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ABSTRACT

DISSIPATIVE QUANTUM TUNNELING OF A SINGLE

DEFECT IN A SUBMICRON Bi WIRE BELOW 1 K

By

Kookjin Chun

The quantum mechanical problem of a particle tunneling in a

double-well potential is of great theoretical and experimental interest.

Interaction of the tunneling system with a dissipative environment can

have a striking effect on the tunneling dynamics. A very interesting

case is that of ohmic dissipation, which occurs when an atom tunnels in

a metal in the presence of conduction electrons.

We have studied the electrical resistance of submicron Bi wires at

low temperature. Due to quantum interference of the conduction

electrons, the resistance is highly sensitive to the motion of even a

single scattering center. We observe discrete switching of the

resistance due to the motion of bistable defects in the sample. We have

measured the tunneling rates of a particular defect over the temperature

range 0.1-2 K and magnetic field range 0-7 T. The energy asymmetry, s,

of this defect varied over the range 40-420 mK depending on the value of

the magnetic field. The temperature dependence of the tunneling rates

is qualitatively different for the cases kBT<<8 and kBT>>£ . We

observe that for kBT <<£ , the fast rate (transition rate from upper

state to lower state) is roughly temperature independent and the slow

rate (transition from lower state to upper state) decreases



exponentially, as expected from a simple picture of spontaneous emission

and stimulated absorption. When k375>>t£, however, both rates increase

as the temperature is lowered, as predicted by dissipative quantum

tunneling theory. We fit our data to the theory and discuss the defect-

electron bath coupling parameter (I, and the renormalized tunneling

matrix element Ar

We have also studied the effect of Joule heating on the dynamics

of the defect in the same sample. The ratio of the fast and slow

transition rates of a defect depends on temperature through the detailed

balance relation, 7f/)g==edhr. We interpret this ratio as a local

thermometer. When E/kb75>l, this ratio is sensitive to small changes

in the temperature T'seen by the defect. since the defect is strongly

coupled to the conduction electrons in the sample below 1 K, we

interpret its sensitivity to drive current as an indication of electron

heating. As the drive current increases, the defect temperature

approaches a power law dependence with the drive current, independent of

the nominal lattice temperature. The data are consistent with a simple

model of heating, and strong thermal coupling between the defect and the

electron bath. We also tried to measure the electron temperature

directly, based on the temperature dependence of the amplitude of the

resistance fluctuations, 5R. Since 5R depends only on the electron

temperature, we expected 5R would serve as a good electron thermometer.

The electron thermometer does not follow the simple heating model.

H



To my dearest wife Young Ae and my children, James and Christine

III



ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Norman 0. Birge for

making my contribution to this research a remarkably cherishable and

enjoyable experience. His invaluable guidance and extraordinary

patience made this work much more fruitful and rewarding. I thank

Professors Michael Dubson, s. D. Hahanti, Daniel Stump and Horace Smith

for serving on my guidance committee. Special thanks go to Professor

Dubson for the use of his lithographic facilities for sample

fabrication.

The friendship and valuable help of fellow students was

indispensible. Paul Mcconville provided a lot of valuable effort on

this work and helped me with many discussions in performing the

experiment. Jeong Sun Moon is also acknowledged for his valuable

opinions about the experiment, and his cheerful personality.

I thank my family for continous aid and support, which I sometimes

take for granted. Special thanks go to my parents who have been

patiently waiting for this moment for a long time. Finally, I thank my

wife Young Ae, who has always been with me, giving invaluable support

both mentally and physically. Without her warm support and patience,

this moment would have never come to pass.

This work was supported by the National Science Foundation under

grant Dun-9023458.

IV



TABLE OF CONTENTS

1. Introduction........................................................................ 1

References...........................................................................6

2. Background and Theory..................................................... 7

2.1 Classical Transport........................................................ 7

2.2 Quantum Transport....................................................... 8

2.2.1 Universal Conductance Fluctuations (static).................... 9

2.2.2 Universal Conductance Fluctuations (dynamic)............... 11

2.2.3 Characteristic Magnetic Field Scale.............................. 14

2.3 Defect Dynamics.......................................................... 15

2.3.1 Defect Dynamics in Different Temperature Regimes......... 16

2.3.2 Theory of Dissipative Quantum Tunneling..................... 17

References.........................................................................23

3. Experimental Methods..................................................... 30

3.1 Sample preparation......................................................30

3.1.1 Optical Lithography.................................................. 31

3.1.2 Electron Beam Lithography........................................ 33

3.2 Electronics..................................................................38

3.3 Dilution Refrigerator...................................................40

3.4 Temperature Calibration ofThermometer.....................42

References.........................................................................44



4. Tunneling Dynamics of a Single Defect............................... 55

4.1 Time Trace ofa Single Fluctuator.....................................55

4.2 Data Analysis..................................................................56

4.2.1 Transition Time Histograms and Setting Comparator Levels..57

4.2.2 Debye-Lorentzian Fit to Power Spectrum and

Two Gaussian Fit to the Conductance Histogram..............59

4.3 Detailed Balance and Energy Asymmetry s ......................60

4.3.1 Magnetic Field Dependence of Energy Asymmetry.............60

4.3.2 Characteristic Field Considerations.................................61

4.4 Temperature Dependence ofTunneling Rates....................62

4.4.1 The Defect-Electron Bath Coupling Constant a, and

the Renormalized Tunneling Matrix Element Ar ...............63

4.4.2 Scaling Function........................................................67

References............................................................................69

5. Electron Heating Experiment.............................................. 86

5.1 Defect Temperature and Electron Temperature................ 86

5.2 Power Law Dependence of Defect Temperature

on Drive Current............................................................ 89

5.3 Attempt to measure Electron Temperature based on

Universal Conductance Fluctuations Theory....................94

References...........................................................................96

6. Summary............................................................................ 104



Appendices

A. 1/f noise spectrum.......................................................... 106

B. Thermometer Calibration in a magnetic field.................. 109

VII



LIST OF TABLES

Table 3.1 : The processing steps of optical lithography.

Table 3.2 : The processing steps of electron beam lithography (double layer

technique).

Table 4.1 : The values of a and A, determined from the fits with the different

magnetic fields.

VIII



LIST OF PUBLICATIONS

l. "Dissipative Quantum Tunneling of a Single Defect in Bi"; Kookjin Chun and

Norman 0. Birge, Phys. Rev. B 48, 11500 (1993)

2. "A Single Defect Thermometer as 3 Probe of Electron Heating in Bi"; Kookjin

Chun and Norman 0. Birge, submitted and accepted to Phys. Rev. B.

3. "Dissipative Quantum Turmeling of Defects in a Mesoscopic Metal"; Norman

0. Birge, Kookjin Chun, Glen B. Alers and Brage Golding, to appear in Physica

B, Proceedings of the 20th International Conference ofLow Temperature

Physics, Eugene, OR, August 1993.



LIST OF FIGURES

Figure 2.1 (a) shows a schematic diagram of scattering of electrons ofl‘ disorder.

Figure 2.1 (b) shows a simplified graph of resistivity versus temperature.

Figure 2.2 (a) shows a schematic diagram of the phase change of the electron

wavefunction due to a magnetic field.

Figure 2.2 (b) is a schematic diagram of phase shift due to the motion of a scatter.

Figure 2.3 (a) shows the resistance fluctuations as a function of magnetic field.

Figure 2.3 (b) is a schematic diagram of an autocorrelation function.

Figure 2.4 (a) illustrates thermal activation of a defect over the barrier.

Figure 2.4 (b) illustrates tunneling of a single defect between two ground states.

Figure 2.5 is a graphic expression of the probability fimction, P(t).

Figure 3.1 (a) is an SEM picture of sample and leads patterned by electron beam

lithography.

Figure 3.1 (b) is a schematic diagram of a five-terminal sample.

Figure 3.2 (a) is an SEM picture of the primary pads patterned by optical

lithography.

Figure 3.2 (b) is an SEM picture of a sample with secondary pads patterned by

electron beam lithography.

Figure 3.3 shows a schematic diagram of the profile of the wire shadow

technique.

Figure 3.4 shows a schematic diagram of the lithography "lift-oft“ process.

Figure 3.5 is a schematic diagram of the electron interaction volume.

Figure 3.6 (a) is an SEM picture of the profile of the etched area in a

PMMA/MMA bilayer.

Figure 3.6 (b) is a schematic diagram of the interaction volume in the bilayer.

Figure 3.7 shows a schematic diagram of the electronics for our experiment.

Figure 3.8 shows a simplied schematic diagram of the dilution refrigerator.



Figure 4.1 (a) shows a typical time trace of the conductance of the sample.

Figure 4.1 (b) shows two comparator level settings to analyze the time trace.

Figure 4.2 illustrates the fitting of a histogram to a single exponential to determine

the mean transition time.

Figure 4.3 shows a fit of a Debye-Lorentzian function to power spectrum data.

Figure 4.4 illustrates the two gaussian fitting to the distribution of raw of

conductance values, with the two peak values V,, V2 and standard

deviation 0'.

Figure 4.5 shows a plot of ln(rf / 7,) versus 1/ T for the four data sets, along with

linear fits through the origin.

Figure 4.6 shows the transition rates versus temperature at B = 0.14 T.

Figure 4.7 shows the transition rates versus temperature at B = 2.274 T.

Figure 4.8 shows the transition rates versus temperature at B = 2.286 T.

Figure 4.9 shows the transition rates versus temperature for B = 6.997 T.

Figure 4.10 shows the theoretical fits to the data at B = 6.997 T and B = 0.14 T.

Figure 4.11 shows the theoretical fits to the data at B = 2.286 T and B = 2.274 T.

Figure 4.12 is a plot of the values of a and Ar determined from the four fits,

plotted in the log(A,) versus a/ 1- a parameter space.

Figure 4.13 shows the plot y(T/ T0)"2" versus kBT/s, where 7;, = l K and a =

0.195.

Figure 4.14 shows two fits to the data at B = 6.997 T and B = 0.14 T, with the

least squares values of a, and with the global value of a from the

scaling fit.

Figure 4.15 shows two fits to the data at B = 2.274 T and B = 2.286 T, with the

least squares values of a, and with the global value of a from the

scaling fit.

Figure 5.1 shows a schematic diagram of energy flow in the sample.



Figure 5.2 shows In(y, / )9) versus 1/ T at B = 6.997 T,with no significant heating

of the sample.

Figure 5.3 shows the defect temperature versus drive current.

Figure 5.4 shows a fit of the Grabert function to the data at B = 6.997 T.

Figure 5.5 shows the increase of 6R with decreasing temperature due to universal

conductance fluctuations.

Figure 5.6 shows the electron temperature versus drive current.

Figure A. (a) shows a graph of a flat energy distribution.

Figure A. (b) show the corresponding frequency spectum.

Figure B. shows the fits of the calibration fimction to the carbon thermometer

data at different temperatures.

XII



Chapter 1

Introduction

The conduction electrons in a metal are scattered from lattice

vibrations, impurities and structural defects while traveling through

the sample, giving rise to the electrical resistance of the sample. At

high temperatures, the dominant scattering mechanism is the scattering

of the electrons from the lattice vibrations, which is inelastic

scattering. At low temperatures, on the other hand, the scattering is

from static impurities and lattice defects, which is elastic scattering.

Only recently it has been appreciated that these two types of scattering

mechanisms have fundamentally different effects on the resistance of

metals. Inelastic scattering destroys the quantum-mechanical phase

coherence of the electronic wavefunction, while elastic scattering does

not. Hence quantum interference phenomenon are important at low

temperature, when the phase coherence length, L , is longer than the

elastic mean free path, L. In particular, the exact spatial

configuration of the elastic scattering centers is important because the

interference of multiply scattered electrons depends on the locations of

[1'3]
the scatterers. since the electron wavefunction is phase-coherent

over the distance l., the electrical resistance can not be derived

simply by adding independently the contributions from all the defects

and impurities. Instead, the scattering amplitudes from different

trajectories interfere quantum-mechanically, so that the conductance



(inverse of the resistance) is due to the coherent sum of the

amplitudes.

The consequences of quantum interference are greatly enhanced in

mesoscopic samples, samples with dimensions comparable to [4. Such

samples have properties that differ drastically from those of the

"ensemble average".[4] The effects of quantum interference have been

widely observed in small samples with fixed impurity configuration at

low temperature. By varying a magnetic field, which causes the

interference to change in a complicated way, one observes time-

independent fluctuations of the conductance as a function of the

5

I 1 These conductance fluctuations are aperiodic andmagnetic field.

vary in detail between samples. For mesoscopic samples, the magnitude

of the conductance fluctuations is of order ez/h. The universality of

these fluctuations at low temperature has been confirmed in several

different metallic systems. This phenomenon is called ”universal

conductance fluctuations'.[1-3]

One of the most interesting predictions of the theory of the

universal conductance fluctuations is that the conductance of a

mesoscopic sample can be quite sensitive to the motion of a single

6-7

[ I In a very small sample the motion of a single defect canatom.

totally scramble the phase of the electron wavefunction and produce as

much conductance change as moving the entire configuration of defects.

