i

THESS

‘mmmmmem

This is to certify that the
dissertation entitled

An Investigation of Abstraction
in Events-Based Accounting Systems

presented by

Cheryl Lynn Dunn

has been accepted towards fulfillment
of the requirements for

PhD degreein Accounting

Wptlan S Me Gt

Major professor \J

Date March 25, 1994

MSU is an Affirmative Action/Equal Opportunity Institution 0-1271

LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES retum on or before date due.

DATE DUE DATE DUE DATE DUE

—|—[—
— | —[—

el el

MSU Is An Affirmative Action/E qual Opportunity Imtltdon

AN INVESTIGATION OF ABSTRACTION IN EVENTS-BASED
ACCOUNTING SYSTEMS

By

Cheryl Lynn Dunn

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Accounting

1994

ABSTRACT

AN INVESTIGATION OF ABSTRACTION IN EVENTS-BASED
ACCOUNTING SYSTEMS

By

Cheryl Lynn Dunn

Researchers have recently expounded the virtues of events-based accounting
systems. The most prominent criticism of events-based accounting systems is that they
provide more information than human users can handle, resulting in information
overload. The REA accounting model proposed by McCarthy (1982) suggests that the
inclusion of an abstraction hierarchy in the user interface of an events-based accounting
system will make the information load manageable. Abstraction is the suppression of
irrelevant details and the emphasis of details appropriate to a given decision. The
principle of abstraction has been highly touted in the computer science literature as a
means of controlling complexity.

Abstraction hierarchies decompose system models into multiple views with varying
levels of detail and are thus advocated for systems which have multiple users with varying
needs. The concepts of abstraction and abstraction hierarchies have been subject to little
empirical testing in the computer science literature. The only studies found examined
abstraction by comparing user performance with data models said to be more or less
abstract than one another. These studies found conflicting results. The current study
compares performance between two groups of users of an events-based accounting |
system: one with an abstraction hierarchy built into its user-interface and one without

the abstraction hierarchy in its user-interface.

Copyright by
CHERYL LYNN DUNN

1994

ACKNOWLEDGEMENTS

I would like to thank Matthew Anderson, William Punch III, and Jon Sticklen
for serving as committee members for this dissertation. Their comments and

assistance were invaluable to me.

Special thanks are due to William McCarthy for being the chairperson of this
committee. Bill’s expertise, guidance, and friendship were essential in enabling me

to see this project through to fruition.

I am also grateful to Deloitte & Touche and to the Department of Accounting

at Michigan State University for providing financial support for this dissertation.

The most heartfelt appreciation I feel is for my family: Jim and Jimmy Dunn.
Besides providing moral support, Jim took over almost all household chores in order
for me to devote maximum attention to this project. Jimmy was as patient and
understanding as any 2-3 year old could be, considering the number of times he
wanted Mommy to play and Mommy had to work. My parents, Bob and Issie Scott,
and my parents-in-law, James and Janet Dunn, also provided a great deal of moral

support throughout my doctoral program.

iv

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 - INTRODUCTION

CHAPTER 2 - THEORETICAL FOUNDATIONS: PRINCIPLE OF
ABSTRACTION AND NORMALIZATION THEORY

2.1 The Principle of Abstraction
2.1.1 Abstraction Hierarchies
2.1.2 REA in an Abstraction Hierarchy
2.1.3 An REA Abstraction Hierarchy Example
2.14 Aggregation/Decomposition
2.1.5 Generalization/Specialization
2.1.6 Classification/Instantiation
2.1.7 Abstraction Hierarchies Revisited

2.2 Normalization Theory and the Universal Relation Model
22.1 Rules of Normalization -- First Normal Formccceceeeees
222 Rules of Normalization -- Second Normal Form
223 Rules of Normalization -- Third Normal Formc.ccce...
224 Rules of Normalization -- Boyce-Codd Normal Form
22,5 Rules of Normalization -- Higher Normal Forms

CHAPTER 3 - CONSTRUCT AND HYPOTHESIS DEVELOPMENT
3.1 Financial Statement Preparation and Information Overload

3.2 Information Overload and Manageability

3.3 Proposed Means of Mitigating Information Overload

viii

24

27

27

28

CHAPTER 3 - CONSTRUCT AND HYPOTHESIS DEVELOPMENT (Continued)

3.4 Information Overload and User Performance 30
3.4.1 Ability and Knowledge as Determinants of Performance 30
3.4.2 Expected Effect of the Abstraction Hierarchy on Ability

and Knowledge 31

3.4.3 Environment as a Determinant of Performance 33

3.44 Motivation as a Determinant of Performance 34

3.5 Prior Studies of Database Query Performance 34
3.6 Conceptual Framework for Hypotheses 39
3.7 User Performance Measures and Hypothesis . 40
3.8 User Perception Measures and Hypothesis 41
CHAPTER 4 - METHODOLOGY 44
4.1 Research Framework 44
4.1.1 Project 1: Building the Interfaces 46

4.1.2 Project 2: Evaluating the Interfaces 46

4.2 Interface Software 47
4.3 Experimental Treatments v 47
43.1 Abstraction condition 47

43.2 Non-abstraction condition 56

43.3 Querying the database 58

4.4 Experimental Environment v 58
44,1 Task 58

442 Variables 64

4.4.3 SUDJECLS ..cceerececercrenennsnsanncssanssessssnsssassassssssssassssssssasssssssnsane 68

CHAPTER 5§ - STATISTICAL TESTS AND EXPERIMENTAL RESULTS. 71

5.1 Analysis of User Performance Hypothesisccccceveueercrnccsereecensaenes 71
5.2 Analysis of User Perception Hypothesis 79
5.3 Summary of Findings 83

CHAPTER 6 - DISCUSSION AND SUGGESTIONS FOR

FUTURE RESEARCH 86
6.1 Discussion of Results 86
6.2 Implications for Events-Based Accounting System Design 87

6.3 Implications for Events-Based Accounting System Instruction ... 87

6.4 Future Research Directions 88

6.4.1 Further Examination of System Characteristicsc.eeeess 88

6.4.2 Further Examination of Individual Differencesc...... 92

6.4.3 Further Examination of Task Characteristicsccceveeeens 94

6.4.4 Refinement of Task Completion Time Measurement 94

6.5 Summary 95
APPENDIX 1: EXPERIMENTAL INSTRUCTIONS 96
APPENDIX 2: EXPERIMENTAL QUESTIONNAIRE 98
LIST OF REFERENCES 101

vii

Table 5.1

Table 5.2

Table 5.3

Table 5.4
Table 5.5

Table 5.6

Table 5.7

LIST OF TABLES

Descriptive Statistics for User Performance Model

Tests of Homogeneity of Variance for User
Performance Model

Within-Cell (Covariate) Analysis for User
Performance Model

Main-Effect (Group) Analysis of User Performance Model ...

Descriptive Statistics for User Perception Model

Tests of Homogeneity of Variance for User
Perception Model

Significance Test Results for User Perception Model

viii

74

75
77

80

80

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 2.5

Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11

LIST OF FIGURES

Progressive Zooming

An Abstraction Hierarchy

An Abstraction Hierarchy (continued)

An Abstraction Hierarchy Summarizedo.cocosscnnnsnsccssccnsns

Example Universal Relation with Functional Dependencies
for Sale Order Event

Conceptual Framework of Jih et al. (1989)cccoevevvrcrcensssenes

IT Research Framework per March and Smith (1994)

Abstraction Interface Initial Screen

Abstraction Interface Cycle List Screen

Abstraction Interface Cycle Template Screencovceecccecnee.

