I \‘I.
:

I:

E ”I, E“
E

CONF ‘\]900_FA.Vhd@1]] ecc_FA.vhd@2]--'- x,” 1 ,|

.
.2 ‘ '

\\

———————
‘

I,

Figure 5.7. An Example Design Library

(1) Design Objects Produced by Tool Invocations

A local workspace contains not only design objects checked in, but also tool out—

puts. A tool output is a design object which is produced from another object (either

an object checked in or an object produced from it using a CAD tool), called a tool

115

input, by invoking a CAD tool. Version control in local workspaces needs to sup—

port system—defined attributes of a tool output which store information about its tool

invocation. Such attributes are necessary to capture dependencies between design

objects [18]. They include the name of a tool, the name of a tool input, and a list

of tool parameters. Values of these attributes can be given by an application, called

the process manager [12, 18, 44], which actually invokes tools for a CAD task, or a

designer. One type of a CAD tool is an editor, including a schematic editor and a

LAYOut editor. Note that designers edit a design object and produces a version of it

for various reasons. Example reasons are bug fixes, structural changes, functional re—

finement, addition of comments, etc. We support an attribute of design objects which

specifies the reason for editing. Values of the attribute must be given by designers.

This attribute will help designers document design processes for future reference.

Once a tool output is produced, it may not belong to another one as a child in

the abstraction hierarchy of the design library. Such an object is usually one in a

representation scheme (e.g., schematic, netlist, etc.) different from its tool input.

The data model of chapter 2 is adjusted to allow design objects without parents.

Consider an example of design library in Figure 5.7. In the figure, a data control

flow graph ace-FA. sifOl, produced from a VHDL behavioral ecc-FA.vhd@2, has no

abstraction relationship to any other.

(2) Versioning of Tool Outputs

Tool outputs need to be versioned as the same tool is repeatedly executed. With

most CAD frameworks [7, 11, 12, 18, 44], all versions of tool outputs are kept within

local workspaces while tasks are being performed. This style has a shortcoming in

that design objects in local workspaces are not accessible from other local workspaces

unless designers explicitly move it to the design library. One policy of our version

control is that all versions of tool outputs, except for ones being currently used, are

116

kept in the design library. This will ease cooperation between designers who frequently

exchange data during their process execution.

(3) Control over Proliferation of Versions

Versions of design objects are produced during process executions. Sometimes

some of them are intermediate results, so it is better to not store them in the design

library. To solve this problem, each design object in a local workspace is associated

with a boolean flag, called version flag. Once a tool has produced a design object D,

the object is kept in only a workspace until it is registered into the design library.

Suppose that a new version D’ of the object is about to be placed in the workspace.

The registration of D into the design library occurs only when the version flag of D is

true. However, if the version flag of D is false, V is simply overwritten with V’. This

prohibits the proliferation of intermediate versions.

5.6 Workspace Operations

In this section, we describe basic operations needed for workspace management, and

their variations from those in the previous CAD frameworks.

c Check-out: Check-out is an operation that retrieves a design object into a local

workspace from the design library. Unlike most CAD frameworks [7, 47, 60, 77],

designers can check out either an actual copy of it or a reference to it. There

is no distinction between read-only and read-write check—out. Each actual copy

of a checked-out object is modifiable, and a modified copy is returned (i.e.,

checked-in) to the design library as a new version. Check—out is performed in

one of three ways: simple, component hierarchical, and abstraction hierarchical.

A simple check—out retrieves an object in isolation. Component hierarchical

117

check—out checks out a CONF object and all its component objects. abstraction

hierarchical check—out, not found in previous CAD frameworks, checks out a

design object and all its ancestor objects, excluding CLASS objects. Note that

CLASS objects are used as groups of similar design objects, so they are not

actual data.

Check—in: Check-in is an operation that registers a design object from

workspaces into the design library. As opposed to standard check-in [57, 66, 73],

a design object to be checked in can be one which has not been checked out

earlier. This check-in is necessary for tool outputs produced during a process

execution. Check—in of new versions will trigger change propagation of category

1, as mentioned in Section 5.4.1.