For a weakly disordered one-dimensional or two-dimensional mesoscopic

sample, the magnitude of the conductance fluctuations is approximately

eZ/h. This dynamic feature of universal conductance fluctuations can

be used to study microscopic phenomena such as the dynamics of defects

8

in metals and their relationship to 1/f noise. It has been proposed[ 1



that l/f noise is caused by the linear superposition of a large number

of independent defect motions with a broad distribution of transition

rates.

The dynamics of such defects arises from two different mechanisms:

thermally activated hopping over the potential barrier at high

temperatures and quantum tunneling through the barrier at low

temperatures. At high temperatures, a defect in a double-well potential

hops back and forth between the two wells over the barrier. The

distribution of defect hopping rates is given from the broad

distribution of activation energies. As the temperature is lowered, the

defect dynamics will cross over to tunneling though the barrier.

When the temperature is lower than the vibrational energy in a

single-well, the defect motion is limited to the quantum tunneling

between the lowest levels in each well. In a metal, the defect

interacts strongly with the bath of conduction electrons, leading to

dissipative quantum tunneling.[9] The dissipation has three primary

influences on the tunneling dynamics: (1) the tunneling is an

incoherent rate process rather than a coherent oscillation between the

two wells (due to the strong coupling of the defect with electron bath);

(2) the tunneling matrix element is renormalized due to the interactions

with high-energy electron-hole excitations; and (3) the tunneling rates

can increase with decreasing temperature, in some circumstances. The

tunneling rates of a particular defect can be characterized by three

parameters: the energy asymmetry,8, which is the energy difference

between the ground states in the two wells, the renormalized tunneling

matrix element, A4! and the coupling constant between the defect and

the bath of electrons, an The energy asymmetry,8, for a single defect



[10] [11]

has been observed to vary with magnetic field , as predicted

based on local fluctuations in the electron density that occur in

disordered metals.

This thesis describes measurements of the dynamics of a single

defect in a submicron Bi wire over the temperature range 0.1 - 2.0 K.

The temperature dependence of the defect tunneling rates were measured

for several values of magnetic field up to 7 Tesla. The temperature

dependence of the tunneling rates shows excellent agreement with the

predictions of dissipative quantum tunneling theory for each value of

the magnetic field . Fits of the experimental tunneling rates to the

theory for each magnetic field yield values of 8, a and Ar as a

function of the magnetic field. The value of 8 varies randomly with

[10-11]

field, consistent with previous work. The question of whether (I

and Ar vary with magnetic field is more difficult to address

quantitatively, because the theoretical fits to the data depend only

weakly on a over the experimental temperature range. A scaling plot

[12]
shows that our data is consistent with the hypothesis that a and Ar

are independent of field for this defect, which was assumed in a

previous study.[12]

A study of the effect of Joule heating on the dynamics of the

defect is also included in the thesis. We measured the transition rates

of a single defect and the amplitude of the resistance fluctuations as a

function of the drive current for different lattice temperatures. The

ratio of the two transition rates of a defect depends on temperature

through the detailed balance relation, 7f/)Q==e“hr. We interpret this

ratio as a local thermometer at the defect site. since the defect is

strongly coupled to the conduction electrons in the sample below 1 K, we



interpret its sensitivity to drive current as an indication of electron

heating. The Joule heating data are consistent with a model of electron

13

I 1 However, we could not determine theheating studied previously.

absolute electron-phonon scattering rate from this experiment, due to

the sample geometry.

The organization of the thesis is as follows: Chapter 2 presents

the theoretical background necessary to understand the experiments;

Chapter 3 contains the details about the experimental techniques and

apparatus used in this work. Chapter 4 is the central part of the

thesis and illustrates the data-acquisition, analysis, and

interpretation in terms of the theory of dissipative quantum tunneling.

chapter 5 describes the effect of Joule heating on the defect dynamics

and its use as a local thermometer to study electron heating. The

thesis ends with a summary in Chapter 6.
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Chapter 2

Background and Theory

2.1 Classical Transport

The classical picture of electrical conduction in metals is based

on Drude theoryIl]. It is assumed that when atoms of a metallic element

are brought together to form a metal, the nuclei and the core electrons

bound to them form the immobile metallic ions, while the valence

electrons are allowed to wander freely through the metal. These

electrons, called conduction electrons, are responsible for the

conduction mechanism in metals. The disorder in the lattice gives rise

to electrical resistance. This disorder comes from vibrations of

lattice atoms, impurities and lattice defects. All of these cause

scattering of the conduction electrons, with a total scattering rate

l/‘t't =1/‘t,+l/z'¢. Here, I" is the elastic scattering time, i.e. the time

between collisions with the impurities and defects, while I} is the

inelastic scattering time, i.e. the time between inelastic scattering

events, such as electron-phonon and electron-electron collisions.

Figure 2.1 (a) illustrates the scattering of conduction electrons off

the lattice vibrations, impurities and defects.

In the presence of an applied electric field, the relationship

between the electric field.l§ at a point in the metal and the current

density j is j: 01‘], where o is the conductivity. From kinetic theory,

the current density is given as j==-nev, where n is the electron

carrier density. Assuming that an electron emerges from each scattering



event in a random direction, the average electronic velocity is

eEh'

=-———‘-, where e is the electron charge and m is its mass and

m

we

nezq
 

accordingly, j==[ )E. Equating the two expressions of j, one has

nezq
0': . The conductance is G: O'A/L, where A is the cross-sectional

m

 

area of the sample and L is the length. At high temperatures, inelastic

phonon scattering is the dominant scattering mechanism. As the

temperature decreases, 1} increases due to the decreasing rate of

electron-phonon collisions, but 1; remains finite, leading to a residual

nezr
C

conductance, G=O’0A/L, where 0'0: . Figure 2.1 (b) shows the

m

 

graph of resistivity versus temperature for a typical metal.

2.2 Quantum Transport

Drude theory has a questionable feature when applied to metals at

low temperature, since it treats elastic and inelastic scattering as

having equivalent effects on the conductivity. In a metal at

sufficiently low temperatures, one has to distinguish between the two

different scattering processes because the inelastic scattering time I}

exceeds the elastic scattering time 1; by several orders of magnitude.

In this regime, I; is called the "phase-breaking scattering time"

because an electron loses its phase coherence through inelastic

[2]
scattering events. Quantum interference , whose effect is neglected

in the classical picture, becomes important in a metallic sample

whenever the phase coherence length, I“, is longer than the elastic

mean free path, L. 14 is defined as the distance an electron can



diffuse elastically without undergoing an inelastic collision. It is

related to the phase-breaking time, I}, by the relation lv=adl)r ,

1

where D=§v,,1e is the diffusion constant and VF is the Fermi velocity.

Since the electronic wavefunction is phase-coherent over the distance

I“, the electrical resistance cannot be derived simply by adding

independently the scattering rates from all the defects and the

impurities. Instead, the amplitudes of multiply scattered waves from

different trajectories interfere quantum-mechanically, so that the

conductance is due to the coherent sum of the amplitudes. The effect of

quantum interference gives rise to quantum corrections to the electrical

conductance.[2]

The consequences of quantum interference are greatly enhanced in

mesoscopic samples where the sample size is comparable to [3. One

consequence of quantum interference on the length scale 14 is the

[3‘5]
phenomenon of "universal conductance fluctuations" to be described

below. These fluctuations can be observed by applying a magnetic field

to a metal sample or by the motion of scattering centers.

2.2.] Universal Conductance Fluctuations (static)

The application of a magnetic field is one way to change the

relative phases of the interfering electron waves, resulting in the

phenomenon of universal conductance fluctuationsl3]. Electron wave

functions enclosing a magnetic flux exhibit a phase shift introduced by

7

the magnetic vector potential A[ 1. Figure 2.2 (a) shows a schematic

diagram of the phase change due to the magnetic field. Consider the



10

complete trajectory A.—+ B -+ C —+ D -+.A, encircling the area through

which a magnetic flux penetrates. Electrons traveling along one

trajectory A.-+ B -+ C will acquire a phase change and electrons in the

other trajectory A.-+ D —+ C will experience a different phase change.

Changing the magnetic flux enclosed by these trajectories will tune the

e

phase change along one trajectory by an amount §1=— jA-dl and

A—+B—>C

e

5 =- IA-dl along the other trajectory. The phase tuning appears as

2 IAaDaC

a cycle of constructive and destructive interference of the wave

functions, the period of the cycle being ¢5==h/e. In a one-dimensional

ring in the mesoscopic size range with a flux ¢ithrough the hole, there

is coherent interference between the waves propagating through each arm

of the ring. The magnetic field changes the relative phase of the

contributions from each arm of the ring by an amount 27t¢/<D0, giving

rise to magnetoresistance fluctuations periodic in d5.

For a mesoscopic wire in a magnetic field, the electrons traveling

along the different paths acquire different phase changes from the field

because trajectories enclose different amounts of flux. Thus, variation

of the field causes the phase dependent contribution to the conductance

[8] of theto vary randomly, and gives rise to an aperiodic fluctuation

resistance. These conductance fluctuation phenomena are, therefore,

sample specific and aperiodic. The other unique feature of the

fluctuations is that they are time-independent and reproducible within a

given sample. These fluctuations have a universal magnitude 5Gze2/h

for samples with dimensions smaller than [1. The universal conductance

fluctuations induced by the field are static, and are called the

”magnetofingerprint".



11

2.2.2 Universal Congrctance Fluctuations(dynamic)

Another way to observe universal conductance fluctuations is to

change the locations of all of the scattering centers, i.e. the

impurities and defectslg-lo]. Figure 2.2 (b) is a schematic diagram of

the phase shift due to the motion of a single scatterer in the sample.

If the scatterer moves, it changes the phases of all the Feynman-like

paths that scatter from this scatterer, resulting in a conductance

change. For a disordered metal in the diffusive regime (i.e. when

Lg>e>L), multiple elastic scattering is very much like a random walk

process with a step size A. In quasi one-dimensional systems, each

Feynman path actually passes through a given site many times; therefore

the motion of a single scatterer will affect all the scattered paths and

accumulate sufficient phase shift to change the conductance by

5Gze2/h, as much as if all the scatterers are moved around. In two

dimensions the number of sites visited by each Feynman path that

traverses a sample of size L is of order (L/le)2. This means that a

finite fraction of all the Feynman paths pass through a site and the

motion of a single defect will alter the phase of all the paths passing

through that site. Thus, the motion of a scatterer induces a change in

the conductance that is typically a finite fraction of that induced by

the motions of all scatterers. In d22 dimensions, a fraction (.L/le)(2'd)/2

of the Feynman paths pass through a given site and the conductance

change is of order dGzezlh(L/Ic)(2'd)’2. The quantitative descriptions

10-11

are, respectively,[ 1

(1) 1-D (wire) case : 1 << szLy << L: < L, ;



12

 
._ 32.2 1 LA.

(501) —Q[h) (lg-[)2 a(kr=5r) L L

c x y

(2) 2-D (film) case : 1¢< Lx<< Ly: L,< L, ;

 (5(3)2=C 5: 2 1 a(k 6r) 1°-
! 2 h (kF 1c)2 F Lx

(3) 3-D (cubiC) case : I<<L : L = = L<L,;

(soy—C faiz——1—az(k6r)-"=—
"3 h (15.1,)2 F L

where C 's are constants of order unity which depends on dimensionality.

The function a(x)= l-sit‘12(JC/2)/(x/2)2 accounts for the phase shift due

to moving a scatterer a distance 6r. LJr , Ly , Lz , are thickness,

width and length, respectively.

If more than a single scatterer is moved within a single coherence

volume (i.e. a box of dimensions L,), the effect on the conductance

change is additive as long as 50b0, << eZ/h. Thus one has

(501m)2 = (5002 ”3(7) Vbox

where n,(T) is the density of moving scatterers within a single

coherence volume Vim. The magnitude of the conductance fluctuations is

reduced when kBT> 717:], due to "energy averaging”. At finite

temperature the incident electron distribution is smeared out over a

range kBT around the Fermi energy E . Therefore, the conductance is
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the sum of kBT”123' uncorrelated interference patterns, where htj' is

the energy over which the conductance fluctuations are correlated. The

conductance fluctuations are reduced in magnitude by (ital/ICED” due to

averaging over these kBT/ ht',‘ uncorrelated patterns. This process is

called energy averaging. In this case the expression of (50W)2 is

multiplied by the factor hzj'/kBT=L}/L2,, where L,=‘/hD/kBT is called

the thermal length. L, is the distance over which electrons differing

in energy by kBT become out of phase with each other.

