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ABSTRACT

ESSAYS IN MULTIPLE FRACTIONAL RESPONSES WITH ENDOGENOUS
EXPLANATORY VARIABLES

By

Suhyeon Nam

This dissertation consists of three chapters. The first and second chapters develop new

estimation methods for multiple fractional response variables with endogeneity. Multiple

fractional response variables have two features. Each response is between zero and one,

and the sum of the responses for a unit is one. The first chapter proposes an estimation

method accounting for these features when there is a continuous endogenous explanatory

variable (EEV). It is a two step estimation method combining a control function approach.

The first step generates a control function using a linear regression, and the second step

maximizes a multinomial log likelihood function with a multinomial logit conditional

mean which depends on the control function generated in the first step. Monte Carlo

simulations examine the performance of the estimation method when the conditional

mean in the second step is misspecified. The simulation results provide evidence that

the method’s average partial effect (APE) estimates approximate well true APEs as long

as an instrument is not weak and that the method’s approximation outperforms an alter-

native linear method’s. We apply the proposed two step estimation method to Michigan’s

fourth grade math test data to estimate the average partial effects of spending on student

performance.

The second chapter develops and evaluates an estimation method allowing for the

discrete nature of an EEV. We modify the two step estimation method proposed in the

first chapter by following Wooldridge (2014); instead of unstandardized residual, we use

the generalized residuals as control functions The Monte Carlo simulation demonstrate

that although the two step estimation method cannot provide consistent estimators for the

mean parameters and average partial effects under the conditional mean misspecification,



it yields a decent approximation to average partial effects.

In the third chapter, we clarify some issues in computing average partial (or marginal)

effects in models that have been estimated using control function or correlated random

effects approaches (or some combination). In particular, we show that a common method

of estimating average partial effects, where the averaging is done across all variables and

across the entire sample, estimates an interesting parameter. Nevertheless, the method

differs from averaging across the observed covariates the partial effects obtained via the

average structural function. In the special case where unobservables are independent of

the observed covariates the two methods are identical.
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CHAPTER 1
MULTIPLE FRACTIONAL RESPONSE

VARIABLES WITH CONTINUOUS
ENDOGENOUS EXPLANATORY

VARIABLES

1.1 INTRODUCTION

Fractional responses have interesting functional form issues that have been attracting

econometricians’ attentions. The research began with a single fractional response, a frac-

tional scalar yi, which has a salient feature - the bounded nature: 0 ≤ yi ≤ 1. Then it has

moved to two kinds of systems of fractional responses. One is panel data setting in which

a cross sectional unit has relatively smaller time periods. The other is multiple responses

in which a cross sectional unit has a set of several choices.

For a single fractional response, an OLS estimator or an IV estimator of a linear model

are consistent for the parameters in the linear projection. They, however, do not guarantee

that their fitted values lie within the unit interval nor that their partial effects estimates

for regressors’ extreme values are good.1 The log-odds transformation, log
y

1− y
, is a

traditional solution to recognize the bounded nature. But it requires the response to be

strictly inside the unit interval. Papke and Wooldridge (1996) introduce a quasi maxi-

mum likelihood estimation (QMLE), which is applicable even when the response takes

the boundary values. Their nonlinear estimation method directly models the conditional

mean of the response as an appropriate function.

1 Theses are the same drawbacks as the linear probability model for a binary response has.
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Papke and Wooldridge (2008) extend their single fractional response discussion to a

panel data setting with allowing for endogeneity. They allow time invariant unobserved

effect to be correlated with explanatory variables and develop another QMLE method

employing a control function approach to account for endogeneity.

Multiple fractional responses have one additional feature as well as the bounded na-

ture: an adding-up constraint. The sum of a cross sectional unit’s multiple responses is

one. For example, a researcher studies student performance for a test in a state. Suppose

that she is interested in how the public school spending affects the test outcome and her

response variable is a set of students’ pass and fail shares in a district i, (yi,pass, yi,fail) where

yi,pass + yi,fail = 1. This example can fall into the single fractional response category since

there are only two shares. However, if the test outcomes are graded into the student’s

level of proficiency from Level 1 to Level 4 and district-level data she can access contain

the four shares (yi,level1, yi,level2, yi,level3, yi,level4) where ∑4
1 yi,levelg = 1 instead of the pass and

fail rates, the types of behaviors described by the single fractional response analysis are

limited. Hence, an alternative estimation method is required to exploit all of the available

information when there are more than two shares.

Such an estimation method is proposed by Sivakumar and Bhat (2002). It is a method

of QMLE with the multinomial distribution and the multinomial logit conditional mean

specification. It is a multivariate generalization of the method proposed by Papke and

Wooldridge (1996). Mullahy (2010) studies this method with more detail. Buis (2008) has

written a STATAr module of this QMLE, and dubs it as “fractional multinomial logit

(fmlogit).” In this chapter, we also refer this QMLE as fractional multinomial logit or

fmlogit.

Although these studies develop a new estimation method, which can consistently es-

timate the parameters in the mean as long as the mean specification is correct, they do

not address endogeneity. In empirical works, however, endogeneity often arises. In the

student performance example, school spending could be endogenous because it is likely

2



to be correlated with some unobserved district effects. This endogeneity issue may lead

to inconsistency of the fractional multinomial logit estimation.

In this chapter, we develop an estimation method for multiple fractional responses

with endogenous explanatory variables. In the model, we allow a continuous endoge-

nous explanatory variable to be correlated with an unobserved omitted variable. Then

we propose a two step estimation method employing a control function approach to deal

with the endogeneity. The first step generates a control function and the second step ap-

plies fractional multinomial logit with including the control function as an extra regressor

in the conditional mean. The method can provide a consistent estimator of the conditional

mean parameters provided that the conditional mean specification in the second step is

correct.

A distinct feature of this method is that although the multinomial logit specification

in the second step is sensible as a multiple fractional responses’ conditional mean, it is

not underpinned by usual structural assumptions. The functional form of the conditional

mean in the second step is determined by the two structural components. One is the

functional form of the conditional mean depending on the unobserved omitted variable

(structural conditional mean). The other is the distributional assumption of the error,

which appears when the control function approach is combined. However, there are no

closed forms for them to allow the second step conditional mean to be multinomial logit.

Thus we suggest directly specifying the conditional mean of the second step as multino-

mial logit without usual assumptions about them.

But we would like to examine how the two step estimation method works if the multi-

nomial logit specification is wrong by conducting Monte Carlo simulations. The simula-

tions focus on whether or not the estimates by the proposed two step estimation method

can approximate well the average partial effects of the endogenous explanatory variable,

which is the partial effects of the endogenous explanatory variable on the conditional

mean averaged across the population distribution of the endogenous explanatory vari-

3



able. Further, we compare the method’s approximation ability with an alternative linear

model’s.

The simulation results provide evidence that even though the conditional mean is

misspecified, the two step estimation method with a strong instrument yields a good ap-

proximation. Although a weak instrument deteriorates its approximation performance,

it still outperforms an alternative linear approach.

The rest of the chapter is organized as follows. Section 1.2 describes the model and the

two step estimation method.Section 1.3 presents a Monte Carlo simulation design and

results where the conditional mean of the two step estimation method is misspecified.

Section 1.4 includes an application of the method to examine the relationship between

public school spending and the fourth grade math test outcome for Michigan. And Sec-

tion 1.5 concludes the chapter.

1.2 THE MODEL AND ESTIMATION WITH ENDOGENE-

ITY

We assume that a random sampling across the cross section is available, and each cross

sectional unit i has G choices where the sum of i’s responses is one. The dependent vari-

able for i is expressed as

yi =



yi1
...

yig
...

yiG


G×1

(1.1)

where

0 ≤ yig ≤ 1, g = 1, · · · , G, (1.2)

4



and
G

∑
g

yig = 1. (1.3)

(1.2) and (1.3) represent the bounded nature and the adding-up constraint, respectively.

To represent endogeneity in the model, we assume that there is a continuous en-

dogenous explanatory variable wig, and that it is correlated with an unobserved omitted

variable rig. To simplify the exposition, wig and rig are assumed to be invariant across

choices: ∀g, wig = wi and rig = ri. Then, for a set of explanatory variables in all choices,

Xi = (xi1, · · · , xiG), we assume

E(yig|Xi, ri) = E(yig|Zi, wi, ri) = Gg(Zi1, wi, ri; β), g = 1, · · · , G, (1.4)

where

0 < Gg(·) < 1 (1.5)

and
G

∑
g

Gg(·) = 1. (1.6)

Zi ≡ (zi1, · · · , ziG) is a set of exogenous variables in all choices where zig = (zi1g zi2g)

indicates exogenous variables for choice g and Zi1 ≡ (zi11, · · · , zi1G) is a set of zi1g, ∀g.

(1.5) ensures that the fitted value will lie between zero and one. The adding-up constraint

(1.3) leads to (1.6). Any function satisfying both (1.5) and (1.6) can be specified for G(·).

wi can appear very flexibly in (1.4); for example, we can add w2
i to allow for the

quadratic effect of w. If wi and w2
i appear in the specification, plug-in methods are subject

to the “forbidden regression” problem as Wooldridge (2010) discusses.

To deal with the endogeneity, we employ a control function approach. It includes extra

regressors in the estimating equation so that the remaining variation in the endogenous

explanatory variable would not be correlated with the unobservables. Since the approach

5



requires an exclusion restriction, a part of Zi appears in Gg(·). We further assume

wi = f (Zi ; π) + vi (1.7)

ri = ρvi + ei (1.8)

and

(ri, vi) is independent of Zi. (1.9)

(1.7) models the endogenous variable wi as a function of Zi where π is the parameter

vector. It includes the exogenous variables excluded from (1.4) so that the instruments

could be allowed to be correlated with w. (1.8) models the omitted variable ri as a linear

function of the reduced form error vi, which plays a role of the control function - the

extra regressor - in this study, where ei is independent of wi. (1.8) is for simplicity; it can

be allowed to be more flexible by modeling it with polynomial functions of vi as well

as vi. (1.8) reveals that if there is any correlation between wi and ri, it can only come

through vi. So ρ shows how much wi is correlated with ri, and consequently tells whether

wi is endogenous or not. Due to (1.9), wi cannot have discreteness. The independence

assumption implies

D(ei|Zi, vi) = D(ei). (1.10)

(1.8) and (1.9) ensure that a single control function, vi, can correct the endogeneity of wi

even when flexible functional forms for wi appear in (1.4).

If we assume a parametric model for the distribution in (1.10), then one could derive

the mean function conditional on Xi as

E(yig|Xi) = Kg(Zi1, wi, vi; θ) (1.11)

where

0 < Kg(·) < 1 (1.12)
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and
G

∑
g

Kg(·) = 1. (1.13)

If we know the functional form of Kg(·) and vi is observed, θ can be estimated by

nonlinear least squares or a QMLE using multinomial distribution by specifying Kg(·)

as a proper functional form satisfying (1.12) and (1.13). However, since vi is unobserved

here, a simple way to estimate θ is to replace vi with a consistent estimator of vi and apply

one of those estimation methods.

In general, it is difficult to start with function Gg(·) and a distribution for ei and obtain

Kg(·) as a simple function. Instead, the proposal is to directly model Kg(·) parametrically.

A natural choice for a proper functional form of Kg(·) is multinomial logit,

Kg(hi; θ) =
exp

(
hiθg

)
∑G

h exp (hiθh)
(1.14)

where hi = (xi1 vi) = (zi1 wi vi) is a 1× p vector, θ = (θ′1 . . . θ′G)
′ is a pG× 1 parameter

vector, θg is a p× 1 vector, g = 2, · · · , G, and θ1 = 0.2 In the basic multinomial logit

model, a set of explanatory variables change by unit i but not by choice g. Its coefficient

parameters change by choice g, instead.3 In accordance with this choice, we rewrite (1.7)

as a linear function of zi = (zi1 zi2)1×M:

wi = ziπ + vi = zi1π1 + zi2π2 + vi (1.15)

where π = (π′1 π′2)
′ is a M × 1 parameter vector and the constant is subsumed in zi1.

The transformation of w should be carefully chosen to yield (1.15) where vi is arguably

independent of zi. Plus, we can add zi in a flexible way. (1.15) is to simplify the notation.

Then we propose the following procedure for θ:

2 The first choice is a reference.
3 Hence this specification is appropriate for problems where the characteristics of choices are unimpor-

tant or are not of interest.
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Procedure 1.2.1

Step 1. Obtain the OLS residual v̂i from the regression of wi on zi.

Step 2. Apply fractional multinomial logit of (yi1, yi2, · · · , yiG) on zi1, wi and v̂i to estimate

θ. This is a QMLE with (1.14) and the following log likelihood for i replacing vi with

v̂i:

`i(θ) =
G

∑
g

yig log Kg(hi; θ). (1.16)

Procedure 1.2.1 yields a consistent estimator of θ under (1.14). Its consistency does

not hinge on whether or not (1.16) is true. It is because the multinomial distribution is

a member of the linear exponential family (LEF). Gourieroux et al. (1984) show that a

QMLE with a distribution in the LEF provides a consistent estimate of the parameters in

a correctly specified conditional mean even when the rest of distribution is misspecified.

Furthermore, Procedure 1.2.1 is able to provide a very useful estimator for the quantity

regarding the structural conditional mean Gg(·). Dropping the cross-sectional unit i, the

partial effect of interest for a continuous explanatory variable x1j, the jth element of x1 is

∂E(yg|x, r)
∂x1j

=
∂Gg(x1, r; β)

∂x1j
, ∀g, (1.17)

where x = (z, w) and x1 = (z1, w). However, (1.17) is not identified because r is unob-

served. Thus the quantity of more interest is the average partial effect (APE), which can

be identified by averaging (1.17) over the distribution of r:

Er

(
∂Gg(x0

1, r; β)

∂x1j

)
, ∀g (1.18)

where the APEs are evaluated at x0
1, a set of fixed values of the covariates. From Wooldridge
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(2010, section 2.2.5)

Er

(
∂Gg(x0

1, r; β)

∂x1j

)
= Ev

(
∂Kg(x0

1, v; θ)

∂x1j

)
(1.19)

under (1.9) and (1.15). Hence Procedure 1.2.1 can estimate the APE on the structural

conditional mean Gg(·) even though it does not estimate β, the structural parameters.

The asymptotic variances of θ̂ and the APE estimator need to consider the additional

variation from the first step of the procedure. The appendix derives their valid asymptotic

variances.

Notice that the two step estimation method does not assume anything about a func-

tional form of Gg(·) and a distribution of D(e) although they determine the functional

form of Kg(·). If a combination of their specific forms were able to obtain a certain ex-

plicit functional form for Kg(·) satisfying (1.12) and (1.13), we would assume those spe-

cific forms and maximize the multinomial distribution with a derived Kg(·) from those

assumptions. However, there are no closed forms of Gg(·) and D(e) to generate an explic-

itly known form satisfying (1.12) and (1.13). Considering that Gg(·) should satisfy (1.5)

and (1.6), a natural choice for Gg(·) is also multinomial logit. Yet, it cannot derive a closed

form of Kg(·) whatever D(e) is. If Gg(·) is specified as (1.20), it can derive an explicit form

by assuming that e is normally distributed:

Gg(Xi; β) = Φ(xigβ), g = 1, · · · , G− 1,

GG(Xi; β) = 1−
G−1

∑
g

Φ(xigβ)
(1.20)

where Φ(·) is the standard normal cumulative distribution function. Based on the mixing

property of the normal distribution, the derived function is similar as (1.20). However,

GG(·) and the derived function for choice G are not necessarily between zero and one,

which violate (1.5) and (1.12). It is the same drawback that the linear models have. So

(1.20) is not appropriate, either.
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Alternatively, the two step estimation method suggests directly specifying Kg(·) as

multinomial logit. That is, instead of making usual assumptions about Gg(·) and D(e), it

implicitly assumes that their combination derives the multinomial logit functional form

of Kg(·).4 To be cautious about this, we conduct Monte Carlo simulations to investigate

how it works as an approximation when the specification is wrong.

Some researchers may be inclined to use a linear model rather than a nonlinear model,

in which case it would be natural to drop one of the G equations and apply a linear

method, say a linear control function (LCF) approach to remaining equations. Then, for

choice g, w’s coefficient parameter estimate by the linear method is comparable to (1.23).

Procedure 1.2.2 summarizes the LCF approach:

Procedure 1.2.2

Step 1. Obtain the OLS residual v̂i from the regression of wi on zi.

This is the same as Step 1 of Procedure 1.2.1.

Step 2. For each g = 2, · · · , G,5 regress yig on zi1, wi and v̂i to estimate γg, where γg =

(γ′zg γwg γvg)′ is a 4× 1 coefficient parameter vector for choice g. Obtain γ̂1 based

on γ1 = e1 − γ2 − γ3, where e1 is a 4× 1 unit vector.6

The asymptotic variance of γ̂g also needs the adjustment taking the extra variation from

the first step into account; see the appendix.

The simulations compare the approximation by the two step estimation method with

the misspecified conditional mean and one by this LCF approach.

4 The approach reflects the manner in which Petrin and Train (2010) employ a control function approach
when their dependent variable is a multinomial choice. They divide the structural error in their consumer
utility into two parts to generate a mixed logit. Without a distributional assumption of the structural error,
one divided part is assumed to be normal and the other is assumed to be type 1 extreme value.

5 The first choice is dropped as the reference choice.
6 The coefficients of a variable across choices sum to be 0 and those of the constant sum to be 1 because

of (1.3).
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1.3 MONTE CARLO SIMULATIONS

1.3.1 The Quantities of Interest

The quantity of interest in the simulations is the APE of the endogenous explanatory

variable w,

Er

(
∂Gg(x0

1, r; β)

∂w

)
= Er

(
∂Gg(z0

1, w0, r; β)

∂w

)
, ∀g. (1.21)

Since (1.21) depends on where it is evaluated, the simulations use two approaches to

obtain a single number. One is averaging (1.21) out across the sample again and the other

is evaluating (1.21) at a certain set of values, (z1, wp) where z1 is the mean of z1 and wp

stands for the pth percentile of w’s distribution. We call the former “average APE” and

the latter “percentile APE.”

If the two step estimation method’s mean specification (1.14) is correct, (1.21) is ob-

tained by estimating

Ev

[
∂Kg(x0

1, v; θ)

∂w

]
= Ev

[
Kg(x◦1 , v; θ) ·

(
θwg −

∑G
h θwh exp (x◦1θxh + θvhv)

∑G
h exp

(
x◦1θxh + θvhv

) )]
(1.22)

where θxh = (θ′zh θwh)
′. Since the distribution of v is not assumed, (1.22) can be estimated

by averaging out v̂i across the sample, instead:

1
N

N

∑
i

Kg(x0
1, v̂i; θ̂) ·

θ̂wg −
∑G

h θ̂wh exp
(

x◦1 θ̂xh + θ̂vhv̂i

)
∑G

h exp
(

x◦1 θ̂xh + θ̂vhv̂i

)
 (1.23)

where θ̂ is obtained from Procedure 1.2.1.

The simulations let (1.14) be misspecified, and so we examine how close (1.23) is to

(1.21), if it is closer than the estimates by the LCF approach.

Some simulations allow for w’s quadratic effect by including w2 in the model. These

simulations add v̂2
i and v̂3

i in the two procedures’ second steps to see if it improves their

11



approximations.

1.3.2 Data Generating Process

For the simulations, the number of observation N and choice G are 500 and 3, respectively.

We use 1000 replications.

The covariates For each replication, we generate 500 observations of zi, wi, ri, vi and ei

as following.

• zi = (zi1 zi2) = (1 zi1 zi2)1×3

where zi1 = (1 zi1) and

zi1

zi2

 ∼ MV Normal


 0

0

 ,

 1 τ

τ 1


 , τ ∈ {0,−0.5}.

There are one included exogenous variable and one excluded exogenous variable

where they are drawn from the multivariate normal distribution. A simulation al-

lows them to be correlated: τ = −0.5.

• D(e) is one of the three distributions:

(a) ei ∼ Normal(0, 1)

(b) ei ∼ Logistic(0, 1)

(c) ei ∼ χ2
3

To study various misspecifications, three distributions of e are in use: two symmetric

distributions and one asymmetric distribution.

• vi ∼ Normal(0, σ2)7

7 σ2 is adjusted for the variance of wi to be invariant across the simulations.
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• wi = π1zi1 + π2zi2 + vi

The endogenous variable is generated based on (1.15). The coefficient parameter for

the constant is set to be zero.

• ri = ρvi + ei

The omitted variable is generated based on (1.8).

The structural conditional mean Gg(·) specification: We specify Gg(·) as multinomial

logit because it satisfies (1.5) and (1.6):

E(yig|xi, ri) = Gg(zi1, wi, ri; β) =
exp

(
zi1βzg + wiβwg + riβrg

)
∑3

h exp (zi1βzh + wiβwh + riβrh)
(1.24)

where β = (β′1 β′2 β′3)
′ is a 12× 1 parameter vector, βg = (β′zg βwg βrg)′ is a 4× 1

parameter vector for g = 2, 3, and β1 = 0 since the first choice is chosen as a reference.

Other parameters are set to be 1: βg = (1 1 1 1)′ for g = 2, 3.8 Note that (1.14) is

misspecified under (1.24) and any of the three distributions for e.

The multiple fractional dependent variables y: The multiple fractional dependent vari-

ables for each observation i are generated by the following process.

(1) Calculate the response probabilities Gi1, Gi2, and Gi3 by using (1.24) and the covariates

generated above.9

(2) Draw 100 multinomial outcomes among 1, 2, and 3 based on the calculated response

probabilities.

8 For the simulations including w2,

Gg(zi1, wi, ri; β) =
exp

(
zi1βzg + wiβwg + w2

i βw2g + riβrg

)
∑3

h exp
(
zi1βzh + wiβwh + w2

i βw2h + riβrh
) (1.25)

where β is a 15× 1 parameter vector, βg = (β′zg βwg βw2g βrg)′ = (1 1 1 − 0.1 1)′ for g = 2, 3.
9 (1.25) is used for the model including w2.
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(3) Count the frequencies and obtain the proportion for each outcome.

For instances, if 1 is drawn 50 times, 2 is drawn 30 times, and 3 is drawn 20 times for

an observation i, then yi1 = 0.5, yi2 = 0.3, and yi3 = 0.2.10 Appendix includes a table

showing the summary of (yi1, yi2, yi3) generated by this process.