Abstraction Interface E-R Diagram Screen

Abstraction Interface Relationship Schema Screen

Abstraction Interface Relationship Detail Screencccnueee.

Abstraction Interface Overall Schema Screen

Abstraction Interface Schema Detail Screen

Non-abstraction Interface Initial Screen

Non-abstraction Interface Table 1 Screen

11
13

15

20
39
45
48
49
50
51
52
53
54
55
56

57

Figure 4.12

Figure 4.13

Figure 4.14
Figure 5.1

Figure 5.2

LIST OF FIGURES (Continued)

Wilson Company Income Statement

Wilson Company Statement of Changes in
Retained Earnings

Wilson Company Balance Sheet

Summary of User Performance Results

Summary of User Perception Results

61

62

63

78

82

CHAPTER 1 - INTRODUCTION

The REA (Resources-Events-Agents) accounting model was proposed by
McCarthy (1982) as a new method for implementing accounting systems with
"events" orientations (Sorter 1969). The most prominent criticism of events
accounting systems is that information overload causes the benefit of
disaggregated information to be outweighed by the cost of additional cognitive
processing which is necessary (Davidson and Trueblood 1961, Revsine 1970).
Several empirical studies have compared user performance with aggregated versus
disaggregated data. Each study yielded results which support this criticism (e.g.
Chervany and Dickson 1974; Benbasat and Dexter 1979; Casey 1980; Otley and
Dias 1982). No empirical refutation of this criticism has been published in the
accounting literature.

The REA solution for information overload in an events-based accounting
systems implementation is abstraction. Abstraction is the suppression of detail
that is irrelevant for a given decision. Abstraction has been proposed as a means
for controlling complexity in the fields of computer science and cognitive
psychology. McCarthy (1982, 1987) has proposed applications of abstraction to
various elements of the REA model. These applications promote a user
orientation because they can be used to select various levels of detail of a
company’s financial database for further examination. By allowing selective
suppression of detail, the use of abstraction is consistent with FASB Concept

Statements 1 and 6 (FASB 1989). These concept statements attempt to provide

2

guidelines which will result in provision of information useful to present and
potential investors and creditors and to other users at a reasonable cost. The
Board considers it a dilemma that "the optimal information for one user will not
be optimal for another" (FASB 1989, 5199). It has sought means for allowing
users to select only the information that is relevant for given decisions. The REA
model’s recommended use of abstraction provides a possible solution because it
permits users to look at an overall schema of the available pieces of information
and to then select only the pieces deemed useful for further examination.

The research question addressed in this study is whether the inclusion of
abstraction in an interface to a financial database enhances user performance by
mitigating data overload. This question is addressed by first building two
interfaces to a database of financial information, one with abstraction and one
without. User performance with the two systems is then compared. Results have
implications for systems researchers and designers who are interested in
determining how best to implement events-based accounting systems and also for
systems instructors who are interested in determining how best to teach events-
based accounting systems. This project also contributes to the investigation of the
feasibility of database financial reporting, a goal which is consistent with a
proposition by the University of Southern California Financial Accounting Study
Group (1991, 11):

Research and field tests should be undertaken to determine the

feasibility of developing databases and systems to permit users to

obtain the information they perceive necessary to meet their
decision needs in whatever format they may desire, with the

3

expectation that such information would be subjected to the attest

process.

The remainder of this dissertation is organized as follows: Chapter Two
discusses the theoretical foundations for the experimental interfaces: the principle
of abstraction for the abstraction interface and the theory of normalization for the
non-abstraction interface. Chapter Three discusses construct development and
presents hypotheses arising from these discussions. Chapter Four describes the
methodology used to test the hypotheses. Chapter Five discusses statistical tests
and presents the results of the experiment. Concluding comments and suggestions

for future research are offered in the final chapter.!

End Notes:

1. This paper assumes some knowledge of technical terminology as it is used
in the events-based accounting and in the database literature. The reader
who is unfamiliar with such terminology is directed to McCarthy (1987) or
to Date (1986).

CHAPTER 2 - THEORETICAL FOUNDATIONS: PRINCIPLE OF
ABSTRACTION AND NORMALIZATION THEORY
2.1 THE PRINCIPLE OF ABSTRACTION

Brodie (1981) claims "The principle of abstraction is to suppress irrelevant
details of an object under consideration and to emphasize details appropriate to
the current context" (p. 102)." This is a commonly accepted definition of
abstraction as it is used in computer science. Three types of abstraction are most
widely used in computer science. These include (types along with their inverses):
(1) aggregation (decomposition), (2) generalization (specialization), and (3)
classification (instantiation). These were proposed by Smith and Smith (1977,
1978) and further developed by Brodie (1981, 1984) and by Brodie and Ridjanovic
(1984). As of the present, these three types of abstraction seem to form the
standard in the database literature (Batini, Ceri and Navathe 1992).

Aggregation is a concept which implies a relationship between objects (e.g.
bride, groom, priest) connoting a higher level object or concept (e.g. marriage)
(Smith and Smith 1977). This allows suppression of detail in that many
component object details can be ignored, and focus may be placed on details
which apply to the overall relationship. Generalization is a process in which a set
of similar objects (e.g. cow, horse) is considered to be a generic object (e.g.
animal) (Smith and Smith 1977). Any individual differences between objects (e.g.
gives milk, has mane) may be ignored, and emphasis is placed on those attributes
common to all (e.g. breathes). Classification is an abstraction mechanism in

which instances of an object class (e.g. Clint Eastwood, Charles Bronson) are

6

categorized (e.g. movie star). As with generalization, any individual differences
between the instances may be ignored in such an abstraction. These three types

of abstraction will be discussed in more detail shortly.

2.1.1 Abstraction Hierarchies

The current study will investigate the use of an "abstraction hierarchy" as
advocated by Smith and Smith (1977, 1978). An abstraction of a system is a
model of that system that deliberately omits certain details. A single abstraction
consists of one view of data resulting from the application of one or more of the
three abstraction methods. An abstraction hierarchy decomposes the model into
multiple views at varying levels of detail. Smith and Smith suggest two
disadvantages of single abstractions which can be alleviated by the use of
abstraction hierarchies. First, decomposition of a single abstraction into a
hierarchy may be necessary to make a system with many relevant details
intellectually manageable.

For example, a telephone directory for a company consisting of employee
name, position, department and telephone number (in alphabetical order by
employee name) contains many relevant details. Depending on the information
needed, it may not be intellectually manageable. If a user wanted to contact the
Personnel Director, but did not know that person by name, it would be quite a
task to find it. If abstraction methods are used to group employee names and
phone numbers according to their departments and positions, the information

would become more intellectually manageable.

7

Second, an abstraction hierarchy permits sharing of a single model by
several diverse users without compromising their access requirements. A single
abstraction omits details as dictated by the expected users and by the intended
application of the abstraction. That particular view may not be useful for other
applications or for other users. For example, consider a person with complex cash
flow management responsibilities. This user would need very detailed cash receipt
information, including trend analysis of which day(s) of the week cash is most
likely to come in, etc.

