This is to certify that the
dissertation entitled

Date November 28, 1992

LIERARY
Richigan State University

PLACE W RETURN BOX to remove this checkout from your record. TO AVOID FINES retum on or before date die.

MSU Is An Affirmativo ActionVEqual Opportunily Inetitution
cticholderoctra.pins-p. 1

I. THE ELECTRONIC AND GEOMETRIC STRUCTURES OF VARIOUS PRODUCTS OF THE Sc ${ }^{+}+\mathrm{H}_{2} \mathrm{O}$ AND $\mathrm{H}_{2} \mathrm{~S}$ REACTIONS.

II. THE ELECTRONIC AND GEOMETRIC STRUCTURES OF ${ }^{+} \mathrm{ScSe}$ AND ${ }^{+} \mathrm{ScSeH}$

By

Jeffrey Lee Tilson

A DISSERTATION

Submitted to
Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

ABSTRACT

I. THE ELECTRONIC AND GEOMETRIC STRUCTURES OF VARIOUS PRODUCTS OF THE $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ AND $\mathrm{H}_{2} \mathrm{~S}$
 REACTIONS.

II. THE ELECTRONIC AND GEOMETRIC STRUCTURES OF
 ${ }^{+} \mathrm{ScSe}$ AND ${ }^{+} \mathrm{ScSeH}$

By

Jeffrey Lee Tilson

The products of the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$ reactions were investigated by constructing ab-initio MCSCF and MCSCF+1+2 wavefunctions for various states of ${ }^{+} \mathrm{ScL},{ }^{+} \mathrm{ScLH}, \mathrm{Sc}^{+} \mathrm{LH}_{2}, \mathrm{HSc}^{+} \mathrm{LH}$ and $\mathrm{H}_{2}{ }^{+}+\mathrm{ScL}$ ($\mathrm{L}=\mathrm{O}$ and S). The energies were computed at the optimized geometries. A Mulliken population analysis was performed for each molecule. Where possible, comparisons to experimental data are made. The ground state product of the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ reaction is the insertion product, $\mathrm{H}^{+}{ }^{+} \mathrm{ScOH}$ which assumes a cis conformation and is $40 \mathrm{kcal} / \mathrm{mol}$ below the reactants. The two reaction products, $\mathrm{H}_{2}{ }^{+}+\mathrm{ScO}$ and $\mathrm{H}^{+} \mathrm{ScOH}$, are nearly degenerate ($\Delta \mathrm{E}=5 \mathrm{kcal} / \mathrm{mol}$) and
are both the result of an exoergic reaction. The $\mathrm{H}_{2} \cdots+\mathrm{ScO}$ product is the ground state ${ }^{+} \mathrm{ScO}$ molecule electrostatically bound to H_{2} and is $35 \mathrm{kcal} / \mathrm{mol}$ below the reactants. The ground state of the reaction $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{~S}$ is the $\mathrm{H}_{2} \cdots{ }^{+} \mathrm{ScS}$ electrostatic species ($34.5 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{~S}$) while the electrostatic product, $\mathrm{Sc}^{+} \mathrm{SH}_{2}$, is exoergic by only $11.4 \mathrm{kcal} / \mathrm{mol}$. The insertion product, $\mathrm{H}^{+}{ }^{+} \mathrm{ScSH}$, was examined and is not a minimum on the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{~S}$ reaction surface.

The ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScSe}$ and the ${ }^{2} \Delta$ and ${ }^{2} \Sigma^{+}$states of ${ }^{+} \mathrm{ScSeH}$ were analyzed. The ground state ${ }^{+} \mathrm{ScSe}$ is a triply bonded species of ${ }^{1} \Sigma^{+}$symmetry with a bond strength of $84 \mathrm{kcal} / \mathrm{mol}$. The ${ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$excited states lie higher in energy at 31 and $28 \mathrm{kcal} / \mathrm{mol}$, respectively. The ${ }^{+} \mathrm{ScSeH}$ molecule has a ${ }^{2} \Delta$ ground state nearly degenerate with the excited ${ }^{2} \Sigma^{+}$state with both differentially stabilized by formation of the $\mathrm{Se}-\mathrm{H}$ bond. This stabilization is consistent with the work on ${ }^{+} \mathrm{ScOH}$ and ${ }^{+} \mathrm{ScSH}$.

To Red, Joan, John, Nana and Herb

ACKNOWLEDGMENTS

I first want to sincerely thank Dr. James F. Harrison for accepting the job of being my mentor. His intellectual support, guidance, patients and stamina throughout my time in graduate school was second to none. No less important are the contributions of my guidance committee. In particular, Drs. George Leroi, Dan Nocera, Ned Jackson and John Allison for their advice and opinions. Thanks also to the faculty and staff of the Department of Chemistry (MSU) for help, advice and encouragement when it was needed and especially to Dr. K. Hunt and Dr. T. V. (TVA) Atkinson, for allowing me to frequently interrupt them to discuss the occasional intellectual curiosities of mine.

My time in graduate school would have been much less significant without the contributions of the expert service facilities and, of course, my friends.

Finally, I wish thank Michigan State University and the Department of Chemistry (MSU) for financial support during my graduate career.

TABLE OF CONTENTS

Page
LIST OF TABLES ix
LIST OF FIGURES xii
KEYS TO SYMBOLS AND ABBREVIATIONS x V
CHAPTER I
INTRODUCTION 2
CHAPTER II
THE ELECTRONIC AND GEOMETRIC STRUCTURES OF VARIOUS PRODUCTS OF THE Sc ${ }^{+}+\mathrm{H}_{2} \mathrm{O}$ AND $\mathrm{H}_{2} \mathrm{~S}$ REACTIONS.
INTRODUCTION 5
BASIS SETS 6
FRAGMENT ENERGIES 7
MOLECULAR CODES 10
AB-INITIO CALCULATION OF ${ }^{+} \mathrm{ScO}$ AND ${ }^{+} \mathrm{ScS}$ 13
A. GENERAL CONSIDERATIONS 13
B. MCSCF RESULTS FOR ${ }^{+} \mathrm{ScO}$ 15
C. MCSCF RESULTS FOR ${ }^{+}$ScS 18
D. $\mathrm{MCSCF}+1+2$ RESULTS FOR ${ }^{+} \mathrm{ScO}$ 20
E. MCSCF $+1+2$ RESULTS FOR ${ }^{+}$ScS 21
ELECTRONIC DISTRIBUTION 23
A. ${ }^{+} \mathrm{ScO}$ 23
B. ${ }^{+} \mathrm{ScS}$ 26
C. COMPARISON OF ${ }^{+} \mathrm{ScO}$ AND ${ }^{+} \mathrm{ScS}$. 28
Page
D. DIFFERENCE DENSITY CONTOURS. 30
AB-INITIO CALCULATIONS OF ${ }^{+} \mathrm{ScOH}$ AND ${ }^{+} \mathrm{ScSH}$ 32
A. ${ }^{+} \mathrm{ScOH}$ 32
B. ${ }^{+} \mathrm{ScSH}$ 37
C. COMPARISON OF ${ }^{+} \mathrm{ScNH},{ }^{+} \mathrm{ScOH}$, AND ${ }^{+} \mathrm{ScSH}$ 41
REACTION PRODUCTS. 42
A. $\mathrm{H}^{+} \mathrm{Sc} \mathrm{SOH}$ 42
B. $+\mathrm{ScOH}_{2}$ 45
C. COMPARISON WITH THE $+\mathrm{Sc}+\mathrm{NH}_{3}$ SYSTEM. 48
D. ${ }^{+} \mathrm{Sc}+\mathrm{SH}_{2}$ 51
E. $\mathrm{H}_{2}{ }^{+} \mathrm{ScS}$. 54
F. $\mathrm{H}_{-}^{+} \mathrm{ScSH}$ 55
CHEMISTRY-PREDICTIONS. 57
CONCLUSIONS 59
REFERENCES 66
CHAPTER III
THE ELECTRONIC AND GEOMETRIC STRUCTURES OF${ }^{+} \mathrm{ScSe}$ AND ${ }^{+} \mathrm{ScSeH}$
INTRODUCTION 71
BASIS SETS 72
MOLECULAR CODES 72
FRAGMENT ENERGIES 73
MCSCF FUNCTION FOR ${ }^{+}$ScSe 74
MCSCF+1+2 FUNCTION FOR + ScSe 79
ELECTRONIC STRUCTURE OF ${ }^{+}$ScSe 82
+ScSeH GENERAL CONSIDERATIONS 91
Page
ELECTRONIC STRUCTURE OF ${ }^{+}$ScSeH 95
THERMOCHEMISTRY 101
SUMMARY 106
REFERENCES 108
APPENDIX A
ELECTRONIC STRUCTURE THEORY: TECHNIQUES
INTRODUCTION 111
HAMILTONIAN 112
CONSTRUCTION OF THE WAVEFUNCTION 116
SCFEQUATION 124
EXTENSIONS 126
REFERENCES 131
APPENDIX B
LIST OF PUBLICATIONS 134

LIST OF TABLES

Table Page
CHAPTER II

1. Total Fragment Energies (au) 11
2. Dissociation Energies (kcal/mol). 12
3. ${ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{ScO}$ Equilibrium energies ($\mathrm{E}_{\text {min }}$, au), Vibrational frequencies $\left(\omega_{e}, \mathrm{~cm}^{-1}\right)$, Bond Lengths (r_{e}, au) and Dissociation Energies ($\mathrm{D}_{\mathrm{e}}, \mathrm{kcal} / \mathrm{mol}$) 19
4. Valence ${ }^{+} \mathrm{ScO}(\mathrm{H}) \mathrm{MCSCF}$ orbital populations at equilibrium. 24
5. Valence ${ }^{+} \mathrm{ScS}(\mathrm{H}) \mathrm{MCSCF}$ orbital populations at equilibrium. 27
6. MCSCF Gross atomic charges 29
7. ${ }^{+} \mathrm{ScS}(\mathrm{H})$ and ${ }^{+} \mathrm{ScO}(\mathrm{H})$ Equilibrium energies (au), Equilibrium bond lengths (au), and Dissociation energies (kcal/mol) 39
8. Summary of MCSCF $+1+2 \mathrm{Sc}^{+}+\mathrm{SH}$ and OH fragment energies (kcal/mol) 44
Table Page
9. $\mathrm{H}_{2}{ }^{+} \mathrm{ScO}$ and $\mathrm{H}^{-}{ }^{+} \mathrm{ScOH}$ Equilibrium Energies (au), Bond
Lengths (au) and Angles (deg) 46
10. ${ }^{3} \mathrm{~A}_{2}$ and ${ }^{3} \mathrm{~A}_{1}$ states of $\mathrm{Sc}^{+} \mathrm{SH}_{2}$. Optimized Geometries and Total Energies 53
11. $\mathrm{H}_{2} \ldots+\mathrm{ScS}$ Optimized geometry, Total Energy and Dissociation Energies. 56
12. MCSCF+1+2 Dissociation Energies ($\mathrm{D}_{\mathrm{e}}, \mathrm{kcal} / \mathrm{mol}$). 62
CHAPTER III
13. Fragment Total Energies (au) 75
14. Dissociation Energies ($\mathrm{kcal} / \mathrm{mol}$). 76
15. ${ }^{+} \mathrm{ScSe},{ }^{+} \mathrm{ScS}$, and ${ }^{+} \mathrm{ScO}$ Equilibrium energies ($\mathrm{E}_{\text {min }}$, au), Vibrational frequencies ($\omega_{\mathrm{e}}, \mathrm{cm}^{-1}$), Bond Lengths ($\mathrm{r}_{\mathrm{e}}, \mathrm{au}$) and Dissociation Energies ($\mathrm{D}_{\mathrm{e}}, \mathrm{kcal} / \mathrm{mol}$) 80
16. Valence ${ }^{+} \mathrm{ScSe}(\mathrm{H}) \mathrm{MCSCF}$ orbital populations at equilibrium 83
17. Valence ${ }^{+} \mathrm{ScS}(\mathrm{H}) \mathrm{MCSCF}$ orbital populations at equilibrium 86
Table Page
18. Valence ${ }^{+} \mathrm{ScO}(\mathrm{H}) \mathrm{MCSCF}$ orbital populations at equilibrium 87
19. MCSCF Gross atomic charge distribution 89
20. ${ }^{+} \mathrm{ScSe}(\mathrm{H}),{ }^{+} \mathrm{ScS}(\mathrm{H})$, and ${ }^{+} \mathrm{ScO}(\mathrm{H})$ Equilibrium energies (au), Equilibrium bond lengths (au), and Dissociation energies ($\mathrm{kcal} / \mathrm{mol}$) 93
21. Summary of MCSCF $+1+2 \mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$ fragment energies ($\mathbf{k c a l} / \mathrm{mol}$) 94

LIST OF FIGURES

Figure Page
CHAPTER II

1. MCSCF potential energies of the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$, and ${ }^{3} \Sigma^{+}$ states of ${ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{ScO}$ relative to the ground state asymptote. 16
2. MCSCF $+1+2$ potential energies of the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$, and ${ }^{3} \Sigma^{+}$ states of ${ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{ScO}$ relative to the ground state asymptote 22
3. MCSCF Total density contours (TDCs) and Difference density contours (DDCs) for the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScO}$ 31
4. MCSCF Total density contours (TDCs) and Difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{ScOH}$ and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScO}$ 34
5. $\mathbf{M C S C F}+1+2$ relative energies ($\mathrm{kcal} / \mathrm{mol}$) 36
6. MCSCF Total density contours (TDCs) and Differencedensity contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{ScSH}$ andthe ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScS}$43
Figure Page
7. Illustration of the energetics amongst the $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ reaction products. Minima on the curve are MCSCF+1+2 optimized values 58
8. MCSCF $+1+2$ relative energies of the $\mathrm{Sc}^{+}+\mathrm{OH}_{2}$ reaction 60
9. $\mathrm{MCSCF}+1+2$ relative energies of the $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ reaction. 61
CHAPTER III
10. MCSCF potential energies of the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$ states of ${ }^{+} \mathrm{ScSe},{ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{ScO}$ relative to the ground state asymptote 78
11. MCSCF $+1+2$ potential energies of the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$ states of ${ }^{+} \mathrm{ScSe},{ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{ScO}$ relative to the ground state asymptote 81
12. Radial distribution function of the ground state ${ }^{+}$Sc $\left({ }^{3} \mathrm{D}\right)$
Inner 1s core orbital not displayed. 85
13. Orbital populations of ${ }^{+} \mathrm{ScL}$ and ${ }^{+} \mathrm{ScLH}(\mathrm{L}=\mathrm{O}, \mathrm{S}, \mathrm{Se})$. 90
Figure Page
14. MCSCF Total density contours (TDCs) and Difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{ScSeH}$ and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScSe}$ 97
15. MCSCF Total density contours (TDCs) and Difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{ScSH}$ and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScS}$ 98
16. MCSCF Total density contours (TDCs) and Difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{ScOH}$ and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScO}$ 99
17. Contours of the valence natural orbitals for the ${ }^{2} \Sigma^{+}$states of ${ }^{+}$ScLH at equilibrium 100
18. MCSCF $+1+2$ relative energies $(\mathrm{kcal} / \mathrm{mol})$ of selected $\mathrm{Sc}^{+}+\mathrm{SeH}_{2}$ products 103
19. $\mathrm{MCSCF}+1+2$ relative energies ($\mathrm{kcal} / \mathrm{mol}$) of selected $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ products 104
20. $\mathrm{MCSCF}+1+2$ relative energies ($\mathrm{kcal} / \mathrm{mol}$) of selected $\mathrm{Sc}^{+}+\mathrm{OH}_{2}$ products. 105

KEY TO SYMBOLS AND ABBREVIATIONS

Symbol or
Abbreviation

Meaning

SCF
GVB
MCSCF
CI
MCSCF+1+2

SCF $+1+2$
Ψ
ϕ
He
\mathcal{A}
∇^{2}
\mathcal{F} / \mathbf{F}
$\mathcal{J}_{\mathrm{j}}(1) / \mathcal{K}_{\mathrm{j}}(1)$
$\mathbf{J}_{\mathbf{i j}} / \mathrm{K}_{\mathrm{ij}}$
$\langle\mathrm{ij}| \mathrm{ij}>/\langle\mathrm{ij} \mid \mathrm{ji}\rangle$
$\mathbf{a u}$
Re_{e} or $\mathrm{R}_{\mathrm{min}}$
E_{e} or $\mathrm{E}_{\text {min }}$

Self-Consistent-Field
Generalized Valence Bond
Multiconfiguration SCF
Configuration Interaction
Single and double excitations from a MCSCF reference space

Single and double excitations from a SCF reference space

Wavefunction
Spatial or spin orbital
Electronic hamiltonian
Antisymmetrizing operator
Laplace operator
Fock Operator/ Matrix
Coulomb/Exchange operator
Coulomb/Exchange energy
Coulomb/Exchange energy
Atomic Units
Energy = hartree
Distance $=$ Bohrs (0.527 Ang.)
Bra-Ket Notation
Equilibrium distance
Equilibrium energy

$$
\begin{gathered}
\begin{array}{c}
\text { Symbol or } \\
\text { Abbreviation }
\end{array} \\
\omega_{e} \\
i, j \\
k, p \\
\text { CSF } \\
\alpha, \beta \\
Z_{n} \\
\varepsilon_{i} \\
\delta_{i j} \\
\chi_{\mu} \\
p_{x}, p_{y}, p_{z} \\
d_{x^{2}+y^{2}-2 z^{2}, d_{x y}, d_{x z}, d_{y z}, d_{x}^{2}-y^{2}} \text { TDC }^{D D C}
\end{gathered}
$$

Meaning

ω_{e}	Vibrational frequency (cm-1)
i, j	Electron index
k, p	Nuclear index
CSF	Configuration State Function
α, β	Spin functions (spinors)
Z_{n}	Atomic number of the nth nucleus
ε_{i}	Orbital (one-electron) energy
$\delta_{i j}$	Kronecker Delta
χ_{μ}	$\mu t h$ Basis function
p_{x}, p_{y}, p_{z}	Atomic (Real) p functions
$d_{x^{2}+y^{2}-2 z^{2}, d_{x y}, d_{x z}, d_{y z}, d_{x}{ }^{2}-y^{2}}$	Atomic (Real)d functions
TDC	Total density contour
DDC	Difference density contour

CHAPTER I

CHAPTER I

INTRODUCTION

The focus of the work presented in this dissertation is electronic structure calculations of transition metal (TM) containing species. The techniques employed are Multiconfiguration self-consistant-field (MCSCF) and configuration interaction calculations (CI). These methods are significantly more advanced than SCF calculations and are required to incorporate the important near degeneracy effects present in all TMs.

The work presented in Chapter II examines the possible products of the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$ reactions. Experimental data available for the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ reaction are compared. No experimental data are available for the SH_{2} reaction. Many structural similarities exist between these two reactions, but the ground state reaction products are different.

Chapter III continues with a theoretical examination of ${ }^{+} \mathrm{ScSe}(\mathrm{H}),{ }^{+} \mathrm{ScS}(\mathrm{H})$, and ${ }^{+} \mathrm{ScO}(\mathrm{H})$. The ligands $(\mathrm{O}, \mathrm{S}$, and Se) belong to Group VI and therefore have the same valence structure. This analysis allows us to make predictions for the reaction of $\mathrm{Sc}^{+}+\mathrm{SeH} 2$. The filled 3d-shell of Se is found, as expected, to not significantly influence the bonding structure of $+\mathrm{ScSe}(\mathrm{H})$ relative to $+\mathrm{ScO}(\mathrm{H})$ and +ScS(H).

Appendix A is included to outline the theoretical techniques used throughout this dissertation, with particular attention paid to the Hartree-Fock (HF) wavefunction and its extensions.

A listing of publications resulting from this work is presented in Appendix B.

CHAPTER II

CHAPTER II

THE ELECTRONIC AND GEOMETRIC STRUCTURES OF VARIOUS PRODUCTS OF THE $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ AND $\mathrm{H}_{2} \mathrm{~S}$ REACTIONS.

INTRODUCTION

We are interested in characterizing the possible products of the gas phase reaction of the monopositive ions of the early transition metals with $\mathrm{H}_{2} \mathrm{O}^{1}$ and $\mathrm{H}_{2} \mathrm{~S}^{2}$ In this dissertation the focus is on the simplest of these ions, Sc^{+}, and this chapter reports the results of abinitio electronic structure calculations on the systems ${ }^{+} \mathrm{ScL}$ in their ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states, the ${ }^{+} \operatorname{ScLH}{ }^{2} \Delta$ and ${ }^{2} \Sigma^{+}$states and the reaction products $\mathrm{H}^{-}{ }^{+} \mathrm{ScLH}, \mathrm{H}_{2}{ }^{+} \mathrm{ScL}$, and ${ }^{+} \mathrm{ScLH}_{2}$ where $\mathrm{L}=\mathrm{O}$ and S .

There has been extensive experimental and theoretical work on the reactions of transition metal ions with small ligands. Pertinent to this work are the ${ }^{+} \mathrm{MO}\left(\mathrm{M}=\mathrm{Sc}, \mathrm{Ti}\right.$, etc.) bond strengths ${ }^{3}$ (in particular ${ }^{+} \mathrm{ScO} \mathrm{D}_{\mathrm{O}}=159 \pm 7 \mathrm{kcal} / \mathrm{mol}$) and the several experimental ${ }^{+} \mathrm{M}-\mathrm{OH}$ and ${ }^{+}$MO-H (M=Sc, Ti, V, Cr, etc.) bond strengths. ${ }^{4}$ Recent results indicate a ${ }^{+} \mathrm{Sc}-\mathrm{OH}$ bond strength of $87.8 \mathrm{kcal} / \mathrm{mol}$ and further suggests the reaction of Sc^{+}with $\mathrm{H}_{2} \mathrm{O}$ yields the product $\mathrm{Sc}^{+} \ldots \mathrm{OH}_{2}$ with an interaction energy (D_{o}) of $31.4 \mathrm{kcal} / \mathrm{mol} .{ }^{5}$ There are no experimental data available for the ${ }^{+} \mathrm{ScS}(\mathrm{H})$ species.

The results of this work indicate that the bonding of H to the O in ${ }^{+} \mathrm{ScO}$ and the N in ${ }^{+} \mathrm{ScN}^{6}$ causes a differential strengthening of the Sc^{+}to oxygen and nitrogen bonds of approximately $43 \mathrm{kcal} / \mathrm{mol}$. This strengthening results from a ligand to metal sigma dative bond, formed in concert with the bond between N or O and the H atom. This added stabilization causes the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ ground state reaction product to be the insertion species, ${ }^{1} \mathrm{HSc}^{+}-\mathrm{OH},(\Delta \mathrm{E}=-40 \mathrm{kcal} / \mathrm{mol})$ with the electrostatic species, ${ }^{+} \mathrm{Sc} \cdots \mathrm{OH}_{2}$, slightly higher ${ }^{7}(\Delta \mathrm{E}=-36.2$ $\mathrm{kcal} / \mathrm{mol}$). The analogous ${ }^{+} \mathrm{Sc}+\mathrm{SH}_{2}$ reaction products were analyzed with emphasis placed on the strength and structure of the induced sigma dative bond.

The point groups employed in all calculations are either $\mathrm{C}_{2 \mathrm{v}}$ or C_{s}. This is possible because all the studied species are of the same or higher symmetry. It is always possible to use a less discriminating, i.e. lower, point group since it will fully contain all operations of the higher point group. This lowering of the point group order in a calculation will increase the amount of computational time but yields exactly the same results. The similarity of results allows us to interpret orbitals in terms of atomic type orbitals regardless of the selected point group. Throughout this dissertation the atomic, $\mathbf{C}_{\mathbf{2 v}}$ and C_{s} orbital symmetries will be used interchangeably.

BASIS SETS

The Scandium basis set used in this study consists of the (14s,9p,5d) basis from Wachters ${ }^{8}$ augmented with two diffuse p
functions (Dunning) ${ }^{9}$ and a diffuse d function as recommended by Hay. 10 This set was contracted to ($5 \mathrm{~s}, 4 \mathrm{p}, 3 \mathrm{~d}$) following Raffenetti. ${ }^{11}$ The Oxygen basis was the ($11 \mathrm{~s}, 7 \mathrm{p}$) set from Duijneveldt ${ }^{1} 2$ augmented with a single diffuse $\mathrm{d}(\exp =0.85)$ function and contracted to ($4 \mathrm{~s}, 3 \mathrm{p}, 1 \mathrm{~d}$) following Raffenetti. ${ }^{11}$

The Sulfur basis was the $(12 \mathrm{~s}, 9 \mathrm{p})$ set from Huzinaga ${ }^{1} 3$ augmented with a diffuse $s(\exp =0.60)$, a diffuse $p(\exp =0.04)$ and a diffuse d (exp=0.31) function and contracted to ($5 \mathrm{~s}, 5 \mathrm{p}, 1 \mathrm{~d}$) following Raffenetii. ${ }^{11}$

Two basis sets were used for the Hydrogen atom. The first consists of the Huzinaga ${ }^{13}$ (4s) augmented with a single p (exp=1.00) function and contracted to ($2 \mathrm{~s}, 1 \mathrm{p}$). This was the set chosen for the ${ }^{+} \mathrm{ScOH}, \mathrm{H}^{+} \mathrm{ScOH},{ }^{+} \mathrm{ScSH}$ and $\mathrm{H}^{+}{ }^{+} \mathrm{ScSH}$ calculations. The second basis set consists of the above 4 s basis augmented with a single s ($\exp =0.03$) function and three p (exp=1.00, 0.33, 0.11) functions. This set was contracted to ($3 \mathrm{~s}, 3 \mathrm{p}$) and used in the $\mathrm{H}_{2} \cdots+\mathrm{ScO}$ and $\mathrm{H}_{2} \cdots+\mathrm{ScS}$ calculations. This basis was previously shown to adequately represent the polarizability of the H_{2} molecule. ${ }^{14}$

FRAGMENTENERGIES

$\mathbf{S c}^{+}$

The ground state ${ }^{15}\left({ }^{3} \mathrm{D}, 3 \mathrm{~d}^{1} 4 \mathrm{~s}^{1}\right)$ energy was computed using the SCF and SCF+1+2 (substitutions from only valence electrons) functions. The $\mathrm{Sc}^{++}\left({ }^{2} \mathrm{D}, 3 \mathrm{~d}^{1}\right) \mathrm{SCF}$ energy was also determined. The total energies plus the energy for the mixed state $\mathrm{Sc}^{+}\left({ }^{3} \mathrm{~B}_{2}, 3 \mathrm{~d} \delta^{1} 3 \mathrm{~d} \pi^{1}\right)$ are collected in Table 1.

