

This is to certify that the

dissertation entitled

Self-Incompatibility in Sour Cherry (<u>Prunus cerasus L.</u>) and Inbreeding and Multivariate Relationships Among Almond (<u>Prunus dulcis</u> (Miller) D.A. Webb) Cultivars

presented by

ALI LANSARI

has been accepted towards fulfillment of the requirements for

Ph.D degree in Horticulture

Date Oct. 27, 1993

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

on or before date due.	
DATE DUE	DATE DUE
	APR 0.9 2003
	UG 1 5 2006

MSU is An Affirmative Action/Equal Opportunity Institution characteristics.pm3-p.1

SELF-INCOMPATIBILITY IN SOUR CHERRY (<u>Prunus cerasus</u> L.) and

INBREEDING AND MULTIVARIATE RELATIONSHIPS AMONG ALMOND (Prunus dulcis (Miller) D.A. Webb) CULTIVARS

BY

Ali Lansari

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Horticulture

1993

ABSTRACT

SELF-INCOMPATIBILITY IN SOUR CHERRY (Prunus cerasus L.)

INBREEDING AND MULTIVARIATE RELATIONSHIPS AMONG ALMOND (Prunus dulcis (Miller) D.A. Webb) CULTIVARS

RY

ALI LANSARI

Self-incompatibility was investigated in sour cherry (Prunus cerasus L.) by examining pollen growth in the pistil using ultraviolet (UV) fluorescence microscopy following selfcross-pollination. The sour cherry cultivars 'Tschernokorka' and 'Crisana' exhibit pollen tube inhibition in the style characteristic of gametophytic selfincompatibility. 'Meteor' and 'Montmorency' appear to be partially self-incompatible with few self-pollen tubes reaching the ovary. Pollen growth rate is different according to the male parent and to the receptive pistil.

Pedigrees of 124 almond, <u>Prunus dulcis</u> (Miller) D.A Webb, cultivars from U.S., Russia, Israel, France, and Spain were used to calculate: 1) the inbreeding coefficients of these cultivars, 2) the genetic coancestries among these cultivars, and 3) the genetic contribution of founding clones to these cultivars. The recurrent use of 4 selections as parents in the U.S. breeding programs has resulted in a mean inbreeding coefficient (F) within the U.S. germplasm collection of 0.022. In France, a single cultivar, 'Ferralise', has an inbreeding

value of F = 0.250, while cultivars of other almond producing countries are noninbred (F=0). Due to the use of common parents, the American, Russian, and Israeli cultivars share coancestry, while coancestries also exist between French and Spanish almond germplasm. Cultivars of known parentage, including those released through breeding programs, in the U.S., Russia, Israel, France, and Spain trace back respectively to 9, 8, 3, 4, and 3 founding clones. Almond breeding programs might, in the future, narrow the almond germplasm genetic base thereby limiting genetic gain.

Principal component analysis (PCA) was used to quantify morphological variation among eighty one selected Moroccan clones and introduced cultivars. Moroccan selections tended to be characterized by small leaves in comparison to foreign cultivars. Variability for nut and kernel traits was identified, and along with several clones which have very good nut and kernel characteristics. There is, however, some evidence that the fruiting potential of Moroccan selections remains limited, even though some of them had a large number of spurs. No evidence was found of separate ecotypes existing in the southern Moroccan almond populations.

DEDICATION

To my father and mother who always gave me love and support, and whom I always cherished and loved.

To my father who taught me a lot about life.

To my wife, Fouzia, who has always been beside me, and who always provided me with the love and support I needed throughout the years of our marriage. She always left everything behind to help and encourage me to complete this work.

To my cherished children, Kawtar and Soufiane, who always brighten my dark moments with their smiles and laughs. I love them very much.

To my brothers, Aziz and Mohammed, and my sisters, Houria, Sabah, Zoulikha, Bouchra, and Soumia, for their understanding and love.

To all my friends.

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my major professor, Dr. Amy F. Iezzoni, for her advice, support and understanding throughout the duration of my graduate program in Michigan. I am most grateful to her for her trust in my ability to complete the present research in both Michigan, USA. and Morocco.

I would like to express my sincere appreciation to the members of my Guidance Committee, Drs. J. Whallon, F. Dennis, J. Hancock, and J. Kelly.

Deep thanks to Dr. A. Cameron for taking time to read my thesis and for serving on my examining Committee.

I am thankful to Dr. Dale E. Kester, from the University of California, Davis, for providing me with advice, ideas, and support that I needed to conduct this research.

Thanks to Drs. Ch. Grasselly, R. Socias I Company, and J. Luby for their critical reading of the manuscript.

TABLE OF CONTENTS

Pa	age
LIST OF TABLES	vii
LIST OF FIGURESvi	iii
LIST OF APPENDICES	ix
INTRODUCTION	1
CHAPTER I. A PRELIMINARY ANALYSIS OF SELF-INCOMPATIBILITY IN SOUR CHERRY (Prunus cerasus L.) Summary	4 5 8 13
CHAPTER II. INBREEDING, COANCESTRY, AND FOUNDING CLOWES OF ALMONDS OF CALIFORNIA, MEDITERRANEAN SHORES, AND RUSSIA. Summary. Introduction. Materials and methods. Results. Conclusions. Literature cited.	38
CHAPTER III. MORPHOLOGICAL VARIATION WITHIN COLLECTIONS OF MOROCCAN ALMOND CLONES AND MEDITERRANEAN AND AMERICAN CULTIVARS. Summary. Introduction. Materials and methods. Results. Conclusions. Literature cited.	55 56 59 65 79 82
GENERAL CONCLUSIONS	97

LIST OF TABLES

Tabl	e P	age
Chap	ter I:	
1.	Self-incompatibility (-) and self-compatibility among 6 cherry cultivars, based upon controlled crosses	9
Chap	ter II:	
1.	Country of origin, parentage, and inbreeding coefficients for 10 almond cultivars The percent genetic contribution of founding clones over all the cultivars in their respective groups	25
3.	outlined in the pedigrees in Appendices 2-6 Coefficients of coancestries for U.S. almond	27
4.	cultivars Coefficients of coancestries for Russian almond	30
5.	cultivars used in breeding programs	31
6.	Coefficients of coancestries for Spanish almond cultivars used in breeding programs	34
7.	Coefficients of coancestries for Israeli almond cultivars used in breeding programs	36
7.	Mean coancestry coefficients among almond cultivars from 5 almond producing countries	37
Chap	ter III:	
1.	Origin and location of cultivars and clones Morphological characters and ratios employed in the	61
3.	analyses Eigenvectors of the 3 principal components axes	64
	from PCA analyses of Stations 1, 2, and 3 genotypes represented in Figures 2, 3, and 4	66
4.	Means of representative characters highly loading on PC1, PC2, and PC3 axes for Figure 2 (station #1)	69
5. 6.	Means of representative characters highly loading on PC1, PC2, and PC3 axes for Figure 3 (station #2) Means of representative characters highly loading	73
٥.	on PC1, PC2, and PC3 axes for Figure 4 (station #3)	77

LIST OF FIGURES

Figu	re	Page
Chapt	ter I:	
1.	Pollen tube growth in sour cherry pistils 72 hours after pollination: (top) 'Crisana' self-pollinated, (middle) 'Meteor' self-pollinated, and (bottom) 'Crisana' x 'Meteor'. The pistils were purposely curved before the photographs were taken	10
2.	Mean of the percentage of style length of (A) 'Tschernokorka', (B) 'Crisana', (C) 'Meteor', and (D) 'Montmorency', penetrated by pollen tubes 24, 48, and 72 hours after pollination. Values represent the mean of 10 styles per cross	11
Chapt	ter III:	
1.	Survey areas map of southern Morocco Position of PC scores of introduced cultivars and	60
	Moroccan selections. Station #1	68
3.	Position of PC scores of introduced cultivars and Moroccan selections. Station #2	72
4.	Moroccan selections. Station #2#3	76

LIST OF APPENDICES

Appe	endix	age
Chap	eter II:	
1.	Parentage and inbreeding coefficients of almond cultivars grown in the U.S., Russia, Israel, France, Spain, and Italy	46
2.	Pedigrees of U.S. almond cultivars	50
3.	Pedigrees of Russian almond cultivars	51
4.	Pedigrees of French almond cultivars	52
5.	Pedigrees of Spanish almond cultivars	53
6.	Pedigrees of Israeli almond cultivars	54
Chap	eter III:	
1.	Means of characters measured highly loading on PC1 for Figure 2 (Station #1)	84
2.	Means of characters measured highly loading on PC2	٠.
	for Figure 2 (Station #1)	85
3.	Means of characters measured highly loading on PC3	
	for Figure 2 (Station #1)	86
4.	Means of characters measured highly loading on PC1	
	for Figure 3 (Station #1)	87
5.	Means of characters measured highly loading on PC2	
	for Figure 3 (Station #1)	88
6.	Means of characters measured highly loading on PC3	
	for Figure 3 (Station #1)	89
7.	Means of characters measured highly loading on PC1	
	for Figure 4 (Station #1)	90
8.	Means of characters measured highly loading on PC2	
_	for Figure 4 (Station #1)	91
9.	Means of characters measured highly loading on PC3	
10	for Figure 4 (Station #1)	92
10.	Eigenvalues of the correlation matrix for the seven first PC's at Station #1	93
11.	Eigenvalues of the correlation matrix for the	93
TŤ.	seven first PC's at Station #2	94
12.	Eigenvalues of the correlation matrix for the	24
12.	seven first PC's at Station #3	95
13.	Almond nuts and kernels of Moroccan selections	96

INTRODUCTION

Self-incompatibility ensures outcrossing which promotes heterozygosity, permitting a greater capacity to adapt to different environments. This may result in a wider species Self-compatibility can develop through evolution, either by mutation of self-incompatibility alleles to selfcompatible ones, or by interspecific hybridization of selfincompatible and self- compatible species, giving rise to self-compatible genotypes within a species or to a new selfcompatible species. Prunus species are either self-compatible or self-incompatible. The tetraploid sour cherry (Prunus cerasus L.) is thought to have resulted from hybridization between sweet cherry (P. avium L.), which is a selfincompatible diploid, and the tetraploid ground cherry (P. fruticosa Pall.). Sour cherry is known to be self-compatible, but cultivars with varying degrees of self-incompatibility have been reported. The objective of the work described in chapter 1 was to characterize self-incompatibility in sour cherry. This was achieved by examining pollen tube growth in the pistil using ultra violet fluorescence microscopy, in four sour cherry cultivars and several hybrids of self-compatible sour cherry cultivars.

Under certain environmental conditions and in the presence of natural barriers, gene flow can be restricted and species can be isolated, giving rise to identifiable ecotypes. Under numan and natural selection forces in different countries, almond ecotypes have evolved and developed characteristic traits (i.e., self-compatibility in almond (Prunus dulcis (Miller) D.A. Webb) Puglia ecotypes in Italy, soft shell types in California). Fruit breeders select superior genotypes of almond from available ecotypes, and use them as commercial cultivars and as gene sources for cultivar improvement. Extensive use of common parents in breeding programs reduces genetic diversity and increases inbreeding and coancestry relationships among released cultivars. However, in Morocco, almond, which is an outcrossing Prunus species, is mostly propagated by seeds and is grown under various environmental conditions. These conditions increase genetic diversity and may result in the development of characterized ecotypes.

In Chapter 2, the level of inbreeding and coancestry relationships among almond cultivars from different almond producing countries was determined. In Chapter 3, morphological variation among Moroccan selections and introduced cultivars was studied using multivariate statistics.

CHAPTER I

A PRELIMINARY ANALYSIS OF SELF-INCOMPATIBILITY IN SOUR CHERRY (<u>Prunus</u> <u>cerasus</u> L.)

SUMMARY:

Self-incompatibility was investigated in sour cherry (Prunus cerasus L.) by examining pollen tube growth in the pistil using ultraviolet (UV) fluorescence microscopy following self- and cross-pollination. The sour cherry cultivars 'Tschernokorka' and 'Crisana' exhibit pollen tube inhibition in the style characteristic of gametophytic self-incompatibility. 'Meteor' and 'Montmorency' appear to be partially self-incompatible since some but not many self-pollen tubes reach the ovary. Pollen germination rates were different according to the pollen source and the receptive pistil.

INTRODUCTION:

Self-incompatibility in Prunus is widespread. Most commercial almond cultivars (P. dulcis Miller) (Socias I Company et al., 1976; Crossa-Raynaud and Grasselly, 1985) and sweet cherry cultivars (P. avium L.) (Crane and Lawrence, 1929; Crane and Brown, 1937; Way, 1967) exhibit gametophytic self-incompatibility and cross-incompatible groups have been identified. In plums (P. domestica), the expression of self-incompatibility is more complex. Plums can be self-compatible, self-incompatible, or partially self-compatible, and only a few examples of

cross-incompatibility have been reported (Crane and Lawrence, 1929; Suranyi, 1978).

Although the tetraploid sour cherry is generally considered self-compatible, self-incompatible sour cherry cultivars do exist (Lech and Tylus, 1983; Redalen, 1984a, 1984b). These self-incompatible cultivars generally represent old landrace cultivars which are being replaced in commercial production by self-compatible types. Besides the two classifications of self-compatible and self-incompatible, Redalen (1984b) describes a partially self-incompatible class in sour cherry, which he defined as having 1.5% to 15% fruit set.

The sour cherry industry in the United States is a monoculture of the cultivar 'Montmorency'. Beginning in 1983, sour cherry germplasm, including some self-incompatible cultivars, was imported into the United States from Europe for use in sour cherry breeding. The objectives of this study were to evaluate pollen tube growth in sour cherry cultivars previously reported to be self-compatible or self-incompatible. Pollen tube growth in the pistil was examined using ultraviolet (UV) fluorescence microscopy.

MATERIALS AND METHODS:

Plant material: A diallel cross was made among four sour Cherry cultivars: 'Tschernokorka', 'Crisana', 'Meteor', and 'Montmorency'. 'Tschernokorka' and 'Crisana' are reportedly self-incompatible (Redalen, 1984a, 1984b). Two sweet cherry cultivars, 'Emperor Francis' and 'Schmidt' were also included for comparison.

All the plant material tested was planted at the Clarksville Horticultural Experimental Station, Clarksville, Michigan, U.S.A.

Pollination and evaluation: Pollen was collected from cut branches forced indoors at room temperature. Pollen viability was tested by the method of Werner and Chang (1981) using 3(4-5-dimethylthiazolyl-2)2,5-diphenyl tetrazolium bromide (MTT) (Sigma, St. Louis, Mo.) as the pollen staining agent, because of its high correlation with pollen germination. A drop of a solution of 100 mg of MTT in 5 ml of 10% sucrose solution was placed on the microscope slide, the pollen dusted onto the surface, and a coverslip added. Counts were made one hour later for the development of a satisfactory red color. Pollen grains that stained red or dark red were considered as viable, pollen staining light red were considered of reduced viability, and colorless pollen grains were non viable.

Flowers on branches in the field selected for crossing were emasculated at the balloon stage, all other flowers being removed. Emasculated flowers were hand pollinated when receptive. 'Schmidt' and 'Emperor Francis' were pollinated May 13, 1989, 'Montmorency', 'Crisana', and 'Tschernokorka' were

pollinated May 14, and 'Meteor' was pollinated May 16. The minimum and maximum temperatures for May 13 through May 19 were 9-15°C, 10-20°C, 10-21°C, 10-25°C, 11-29°C, 14-27°C, and 17-22°C, respectively. Ten pollinated pistils per cross were collected 24, 48, and 72 hours after pollination and fixed in Farmer's fixative solution (glacial acetic acid:ethanol, 1:2, v/v).

The pistils were prepared for fluorescent microscopy with a modification of Martin's technique (1959). They were thoroughly washed under running tap water and autoclaved for 10 minutes in 1% sodium sulfite (Merck, Cherry Hill, N.J.) solution to soften the tissues. After removal of the epidermis, the pistils were soaked in 0.1% aniline blue (Sigma, St. Louis, MO.) solution at pH 8.5 for 10 to 15 minutes. Pollen tubes were observed by UV fluorescent light microscopy using an Olympus BH-2 microscope, with A 10 PL of 0.25 aperture, and A40 PL of 0.65 aperture objectives. The exciter filters used were UGL for ultraviolet excitation, and BP490B for blue excitation. Aniline blue in alkaline solution will fluoresce under UV light when it is complexed with polysaccharide which is present in callose plugs (Stone et al., 1984).

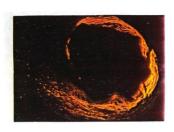
Pollen-pistil incompatibility was defined as no pollen tubes reaching the ovule on all pistils observed, while compatibility was considered to exist when at least one observed pistil had pollen tubes reaching the ovule.

Pollen tube growth was determined by the distance pollen tubes had penetrated into the upper 1/4, upper 1/3, lower 1/3, lower 1/4 of the style, or reached the ovule. Data is represented as the mean percentage of total style length travelled by pollen tubes of 10 pistils per cross.

RESULTS:

All cultivars tested were cross compatible (Table 1).

'Tschernokorka' and 'Crisana' sour cherries and the sweet cherry cultivars were self-incompatible; no pollen tubes reached the ovule in any of the 10 pistils observed. 'Meteor' and 'Montmorency' were scored; in these two groups, at least 50% of the pistils had pollen tubes reaching the ovule (Table 1). However, not all the pistils observed had pollen tubes that reached the ovule 72 hours after pollination (Fig. 2C and D). Self-incompatibility in 'Tschernokorka' and 'Crisana' was characterized by inhibition of pollen tube growth in the stylar tissue (Fig. 1). Self-pollen of 'Crisana' 'Tschernokorka' initially grew as fast as foreign sour cherry pollen; however, pollen tube growth was reduced 48 hours after pollination and stopped approximately half way down the styles hours after pollination (Fig. 2A and B). In the incompatible sour cherry pollinations, pollen tube branching, bursting or growth reversal were observed. The swelling of pollen tube tips, which is usually associated with


Table 1. Self-incompatibility (-) and self-compatibility (+) among six cherry cultivars based upon controlled crosses.

Pistil	Pollen					
	EF	Sch	Tsch	Cris	Met	Mont
Emperor Francis	_	+	+	+	+	+
Schmidt	+	_	+	+	+	+
Tschernokorka	+	+	_	+	+	+
Crisana	+	+	+	-	+	+
Meteor	+	+	+	+	+	+
Montmorency	+	+	+	+	+	+

⁽⁻⁾ indicates that pollen tube growth in all pistils observed was arrested in the stylar tissues.

⁽⁺⁾ indicates that more than 50% of the pistils observed had pollen tubes reaching the ovule.

Pollen tube growth in sour cherry pistils 72 hours after pollination: (left) 'Crisana' self-pollinated, (middle) 'Meteor' self-pollinated, and (right) 'Crisana' x 'Meteor'. The pistils were purposely curved before the photographs were taken. Fig. 1.

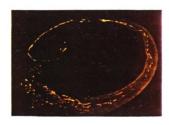
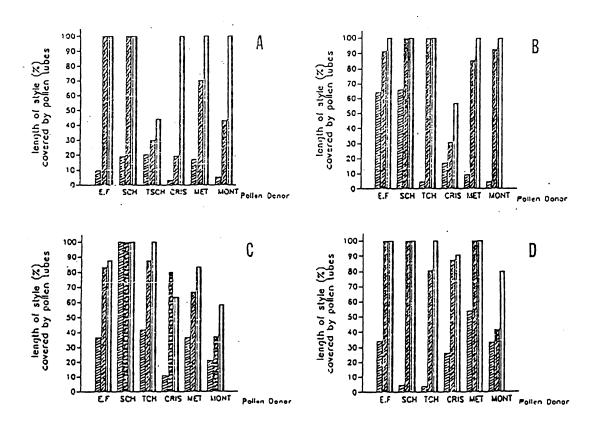



Fig. 2. Mean of the percentage of style length of
(A)' Tschernokorka', (B) 'Crisana', (C) 'Meteor', and
(D) 'Montmorency', covered by pollen tubes 24, 48, and
72 hours after pollination.
Values represent the mean of 10 styles.

224 h, 23 48 h, 13 72 h after pollination.

gametophytic incompatibility, was observed in the sweet cherry cultivars but not in the self-incompatible sour cherry cultivars. 'Crisana' pollen grew the best on 'Tschernokorka' pistils (Fig. 2), while all cross pollen types grew successfully on 'Crisana' pistils (Fig. 2C).