If only one single defect is moving in a one dimensional sample of

size L,>L,, the conductance change is

(22)-}. 66..
G L, Gbox

One can extend this consideration to a two dimensional sample with

Ly, L, >L,. In this case, the conductance change is given as

[29): Li [50,.)
G LyL, Gbox

The total conductance G is related to Gbox by the sample geometry and

 

the standard rules for combining resistors in series and parallel. The

two results shown above can both be expressed as

L2

_ ¢
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For a large sample where all coherence volumes fluctuate, the

conductance fluctuations in the different coherence volumes are

statistically independent and one combines them classically to obtain

the conductance variance. Therefore

(19):}. _.s... 2
G N 0,,

X

where AV is the number of coherence boxes in the entire sample.

For a one dimensional or two dimensional sample with dimensions

comparable to l“, the motion of a single scatterer is sufficient to

yield a conductance fluctuation comparable to the universal magnitude,

eZ/h. The universal conductance fluctuations due to the motion of

scatterers are dynamic, in contrast to the static universal conductance

fluctuations observed as a function of magnetic field.

_._2.3 Characteristic Magnetic Field Scale

Figure 2.3 (a) shows a magnetofingerprint of a Bi sample with

dimensions 3 tan long, 0.15 ran wide, and 10 nm thick at 0.8 K. The

magnetofingerprint can be characterized by two quantities, the amplitude

of the conductance fluctuations and the characteristic magnetic field

scale. This can be seen most easily by calculating the autocorrelation

function:

C(AB) = (66(8) 6G(B + AB))
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where the bracket indicates an average over the magnetic field 13. A

schematic diagram of C(AB) is shown in Figure 2.3 (b). When AB=O,

the correlation function C(AB) is equal to the variance,<5G2 >. As

AB increases , the fluctuations in 56 will tend to vary randomly in

sign, and on average, the product will tend to zero at large AM}. The

magnetic field where C(AB) drops to half its maximum value is called

the "characteristic magnetic field scale", ta. la is the typical

spacing of the peaks and valleys in 50(3).

An estimate of It can be obtained by the following argument: the

largest areas between Feynman paths that interfere quantum-mechanically

are of order La. Putting half a flux quantum through that area will

totally alter the interference between those paths. Hence in a two

dimensional sample, B, as (Do / L2 .

2.3 Defect dynamics

If defects in the metal are mobile, they can cause conductance

fluctuations in time. The most commonly believed general mechanism for

1/ f noise in metals is that of defect motion. Such motions can be due

to thermal activation of defects at high temperatures, or to quantum

tunneling of defects through potential barriers at low temperatures.

[12]
Dutta, Dimon, and Horn (DDH) showed that low frequency 1/f noise in

metals over the temperature range 100 - 500 K could be explained as

arising from a distribution of thermally activated motions of defects,

with typical activation energy scales for hopping in metals (about 1

eV). Feng, Lee, and Stone (FLS) proposed that the sensitivity of the

conductance to atomic motions should give rise to l/f noise through the
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10]
UCF mechanism at low temperatures.[ In disordered metals at low

temperatures, l/f noise arises from tunneling defects with a broad

distribution of potential barrier heights and tunneling distances. A

more detailed discussion of l/f noise is given in Appendix A.

In the mesoscopic regime, a connection between quantum tunneling

of a single defect and conductance fluctuations offers the chance to

study microscopic phenomena which have previously been studied only in

the ensemble average.

2.3.1 Defect Dynamics in Different Temperature Regimes

As described above, the dominant dynamics of the defects at high

temperatures are thermally activated hopping. A single defect hops with

a characteristic time scale 2', where 1’: 2'0 exp(E/kB T), where E is the

13

I 1 A single double-wellactivation energy for making a transition.

potential can be characterized by the energy barrier E3, and the energy

difference between the ground states in each well, called the energy

asymmetry, s.[14] Figure 2.4 (a) shows a schematic diagram for the

activation process of a defect over the barrier. At high temperatures,

this thermal activation behavior of the defects results from the

interaction between the defect and the thermal reservoir of electrons

and phonons.

At low temperatures, on the other hand, the defect kinetics are

tunneling dominated. In a highly disordered material, one expects the

number of active tunneling defects to depend approximately linearly on

[15]
the temperature. In a mesoscopic sample, the conductance

fluctuations due to a single defect can be resolved.
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When kBT << 1100, where (00 is the smallest undamped single-well

frequency, the defect tunneling is confined to the lowest states in each

well. This quantum system is called a two level system (TLS). In a

metal, the temporal behavior of a TLS illustrates the main features of

16

dissipative quantum tunneling,[ ] which will be discussed in the next

section. Figure 2.4 (b) shows the tunneling behavior between the lowest

states in the double-well potential.

For temperatures k,7§>han, the tunneling mechanism of a single

defect is not necessarily described by a simple model. One of the

plausible features is a dominant coupling with the lattice phonons. In

this regime, phonon energies are much smaller than the potential barrier

height, but larger than a%. The defect in a well can therefore make

transitions to the excited state and tunnel through the barrier to

complete the transition to the other well. This process is called

”phonon-assisted tunneling". The tunneling rates rapidly decrease with

decreasing temperature due to the reduction of transitions to the

excited states.

2.3.; Theory of Dissipative Quantum Tunneling

Consider a single defect that moves in an asymmetric double-well

potential with a small bias energy 6 between the two ground states

located at izqo/Z in the defect configuration space. For the case of a

nearly-isolated defect (i.e. only weakly interacting with the

environment), the defect motion is described by the Hamiltonian
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where s is the energy asymmetry, A0 is the bare tunneling matrix element

 

. , , 2mV0
given by the WKB approximation as A0 = 0),, exp - ”2 5r , and the 0', are

Pauli spin matrices. The tunneling dynamics are, in this case,

coherent, and the energy eigenstates are linear combinations of the

states in each well.

For a metal at temperature khTW¢<ha%, the defect tunnels

dissipatively, interacting strongly with the bath of conduction

electrons. The main features of dissipative quantum tunnelingIlG] are:

(1) incoherent tunneling of the defect, arising from the continuous

dephasing of the defect wavefunction by the strong interaction with the

electron bath: (2) the renormalization of bare tunneling matrix elements

(tunneling matrix element without the interaction with the bath) due to

the interaction of the defect with the high-energy (adiabatic) electron-

hole excitations, and (3) the low-energy (non-adiabatic) electron-hole

excitations directly affect the tunneling dynamics, leading to a

striking temperature dependence of the tunneling rates; for k375>8, the

rates increase with decreasing temperature, following a power law,

a- 17 , , , ,

7f, 7,~T2 '[ l, where a is a coupling parameter which decribes the

coupling strength of the defect to the bath excitations. From a

theoretical calculation, one has O<:aw<1/2 for metalslla].

The theoretical approach to the dissipative quantum tunneling

problem proceeds as follows: if the barrier height between the two wells

is much larger than the small undamped oscillation frequency, an, in

either well, the bare tunneling rate Ao satifies Ao << me. If, in
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addition, kaVa<ha%, then the double-well problem can be reduced to an

effective, biased two-level system.

The bath of electron-hole excitations can be separated into two

classes, which play two quite different roles. The electron-hole

excitations of frequency greater than the cut-off frequency, a5, are

[19]
able to follow the tunneling defect adiabatically. This leads to a

renormalization of the tunneling matrix element A through the relation

A=Ao(a),/a)o)“. (2.1)

The remaining electron-hole excitations with frequency smaller than an

can not follow the defect adiabatically; they are directed toward the

center of the double well. This non-adiabatic character of the bath

affect the tunneling dynamics of TLS. The assumption of the system

being reduced to the effective TLS and the argument of high energy

electron-hole excitations give rise to a truncated Hamiltonian, given by

H=£a —£Aa +0 ZG.(b.+b1’)+thw.bIb.

2 z 2 x z, I J J - J J J

J J

[20]
Caldiera and Leggett showed that the influence of the low energy

electron-hole excitations on the tunneling defect can be modelled by a

bath of harmonic oscillators. The third term describes the interaction

between the defect and the bath, where bf and by are creation and

annihilation operators of the harmonic oscillators, and the (a are

coupling coefficients between the defect and the harmonic oscillators.
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The fourth term is the Hamiltonian of the harmonic oscillator bath

itself.

The effect of the bath on the defect dynamics depends only on the

21

spectral density[ ]

J(w)=-,2—,XG,26(w—w,)
I

For a metal, the spectral density in the continuum limit takes the form

J(a))= awlzz]. The coupling of the defect to the bath is characterized

in terms of the single parameter (I.

In obtaining the tunneling of the defect in the presence of ohmic

dissipation due to non-adiabatic electrons, it is also necessary to

consider the exclusion of the participation of excitations of arbitrary

[19]
low energies. Since the defect is not stationary in either well,

but spends a finite time 1; in each well, electrons having energies

smaller than w<1/ 1', do not influence the tunneling of the defect.

Therefore, the energy of the non-adiabatic electron-hole excitations has

not only the upper bound an but also the lower bound A». From this

consideration of the lower bound on the energies of the electron-hole

excitations, the tunneling matrix element is renormalized again and the

renormalized tunneling matrix element A, is obtained as:

A, = A (A/m,)“"““’ (2 .2)

If 72A, >> 6‘, akBT, the effects of defect coupling to the electron bath

are relatively weak and can be treated as a small perturbation on the
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dynamics of the defect. In this regime, the motion of the defect is

1231
expected to be a coherent oscillation. If, on the other hand,

hA, << 8, akBT, then the coupling of the defect is so strong that the

rapid fluctuations of the electrons act to break the phase of the

tunneling defect so that the tunneling becomes incoherent. The dynamics

of the tunneling transitions are characterized by the occupation

probability of the defect, P(t)=( O',(t) ), given that for (<0, the

18

particle is localized in the +1 state. According to Leggett et.al[ 1,

the calculation of IT!) is based on the consideration of the path

integral over four states (0', =il, 0", =:l:l) and transitions between the

initial and final diagonal states (O,==O;, referred as sojourns) and

the off-diagonal states (O,==-Cfi referred to as blips). Figure 2.5

shows a simplified graphic expression of sojourns and blips. Following

their calculation of IT!) for the double-well potential with energy

symmetry 8, one gets:

P(t)=-tanh[ 8 ]+[1+tanh[ a He‘”

2kBT 2kBT

  

 

and a total transition rate of [16'24’25]

2 1cosh —6;— 2

A 27rkBT 0" 21:32" a

7:4 —— F a+i—— (2.3)

2 ”A, ”20) 27rkBT

where ITxHFDO is the complex gamma function. The above equation

describes incoherent relaxation with a total transition rate 7. For a
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single TLS, the energy asymmetry s is related to the ratio of the

average time spent in each state, averaged over many transitions. This

must obey the principle of detailed balance: 7f/}g==edhr. Here, 7,,

7;, are the fast and slow transition rates, or the reciprocals of the

lifetimes of the excited or ground states, respectively. The total rate

equals the sum of the fast and slow rates, 7==7f-t7,. From detailed

balance, we finally have

 

  

a— 2

_ fl ZflkBT 2 ' 98mm. 1.. . 6‘

4 M, r(2a) 2am“

7.. : 7fe-s/kfl'
(2 ,5)

[13]
For 0< a<1/2 , there are two regimes depending on the

relative magnitude of T and a. When kBT>£, the tunneling rates

1[17]
increase with decreasing temperature, 7,,7g~]flw‘ , which is a

characteristic feature of dissipative quantum tunneling. When kBTW<£,

the tunneling rates follow a simple picture of stimulated absorption and

spontaneous emission. The faster rate 7, is determined by the sum of

the spontaneous and stimulated emission rates, while the slower rate is

determined by the stimulated absorption rate. As temperature is

lowered, the faster rate is roughly temperature independent and the

slower rate decreases rapidly as efluhr. Both of these temperature

regimes are observed in the experimental data and are discussed in

Chapter 4.
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(a)

 

 
 

(b)

Figure 2.1 (a) Schematic diagram ofthe scattering ofthe conduction electrons off defects,

impurities, lattice vibrations and other electrons while they traverse the sample.