The Sulfur ${ }^{3} P$ state ${ }^{15}$ was analyzed with MCSCF and MCSCF $+1+2$ wavefunctions. The MCSCF function was constructed from the in-out correlation (GVB) of the doubly occupied $3 \mathrm{p} \pi_{\mathrm{x}}$ orbital plus all valence spin couplings. This results in 5 CSFs of ${ }^{3} \mathrm{~B}_{2}$ symmetry. All valence single and double substitutions (of ${ }^{\mathbf{3}} \mathbf{B}_{\mathbf{2}}$ symmetry) from the MCSCF reference space result in the 619 CSF MCSCF $+1+2$ function. These energies are collected in Table 1.

SH

The ${ }^{2} \Pi$ state of $S H$ was examined by a ${ }^{2} B_{1} 17$ configuration MCSCF function. This was constructed from all spin couplings of a GVB(2/4) function (correlating the π bond and the doubly occupied S $3 p \pi_{y}$ orbital) and a 3,766 CSF MCSCF $+1+2$ constructed from all valence single and double substitutions (of ${ }^{2} \mathrm{~B}_{1}$ symmetry) from the MCSCF reference space. The total energies are listed in Table 1 while the dissociation energy $\left(\mathrm{D}_{\mathrm{e}}\right)$ is collected in Table 2.

$\mathrm{H}_{2} \mathrm{~S}$

The energy and optimized geometry of $\mathrm{H}_{2} \mathrm{~S}$ was computed with a 37 CSF MCSCF function constructed to correlate in a GVB way the two bonding orbitals and the S doubly occupied out-of-plane orbital plus all spin couplings and a 23,922 CSF MCSCF $+1+2$ function derived from all valence single and double substitutions from the MCSCF reference space. The equilibrium energies are listed in Table 1 and the dissociation energies in Table 2.
0
The Oxygen ${ }^{3} \mathrm{P}$ state ${ }^{15}$ was analyzed with MCSCF and MCSCF $+1+2$ wavefunctions. The MCSCF function was constructed
from the left-right correlation (GVB) of the doubly occupied $2 \mathrm{p} \pi_{\mathrm{x}}$ orbital plus all valence spin couplings. This results in 5 CSFs of ${ }^{3} \mathrm{~B}_{2}$ symmetry. All valence single and double substitutions (of ${ }^{3} \mathrm{~B}_{2}$ symmetry) from the MCSCF reference space result in the 408 CSF MCSCF+1+2. These energies are collected in Table 1. OH

The ${ }^{2} \Pi$ state of OH was examined by a ${ }^{2} \mathrm{~B}_{1} 17$ configuration MCSCF function. This was constructed from all spin couplings of a GVB(2/4) function (correlating the π bond and the doubly occupied \mathbf{O} $2 \mathrm{p} \pi_{\mathrm{y}}$ orbital) and a $2,729 \mathrm{CSF}$ MCSCF+1+2 constructed from all valence single and double substitutions (of ${ }^{2} \mathrm{~B}_{1}$ symmetry) from the MCSCF reference space. The total energies are listed in Table 1 while the dissociation energy $\left(D_{e}\right)$ is collected in Table 2.

$\mathrm{H}_{2} \mathrm{O}$

The energy and optimized geometry of $\mathrm{H}_{2} \mathrm{O}$ was computed with a 37 CSF MCSCF function (constructed from all spin couplings of a GVB(2/4) function) and an 18,410 CSF MCSCF $+1+2$ function derived from all valence single and double substitutions from the MCSCF reference space. The equilibrium energies are listed in Table 1, and the dissociation energies in Table 2. H_{2} and H

The $H\left({ }^{2} S\right)^{15}$ energy was computed with a SCF function using the ($2 \mathrm{~s}, 1 \mathrm{p}$) basis. This energy is collected in Table 1. The total energy of H_{2} using the ($3 \mathrm{~s}, 3 \mathrm{p}$) basis was determined with a 3 CSF MCSCF and 120 CSF MCSCF $+1+2$ function constructed from all single and double excitations. The total energies and D_{e} are listed in Tables 1 and 2 , respectively.

MOLECULAR CODES

All ab-initio calculations on the oxygen containing species were done on a FPS-164 jointly supported by the Michigan State University Chemistry Department and the Office of the Provost by using the Argonne National Laboratory collection of Quest-164 codes. The intergrals were calculated using the program ARGOS written by Pitzer; ${ }^{16}$ the SCF and MCSCF calculations were done using GVB164 written by Bair ${ }^{17}$ and the UEXP program and related utility codes written by Shepard. ${ }^{18}$ The configuration interaction calculations were performed using the program UCI (and related utility codes) written by Lischka et al. ${ }^{19}$

Ab-initio calculations on the sulfur containing species were done on a Stardent TITAN computer located in the Michigan State University Chemistry Department using the Argonne National Laboratory collection of COLUMBUS codes. ${ }^{20}$

All density and difference density contours were calculated with the MSUPLOT collection of codes written by Harrison, and all spectroscopic constants were determined by performing a Dunham analysis. ${ }^{2} 1$

Table 1: Total Fragment Energies (au)

Fragment	$\mathrm{E}_{\text {min }}(\mathrm{MCSCF})$	$\mathrm{E}_{\text {min }}(\mathrm{MCSCF}+1+2)$
$\mathrm{Sc}+{ }^{3} \mathrm{D}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}\right)$	-759.52848	-759.52906
$\mathrm{Sc}^{+}{ }^{3} \mathrm{~B}_{2}\left(3 \mathrm{~d} \mathrm{~m}^{1} 3 \mathrm{~d} \delta^{1}\right)$	-759.48576	-759.49960
$\mathrm{Sc}^{++}{ }^{\text {d }}$ ($3 \mathrm{~d}^{1}$)	-759.08187	
$\mathrm{S}^{3} \mathrm{P}$	-397.50318	-397.54525
$\mathrm{O}^{3} \mathrm{P}$	-74.82254	-74.87100
$\mathrm{H}^{2} \mathrm{~S}$	-0.49928	
SH ${ }^{2} \Pi$	-398.11446	-398.16883
$\mathrm{SH}_{2}{ }^{1} \mathrm{~A}_{1}$	-398.73762	-398.80756
$\mathrm{OH}^{2} \Pi$	-75.46483	-75.52573
$\mathrm{OH}_{2}{ }^{1} \mathrm{~A}_{1}$	-76.14408	-76.21173
$\mathrm{H}_{2}{ }^{1} \mathrm{\Sigma}_{\mathrm{g}}(3 \mathrm{~s} / 3 \mathrm{p})$	-1.14813	-1.16652

AB-INITIO CALCULATION OF ${ }^{+}{ }^{S c O}$ AND ${ }^{+}$ScS

A. GENERAL CONSIDERATIONS

In the following discussion only the oxygen-containing species will be discussed. In all cases, Sulfur may be substituted for Oxygen with the appropriate change in valence orbital level.

If the two valence electrons on Sc^{+}form two bonds with the two unpaired electrons in the ground state of O, the resulting molecule is a singlet of Σ symmetry and can be represented by the Lewis structure

$$
+\mathbf{S c}=\ddot{O}^{1}{ }^{1} \boldsymbol{\Sigma}^{+}
$$

where we suppress the explicit representation of the O 2 s electrons. The ground state oxygen atom may approach the Sc^{+}in either of two orientations, according to whether the oxygen 2ps orbital is singly or doubly occupied.

The local symmetry of O in the first approach is Π and in the second, Σ^{-}. If O is in the Π orientation, Sc^{+}must also be locally Π and this may be accomplished using either the ground 4 s 3 d configuration ($4 \mathrm{~s} 3 \mathrm{~d} \pi \mathrm{x}$ or $4 \mathrm{~s} 3 \mathrm{~d} \pi \mathrm{y}$) or the low lying $3 \mathrm{~d}^{2}$ configuration ($3 \mathrm{~d} \sigma 3 \mathrm{~d} \pi \mathrm{x}$ or $3 \mathrm{~d} \sigma 3 \mathrm{~d} \pi \mathrm{y}$). These options result in the Lewis structure

where one of the π bonds results from the singlet coupling of the Sc^{+} $\mathrm{d} \pi$ and $\mathrm{O} 2 \mathrm{p} \pi$ and the second π bond is a dative bond formed from the lone pair in the $2 \mathrm{p} \pi$ orbital on O and the empty $\mathrm{d} \pi$ on Sc^{+}. In the calculations the π bonds are of course equivalent. The $\mathrm{Sc}^{+} \sigma$ electron is asymptotically either a 4 s or $3 \mathrm{~d} \sigma$. If, however, O is in the Σ^{-} orientation, Sc^{+}must also be locally Σ^{-}. This may be achieved using the d^{2} configuration, in particular $d \pi_{x} d \pi_{y}$. This results in the Lewis structure

where the σ electrons are formally from 0 . Clearly the equilibrium structure will be a mixture of the two Lewis structures.

B. MCSCF RESULTS FOR + ScQ

The character of both Lewis structures may be incorporated into a 3 pair Generalized Valence Bond ${ }^{22}$ (GVB) wavefunction of the form

$$
\Psi \sim(\text { core })^{2}\left(8 \sigma^{2}-\lambda 9 \sigma^{2}\right)\left(3 \pi x^{2}-v 4 \pi x^{2}\right)\left(3 \pi y^{2}-v 4 \pi y^{2}\right)
$$

where the core electrons are suppressed for brevity but are always fully optimized in all calculations. An MCSCF function of this form which includes all possible spin couplings consists of 37 configuration state functions (CSFs). A function of this form allows the bonds to properly separate to the ground state atoms for large internuclear distances. In particular, the σ bond ($8 \sigma^{2}-\lambda 9 \sigma^{2}$) separates to the Sc^{+} $4 \mathrm{~s}^{1}$ and $\mathrm{O} 2 \mathrm{pz}^{1}$ orbitals while the two π bonds together separate to the $\mathrm{Sc}^{+} 3 \mathrm{~d} \pi^{1}$ and $02 \mathrm{p} \pi^{4}$ configurations. The energy predicted by this function is shown in Figure 1 as a function of $\mathrm{Sc}-\mathrm{O}$ separation. This function predicts an equilibrium separation of 3.095 au and a dissociation energy, D_{e}, of $134 \mathrm{kcal} / \mathrm{mol}$. Also shown in Figure 1 are various low lying triplet states. The ${ }^{3} \Sigma^{+}$state obtains by triplet coupling the σ bonding electrons in the ${ }^{1} \Sigma^{+}$state. The $\mathrm{d} \delta_{+}$symmetry orbitals were eliminated from the ${ }^{3} \Sigma^{+}$calculation to prevent collapsing to the δ_{+}component of the lower energy ${ }^{3} \Delta$ state.

Figure 1. MCSCF potential energies of the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{ScO}$ relative to the ground state asymptote. Energy is in kcal/mol. The atomic structure at the asymptote is indicated by both atomic symmetry and valence configuration ($\mathrm{L}=\mathrm{O}$ and S)

One of the triplet coupled electrons becomes localized on Sc^{+}in an orbital of $3 \mathrm{~d} \sigma$ symmetry with some 4 s character while the companion electron settles into an oxygen 2 po orbital.

The bond length in this state is longer than in the ${ }^{1} \Sigma^{+}$state (3.454 au versus 3.095 au) and the molecule contains two equivalent π bonds and no σ bond. This molecular state should dissociate to the ground ${ }^{153} \mathrm{D}$ state of Sc^{+}and the ground ${ }^{15}{ }^{3} \mathrm{P}$ state of O and its D_{e} relative to this asymptote is $39 \mathrm{kcal} / \mathrm{mol}$. If we imagine forming this state from the asymptotic ground state fragments we must triplet couple the spatially extensive $\mathrm{Sc}^{+} 4 \mathrm{~s}$ and the O 2 po electrons and singlet couple the $\mathrm{Sc}^{+} 3 \mathrm{~d} \pi$ and singly occupied $\mathrm{O} 2 \mathrm{p} \pi$ orbital. At large Sc-O separations the π, π bond would be very weak and the repulsive triplet coupling in the σ system dominant. Consequently we anticipate that this state would be repulsive at large separations and would have to overcome a barrier to obtain the electronic structure we see at equilibrium. This equilibrium structure obtains when this repulsive curve intersects the attractive ${ }^{3} \Sigma^{+}$curve which separates to the $\mathrm{Sc}^{++}\left({ }^{2} \mathrm{D} ; 3 \mathrm{~d} \sigma\right)+\mathrm{O}^{-}\left({ }^{2} \mathrm{P} ; 2 \mathrm{p} \sigma\right)$ asymptote. The second triplet is of ${ }^{3} \Delta$ symmetry and is obtained from the ${ }^{3} \Sigma^{+}$by moving the unpaired σ electron on Sc into a δ orbital. The δ occupation forces dissociation to the higher energy asymptote seen in Figures 1 and 2. Both of these states have π, π bonds and no σ bond. Exciting an unpaired electron from the σ orbital on Sc^{+}to its $\boldsymbol{\delta}_{\text {- }}$ orbital puts more electron density on Sc^{+}in the π region and weakens the π, π bonds. This results in the ${ }^{3} \Delta$ bond length increasing to 3.50 au as compared to 3.45 au in the ${ }^{3} \Sigma^{+}$state. This σ to $\delta_{\text {_ }}$ excitation also reduces the repulsion between the unpaired electron on Sc^{+}and the $\mathrm{O} 2 \mathrm{p} \sigma$
electron. That the total energy of the ${ }^{3} \Delta$ state drops by $15 \mathrm{kcal} / \mathrm{mol}$ relative to the ${ }^{3} \Sigma^{+}$state suggests the reduced repulsion more than compensates for the slight reduction in the π, π bond strength.

The absolute energies ($E_{\text {min }}$), dissociation energies (D_{e}), bond lengths (r_{e}), and vibrational frequencies (ω_{e}) are collected in Table 3.

C. MCSCF RESULTS FOR ${ }^{+}$SCS

A MCSCF function that includes the two important configurations for ${ }^{+} \mathrm{ScS}$ is constructed as follows.

$$
\Psi \sim(\text { core })^{2}\left(10 \sigma^{2}-\lambda 11 \sigma^{2}\right)\left(4 \pi x^{2}-v 5 \pi x^{2}\right)\left(4 \pi y^{2}-v 5 \pi y^{2}\right)
$$

where the structural correlation is achieved with a GVB(3/6) function 22 followed by all spin couplings. This results in 37 configuration state functions (CSFs) of ${ }^{1} \Sigma^{+}$symmetry under the $C_{2 v}$ point group. The σ bond $\left(10 \sigma^{2}-\lambda 11 \sigma^{2}\right)$ separates to the $\mathrm{Sc}^{+} 4 \mathrm{~s}^{1}$ and S $3 p z 1$ orbitals while the two π bonds together separate to the $\mathbf{S c}^{+}$ $3 \mathrm{~d} \pi^{1}$ and $\mathrm{S} 3 \mathrm{p} \pi^{4}$ configurations for large internuclear distances

The energy predicted by this function is displayed in Figure 1 as a function of the $\mathrm{Sc}-\mathrm{S}$ internuclear distance. The D_{e} relative to the ground state products is calculated to be $82 \mathrm{kcal} / \mathrm{mol}$ with an equilibrium separation of 4.048 au .

The ${ }^{3} \Sigma^{+}$MCSCF is obtained by triplet coupling the ${ }^{1} \Sigma^{+}$sigma valence electrons. The Sc δ_{+}symmetry orbitals were eliminated to prevent collapse to the δ_{+}component of the lower energy ${ }^{3} \Delta$ state. This results in 25 CSFs. The equilibrium structure has two π, π bonds
19

with one of the triplet coupled sigma electrons localized in a Scandium 3d $\sigma+\lambda 4 \mathrm{~s}$ orbital and the other in a Sulfur 3po orbital.

The bond length increases relative to the ${ }^{1} \Sigma^{+}$state by 0.267 au to 4.315 au and the D_{e} relative to the ground state asymptote becomes $18.8 \mathrm{kcal} / \mathrm{mol}$. We expect the long range Sc^{+}to S interaction to be attractive (electrostatic) but as the two atoms approach along the ${ }^{3} \Sigma^{+}$curve we anticipate a repulsive interaction between the triplet coupled sigma electrons ($\mathrm{Sc}^{+} 4 \mathrm{~s}+\mathrm{S} 3 \mathrm{po}$) analogous to ${ }^{+} \mathrm{ScO}$. The ${ }^{3} \Delta$ function results from moving the $\mathrm{Sc}^{+} 3 \mathrm{~d} \sigma+\lambda 4 \mathrm{~s}$ electron to a
 π, π doubly bonded species with one electron localized in a $\mathrm{Sc}^{+} 3 \mathrm{~d} \delta$. orbital and the other in a $S 3$ po. The bond length increases slightly to 4.377 au while the D_{e} relative to the ground state asymptote becomes $25.6 \mathrm{kcal} / \mathrm{mol}$. The ${ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$energies are displayed as a function of internuclear distance in Figure 1. The D_{e}, r_{e} and vibrational frequencies (ω_{e}) are collected in Table 3.

D. $\mathbf{M C S C F}+1+2$ RESULTS FOR ${ }^{+} \mathbf{S c Q}$

The three states of ${ }^{+} \mathrm{ScO}$ described above were studied using multireference configuration interaction (CI) techniques. For each state we constructed a CI wavefunction containing all single and double substitutions from the MCSCF reference space. For example, the ${ }^{1} \Sigma^{+}$MCSCF space consisted of 37 CSFs. All single and double excitations from the space, consistent with the ${ }^{1} \Sigma^{+}$symmetry, result in 23,990 CSFs. Several experiments were performed to test the adequacy of this procedure. In the first we added an additional
active σ orbital to the MCSCF space and generated 81 CSFs. All singles and doubles from this reference space resulted in 40,996 CSFs. These additional configurations lowered the total energy of the ${ }^{1} \Sigma^{+}$state by 10 millihartrees (mH) at the MCSCF level and 1 mH at the MCSCF $+1+2$ level, but had no appreciable effect on r_{e} or D_{e}.

In the second we examined the necessity of including the O 2s orbital to the MCSCF (CI) active space. The O 2 s orbital was added to the MCSCF active space (generating 81 CSFs) followed by all valence single and double substitutions and resulted in 99,463 CSFs. We also constructed a CI function by allowing all valence single and double substitutions (including the O 2 s) from the 37 CSF MCSCF reference space. This resulted in 76,659 CSFs. The total CI energy dropped by 60 mH for each function while the computed D_{e} remained essentially the same at 145.9 and $144.7 \mathrm{kcal} / \mathrm{mol}$, respectively.

We conclude from these experiments that excitations from the 02 s orbital are not important in determining the relative energy and r_{e} of the low lying states of ${ }^{+} \mathrm{ScO}$. The size of the triplet states constructed as all single and double excitations from the MCSCF reference space was $29,481 \operatorname{CSFs}\left({ }^{3} \Delta\right)$ and $24,133 \operatorname{CSFs}\left({ }^{3} \Sigma^{+}\right)$. The ${ }^{+}$ScO potential curves at the MCSCF $+1+2$ level are presented in Figure 2 and the calculated r_{e}, D_{e} and $\omega_{e} s$ are collected in Table 3.

E. $\mathbf{M C S C F}+1+2$ RESULTS FOR + ScS

The three states of ${ }^{+}$ScS described above were also examined using multi-reference configuration interaction (MCSCF+1+2) techniques. The MCSCF $+1+2$ wavefunction for each state was

Figure 2. MCSCF $+1+2$ potential energies of the ${ }^{1} \boldsymbol{\Sigma}^{+}, 3_{\Delta} \Delta$ and ${ }^{3} \boldsymbol{\Sigma}^{+}$states of +ScS and +ScO relative to the ground state asymptote. Energy is in kcaVmol. The atomic structure at the asymptote is indicated by both atomic symmetry and valence configuration ($\mathrm{L}=\mathrm{O}$ and S)
constructed by allowing all single and double excitations from the MCSCF reference space.

In particular, the triplet states resulted in $34,952 \operatorname{CSFs}\left({ }^{3} \Delta\right)$ and 29,205 CSFs $\left({ }^{3} \Sigma^{+}\right)$and the ground state $\left({ }^{1} \Sigma^{+}\right)$was 28,337 CSFs. The predicted energies are displayed as a function of $\mathrm{Sc}-\mathrm{S}$ distance in Figure 2. The inclusion of dynamic correlation accounted for by the MCSCF $+1+2$ function drops the total energy by around 60 mH but has only a small effect on the computed dissociation energies and no effect on the state orderings. The $\mathrm{D}_{\mathrm{e}}, \mathrm{r}_{\mathrm{e}}$ and ω_{e} are collected in Table 3.

ELECTRONIC DISTRIBUTION

A. +Sc O

Included in Table 4 are the valence orbital populations ${ }^{2} 3$ predicted by the MCSCF function for various states of ${ }^{+} \mathrm{ScO}$. Note that in the ${ }^{1} \Sigma^{+}$state there is very little $\mathrm{Sc}^{+} 4 \mathrm{~s}$ character and the Sc^{+}ion has lost electrons to neutral 0 . The charge distribution may be rationalized by imagining the in-situ Sc^{+}ion in the $d \pi_{\mathrm{x}} \mathrm{d} \pi_{\mathrm{y}}$ configuration interacting with the O atom in the $2 p^{2} 2 \pi_{x} 2 \pi_{y}$ configuration. Oxygen first donates charge to the empty $3 \mathrm{~d} \sigma$ on Sc^{+} via the dative interaction of the doubly occupied $O 2 p$. As charge leaves O in the σ system it returns in the π system.

While the total charge on the Sc^{+}ion in the ${ }^{3} \Sigma^{+}$state is similar to that in the ${ }^{1} \Sigma^{+}$state $(+1.40 v s+1.28)$ the character of the electrons is very different. In particular, in the ${ }^{3} \Sigma^{+}$state there is a large 4 s component and a significantly reduced $3 \mathrm{~d} \pi$ occupation. We can rationalize this by noting that the ${ }^{3} \Sigma^{+}$may be formed from the ${ }^{1} \Sigma^{+}$by triplet coupling the σ bonding electrons. This localizes one electron in σ orbitals on Sc and the other in a $2 \mathrm{p} \sigma$ on O . As a result of this transfer the oxygen atom becomes more positive and attracts electrons into the $2 \mathrm{p} \pi$ orbitals, considerably reducing the $\mathrm{Sc}^{+} 3 \mathrm{~d} \pi$ occupation. The choice Sc^{+}has to make is the relative amount of 4 s and $3 \mathrm{~d} \sigma$ character to allot to its unpaired electron. If the in-situ character of Sc was Sc^{++}we would expect the unpaired electron to be primarily $3 \mathrm{~d} \sigma .{ }^{15}$ The observed $40 \% 4 \mathrm{~s}, 60 \%$ 3do reflects the intermediacy of the Sc^{+}charge (greater than +1 but less than +2). The electron distribution in the ${ }^{3} \Delta$ can be understood by noting that the ${ }^{3} \Delta$ is formed from the ${ }^{3} \boldsymbol{\Sigma}^{+}$by exciting the unpaired σ electron to a d orbital, precluding any 4 s character.