'Montmorency' and 'Meteor' were self-compatible with self-pollen successfully reaching the ovule. However, for 'Montmorency', self-pollen grew more slowly than foreign pollen. Effectively, the mean percentage of total style length travelled by pollen tubes 72 hours after pollination was 80%, since not all the pistils observed had pollen tubes that reached the ovule (Fig. 2D). In the 'Meteor' styles, selfpollen and pollen of 'Crisana' and 'Montmorency' generally grew more slowly, with mean values of 80%, 65%, and 60% respectively, as compared to pollen of the two sweet cherry cultivars and 'Tschernokorka'sour cherry (Fig. 2C), and as compared to the styles of the other sour cherry cultivars (Fig. 2). Additionally, for both 'Montmorency' and 'Meteor'. very few self-pollen tubes reached the last one third of the style (Fig. 1), many of them being inhibited along the transmitting tissue in a pattern more variable than that exhibited for out-cross pollinations (Fig. 1C). This could not be attributed to pollen quality, since the 'Montmorency' and 'Meteor' pollen grew successfully in the styles of other cultivars. It was noted that sweet cherry pollen generally grew faster than sour cherry pollen in sour cherry styles (Fig. 2A-D).

CONCLUSION:

Self-incompatibility in sour cherry is characterized by inhibition of pollen tube growth in the style suggesting gametophytic self-incompatibility as reported for other self-incompatible Prunus species. In the incompatible pollinations, the pollen tubes initially penetrated into the style and grew normally; however, growth stopped when the pollen tubes were approximately half way down the style. Our results are contrary to those of Lech and Tylus (1983) who observed no pollen tube growth beyond the stigma for the sour cherry cultivar 'Koroser', presumably synonymous to the Romanian cultivar 'Crisana'.

Redalen (1984b) classified 'Montmorency' and 'Meteor' as partially self-incompatible based on low fruit set following self-pollinations. 'Montmorency' and 'Meteor' did exhibit inhibition of a large percentage of self-pollen in the style. This observation could represent the partial self-incompatibility described by Redalen (1984a, 1984b).

Pollen growth was different according to the donor parent and to the female parent. In general, 'Emperor Francis' and 'Schmidt' sweet cherry pollen was rapid in growth on sour cherry cultivars. Sour cherry pollen had the slowest growth on

'Meteor'. The ploidy level at the gametic stage could affect pollen tube growth rate between pollen of the diploid sweet cherry and pollen of the tetraploid sour cherry on sour cherry pistils. Moreover, partial and complete self-incompatibility on sour cherry seems to be more complex to understand based on the presence of a fertility restorating allele (or alleles) from one of the believed sour cherry parents, the tetraploid <u>Prunus fruticosa</u>, and considering that sour cherry is an allotetraploid.

Literature Cited

- Crossa-Raynaud, P. and C. Grasselly. 1985. Existance de groupes d'intersterilité chez l'amandier. Options Mediterraneenes 85:43-45.
- Crane, M.B. and W.J.C. Lawrence. 1929. Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. J. Pom. Hort. Sci. 7:276-301.
- Crane, M.B. and A.G. Brown. 1937. Incompatibility and sterility in the sweet cherry, <u>Prunus avium</u> L. J. Pom. Hort. Sci. 15: 86-116.
- Lech, W. and K. Tylus. 1983. Pollination, fertilization, and fruit set of some sour cherry varieties. Acta Hort. 139:33-39.
- Martin, F.W. 1959. Staining and observing pollen tubes in the styles by means of fluorescence. Stain Technol. 34:125-128.
- Redalen, G. 1984a. Cross pollination of five sour cherry cultivars. Acta Hort. 149:71-76.
- Redalen, G. 1984b. Fertility in sour cherries.
 Gartenbauwissenschaft 49(5/6):212-217.
- Socias I Company, R., D.E. Kester and M.V. Bradley. 1976. Effects of temperature and genotype on pollen tube growth in some self-incompatible and self-incompatible almond cultivars. J. Amer. Soc. Hort. Sci. 101:490-493.
- Stone, B. A., N. A. Evans, I. Bonig, and A. E. Clarke. 1984. The application of Sirafluor, a chemically defined fluorochrome from Aniline blue for the histochemical detection of callose. Protoplasma 122: 191-195.
- Suranyi, D. 1978. A new method to determine self-fertility in plum varieties. Acta Hort. 74: 155-162.
- Way, R.D. 1967. Pollen incompatibility groups of sweet cherry clones. J. Amer. Soc. Hort. Sci. 92: 119-123.
- Werner, D.J. and S. Chang. 1981. Stain testing viability in stored peach pollen. HortScience 16:522-523.

CHAPTER II

INBREEDING, COANCESTRY, AND FOUNDING CLONES OF ALMONDS
OF CALIFORNIA, MEDITERRANEAN SHORES, AND RUSSIA

SUMMARY:

The cultivated almond, Prunus dulcis (Miller) D.A Webb, has spread progressively since antiquity from along the Mediterranean shores to the United States (U.S.), South Africa, and Australia. To satisfy market demands and improve cultivars, the recurrent use of four selections as parents in the U.S. breeding programs has resulted in a mean inbreeding coefficient (F) within the U.S. germplasm collection of 0.022. In France, a single cultivar, 'Ferralise', has an inbreeding value of F = 0.250, while cultivars of other almond producing countries are noninbred (F=0). Due to the use of common parents, the U.S., Russian, and Israeli cultivars share coancestry, while coancestries also exist between French and Spanish almond germplasm. Cultivars of known parentage in the U.S., Russia, Israel, France, and Spain trace back, respectively, to 9, 8, 3, 4, and 3 founding clones. Almond breeding programs might, in the future, narrow the genetic base of almond germplasm, thereby limiting genetic gain.

INTRODUCTION:

Genetic diversity of crop plants decreases the likelihood of crop losses to insects, diseases, and unfavorable weather conditions. Maximizing genetic diversity is also important in breeding programs, since it maximizes the potential gain from selection. Yet, <u>Prunus</u> cultivars grown in the U.S. have a very narrow genetic base. Sour cherry (<u>P</u>. <u>cerasus</u>) production in the U.S. is a monoculture of one variety, and most commercial peach (<u>P</u>. <u>persica</u>) varieties trace back to six parental cultivars (Scorza et al., 1985). In almond breeding programs, the extensive use of two cultivars, 'Nonpareil' and 'Mission', suggest that the almond germplasm base may be similarly narrow.

The cultivated almond [synonymous P. amygdalus Batsch and P. communis L. (Kester et al., 1991)] is believed to have originated from the wild species Amygdalus communis (Evrinov, 1958; Grasselly and Crossa-Raynaud, 1980; Kester, 1990; Kester et al., 1991; Kester and Asay, 1975). Amygdalus communis is thought to be derived from hybridization among several wild species of the subgenus Amygdalus such as P. fenzliana, P. bucharica (Grasselly and Crossa-Raynaud, 1980; Kester and Asay, 1975), P. ulmifolia (Evrinov, 1958; Kester and Asay, 1975), and possibly P. kuramica (Grasselly and Crossa-Raynaud, 1980; Kester et al., 1991) and P. kotschii (C. Grasselly, personal communication). The native habitats of the cultivated almond are between 700 and 1700 m on the Kapet Dagh Mountains between Iran and Russia and on the Tian Sian Mountains between western Mongolia and Russia (Grasselly and Crossa-Raynaud, 1980; Grasselly, 1976; Kester, 1990; Kester and Asay, 1975). Almond cultivation began during the third millennium B.C. (Socias I Company, 1990) with sweet kerneled selections that arose by mutation within wild populations of normally bitter seedlings (Grasselly, 1976; Kester, 1990). Cultivated almonds were introduced to Greece before 350 B.C. (Kester, 1990; Socias I Company, 1990) and spread around the Mediterranean through commercial routes (Grasselly and Crossa-Raynaud, 1980; Kester, 1990; Kester et al., 1991; Kester and Asay, 1975; Socias I Company, 1990). The Arabs introduced almonds into North Africa and the Iberian peninsula during the 6th and 7th century A.D (Kester, 1990). The introduction of almonds into America, Australia and South Africa occurred between 1850 and 1900 (Kester, 1990). Currently almond culture is concentrated in three main world regions: Asia, the shores of the Mediterranean sea, and California. Limited production is found in Australia, South Africa, Argentina, and Chile (Kester et al., 1991).

Since antiquity, the cultivated almond has been propagated by seed and, therefore, has been more likely to exhibit more genetic change than a clonally propagated species would. As a result of selection pressure, the domesticated species progressively differentiated into separate geographical ecotypes in the differing environments (Grasselly, 1976; Grasselly and Crossa-Raynaud, 1980; Kester, 1990). Cultivars were selected from seedling almond populations, grafted to propagate desirable clones, and later established in commercial orchards (Kester, 1990; Kester et al., 1991; Kester and Asay; 1975, Socias I Company, 1990). Most of the leading

cultivars in the world originated from chance seedlings selected from local gene pools (Kester et al., 1991).

Almond production and cultivar development followed different patterns in different parts of the world: 1) Seedlings and a few locally selected and vegetatively propagated cultivars are grown commercially in Afghanistan, Bulgaria, India, Iraq, Iran, Morocco, Pakistan, Romania, Syria, Turkey, and Yugoslavia.

- 2) Active breeding and evaluation programs exist in Australia, Greece, Israel, Italy, Spain, and Tunisia, but most of the major cultivars originated from chance seedlings from local ecotypes.
- 3) In France, the former Soviet Union, and U.S, the almond industries rely primarily on released cultivars from breeding programs, and old seedling or clonally selected cultivars from landraces exist only in germplasm preservation collections.

Almond is an obligate outcrosser and susceptible to inbreeding depression characterized by leaf abnormalities and reduction in vigor, flower number, fruit set, seed germination, seedling survival, and disease resistance (Grasselly and Olivier, 1976; Grasselly et al., 1981; Grasselly and Olivier, 1981; Socias I Company, 1990; C. Grasselly and D. Kester, personal communication). When the 'Tuono' cultivar from the Puglia region of Italy was crossed with unrelated cultivars, no inbreeding depression was reported. However, when 'Tuono' was crossed with other

cultivars of the Puglia region or self-pollinated, inbreeding depression occured, as expressed by low vigor and a longer juvenile period (Socias I Company, 1990). In cultivar development, when self-pollination or sib-mating practiced, the level of inbreeding in the progeny population increases. The objective of these conservative crosses, selfs or related crosses, is generally to maintain the uniformity in kernel traits required by the industry. As a result, there is fixation at desirable loci with an associated reduction of fitness due to a loss of heterozygosity. The extensive use of the 'Nonpareil' and 'Mission' cultivars in breeding programs raises a concern of possible inbreeding depression in almond breeding programs. The objective of the present study was to compare the level of inbreeding, coancestry, and the genetic contribution of founding clones among almond germplasm in different almond producing countries.

MATERIALS AND METHODS:

Pedigrees of almond cultivars were collected from published sources (Anonymous, 1977; Barbera et al., 1984; Bastide and Souty, 1976; Brooks and Olmo, 1972; Brooks and Olmo, 1982; Chessa and Pala, 1985; Costetchi, 1967; Egea et al., 1984; Fanelli, 1939; Felipe, 1976; Felipe, 1984; Felipe and Socias I Company, 1985; Felipe and Socias I Company, 1987; Georgio et al., 1985; Grasselly and Crossa-Raynaud, 1980;

Jaouani, 1976; Kester et al., 1991; Kester et al., 1984; Kester et al., 1985; Monastra et al., 1984; Serafimov, 1976; Spiegel-Roy, 1976; Spiegel-Roy and Kochba, 1976a; Spiegel-Roy and Kochba, 1976a; Spiegel-Roy and Kochba, 1976b; Spiegel-Roy et al., 1982; Stylianides, 1976; Stylianides, 1977; Vargas Garcia, 1975; Vlasic, 1976; Wood, 1924), and breeding records. Parental relationships for many cultivars of unknown origin have been defined by isozyme techniques (Hauagge et al., 1987), or through pollen incompatibility studies (Crossa-Raynaud and Grasselly, 1985; Godini et al., 1977; Kester et al., 1985). Pedigrees for 427 almond cultivars from different almond producing countries were obtained; however, only 124 cultivars were included in the present study. The other 303 cultivars are of unknown parentage. Of these 124 cultivars, 86 were American, 12 Russian, 6 Israeli, 13 French, 5 Spanish, and 3 Italian.

The inbreeding coefficient (F), given by the following formula, is defined as the probability that 2 genes at any locus in an individual are replicates of one and the same gene in a previous generation. These genes are said to be "identical by descent" (Wright, 1922).

$$F_{\chi} = \sum \ \left[\ \left(\ \frac{1}{2} \ \right)^{\ n_1 + n_2 + 1} \left(\ 1 + F_A \right) \ \right] \ .$$

 \boldsymbol{n}_1 = number of generations from one parent back to the common ancestor.

 n_2 = number of generations from the other parent back to the

common ancestor.

 $\mathbf{F}_{\mathbf{A}}$ = inbreeding coefficient of the common ancestor.

Estimation of the level of inbreeding by calculation of the inbreeding coefficient gives a reasonable approximation of the probability of fixation, even when the initial gene frequencies are not known (Wright, 1922). Considering that almond is an obligate outcrosser because it is self-incompatible, all parents of unknown origin were assumed non inbred and unrelated. The seed parent involved in an open-pollination was also assumed to be unrelated to the pollen parent. Inbreeding coefficients were calculated using a computer program of Hancock and Siefker (1982).

The coancestry coefficient (CC) of perspective progeny of 2 individuals is equal to one half the covariance of the parents. Using the same program for F calculations, the CC of 2 cultivars was calculated as F of their prospective progeny knowing that F of an individual is equal to the CC of its parents. The CC equals 0.500 for self-pollination, 0.250 for parent-offspring and full-sib matings, 0.125 for half-sib matings, and 0.063 for first cousin matings. Parentage of a mutant of a cultivar is considered to be the same as parentage of the mutated cultivar. Thus only the CC value of the original cultivar is presented. However, the CC values of all the cultivars, the mutants plus the original cultivar, were

The genetic contribution (GC) of a founding clone to a cultivar was calculated as described by Sjulin and Dale (1987):

$$GC = \sum_{1}^{x} \left(\frac{1}{2}\right)^{n}$$

n= number of generations in a pedigree pathway between the founding clone and the cultivar.

x = number of pathways between the founding clone and the cultivar.

RESULTS:

<u>Inbreeding coefficients</u>: Only 10 almond cultivars had inbreeding coefficients different than zero (Table 1). Inbreeding coefficients of U.S. cultivars ranged from 0 to 0.375 (Appendix 1) with 9 of the 86 cultivars evaluated having F>O (Table 1). The mean inbreeding coefficient for the U.S. cultivars was 0.022. Except for the French cultivar 'Ferralise', with F=0.250, all the remaining almond cultivars in France, Russia, Spain, and Israel are noninbred (F=O) (Appendix 1).

Founding clones: The almond cultivars in the U.S. germplasm collection trace back to 9 cultivars with 'Nonpareil',

Table 1: Country of origin, parentage, and inbreeding coefficients for 10 almond cultivars.

Country of origin	Cultivar		reeding ficient (F)
U.S.	Sonora	21-19W [Nonpareil x (Nonpareil x (5a-20) Eureka) A1-30] x [Nonpareil x (Nonpareil x Eureka) A1-30]	0.375 22-20
U.S.	Solano	21-19W [Nonpareil x (Nonpareil x (5a-3) Eureka) A1-30] x 22-20 [Nonpareil x (Nonpareil x Eureka) A1-30]	0.375
U.S.	Emerauld	Mission x (Nonpareil x Mission)	0.250
U.S.	Profuse	Nonpareil x Jordanolo	0.250
U.S.	Wawona	Ruby x Mission	0.250
U.S.	Kapareil	Nonpareil x 24-6[Sel. A525 (Nonpareil x Eureka) x Eureka]	0.125
U.S.	Milow	Nonpareil x 24-6[Sel. A525 (Nonpareil x Eureka) x Eureka]	0.125
U.S.	Vesta	Solano (5a-3) x late blooming sport of Nonpareil	0.094
U.S.	Davey	Nonpareil x Sans Faute	0.063
France	Ferralise	Ferraduel x Ferragnes	0.250

 $^{^{\}rm z}{\rm The}$ rule of seed parent being at left of the cross is not respected because the direction of the cross was unknown.

'Mission', and the French 'Princesse' and 'Languedoc', representing the highest genetic contribution (GC) (Table 2). 'Nonpareil', a seedling of 'Princesse', contributes 37.9% in the genetic make-up of U.S. cultivars. This cultivar is related to 65% of the cultivars studied. 'Mission' (syn. 'Texas') has a GC of 30.2% and a coancestry relationship with 49% of the cultivars under study. 'Princesse' has a GC of 21.6%, while 'Languedoc' has a GC of 14.1%. The gene pool in California is dominated by descendants of 'Nonpareil' and 'Mission' (Hauagge et al., 1987, Kester et al., 1991). 'Nonpareil', 'Nec Plus', 'I.X.L', and 'Mission' are considered founding clones, even though their parentage is known (Appendix 1), because of their extensive use (mostly 'Mission' and 'Nonpareil') in breeding programs (Appendix 2). In addition, they originated from the first generation of selected almonds. The maternal parent of 'Nonpareil' (as well as of 'Nec Plus Ultra' and 'I.X.L') is believed to be a variety known in California as 'Princesse' or 'Prince's' which originated in the Languedoc area of France (Grasselly and Crossa-Raynaud, 1980). The California 'Languedoc' is apparently different from the French cultivar in the French collection known as 'Languedoc 320' (Kester et al., 1991).

The Russian cultivars trace back to 8 founding clones (Appendix 3, Table 2). Three of the founding clones are of Russian origin ('Nikitski 62', 'Nikitski 1', and 'Nikitski 53'), while the 5 others are from France ('Princesse' and

Table 2: The percent genetic contribution of founding clones over all the cultivars in their respective groups outlined in the pedigrees in Appendices 2-6.

Founding clone	Country of origin	Genetic contribution within each country
U.S. Germplasm:		
Nonpareil	U.S.	37.9
Mission	U.S.	30.2
Princesse	France	21.6
Languedoc	France	14.1
I.X.L	U.S.	3.9
Eureka	U.S.	2.3
Harriott	U.S.	1.6
Nec Plus	U.S.	1.3
Swanson	U.S.	0.7
Russian germplasm:		
Nikitski 62	Russia	38.9
Princesse	France	16.7
Nikitski 1	Russia	11.1
Nonpareil	U.S.	11.1
Languedoc	France	11.1
Nikitski 53	Russia	5.6
Fragullio	Italy	5.6
Reams	Italy	5.6
French germplasm:		
Cristomorto	Italy	41.7
Ai	France	33.3
Tuono	Italy	16.7
Ardechoise	France	8.3
Spanish germplasm:		
Tuono	Italy	50.0
Ferragnes	France	16.7
Tardive	France	16.7
Israeli germplasm:		
Greek	Israel	25.0
Marcona	Spain	25.0
Princesse	France	25.0

'Languedoc'), Italy ('Fragullio' and 'Reams'), and U.S. ('Nonpareil'). The dominant cultivar used in Russian breeding programs is 'Nikitski 62' (GC = 38.9%), followed by 'Princesse' (GC = 16.7%). 'Princesse', in Russia, is different from the 'Princesse', parent of 'Nonpareil', in the U.S. and 'Poriah 10' in Israel (C. Grasselly, personal communication), even though both cultivars are originally from France. 'Nikitski 1', 'Languedoc', and 'Nonpareil' have a GC = 11.1%.

The French almond breeding program is characterized by the extensive use of two founding clones 'Ai' (France) and 'Cristomorto' (Italy). Both cultivars have a GC of 35.7%, followed by 'Tuono' (Italy) (GC = 14.3%), and 'Ardechoise' (France) (GC = 7.1%) (Table 2). The French cultivars released from breeding programs trace back to 4 cultivars, 2 of Italian origin and 2 from France (Appendix 4). All the other French almond cultivars are of a chance seedling origin with unknown parentage except some speculative parentage relationship between old cultivars such as 'Fourcouronne', 'Tournefort', and 'Tardive de la Verdière' (Grasselly and Crossa-Raynaud, 1980).

The Spanish breeding program has released 3 cultivars to date (Appendix 5). From this material there are 3 founding clones: 'Tuono' from Italy (GC = 50%), 'Ferragnes' and 'Tardive de la Verdiere' from France (GC = 16.7%) (Table 2).

In Israel, 8 cultivars are of Israeli origin. Four of them have been obtained through breeding programs (Appendix 6)

involving 3 founding clones from 3 different countries ('Greek' from Israel, 'Marcona' from Spain, and 'Princesse' presumably from France, but probably imported from U.S.). The GC of each of these cultivars is 25% (Table 2).

Coefficients of coancestries: Even though the inbreeding coefficients of the almond cultivars are low (Appendix 1), cultivars released from breeding programs show important coancestry relationships through the repeated use of a few superior parents.