1.3.3 Simulation Results

The first columns of the simulation result tables show whether or not the quadratic effect

of w is included in the model: w indicates that it is not, and w2 indicates that it is. The

tables report the mean of (1.21) over the 1000 replications (True) along with the results

of the two step estimation method and the LCF approach - the means of the estimates

(Mean), their standard deviations (SD), and the means of their adjusted standard errors

(SE). For the model including the quadratic effect, there are two additional estimation

results allowing for the control function in a flexible way: Two step (flexible) and LCF

(flexible). They includ v̂, v̂2,and v̂3 in the second stage; We would like to examine if it

helps the approximations.

Condition 1: π2 = 1, ρ = 1

In generating the data for Condition 1, we allow the instrument and the endogeneity to

be strong: wi = zi2 + vi and ri = vi + ei.11,12

The simulation results under Condition 1 demonstrate that while both the two step es-

timation method and the LCF approach provide good approximations to average APEs,

the two step estimation method provides better percentile APE estimates. In Table 1.1,

the average APE estimates by the two methods are quite similar to true APEs. However,

10 Through this process, the upper corner 1 is generated only for the reference choice while the lower
corner 0 is generated for all three choices because of the multinomial logit response probabilities structure.

11 zi1 has no effect on wi: π1 = 0
12 The simulations allowing zi1 to affect wi (wi = 0.5zi1 + zi2 + vi, τ = −0.5, ρ = 1) provide similar

results as those under Condition 1.
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Table 1.2 and Table 1.3 illustrate that the percentile APE estimates by the two step esti-

mation method have less biased without any sign distortions across the percentiles of w’s

distribution than those by the LCF approach.13 The percentile estimates by the LCF ap-

proach under the χ2
3 distribution have the opposite directions to the true APEs at the 90th

percentile.

The results also present that allowing for the flexible forms of v̂i does not help the ap-

proximations when w’s quadratic effect is included in the models. In Table 1.1 through 1.3,

the estimates with allowing for the flexible forms of v̂i are similar to those without it.

The empirical distributions of APE estimates in Figure 1.1 through 1.6, confirm these

results.

13 The results of percentile APEs under the logistic distribution are similar to those under the normal
distribution in general.
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Table 1.1: Average APEs under Condition 1

D(e) Normal Logistic χ2
3

g 1 2 3 1 2 3 1 2 3
w True Mean -0.117 0.059 0.059 -0.108 0.054 0.054 -0.049 0.025 0.025

Two Step Mean -0.117 0.059 0.058 -0.108 0.054 0.054 -0.048 0.024 0.024
SD 0.008 0.005 0.005 0.011 0.006 0.006 0.007 0.004 0.004
SE - - - - - - - - -

LCF Mean -0.109 0.055 0.054 -0.102 0.051 0.051 -0.052 0.026 0.026
SD 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005
SE 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005

w2 True Mean -0.127 0.063 0.063 -0.116 0.058 0.058 -0.061 0.031 0.031
Two Step Mean -0.127 0.063 0.063 -0.115 0.058 0.058 -0.060 0.030 0.030

SD 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.004 0.005
SE - - - - - - - - -

Two Step Mean -0.126 0.063 0.063 -0.115 0.057 0.057 -0.058 0.029 0.029
(Flexible) SD 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.004 0.004

SE - - - - - - - - -
LCF Mean -0.118 0.059 0.059 -0.108 0.054 0.054 -0.064 0.032 0.032

SD 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005
SE 0.008 0.005 0.005 0.011 0.006 0.006 0.008 0.004 0.004

LCF Mean -0.118 0.059 0.059 -0.109 0.054 0.054 -0.064 0.032 0.032
(Flexible) SD 0.008 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005

SE 0.008 0.005 0.005 0.011 0.006 0.006 0.008 0.004 0.004
1. π1 = 0, π2 = 1, ρ = 1
2. We cannot obtain the standard errors of average APE estimates by the two step estimation

method; the process in STATA to calculate them takes too much time to complete.
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Table 1.2: Percentile APEs under Condition 1 and Normal distribution

wp 10th 25th 50th 75th

g 1 2 3 1 2 3 1 2 3 1 2 3
w True Mean -0.181 0.090 0.090 -0.171 0.085 0.085 -0.132 0.066 0.066 -0.085 0.043 0.043

Two Step Mean -0.184 0.092 0.092 -0.173 0.087 0.087 -0.131 0.066 0.066 -0.082 0.041 0.041
SD 0.016 0.008 0.008 0.018 0.009 0.009 0.012 0.006 0.006 0.007 0.004 0.004
SE 0.016 0.008 0.008 0.018 0.009 0.009 0.011 0.006 0.006 0.004 0.003 0.003

w2 True Mean -0.241 0.121 0.121 -0.206 0.103 0.103 -0.133 0.066 0.066 -0.073 0.036 0.036
Two Step Mean -0.240 0.120 0.120 -0.208 0.104 0.104 -0.133 0.067 0.066 -0.072 0.036 0.036

SD 0.022 0.011 0.011 0.021 0.011 0.011 0.014 0.007 0.007 0.009 0.005 0.006
SE 0.021 0.011 0.011 0.020 0.010 0.010 0.011 0.006 0.006 0.007 0.005 0.005

Two Step Mean -0.240 0.120 0.120 -0.208 0.104 0.104 -0.132 0.066 0.066 -0.071 0.036 0.036
(Flexible) SD 0.022 0.011 0.011 0.021 0.011 0.011 0.014 0.008 0.007 0.010 0.006 0.006

SE 0.021 0.011 0.011 0.020 0.010 0.010 0.011 0.006 0.006 0.008 0.005 0.005
LCF Mean -0.206 0.103 0.103 -0.164 0.082 0.082 -0.118 0.059 0.059 -0.071 0.036 0.035

SD 0.018 0.009 0.009 0.013 0.007 0.007 0.009 0.005 0.005 0.010 0.006 0.006
SE 0.016 0.008 0.008 0.012 0.006 0.006 0.008 0.005 0.005 0.010 0.006 0.006

LCF Mean -0.190 0.095 0.095 -0.156 0.078 0.078 -0.118 0.059 0.059 -0.080 0.040 0.040
(Flexible) SD 0.018 0.009 0.009 0.013 0.007 0.006 0.009 0.005 0.005 0.010 0.005 0.006

SE 0.016 0.008 0.009 0.012 0.006 0.006 0.008 0.005 0.005 0.009 0.005 0.005
1. APEs at (z1, wp).
2. π1 = 0, π2 = 1, ρ = 1.
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Table 1.2: (cont’d)

wp 90th

g 1 2 3
w True Mean -0.050 0.025 0.025

Two Step Mean -0.048 0.024 0.024
SD 0.006 0.004 0.004
SE 0.003 0.003 0.003

w2 True Mean -0.040 0.020 0.020
Two Step Mean -0.039 0.020 0.019

SD 0.007 0.005 0.006
SE 0.005 0.005 0.005

Two Step Mean -0.039 0.019 0.019
(Flexible) SD 0.007 0.006 0.006

SE 0.006 0.005 0.005
LCF Mean -0.029 0.014 0.014

SD 0.016 0.008 0.009
SE 0.014 0.008 0.008

LCF Mean -0.045 0.023 0.023
(Flexible) SD 0.014 0.008 0.008

SE 0.012 0.007 0.007
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Table 1.3: Percentile APEs under Condition 1 and χ2
3 distribution

wp 10th 25th 50th 75th

g 1 2 3 1 2 3 1 2 3 1 2 3
w True mean -0.100 0.050 0.050 -0.068 0.034 0.034 -0.038 0.019 0.019 -0.018 0.009 0.009

Two Step Mean -0.096 0.048 0.048 -0.061 0.031 0.030 -0.033 0.017 0.017 -0.017 0.009 0.009
SD 0.022 0.011 0.011 0.011 0.006 0.006 0.004 0.003 0.003 0.002 0.003 0.003
SE 0.020 0.010 0.010 0.010 0.005 0.005 0.003 0.003 0.003 0.002 0.003 0.003

w2 True Mean -0.153 0.076 0.076 -0.085 0.043 0.043 -0.038 0.019 0.019 -0.016 0.008 0.008
Two Step Mean -0.134 0.067 0.067 -0.081 0.041 0.040 -0.040 0.020 0.020 -0.018 0.009 0.009

SD 0.033 0.017 0.017 0.013 0.007 0.007 0.007 0.004 0.004 0.004 0.003 0.003
SE 0.029 0.015 0.015 0.012 0.007 0.007 0.006 0.004 0.004 0.003 0.003 0.003

Two Step Mean -0.133 0.067 0.066 -0.078 0.039 0.039 -0.039 0.019 0.019 -0.018 0.009 0.009
(Flexible) SD 0.032 0.016 0.016 0.013 0.007 0.007 0.007 0.004 0.004 0.004 0.003 0.004

SE 0.028 0.015 0.015 0.012 0.007 0.007 0.006 0.005 0.005 0.004 0.005 0.005
LCF Mean -0.162 0.081 0.081 -0.116 0.058 0.058 -0.064 0.032 0.032 -0.013 0.006 0.006

SD 0.019 0.010 0.010 0.013 0.007 0.007 0.009 0.005 0.005 0.008 0.005 0.005
SE 0.017 0.009 0.009 0.012 0.007 0.007 0.008 0.004 0.005 0.007 0.005 0.005

LCF Mean -0.143 0.072 0.071 -0.106 0.053 0.053 -0.064 0.032 0.032 -0.023 0.011 0.011
(Flexible) SD 0.022 0.011 0.011 0.015 0.008 0.008 0.008 0.005 0.005 0.007 0.004 0.005

SE 0.020 0.010 0.010 0.014 0.007 0.007 0.008 0.004 0.004 0.006 0.004 0.004
1. APEs at (z1, wp).
2. π1 = 0, π2 = 1, ρ = 1.
3. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite direction

to its true APE.
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Table 1.3: (cont’d)

wp 90th

g 1 2 3
w True mean -0.009 0.004 0.004

Two Step Mean -0.009 0.005 0.005
SD 0.002 0.003 0.003
SE 0.001 0.003 0.003

w2 True Mean -0.007 0.004 0.004
Two Step Mean -0.008 0.004 0.004

SD 0.002 0.004 0.004
SE 0.002 0.004 0.004

Two Step Mean -0.008 0.004 0.004
(Flexible) SD 0.002 0.004 0.005

SE 0.002 0.006 0.006
LCF Mean 0.034 -0.017 -0.017

SD 0.012 0.007 0.007
SE 0.011 0.006 0.006

LCF Mean 0.015 -0.007 -0.007
(Flexible) SD 0.012 0.007 0.007

SE 0.010 0.006 0.006
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Figure 1.1: Empirical distributions of Average APE estimates under Condition 1 and Normal distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.2: Empirical distributions of Average APE estimates under Condition 1 and Logistic distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.3: Empirical distributions of Average APE estimates under Condition 1 and χ2
3 distribution

0
20

40
60

80
10

0
de

ns
ity

−.07 −.06 −.05 −.04 −.03 −.02
ape1

2Step LCF

0
20

40
60

80
10

0
de

ns
ity

.01 .02 .03 .04
ape2

2Step LCF

0
20

40
60

80
10

0
de

ns
ity

.01 .02 .03 .04
ape3

2Step LCF

0
20

40
60

80
de

ns
ity

−.09 −.08 −.07 −.06 −.05 −.04
ape1

2Step LCF
2Step(flexible) LCF(flexible)

0
20

40
60

80
de

ns
ity

.01 .02 .03 .04 .05
ape2

2Step LCF
2Step(flexible) LCF(flexible)

0
20

40
60

80
de

ns
ity

.01 .02 .03 .04 .05
ape3

2Step LCF
2Step(flexible) LCF(flexible)

1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.4: Empirical distributions of Percentile APE estimates including w2 under Condition 1 and Normal distribution
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Figure 1.4: (cont’d)
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Figure 1.4: (cont’d)
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Figure 1.5: Empirical distributions of Percentile APE estimates including w2 under Condition 1 and Logistic distribution
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Figure 1.5: (cont’d)
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Figure 1.5: (cont’d)
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Figure 1.6: Empirical distribution of Percentile APEs under Condition 1 and χ2
3 distribution
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Figure 1.6: (cont’d)
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Figure 1.6: (cont’d)
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Condition 2: π2 < 1, ρ = 1

To see if the above results are dependent on the instrument’s strong predictive power, we

consider a condition where its predictive power is weaker than Condition 1 by generating

the data with wi = π2zi2 + vi where π2 ∈ {0.1, 0.2, 0.5} and ri = vi + ei.

Staiger and Stock (1997) suggest a guideline for dividing weak and strong instruments

by using the first step’s F statistic, which tests the hypothesis that the instruments are not

correlated with the endogenous regressor; a threshold that they suggest is a F statistic of

10. Table 1.4 shows that the mean of F statistics testing the null hypothesis of π2 being 0

is not larger than 10 until π2 = 0.2. It also shows that about a half of 1000 replications has

the F statistic which is larger than 10 as π2 = 0.2 and every replication has it as π2 = 0.5.

Thus, according to the Staiger and Stock’s discussion, the instrument is weak as π2 = 0.1

and strong as π2 = 0.5. When π2 = 0.2, it barely manages to have properties as a strong

instrument.

Table 1.4: F statistics of the 1st step (H0 : π2 = 0)

π2 0.1 0.2 0.5 1
F statistics Mean 3.379 10.942 71.888 507.208

SD (3.436) (6.665) (19.440) (80.357)
(F > 10) 0.053 0.485 1.000 1.000

1. (F > 10) stands for the proportion of the F statistics being
greater than 10 among the 1000 replications.

Table 1.5 and Figure 1.7 to 1.9 illustrate that under the normal distribution, the aver-

age APE estimates by both the two methods are more biased and more volatile as π2 de-

creases; the weak instrument makes their approximations worse.14 But the mean squared

errors (MSEs) in Table 1.6 suggest that, for all three distributions, the LCF approach is

worse than the two step estimation method as a weak instrument is in use.

14 Figure 1.10 through 1.15 show that the results under the other distributions are similar.
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Table 1.5: Average APEs under Condition 2 and Normal distribution

π2 0.1 0.2 0.5
g 1 2 3 1 2 3 1 2 3

w True Mean -0.113 0.056 0.056 -0.113 0.057 0.057 -0.114 0.057 0.057
Two Step Mean -0.087 0.045 0.042 -0.096 0.048 0.048 -0.111 0.055 0.055

SD 0.110 0.059 0.067 0.061 0.032 0.033 0.020 0.011 0.011
SE - - - - - - - - -

LCF Mean -0.008 0.033 -0.025 -0.085 0.043 0.042 -0.098 0.049 0.049
SD 2.509 1.511 1.318 0.105 0.052 0.055 0.021 0.011 0.011
SE 36.96 27.92 19.25 0.088 0.045 0.047 0.021 0.011 0.011

w2 True Mean -0.121 0.061 0.061 -0.121 0.061 0.061 -0.122 0.061 0.061
Two Step Mean -0.091 0.045 0.046 -0.102 0.051 0.051 -0.119 0.059 0.059

SD 0.113 0.063 0.065 0.064 0.033 0.034 0.021 0.011 0.011
SE - - - - - - - - -

Two Step Mean -0.085 0.042 0.043 -0.097 0.049 0.049 -0.117 0.058 0.058
(Flexible) SD 0.109 0.062 0.064 0.063 0.034 0.034 0.022 0.011 0.012

SE - - - - - - - - -
LCF Mean 0.035 -0.036 0.001 -0.091 0.045 0.046 -0.106 0.053 0.053

SD 2.954 1.624 1.732 0.094 0.044 0.054 0.020 0.011 0.011
SE 43.42 29.42 26.22 0.082 0.041 0.045 0.020 0.011 0.011

LCF Mean 0.032 -0.033 0.000 -0.092 0.046 0.046 -0.106 0.053 0.053
(Flexible) SD 3.301 1.482 2.076 0.099 0.046 0.056 0.020 0.010 0.011

SE 47.57 22.03 36.71 0.082 0.041 0.045 0.019 0.010 0.010
1. π1 = 0, ρ = 1.
2. We cannot obtain the standard errors of average APE estimates by the two step estimation

method; the process in STATA to calculate them takes too much time to complete.
3. The grey colored cells indicate that at least one of the APE estimates for three choices has

the opposite direction to its true APE.
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Figure 1.7: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.1, and Normal distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.

353535



Figure 1.8: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.2, and Normal distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.9: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.5, and Normal distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.10: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.1, and Logistic distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.11: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.2, and Logistic distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.12: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.5, and Logistic distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.13: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.1, and χ2
3 distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.14: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.2, and χ2
3 distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Figure 1.15: Empirical distributions of Average APE estimates under Condition 2, π2 = 0.5, and χ2
3 distribution
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1.The distributions in the first row are those of the estimates when the model includes only w and those in the second row
are when the model includes w2.
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Table 1.6: Mean Squared Errors of Average APE estimates under Condition 2

π2 0.1 0.2 0.5 1
g 1 2 3 1 2 3 1 2 3 1 2 3

Normal
w Two Step 0.013 0.004 0.005 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

LCF 6.305 2.285 1.743 0.012 0.003 0.003 0.001 0.000 0.000 0.000 0.000 0.000
w2 Two Step 0.014 0.004 0.004 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Two Step (Flexible) 0.013 0.004 0.004 0.005 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
LCF 8.752 2.647 3.003 0.010 0.002 0.003 0.001 0.000 0.000 0.000 0.000 0.000
LCF (Flexible) 10.923 2.204 4.314 0.011 0.002 0.003 0.001 0.000 0.000 0.000 0.000 0.000

Logistic
w Two Step 0.015 0.004 0.005 0.005 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

LCF 9.419 1.312 5.220 0.013 0.003 0.003 0.001 0.000 0.000 0.000 0.000 0.000
w2 Two Step 0.016 0.005 0.005 0.006 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000

Two Step (Flexible) 0.015 0.005 0.004 0.006 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000
LCF 15.493 5.048 3.587 0.012 0.003 0.003 0.001 0.000 0.000 0.000 0.000 0.000
LCF (Flexible) 12.334 3.486 3.412 0.012 0.003 0.004 0.001 0.000 0.000 0.000 0.000 0.000

χ2
3

w Two Step 0.011 0.003 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
LCF 2.386 0.855 0.538 0.007 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000

w2 Two Step 0.010 0.004 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Two Step (Flexible) 0.011 0.004 0.004 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
LCF 5.328 2.061 1.312 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
LCF (Flexible) 5.039 1.914 1.272 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

1. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite direction
to its true APE.
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Table 1.7 through 1.1215 show that percentile APE estimates have similar patters with

those in average APE estimates. Plus, the tables presents that the weak instrument causes

huge standard errors at some replications.16 The standard errors significantly decrease

as π2 rises. As in the average APE estimates, Table 1.13 shows that the weak instrument

causes the LCF approach to have much worse approximation than the two step estimation

method.

Under Condition 2, the results does not provide enough evidence that including v̂i in a

flexible way helps their approximations. Actually, with the weak instrument, it makes the

two methods’ approximations worse; it causes the two step estimation method to have

enormous standard errors at several replications and the two methods to have more sign

distortions.

Hence the results under Condition 2 demonstrate that the quality of an instrument

affects the two methods’ approximation performances, and that the two step estimation

method is less sensitive to a weak instrument than the LCF approach. Plus, it is better not

to include the additional terms of the control function for their approximations if a weak

instrument is used.

15 The logistic distribution has similar results to the normal distribution.
16 There are big differences between the medians and the means of the standard errors except the two

step estimation.