(b) Simplified graph ofresistivity versus temperature. Due to the decrease ofinelastic

scattering with decreasing temperature, the resistivity reaches the residual resistivity.

impurity

detect
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Figure 2.2 (a). The phases ofelectrons are completely altered by applying a magnetic

field, leading to the static conductance fluctuations, called the "magnetofingerprint". (b)

By the motion ofa single defect, the phases are also changed. The motion ofa single

defect can induce a conductance fluctuation oforder e2 / h.
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Figure 2.3 (a) Relative resistance fluctuations, 6R / R = -5G / G, as a firnction of

magnetic field (magnetofingerprint) for a Bi wire with dimensions of3 pm long, 0.15 pm

wide, and 10 nm thick. The temperature is 0.8 K. (b) Schematic diagram ofthe

autocorrelation firnction C(AB) versus magnetic field. The magnetic field where C(AB)

drops to half its maximum value is the characteristic field scale, B,
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(b)

Figure 2.4 (a) Themral activation hopping ofthe defect over the potential barrier at high

temperatures. (b) At low temperatures (Ir,T < 1101,), the dynamics ofthe defect are

dominated by tunneling through the barrier between ground states in each well.
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                     » _J ? _. H i i _.
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"Sojourns" jtll sojourn

Figure 2.5 Graphic expression for the probability function P(t). The "sojourn"

represents no change in the state a', , between the initial and final position ofthe defect

after it performs tunneling. The "blip” represents a change in the state during the

tunneling process.
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Chapter 3

Experimental Methods

3.1 Sample preparation

The samples for this experiment are polycrystalline Bi films 20 nm

thick, prepared by thermal evaporation at room temperature onto oxidized

Si substrates at a pressure of about 1x10.-6 Torr. The deposition rates

were about 1 nm per second. The films were patterned into five-terminal

[1'3]
devices using electron beam lithography. Each arm of the sample

has nominally identical sample regions with areas of 5x10.2 um

(linewidth of 0.1 um and length of 0.5 pm). Figure 3.1 shows a Scanning

Electron Microscope (SEM) picture of a sample and contact pads patterned

by electron beam lithography. Each arm of the sample has a resistance

of about 1 kCL

Electron beam lithography was used to pattern samples with

linewidths of 0.1 um. Operation of the ISI SC-40A Scanning Electron

Microscope with a magnification of 15,000x yielded the most reliable

and reproducible results. Since the field of view of the SEM is limited

to 70 pm at this magnification, the largest attainable width of a pad

and the spacing between each pad for five-terminal configuration from

electron beam lithography are about 10 um and 20 pm, respectively.

Therefore, it is impossible to make electrical contact between wires of

diameter 25 um and a sample through contact pads patterned only by

electron beam lithography. For this reason, we needed both optical and

electron beam lithography for patterning the sample and contact pads.
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We made primary and secondary contact pads to connect the sample

to wires, for measurement of the electrical resistance of the sample.

Primary contact pads, patterned by optical lithography, were thermally

evaporated gold of thickness 100 nm. The secondary pads, patterned

together with the sample by electron beam lithography, were thermally

evaporated bismuth 20 nm thick. Figure 3.2 shows SEM pictures of the

primary contact pads patterned by optical lithography, and the sample

with the secondary pads patterned by electron beam lithography. To make

the connection between the primary and the secondary pads, we used a

wire shadow technique to make gentle slopes on the edges of the primary

pads so that the secondary pads could be connected smoothly. Figure 3.3

shows a simplified schematic diagram of profile of the wire shadow

technique. The details about patterning using lithography are given

below.

3.1.1 Optical Lithography

Optical lithography, also called "photolithography", is the most

common commercial method defining the geometry of electronic devices.

Figure 3.4 shows a schematic diagram of the lithography process. We

used positive photoresist (Shipley 1800), which is a photosensitive

polymer that undergoes a chemical change called ”depolymerization" when

it is exposed to ultraviolet irradiation. After exposure, the

depolymerized area can be dissolved away with the appropriate developer,

leading to the generation of the desired pattern.

The photolithography used to make patterns in our experiment

consists of two processes. The first process is called ”contact



32

lithography” because the mask for patterning is in firm contact with the

photoresist when it is exposed to the ultraviolet light for

depolymerization. The process steps are outlined in Table 3.1. The

thickness of the spun-on resist layer is about 1.0 - 1.4 pm. The photo-

reduced masks are made from high resolution negative films, and are

pressed firmly against the resist upon exposure. The exposed substrate

is immersed in chlorobenzene to produce a good undercut profile which

results from a slower developing rate of the chlorobenzene-smeared upper

part of the resist. Additional baking for a short period of time to

remove solvent from the resist after immersing is helpful in developing

to obtain the desired pattern. Making a good undercut profile is very

important in lithography because it avoids the trouble of the metalized

pattern being taken off the substrate in the lift-off process. The

resolution of the contact pattern is about 10 um.

If the dimensions of the pattern are near the resolution of the

contact lithography, it is not possible to obtain reliable and

reproducible patterns. This problem can be overcome by optical

projection of the mask onto the resist using an optical microscope.

Projection lithography has the same steps as contact lithography and can

produce patterns whose dimensions are much smaller and edges are sharper

than those of contact lithography. The resolution of projection

lithography is better than 1 pm. In our experiment, we used a

combination of these two processes through the partial development of

the contact pattern, followed by projection exposure and full

development. The final pattern has contact leads close enough to

overlap with the sample and the secondary pads patterned by electron

beam lithography, to be described below.
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3. l .2Electron Beam Lithography

Electron beam lithography is an ideal research tool to define

patterns with submicron resolution because of the high quality of

electron optics, the availability of high brightness sources to form

beams of ultra small diameter and the ability to scan the beam under

computer control to define desired patterns. In electron beam

lithography a finely focussed beam is scanned in the desired pattern

over an electron beam resist which depolymerizes upon electron

irradiation. Even though electron optics and electron sources are of a

very high quality, and focused beams less than 1 nm in diameter can be

generated, it is not readily possible to define a structure on the order

of the electron beam size. The resolution of the process is limited by

the range of scattered electrons and the intrinsic graininess of the

electron beam resist.

When the highly focused, energetic electrons are incident on a

solid they undergo scattering within the specimen. Electron scattering

is divided into two categories, elastic and inelastic scattering.[4]

When elastic scattering occurs, less than 1 ev of energy is transferred

from the beam electron to the specimen; this is negligible compared to

the incident energy, which is typically 10 kev or more. The electrons

are, however, deviated from their incident path as a result of

collision. Elastic scattering results from collisions of the energetic

electrons with the nuclei of the atoms, partially screened by the bound

electrons. A significant fraction of the electron beam emerges from the

specimen after having gone through a sequence of elastic scattering

events in which the not change in direction is sufficient to be

backscattered. (Since the thickness of the Silicon substrate is about
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400 um, it is unlikely for the electrons to pass through the substrate.)

These emergent beam electrons are collectively known as backscattered

electrons. Due to large angle scattering of these backscattered

electrons, the scattering volume of the backscattered electrons is

widely spread. Elastic scattering is more probable in high atomic

number materials and at low beam energy.

During an inelastic scattering event, energy is transferred to the

target atoms and electrons, and the kinetic energy of the beam electron

decreases. There are a number of possible inelastic scattering

processes, but one of the principal processes under consideration here

is the excitation of conduction electrons leading to secondary electron

(low energy) emission. The interaction of the beam electrons with the

solid can lead to the ejection of loosely bound electrons from the

conduction band and these ejected electrons are referred to as secondary

electrons. The secondary electrons have a short range scattering effect

and are largely responsible for the determination of the resolution in

low atomic number materials like polymeric resist.

Polymethl Methacrylate (PMMA) is one of the prime organic resists

for electron beam lithography. This positive resist undergoes a

chemical change during electron bombardment which renders the material

sensitive to developing in a suitable solvent. The developing rate is

controlled by the electron dose, e‘lcnf, and hence developing for

increasing time periods forms contours of electron energy deposition.

4

I l, which can be understoodThis contour defines the interaction volume

in terms of the characteristics of elastic and inelastic scattering,

described above. Figure 3.5 is a schematic of the electron interaction

volume. For a low-atomic-number matrix like PMMA, inelastic scattering
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is more probable, and hence the electron tends to penetrate deeply

through the resist into the substrate with relatively little lateral

scattering initially to form the ”neck" region of the interaction

volume. The penetrating electrons lose energy and elastic scattering

becomes more probable at lower energy. As a result of elastic

scattering, electrons deviate from their initial direction of travel and

the lateral scattering contributes to the formation of the "bulbous"

region of the interaction volume. This naturally allows us to have a

nice undercut profile. However, the generation of the low energy

secondary electrons results in a cylindrical exposed volume around the

incidence of the beam leading to the broadening of the line width.

These are fundamental problems in determining the ultimate resolution,

but such effects of electron scattering can be reduced by using high

energy electrons. The effect of high electron energy is to narrow the

forward scattering distribution and to penetrate through the resist into

the substrate deeply enough to smear out the backscattering so that the

exposure of a given feature is less influenced by the exposure of its

neighbours via the proximity effect.[5]

In our experiment, we fabricated Bi wires with widths as narrow as

100 nm using a bilayer resist process for electron beam lithography.

The bilayer resist process uses a bilayer consisting of a layer of PMMA

and a layer of copolymer, MMA (methylmethacrylate / methacrylic acid).

For high resolution, PMMA is used as the imaging layer and placed at the

top, and the copolymer which is more sensitive to electron beam is used

6

as the bottom layer.[ The processing steps are outlined in Table 3.2.

P(MMA/MAA) (KTI I-9 %) is spun on the substrate to produce the bottom

layer about 500 nm thick. PMMA(KTI 496-2%) is spun on top of the
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copolymer, leaving a layer 200 nm thick. High resolution patterning can

be achieved through the use of thin PMMA, but good planarization over

the contact pads and better undercut profile are best achieved through

the use of a thicker copolymer. Figure 3.6 shows an SEM picture of the

profile of the electron interaction in PMMA/MMA bilayer, and a schematic

diagram. Electron beam patterning is done with a modified ISI SC-40A

SEM, which operates at 30 kev, with the beam position and a beam blanker

controlled by a personal computer through a Digital/Analog converter

interface. A computer program written in QUICK BASIC was used to

control the speed of electron beam writing. The writing speeds were

12pm/sec for the sample and 18 ,um/sec for the contact pads. The

electron beam current was fixed at I==L81u4.

In the SEM, electromagnetic lenses are used to focus the electron

beam by the interaction of the electromagnetic field of the lenses on

the moving electrons. Commonly used electromagnetic lenses are axially

symmetric condenser lenses which consist of windings that induce a

magnetic field in the iron core. The condensor lens in combination with

the aperture in the probe-forming lens (or objective lens) determines

the current in the final probe spot. Although perfect magnetic lenses

are assumed to have perfect axial symmetry, machining errors and

inhomogeneous magnetic fields within the iron core or asymmetry in the

windings cause loss of symmetry, leading to astigmatism. The effect of

astigmatism is to produce a stretch of the image in two perpendicular

directions. One corrects for the astigmatism in the final objective

lens by adjusting the stigmator. The stigmator supplies a weak

correcting field to produce the desired symmetrical magnetic field. The

stigmator has two major controls, one to correct for the magnitude of



37

the asymmetry and one to correct for the direction of the asymmetry of

the main field. This correction is very important for the patterning of

ultra-small samples and should be done prior to the final focusing onto

the resist. We used a thin Au film, 50 nm thick, deposited onto a glass

substrate as a specimen for correction of astigmatism. After

astigmatism was corrected, we used silver paint dashed slightly on the

surface of the resist close to the sample site as an object to focus on.

Since a small silver cluster at the edge of the silver paint doesn't

have a noticeable difference in height from the resist, it provides a

nearly perfect focus for patterning.

After exposure, the resists are developed at one time with the

same developer [1:3 methyl isobutyl ketone:isopropanol (MIBK :IPA)] at

23 °C for a minute. An argon ion milling cleaning is used prior to

metallization. In ion milling the Ar ions bombard the surface of the

resist including that of the patterned area, and remove any resist

residue after chemical reaction with developer. After the

metallization, the resist surrounding the sample is lifted off by

immersing the metallized pattern into a solution of 4:1 methylene

chloride and acetone. The resolution of the SEM is about 6 nm in its

best operating conditions. With the bilayer process and the

considerations made above, we've been successful in fabricating single

lines as narrow as 0.06 pm. However, since the real sample is patterned

with secondary pads consecutively, we could not totally exclude the

proximity effect. Line widths of our samples came out to be about 0.1

pm.
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3.2 Electronics

Figure 3.7 shows a simplified schematic diagram of the electronics

for our experiment. The five-terminal sample configuration allows the

sample to be used as two arms of an ac Wheatstone bridge.[7] With this

technique relative changes in the resistance of the two arms can be

measured with high sensitivity.

The differential voltage across the bridge due to the change of

the resistance of either arm is amplified through a preamplifier

(Stanford SR 550), phase-sensitively detected with a lock-in amplifier

referred to the drive frequency, and the output connected to digital

instruments (analog/digital converter, low pass filter and personal

computer) located outside the shielding room. The analog/digital

converter is for converting the analog voltage output from the lock—in

amplifier to a digitized one. The low pass filter is used to remove any

unwanted high frequency noise. When a continuous function is sampled

with a sampling interval.A, its Fourier transform is defined only

between the frequencies —1/ 2A < f <+l/ 2A. This boundary frequency

f,=l/2A is called the "Nyquist frequency". If an original function

that is not bandwidth limited is sampled, then, all of the power

spectral density which lies outside of the frequency range -j£<:f“<}@

is moved back into that range. This effect is called ”aliasing". Any

frequency component outside this frequency range is aliased (falsely

transformed) into that range by the act of discrete sampling, leading to

incorrect Fourier transform of the function. Aliasing can be eliminated

only by low pass filtering the original function before sampling. The

low pass filter used in the experiment is a Krohn-Hite eight-pole

butterworth filter which produces the flattest passband (the region of
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frequencies that are relatively unattenuated by the filter) response and

has steepness in the transition region from passband to the stopband

(the region of significant attenuation). The order of the filter is

eight-pole. Increasing the number of poles flattens the passband

response and steepens the stopband falloff. It is also used for

rejecting line frequency harmonics and higher frequency resistance noise

sources in the sample.