U.S. germplasm: Coefficients of coancestries (CC) of cultivars in the U.S. germplasm range between 0 and 0.50 (Table 3). The average CC values for individual cultivars paired with all other cultivars range between 0 and 0.15 with an overall mean of 0.080 for the 86 cultivars. Except for 12 cultivars of unknown origin and 'Nonpareil' and 'Mission', which are unrelated, all of the remaining 72 cultivars (84%) are interrelated. Seven percent of the cultivars represent a parent-offspring relationship (CC = 0.25) while 2% are full-sibs. Fourteen percent represent a half-sib relationship (CC = 0.125) and 4% have CC = 0.063 (first cousin relationship). On the average, every cultivar is related to 38 other cultivars with a range between 1 ('Swanson'= founding clone) and 69 (all 'Nonpareil' x 'Mission' hybrids) (Appendix 2).

Russian germplasm: Russian cultivars have CC values between o and 0.250 (Table 4). The average CC value over all the

Charlester Cha			
banklite on 18 17 15 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17	301 001	200 301 120	
March Marc	601 001	9	
Second			
Second S	051 117 117	2	
Tritte (18) 180 (19) (19) (19) (19) (19) (19) (19) (19)	023 023 016	925	
Control Cont	094 094 063	016 063 289	
Consider street (1921) 20			
State Stat			
10 10 10 10 10 10 10 10			
1.1.1. 1.1.	047 047 031	590	
Comparison Com	188 188 125 (125	
10 10 10 10 10 10 10 10			
15 15 15 15 15 15 15 15	290 760 760	9	
Marked M	188 188 125	125	
15 15 15 15 15 15 15 15	281 281 156	180 020 -	
20 102	188 188 125	125 016 -	125
		188 -	
		. 375 .	
250 083 01 17 21 188 01 01 188 189	281 281 156 1	148 020 -	
TES ON TES	188 188 125 (- 910	125
175 0.00 - 2.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00			
603 - 600 400 600 400 600 400 600 400 400 400	375 375 250 (250	
700 700 801 815 700 100 .	094 094 063 1	109 031	
005 005 005 005 005 005 005 005 005 005	047 047 031	055	
100 100 100 100 100 100 100 100 100 100		•	
10	166 166 125 (910 521 150	. 125 077
15 50 50 51 11 12 50 50 51 11 12 50 50 50 50 50 50 50 50 50 50 50 50 50	281 281 188 (
100 M	047 047 031	- 910 550 52	
a a a a a a a a a a a a a a a a a a a	047 031	- 910	9
	999	- 520 762	
2 Uteh 3 Veste		. 520 224	8
3 Vester	ď	- 910 671	
D VESTB		- 910	22
		,	
4 Vakons			
SHANSON		•	
6 Ureka			
/ Princesse (F)			-

in the state of th

Table 4: Coefficients of coancestries for Russian almond cultivars used in breeding programs.

Cm	Cultivars	1,	7	2 3 4	4	S	9	7	ω	6	10	11	12	13	14	15	10 11 12 13 14 15 16 17 Mean*	17 1	dean'
7	Bumagnoskorlupii .063 .063	ipii	.063	.063	ì	.125		1	1	.063	.125	.063	.250	1	.063	.125	1	250	.077
7	Desertnii			.125	1	.125	.250	.250	ı	.250	1	.125	.063	1	.125	1	,	1	.081
n	Ialtinski				ı	.125	.250	ı	1	.125	1,		.063	.250	.125	ı	1	1	.074
4	Krimski					1	1	ı	.250	1	1			1	.125	1	.250	1	.038
S	Miagkoskorlupii	ii					.250	ı	ı	.125	.250	.250	.125	1	.125	1	,	1	960.
9	Nikitski 62							ı	ı	.250	ı	.250	.125	ı	.250	1	ı	ı	103
7	Nikitski 1								1	.250	1	1	1	1	1	ı	,	1	.030
8	Nikitski 53									ı	ı	1	1	1	ı	ı	,	1	015
6	Nik. Podznetvetuse	retus	e								ı	.125	.063	ı	.125	1	ı	1	.081
70	Princesse(F)											.250	.250	1	ı	ı	1	1	990.
7	Primorski												.125	ı	.125	ı	,	ı	.092
12	Preanii													ı		.125		.250	.088
13	Reams(I)														1	1	1	ı	.015
14	Sovietski															1	.250	1	.081
15	Fragillio(I)																,	ı	.015
16	Languedoc(F)																	1	.030
17	Nonpareil (U.S.)																		.059

Latters between parentheses represent country of origin of foreign cultivars used as parents;
F- Frome. I— Italy, US.5.—United States of America.
Whaters across top of tabla rofer to cultivar numbers at far left of table.
Dashes indicate no inbreeding of the known parents.

*Mean coefficients of coancestry calculated with dashes - zero.

cultivars tested is 0.061. CC mean values for cultivars showing coancestry relationships and taken individually vary between 0.015 and 0.103. Ten percent of the cultivars from breeding programs have a parent-offspring relationship (CC = 0.250) and 4% are full-sibs (CC = 0.250). Fifteen percent of these cultivars represent a half-sib relationship (CC = 0.125), and 5% are of first cousin type coancestry (CC = 0.063). Every released cultivar from a controlled cross is related to at least seven other cultivars (Appendix 3).

French germplasm: The overall mean CC between cultivars released through French breeding programs is 0.121 (Table 5).

'Ferralise' represents the highest coancestry value (CC = 0.375) with its parents 'Ferragnes' and 'Ferraduel'. Every cultivar is related to at least 6 other cultivars, thus presenting a CC different than zero (Appendix 4). Eight percent of the cultivars have a full-sib relationship and 20% have a parent-offspring relationship (CC = 0.250). Nineteen percent are half-sibs (CC = 0.125), and 1% are first cousins (CC = 0.063).

Spanish germplasm: CC values for Spanish cultivars vary between 0 and 0.250 with an overall mean of 0.108. Three cultivars are half-sibs (CC = 0.125). The other CC's different from zero are parent-offspring relationships (CC = 0.250) (Table 6). Every released cultivar is related to at least 3 other cultivars (Appendix 5).

Table 5: Coefficients of coancestries for French almond cultivars used in breeding programs.

. •	.188	. 18	.163	. 12	.100	. 144	.144	. 125	.025	.050
ŧ	ı	1	1	1	ı	.250	.250	ı	i	
ı	ı	ı	ı	1	.250	ı	1	ı		
.250	.250	.250	.250	ı	ı	.125	.125			
.063	.188	.250	.125	.125	.063	.250				
.063	.188	.250	.125	.125	.063					
1	.125	.125	.125	.250						
7	.250	.250	.250							
.125	.375	.250								
.125	.375									
.125										
				(I						
L Belle		3 Ferragnes		Cristomor	Ferrastar	/ Lauranne			10 Ardechoise	11 Tuono(I)
	.125 .125 .125 - ^y 063 .063 .250 -	.125 .125 .125 - '063 .063 .250375 .250 .125 .188 .250 -	Belle .125 .125 .125 -7063 .063 .250 - Ferralise .375 .375 .250 .125 .188 .188 .250 - Ferragnes .250 .250 .250 .250 .250 .250 .	Belle .125 .125 -7063 .063 .250 - Ferralise .375 .375 .250 .125 .188 .188 .250250 .250 .250 .250 .250 .250 .250 .250	Belle .125 .125 -7063 .063 .250 - Ferralise .375 .375 .250 .125 .188 .188 .250250 .125 .250 .250250 .250 .125 .250 .250250 .125 .125 .125 .250250 .125 .125 .125 .250250 .125 .125 .250250 .125 .125 .250250 .250 .125 .125	Belle .125 .125 -7063 .063 .250 Ferralise .375 .375 .250 .125 .188 .188 .250	Belle .125 .125 .125 -/063 .063 .250 - Ferralise .375 .375 .250 .125 .188 .188 .250 - Ferragnes .250 .250 .250 .125 .250 .250 .250 .250 .250 .250 .250 .2	Belle .125 .125 .125 -/063 .063 .250 - Ferralise .375 .375 .250 .125 .188 .188 .250 - Ferragnes .250 .250 .125 .250 .250 .250 - Ferractuel .250 .125 .125 .125 .250 - Cristomorto(I) .250 .125 .125 .125 - Ferrastar .063 .063 - Lauranne .250 .125 - Stelliette .125 -	Belle .125 .125 .125 .125 .125 .183 .250 - Ferralise .375 .375 .250 .125 .188 .188 .250 - Ferragnes .250 .250 .250 .250 .250 .250 - Ferractuel .250 .125 .125 .125 .250 - Cristomorto(I) .250 .125 .125 .125 .250 - Ferrastar .250 .125 .125 - Lauranne .250 .125 . Stelliette .250 .125 - Ai	Belle .125 .125 -7063 .063 .250 Ferralise .375 .375 .250 .125 .188 .188 .250 Ferragnes .250 .250 .250 .250 .250 .250 .250 .250

Letters between parentheses represent country of origin of foreign cultivars used as parents; I- Italy. *Numbers across top of table refer to cultivar numbers at far left of table. 'Dashes indicate no inbreeding of the known parents.

*Mean coefficients of coancestry calculated with dashes = zero.

Table 6: Coefficient of coancestries for Spanish almond cultivars used in breeding programs.

Cult	ivars	1 ²	2	3	4	5	6	Mean
1 A	-10-6		.125	.125	.250	_у	.250	.150
2 A	yles			.125	.250		-	.100
3 M	oncayo				.250	.250	-	.150
4 T	uono(I)					-	-	.050
5 T	ardive(F)						-	.050
6 F	erragnes(F)							.050

Letters between parentheses represent country of origin of foreign cultivars used as parents; F= France, I= Italy.

²Numbers across top of table refer to cultivar numbers at far left of table.

yDashes indicate no inbreeding of the known parents.

^{*}Mean coefficients of coancestry calculated with dashes = zero.

Israeli germplasm: Of 11 cultivars, 9 have been involved in breeding programs, including 3 from foreign countries (Appendix 6). CC values vary between 0 and 0.250 (Table 7). All CC's equalling 0.250 (31 % of the cultivars studied) represent a parent-offspring relationship, with the exception of a full-sib relationship between 'Solo' and 'Samish'. Fourteen percent of the coancestry relationships are of the half-sib type (CC = 0.125). Every released cultivar is related to 5 or 6 other cultivars. Some of the original parents are introduced cultivars. 'Princesse' is a French cultivar, probably introduced from the U.S., 'Nonpareil' is from the U.S., and 'Marcona' is from Spain.

Coancestry relationships among cultivars from different countries: Germplasm exchange between almond breeders from different countries resulted in the common use of some cultivars as parents. When mean CC's across cultivars within countries are considered, U.S., Russian, and Israeli almond cultivars share common parentage (Table 8). The mean CC between U.S. and Russian almond cultivars is 0.030, which is half the CC mean values within U.S. and Russian cultivars (0.057 and 0.061, respectively). This parental relationship is explained by the use 'Languedoc,' old French cultivar, in breeding programs of both countries, and from the use of 'Nonpareil' from the U.S. by Russian breeders. The mean CC between U.S. and Israel is 0.035. The French cultivar 'Princesse' and the U.S. cultivar 'Nonpareil' are found in

Table 7: Coefficients of coancestries for Israeli almond cultivars used in breeding programs.

Cultivars	12	2	3	4	5	6	7	8	9	Mean ^x
1 Dagan 2 Poriah 3 Solo 4 Samish 5 Kochba 6 Marcon 7 Greek 8 Nonpar 9 Prince	a(S) eil(U.S.)	.250	.125	.125 - .250	.063 .125	-	.250 .250		.125 .250 - .125 - .250	.108 .076 .111 .111 .108 .083 .083

Letters between parentheses represent country of origin of foreign cultivars used as parents; F- France, S- Spain, U.S.- United States of America.

²Numbers across top of table refer to cultivar numbers at far left of table.

yDashes indicate no inbreeding of the known parents.

^{*}Mean coefficients of coancestry calculated with dashes = zero.

Table 8: Mean of coancestry coefficients among almond cultivars from 5 almond producing countries.

Co	untry	1²	2	3	4	5
1	U.S.A	0.080	0.030	Y	_	0.035
2	Russia		0.061	-	-	0.013
3	France			0.121	0.067	-
4	Spain				0.108	-
5	Israel					0.093

²Numbers across top of table refer to cultivar numbers at far left of table.

yDashes indicate no inbreeding of the known parents.

pedigrees of cultivars from both countries. 'Princesse' and 'Nonpareil' are also the 2 common cultivars used by Russian and Israeli breeders, resulting in a CC of 0.013 between the 2 countries. In addition, there is a coancestry relationship among cultivars between Spain and France. This coancestry relationship (CC = 0.067) resulted from the common use of the Italian cultivar 'Tuono' in both breeding programs and by the use of 'Ferragnes', a French release, in Spanish breeding programs.

CONCLUSION:

The repeated use of a few founding clones and their progeny as parents in almond breeding programs may result in loss of genetic variability and an increase of inbreeding depression in future generations. This is of particular concern, since new cultivars may eventually replace the local seedling ecotypes currently in cultivation. Similar situations have been reported for numerous species (Hancock and Siefker, 1982; Lyrene, 1983; Martin, 1982; Mendoza and Haynes, 1974; Reynders and Monet, 1987; Scorza et al., 1985; Sjulin and Dale, 1987).

Most cultivars presently grown are F1 hybrids of unrelated parents (e.g., Nonpareil and Mission in the U.S.). The mean inbreeding coefficient for U.S. cultivars is lower

than that of plums (Byrne, 1989), and 4.5 to 8 times lower than that of peaches (Reynders and Monet, 1987; Scorza et al., 1985). These results suggest that limited inbreeding has occurred in U.S. almond germplasm so far. However, the high degree of coancestry may limit future progress and introduce undesirable traits (e.g, noninfectious bud-failure). outstanding kernel characteristics and industry importance of 'Nonpareil' led to it being used in breeding programs and crossed to only a few other cultivars as donor parents for specific traits such as late bloom from 'Mission' (Kester et al., 1991; D. Kester personal communication). Aside from the extensive breeding use of 'Nonpareil' and 'Mission', these two cultivars represent, respectively, 65% and 25% of commercial almond production in California (Hauagge et al., 1987). This uniformity increases the vulnerability of California almond production to yield fluctuations due to hazards such as the bud failure disorder that is frequent with 'Nonpareil' and its descendants, which represent 48% of the cultivars examined (Kester, 1969; Kester, 1970).

Almond cultivars in other countries, except the French cultivar 'Ferralise', are noninbred. They are mostly from chance seedlings, with a limited number of cultivars from controlled crosses. The highest number of cultivars showing inbreeding are from advanced breeding programs.

The major objectives in Russian breeding programs are frost and cold resistance combined with nut quality.

'Nikitski 62', known for its late bloom and cold hardiness, is a frequent parent (Denisov, 1988; Rikhter, 1964; Rikhter, 1969).

In Western Europe and North Africa, the main objectives in breeding almonds are similar, i.e. late blooming and selfcompatibility (Grasselly, 1984). As a result, only a few common cultivars are being used extensively as parents, such 'Tuono', 'Ferragnes', 'Ai', and 'Cristomorto'. Almond breeding programs in different almond producing countries are characterized by the use of a few superior genotypes as parents. Clonal selection of superior genotypes, either as new varieties or as progenitors, has provided substantial progress in important commercial traits. The diverse almond germplasm in several European countries is already being replaced by a few leading and superior cultivars (Grasselly, 1984). This situation, favored by germplasm exchange, will probably increase coancestry relationships between released almond cultivars of different European countries, and might, in the future, limit genetic gain, narrow the almond genetic base, and increase the hazard of epidemics.

Literature Cited

- Anonymous. 1977. Etudes de quelques aspects morphologiques et physiologiques pour l'identification de 16 variétés d'amandier Espagnol. 3rd coll. G.R.E.M.P.A. CIHEAM. Bari, Italy. pp. 96-112.
- Barbera, G., G. Fatta Del Bosco, and G. Occorso. 1984. Caractères pomologiques de 94 variétés d'amandier de la Sicile occidentale. Options Meditérranéennes 84(2): 3-12.
- Bastide, J. and B. Souty. 1976. L'Amandier en France. Options Mediterranéennes 32: 80-82.
- Brooks, R.M. and H.P. Olmo. 1972. Register of new fruit and nut varieties: Second Edition. Univ. of California Press. pp. 1-7.
- Brooks, R.M. and H.P. Olmo. 1982. Register of new fruit and nut varieties list 32. HortScience 17: 17-21.
- Byrne, D.H. 1989. Inbreeding, coancestry, and founding clones of Japanese-type plums of California and the Southern United States. J. Amer. Soc. Hort. Sci. 114: 699-705.
- Chessa, I. and M. Pala. 1985. Survey of the patrimony of almond varieties in Sardinia. Options Mediterranéennes 85(1):97-103.
- Costetchi, M. 1967. Soiuri de migdal cultivate in Romania. Pomologia Republicii Socialiste Romania. vol VI. Academiei Republicii Socialiste Romania. Bucaresti. pp. 503-621.
- Crossa-Raynaud, P. and Grasselly, C. 1985. Existance de groupes d'interstérilité chez l'Amandier. Options Meditérranéennes 85 (1): 43-45.
- Denisov, V.P. 1988. Almond genetic resources in the U.S.S.R and their use in production and breeding. Acta Hort. 224: 299-306.
- Egea, L., J.E. Garcia, J. Egea, and T. Berenguer. 1984. Premières observations sur une collection de 81 variétés d'Amandiers situés au Sud-Est Espagnol. Options Meditérranéennes 84(2): 13-26.
- Evrinov, V.A. 1958. Contribution à l'étude de l'amandier. Fruits et Primeurs de l'Afrique 28: 99-104.

- Fanelli, L. 1939. Varietà pugliesi di mandorle. (in Italian). Commissione per lo Studio del Miglioramento della Coltura del Mandorlo. Favia-Bari-Roma. 1939-xvii: 118-229.
- Felipe, A.J. 1976. La production d'amandes en Espagne. Options Mediterranéennes 32:83-91.
- Felipe, A. 1984. Collection de variétés d'amandier du CRIDA-03 (INIA) Saragosse. Options Meditérranéennes 84(2): 51-52.
- Felipe, A. J. and R. Socias I Company. 1985. L'Amélioration de L'amandier à Saragosse. Options Meditérranéennes 85(1): 31-38.
- Felipe, A. and R. Socias I Company. 1987. 'Ayles', 'Guara', and 'Moncayo' almonds. HortScience 22: 961-962.
- Georgio, V., Reina, A., and Guida, F. 1985. 'Tribuzio Tardiva': Un semis d'amandier à floraison très tardive. Options Meditérranéennes 85(1): 19-23.
- Godini, A., E. Ferrara, A. Reina, V. Giorgia, and F. Guida. 1977. Contributo alla conoscenza delle cultivar di mandorlo (<u>P.amygdalus</u> Batsch) della Puglia. 3rd coll. G.R.E.M.P.A. CIHEAM. Bari, Italy. pp. 194-206.
- Grasselly, Ch. 1976. Origine et évolution de l'amandier cultivé. Options Meditérranéennes 32: 45-48.
- Grasselly, Ch. and G. Olivier. 1976. Mise en évidence de quelques types autocompatibles parmi les cultivars d'amandier (<u>Prunus amygdalus</u>) de la population des Pouilles. Ann. Amelior. Plantes. 26(1): 107-113.
- Grasselly, Ch., and P. Crossa-Raynaud. 1980. L'Amandier. G.P. Maisonnueve & Larose ed.
- Grasselly, Ch., P. Crossa Raynaud, G. Olivier, and H. Gall. 1981. Transmission du caractère d'auto-compatibilité chez l'amandier (<u>Amygdalus communis</u>). Options Meditérranéennes 81(1): 71-75.
- Grasselly, Ch., and G. Olivier. 1981. Difficulté de survie de jeunes semis d'amandier dans certaines descendances. options Méditerranéenes 81(1): 65-67.
- Grasselly, Ch. 1984. Réflexions diverses sur l'évolution des objectifs d'amélioration de l'amandier. Options Meditérranéennes 84(2).