Contrast such information needs with those of a user who simply needs to
know overall accounts receivable information. If a single abstraction is provided
which contains the detailed information needed by the cash flow manager, the
accounts receivable user is likely to be lost in the detail. If a single abstraction
which contains total cash receipts categorized by type (e.g. sales, stock issuances,
loan proceeds, etc.), the accounts receivable user will be satisfied, but the cash
flow manager will not have enough detail. An abstraction hierarchy would allow
the user to select a presentation of the cash receipt information congruent with
the level of detail needed.

The use of abstraction hierarchies suggested by Smith and Smith is
consistent with the concept of recursive decomposition which Palmer and Kimchi
(1986) claim is central to information processing theories. They discuss this
concept, as it applies to aggregation, as follows:

Any complex (non-primitive) informational event at one level of

description can be specified more fully at a lower level by
decomposing it into (1) a number of components, each of which is

8

itself an informational event, and (2) the temporal ordering relations

among them that specify how the information "flows" through the

system of components (p. 47).
Palmer and Kimchi claim the rationale for using recursive decomposition is to
reduce complexity. They note that (at least in principle) the decomposition should
"factor out" some portion of the complexity implicit in a unitary information event
by making it explicit in the flow relations among a number of simpler events.
They note that as a user moves down a decomposition tree, the internal
complexity of the component operation should decrease, warning that this

reduction comes at the cost of more components and more complex flow relations

among them.

2.1.2 REA in an Abstraction Hierarchy

The abstraction hierarchy which is included in the interface tested in this
study is based on the REA applications of abstraction proposed by McCarthy
(1982, 1987) and further developed by Gal and McCarthy (1992). When used in
an interface to an events-based database, an abstraction hierarchy allows a user to
first examine an overall picture of a company and then to select an area of the
firm on which to "zoom in." From an overall picture of that area, the user can
zoom in further to examine sub-areas, then specific data types, and finally data
instances. The concept of progressive "zooming" is presented clearly in Figure 2.1,
which is taken from Davis and Olson (1985, 550) and in turn from Herot, Carling,

Friedell, Kramlich, and Rosenberg (1981).

Illustration of progressive "zooming" through a spatial data management system.
[Figure 17-10 from Davis and Olson (1985) and Figure 2.2 from Herot et al.
(1981)]

FIGURE 2.1: PROGRESSIVE ZOOMING

As this example illustrates, the user is first presented with an overall map of the
United States, on which low level details are omitted (i.e. with only major
interstate highways and names of major cities included). The user can select a
portion of the United States (e.g. a state) to see more detail. The user would be
presented with a map of that state, with not only major interstate highways and

large cities, but also intrastate highways, main roads, and names of all cities. The

10

user can then focus on a part of that state, for example a city. The user would
zoom in to bring up a city map, with all streets identified, and any other low-level

details that expected users of the map may need.

2.1.3 An REA Abstraction Hierarchy Example

To make the three abstraction techniques as applied to REA more clearly
understood, a series of conceptual models is provided as an example.? The first
model presented (Figure 2.2a) is a natural language description of the economic
philosophy of business enterprises. The second (2.2b) depicts an accounting cycle
template (pattern or guide) which is an overall picture of the inherent duality of
economic transactions of business enterprises (Dunn and McCarthy 1992). A
company will transfer economic resources to outside agents with the optimistic
expectation that these transfers-out will eventually result in transfers-in of more
valuable economic resources.

Figure 2.2(c) expands the overall accounting template into a more detailed
diagram. Some of the various cycles which are typically found in manufacturing
companies are presented. The user can get a quick overall picture of the firm
from this diagram without needing to see detailed information about every
transaction. The user can choose a cycle to focus on (for example the conversion
cycle). Figure 2.2(d) presents an entity-relationship® (E-R) diagram which
partially represents the conversion cycle. With E-R modeling, entities are
portrayed as boxes, and the relationships between entities are represented by

diamonds. Typically only two boxes are present in an overall diagram of a given

11

(a)

An Enterprise has various give and take cycles which lead to long-term profitable (unprofitable) behavior.

(®)

Economic Economic

Resource = | TRANSFER TRANSFER
Outside Agont | OUT ‘ IN' | Outside Agent

t
D
T

(c) Revenue Cyde
(@
Cash (1) WIP (1)
Employee (2) ___ | Cash Job | Employee
m@m ®
Cashier (3) Department (3)
Economic resource
Outside
gy

FIGURE 2.2: AN ABSTRACTION HIERARCHY
[adapted from Gal and McCarthy (1992)]

12

cycle. One represents the transferring in of a resource, the other a transferring
out, consistent with the overall diagram in Figure 2.2(b).

The model in Figure 2.2(d) consists of two entities: Job Operations (the
transferring in of a resource) and Cash Disbursements (the transferring out of a
resource). These are two parts of a company’s conversion cycle (Raw Material
Issues and Transfers of WIP to Finished Goods would be two additional parts
which could be modeled separately). The diagram in 2.2(d) does not provide
much detail; it portrays the company’s job operations portion of the conversion
cycle at a very high level of abstraction (low level detail is suppressed). A user
can, however, "zoom in" on this cycle and get a more detailed picture.

Figure 2.3(a) shows a more detailed, partial E-R diagram of the job
operations portion of the firm’s conversion cycle. The notations of "1" or "n" on
the lines connecting entities indicate the cardinality of the relationship between
those entities. The cardinality of a relationship refers to the maximum number of
objects of one entity set that can be related to another set, and vice versa. For
each mapping of a relation we can specify cardinalities for both directions. For
example, the "1" by WIP Job and the "n" by Job Operation indicate that for this
company, one WIP Job can have more than one job operation, but any job
operation can belong to only one WIP Job. It is also possible to model "many-to-
many" or "one-to-one" relationships in an E-R diagram. For example, many-to-
many relationships are portrayed with an "m" on one side of the diamond and an
"n" on the other. Such a relationship is depicted in Figure 2.3(a) between

Department and Employee. This relationship indicates that for this company, a

13

(a)

INVENTORY] A ERATION
TYPE
Is-a 1
n
1 N o8
WIPJ0B |— >——{oPERATION
n
1
EMPLOYEE “__<>_m DEPARTMENT
()
INVENTORY WIP JoB
Inventory
Number | Description | Cjoantty on Job Number | Total Cost
EMPLOYEE EMPLOYEE - DEPARTMENT
Employee | Employee Employee Employee | Department
SSN Name Wage Rate SSN Code
DEPARTMENT JOB OPERATION TYPE
Department | Department |[Employee Oper |Standard
Code Name SSN %;:e Time
JOB OPERATION
Job Thmeoard| Actualdob | Job Oper | CRRYSS | job Number
©
EMPLOYEE
Employee Wa
Employee SSN Employee Name | Rate %
001-01-0001 Joe $8.72
002-02-0002 Dan $6.80
003-03-0003 Bob $6.13

FIGURE 2.3: AN ABSTRACTION HIERARCHY (continued)

14

department can have more than one employee, and that an employee may be
assigned to more than one department. The "is-a" relationship included in this
diagram represents a generalization and will be discussed directly in the
Generalization/Specialization subsection.