The dilution refrigerator is located inside a Lindgren double-

electrically-isolated shielded room. The shielded room isolates the

refrigerator and electronics from rf (radio frequency) interference,

which could otherwise propagate down the sample leads into the

refrigerator and heat the electrons in the sample. This problem becomes

most severe as the sample size and temperature decrease. The high level

analog signals are filtered as they enter or leave the room. Only low-

level analog instruments (preamplifier, lock-in amplifier) are kept

inside the shielded room. Just inside and outside the shielded room,

there are ground breaking boxes to minimize ground loop interference.

The dilution refrigerator has a top loading probe on which the

sample and thermometer are mounted. Eighteen low-frequency electrical

leads are accessible to the sample region through the top loading probe.

The probe is loaded from the top of the dilution refrigerator and slides

down to the low temperature region. There are also electrical wires

dedicated to measure thermometers near the sample area. One Fisher

connector with eighteen electrical leads was used for thermometers of

the dilution unit (film burner, cold plate, still, mixing chamber, and 1

E pot) and for heaters of the mixing chamber, film burner and still.

All the electrical wires are twisted in pairs or triplets for rejecting
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induced magnetic fields when current flows for measurement. For the

measurement of temperatures at each unit, home-built conductance bridges

which read the conductance of the thermometers are used.

Due to the small size of the sample extreme care is required in

handling the sample. Even a static charge from a human body is strong

enough to destroy the sample. Therefore, we added sample protection

guards which tie the five pads together in the optical lithography

process. The guards protect the sample from possible burnout during

sample mounting and when leads are attached to the substrate. The

guards are disconnected after the sample is silver painted to a pin

connector which connects the sample with the electrical leads on the top

loading probe. For more precaution, we always wore a grounded wrist

strap whenever working with the sample.

3.3 Dilution Refrigerator

Our low-temperature measurements were performed in an Oxford

Instruments top-loading helium-3/helium-4 dilution refrigerator in our

laboratory. Figure 3.8 shows a simplied schematic diagram of the

[8] of the dilutiondilution refrigerator. The principle of operation

refrigerator is based on the fact that a mixture of the two isotopes of

helium separates into two phases -- a concentrate phase which is rich in

helium-3 and a dilute phase which is rich in helium-4 --when it is

cooled down below a tricritical temperature of 0.86 K. This phase

separation occurs in the mixing chamber and cooling is produced there by

evaporating helium-3 from the concentrate phase across the boundary to

the dilute phase. Helium-3 is pumped away from the still by a room
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temperature vacuum pump. The still is maintained at a temperature of

0.6 to 0.7 K by the still heater. The helium-3 is compressed to few

hundred milibar and returned to the condenser attached to the 1 K pot

where it is precooled and liquified through a high flow impedance. It

then passes through the heat exchangers and finally arrives at the

mixing chamber. The helium-3 leaving the mixing chamber due to the

osmotic pressure between the mixing chamber and the still is used to

cool the returning flow of concentrated helium-3 in the heat exchangers.

By continuous circulation of helium-3, temperatures as low as 20 mK can

be achieved. Since the cooling power of a dilution refrigerator is

directly proportional to the flow rate of helium-3, a large cooling

power requires very powerful pumps and wide pumping lines. The samples

are loaded into the dilute helium phase in the mixing chamber,

simplifying thermal grounding. The refrigerator is equipped with a 9-

Tesla superconducting magnet for measuring magnetoresistance and

magnetofingerprints. To keep the field low near the mixing chamber (for

thermometry or other experiments) the magnet has compensation coils.

The top loading probe slides into the refrigerator on a special

'0' ring assembly mounted on top of the vacuum lock. Before inserting

the probe, the vacuum lock assembly is pumped using the diffusion pump.

When loading a sample into the refrigerator, circulation is stopped, and

the mixture is left in a state where it is being cooled by the

refrigeration power in the 1 K pot. To introduce the sample, the gate

valve is opened and the assembly is lowered slowly into the dilution

unit. The lower section of the probe is cooled by the mixture as it

passes through the insert and the dilution unit. When the top loading

probe is screwed into position, the rotary pump and booster pump are
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used to begin circulation of the helium-3 and the dilution unit starts

to cool.

3.4 Temperature Calibration of Thermometer

To achieve adequate temperature stability, it was crucial to

control the temperature in performing our experiments. A temperature

control program was written in Quick Basic and used to control the power

supply that supplies current to a heater wrapped around the glass tail

of the mixing chamber. With this setup, we controlled the temperature

to within 1 % all through the temperature range 0.05 - 1 K. Above 1 K,

we controlled the temperature via the pumping speed on the 1 K pot.

Due to the magnetoresistance of the carbon thermometer which

measures the temperature of the sample, it was required to calibrate the

carbon thermometer as a function of magnetic field. The

magnetoresistance of the carbon thermometer was measured at seven

different temperatures. At each temperature, the values of

magnetoresistance were measured twice at ten different values of the

magnetic field up to 7 Tesla, once while increasing the field and

immediately after, while decreasing the field. The two results were

averaged. The ratio of magnetoconductance to the value of conductance

at zero field shows a sharp increase up to 0.5 Tesla and a slow decrease

thereafter. We fit our data to the function:

.A’LM=1.00+gfl°(b(7)— B+d(T)BZ) eam/B _1G(T,0) B
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where a(T), b(T), C(T) and d(T) are polynomials in the zero-field

conductance, C(T,0).

A computer program was used to obtain the corresponding C(T,0)

value from the given value of G(T,B) measured in the applied magnetic

field. The corrected temperature was obtained from G(T,0) and the

known temperature calibration of the carbon thermometer. The details

about the fitting procedure are described in Appendix B.
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Table 3. 1 The processing steps of optical lithography.

(1) Clean an oxidized silicon substrate with acetone, methyl alcohol and DI (deionized)

water.

(2) Spin photoresist at 5000 rpm for 30 seconds.

(thickness is 1.0 pm)

(3) Bake for 30 minutes in air at 95 °C.

(4) Expose with UV (ultraviolet) light using contact mask.

(5) Immerse in chlorobenzene for 10 minutes.

(6) Bake for 10 minutes in air at 75 °C.

(7) Develop for 45 seconds in developer at 23 °C for partial developing.

(8) Clean the substrate with DI water.

(9) Expose in the light source in the optical microscope using projection mask.

(10) Develop for l nrinute in developer at 23 °C.

(11) Evaporate metal.

(12) Liftoffby immersing into acetone.



46

Table 3. 2 The processing steps of electron beam lithography (bilayer technique).

(1) Clean an oxidized silicon substrate with acetone, methyl alcohol and DI (deionized)

water.

(2) Spin KTI 1-9 % copolymer at 4000 rpm for 1 minute.

(thickness as 450 nm)

(3) Bake for 1 hour in air at 180 °C.

(4) Spin 496 K PMMA, 2%, at 5000 rpm for 1 minute.

(thickness z 200 nm)

(5) Bake for 1 hour in air at 180 °C.

(6) Expose with electron beam.

(7) Develop for 1 minute in 1:3 MIBKzlPA at 23 °C .

(8) Clean the substrate with EA and DI water

(9) Clean the substrate with ion milling to remove the resist residue.

(10) Evaporate metal.

(1 1) Lift-off by immersing in a solution of4:1 methylene chloridezacetone.
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Figure 3.1 (a) SEM picture of a five-temrinal Bi sample patterned by electron beam

lithography. The dimensions of the sample are 1 pm long, 0.1 pm wide, and 20 nm thick.

(b) Schematic diagram of the sample with five leads.
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5811 v 
Figure 3.2 (a) SEM picture of the primary contact pads patterned by optical lithography.

(b) SEM picture ofthe sample with the secondary contact pads patterned by electron

beam lithography. The primary contact pads and secondary pads are connected smoothly

by the wire shadow technique.
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Figure 3.3 Schematic diagram ofthe wire shadow technique. The shadow ofthe wire

gives rise to gentle slopes on the edges ofthe primary contact pads. This ensures that the

thin secondary pads can make good contact with the primary pads.
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Figure 3.4 Schematic diagram of the lift-ofl' process. The process applies to both optical

and electron beam lithography with different types ofthe resist and different source of

exposure. The resolution of optical lithography is about 1 pm, and 10 nm for electron

beam lithography.
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Figure 3.5 Schematic diagram ofthe electron interaction volume. The pear-shaped

interaction volume is formed by the backscattered electrons.
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Figure 3.6 (a) SEM picture of profile ofthe etched area as a result ofelectron interaction

with PMMA/WA (electron beam resist/copolymer) bilayer. The difference of sensitivity

to the electron beam between the two polymer layers makes a good undercut profile as

above. (b) Schematic diagram ofthe interaction volume in the bilayer.
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Figure 3.7 Schematic diagram ofthe experimental circuit. Each lead going into the

dilution refiigerator passes through a filter for rejection of interference. Sample size and

contact pads are not to scale.
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Chapter 4

Tunneling dynamics of a single defect

4.1 Time Trace of a Single Fluctuator

In our experiments, we measured the electrical conductance of

several Bi wires in a five-terminal configuration. In this thesis we

present data from a single defect in a single submicron wire. The

resistance jumps 5R across the bridge due to the motion of a single

defect in either arm of the sample, were digitized as a function of

time. Figure 4.1 (a) shows a typical time trace of the resistance of

the sample. In this wire, the magnitude of 513 is of order 0.282/h at

1 K and 1.0e2/h at 0.1 K, where ez/h is about 4x10"5 mho. Furthermore,

5(3 increased with decreasing temperature and varied in a random manner

with applied magnetic field, as expected from the theory of universal

1-3

I 1 In the experiment, the magnetic fieldconductance fluctuations.

was varied very slowly from 0 to 7 Tesla to find the magnetic field

values at which the maximum conductance signal due to the motion of a

single defect was achieved. By the maximum signal, we mean the signal

in which the conductance has only two discrete values, with the total

noise from all other sources being much smaller in size than the signal

from the defect being pursued. Magnetic fields which contain mixed

signals from several defects were not used for analysis. We found four

different magnetic fields where the signal for a single fluctuator was

clean: B - 0.140 'r, 2.274 'r, 2.286 'r and 6.997 T. At each of these

magnetic fields, we measured the transition rates of the defect as a
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function of temperature. For good statistics, several hundred

transitions of the defect were recorded and analyzed at each

temperature.

The experimental temperature range was determined by two factors.

Above about 2 K several defects were active, so it was difficult to

determine unambiguously the tunneling rates of a particular defect.

Below 0.1 K the signal to noise ratio was very small. Although 61}

increases as the temperature is lowered due to the increasing lg, the

drive current must be decreased even faster to avoid sample heating (See

chapter 5). We used a drive current of 0.7 nA at 0.1 K. The

conductance (measured as a voltage) was sampled by the computer at a

sampling frequency of either 20 or 50 Hz, depending on the fast

tunneling rate 7f of the defect. We recorded 8 to 12 files, each

consisting of 16,384 voltage measurements, for each temperature.

4.2 Data analysis

Raw data of conductance as a function of time were analyzed using

two independent methods. The first method consists of setting two

comparator levels to measure the transitions between the states, and

hence the dwell times in each state. The histogrammed dwell times are

fit to a single exponential decay function to find the mean dwell times,

t in each state and the transition rates, 7==T4. The second method is

a combination of two different fitting processes; fitting the power

spectrum of the time trace to a Debye-Lorenzian lineshape to find the

sum of the two transition rates, 7, and fitting the histogram of the

raw conductance values to the sum of two Gaussians to obtain the ratio
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of the rates. These two analysis methods yield consistent values of the

transition rates in each state.

4.2.1 Transition Time Histograms and Setting Comparator Levels

The occurrence of the individual conductance jumps follows a

Poisson distribution, which is appropriate for a process described by a

constant rate per unit time interval. Figure 4.1 (b) shows two

comparator level settings in a time trace. We set the two comparator

levels between the two values of conductance corresponding to each

state. The dwell times in each state are found by the following scheme;

if the digitized input signal is below the lower comparator level, and

then goes above the upper comparator level, it is counted as a jump from

the lower state to the upper state. The dwell time in the upper state

for that particular jump is the time elapsed before the signal moves

down below the lower level. This algorithm is identical to a "Schmitt

r41,
trigger“ electronic circuit A computer program written in Quick

Basic was used for the counting and recording processes. Although most

of the time traces of the defect were very clean and bistable, there

were some cases when the effect of a second defect was noticeable.

However, since the second defect was much less active, and had smaller

51; than the dominant defect, it was possible to analyze the data by

breaking the time trace into several segments and setting different

comparator levels in each segment. In determining the two comparator

levels, we used the two peak values Ifi,I; in the distribution of raw

conductance values and standard deviation 0; given from fitting two

gaussians to a histogram of the conductance values (see the next
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section). We set the comparator levels as V,+O‘, Vz-O' for Vl < V . This

method of setting the comparator levels worked in most cases, but manual

adjustment of the comparator levels was inevitable when the signal to

noise ratio became very small, at temperatures below 0.2 K and above 1.5

K.