- Hauagge, R., D.E. Kester, S. Arulsekar, D.E. Parfitt, and L. Liu. 1987. Isozyme variation among california almond cultivars: II. Cultivar characterization and origins. J.Amer. Hort. Sci. 112: 693-698.
- Hancock, J.F. and J.H. Siefker. 1982. Levels of inbreeding in highbush blueberry cultivars. HortScience 17: 363-366.
- Jaouani, A. 1976. La culture de l'amandier en Tunisie. Options Meditéranéennes 32: 67-71.
- Kester, D.E. 1969. Noninfectious bud failure of almonds in California. California Agriculture (December 1969): 12-16.
- Kester, D.E. 1970. Noninfectious bud failure from breeding programs of almond (<u>Prunus amygdalus</u> Batsch). J. Amer. Soc. Hort. Sci. 95: 492-496.
- Kester, D.E. 1990. The biological and cultural evolution of the almond. Unpublished paper.
- Kester, D.E., and R. Asay. 1975. Almonds. pp. 387-419 <u>In:</u>
 Advances in Fruit Breeding. J. Janick and J.N. Moore
 (eds.). Purdue Univ. Prekester, D.E., R.N. Asay, and
- W.C.Micke. 1984. 'Solano', 'Sonora', and 'Padre' almonds. HortScience 19: 138-139.
- Kester, D.E., D. Rough, W. Micke, and R. Curtis. 1985. Almond variety update. Almond Board of California.
- Lyrene, P. 1983. Inbreeding depression in rabbiteye blueberries. HortScience 18: 226-227.
- Martin, S.K.St. 1982. Effective population size for the soybean improvement program in maturity groups 00 to IV. Crop Science 22: 151-152.
- Mendoza, H.A. and F.L. Haynes. 1974. Genetic relationship among potato cultivars grown in the United States. HortScience 9: 328-330.
- Monastra, F., G. Della Strada, C. Fideghelli, and R. Quarta. 1984. Etude pomologique de soixante-dix variétés d'origine differente. Options Mediterranéennes 84(2): 27-37.

- Reynders, S., and R. Monet. 1987. Evolution au cours du temps, de la consanguinité des variétés de pecher. Etudes des distances génétiques entre quelques géniteurs. Fruits 42(9): 529-535.
- Rikhter, A.A. 1964. Results of practical and theoretical work of almond breeding and cultivar study. (Russian). Tr. Gos. Nikit. Bot. Sad. 37: 91-107.
- Rikhter, A.A. 1969. Ways and methods of almond breeding. (Russian). Tr. Gos. Nikit. Bot. Sad. 43: 81-94.
- Serafimov, S. 1976. L'Amandier en Bulgarie. Options Meditérranéennes 32: 60-65.
- Scorza, R., S.A. Mehlenbacher, and G.W. Lightner. 1985.
 Inbreeding and coancestry of freestone peach cultivars of
 the Eastern United States and implications for peach
 germplasm improvement. J. Amer. Soc. Hort. Sci. 110: 547552.
- Sjulin, T.M. and A. Dale. 1987. Genetic diversity of North American strawberry cultivars. J. Amer. Soc. Hort. Sci. 112: 375-385.
- Socias I Company, R. 1990. Breeding self-compatible almonds. Plant Breeding Reviews 8: 313-337.
- Spiegel-Roy, P. 1976. L'Amandier en Israel. Options Meditérranéennes 32: 92-95.
- Spiegel-Roy, P., and J. Kochba. 1976a. 'Dagan' almond. HortScience 11: 271.
- Spiegel-Roy, P., and J. Kochba. 1976b. 'Solo' almond. HortScience 11: 271-272.
- Spiegel-Roy, P., J. Kochba, and R. Iris. 1982. 'Samish' almond. HortScience 17: 271.
- Stylianides, D. 1976. La culture de l'amandier en Grece. Options Meditérranéennes 32: 72-73.
- Stylianides, D. 1977. New almond varieties created by breeding in Greece. 3rd Coll. G.R.E.M.P.A. CIHEAM. Bari, Italy. pp. 140-149.
- Vargas Garcia, F.J. 1975. El almendro en la provincia de Tarragona. EXCMA. Diputacion Provincial de Tarragona. Fundacion Servicio Agropecuario Provincial. pp. 58-131.

- Vlasic, A. 1976. La cultivazione del mandorlo in Jugoslavia. Options Meditérranéennes 32: 75-77.
- Wood, M.N. 1924. Almond varieties in the United States. U.S.D.A. Bulletin No 1282: 1-141.
- Wright, S. 1922. Coefficients of inbreeding and relationship. Amer. Nat. 56: 330-338.

Appendix 1: Parentage and inbreeding coefficients of almond cultivars grown in the U.S., Russia, Israel, France, Spain, and Italy.

Cultivar	Presumed or reported parentage ^z	Inbreeding coefficient (F)
U.S. germplasm		
Sonora (5a-20)	21-19W [Nonpareil x (Nonpareil x Eureka) A1-30] x 22-20 [Nonpareil x (Nonpareil x Eureka) A1-30]	0.375
Solano (5a-3)	21-19W [Nonpareil x (Nonpareil x Eureka) A1-30] x 22-20 [Nonpareil x (Nonpareil x Eureka) A1-30]	0.375
Emerauld	Mission x (Nonpareil x Mission)	0.250
Profuse	Nonpareil x Jordanolo	0.250
Wawona	Ruby x Mission	0.250
Kapareil	Nonpareil x 24-6[Sel. A525 (Nonpareil x Eureka) x Eureka]	0.125
Milow	Nonpareil x 24-6[Sel. A525 (Nonpareil x Eureka) x Eureka]	0.125
Vesta	Solano (5a-3) x late blooming sport of Nonpareil	0.094
Davey	Nonpareil x Sans faute	0.063
Arbuckle [*]	Non pareil x Mission	0
Bigelow	unknown	0
Bonita [*]	Nonpareil x Mission	0
Ballico	Mission open pollination (o.p.)	0
Bell ^y	Nec Plus mutation	0
Burbank	unknown	0
Butte	Nonpareil x Mission	0
Carmel"	Nonpareil x Mission	0
Craven	unknown	0
Carrion T	Nonpareil x Mission	0
Cressey Drake	mutation of Nonpareil unknown	0 0
Dehn Dehn	Northland o.p.	0
Empire	Mission x peach-almond hybrid	0
Elsie [*]	Nonpareil x Mission	0
Eureka	unknown	0
Fritz*	Mission o.p.	0
Golden street	Languedoc o.p.	Ö
Godde [*]	Nonpareil x Mission	Ö
Granada [*]	Mission x IXL	Ö
Grace*	Nonpareil x Mission	0

Parentage assumed from indirect evidence, primarily isozyme studies (Hauagge et al, 1987).

Parentage from the patent description and unconfirmed.

The rule of seed parent being at left of the cross is not respected because the direction of the cross was unknown.

Appendix 1 (continued): Parentage and inbreeding coefficients of almond cultivars grown in the U.S., Russia Israel, France, Spain, and Italy.

Cultivar	Presumed or reported parentage ²	Inbreeding coefficient (F)
Heart [*]	Nonpareil x Mission	0
Hoover*	Nonpareil x Mission	Ö
Hallshardy	peach-almond hybrid	Ö
Harpareil	Nonpareil x Harriot	0
Harriott	unknown	0
Harvey*	Nonpareil x Mission	0
IXL	Princesse o.p.	0
Janice*	Nonpareil x Mission	0
Jeffries	mutation of Nonpareil	0
Jordanolo	Nonpareil x Harriott	0
Jubilee [*]	Nonpareil x Mission	0
Kern Royal	mutation of Nonpareil	0
Kutsch	Nonpareil o.p.	0
Livingston*	Nonpareil x Mission	0
Lamarie	unknown	0
Laprima	Princesse o.p.	0
Leweling	unknown	0
Legrand	peach-almond hybrid	0
Merced*	Nonpareil x Mission	0
Mission (Texas)	Languedoc o.p.	0
Monterey*	Nonpareil x Mission	0
Moneytree	Nonpareil o.p.	0
Monarch [*]	Mission o.p.	0
Norman [*]	Nonpareil x Mission	0
Nonpareil	Princesse o.p.	0
Nec Plus Ultra	Princesse o.p.	0
Northland	I.X.L o.p.	0
Pioneer	peach-almond hybrid	0
Planada	Tardy Nonpareil x Mission	0
Padre	Mission x Swanson	0
Peerless	unknown	0
Paxman"	Nonpareil x Mission	0
Price Cluster	Nonpareil x Mission	0
Reinero	Nonpareil o.p.	0
Ripon	Tardy Nonpareil x Mission	0
Roy	unknown	0
Ruby	Tardy Nonpareil x Mission	0
Robson"	Nonpareil x Mission	0

Parentage assumed from indirect evidence, primarily isozyme studies (Hauagge et al, 1987). The rule of seed parent being at left of the cross is not respected because

the direction of the cross was unknown.

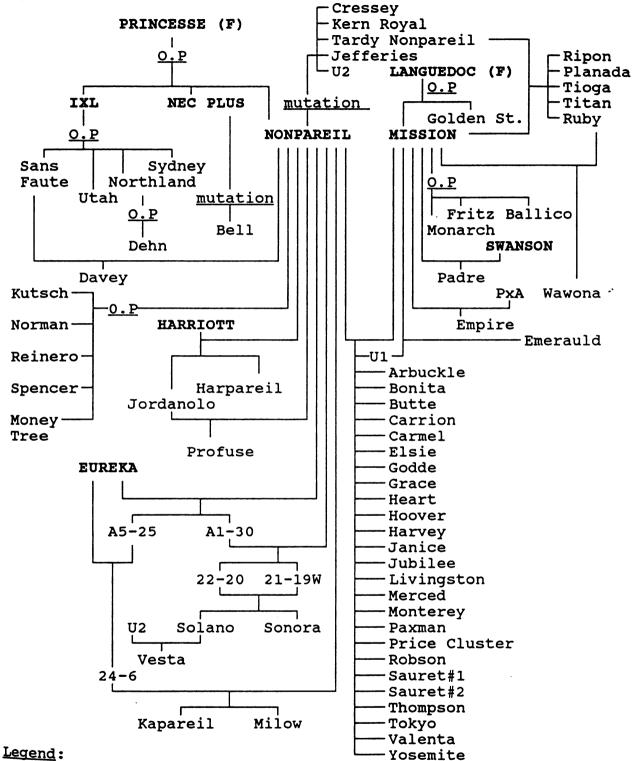
Appendix 1 (continued): Parentage and inbreeding coefficients of almond cultivars grown in the U.S., Russia Israel, France, Spain, and Italy.

Cultivar	Presumed or reported parentage ^z	Inbreeding coefficient (F)
Sans Faute	I.X.L o.p.	0
Sydney Special	I.X.L o.p.	0
Smith X.L	unknown	0
Standard	unknown	0
Spencer	Nonpareil o.p.	0
Sauret#1*	Nonpareil x Mission	0
Sauret#2*	Nonpareil x Mission	0
Swanson	unknown	0
Tardy Nonpareil	Nonpareil mutation	0
Thompson*	Nonpareil x Mission	0
Tioga	Tardy Nonpareil x Mission	0
Tokyo	Nonpareil x Mission	0
Titan	Tardy Nonpareil x Mission	0
Utah	I.X.L o.p.	0
Valenta [*]	Nonpareil x Mission	0
Walton	unknown	0
Yosemite	Nonpareil x Mission	0
Russian Germplasm		
Bumagnoskorlupii	(Nikitski 62 x Fragillio) x Nonpareil	0
Desertnyi	Nikitski 62 x Nikitski 1	0
Krimski	Nikitski 53 x Languedoc	0
Miagkoskorlupii	Nikitski 62 x Princesse	0
Nikitski 62	unknown	0
Nikitski 1	unknown	0
Nikitski 53	unknown	0
N. Pozdnetvetusei	Nikitski 62 x Nikitski 1	0
Primorski	Nikitski 62 x Princesse	0
Preanii	(Nikitski 62 x Fragillio) x Nonpareil	0
Sovietski	Nikitski 62 x Languedoc	0
Yaltinski	Nikitski 62 x Reams	0

Parentage assumed from indirect evidence, primarily isozyme studies (Hauagge et al. 1987).

The rule of seed parent being at left of the cross is not respected because the direction of the cross was unknown.

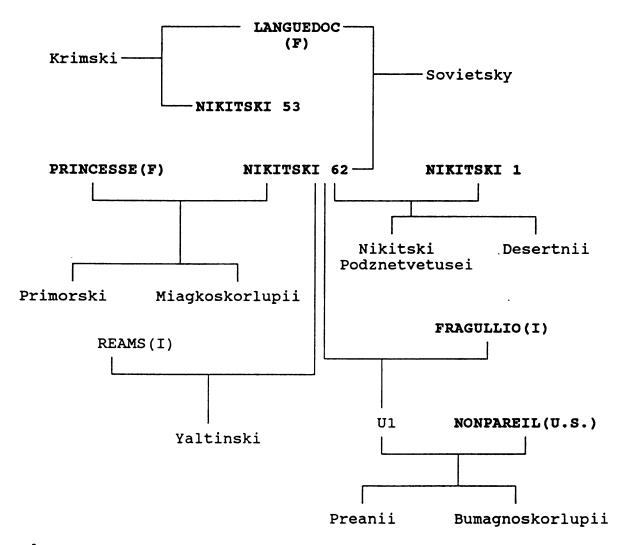
Appendix 1 (continued): Parentage and inbreeding coefficients of almond cultivars grown in the U.S., Russia Israel, France, Spain, and Italy.


Cultivar	Presumed or reported parentage ²	Inbreeding coefficient (F)
<u>Israeli Germplasm</u>		
Dagan	Marcona x Poria 10	0
Greek	unknown	0
Poriah 10	Princesse o.p.	0
Solo	Marcona x Greek	0
Samish	Marcona x Greek	0
Kochba	Nonpareil x Greek	0
French germplasm		
Ai	unknown	0
Ardechoise	unknown	0
Belle d'Aurons	Ai o.p.	0
Ferralise	Ferraduel x Ferragnes	0.250
Ferragnes	Ai x Cristomorto	0
Ferraduel	Ai x Cristomorto	0
Ferrastar	Ardechoise x Cristomorto	0
Languedoc	unknown	0
Lauranne	Ferragnes x Tuono	0
Princesse	unknown	0
Steliette	Ferragnes x Tuono	0
Tardive de la Verdiere	unknown	0
Spanish germplasm		
A-10-6	Ferragnes x Tuono	0
Ayles	Tuono o.p.	Ö
Jordan	unknown	Ö
Moncayo	Tuono x Tardive de la Verdiere	
Marcona	unknown	0
<u>Italian germplasm</u>		
Cristomorto	unknown	0
Reams	unknown	Ö
Tuono	unknown	0

Parentage assumed from indirect evidence, primarily isozyme studies (Hauagge et al, 1987).

the direction of the cross wasunknown.

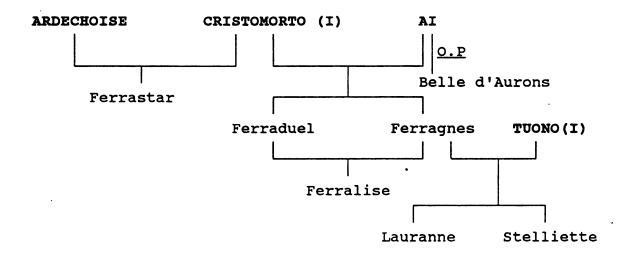
The rule of seed parent being at left of the cross is not respected because.


Appendix 2: Pedigree of U.S. almond cultivars.

PxA: Peach-almond hybrid. O.P.: open pollination.

U: unnamed selection. bold: founding clones. (F): French origin.

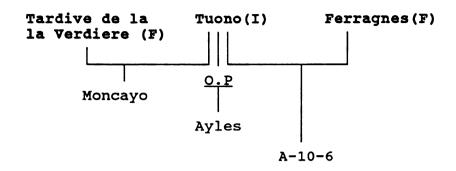
Appendix 3: Pedigree of Russian almond cultivars.


Legend:

bold: founding clones.

(F): French origin. (I): Italian origin.

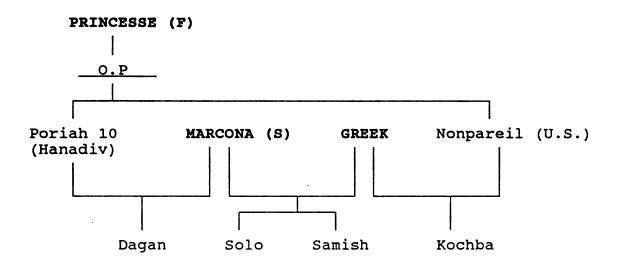
(U.S.): American origin.


Appendix 4: Pedigrees of French almond cultivars.

Legend:

bold: founding clones.(I): Italian origin.0.P.:open pollination.

Appendix 5: Pedigrees of Spanish almond cultivars.


Legend:

bold: founding clones.

(F): French origin, (I): Italian origin.

O.P.: open pollination.

Appendix 6: Pedigrees of Israeli almond cultivars.

Legend:

bold: founding clones.

(S): Spanish origin, (U.S): American origin.

O.P.: open pollination.

CHAPTER III

MORPHOLOGICAL VARIATION WITHIN COLLECTIONS OF MOROCCAN ALMOND CLONES AND MEDITERRANEAN AND AMERICAN CULTIVARS

SUMMARY:

Cultivated almond Prunus dulcis (Miller) D.A. Webb, the second most important fruit crop in Morocco after olives, is still propagated through seedlings by farmers to overcome transplanting failure of grafted trees. Collections of seedlings in southern Morocco conducted since 1975 have resulted in the selection of 87 clones from this germplasm planted at 3 experimental stations. Principal component analysis (PCA) was used to quantify morphological variation among a total of 81 selected Moroccan clones and introduced cultivars. Moroccan selections tended to be characterized by small leaves in comparison to foreign cultivars. Variability for nut and kernel traits was identified. Several clones, such as 'Ighri/13', 'Kelaa/7R', and 'B2/25R' have very good nut and kernel characteristics. However, the fruiting potential of Moroccan selections remains limited, even though some of them have a large number of spurs. No evidence was found of separate ecotypes existing in the southern Moroccan almond populations.

INTRODUCTION:

Cultivated almond was introduced to Morocco by the Carthaginians between the 5th and 4th century B.C (El Khatib-Boujibar, 1983) and by the Arabs during the 6th and 7th century (Kester et al., 1991). Almonds, the second most important fruit tree crop in Morocco after olives, occupy

107,000 hectares, and comprise 73% of all Rosaceous species in Morocco (Anonymous, 1990). Production is approximately 40,000 metric ton/year, and exportations of bitter almonds vary between 1100 and 1300 metric ton/year (Anonymous, 1990). Almonds are grown in Morocco in several regions under different environmental conditions. They are found between 500 and 2000 m elevation, where rainfall ranges from less than 100 to 800 mm, and on a wide diversity of soils varying from deep clay to shallow, calcareous soils. About 55% of the almond trees grown in Morocco are seedlings, located primarily in the south, where this method of propagation still prevails. Five percent of the total acreage is represented by modern orchards with known cultivars, mainly 'Marcona' from Spain and two pollinizers 'Fournat de Brezenaud' from France and 'Ne Plus Ultra' from the United States (Laghezali, 1985). Recently, 2 French cultivars, 'Ferragnes' and 'Ferraduel', have become popular. The modern sector accounts for 80% of the total almond production. About 40% of the almonds in Morocco have been planted in the Rif Mountains in the north, mainly by the Forestry Department to prevent soil erosion. 'Marcona' and 'Fournat de Brezenaud' have been the principal cultivars used for this purpose (Laghezali, 1985). In many cases, these cultivars have been overgrown by the rootstock, mainly 'Marcona' seedlings, due unsuccessful to Additionally, dead trees have been replanted with other unknown cultivars or seedlings, making recognition of the 2

original cultivars difficult. This almond population represents 5 million almond trees planted on 50,000 hectares.

The genetic variability in the Moroccan almond germplasm is suspected to be extensive because of the broad geographic distribution, different environmental conditions, prevalence of seed propagation and the presence of peach-almond natural hybrids (Barbeau and El Bouami, 1980b). For example, within the same seedling orchard, up to a one month difference in bloom time has been reported (Barbeau and El Bouami, 1979). In some areas, such as Tinejdad and Goulmima in the south-east, almond populations with a high proportion (up to 100%) of "doubles" (nuts containing 2 kernels), are found because double kernels have been selected by local growers. These doubles seem to present no kernel deformities for some genotypes (Barbeau and El Bouami, 1980a). Field collections of almonds for late-bloom, frost resistance, and disease and insect resistance have been carried out since 1975 in the south (Barbeau and El Bouami, 1979) as well as in the north (Laghezali, 1985). A total of 87 almond clones including 11 peach-almond hybrids were selected in the south along an eastwest axis and are growing at three different experimental stations of the Institut National de la Recherche Agronomique (INRA).

The objective of the present study was to compare introduced almond cultivars and selected Moroccan clones for growth habit and leaf, nut and kernel characteristics using

Principal component analysis. Clustering of clones from similar collection areas would suggest the existence of different almond populations.