Although the picture in Figure 2.3(a) portrays the major objects in this
cycle (entities and the relationships between them) it does not include lower level
details about the attributes of these entities and relationships. The user can
progress down yet another level to examine the relational tables for any of the
objects in this diagram. Figure 2.3(b) illustrates example table headings. Such a
view informs users of which attributes of the entities and relationships are
included in the database. A user can then select specific tables for detailed
examination. For example, if the user is interested in the employees of the firm,
looking at Figure 2.3(b) may reveal that all of the relevant attributes are
represented in the Employee table. The user can then zoom down as in Figure
2.3(c) and look at the specific Employee instances to obtain the desired
information.

The reader should now have a general idea of what the individual levels
within an REA model abstraction hierarchy might look like. The levels used in
Figures 2.2, 2.3 and 2.4 are theoretically based on the ordering of the abstractions
used by McCarthy (1982, 1987) and by Gal and McCarthy (1992). Figure 2.4
presents a picture of the overall hierarchy, and is discussed further in the
Abstraction Hierarchies subsection. Following is a more detailed discussion of the

various types of abstraction, and of how they are represented in this hierarchy.

15

FIGURE 2.4: AN ABSTRACTION HIERARCHY SUMMARIZED

16
2.1.4 Aggregation/Decomposition:

Aggregation is the clustering of different items to form an aggregate entity.
This is a type-to-type relationship in that it deals only with the object types (table
intension in a relational model), and not with the instances (table extension).
Aggregation is used as an abstraction technique in this conceptual model in two
ways. First, the entities are aggregations of different attributes. For example, the
two attributes Job # and Total-Cost are aggregated to form the entity WIP Job
(see Figure 3b). Or inversely, the entity WIP Job can be decomposed into the
attributes Job# and Total-Cost.v The aggregation relationship is often described as
"is-part-of." For example, Job # is part of WIP Job, and Total-Cost is part of WIP
Job. A higher level of aggregation is also included in this model, in that entities
may be aggregated to form relationships. For instance, the two different entities
WIP Job and Job Operation are aggregated to form a relationship containing the
attributes Job # and Job-Time-Card. Or inversely, the relationship of WIP Job to

Job Operation can be decomposed into the two separate entities.

2.1.5 Generalization/Specialization:

Another type-to-type relationship that can be specified in a conceptual
model is that of generalization. Generalization clusters related items to form a
generic entity. This type of relationship is often discussed in terms of subtypes
and supertypes. For example, "hammer," "screwdriver," and "wrench" could be
considered subtypes of the supertype "tools." "Tools" is a generalization of those

three subtypes. The presence of generalization as an abstraction technique is

17
usually indicated by an "Is-A" relationship in the model (as in Figure 2.3a). In this

example, WIP Job is a type of Inventory. Other types of inventory would be Raw
Materials (RM) and Finished Goods (FG). These are related items. Thus
Inventory is a generalization of RM, FG and WIP Job, and RM, FG and WIP Job

are specializations of Inventory.

2.1.6 Classification/Instantiation:

Classification is a simple form of data abstraction in which a set of
instances is grouped into a single class. It represents a type-instance relationship
(a relationship between an object type and the specific instances of that object),
thus it represents a lower level of abstraction than do aggregation and
generalization. That is, lower level details are highlighted, and higher level parts
of the model are suppressed. Figure 2.3(c) zooms in further on the conversion
cycle example, to reveal the actual instances of the entity Employee. Joe, Dan and
Bob are all instances of the Employee entity. Inversely, Joe, Dan and Bob all

could be classified as employees.

2.1.7 Abstraction Hierarchies Revisited:

Abstraction hierarchies consist of multiple single abstractions which are
connected to each other by one of the abstraction techniques. Figure 2.4 shows
the entire abstraction hierarchy which represents Figures 2.2(a-d) and 2.3(a-c).
Figure 2.2(b) is simply a data model representation of the natural language found
in 2.2(a). Figures 2.2(b) and 2(c) are related by generalization (the conversion

cycle is a general economic cycle, the acquisition cycle is a general economic

18
cycle, etc). Figures 2.2(c) and 2.2(d), and Figures 2.2(d) and 2.3(a) are related by

aggregation/decomposition. Cash, Employee, Inventory, etc are all components of
the job operations portion of the conversion cycle. The relationships between
those various entities are also components of the partial conversion cycle. Figure
2.3(b) is a relational representation (a decomposition) of the E-R diagram found
in 2.3(a). Figures 2.3(b) and 2.3(c) are related by classification/instantiation. Joe,
Dan, and Bob are instances of the entity Employee.

The order of the abstractions used in this abstraction hierarchy is the same
as those used in the REA literature (McCarthy 1982, 1987; Gal and McCarthy
1992). Application of the abstraction mechanisms in various orders is certainly
possible. However, there is no theoretical foundation for alternative orderings, as
there is for the order suggested by the REA model. The abstraction hierarchy

interface used in this experiment thus represents the REA model.

2.2 NORMALIZATION THEORY AND THE UNIVERSAL RELATION MODEL
Normalization theory was introduced to database design as a means of

controlling integrity maintenance problems such as insertion, deletion, and update
anomalies. These problems cause inconsistency (e.g. requiring the same changes
to be applied to multiple data instances) or accidental loss of data. Normalization
is driven by functional dependencies (Date 1986; Loomis 1987; Batini et al. 1992).
A functional dependency exists between two single-valued attributes if each value
of attribute 1 (a,) corresponds to exactly one value of attribute 2 (a,). In a well-

normalized database, the only theoretically desirable functional dependencies are

19

between the key(s) of an entity and each of the other attributes of that entity.
The process of normalization is a set of rules for systematic detection and
elimination of undesired functional dependencies. Each rule which is successfully
applied results in a particular "form" of normalization, e.g. First Normal Form
(INF), Second Normal Form (2NF), Third Normal Form (3NF), etc.

The universal relation is often discussed in conjunction with normalization.
This model suggests that it is possible to define an initial universal relation,
involving all attributes relevant to a database under consideration. A
decomposition algorithm can then be applied to create a well-normalized structure
for that database (Kent 1981, 1983; Ullman 1983). A database created by such an
algorithm would be identical to one created by conceptual modeling, with the
exception that the tables would not be given semantic names. Thus the tables
would be called something like R1, R2, R3, etc.

An example of a dependency diagram for a universal relation is presented
in Figure 2.5. This figure contains the attributes associated with an example sale
order file.* The functional dependencies between the attributes are represented
by the arrows in the diagram. The attribute at the flat end of each arrow
determines the attribute toward which it is pointing. For example, Customer
Number determines Customer Credit Rating. Alternatively this can be read as

Customer Credit Rating is functionally dependent on Customer Number.