45



Table 1.7: Percentile APEs under Condition 2, π2 = 0.1, and Normal distribution

wp 10th 25th 50th

g 1 2 3 1 2 3 1 2 3
w True Mean -0.164 0.082 0.082 -0.156 0.078 0.078 -0.127 0.064 0.064

Two Step Mean -0.125 0.064 0.061 -0.160 0.082 0.078 -0.112 0.058 0.054
SD 0.122 0.063 0.069 0.173 0.088 0.097 0.147 0.078 0.088
SE 0.232 0.132 0.148 0.485 0.259 0.353 0.355 0.269 0.246

w2 True Mean -0.219 0.110 0.110 -0.188 0.094 0.094 -0.127 0.064 0.064
Two Step Mean -0.150 0.075 0.075 -0.182 0.090 0.092 -0.112 0.055 0.056

SD 0.125 0.068 0.069 0.180 0.096 0.096 0.147 0.084 0.083
SE 0.237 0.156 0.158 0.367 0.258 0.224 0.305 0.211 0.200

Two Step Mean -0.146 0.074 0.073 -0.177 0.088 0.089 -0.110 0.054 0.056
(Flexible) SD 0.147 0.084 0.085 0.180 0.099 0.101 0.154 0.088 0.087

SE 8E+04 2E+13 6E+11 5E+07 7E+12 3E+11 8E+09 3E+12 9E+10
SE* 0.155 0.085 0.081 0.180 0.094 0.093 0.134 0.071 0.075

LCF Mean -0.063 0.013 0.050 -0.016 -0.010 0.027 0.035 -0.036 0.001
SD 2.953 1.624 1.732 2.954 1.624 1.732 2.954 1.624 1.732
SE 43.42 29.42 26.22 43.42 29.41 26.22 43.42 29.41 26.22
SE* 0.106 0.058 0.057 0.105 0.057 0.057 0.105 0.057 0.057

LCF Mean -0.009 -0.012 0.021 0.011 -0.022 0.011 0.032 -0.032 0.001
(Flexible) SD 3.467 1.563 2.148 3.385 1.521 2.113 3.299 1.481 2.075

SE 47.77 22.13 36.81 47.65 22.07 36.75 47.57 22.03 36.71
SE* 0.168 0.088 0.090 0.130 0.068 0.069 0.099 0.055 0.055

1. APEs at (z1, wp).
2. π1 = 0, ρ = 1.
3. SE* is the median of the standard errors.
4. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite

direction to its true APE.
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Table 1.7: (cont’d)

wp 75th 90th

g 1 2 3 1 2 3
w True Mean -0.089 0.044 0.044 -0.057 0.028 0.028

Two Step Mean -0.044 0.023 0.020 -0.014 0.008 0.006
SD 0.092 0.056 0.063 0.058 0.043 0.045
SE 0.456 0.489 0.438 0.213 0.235 0.193

w2 True Mean -0.075 0.037 0.037 -0.044 0.022 0.022
Two Step Mean -0.035 0.016 0.018 -0.003 0.001 0.003

SD 0.094 0.058 0.062 0.062 0.044 0.046
SE 0.294 0.284 0.273 0.251 0.178 0.190

Two Step Mean -0.031 0.015 0.016 0.010 -0.005 -0.005
(Flexible) SD 0.116 0.070 0.069 0.098 0.065 0.065

SE 2E+09 1E+12 5E+10 2E+14 5E+12 2E+11
SE* 0.094 0.061 0.060 0.087 0.068 0.069

LCF Mean 0.087 -0.062 -0.025 0.134 -0.085 -0.049
SD 2.955 1.624 1.732 2.955 1.625 1.732
SE 43.42 29.41 26.22 43.42 29.42 26.22
SE* 0.105 0.057 0.057 0.106 0.058 0.057

LCF Mean 0.054 -0.044 -0.010 0.074 -0.054 -0.020
(Flexible) SD 3.244 1.457 2.050 3.220 1.449 2.039

SE 47.58 22.04 36.71 47.65 22.08 36.75
SE* 0.100 0.056 0.058 0.127 0.073 0.074
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Table 1.8: Percentile APEs under Condition 2, π2 = 0.2, and Normal distribution

wp 10th 25th 50th 75th

g 1 2 3 1 2 3 1 2 3 1 2 3
w True Mean -0.164 0.082 0.082 -0.157 0.078 0.078 -0.127 0.064 0.064 -0.089 0.044 0.044

Two Step Mean -0.144 0.072 0.072 -0.147 0.074 0.073 -0.111 0.056 0.055 -0.065 0.033 0.032
SD 0.089 0.045 0.046 0.101 0.051 0.052 0.074 0.039 0.040 0.045 0.026 0.028
SE 0.088 0.045 0.045 0.102 0.052 0.052 0.072 0.039 0.039 0.039 0.027 0.027

w2 True Mean -0.220 0.110 0.110 -0.188 0.094 0.094 -0.127 0.064 0.064 -0.075 0.037 0.037
Two Step Mean -0.182 0.091 0.091 -0.174 0.087 0.087 -0.112 0.056 0.056 -0.055 0.027 0.028

SD 0.092 0.046 0.047 0.108 0.055 0.055 0.075 0.039 0.041 0.048 0.027 0.029
SE 0.090 0.046 0.046 0.108 0.055 0.055 0.073 0.039 0.039 0.043 0.028 0.028

Two Step Mean -0.182 0.091 0.091 -0.174 0.087 0.087 -0.110 0.055 0.055 -0.050 0.025 0.025
(Flexible) SD 0.104 0.055 0.056 0.108 0.056 0.057 0.078 0.041 0.042 0.062 0.034 0.035

SE 152.5 13.09 217.2 43.23 0.626 6.530 5.656 0.089 0.457 0.759 0.066 0.243
LCF Mean -0.189 0.094 0.095 -0.143 0.071 0.072 -0.091 0.045 0.046 -0.040 0.020 0.020

SD 0.097 0.046 0.055 0.095 0.045 0.054 0.094 0.044 0.054 0.094 0.044 0.054
SE 0.085 0.042 0.046 0.083 0.041 0.045 0.082 0.041 0.045 0.082 0.041 0.045

LCF Mean -0.152 0.076 0.076 -0.124 0.062 0.062 -0.092 0.046 0.046 -0.061 0.030 0.031
(Flexible) SD 0.159 0.078 0.083 0.123 0.059 0.067 0.098 0.046 0.056 0.103 0.050 0.059

SE 0.120 0.060 0.063 0.099 0.049 0.052 0.082 0.041 0.045 0.078 0.041 0.045
1. APEs at (z1, wp).
2. π1 = 0, ρ = 1.
3. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite direction

to its true APE.
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Table 1.8: (cont’d)

wp 90th

g 1 2 3
w True Mean -0.057 0.028 0.028

Two Step Mean -0.037 0.019 0.018
SD 0.033 0.022 0.023
SE 0.033 0.024 0.025

w2 True Mean -0.043 0.022 0.022
Two Step Mean -0.024 0.012 0.012

SD 0.038 0.024 0.025
SE 0.037 0.026 0.025

Two Step Mean -0.013 0.007 0.006
(Flexible) SD 0.063 0.037 0.037

SE 8.476 0.256 0.690
LCF Mean 0.007 -0.004 -0.003

SD 0.095 0.045 0.054
SE 0.084 0.042 0.046

LCF Mean -0.032 0.016 0.016
(Flexible) SD 0.130 0.065 0.072

SE 0.088 0.048 0.052
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Table 1.9: Percentile APEs under Condition 2, π2 = 0.5, and Normal distribution

wp 10th 25th 50th 75th

g 1 2 3 1 2 3 1 2 3 1 2 3
w True Mean -0.168 0.084 0.084 -0.159 0.080 0.080 -0.129 0.064 0.064 -0.088 0.044 0.044

Two Step Mean -0.164 0.082 0.082 -0.158 0.079 0.079 -0.125 0.062 0.062 -0.083 0.041 0.041
SD 0.037 0.019 0.019 0.040 0.020 0.020 0.026 0.014 0.014 0.010 0.007 0.008
SE 0.037 0.019 0.019 0.039 0.020 0.020 0.025 0.013 0.013 0.009 0.007 0.007

w2 True Mean -0.224 0.112 0.112 -0.192 0.096 0.096 -0.129 0.064 0.064 -0.075 0.037 0.037
Two Step Mean -0.213 0.106 0.107 -0.188 0.094 0.094 -0.126 0.063 0.063 -0.072 0.036 0.036

SD 0.041 0.020 0.020 0.044 0.022 0.022 0.027 0.014 0.015 0.014 0.009 0.009
SE 0.039 0.020 0.020 0.043 0.022 0.022 0.026 0.014 0.014 0.013 0.009 0.009

Two Step Mean -0.214 0.107 0.107 -0.188 0.094 0.094 -0.125 0.062 0.062 -0.069 0.035 0.035
(Flexible) SD 0.044 0.022 0.022 0.044 0.023 0.023 0.028 0.015 0.015 0.018 0.011 0.011

SE 0.042 0.022 0.022 0.042 0.022 0.022 0.026 0.014 0.014 0.017 0.010 0.010
LCF Mean -0.202 0.101 0.101 -0.157 0.078 0.078 -0.106 0.053 0.053 -0.056 0.028 0.028

SD 0.028 0.014 0.015 0.024 0.012 0.012 0.021 0.011 0.011 0.021 0.011 0.012
SE 0.026 0.014 0.014 0.022 0.012 0.012 0.020 0.011 0.011 0.021 0.011 0.011

LCF Mean -0.168 0.084 0.084 -0.139 0.069 0.070 -0.106 0.053 0.053 -0.074 0.037 0.037
(Flexible) SD 0.036 0.018 0.018 0.027 0.014 0.014 0.020 0.010 0.011 0.020 0.011 0.011

SE 0.032 0.017 0.017 0.025 0.013 0.013 0.019 0.010 0.010 0.018 0.010 0.010
1. APEs at (z1, wp).
2. π1 = 0, ρ = 1.
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Table 1.9: (cont’d)

wp 90th

g 1 2 3
w True Mean -0.055 0.028 0.028

Two Step Mean -0.052 0.026 0.026
SD 0.007 0.007 0.007
SE 0.006 0.007 0.007

w2 True Mean -0.043 0.021 0.021
Two Step Mean -0.041 0.021 0.020

SD 0.010 0.008 0.008
SE 0.010 0.008 0.008

Two Step Mean -0.037 0.019 0.018
(Flexible) SD 0.018 0.012 0.012

SE 0.016 0.012 0.011
LCF Mean -0.010 0.005 0.005

SD 0.026 0.013 0.014
SE 0.024 0.013 0.013

LCF Mean -0.044 0.022 0.022
(Flexible) SD 0.026 0.014 0.015

SE 0.021 0.013 0.013

51



Table 1.10: Percentile APEs under Condition 2, π2 = 0.1, and χ2
3 distribution

wp 10th 25th 50th

g 1 2 3 1 2 3 1 2 3
w True Mean -0.097 0.049 0.049 -0.070 0.035 0.035 -0.043 0.022 0.022

Two Step Mean -0.133 0.069 0.064 -0.093 0.049 0.044 -0.030 0.017 0.013
SD 0.160 0.083 0.089 0.150 0.078 0.089 0.109 0.065 0.071
SE 0.237 0.886 0.877 0.268 0.685 0.612 0.306 0.573 0.674

w2 True Mean -0.145 0.072 0.072 -0.087 0.044 0.044 -0.043 0.022 0.022
Two Step Mean -0.146 0.073 0.072 -0.118 0.059 0.059 -0.044 0.023 0.021

SD 0.164 0.087 0.087 0.160 0.089 0.086 0.109 0.069 0.065
SE 0.271 3.391 3.362 0.458 3.292 3.084 0.434 1.627 1.667

Two Step Mean -0.136 0.070 0.067 -0.100 0.051 0.049 -0.041 0.021 0.020
(Flexible) SD 0.192 0.103 0.107 0.155 0.090 0.087 0.140 0.081 0.078

SE 4E+25 5E+21 1E+20 1E+29 2E+22 4E+21 1E+27 1E+31 6E+29
SE* 0.209 0.117 0.116 0.136 0.078 0.079 0.126 0.072 0.074

LCF Mean -0.058 0.028 0.030 0.002 -0.002 0.000 0.069 -0.035 -0.034
SD 2.305 1.434 1.144 2.305 1.434 1.144 2.305 1.434 1.144
SE 41.22 27.90 20.46 41.22 27.90 20.46 41.22 27.90 20.46
SE* 0.090 0.051 0.051 0.089 0.050 0.051 0.089 0.050 0.051

LCF Mean 0.019 -0.008 -0.011 0.041 -0.019 -0.021 0.063 -0.031 -0.032
(Flexible) SD 2.401 1.420 1.238 2.302 1.391 1.175 2.241 1.383 1.124

SE 37.35 26.65 19.09 37.13 26.55 18.98 36.96 26.47 18.91
SE* 0.221 0.113 0.116 0.152 0.079 0.082 0.090 0.051 0.050

1. APEs at (z1, wp).
2. π1 = 0, ρ = 1.
3. SE* is the median of the standard errors.
4. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite

direction to its true APE.

525252



Table 1.10: (cont’d)

wp 75th 90th

g 1 2 3 1 2 3
w True Mean -0.023 0.012 0.012 -0.012 0.006 0.006

Two Step Mean 0.006 -0.001 -0.004 0.014 -0.007 -0.007
SD 0.081 0.053 0.057 0.057 0.041 0.044
SE 0.503 0.436 0.421 0.164 0.380 0.339

w2 True Mean -0.020 0.010 0.010 -0.010 0.005 0.005
Two Step Mean -0.003 0.002 0.001 0.007 -0.003 -0.004

SD 0.078 0.056 0.052 0.051 0.042 0.041
SE 0.525 1.332 0.998 0.561 0.537 0.947

Two Step Mean 0.020 -0.010 -0.010 0.048 -0.025 -0.023
(Flexible) SD 0.136 0.081 0.076 0.122 0.075 0.073

SE 4E+24 5E+30 2E+29 2E+28 2E+30 4E+28
SE* 0.150 0.108 0.113 0.189 0.162 0.169

LCF Mean 0.136 -0.069 -0.067 0.196 -0.099 -0.097
SD 2.304 1.434 1.144 2.304 1.434 1.144
SE 41.22 27.90 20.46 41.22 27.90 20.46
SE* 0.089 0.050 0.050 0.089 0.051 0.051

LCF Mean 0.087 -0.044 -0.043 0.109 -0.056 -0.053
(Flexible) SD 2.248 1.400 1.111 2.308 1.435 1.131

SE 37.01 26.50 18.95 37.22 26.59 19.05
SE* 0.076 0.049 0.049 0.125 0.075 0.073
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Table 1.11: Percentile APEs under Condition 2, π2 = 0.2, and χ2
3 distribution

wp 10th 25th 50th 75th

g 1 2 3 1 2 3 1 2 3 1 2 3
w True Mean -0.097 0.049 0.049 -0.070 0.035 0.035 -0.043 0.021 0.021 -0.023 0.011 0.011

Two Step Mean -0.111 0.056 0.056 -0.066 0.033 0.033 -0.027 0.014 0.014 -0.009 0.005 0.004
SD 0.113 0.057 0.057 0.069 0.037 0.037 0.038 0.024 0.023 0.032 0.022 0.020
SE 0.107 0.055 0.055 0.066 0.036 0.036 0.031 0.022 0.022 0.024 0.021 0.021

w2 True Mean -0.145 0.072 0.072 -0.087 0.044 0.044 -0.043 0.022 0.022 -0.020 0.010 0.010
Two Step Mean -0.134 0.067 0.067 -0.091 0.045 0.045 -0.041 0.020 0.021 -0.016 0.008 0.008

SD 0.124 0.063 0.063 0.080 0.042 0.042 0.036 0.022 0.023 0.027 0.019 0.020
SE 0.120 0.061 0.062 0.077 0.041 0.041 0.029 0.021 0.022 0.023 0.021 0.020

Two Step Mean -0.130 0.065 0.065 -0.080 0.040 0.040 -0.037 0.018 0.019 0.001 -0.001 0.000
(Flexible) SD 0.127 0.067 0.067 0.069 0.038 0.039 0.060 0.033 0.033 0.071 0.038 0.039

SE 0.817 15.77 25.78 0.312 15.56 34.77 0.420 13.94 49.29 19.58 12.11 65.85
LCF Mean -0.183 0.091 0.092 -0.123 0.062 0.062 -0.057 0.028 0.029 0.009 -0.005 -0.004

SD 0.069 0.036 0.039 0.067 0.035 0.038 0.066 0.034 0.037 0.065 0.033 0.037
SE 0.062 0.033 0.035 0.061 0.032 0.034 0.060 0.032 0.034 0.060 0.032 0.034

LCF Mean -0.130 0.065 0.065 -0.096 0.048 0.048 -0.058 0.029 0.029 -0.019 0.009 0.010
(Flexible) SD 0.185 0.095 0.094 0.122 0.062 0.062 0.064 0.033 0.036 0.075 0.039 0.042

SE 0.132 0.068 0.069 0.095 0.049 0.050 0.059 0.032 0.033 0.046 0.028 0.030
1. APEs at (z1, wp).
2. π1 = 0, ρ = 1.
3. SE* is the median of the standard errors.
4. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite direction to

its true APE.
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Table 1.11: (cont’d)

wp 90th

g 1 2 3
w True Mean -0.012 0.006 0.006

Two Step Mean -0.002 0.001 0.001
SD 0.029 0.021 0.020
SE 0.024 0.021 0.021

w2 True Mean -0.010 0.005 0.005
Two Step Mean -0.006 0.003 0.003

SD 0.023 0.018 0.018
SE 0.022 0.020 0.021

Two Step Mean 0.025 -0.013 -0.012
(Flexible) SD 0.085 0.047 0.046

SE 4143 490.5 400.8
LCF Mean 0.069 -0.035 -0.034

SD 0.065 0.033 0.037
SE 0.061 0.033 0.035

LCF Mean 0.016 -0.008 -0.008
(Flexible) SD 0.129 0.068 0.069

SE 0.070 0.041 0.042
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Table 1.12: Percentile APEs under Condition 2, π2 = 0.5, and χ2
3 distribution

wp 10th 25th 50th 75th

g 1 2 3 1 2 3 1 2 3 1 2 3
w True Mean -0.098 0.049 0.049 -0.070 0.035 0.035 -0.042 0.021 0.021 -0.022 0.011 0.011

Two Step Mean -0.096 0.048 0.048 -0.063 0.031 0.031 -0.036 0.018 0.018 -0.019 0.010 0.010
SD 0.045 0.023 0.023 0.023 0.012 0.012 0.008 0.006 0.006 0.004 0.005 0.005
SE 0.042 0.021 0.021 0.021 0.012 0.012 0.007 0.006 0.006 0.003 0.005 0.005

w2 True Mean -0.147 0.073 0.073 -0.087 0.044 0.044 -0.042 0.021 0.021 -0.019 0.010 0.010
Two Step Mean -0.123 0.062 0.062 -0.085 0.043 0.043 -0.047 0.023 0.023 -0.022 0.011 0.011

SD 0.056 0.028 0.028 0.028 0.014 0.015 0.010 0.007 0.007 0.006 0.006 0.006
SE 0.052 0.027 0.027 0.025 0.014 0.014 0.009 0.007 0.007 0.005 0.006 0.006

Two Step Mean -0.124 0.062 0.062 -0.079 0.039 0.040 -0.042 0.021 0.021 -0.019 0.010 0.010
(Flexible) SD 0.054 0.028 0.028 0.025 0.014 0.014 0.014 0.008 0.009 0.009 0.007 0.007

SE 0.054 0.028 0.028 0.029 0.016 0.015 0.025 0.013 0.013 0.045 0.019 0.019
LCF Mean -0.184 0.092 0.092 -0.127 0.063 0.064 -0.064 0.032 0.032 -0.001 0.000 0.000

SD 0.026 0.014 0.014 0.021 0.011 0.011 0.018 0.010 0.010 0.017 0.010 0.010
SE 0.023 0.012 0.012 0.019 0.010 0.010 0.016 0.009 0.009 0.017 0.009 0.009

LCF Mean -0.138 0.069 0.069 -0.103 0.051 0.052 -0.064 0.032 0.032 -0.025 0.012 0.012
(Flexible) SD 0.046 0.024 0.024 0.032 0.016 0.016 0.017 0.010 0.010 0.013 0.009 0.009

SE 0.040 0.021 0.021 0.028 0.015 0.015 0.016 0.009 0.009 0.010 0.007 0.007
1. APEs at (z1, wp).
2. π1 = 0, ρ = 1.
3. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite direction

to its true APE.
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Table 1.12: (cont’d)

wp 90th

g 1 2 3
w True Mean -0.011 0.006 0.006

Two Step Mean -0.011 0.006 0.006
SD 0.003 0.005 0.005
SE 0.003 0.005 0.005

w2 True Mean -0.009 0.005 0.005
Two Step Mean -0.010 0.005 0.005

SD 0.004 0.006 0.006
SE 0.004 0.006 0.006

Two Step Mean -0.008 0.004 0.004
(Flexible) SD 0.009 0.009 0.009

SE 0.123 0.040 0.040
LCF Mean 0.056 -0.028 -0.028

SD 0.020 0.011 0.011
SE 0.019 0.011 0.011

LCF Mean 0.011 -0.005 -0.005
(Flexible) SD 0.023 0.014 0.014

SE 0.017 0.011 0.011
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Table 1.13: Mean Squared Errors of Percentile APE estimates under Condition 2

wp 10th 25th 50th 75th

π2 g 1 2 3 1 2 3 1 2 3 1 2 3
Normal

w2 0.1 Two step 0.020 0.006 0.006 0.032 0.009 0.009 0.022 0.007 0.007 0.010 0.004 0.004
Two step (Flexible) 0.027 0.008 0.009 0.033 0.010 0.010 0.024 0.008 0.008 0.015 0.005 0.005
LCF 8.747 2.646 3.002 8.753 2.648 3.003 8.754 2.648 3.003 8.757 2.649 3.004
LCF (Flexible) 12.06 2.457 4.621 11.50 2.328 4.470 10.91 2.202 4.308 10.54 2.130 4.206

0.2 Two step 0.010 0.002 0.003 0.012 0.003 0.003 0.006 0.002 0.002 0.003 0.001 0.001
Two step (Flexible) 0.012 0.003 0.003 0.012 0.003 0.003 0.006 0.002 0.002 0.004 0.001 0.001
LCF 0.010 0.002 0.003 0.011 0.003 0.003 0.010 0.002 0.003 0.010 0.002 0.003
LCF (Flexible) 0.030 0.007 0.008 0.019 0.005 0.005 0.011 0.002 0.003 0.011 0.003 0.004

0.5 Two step 0.002 0.000 0.000 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Two step (Flexible) 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
LCF 0.001 0.000 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
LCF (Flexible) 0.004 0.001 0.001 0.004 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

χ2
3

w2 0.1 Two step 0.027 0.008 0.008 0.027 0.008 0.008 0.012 0.005 0.004 0.006 0.003 0.003
Two step (Flexible) 0.037 0.011 0.012 0.024 0.008 0.008 0.020 0.006 0.006 0.020 0.007 0.006
LCF 5.321 2.060 1.310 5.320 2.059 1.310 5.324 2.060 1.311 5.335 2.063 1.314
LCF (Flexible) 5.793 2.023 1.539 5.316 1.938 1.385 5.035 1.917 1.266 5.064 1.964 1.238

0.2 Two step 0.015 0.004 0.004 0.006 0.002 0.002 0.001 0.000 0.001 0.001 0.000 0.000
Two step (Flexible) 0.016 0.004 0.005 0.005 0.001 0.002 0.004 0.001 0.001 0.005 0.002 0.002
LCF 0.006 0.002 0.002 0.006 0.002 0.002 0.005 0.001 0.001 0.005 0.001 0.002
LCF (Flexible) 0.034 0.009 0.009 0.015 0.004 0.004 0.004 0.001 0.001 0.006 0.002 0.002

0.5 Two step 0.004 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Two step (Flexible) 0.003 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LCF 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.000
LCF (Flexible) 0.002 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

1. The Mean Squared Errors are calculated from Table 1.7 through 1.12.
2. The grey colored cells indicate that at least one of the APE estimates for three choices has the opposite direction to its

true APE.
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Table 1.13: (cont’d)

wp 90th

π2 g 1 2 3
Normal

w2 0.1 Two step 0.005 0.002 0.002
Two step (Flexible) 0.013 0.005 0.005
LCF 8.765 2.651 3.006
LCF (Flexible) 10.38 2.104 4.158

0.2 Two step 0.002 0.001 0.001
Two step (Flexible) 0.005 0.002 0.002
LCF 0.012 0.003 0.004
LCF (Flexible) 0.017 0.004 0.005

0.5 Two step 0.000 0.000 0.000
Two step (Flexible) 0.000 0.000 0.000
LCF 0.002 0.000 0.000
LCF (Flexible) 0.001 0.000 0.000

χ2
3

w2 0.1 Two step 0.003 0.002 0.002
Two step (Flexible) 0.006 0.006
LCF 5.353 2.067 1.318
LCF (Flexible) 5.340 2.063 1.282

0.2 Two step 0.001 0.000 0.000
Two step (Flexible) 0.008 0.003 0.002
LCF 0.010 0.003 0.003
LCF (Flexible) 0.017 0.005 0.005

0.5 Two step 0.000 0.000 0.000
Two step (Flexible) 0.000 0.000 0.000
LCF 0.005 0.001 0.001
LCF (Flexible) 0.001 0.000 0.000

Condition 3: ρ < 1

We also generate the data by allowing the amount of endogeneity to be smaller than

Conditions 1 and 2: wi = π2zi2 + vi where π2 ∈ {0.1, 0.2, 0.5, 1} and ri = ρvi + ei where

ρ ∈ {0.1, 0.5} Although a fewer sign distortions are observed than ρ = 1, the previous

results remain almost the same, in general.