MATERIALS AND METHODS:

Plant material: Almond collections in the valleys of southern Morocco since 1975 have resulted in the selection of 87 clones, collected from Errachidia (east) to Agadir (west) (Fig. 1), which are planted at three INRA experimental stations in the following sites: Marrakech, Errachidia, and Meknes. Almonds at the experimental Station #1, located at Meknes, were not irrigated. The station is under continental climatic conditions where average annual rainfall is about 500 mm. At Station #2 at Errachidia and Station #3 at Marrakech, almonds were irrigated; annual rainfall is less than 200 mm, and conditions are arid.

Sixty-six clones, including one natural peach-almond hybrid, out the 87 Moroccan selections, plus 14 introduced cultivars and one hybrid fronm a 'Cristomorto' x 'Ardechoise' cross were included in the study (Table 1). They were as follows: 1) Meknes (Station #1), Nine Moroccan selections and 10 introduced cultivars; 2) Errachidia (Station #2), 37 Moroccan selections including one natural peach-almond hybrid and one almond hybrid from a cross between 'Cristomorto' and 'Ardechoise', and nine introduced cultivars; 3) Marrakech

Fig. 1: Survey areas map of southern Morocco. (from Barbeau and El Bouami, 1979, 1980).

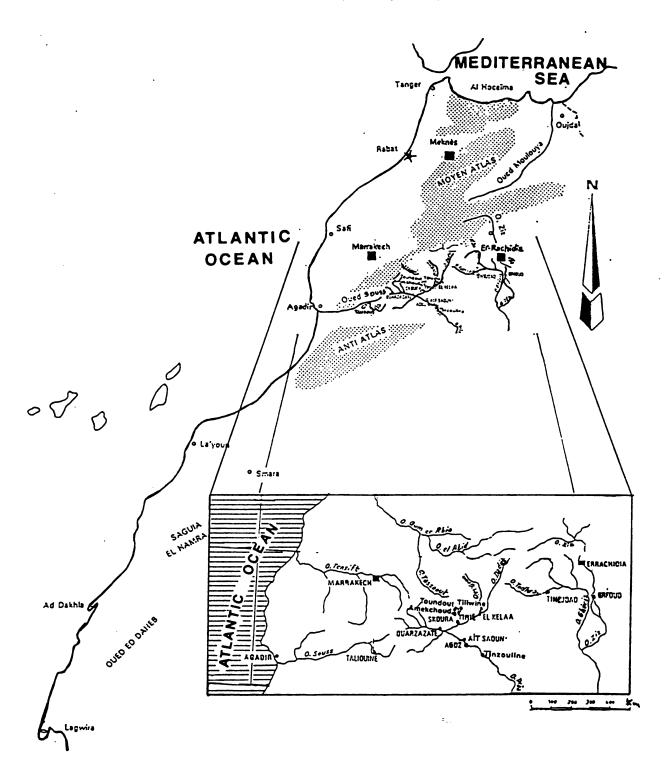


Table 1: Origin and location of cultivars and clones.

Cultivar or clone	code	origin ^z	location station No
oreign cultivars			W
Marcona	S1	Spain	1 & 2
Desmayo	S2	Spain	2
Cavaliera	I1	Italy	2
Cristomorto	12	Italy	1 & 2
Tuono	13	Italy	1, 2 & 3
Ai	Fl	France	1
Ardechoise	F2	France	1
Ferragnes	F3	France	2 & 3
Fournat de Brezenaud	F4	France	1 & 2
Burbank	U1	U.S.A	1 & 2
Mission (Texas)	U2	U.S.A	1
Thompson	UЗ	U.S.A	2
Abiod	Tl	Tunisia	1
Hech Ben Smail	T2	Tunisia	1
oroccan selections			
Cristo.x Ardech.hybrid	M1	Morocco	2
Peach-almond hybrid.66	M2	Errachidia	2
Ksar Souk	1 A	Errachidia	1
Bualuzen	8A	Meknes	1
Messaoud	8B	Meknes	1
B1/S2	1B	Errachidia	1
B1/S15	1C	Errachidia	1
B1/S17	1D	Errachidia	1
B2/S7	1E	Errachidia	1
B2/S9	1F	Errachidia	1
B2/S11	1G	Errachidia	1
B1/2L	1H	Errachidia	2
B1/6BL	11	Errachidia	
B1/4R	1J	Errachidia	2 2 & 3
B1/5R	1K	Errachidia	2
B1/7R	1L	Errachidia	2 & 3
B1/8R	1 M	Errachidia	2
B1/22R	1N	Errachidia	2
B2/8R	1P	Errachidia	2
B2/11R	1Q	Errachidia	2
B2/14R	1R	Errachidia	2
B2/19R	15	Errachidia	2
B2/22R	1T	Errachidia	2
B2/25R	1U	Errachidia	2
			&

²Country of origin for foreign cultivars and survey area for Moroccan clones. ^y1: Meknes, 2: Errachidia, 3: Marrakech.

Table 1 (cont.): Origin and location of cultivars and clones.

Cultivar or clone	code		location station No
B1/15R	1W	Errachidia	3
B1/16R	1X	Errachidia	3
B1/17R	14	Errachidia	3
B1/2R	12	Errachidia	3 3 3 3 3 3 3 3 2 2 2 3) 2 & 3) 2 2 2 & 3
B1/1L	1a	Errachidia	3
B1/4L	1b	Errachidia	3
B2/2R	1d	Errachidia	3
B2/19BL	le	Errachidia	3
B2/7R	1f	Errachidia	3
Hart/16	2A	Gheris (Erfoud) y	2
Hart/17	2B	Gheris (Erfoud)	2
Hart/18J	2C	Gheris (Erfoud)	3
Khorbat/3J	3A	Ferkla (Tinejdad	2 & 3
Khorbat/6J	3B	Ferkla (Tinejdad	.) 3
Tizougaghine/5R	3C	Ferkla (Tinejdad	.) 2
Kelaa/5R	4 A	Kelaa	2
Kelaa/7R	4B	Kelaa	2 & 3
Skoura/2	5A	Skoura	2
Amekchoud/1J	5B	Skoura (Amekchoud	
Amekchoud/3J	5C	Skoura (Amekchoud	
Tiflit/2R	5D	Skoura (Tiflit)	
Tiflit/2V	5E	Skoura (Tiflit)	3 2 & 3
Toundout/1R	5F	Skoura (Toundout)	2 & 3 2 & 3
Toundout/3J	5G	Skoura (Toundout)	
Toundout/8J	5H 5K	Skoura (Toundout) Skoura (Tiliwine)	2 & 3 2 & 3
Tiliwine/8V Tiliwine/8TER	5L	Skoura (Tiliwine)	
Ighri/1R	6A	Taliwine	2
Ighri/13	6B	Taliwine	2
Ighil Noughou	6C	Taliwine	2
Ighri/12B	6D	Taliwine	3 2 2 2 3 3 2 & 3
Ighri/13B	6E	Taliwine	3
Ait Saoun/2V	7A	Draa (Ait Saoun)	2 & 3
Ait Saoun/4V	7B	Draa (Ait Saoun)	3
Ait Saoun/5V	7C	Draa (Ait Saoun)	3
Ait Saoun/6V	7D	Draa (Ait Saoun)	3
Ait Saoun/S3	7E	Draa (Ait Saoun)	3
Agdz/1BL	7 F	Draa (Agdz)	2 & 3
Ircheg/2R	7 G	Draa (Agdz)	2 & 3
Tamkasselt/3R	7H	Draal (Tamkesselt	
Tinzouline/3V	71	Draa2(Tinzouline	
Tinzouline/5R	7J	Draa2(Tinzouline	

 $^{^{\}rm Z}{\rm Country}$ of origin for foreign cultivars and survey area for Moroccan clones. $^{\rm Y}{\rm Region}$ (town).

(Station #3), 37 Moroccan selections and two introduced cultivars.

Characters measured: Twenty-six nut, kernel, and leaf characters were measured in 1990 on 81 clones and cultivars at the three stations. Nut and kernel width and tickness were measured at the midpoint of the length, perpendicular to each other, with the width being the larger dimension. Kernel weight/nut weight is commonly used to describe shell hardness (Kester and Asay, 1975). Seven additional growth habit characters were included at Marrakech (Table 2). Five leaf and fruit samples were collected from each selection and cultivar for evaluation. Leaves were obtained from the middle portion of 1-year-old shoots 25 to 30 cm long, at approximately 1.8 meters height around the tree. Four 1-year and four 2-year-old shoots were chosen at random for growth measurements following an east-north-west-south rotation at approximately 1.8 meters height around the tree.

<u>Data analysis</u>: The characters for the 81 Moroccan selections and foreign cultivars were analyzed by principal component analysis (PCA). In PCA, intercorrelations among variables (components) are removed (Broschat, 1979), thus reducing the number of variables by linear combination of correlated characters into principal orthogonal axes (PC1, PC2,..., PCn) which are not correlated (Philippeau, 1986). The first PC represents the largest variance, followed in decreasing order of variance values by succeeding axes PC2, PC3,..., PCn.

Table 2: Morphological characters and ratios employed in the analyses.

Characters abr	eviations
Leaf characters:	
Leaf blade length (mm) Leaf blade width (mm) Petiole length (mm) Vein angle (mid-vein) (d°) Gland number Serration number(over 1cm mid-limb) Leaf width/leaf length Total leaf length (mm) (leaf length + petiole length) Leaf area (mm²) (leaf length x leaf width)	BL BW PetL Vangl Gnbre Snbre LR LL LA
Nut and kernel characters:	
Nut weight (g) (in-shell) Nut length (mm) Nut width (mm) Nut thickness (mm) (diameter) Kernel weight (g) Kernel length (mm) Kernel width (mm) Kernel width (mm) Kernel thickness (mm) Kernel weight/nut weight (shell hardness) Nut width/nut length Nut thickness/nut length Nut thickness/nut width Kernel width /kernel length Kernel thickness/kernel length Kernel thickness/kernel width Nut size (mm³) (nut length x nut width x nut thick.) Kernel size (kern.length x kern.width x kern.thick)	NWT NL NW NTH KWT KL KW KTH SH NR1 NR2 NR3 KR1 KR2 KR3 NV01 KV01
Growth habit characters:	
One-year-old shoot length (cm) Number of laterals/1-year-old shoot Number of nodes/1-year-old shoot Number of nodes/length unit (cm) of 1-year-old shoot Two-year-old shoot length (cm) Total number of spurs/2-year-old shoot Number of spurs/length unit (cm) of 2-year-old shoot	S1L LAT Nnodes1 Node S2L Totsprs Sprs

Therefore, the first two or three PC's usually account for a large portion of the variance. This portion of the variance becomes less important when there is a large number of relatively independent variables (Daudin, 1982). PCA is used to establish correlations between variables (characters in this study) and to visualize the relationships of individuals (selections and introduced cultivars in this study) in two or three dimensional graphs.

PCA analyses were performed using the PRINCOMP procedure of the SAS statistical package (SAS Institute Inc., 1985). Data from each station were analyzed separately.

RESULTS:

At Station #1, nine Moroccan clones and 10 cultivars of foreign origin were evaluated for 26 six leaf and nut and kernel characters (Table 1). The first 3 principal components accounted for 32.4%, 23.4%, and 13.7% of the total variance respectively. Eight nut and kernel variables were highly loaded on PC1 (Table 3). From high to low absolute values, they were: nut size, kernel width, kernel weight, nut width, kernel size, kernel length, kernel thickness/kernel width, and nut length. All these traits had positive values except kernel thickness/kernel width. PC2 included 5 nut and kernel traits, 4 of which were ratios, and a single leaf trait (Table 3). They were: nut thickness/nut length, kernel width/kernel length, nut width/nut length, petiole length, kernel

Table 3: Eigenvectors of the 3 principal component axes from PCA analysis of stations 1, 2, and 3 genotypes represented in figures 2, 3, and 4.

•	PC Axes:		PC1			PC2			PC3	
Traits	Stations:	\$t.1	St.2	St.3	St.1	St.2	St.3	St.1	St.2	St.3
Nut										
Weight		0.15	0.32 ^x	0.30	0.04	-0.06	-0.02	0.37	0.11	0.06
Length		0.25	0.31	0.19	-0.21	-0.02	-0.29	-0.04	-0.24	-0.02
Width		0.30	0.36	0.31	0.09	0.01	0.02	0.21	0.19	0.11
Thickness		0.12	0.28	0.30	0.26	-0.11	0.07	0.33	0.17	0.09
Size		0.30	0.36	0.32	0.03	-0.04	-0.06	0.20	0.04	0.06
Width/lend	ath	-0.04	0.00	0.14	0.31	0.04	0.29	0.17	0.46	0.14
Thickness		-0.13	-0.08	0.10	0.34	-0.05	0.32	0.16	0.41	0.10
Thickness		-0.23	-0.15	-0.06	0.20	-0.15	0.11	0.11	-0.11	-0.05
Kernel										
Weight		0.30	0.27	0.28	0.03	0.02	-0.11	0.13	-0.17	0.10
Length		0.28	0.27	0.17	-0.19	-0.03	-0.30	0.08	-0.32	0.04
Width		0.30	0.32	0.29	0.10	0.06	0.02	0.13	0.10	0.18
Thickness		-0.10	0.15	0.19	0.26	-0.03	0.08	0.11	0.10	0.11
Size		0.28	0.33	0.28	0.06	-0.00	-0.07	0.17	-0.05	0.15
Width/leng	ath	0.01	-0.04	0.13	0.33	0.14	0.27	0.05	0.28	0.14
Thickness	•		-0.09	0.01	0.28	0.10	0.32	-0.01	0.20	0.04
Thickness		-0.26	-0.13	-0.12	0.11	-0.06	0.07	-0.03	-0.03	-0.09
Shell hardnes	38	0.05	-0.11	-0.11	0.03	0.11	-0.09	-0.30	-0.30	-0.03
Leaf										
Blade leng	gth	0.19	-0.00	0.09	0.21	0.45	-0.20	-0.31	-0.00	0.07
Blade widt	th	0.18	-0.01	0.01	0.08	0.35	-0.22	-0.25	-0.14	-0.15
Petiole le	ength	0.12	0.09	0.00	0.30	0.33	-0.19	-0.14	0.05	0.11
Vein angle	•	-0.01	0.04	0.00	-0.11	-0.02	0.14	0.06	-0.18	0.04
Gland numb	per	0.16	0.12	0.02	0.22	0.23	-0.01	-0.24	0.12	0.23
Serration	number	-0.09	0.08	0.06	0.06	-0.06	-0.03	0.15	0.14	0.03
Width/leng	gth	0.00	-0.03	-0.06	-0.16	-0.07	-0.06	0.10	-0.17	-0.17
Total leng	gth	0.18	0.02	0.07	0.25	0.47	-0.23	-0.28	0.01	0.10
Area		0.21	-0.01	0.05	0.14	0.43	-0.25	-0.29	-0.08	-0.05
Growth habit										
a. 1 year old	d shoot									
Length		•	•	0.16	•	•	0.12	•	•	-0.30
Laterals	s number	-	-	0.19	•	-	0.08	•	-	-0.32
Nodes/sh	noot	-	•	0.15	•	-	0.11	-	•	-0.22
Nodes/cr	n	-	•	0.20	•	•	0.11	•	•	-0.31
b. 2 year old	d shoot									
Length		-	•	0.07	•	-	0.13	•	•	-0.25
Spurs/sh	noot	•	-	-0.06	-	-	0.19	-	-	0.29
Spurs/cn			•	-0.10	-	-	0.15	-	-	0.31

 $^{^{\}mathcal{X}}$ Bold numbers are variables highly loading on separate PC axes.

PC1, PC2, and PC3 for station 1 account for 32.4%, 23.4%, and 13.7% of variance between means, respectively.

PC1, PC2, and PC3 for station 2 account for 26.8%, 16.3%, and 15.1% of variance between means, respectively.

PC1, PC2, and PC3 for station 3 account for 24.5%, 18.6%, and 11.8% of variance between means, respectively.

thickness/kernel length, and kernel thickness. The separation along PC3 was due to variation in 4 leaf characters and shell hardness that loaded negatively, plus 2 nut variables loading positively (Table 3). These variables, from high to low absolute values, were: nut weight, nut thickness, leaf length, shell hardness, leaf area, total leaf length, and leaf width.

When the cultivar and selection means were plotted on the 3 principal axes (Fig. 2), the 2 French cultivars 'Fournat' (F4) and 'Ardechoise' (F2) had coordinates on the positive extreme of PC1. These 2 cultivars had among the highest nut and kernel characteristics. On PC3, their position was explained by their longest leaves, large leaf areas, and soft shells (Table 4, Appendix 3).

'Marcona' (S1), a Spanish cultivar extensively planted in modern Moroccan orchards, had a highly positive components for all 3 axes (Fig. 2). It was distinguishable by its nut and kernel characteristics, particularly nut and kernel width that were important on PC1 (Table 4). On PC2, 'Marcona' (S1) was at the positive end due to its high nut and kernel ratios, indicating its characteristic square nut and kernel shape, and to its longest petioles (Table 4). 'Marcona' also had the thickiest nut, the highest nut weight, and the hardest shells which contributed to its maximum position on PC3 (Table 4, Appendix 3).

Four Moroccan selections, 'Ksar Souk' (1A), 'B1/S2' (1B), 'B1/S17' (1D), 'B2/S9' (1F), clustered with 6 foreign

Fig. 2: Position of PC scores of introduced cultivars and Moroccan selections. Station #1.

Alphanumericals inside signs are abbreviations of trees and the first digit refers to the country or area of origin (table 1). Circles - clones. Diamonds - cultivars.

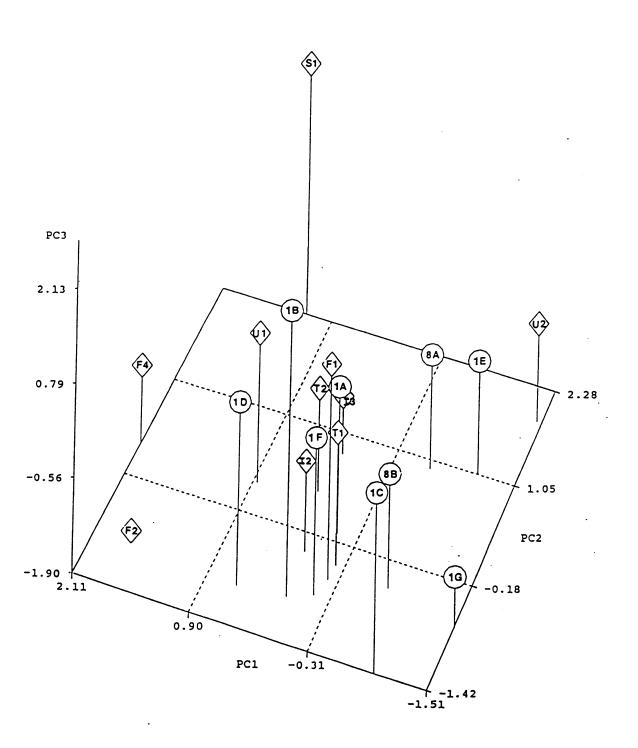


Table 4: Means of representative characters highly loading on PC1, PC2, and PC3 axes for Figure 2 (Station # 1).