B. ${ }^{+S c S}$

The valence orbital populations ${ }^{23}$ as predicted by the MCSCF functions for the ${ }^{+}$ScS states are collected in Table 5. We find that the $\mathrm{Sc}^{+} 4 \mathrm{~s}$ contribution to the ${ }^{1} \Sigma^{+}$state is small (0.17) though nonnegligible and that Scandium has lost some electron density to S. The equilibrium structure is described as Sc^{+}in a ${ }^{3} \mathrm{~F}\left(3 \mathrm{~d} \pi_{\mathrm{x}}, 3 \mathrm{~d} \pi_{\mathrm{y}}\right)$ state insitu bonded to S with two π, π bonds and a (primarily) S 3 po to Sc^{+} 3do dative bond. This structure arises when S donates charge in the sigma system (sigma dative bond) followed by π density being transferred back from Sc^{+}to S . The distribution of bonding electrons in the ${ }^{+} \operatorname{ScS}{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states are similar with both markedly different from the ${ }^{1} \Sigma^{+}$state. We find that precluding the sigma dative bond formation results in significantly more π density (approx. 0.30 e per bond) being transferred from Sc^{+}to S . When the sigma electrons are triplet coupled one becomes localized on Scandium and the other on Sulfur. This results in relatively less sigma electron density on S in the 3po orbital, causing a greater propensity to attract density into its $3 \mathrm{p} \pi$ orbitals thus reducing the Sc $3 \mathrm{~d} \pi$ occupation.

The contribution of the $\mathrm{Sc}^{+} 4 \mathrm{~s}$ to the ${ }^{3} \Sigma^{+}$state is twice that for the ${ }^{1} \Sigma^{+}$state. This can be understood by realizing the ${ }^{3} \Sigma^{+}$state results from triplet coupling the sigma electrons in the ${ }^{1} \Sigma^{+}$with the localized electron on Sc^{+}becoming of $3 \mathrm{~d} \sigma+\lambda 4 \mathrm{~s}$ character.

This structure strikes a balance between the lower energy Scandium 4s3d configuration and the $3 \mathrm{~d}^{2}$ configuration which distorts the charge perpendicular to the sigma orbitals, effectively draining charge from the internuclear region.

The ${ }^{3} \Delta$ state arises from moving the Sc $3 \mathrm{~d} \sigma+\lambda 4 \mathrm{~s}$ electron to a Sc^{+}3d8_ orbital. The bonding structure doesn't change, indicating that both electrons are simply spectators. The MCSCF gross atomic charges for ${ }^{+} \mathrm{ScS}$ are collected in Table 6.

C. COMPARISON OF ${ }^{+}$ScO AND ${ }^{+} \mathrm{ScS}$

In comparison to ${ }^{+} \mathrm{ScO}$ we find that in general the ${ }^{+} \mathrm{ScS}$ gross charge transferred is less as expected from the longer bond distance. We find the sigma bond composition in ${ }^{+} \mathrm{ScO}{ }^{1} \Sigma^{+}$to be an O 2 po and Sc^{+}hybrid composed of the $4 \mathrm{~s}, 4 \mathrm{po}$ and $3 \mathrm{~d} \sigma$ orbitals ${ }^{1}$. Similarly, the ${ }^{+} \operatorname{ScS}{ }^{1} \Sigma^{+}$sigma bond is found to be a $S 3 \mathrm{p} \sigma$ plus $\mathrm{Sc}^{+} 4 \mathrm{~s}, 4 \mathrm{p} \sigma, 3 \mathrm{~d} \sigma$ hybrid with, however, the $4 \mathrm{p} \mathrm{\sigma}$ and 4 s contributions inverted relative to ${ }^{+} \mathrm{ScO}$. In ${ }^{+} \mathrm{ScS}{ }^{1} \Sigma^{+}$the $\mathrm{Sc}^{+} 4 \mathrm{~s}$ orbital is much more important than the 4 po . This larger 4 s contribution weakens the sigma bond because of the lesser overlap with the S 3po. This greater importance is caused by the larger internuclear separation and the consequently smaller in-situ gross charge on Sc in ${ }^{+} \mathrm{ScS}$. This causes a larger portion of the wavefunction to be composed of the 4s3d configuration relative to ${ }^{+} \mathrm{ScO}$. This smaller overlap would result in a smaller charge donation to Scandium in the sigma system and hence a smaller amount of back donation in the π system as suggested in Table 5.

29

D. DIFFERENCE DENSITY CONTOURS

The electron distribution in the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states is so different that it is easily seen at the total density level. The total density (ρ) is obtained from the MCSCF NOs with the following equation:

$$
\rho(R)=\langle\psi| \sum_{i} \delta\left(r_{i}-R\right)|\psi\rangle .
$$

where r_{i} denotes the electron coordinates and R is the field coordinate. The total density simplifies to

$$
\rho(R)=\sum_{i} n_{i} \phi_{i}^{2}(R)
$$

where ϕ is a spatial natural orbital (NO) and n_{i} is the occupation of the orbital. The difference density contours (DDCs) are obtained by subtracting one density from another.

Figure 3 shows the total electron density of ${ }^{+} \mathrm{ScO}$ contoured in a plane containing both nuclei for these two states. The Sc atom is to the left of O . Positive contour levels are indicated by solid lines and negative contours by dashes. For both states, there is an decrease of density in the σ space relative to the ground state. This is caused by the triplet coupling of the valence sigma electrons. Dashed lines in the π space reflect the concomitant increase in π density.

Figure 3. MCSCF Total density contours (TDCs) and difference density contours (DDCs) for the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states of ${ }^{5} \mathrm{SCO}$. The DDCs are molecular differences where the indicated triplet state is subtracted fom the ground ${ }^{1} \Sigma^{+}$state. The triplets are at the equilibrium geometry. The contour levels range from $0.0025 e$ to $1.28 e$ (TDCs) and -0.04 to +0.04 (DDCs). Each level differs by a factor of 2 . No zero contour is displayed and negative contours are indicated by a dashed line.

AB-INITIO CALCULATIONS OF ${ }^{+}$ScOH AND ${ }^{+}$ScSH

A. ${ }^{+} \mathrm{ScOH}$

The hydroxide can be formed by adding a H atom to ${ }^{+} \mathrm{ScO}$. Both the ${ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states have an unpaired $2 p$ electron on oxygen and singlet coupling the H 1s electron to the oxygen electron results in the linear ${ }^{2} \Delta$ and ${ }^{2} \Sigma^{+}$states of ${ }^{+} \mathrm{ScOH}$. These two states have the Lewis structure

in which the unpaired electron is localized on Sc^{+}in either a d $\delta\left({ }^{2} \Delta\right)$ or sigma orbital of mixed $d \sigma$ and 4 s character $\left({ }^{2} \Sigma^{+}\right)$. MCSCF functions which correlate the three bonds and allow all spin couplings consist of 76 CSFs in Cs symmetry for each molecular state. We optimized the ${ }^{+} \mathrm{Sc}-\mathrm{O}$ and OH bond lengths as well as the ${ }^{+} \mathrm{Sc}-\mathrm{O}-\mathrm{H}$ angle at the MCSCF and MCSCF $+1+2$ levels. Both electronic states are linear and the total energy, bond lengths and various dissociation energies are collected in Table 7. The electron populations in the valence orbitals and the charges on each atom are collected in Tables 4 and 6.

The ${ }^{2} \Delta$ state of ${ }^{+} \mathrm{ScOH}$ is calculated to be $17.2 \mathrm{kcal} / \mathrm{mol}$ lower than the ${ }^{2} \Sigma^{+}$state, which is very similar to the corresponding ${ }^{3} \Delta-{ }^{3} \Sigma^{+}$
separation of $19.9 \mathrm{kcal} / \mathrm{mol}$ for ${ }^{+} \mathrm{ScO}$ (both calculated at the MCSCF $+1+2$ level of theory). As we see from Table 4, the H atom has little effect on the charge distribution on Sc^{+}and in particular on the character of the unpaired electron.

Figure 4 shows the electron density in the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{ScOH}$ minus the density in the ${ }^{3} \Sigma^{+}$and ${ }^{1} \Sigma^{+}$states of ${ }^{+} \mathrm{ScO}$. The ${ }^{+} \mathrm{ScOH}\left(\Sigma^{+}\right)$ $-^{+} \operatorname{ScO}\left({ }^{1} \Sigma^{+}\right)$difference density illustrates the negligable effect bonding of H to O has on the character of the Sc^{+}non bonding electron. The difference density is very similar to that of ${ }^{+} \operatorname{ScO}\left({ }^{1} \Sigma^{+}\right)$${ }^{+} \mathrm{ScO}\left({ }^{3} \Sigma^{+}\right)$(Figure 3) and results from a similar mixing of do and 4 s orbitals. The ${ }^{+} \mathrm{ScOH}\left({ }^{2} \Sigma^{+}\right){ }^{+} \mathrm{ScO}\left({ }^{3} \Sigma^{+}\right)$density shows little difference in the Scandium structure, in-situ, and indicates that slightly more ${ }^{+} \mathrm{Sc}$ O sigma density is present in the hydroxide.

The relative energies of ${ }^{+} \mathrm{ScO}$ and ${ }^{+} \mathrm{ScOH}$ are shown in Figure 5. Experimental values (corrected for zero point energy) are shown in parenthesis. Our calculated bond energy for free OH is $97.6 \mathrm{kcal} / \mathrm{mol}$, approximately 10% lower than the experimental D_{e} (corrected to 0 K) of $106.8 \mathrm{kcal} / \mathrm{mol} .{ }^{24} \mathrm{We}$ have two options for the OH bond strength in ${ }^{+} \operatorname{ScOH}\left({ }^{2} \Delta\right)$. First, we may break the OH bond along the Δ potential curve

$$
{ }^{+} \mathrm{ScOH}\left({ }^{2} \Delta\right) \Rightarrow+{ }^{+} \mathrm{ScO}\left({ }^{3} \Delta\right)+\mathrm{H}\left({ }^{2} \mathrm{~S}\right)
$$

which requires $139.1 \mathrm{kcal} / \mathrm{mol}$, significantly larger than the free OH value. This enhanced OH bond strength obtains because the ${ }^{+} \mathrm{Sc}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds are strongly coupled in $\left.{ }^{+} \mathrm{ScOH}^{2} \Delta\right)$.

Figure 4. MCSCF botal density contours (TDCs) and difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+50 O H}$ and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of +SCO The DDCs are molecular differences where the +SOO states are subtracted from the ${ }^{+} \mathrm{SOOH}$ density. The + SCO states are at the equilibrium +SCOH (SOO) geometry. Contour levels range from 0.00250 to 1.289 (TDCs) and -0.04e to 0.04 (DDCs). Each level differs by a factor of 2 . No zero contours are displayed and negative contours are indicated by dashes.

When H bonds to the unpaired $2 \mathrm{p} \sigma$ electron in ${ }^{+} \operatorname{ScO}\left({ }^{3} \Delta\right)$ the O 2 s and 2 po hybridize, simultaneously strengthening the OH bond and forming a dative bond in the empty σ space of Sc^{+}using the companion to the $\mathrm{O}-\mathrm{H}$ bond hybrid. This symbiosis also manifests itself in a stronger than expected $\mathrm{Sc}-\mathrm{O}$ bond strength in ${ }^{+} \mathrm{ScOH}$. From Figure 5 we see that the ${ }^{+} \mathrm{Sc}-\mathrm{O}$ bond strength in ${ }^{+} \mathrm{ScOH}$ is 108 $\mathrm{kcal} / \mathrm{mol}$, intermediate between the strength of a ${ }^{+} \operatorname{ScO}\left({ }^{2} \Delta\right)$ double bond ($66.4 \mathrm{kcal} / \mathrm{mol}$) and the ${ }^{+} \operatorname{ScO}\left({ }^{1} \Sigma^{+}\right)$triple bond ($146.0 \mathrm{kcal} / \mathrm{mol}$). Our computed ${ }^{+} \mathrm{Sc}-\mathrm{OH}$ bond strength ($108 \mathrm{kcal} / \mathrm{mol}$) is significantly higher than that reported ${ }^{5}$ by Magnera et al. ($87.8 \mathrm{kcal} / \mathrm{mol}$). These experiments determine the ${ }^{+} \mathrm{Sc}-\mathrm{OH}$ energy from the parent molecule, $\left(\mathrm{H}_{2} \mathrm{OScOH}\right)^{+}$. If the structure of this species where of the form $\mathrm{H}_{2} \mathrm{O} \cdots+\mathrm{Sc}-\mathrm{OH}$, then the intact ${ }^{+} \mathrm{Sc}-\mathrm{OH}$ would prefer to be in its ground ${ }^{2} \Delta$ state in-situ. The ${ }^{2} \Delta$ state positions the Sc non-bonding electron in a 3d8. orbital perpendicular to the internuclear axis and would minimize the repulsions to an electrostatically bound $\mathrm{H}_{2} \mathrm{O}$ molecule. The energy of the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{ScOH}$ is $17 \mathrm{kcal} / \mathrm{mol}$ (MCSCF $+1+2$, Table 7) higher than the ${ }^{2} \Delta$. While an $\mathrm{H}_{2} \mathrm{O}$ molecule should still be able to electrostatically bind to the Sc atom, their should be more repulsion between $\mathrm{H}_{2} \mathrm{O}$ and the now in-axis $3 \mathrm{~d} \sigma$ electron. This would likely increase the ${ }^{2} \Sigma^{+} \leftarrow{ }^{2} \Delta$ separation and could possibly account for the $20 \mathrm{kcal} / \mathrm{mol}$ discrepancy.

The second option for the OH bond breakage is the thermodynamically lowest path

$$
{ }^{+} \mathrm{ScOH}\left({ }^{2} \Delta\right) \Rightarrow{ }^{+} \mathrm{ScO}\left({ }^{1} \Sigma^{+}\right)+\mathrm{H}\left({ }^{2} \mathrm{~S}\right)
$$

Figure 5. MCSC $f+1+2$ relative energies ($\mathrm{kcal} / \mathrm{mol}$) (nunbers in parenthesis are experimental values) ${ }^{\mathbf{a}}$ Ref (3), ${ }^{\mathrm{b}}$ Ref (24) Value given as D_{e} corrected to $\mathrm{OK},{ }^{\mathrm{c}}$ Ref (5).
which requires $59.6 \mathrm{kcal} / \mathrm{mol}$. This is much lower than the free OH bond strength, reflecting the differentially stronger ${ }^{+} \mathrm{Sc}-\mathrm{O}$ bond in ${ }^{+} \mathrm{ScO}\left({ }^{1} \Sigma^{+}\right)$compared to ${ }^{+} \mathrm{ScOH}\left({ }^{2} \Delta\right)$.
B. ${ }^{+}$ScSH
${ }^{+}$ScSH states of ${ }^{2} \Delta$ and ${ }^{2} \Sigma^{+}$symmetry can be formed when a H atom bonds to the $S 3 \mathrm{p}$ electron in ${ }^{+} \mathrm{ScS}{ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$, respectively. This gives rise to the Lewis structures

and

The ${ }^{2} \Delta$ MCSCF wavefunction was constructed to correlate the 3 bonds in a GVB way, followed by all spin couplings, and results in 76 CSFs. The ${ }^{2} \Sigma^{+}$MCSCF was constructed to correlate the two π bonds in a GVB way and three valence sigma orbitals. All spin couplings on this function result in 144 CSFs. All calculations were performed under the $\mathrm{C}_{2 v}$ point group. The MCSCF+1+2 wavefunctions were
constructed by allowing all valence single and double substitutions from the MCSCF functions and results in 138,529 CSFs for the 2_{Δ} and $149,312 \mathrm{CSFs}$ for the ${ }^{2} \Sigma^{+}$. The $\mathrm{Sc}^{+} 3 \mathrm{~d} \delta_{+}$orbitals were eliminated from all ${ }^{+} \mathrm{ScSH}{ }^{2} \Sigma^{+}$calculations to prevent collapsing to the lower energy ${ }^{2} \Delta\left(\delta_{+}\right)$state. The total energy, optimized geometries and bond dissociation energies are collected in Table 7.

The ${ }^{2} \Delta$ state is calculated to be $14.2 \mathrm{kcal} / \mathrm{mol}$ (MCSCF $+1+2$) lower in energy than the ${ }^{2} \Sigma^{+}$. This is similar to the $(\mathrm{MCSCF}+1+2){ }^{+} \mathrm{ScS}$ ${ }^{3} \Delta{ }^{3} \Sigma^{+}$difference of $12.6 \mathrm{kcal} / \mathrm{mol}$ and slightly smaller than the corresponding ${ }^{+} \mathrm{ScOH}$ difference of 17.2. ${ }^{1}$

The MCSCF electron distributions for the ${ }^{+}$ScSH ${ }^{2} \Sigma^{+}$and ${ }^{2} \Delta$ states are collected in Tables 5 and 6 . We find the bonding of H to ${ }^{+}$ScS has little effect on the ${ }^{+} \mathrm{Sc}-\mathrm{S} \pi$ bonding structure. Analysis of the natural orbitals (NOs) and populations does, however, reveal significant changes in the sigma structure. In both states the S 3s and 3 po orbitals are hybridized, one hybrid bonding to H and the other interacting with the $\mathrm{Sc}^{+} 4 \mathrm{~s}+3 \mathrm{~d} \sigma$ orbitals.

The strength of the Sc^{+}to SH sigma dative interaction can be estimated by examining the bond energies from Tables 2,3 and 7. Our calculated SH (${ }^{2} \Pi$) bond strength (D_{0}) of $77.0 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{D}_{\mathrm{e}}=78.0\right.$ $\mathrm{kcal} / \mathrm{mol}$) is approximately 6% lower than the experimental value of $81.4 \mathrm{kcal} / \mathrm{mol} .{ }^{24}$
If the ${ }^{+} \operatorname{ScSH}\left({ }^{2} \Delta\right) S-H$ bond is broken along the Δ potential curve

$$
{ }^{+} \operatorname{ScSH}\left({ }^{2} \Delta\right) \Rightarrow+\operatorname{ScS}\left({ }^{3} \Delta\right)+\mathbf{H}\left({ }^{2} S\right)
$$

we obtain an MCSCF $+1+2 \Delta \mathrm{E}$ of $94.4 \mathrm{kcal} / \mathrm{mol}, 16.4 \mathrm{kcal} / \mathrm{mol}$ greater than the free $(\mathrm{MCSCF}+1+2) \mathrm{SH}$ bond strength. Dissociating ${ }^{+} \mathrm{ScSH}$ along the path

$$
\left.{ }^{+} \mathrm{ScSH}^{2}{ }^{2} \Delta\right) \Rightarrow \mathrm{Sc}^{+}\left({ }^{3} \mathrm{D}\right)+\mathrm{SH}\left({ }^{2} \Pi\right)
$$

requires $56.6 \mathrm{kcal} / \mathrm{mol}$ and is, as required, $16.5 \mathrm{kcal} / \mathrm{mol}$ larger than the ${ }^{+} \operatorname{ScS}\left({ }^{3} \Delta\right)$ bond strength of $40.1 \mathrm{kcal} / \mathrm{mol}$. These enhanced bond strengths are the result of bond formation to H . As the S to H bond is formed, using the $S 3 \mathrm{~s}$ and 3 po orbitals, the companion $3 \mathrm{~s} \pm 3 \mathrm{p} \mathrm{\sigma}$ hybrid orbital interacts with Scandium causing a simultaneous strengthening of the Sc^{+}to SH bond. This is half that found for ${ }^{+} \mathrm{ScOH}$ where a stabilization energy of $43 \mathrm{kcal} / \mathrm{mol}$ was observed (MCSCF+1+2). ${ }^{1}$
$\left.{ }^{+} \mathrm{ScSH}^{2} \Delta\right)$ can also dissociate along the adiabatic pathway

$$
{ }^{+} \operatorname{ScSH}\left({ }^{2} \Delta\right) \Rightarrow{ }^{+} \mathrm{ScS}\left({ }^{1} \Sigma^{+}\right)+\mathrm{H}\left({ }^{2} \mathbf{S}\right)
$$

and requires $37.6 \mathrm{kcal} / \mathrm{mol}$. This is significantly less than the free $\mathbf{S H}$ dissociation energy and reflects the differentially stronger bond in ${ }^{+} \mathrm{ScS}\left({ }^{1} \Sigma^{+}\right)$relative to ${ }^{+} \operatorname{ScSH}\left({ }^{2} \Delta\right)$.

The gross atomic charges are collected in Table 6 and indicate that bonding H to ${ }^{+} \mathrm{ScS}$ does not change the charge on Sc but increases the anionic character on the Sulfur. The increase in S charge relative to the ${ }^{+} \mathrm{ScS}$ molecule is approximately 0.2 electrons.

C. COMPARISON OF $^{+}{ }^{\mathrm{ScNH}},{ }^{+} \mathrm{ScOH}$ AND ${ }^{+} \mathrm{ScSH}$

The species ${ }^{+} \mathrm{ScNH},{ }^{6+} \mathrm{ScOH}$ and ${ }^{+} \mathrm{ScSH}$ can all be described with the Lewis structure

$$
{ }^{+} \mathbf{S c} \equiv \mathbf{L}-\mathbf{H}
$$

where if $L=O$ or S both the σ and one π bond are dative bonds while for N only the σ bond is formally dative. The bonding of H to L causes the ligand's valence s and $p \sigma$ orbitals to mix as suggested below.

For $\mathrm{L}=\mathrm{N}$ and O this results in a sigma dative bond that stabilizes the Sc-L interaction by $43 \mathrm{kcal} / \mathrm{mol}$. Since the S atom is larger than either O or N the bond length is longer than in either ${ }^{+} \mathrm{ScO}$ or ${ }^{+} \mathrm{ScN}$. Moreover, the larger size also decreases the amount of stabilization afforded by formation of the sigma dative bond to $16.6 \mathrm{kcal} / \mathrm{mol}$. The increased Sc to S bond length also affects the detailed structure of the spectator electron density. In ${ }^{+} \mathrm{ScOH}$ the Scandium spectator electron is composed of (in order of decreasing importance) the Sc^{+}
$3 \mathrm{~d} \sigma, 4 \mathrm{~s}, 4 \mathrm{p}_{\mathrm{z}}$ with the 4 s contributing up to 44% of the charge density ($\mathbf{~}^{\Sigma^{+}}$state). In ${ }^{+} \mathrm{ScSH}$, the mixing also goes as $\mathrm{Sc}^{+} 3 \mathrm{~d} \sigma, 4 \mathrm{~s}, 4 \mathrm{p}_{\mathrm{z}}$, but with the 4 s only contributing around 23% of the charge density $\left(2 \Sigma^{+}\right.$ state). This is indicative of the amount of Scandium 4s available for the sigma dative bond. In particular, the 4 s contribution to the dative bond is greater in ${ }^{+} \mathrm{ScSH}$ than in ${ }^{+} \mathrm{ScOH}$. The structure of the dative bond and the similarity in the ${ }^{+} \mathrm{ScOH}$ and ${ }^{+} \mathrm{ScSH}$ structures is illustrated in the MCSCF difference density contours displayed in Figures 4 and 6. In both Figures the ${ }^{2} \Sigma^{+}+\mathbf{S c - S H}\left({ }^{+} \mathrm{Sc}-\mathrm{OH}\right)$ total density at a geometry near equilibrium has the fragment ${ }^{+} \mathbf{S c S}\left({ }^{+} \mathbf{S c O}\right)$ triplet state density subtracted from it. The ${ }^{+} \mathrm{Sc}-\mathrm{L}$ molecule is maintained at the ${ }^{+}$ScLH geometry. This clearly indicates which orbitals are used in constructing both the sigma dative bond and the π bonds. Specifically, the ${ }^{+} \operatorname{ScSH}\left({ }^{2} \Delta\right)-{ }^{+} \operatorname{ScS}\left({ }^{3} \Delta\right)$ difference density (Figure 6) shows a much increased density in the Sc-S sigma system relative to ${ }^{+} \operatorname{ScS}\left({ }^{3} \Delta\right)$. The MCSCF $+1+2$ bond dissociation energies for several states of ${ }^{+} \mathrm{ScSH},{ }^{+} \mathrm{ScOH}$ and ${ }^{+} \mathrm{ScNH}$ have been collected in Table 8.

REACTION PRODUCTS

A. $\underline{H}^{+}+\mathrm{ScO}$

If we bond to the unpaired electron on $S c$ in the ${ }^{3} \Delta$ or ${ }^{3} \Sigma^{+}$ states of ${ }^{+} \mathrm{ScO}$ we form $\mathrm{H}^{-}{ }^{+} \mathrm{ScO}\left({ }^{2} \Sigma^{+}\right)$. The $\mathrm{Sc}-\mathrm{H}$ bond strength, relative to the ${ }^{3} \Delta$ state of ${ }^{+} \mathrm{ScO}$ is calculated to be $47.2 \mathrm{kcal} / \mathrm{mol}$ (MCSCF+1+2 level), a typical ${ }^{25} \mathrm{Sc}-\mathrm{H}$ bond strength.

43
${ }^{+} \mathbf{S c S H}\left({ }^{\mathbf{2}} \boldsymbol{\Sigma}^{+}\right)$Total Density at equilibrium

Figure 6. MCSCF wotal density contours (TDCs) and difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+}$SCSH and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{SCS}$. The DDCs are molecular differencess where the ${ }^{+} \mathrm{S}$ S states are subracted trom the ${ }^{+} \mathrm{SCSH}$ density. The ${ }^{+}$SCS states are at the equilibrium ${ }^{+} \mathrm{SCSH}$ (SC-S) geometry. Contour levels range from $0.0025 e$ to $1.28 e$ (TDCs) and -0.04 e to 0.04 e (DDCs). Each level differs by a factor of 2 . No zero contours are displayed and negative contours are indicated by dashes.