In summary, the simulations under Condition 1 through Condition 3 demonstrate that

the two step estimation method with a strong instrument provides a good approxima-
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tion even though its conditional mean is misspecified, and that it outperforms the LCF

approach regardless of the instrument’s quality and the amount of endogeneity. Further-

more, in the simulations, adding v̂2
i and v̂3

i in the estimation does not improve the two

methods’ approximations.17

1.4 APPLICATION: MICHIGAN EDUCATIONAL ASSESS-

MENT PROGRAM MATH TEST

We apply the two step estimation method to Michigan Educational Assessment Program

(MEAP) data of the school year 2004/2005 in order to estimate the effects of spending

on the fourth grade math test outcome. The fourth grade MEAP math test is a statewide

assessment test given by the State Board of Education in Michigan. It measures public

school student achievement in relation to Michigan curriculum standards, which groups

of educators, teachers and school administrators set. A student’s outcome is rated at one

of the four levels as described in Table 1.14 and public school districts’ percentage shares

of students for the four levels are available from the Michigan Department of Education

(MDE) website.18

Table 1.14: Four levels of MEAP

Outcome Description
Level 1 Exceeded Michigan Standards
Level 2 Met Michigan Standards
Level 3 demonstrated Basic knowledge and skills of Michigan Standards
Level 4 Apprentice level, showing little success in meeting Michigan standards
1. The description is from Michgian Department of Education (2005).

Papke (2005, 2008), Papke and Wooldridge (2008), and Roy (2011) examine the rela-

tionship between spending and pass rates of this test by using panel data. During their

data periods, the test had three performance levels (Satisfactory, Moderate, Low) and

17 That the simulations model ri as a linear function of vi could be one of the reasons.
18 http://www.michigan.gov/mde/
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their pass rates indicate the percentage of students in the satisfactory level. They find

that there exist significant positive causal effects of spending on the pass rates although

their magnitudes are different. The application in this chapter can help understand how

spending shifts students in the four different levels instead of between pass and fail.

We use district-level data including 512 districts.19 We turn these districts’ percentage

shares into proportions to obtain fractional dependent variables.20 Table 1.15 illustrates

the dependent variables’ summary statistics. While the lower corner 0 appears for all of

the four levels, the upper corner 1 appears only for level 1 like the dependent variables

generated in the simulations. We choose the first level as the reference as in the simula-

tions.

Table 1.15: Summary statistics of the dependent variables

Variable Mean SD Min Max Description
y1 0.283 0.138 0 1.000 fraction of Level 1
y2 0.463 0.082 0 0.742 fraction of Level 2
y3 0.221 0.098 0 0.643 fraction of Level 3
y4 0.033 0.035 0 0.278 fraction of Level 4

Total 1.000

The key explanatory variable, spending, is constructed as per pupil general fund ex-

penditure in a logarithmic form, log(per pupil GF expenditure). Although we additionally

control for the fraction of applications for the free and reduced-price lunch program as

a measure of the poverty rate and log(enrollment) as a measure of school district size, we

still suspect that spending is endogenous. There can be unobserved district effects such as

parental involvement, which are correlated with spending and are able to affect student

outcome as well. Thus we need an instrument to achieve more accurate estimation for

the effects of spending on the student test outcome.

To find an instrument, we exploit Michigan’s school funding system reform in 1994,

which is called “Proposal A.” The reform changed Michigan’s school funding sources

19 In the year of 2004/2005, Michigan has 552 public school districts.
20 The original percentage shares for some districts do not sum to 100 because of rounding errors. Thus

We calculate the proportions not based on 100, but based on total percentage shares of the four levels.
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and started to provide school districts with foundation allowances. It resulted in not

only significantly raising districts spending, but also reducing the spending inequalities

across districts by letting the low spending districts’ foundation allowances increase faster

than the others. The initial foundation allowance for a district, which was awarded in

1994/1995, was determined based on its per pupil spending in 1993/1994 and the dollar

increases for the following years has been decided solely by the state legislature. There-

fore per pupil foundation allowance in 2004/2005 meets the requirements of an instru-

ment for spending if spending in 1993/1994 is controlled for.

Letting zi1 = (log(enrollmenti) freelunchi spending93i), we apply Procedure 1.2.1 to the

model

Kg(hi; θ) =
exp

(
hiθg

)
∑4

h exp (hiθh)
, ∀g = 1, · · · , 4 (1.26)

where hi = (zi1 spendingi vi), freelunchi represents the fraction of applications for the

free and reduced-price lunch program, and spending93i is spending in 1993/1994. The

spending variable’s reduced form is expressed as

spendingi = zi1π1 + π2foundationi + vi (1.27)

where foundationi = log(per pupil foundation allowancei). Table 1.16 includes summary

statistics of the data.

Table 1.16: Summary statistics of the data

Variable Mean (SD)
enrollment 3127.186 (6972.843)
fraction of applications for free and reduced lunch 0.354 (0.176)
per pupil expenditure in 2004/2005 8086.428 (1090.264)
per pupil expenditure in 1994/1995 4901.967 (943.182)
per pupil foundation allowance 6979.738 (655.772)
# of districts 512

Table 1.17 contains the first step estimation result. The foundation variable’s t statistic

shows that spending is correlated with the foundation allowance, netting out the other
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explanatory variables. In addition, the F statistic suggests that it can be declared as a

strong instrument according to Staiger and Stock (1997).

Table 1.17: The first step estimation result

coefficient SE t p-values
log(enrollment) 0.004 0.005 0.860 0.391
freelunch 0.323 0.024 13.230 0.000
spending93 0.180 0.053 3.390 0.001
foundation 0.738 0.121 6.110 0.000
constant 0.787 0.706 1.110 0.266
R2 0.625
F(H0 : foundation = 0) 37.28

Table 1.18 reports the average APE estimates by the two methods. The two step esti-

mation method provides statistically significant effects on level 1 and level 3. When the

quadratic effect of spending is not allowed for, a 10% increase in per pupil expenditure

- an increase in spending by 0.1 - causes the fractions of student at level 1 and level 3

to raise 6.8 percentage points and decrease 6.2 percentage points, respectively.21 With

the quadratic effect, the magnitudes of the effects are slightly larger. The LCF approach

yields similar result except that the fraction at level 4 is also statistically significant. The

magnitudes of the effects are bigger than those by the two step estimation method. With-

out the quadratic effect, its estimated effect of a 10% increase in per pupil expenditure on

the fraction at level 1 is 7.7 percentage points and those on the fractions at level 3 and 4

are -6.3 and -1.0 percentage points, respectively. With the quadratic effect, those effects

become larger. Including the flexible forms of v̂i causes the estimated effects by both the

methods to be smaller except that on level 4 by the LCF approach.

Table 1.19 presents that the two methods’ percentile APE estimates for level 1 and level

3 by the two methods and those for level 4 by the LCF approach at 75th and 90th percentiles

are statistically significant. All of the estimates for level 1 are positive and those for level

21 Considering that 119,687 students took the MEAP math test in 2004/2005, one percentage point
increase(decrease) in the number of students at a certain level translates into about 1200 student in-
crease(decrease).
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Table 1.18: Average APE estimates of spending on the fourth grade MEAP math test

level 1 2 3 4
w Two Step 0.681* 0.017 -0.619* -0.079

(0.158) (0.158 ) (0.048) (0.048)
LCF 0.768* -0.039 -0.625* -0.104*

(0.213) (0.131) (0.165) (0.049)
w2 Two Step 0.779* -0.044 -0.667* -0.068

(0.067) (0.126) (0.095) (0.035)
Two Step 0.691* 0.014 -0.602* -0.103
(Flexible) (0.038) (0.158) (0.174) (0.054)
LCF 0.856* -0.051 -0.693* -0.112*

(0.218) (0.143) (0.182) (0.056)
LCF 0.771* 0.019 -0.626* -0.163*
(Flexible) (0.227) ( 0.146) (0.171) (0.068)

1. w = spending = log(per pupil GF expenditure).
2. Standard errors are in parentheses.
3. The two step estimation method’s standard errors

are calculated using 1000 bootstrap replications.
4. * is significant at, or below, 5 percent.

3 and 4 are negative. As the percentile of spending increases, the magnitudes of the

estimated effects for level 1 and 3 by the LCF approach decrease, illustrating that given

the same percentage increase in per pupil expenditure, low spending districts are affected

more than high spending districts. On the other hand, the two step estimation method

has different patterns. Without the quadratic effect, the higher the percentile of spending

is, the bigger its estimated effect for level 1 is and the smaller that for level 3 is. But its

level 1 estimate with the quadratic effect increases from the 10th to the 75th percentile and

then drops at the 90th percentile. Allowing for v̂2
i and v̂3

i in the estimation has the same

result as the average APE estimates.

The effects on level 2 in Table 1.18 and Table 1.19 are not significant. It might be

because the fractions of students who used to be at lower levels move to level 2 and who

used to be at level 2 to level 1 are similar.

In summary, the two methods show that spending affects mainly on level 1 and 3.

Plus, considering the magnitudes of their estimates along with the directions, we can
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Table 1.19: Percentile APE estimates of spending on the fourth grade MEAP math test

wp 10th 25th

level 1 2 3 4 1 2 3 4
w Two Step 0.601* 0.213 -0.729* -0.084 0.633* 0.157 -0.706* -0.083

(0.135) (0.156) (0.209) (0.074) (0.156) (0.142) (0.200) (0.067)
w2 Two Step 0.720* 0.163 -0.832* -0.051 0.755* 0.095 -0.792* -0.059

(0.146) (0.194) (0.246) (0.078) (0.171) (0.169) (0.227) (0.071)
Two Step 0.628* 0.202 -0.710* -0.120 0.658* 0.145 -0.688* -0.115
(Flexible) (0.163) (0.178) (0.215) (0.102) (0.184) (0.159) (0.202) (0.088)
LCF 0.922* -0.060 -0.745* -0.117 0.903* -0.057 -0.730* -0.115

(0.231) (0.163) (0.208) (0.066) (0.227) (0.156) (0.200) (0.063)
LCF 0.791* 0.040 -0.646* -0.185* 0.785* 0.034 -0.641* -0.179*
(Flexible) (0.242) (0.169) (0.192) (0.081) (0.237) (0.162) (0.185) (0.077)

wp 50th 75th

level 1 2 3 4 1 2 3 4
w Two Step 0.679* 0.062 -0.660* -0.080 0.728* -0.070 -0.584* -0.074

(0.188) (0.125) (0.179) (0.056) (0.222) (0.132) (0.140) (0.041)
w2 Two Step 0.798* -0.012 -0.718* -0.067 0.819* -0.141 -0.607* -0.072

(0.206) (0.141) (0.190) (0.059) (0.236) (0.143) (0.138) (0.042)
Two Step 0.697* 0.052 -0.643* -0.106 0.731* -0.072 -0.568* -0.091*
(Flexible) (0.213) (0.140) (0.175) (0.067) (0.239) (0.147) (0.134) (0.043)
LCF 0.872* -0.053 -0.706* -0.113 0.828* -0.047 -0.672* -0.109*

(0.221) (0.147) (0.188) (0.058) (0.215) (0.137) (0.174) (0.053)
LCF 0.776* 0.024 -0.631* -0.169* 0.762* 0.010 -0.618* -0.154*
(Flexible) (0.230) (0.151) (0.175) (0.071) (0.222) (0.140) (0.166) (0.064)

wp 90th

level 1 2 3 4
w Two Step 0.764* -0.252 -0.452* -0.060*

(0.242) (0.179) (0.072) (0.019)
w2 Two Step 0.775* -0.273 -0.436* -0.065*

(0.243) (0.181) (0.070) (0.022)
Two Step 0.733* -0.230 -0.437* -0.066*
(Flexible) (0.245) (0.185) (0.074) (0.018)
LCF 0.761* -0.038 -0.619* -0.104*

(0.214) (0.132) (0.162) (0.049)
LCF 0.741* -0.011 -0.598* -0.132*
(Flexible) (0.216) (0.132) (0.159) (0.058)

1. w = spending = log(per pupil GF expenditure).
2. Standard errors are in parentheses.
3. APEs at (z1, spendingp).
4. * is significant at, or below, 5 percent.
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conclude that an increase in spending tends to shift students who are rated at a lower

level to an upper level, in general. It is consistent with the results of the four research that

mentioned above.

1.5 CONCLUSION

This chapter develops a two step estimation method for multiple fractional dependent

variables especially when endogenous explanatory variables are continuous. The method

directly specifies the estimating conditional mean rather than the structural one and deals

with the endogeneity by combining a control function approach. Although the method is

not applicable when the characteristics of choices are of interest, it can provide not only a

consistent estimator of the parameters in the estimating conditional mean as long as the

conditional mean specification is correct, but also a useful estimator for the quantities of

the structural conditional mean without estimating the structural mean parameters.

Monte Carlo simulations demonstrate that the method even with a misspecified con-

ditional mean works well as an approximation to true APEs if a strong instrument is

available. The simulations also provide evidence that the two step estimation is prefer-

able to an alternative linear method - a LCF approach; the linear method’s approximation

is more sensitive to the quality of an instrument.

The application to the fourth grade MEAP math test of the year 2004/2005 illustrates

that the two step estimation method and the LCF approach provide similar results in

general: the more a school district spends, the more students are in the exceeded Michigan

Standards level and the fewer students are in the demonstrated basic knowledge and

skills of Michigan Standards level. That is, an increase in spending tends to shift students

from a lower level to a upper level.
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Appendix for Chapter 1

In this appendix, we show how to obtain the estimators’ standard errors taking the extra

variations from the first steps of Procedure 1.2.1 and Procedure 1.2.2 into account espe-

cially when the quadratic effect is not allowed for. The model including w2 and using the

flexible forms of v̂ require modifications. This appendix also includes Table 1.20 showing

how the response variables for three choices are generated across the simulations.

The standard errors of θ̂ First, we obtain the standard errors of θ̂ from Procedure 1.2.1.

The first step of Procedure 1.2.1 applies OLS to (1.15) and so, under the standard regular-

ity conditions,

√
N(π̂ −π) =

1√
N

N

∑
i

E(z′z)−1z′ivi + op(1) =
1√
N

N

∑
i

qi + op(1) (1.28)

where qi ≡ E(z′z)−1z′ivi. The conditional mean of the second step obtaining θ̂ is

E(yig|zi, wi) = Kg(ĥi; θ) =
exp(θgĥi)

1 + ∑G
h=2 exp(θhĥi)

, g = 2, · · · , G, (1.29)

=
1

1 + ∑G
h=2 exp(θhĥi)

, g = 1, (1.30)

where ĥi = (xi1 v̂i) is a 1× p vector, vi = wi − ziπ, and we redefine θ for the appendix

by dropping θ1 from it:

θ =

(
θ′2 · · · θ′g · · · θ′G

)′
p(G−1)×1

where θg = (θ′z θw θv)′p×1, for g = 2, · · ·G. Then the first order condition is

N

∑
i

si(θ̂, π̂) = 0 (1.31)
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where

si(θ, π) ≡ (∇θ`i)
′ =



(
∂`i

∂θ2
)′

...

(
∂`i

∂θg
)′

...

(
∂`i

∂θG
)′


=



si2
...

sig
...

siG



and

sig = (
∂`i

∂θg
)′ = h′i(yig − Kg(hi; θ)), p× 1 vector.

A mean value expansion (MVE) around θ gives

N

∑
i

si(θ̂, π̂) = ∑
i

si(θ, π̂) +

[
∇θ ∑

i
si(θ̈)

]
(θ̂− θ) (1.32)

where θ̈ is on the line segment between θ̂ and θ. By multiplying through by
1√
N

and

using (1.31) and the weak law of large numbers (WLLN), we rearrange (1.32):

√
N(θ̂− θ) = − 1√

N

N

∑
i

(
A−1si(θ, π̂)

)
+ op(1) (1.33)

where A = −E(Hi(θ)) = −E(∇2
θ`i(θ))p(G−1)×p(G−1),

Hi =



−h′ihiKi2(1− Ki2) h′ihiKi2Ki3 · · · · · · h′ihiKi2KiG

h′ihiKi3Ki2 −h′ihiKi3(1− Ki3) · · · · · · h′ihiKi2KiG
...

...
...

h′ihiKiGKi2 · · · · · · h′ihiKiGKiG −h′ihiKiG(1− KiG)


,

and Kig = Kg(hi; θ).

Since ∑i si(θ, π̂) still depends on the sample, we can not apply the central limit the-
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orem (CLT) yet. Using a MVE around π, multiplying through by 1√
N

and using (1.28)

gives

1√
N

N

∑
i

si(θ, π̂) =
1√
N

N

∑
i

si(θ, π) + E[∇πsi(θ, π)]
√

N(π̂ −π) + op(1).

=
1√
N

N

∑
i
(si + Fqi) + op(1) (1.34)

where

F = E[∇πsi(θ, π)]p(G−1)×M = E
[(

∂si2

∂π

)′
· · ·

(
∂sig

∂π

)′
· · ·

(
∂siG

∂π

)′]′

and
∂sig

∂π
=

∂h′i
∂π

(yig − Kig) + h′iziKig

(
θvg −

∑h=2 θvh exp(hiθh)

1 + ∑h=2 exp(hiθh)

)
.

By plugging (1.34) into (1.33),

√
N(θ̂− θ) = A−1

(
− 1√

N

N

∑
i

di(θ, π)

)
+ op(1) (1.35)

where di ≡ si + Fqi. Therefore,

Avar
(√

N(θ̂− θ)
)
= A−1DA−1 (1.36)

where D ≡ Var(di) = Var(si + Fqi), and so a valid estimator of Avar(θ̂) is

1
N

Â−1D̂Â−1 (1.37)

where

D̂ ≡ 1
N

N

∑
i

d̂id̂′i =
1
N ∑

i
(ŝi + F̂q̂i)(ŝi + F̂q̂i)

′, (1.38)

ŝi = si(ĥi; θ̂), (1.39)
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F̂ = Fi(ĥi; θ̂), (1.40)

q̂ = (
1
N

N

∑
i

z′izi)
−1z′i v̂i, (1.41)

and

Â = − 1
N

N

∑
i

Hi(ĥi; θ̂). (1.42)

The square roots of (1.37)’s diagonal elements are the standard errors.

The standard errors of the two step APE estimator Next, we derive the standard errors

of (1.23). Let’s define (1.22) as δg(x1; η):

δg(x1; η) ≡ Ev

[
Kg(x1, v; θ) ·

(
θwg −

∑G
h θwh exp (x1θxh + θvhv)

∑G
h exp (x1θxh + θvhv)

)]
(1.43)

where η =

(
θ′ π′

)′
(p(G−1)+M)×1

. Since it depends on the value of x1, we use two ap-

proaches to obtain a single number. One is the average APEs,

δAVG
g = Ex1

(
δg(x1; η)

)
(1.44)

and the other is the percentile APEs,

δPCT
g = δg(x◦1 ; η) (1.45)

where x◦1 = (z1, wp).

(1.44) is estimated as

δ̂AVG
g =

1
N

N

∑
j

δ̂g(xj1; η̂) (1.46)

where δ̂g(xj1; η̂) = 1
N ∑N

i Kg(xj1, v̂i; θ̂) ·

θ̂wg −
∑G

h θ̂wh exp
(

xj1θ̂xh + θ̂vhv̂i

)
∑G

h exp
(

xj1θ̂xh + θ̂vhv̂i

)
. Based on
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(1.28) and (1.35), we can write

√
N(η̂− η) =

√
N

 θ̂− θ

π̂ −π

 =
1√
N

N

∑
i

A−1di

qi

+ op(1) =
1√
N

N

∑
i

ki + op(1). (1.47)

Applying a MVE to (1.46) around η, multiplying through
√

N, using (1.47) and WLLN

gives
√

Nδ̂AVG
g =

1√
N

N

∑
j

[
δg(xj1; η) + E

(
∇ηδg(xj1; η)

)
kj
]
+ op(1). (1.48)

We subtract
√

NδAVG
g from both sides of (1.48):

√
N(δ̂AVG

g − δAVG
g ) =

1√
N

N

∑
j

[
δg(xj1; η)− δAVG

g + E
(
∇ηδg(xj1; η)

)
kj

]
+ op(1) (1.49)

where E
[
δg(xj1; η)− δAVG

g + E
(
∇ηδg(xj1; η)

)
k
]
= 0. Therefore, based on the CLT,

Avar
(√

N(δ̂AVG
g − δAVG

g )
)
= Var

(
δg(xj1; η)− δAVG

g + ∆g(η)k
)

(1.50)

where ∆g(η) = E
[
∇ηδg(xj1; η)

]
, the 1×{p(G− 1)+ M} Jacobian of δg(xj1; η), and a valid

estimator of (1.50) is

1
N

N

∑
j

(
δ̂g(xj1; η̂)− δ̂AVG

g + ∆̂g(η̂)k̂j

) (
δ̂g(xj1; η̂)− δ̂AVG

g + ∆̂g(η̂)k̂j

)′
(1.51)

where

∆̂g(η̂) =
1
N

N

∑
j

[
∇ηδ̂g(xj1; η̂)

]
, (1.52)

and

k̂j =

Â−1d̂j

q̂j

 . (1.53)

72



The percentile APE (1.45) is estimated as

δ̂PCT
g = δ̂g(x◦1 ; η̂) =

1
N

N

∑
i

jg(x◦1 , vi; η̂) (1.54)

where jg(x◦1 , vi; η̂) = Kg(x◦1 , v̂i; θ̂) ·

θ̂wg −
∑G

h θ̂wh exp
(

x◦1 θ̂xh + θ̂vhv̂i

)
∑G

h exp
(

x◦1 θ̂xh + θ̂vhv̂i

)
. Through the

same process as in the average APE estimate,

√
N(δ̂PCT

g − δPCT
g ) =

1√
N

N

∑
i

[
jg(x◦1 , vi; η)− δPCT

g + Jg(η)ki

]
+ op(1) (1.55)

where Jg(η) = E
[
∇ηjg(x◦1 , v; η)

]
, the 1× {p(G − 1) + M} Jacobian of jg(x◦1 , v; η). Since

E
[

jg(x◦1 , v; η)− δPCT
g + Jg(η)k

]
= 0,

Avar
(√

N(δ̂PCT
g − δPCT

g )
)
= Var

(
jg(x◦1 , v; η)− δPCT

g + Jg(η)k
)

. (1.56)

Thus, a valid estimator of (1.56) is

1
N

N

∑
j

(
jg(x◦1 , vi; η̂)− δ̂PCT

g + Ĵg(η̂)k̂i

) (
jg(x◦1 , vi; η̂)− δ̂PCT

g + Ĵg(η̂)k̂i

)′
(1.57)

where

Ĵg(η̂) =
1
N

N

∑
i

[
∇ηjg(x◦1 , vi; η̂)

]
. (1.58)

Hence, the the asymptotic standard errors of δ̂AVG
g and δ̂PCT

g are obtained as the square

roots of (1.51) and (1.57), divided by
√

N, respectively.