Clone	NWT	KWT	SH	NL	NW	KL	KW	PETL	BL	BW	NR1	NR2	KR1	KR2
Marcona	7.7	1.6	0.21	33.6	30.3	23.5	17.5	29.4	96.8	23.0	0.90	0.66	0.75	0.38
Cristo.	3.4	1.1	0.35	34.8	23.4	23.3	14.6	18.0	84.0	31.4	0.67	0.46	0.63	0.29
Tuono	2.6	1.1	0.42	32.4	24.8	22.9	14.6	24.8	94.6	27.0	0.77	0.51	0.64	0.33
AI	3.2	1.4	0.45	32.3	25.1	26.0	15.6	12.4	63.8	18.6	0.78	0.50	0.60	0.51
Ardech.	3.2	1.7	0.53	51.6	24.9	29.7	15.8	23.6	108.6	26.0	0.48	0.28	0.53	0.25
Fournat	4.9	2.0	0.40	40.4	27.3	30.5	16.6	23.6	109.2	35.6	0.66	0.43	0.55	0.48
Burbank	3.4	1.7	0.51	41.6	26.0	28.7	15.1	24.4	85.0	20.4	0.63	0.44	0.53	0.59
Mission	2.7	1.2	0.46	25.7	19.9	19.6	12.9	23.2	90.2	23.6	0.78	0.64	0.66	0.84
Abiod	3.2	1.2	0.38	31.6	23.7	23.5	14.9	09.6	79.6	22.4	0.75	0.49	0.64	0.48
Hech.	2.7	1.4	0.52	32.5	24.6	24.5	15.5	23.2	85.6	24.8	0.76	0.52	0.63	0.49
KsarSouk	5.0	1.3	0.25	33.7	24.5	23.9	13.8	23.4	79.4	22.4	0.73	0.47	0.58	0.34
Bualuzen	2.8	1.2	0.43	30.0	22.6	21.8	13.4	23.6	84.2	26.4	0.75	0.58	0.62	0.42
Messaoud	4.8	1.1	0.23	37.9	21.3	24.3	11.7	10.2	69.8	20.4	0.56	0.40	0.48	0.33
B2/S7	2.6	1.1	0.41	29.1	21.4	20.9	12.6	21.6	82.8	22.2	0.73	0.61	0.60	0.43
B1/S2	6.3	1.5	0.24	38.5	24.7	28.2	14.7	14.8	59.0	20.8	0.64	0.48	0.52	0.28
B1/S17	3.9	1.6	0.43	42.7	25.5	28.2	15.1	14.2	71.2	23.0	0.60	0.40	0.54	0.30
B2/S9	3.4	1.4	0.41	37.9	22.9	26.6	14.0	17.4	71.2	22.8	0.61	0.43	0.53	0.32
B2/S11	1.8	0.8	0.43	30.0	19.1	21.0	11.2	17.0	73.6	20.6	0.64	0.45	0.54	0.36
B1/S15	3.8	1.0	0.26	34.7	20.9	23.8	12.2	21.6	83.6	20.8	0.60	0.46	0.51	0.32
Mean	3.8	1.3	0.38	35.3	23.8	24.8	14.3	19.8	82.7	23.8	0.69	0.48	0.58	0.34

Abbreviations are defined in Table 2.

cultivars, 'Hech Ben Smail' (T2) and 'Abiod' (T1) Tunisia, 'Tuono' (I3) and 'Cristomorto' (I2) from Italy, 'Ai' (F1) from France, and 'Burbank' (U1) from the U.S (Fig. 2). The U.S. cultivar 'Mission' ('Texas') (U2) had a highly negative component for PC1, a positive coordinate for PC2, and clusters with 2 Moroccan selections 'Bualuzen' 'B2/S7' (1E) (Fig. 2). All were characterized by small nut and kernel length, weight and width, thick nuts and kernels, and long petioles (Table 4, Appendices 2 & 3). 'Bualuzen' (8A) and 'B2/S7' (1E) are from 2 different survey areas separated by 400 kilometers . Three Moroccan selections, 'B2/S11' (1G), 'B1/S15' (1C), and 'Messaoud' (8B), loaded on the negative end of PC1 and PC2 (Fig. 2). These clones represented low values for kernel weight, thickness, and size, and high values for kernel ratio 3 which loaded negatively on PC1 (Table 4, Appendices 1 &2). 'B2/S11' (1G) and 'B1/S15'(1C) are from the Errachidia region, while 'Messaoud' (8B) is from Meknes region, two regions of survey about 400 km apart At Station #2, forty six selections and introduced cultivars were studied (Table 1).

The first 3 PC's accounted for 58.2 % of the total cumulative variance with PC1, PC2, and PC3 accounting for 26.8%, 16.3%, and 15.1%, respectively. Nine nut and kernel variables loading highly on PC1 were, in descending order of importance, nut size, nut width, kernel size, nut weight, kernel width, nut length, nut thickness, kernel weight, and

kernel length (Table 3). On PC2, 6 leaf characteristics had high positive loadings (Table 3), and were, in descending order, total leaf length, blade length, leaf area, leaf width, petiole length, and gland number. On PC3, 4 different nut and kernel ratios (Table 3) were important, in descending order: nut width/nut length, nut thickness/nut length, shell hardness (kernel weight/nut weight), and kernel width/kernel length. The only trait that loaded negatively was shell hardness. Kernel length loaded on absolute value slightly higher on PC3 than PC1, but its value was negative on PC3 (- 0.32) while positive on PC1 (0.27).

'Ighri/13' (6B) is an outlier and falls separately on the positive end of PC1 (Fig. 3). This genotype is from Taliouine, the area closest to Atlantic Ocean. It had the highest nut and kernel values (Table 5). Omitting 'Ighri/13' (6B), the plot of the selections and cultivars does not indicate any clearly defined groups. However, except for the Italian cultivar 'Cristomorto' (I2), all the introduced cultivars at Station #2, plus 'Cristomorto' x 'Ardechoise' hybrid (M1) and the Moroccan natural peach-almond hybrid (M2) were located on the positive end of PC2, while Moroccan selections had coordinates toward the negative end of PC2 (Fig. 3), indicating that Moroccan selections were characterized by small leaf traits (Table 5). The Spanish cultivar 'Marcona' (S1), was on the positive end of PC3, characterized by nut and kernel length,

Fig. 3: Position of PC scores of introduced cultivars and Moroccan selections. Station #2.

Alphanumericals inside signs are abbreviations of trees and the first digit refers to the country or area of origin (Table 1). Circles - clones. Diamonds - cultivars. Squares - hybrids.

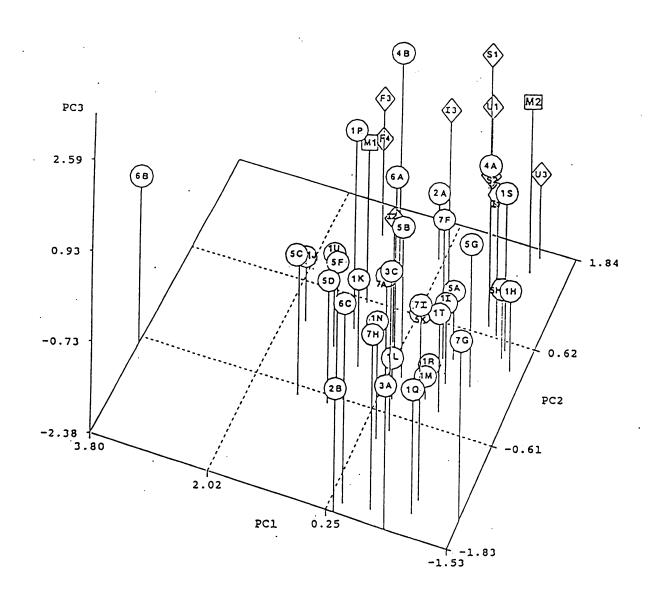


Table 5: Means of representative characters highly loading on PC1, PC2, and PC3 axes for Figure 3 (Station # 2).

Clone	NWT ^z	KWT	SH	NL	NW	KL	KW	PETL	BL	BW	NR1	NR2	KR1
Ferragnes	5.1	1.6	0.30	37.6	28.8	27.8	18.3	21.8	97.4	35.2	0.78	0.49	0.72
Crist. X Ard.	5.1	1.6	0.31	38.1	28.1	24.9	16.8	26.6	86.6	28.8	0.73	0.48	0.67
Cavaliera	2.3	1.3	0.56	27.0	20.4	22.2	13.9	21.8	95.4	27.6	0.75	0.59	0.62
Burbank	2.5	1.2	0.48	28.7	22.4	22.2	13.7	28.0	90.8	31.4	0.77	0.59	0.61
Desmayo	3.8	1.1	0.29	33.1	21.3	23.9	12.4	24.8	101.8	24.4	0.64	0.42	0.51
Marcona	4.2	1.0	0.23	25.5	23.5	18.9	13.6	29.4	96.8	23.0	0.95	0.70	0.73
Tuono	3.2	1.2	0.38	32.2	24.9	22.3	15.1	24.8	94.6	27.0	0.77	0.52	0.67
Fournat	4.0	2.3	0.57	41.5	25.1	31.8	19.5	26.0	103.5	29.0	0.60	0.34	0.61
Cristomorto	4.7	1.4	0.30	37.2	25.7	24.3	15.5	18.3	86.3	31.0	0.69	0.46	0.63
Thompson	1.8	1.3	0.74	28.6	17.4	23.8	13.8	28.3	99.5	29.6	0.60	0.42	0.58
AxP/66	5.6	0.6	0.10	30.0	23.0	18.1	11.7	15.2	114.4	36.6	0.77	0.58	0.64
B2/25R	5.6	2.9	0.53	41.6	26.7	26.6	16.3	19.0	90.5	25.0	0.64	0.45	0.61
B2/22R	2.7	1.5	0.55	35.4	23.8	26.6	14.6	17.0	73.8	21.8	0.67	0.47	0.31
B1/6BL	4.1	1.3	0.31	30.0	23.8	23.0	14.5	10.8	66.6	24.0	0.79	0.57	0.36
B2/14R	2.9	1.8	0.63	39.9	18.6	31.3	12.2	20.4	87.4	30.6	0.47	0.40	0.32
B2/19R	2.6	1.4	0.50	34.4	21.0	20.5	12.6	22.6	93.0	31.0	0.61	0.43	0.15
B2/11R	2.7	1.3	0.46	32.4	20.4	22.9	12.5	14.8	69.0	20.4	0.62	0.48	0.54
B1/8R	3.0	1.3	0.45	42.0	19.2	29.1	11.7	22.0	84.4	27.8	0.45	0.39	0.40
B1/22R	2.6	1.0	0.40	34.5	21.7	23.6	13.0	20.6	76.8	28.0	0.63	0.48	0.54
B1/7R	3.4	1.8	0.51	40.1	21.0	29.4	12.8	19.8	80.0	29.3	0.52	0.42	0.43
B1/5R	5.7	1.5	0.26	41.3	23.9	30.0	14.6	27.4	80.0	28.6	0.57	0.44	0.48
B2/8R	6.2	1.7	0.27	35.8	27.8	22.6	16.9	24.0	88.0	24.2	0.77	0.53	0.74
B1/4R	8.7	1.8	0.20	48.3	27.0	32.7	14.5	29.3	82.8	31.5	0.55	0.42	0.44
B1/2L	3.0	2.1	0.70	27.2	18.1	20.9	11.7	21.8	80.2	33.6	0.66	0.54	0.56
B1/6BL	2.7	1.5	0.56	31.5	20.2	26.3	13.5	17.8	82.2	29.8	0.64	0.47	0.51
Hart/16	4.1	2.4	0.59	37.3	25.0	26.4	14.6	21.5	101.0	31.8	0.67	0.43	0.55
Hart/17	5.1	1.5	0.29	36.4	22.9	26.9	13.8	15.4	62.6	22.6	0.62	0.50	0.51
Khorbat/3J	4.2	1.1	0.26	32.8	21.3	22.8	13.6	13.0	67.4	18.8	0.65	0.47	0.59
Tizoug./5R	4.5	1.3	0.29	33.6	23.3	22.3	14.6	20.8	74.4	25.8	0.69	0.54	0.65
Kelaa/5R	3.5	0.9	0.25	30.3	21.0	20.7	13.1	24.4	95.4	25.2	0.69	0.50	0.63
Kelaa/7R	6.5	1.5	0.24	33.9	27.3	22.7	15.9	27.0	98.0	30.0	0.80	0.61	0.69
Skoura/2	2.3	1.4	0.59	35.5	21.1	24.6	13.8	17.5	88.3	28.9	0.59	0.41	0.56
Tiliwine/8V	3.2	1.6	0.49	34.8	21.0	26.2	14.2	16.0	83.4	25.8	0.60	0.43	0.54
Tiflit/2R_	6.0	1.5	0.25	41.3	26.8	27.3	15.6	20.8	74.8	24.2	0.65	0.43	0.57
Toundout/3J	2.8	0.8	0.26	29.8	20.3	21.8	13.1	26.0	79.0	26.6	0.68	0.50	0.60
Toundout/1R	6.6	2.0	0.29	39.2	25.5	26.7	15.9	18.6	80.8	25.8	0.65	0.45	0.59
Toundout/8J	2.0	1.3	0.62	32.5	16.2	24.7	12.4	20.0	98.2	26.2	0.49	0.44	0.50
Amekchoud/1J	4.6	1.5	0.30	33.9	23.1	23.5	14.2	20.0	83.4	28.6	0.68	0.58	0.60
Amekchoud/3J	7.4	1.9	0.26	40.1	27.5	28.6	16.8	15.5	82.0	26.3	0.69	0.50	0.59
Ighri/13	9.9	3.0	0.30	47.8	33.7	32.8	19.1	24.0	76.3	20.3	0.70	0.49	0.57
Ighri/1R	4.8	1.5	0.31	32.7	25.4	22.8	13.6	20.7	86.3	27.3	0.77	0.61	0.59
Ighil Noughou	5.1	1.4	0.27	32.8	23.9	23.8	14.6	16.0	65.2	19.6	0.72	0.55	0.61
Ait Saoun/2V	4.8	1.4	0.29	37.3	24.2	26.4	13.2	17.4	83.2	29.2	0.64	0.49	0.50
Agdz/1BL	3.9	1.3	0.34	30.0	22.5	25.4	14.0	23.2	81.6	29.8	0.77	0.54	0.32
Ircheg/2R	2.8	0.7	0.25	26.7	20.3	18.7	11.9	13.8	68.2	21.8	0.75	0.58	0.63
Tinzouline/3V	2.8	1.2	0.41	26.6	20.9	20.8	14.0	16.2	63.2	20.4	0.78	0.58	0.45
Mean	4.2	1.5	0.39	34.8	23.2	24.8	14.3	20.9	84.7	27.0	0.68	0.50	0.60

²Abbreviations are defined in Table 2.

inducing high nut and kernel ratios (Table 5). On the negative side of PC3 were found two Moroccan selections, 'B1/8R' (1M) and 'B2/14R' (1R), because of their long and small size nuts and kernels (Table 5).

At Station # 3, 37 Moroccan clones and 2 foreign cultivars, 'Tuono' (I3) from Italy and 'Ferragnes! (F3) from France, were studied (Table 1). PC1, PC2, and PC3 represented 56% of total variance with respectively 25.4% , 18.6% , and 11.8% (Table 3). PC1 included variation for 7 nut and kernel traits, which, in descending order of importance, were nut size, nut width, nut weight, nut thickness, kernel width, kernel size, and kernel weight. On PC2 the highly loaded variables were 6 nut and kernel traits (Table 3), mainly nut and kernel ratios, and included, from high to low absolute value: nut thickness/ length, kernel thickness/length, kernel length, nut length, nut width/length, and kernel width/kernel length . Nut length and nut width were loaded negatively. Six growth habit traits loaded on PC3 (Table 3). They were from high to low values: number of laterals/1-year-old shoot, number of nodes/1-yearold shoot, number of spurs/cm of 2-year-old shoot, number of spurs/2-year-old shoot, 1-year-old shoot length, and 2-yearold shoot length. The 2 spur variables were loaded positively while vegetative growth variables were loaded negatively, suggesting that 1-year-old shoot growth and growth on 2-yearold shoots were inversely related (Table 6). The leaf traits were of minor importance, only loading on PC5, which

represented 7.9% of the total variance.

Independent clustering groups were not obtained (Fig. 4).
'Kelaa/7R' (4B), the only clone from the Dades region (Fig. 1)
was at the extreme positive side of PC1 and PC2 (Fig. 4). It
had values above average for all nut and kernel characters
(Table 6), including the highest values for nut width and
kernel width. On PC2 it was characterized by the highest nut
width/length, nut thickness/length, and kernel width/length
(2nd value after 'Tinzouline/3V' (7I)).

Nineteen Moroccan selections, 'Tinzouline/3V' (7I), 'Tinzouline/5R' (7J), 'Tamkasselt/3R' (7H), 'Ircheg/2R' (7G), 'Ait Saoun/2V' (7A), 'Ait Saoun/6V' (7D), 'Ait Saoun/S3' (7E), 'Aqdz/1BL' (7F), 'Amekchoud/1J'(5B), 'Tiflit/2R' (5D), 'Tiflit/2V' (5E), 'Toundout/1R' (5F), 'Toundout/3J' (5G), 'B1/7R' (1L), 'B1/15R' (1W), 'B1/16R' (1X), 'B2/2R' (1d), 'Khorbat/3J' (3A), and 'Hart/18J' (2C), loaded on the negative side of PC1 and the positive side of PC2 (Fig. 4), and were characterized by small nuts and kernels, high nut and kernel ratios, and a high number of spurs/cm of shoot length, even though shoot growth was variable among selections (Table 6). The first eight selections are from the Draa valley survey region [Ait Saoun, Agdz, Tamkasselt, Tinzouline. (Fig. 1)]. They represent 8 of 10 genotypes tested from this region.

'B1/4R' (1J), 'B1/2R' (1Z), 'B1/1L' (1a) 'B1/4L' (1b), 'B2/19BL' (1e), and 'B2/7R' (1f), were on the negative side of PC2 (Fig. 4) because of their low nut and kernel ratios, due

Fig. 4: Position of PC scores of introduced cultivars and Moroccan selections. Station #3.

Alphanumericals inside signs are abbreviations of trees and the first digit refers to the country or area of origin (Table 1). Circles - clones. Diamonds - cultivars.

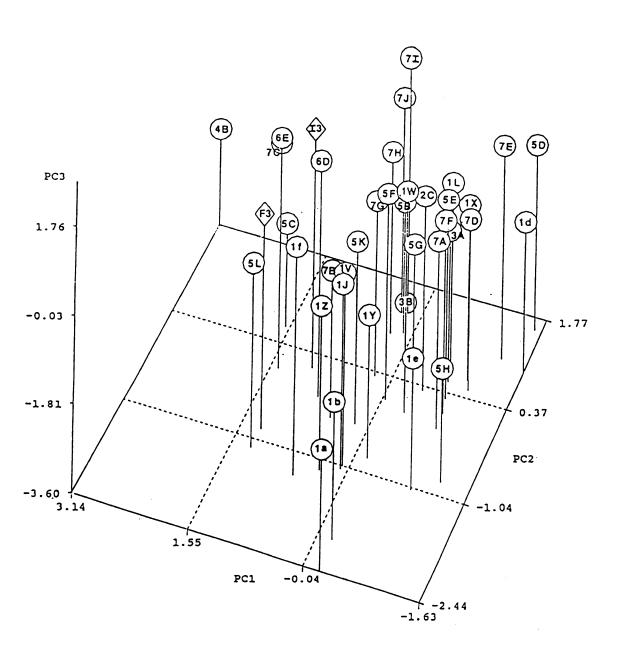


Table 6: Means of representative characters highly loading on PC1, PC2, and PC3 axes for Figure 4 (Station # 3).