Release-in/Release-back: Operation release-in releases a set of versions from

a workspace into the parent of the workspace unless the workspace is star-

marked. No corresponding concept is found in the literature. Releasing a new

set of versions will trigger change propagation of category 3. Operation release-

back deletes a version from a workspace. If a version is deleted from a shared

workspace, change propagation of category 4 is triggered.

Workspace-Create/Workspace-Remove: These operations are applied to

only leaf nodes of a workspace hierarchy. Workspace-create is an operation

which creates either a child of a node in a workspace hierarchy or the root node

of a workspace hierarchy. Workspace-remove is an operation which deletes a

leaf node in a workspace hierarchy.

118

5.7 Conclusion

We presented a' methodology for workspace management. The methodology is based

on a workspace model which organizes workspaces to reflect the way that the en—

tire work of a project is performed by a design team. Since our workspace model

captures data dependencies among workspaces, the model was shown to facilitate

change propagation and notification. Our change notification is workspace-based in

that changes are reported to affected workspaces. They feature prevents designers

from unconsciously working with out—of—date design objects. We presented the notion

of the snapshot as a mechanism for preserving and restoring consistent design states.

Little research has been published on such a mechanism in the VLSI/CAD literature.

We also presented mechanisms required for version control over tool outputs, and

their variations from previous work.

CHAPTER 6

Conclusion and Future Research

VLSI design is characterized by a large volume of data, with diverse modalities,

and team design in which a large design is sub-divided into small objects. In this

thesis, we studied how both the object-oriented paradigm and constraints enforced

on designs can be exploited to increase the modeling power of a VLSI data model,

capture various dimensions of design evolution, and facilitate system support for

configuration management. Also, we investigated how efficiently the path-oriented

nature of cell selection, combined with node cloning, enables designers to obtain an

area-minimum binding of a design under a maximum allowable delay.

6.1 Summary and Contributions of This Thesis

The contributions of this thesis are new techniques for version data modeling and

configuration management in VLSI/CAD design environments. Major features of

those techniques can be summarized as follows.

119

120

An object—oriented VLSI data model was presented which organizes design ob—

jects hierarchically according to both their levels of abstraction and design con-

straints. This data model is superior to previous data models in that it not only

captures various aspects of the VLSI design process, including stepwise refine-

ment and constraint-driven design, but also efficiently supports a technology-

independent methodology.

A methodology for version modeling was presented which utilizes the concept

of “level of abstraction” and constraints assigned to design objects. The ver-

sion model was shown to provide a richer set of modeling concepts necessary

for defining version relationships than previous work. Among those concepts,

hidden versions and incompletely bound configurations increase flexibility in

configuration binding. Relationships between versions were formally defined

using design constraints. This feature not only provides a conceptual frame-

work for automatically identifying relationships between versions, but also helps

designers to explore versions of configurations. For example, versions of a con—

figuration can be created by replacing components of a configuration with other

objects with a certain relationship, such as replaceability, to the components.

Little research has been performed on VLSI/CAD design environments which

can provide control over configuration binding and ensure the correctness of

configurations. A constraint-driven methodology for configuration binding was

presented, which uses user-specified constraints in cell selection. This approach

was shown to enforce selection of design objects with certain design styles or

parameters preferred by designers, enhancing user interaction with VLSI/CAD

design environments. Also it can detect design errors to validate the correctness

of designs at early stages.

121

0 An algorithm for cell selection was presented which combines iterative improve-

ment with a cloning method. The algorithm finds the first solution by selecting

paths from a given graph (a network of gates), and then obtaining a new binding

of gates on the paths at each iteration. The first solution is improved further

by obtaining a new binding of a cloned series-parallel graph. Our algorithm

was shown to achieve significantly better performance than previous work. We

proved that the cell selection problem is strongly NP—complete when a circuit is

a general graph. Thus, finding a polynomial time algorithm for the cell selection

problem in a general graph is not possible unless P=NP.

c A workspace model and workspace management mechanisms were presented.