The standard errors of γ̂ For g = 2, · · · , G, the LCF approach models

yig = zi1γzg + γwgwi + uig (1.59)
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and

uig = ρgvi + eig (1.60)

with the reduced form of the endogenous variable w, (1.15) and yi1 = ∑G
g=2 yig. Plugging

(1.60) into (1.59),

yig = zi1γzg + γwgwi + ρgvi + eig = hiγg + eig, g = 2, · · · , G (1.61)

where γg = (γ′zg γwg ρg)′ = (γ′zg γwg γvg)′p×1. Considering that the second step of

Procedure 1.2.2 replaces v with v̂, the estimating equation of the LCF approach for g =

2, · · · , G is

yig = zi1γzg + γwgwi + ρgv̂i +
(
ρg(vi − v̂i) + eig

)
= ĥiγg +

(
ρg(vi − v̂i) + eig

)
= ĥiγg + (hi − ĥi)γg + eig (1.62)

and the LCF estimator is expressed as

γ̂g = γg +

(
∑

i
ĥ′iĥi

)−1

∑
i

ĥ′i
[
(hi − ĥi)γg + eig

]
, g = 2, · · · , G (1.63)

and

γ̂1 = e1 −
G

∑
g=2

γ̂g. (1.64)

Therefore,

√
N(γ̂g − γg) =

(
1
N ∑

i
ĥ′iĥi

)−1
1√
N

∑
i

ĥ′i
[
(hi − ĥi)γg + eig

]
, g = 2, · · · , G, (1.65)

=

(
1
N ∑

i
ĥ′iĥi

)−1 G

∑
g=2

(
− 1√

N
∑

i
ĥ′i[(hi − ĥi)γg + eig]

)
, g = 1. (1.66)
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A similar reasoning in Wooldridge (2010, Appendix 6A) rewrites (1.65) and (1.66) as

√
N
(

γ̂g − γg

)
= C−1

{
1√
N

N

∑
i

(
h′ieig − RgB−1z′ivi

)}
+ op(1), g = 2, · · · , G, (1.67)

= C−1

{
− 1√

N

N

∑
i

G

∑
g=2

(
h′ieig − RgB−1z′ivi

)}
+ op(1), g = 1. (1.68)

where

C = E(h′h),

Rg = E
[
(γg ⊗ h)′∇πh

]
,

and

B = E(z′z). (1.69)

Since E
[
h′eg − RgB−1z′v

]
= 0 ∀g,

Avar
(√

N(γ̂g − γg)
)
= C−1MgC−1 (1.70)

where

Mg = Var
(

h′eg − RgB−1z′v
)

, g = 2, · · · , G. (1.71)

and

M1 = Var

(
G

∑
g=2

(
h′eg − RgB−1z′v

))
(1.72)

Therefore, Avar(γ̂g) is estimated as

1
N

(
Ĉ−1M̂gĈ−1

)
(1.73)

where

Ĉ =
1
N

N

∑
i

ĥ′iĥi, (1.74)
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M̂g =
1
N

N

∑
i

(
ĥ′i êig − R̂gB̂−1z′i v̂i

) (
ĥ′i êig − R̂gB̂−1z′i v̂i

)′
, g = 2, · · · , G, (1.75)

M̂1 =
G

∑
g=2

M̂g +
1
N ∑

g 6=k

[(
ĥ′i êig − R̂gB̂−1z′ivi

) (
ĥ′i êik − R̂kB̂−1z′ivi

)′]
, (1.76)

R̂g =
1
N

N

∑
i

(
γ̂g ⊗ ĥi

)′
∇πxi(π̂), (1.77)

B̂ =
1
N

N

∑
i

z′izi, (1.78)

and

êig = yig − ĥiγ̂g. (1.79)

The standard error of γ̂g is obtained as the square root of (1.73).

(y1, y2, y3) generated across the simulations In Table 1.20, we report the average out-

come in each of the three choices across the simulations, and the fraction of times at least

one choice being below 0.05. The fractions are about 0.25 ∼ 0.45 with the two symmetric

distributions and the χ2 distribution has higher fractions, about 0.70. They suggest that

the dependent variable generating process covers the cases where yi has a set of extreme

values such as (0.95, 0.05,0).
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Table 1.20: (yi1, yi2, yi3) generated across the simulations

D(e) Normal Logistic χ2
3

π2 ρ mean fraction mean fraction mean fraction
y1 y2 y3 y1 y2 y3 y1 y2 y3

1 1 0.296 0.352 0.352 0.39 0.313 0.344 0.344 0.44 0.103 0.449 0.449 0.68
(0.014) (0.007) (0.007) (0.02) (0.015) (0.008) (0.008) (0.02) (0.009) (0.005) (0.005) (0.02)

0.5 1 0.289 0.356 0.356 0.37 0.307 0.346 0.346 0.42 0.095 0.452 0.452 0.68
(0.014) (0.007) (0.007) (0.02) (0.015) (0.008) (0.008) (0.02) (0.008) (0.005) (0.005) (0.02)

0.2 1 0.286 0.357 0.357 0.36 0.305 0.347 0.347 0.42 0.093 0.453 0.453 0.68
(0.013) (0.007) (0.007) (0.02) (0.015) (0.008) (0.007) (0.02) (0.008) (0.005) (0.004) (0.02)

0.1 1 0.286 0.357 0.357 0.36 0.305 0.347 0.347 0.42 0.093 0.453 0.453 0.68
(0.013) (0.007) (0.007) (0.02) (0.015) (0.008) (0.007) (0.02) (0.008) (0.005) (0.004) (0.02)

1 0.5 0.277 0.361 0.361 0.34 0.299 0.351 0.351 0.40 0.085 0.458 0.457 0.69
(0.013) (0.007) (0.007) (0.02) (0.014) (0.007) (0.007) (0.02) (0.008) (0.004) (0.004) (0.02)

0.5 0.5 0.268 0.366 0.366 0.31 0.291 0.354 0.354 0.38 0.077 0.462 0.462 0.69
(0.012) (0.006) (0.006) (0.02) (0.014) (0.007) (0.007) (0.02) (0.007) (0.004) (0.004) (0.02)

0.2 0.5 0.265 0.368 0.368 0.30 0.289 0.355 0.355 0.37 0.074 0.463 0.463 0.69
(0.012) (0.006) (0.006) (0.02) (0.014) (0.007) (0.007) (0.02) (0.007) (0.004) (0.004) (0.02)

0.1 0.5 0.264 0.368 0.368 0.30 0.289 0.356 0.355 0.37 0.074 0.463 0.463 0.69
(0.012) (0.006) (0.006) (0.02) (0.014) (0.007) (0.007) (0.02) (0.006) (0.004) (0.004) (0.02)

1 0.1 0.263 0.368 0.368 0.30 0.289 0.356 0.356 0.37 0.073 0.463 0.463 0.69
(0.012) (0.006) (0.006) (0.02) (0.014) (0.007) (0.007) (0.02) (0.007) (0.004) (0.004) (0.02)

0.5 0.1 0.251 0.374 0.374 0.27 0.280 0.360 0.360 0.35 0.065 0.468 0.468 0.70
(0.011) (0.006) (0.006) (0.02) (0.013) (0.007) (0.007) (0.02) (0.006) (0.004) (0.004) (0.02)

0.2 0.1 0.248 0.376 0.376 0.26 0.277 0.361 0.361 0.34 0.062 0.469 0.469 0.70
(0.011) (0.006) (0.006) (0.02) (0.013) (0.007) (0.007) (0.02) (0.005) (0.003) (0.003) (0.02)

0.1 0.1 0.247 0.376 0.376 0.25 0.277 0.361 0.361 0.34 0.062 0.469 0.469 0.70
(0.011) (0.006) (0.006) (0.02) (0.013) (0.007) (0.007) (0.02) (0.005) (0.003) (0.003) (0.02)

1. τ = 0.
2. Standard deviations are in parentheses.
3. These are the results when the quadratic effect of w is not allowed.
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CHAPTER 2
MULTIPLE FRACTIONAL RESPONSE

VARIABLES WITH A BINARY
ENDOGENOUS EXPLANATORY

VARIABLE

2.1 INTRODUCTION

In this chapter, we extend Chapter 1 by allowing endogenous explanatory variables (EEVs)

to be discrete. In Chapter 1, we developed a two step estimation method for the response

variable. Unlike in a linear model, the response variable’s two features are inherent in

the nonlinear model for the two step estimation method; each response lies in the unit

interval1 and the sum of responses for a cross sectional unit is one. It maximizes a multi-

nomial distribution with specifying the conditional mean, which includes the first step

residuals, as multinomial logit. That is, the method combines fractional multinomial logit

developed by Sivakumar and Bhat (2002) and Mullahy (2010) with a control function (CF)

approach solving the endogeneity problem by including extra regressors, which is called

a control function, in the equation so that the correlation between EEVs and the unob-

servables would not exist.

The method, however, restricts the probabilistic nature of EEVs. The EEVs should be

continuous since it relies on the assumption that the exogenous variables are independent

of the EEVs’ reduced form errors. So it is not applicable for a research which has discrete

EEVs such as “how much people have their pension funds invested in stocks, bonds, and

1 It can take a corner value, zero or one.
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other” where only the shares for these three assets are available and the key explanatory

variable is whether or not taking a class of financial education, which could be correlated

with some factors that a researcher cannot observe.

Thus, in this chapter we modify the method in order to take the discrete nature of

EEVs into account. Especially we consider a binary EEV in the model. A control func-

tion approach handling discrete EEVs in nonlinear models was discussed by Terza et al.

(2008).2 They suggested ”two-stage residual inclusion” (2SRI), which includes the un-

standardized residuals – an estimator of the difference between the EEV and its condi-

tional mean – as additional regressors in the second step. Wooldridge (2014) extended

two-stage residual inclusion and proposed another control function approach. Motivated

by variable addition tests, he suggests using the standardized or generalized residuals as

control functions instead of the unstandardized residuals. We employ the approach in

Wooldridge (2014) to modify the two step estimation method proposed in Chapter 1.

The modified two step estimation method generates the generalized residuals from a

probit regression at the first step. Then, it applies the fractional multinomial logit with

including the generalized residuals in the conditional mean at the second step.

The second step is a quasi maximum likelihood estimation (QMLE) using a distribu-

tion belonging to the linear exponential family. Therefore, it provides a consistent estima-

tor of the mean parameter if the multinomial logit conditional mean is correctly specified,

which Gourieroux et al. (1984) describe. In other words, the consistency does not require

other distributional assumptions than the conditional mean specification.

Notice that it is the parameter in the “estimating” conditional mean that the method

consistently estimates; it is not the structural mean parameter. However, without esti-

mating the structural mean parameter, the method can provide a consistent estimator of

average partial effect (APE) on the “structural” conditional mean, which is often more

interesting than the mean parameter itself. For the APE estimator to be consistent, the

2 Actually, they did not restrict the EEVs’ nature.
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multinomial logit specification needs to be true.

To see how the method works as an approximation when the specification is wrong,

we conduct Monte Carlo simulations. The quantities that we are interested in are the

true APEs of the binary EEV. We evaluate the method’s approximation to these APEs,

compared to several alternative estimation methods’ including two stage least squares

(2SLS), linear control function (LCF) approaches, and forbidden regressions. In addition,

we compare the performance of its test for endogeneity with one from a linear control

function using the same control function – the generalized residuals.

The simulations provide evidence that although the two step estimation method’s ap-

proximation to APEs depends on how strong the instrument is, it is generally as good

as or often better than the alternative methods’. In addition, the two step estimation

method’s test for endogeneity have not only about the correct size but also better power.

The remainder of this chapter is structured as follows. In the next section, we describe

the set of assumptions and the modified two step estimation method. Section 2.3 contains

the Monte Carlo simulation design and presents the simulation results where the condi-

tional mean of the method is misspecified. And we conclude the chapter in Section 2.4.

2.2 THE MODIFIED TWO STEP ESTIMATION

Let’s consider a random sample in the cross section where each cross sectional observa-

tion has G choices or shares. The dependent response of interest – multiple fractional

response – for observation i is written as,

yi =



yi1
...

yig
...

yiG


G×1

(2.1)
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where 0 ≤ yig ≤ 1 and ∑G
g yig = 1.

Dropping the cross sectional observation index i, write the structural conditional mean

of the response for choice g:

E(yg|x, r) = E(yg|z, w, r) = Gg(z1, w, r; β), g = 1, 2, · · · , G, (2.2)

where 0 < Gg(·) < 1 and ∑G
g Gg = 1. These two conditions for Gg(·) are required because

of the response variable’s two features: the bounded nature and the adding-up constraint.

x is the set of explanatory variables including a binary endogenous explanatory variable

w and the set of exogenous variables z = (z1, z2) where z1 includes an intercept. r is an

unobserved omitted variable. Note that the covariates do not have are the g subscript in

(2.2). That is, each choice has the same covariates; choice specific covariates are not al-

lowed for. The modified two step estimation method specifies an estimating conditional

mean, derived from (2.2), as multinomial logit.3 The multinomial logit model allows co-

variates to contain characteristics varying across cross sectional observations, not choices.

Yet, E(yg|x, r) 6= E(yh|x, r) for g 6= h – is still possible since the model allows the pa-

rameters to vary across g. The second equality of (2.2) shows that z2 is redundant in the

structural conditional mean, indicating that there is an exclusion restriction.

To set up endogeneity into the model, we use an omitted variable problem by assum-

ing w is correlated with r in the following fashion;

w = 1 [zπ + u > 0] , (2.3)

u ∼ Normal(0, 1), (2.4)

and we are allowing r to be correlated with u.

3 In (2.2), we are not specifying Gg(·) as multinomial logit. The assumptions regarding Gg(·) are just
the two conditions and the restriction for the covariates. Due to the restriction, this approach is more
appropriate for the cases where the characteristics for choices are not important.
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Additionally, add the following conditional independence assumption:

D(r|z, w) = D(r|v), (2.5)

where v is the generalized error 4 of w, which playing a role of a sufficient statistic to

control for w’s endogeneity. Since u ∼ Normal(0, 1),

v ≡ E(u|z, w) = wλ(zπ)− (1− w)λ(−zπ) (2.6)

where λ(·) = φ(·)
Φ(·) is the Inverse Mill’s Ratio.

Based on the assumptions above, the estimating conditional mean

E(yg|x) = Kg(z1, w, v; θ). (2.7)

Its functional form is determined by the functional form of Gg(·) and the distribution of e.

The estimating conditional mean, however, can be specified as any function satisfying 0 <

Kg(·) < 1 and ∑G
g Kg = 1, which are from the two conditions of Gg(·), because we have

not yet made any assumptions about those. Instead, we assume that their combination

leads to the multinomial logit form for Kg(·):

Kg(h; θ) =
exp

(
hθg

)
∑G

h exp (hθh)
(2.8)

where h = (z1 w v) is a 1× p vector, θg is a p× 1 parameter vector for choice g. θ =

(θ′1 . . . θ′G)
′ is a pG× 1 vector where θ1 = 0 as a reference.5

We can start with specifying Gg(·) as a multinomial logit in (2.2), and assume joint

normality of (r, u); then, in principle, we can find E(yg|x). But it would not be in closed

form. So, instead, we use (2.5) as an approximation, and the model E(yg|x) = E(yg|x, v)

4 Gourieroux et al. (1987)
5 (2.8) satisfies the two conditions for Kg(·)
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directly as a multinomial logit. Neither approach contains the other, as Wooldridge (2014)

discussed; they use different assumptions.

In order to estimate θ, a consistent estimator of generalized error vi should be ob-

tained first since it is not observed. Therefore, the modified two step estimation method

is summarized as follows:

Procedure 2.2

Step 1. Obtain π̂ from the probit regression of wi on zi and compute the generalized

residual v̂i,

v̂i = wλ(zπ̂)− (1− w)λ(−zπ̂) =
φ(ziπ̂) (wi −Φ(ziπ̂))

Φ(ziπ̂)(1−Φ(ziπ̂))
(2.9)

Step 2. Run fractional multinomial logit (fmlogit) of (yi1, · · · , yiG) on zi1, wi and v̂i, which

maximizes a multinomial log-likelihood:

N

∑
i
`i(θ) =

N

∑
i

(
G

∑
g

yig log Kg(ĥi; θ)

)
. (2.10)

where ĥi = (zi1 wi v̂i).

The method provides a convenient test for endogeneity with the null hypothesis that

w is exogenous by obtaining an asymptotic robust t statistic on v̂i. This is a variable

addition test discussed in Wooldridge (2014).

Furthermore, it is able to estimate average partial effect (APE), which is often the quan-

tity of more interest, without estimating the structural mean parameter β. It is because
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the assumptions above ensure the following equivalence:

δg(z◦) = APEg(z◦) ≡ Er[E(yg|z◦, w = 1, r)− E(yg|z◦, w = 0, r)] (2.11)

= Er[Gg(z◦1 , w = 1, r; β)− Gg(z◦1 , w = 0, r; β)] (2.12)

= Ev[Kg(z◦1 , w = 1, v; θ)− Kg(z◦1 , w = 0, v; θ)], (2.13)

where z◦ denotes a fixed value of z.6 As shown in Wooldridge (2010, section 2.2.5), (2.13)

holds under (2.5) and E(yg|x, r, v) = E(yg|x, r), which can be derived under the assump-

tions that have been made so far.

In order to have a representative single number summarizing δg(z◦), we average it

out across the sample for z:

δg = Ez
[
δg(z)

]
(2.14)

Thus, δg can be estimated by obtaining

δ̂
2step
g =

1
N

N

∑
j

[
1
N

N

∑
i

[
Kg(zj1, w = 1, vi; θ̂)− Kg(zj1, w = 0, vi; θ̂)

]]
, (2.15)

where θ̂ is the two step estimator of θ.

One thing to be aware of is that the standard errors of θ̂ and δ̂
2step
g need to take the

additional variation caused by the firs step into consideration by using the delta method

or bootstrapping the two steps.

θ̂ is a QMLE estimator using a distribution, which is one of linear exponential fam-

ily. Therefore, based on the discussion of Gourieroux, Monfort, and Trognon (1984), its

consistency is ensured only by (2.8). In other words, it is still consistent even though the

distribution specification is completely wrong except the conditional mean.

If (2.8) is wrong, δ̂
2step
g is inconsistent because θ̂ is inconsistent and the wrong func-

tional form is used in (2.15). So we conduct Monte Carlo simulations in the next section

6 (2.11) can be written as ASF(z◦, w = 1)− ASF(z◦, w = 0), ASF(·) denotes “average structure func-
tion” defined in Blundell and Powell (2003) and Wooldridge (2005).
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in order to examine how well the two step estimation method approximate to δg when the

multinomial logit conditional mean is misspecified. The simulations compare its approx-

imation with several alternative methods that researchers would use. These methods are

1) Two stage least squares (2SLS),7 2) Linear control function approach using the general-

ized residual (LCF), 3) Linear IV using the fitted probability Φ̂(·) as an instrument (LIV),

4) Linear plug-in method, and 5) Two step plug-in method.8

The adding-up constraint is not inherent in the alternative linear models. So they

should apply their estimation methods to G− 1 equations by dropping one of G choices.

Then, the dropped one’s parameters are obtained based on the constraint and the esti-

mates for the other choices.9 The coefficient estimates of these linear models are compa-

rable to δ̂g.

The alternative methods include two forbidden regressions – the two plug-in methods.

They substitute wi with its fitted probability Φ̂(·) at their second steps. Researchers often

attempt to use this kind of approach, believing that it is legitimate because it emulates the

2SLS procedure. However, they are inappropriate especially for nonlinear models.

In addition to 1) through 5), we include the generalized residual – the control function

– in a flexible way10 for the two step estimation method and LCF in order to examine if

it helps their approximations. We call them 6) Two step flexible and 7) LCF flexible, respec-

tively.

Furthermore, we compare the performance of tests for endogeneity done by the two

step method and LCF with significance level α = 0.05 by varying degree of endogeneity

and the instrument’s predictive power; the null hypotheses of the tests are that there is

no endogeneity.11

7 This is the same as a linear control function approach using the residual from the linear regression w
on z.

8 Terza et al. (2008) call this approach “two-stage predictor substitution (2SPS).”
9 In the simulations, we drop the first choice (g = 1), which is the reference choice for the two step

estimation method, and obtain its estimates using γ1 = e1 −∑G
g=2 γg where γg is the coefficient parameter

for choice g in the linear models and e1 is a unit vector.
10 v̂2 and v̂3 are additionally included in the second step.
11 H0 : θv = 0 for the two step estimation method and H0 : γv = 0 for LCF.
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2.3 MONTE CARLO SIMULATION

2.3.1 Data Generating Process

We use 1000 replications where each replication has 500 cross sectional observations (N =

500) and 3 choices (g = 3).

The data generating process for each replication is as follows:

The covariates

• zi =

(
zi1 zi2

)
=

(
1 zi1 zi2

)
1×3

where

zi1

zi2

 ∼ MV Normal


 0

0

 ,

 1 τ

τ 1


 and τ ∈ {0,−0.5}.

• ui ∼ Normal(0, σ2
u)

12

• wi = 1[w∗i > 0] = 1[ziπ + ui > 0] = 1[zi1π1 + zi2π2 + ui > 0] where π1 ∈ {0, 0.5}

and π2 ∈ {0.1, 0.2, 0.5, 1}.