Clone	NWT ²	KWT	NL	NW	KL	KW	LAT	S1L	S2L	SPRS	NR1	NR2	KR1	KR2
Tuono	3.2	1.2	32.2	24.9	22.3	15.1	0.2	17.2	15.0	0.49	0.77	0.52	0.67	0.36
Ferragnes	4.6	1.8	37.8	23.3	28.9	14.5	0.0	11.6	20.8	0.33	0.61	0.45	0.50	0.32
B2/19BL	2.5	0.7	33.2	18.3	22.5	10.2	0.0	10.8	14.3	0.00	0.55	0.42	0.45	0.27
B1/13R	3.1	1.1	34.5	21.3	25.1	12.5	0.0	21.2	14.9	0.19	0.61	0.38	0.49	0.28
B1/15R	2.7	0.9	32.6	20.7	22.8	12.4	0.0	11.4	10.5	0.53	0.61	0.44	0.47	0.31
B1/4R B1/16R	3.7 2.6	1.2	35.3 27.5	21.6 19.8	25.6 19.9	12.2 11.7	0.0	9.7 7.9	11.1	0.33 0.27	0.61	0.44	0.47 0.58	0.31
B1/17R	2.4	0.7	33.8	22.3	23.6	11.7	0.4	6.8	12.9 9.4	0.27	0.72	0.47	0.30	0.28
B1/1/K B2/2R	1.3	0.7	27.3	16.1	19.0	9.5	0.0	22.5	13.7	0.51	0.59	0.45	0.50	0.28
B1/2R	4.2	1.2	34.1	22.7	26.5	13.4	0.8	7.7	11.4	0.30	0.66	0.41	0.50	0.24
B1/1L	2.1	0.9	37.2	19.2	25.1	11.9	0.8	13.8	10.2	0.09	0.51	0.35	0.47	0.23
B1/7R	2.0	0.9	28.6	19.2	20.3	12.6	0.0	8.3	14.7	0.30	0.67	0.54	0.62	0.38
B2/7R	3.3	1.5	37.3	21.9	26.1	13.4	0.0	13.7	11.0	0.27	0.58	0.40	0.51	0.34
B1/4L	3.5	1.2	38.2	19.1	27.1	11.8	0.0	9.0	15.7	0.08	0.48	0.35	0.43	0.26
Hart/18J	2.9	0.8	27.9	20.6	20.6	13.4	0.0	10.2	17.0	0.36	0.73	0.46	0.65	0.32
Khorbat/3J	2.8	0.8	29.6	17.9	20.5	11.5	0.0	20.8	9.4	0.37	0.60	0.45	0.55	0.38
Khorbat/6J	2.8	0.9	28.4	18.6	20.1	10.9	1.2	41.2	36.8	0.03	0.65	0.49	0.54	0.39
Kelaa/7R	5.1	1.5	33.0	28.4	24.5	16.5	2.0	38.1	14.7	0.28	0.85	0.60	0.67	0.34
Amekchoud/1J	3.1	1.0	27.4	19.9	20.1	12.4	0.6	22.6	22.2	0.21	0.72	0.56	0.62	0.41
Amekchoud/3J	5.7	1.3	36.7	25.1	21.9	14.5	1.4	19.2	20.6	0.12	0.68	0.45	0.69	0.36
Tiflit/2V	2.4	0.8	29.2	19.8	21.5	10.5	0.0	7.2	10.7	0.47	0.67	0.50	0.48	0.34
Tiflit/2R	1.9	0.6	23.0	16.6	17.3	10.8	0.0	7.1	17.9	0.38	0.72	0.52	0.62	0.40
Toundout/8J	1.1 2.7	0.8 0.9	27.8 30.5	16.3 19.1	21.3 23.5	10.4 12.6	0.2	19.3 10.4	13.6 8.8	0.15 0.31	0.58	0.39	0.48	0.36
Toundout/3J Toundout/1R	3.7	0.9	31.3	21.5	22.2	13.3	0.0	11.2	11.8	0.43	0.68	0.44	0.60	0.30
Tiliwine/8V	2.6	1.4	34.9	22.0	24.9	13.6	0.0	10.4	11.0	0.28	0.63	0.42	0.54	0.32
Tiliw/8TER	5.4	1.4	40.9	23.4	26.5	15.0	0.2	15.2	12.1	0.18	0.57	0.41	0.56	0.28
Ighri/12B	4.8	1.5	32.1	22.3	25.0	14.2	0.0	16.6	10.2	0.45	0.69	0.49	0.56	0.35
Ighri/13B	5.1	1.6	34.6	24.4	25.0	15.8	0.4	13.2	9.9	0.26	0.70	0.47	0.63	0.34
Ait Saoun/2V	2.0	1.1	32.5	18.3	24.3	11.8	0.0	8.8	8.4	0.66	0.56	0.42	0.48	0.33
Ait Saoun/4V	3.5	1.3	34.8	22.4	24.8	13.0	0.0	21.1	12.1	0.05	0.64	0.43	0.52	0.33
Ait Saoun/5V	4.8	1.5	31.8	24.3	24.0	14.4	0.0	17.2	13.0	0.10	0.76	0.61	0.60	0.41
Ait Saoun/6V	2.1	1.0	29.1	18.5	22.5	11.3	0.0	8.3	8.9	0.40	0.63	0.47	0.50	0.36
Ait Saoun/S3	2.5	0.6	26.3	17.7	19.3	11.2	0.0	5.2	10.0	0.63	0.67	0.53	0.58	0.34
Agdz/1BL	2.8	0.8	29.9	19.3	21.8	12.2	0.0	7.4	9.2	0.46	0.64	0.43	0.56	0.32
Ircheg/2R	3.6	0.9	28.8	21.5	20.0	13.4	0.4	14.0	13.6	0.20	0.74	0.54	0.65	0.36
Tamkasselt/3R	3.5	1.1	29.7	22.8	21.9	12.8	0.0	16.9	11.8	0.34	0.76	0.54	0.58	0.40
Tinzouline/5R	3.6	1.0	30.2	23.3	19.7	12.9	0.0	17.0	16.5	0.44	0.77	0.54	0.65	0.42
Tinzouline/3V	2.8	1.0	26.7	23.0	21.2	15.6	0.0	8.1	12.3	0.51	0.85	0.56	0.77	0.38
Mean	3.2	1.1	31.7	21.0	22.8	12.8	0.2	14.3	13.5	0.30	0.67	0.47	0.56	0.34

²Abbreviations are defined in Table 2.

to their long nuts and kernels (Table 6). All these selections are from the Errachidia area of survey (Fig. 1).

The 'Ferragnes' (F3) cultivar from France and 'Tuono' (I3) cultivar from Italy, plus 5 Moroccan selections 'Ighri/12B' (6D), 'Ighri/13B' (6E), 'Amekchoud/3J' (5C), 'Tiliouine/8TER' (5L), and 'Ait Saoun/5V' (7C), loaded positively on PC1 and PC3 (Fig. 4), and were characterized by high nut and kernel weights, with a tendency to large nuts and kernels (Table 6). 'Tuono' and 'Ferragnes' had vigorous shoot growth and high spur production, while Moroccan selections with vigorous shoot growth had low spur production [i.e., 'Amekchoud/3J' (5C) and 'Ait Saoun/5V'(7C)] (Table 6). Other remaining selections of the group, excluding 'Ighri/12B' (6D) had average shoot growth and a tendency to low spur production (Table 6).

'Khorbat/6J' (3B) had the most negative value on PC3 (Fig. 4) because of its highest values for the number of laterals and for 1 and 2-year-old shoot growth, and its low spur number (Table 6).

About one third of the selections at Station 3 had better or equivalent spur production potential relative to foreign cultivars. Among these, 'Ait Saoun/2V' (7A), 'Ait Saoun/S3' (7E), 'B1/15R' (1W), 'B2/2R' (1d), 'Tinzouline/3V' (7I), 'Tiflit/2V' (5E), and 'Ighri/12B' (6D) showed high spur production. However, all of these selections, except 'Ighri/12B' (6D), had small nuts and kernels.

CONCLUSION:

Nut and kernel, leaf, and growth habit traits that were consistently highly loaded on the three principal axes at the three stations were nut and kernel weight, nut and kernel sizes, explained, respectively, by high loading of nut length and width, and kernel length and width, nut and kernel width/length and thickness/length s, blade length, blade width, petiole length, total leaf length, leaf area, one and two-year-old shoot length, number of laterals and number of nodes/cm on 1-year-old shoots, number of spurs/2-year-old shoot, and number of spurs/cm on 2-year-old shoots. Nut and kernel measurements were always highly loading on PC1, and nut and kernel ratios on PC2, except for Station 2 where they loaded on PC3. When growth habit was not considered, leaf traits loaded either on PC2 or PC3. Growth habit traits loaded on PC3 at Station 3. For all 3 analyses, nut and kernel traits always explained the largest portion of the variance, indicating that these traits were more variable than growth habit and leaf traits. Growth habit traits, measured at Station 3 only, were more important than leaf traits in explaining variation among the selections.

Station 1, which had the largest number of foreign cultivars (10 cultivars), with cultivars to clone ratio of approximately 1:1, presented greater differences among trees in the morphological traits studied than the other stations.

From this morphological study, there was no evidence that

Moroccan almond ecotypes exist in this collection, since clones did not cluster by survey area. The absence of separate ecotypes could be explained by the fact that all surveyed areas, as shown in Fig. 1, are on the main southern road connecting the east and the west of the country and that seeds were spread by continuous population flow within the survey axis. However, at Station 3, most of the selections from the Draa Valley were characterized by small nuts and kernels and high spur production and clustered together. The Draa valley separates from the main east-west axis at Ouarzazate toward the south, and population flow is less important there. At Station 3 also, most of the selections from Errachidia survey area, south east of Morocco, clustered together, and were characterized by long nuts and kernels.

Some foreign cultivars, even though clustering with Moroccan clones and other cultivars, remained grouped with respect to their country of origin. Most foreign cultivars were distinguished from the majority of the Moroccan selections by larger leaves and softer shells (kernel weight/nut weight). The tendency of Moroccan clones to have small leaves and petioles could have resulted from natural selection for resistance to drought conditions. In most surveyed areas, almond trees are rarely irrigated. Hard shells have been selected by the Moroccan growers to prevent insect damage during storage. Almond is preferred to other fruit crops because it is not a perishable commodity and there are

no special conditions for storage when it has hard shells. Except for tendencies toward small leaves and hard shells, nut and kernel characteristics were highly variable ranging from nut and kernels with characteristics better or similar to good foreign cultivars to small nut and kernels with little commercial value.

In summary, although the morphological variation observed among Moroccan selections did not suggest the existence of separate ecotypes, morphological differences were identified between Moroccan selections and introduced cultivars. Eleven clones were identified that are presumably adapted to dry conditions with good nut and kernel quality ['Ighri/13' (6B), 'Ighri/12B' (6D), 'B2/25R' (1U), and 'Kelaa/7R' (4B)] and/or have good yield potential ['Ait Saoun/2V' (7A), 'Ait Saoun/S3' (7E), 'B1/15R' (1W), 'B2/2R' (1d), 'Tinzouline/3V' (7I), 'Tiflit/2V' (5E), and 'Ighri/12B' (6D)). These selections could be used as parents in a breeding program, or directly as new cultivars.

Literature Cited

- Anonymous. 1990. Secteur amandier. Bilan de la campagne 1989-1990. Division de l'Horticulture. Direction de la Production Végétale. Ministère de l'Agriculture et de la Réforme Agraire. pp. 1-3.
- Barbeau ,G., and A. El Bouami. 1979. Prospection de tardivité de floraison chez l'Amandier dans le sud Marocain. Fruits 34 (2): 131-137.
- Barbeau ,G., and A. El Bouami. 1980a. Prospections "Amandier" dans le sud Marocain. Fruits 35 (1): 39-50.
- Barbeau ,G., and A. El Bouami. 1980b. Les hybrides amandier x pecher naturels du sud Marocain. Fruits 35 (3): 171-176.
- Broschat ,T.K. 1979. Principal component analysis in horticultural research. HortScience 14: 114-117.
- Daudin, J. 1982. Analyse en composantes principales.

 Mathematique et Informatique Document. Institut National
 Agronomique. Paris Grignon. pp. 1-63.
- EL Khatib-Boujibar, N. 1983. Le Maroc et Carthage. Le Memorial du Maroc (I). Nord Organisation ed. p. 140.
- Kester, D. E., T. M. Gradziel, and Ch. Grasselly. 1991.
 Almonds (<u>Prunus</u>). Genetics Resources of Temperate Fruits and Nut Crops. Acta Hort. 290: 701-758.
- Laghezali, M. 1985. L'Amandier au Maroc. Options Mediterraneennes 85 (1): 91-96.
- Phillipeau, G. 1986. Comment interpreter les résultats d'une analyse en composantes principales. ITCF document.
 Institut Technique des Céréales et des Fourrages. pp. 1-28.
- SAS Institute, Inc. 1985. SAS user's guide: Statistics. 5th edition. SAS Institute, Inc., Cary, N.C.

Appendix 1: Means of characters measured highly loading on PC1 axis for Figure 2 (Station # 1).

Clone	NL	NW	KL	KW	KWT	NVOL	KVOL	KR3 ^z
Marcona	33.6	30.3	23.5	17.5	1.6	22454	3652	0.51
Cristo.	34.8	23.4	23.3	14.6	1.1	13040	2348	0.47
Tuono	32.4	24.8	22.9	14.6	1.1	13276	2537	0.52
AI	32.3	25.1	26.0	15.6	1.4	13054	3212	0.51
Ardech.	51.6	24.9	29.7	15.8	1.7	18414	3395	0.46
Fournat	40.4	27.3	30.5	16.6	2.0	18999	4055	0.48
Burbank	41.6	26.0	28.7	15.1	1.7	19850	3870	0.59
Mission	25.7	19.9	19.6	12.9	1.2	8627	2825	0.84
Abiod	31.6	23.7	23.5	14.9	1.2	11602	2538	0.48
Hech.	32.5	24.6	24.5	15.5	1.4	13425	2889	0.49
KsarSouk	33.7	24.5	23.9	13.8	1.3	13019	2662	0.59
Bualuzen	30.0	22.6	21.8	13.4	1.2	11938	2680	0.68
Messaoud	37.9	21.3	24.3	11.7	1.1	12078	2277	0.68
B2/S7	29.1	21.4	20.9	12.6	1.1	11133	2429	0.72
B1/S2	38.5	24.7	28.2	14.7	1.5	17607	3212	0.53
B1/S17	42.7	25.5	28.2	15.1	1.6	18471	3642	0.56
B2/S9	37.9	22.9	26.6	14.0	1.4	14228	3148	0.61
B2/S11	30.0	19.1	21.0	11.2	0.8	7828	1807	0.68
B1/S15	34.7	20.9	23.8	12.2	1.0	11534	2201	0.63
Mean	35.3	23.8	24.8	14.31	1.3	14242	2917	0.58

^zVariable loading negatively on PCl.

Appendix 2: Means of characters measured highly loading on PC2 axis for Figure 2 (Station # 1).

Clone	FR1	FR2	KR1	KR2	KTH	PETL
Marcona	0.90	0.66	0.75	0.38	8.92	29.4
Cristomorto	0.67	0.46	0.63	0.29	6.82	18.0
Tuono	0.77	0.51	0.64	0.33	7.58	24.8
Ai	0.78	0.50	0.60	0.51	7.94	12.4
Ardechoise	0.48	0.28	0.53	0.25	7.26	23.6
Fournat	0.66	0.43	0.55	0.48	7.98	23.6
Burbank	0.63	0.44	0.53	0.59	8.92	24.4
Mission	0.78	0.64	0.66	0.84	10.84	23.2
Abiod	0.75	0.49	0.64	0.48	7.22	9.6
Hech B.Smail	0.76	0.52	0.63	0.49	7.60	23.2
Ksar Souk	0.73	0.47	0.58	0.34	8.06	23.4
Bualuzen	0.75	0.58	0.62	0.42	9.12	23.6
Messaoud	0.56	0.40	0.48	0.33	7.96	10.2
B2/S7	0.73	0.61	0.60	0.43	9.08	21.6
B1/S2	0.64	0.48	0.52	0.28	7.76	14.8
B1/S17	0.60	0.40	0.54	0.30	8.44	14.2
B2/S9	0.61	0.43	0.53	0.32	8.56	17.4
B2/S11	0.64	0.45	0.54	0.36	7.64	17.0
B1/S15	0.60	0.46	0.51	0.32	7.58	21.6
Mean	0.69	0.48	0.58	0.34	8.17	19.8
Mean	0.69	0.48	0.58	0.34	8.17	19

Appendix 3: Means of characters measured highly loading on PC3 axis for Figure 2 (Station # 1).

Clone	BL²	BW ^z	LL²	LA²	NWT	NTH	SH
Marcona	96.8	23.0	126.2	2227	7.72	22.06	0.21
Cristo.	84.0	31.4	102.0	2631	3.38	15.92	0.35
Tuono	94.6	27.0	119.4	2554	2.64	16.48	0.42
AI	63.8	18.6	76.2	1195	3.20	16.10	0.45
Ardech.	108.6	26.0	132.2	2824	3.22	14.24	0.53
Fournat	109.2	35.6	132.8	3927	4.88	17.48	0.40
Burbank	85.0	20.4	109.4	1734	3.44	18.22	0.51
Mission	90.2	23.6	113.4	2139	2.70	16.54	0.46
Abiod	79.6	22.4	89.2	1780	3.20	15.46	0.38
Hech.	85.6	24.8	108.8	2137	2.68	16.78	0.52
Ksar Souk	79.4	22.4	102.8	1786	5.02	15.76	0.25
Bualuzen	84.2	26.4	107.8	2241	2.82	17.54	0.43
Messaoud	69.8	20.4	80.0	1421	4.82	14.96	0.23
B2/S7	82.8	22.2	104.4	1839	2.64	17.80	0.41
B1/S2	59.0	20.8	73.8	1230	6.32	18.40	0.24
B1/S17	71.2	23.0	85.4	1639	3.86	16.72	0.43
B2/S9	71.2	22.8	88.6	1631	3.40	16.40	0.41
B2/S11	73.6	20.6	90.6	1517	1.78	13.62	0.43
B1/S15	83.6	20.8	105.2	1740	3.80	15.90	0.26
•							
Mean	82.7	23.8	102.5	2010	3.76	16.65	0.38

²Variables loading negatively on PC3.

Appendix 4: Means of characters measured highly loading on PC1 axis for Figure 3 (Station # 2).

Clone	NWT	NL	NW	NTH	KWT	KL	KW	NVOL	KVO
Ferragnes	5.12	37.62	28.82	17.36	1.62	27.78	18.28	19588	4502
Crist. X Ard.	5.14	38.08	28.08	18.44	1.62	24.90	16.80	19695	4086
Cavaliera	2.28	27.04	20.36	16.18	1.28	22.24	13.88	8914	3072
Burbank	2.48	28.72	22.36	17.00	1.18	22.24	13.66	10949	2818
Desmayo	3.80	33.10	21.28	14.04	1.08	23.90	12.40	10004	2325
larcona	4.18	25.54	23.48	17.30	0.96	18.86	13.64	10392	2351
ruono	3.24	32.16	24.90	16.94	1.22	22.32	15.10	13592	2732
ournat	3.95	41.45	25.05	14.30	2.25	31.80	19.45	14685	5723
ristomorto	4.68	37.20	25.70	17.23	1.43	24.28	15.50	16513	3277
homoson	1.80	28.58	17.38	12.03	1.33	23.75	13.83	6081	2743
XP/66	5.56	29.58	23.00	17.18	0.58	18.12	11.72	11729	1454
12/25R	5.63	41.63	26.73	19.05	2.88	26.60	16.28	21585	3539
12/22R	2.70	35.36	23.84	16.68	1.50	26.62	14.58	14081	3223
1/6BL	4.08	30.04	23.80	17.20	1.26	22.98	14.54	12329	2837
12/14R	2.90	39.84	18.56	16.02	1.84	31.32	12.18	11869	3918
2/19R	2.64	34.44	21.04	14.98	1.36	20.47	12.58	10898	2145
2/11R	2.68	32.42	20.38	15.80	1.26	22.86	12.50	10601	3014
1/8R	2.96	41.96	19.18	16.38	1.34	29.10	11.74	13199	2979
1/22R	2.56	34.46	21.68	16.64	1.02	23.62	12.98	12464	2233
1/7R	3.43	40.08	21.00	17.05	1.78	29.40	12.75	14443	3697
1/5R	5.68	41.30	23.88	18.50	1.48	30.02	14.60	18266	3238
2/8R	6.22	35.78	27.84	19.22	1.72	22.62	16.90	19279	4064
1/4R	8.65	48.33	26.98	20.73	1.75	32.68	14.53	27165	3717
1/4k 1/2L	3.04	27.24	18.08	14.84	2.14	20.90	11.72	7307	1838
1/6BL	2.70	31.54	20.16	14.84	1.54	26.26	13.48	9533	3416
•	4.13	37.25	25.00	16.05	2.40	26.28	14.60	14942	2852
lart/16	5.14	36.36	22.88	18.22	1.54	26.88	13.84	15188	3142
art/17			21.34			22.76	13.58		2374
horbat/3J	4.16	32.80		15.62	1.12			11065	
izoug./5R	4.52	33.56	23.34	18.14	1.34	22.30	14.58	14318	3167
elaa/5R	3.50	30.32	20.98	15.22	0.90	20.74	13.14	9818	1981
elaa/7R	6.45	33.90	27.25	20.68	1.53	22.70	15.85	19220	3608
koura/2	2.25	35.53	21.08	14.83	1.35	24.63	13.83	11260	3117
iliwine/8V	3.24	34.82	20.98	15.20	1.58	26.18	14.22	11266	3208
iflit/2R	6.02	41.24	26.84	17.78	1.54	27.34	15.64	19757	3121
oundout/3J	2.82	29.82	20.32	14.88	0.80	21.80	13.12	9106	2390
oundout/1R	6.60	39.22	25.54	17.88	1.96	26.68	15.92	17935	3861
oundout/8J	2.04	32.46	16.22	14.54	1.26	24.72	12.44	7641	2419
mekchoud/1J	4.60	33.88	23.14	19.64	1.46	23.50	14.18	15419	3195
mekchoud/3J	7.35	40.12	27.53	19.45	1.85	28.60	16.75	21136	4428
ghri/13	9.90	47.80	33.73	23.50	3.00	32.83	19.07	38006	7448
ghri/1R	4.77	32.70	25.43	19.90	1.50	22.80	13.57	16531	3524
ghil Noughou	5.12	32.84	23.90	18.20	1.42	23.80	14.56	14417	3400
it Saoun/2V	4.80	37.32	24.22	18.54	1.42	26.36	13.24	16864	3301
gdz/1BL	3.86	30.00	22.46	15.74	1.34	25.36	14.04	10662	2964
rcheg/2R	2.76	26.68	20.26	15.46	0.70	18.66	11.88	8449	1493
inzouline/3V	2.82	26.62	20.90	15.60	1.16	20.80	14.04	8672	2776
lean	4.23	34.75	23.19	16.98	1.49	24.81	14.30	14279	3189

Appendix 5: Means of characters measured highly loading on PC2 axis for Figure 3 (Station # 2).