Since the dwell times in each state are exponentially distributed,

they were histogrammed and fit to a single exponential decay function,

P(t)oce""', to find the mean dwell time in each state, If, 1,, and the

transition rates 7,,73, where 7i==fi4 (i=f or s). In the data-taking

process, we set the ratio between the sample frequency and the low pass

filter cut-off frequency to be / - 4 to reduce the contribution
sl'nple filter

of aliased signals (See section 3.2). We kept data with frequencies

f S f, where j; s 0.75 fmm. The filter frequency was either 5 or 12.5

Hz, depending on the sample frequency. Due to the filter, transitions

from one state to the other state faster than ~0.1 second were not

always detected. As a result, the first bins in the histograms in each

state were often less than they should have been. This could lead to

errors in determining the mean transition times in each state. To avoid

thess errors, we used a two parameter fitting program in which the total

number of transitions and the mean transition are parameters to be

determined. Figure 4.2 illustrates the fitting of histograms to a

single exponential to determine the mean transition time.
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4.2.2 Debye-Lorentzian Fit to Power Spectrum and Two Gaussian Fit

to the Conductance Histogram

The power spectral density SbLf) for the single defect was

obtained using a fast Fourier transform (or FFT) of the raw data of

conductance. The fast Fourier transform is a fast computing algorithm

which converts the time series of the experimental measurements to the

frequency domain. The power spectrum is determined as follows: the FFT

converts each time series to a series of complex Fourier coefficients in

the frequency domain. The Fourier coefficients are squared and averaged

over many time series to obtain an estimate of the power spectrum Sbflfi)

in a narrow frequency range centered at_fi. Each data file has 16,384

voltage measurements and was divided into two groups for FFT. The

frequency range was 10.3 stf510 Hz depending on the measurement time

and low-pass filter setting. At each temperature, the power spectrum

after background substraction was fitted to a Debye-Lorentzian function

to yield the sum of the two transition rates, y==7,-+7,. Figure 4.3

shows the fits of data to fitting function.

Since the histograms of the dwell times in each state show that

the transitions are totally independent random events characterized by a

single rate for each state, the distribution of raw conductance values

in each state is totally independent. Assuming that the distribution of

conductance values in each state follows a Gaussian distribution, the

overall distribution of raw conductance values is the sum of these two

independent Gaussians centered at peak values, I1,I’. Fitting a

histogram of the raw conductance values to the sum of two Gaussian gives

the area and peak values of each Gaussian and standard deviation (7.

The ratio of the two areas is the ratio of the transition rates, 7f/73.
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The two gaussian fit to the distribution of raw of conductance values

with the two peak values VL I; and standard deviation.(7 are illustrated

in Figure 4.4. It shows good agreement between the data and the fitting

function of the sum of two Gaussians. The value of 7 obtained from the

fit to the power spectrum and the value of 7f/7g from the two Gaussian

fit, together determine both 7,,and 7;. The results are in good

agreement with those obtained from the first analysis method.

4.3 Detailed Balance and Energy Asymmetry a

As was described in section 2.3.3, the two transition rates are

related by the energy asymmetry a of the defect through the detailed

balance, 7f/)g==edhr. To demonstrate this, we examined the temperature

dependence of the rates at fixed magentic field. Figure 4.5 shows a

plot of ln(7f/ 7,) versus 1/ T for the four data sets, along with linear

fits through the origin. The good fits confirm the above relation. The

slopes of these lines give values for E/kB of 402, 213, 92 and 40 mK,

respectively, with a standard deviation of 110 mK.

4.3.1 Magnetic Field Dependence ofEnergy Asymmetry

It is obvious from Figure 4.5 that the energy asymmetry s is

strongly modified by the application of a magnetic field. The magnetic

field dependence of s was proposed theoretically by Al'tshuler and

5

I l and observed experimentally by Zimmerman, Golding and

6

Haemmerlel 1. The mechanism was explained as follows: the local

Spivak

electron density "(3) is very sensitive to a magnetic field due to
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long-range interference from the scattering centers (see section 2.2.1).

Then, a charge coupling of the local electron density to the defect

would yield an interaction energy E(B)ocn(B). Since the fluctuation in

the local electron density due to the magnetic field is random and can

have equal probability of lowering or raising the energy asymmetry, the

interaction energy between the defect and the electons should be a

random function of the magnetic field. Therefore, the variation of the

energy asymmetry, 8, should also be random with the magnetic field.

since it will be shown later that the four data sets at different

magnetic fields come from the same defect, Figure 4.5 illustrates this

random variation of E with the magnetic field. In a previous work,

[5]
Zimmerman et al. found that 8 increased at low magnetic fields for

three defects studied. In our experiment, we found that the value E/kB

= 213 mK near zero field is greater than the values of 40 mK and 92 mK

at B - 2.274 and 2.286 Tesla, and that the value a/kb = 402 mK at B a

6.997 Tesla is the largest. This shows that the variation of a with the

magnetic field is random. Attention should be also made to the rapid

varation of 8 with the magnetic field, illustrated by its change from

40 to 92 mK when the field changed from 2.274 to 2.286 Tesla.

4.3.2 Characteristic FieldConsiderations

The amplitude of the conductance fluctuation, 513(3), is a random

function of magnetic field, with a field scale indicating that it arises

from the same mechanism that causes the aperiodic magnetofingerprint

(3(3). The energy asymmetry, 8, on the other hand, can be strongly

affected by magnetic field, with a large increase in higher field, and
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[5]
smaller reproducible random features . Therefore, the autocorrelation

function (6(3) 8(0)) does not have translational invariance over the

magnetic field, unlike the autocorrelation function for the conductance

fluctuations. Accordingly, it is more difficult to define a

characteristic field scale in this case.

4.4 Temperature Dependence of Tunneling Rates

In this experiment, the defect tunneling rates have been measured

as a function of temperature from 0.1 to 2 K. Figure 4.6 shows how the

transition rates for the defect vary with temperature at B a 0.14 Tesla.

With E/kb a 213 mK, it most clearly illustrates three distinct

temperature regimes. When kaV<£, 7} is roughly temperature

independent, while 73 decreases rapidly with decreasing temperature.

This behavior is in accord with the picture of spontaneous emission and

stimulated absorption described in section 2.2.3. As the temperature is

raised so that kb75>8, the rates cross over to a qualitatively

different regime. The ratio of the two rates still obeys detailed

balance, but both rates decrease with increasing temperature. This

behavior is an essential feature of dissipative quantum tunneling in

metals. Above 1.2 K, the rates increase rapidly, due first to phonon-

assisted tunneling, and eventually to thermal activation over the

barrier. The phenomenon of dissipative quantum tunneling is shown more

vividly in Figure 4.7. In B = 2.274 Tesla, we have the smallest energy

asymmetry E/kB of 40 mK, which is far below the lowest temperature

taken in this experiment. Therefore, at this magnetic field, the data

are always in the regime k375>8, and the rates decrease with increasing
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temperature as a power law, 77“*. At B= 2.286 Tesla, we have E/kb = 92

mK, which is very close to the minimum experimental temperature. Figure

4.8 also illustrates three temperature regimes, but most of the rates

belong to the power law regime. The largest value of E/kb of 402 mK

for this particular defect is obtained at B = 6.997 Tesla, shown in

Figure 4.9. Due to the size of S/kB, more than half of the data are in

the regime kb75<8 at this magnetic field.

4.4.1 The Defect - Electron Bath Coupling Constanta.

and the Renormalized Tunneling Matrix Element A,

In section 2.2.3, the temperature dependence of the tunneling

rates 7,,79 were calculated in terms of the doubly renormalized

tunneling matrix element, A,, the energy asymmetry, s, and the coupling

constant, a, between the defect and the electron bath. For the case of

incoherent tunneling (hA,<3<kaW, the results for the tunneling rates

are from equations (2.4) and (2.5):

 

  

A, 27rkBT 2"" e‘m"T . s 2
7,=— — F a+t—— (4,1)

4 11A, F(2a) 27rkBT

and

7‘ : rfe-s/kfl'
(4 .2)

For a defect tunneling in a metal, the coupling constant, a, is

constrained to lie between 0 and 1/2. Since the theory of dissipative

quantum tunneling describes the tunneling of the particle in the



presence of the conduction electrons, we limit quantative analysis to

the temperature range below 1.2 R, i.e . below the onset of phonon-

assisted tunneling. With the energy asymmetry, 8, given by the slope of

the detailed balance plot, the data were fit to the equations for 7,,7,

with two parameter least-squares fits to obtain the values for the

coupling constant, a and the renormalized tunneling matrix element, A,.

The agreement between theory and experiment is excellent for all

temperatures below 1.2 R. The theoretical fits to the data at each

magnetic field are illustrated in Figure 4.10 and 4.11. The values of

a and A” determined from the fits are given in Table 4.1. For fitting

the equations to the data, a program written in FORTRAN with the

subroutine called MINUIT in the VAX 4000 was used, incorporated with the

CERW library to calculate the complex gamma function. The parameters

are completely consistent with the dissipative tunneling model for

7-9

incoherent tunneling, i.e. , hA, << 6‘, akBT and 0 < a <1/2 .[ 1

Given excellent quantitative agreement between theory and

experiment at each value of the magnetic field, the coupling constant a

appears to vary with the magnetic field. Since the random variation of

s with the magnetic field is believed to be due to random fluctuations

in the local charge density near the defect, and since a also depends

on this charge density, it is plausible that a also varies with the

10

magnetic field. Golding et a1.[ ] argued, however, that the change in

a due to the magnetic field is small because a depends on electron-hole

excitations with energies up to the Fermi energy whereas the magnetic

field affects low-energy processes only. Our attempt to make this

argument clear experimentally leads to some difficulty. The statistical

uncertainties in or. and log A, are only about 0.02 and 0.08,
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]11

respectively, estimated from contour plots of 231 . Since a varies

over the range 0.14 - 0.22 for the four data sets presented here, a

statistical analysis suggests that a does vary with magnetic field. We

present an alternative analysis below, based on a scaling fit of the

data, that suggests that.¢1 does not vary with magnetic field.

The parameters a and A5 are highly correlated through the

relation between A, and bare (unrenormalized) tunneling matrix element

A0. From equation (2.1), we have

A = Ao(w,/wo)“

where 0% and cg are the characteristic vibration frequency of the

defect in one of its two wells and the upper cut-off frequency of the

electron-hole excitations, respectively. .A is the tunneling matrix

element renormalized by the adiabatic approximation for electron-hole

excitations. From equation (2.2), we have

A, = A (A / 6980'“)

for the tunneling matrix element renormalized again due to the lower

bound for non-adiabatic electrons. Inserting equation (2.1) into

equation (2.2) yields the relation between Ar and A0:

A, = A0 (Ac/wad”) (4.3)

where the cut-off frequency, a), has dropped out. The values of d and
C

Ar determined from the four fits are plotted as log(A,) versus a/ l—a



in parameter space (Figure 4.12). It is found that they fall on a

straight line . This correlation is highly suggestive. Taking the

logarithm of equation (4.3), we have

log(A,) = log(A0) + log(AO / w0)-(a/ l — a) (4 . 4)

Assuming that a. varies with magnetic field, but A0 and mo do not,

equation (4.4) implies a linear dependence of log(A,) on a/l—a , with

an intercept and slope equal to log(A,) and log(A0/a%). With this

interpretation and from the plot of our values a and A,, we obtain the

results hAo/k, = 1.8x10-6 R and hag/kg = 0.23 R. While the first of

these values is reasonable, the second is not. Not only is 0.23 K

extremely low for a vibrational frequency (even for a defect that

tunnels at low temperature), but also such a low value violates the

condition k3750<hah upon which equation (4.1) is based.