44
$\stackrel{2}{2}$

B. ${ }^{+} \mathrm{ScOH}_{2}$

There are three isomers with this empirical formula: the two electrostatic complexes, $\mathrm{Sc}^{+\ldots} \mathrm{OH}_{2}$ (triplet)
and

$$
\mathrm{H}_{2} \ldots+\mathrm{ScO} \text { (singlet) }
$$

and the insertion product

$$
\mathrm{H}^{-}+\mathrm{Sc}-\mathrm{OH} \text { (singlet). }
$$

The electrostatic complex involving intact $\mathrm{H}_{2} \mathrm{O}$ was studied by Rosi and Bauschlicher. ${ }^{7}$ The $\mathrm{Sc}^{+} \ldots \mathrm{OH}_{2}$ complex is bound, relative to the ground state products, by $36.2 \mathrm{kcal} / \mathrm{mol}$ with a Sc^{+}to OH_{2} distance of 4.296 au . The $\mathrm{H}_{2} \mathrm{O}$ was constrained to the SCF geometry.

We will focus on the two remaining isomers. Consider first the electrostatic complex involving intact H_{2}. It is easily seen that this will be an exoergic product of the reaction of Sc^{+}with $\mathrm{H}_{2} \mathrm{O}$. It requires $219 \mathrm{kcal} / \mathrm{mol}(\Delta \mathrm{E})$ to dissociate $\mathrm{H}_{2} \mathrm{O}$ into its atoms ${ }^{24}$ and we regain $103 \mathrm{kcal} / \mathrm{mol}(\Delta \mathrm{E})$ when H_{2} is formed ${ }^{24}$ and $159 \pm 7 \mathrm{kcal} / \mathrm{mol}$ when ${ }^{+} \operatorname{ScO}\left({ }^{1} \Sigma^{+}\right)$is formed ${ }^{3} . \Delta E$ for the reaction

$$
\mathrm{Sc}^{+}\left({ }^{3} \mathrm{D}\right)+\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~A}_{1}\right) \Rightarrow{ }^{+} \mathrm{ScO}\left({ }^{1} \Sigma^{+}\right)+\mathrm{H}_{2}\left({ }^{1} \Sigma^{+}{ }_{\mathrm{g}}\right)
$$

is at least $36 \mathrm{kcal} / \mathrm{mol}$ exothermic. Detailed calculation at the MCSCF and GVB $+1+2$ levels result in the energies collected in Table 9. Our explicitly calculated $\Delta \mathrm{E}$ for the above reaction is $32.6 \mathrm{kcal} / \mathrm{mol}$ at the GVB+1+2 level.
Table 9: $\mathrm{H}_{2}{ }^{+} \mathrm{ScO}$ and $\mathrm{H}^{+}{ }^{+} \mathrm{ScOH}$ Equilibrium Energies (au), Bond Lengths (au) and Angles (deg).

The electrostatic complex is bound by an additional $2.5 \mathrm{kcal} / \mathrm{mol}$, making our calculated $\Delta \mathrm{E}=-35.1 \mathrm{kcal} / \mathrm{mol}$ for the reaction

$$
\mathrm{Sc}^{+}\left({ }^{3} \mathrm{D}\right)+\mathrm{H}_{2} \mathrm{O}\left({ }^{1} \mathrm{~A}_{1}\right) \Rightarrow \mathrm{H}_{2} \ldots+\mathrm{ScO}\left({ }^{1} \mathrm{~A}_{1}\right)
$$

The insertion product may be formed from either the ${ }^{2} \Delta$ or ${ }^{2} \Sigma^{+}$ states of ${ }^{+} \mathrm{ScOH}$ by coupling the second H atom to the unpaired electron on Sc^{+}. The resulting molecule has 4 formal electron pairs (a ${ }^{+} \mathrm{Sc}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and two ${ }^{+} \mathrm{Sc}-\mathrm{O}$ bonding pairs), and an MCSCF function which correlates each (in the left-right GVB sense) and includes all spin couplings consists of 150 CSFs. The bond lengths and bond angles for the planar structure were optimized and the results are shown in Table 9. Also listed is the optimal geometry and associated energy obtained from a CI wave function which includes all single and double excitation relative to an 8 configuration (4 pair) GVB function (which generates 112,088 CSFs of ${ }^{1}$ A symmetry). The single particle basis for this CI were the natural orbitals from the MCSCF function. This calculation places the insertion product $\sim 5 \mathrm{kcal} / \mathrm{mol}$ lower than the electrostatic complex.

The errors in these calculations increase in the order

$$
\mathrm{Sc}^{+} \ldots \mathrm{OH}_{2}<\mathrm{H}_{2} \ldots+\mathrm{ScO}<\mathrm{H}^{-}+\mathrm{Sc}-\mathrm{OH}
$$

and improved calculations should favor the insertion product, suggesting that it is the global ground state. The ${ }^{+} \mathrm{Sc}-\mathrm{H}$ bond length is 3.50 au and the bond energy is calculated to be $50 \mathrm{kcal} / \mathrm{mol}$

$$
\mathrm{H}^{+}+\mathrm{Sc}-\mathrm{OH} \Rightarrow \mathrm{H}\left({ }^{2} \mathrm{~S}\right)+{ }^{+} \mathrm{Sc}-\mathrm{OH}\left({ }^{2} \Delta\right) \Delta \mathrm{E}=50.5 \mathrm{kcal} / \mathrm{mol}
$$

which is remarkably similar to the 3.52 au and $50.7 \mathrm{kcal} / \mathrm{mol}$ calculated by Alvarado-Swaisgood and Harrison ${ }^{25}$ for $\left.{ }^{+} \operatorname{ScH}^{2} \Delta\right)$.

The computed $\Delta \mathrm{E}$ for removing the $\mathrm{O}-\mathrm{H}$ hydrogen

$$
\mathrm{H}^{-}+\mathrm{Sc}-\mathrm{OH} \Rightarrow \mathrm{H}^{+}+\mathrm{Sc}-\mathrm{O}+\mathrm{H} \quad \Delta \mathrm{E}=141 \mathrm{kcal} / \mathrm{mol}
$$

is $141 \mathrm{kcal} / \mathrm{mol}$, virtually the same as that computed for

$$
{ }^{+} \mathrm{ScOH}\left({ }^{2} \Delta\right) \Rightarrow{ }^{+} \mathrm{ScO}\left({ }^{3} \Delta\right)+\mathrm{H}\left({ }^{2} \mathrm{~S}\right) \Delta \mathrm{E}=139 \mathrm{kcal} / \mathrm{mol}
$$

C. COMPARISON WITH THE Sc ${ }^{+}+\mathrm{NH}_{3}$ SYSTEM

It is interesting to compare these results with those reported recently for the $\mathrm{Sc}^{+}+\mathrm{NH}_{3}$ system. ${ }^{6}$ The ground state of ${ }^{+} \mathrm{ScN}$ is of ${ }^{2} \Sigma^{+}$symmetry and has a calculated bond energy (D_{e}) of 63.1 $\mathrm{kcal} / \mathrm{mol}$. The molecule has two π bonds and no σ bond. Its Lewis structure is

When the N atom bonds to an H atom, its 2 s and $2 \mathrm{p} \mathrm{\sigma}$ orbitals hybridize - one component reaching out to bond the H atom while
the companion component forms a dative bond in the empty valence σ space of Sc^{+}.

The resulting ${ }^{+} \mathrm{Sc}-\mathrm{NH}$ bond is calculated to be $106 \mathrm{kcal} / \mathrm{mol}$, some 43 $\mathrm{kcal} / \mathrm{mol}$ stronger than the $\mathrm{Sc}-\mathrm{N}$ bond in ${ }^{+} \mathrm{ScN}$.

The ground state of ${ }^{+} \operatorname{ScO}\left({ }^{1} \Sigma^{+}\right)$has a triple bond

with no unpaired electron on 0 . However, the ${ }^{3} \Delta$ state is a π, π state, similar to ${ }^{+} \mathrm{ScN}$, except that it has been formed formally from a dative interaction in the π system

where we show both π bonds as being equivalent, of course. When the O atom is approached by an H , it will also hybridize its 2 s and 2po orbitals forming a covalent bond to H and a second dative bond (in the σ system) to Sc^{+}.

${ }_{5}{ }^{+}+\mathrm{Sc} \equiv \mathrm{OH}$ or $+\mathrm{Sc} \equiv \mathrm{OH}$

The ${ }^{+} \mathrm{Sc}-\mathrm{O}$ bond strength in this molecule is calculated to be 109 $\mathrm{kcal} / \mathrm{mol}, 43 \mathrm{kcal} / \mathrm{mol}$ higher than in ${ }^{+} \operatorname{ScO}\left({ }^{3} \Delta\right)$ and essentially the same as the $\mathrm{Sc}-\mathrm{N}$ bond strength in ${ }^{+} \mathrm{ScNH}$. It is interesting that the σ dative interaction has stabilized both the ${ }^{+} \mathrm{Sc}-\mathrm{O}$ and ${ }^{+} \mathrm{Sc}-\mathrm{N}$ bonds to the same extent, $43 \mathrm{kcal} / \mathrm{mol}$.

This suggests that the ${ }^{+}$M-L bond energies in the pairs

$\delta_{+}{ }^{\bullet}$
and

will be similar. Indeed, Armentrout et al. ${ }^{26}$ have determined D_{0} for the ${ }^{+}$V-L pairs and finds $100 \mathrm{kcal} / \mathrm{mol}$ for ${ }^{+} \mathrm{V}-\mathrm{OH}$ and $102 \mathrm{kcal} / \mathrm{mol}$ for ${ }^{+}$V-NH. Since these two bond strengths are similar, the unpaired σ electron in +VOH must not interfere with the σ dative bond. It would be very interesting to know the detailed atomic orbital composition of this electron. Finally, The ${ }^{+}$Ti-L bond strengths were previously found to be essentially the same with ${ }^{+} \mathrm{TiOH}_{\mathrm{o}}=113$ $\mathrm{kcal} / \mathrm{mol}$ and ${ }^{+} \mathrm{TiNH} \mathrm{D}_{\mathrm{o}}=111 \mathrm{kcal} / \mathrm{mol} .5,27$
D. $\mathrm{Sc}^{+}-\mathrm{SH}_{2}$

The MCSCF wavefunctions for the ${ }^{3} \mathrm{~A}_{1}$ and ${ }^{3} \mathrm{~A}_{2}$ states were constructed under the C_{s} point group by pairing, in a GVB way, the two S-H bonds and in-out correlating the out of plane $S 3 \mathrm{p} \pi^{2}$ orbital. The Scandium 4s and 3d orbitals were maintained singly occupied. All spin couplings from this GVB function result in a 126 CSF MCSCF. The MCSCF $+1+2$ functions were constructed from all valence single and double substitutions from the 8 -configuration GVB function (3 GVB pairs and 2 singly occupied orbitals), using the optimized MCSCF NOs as the orbital basis. This results in 216,530 CSFs for the ${ }^{3} \mathrm{~A}_{2}$ state and 221,182 CSFs for the ${ }^{3} \mathrm{~A}_{1}$. A MCSCF $+1+2$ function constructed from the full MCSCF reference space was not possible. It was found, however, for the $\mathrm{Sc}^{+}+\mathrm{OH}_{2}$ studies ${ }^{1}$ that the GVB correlation plus all valence single and double substitutions using the MCSCF NO basis accounts for almost all of the energy. In particular, the MCSCF $+1+2$ functions for ${ }^{+} \mathrm{ScOH}$ using both the MCSCF and GVB basis results in a total energy difference of only $2 \mathrm{kcal} / \mathrm{mol} .{ }^{28}$ In all
calculations the SH_{2} geometry was constrained to that optimized with a 37 CSF MCSCF function and a planar geometry was selected. This technique was previously shown to be adequate for the electrostatic ${ }^{+} \mathrm{Sc}-\mathrm{OH}_{2}$ systems. ${ }^{7}$

The ${ }^{3} A_{2}$ and ${ }^{3} A_{1}$ states differ only in location of the 3d electron on Scandium. In the ${ }^{3} \mathrm{~A}_{2}$, the electron occupies a $3 \mathrm{~d} \delta$. orbital while in the ${ }^{3} \mathrm{~A}_{1}$ it occupies a $3 \mathrm{~d} \delta_{+}$orbital. In both states the companion electron is in a 4 s orbital. This subtle difference results in nearly degenerate states with the ${ }^{3} \mathrm{~A}_{2}$ only $1.8 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the ${ }^{3} \mathrm{~A}_{1}$. The near degeneracy arises from the large ${ }^{+} \mathrm{Sc}$ to SH_{2} distance in the molecule.

We find the ${ }^{3} \mathrm{~A}_{2}$ MCSCF $+1+2$ interaction energy to be 11.39 $\mathrm{kcal} / \mathrm{mol}$ and the ${ }^{3} \mathrm{~A}_{1}$ to be $11.38 \mathrm{kcal} / \mathrm{mol}$. The optimized ${ }^{3} \mathrm{~A}_{2}{ }^{+} \mathrm{Sc}$ SH_{2} distance becomes 5.454 au while the ${ }^{3} \mathrm{~A}_{1}$ distance is the same at 5.456 au . The optimized geometries and total energies are collected in Table 10 as are the corresponding ${ }^{+} \mathrm{ScOH}_{2}$ values.

The interaction energy of the electrostatic species $\mathrm{Sc}^{+} \mathrm{SH}_{2}$ arises primarily from the charge-dipole term in the energy. The experimental dipole moment of SH_{2} is $0.97 \mathrm{D}^{24}$ while that of $\mathrm{H}_{2} \mathrm{O}$ is 1.85 D .24 The simple charge-dipole energy expression is $\mathrm{E}=\mathrm{q} \mu / \mathrm{R}^{2}$ with μ the dipole moment of $\mathrm{SH}_{2}, \mathrm{q}=1$ and R is the distance from Sc^{+} to the center of charge on SH_{2}. Using this expression the interaction energy of $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ should go as

$$
\mathrm{E}\left(\mathrm{Sc}^{+} \mathrm{SH}_{2}\right) \cong \mathrm{E}\left(\mathrm{Sc}^{+} \mathrm{OH}_{2}\right) *\left(\mu \mathrm{SH}_{2} / \mu \mathrm{OH}_{2}\right) *\left(\mathrm{RSc}-\mathrm{OH}_{2} / \mathrm{RSc}^{-} \mathrm{SH}_{2}\right)^{2} .
$$

Table 10: ${ }^{\mathbf{3}} \mathrm{A}_{\mathbf{2}}$ and ${ }^{\mathbf{3}} \mathrm{A}_{1}$ states of $\mathrm{Sc}^{+} \mathrm{SH}_{2}$. Optimized Geometries, Total Energies.

For all calculations the SH_{2} geometry was constrained to $\beta(\mathrm{deg})=90$ and $\mathrm{r}_{\mathrm{S}-\mathrm{H}}(\mathrm{au})=2.60$.

Energetics (CI)

$\mathbf{3}^{\prime} \mathbf{A}_{2}$ state
$\mathrm{Sc}^{+} \mathrm{SH}_{2} \Rightarrow \mathrm{Sc}^{+}+\mathrm{SH}_{2} . \Delta \mathrm{E}=11.4 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{Sc}^{+} \mathrm{SH}_{2} \Rightarrow \mathrm{Sc}^{+}+\mathrm{S}+2 \mathrm{H} . \Delta \mathrm{E}=176.9 \mathrm{kcal} / \mathrm{mol}$
$\mathbf{3}^{\prime} 1$ state
$\mathrm{Sc}^{+} \mathrm{SH}_{2} \Rightarrow \mathrm{Sc}^{+}+\mathrm{SH}_{2} . \Delta \mathrm{E}=11.4 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{Sc}^{+} \mathrm{SH}_{2} \Rightarrow \mathrm{Sc}^{+}+\mathrm{S}+2 \mathrm{H} . \Delta \mathrm{E}=176.9 \mathrm{kcal} / \mathrm{mol}$

This simple expression suggests that $\mathrm{E}\left(\mathrm{Sc}^{+} \mathrm{SH}_{2}\right) \cong \mathrm{E}\left(\mathrm{Sc}^{+} \mathrm{OH}_{2}\right) * 0.33$. Using the $\mathrm{E}\left(\mathrm{Sc}^{+} \mathrm{OH}_{2}\right)$ value ${ }^{3}$ of $36.9 \mathrm{kcal} / \mathrm{mol}$ yields $\mathrm{E}\left(\mathrm{Sc}^{+} \mathrm{SH}_{2}\right)=12$ $\mathrm{kcal} / \mathrm{mol}$, only 5% larger than our determined MCSCF $+1+2$ value of $11.39 \mathrm{kcal} / \mathrm{mol}$.

E. $\underline{\mathrm{H}}_{2}-\mathrm{ScS}^{+}$

This molecule is characterized as intact \mathbf{H}_{2} electrostatically bound to ground state ${ }^{+} \operatorname{ScS}\left({ }^{1} \Sigma^{+}\right)$. A MCSCF function that is composed of 4 GVB pairs describing the 4 bonds in the molecule plus all spin couplings results in 74 CSFs under $C_{2 v}$ symmetry. The MCSCF $+1+2$ function was constructed as all valence single and double substitutions from a 16 CSF GVB function using the optimized MCSCF NOs as the basis. This results in 107,832 CSFs. The $\mathrm{H}-\mathrm{H}$ and $\mathrm{H}_{2}{ }^{-}{ }^{+} \mathrm{ScS}$ distances were optimized with the $\mathrm{Sc}-\mathrm{S}$ distance constrained to 4.00 au which is close to the minimum energy (between 3.9 and 4.1 au). The optimized geometries and total energies are collected in Table 8. The MCSCF $+1+2$ interaction energy is determined to be $3.5 \mathrm{kcal} / \mathrm{mol}$ while the reaction product, $\mathrm{H}_{2}-\mathrm{ScS}^{+}$, is exoergic, relative to $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$, by $34.5 \mathrm{kcal} / \mathrm{mol}$.

The formation of $\mathrm{H}_{2} \ldots+\mathrm{ScS}$ from $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ requires dissociation of SH_{2} ($165 \mathrm{kcal} / \mathrm{mol} \mathrm{MCSCF}+1+2$, Table 2), followed by formation of H_{2} and ${ }^{+} \mathrm{ScS}\left({ }^{1} \Sigma^{+}\right)$with a small contribution from the electrostatic interaction. Formation of ${ }^{+} \operatorname{ScS}\left({ }^{1} \Sigma^{+}\right)$recovers $97 \mathrm{kcal} / \mathrm{mol}$ (MCSCF+1+2, Table 3) while the $H_{2} \mathrm{D}_{\mathrm{e}}$ was determined to be 105 $\mathrm{kcal} / \mathrm{mol}$ (MCSCF+1+2, Table 2). This suggests that the reaction energy should be around $37 \mathrm{kcal} / \mathrm{mol}$. Detailed MCSCF+1+2
calculations result in an energy of $34.5 \mathrm{kcal} / \mathrm{mol}$ with the electrostatic interaction accounting for $3.5 \mathrm{kcal} / \mathrm{mol}$. The computed interaction energy of $3.5 \mathrm{kcal} / \mathrm{mol}$ is similar to that found for $\mathrm{H}_{2} \cdots+\mathrm{ScO}\left(2.50 \mathrm{kcal} / \mathrm{mol}\right.$, Table 8) and also that for the ${ }^{+} \mathrm{Cr} \cdots \mathrm{H}_{2}$ system $(3.58 \mathrm{kcal} / \mathrm{mol}) .{ }^{14}$ The optimized geometry and energetics are collected in Table 11.

F. $\underline{H}^{+} \mathbf{S c S H}$

The $\mathrm{H}^{+} \mathrm{ScOH}$ molecule was determined to be the ground state reaction product of $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$. Using simple bond additivity arguments and a $\mathrm{D}_{\mathrm{e}}\left({ }^{+} \mathrm{Sc}-\mathrm{H}\right)$ of $50 \mathrm{kcal} / \mathrm{mol}$ (a typical ${ }^{+} \mathrm{Sc}-\mathrm{H}$ bond strength $)^{25}$ suggests that $\mathrm{H}^{+} \mathrm{ScOH}$ is exoergic by only $1-2 \mathrm{kcal} / \mathrm{mol}$ or even isoergic with the reaction products. Including the dative bond stabilization energy of $43 \mathrm{kcal} / \mathrm{mol}$, however, drives this product to the final reaction ground state. By analogy, the $\mathrm{H}^{+} \mathrm{ScSH}$ product without stabilization would be exoergic relative to the products by around $3 \mathrm{kcal} / \mathrm{mol}$. Inclusion of the $16.6 \mathrm{kcal} / \mathrm{mol}$ stabilization energy does indeed lower the total energy but not enough to compete for the ground state. Furthermore, this structure does not seem to be a minimum on the reaction energy surface. The linear structure is a saddle point on the molecular surface with a MCSCF energy, relative to $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{~S}$, of $4 \mathrm{kcal} / \mathrm{mol}$. Bending the two hydrogens to either the trans or cis conformation results in a marked decrease in energy. In particular, the structure with both hydrogens 90 degrees from the internuclear line and in the cis conformation drives the MCSCF energy to around $16 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{~S}$.

Table 11: $\mathrm{H}_{2} \cdots+\mathrm{ScS}$ Optimized geometry, Total Energy and Dissociation Energies.

MCSCF

-1158.31501
1.462
5.210

MCSCF+1+2

-1158.38999
1.444
5.063
${ }^{\mathrm{r}} \mathrm{Sc}-\mathrm{S}^{(\mathrm{au})}$ was constrained to 4.0 au for all calculations.
Dissociation Energies (CI)
$\mathrm{H}_{2}{ }^{-} \mathrm{ScS} \Rightarrow \mathrm{H}_{2}{ }^{+}{ }^{+} \mathrm{ScS} . \Delta \mathrm{E}=3.6 \mathrm{kcal} / \mathrm{mol}$ $\mathrm{H}_{2^{-}}{ }^{+} \mathrm{ScS} \Rightarrow \mathrm{Sc}^{+}+\mathrm{S}+2 \mathrm{H} . \Delta \mathrm{E}=178.7 \mathrm{kcal} / \mathrm{mol}$ $\mathrm{H}_{2}{ }^{-} \mathrm{ScS} \Rightarrow+\mathrm{Sc}+\mathrm{SH}_{2} . \Delta \mathrm{E}=34.5 \mathrm{kcal} / \mathrm{mol}$

This lies below the optimized $\mathrm{Sc}^{+} \mathrm{SH}_{2}$ product. Our results indicate the transition from $\mathrm{H}^{+}{ }^{+} \mathrm{ScSH}$ to $\mathrm{H}_{2}{ }^{+}+\mathrm{ScS}$ is an energetically favorable process with no apparent barrier. This process is illustrated in Figure 7, where the minima correspond to the optimized ground state products and the saddle point refers to the insertion product.

CHEMISTRY-PREDICTIONS

Recent theoretical studies of $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ suggests the ground state reaction product is the insertion product, $\mathrm{H}^{+} \mathrm{ScOH}$, and while the experimental work of Magnera et al. ${ }^{5}$ didn't rule out that possibility, it was suggested that the product was the electrostatic ${ }^{+} \mathrm{Sc} \cdots \mathrm{OH}_{2}$ species. The discrepancy between the expected experimental and the theoretical result is caused by a breakdown of bond additivities resulting from the induced sigma dative bond in ${ }^{+} \mathrm{ScOH}$ stabilizing the system by $43 \mathrm{kcal} / \mathrm{mol}$. In the $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ reaction we find the induced sigma bond stabilization energy to be only $16.6 \mathrm{kcal} / \mathrm{mol}$, with the consequence of drastically changing the relative energies of the reaction products. Therefore, while in the Sc^{+} $+\mathrm{H}_{2} \mathrm{O}$ reaction the products order in total energy as

$$
\mathrm{H}^{+} \mathrm{ScOH}<\mathrm{Sc}^{+} \mathrm{OH}_{2}<\mathrm{H}_{2} \ldots+\mathrm{ScO}
$$

in $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ they order as

$$
\mathrm{H}_{2} \cdots+\mathrm{ScS}<\mathrm{H}^{+} \mathrm{ScSH}<\mathrm{Sc}^{+} \mathrm{SH}_{2}
$$

Figure 7. Illustration of the energetics amongst the $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ reaction products. Minima on the curve are MCSCF $+1+2$ optimized values. q is a generalized coordinate.
$a_{\text {Energy Expected from the }} \mathrm{Sc}^{+1} \mathrm{D} \Leftarrow{ }^{3} \mathrm{D}$ separation of approximately $7 \mathrm{kcal} / \mathrm{mol}$ (ref (15)).

These results are collected into Figures 8 and 9, which depict the relative energies of the studied products; the energetics are also summarized in Table 12.

In summary, the ground state reaction products of Sc^{+}with SH_{2} and OH_{2} can be understood using three physical properties.

1) Dipole moment of the ligand.
2) ground state ${ }^{+} \operatorname{ScL} \mathrm{D}_{\mathrm{e}}$ (L is the ligand atom that bonds to Sc^{+}).
3) The stabilization obtained when H bonds to ${ }^{+} \mathrm{ScL}$ to form ${ }^{+} \mathrm{Sc}-\mathrm{L}-\mathrm{H}$. These estimates are sufficient to predict the order of the ground state reaction products. This analysis is expected to be applicable to ligands such as SeH_{2}.