Clone	BL	8W	PETL	LL	GNBRE	LA
Ferragnes	97.40	35.20	21.80	119.20	4.20	3427
Crist.x Ard.	86.60	28.80	26.60	113.20	3.60	2500
Cavaliera	95.40	27.60	21.80	117.20	3.20	2632
Burbank	90.80	31.40	28.00	118.80	6.80	2856
Desmayo	101.80	24.40	24.80	126.60	4.40	2486
Marcona	96.80	23.00	29.40	126.20	3.80	2227
Tuono	94.60	27.00	24.80	119.40	5.20	2554
Fournat	103.50	29.00	26.00	129.50	5.50	3006
Cristomorto	86.25	31.00	18.25	104.50	3.00	2671
Thompson	99.50	29.25	28.25	127.75	5.25	2910
AxP/66	114.40	36.60	15.20	129.60	1.80	4210
B2/25R	90.50	25.00	19.00	109.50	1.75	2267
32/22R	73.80	21.80	17.00	90.80	3.40	1624
B1/6BL	66.60	24.00	10.80	77.40	2.00	1601
B2/14R	87.40	30.60	20.40	107.80	3.80	2722
B2/19R	93.00	31.00	22.60	115.60	3.20	2857
B2/11R	69.00	20.40	14.80	83.80	1.80	1415
B1/8R	84.40	27.80	22.00	106.40	2.40	2363
31/22R	76.80	28.00	20.60	97.40	3.20	2150
B1/7R	80.00	29.25	19.75	99.75	3.25	2337
31/5R	80.00	28.60	27.40	107.40	2.60	2285
32/8R	88.00	24.20	24.00	112.00	4.20	2123
31/4R	82.75	31.50	29.25	112.00	3.50	2609
31/2L	80.20	33.60	21.80	102.00	3.20	2715
31/6BL	82.20	29.80	17.80	100.00	3.20	2450
Hart/16	101.00	31.75	21.50	122.50	3.25	3210
Hart/17	62.60	22.60	15.40	78.00	3.20	1432
Khorbat/3J	67.40	18.80	13.00	80.40	1.40	1268
Tizoug./5R	74.40	25.80	20.80	95.20	2.00	1921
(elaa/5R	95.40	25.20	24.40	119.80	4.80	2419
Celaa/7R	98.00	30.00	27.00	125.00	5.50	2954
Skoura/2	88.25	28.75	17.25	105.50	3.00	2548
Tiliwine/8V	83.40	25.80	16.00	99,40	3.00	2166
Tiflit/2R	74.80	24.20	20.80	95.60	2.80	1811
Toundout/3J	79.00	26.60	26.00	105.00	3.40	2102
Toundout/1R	80.80	25.80	18.60	99.40	3.40	2084
Foundout/8J	98.20	26.20	20.00	118.20	4.00	2589
Amekchoud/1J	83.40	28.60	20.00	103.40	5.00	2390
Amekchoud/3J	82.00	26.25	15.50	97.50	2.25	2164
Ighri/13	76.33	20.33	24.00	100.33	7.00	1552
Ighri/1R	86.33	27.33	20.67	107.00	5.00	2388
Ighil Noughou	65.20	19.60	16.00	81.20	3.20	1276
Nit Saoun/2V	83.20	29.20	17.40	100.60	4.00	2434
Agdz/1BL	81.60	29.80	23.20	104.80	3.40	2445
rcheg/2R	68.20	21.80	13.80	82.00	2.00	1478
Tinzouline/3V	63.20	20.40	16.20	79.40	4.20	1290
lean	84.66	27.04	20.86	105.52	3.57	2324

Appendix 6: Means of characters measured highly loading on PC3 axis for Figure 3 (Station # 2).

		FR1	FR2	FR3	KR1
Ferragnes	0.30	0.78	0.49	0.61	0.72
Cris.x Ard.	0.31	0.73	0.48	0.65	0.67
Cavaliera	0.56	0.75	0.59	0.79	0.62
Burbank	0.48	0. <i>7</i> 7	0.59	0.76	0.61
Desmayo	0.29	0.64	0.42	0.66	0.51
Marcona	0.23	0.95	0.70	0.73	0.73
Tuono	0.38	0.77	0.52	0.68	0.67
Fournat	0.57	0.60	0.34	0.58	0.61
Cristomorto	0.30	0.69	0.46	0.67	0.63
Thompson	0.74	0.60	0.42	0.69	0.58
AxP/66	0.10	0.77	0.58	0.74	0.64
B2/25R	0.53	0.64	0.45	0.71	0.61
82/22R	0.55	0.67	0.47	0.69	0.31
B1/6BL	0.31	0.79	0.57	0.72	0.36
B2/14R	0.63	0.47	0.40	0.86	0.32
B2/19R	0.50	0.61	0.43	0.71	1.15
B2/11R	0.46	0.62	0.48	0.77	0.54
B1/8R	0.45	0.45	0.39	0.85	0.40
B1/22R	0.40	0.63	0.48	0.76	0.54
B1/7R	0.51	0.52	0.42	0.81	0.43
B1/5R	0.26	0.57	0.44	0.77	0.48
B2/8R	0.27	0.77	0.53	0.69	0.74
B1/4R	0.20	0.55	0.42	0.76	0.44
B1/2L	0.70	0.66	0.54	0.82	0.56
B1/6BL	0.56	0.64	0.47	0.73	0.51
Hart/16	0.59	0.67	0.43	0.64	0.55
Hart/17	0.29	0.62	0.50	0.79	0.51
Khorbat/3J	0.26	0.65	0.47	0.73	0.59
Tizoug./5R	0.29	0.69	0.54	0.77	0.65
Kelaa/5R	0.25	0.69	0.50	0.72	0.63
Kelaa/7R	0.24	0.80	0.61	0.75	0.69
Skoura/2	0.59	0.59	0.41	.0.70	0.56
Tiliwine/8V	0.49	0.60	0.43	0.72	0.54
Tiflit/2R	0.25	0.65	0.43	0.66	0.57
Toundout/3J	0.26	0.68	0.50	0.73	0.60
Toundout/1R	0.29	0.65	0.45	0.70	0.59
Toundout/8J	0.62	0.49	0.44	0.90	0.50
Amekchoud/1J	0.30	0.68	0.58	0.84	0.60
Amekchoud/3J	0.26	0.69	0.50	0.71	0.59
Ighri/13	0.30	0.70	0.49	0.69	0.57
Ighri/1R	0.31	0.77	0.61	0.78	0.59
Ighil Nougou	0.27	0.72	0.55	0.76	0.61
Ait Saoun/2V	0.29	0.64	0.49	0.76	0.50
Agdz/1BL	0.34	0.77	0.54	0.70	0.32
Ircheg/2R	0.25	0.75	0.58	0.76	0.63
Tinzouline/3V	0.41	0.78	0.58	0.74	0.45
Mean	0.39	0.68	0.50	0.74	0.60

Appendix 7: Means of characters measured highly loading on PC1 axis for Figure 4 (Station # 3).

Clone	NWT	WN	NTH	KWT	KW	NVOL	KVOL
Tuono	3.24	24.90	16.94	1.22	15.10	13592	2732
Ferragnes	4.62	23.32	17.06	1.76	14.46	15099	3920
B2/19BL	2.52	18.28	14.02	0.70	10.24	8535	1432
B1/13R	3.06	21.28	13.34	1.10	12.46	9839	2222
B1/15R	2.72	20.70	14.88	0.94	12.40	9940	2093
B1/4R	3.72	21.56	15.64	1.20	12.22	11931	2537
B1/16R	2.60	19.80	13.08	0.70	11.66	7132	1449
B1/17R	2.38	22.32	14.80	0.90	11.72	1135	1877
B2/2R	1.26	16.06	12.60	0.68	9.54	5535	1314
B1/2R	4.16	22.74	14.24	1.16	13.36	11095	2345
B1/1L	2.12	19.18	13.16	0.86	11.94	9402	1840
B1/7R	1.98	19.24	15.64	0.92	12.64	8758	2001
B2/7R	3.26	21.86	15.22	1.48	13.44	12414	3142
B1/4L	3.48	19.14	13.88	1.22	11.76	10441	2327
Hart/18J	2.86	20.64	12.98	0.82	13.40	7516	1826
Khorbat/3J	2.78	17.86	13.50	0.84	11.48	7210	1885
Khorbat/6J	2.84	18.60	14.02	0.86	10.90	7503	1716
Kelaa/7R	5.12	28.36	20.12	1.52	16.54	18906	3464
Amek./1J	3.10	19.88	15.34	0.96	12.44	8416	2071
Amek./3J	5.68	25.06	16.56	1.26	14.54	15233	2450
Tiflit/2V	2.36	19.76	14.80	0.78	10.52	8558	1694
Tiflit/2R	1.90	16.62	12.12	0.56	10.84	4656	1293
Toundout/8J	1.10	16.30	10.92	0.78	10.40	4961	1702
Toundout/3J	2.66	19.12	13.56	0.92	12.64	7938	2210
Toundout/1R	3.74	21.46	14.04	0.94	13.34	9490	2030
Tiliwine/8V	2.64	22.02	14.84	1.42	13.60	11538	2988
Tiliw./8TER	5.36	23.36	16.96	1.36	15.00	16151	3015
Ighri/12B	4.84	22.28	15.96	1.46	14.22	11447	3144
Ighri/13B	5.10	24.44	16.42	1.60	15.76	14402	3532
Ait Sao./2V		18.26	13.76	1.08	11.82	8204	2396
Ait Sao./4V	3.48	22.40	15.20	1.32	12.98	11858	2681
Ait Sao./5V	4.82	24.32	19.58	1.48	14.36	15269	3401
Ait Sao./6V		18.52				7482	
Ait Sao./S3						6540	
Agdz/1BL	2.78	17.70 19.34 21.50 22.84	13.04	0.84	12.22	7578	1863
Ircheg/2R	3.58	21.50	15.74	0.92	13.14	9752	1899
Tamkas./3R	3.46	22.84	16.02	1.14	12.82		
Tamkas./3R Tinz./5R	3.64	23.26	16.46	0.96	12.86		
Tinz./3V	2.76	22.96	15.26	0.96	15.62		
Mean	3.19	20.95					2285

Appendix 8: Means of characters measured highly loading on PC2 axis for Figure 4 (Station # 3).

Clone	NR1	NR2	KR1	KR2	NL²	KL²	SNBRE
Tuono	0.77	0.52	0.67	0.36	32.16	22.32	6.2
Ferragnes	0.61	0.45	0.50	0.32	37.82	28.86	7.0
B2/19BL	0.55	0.42	0.45	0.27	33.18	22.52	7.0
B1/13R	0.61	0.38	0.49	0.28	34.54	25.12	8.4
B1/15R	0.64	0.46	0.54	0.32	32.60	22.80	7.0
B1/4R	0.61	0.44	0.47	0.31	35.32	25.56	
B1/6R	0.72	0.47	0.58	0.31	27.50	19.86	
B1/17R	0.66	0.43	0.49	0.28	33.84		
B2/2R	0.59	0.46	0.50	0.38	27.32	19.00	
B1/2R	0.66	0.41	0.50	0.24	34.12	26.54	
B1/1L	0.51	0.35	0.47	0.23	37.16		
B1/7R	0.67	0.54	0.62	0.38	28.60		7.8
B2/7R	0.58	0.40	0.51	0.34	37.34		7.8
B1/4L	0.48	0.35	0.43	0.26	38.22	27.12	8.6
Hart/18J	0.73	0.46	0.65	0.32	27.94		
Khorbat/3J	0.60	0.45	0.55	0.38	29.60		7.0
Khorbat/6J	0.65	0.49	0.54	0.39	28.40		7.6
Kelaa/7R	0.85	0.60	0.67	0.34	33.04		7.2
Amek./1J	0.72	0.56	0.62	0.41	27.40		7.4
Amek./3J	0.68	0.45	0.69	0.36	36.66		7.6
Tiflit/2V	0.67	0.50	0.48	0.34	29.20		7.8
Tiflit/2R	0.72	0.52	0.62	0.40	23.06		8.2
Toundout/8J		0.39	0.48	0.36	27.78		
Toundout/3J	0.62	0.44	0.53	0.32	30.52	23.46	7.4
Toundout/1R	0.68	0.44	0.60	0.30	31.38	22.18	8.0
Tiliw./8V	0.63	0.42	0.54	0.32	34.92	24.88	6.2
Tiliw./8TER	0.57	0.41	0.56	0.28	40.88	26.50	7.2
Ighri/12B	0.69	0.49	0.56	0.35	32.10	25.00	8.2
Ighri/13B	0.70	0.47	0.63	0.34	34.64	24.96	8.2
Ait Sao./2V		0.42	0.48	0.33	32.50	24.34	7.8
Ait Sao./4V		0.43	0.52	0.33	34.80	24.76	8.6
Ait Sao./5V	0.76	0.61	0.60	0.41	31.84	23.92	7.2
Ait Sao./6V	0.63	0.47	0.50	0.36	29.08	22.52	6.6
Ait Sao./S3	0.67	0.53	0.58	0.34	26.34	19.34	6.6
Agdz/1BL	0.64	0.43	0.56	0.32	29.92	21.80	7.4
Ircheg/2R	0.74	0.54	0.65	0.36	28.78	20.00	6.8
Tamkas./3R	0.76	0.54	0.58	0.40	29.70	21.88	8.2
Tinz./5R	0.77	0.54	0.65	0.42	30.20	19.72	7.8
Tinz./3V	0.85	0.56	0.77	0.38	26.74	20.16	7.0
Mean	0.67	0.47	0.56	0.34	31.73	22.77	7.5

²Characters loading negatively on PC2.

Appendix 9: Means of characters measured highly loading on PC3 axis for Figure 4 (Station # 3).

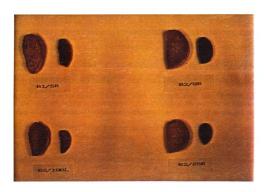
Clone	LAT	TOTSPRS	S2L ^z	S1Lz	SPRS	NODE
Tuono	0.2	7.0	15.0	17.2	0.49	1.4
Ferragnes	0.0	6.6	20.8	11.6	0.33	0.0
B2/19BL	0.0	0.0	14.3	10.8	0.00	0.0
B1/13R	0.0	2.8	14.9	21.2	0.19	0.0
B1/15R	0.0	5.6	10.5	11.4	0.53	0.0
B1/4R	0.0	3.8	11.1	9.7	0.33	0.0
B1/16R	0.0	3.4	12.9	7.9	0.27	0.0
B1/17R	0.4	0.0	9.4	6.8	0.00	1.8
B2/2R	0.0	6.8	13.7	22.5	0.51	0.0
B1/2R	0.8	3.0	11.4	7.7	0.30	1.8
B1/1L	0.8	0.8	10.2	13.8	0.09	1.8
B1/7R	0.0	4.4	14.7	8.3	0.30	0.0
B2/7R	0.0	2.8	11.0	13.7	0.27	0.0
B1/4L	0.0	1.4	15.7	9.0	0.08	0.0
Hart/18J	0.0	6.0	17.0	10.2	0.36	0.0
Khorbat/3J	0.0	3.2	9.4	20.8	0.37	0.0
Khorbat/6J	1.2	0.8	36.8	41.2	0.03	6.0
Kelaa/7R	2.0	3.4	14.7	38.1	0.28	1.4
Amek./1J	0.6	4.6	22.2	22.6	0.21	2.6
Amek./3J	1.4	1.6	20.6	19.2	0.12	5.4
Tiflit/2V	0.0	4.6	10.7	7.2	0.47	0.0
Tiflit/2R	0.0	6.6	17.9	7.1	0.38	0.0
Toundout/8J	0.2	2.4	13.6	19.3	0.15	1.6
Toundout/3J	0.0	2.4	8.8	10.4	0.31	0.0
Toundout/1R	0.0	4.8	11.8	11.2	0.43	0.0
Tiliwine/8V	0.0	2.6	11.0	10.4	0.28	0.0
Tiliw./8TER	0.2	2.0	12.1	15.2	0.18	1.6
Ighri/12B	0.0	4.6	10.2	16.6	0.45	0.0
Ighri/13B	0.4	2.6	9.9	13.2	0.26	1.8
Ait Sao./2V	0.0	5.2	8.4	8.8	0.66	0.0
Ait Sao./4V	0.0	0.4	12.1	21.1	0.05	0.0
Ait Sao./5V	0.0	1.8	13.0	17.2	0.10	0.0
Ait Sao./6V	0.0	3.6	8.9	8.3	0.40	0.0
Ait Sao./S3	0.0	6.2	10.0		0.63	0.0
•	0.0	4.4	9.2		0.46	0.0
Agdz/1BL	0.4	2.6	13.6		0.40	1.8
Ircheg/2R		4.2	11.8			0.0
Tamkas./3R	0.0		16.5			
Tinz./5R	0.0	7.4			0.44	0.0
Tinz./3V	0.0	6.2	12.3	8.1	0.51	0.0
Mean	0.22	3.66	13.5	14.3	0.30	0.97

²Characters loading negatively on PC3.

Appendix 10: Eigenvalues of the corrrelation matrix for the seven first PC's at Station #1.

PC axis	eigenvalue	difference	proportion	cumulative
PC1	8.435	2.343	0.324	0.324
PC2	6.083	2.515	0.234	0.558
PC3	3.567	1.245	0.137	0.695
PC4	2.323	0.577	0.089	0.785
PC5	1.746	0.220	0.067	0.852
PC6	1.526	0.676	0.059	0.910
PC7	0.845	0.300	0.033	0.943

Appendix 11: Eigenvalues of the corrrelation matrix for the seven first PC's at Station #2.


PC axis	eigenvalue	difference	proportion	cumulative
PC1	6.980	2.745	0.269	0.269
PC2	4.235	0.308	0.163	0.431
PC3	3.927	1.510	0.151	0.582
PC4	2.418	0.365	0.093	0.675
PC5	2.053	0.161	0.079	0.754
PC6	1.892	0.816	0.073	0.827
PC7	1.077	0.093	0.041	0.869

Appendix 12: Eigenvalues of the corrrelation matrix for the seven first PC's at Station #3.

PC axis	eigenvalue	difference	proportion	cumulative
PC1	8.649	2.309	0.254	0.254
PC2	6.340	2.323	0.187	0.441
PC3	4.017	0.835	0.118	0.559
PC4	3.182	0.515	0.094	0.653
PC5	2.667	0.784	0.078	0.731
PC6	1.883	0.588	0.055	0.786
PC7	1.296	0.034	0.038	0.825

Appendix 13: Almond nuts and kernels of 13 Moroccan selections.

GENERAL CONCLUSION:

Sour cherry <u>Prunus cerasus</u>, commonly known as a self-compatible <u>Prunus</u> species, exhibited gametophytic self-incompatibility by pollen tube growth inhibition in the style. Pollen tube growth and quantity of pollen tubes reaching the ovary suggested the presence of different levels of incompatibility reaction, thus indicating the existence of self-incompatible, partially self-incompatible, and self-compatible cultivars.

Self-incompatibility in Prunus dulcis resulted in the actual genetic variability that exists in different almond producing countries. However, the extensive use of few superior genotypes in breeding programs to improve almond production may reduce the available genetic diversity, and restrict future genetic gain. 'Nonpareil' and 'Mission' cultivars, representing respectively 65% and 25% of commercial almond cultivars in California, are still used extensively as gene sources in California breeding programs. Russian breeders use 'Nikitski 62' cultivar as the major genotype in their breeding programs. In Western Europe and North Africa, Italian cultivars 'Tuono' and 'Cristomorto', and French cultivars 'Ai' and 'Ferragnes' are being extensively used for almond cultivar improvement. This has resulted in increased inbreeding in almond cultivars, particularly in the United States, as well as in varying degrees of coancestry relationships among almond cultivars in the U.S, Russia, Israel, France and Spain. Germplasm exchange and the use of the same progenitors has led to coancestry relationships among U.S, Russian, and Israeli almond cultivars, and between French and Spanish cultivars.

In North Africa, and particularly in Morocco, almond breeding programs are at their beginning, and almonds are propagated mostly by seedlings, and grown under different environments. As a consequence, genetic diversity may be present and almond ecotypes may have developed. Morphological studies of selected clones of almonds from Southern Morocco and introduced cultivars revealed that Moroccan selections are characterized by small leaves, large fruit variability, and limited fruiting potential. However, some superior Moroccan genotypes were identified. Introduced cultivars had long and wide leaves, and good ratio of shoot growth: yield potential. Even though some Moroccan genotypes from the same area of origin clustered together, there was no evidence of separate ecotypes existing in southern Morocco. The morphological variation observed among genotypes indicates the existence of genetic potential for the development of breeding programs to improve almond production in Morocco.

MICHIGAN STATE UNIV. LIBRARIES
31293010373649