20

I
{

FIGURE 2.5: EXAMPLE UNIVERSAL RELATION WITH FUNCTIONAL
DEPENDENCIES FOR SALE ORDER EVENT

A database table representing this universal relation (with the primary key

double underlined) would be structured as follows:

R1: [Sale_order time, Sale_order_number, Ci _order_numb,
Customer_ship-to_street, Customer slup-m cu'y, Customer number

Customer_last_name, Ci -_first_name, C -_credit_rating,
Customer_street_address, Customer. cit_y address, {Sale order_quantity,
Inventory_stock_number, ry_), ry_unit_price,

lnmmry quantity_on_hand, Iuvemory cnrrymg cost,
ry_item_cost, I y_! _cost}]

21
The attributes from Sale_order_quantity through Inventory_replacement_cost are

enclosed in {}’s to indicate that there can be more than one inventory item
included on a sale order, with different quantities for each item This notation is
consistent with the definition conventions of DeMarco (1979, 133) who defines {}
as "ITERATIONS OF the component enclosed."

Examination of this database table reveals several maintenance anomalies
that would exist. An insertion anomaly would be present, because one would not
be able to add a customer unless a sale order had been received from that
customer. Thus it would be impossible to add prospective customers. A deletion
anomaly would occur in that if the last sale order for a customer® was deleted all
information about that customer would also be removed. An update anomaly
would also exist. For example, if the inventory carrying cost of an item changed,
the change would have to be made to multiple instances in the database (i.e. to

every instance of sale order that included the associated inventory item).

2.2.1 Rules of Normalization -- First Normal Form:

Several rules of normalization can be applied to this relation in order to
convert it into a well-normalized structure which climinates. these anomalies. A
relation is in first normal form if, and only if, every attribute in every row can
contain only a single value (Date 1986; Loomis 1987). Thus, repeating groups
must be removed from the relation. The attributes in the sale order relation
which were included inside the {}’s make up a repeating group. The key attribute

Sale_order time could correspond to multiple values of Inventory_stock_number

22
since a sale order can be for more than one kind of inventory. To convert this
relation to first normal form, the table must be flattened. One way to achieve this
is to decompose the universal relation into multiple relations, propagating the
original key down to form a composite key for the repeating group (Howe 1983).
In the example discussed earlier, the repeating group could be broken out as a
separate relation, with the original key order propagated down to form a
composite key with Inventory stock_number for R2. The resulting INF relations
are as follows:

R1: [Sale_order_time, Sale_order_number, Customer_order_number,

Customer_ship-to_street, Customer_ship-to_city, Customer_number,

Customer_last_name, Customer_first_name, Customer_credit_rating,

Customer_street_address, Customer_city_address)

R2: [Sale_order_time, Inventory stock number, Sale_order_quantity,

Inventory_description, Inventory_unit_price,

Inventory_quantity_on_hand, Inventory_carrying_cost,

Inventory_item_cost, Inventory_replacement_cost|
2.2.2 Rules of Normalization -- Second Normal Form:

Second normal form calls for the elimination of non-prime (partial)
functional dependencies (that is, if an attribute depends on only part of the
primary key of the relation). A non-prime functional dependency can only exist if
the primary key (identifier) of a relation is composite. R1 is in 2NF since it has
only a single key. R2 has partial functional dependencies. The attributes
Inventory_description, Inventory_unit_price, Inventory_quantity_on_hand,
Inventory_carrying_cost, Inventory_item_cost, and Inventory_replacement_cost all are

dependent only on the Inventory stock_number portion of the composite key. This

23

problem can be remedied by replacing the composite key in R2 with
Inventory stock number and breaking out an additional relation (R3) with the
composite key and any attributes that are dependent on both parts. In this
example, only Sale_order_quantity depends on both Sale_order time and on
Inventory stock number. The revised relations in 2NF are as follows:
R1: [Sale_order_time, Sale_order_number, Customer_order_number,
Customer_ship-to_street, Customer_ship-to_city, Customer_number,
Customer_last_name, Customer_first_name, Customer_credit_rating,
Customer_street_address, Customer_city_address)
R2: [Inventory stock_number, Inventory_description,
Inventory_unit_price, Inventory_quantity on_hand,

Inventory_carrying_cost, Inventory_item_cost,
Inventory_replacement_cost]

R3: [Sale_order_time, Inventory stock number, Sale_order_quantity)

2.2.3 Rules of Normalization -- Third Normal Form:

Third normal form calls for the elimination of transitive functional
dependencies. That is, no non-key attribute can be dependent on another non-key
attribute. In the sale order event example, there is a transitive functional
dependence. The non-key attributes Customer_last_name, Customer_first_name,
Customer_credit_rating, Customer_city_address, and Customer_street_address, are
dependent on the non-key attribute Customer_number’. Since Customer_number is
dependent on Sale_order_time, there is a transitive dependency. This can be
removed by further decomposing R1. The relations in third normal form are
presented as follows:

R1: [Sale_order time, Sale_order_number, Customer_order_number,
Customer_ship-to_street, Customer_ship-to_city, Customer_number]

24
R2: (Inventory stock number, Inventory_description,
Inventory_unit_price, Inventory_quantity_on_hand,
Inventory_carrying_cost, Inventory_item_cost,
Inventory_replacement_cost]

R3: [Sale_order_time, Inventory stock number, Sale_order_quantity)

R4: [Customer_number, Customer_last_name, Customer_first_name,

Customer_credit_rating, Customer_street_address,

Customer _city_address)

2.2.4 Rules of Normalization -- Boyce-Codd Normal Form:

A stronger version of 3NF is Boyce-Codd Normal Form (BCNF), which
accomplishes the same objectives as 3NF with only one rule. A relation is BCNF
if, and only if, every determinant is a candidate key (Date 1986; Loomis 1987). A
candidate key is an attribute which has a unique value for each relation instance,
but has not been identified as the primary key. Thus it is one which could be used
as the primary key, but hasn’t been declared as such. The attribute
Sale_order_number is a candidate key. Relations R1 through R4 meet the criteria
of BCNF.

2.2.5 Rules of Normalization -- Higher Normal Forms:

Higher forms of normalization have been discussed in the database design
literature, such as Fourth and Fifth Normal Forms (4NF and 5NF), both of which
were created to handle very rare occurrences in database tables. 4NF eliminates
all multi-valued dependencies that are not also functional dependencies. A

relation is SNF if it cannot be split into smaller relations and then rejoined

25

without changing its facts and meaning. In practice, 4NF and SNF rules are rarely
applied; therefore they are not discussed in detail in this project.

The tables created by starting with a universal relation and decomposing it
according to normalization theory coincide with the tables created by the use of
conceptual modeling with the exception that the decomposition tables would not
be assigned semantic names. The decomposition algorithm may be applied to the
universal relation by a database designer. Alternatively, the algorithm may be
employed by a computer which is furnished with the attributes and functional
dependencies which make up the universal relation. Either way, the tables that
result from the decomposition approach are often used in practice. The interface
to such a database typically will either allow users to enter a table name in order
to view it, or it will allow them to scroll through the tables one at a time. The

non-abstraction interface used in this experiment represents such a system.

26

End Notes:

1.

The determination of which details are irrelevant or appropriate to a given
context is made by the individual who applies the abstraction.

For simplicity sake, the REA abstraction hierarchies used in this
explanation and in the actual study have been modified from the
theoretical norms originally specified in McCarthy (1982, 564). On pages
570-575, he suggests alterations to full REA specification to accommodate
current GAAP practice. These include items such as combination of
entities and treatment of claims as base objects that have been
incorporated here. For further detail on the use of such procedures, see
Geerts and McCarthy (1992).