Few workspace models have been shown which can properly reflect on features

of team design. Our workspace model hierarchically organizes workspaces based

on the way that a project is being performed. Since the model captures how

the design process of a project works, it facilitates release control and change

propagation. We introduced the notion of snapshots as a vehicle for preserving

design states of an in-progress project. We also presented mechanisms for allow-

ing designers to shield themselves from changes made by others and continuing

their work at consistent states.

6.2 Future Research

0 Previous cell selection algorithms, including the algorithm presented herein, are

applicable only to designs with a single level component. However, the descrip-

tion of a large design is usually hierarchical for decreased complexity. To our

knowledge, no algorithm for the cell selection problem has been proposed for

designs with a component hierarchy of more than one level. With a large design

122

with a deep componenthierarchy, a flattened design of it, obtained from col-

lapsing its component hierarchy, may have a very large number of components.

Hence, previous algorithms do not efficiently work on such a flattened design.

An algorithm needs to be developed which performs cell selection hierarchically,

top-down, bottom-up, or a mixture, along the component hierarchy.

Hardware engineers require version and configuration management provided

by CASE tools, since they handle general files, such as manuals and progress

reports. They also need to manage files generated through the hardware devel-

opment life-cycle, which consists of various stages, such as specification, design,

delivery, and maintenance. Present VLSI/CAD frameworks place emphasis on

version and configuration management for data produced at only the design

stage. For this reason, it is challenging to combine the techniques presented

herein and CASE techniques to provide version control and configuration man-

agement at various stages of the hardware development life cycle in a seamless

way.

A large project may involve many designers, located at different sites, and many

platforms. Especially, the design data of the project results from diverse tasks

which are performed in the concurrent engineering style. To support workspace

management for such a large project, the techniques presented herein should

be extended to be applicable to a scenario where a team of designers cooperate

in a distributed, concurrent engineering environment. In such an environment,

for example, multiple check-outs can be performed on one design object from

workspaces at remote sites. Our workspace model needs to be extended for

efficiently handling change propagation and release control on workspaces which

are geographically distributed.

123

0 CASE systems for version and configuration management [73, 66, 27] employ

various techniques for storing versions efficiently. Their basic idea is to store

only differences, called deltas, between two successive versions of an ASCII file.

Since CAD applications deal with many non-ascii files as well, storing only

deltas is not suitable for VLSI/CAD data. Little work has been published on

mechanisms for efficient storage of versions in VLSI/CAD data management.

Such mechanisms will be format-specific to increase storage savings.

0 Little research has been performed on a formal model of configurations. If var-

ious approaches to a configuration management mechanism, e.g., configuration

binding, are described using such a model, we can compare them and recog-

nize their differences more easily. Moreover, the formal model will clarify what

and how configuration management mechanisms need to be supported by VLSI

design environments.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Acosta, R. D., Allexandre, M., Imken, G., and Read, 8., “The Role of VHDL in

the MCC CAD system,” in ACM/IEEE Design Automation Conference, pp. 34

— 39, 1988.

[2] Adams, E. W., Honda, M., and Miller, T. C., “Object Management in a CASE

Environment,” in International Conference on Software Engineering, pp. 154 —

163, 1989.

[3] Afsarmanesh, H., McLeod, D., Knapp, D., and Parker, A., “An Extensible

Object-Oriented Approach to Database for VLSI/CAD,” in International Con-

ference on Very Large Database, pp. 13 - 24, 1985.

[4] Armstrong, J., Cho. C., Shah, S., and Kosaraju, C., “The VHDL Validation

Suite,” in ACM/[BEE Design Automation Conference, pp. 2 — 4, 1990.

[5] Asano, T., “An Application of Duality to Edge-Deletion Problems,” SIAM Jour-

nal on Computing, vol. 16, pp. 312 — 331, Apr. 1987.

[6] Baalbergen, E. H., Verstoep, K., and Tanenbaum, A. S., “On the design of

the Amoeba Configuration Manager,” in International Workshop on Software

Version and Configuration Control, pp. 15 — 22, 1989.