• vi = σu

[
wiλ

(
ziπ

σu

)
− (1− wi)λ

(
−ziπ

σu

)]
• ri = ρui + ei where ρ ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 1} and D(ei|vi) is one of the three:

(a) ei|vi ∼ Normal(0, 1)

(b) ei|vi ∼ χ2
3

(c) ei|vi ∼ Normal
(

0, 1 +
1
2

v2
i

)
.

Two symmetric distributions and an asymmetric distribution are in use for the dis-

tribution of ei|vi With (a) or (b), r is generated to be uncorrelated with w if ρ = 0.

12 The values of π1 and π2 affect Var(wi). As (π1, π2) varies, we adjust σu for Var(w∗i ) to be invariant
instead of Var(wi): Var(w∗i ) = 2.
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However, with (c), where there is heteroskedasticity, r still depends on w even

though ρ = 0.

The structural conditional mean Gg(·) specification: We specify the structural condi-

tional mean as multinomial logit as well since it satisfies the two conditions for Gg(·):

E(yig|xi, ri) = Gg(zi1, wi, ri; β) =
exp

(
zi1βzg + wiβwg + riβrg

)
∑3

h exp (zi1βzh + wiβwh + riβrh)
(2.16)

where β = (β′1 β′2 β′3)
′ is a 12× 1 vector, βg = (β′zg βwg βrg) = (1 1 1 1)′ for g = 2, 3,

and β1 = 0. Under (2.16), neither of the three distributions of e can derives (2.8).

The multiple fractional dependent variables y: The dependent variable generating

process is the same as that in Chapter 1; we first draw 100 multinomial outcomes among

1, 2, and 3 based on (2.16), and then calculate the proportions for the three outcomes.

2.3.2 Simulation Results

Case 1: Endogeneity comes only through u.

Let’s consider the two settings where the data are generated so that w becomes exogenous

when ρ = 0.

Table 2.1 through 2.3 contain simulation results as π2 = 1.13 In Table 2.1, with the

standard normal distribution, δ̂
2step
g is pretty similar to δg regardless of the degree of en-

dogeneity, and the alternative methods also provide good approximations. Even the for-

bidden regressions’ approximations are good. Including the flexible forms of v̂ does not

improve the approximations for both the two step estimation method and LCF. In addi-

tion, allowing for the correlation between z1 and z2does not change the story.14 Table 2.2

shows that, under the asymmetric distribution, the biases are slightly larger than those in

13 The results with other values of ρ are available upon request.
14 π1 = 0.5 and τ = −0.5
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Table 2.1. Yet, in considering the efficiency as well as the bias, all of the methods under

the asymmetric distribution also approximate well, as shown in Table 2.3.
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Table 2.1: APEs with r = ρu + e, π2 = 1, and e|v ∼ Normal(0, 1)

ρ 1 1
π1 0.5 0
g 1 2 3 1 2 3

δg Mean -0.107 0.054 0.054 -0.107 0.054 0.054
Two Step Mean -0.107 0.054 0.053 -0.108 0.054 0.054

SD (0.035) (0.020) (0.019) (0.029) (0.016) (0.016)
Two Step Mean -0.105 0.053 0.052 -0.106 0.053 0.053
Flexible SD (0.046) (0.026) (0.026) (0.035) (0.020) (0.020)
Two Step Mean -0.106 0.053 0.053 -0.107 0.054 0.053
Plug-in SD (0.037) (0.021) (0.020) (0.030) (0.017) (0.016)
LCF Mean -0.107 0.054 0.053 -0.107 0.054 0.053

SD (0.037) (0.020) (0.020) (0.030) (0.017) (0.016)
LCF Mean -0.107 0.054 0.053 -0.107 0.054 0.053
Flexible SD (0.047) (0.026) (0.026) (0.036) (0.020) (0.020)
2SLS Mean -0.106 0.053 0.053 -0.107 0.054 0.053

SD (0.037) (0.021) (0.020) (0.031) (0.017) (0.017)
LIV Mean -0.106 0.053 0.053 -0.107 0.054 0.053
(IV=Φ̂(·)) SD (0.037) (0.021) (0.020) (0.030) (0.017) (0.016)
Linear Mean -0.106 0.053 0.053 -0.107 0.054 0.053
Plug-in SD (0.037) (0.021) (0.020) (0.030) (0.017) (0.016)

ρ 0.5 0.1
π1 0
g 1 2 3 1 2 3

δg Mean -0.108 0.054 0.054 -0.108 0.054 0.054
Two Step Mean -0.108 0.054 0.054 -0.108 0.054 0.054

SD (0.023) (0.014) (0.013) (0.021) (0.013) (0.012)
Two Step Mean -0.108 0.054 0.054 -0.109 0.055 0.054
Flexible SD (0.028) (0.017) (0.017) (0.025) (0.016) (0.015)
Two Step Mean -0.107 0.054 0.054 -0.108 0.054 0.054
Plug-in SD (0.024) (0.014) (0.014) (0.021) (0.013) (0.013)
LCF Mean -0.107 0.054 0.054 -0.108 0.054 0.054

SD (0.024) (0.014) (0.014) (0.022) (0.013) (0.013)
LCF Mean -0.108 0.054 0.054 -0.108 0.054 0.054
Flexible SD (0.030) (0.017) (0.017) (0.027) (0.016) (0.016)
2SLS Mean -0.107 0.054 0.053 -0.108 0.054 0.054

SD (0.025) (0.015) (0.014) (0.022) (0.014) (0.013)
LIV Mean -0.107 0.054 0.054 -0.108 0.054 0.054
(IV=Φ̂(·)) SD (0.024) (0.014) (0.014) (0.022) (0.013) (0.013)
Linear Mean -0.107 0.054 0.053 -0.108 0.054 0.054
Plug-in SD (0.024) (0.014) (0.014) (0.022) (0.013) (0.013)
1. As π1 = 0.5, τ = −0.5; otherwise, τ = 0.
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Table 2.2: APEs with r = ρu + e, π2 = 1, and e|v ∼ χ2
3

ρ 1 1
π1 0.5 0
g 1 2 3 1 2 3

δg Mean -0.033 0.017 0.017 -0.032 0.016 0.016
Two Step Mean -0.039 0.020 0.019 -0.036 0.019 0.018

SD (0.015) (0.012) (0.011) (0.012) (0.010) (0.009)
Two Step Mean -0.035 0.018 0.017 -0.033 0.017 0.016
Flexible SD (0.020) (0.016) (0.015) (0.014) (0.012) (0.012)
Two Step Mean -0.029 0.015 0.014 -0.029 0.015 0.014
Plug-in SD (0.019) (0.013) (0.013) (0.015) (0.011) (0.010)
LCF Mean -0.028 0.015 0.014 -0.028 0.015 0.014

SD (0.020) (0.013) (0.013) (0.015) (0.011) (0.010)
LCF Mean -0.034 0.018 0.016 -0.032 0.017 0.016
Flexible SD (0.025) (0.017) (0.017) (0.018) (0.013) (0.013)
2SLS Mean -0.029 0.015 0.014 -0.029 0.015 0.014

SD (0.019) (0.013) (0.013) (0.015) (0.011) (0.011)
LIV Mean -0.029 0.015 0.014 -0.029 0.015 0.014
(IV=Φ̂(·)) SD (0.019) (0.013) (0.013) (0.015) (0.011) (0.010)
Linear Mean -0.029 0.015 0.014 -0.029 0.015 0.014
Plug-in SD (0.019) (0.013) (0.013) (0.015) (0.011) (0.010)

ρ 0.5 0.1
π1 0
g 1 2 3 1 2 3

δg Mean -0.028 0.014 0.014 -0.027 0.013 0.013
Two Step Mean -0.029 0.015 0.014 -0.027 0.014 0.013

SD (0.009) (0.009) (0.008) (0.008) (0.009) (0.008)
Two Step Mean -0.028 0.015 0.014 -0.027 0.014 0.013
Flexible SD (0.011) (0.011) (0.011) (0.010) (0.011) (0.011)
Two Step Mean -0.028 0.014 0.013 -0.027 0.014 0.013
Plug-in SD (0.011) (0.009) (0.009) (0.009) (0.009) (0.008)
LCF Mean -0.027 0.014 0.013 -0.027 0.014 0.013

SD (0.011) (0.009) (0.009) (0.009) (0.009) (0.008)
LCF Mean -0.028 0.015 0.013 -0.027 0.014 0.013
Flexible SD (0.013) (0.011) (0.011) (0.011) (0.011) (0.011)
2SLS Mean -0.027 0.014 0.013 -0.027 0.014 0.013

SD (0.011) (0.009) (0.009) (0.009) (0.009) (0.009)
LIV Mean -0.027 0.014 0.013 -0.027 0.014 0.013
(IV=Φ̂(·)) SD (0.011) (0.009) (0.009) (0.009) (0.009) (0.008)
Linear Mean -0.027 0.014 0.013 -0.027 0.014 0.013
Plug-in SD (0.011) (0.009) (0.009) (0.009) (0.009) (0.008)
1. As π1 = 0.5, τ = −0.5; otherwise, τ = 0.
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Table 2.3: MSEs of APEs with r = ρu + e and π2 = 1

ρ 1 1 0.5 0.1
D(e|v) π1 0.5 0

g 1 2 3 1 2 3 1 2 3 1 2 3
Normal Two Step 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

(0,1) Two Step Flexible 0.002 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
Two Step Plug-in 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
LCF 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
LCF Flexible 0.002 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
2SLS 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
LIV (IV=Φ̂(·)) 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Linear Plug-in 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

χ2
3 Two Step 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Two Step Flexible 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Two Step Plug-in 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LCF Flexible 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2SLS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LIV (IV=Φ̂(·)) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Linear Plug-in 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1. As π1 = 0.5, τ = −0.5; otherwise, τ = 0.
2. MSEs are calculated from Table 2.1 and 2.2.
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We weaken the predictive power (π2 < 1)15 while keeping the strongest degree of

endogeneity (ρ = 1) in order to examine if these good approximations hinges on the

instrument’s strong predictive power.

To determine if z2 is a strong instrument, we use the rule of thumb suggested by

Staiger and Stock (1997); the first stage F statistic, testing the null hypothesis that in-

struments are uncorrelated with EEVs, should be larger than 10 for the instruments to

have properties as strong instruments. Since the two step estimation method’s first step

is a probit regression, we apply their rule to the first step Wald statistics testing the same

null hypothesis. Table 2.4 gives the summary of the Wald and the F statistics.16

Table 2.4: F and Wald statistics of the first stage/step (H0 : π2 = 0)

τ 0 -0.5
D(e|v) 1st step π1 0 0.5

π2 0.1 0.2 0.5 1 1
Normal OLS F statistic 2.661 7.923 53.215 443.384 261.906

(0,1) (2.914) (5.733) (19.551) (84.613) (60.292)
[F>10] 2.6% 28.9% 100.0% 100.0% 100.0%

Probit Wald statistic 2.582 7.410 39.589 133.797 107.881
(2.746) (5.025) (10.962) (8.861) (11.291)

[Wald>10] 2.5% 26.2% 99.8% 100.0% 100.0%
Replication 995 999 1000 1000 1000

χ2
3 OLS F statistic 2.861 7.992 54.203 443.938 263.869

(3.215) (5.905) (19.308) (85.330) (59.632)
[F>10] 4.0% 32.0% 99.8% 100.0% 100.0%

Probit Wald statistic 2.763 7.464 40.174 134.474 108.501
(2.988) (5.204) (10.957) (9.186) (11.390)

[Wald>10] 3.0% 29.4% 99.8% 100.0% 100.0%
Replication 987 999 1000 1000 1000

1. Standard deviations are in parentheses
2. [F>10] and [Wald>10] indicate the proportions of the F and Wald statistics being

greater than 10 among the replications, respectively.
3. The tests are robust to heteroskedasticity.

They are not greater than 10 until π2 = 0.5, on average. When π2 = 0.1, only 25

15 π1 = τ = 0.
16 The first stages of 2SLS and LIV are linear regressions. We report only the former because the latter

are quite similar. (The summary of LIV’s first stage F statistics are available upon request.)
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∼ 40 replications have the statistics being larger than 10. The proportions increase as

π2 increases, and then they are larger than 10 in almost every replication as π2 = 0.5.

Therefore, we consider z2 as a weak instrument if π2 ≤ 0.2 and as a strong one if π2 ≥ 0.5.

Table 2.5, containing the results with the standard normal distribution, show that, in

general, the higher the predictive power is, the less biased and the more precise the es-

timates are, and that as π2 increases, the nonlinear models more quickly recover their

approximation abilities. When π2 = 0.1, the linear models yield worse approximations

than the three nonlinear models, providing much larger biases and huge standard devi-

ations. When π2 = 0.2, the nonlinear models’ estimates become closer to δg and more

precise whereas the linear models still provide poor approximations. As π2 = 0.5, which

makes z2 a strong instrument, the approximations by all the methods are quite good.

Table 2.7 clearly shows that, among the nonlinear models, the two step estimation

method yields a better approximation in both bias and efficiency criteria, and that it does

not improve the approximations to include v̂ in a flexible way. The flexible way does

not help the estimation to obtain smaller biases but causes bigger standard deviations.

Table 2.6 and 2.7 also present that, in general, the asymmetric distribution have a similar

results as the standard normal distribution.
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Table 2.5: APEs with w = 1[z2π2 + u > 0], ρ = 1, and e|v ∼ Normal(0, 1)

π2 0.1 0.2 0.5
g 1 2 3 1 2 3 1 2 3

δg Mean -0.106 0.053 0.053 -0.106 0.053 0.053 -0.106 0.053 0.053
Two Step Mean -0.171 0.092 0.079 -0.082 0.042 0.039 -0.102 0.051 0.051

SD (0.300) (0.186) (0.170) (0.189) (0.110) (0.103) (0.071) (0.040) (0.038)
Two Step Mean -0.184 0.097 0.088 -0.127 0.067 0.060 -0.100 0.050 0.050
Flexible SD (0.427) (0.283) (0.290) (0.350) (0.210) (0.223) (0.123) (0.070) (0.069)
Two Step Mean -0.147 0.082 0.064 -0.053 0.028 0.025 -0.101 0.050 0.050
Plug-in SD (0.440) (0.270) (0.249) (0.273) (0.151) (0.147) (0.075) (0.041) (0.039)
LCF Mean -0.061 0.061 0.000 -0.017 0.010 0.007 -0.101 0.051 0.050

SD (6.387) (3.274) (3.165) (0.752) (0.370) (0.397) (0.075) (0.041) (0.039)
LCF Mean 1.427 -0.861 -0.566 0.108 -0.035 -0.073 -0.099 0.050 0.049
Flexible SD (15.611) (9.053) (7.174) (2.567) (1.639) (1.504) (0.132) (0.073) (0.073)
2SLS Mean 2.545 -1.303 -1.242 -0.023 0.014 0.009 -0.101 0.050 0.050

SD (91.074) (47.430) (43.651) (0.524) (0.260) (0.292) (0.075) (0.041) (0.040)
LIV Mean 0.112 -0.068 -0.045 -0.027 0.015 0.013 -0.101 0.050 0.050
(IV=Φ̂(·)) SD (7.392) (4.376) (3.079) (0.496) (0.259) (0.257) (0.075) (0.041) (0.040)
Linear Mean -0.218 0.150 0.067 -0.019 0.012 0.007 -0.101 0.050 0.050
Plug-in SD (5.287) (2.830) (2.590) (0.597) (0.284) (0.337) (0.075) (0.041) (0.040)

Replications 995/1000 999/1000 1000/1000
1. π1 = τ = 0.

979797



Table 2.6: APEs with w = 1[z2π2 + u > 0], ρ = 1, and e|v ∼ χ2
3

π2 0.1 0.2 0.5
g 1 2 3 1 2 3 1 2 3

δg Mean -0.036 0.018 0.018 -0.036 0.018 0.018 -0.035 0.018 0.018
Two Step Mean -0.064 0.035 0.028 -0.029 0.018 0.012 -0.044 0.023 0.021

SD (0.275) (0.168) (0.166) (0.159) (0.093) (0.093) (0.031) (0.022) (0.022)
Two Step Mean 0.011 -0.005 -0.006 -0.002 0.000 0.002 -0.030 0.016 0.013
Flexible SD (0.431) (0.279) (0.283) (0.345) (0.215) (0.209) (0.082) (0.053) (0.051)
Two Step Mean -0.036 0.018 0.018 -0.012 0.008 0.003 -0.027 0.014 0.013
Plug-in SD (0.428) (0.252) (0.253) (0.218) (0.119) (0.126) (0.042) (0.026) (0.026)
LCF Mean -0.046 0.021 0.025 0.042 -0.013 -0.029 -0.026 0.014 0.012

SD (3.994) (2.047) (2.060) (1.484) (0.654) (0.838) (0.041) (0.026) (0.025)
LCF Mean -1.639 0.772 0.868 -0.464 0.227 0.237 -0.039 0.021 0.018
Flexible SD (9.191) (5.188) (4.902) (4.056) (2.409) (1.797) (0.081) (0.054) (0.051)
2SLS Mean 0.057 -0.044 -0.013 -0.029 0.018 0.012 -0.026 0.014 0.012

SD (2.241) (1.396) (1.118) (0.645) (0.275) (0.392) (0.040) (0.025) (0.025)
LIV Mean -0.074 0.194 -0.120 -0.007 0.007 0.000 -0.026 0.014 0.012
(IV=Φ̂(·)) SD (1.891) (4.725) (3.054) (0.411) (0.195) (0.250) (0.040) (0.025) (0.025)
Linear Mean 0.077 -0.055 -0.022 -0.043 0.024 0.019 -0.026 0.014 0.012
Plug-in SD (2.632) (1.632) (1.229) (1.044) (0.443) (0.614) (0.040) (0.025) (0.025)

Replications 987/1000 999/1000 1000/1000
1. π1 = τ = 0.
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Table 2.7: MSEs of APE estimates with w = 1[z2π2 + u > 0] and ρ = 1

π2 0.1 0.2 0.5
D(e|v) g 1 2 3 1 2 3 1 2 3

Normal Two Step 0.094 0.036 0.030 0.036 0.012 0.011 0.005 0.002 0.001
(0,1) Two Step Flexible 0.189 0.082 0.085 0.123 0.044 0.050 0.015 0.005 0.005

Two Step Plug-in 0.196 0.074 0.062 0.078 0.024 0.022 0.006 0.002 0.002
LCF 40.802 10.722 10.023 0.574 0.139 0.160 0.006 0.002 0.002
LCF Flexible 246.059 82.795 51.851 6.636 2.693 2.279 0.017 0.005 0.005
2SLS 8301.533 2251.416 1907.082 0.281 0.069 0.087 0.006 0.002 0.002
LIV (IV=Φ̂(·)) 54.686 19.166 9.490 0.252 0.069 0.068 0.006 0.002 0.002
Linear Plug-in 27.963 8.016 6.706 0.364 0.082 0.116 0.006 0.002 0.002

χ2
3 Two Step 0.076 0.029 0.028 0.025 0.009 0.009 0.001 0.001 0.000

Two Step Flexible 0.188 0.078 0.081 0.120 0.047 0.044 0.007 0.003 0.003
Two Step Plug-in 0.183 0.063 0.064 0.048 0.014 0.016 0.002 0.001 0.001
LCF 15.953 4.189 4.244 2.208 0.428 0.705 0.002 0.001 0.001
LCF Flexible 87.046 27.488 24.755 16.638 5.848 3.277 0.007 0.003 0.003
2SLS 5.032 1.952 1.251 0.416 0.075 0.153 0.002 0.001 0.001
LIV (IV=Φ̂(·)) 3.579 22.353 9.343 0.170 0.038 0.063 0.002 0.001 0.001
Linear Plug-in 6.941 2.670 1.512 1.091 0.196 0.377 0.002 0.001 0.001

1. π1 = τ = 0.
2. MSEs are calculated from Table 2.5 and 2.6.
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Table 2.8 compares the rejection frequencies for the different degrees of endogeneity

when the strongest instrument is in use. The tests by both the two step estimation method

and LCF have good size properties; as ρ = 0, their rejection frequencies are quite close to

the nominal value. Allowing for the additional terms of v̂ makes them over-reject. The

two step estimation method, however, has better power than LCF for both the two dis-

tributions. Figure 2.1 and 2.217 illustrate a pattern that the two step estimation method’s

rejection frequencies increase faster than LCF’s as ρ > 0. With χ2
3 distribution, the pattern

is more evident and the flexible way helps the two step estimation method have slightly

better power.

17 The graphs show average rejection frequencies for the two choices at each value of ρ in Table 2.8.
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Table 2.8: Rejection Frequencies for α = 0.05 test in Case 1 with varying ρ

ρ 0 0.1 0.25 0.5 0.75 0.9 1
D(e|v) g 2 3 2 3 2 3 2 3 2 3 2 3 2 3

Normal Two Step 0.05 0.06 0.11 0.12 0.46 0.46 0.92 0.92 1.00 1.00 1.00 1.00 1.00 1.00
(0,1) LCF 0.05 0.06 0.09 0.09 0.30 0.32 0.79 0.79 0.97 0.97 0.99 0.99 1.00 1.00

Two Step flexible 0.11 0.11 0.15 0.16 0.40 0.41 0.89 0.89 0.99 0.99 1.00 1.00 1.00 1.00
LCF flexible 0.10 0.10 0.13 0.12 0.26 0.25 0.66 0.68 0.93 0.94 0.98 0.98 0.99 0.99

χ2
3 Two Step 0.06 0.07 0.09 0.08 0.22 0.22 0.54 0.55 0.78 0.79 0.88 0.88 0.91 0.90

LCF 0.06 0.04 0.06 0.05 0.10 0.07 0.20 0.18 0.37 0.38 0.48 0.51 0.56 0.60
Two Step flexible 0.17 0.17 0.19 0.18 0.28 0.29 0.58 0.58 0.85 0.85 0.94 0.93 0.96 0.96
LCF flexible 0.11 0.11 0.12 0.11 0.13 0.13 0.18 0.21 0.32 0.31 0.41 0.41 0.48 0.49

1. π2 = 1, π1 = τ = 0.
2. The null hypotheses for the flexible models are that the coefficients of v̂, v̂2, and v̂3 are zeroes.
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Figure 2.1: Rejection Frequencies for Normal(0,1) with varying ρ
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Figure 2.2: Rejection Frequencies for χ2
3 with varying ρ
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Furthermore, the rejection frequencies in Table 2.9 suggest that the stronger the instru-
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ment is, the higher the power is, except LCF flexible. Figure 2.3 and 2.418 show that the

two step estimation method has slightly better power with the standard normal distribu-

tion and much better power with the χ2
3 distribution than LCF. Again, adding additional

forms of v̂ in the estimation have the two step estimation method have slightly higher

rejection frequencies for χ2
3 distribution. LCF flexible has a different pattern, however; it

has a U-shape graph whereas the other three are monotonically increasing, suggesting

LCF could have higher power by including v̂ in a flexible way if a weak instrument is in

use.