Entities are defined as classes of objects or events (either real or
conceptual). Relationships represent associations between two or more
entities.

Such anomalies are problems which result when adding data to, removing
data from, or updating existing data in a database. Specific examples of
each type of anomaly are discussed later in this section.

The database designer would obtain the set of attributes which are to be
included in the database, along with their functional dependencies, during
the requirements analysis phase of database design. There is no "correct"
set of attributes -- the decision of which attributes to include depends on
the information needs of the intended users.

Such a deletion may occur as a result of a practice companies may use to
reduce the storage requirements of their database. For example, a
company may decide to keep sale order detail for only six months. After
that time, the amounts are rolled into a summary table, and the detail
erased.

Note that Customer_ship-to_street, Customer_ship-to_city, and
Customer_order_number are related to the entity "Customer”, but they can
vary from one sale order to another. That is, a customer can order
something and have it sent to an address other than his or her own
address. Thus, those three attributes are not functionally dependent on

Customer_number, but instead are determined by Sale_order time.

CHAPTER 3 - CONSTRUCT AND HYPOTHESIS DEVELOPMENT

The question researched in this study is whether the use of an abstraction
hierarchy in an interface to an events-based accounting system will enhance user
performance in preparing financial statements from an events-based accounting
database. Use of such a system is compared to that of an events-based accounting
system without an abstraction hierarchy in its interface. Comparisons of both user

performance and user perceptions are made.

3.1 Financial Statement Preparation and Information Overload

Financial statement preparation was chosen as the task of interest in this
study because this task represents a recurring theme in events accounting research.
The events-accounting literature began with Sorter’s (1969) discussion of how
financial statements may be appropriately prepared and presented using an events
approach. Financial reporting has continued to be the focus of many events
accounting and database accounting papers (e.g. Beaver and Rappaport 1984;
Abramson 1986; Cushing 1989). The feasibility of providing an interface to a
financial reporting database that is manageable for external users is among the
issues discussed in these studies. Revsine’s (1970) criticism of data expansion
approaches (such as the REA model) is made with regard to the provision of data
to external users. He agrees that expanding the range of data provided could help
to overcome the many limitations of traditional financial statements without
requiring detailed knowledge of user decision models. However, he contends that

such an approach ignores the user processing constraint of finite channel capacity

27

28

and warns that information overload (implicitly defined as information provided in

excess of that which users can manage) would likely resuit.

3.2 Information Overload and Manageability

Information overload is defined by Casey (1980) as: "a decline in user
performance due to the assimilation of additional information" (pp. 36-37).
Information overload occurs because of the limited ability of humans to absorb
and process information. Simon (1990) claims that human attention, not
information, is the scarce resource which puts a tight constraint on how much
information can be input. The construct of manageability appears to be very
closely related to overload. For instance, Snowball and Brown (1979) note that
aggregation or condensation of data is performed "to reduce decision inputs to
manageable proportions" (p. 527, italics added). Schick, Gordon and Haka (1990)
define information overload in terms of time rather than user performance. Still,
they note that "the occurrence of information overload would signify problems in
organizing (i.c. problems in the management of time)" (p. 33, italics added). Like
information overload, manageability is indicated by user performance. The
American Heritage Dictionary definition of manageability includes the ability "to
direct or control the use of; handle, wield, or use", and also the ability "to succeed

in doing or accomplishing something, especially with difficulty."

3.3 Proposed Means of Mitigating Information Overload
Ogden (1991) claims that there’s no such thing as information overload; the

user just has to have ways of organizing the data so that it is manageable. Some

29

researchers claim that filtration and condensation mechanisms enable users to
access a larger base of information while limiting the amount the user must
actually assimilate (Ackoff 1967; Morris, Kasper and Adams 1992). An
abstraction hierarchy filters and condenses data via the abstraction mechanisms.
Filtration occurs in that the user can choose from a high level of the hierarchy (an
overall picture in which low level detail is suppressed) specific items for which
more detail is required. The low level detail for irrelevant items can be ignored
entirely (thus accomplishing filtration). Condensation is incorporated in the
abstraction hierarchy since each level is a condensation of the level below it.
These filtering and condensing features may provide the organization suggested by
Ogden to make large data loads manageable.

Conversely, over-filtration or over-condensation can pose problems in
accessing the needed information (Rappaport 1968; Chervany and Dickson 1974).
A well-normalized database created through decomposition may not need any
further filtration or condensation. As mentioned, the end-result of decomposition
via normalization rules resembles commercial entity-oriented databases. If such a
system provides adequate filtering and condensing, then addition of an abstraction
hierarchy may result in over-filtration or over-condensation, thus leading to
reduced manageability. The following section discusses benefits expected from the
abstraction hierarchy which suggest that manageability (and performance) should

be enhanced rather than reduced.

30

3.4 Information Overload and User Performance

This study examines information overload from a user performance
perspective. Libby and Luft (1993) identify determinants of decision performance
using a relation from Einhorn and Hogarth (1980) and Libby (1983):

Performance = f(Ability, Knowledge, Environment, Motivation) €))
Ability is defined' as the capacity to complete information encoding, retrieval,
and analysis tasks. Knowledge is described as highly task-specific. Libby and Luft
(1993) note that both the content and the organization of knowledge can be
changed by learning opportunities and that both can independently affect
judgment performance. Environment includes such features as judgment
guidance, technological aid, and substantial monetary incentives for good
performance. Motivation is determined jointly by environmental features such as
monetary incentives and by individual characteristics such as utility functions and

abilities.

3.4.1 Ability and Knowledge as Determinants of Performance

The preparation of financial statements from a relational database of a
particular company involves several cognitive abilities and types of knowledge.
The overall activity can be broken down into several subtasks.? One subtask is
recall® of potential elements of financial statements and of the types of events
comprising those elements. The user must also recall the format of the various
financial statements. This subtask requires accounting domain knowledge.

Another subtask is navigation of the database. This requires data modeling

31

domain knowledge. Recognition* of potential elements present in a particular
company in searching its database is a subtask which requires accounting domain
knowledge. Extraction of database information needed to compute a financial
statement line item is a subtask which requires both accounting domain knowledge
and data modeling domain knowledge. The user must have some knowledge of
how relational database tables are structured in order to understand how to
navigate through them and extract information from them. Accounting domain
knowledge is required for understanding which information to extract, and for
understanding which arithmetic or other operations must be performed to derive
the financial statement elements.

The information extraction process will differ for various financial
statement line items. Some will involve retrieval of numeric values from a single
table and application of summation. Other elements require retrieval of data
from multiple tables, matching on a common factor, and application of various
arithmetic operations. For example, to compute Accounts Payable for a given
company, a user must determine acquisition amounts for all items acquired on
credit (such as Inventory, General and Administrative Services, and Fixed Assets.)
Cash Disbursement amounts corresponding to those acquisitions must then be

retrieved and subtracted from the acquisition amounts.

3.4.2 Expected Effect of the Abstraction Hierarchy on Ability and Knowledge
The abstraction hierarchy interface is believed to aid users in performing

several of the identified subtasks. The views of a company presented at varying

32

levels of detail are intended to aid the user in understanding the company’s
operations and in determining which financial statement elements are likely to be
present. The hierarchy is also expected to facilitate search for particular tables
which are needed to compute a financial statement line item. By identifying
which transaction cycle would contain the needed table(s), the search space is
reduced by as much as 80%. Examination of the cycle diagrams and table
intensions should lead the user directly to the table(s) of interest and assist the
user in matching related tables.