[7] Banks, 8., Bunting, C., Edwards, R., Fleming, L., and Hackett, P., “A Configu-

ration Management System in a Data Management Framework,” in ACM/IEEE

Design Automation Conference, pp. 699 — 703, 1991.

[8] Barth, R. and Serlet, R., “A Structural Representation for VLSI Design,” in

ACM/IEEE Design Automation Conference, pp. 237 — 242, 1988.

[9] Batory, D. S. and Kim, W., “Modeling Concepts for VLSI Objects,” ACM Trans-

action on Database System,vol. 10, pp. 289 — 321, Sept. 1985.

[10] D. Beech and B. Mahbod, “Generalized Version Control in an Object-Oriented

Database,” in International Conference on Data Engineering, pp. 14 -— 22, 1988.

124

125

[11] Bingley, P., Bosch, O. ten, and Wolf, P. van der, “Incorporating Design Flow

Management in a Framework based CAD System,” in ACM/IEEE International

Conference on Computer-Aided Design, pp. 538 — 545, 1992.

[12] Bosch, O. ten, Bingley, P., and Wolf, P. van der, “Design Flow Management in

the NELSIS CAD Framework,” in ACM/IEEE Design Automation Conference,

pp. 711 - 716, 1991.

[13] Bushnell, M. L. and Director, S. W., “VLSI CAD Tool Integration Using the

Ulysses Environment,” in ACM/IEEE Design Automation Conference, pp. 55 —

61, 1986.

[14] Bushnell, M. and Director, S. W., “Automated Design Tool Execution in the

Ulysses Design Environment,” IEEE Transaction on Computer-Aided Design of

Integrated Circuits and Systems, vol. 8, pp. 279 — 287, Mar. 1988.

[15] Casotto, A., Newton, A. R., and Sangio-Vincentelli, A., “Design Management

Based on Design Traces,” in ACM/[BEE Design Automation Conference, pp. 136

— 141, 1990.

[16] Chan, P. K., “Algorithms for Library-Specific Sizings of Combinational Logic,”

in ACM/IEEE Design Automation Conference, pp. 353 — 356, 1990.

[17] Chang, C-L, and Lee, R. C-T, Symbolic Reasoning and Mechanical Reasoning.

Academic Press, New Work, 1973.

[18] Chieuh, T.-c. and Katz, R. H., “A History Model for Managing the VLSI Design

Process,” in ACM/[BEE International Conference on Computer—Aided Design,

pp. 358 -— 361, 1990.

[19] Chou, H. T. and Kim, W., “Versions and Change Notification in an Object-

Oriented Database System,” in ACM/IEEE Design Automation Conference,

pp. 275 — 281, 1988.

[20] Chung, M. J ., “A Technology Independent Synthesis Design Environment Using

VHDL,” Tech. Rep. Internal Report, Michigan State University Department of

Computer Science, 1990.

[21] Chung, M. J. and Kim, S., “An Object-Oriented VHDL Environment,” in

ACM/[BEE Design Automation Conference, pp. 431 — 436, 1990.

126

[22] Chung, M. J. and Kim, S., “Configuration Management for Version Control in an

Object-Oriented VHDL Environment,” in ACM/IEEE International Conference

on Computer-Aided Design, pp. 258 — 261, 1991.

[23] Chung, M. J. and Kim, S., “A Path-Oriented Algorithm for the Cell Selection

Problem,” in Michigan State University, Department of Computer Science, 1993.

[24] Chung, M. J., Rogers, E. and Won, Y., “VHDL in an Object Oriented VLSI

Environment,” in CompCon, pp. 324 — 327, 1987.

[25] Cirit, M. A., “Transistor Sizing in CMOS circuits,” in ACM/IEEE Design Au-

tomation Conference, pp. 121 — 124, 1987.

[26] Clemm, G. M., “The Odin Specification Language,” in International Workshop

on Software Version and Configuration Control, pp. 145 — 158, 1988.