A more likely reason for the observed correlation between a and

[11]
A, can be explained in terms of I? considerations. In the

parameter space discussed above, the least-squares fits for each value

of the magnetic field determine a line of minimum 1?. Even the

slightest change of a and A, off this line in the parameter space leads

to huge increase in 2?. However, as long as the change of a and A, is

along the line, the fits vary only slightly within the experimental

temperature range. This line of slowly varying 2? turns out to lie

along the same line connecting the four points in Figure 4.12. This

”coincidence” suggests that perhaps all four data sets can be fit with a

unique set of parameters a and A,.
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4.4.2 Scaling Function

To test whether the data are consistent with single values of a

and A, , we plot all the data in the form 7TH“. From equation (2.4),

we have

 
2a—l COST! 8 2

2k,,T

r(2a)

  

F a+i g

[ anBT]

_fi 27rkBT

7 2 11A,
  

and

2

(4.5)

2a—1

7,“, : $[2nk3) cosh(l/2x)

2 M, r(2a)   

F(a+i;)

27rx

where x=kBT/£ is defined as a scaling variable. Since 7THa depends

on temperature only through the ratio kBT/ 6‘, we can write 7TH" = f(x),

where f(x) is a scaling function. In Figure 4.13, we plot 7(T/T,‘,)Hal

versus kBT/E, where T) = 1 K for or = 0.195. The remarkable consistency

between all these data sets suggests that or and A, are independent of

magnetic field for this defect. The solid line in Figure 4.13 is a

simultaneous least-squares fit to all four data sets, yielding the

values a=0.195 and A, =l.34xlO4 S". Figures 4.14 and 4.15 show the

theoretical fits to the data of tunneling rates versus temperature, both

with the values of a and A, obtained at each magnetic field and with

the single values of a and A, given from the scaling plot. The fits

for the case of single values of a and A, to the data are nearly as

good as the other case.
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The results show that the theoretical fits depend only weakly on

a over the experimental temperature range. To determine the dependence

of a with magnetic field more accurately, we would need either a larger

experimental temperature range, or smaller experimental uncertainties.

We have attemped to minimize obvious sources of systematic error. We

were very careful to limit Joule heating of the sample from the

measurement current. (The tunneling rates provide an excellent measure

of the defect temperature, through the detailed-balance relation.) The

effect of external interference was minimized by rf filters on all

[12]
electrical leads to the sample. It is possible that other defects

in the sample may influence the dynamics of the defect we are

13

studying.[ ] Even small changes in the measured tunneling rates can

lead to significant uncertainty in the evaluation of (I, especially when

kBTESs. In the future, we will pursue further measurements in the

temperature regime kBT>8, where we can most accurately determine a.
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Table 4.1 Physical parameters of four data sets.

 

 

 

 

 

B(T) s (mK) or A r (s'1 )I log A r

0.140 213 0.16 2.5x104 4.40

2.274 40 0.21 1.0x104 4.01

2.286 92 0.14 3.4x104 4.53

6.997 402 0.22 8.3x103 3.92       
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Figure 4.1 (a) Resistance change 6R as a function oftime, at B = 6. 997 T and

T = 0. 22 K. The resistance switches between two values, corresponding to the tunneling

ofa single defect between two states. The resistance ofeach arm ofthe sample is about

1 K0 and 6R in this case is about 20 (2. (b) Comparator levels are set between the two

values ofthe resistance to measure both the number ofthe transitions and the dwell times

in each state.
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Figure 4.2 The dwell times in each state are histogrammed and fit to a single exponential

decay firnction to find the mean transition time, t, and the transition rate to the other

state, 7 = r".
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Figure 4.5 Ln (7f / 7,) versus 1/ T, for four values ofthe applied magnetic field. The

slopes ofthe lines are 402, 213, 92 and 40 mK, respectively, with an uncertainty of1:10

mK.
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Figure 4.6 Fast and slow transition rates versus temperature at B = 0.140 T. The value of

s/ 1:, (from Figure 4.5) is 213 mK. The data clearly show three distinct temperature

regimes, T<s/k,, T> slit, and T>1.2 K.
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40 mK. The data show the regime T> s/ k, only.
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Figure 4.8 Fast and slow rates versus temperature at B = 2.286 T. The value of s/ k, is

92 mK. The data show three temperature regimes, but most ofthe data are in the regime

T> s/ k,.
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Figure 4.10 Fast and slow transition rates versus temperature at B = 6.997 T and 0.140 T.

Solid lines are fits ofEquations 4.1 and 4.2 to the data for T < 1.2 K. The values of s/ k,

are 402 and 213 mK, from top to bottom. The values of a obtained fiom the fits are 0.22

and 0.16, respectively, with corresponding values of A, of 8.3 x103 5" and 2.5 x 10‘ s".

Uncertainties are discussed in the text.
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Figure 4.11 Fast and slow transition rates versus temperature at B = 2.286 T and 2.274 T.

Solid lines are fits ofEquations 4.1 and 4.2 to the data for T < 1.2 K. The values of s/ k,

are 92 and 40 mK, fi'om top to bottom. The values of a obtained fi'om the fits are 0.14

and 0.21, respectively, with corresponding values of A, of 3.4 x10“ .r'and 1.0x 10‘ s".

Uncertainties are discussed in the text.
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Dashed lines are fits ofEquations 4.1 and 4.2 to the data for T < 1.2 K, with the values
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Figure 4.15 Fast and slow transition rates versus temperature at B = 2.286 T and 2.274 T.

Dashed lines are fits ofEquations 4.1 and 4.2 to the data for T < 1.2 K, with the values

a = 0.14 and 0.21 with corresponding values of A, of 3.4 x10‘ 3" and 1.0 x 10" s". The

solid lines are fits with the global value of a = 0.195and A, = 1.34 x 104 s".
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Chapter 5

Electron Heating Experiment

5.1 Defect Temperature and Electron Temperature

We have studied the effect of Joule heating on the dynamics of a

single bistable defect in a submicron Bi wire below 1 K. At high

temperatures, the dominant inelastic scattering mechanism is electron-

phonon scattering. At low temperatures, the electron-phonon scattering

decreases, and electron-electron scattering becomes the dominant source

of inelastic scattering. Due to the weak electron-phonon coupling in

this temperature range, the energy transfer from the electrons to the

phonons is much slower than the energy absoption of the electrons from

the applied current drive. The electron-electron scattering, unlike

electron-phonon scattering, acts to thermalize the electrons internally,

but does not contribute to the energy transfer to the lattice. The

difference in energy flow between the two transport processes gives rise

to electron heating to a temperature above the phonon temperature. This

temperature difference reflects the rate of energy transport between the

electrons and lattice. By applying the idea of electron heating to our

sample and measuring the temperatures of the electrons, the defect and

the lattice as a function of drive current, we investigated the energy

transport between the hot electrons, the defect and the phonons. Figure

5.1 illustrates the energy transport of the system.

This experiment was motivated by the observation that defects with

small duty cycles (i.e. with large ratio of the fast transition time and
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slow transition time, tf/z,) are quite sensitive to the amplitude of

the measurement current. The ratio of the fast and the slow transition

rates of a defect depends on temperature through the detailed balance

relation 71/ 7, =e‘lk‘T. When E/kBT>1, this ratio is sensitive to small

changes in the temperature seen by the defect. since the defect is

strongly coupled to the conduction electrons in the sample below 1 K, we

’
1

interpret its sensitivity to drive current as an indication of electron

heating and the ratio of the two rates as a local thermometer. The

defect temperature is defined from the detailed balance relation as

_ slit, .1

111(7] Ira) '1'
 defect

Using the "defect thermometer” to study heating is attractive because it

is based purely on statistical mechanics - a feature it shares with the

Johnson noise thermometer used by Roukes et al.[1] in a previous

electron heating study. An electron heating study based only on the

defect thermometer relies on the assumption that the defect is more

strongly coupled to electrons than to phonons. We will show that this

assumption breaks down for temperatures above about 1 K, based on fits

2-3

of our data to dissipative quantum tunneling theory.[ I The data

presented here were taken well below 1 K, where we expect the assumption

to hold. We would have liked to measure the electron temperature

directly, and thereby deduce the relative thermal coupling between the

defect and the electrons and phonons as a function of temperature. We

did not achieve this more ambitious goal, for two reasons. We tried to

measure the electron temperature from the amplitude of the resistance
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fluctuations induced by the moving defect, but this thermometer did not

obey a simple heating model. Also, we could not extend our heating

measurements above 1 K due to interference from other defects in the

sample.

The sample for this study is the same Bi wire discussed in Chapter

4. Among several different values of the applied magnetic field where

the resistance of the sample shows clear transitions between two states F

of a bistable defect, the data were taken with a magnetic field of 7

Tesla, where the energy asymmetry of the defect was largest, hence the

*
"
a
fl
n
9
.
”
.

ratio of transition rates was most sensitive to temperature. At each

 value of temperature and drive, several hundred transitions were

recorded and analyzed. The same analysis method as described in the

previous chapter was used to obtain the fast and slow transition rates,

7f: 7; °

Figure 5.2 shows In(7f/ 7,) versus inverse temperature, taken with

a low enough drive current that no significant heating of the sample

occurs. The data can be fit by a straight line through the origin, with

a slope equal to the energy asymmetry of the defect, 8/kb = 0.420i0.02

K. We performed the heating experiment by increasing the amplitude of

the AC drive current used to measure the resistance. We checked that

using a large DC current for heating plus a small AC measurement current

produced consistent results.
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5.2 Power Law Dependence of Defect Temperature on Drive

Current

Figure 5.3 shows the results of heating the sample with large

drive current, for lattice temperatures of 0.132, 0.247, and 0.490 K.

Rather than plot 7f/7g, we plot the defect temperature. For low drive

current, the defect temperature rises slowly above the lattice

temperature. As the drive current increases, the defect temperature

approaches a power law behavior that depends only on drive current,

independent of the initial lattice temperature. Behavior similar to

that shown in Figure 5.3 has been observed by Roukes et al.[1], who

derived an expression for the electron temperature as a function of

drive current based on an earlier model of Anderson, Abrahams and

[4]
Ramakrishnan. (The concept of an "electron temperature" far from

5

equilibrium was justified by Arai.[ 1) The model is based on the

observation that the thermal conductance between electrons and phonons

in a sample of volume V is Kai-p11 = ,,r;',_,,,, where Ccl =7,,TV is the

electronic heat capacity and 7,1,, = aoT" is the electron-phonon

scattering rate. The quantity 0% is the strength of the electron-

phonon coupling. The exponent p varies between 2 and 3 for typical

[5’7]
disordered films. For low drive current, the temperature offset

between the electrons and phonons is proportional to the power

dissipated in the sample, Q=12R. As current increases, the electron

temperature rises, and the electrons become more efficient at cooling

themselves by emitting phonons. Eventually the electron temperature

approaches the asymptotic dependence on drive current 7;, oclzmfi’),

independent of the initial lattice temperature 7;. The rate of the

power given to the electrons from the drive current is

 



d'Q, =21Rd1

and the rate of energy loss to phonons is

40... = ..-..(I)dT= aOy,,VT”PdT

where T'is the electron temperature. Energy balance requires

de =de, in the steady state. Integration of the relation from

78107;, yields the expression:

 

(2+ p) . 12R

aorcl V

  

T2+p _ 762+p :

e1
(5.1)

The solid lines in Figure 5.3 represent a single global fit of equation

(5.1) to all the data shown in the figure, with two free parameters p

and 057d. The values of the parameters obtained from the fit are

p=2.0:t0.2, and a07,1=(4.511.0)x101° ulx‘nfi .

Before interpreting these results, we examine the assumptions made

regarding heat transfer in the sample. First we consider the thermal

coupling of the defect to the electrons and phonons. Figure 5.4 shows a

log-log plot of the fast and slow transition rates of the defect versus

temperature. The behavior of these rates below 1 K is described by

2

I l and was the subject of Chapterdissipative quantum tunneling theory,

4. In our experiment, the temperature and energy asymmetry are much

smaller than the vibrational level spacing in a single-well, and much

larger than the renormalized tunneling matrix element. In this regime,
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the only property of the heat bath that enters into the theory is the

low-energy spectral density of excitations, J(a0==af, where n = 1 or 3

for electrons or phonons, respectively. We showed in chapter 4 that for

T <1.2 K the data could be fit with a model that considered only

electrons in the heat bath. To fit the data above 1.2 R, one must

include the phonon contribution. The solid line in Figure 5.4 is a fit

of the data to a function calculated by Grabertl3] that includes the

effect of both electrons and phonons. The agreement between the

function and the data is quite good. However, this does not mean that

the fit shown in Figure 5.4 confirms the formula of Grabert. We clearly

 

need more high temperature data points to confirm it. We are interested

in the value of Grabert's parameter I,, the crossover temperature

between electron-dominated and phonon-dominated behavior. For the data

shown in the figure, Tph =0.95:i:0.03 K. A fit to data from the same

defect measured at a different value of the magnetic field (0.14 T)

yields Tph =0.91:t0.03 R. since the lattice temperatures in our heating

study are well below 38' we are justified in neglecting the thermal

coupling between defect and phonons.[3]

Another crucial assumption in the analysis leading to equation

(5.1) is that the electrons heat while the phonons remain at the

temperature of the cryostat. This assumption, already described in

section 5.1, is valid if the thermal link between the electrons and

phonons is much weaker than that between the phonons and substrate and

between the substrate and the cryostat.[8] The latter condition is

easily fulfilled. The Si substrate has a surface area 108 times larger

than the sample area, and is immersed in liquid helium in close

proximity to the cryostat thermometer. We believe that the former
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condition is also satisfied, by the following argument. The thermal

conductance between film and substrate is about Kubl T3A 21500 W/mZK‘,

9

where 24 is the area of the film in contact with the substrate.[ 1 We

estimate Kh,h in our Bi film as follows: The density of electron and

hole states at the Fermi level is generally larger in thin Bi films than

in bulk Bi. We take the value 7,1=2 J/K2m3, which is twice the value

[10]
for bulk Bi. The electron-phonon scattering rate was measured by

[5]
Dorozhkin et al., who obtained rp,h==ag78 with p = 3 and

ao=3x109 s'1K'3. (Our own measurements suggest a smaller value of p, but

we will use this as a starting point.) Since the thickness of our

sample is 20 run, we have x,1_ph/T‘A ~120 W/Rsm’. The above estimates

give x.ub/x.1,,,h~4 at 1 K and 40 at 0.1 R.