The abstraction hierarchy interface is expected to substitute for some of the
task-specific domain knowledge. Navigation and extraction without the
abstraction hierarchy require extensive use of database domain knowledge.
Relational tables are structured so that relationships between entities are
identified via matching keys of two or more tables. The user must apply
knowledge of data modeling to determine what relationships are present. The
abstraction hierarchy user need not recall data modeling knowledge from memory
because the relationships are portrayed directly in the interface. The reduction in
the amount of necessary recall for users of the abstraction hierarchy interface is
expected to enhance performance both in terms of shorter completion time and in
terms of greater accuracy.

The abstraction hierarchy also reduces the need for recall of financial
statement elements from memory. Since users of the hierarchy interface are
presented with adequate opportunities to recognize applicable financial statement

elements, there would be little need to recall potential elements from memory.

33

Without the abstraction hierarchy this recall is essential in order to direct the

search.

3.4.3 Environment as a Determinant of Performance

The interfaces in this study can be classified as technological aids and thus
fall under the environment variable described by Libby and Luft (1993). The
expected effects of the two interfaces (abstraction hierarchy versus normalization)
on ability, knowledge, and motivation help to develop predictions about
performance. As discussed in the previous subsection, the abstraction hierarchy
interface is expected to interact with knowledge and abilities by reducing the
amount of recall users must employ. Prior research has shown that recall requires
more cognitive effort than does recognition (Libby and Lipe 1992). The
normalization interface requires considerable recall. This is predicted to cause
declines in performance, both in terms of time and in terms of accuracy. The
time is expected to lengthen because of the increased effort. Accuracy is expected
to decrease because people may recall items incorrectly or they may not recall
some pieces of knowledge that are necessary.

No other environmental variables are present in this study with which the
two technological interfaces are expected to interact. Possible environmental
variables mentioned by Libby and Luft (1993) as being typical of accounting
settings include hierarchical group and accountability relationships (as are often

present in audit teams). Neither of these factors is present in this study, and there

34

appear to be no other environmental characteristics expected to vary between

subjects in the two conditions.

3.4.4 Motivation as a Determinant of Performance

No motivation variables are expected to have a direct effect in this study.
All subjects will be offered the same incentive to perform well: to achieve a
desired grade. Although different students may aspire to different grades, there is
no reason to expect the average desired grade to differ between groups. Some
interaction may exist between motivation and the knowledge and ability variables.
To the extent that the abstraction hierarchy interface reduces the cognitive effort
required for recall, subjects in that condition may be willing to exert more effort
in other aspects of the task, such as the computations needed for financial
statement elements. This possible interaction lends additional support for the
prediction that the abstraction hierarchy interface users will exhibit higher task
accuracy. There is no clear prediction for task completion time; subjects may or
may not increase their cognitive time spent on computations to the same level as

their recall requirements were reduced.

3.5 Prior Studies of Database Query Performance

The behavioral accounting literature discussed in Section 3.4 provides
valuable insights for studying user performance. Additional insights are gained
from the database literature. Most of the studies in this literature focused on one
or more query languages without varying the data model. Jih, Bradbard, Snyder

and Thompson (1989) note that the data model portrays the logical organization

35

of a database and is therefore a critical part of the user-system interface. Those
studies which did not vary the data model are thus not considered to be relevant
for the current project and are not described herein.

Batra, Hoffer and Bostrom (1990) examined differences in user
performance with different data models (relational versus extended-entity-
relationship). However, their task involved the design of a database rather than
the retrieval of information from a database. Their results can not necessarily be
extended to a retrieval task such as is used in the current study. The remainder of
this section thus describes studies which involved database querying. Several
studies in the database literature have examined user performance with different
data models and with different database query languages. Brief descriptions of
these studies are followed by a discussion of how the current project compares to
them.

Lochovsky and Tsichritzis (1977) attempted to examine the effect of the
data model on user performance. They compared user performance using three
different data models (hierarchical, network and relational), each with a different
query language. They found that the relational model with its query language was
superior to the others. Unfortunately, the confounding effect of having both
different data models and different query languages makes it impossible to isolate
the effect attributable to one or the other.

Jih et al. (1989) examined user performance using one query language
(Structured Query Language or SQL) with both the entity-relationship data model

and the relational model. They were interested in which model was an easier-to-

36
comprehend database interface for end-users and in whether the result was
consistent for both simple and complex queries. They noted that the entity-
relationship model had a higher power of abstraction than does the relational
model. They claim:
a data model at a higher level of abstraction not only shields users

better from complexity of the system, hence is easier to work with,
but also is capable of modeling more domain-specific semantics

(p. 260).
Based on this claim, they expected that the users would perform better with the
entity-relationship model than with the relational model. However, they found
that fewer syntax errors were committed with the relational model. Users of the
relational model also took more time. They found no significant difference in the
number of semantic errors between the two models. Since SQL was originally
created specifically for the relational model, that could account for the difference
in syntax errors between the two groups. Jih et al. state that for one model to be
declared as better than the other, there must be a difference in the number of
semantic errors. A semantic error is a logical error resulting from a
misunderstanding of the problem (a data model-related error) or from a mistake
in problem-solving logic (possibly an intelligence-related error). They conclude
that since no difference was found in semantic errors, neither can be considered
easier to comprehend by end-users.

Chan, Wei, and Siau (1991) argue that it is not possible to compare
separate data models using the same query language because no query language

can suit two data models. They state that if two data models differ, it is because

37

they contain different constructs and their languages must necessarily differ. They
contend that Jih et al.’s use of SQL to generate queries with the entity-
relationship model confounded the results and made it impossible to draw any
conclusions. Chan et al. constructed a language called KQL, tailored for the
entity-relationship model. They compared performance between users of the
entity-relationship model using KQL and users of the relational model using SQL.
Like Jih et al., Chan et al. expected the entity-relationship model users to exhibit
better performance in writing queries because of the higher power of abstraction
offered in the entity-relationship model. They indeed found the entity-relationship
user group performed significantly better, used significantly less time, and were
more confident in their answers.

The current project follows Jih et al. (1989) in that two data models are
used, with the same query techniques used for both. Although Chan et al. (1991)
claim that KQL and SQL are so similar that their subjects’ performance
differences can be attributed only to the effect of the data models, we believe that
the data model effect in their experiment can not truly be isolated. In this
dissertation, the querying involved is not done through a formal query language,
so it is not expected to be biased toward one interface or the other. All retrieval
from the interfaces is done manually, with paper, pencil and calculator. While
this makes the systems somewhat unrealistic, it is necessary to isolate the effect on
users of the theoretical construct of interest -- the presence or absence of an

abstraction hierarchy in an interface.

38

The current project differs from Jih et al. (1989) in that the task is much
more complicated. Their data models consisted of only three entities and one
relationship. Even their "complex” queries were quite simple. All of their subjects
in both groups were nearly 100% accurate in their query writing, therefore it is
possible that the simplicity of their task contributed to their finding of no
difference. The use of a more complex task such as creating financial statements
from a database of accounting information should produce a stronger treatment
effect.