CONCLUSIONS

1. The ground state of ${ }^{+} \mathrm{ScO}$ is of ${ }^{1} \Sigma^{+}$symmetry. Our computed D_{O} of $144.4 \mathrm{kcal} / \mathrm{mol}$ compares favorably with the experimental value of $159 \pm 7 \mathrm{kcal} / \mathrm{mol}$.
2. A major factor contributing to the strength of the ${ }^{+} \mathrm{Sc}-\mathrm{O}$ bond is the dative bond formed between the 2 po electron pair on O and the empty σ valence orbitals on Sc^{+}. This suggests that the ground state of ${ }^{+} \mathrm{TiO}$ will be of ${ }^{2} \Delta$ symmetry (${ }^{+} \mathrm{Ti}=\mathrm{O}$) while ${ }^{+} \mathrm{VO}$ will be ${ }^{3} \Sigma^{-}$ (${ }^{+} \mathrm{V}$ 三 O) (as observed). ${ }^{29}$ When the metal valence σ orbitals are not empty the σ dative structure will compete with a structure having a singlet coupled oxygen-metal σ bond and a dative bond in the π system. In ${ }^{+} \mathrm{CrO}$ for example, the σ dative structure

Figure 8. MCSCF $+1+2$ relative energies of the $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ reaction. $\mathbf{a}_{\text {ref (}}$ (7).

Figure 9. MCSCF $+1+2$ relative energies of the $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ reaction.
62

is of ${ }^{4} \Sigma^{-}$symmetry, while the σ singlet coupled oxygen-metal electron pair structure

is of ${ }^{4} \Pi$ symmetry. ${ }^{30}$ We calculate that these two states are separated by only $7 \mathrm{kcal} / \mathrm{mol}$ and that the lower, the ${ }^{4} \Pi$, has a calculated bond energy of $57 \mathrm{kcal} / \mathrm{mol}$. This is significantly less than the triply bonded ${ }^{+} \operatorname{Sc}\left(\left(^{1} \Sigma^{+}\right)\right.$but comparable to the doubly bonded ${ }^{+} \mathrm{ScO}\left({ }^{3} \Delta\right)$.
3. The ${ }^{+} \mathrm{Sc}-\mathrm{O}$ bond in ${ }^{+} \mathrm{ScOH}$ is $108 \mathrm{kcal} / \mathrm{mol}$ or $43 \mathrm{kcal} / \mathrm{mol}$ stronger than the bond in ${ }^{+} \operatorname{ScO}\left({ }^{3} \Delta\right)$. This is due, primarily, to the dative interaction with Sc^{+}of the $\mathrm{O} 2 \mathrm{~s}+2 \mathrm{p} \sigma$ hybrid induced on O when
bonded to H. This is in substantial disagreement with the recent ${ }^{5}$ experimental value of $88 \mathrm{kcal} / \mathrm{mol}$.
4. We calculate three exothermic products of the reaction of $\mathrm{Sc}^{+}+$ $\mathrm{H}_{2} \mathrm{O}$. The ion dipole complex $\mathrm{Sc}^{+} \ldots \mathrm{H}_{2} \mathrm{O}$, the oxide $-\mathrm{H}_{2}$ complex $\mathrm{H}_{2} \cdots^{+} \mathrm{ScO}$, and the insertion product, $\mathrm{H}^{+}{ }^{+} \mathrm{Sc}-\mathrm{OH}$. The oxide product is a consequence of the very strong bond in $\left.{ }^{+} \mathrm{ScO}^{1} \Sigma^{+}\right)$which is due, in large measure, to the O lone pair forming a dative bond to Sc^{+}. The oxide will not be nearly so exothermic with any other first row transition element. The insertion product is calculated to be the global ground state, although by only $3 \mathrm{kcal} / \mathrm{mol}$. The stability of this product is due, in large measure, to a dative bond between the 0 $2 \mathrm{~s}+2 \mathrm{p} \mathrm{\sigma}$ hybrid on OH and Sc^{+}. As this bond strength is decreased, the exothermicity of the insertion product will decrease.
5. A consequence of the strong ${ }^{+} \mathrm{Sc}-\mathrm{OH}$ bond is that the calculated global minimum in the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ system is the insertion product H ${ }^{+} \mathrm{Sc}-\mathrm{OH}$, while the calculated global minimum in the $\mathrm{Sc}^{+}+\mathrm{NH}_{3}$ system is the electrostatic complex ${ }^{+} \mathrm{Sc} \cdots \mathrm{NH}_{3}$. This situation obtains because the ${ }^{+} \mathrm{ScNH}_{2}$ bond strength is calculated to be $78 \mathrm{kcal} / \mathrm{mol}$, substantially smaller than the ${ }^{+} \mathrm{ScOH}$ bond strength of $107 \mathrm{kcal} / \mathrm{mol}$. Since the $\mathrm{Sc}-\mathrm{H}$ bond energy is similar in both systems ($46 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{H}^{-}{ }^{+} \mathrm{ScNH}_{2}$ and $47 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{H}^{-}{ }^{+} \mathrm{Sc}-\mathrm{OH}$) the insertion product in $\mathrm{H}^{-}{ }^{+} \mathrm{Sc}-\mathrm{NH}_{2}+$ lies $\sim 24 \mathrm{kcal} / \mathrm{mol}$ above the electrostatic complex while in $\mathrm{H}^{+} \mathrm{ScOH}$ it lies at least $3 \mathrm{kcal} / \mathrm{mol}$ below the $\mathrm{Sc}^{+} \ldots \mathrm{H}_{2} \mathrm{O}$ complex.
6. The ${ }^{+} \mathrm{ScS}$ ground state is a triply bonded species of $\boldsymbol{1}^{+}$ symmetry with a D_{e} of approximately $97 \mathrm{kcal} / \mathrm{mol}$. The two lowest triplet excited states are π, π bonded species of ${ }^{3} \Delta$ and ${ }^{3} \Sigma+$ symmetries with calculated $\mathrm{D}_{\mathrm{e}} \mathrm{s}$ of 40 and $28 \mathrm{kcal} / \mathrm{mol}$, respectively.
7. The ground state product for the gas-phase reaction, $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{~S}$ is expected to be the electrostatic species $\mathrm{H}_{2} \cdots+\mathrm{ScS}(\Delta \mathrm{E}=34.5$ $\mathrm{kcal} / \mathrm{mol}$) with the next nearest product, ${ }^{+} \mathrm{Sc} \cdots \mathrm{SH}_{2}, 23 \mathrm{kcal} / \mathrm{mol}$ higher at $11.4 \mathrm{kcal} / \mathrm{mol}$. The energy of the insertion product, $\mathrm{HSc}^{+} \mathrm{SH}$, is intermediate to $\mathrm{H}_{2} \cdots{ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{Sc} \cdots \mathrm{SH}_{2}$ but is not a minimum on the reaction surface.
8. Previous work on ${ }^{+} \mathrm{ScOH}$ and ${ }^{+} \mathrm{ScNH}$ indicates the slight difference in size of the ligand has little effect on the Sc -LH bond strength. Those results suggests that the ${ }^{+} \mathrm{Sc}-\mathrm{SH}$ and ${ }^{+} \mathrm{Sc}-\mathrm{PH}$ bond energies should be comparable. This also suggests that the M-L bond energies in the pairs

will also be similar.

REFERENCES

REFERENCES

1 J.L.Tilson, J.F. Harrison, J. Phys. Chem., 25, 5097 (1991).
2 J.L.Tilson, J.F. Harrison, J. Phys. Chem., 96, 1667 (1992).
3 a) E.J. Murad, J. Geophys. Res., 83, 5525 (1978).
b) H. Kang and J.L. Beauchamp, J. Am. Chem. Soc., 108, 5663 (1986).
c) N. Aristov and P.B. Armentrout, J. Am. Chem. Soc., 106, 4065 (1984).

4 a) E. Murad, J. Chem. Phys, 73, 1381 (1980).
b) H. Kang and J.L. Beauchamp, J. Am. Chem. Soc., 108, 7502 (1986).
c) C.J. Cassady and B.S. Freiser, J. Am. Chem. Soc., 106, 6176 (1984)

5 T.F. Magnera, D.E. David and J. Michl, J. Am. Chem. Soc., 111, 4100 (1989).

6 A. Mavridis, K. Kunze, J.F. Harrison and J. Allison, "Bonding Energetics In Organometallic Compounds", T.J. Marks Ed., ACS Symposium Series 428, American Chemical Society, Washington DC, 1990, Chap. 18.

7 a) M. Rosi and C.W. Bauschlicher Jr., J. Chem. Phys., 22, 1876 (1990).
b) M. Rosi and C.W. Bauschlicher Jr., J. Chem. Phys., 90, 7264 (1989).

8 A.J.H. Wachters, J. Chem. Phys., 52, 1033 (1970).
9 T.H. Dunning Jr., private communication.
10 P.J. Hay, J. Chem. Phys., 66, 4377 (1977).
11 R.C. Raffenetti, J. Chem. Phys., 58, 4452 (1973).
12 F.B. Duijneveldt, "IBM Technical Research Report No. RJ-945", IBM Research Laboratory, San Jose, CA, 1971.

13 S. Huzinaga, "Approximate Atomic Functions II", Research report; Division of Theoretical Chemistry, Department of Chemistry, The University of Alberta, 1971.

14 M. Rivera, J.F. Harrison and A. Alvarado-Swaisgood, J. Phys. Chem., 94, 6969 (1990).

15 C.E. Moore, Natl. Stand. Ref. Data. Ser., Natl. Bur. Stand. No. 35.
16 The ARGOS integral program was developed by R.M. Pitzer (Ohio State University)

17 The GVB164 program was written by R. Bair (Argonne National Laboratory).

18 A description of the UEXP program is given in R. Shepard, J. Simons and I Shavitt, J. Chem. Phys., 76, 543 (1982).

19 H. Lischka, R. Shepard, F.B. Brown and I. Shavitt, Int. J. Quant. Chem. Symp., 15, 91 (1981).

20 R. Shepard, I. Shavitt, R.M. Pitzer, D.C. Comeau and M. Pepper, Int. J. Quant. Chem. Symp., 22, 149 (1988) and references therein.

21 J.L. Dunham, Phys. Rev., 41, 721 (1932).
22 a) W.A. Goddard III, T.H. Dunning Jr., W.J. Hunt and P. Hay, J. Acc. Chem. Res., 6, 368 (1973).
b) W.A. Goddard III and L.B. Harding, Annu. Rev. Phys. Chem., 29, 363 (1978).

23 R.S. Mulliken, J. Chem. Phys., 23, 1833, 1841, 2338, and 2343 (1955). For a critique see J.O. Noell, Inorg. Chem. 21, 11 (1982).

24 adapted from "CRC Handbook of Chemistry and Physics", R.C. Weast, Ed., CRC Press, Boca Raton, Fl., 63rd ed., 1982.

25 A.E. Alvarado-Swaisgood and J.F. Harrison, J. Phys. Chem., 89, 5198 (1985).

26 P.B. Armentrout, "Bonding Energetics In Organometallic Compounds", T.J. Marks Ed., ACS Symposium Series 428, American Chemical Society, Washington DC, 1990, Chap. 2.

27 D.E. Clemmer, L.S. Sunderlin and P.B. Armentrout, J. Phys. Chem., 94, 3008 (1990).

28 J.L. Tilson and J.F. Harrison, unpublished results.

29 J.M. Dyke, B.W.J. Gravenor and A. Morris, J. Phys. Chem., 89, 4613 (1985).

30 J.F. Harrison, J. Phys. Chem., 20, 3313 (1986).

CHAPTER III

CHAPTER III

THE ELECTRONIC AND GEOMETRIC STRUCTURES OF
 ${ }^{+} \mathrm{ScSe} \mathrm{AND}{ }^{+} \mathrm{ScSeH}$

INTRODUCTION

The ${ }^{+} \mathrm{ScSe}$ and ${ }^{+} \mathrm{ScSeH}$ molecules were investigated by determining the Multiconfiguration self consistent field (MCSCF) and configuration interaction (MCSCF+1+2) wavefunctions for the ${ }^{1} \Sigma^{+}, 3_{\Delta}$ and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{ScSe}$ and the ${ }^{2} \Delta$ and ${ }^{2} \Sigma^{+}$states of ${ }^{+} \mathrm{ScSeH}$. The ground state ${ }^{+} \mathrm{ScSe}$ is a triply bonded species of ${ }^{1} \Sigma^{+}$symmetry with a bond strength of $84 \mathrm{kcal} / \mathrm{mol}$. The ${ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$excited states lie higher in energy at 31 and $28 \mathrm{kcal} / \mathrm{mol}$, respectively. The ${ }^{+} \mathrm{ScSeH}$ molecule has a ${ }^{2} \Delta$ ground state nearly degenerate with the excited ${ }^{2} \Sigma^{+}$state, with both differentially stabilized by formation of the $\mathrm{Se}-\mathrm{H}$ bond. This stabilization is consistent with prior work on ${ }^{+} \mathrm{ScOH}$ and ${ }^{+} \mathrm{ScSH}$.

Our focus is on the relative energies of the molecules and the structure of the valence σ orbitals in ${ }^{+} \mathrm{ScSeH}$. Previous theoretical studies on ${ }^{+} \mathrm{ScSH}^{1}$ and ${ }^{+} \mathrm{ScOH}^{2}$ indicate a differential stabilization resulting from an induced σ bond between Sc^{+}and the ligand, L , formed in concert with the L -H bond. This differential stabilization results in theoretical predictions of the gas-phase $\mathrm{Sc}^{+}+\mathrm{LH}_{2}$ reaction that differ from those based on simple bond additivity arguments. In particular for the reaction $\mathrm{Sc}^{+}+\mathrm{OH}_{2}$, the ground state was predicted to be the $\mathrm{H}^{+} \mathrm{ScOH}$ insertion product, while for the $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ reaction the
electrostatic $\mathrm{H}_{2} \cdots+\mathrm{ScS}$ molecule becomes the ground state. Clearly, the ground state reaction product is very dependent on the amount of this stabilization. The results here indicates a definite trend in electronic structure and in the amount of extra stabilization for these Group VIcontaining molecules.

There are no experimental results for the ${ }^{+} \mathrm{ScSe}(\mathrm{H})$ molecules nor on the reaction $\mathrm{Sc}^{+}+\mathrm{SeH}_{2}$. The only direct experimental data available for comparison have been the experiments of Magnera, et al. ${ }^{3}$ on the $\mathrm{Sc}^{+}+\mathrm{OH}_{2}$ reaction. We find, however, definite trends in character going from O to S to Se and are confident in the predictions.

BASIS SETS

The Scandium and Hydrogen atom basis sets imployed here have been used before. ${ }^{1}$

The Selenium basis was the $(13 \mathrm{~s}, 9 \mathrm{p}, 5 \mathrm{~d})$ set from Dunning, ${ }^{4}$ augmented with a diffuse $s(\exp =0.05592)$, a diffuse p (exp $=0.0513$) and a diffuse $d(\exp =0.40)$ function. This set was contracted to (7s, $6 \mathrm{p}, 2 \mathrm{~d}$) following Raffenetti. ${ }^{5}$

MOLECULAR CODES

All ab-initio calculations were done on a Stardent TITAN computer located in the Michigan State University Chemistry Department using the Argonne National Laboratory collection of COLUMBUS ${ }^{6}$ codes.

All density and difference density contours were calculated with the MSUPLOT codes and all spectroscopic constants were determined by performing a Dunham ${ }^{7}$ analysis.

FRAGMENT ENERGIES

Sc^{+}and H
The Sc^{+}and H atom energies were calculated before ${ }^{1}$ and are collected in Table 1.

Se
The Selenium ${ }^{3} \mathrm{P}$ state was analyzed with MCSCF and MCSCF $+1+2$ wavefunctions. The MCSCF function was constructed from the in-out correlation (GVB) of the doubly occupied $4 \mathrm{p} \pi_{\mathrm{x}}$ orbital plus all valence spin couplings. This results in 5 CSFs of ${ }^{3} \mathrm{~B}_{2}$ symmetry. Inclusion of all valence single and double substitutions (of ${ }^{3} \mathrm{~B}_{2}$ symmetry) from the MCSCF reference space results in the 691 CSF MCSCF $+1+2$. These energies are collected in Table 1.

SeH

The ${ }^{2} \Pi$ state of SeH was examined by a 17 configuration ${ }^{2} \mathbf{B}_{1}$ MCSCF function. This was constructed from all spin couplings of a GVB(2/4) function (correlating the π bond and the doubly occupied $\operatorname{Se} 4 \mathrm{p} \pi_{y}$ orbital) and a 4,146 CSF MCSCF $+1+2$ constructed from all valence single and double substitutions (of ${ }^{2} \mathrm{~B}_{1}$ symmetry) from the MCSCF reference space. The total energies are listed in Table 1 while the dissociation energy (D_{e}) is collected in Table 2.
$\mathrm{H}_{2} \mathrm{Se}$
The energy and optimized geometry of $\mathrm{H}_{2} \mathrm{Se}$ was computed with a 37 CSF MCSCF function constructed to correlate in a GVB way the two bonding orbitals and the Se doubly occupied out of plane orbital followed by all spin couplings. The MCSCF $+1+2$ function was derived from all valence single and double substitutions from the MCSCF reference space and results in 25,979 CSFs. The equilibrium energies are listed in Table 1 and the dissociation energies in Table 2.

MCSCFFUNCTION FOR ${ }^{+}$ScSe

Studies of ${ }^{+} \mathrm{ScS}^{1}$ and ${ }^{+} \mathrm{ScO}^{2}$ indicate that the Sc^{+}ground ${ }^{3} \mathrm{D}$ state and excited ${ }^{3} \mathrm{~F}$ states $\left({ }^{3} \mathrm{~F} \leftarrow{ }^{3} \mathrm{D} \cong 0.59 \mathrm{eV}\right)^{8}$ are large contributors to the wavefunctions. The ${ }^{+} \operatorname{ScSe}^{1} \Sigma^{+}$state MCSCF function that includes contributions from both the $\mathrm{Sc}^{+}\left({ }^{3} \mathrm{D}\right)$ and $\mathrm{Sc}^{+}\left({ }^{3} \mathrm{~F}\right)$ asymptotes can be constructed from all spin couplings of the $\operatorname{GVB}(3 / 6)^{9}$ function

$$
\Psi \sim(\text { core })^{2}\left(14 \sigma^{2}-\lambda 15 \sigma^{2}\right)\left(6 \pi x^{2}-\nu 7 \pi x^{2}\right)\left(6 \pi y^{2}-\nu 7 \pi y^{2}\right)
$$

and results in 37 configuration state functions (CSFs) under a $C_{2 v}$ point group. The core electrons have been suppressed here for brevity but are always variationally optimized. The term $14 \sigma^{2}-\lambda 15 \sigma^{2}$ represents the coupling of the Se 4 po and $\mathrm{Sc}^{+} 4 \mathrm{~s}$ electrons into a σ bond and allows the proper separation at large internuclear distances. Similarly, the $6 \pi x^{2}-v 7 \pi x^{2}$ and $6 \pi y^{2}-v 7 \pi y^{2}$ terms represents the π bonds with separation to the $\operatorname{Se} 4 \mathrm{p} \pi^{4}$ and $\mathrm{Sc}^{+} 3 \mathrm{~d} \pi^{1}$ configurations.

Table 1: Total Fragment Energies (au)

Fragment
$\mathrm{Sc}^{+3} \mathrm{D}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}\right)^{\mathrm{a}}$
$\mathrm{Sc}^{+3} \mathrm{~B}_{2}\left(3 \mathrm{~d} \pi^{1} 3 \mathrm{~d} \delta^{1}\right)^{\mathrm{a}}$
$\mathrm{Se}^{3} \mathrm{P}$
SeH ${ }^{2}$ п
$\mathrm{H}_{2} \mathrm{Se}^{1} \mathrm{~A}_{1}$
$H_{2}{ }^{1} \Sigma^{+}{ }_{g}(3 s / 3 p)^{a}$
$H^{2} S^{a}$
$\mathrm{E}_{\text {min }}$ (MCSCF)
-759.52848
-759.48576
-2399.71554
-2400.31795
-2400.92542
-1.14813
-0.49928
$\mathrm{E}_{\text {min }}(\mathrm{MCSCF}+1+2)$
-759.52906
-759.49960
-2399.75294
-2400.36659
-2400.99459
-1.16652
$a_{\text {ref (2) }}$

Table 2: Dissociation Energies (kcal/mol)

$$
\operatorname{MCSCF}\left(\mathrm{D}_{\mathrm{e}}\right) \quad \operatorname{MCSCF}+1+2\left(\mathrm{D}_{\mathrm{e}}\right) \quad \text { Experimental }{ }^{\mathbf{a}}
$$

$$
\begin{array}{lrr}
\mathrm{SeH}{ }^{2} \Pi \Rightarrow \mathrm{Se}^{3} \mathrm{P}+\mathrm{H}^{2} \mathrm{~S} & 64.3 & 71.8 \\
\mathrm{H}_{2} \mathrm{Se}^{1}{ }^{1} \mathrm{~A}_{1} \Rightarrow \mathrm{SeH}^{2} \Pi+\mathrm{H}^{2} \mathrm{~S} & 67.9 & 80.7 \\
\mathrm{H}_{2} \mathrm{Se}^{1} \mathrm{~A}_{1} \Rightarrow \mathrm{Se}^{3} \mathrm{P}+2 \mathrm{H}^{2} \mathrm{~S} & 132.6 & 152.5 \\
\mathrm{H}_{2}{ }^{1} \Sigma^{+}{ }_{\mathrm{g}}(3 \mathrm{~s} / 3 \mathrm{p}) \Rightarrow 2 \mathrm{H}^{2} \mathrm{~S} & 93.8 & 105.4 \\
& & \\
\mathrm{a}_{\text {ref }}(12) & &
\end{array}
$$

The π bonds are equivalent at equilibrium but arise from formally different asymptotic occupations. This MCSCF function allows the two most important ${ }^{1} \Sigma^{+}$configurations to mix as illustrated below.

There are two formally covalent bonds (σ, π) and a π dative bond in structure 1), while in structure 2) there are two covalent π bonds and a σ dative bond possible.

The energy predicted by this function is shown in Figure 1 as a function of internuclear distance. The analogous ${ }^{+} \mathrm{ScO}^{2}$ and ${ }^{+} \mathrm{ScS}^{1}$ MCSCF energies are shown for comparison. The MCSCF function predicts a triply bonded species with an equilibrium separation (r_{e}) of 4.322 au and a dissociation energy (D_{e}) of $69 \mathrm{kcal} / \mathrm{mol}$.

The energies of two low lying ${ }^{+} \mathrm{ScSe}$ triplet states were also computed and are displayed in Figure 1 as a function of internuclear distance. The ${ }^{+} \mathrm{ScSe}^{3} \Delta$ state was examined with a $\operatorname{GVB}(2 / 4)$ function constructed from two π bonding pairs, one electron in an a_{1} orbital and the other electron in an a_{2} orbital followed by all spin couplings. This results in 25 CSFs. The predicted r_{e} of 4.617 au is 0.3 au longer than in the ${ }^{1} \Sigma^{+}$state while the D_{e} decreases to $16 \mathrm{kcal} / \mathrm{mol}$.

Figure 1. MCSCF potential energies of the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \boldsymbol{\Sigma}^{+}$states of ${ }^{+} \mathrm{SCSe},+\mathrm{ScS}$ and ${ }^{+} \mathrm{SCO}$ relative to the ground state asymptote. Energy is in kcal/mol. The atomic structure at the asymptote is indicated by both atomic symmetry and valence configuration ($\mathrm{L}=\mathrm{Se}, \mathrm{S}$, and O)

The structure has two π bonds, an open shell electron in a $\mathrm{Se} 4 \mathrm{p} \sigma$ orbital and another electron in a $\mathrm{Sc}^{+} 3 \mathrm{~d} \delta_{\text {_ }}$ orbital. The $\mathrm{Sc}^{+} 3 \mathrm{~d} \delta \delta_{\text {_ }}$ occupation forces dissociation to the higher ${ }^{+} \operatorname{Sc}\left(3 \mathrm{~d} \delta_{-}{ }^{1} 3 \mathrm{~d} \pi^{1} ;{ }^{3} \mathrm{~B}_{2}\right)+$ $\mathrm{Se}\left(4 \mathrm{~s}^{2} 4 \mathrm{p}^{4} ;{ }^{3} \mathrm{P}\right)$ asymptote as indicated in fig 1.

The ${ }^{+}$ScSe ${ }^{3} \Sigma^{+}$state MCSCF function was constructed from a GVB(2/4) function with two π bonding pairs and 2 singly occupied a_{1} orbitals. The $\mathrm{Sc}^{+} 3 \mathrm{~d} \delta_{+}$orbitals were eliminated from the calculation to prevent collapse to the δ_{+}component of the ${ }^{3} \Delta$ state. All spin couplings of this function results in 25 CSFs. The computed D_{e} of $11 \mathrm{kcal} / \mathrm{mol}$ is $5 \mathrm{kcal} / \mathrm{mol}$ less than the ${ }^{3} \Delta$ state and the r_{e} shrinks slightly to 4.542 au. The total energies, $D_{e} s, r_{e} s$ and vibrational frequencies (ω_{e}) are collected in Table 3.