A final assumption usually made in a heating experiment is that

the electron and phonon temperatures are uniform throughout the sample.

Unfortunately, this assumption is not valid in our experiment, due to

the very small sample size. (This small size is necessary to enable us

to detect the motion of a single defect.) In our sample, shown in

Figure 2.1, heat dissipated in the sample can flow within the electronic

system directly out the leads to the large pads, without first

equilibrating with the phonons in the sample. We estimate the thermal

conductance out the leads using the Wiedemann-Franz relation:

Ic/a‘T=2.5x10‘8 WQ/Rz, where K, 0’ are thermal and electrical

conductivity, respectively. The longest distance from any part of the

sample to the large pads is about 0.5 um, corresponding to about half

the sample resistance, i.e. 1 kn. Hence the thermal conductance of the

electrons from the hottest part of the sample to the cool part is about

25x104'T WIRE. In comparison, the thermal conductance between the

 j
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electrons and phonons inside one arm of the sample (A2 =0.05 umz) is

only 6x1042T4 ifl/K5 according to the estimate made above. These numbers

show that the Joule heat generated within the sample diffuses out the

leads at least as quickly as it transfers to the phonon system, giving

rise to a temperature gradient in the sample.

This last consideration precludes us from obtaining an absolute

estimate of the electron-phonon scattering rate from our data. Equation T”“

(5.1) was derived assuming that all the Joule heat dissipated in the

sample transfers to the phonons within the sample volume. If we try to

interpret the value of ab obtained from Figure 5.3 this way, we find

czo=2><10lo s'1R‘2, which is a factor 7 larger (1 K) than the value  
6

obtained by Dorozhkin et al.[ 1 The discrepancy reflects the fact that

the heat in the electron system diffuses out the leads, and therefore

has a larger volume in which to transfer to the phonon system.

Nevertheless, our estimate of the temperature dependence of the

electron-phonon coupling may still be valid. Our value p=2.0:l:0.2 is

[5]
lower than the value p a 3 obtained by Dorozhkin et al. in a low-

temperature heating experiment, but it is consistent with the values

between 2 and 2.5 obtained from weak-localization studies carried out at

higher temperatures,[7] including those in reference [6].

The above analysis presents a consistent, but not unique,

explanation of the data in Figure 5.3. An alternative explanation for

an observed value of p a 2 has been proposed recently by Ranshar,

[11  
Wybourne and Johnson 1, who point out that the heating model leading

to equation (5.1) assumes good thermal coupling between the phonons in

the films and substrate. By allowing the coupling to vary, these

authors show that data from a heating experiment can obey a power law
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varying anywhere from p = 2 to p = 3. According to this work, the 100

nm thick oxide on our substrate may reduce the high-frequency component

of the phonon coupling between film and substrate. Another concern is

our estimate of the electron-phonon scattering rate, 1:,h==abTT, based

on reference [6]. The experiments of reference [7] give p = 2, and

ao=2x10‘° s'1R'2. With this larger value of a0, we find x,ube0.6 x,,1_,,h

independent of temperature, so our assumption that the electrons heat

while the phonons stay cold may be questionable. We also find with this

value of a, that the thermal conductance out the leads is less

important, and our measured value ao=2.2x10'° s'lrt’2 agrees fortuitously

 with the values from reference [7]. We cannot distinguish between these L

interpretations of our data, but we can assert that our measured value

of 0, represents an upper bound on the electron-phonon scattering rate

in our sample.

5.3 Attempt to measure Electron Temperature based on

Universal Conductance Fluctuations Theory

In our experiment, we tried to measure the electron temperature

directly, based on the temperature dependence of the amplitude of the

resistance fluctuations, 57?. We can compare the observed behavior of

51?, shown in the Figure 5.5, with that predicted by the theory of

12-13

I 1 Wear 1 R, the phase

[14]

universal conductance fluctuations.

coherence length, L,, in our sample is between 0.1 and 0.2 pm.

Thus the sample is just barely in the 1-D limit, defined by

L,,l,<<[,<:l,, where 1,, I, and I, are again the sample thickness,

min min
width and length, respectively. In this limit, 5R0CL2 -L',/2, where L



95

is the smaller of I, and thermal length [7. At these low temperatures

we expect L,0CT_”2, due to electron-electron scattering, hence

572a27hy4. The observed dependence is about 7“], which is rather good

agreement. As the temperature is lowered, the sample dimensionality

will cross over to 0-D when I, becomes comparable to the sample length

of 0.5 um. In this regime the theory predicts 5R0CL;"2 OCT—m, which is

consistent with the roll-off seen in the Figure 5.5 at the lowest

temperatures.

Since 5R depends only on L, and LT, both of which depend only on

the electron temperature, we hoped that 5R would serve as a good

electron thermometer. Figure 5.6 shows a plot of the electron

temperature, deduced from 5R, versus drive current. These data were

taken simultaneously with those shown in Figure 5.3. Unlike the data in

Figure 5.3, however, the data in Figure 5.6 can not be fit with equation

(5.1), because the electron temperature, 7], does not asymtotically vary

as a power law with drive current. In addition, 7; appears to increase

with drive current initially much faster than the defect temperature,

7' . This latter observation would be plausible if the defect were only

weakly coupled to the electrons, but in the present circumstance we find

it disturbing. Given the choice between our two thermometers, we trust

more the reliability of the defect thermometer because of its connection

to statistical mechanics. We do not know why 5R does not serve as a

reliable electron thermometer, but we mention incidentally that Bergmann

et al.[15] found the Coulomb-interaction resistance anomally to be a

poor thermometer in a heating study of gold films, possibly due to

violations of Ohm's law.
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Figure 5.1 Simplied schematic diagram ofenergy transfer fi'om the electrons to defect and

to the phonon bath. K is a thermal conductance.
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Figure 5.2 Ln (7, / 7,) versus 1/ T at B = 6.997 T. The transition rates obey the

detailed balance relation with a slope of 0.42:i:0.02 K.
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Figure 5.3 Log-log plot ofdefect temperature versus drive current, for three difi‘erent

values ofthe lattice temperature, Tm = 0.132, 0.247 and 0.490 K. The defect

temperature is determined from the ratio of fast and slow transition rates via the detailed

balance relation. The solid lines represent a global least-squares fit ofthe data to Equation

5.1 with two parameters, p = 2.0 and (107,, = 4.5 x10'0 W/ K‘m’.
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Figure 5.4 Log-log plot offast and slow transition rates versus temperature at B = 6.997

T. The solid line is a least-squares fit to the theoretical fiinction calculated by Grabert in

ref. 3. The crossover between electron-dominated and phonon-dominated tunneling

occursat Ty. 210.95 K.
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Figure 5.5 Plot ofthe amplitude 6R ofthe defect resistancejump versus temperature.

The increase of 6'R with decreasing temperature is due to the universal conductance

fluctuation mechanism
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Figure 5.6 Log-log plot ofelectron temperature versus drive current, for the same three

lattice temperatures shown in Figure 5.3. The electron temperature is deduced from the

amplitude ofthe defect resistancejump 6R .' These heating data do not obey Equation

5.1.
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Chapter 6

Summary

We have measured the tunneling rates of a single defect in a metal

over a broad range of temperature and magnetic field. Our work covers

the temperature range from 0.1 K to 2 K, which allows us to make a

thorough comparison between experiment and theory. Above 1 K, the rates

increase rapidly, due presumably to phonon-assisted tunneling. Below 1

K, the temperature dependence of the defect tunneling rates agrees

quantitatively with predictions of dissipative quantum tunneling theory,

spanning the temperature range from kBT<<8 to kBT>>£. We also

observe a random variation of the defect energy asymmetry 8, with

magnetic field, but the minimum value of 8 for this particular defect

occurs for B¢O. Our data are consistent with the hypothesis that the

defect-electron bath coupling constant, (I, is independent of field.

These results illustrate the power of conductance measurements of

mesoscopic samples to obtain microscopic information about individual

defects. Such experiments are especially useful in the study of

disordered materials, where the microscopic parameters characterizing

the defects are broadly distributed.

In an electron heating experiment, we have shown that the

transition rates of a single defect can be used as a local thermometer

under non-equilibrium conditions, via the detailed balance relation. We

have used this defect thermometer to study electron heating in a

submicron Bi sample, and we find the results consistent with a simple

 

 



105

heating model, where the electron-phonon scattering rate is proportional

to 7? with p a 2. An electron thermometer based on the the amplitude

of the dynamic universal conductance fluctuations does not follow the

simple heating model. We can not obtain the absolute electron-phonon

scattering rate from this experiment, due to the nonuniform temperature

profile of the hot conduction electrons in the sub-micrometer sample.
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Appendix A

1/ f noise spectrum

The standard way to measure resistance fluctuations of a resistor

is to apply a constant current through the sample, and monitor the

voltage across the sample as a function of time. The noise is usually

characterized by an autocorrelation function

K,(:)=(5V(r)6V(r+z))

 where 5V(t)=V(t)-( V >, and the brackets refer to a time average over

all times T. This autocorrelation function contains information about

the noise in the time domain. The power spectrum of the voltage noise

is then given by

Sy(w) = it 19(1) 13"“ d1

'
8
‘
—
s
3

At high frequencies, the noise spectrum is roughly flat, and its

magnitude is determined by the Nyquist-Johnson formula, S$==4k37"(1?).

At low frequencies, a noise called ”flicker noise" of the spectral form

Sy(a))0Cl/a) (w=2 Itf, Sy(f)=2 n’SV(w)) is observed in most of the

metallic systems. This is the l/ f noise. The l/f noise is due to

fluctuations in the sample resistance, and obeys ohm's law:

S,,(a)) = 12SR(a)) .
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The resistance noise spectrum is given as a superposition of

contributions from all moving defects, each having some typical time

scale In One has

SR(a))oc [dz0mm

where LXI) is the distribution of characteristic time constants of the

moving defects. The function 21[1+(a1tf] is the Debye-Lorenzian power

spectrum of a fluctuating two-state defect having a characteristic time

scale 1'.

At high temperature, the motion of defects is thermally activated,

so for a given defect one has 1': To exp(E/kB T), where E is the

activation energy barrier for the defect to hop from one site to another

and 1/15 is the attempt rate. If there is a distribution of such

activation energies, D(E), which has a regime where D(E) is constant

for Emin <E<Em, then one has D(T)0Cl/t for the time interval

Tm < 1' < I'm, where Tm = To exp(Emin/k3 T) and Tm = To exp(Em/k3 T).

This then leads to a 1/f spectrum of SV(f) for 1:“ <<w << 7:,“ . This

behavior is shown in schematic diagrams in Figure A.

At low temperatures, defects move via quantum tunneling. By a

similar argument as the one described above, the conductance

fluctuations have low frequency 1/f noise due to the distribution of

tunneling rates in a disordered material. The tunneling time scale

depends exponentially on the barrier height and barrier width. Assuming

that the barrier height is broadly distributed, the same argument as

above leads to l/f noise.
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Appendix B

Thermometer Calibration in a magnetic field

The fitting function for the correction of magnetoconductance of the

carbon thermometer is

G(T,__B_) a__(T) , c__(___7)
G(T 0) =1.+00 (b(T)— B+d(T)B)———-—emu]

The coefficients a(T), b(T) ,c(T) and (1(7) are given as polynomial

functions of magnetoconductance of zero field C(T,0) such that

a(T) =a0 +a,~G(T,O)-1-a2-G(T,O)2

b(T) = bo +b1-G(T,0)+b2oG(T,O)2 +b3 -G(T,0)3 +b4 -G(T,0)‘

C(T)=Co

(1(7) = d0 +dI -G(T,0)+d2 -G(T,O)2 +al3 -G(T,0)3 +d4 -G(T,0)“

where the coefficients are

a0 = 0.2476, a, = —0. 08853, a2 = 0.02137

bO = 10.0561, b, = —8.5684, b, = 3.5406, b, = —0.65894, b, = 0.04894

= 0.0114

do = —0. 0270, d, = —0.0857, d, = -0.0418, d, = -0.0089, d, = —0.0007

Figure B shows the good fits of G(T,B)/G(T,0) to the data for three

different nominal temperatures.
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Figure B. Plot ofmagnetoresistance ofthe carbon thermometer versus magnetic field for

three difl‘erent values ofthe nominal temperature, 565, 400 and 283 mK. The solid line is

the fimction G(T, B) / G(T,0) calculated with difi‘erent values ofthe coefficients a(T),

b(T) 6(7) and d(T)
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