[27] Cohen, E. S., Soni, D. A., Gluecker, R. Hasling, W. W., Schwanke, R. W.,

and Wagner, M. E., “Version Management in Gypsy,” in Software Engineering

Symposium on Practical Software Development Environments, pp. 201 — 214,

1988.

[28] Consta, R. M. da, “Integrating VHDL,” High Performance Systems, pp. 75 — 81,

Feb. 1989.

[29] Dai, Z.-j. and Asada, K., “MOSIZ: A Two-Step Transistor Sizing Algorithm

based on Optimal Timing Assignment Method for Multi-stage Complex Gates,”

in IEEE Custom Integrated Circuits Conference, pp. 17.3.1 — 17.3.4, 1989.

[30] Daniell, J. and Director, S. W., “An Object-Oriented Approach to CAD Tool

Control,” in ACM/IEEE Design Automation Conference, pp. 197 — 202, 1989.

[31] Detjens, E., Gannot, G., Rudell, R., and Sangiovanni-Vincentelli A., and Wang,

A., “Technology Mapping in M13,” in ACM/IEEE International Conference on

Computer—Aided Design, pp. 116 — 119, 1987.

[32] Enomoto, K., Nakamura, S., Ogihara T., and Murai, S., “LORES—2: A Logic

Reorganization System,” IEEE Design and Test of Computers, vol. 2, pp. 35 —

42, Oct. 1985.

[33] Estublier, J ., “Configuration Managment: The Notion and the Tools,” in In-

ternational Workshop on Computer-Aided Software Engineering, pp. 38 — 61,

1988.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

127

Feldman, S. I., “Make—A Program for Maintainingg Computer Programs,”

Software-Practice and Experience, vol. 9, pp. 255 - 265, Apr. 1979.

Fiduk, K. W. Fiduk, Kleinfeldt, S., Kosarchyn, M., and Perez, B. E., “De-

sign Methodology Management - A CAD Framework Initiative Perspective,” in

ACM/IEEE Design Automation Conference, pp. 278 - 283, 1990.

Garey, M.R. and John, D.S., Computers and Intractability : A guide to the theory

of NP-Completeness. W.H. Freeman and Company, 1979.

Geus, A. J. de and Gregory, D. J ., “The Socrates Logic Synthesis and Optimiza-

tion System,” in Design Systems for VLSI Circuits: Logic Synthesis and Silicon

Compilation, eds. G. De Micheli, A. Sangiovanni-Vincentilli, and P. Antognetti,

Martinus Nijhoff Publisher, Boston, MA, pp. 473 — 498, 1986.

Granacki, J., Knapp, D., and Parker, A., “The ADAM Advanced Design Au-

tomation System: Overview, Planner and Natural Language Interface,” in

ACM/IEEE Design Automation Conference, 1985.

Gupta, R., Cheng, W., Gupta, R., Hardonag, I., and Breuer, M., “An Object

Oriented VLSI CAD Framework,” IEEE Computer, vol. 22, pp. 28 — 38, May

1989.

Hamer, P. van den and Treffers, M.A., “A Data Flow Based Architecture for

CAD Frameworks,” in ACM/IEEE International Conference on Computer-Aided

Design, pp. 482 — 485, 1990.

Horowitz, E. and Sahni, 8., Fundamentals of Computer Algorithms. Computer

Science Press, 1978.

IEEE Standard VHDL Language Reference Manual. New York, NY, 1988.

Jacome, M. F. and Director, S. W., “Design Process Management for CAD

Frameworks,” in ACM/IEEE Design Automation Conference, pp. 500 - 505,

1992.

Janni, A. Di, “A Monitor for Complex CAD systems,” in ACM/IEEE Design

Automation Conference, pp. 145 — 151, 1986.

Kaplan, I. and Miller, M., Module-2 programming. Hayden Book Company,

Hasbrouck Heights, NJ, 1986.

128

[46] Katz, R. H., “Toward a Unified Framework for Version Modeling in Engineering

Databases,” ACM Computing Surveys, vol. 22, pp. 376 — 408, Dec. 1990.