MCSCF+1+2 FUNCTION FOR ${ }^{+}$ScSe

The configuration interaction (MCSCF+1+2) wavefunctions were constructed by taking all valence single and double substitutions from the MCSCF reference space. In particular, the ${ }^{1} \Sigma^{+}$MCSCF $+1+2$ function consists of $29,953 \mathrm{CSFs}$, the ${ }^{3} \Delta$ of $36,686 \mathrm{CSFs}$ and the ${ }^{3} \Sigma^{+}$of 32,962 CSFs. The added correlation lowers the total energies by around 61 mHartrees but has no effect on the state orderings. The energies as predicted by the MCSCF $+1+2$ functions are displayed in Figure 2 as a function of Sc -Se distance. The computed r_{e} and ω_{e} remain essentially unchanged while the D_{e} 's increased to $84 \mathrm{kcal} / \mathrm{mol}\left({ }^{1} \Sigma^{+}\right), 31 \mathrm{kcal} / \mathrm{mol}$ $\left({ }^{3} \Delta\right)$ and $28 \mathrm{kcal} / \mathrm{mol}\left({ }^{3} \Sigma^{+}\right)$, respectively. The total energies, $D_{e} s$ and some spectroscopic constants are collected in Table 3.
80

and Dissociation Energies (kcal/mol). ${ }^{\text {a }}$
Table 3: ${ }^{+} \mathrm{ScSe},{ }^{+} \mathrm{ScS}$ and ${ }^{+} \mathrm{ScO}$ Equilibrium Energies ($\mathrm{E}_{\text {min }}$, au), Vibrational Frequencies $\left(\omega_{\mathrm{e}}, \mathrm{cm}^{-1}\right.$), Bond Lengths (r_{e}, au)

Figure 2. MCSCF $+1+2$ potential energies of the ${ }^{1} \Sigma^{+},{ }^{3} \Delta$ and ${ }^{3} \Sigma+$ states of $+\mathrm{ScSe},+\mathrm{SCS}$ and +ScO relative to the ground state asymptote. Energy is in kcal/mol. The atomic structure at the asymptote is indicated by both atomic symmetry and valence configuration ($\mathrm{L}=\mathrm{Se}, \mathrm{S}$, and O)

ELECTRONIC STRUCTURE OF ${ }^{+}$ScSe

A Mulliken ${ }^{10}$ population analysis was performed on the MCSCF natural orbitals (NOs) of ${ }^{+} \mathrm{ScSe}$ and the results are collected in Table 4. The ${ }^{1} \Sigma^{+}$state is a triply bonded system with two π bonds and one σ bond. The π bonds are polarized towards the Scandium and are composed of, primarily, $\mathrm{Sc}^{+} 3 \mathrm{~d} \pi$ and $\mathrm{Se} 4 \mathrm{p} \pi$ orbitals. The polarization results in approximately 0.18 electrons (per π bond) being transfered to Sc^{+}. The σ bond is a mixture of the $\mathrm{Se} 4 \mathrm{p} \sigma$ and $\mathrm{Sc}^{+} 3 \mathrm{~d} \sigma+\lambda 4 \mathrm{~s}$ orbitals. The $\mathrm{Sc}^{+} 4 \mathrm{~s}$ enters the σ bond with a weight of approximately 15%, nearly equal to that of the $3 \mathrm{~d} \sigma$ orbital (20%). The σ bond is polarized towards Se and results in a transfer of 0.19 electrons from Sc^{+}to Se . The gross atomic charge distribution in the ${ }^{1} \Sigma^{+}$state becomes $\mathrm{Sc}^{+0.83} \mathrm{Se}^{+0.17}$.

The ${ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states are both doubly bonded (π, π) species. The π bonds are composed of, primarily, $\mathrm{Sc}^{+} 3 \mathrm{~d} \pi$ and $\mathrm{Se} 4 \mathrm{p} \pi$ functions and are moderately polarized with the transfer of approximately 0.16 e per π bond to Se . There are also two non-bonding electrons in these systems. One electron populates a Se 4 po orbital and the other an orbital on Sc^{+}. In the ${ }^{3} \Delta$ state, the Sc^{+}non-bonded electron populates a pure $\mathrm{Sc}^{+} 3 \mathrm{~d} \delta_{\text {_ }}$ orbital. This is the lowest energy triplet with a bond strength of $31 \mathrm{kcal} / \mathrm{mol}$ (Table 3) and a $\mathrm{Sc}^{+} \mathrm{d}^{2}$ configuration, in-situ. In the ${ }^{3} \Sigma^{+}$state, the Sc^{+}non-bonded electron occupies an orbital of $3 \mathrm{~d} \sigma+\lambda 4 \mathrm{~s}$ character and is $3 \mathrm{kcal} / \mathrm{mol}$ higher (MCSCF+1+2) than the ${ }^{3} \Delta$ (28 vs. $31 \mathrm{kcal} / \mathrm{mol}$, Table 1). At intermediate separations the triplet coupled $\mathrm{Sc}^{+} 4 \mathrm{~s}$ and $\mathrm{Se} 4 \mathrm{p} \sigma$ electrons will interact repulsively.

$8 L^{\circ} 0$	69 ${ }^{\text {I }}$	69.1	$81 \cdot$	$92 \cdot 1$	-	220	2z\%	660	$0{ }^{\circ}$	010	600	81°	
$8 L^{\circ} \mathrm{O}$	ILI	ILT	SII	SL'I	$00^{\circ} \mathrm{t}$	02\%	020	oro	600	600	600	${ }^{1} 0$	$\left(\nabla_{\tau}\right) \mathrm{H} \boldsymbol{\sim} \mathrm{SO}_{+}$
	$99^{\circ} \mathrm{I}$	$99^{\circ} \mathrm{I}$	180	88.1	-	£ ${ }^{\circ} 0$	$\varepsilon \tau 0$	t60	$1{ }^{1} 0$	H0	010	ĽO	
	99.1	$99^{\circ} \mathrm{I}$	£80	58.1	$00 \cdot 1$	tro	+20	600	010	Oro	600	\&10	$\left(\nabla_{\mathcal{E}}\right) \mathbf{O s}^{\boldsymbol{O}} \mathbf{S}_{+}$
	$\tau \varepsilon \cdot \downarrow$	$\tau \varepsilon \cdot 1$	$\varepsilon \varepsilon^{\prime \prime}$	98.1	-	850	850	$1{ }^{\circ} 0$	Or 0	00_{0}	oro	00°	$\left.{ }_{+} 3_{\text {I }}\right)^{\text {asos }}{ }_{+}$
	$\delta_{\text {d }}{ }_{\text {d }}$	$\mathbf{x}_{\mathrm{d}_{\boldsymbol{t}}}$	${ }^{\text {d }}$ dt	st	Sp\&	${ }_{\text {dp }}{ }^{\text {d }}$	${ }^{\text {d }}$ dp	${ }^{\text {Ppe }}$	$\delta_{d t}$	${ }^{\text {d }}{ }_{\text {d }}$	${ }^{\text {d }}$ d	st	ners
H		${ }^{\text {as }}$											

[^0]The π bonds are weak and cannot overcome this interaction. The repulsive energy increases with decreasing internuclear separation until it intersects the attractive $\mathrm{Sc}^{++}(3 \mathrm{~d} \sigma)+\mathrm{Se}^{-}$curve and finally settles into a structure with the Sc^{+}open shell electron occupying an a_{1} orbital of, primarily, $3 \mathrm{~d} \sigma$ character.

The populations and NO structures suggests the following interpretation:

1) The π bonds are all composed of $\mathrm{Sc}^{+} 3 \mathrm{~d} \pi$ and $\operatorname{Se} 4 \mathrm{p} \pi$ orbitals.
2) The ground state ${ }^{1} \Sigma^{+} \sigma$ bond is composed of a $\operatorname{Se} 4 \mathrm{p} \mathrm{\sigma}$ bonding to a Sc^{+}orbital of equal amounts of 4 s and $3 \mathrm{~d} \sigma$.
3) The ${ }^{3} \Delta$ and ${ }^{3} \Sigma^{+}$states are both π, π doubly bonded systems and each have a non-bonded electron on Sc^{+}occupying a predominantly 3d type orbital.

The MCSCF orbital populations of ${ }^{+} \mathrm{ScS}^{1}$ and ${ }^{+} \mathrm{ScO}^{2}$ are collected in Tables 5 and 6 for comparison and reveal several trends. The Sc^{+} 4 s contribution, in the ${ }^{1} \Sigma^{+}$states, increases with increasing ligand size and presumably results from the longer bonding distances. The radial distribution functions (RDF) for the $\mathrm{Sc}^{+} \mathrm{s}, \mathrm{p}$ and d orbitals (1s not included) were plotted (Figure 3) and show that the 3d RDF has a maximum at approximately 1 au and decreases substantially between 2 and 4 au . The 4 s reaches a maximum at approximately 3.0 au and decreases only slightly by 4 au.
Radial Distribution

Figure 3. Radial distribution function of the ground state $+\mathrm{Sc}\left({ }^{3} \mathrm{D}\right)$. These are orbital

86
（1）」ほ

84\％	IL＇I	IL＇I	tid	08．1	－	02\％	020	\＆60	800	800	600	$87^{\circ} 0$	$\left.{ }_{4} 3_{2}\right)^{\text {HS }}{ }^{\text {S }}$
$8 L^{\circ}$	$\varepsilon \iota^{\prime} \cdot \mathrm{I}$	$\varepsilon \iota^{\prime} \cdot \pm$	IIt	6L＇	$00^{\circ} \mathrm{I}$	610	610	010	800	800	800	tio	$\left(\nabla_{\sim}\right) \mathrm{HS}^{\boldsymbol{0}} \mathrm{S}_{+}$
	69.1	$69^{\circ} \mathrm{I}$	L80	26.1	－	220	$2 \tau \%$	98.0	800	800	200	00_{0}	$\left(+3_{\mathcal{E}}\right) \mathrm{S}^{\text {S }}{ }^{+}$
	L＇ı	IL＇I	98.0	06.1	$00^{\circ} \mathrm{I}$	I2\％	Iz\％	80°	80°	800	900	010	$\left(\nabla_{\mathcal{E}}\right) \mathrm{S}^{\boldsymbol{s}} \mathrm{S}_{+}$
	$6 \varepsilon^{\circ} \mathrm{I}$	6 E I	で 1	＋6．1	－	25°	zso	£ャワ	80%	800	90°	L10	$\left(+3_{1}\right)^{0} \mathrm{~S}_{+}$
	$\chi_{\text {d }}{ }_{\varepsilon}$	${ }^{\mathbf{x d}_{\boldsymbol{d}}}$	${ }^{\text {d }}$ ¢	s¢	Sp\＆	${ }^{\alpha_{\text {dp¢ }}}$	${ }^{\text {dpe }}$ ¢	${ }^{\text {P¢ }}$	$\kappa_{\text {d }}$	$\mathrm{x}_{\mathrm{d}}{ }^{\text {d }}$	O_{d}	st	2HIS
H		S											

87

The increase in $\mathrm{Sc}^{+} 4 \mathrm{~s}$ contribution to the σ bond at the longer bond distances reflects the favorable increase in overlap with the ligand pб.

Secondly, as the bond length in the ${ }^{1} \Sigma^{+}$states is increased, the Sc^{+}gross atomic charge decreases. In particular, the Sc^{+}atomic charge goes from +1.28 in ${ }^{+} \mathrm{ScO}^{2}$, ${ }^{2}$ to +1.14 in ${ }^{+} \mathrm{ScS}^{1}$ and to +0.85 in ${ }^{+}$ScSe. The gross atomic charges are collected in Table 7.

The triplet states all have very similar π bonding structures with the ligand valence $\mathrm{p} \pi$ orbitals making a lesser contribution at the longer equilibrium bond distances. A conspicuous feature of these data are the orbital population trends in the ${ }^{3} \Sigma^{+}$states. The π bonds are nearly identical to the corresponding ${ }^{3} \Delta$ states but the Sc^{+} 4 s contribution to the spectator electron structure decreases with increasing bond distance.

In contrast to the ${ }^{1} \Sigma^{+}$states where at longer bond lengths a greater σ bond overlap occurs with inclusion of the $\mathrm{Sc}^{+} 4 \mathrm{~s}$, the triplet coupling of the two σ non-bonded electrons requires this overlap to be a minimum. In ${ }^{+} \mathrm{ScO}^{2}$ this is accomplished by promoting the Sc^{+} spectator electron to a $4 \mathrm{~s}+\lambda 3 \mathrm{~d} \sigma$ orbital with approximately $40 \% 4 \mathrm{~s}$ character. This hybridization drains charge away from the internuclear axis. In ${ }^{+}$ScSe the $3 \mathrm{~d} \sigma$ orbital is apparently small enough to not significantly interfere with Se at the large equilibrium separation and so does not hybridize as much. The ${ }^{+} \mathrm{ScS}^{1}$ structure is again intermediate. The orbital populations for selected valence orbitals of ${ }^{+} \mathrm{ScL}(\mathrm{L}=\mathrm{O}, \mathrm{S}, \mathrm{Se})$ are displayed in Figure 4. These data are collected in a way to allow comparisons amongst the different studied states and illustrate the trends in charge transfer.
89

£ $\varepsilon^{\circ} 0^{+}$				
	$8 L^{\circ} 0^{-}$	St＇l＋	$(+3)^{\prime}$	HOOS_{+}
$980+$	$\angle L^{\circ}{ }^{-}$	しがし＋	$\left(\nabla_{\tau}\right)$	HOOS_{+}
	Or 0^{-}	O＋1＋${ }^{+}$	$\left(+3{ }_{\mathcal{E}}\right)$	OOS_{+}
	2 O	2tit	$\left(\nabla_{\mathcal{E}}\right)$	ors_{+}
	87°	$8 \mathrm{z}^{\prime} \mathrm{l}+$	$\left(+3_{1}\right)$	OOS_{+}
H	0	${ }^{\text {J }}$		
2\％＇0＋	$9 \varepsilon^{\circ} 0^{-}$	${ }^{+1} 1+$	$\left(+3 z^{\prime}\right)$	HSO_{+}
2z＇0＋	$980{ }^{-}$	${ }^{+1}{ }^{\text {l }}$	$\left(\nabla_{\tau}\right)$	HSO_{+}
	40^{-}	LIT^{+}	$\left(+3{ }_{\varepsilon}\right)$	sos_{+}
	810^{-}	$8 \mathrm{l}^{1}+$	$\left(\nabla_{\mathcal{E}}\right)$	sos_{+}
	${ }^{10}$	til	$\left({ }_{+}{ }_{\text {I }}\right.$ ）	Sos_{+}
H	s	${ }^{3} \mathrm{~S}$		
$22^{\circ}{ }^{+}$	$\tau \varepsilon^{-}$	$\mathrm{Or}^{\text {－}}$＋	$\left.(+3)^{\prime}\right)$	${ }^{\mathbf{H}} \mathrm{S}^{\sim} \mathrm{S}_{+}$
で\％${ }^{+}$	て¢0－	Of＇t＋	$\left(\nabla_{\tau}\right)$	$\mathrm{H}^{\text {SOS }}{ }_{+}$
	$100-$	$10 \cdot 1+$	$\left({ }^{(1)}{ }_{\mathcal{E}}\right)$	${ }^{2} \mathrm{SO}_{+}$
	$000{ }^{+}$	$00 \cdot 1+$	$\left(\nabla_{\mathcal{E}}\right)$	$\mathrm{os}^{\mathbf{3}}{ }_{+}$
	$4{ }^{1} 0^{+}$	£80＋	$\left(+3_{\text {I }}\right)$	${ }^{\text {as }}{ }^{\text {S }}+$
H	${ }^{\text {as }}$	${ }^{\text {TS }}$		
288ч⿺			ners	unsis

Figure 4. Orbital populations of +SCL and + SCLH $(L=0, S, S e)$. The connection of data points is only for association and does not imply a continuous relationship. S data from Ref(1). O data from Ref(2).
${ }^{\text {a }}$ Orbital population data relative to associated ${ }^{3} \Delta$ state. ${ }^{\text {b }}$ Orbital population data relative to associated ${ }^{2} \Delta$ state.

91

In the studied triplets, the lowest energy state has a $\mathrm{Sc}^{+}\left(\mathrm{d}^{2}\right)$ in-situ configuration $\left({ }^{3} \Delta\right)$ suggesting that in the field of the ligand the required excitation of Sc^{+}to the d^{2} configuration in-situ is offset by a decrease in the electron repulsions. The mixing of the $\mathrm{Sc}^{+} 4 \mathrm{~s}$ orbital into the Sc^{+}spectator electron density in the ${ }^{3} \boldsymbol{\Sigma}^{+}$states has a marked effect on the energy. We find that while the ${ }^{3} \Delta$ bond energies decrease with increasing ligand size (bond length) the $\mathrm{Sc}^{+} 4 \mathrm{~s}$ contribution to the ${ }^{3} \Sigma^{+}$states also decreases, causing the ${ }^{3} \Sigma^{+} \leftarrow{ }^{3} \Delta$ separation to decrease. This separation is the least for ${ }^{+} \mathrm{ScSe}$ and results in the ${ }^{+} \mathrm{ScSe}^{3} \Sigma^{+}$state being more bound than the ${ }^{+} \mathrm{ScS}{ }^{3} \Sigma^{+}$ state. Theoretical results indicate that the ${ }^{3} \Sigma^{+} \leftarrow{ }^{3} \Delta$ separation decreases in the order ${ }^{+} \mathrm{ScO}(19.9 \mathrm{kcal} / \mathrm{mol}),{ }^{+} \mathrm{ScS}(12.5 \mathrm{kcal} / \mathrm{mol})$ and ${ }^{+} \mathrm{ScSe}(3.0 \mathrm{kcal} / \mathrm{mol})$.

${ }^{+}$ScSeH GENERAL CONSIDERATIONS

The ${ }^{+} \mathrm{ScSeH}$ molecule may be formed by bonding Hydrogen to either of the open shell electrons in triplet ${ }^{+} \mathrm{ScSe}$. Recent theoretical studies ${ }^{2}$ have indicated that $\mathrm{H}^{+} \mathrm{ScO}$ is less bound than ${ }^{+} \mathrm{ScOH}$ due to disruption of an induced sigma bond, and that ${ }^{+} \mathrm{ScOH}$ prefers a linear conformation. These results were applied here by examining the linear ${ }^{+} \mathrm{ScSeH}$ isomer. ${ }^{+} \mathrm{ScSeH}$ has three formal bonds (two ${ }^{+} \mathrm{Sc}-\mathrm{Se} \pi$ bonds and a Se-H o bond) and a singly occupied orbital that carries the molecular symmetry.

The ${ }^{2} \Delta$ state MCSCF function was constructed by correlating the three bonds in a GVB way and placing the final valence electron in an a_{2} orbital (δ_{-}).

$$
\Psi \sim(\text { core })^{2} 2 \delta_{-}^{1}\left(14 \sigma^{2}-\lambda 15 \sigma^{2}\right)\left(6 \pi x^{2}-v 7 \pi x^{2}\right)\left(6 \pi y^{2}-v 7 \pi y^{2}\right)
$$

All spin couplings of this function results in 76 CSFs under a $C_{2 v}$ point group. The ${ }^{2} \Sigma^{+}$state MCSCF function was constructed by correlating the two π bonds in a GVB way and allowing all occupations of the three valence $\sigma\left(a_{1}\right)$ orbitals (Complete Active Space in the valence σ space) to insure that no limitations are imposed on the calculation. The $\mathrm{Sc}^{+} 3 \mathrm{~d} \delta_{+}$orbitals were eliminated from the calculation to prevent collapse to the δ_{+}component of the lower energy ${ }^{2} \Delta$ state. All spin couplings of this function result in 144 CSFs under a $C_{2 v}$ point group.

$$
\Psi \sim(\text { core })^{2}(14 \sigma, 15 \sigma, 16 \sigma)\left(6 \pi x^{2}-v 7 \pi_{\mathrm{x}}^{2}\right)\left(6 \pi \mathrm{y}^{2}-v 7 \pi \mathrm{y}^{2}\right)
$$

The MCSCF $+1+2$ wavefunction for each state was constructed by allowing all valence single and double substitutions from the MCSCF reference space. This results in $144,982 \operatorname{CSFs}(2 \Delta)$ and 166,770 CSFs $\left({ }^{2} \Sigma^{+}\right)$.

The ${ }^{2} \Delta$ state is bound by $118.6 \mathrm{kcal} / \mathrm{mol}$ relative to the ground state atoms and is $3.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the ${ }^{2} \Sigma^{+}$state. The optimized geometries are very similar. In particular, for the ${ }^{2} \Delta$ state the ${ }^{+} \mathrm{Sc}-\mathrm{SeH}$ bond length is 4.567 au (MCSCF $+1+2$) with a $\mathrm{Se}-\mathrm{H}$ length of 2.760 au , while in the ${ }^{2} \Sigma^{+}$state ${ }^{+} \mathrm{Sc}-\mathrm{SeH}$ bond contracts a small amount to 4.464 au and the $\mathrm{Se}-\mathrm{H}$ bond lengthens to 2.774 au . The total energies and optimized geometries are collected in Table 8. Table 9 contains several computed bond energies.

93

HTSS $^{+}$
Table 8: ${ }^{+} \mathrm{ScSeH},{ }^{+} \mathrm{ScSH}$, and ${ }^{+} \mathrm{ScOH}$ Equilibrium energies (au), Equilibrium bond lengths (au) and Dissociation energies ($\mathrm{kca} / \mathrm{mol}$) ${ }^{\mathbf{a}}$

94

$$
\begin{aligned}
& \text { unasis }
\end{aligned}
$$

ELECTRONIC STRUCTURE OF ${ }^{+}$ScSeH

The ${ }^{+} \mathrm{ScSeH}$ valence orbital populations are collected in Table 2 and the gross atomic charges in Table 7. The ${ }^{2} \Delta$ and ${ }^{2} \Sigma^{+}$states are similar, with two ($\mathrm{Sc}^{+} 3 \mathrm{~d} \pi-\mathrm{Se} 4 \mathrm{p} \pi$) π bonds, a $\mathrm{Se}-\mathrm{H} \sigma$ bond and a non-bonded electron on Sc^{+}. The π bonds are polarized towards Se with approximately 0.21 e (per bond, ${ }^{2} \Delta$) transferred to Se . The $\mathrm{Se}-\mathrm{H}$ σ bond is also polarized and transfers 0.22 e to Se from H . This H to Se charge transfer is similar ${ }^{11}$ to that computed for SeH and SeH_{2} and is consistent with the results of ${ }^{+} \mathrm{ScOH}^{2}$ and ${ }^{+} \mathrm{ScSH} .{ }^{1}$ The gross atomic charge distribution for the ${ }^{2} \Delta$ and ${ }^{2} \Sigma^{+}$states becomes $\mathrm{Sc}^{+1.10} \mathrm{Se}^{-0.32} \mathrm{H}^{+0.22}$.

The non-bonded electron in the ${ }^{2} \Delta$ ground state occupies a pure ${ }^{+}$Sc $3 \mathrm{~d} \delta$. orbital and indicates that, as with the ${ }^{+} \mathrm{ScSe}$ triplet states, ${ }^{3} \mathrm{~F}^{+} \mathrm{Sc}\left(3 \mathrm{~d}^{2}\right)$ is the preferred in-situ configuration. The ${ }^{2} \Sigma^{+}$ state non-bonded electron is primarily in a ${ }^{+}$Sc $3 \mathrm{~d} \sigma$, and the ${ }^{2} \Sigma^{+} \leftarrow$ ${ }^{2} \Delta$ separation is $3.2 \mathrm{kcal} / \mathrm{mol}$.

In comparison to the MCSCF populations of ${ }^{+} \mathrm{ScSH}^{1}$ and ${ }^{+} \mathrm{ScOH}^{2}$ (Tables 5 and 6 , respectively) we find that as the equilibrium ${ }^{+}$Sc-LH bond length increases, the amount of ${ }^{+}$Sc 4 s mixed into the nonbonded electron orbital decreases. This trend is consistent with the triplet ${ }^{+}$ScL results. When H is bonded to the ligand atom, L ($\mathrm{L}=\mathrm{O}, \mathrm{S}, \mathrm{Se}$), the π bonds become slightly more polarized with from $0.2 \mathrm{e}\left({ }^{+} \mathrm{ScS}\right)$ to $0.5 \mathrm{e}\left({ }^{+} \mathrm{ScSe}\right)$ additional charge transfered to L from ${ }^{+} \mathrm{Sc}$. The bonding of H to L causes L to become more negatively charged and causes an increased polarization of the ${ }^{+} \mathrm{Sc}$ atom.

Selected valence orbital populations of the ${ }^{+} \mathrm{ScLH}{ }^{2} \Sigma^{+}$states are collected in Figure 4.