18 The graphs show average rejection frequencies for the two choices at each value of π2 where π1 =
τ = 0 in Table 2.9.
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Table 2.9: Rejection Frequencies for α = 0.05 test in Case 1 with varying π2

τ -0.5 0
π1 0.5 0
π2 1 1 0.5 0.2 0.1

D(e|v) g 2 3 2 3 2 3 2 3 2 3
Normal Two Step 1.00 1.00 1.00 1.00 0.97 0.97 0.43 0.43 0.15 0.14

(0,1) LCF 1.00 1.00 1.00 1.00 0.92 0.92 0.32 0.33 0.14 0.12
Two Step flexible 1.00 1.00 1.00 1.00 0.98 0.97 0.40 0.39 0.16 0.15
LCF flexible 0.98 0.99 0.99 0.99 0.86 0.87 0.60 0.58 0.69 0.68
Replication 1000 1000 1000 999 995

χ2
3 Two Step 0.88 0.89 0.91 0.90 0.61 0.61 0.17 0.16 0.09 0.09

LCF 0.58 0.60 0.56 0.60 0.35 0.36 0.10 0.10 0.08 0.07
Two Step flexible 0.95 0.95 0.96 0.96 0.70 0.70 0.23 0.24 0.16 0.16
LCF flexible 0.48 0.48 0.48 0.49 0.31 0.28 0.35 0.33 0.53 0.52
Replication 1000 1000 1000 999 987

1. ρ = 1
2. The null hypotheses for the flexible models are that the coefficients of v̂, v̂2, and v̂3 are zeroes.
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Figure 2.3: Rejection Frequencies for Normal(0,1) with varying π2, (π1 = τ = 0)
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Figure 2.4: Rejection Frequencies for χ2
3 with varying π2, (π1 = τ = 0)
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Therefore, the simulations with the data generated with the two distributions demon-

strate that when the instrument is strong, the two step estimation’s approximation to
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APEs is as good as the alternative methods. Plus, although a weak instrument deterio-

rates its approximation, it makes much worse the approximations by the alternative linear

models. In addition, the two step estimation’s test for endogeneity show good size and

better power than LCF’s.

Case 2: Endogeneity comes through e as well as u.

Now we consider a setting where D(e|v) is a heteroskedastic normal, in which w is not

exogenous even though ρ = 0. For this case, we include two additional estimation meth-

ods treating that all covariates are exogenous: Fmlogit and OLS. We would like to examine

how they work as ρ = 0.

When z2 is a strong instrument,19 Table 2.10 shows that the estimates have bigger bi-

ases than those with the standard normal distribution, and that the larger ρ is, the larger

their biases are.20 Among the estimation methods, LCF flexible is the best with regard to

bias. Yet, in considering the mean squared errors (MSEs) in Table 2.11, the two step esti-

mation method and the other alternative methods also provide good approximations.21

Interestingly, as ρ = 0, the estimates of Fmlogit and OLS are quite similar to δg. So

these estimates suggest that the dependence w and r due to the heteroskedasticity of e

does not cause any distortion in estimating APEs.

With the strong degree of endogeneity (ρ = 1), although the biases in Table 2.12 are

not monotonically decreasing as π2 is larger, the MSEs in Table 2.13 are. Note that when

a weak instrument is used, LCF Flexible provides more biased estimates than Fmlogit and

OLS, and the MSEs of the methods taking the endogeneity into account are not smaller

than them except the two step estimation method with π2 = 0.2. The results also suggest

that the flexible methods are not helpful at all.

19 The first stage F statistics and the first step Wald statistics in this case have similar summary statistics
as in Table 2.4.

20 The results with other values of ρ are available upon request.
21 When τ = −0.5 and (π1, π2) = (0.5, 1), the results are not much different from those as π2 = 1 in

Table 2.10 and2.11.
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Table 2.10: APEs with r = ρu + e and π2 = 1 in Case 2

ρ 1 0.5
g 1 2 3 1 2 3

δg Mean -0.106 0.053 0.053 -0.107 0.053 0.053
Two Step Mean -0.115 0.058 0.057 -0.112 0.056 0.056

SD (0.031) (0.018) (0.017) (0.028) (0.016) (0.015)
Two Step Mean -0.112 0.056 0.056 -0.115 0.058 0.057
Flexible SD (0.038) (0.021) (0.021) (0.033) (0.019) (0.019)
Two Step Mean -0.114 0.057 0.057 -0.111 0.055 0.055
Plug-in SD (0.032) (0.018) (0.017) (0.027) (0.016) (0.015)
Fmlogit Mean -0.224 0.112 0.112 -0.167 0.083 0.083

SD (0.018) (0.010) (0.010) (0.016) (0.009) (0.009)
LCF Mean -0.115 0.058 0.058 -0.111 0.056 0.055

SD (0.032) (0.018) (0.018) (0.029) (0.016) (0.016)
LCF Mean -0.106 0.053 0.053 -0.107 0.053 0.053
Flexible SD (0.039) (0.021) (0.021) (0.034) (0.019) (0.019)
2SLS Mean -0.113 0.057 0.056 -0.110 0.055 0.055

SD (0.032) (0.018) (0.018) (0.028) (0.016) (0.016)
LIV Mean -0.114 0.057 0.057 -0.110 0.055 0.0554
(IV=Φ̂(·)) SD (0.032) (0.018) (0.017) (0.028) (0.016) (0.015)
Linear Mean -0.114 0.057 0.057 -0.110 0.055 0.055
Plug-in SD (0.032) (0.018) (0.017) (0.028) (0.016) (0.015)
OLS Mean -0.224 0.112 0.112 -0.167 0.083 0.083

SD (0.018) (0.010) (0.010) (0.016) (0.009) (0.009)
1. e|v ∼ Normal

(
0, 1 + 1

2 v2
)

2. π1 = τ = 0.
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Table 2.10: (cont’d)

ρ 0.1 0
g 1 2 3 1 2 3

δg Mean -0.107 0.054 0.054 -0.107 0.054 0.054
Two Step Mean -0.109 0.055 0.054 -0.108 0.054 0.054

SD (0.026) (0.015) (0.015) (0.026) (0.015) (0.015)
Two Step Mean -0.115 0.058 0.057 -0.115 0.057 0.057
Flexible SD (0.031) (0.018) (0.018) (0.031) (0.017) (0.018)
Two Step Mean -0.108 0.054 0.054 -0.108 0.054 0.054
Plug-in SD (0.025) (0.015) (0.015) (0.025) (0.015) (0.014)
Fmlogit Mean -0.119 0.059 0.059 -0.107 0.053 0.053

SD (0.015) (0.009) (0.009) (0.015) (0.009) (0.009)
LCF Mean -0.108 0.054 0.054 -0.108 0.054 0.054

SD (0.027) (0.015) (0.015) (0.027) (0.015) (0.015)
LCF Mean -0.107 0.054 0.053 -0.107 0.054 0.054
Flexible SD (0.031) (0.018) (0.018) (0.031) (0.018) (0.018)
2SLS Mean -0.108 0.054 0.054 -0.108 0.054 0.054

SD (0.026) (0.015) (0.015) (0.026) (0.015) (0.015)
LIV Mean -0.108 0.054 0.054 -0.108 0.054 0.054
(IV=Φ̂(·)) SD (0.026) (0.015) (0.015) (0.025) (0.015) (0.015)
Linear Mean -0.108 0.054 0.054 -0.108 0.054 0.054
Plug-in SD (0.026) (0.015) (0.015) (0.026) (0.015) (0.015)
OLS Mean -0.119 0.059 0.059 -0.107 0.053 0.053

SD (0.016) (0.009) (0.009) (0.016) (0.009) (0.009)
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Table 2.11: MSEs of APE estimates with r = ρu + e and π2 = 1 in Case 2

ρ 1 0.5 0.1 0
g 1 2 3 1 2 3 1 2 3 1 2 3

Two Step 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
Two Step Flexible 0.002 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
Two Step Plug-in 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
Fmlogit 0.014 0.004 0.004 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
LCF 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
LCF Flexible 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
2SLS 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
LIV (IV=Φ̂(·)) 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
Linear Plug-in 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
OLS 0.014 0.004 0.004 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1. e|v ∼ Normal

(
0, 1 + 1

2 v2
)

2. MSEs are calculated from Table 2.10.
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Table 2.12: APEs with w = 1[z2π2 + u > 0] and ρ = 1 in Case 2

π2 0.1 0.2 0.5
g 1 2 3 1 2 3 1 2 3

δg Mean -0.102 0.051 0.051 -0.102 0.051 0.051 -0.103 0.051 0.051
Two Step Mean -0.175 0.093 0.082 -0.109 0.057 0.052 -0.125 0.063 0.062

SD (0.324) (0.192) (0.192) (0.212) (0.116) (0.117) (0.081) (0.044) (0.043)
Two Step Mean -0.198 0.097 0.101 -0.160 0.081 0.079 -0.120 0.060 0.060
Flexible SD (0.440) (0.286) (0.293) (0.378) (0.223) (0.227) (0.149) (0.079) (0.081)
Two Step Mean -0.138 0.073 0.064 -0.090 0.047 0.042 -0.126 0.063 0.063
Plug-in SD (0.483) (0.280) (0.280) (0.271) (0.146) (0.148) (0.080) (0.043) (0.042)
Fmlogit Mean -0.333 0.167 0.167 -0.330 0.165 0.165 -0.306 0.153 0.153

SD (0.020) (0.010) (0.011) (0.020) (0.010) (0.011) (0.020) (0.010) (0.011)
LCF Mean -0.205 0.112 0.093 -0.103 0.056 0.047 -0.128 0.064 0.064

SD (2.644) (1.284) (1.509) (0.782) (0.469) (0.336) (0.082) (0.044) (0.043)
LCF Mean 0.884 -0.446 -0.438 0.111 -0.060 -0.051 -0.094 0.047 0.047
Flexible SD (11.653) (7.151) (5.858) (3.230) (2.032) (1.919) (0.156) (0.082) (0.085)
2SLS Mean -0.194 0.108 0.085 -0.089 0.051 0.038 -0.126 0.063 0.063

SD (2.241) (1.314) (1.189) (0.575) (0.398) (0.232) (0.081) (0.044) (0.043)
LIV Mean -0.221 0.142 0.079 -0.079 0.043 0.037 -0.127 0.064 0.063
(IV=Φ̂(·)) SD (2.618) (1.842) (1.314) (0.397) (0.207) (0.219) (0.081) (0.044) (0.043)
Linear Mean -0.197 0.112 0.086 -0.091 0.052 0.039 -0.127 0.064 0.063
Plug-in SD (2.213) (1.268) (1.203) (0.628) (0.430) (0.246) (0.081) (0.044) (0.043)
OLS Mean -0.333 0.167 0.167 -0.330 0.165 0.165 -0.306 0.153 0.153

SD (0.020) (0.010) (0.011) (0.020) (0.010) (0.011) (0.020) (0.010) (0.011)
Replications 997/1000 1000/1000 1000/1000

1. e|v ∼ Normal
(

0, 1 + 1
2 v2
)

2. π1 = τ = 0.
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Table 2.13: MSEs of APE estimates with w = 1[z2π2 + u > 0] and ρ = 1 in Case 2

π2 0.1 0.2 0.5
g 1 2 3 1 2 3 1 2 3

Two Step 0.110 0.039 0.038 0.045 0.014 0.014 0.007 0.002 0.002
Two Step Flexible 0.203 0.084 0.088 0.146 0.051 0.052 0.023 0.006 0.007
Two Step Plug-in 0.234 0.079 0.079 0.073 0.021 0.022 0.007 0.002 0.002
Fmlogit 0.054 0.013 0.014 0.052 0.013 0.013 0.042 0.010 0.010
LCF 7.004 1.652 2.278 0.611 0.220 0.113 0.007 0.002 0.002
LCF Flexible 136.772 51.391 34.559 10.480 4.141 3.695 0.024 0.007 0.007
2SLS 5.031 1.730 1.415 0.330 0.159 0.054 0.007 0.002 0.002
LIV (IV=Φ̂(·)) 6.867 3.403 1.727 0.158 0.043 0.048 0.007 0.002 0.002
Linear Plug-in 4.908 1.611 1.449 0.395 0.185 0.060 0.007 0.002 0.002
OLS 0.054 0.013 0.014 0.053 0.013 0.013 0.042 0.010 0.010
1. e|v ∼ Normal

(
0, 1 + 1

2 v2
)

2. π1 = τ = 0.
3. MSEs are calculated from Table 2.12.
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The rejection frequencies in Table 2.14 and 2.15 tell that the tests by the two step esti-

mation method and LCF cannot detect the endogeneity due to the heteroskedasticity of

e; as ρ = 0, their rejection frequencies are still close to 0.05. Yet, those by their flexible

methods can detect it. The form of heteroskedasticity and the flexible methods contain

v2 and v̂2, respectively. We suspect that it might be related with that the flexible methods

yield higher rejection frequencies.

As ρ > 0, the patters in the rejection frequencies are similar as those with the standard

normal distribution although the rejection frequencies themselves are generally smaller.

It is more obviously shown in Figure 2.5 and 2.6.22

Overall, we find that the results with the heteroskedastic normal distribution are pretty

similar to those of the standard normal distribution regarding approximations to APEs

and a test of endogeneity. The two additional estimation methods provide evidence that

the endogeneity caused only by heteroskedasticity does not matter to obtain an approx-

imation to APEs. Plus, although including the higher polynomial v̂ ensure the two step

estimation method and LCF to have tests detecting this kind of endogeneity, it does not

helps their approximations to APEs.

In summary, the simulations demonstrate that the two step estimation method with

a misspecified conditional mean works well as an approximation if the instrument is

strong. Even with a weak instrument, it yields a better approximation than the alter-

native methods. In addition, its test for endogeneity has about the correct size and better

power than LCF’s.

22 The graphs are average rejection frequencies for the two choices at each value of ρ and π2 in Table 2.14
and 2.15, respectively.

112



Table 2.14: Rejection Frequencies for α = 0.05 test in Case 2 with varying ρ

ρ 0 0.1 0.25 0.5 0.75 0.9 1
D(e|v) g 2 3 2 3 2 3 2 3 2 3 2 3 2 3

Normal Two Step 0.08 0.07 0.08 0.08 0.20 0.20 0.53 0.53 0.84 0.85 0.94 0.94 0.96 0.96(
0, 1 + 1

2 v2
)

LCF 0.07 0.07 0.07 0.07 0.16 0.17 0.46 0.47 0.77 0.77 0.90 0.90 0.94 0.94
Two Step flexible 0.43 0.43 0.45 0.45 0.50 0.50 0.70 0.70 0.88 0.89 0.95 0.94 0.97 0.97
LCF flexible 0.31 0.30 0.31 0.32 0.39 0.37 0.58 0.59 0.80 0.81 0.89 0.89 0.93 0.92

1. π2 = 1, π1 = τ = 0.
2. The null hypotheses for the flexible models are that the coefficients of v̂, v̂2, and v̂3 are zeroes.

Table 2.15: Rejection Frequencies for α = 0.05 test in Case 2 with varying π2

τ -0.5 0
π1 0.5 0
π2 1 1 0.5 0.2 0.1

D(e|v) g 2 3 2 3 2 3 2 3 2 3
Normal Two Step 0.94 0.94 0.96 0.96 0.69 0.70 0.21 0.21 0.09 0.10(

0, 1 + 1
2 v2
)

LCF 0.91 0.91 0.94 0.94 0.62 0.65 0.18 0.18 0.09 0.09
Two Step flexible 0.94 0.94 0.97 0.97 0.66 0.66 0.18 0.18 0.10 0.10
LCF flexible 0.90 0.92 0.93 0.92 0.63 0.62 0.39 0.39 0.51 0.52
Replication 1000 1000 1000 1000 997

1. ρ = 1
2. The null hypotheses for the flexible models are that the coefficients of v̂, v̂2, and v̂3 are zeroes.
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Figure 2.5: Rejection Frequencies for Normal
(

0, 1 + 1
2 v2
)

with varying π2, (π1 = τ = 0)
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Figure 2.6: Rejection Frequencies for Normal
(

0, 1 + 1
2 v2
)

with varying π2, (π1 = τ = 0)
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2.4 CONCLUSION

This chapter studies a two step estimation method for multiple fractional dependent vari-

ables especially when there is a binary endogenous explanatory variable. By employing a

control function approach suggested by Wooldridge (2014), this method is an extension of

a two step estimation method developed in Chapter 1 where the endogenous explanatory

variable is continuous.

With the assumption that the conditional mean, conditional on only observed vari-

ables and the generalized residual, is multinomial logit, it applies a QMLE to obtain con-

sistent estimator of the parameters in the conditional mean. Although it is not able to

estimate the mean parameter in the structural conditional mean, it is able to provide a

consistent estimator of APE, which is often more interesting.

By conducting Monte Carlo simulations, this chapter provides evidence that even

when the conditional mean is misspecified, the two step estimation method yields a

decent approximation to average partial effect. Its approximation is as good as or of-

ten better than the alternative methods including a linear control function approach, the

standard two stage least squares, and plug-in methods. This results tell a consistent story

with Chapter 1. In addition, the simulations demonstrate that the two step estimation

method’s test for endogeneity outperforms the linear control function approach in power

although both of the two methods have approximately the correct size.
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CHAPTER 3
ON COMPUTING AVERAGE PARTIAL

EFFECTS IN MODELS WITH
ENDOGENEITY OR HETEROGENEITY

3.1 INTRODUCTION

It is now widely recognized that magnitudes of partial effects are important for deter-

mining the importance of policy interventions and for understanding the strengths of

relationships posited by economic theory. In models where unobservables are assumed

to be independent of observed covariates (or, in some cases, a weaker assumption, such

as mean independence), there is little controversy about how one should compute partial

effects – at least once one has decided whether the conditional mean or some other fea-

ture of a conditional distribution is the focus. Assuming, as we do in this chapter, that

the conditional mean is the focus, one typically computes partial derivatives or discrete

changes of a conditional mean function with respect to the explanatory variables of inter-

est. To obtain a single number summarizing the effect of a covariate, one often averages

the partial effects across the distribution of the covariates. This average leads to the no-

tion of an “average partial effect” (or APE), and APEs are typically straightforward to

estimate in parametric, semiparametric, and even nonparametric models with exogenous

explanatory variables.1 Other possibilities for summarizing the effect of a covariate is

to insert specific values of the covariates, such as means or medians, into the estimated

1We prefer the name “partial effect” to “marginal effect” because “marginal” connotes a small change.
Average partial effects can be computed using derivatives or discrete changes, and the discrete changes can
be of any magnitude.
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partial effects, but these seems less desirable and is less popular.

When unobservables are correlated with one or more covariates – so we have some

form of “endogeneity” – it is not clear how one should summarize partial effects. Blun-

dell and Powell (2003) propose the notion of an “average structural function” (ASF).

The ASF is defined as a function of covariates after the unobservables have been av-

eraged out. More precisely, suppose a response Y is determined as Y = G(X, U) for

observed covariates X and unobservables U. We obtain the ASF as a function of x by

inserting x into G(·, ·) and then averaging across the unobservables. More precisely,

ASF(x) ≡ EU[G(x, U)]. Partial effects are then obtained by taking partial derivatives

or differences of ASF(x). In general, the partial effects defined in this way depend on

x. Blundell and Powell (2003) showed how to estimate the ASF very generally in models

with endogenous explanatory variables, provided, of course, one has sufficient instru-

mental variables. Wooldridge (2005b) focused on the partial effects, which in the contin-

uous case are defined as ∂ASF(x)/∂xj, in a similar setting, but with parametric models.2

Part of the appeal of the ASF is that its definition is the same regardless of whether U

and X are dependent. Because the ASF is a function of x, one can see how partial effects

on the ASF change as elements of x change, and the differences across different values

of x can be of significant interest. Even so, one often wants to compare estimates from

nonlinear models with estimates from simple linear models – which are often estimated

by two stage least squares or, in the case of panel data, standard fixed effects methods.

The question is: How should one summarize the partial effects of observed covariates

in nonlinear models to make them comparable to linear estimates? There are two pos-

sibilities. First, we can obtain the partial effects from the ASF and then average across

the distribution of the observed covariates, X. A second possibility is to compute partial

effects with respect to X from Y = G(X, U) and then average across (X, U). As we will

see in Section 3.3, these two methods are not generally the same, and they can actually be

2In Wooldridge (2010)and the first edition, the notion of an APE is used regularly for models with
endogeneity or correlated random effects.
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very different.

Wooldridge (2010) discusses APEs based on the average structural function and those

based directly on a conditional mean specification such as E(Y|X, U) = G(X, U). But he

makes no systematic attempt to compare these APEs, and does not even mention that they

can be different. This chapter has two goals. The first is to clarify the relationship between

the two kinds of partial effects and demonstrate that they generally differ. We will not

resolve which partial effect is “better” because it is mainly a matter of test. Second, we

show that the kind of control function/correlated random effects approaches discussed

in Blundell and Powell (2003), Altonji and Matzkin (2005), and Wooldridge (2005b, 2010)

can be used to consistently estimate both types of partial effects.

The rest of the chapter is organized as follows. Section 3.2 defines the average struc-

tural function, slightly extending the definition in Blundell and Powell (2003). We then

show that the key Blundell and Powell result about identifying the ASF when suitable

“proxies” are available carries through with the more general definition. We also note

that, assuming derivatives can be passed under integrals, the ASF identifies average par-

tial effects.

Section 3.3 offers a different way to define a single average partial effect and shows

that it is generally different from a definition based on averaging the observed covari-

ates out of the average structural function. We also show that if the heterogeneity and

covariates are assumed to be independent, the two ways of computing APEs coincide.

Section 3.4 illustrates how to compute the two types of partial effects in two empirical

examples using Michigan Educational Assessment Program data, and Section 3.5 sum-

marizes and concludes.
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3.2 THE AVERAGE STRUCTURAL FUNCTION AND AV-

ERAGE PARTIAL EFFECTS

In what follows, it is helpful to use a notation that clearly distinguishes random vec-

tors from particular outcomes of those vectors. We use the traditional convention from

probability that upper case letters are random variables or vectors and the lower case

counterparts are specific possible values.