[47] Katz, R.H. Bhateja, R., Chang, E.E., Gedye, D., and Trijanto, V., “Design

Version Management,” IEEE Design and Test of Computers, vol. 4, pp. 12 — 22,

Feb. 1987.

[48] Katz, R. H., Lehman, T. J., “Database Support for Versions and Alternatives

of Large Design Files,” IEEE Transactions on Software Engineering, vol. 10,

pp. 191 — 199, Mar. 1984.

[49] Kim, S. and Chung, M. J ., “Configuration Management for CAD/VLSI Design

and its Support for Design Process Management,” in International Conference

for Advancement of Science and Technology in Korea, 1993.

[50] Kim, S. and Chung, M. J., “A Constraint-Driven Approach to Configuration

Binding in an Object-Oriented VHDL Design Environment,” in International

Conference on Computer Hardware Description Languages and their Applica-

tions, pp. 359 — 374, 1991.

[51] Kim, S. and Chung, M. J ., “A Constraint-Driven Version Control in an Object-

Oriented VHDL CAD Environment,” in IFIP WG 10.2 International Workshop

on Electronic Design Automation Frameworks, 1990.

[52] Klahold, P. S. and Wilkes, W., “A General Model of Version Management in

Databases,” in VLDB, pp. 319 - 327, 1986.

[53] Ku, D. and Micheli, G. D., “High Level Synthesis and Optimization Strategies

in Hercules and Hebe,” in European ASIC Conference, pp. 124 — 129, 1990.

[54] Lampson, B. W. and Schmidt, E. E., “Oranizing Software in a Distributed En-

vironment,” SIGPLAN Notices, vol. 18, pp. 1 — 13, June 1983.

[55] Leblang, D. B. and Chase Jr., R. P., “Computer-Aided Software Engineering in

a Distributed Workstation Environment,” SIGPLAN Notices, vol. 19, pp. 104 —

112, Oct. 1984.

[56] Lehman, M. M., “Process Models, Process Programs, Programming Support,”

in International Conference on Software Engineering, pp. 14 — 16, 1987.

[57] Lin, S. Lin, Marek-Sadowska M., and Kuh, E. 3., “Delay and Area Optimiza-

tion in Standard-Cell Design,” in ACM/IEEE Design Automation Conference,

pp. 349 - 352, 1990.

129

[58] Li, W. et al., “The Circuit Implementation Problem,” in ACM/IEEE Design

Automation Conference, pp. 478 - 483, 1992.

[59] Lis, J. S. and Gajski, D. D., “Synthesis From VHDL,” in ACM/IEEE Interna-

tional Conference on Computer-Aided Design, pp. 378 - 381, 1988.

[60] Liu, L.-C., Wu, P.-C., and Wu, C.-H., “Design Data Management in a

CAD Framework Environment,” in ACM/IEEE Design Automation Conference,

pp. 156 — 161, 1990.

[61] Mahler, A. and Lampen, A., “shape - A Software Configuration Management

Tool,” in International Workshop on Software Version and Configuration Con-

trol, pp. 228 — 243, 1988.

[62] Marschner, E., “VHDL Design Environment,” VLSI Systems Design, pp. 40 —

49, Sept. 1988.

[63] Narayanaswamy, K. and Scacchi, W., “Maintaining Configurations of Evolving

Software Systems,” in International Conference on Software Engineering, pp. 403

— 408, 1988.

[64] Parsave, K. et al., Intelligent Databases. Wiley, 1989.

[65] Perry, D. E., “Version Control in the Inscape Environment,” in International

Conference on Software Engineering, pp. 142 — 149, 1987.

[66] Rochkind, M. J., “The Source” Code Control System,” IEEE Transactions on

Software Engineering, vol. 1, pp. 364 - 370, Dec. 1975.

[67] Saunders, L. F., “The IBM VHDL Design System,” in ACM/IEEE Design Au-

tomation Conference, pp. 484 — 490, 1987.

[68] Schwanke, R. W. et al., “Configuration Management in BiiN SMS,” in Interna-

tional Conference on Software Engineering, pp. 383 - 393, 1989.