The similarities in π bond and non-bonded electron structures are illustrated in the DDCs (Figures 5,6 and 7). These contours were generated by computing the MCSCF total density for the ${ }^{+} \mathbf{S c L H}$ molecules at the equilibrium geometry and subtracting from this the total density of the indicated ${ }^{+}$ScL triplets superimposed at the ${ }^{+} \mathrm{ScLH}$ geometry. Positive contours are indicated by solid curves and negative contours by dashes. In all plots, Sc is at the origin. The lack of π contours in the DDCs indicates that the π density in the triplet ${ }^{+}$ScL and doublet ${ }^{+}$ScLH states are nearly equivalent. The nonbonding $\mathrm{Sc}^{+} \sigma$ electron has a $\mathrm{d} \sigma+\lambda 4 \mathrm{~s}$ shape $\left({ }^{2} \Sigma^{+}{ }^{3}{ }^{3} \Delta\right.$ images) with relatively more density perpendicular to the bonding axis in ${ }^{+} \mathrm{ScOH}$. The bonding of H to ${ }^{+} \mathrm{ScL}$ introduces more charge density to the σ space (${ }^{2} \Sigma^{+}-3 \Sigma^{+}$images).

The structure of the Sc^{+}spectator electron in the ${ }^{2} \Sigma^{+}$state is also illustrated in the contours of the valence NO amplitudes (Figure 8). The large $\mathrm{Sc}^{+} 4 \mathrm{~s}$ component and its effect on ${ }^{+} \mathrm{ScOH}$ is evident. In these systems the Sc^{+}spectator electron density is seemingly next to the ligand atom core. In ${ }^{+} \mathrm{ScOH}$ this core is only 3.5 au from Sc^{+}and a large 4 s component is introduced to allow perpendicular displacement. In ${ }^{+} \mathrm{ScSeH}$, the longer bond length allows significantly more population of the $\mathrm{Sc}^{+} 3 \mathrm{~d} \sigma$ orbital.
${ }^{+} \mathbf{S c S e H}\left(\mathbf{2}^{\mathbf{\Sigma}}{ }^{\boldsymbol{+}}\right)$ Total Density at equilibrium

${ }^{+} \operatorname{SCSeH}\left({ }^{2} \Sigma^{+}\right)-{ }^{+} \operatorname{ScSe}\left({ }^{3} \Delta\right)$ Diff. Density

${ }^{+} \operatorname{ScSeH}\left({ }^{2} \Sigma^{+}\right)-{ }^{+} \operatorname{SCSe}\left({ }^{3} \Sigma^{+}\right)$Diff. Density

Figure 5. MCSCF total density contours (TDCs) and difference density contours (DDCs) for the ${ }^{2}{ }^{2}+$ state of ${ }^{+} \mathrm{SCSH}$ and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{SCS}$ e. The DOCs are molecular differences where the ${ }^{+}$ScSe states are subtracted from the ${ }^{+} \mathrm{SCSeH}$ density. The ${ }^{+}$ScSe states are at the equilibrium ${ }^{+} \mathrm{SCSeH}$ (SC-Se) geometry. Contour levels range from $0.0025 e$ to 1.280 (TDCs) and -0.04 t to 0.04 e (DDCs). Each level differs by a factor of 2 . No zero contours are displayed and negative contrurs are indicated by dashes.

98
${ }^{+} \operatorname{ScSH}\left({ }^{\mathbf{2}} \mathbf{\Sigma}^{+}\right)$Total Density at equilibrium

${ }^{2}$-axis $\quad{ }^{+}{ }^{1200}\left({ }^{3} \Sigma^{+}\right)$Total Density

Figure 6. MCSCF total density contours (TDCs) and difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+}$ScsH and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{Sc}=$. The DDCs are molecular differences where the + S ω states are subtracted from the ${ }^{+} \mathrm{SCSH}$ density. The ${ }^{+} \mathrm{SCS}$ states are at the equilibrium ${ }^{+} \mathrm{SCSH}$ (SCS) geometry. Contour levels range from $0.0025 e$ to $1.28 e$ (TDCs) and $-0.04 e$ io 0.04 (DDCs). Each level differs by a factor of 2 . No zero contours are displayed and negative contours are indicated by dastes.

Figure 7. MCSCF botal density contours (TDCs) and difference density contours (DDCs) for the ${ }^{2} \Sigma^{+}$state of ${ }^{+} \mathrm{SOOH}$ and the ${ }^{1} \Sigma^{+}$and ${ }^{3} \Sigma^{+}$states of ${ }^{+} \mathrm{SCO}$ The DDCs are molecular differences where the ${ }^{+} \mathrm{SCO}$ states are subtracted from the ${ }^{+} \mathrm{SOOH}$ density. The +SCO states are at the equilibrium $+\mathrm{SCOH}(\mathrm{SO}-\mathrm{O})$ geometry. Contour levels range from $0.0025 e$ to 1.28 e (TDCs) and $-0.04 e$ to $0.04 e$ (DDCs). Each level differs by a factor of 2 . No zero contours are displayed and negative contours are indicated by dashes.
each contour level differs by a factor of 2 . Negative contours are indicated by dashes. No zero contours are displayed. Sc is at the

 es pue S ' $\mathrm{O}=7$

THERMOCHEMISTRY

Figures 9-11 illustrate the energy relationships for the ${ }^{+} \mathrm{ScSeH}$, ${ }^{+} \mathrm{ScSH}$ and ${ }^{+} \mathrm{ScOH}$ systems. The ${ }^{+} \mathrm{ScLH}(\mathrm{L}=\mathrm{O}, \mathrm{S}, \mathrm{Se}){ }^{2} \Delta-{ }^{2} \Sigma^{+}$energy separation decreases in going from O to S to Se , becoming 3.2 $\mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{Se}$. This is consistent with the triplet results and indicates the Scandium spectator electron has little influence on the bonding.

An induced σ bond causes a differential stabilization of these systems and this stabilization decreases for increasing ligand size. For example, ${ }^{+} \mathrm{ScLH}(\mathrm{L}=\mathrm{O}, \mathrm{S}, \mathrm{Se})$ may dissociate to ${ }^{+} \mathrm{ScL}+\mathrm{H}$ along the character-conserving paths:

$$
+\operatorname{ScLH}\left({ }^{2} \Delta\right) \rightarrow+\operatorname{ScL}\left({ }^{3} \Delta\right)+\mathrm{H} \quad \text { and } \quad{ }^{+} \mathrm{ScLH}\left({ }^{2} \Sigma^{+}\right) \rightarrow+\mathrm{ScL}\left({ }^{3} \Sigma^{+}\right)+\mathrm{H} .
$$

If bond additivities were applicable to these systems one might expect that, since the open shell electron on Scandium isn't involved in bonding, these energies would be the same for a given L and moreover that these energies would be equal to the L-H bond strength. In fact, we find a consistent enhancement of the ${ }^{+} \mathrm{ScL}-\mathrm{H}$ energies relative to $\mathrm{L}-\mathrm{H}$, with the greatest amount of stabilization in ${ }^{+}$ScOH. ${ }^{2}$ The MCSCF+1+2 stabilization was found to be $42 \mathrm{kcal} / \mathrm{mol}$ for ${ }^{+} \mathrm{ScOH},{ }^{2} 16.5 \mathrm{kcal} / \mathrm{mol}$ for ${ }^{+} \mathrm{ScSH}^{1}$ and $15.6 \mathrm{kcal} / \mathrm{mol}$ for ${ }^{+} \mathrm{ScSeH}$.

This stabilization is caused by a σ dative bond formed between ${ }^{+} \mathrm{Sc}$ and L . Bonding of H to L introduces charge density into the ${ }^{+} \mathrm{Sc}-\mathrm{L}$ σ space (Figures 5, 6 and 7). In ${ }^{+} \mathrm{ScOH}^{2}$ this σ bond is strong $(\approx 42 \mathrm{kcal} / \mathrm{mol}$) and composed of primarily an $\mathrm{O} 2 \mathrm{~s}+\lambda 2 \mathrm{p} \sigma$ hybrid
orbital bonding to $\mathrm{a}^{+} \mathrm{Sc} 3 \mathrm{~d} \sigma+4 \mathrm{p} \sigma$ hybrid orbital (Table $4 ;{ }^{2} \Delta$). The 0 $2 s+\lambda 2 p \sigma$ hybrid is the companion orbital to the $\mathrm{O}-\mathrm{H}$ bond. In ${ }^{+} \mathrm{ScSeH}$ the $\mathrm{Se}-\mathrm{H}$ bond is mostly $\mathrm{Se} 4 \mathrm{p} \sigma+\mathrm{H} 1 \mathrm{~s}$; therefore the charge available for bonding to ${ }^{+} \mathrm{Sc}$ is primarily from the Se 4 s . This 4 s donates charge into $a^{+} S c 4 s+3 d \sigma+4 p \sigma$ orbital and results in an induced σ bond significantly weaker than in ${ }^{+} \mathrm{ScOH}$. The ${ }^{+} \mathrm{ScSH}$ results are intermediate. This is illustrated in Figure 8 where the orbital amplitude contours corresponding to the spectator electron on Scandium, the L-H bonding orbital and the highest doubly occupied s orbital on L for the ${ }^{2} \Sigma^{+}$states are presented.

The induced σ stabilization has large effects on the chemistry of these systems. In the gas phase reaction of $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ the ground state reaction product was computed to be the inserted $\mathrm{H}^{+} \mathrm{ScOH}$ species exoergic by $40 \mathrm{kcal} / \mathrm{mol} .^{2}$ In the reaction $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{~S}$, we calculated an induced σ bond stabilization of $16.5 \mathrm{kcal} / \mathrm{mol}$ for ${ }^{+} \mathrm{ScSH}$ and determined the ground state reaction product should be the electrostatic species $\mathrm{H}_{2} \cdots+\mathrm{ScS}$, exoergic by $34.5 \mathrm{kcal} / \mathrm{mol} .^{1} \mathrm{H}_{2}$ is the intact molecule interacting electrostatically with the ground ${ }^{1} \Sigma^{+}$state of ${ }^{+}$ScS. The ${ }^{+}$ScSe work presented here suggests that due to the small induced stabilization in ${ }^{+} \mathrm{ScSeH}$, the ground state of the gas phase reaction $\mathrm{Sc}^{+}+\mathrm{SeH}_{2}$ should also be the $\mathrm{H}_{2} \ldots+\mathrm{ScSe}$ species. The reaction energy can be estimated using the computed H_{2} bond strength of $105.4 \mathrm{kcal} / \mathrm{mol}$ (Table 2), the calculated ${ }^{+} \mathrm{ScSe}^{1} \Sigma^{+}$bond strength of $84.6 \mathrm{kcal} / \mathrm{mol}$ (Table 3), and the SeH_{2} dissociation energy of $152.5 \mathrm{kcal} / \mathrm{mol}$ (Table 2). These values indicate the $\mathrm{H}_{2} \cdots+\mathrm{ScSe}$ reaction product is exoergic by approximately $37.5 \mathrm{kcal} / \mathrm{mol}$.

Figure 9. MCSCF $+1+2$ relative energies $(\mathbf{k c a l} / \mathrm{mol})$ of selected $\mathrm{Sc}^{+}+\mathrm{SeH}_{2}$ products.

Figure 10. MCSCF $+1+2$ relative energies ($\mathbf{k c a l} / \mathrm{mol}$) of selected $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ products. Data from $\operatorname{Ref}(1)$.

Figure 11. MCSCF $+1+2$ relative energies ($\mathrm{kcal} / \mathrm{mol}$) of selected $\mathrm{Sc}^{+}+\mathrm{SH}_{2}$ products. Data from $\operatorname{Ref}(2)$.

The interaction energy for the other significant electrostatic species, ${ }^{+} \mathrm{Sc} \cdots \mathrm{SeH}_{2}$, is expected to be approximately equal to that computed for ${ }^{+} \mathrm{Sc}^{\cdots} \mathrm{SH}_{2}(11.4 \mathrm{kcal} / \mathrm{mol})^{1}$ and is not expected to be the ground state. This is based on similarities of the (MCSCF) dipole moments ${ }^{11}$ computed for $\mathrm{SH}_{2}\left(1.27 \mathrm{D}\right.$, experimental value ${ }^{12}$ is 0.97 D$)$ and SeH_{2} $(1.09 \mathrm{D})$ and the similar structures of SH_{2} and $\mathrm{SeH}_{2} .{ }^{11}$

SUMMARY

1) The ground state of ${ }^{+} \mathrm{ScSe}$ is the triply bonded ${ }^{1} \Sigma^{+}$state with a bond strength of $84.6 \mathrm{kcal} / \mathrm{mol}$. The lowest triplet state is the ${ }^{3} \Delta$ with two π bonds and a bond energy of $31.2 \mathrm{kcal} / \mathrm{mol}$, while the ${ }^{3} \Sigma^{+}$state is also a π, π doubly bonded species with a bond energy of 28.7 kcal/mol.
2) The ${ }^{+} \mathrm{ScSeH}$ ground state is of ${ }^{2} \Delta$ symmetry with a formation energy of $118.6 \mathrm{kcal} / \mathrm{mol}$ and $\mathrm{a}+\mathrm{Sc}-\mathrm{SeH}$ bond strength of 47 $\mathrm{kcal} / \mathrm{mol}$. The ${ }^{2} \Sigma^{+}$state differs only in the structure of the Sc spectator electron and has a formation energy of $115.4 \mathrm{kcal} / \mathrm{mol}$. The formation of the ${ }^{+} \mathrm{ScSe}-\mathrm{H}$ bond induces a $\mathrm{Sc}-\mathrm{Se} \sigma$ dative bond, which stabilizes the species by $15 \mathrm{kcal} / \mathrm{mol}$. This stabilization is due to the Se 4 s orbital interacting with Sc^{+}.
3) The small induced σ stabilization energy computed for ${ }^{+} \mathrm{ScSeH}(15 \mathrm{kcal} / \mathrm{mol})$ suggests the gas phase reaction $\mathrm{Sc}^{+}+\mathrm{SeH}_{2}$ will yield the product $\mathrm{H}_{2} \cdots+\mathrm{ScSe}$, exoergic by approximately 37.5 kcal/mol.

REFERENCES

REFERENCES

1 J.L.Tilson, J.F. Harrison, J. Phys. Chem., 96, 1667 (1992).
2 J.L.Tilson, J.F. Harrison, J. Phys. Chem., 25, 5097 (1991).
3 T.F. Magnera, D.E. David and J. Michl, J. Am. Chem. Soc., 111, 4100 (1989).

4 T.H. Dunning, Jr., J. Chem. Phys., 66, 1382 (1977).
5 R.C. Raffenetti, J. Chem. Phys., 58, 4452 (1973).
6 R. Shepard, I. Shavitt, R.M. Pitzer, D.C. Comeau and M. Pepper, Int. J. Quant. Chem. Symp., 22, 149 (1988) and references therein.

7 J.L. Dunham, Phys. Rev., 41, 721 (1932).

8 C.E. Moore, Natl. Stand. Ref. Data. Ser., Natl. Bur. Stand. No. 35. Averaged over Mj values.

9 a) W.A. Goddard III, T.H. Dunning Jr., W.J. Hunt and P. Hay, J. Acc. Chem. Res., 6, 368 (1973).
b) W.A. Goddard III and L.B. Harding, Annu. Rev. Phys. Chem., 29, 363 (1978).

10 R.S. Mulliken, J. Chem. Phys., 23, 1833, 1841, 2338, and 2343 (1955). For a critique see J.O. Noell, Inorg. Chem. 21, 11 (1982).

11 J.L. Tilson and J.F. Harrison, unpublished results.

12 adapted from "CRC Handbook of Chemistry and Physics", R.C. Weast, Ed., CRC Press, Boca Raton, Fl., 63rd ed., 1982.

13 K.P. Huber and G. ,Herzberg, "Molecular Spectra and Molecular Structure", Van Nostrand Reinhold, New York, 1979.

14 E.J. Murad, J. Geophys. Res., 83, 5525 (1978).
15 a) M. Rosi and C.W. Bauschlicher Jr., J. Chem. Phys., 92, 1876 (1990).
b) M. Rosi and C.W. Bauschlicher Jr., J. Chem. Phys., 90, 7264 (1989).

APPENDIX A

APPENDIX A

ELECTRONIC STRUCTURE THEORY:

TECHNIQUES

INTRODUCTION

This appendix is included to briefly illustrate and discuss those quantum mechanical techniques used throughout this work. It is not intended to be a rigorous and complete study, but rather a general outline with the appropriate references. The systems of interests are small molecules and techniques useful in their analysis will be discussed. In particular self consistent field ${ }^{1,2}(\mathrm{SCF})$ and some higher order techniques will be discussed. ${ }^{3-6}$ All reported calculations of molecular structure are of the ab-initio type. This means all results are from first principles without resort to experimental evidence with the exception of the nuclear charge. The electronic structure of molecules can be interpreted as the distribution of electrons in a system whose atoms are physically close enough to experience significant and, often, non-classical interactions. These interactions are generally in addition to the "classical" interactions of electrostatics and magnetostatics, and result specifically from the small physical sizes and distances. An example of such interactions would be the formation of bonds.

The fundamental equation used throughout this thesis is the Schroedinger equation 7 (wave mechanics)

$$
\mathcal{H} \Psi=i \hbar \frac{\partial}{\partial t} \Psi
$$

and its equivalent Heisenberg formulation ${ }^{7}$ (matrix mechanics) where \mathcal{H} is the hamiltonian and Ψ is called the wavefunction. Ψ represents all the characteristics of the system. In general, both \mathcal{H} and Ψ have an explicit time dependence.

HAMILTONIAN

The hamiltonian is an operator that contains all the possible interactions upon the system and in an isotropic and homogenous space its eigenvalues may be identified with the total energy. 8 If the hamiltonian contains no "explicit" time dependence, e.g., impinging electric fields, the time dependence may be separated out and for stationary states 7 may be ignored. This is done, for example, by application of an integrating factor. When the time dependence has been separated out the Schroedinger equation reduces to

$$
\mathscr{H} \Psi=\mathrm{E} \Psi
$$

where E is the total energy of the system represented by the wavefunction, Ψ, and is the response to the actions contained in the hamiltonian \mathcal{H}. The energy is a constant.

The hamiltonian operator for any atomic or molecular system may be written as
$\mathcal{H} \equiv-\sum_{i=1}^{n} \frac{1}{2} \nabla_{i}{ }^{2}-\sum_{k=1}^{\lambda} \frac{1}{2 M_{k}} \nabla_{k}{ }^{2}+\sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{r_{i j}}+\sum_{k=1}^{\lambda} \sum_{p>k}^{\lambda} \frac{Z_{p} Z_{k}}{R_{k p}}-\sum_{i=1}^{n} \sum_{k=1}^{\lambda} \frac{Z_{k}}{r_{i k}}+\mathcal{Y}(t)$

Here $\mathbf{r}_{\mathbf{i}}$ denotes the coordinates of the $\mathbf{i}^{\mathbf{t}}$ electron, $\mathbf{R}_{\mathbf{k}}$ denotes the $k^{\text {th }}$ nuclear coordinate and Z_{k} the $k^{\text {th }}$ nuclear charge. The terms ${ }^{9}$ $-\frac{1}{2} \nabla_{i}{ }^{2}$ and $-\frac{1}{2 \mathrm{M}_{\mathrm{k}}} \nabla_{\mathrm{k}}{ }^{2}$ represents the kinetic energy of the $\mathrm{i}^{\text {th }}$ electron and $\mathbf{k}^{\text {th }}$ nucleus, respectively. The masses are in atomic units (au) with m_{e} (the electron mass) =1 au. $10 \frac{1}{r_{i j}}, \frac{Z_{p} Z_{k}}{R_{k p}}$, and $\frac{Z_{k}}{r_{i k}}$ represent the electron-electron, nuclear-nuclear and electron-nuclear coulomb interactions, respectively, and $\mathcal{V}(t)$ contains all other possible interactions, e.g., multipole, relativistic, and external fields.

The typical electronic structure calculation begins by eliminating all presumably irrelevant or negligible terms from the hamiltonian. Since most molecular calculations are for determination of quantities relative to the separated atoms or fragments, e.g., bond energies, many interactions common to both the molecular and atomic regimes cancel out and can be ignored. This often means relativistic terms are not included. The remaining hamiltonian becomes
$\mathcal{H} \equiv-\sum_{i=1}^{n} \frac{1}{2} \nabla_{i}{ }^{2}-\sum_{k=1}^{\lambda} \frac{1}{2 M_{k}} \nabla_{k}{ }^{2}+\sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{r_{i j}}+\sum_{k=1}^{\lambda} \sum_{p>k}^{\lambda} \frac{Z_{p} Z_{k}}{R_{k p}}-\sum_{i=1}^{n} \sum_{k=1}^{\lambda} \frac{Z_{k}}{r_{i k}}$.

The analytical solution of $\mathscr{H} \Psi=E \Psi$ would yield the exact electronic structure of any non-relativistic, gas-phase molecular system. Unfortunately, this expression is impossible to solve directly. A still further approximation is the Born-Oppenheimer ${ }^{1,2}$ (BO) approximation. Here the nuclear motion is presumed to be infinitely slow, relative to the electrons, allowing the electron distribution to be
optimal for all geometries. This adiabatic ${ }^{11}$ approximation assumes the nuclear and electronic motions are, essentially, independent of one another and that the wavefunction can, therefore, be written as a product of terms, viz.,

$$
\Psi(\{r\} ;\{R\}) \Phi(\{R\})
$$

Ψ represents the electronic wavefunction and is a function of the set of electron coordinates, $\{r$, and the set of geometry parameters, $\{R\} . \Phi(\{R\})$ is a nuclear function describing the vibrations and rotations of the system. This adiabatic approximation is useful but can fail for even fairly small systems. ${ }^{12}$ The BO approximation is further simplified with the clamped-nuclei ${ }^{10}$ approximation where the kinetic energy of the nuclei is set identically to zero. The hamiltonian under these conditions becomes.

$$
\begin{equation*}
\mathcal{H} \equiv-\sum_{i=1}^{n} \frac{1}{2} \nabla_{i}{ }^{2}+\sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{r_{i j}}+\sum_{k=1}^{\lambda} \sum_{p>k}^{\lambda} \frac{Z_{p} Z_{k}}{R_{k p}}-\sum_{i=1}^{n} \sum_{k=1}^{\lambda} \frac{Z_{k}}{r_{i k}} \tag{1}
\end{equation*}
$$

and the Schroedinger equation becomes $\mathscr{H} \Psi=E \Psi$ where E is now a function of the nuclear geometry, i.e., $E=E(\{R\})$ or simply $E(R)$. This hamiltonian is that typically used in theoretical studies of isolated molecules and results in the notion of a potential curve.

115

In the above example, the total energy, $\mathrm{E}(\mathrm{R})$, is plotted relative to a nuclear coordinate. The lowest energy ($\mathrm{E}_{\mathrm{min}}$) is relative to the given coordinate while the asymptotic region corresponds to the separated atom limit (E_{∞}). The electronic dissociation energy (D_{e}) is defined as $D_{e}=E_{\infty}+E_{\text {min }}$

The hamiltonian, \mathcal{H}, contains one and two body interactions. The one body interactions are simply the hamiltonians for a oneelectron system, viz

$$
-\sum_{i=1}^{n} \frac{1}{2} \nabla_{i}{ }^{2}-\sum_{i=1}^{n} \sum_{k=1}^{\lambda} \frac{Z_{k}}{r_{i k}}
$$

These hamiltonians have analytical solutions which are known. 10 The electron-electron terms, $\sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{r_{i j}}$, are two body interactions describing the inter-electron (Coulomb) forces. The two body nuclear-nuclear interactions, $\sum_{k=1}^{\lambda} \sum_{p>k}^{\lambda} \frac{Z_{p} Z_{k}}{R_{k p}}$, are by construction a parameter of the electronic wavefunction and so may be excluded from the hamiltonian and simply specified for a given molecular
geometry. The electronic hamiltonian, \mathcal{H}_{e}, is written as the sum $\mathcal{H}_{\mathrm{e}} \equiv$ $f(1)+g(1,2)$ where $f(1)$ contains the hydrogenic (one body) terms and $\boldsymbol{g}(1,2)$ the (two body) electron-electron repulsion terms. For a hamiltonian in this form the total electronic (BO) energy may be written as

$$
\begin{equation*}
\mathrm{E}(\mathrm{R})=\mathrm{E}_{\mathrm{e}}+\sum_{\mathrm{k}=1}^{\lambda} \sum_{\mathrm{p}>\mathrm{k}}^{\lambda} \frac{\mathrm{Z}_{\mathrm{p}} \mathrm{Z}_{\mathrm{k}}}{\mathrm{R}_{\mathrm{kp}}} \tag{2}
\end{equation*}
$$

where E_{e} is the solution of $\mathcal{H}_{\mathrm{e}} \Psi=\mathrm{E}_{\mathrm{e}} \Psi$ and the nuclear-nuclear terms are added to the total energy ad-hoc. Unless otherwise specified, the nuclear-nuclear terms will be assumed folded into the total energy for the remainder of this discussion.

CONSTRUCTION OF THE WAVEFUNCTION

The electronic hamiltonian, \mathcal{H}_{e}, contains all the information of the molecular system under study. If the electronic Schrodinger equation, $\mathscr{H}_{\mathrm{e}} \Psi=\mathrm{E}_{\mathrm{e}} \Psi$, could be solved (or equivalently the hamiltonian matrix diagonalized) the wavefunction Ψ would tell us the exact electronic distribution and energy, the excited states, and allow us to determine the equilibrium geometry. Unfortunately this cannot be directly done. The inability to solve the Schrodinger equation is caused by the two-body electron-electron terms in the hamiltonian.