We are interested in the conditional mean of a response variable, Y, conditional on a

vector of observed covariates, X, and a vector of unosbervables, U:

E(Y|X, U) = G(X, U), (3.1)

where (Y, X, U) has a joint distribution in a population. We can also write

E(Y|X = x, U = u) = G(x, u). (3.2)

This setup subsumes that in Blundell and Powell (2003), who assume that Y is a deter-

ministic function of (X, U). Because conditional probabilities can be written as conditional

means we cover partial effects for probabilities as a special case.

In many applications, G(·, u) is continuously differentiable on the the support of X,

X , which we would then assume to be an open set. But we are also interested in cases

where G(·, ·) is not differentiable in either argument. For example, if Y is binary and we

assume

Y = 1[α + Xβ + U > 0]

for a K × 1 vector β, G(·, ·) is not differentiable. In this case we define partial effects

as changes. For example, in moving the Kth variable from x0
K to x1

K, holding the other
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elements of x, say x(K) fixed, the partial effect is

1[α + x(K)β(K) + βKx1
K + u > 0]− 1[α + x(K)β(K) + βKx0

K + u > 0]

More generally, the effect of changing x from x0 to x1 is

G(x1, u)− G(x0, u).

When G(·, u) is continuously differentiable in xj we can define the partial effect with

respect to xj as

gj(x, u) =
∂G(x, u)

∂xj
. (3.3)

Wooldridge (2005b, 2010) defines the average partial effect as

APEj(x) = EU[gj(x, U)], (3.4)

so that the unobservables are averaged out. It is important to see that the APE is obtained

by inserting a fixed value for x and then averaging across the unconditional distribution of

U. We are not using the conditional distribution, D(U|X), in the averaging, and we are not

restricting this conditional distribution. In the special case that U and X are independent,

D(U|X) = D(U) and then the distinction is irrelevant.

As discussed in Wooldridge (2005b, 2010, Section 2.2.5), APEj(x) is closely related to

the notion of an average structural function (Blundell and Powell, 2003):

ASF(x) = EU[G(x, U)]. (3.5)

Actually, this definition is somewhat more general than that used by Blundell and Powell,

who effectively write Y = G(X, U). The more general definition is important in situations

where Y is discrete and we model endogeneity as correlation between one or more omit-
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ted variables, in U, and one or more observed covariates, in X.

The ASF is a very useful function because one can take derivatives or changes with re-

spect to elements of x. Assuming that the partial derivative can be taken through the sum

or integral defining EU[G(x, U)] – see, for example, Bartle (1966) for general conditions –

we have

APEj(x) =
∂ASF(x)

∂xj
. (3.6)

As mentioned earlier, the definition of the ASF takes no stand on D(U|X). However,

if U and X are independent then the ASF is the same as the conditional expectation. This

follows immediately from the the law of iterated expectations and the general Lebesgue

representation of conditional expectation. Let

E(Y|X = x) = E[E(Y|X, U)|X = x] =
∫

G(x, u)Q(du|x)

=
∫

G(x, u)Q(du) = EU[G(x, U)] ≡ ASF(x), (3.7)

where Q(·) is an appropriate σ-finite measure.

When U and X are dependent, we generally cannot obtain interesting partial effects

by estimating E(Y|X). There are exceptions, of course. For example, if Y = α + Xfi + U

with E(U) = 0, E(X′U) = 0, but E(U|X) 6= E(U), OLS using a random sample is gen-

erally consistent for (α, β), which indexes the ASF: ASF(x) = α + xfi. However, simple

extensions with correlated random slopes do permit OLS to consistently estimate the ASF.

And in nonlinear models, directly estimating E(Y|X) rarely leads to interesting quantities

unless U and X are independent.

Blundell and Powell (2003) and Wooldridge (2005b) show how to identify the ASF

when “proxy” variables for U, say V, are available. Sometimes we assume that we ob-

serve suitable proxies, such as standardized test scores to proxy for cognitive ability. In

the context of BP (2003), V is a vector of reduced form errors for endogenous elements of

X. When V is a vector of reduced form errors we need exogenous variables from outside
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the equation to serve as instruments. Suitable proxies are also available in a panel data

context, where V can be a vector of functions of a time series of covariates {X1, X2, ..., XT}.

A leading case is V = T−1 ∑T
t=1 Xt. See, for example, Altonji and Matzkin (2005) and

Wooldridge (2005a, 2010).

Two key restrictions on V suffice to identify average partial effects. The first is that V

is redundant in the “structural” conditional expectation. The second is that V is a good

enough proxy for U so that U and X are independent conditional on V. Formally, we state

these assumptions as

E(Y|X, U, V) = E(Y|X, U) (redundancy of V) (3.8)

D(U|X, V) = D(U|V) (conditional independence) (3.9)

Sometimes assumption (3.8) is called a “conditional mean independence” assumption,

because the mean of Y is independent of V once we also condition on (X, U).

Under assumptions (3.8) and (3.9), we have an important identification result, which

was discovered independently in different settings by Blundell and Powell (2003), Al-

tonji and Matzkin (2005), and Wooldridge (2002, 2005b). In what follows we assume that

conditional means exist, along with standard moment conditions.

Proposition 1: Let (Y, X, U, V) be a random vector such that (3.8) and (3.9) hold. De-

fine

H(x, v) ≡ E(Y|X = x, V = v). (3.10)

Then

ASF(x) = EV[H(x, V)] (3.11)
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Proof: By the law of iterated expectations and the redundancy condition (3.8),

E(Y|X = x, V = v) = E[E(Y|X = x, U, V = v)|X = x, V = v]

= E[E(Y|X = x, U)|X = x, V = v]

= E[G(x, U)|X = x, V = v]

Next, by conditional independence (3.9),

E[G(x, U)|X = x, V = v] = E[G(x, U)|V = v],

and so we have established the key relationship

H(x, v) = E[G(x, U)|V = v]. (3.12)

Now integrate (in the measure theoretic sense) both sides with respect to the distribution

of V and use iterated expectations on the right:

EV[H(x, V)] = EV {E[G(x, U)|V]} = EU[G(x, U)] = ASF(x). �

We can use Proposition 1 to obtain useful formulas for partial effects based on discrete

changes. The “structural” quantity of interest is

ASF(x1)− ASF(x0) = EU[G(x1, U)− G(x0, U)]

and Proposition 1 shows that this is the same as

EV[H(x1, V)− H(x0, V)].

An important special case, suppose XK is a binary treatment indicator – perhaps indicat-
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ing participation in a program. Generally, we can estimate the average treatment effect

of the program with the observables set at particular values. In particular, under the

conditions of Proposition 1,

EV[H(x(K), 1, V)− H(x(K), 0, V)] = APEK(x(K)) = EU[G(x(K), 1, U)− G(x(K), 0, U)],

(3.13)

where x(K) denotes x without xK.

For partial effects defined as derivatives, we have the following.

Proposition 2: Under the same assumptions in Proposition 1, assume in addition that

G(·, u) is continuously differentiable and the partial derivative with to xj can be passed

through the integrals defining EV[H(x, V)] and EU[G(x, U)] then

EV

[
∂H(x, V)

∂xj

]
= EU

[
∂G(x, U)

∂xj

]
(3.14)

and so the APEs can be gotten from E(Y|X = x, V = v) by taking derivatives (or changes)

with respect to xj and then averaging out V. �

The conclusion in equation (3.11) is very powerful, especially considering that there

are general conditions under which H(x, v) is nonparametrically identified. Blundell and

Powell (2003) study the case where some elements of X are correlated with U, but ex-

ogenous variables Z are available such that endogenous variables X2 can be represented

as

X2 = F(Z) + V (3.15)

where (U, V) is independent of Z. Provided there are enough elements Z2, where Z =

(X1, Z2), the function H(x, v) is nonparametrically identified. Of course, one can use

parametric models or semiparametric models to estimate the functions F(z) and H(x, v)

– either as the true models or as convenient approximations.

We can turn the population formulas into estimators very generally. Given a random
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sample {(Yi, Xi, Vi) : i = 1, ..., N} and a consistent estimator Ĥ(x, v) of E(Y|X = x, V =

v), a generally consistent estimator of ASF(x) is

ÂSF(x) = N−1
N

∑
i=1

Ĥ(x, Vi), (3.16)

and the previous analysis shows that we can take derivatives or changes with respect to

elements in x to estimate average partial effects. In some cases, including in the Blundell

and Powell (2003) setup, Vi must be replaced with V̂i, which depends on parameters or

functions that are consistently estimated in a first stage.

In many studies one wants to report a single number that measures the effect of, say,

xj on ASF(x). We might do this by evaluating APEj(x) at a central values of the elements

of x, such as the means or medians. In the spirit of the average treatment effect literature,

it is probably more appealing to average APEj(X) across the distribution of X:

δj = EX[APEj(X)]. (3.17)

A consistent estimate of δj is immediate under standard regularity conditions, provided

ÂPEj(x) is consistent for each x:

δ̂j = N−1
N

∑
i=1

ÂPEj(Xi). (3.18)

It turns out that the quantity in (3.18) is not the most commonly reported in empirical

studies, and it is a bit cumbersome to compute. Plus, obtaining a standard error via

analytical methods is a bit tricky. In the next section we discuss APEs where we average

jointly across the distribution of (X, U).
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3.3 APES ACROSS THE ENTIRE POPULATION

As in the previous section, we assume interest centers on E(Y|X = x, U = u) = G(x, u),

but now we wish to average the partial effects across the joint distribution of the observ-

ables and unobservables. For example, in moving xK from x0
K to x1

K, the average partial

effect across the entire population is

E[X(K),U]

[
G(X(K), x1

K, U)− G(X(K), x0
K, U)

]
.

For a continuous variable Xj we may define the partial effect as

gj(x, u) =
∂G(x, u)

∂xj
(3.19)

and then the parameter of interest is

ηj = E(X,U)

[
gj(X, U)

]
. (3.20)

Notice that X and U are treated symmetrically in equation (3.20), as in the treatment ef-

fects literature [for example, Imbens and Wooldridge (2009)]. In studying identification of

(3.20) it makes no sense to start with the ASF because E(X,U) [G(X, U)] = E(Y) by iterated

expectations, and so the expected value of the ASF with respect (X, U) conveys no useful

information about how Xj affects Y.

Focusing for now on the the case where Xj is continuous, the partial effect defined by

(3.20) generally differs from δj in (3.17). In other words,

EX

[
∂ASF(X)

∂xj

]
6= E(X,U)

[
gj(X, U)

]
. (3.21)

To see why, it is helpful to consider a simple example, where X and U are both scalars.
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Assume the conditional mean function is

E(Y|X, U) = β0 + β1X + β2U + β3X2U, (3.22)

where E(U) = 0. Then

ASF(x) = EU(β0 + β1x + β2U + β3x2U) = β0 + β1x

and so
∂ASF(x)

∂x
= β1. (3.23)

No further averaging is needed to obtain a single effect because APE(x) is constant.

By contrast, the partial effect of x on E(Y|X = x, U = u) is

PE(x, u) =
∂E(Y|X = x, U = u)

∂x
= β1 + 2β3xu (3.24)

and so

η ≡ E(X,U)[PE(X, U)] = β1 + 2β3Cov(X, U). (3.25)

Only if U and X are uncorrelated does (3.25) equal the partial derivative of the ASF. With

substantial correlation between X and U or if β3 is large in magnitude, the difference

between (3.25) and (3.23) can be substantial.

When one wants to study how the partial effects differ across a range of values of the

explanatory variables, the ASF seems to be natural quantity of interest. But it is less clear

that (3.17) is the best definition of the average effect across the population. If we follow

the approach from the average treatment effects literature then (3.20) is preferred.

As in the previous section, we first state a result that can be applied to partial effects

defined by differences.

Proposition 3: Under the same assumptions as Proposition 1, let xK be a fixed value.
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Then

E[X(K),V]

[
H(X(K), xK, V)

]
= E[X(K),U]

[
G(X(K), xK, U)

]
.

Proof: From equation (3.12) we can write H(x(K), xK, v) = E[G(x(K), xK, U)|V = v].

Now use conditional independence again:

E[G(x(K), xK, U)|V = v] = E[G(x(K), xK, U)|X(K) = x(K), V = v]

= E[G(X(K), xK, U)|X(K) = x(K), V = v],

which we can write in terms of random variables as

H(X(K), xK, V) = E[G(X(K), xK, U)|X(K), V].

The proof is finished by taking the expected value with respect to (X(K), V) and using

iterated expectations.

For the continuous case, we have the following. Define

hj(x, v) =
∂H(x, v)

∂xj
, (3.26)

the partial effect of E(Y|X = x, V = v) with respect to xj.

Proposition 4: Define ηj as in equation (3.20). Under the same assumptions as Propo-

sition 2,

ηj = E(X,V)

[
hj(X, V)

]
. (3.27)

Proof: From equation (3.12), H(x, v) = E[G(x, U)|V = v], and assuming the partial

derivative with respect to xj can be passed through the integrals,

hj(x, v) = E[gj(x, U)|V = v].
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Now use the conditional independence assumption again:

hj(x, v) = E[gj(x, U)|V = v] = E[gj(x, U)|X = x, V = v]

= E[gj(X, U)|X = x, V = v],

which we can write in terms of random variables as

hj(X, V) = E[gj(X, U)|X, V].

Now use iterated expectations to get

E(X,V)

[
hj(X, V)

]
= E(X,U)

[
gj(X, U)

]
. � (3.28)

The four propositions stated in this and the previous section show that, under the

same set of “control function” assumptions, average partial effects obtained by averaging

X out of the ASF and those obtained by averaging the partial effects of E(Y|X, U) are

generally identified. For better or worse, these partial effects are not generally the same,

and there is unlikely to be concensus on which measure is “best.” The differences can

be economically important. For example, in equation (3.22), the partial effect of the ASF,

averaged across X, is simply β1. The average partial effect across (X, U) is β1 + 2β3σXU.

In principal, these need not even have the same sign, let alone similar magnitudes. (In

practice, β3 might be small because it is the coefficient on the interaction X2U.)

The example in equation (3.22) can also be used to illustrate the main result of this

section, namely, that the ηj in (3.20) are identified if we have access to a suitable proxy

variable, V. Assume V – which is observed or depends on parameters that we can con-

sistently estimate – has a zero mean. Make the redundancy assumption along with a
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linearity assumption on E(U|V):

E(U|X, V) = E(U|V) = θV (3.29)

Then

E(Y|X, V) = β0 + β1X + β2E(U|X, V) + β3X2E(U|X, V)

= β0 + β1X + β2θV + β3X2θV

≡ h(X, V)

The partial derivative of h(x, v) with respect to x is

∂h(x, v)
∂x

= β1 + 2γ3xv

where γ3 = β3θ. Now

E(X,V)(β1 + 2γ3XV) = β1 + 2γ3E(XV)

= β1 + 2β3E(XθV)

and E(XθV) = E[XE(U|V)] = E[E(XU|X, V)] = E(XU) by iterated expectations. This

shows that estimating E(Y|X, V), taking the partial effect with respect to X, and then av-

eraging across (X, V) is the same as starting with E(Y|X, U) and performing the same op-

erations. This same analysis shows that β1 = ∂ASF(x)/∂x is also identified by E(Y|X, V).

As mentioned earlier, there is one important case where the different definitions of the

average partial effects are the same. We already showed that when U and X are indepen-

dent then ASF(x) = E(Y|X = x). We now can say more. Namely, basing the average

partial effect on the ASF, or first taking the partial derivative of the original structural

function, give the same answer after all random variables are averaged out.
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Proposition 5: Under the assumptions of Proposition 4, assume that U and X are

independent. Then

E(X,U)

[
gj(X, U)

]
= EX

[
∂ASF(X)

∂xj

]
.

Proof: By the law of iterated expectations,

E(X,U)

[
gj(X, U)

]
= EX{E[gj(X, U)|X]}.

Now, we can write

E[gj(X, U)|X = x] =
∫

gj(x, U)Q(du|x) =
∫

∂g
∂xj

(x, u)Q(du) =
∂
∫

g(x, u)Q(du)
∂xj

=
∂ASF(x)

∂xj
,

where the second equality uses independence and the third uses the technical assumption

of interchanging the derivative and the integral. It follows that

EX{E[gj(X, U)|X]} = EX

[
∂ASF(X)

∂xj

]

and this completes the proof. �
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3.4 EMPIRICAL EXAMPLE

In this section, we illustrate how to obtain the estimates of (3.17) and (3.20) with two

empirical examples using Michigan Educational Assessment Program (MEAP) math test

outcome for the fourth graders.

Papke and Wooldridge (2008) apply a control function approach to estimate the effects

of spending on student’s performance for this test using 501 school districts from 1992

through 2001. Their dependent variable is a pass rate3 and they use foundation allowance

as the instrument variable for spending.

For this example, (3.17) and (3.20) are estimated as

δ̂ = β̂ · 1
NT

N

∑
j

T

∑
s

[
1

NT

N

∑
i

T

∑
t

{
φ(ψ̂ + xjs β̂ + hi ξ̂ + ρ̂v̂it)

}]
, (3.30)

and

η̂ = β̂ ·
[

1
NT

N

∑
i

T

∑
t

{
φ(ψ̂ + xit β̂ + hi ξ̂ + ρ̂v̂it)

}]
, (3.31)

where xit includes spendingit, freelunchit, log(enrollment)it, spendingi,1994, time dummies

and the interactions between spendingi,1994 and time dummies, and hi contains time aver-

ages of freelunchit and log(enrollment)it.4,5 v̂it is the residual obtained by the first step of,

and β̂, ψ̂, ξ̂ and ρ̂ are the estimates obtained by the second step of Procedure 4.1 in Papke

and Wooldridge (2008), respectively.

Table 3.1 presents δ̂ and η̂ for spendingit, freelunchit, and log(enrollment)it. The estimates

η̂ are the same as those reported in Papke and Wooldridge (2008).6 We see that δ̂ is more

3In their data period, the test outcome is graded as one of Satisfactory, Moderate, or Low. The pass rate
is a fraction of students rated at the Satisfactory level.

4In Papke and Wooldridge (2008), spendingit is constructed as the average of real expenditures per pupil
for the recent four years in logarithmic form, freelunchit is the fraction of students who are eligible for free
and reduced-price lunch program.

5They allow the correlation between the district individual heterogeneity and the time averages of
freelunchit and log(enrollment)it.

6Table 5 in Papke and Wooldridge (2008).
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precisely estimated than η̂ but they are similar.7

Table 3.1: APE estimates in Papke and Wooldridge (2008)

APE
variables η̂ δ̂
spending 0.583 0.558

(0.256) (0.210)
freelunch -0.100 -0.096

(0.069) (0.065)
log(lenrollment) 0.096 0.092

(0.073) (0.061)
Scale factor 0.337 0.323
1. The standard errors, in paren-

theses, are obtained by using
1000 bootstrap replications.

2. Scale factor indicates the aver-
age sum of φ(·) in (3.30) and
(3.31).

We now calculate the two APE estimates of the empirical application in Chapter 1,

which also examines how spending affects the MEAP test outcomes using the 2004 school

year data with multiple fractional response variables. In this application, the dependent

variable is a set of student fractions of the four levels for a district where the sum of a

district’s four fractions becomes one.8

The two APE of spending on these four levels are estimated by

δ̂g =
1
N

N

∑
j

 1
N

N

∑
i

 exp
(

xjθ̂xg + θ̂vgv̂i

)
∑4

h exp
(

xjθ̂xh + θ̂vhv̂i

) ·
θ̂wg −

∑4
h θ̂wh exp

(
xjθ̂xh + θ̂vhv̂i

)
∑4

h exp
(

xjθ̂xh + θ̂vhv̂i

)



(3.32)

7Their difference comes from the difference between their scale factors. Considering that the scale
factors are normal density functions raging from zero to 0.4, the difference could not be large unless the
coefficient estimate β̂ is huge.

8In 2004, there were four categories.
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, and

η̂g =
1
N

N

∑
i

 exp
(

xiθ̂xg + θ̂vgv̂i

)
∑4

h exp
(

xiθ̂xh + θ̂vhv̂i

) ·
θ̂wg −

∑4
h θ̂wh exp

(
xiθ̂xh + θ̂vhv̂i

)
∑4

h exp
(

xiθ̂xh + θ̂vhv̂i

)
 , (3.33)

where xi contains spendingi, freelunchi, log(enrollmenti), and spending93i,9, v̂i is the OLS

residual in the first step, and θ̂ is the fmlogit estimates in the second step.

Table 3.2 reports the two estimates. As in the above illustration, they are similar in

general.

Table 3.2: APE estimates in Chapter 1

level 1 level 2 level 3 level 4
spending v̂ η̂ 0.699 0.016 -0.634 -0.081

(0.223) (0.139) (0.190) (0.054)
δ̂ 0.681 0.017 -0.619 -0.079

(0.205) (0.135) (0.172) (0.057)
spending2 v̂ only η̂ 0.806 -0.053 -0.679 -0.074

(0.239) (0.153) (0.199) (0.055)
δ̂ 0.779 -0.044 -0.667 -0.068

(0.216) (0.150) (0.183) (0.056)
v̂, v̂3, v̂3 η̂ 0.709 0.012 -0.618 -0.103

(0.248) (0.158) (0.188) (0.061)
δ̂ 0.691 0.014 -0.602 -0.103

(0.229) (0.154) (0.170) (0.068)
1. The standard errors, in parentheses, are obtained by using

1000 bootstrap replications.
2. spending2 indicates, the model includes spending2 as well

as spending.
2. v̂, v̂3, v̂3 indicates that the estimation includes them.

3.5 CONCLUSION

In this chapter, we have examined two types of a single APE that summarizes the APEs

of observed covariates. One is obtained by calculating ASF – averaging the conditional

9spendingi = log(per pupil GF expenditure), and spending93i is spending in 1993/1994.
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mean over the distribution of unobservables – and then averaging its partial derivatives

or discrete changes across the observed covariates. The other, which is more commonly

used in empirical studies, is obtained by averaging the partial effects of conditional mean

over the joint distribution of observed covariates and unobservables.

Through the propositions, we have shown that the two APEs are identified in general

as long as there are suitable proxy variables satisfying the redundancy and the condi-

tional independence assumptions. Furthermore, they are not generally the same unless

the unobservables and observed covariates are independent.

We have also illustrated how the two APEs are estimated in the empirical examples

using MEAP math test outcomes. In these examples, the two types of APE estimates are

similar.
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