[69] Shihsha, T., Kubo, T., Hikosaka, M., Akiyama A., and Ishihara, K., “PO-

LARIS: Polarity Propagation Algorithm for Combinational Logic Synthesis,”

in ACM/IEEE Design Automation Conference, 1984.

[70] Shyu, J ., Sangiovanni-Vincentelli, A., Fishburn, J ,, and Dunlop, A.,

“Optimization-Based Transistor Sizings,” IEEE Journal of Solid State Circuits,

vol. 23,. pp. 400 — 409, Apr. 1988.

130

[71] Siepmann, E. and Zimmermann, G., “An Object-Oriented Data Model for the

VLSI Design System PLAYOUT,” in ACM/IEEE Design Automation Confer-

ence, pp. 814 — 817, 1989.

[72] Thomas, D. E. et al., “The System Architect’s Workbench,” in ACM/IEEE

Design Automation Conference, pp. 337 — 343, 1988.

[73] Tichy, W., “Design, Implementation and Evaluation of a Revision Control Sys-

tem,” in International Conference on Software Engineering, pp. 58 — 67, 1982.

[74] Ullman, J. D., Principles of Database And Knowledge-Based Systems, Vol 1.

Computer Science Press, 1988.

[75] Valdes, J ., Tarjarn, R., and Lawler, E., “The Recognition of Series and Parallel

Digraphs,” SIAM Journal on Computing, vol. 11, pp. 298 — 313, May 1982.

[76] VanderZanden, N. and Gajski, D., “MILO: A Microarchitecture and Logic Op-

timizer,” in ACM/IEEE Design Automation Conference, pp. 403 — 408, 1988.

[77] Vasudevan, V., Mathys, Y., and Tolar, J., “DAMOCLES: An Observer-Based

Approach to Design Tracking,” in ACM/IEEE International Conference on

Computer-Aided Design, pp. 546 — 551, 1992.

[78] Wilkes, W., Klahold, P., Schlageter, G., “Complex and Composite Objects

in CAD/CAM Databases,” in International Conference on Data Engineering,

pp. 443 — 450, 1989.

[79] Winkler, J. F. H., “Version Control in Family of Large Programs,” in Interna-

tional Conference on Software Engineering, pp. 150 - 161, 1987.

[80] Wolf, Wayne H., “How to Build a Hardware Description and Measurement

System on an Object-Oriented Programming Language,” IEEE Transaction on

Computer-Aided Design of Integrated Circuits and Systems, vol. 8, pp. 288 — 301,

Mar. 1989.

[81] P. van der Wolf and T. van Leuken, “Object-Type Oriented Data Modeling

for VLSI Data Management,” in ACM/IEEE Design Automation Conference,

pp. 351 - 356, 1988.

[82] Yang, 5., Logic Synthesis and Optimization Benchmarks User Guide Version 3.0.

Microelectronics Center of North Carolina, 1991.

--....I_,

— I I I]. ' GF‘N STnTE UNIV LIBRARIES
- . _

V’N”-
. ”/ :_-’-:._,

~ I»... '5 '
. _ I I I

”III2*93NOIIIO'ZII889I5

v

“III“,

’x-._'i“ .

."‘"-mn,

Tun.

..W

Vault
an... .m

,x

"‘- v r.
"I” "v“ '1 J11""1m r— , ma.~.n_,..rw*..H. 5.1.”. -.

’”":-'”‘—i"'.' ”I” I II:

n

r

I rr

‘
II: ,In,

__I.—. _ . . I.I..'..l-GL-w. Hw-I.—-. . w— .
_.rn-p, “I'm-

'4'?.—.-.- a .433}“1.2., XL}: . , . IIII IIII:I ~ I

3...:31Fvyi37!"..J - ',.fir"...-, I~.-'3. .‘g I“ M: I n)m “a”. n T "In”

I
~

film'rv-a' 2....r

j T

‘7 -

”If;

r”

, “.4!

' ~v .

III? III

$555123.‘:'-
1~?,;:_

I rIII[IIIIIII;

w';““‘_""

II V Elhm,