If, for example, $\boldsymbol{g}(1,2)$ were zero and electron spin were not considered, $\mathcal{H}_{e} \Psi=\mathrm{E}_{\mathrm{e}} \Psi$ would become

$$
\left(-\sum_{i=1}^{n} \frac{1}{2} \nabla_{i}{ }^{2}-\sum_{i=1}^{n} \sum_{k=1}^{\lambda} \frac{Z_{k}}{r_{i k}}\right) \Psi=E_{e} \Psi
$$

and the exact solution (Ψ) would be a simple product of hydrogenic wavefunctions of the form

$$
\Psi=\left(\phi_{1}(1) \phi_{2}(2) \ldots \phi_{n}(n)\right)
$$

This is a rigorous result with ϕ an atomic or molecular orbital (MO). In this example, the spin-less electrons move independently of one another. Obviously, this approximation does not describe the electron correlation effects known to be important to most molecules. The addition of the $g(1,2)$ term allows for electron motion that is correlated, but also precludes an analytic solution. Since the hamiltonian of interest cannot be solved, the solution must be approximated in some way.

The energy of the Schrodinger equation, $\mathcal{H}_{\mathrm{e}} \Psi=\mathrm{E}_{\mathrm{e}} \Psi$, can be expressed as

$$
\mathrm{E}=\frac{\langle\Psi| \mathcal{H}_{\mathrm{e}}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Where the bra-ket notation stands for

$$
\langle\Psi| \mathcal{H}_{e}|\Psi\rangle=\int \Psi * \mathcal{H}_{e} \Psi d \tau
$$

with integration assumed over all variables (τ) and over all space. Ψ^{*} means the complex conjugate of Ψ. The set of solution wavefunctions (Ψ in all of its possible states) are orthogonal and can be interpreted as vectors that span the space of the hamiltonian. ${ }^{7}$ As in a three dimensional coordinate system, it is desirable to have these independent and orthogonal vectors normalized. The normalization criterion for Ψ can be written as $\langle\Psi \mid \Psi\rangle=1$. For a normalized wavefunction, the energy expression becomes $\mathrm{E}=\langle\Psi| \mathcal{H}_{\mathrm{e}}|\Psi\rangle$ and is the integral form of the Schrodinger eigenvalue equation.

The hamiltonian operator is a Hermitian operator. 7 This property causes all eigenvalues to be real and equally important, that a variation principle ${ }^{1}$ applies. In particular, the variation principle states that for a function Φ used as an approximation to the exact function Ψ in the equation Eexact $=\langle\Psi| \mathcal{H}_{\mathrm{e}}|\Psi\rangle$, the energy $\mathrm{E}^{\Phi} \geq$ Eexact. This also means that if $\mathrm{E}^{\Phi}=\mathrm{E}^{\text {exact }}$ then $\Phi=\Psi$. This suggests that if an arbitrary trial function (with the proper asymptotic and topological behavior) were selected and the energy (Etrial) computed we would obtain Etrial \geq Eexact. This affords a technique for determining the true wavefunction of a species. In essence we can select a function, calculate the energy, select a new function and calculate its energy and compare the two. The function yielding the lower energy is closer to the true function.

The intrinsic spin of electrons is an experimental fact and must be incorporated into any wavefunction containing electrons. Moreover, statistical theories ${ }^{13}$ of identical particles indicate that wavefunctions comprised of bosons (zero or integer spin particles) must be symmetric upon the interchange of particle coordinates
(including spin coordinates) while a wavefunction comprised of fermions (e.g., electrons) must be anti-symmetric upon coordinate interchange. This intrinsic requirement for electrons is called the Pauli exclusion principle ${ }^{1,10}$ and has profound effects on the electronic structure of molecules. In essence, this theory prevents two identical electrons from occupying the same region of space at the same time and is responsible for electron correlation in addition to the usual Coulomb repulsions. This requirement must also be incorporated into any electronic wavefunction. Noteworthy is that a spin based mechanics is not unique. A completely spin free quantum mechanical approach has been developed by Matsen 14 using permutation operators.

The hamiltonian, \mathcal{H}_{e}, contains two terms; $\boldsymbol{f}(1)$ and $\boldsymbol{g}(1,2)$. The necessary spin conditions, not part of this hamiltonian, must be incorporated into the wavefunction ad-hoc and are justified only in the usefulness of the results. The inclusion of spin into the wavefunction is often done with spin-orbitals. ${ }^{2,10} \mathrm{We}$ assume the motion of each electron is represented by a spatial function, ϕ, with a spin of $1 / 2$ au and a spin projection in either the up (α) or down (β) directions. The complete function for the $\mathrm{i}^{\text {th }}$ electron is then written as $\phi(i) \alpha$ or $\phi(i) \beta$ with $\langle\alpha \mid \alpha\rangle=\langle\beta \mid \beta\rangle=1$ and $\langle\alpha \mid \beta\rangle=0$. $\phi(i)$ will be considered a spin function (orbital) unless otherwise specified. The final wavefunction must now satisfy the statistics of fermions, viz, the Pauli principle. If the wavefunction were simply a product of spatial functions this property can be introduced by means of a Slater determinant. ${ }^{10}$ Written in this way, the function is always antisymmetric upon coordinate interchange. In particular, for an n -
electron normalized wavefunction comprised of the spin orbitals, ϕ, the Slater determinant becomes

$$
\Psi \approx \frac{1}{N!}\left[\begin{array}{l}
\phi_{1}(1) \phi_{1}(2) \ldots \phi_{1}(n) \\
\phi_{2}(1) \phi_{2}(2) \ldots \phi_{2}(n) \\
\cdot \\
\cdot \\
\cdot \\
\phi_{n}(1) \\
\phi_{n}(2)
\end{array}\right] . \phi_{n}(n) ~\left[\begin{array}{l}
\text {. }
\end{array}\right]
$$

where the brackets indicate a determinant expansion. This wavefunction is often more succinctly expressed as Ψ $\approx \mathcal{A}\left(\phi_{1}(1), \phi_{2}(2) \ldots \phi_{n}(n)\right)$, where only the diagonal terms of the determinant are displayed and \mathcal{A} is called the antisymmetrizing operator. Finally, the energy for the molecular system using a Slater determinant wavefunction becomes

with the total energy computed as

$$
\begin{equation*}
E=\sum_{i=1}^{n}\left\langle h_{i}\right\rangle+\sum_{i=1>j}^{n}\left(2 J_{i j}-K_{i j}\right) . \tag{3}
\end{equation*}
$$

< $\mathrm{h}_{\mathrm{i}}>$ is the one electron energy, J_{ij} is the coulombic energy between electrons \mathbf{i} and \mathbf{j} and K_{ij} is the non-classical exchange energy between electrons \mathbf{i} and \mathbf{j}. This can be equivalently written as

$$
\begin{equation*}
E=\sum_{i=1}^{n}\langle i \mid i\rangle+\sum_{i=1>j}^{n}(2<i j|i j\rangle-\langle i j \mid j i\rangle) \tag{4}
\end{equation*}
$$

where $<\mathrm{ij} \mathrm{I} \mathrm{ij}>\mathrm{is}$ the coulomb energy and $<\mathrm{ij} \mid \mathrm{ji}>$ the exchange energy. This notation implies a specific electron order. In particular, for the coulomb energy

$$
\langle\mathrm{ij} \mid \mathrm{ij}\rangle=\int \frac{\mathrm{dv}(1) \mathrm{dv}(2) \phi_{\mathrm{i}}(1) \phi_{\mathrm{j}}(2) \phi_{\mathrm{i}}(1) \phi_{\mathrm{j}}(2)}{\mathrm{r}_{12}}
$$

while for the exchange energy

$$
\langle\mathrm{ij} \mid \mathrm{ji}\rangle=\int \frac{\operatorname{dv}(1) \operatorname{dv}(2) \phi_{\mathrm{i}}(1) \phi_{\mathrm{j}}(2) \phi_{\mathrm{j}}(1) \phi_{\mathrm{i}}(2)}{\mathrm{r}_{12}}
$$

Using the hamiltonian, the variation and the pauli-exclusion principles, the approximate wavefunction for a molecular system may now be obtained. First, if the two-body hamiltonian term, $\boldsymbol{g}(1,2)$, were small relative to the $\boldsymbol{f}(1)$ term, the n -electron wavefunction would be almost an antisymmetrized product of spin orbitals (MOs), i.e.,

$$
\text { or simply } \mathcal{A}\left(\phi_{1}(1), \phi_{2}(2) \ldots \phi_{n}(n)\right) .
$$

The form of these orbitals is not yet specified. The total energy is now a function of the unknown orbitals $\mathrm{E}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$. The variation principle states that the lowest energy would be obtained with the exact function. This also implies that with the orbital wavefunction model (Independent Particle Model or IPM) the lowest energy will be obtained when the best orbitals are selected for Ψ. There are many ways to select these orbitals, but the best way to begin is with the Hartree-Fock ${ }^{1,2}$ (HF) method.

The HF method begins with the expression

$$
E^{\text {trial }}=\left\langle\mathcal{A}\left(\phi_{1}(1), \phi_{2}(2) \ldots \phi_{n}(n)\right)\right| \mathcal{H}_{e}\left|\mathcal{A}\left(\phi_{1}(1), \phi_{2}(2) \ldots \phi_{n}(n)\right)\right\rangle .
$$

We then perform a functional derivative of E with respect to the orbitals and set them equal to zero.

$$
\frac{\partial E}{\partial \phi_{n}}=0
$$

This expression will be satisfied when the orbitals, ϕ_{n}, are the optimum orbitals. The constraints on this equation are that $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}$ and that variations in the orbitals themselves are orthogonal to all orbitals $\left(\left\langle\delta \phi_{i} \mid \phi_{j}\right\rangle=0\right)$. This procedure results in the HF equation

$$
\mathcal{F} \phi_{\mathrm{i}}=\varepsilon_{i} \phi_{\mathrm{i}}
$$

where \mathcal{F} is the Fock operator, ϕ_{i} is the $\mathrm{i}^{\text {th }}$ optimized orbital and ε is the $\mathrm{i}^{\text {th }}$ Lagrangian multiplier ${ }^{9}$ often associated with the orbital (oneelectron) energy. Solution of this equation yields the best possible
orbitals within the given IPM ansatz. The Fock operator for a closed shell system of n electrons has the form:

$$
\mathcal{F} \equiv \mathcal{F}(1)+\sum_{\mathrm{j}=1}^{\frac{\mathrm{n}}{2}} 2 \mathcal{J}_{\mathrm{j}}(1)-\mathcal{K}_{\mathrm{j}}(1)
$$

$f(1)$ is called the one-electron operator and includes the kinetic energy of the electron and the interactions of this electron with all nuclei.

$$
f(1)=-\frac{1}{2} \nabla^{2}-\sum_{k=1}^{\lambda} \frac{Z_{k}}{r_{k}}
$$

$\mathcal{I}_{\mathrm{j}}(1)$ is called the coulomb operator and has the form

$$
J_{j}(1)=\int \frac{\operatorname{dv}(2) \phi_{\mathrm{j}}(2) \phi_{\mathrm{j}}(2)}{\mathbf{r}_{12}}
$$

$\mathcal{K}_{j}(1)$ is the exchange operator and has the form

$$
\mathcal{K}_{j}(1)=\int \frac{\operatorname{dv}(2) \phi_{j}(2) \mathcal{P}_{12} \phi_{j}(2)}{r_{12}}
$$

where \boldsymbol{P}_{12} is a permutation operator.
The orbitals, ϕ_{i}, are spatial orbitals. The explicit representation of the electron spin has been integrated out yielding the \mathcal{I}_{j} and \mathcal{K}_{j}
operators. The one electron energy is obtained from the HF equation as

$$
\left\langle\phi_{\mathrm{j}}\right| \mathcal{F}\left|\phi_{\mathrm{i}}\right\rangle=\varepsilon_{\mathrm{i}} \delta_{\mathrm{ij}}
$$

Both the \mathcal{I} and \mathcal{K} operators depend upon the solution orbitals ϕ_{j} and therefore the equation must be solved self consistently.

SCF EQUATION

The HF equations are coupled integro-differential equations. A numerical solution of these equations would yield the exact solution called the Hartree-Fock solution or the HF limit. The non-linear character of these equations makes a numerical solution very difficult to obtain. Moreover, the results could not be used to interpret the Chemistry of the system. A method amenable to larger molecules is the Self Consistent Field ${ }^{1,2}$ method (SCF). General mathematical theorems state that a function may be expanded into a complete set of basis functions so long as the global properties are the same. 9 For example, expansion into polynomials and exponentials are frequently used in chemical applications. More true than not, most equations used in the physical sciences tend to result from the expansion of an unknown function into something else, e.g., Hooke's law as a truncated power series expansion.

This technique is applied to the SCF approach by expanding the unknown orbitals, ϕ, into a set of basis functions (basis set). This discretizes the HF problem by specifying the form of the orbitals to
within some unknown parameters. These expansion coefficients are then to be determined self consistently. In particular we can expand the spatial orbital ϕ_{i} into m basis functions as

$$
\phi_{\mathrm{i}}=\sum_{\mu=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{i} \mu} \chi_{\mu}
$$

Where χ_{μ} is the $\mu^{\text {th }}$ basis function and $\mathrm{C}_{\mathrm{i} \mu}$, the expansion coefficient. Substituting the orbital expansions into the HF equation and writing it in a matrix form yields

$$
\mathbf{F C}_{\mathbf{i}}=\varepsilon_{i} \mathbf{S C}_{\mathbf{i}}
$$

Where C_{i} is an m component column vector containing the expansion coefficients, $\left(\begin{array}{r}\mathrm{C}_{\mathrm{i}} \\ \mathrm{C}_{\mathrm{i} 2} \\ \cdot \\ \cdot \\ \mathrm{C}_{\mathrm{im}}\end{array}\right) \varepsilon$ is the one-electron energy, S is the
(non diagonal) basis function overlap matrix, $\left(\begin{array}{llll}\chi_{11} & \chi_{12} & \ldots & \chi_{1 \mathrm{~m}} \\ \chi_{21} & \chi_{22} & \ldots & \chi_{2 \mathrm{~m}} \\ \dot{\chi_{\mathrm{m} 1}} & \chi_{\mathrm{m} 2} & \ldots & \chi_{\mathrm{mm}}\end{array}\right)$
and, \mathbf{F}, is the Fock matrix with the elements $\left\langle\chi_{\mathrm{m}}\right| \mathcal{F}\left|\chi_{\mathrm{m}^{\prime}}\right\rangle$.

The solution of the HF equation yields the optimized orbitals in terms of $\mathbf{C}_{\mathbf{i}}$. These orbitals may then be used to compute the total energy.

Specifically, the complete set into which the orbitals are expanded must be of infinite size. This is not possible in practice and so a finite size basis is selected. The truncation of the basis set causes the energy to increase relative to the HF solution. This deviation can
be minimized by judicious choice of type and size of the basis set. Many basis functions have been examined but the Guassian Type Functions (GTF) have found the greatest use. ${ }^{15}$ The use of GTF's and the algebraic solution to the electron integrals (< $\mathrm{ij}|\mathrm{ij}\rangle$) was first outlined by Boys. ${ }^{16}$ In the GTF expansion, functions of the form $\mathrm{C}_{\mathbf{i}} \mathrm{N}_{\mathrm{i}}$ rng $\operatorname{EXP}\left(\alpha_{i}{ }^{2}\right)$ are used to approximate the orbitals. Parameters in these basis functions are the exponents (α_{i}) which are selected and the expansion coefficients ($\mathrm{C}_{\mathbf{i}}$) which are to be determined in the SCF calculation. N_{i} is a normalization constant and r^{ng} is used to ensure the proper radial behavior. The basis functions only depend upon the radial coordinate (r). The angular coordinates are used to partition the Fock matrix into symmetry blocks 7,9 and to select which basis functions can be combined together. They do not explicitly enter the numerical stage of the calculation. GTF functions have been tabulated for most of the atoms, and procedures for extending these basis sets to the molecular environment have been outlined. 15

EXTENSIONS

The SCF procedure is a useful and often applied technique in the determination of molecular structure. It is especially useful for systems with a closed shell structure (all orbitals doubly occupied) and that contain no transition metals. SCF theories cannot model the dissociation of bonds nor other structural correlations important to most systems. Moreover, for transition metal systems with low lying excited states, the SCF can not include the important near degeneracy
effects. There are several methods for extending beyond the SCF method. These variational techniques are based upon the same general idea.

The SCF calculation starts with a single-determinant wavefunction occupied with n electrons. The orbitals are expanded into m basis functions with usually $n<m$. Since we expand the orbitals into m basis functions and only (at most) n are occupied, there are m-n unoccupied "orbitals" left over. These are called virtual orbitals. Extensions to the SCF procedure use these orbitals to include correlation in molecular problem. Instead of using a single SCF determinant wavefunction, we start with a wavefunction consisting of many determinants. In these calculations all functions must carry the correct spin and angular momentum, and while a single determinant may not have the correct symmetry, several taken together might. A collection of determinants in this way is called a configuration state function (CSF). Computationally, however, the programs can often optimize the wavefunction using either CSFs or determinants. The additional determinants (configurations) are constructed by "exciting" one or more electrons in the SCF wavefunction to virtual orbitals. For example in a system of n electrons populating n orbitals and m basis functions with (m-n) virtual orbitals we can create an "excited" determinant in the following way:
$\Psi \operatorname{SCF}=\mathcal{A}\left(\phi_{1}(1), \phi_{2}(2) \ldots \phi_{n}(n)\right) \rightarrow \Psi^{*}=\mathcal{A}\left(\phi_{1}(1), \phi_{n+1}(2) \ldots \phi_{n}(n)\right)$

Where now electron 2 occupies the $(n+1)^{\text {th }}$ orbital (virtual). This is an example of a single excitation. Multiple simultaneous excitations may also be included. The maximum excitation level is dictated by the number of electrons and the size of the basis set. A typical wavefunction with single, double, etc. excitations is shown below.

$$
\Psi=\Psi_{S C F}+\sum_{i} C_{i} \psi_{i}+\sum_{i j} C_{i j} \Psi_{i j}+\sum_{i j k} C_{i j k} \Psi_{i j k}+\ldots
$$

The wavefunction, Ψ, is an expansion in terms of electron excitation level with (typically) the SCF determinant as the first and usually dominant term. The initial function from which excitations are taken is often called the reference space. The additional determinants reflect the level of excitation: 1, 2, or 3 electrons, etc. These excitations can be as few as 2 up through the number of electrons in the system.

The selection of these additional determinants and choice in orbitals (MOs), called the one particle basis, is what generally distinguishes the different available ab-initio techniques. Configuration Interaction ${ }^{3,4}$ (CI), Generalized Valence Bond ${ }^{7}$ (GVB), Coupled Cluster ${ }^{17}$ (CC), etc. techniques are theoretically different procedures for adding determinants to the wavefunction. Many of these techniques require previously determined MOs from which these determinants are constructed. The variation principle is then used to optimize the expansion coefficients.

The Multiconfigurational SCF 5 (MCSCF) technique is a procedure for optimizing the expansion coefficients and the orbitals
themselves. In practice the MCSCF requires fewer determinants relative to the CI for a given accuracy. In the limit of an infinite basis set and full excitations (all electrons) the MCSCF $=\mathrm{CI}$. The inclusion of correlation is not limited to adding determinants. The success of the GVB technique is that while multiple determinants are included, the orbital basis is not initially orthogonal but can be transformed to an orthogonal set. This allows the GVB to carry fewer determinants while still properly describing important correlations in a molecule. Some workers use an orbital basis that is non-orthogonal. 18

The studies performed in this thesis typically began with a MCSCF calculation. This calculation is relatively compact with only a few determinants selected and allows an interpretation in terms of orbitals. The energetics were computed with a MCSCF $+1+2$ function. In this configuration interaction calculation, the first term in the wavefunction expansion is not the SCF determinant but the manydeterminant MCSCF (MCSCF reference space). All single and double excitations into excited MCSCF configurations were then selected. Finally, the GVB+1+2 calculations were constructed from all single and double excitations from a GVB reference space.

REFERENCES

REFERENCES

1. A.Szabo and N.S. Ostlund, "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory", Macmillan Pub. Co., Inc., New York, N. Y., 1982.
2. H.F. Schaefer III, "The Electronic Structure of Atoms and Molecules", Addison-Wesley Pub. Co., Reading, Mass., 1972.
3. I. Shavitt, "The Method of Configuration Interaction" in "Methods of Electronic Structure Theory", edited by H. F. Schaefer III, Plenum Press, New York, 1977.
4. A.C. Wahl and G. Das, "The Configuration Self Consistent Field Method" in "Methods of Electronic Structure Theory", edited by H. F. Schaefer III, Plenum Press, New York, 1977.
5. a) R. Shepard, "Ab-Initio Methods In Quantum Chemistry II," Advances in Chemical Physics, edited by K. P. Lawley, Wiley, New York, 1987.
b) T.H. Dunning, Jr., "Multiconfigurational Wavefunctions for Molecules: Current Approaches" in "Methods of Electronic Structure Theory", edited by H. F. Schaefer III, Plenum Press, New York, 1977.
6. a) F.W. Bobrowicz and W.A. Goddard III, "The Self Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree-Fock Wavefunctions" in "Methods of Electronic Structure Theory", edited by H. F. Schaefer III, Plenum Press, New York, 1977.
b) W.A. Goddard III, T. H. Dunning, Jr., W. J. Hunt, P. J. Hay, Acc. Chem. Res., 6, 368, (1973).
c) W.A. Goddard III, L. B. Harding, Ann. Rev. Phys. Chem., 29, 363, (1978).
7. E. Merzbacher, "Quantum Mechanics", 2nd. ed., John Wiley and Sons, New York, 1970.
8. J.B. Marion, "Classical Dynamics of Particles and Systems", 2nd. ed., Academic Press, Inc., New York, 1970.
9. G. Arfken, "Mathematical Methods for Physicists", 3rd. ed., Academic Press, New York, 1985.
10. I.N. Levine, "Quantum Chemistry", 2nd. ed., Allyn and Bacon, Inc., Boston, 1974.
11. a). F.T. Smith, Phys. Rev., 179, 111, (1969).
b). L.S. Cederbaum and H. Koppel, Chem. Phys. Let., 87, 14, (1982).
12. a) A.S. de Meras, M-B. Lepetit and J. P. Malrieu, Chem. Phys. Let., 172, 163, (1990).
c) L.R. Kahn and P.J. Hay, J. Chem. Phys., 61, 3530, (1974).
d) H.J. Werner and W. Meyer, J. Chem. Phys., 74, 5802, (1981).
13. D.A. McQuarrie, "Statistical Mechanics", Harper and Row, New York, 1973.
14. a) F.A. Matsen, Adv. Quantum Chem., 1, 59 (1964).
b) F.A. Matsen, J. Am. Chem. Soc., 22, 3525 (1970).
15. a) K. Faegri, Jr., H.J. Speis, J. Chem. Phys., 86, 7035 (1987) .
b) B.H. Botch, T.H. Dunning, Jr. and J.F. Harrison, J. Chem. Phys., 75, 3466, (1981).
c) P.J. Hay, J. Chem. Phys., 66, 4377, (1977).
d) R.D. Bardo and K. Ruedenberg, J. Chem. Phys., 60, 918, (1974).
e) R.D. Bardo and K. Ruedenberg, J. Chem. Phys., 59, 5966, (1972).
f) R.D. Bardo and K. Ruedenberg, J. Chem. Phys., 59, 5956, (1973).
g) T.H. Dunning, Jr., J. Chem. Phys., 53, 2823, (1970).
h) T.H. Dunning, Jr. and P.J. Hay, "Guassian Basis Sets for Molecular Calculations" in "Methods of Electronic Structure Theory", edited by H. F. Schaefer III, Plenum Press, New York, 1977.
16. S.F. Boys, Proc. Roy. Soc. (London), A200 ,542, (1950).
17. a) W.D. Laidig and R.J. Bartlett, Chem. Phys. Let., 104, 424, (1984).
b) R.J. Bartlett, J. Phys. Chem., 23, 1697, (1989).
18. L. Noodelman and E.R. Davidson, Chem. Phys., 109, 131 (1986).

APPENDIX B

APPENDIX B

LISTING OF PUBLICATIONS

Included here is a listing of publications resulting from this dissertation.

1. "The Electronic and Geometric Structures of Products of the $\mathrm{Sc}^{+}+\mathrm{H}_{2}$ S Reaction" J. L. Tilson and J. F. Harrison, J. Phys. Chem., 96,1667, (1992).
2. "The Electronic and Geometric Structures of Products of the $\mathrm{Sc}^{+}+\mathrm{H}_{2} \mathrm{O}$ Reaction" J. L. Tilson and J. F. Harrison, J. Phys. Chem., 25,5097, (1991).
3. "The Electronic and Geometric Structures of ${ }^{+} \mathrm{ScSe}$ and ${ }^{+} \mathrm{ScSeH}^{\prime}$ J. L. Tilson and J. F. Harrison, accepted J. Phys. Chem.

[^0]: Table 4: Valence ${ }^{+} \mathrm{ScSe}(\mathrm{H})$ MCSCF orbital populations at equilibrium