One important distinction of the current study from both Jih et al. (1989)
and Chan et al. (1991) is that the data models used in those projects were single
abstractions. There was no abstraction hierarchy present in any of their models.
Thus while they argue that the entity-relationship model has more abstraction
power, that power is not utilized in their systems. There is no provision of views
with differing levels of detail to the users. Chan et al. are not really justified in
making their claim that

The results supported the basic hypothesis that users can perform

better at higher abstraction levels. The reason is that the higher

levels have semantics closer to the user’s world (p. 34).

All they can legitimately claim is that users with the combination of KQL and the
entity-relationship model exhibited better performance at their task. They cannot
further isolate the reason for the increased accuracy and time. The current

project thus goes beyond the testing of two data models to isolate the effect of an

abstraction hierarchy.

39
3.6 Conceptual Framework for Hypotheses

The conceptual framework used in this project fits that used by Jih et al.

(1989). Their framework is illustrated as Figure 3.1.

\' 4

- Data Model
- Query Language|

Differences: Performance:
= Cognitive
- Knowledge

A4

i

1 4

Task
Characteristics:
- Structured
Unstructured
- Complexity

Y

FIGURE 3.1: CONCEPTUAL FRAMEWORK OF JIH et al. (1989)

In this framework there are three types of variables that can influence user
performance: system characteristics such as data model or data query language,
individual differences such as cognitive style or knowledge, and task characteristics
such as complexity or degree of structure. The measures of user performance in
this framework include correctness, time, and confidence. Jih et al.’s framework is

similar to Einhorn and Hogarth’s (1980) determinants of user performance

40

described in Section 3.4. System characteristics fit into the environment category.
Individual differences encompass ability, knowledge, and motivation. The current
study examines the effect of the system characteristic (type of interface) on user
performance while controlling for individual differences between subjects in

accounting and data modeling domain knowledge.

3.7 User Performance Measures and Hypothesis

Prior research studies of information overload employing user performance
measures have typically included two dependent variables: decision accuracy and
decision time (e.g. Davidson and Trueblood 1961; Chervany and Dickson 1974,
Benbasat and Dexter 1979; Casey 1980, Otley and Dias 1982). Studies in the
database literature on database query performance have also used accuracy and
time as dependent variables (Jih et al. 1989, Chan et al. 1991). Therefore task
accuracy and task completion time are included as user performance measures in
the current study. The discussion in section 3.4 illustrates how the abstraction
hierarchy is expected to improve performance in terms of both accuracy and time.
This expectation is supported by the results of Chan et al. (1991). The hypothesis
regarding user performance in this study (stated in both null and alternative
forms) is:

H1: There will be no significant difference in financial statement

preparation performance (measured as a combination of accuracy

and speed) between users of an events-based accounting database

with an abstraction hierarchy interface and users of the same

database with a non-abstraction interface, controlling for domain
knowledge in accounting and data modeling.

41

H1A: Financial statement preparation performance (measured as a
combination of accuracy and speed) of users of an events-based
accounting database with an abstraction hierarchy interface will be
significantly better than that of users of the same database with a
non-abstraction interface, controlling for domain

knowledge in accounting and data modeling.

3.8 User Perception Measures and Hypothesis

Performance is not the only indicator of a manageable information system.
User perceptions may also provide evidence as to whether a system is manageable.
A person could conceivably perform well in a reasonable length of time and yet
still feel overwhelmed. If a user feels overloaded, the user may reject the
information system in spite of adequate performance. This is undesirable because
acceptance of users has been identified as one of the critical determinants of
system success (Shneiderman 1980). Prior research studies which examined
information overload employing user perception measures have typically examined
overall user satisfaction (e.g. Chervany and Dickson 1974; Casey 1980; Otley and
Dias 1982). Prior studies in database query performance have typically included
ease-of-use or user confidence as dependent variables.

In this project the user perception measured is perceived manageability’.
This construct is believed to be quite similar to ease-of-use. Perceived
manageability is expected to identify whether a subject felt overloaded, regardless
of performance. Since the abstraction hierarchy interface is expected to ease

cognitive efforts, it is expected to be perceived as more manageable than the

42

non-abstraction interface. The hypothesis regarding user perceptions in this study
(in both null and alternative forms) is:

H2: There will be no significant difference in the perceived
manageability of financial statement preparation between users of an
events-based accounting database with an abstraction hierarchy
interface and users of the same database with a non-abstraction
interface, controlling for domain knowledge in accounting and data
modeling.

H2A: Perceived manageability of financial statement preparation by
users of an events-based accounting database with an abstraction
hierarchy interface will be significantly greater than that of users of
the same database with a non-abstraction interface, controlling for
domain knowledge in accounting and data modeling.

Tests of the two hypotheses are described in the next chapter.

43

End Notes:

1.

The definitions given here were adapted from Einhorn and Hogarth (1980)
by Libby (1983) and by Libby and Luft (1993) to make them consistent
with typical accounting settings.

Each of these subtasks could be broken down into finer detail. The level
of detail presented seems adequate for understanding the overall benefits
expected from the abstraction hierarchy.

Recall is generally defined as a retrieval process that may involve the
generation of alternatives (Libby and Lipe 1992).

Recognition is defined by Libby and Lipe (1992) as the matching of a
presented cue to prior knowledge. Alternatively the matching may be to a
trace of some type.

There are multiple aspects of user satisfaction of which perceived
manageability is only a part. Other constructs which are considered part of
user satisfaction include perceived usefulness, the degree to which subjects’
use is voluntary, compatibility of system with work, and perceived prestige
(Moore and Benbasat 1991). While these constructs are interesting, they
do not appear to be indicators of information overload.

CHAPTER 4: METHODOLOGY

4.1 Research Framework

In order to test the hypotheses put forth in this dissertation, two major
projects were completed. March and Smith (1994) describe the difficulties
inherent in information technology (IT) research and suggest a framework for use
in planning and in evaluating IT research. They begin their framev)ork
development with a discussion of the differences and interactions between design
science and natural science. March and Smith note that natural science typically
consists of two stages -- theorize and justify. In natural science theories arise from
naturally occurring phenomena. They can be observed and tested in controlled
settings, resulting in justifcation. In design science the constructs, models, and
methods are created or "built." These phenomena are artifactual rather than
naturally occurring. March and Smith propose that design science consists of two
stages — build and evaluate -- which parallel the two stages of natural science.
They point out that in the ;:omputer science literature it is widely recognized that
constructs, models, and methods that work "on paper" do not necessarily work in
real-world contexts. Thus, instantiations (physical implementations of the
constructs, models, or methods) provide the real proof. Once adequate
evaluations of the instantiations (and the underlying constructs, models, and
methods) have been made to determine how well they work, theories may be
developed and justified as to why they work. According to March and Smith

(1994, 6)

44

45

IT research builds and evaluates constructs, models, methods, and
instantiations. It also theorizes about these artifacts and attempts to
justify these theories. Building and evaluating IT artifacts have

design science intent. Theorizing and justifying have natural science
intent. :

Based on this belief, March and Smith propose a 4 x 4 matrix of research
possibilities for use in planning and evaluating IT research. This matrix is

presented as Figure 4.1.

BUILD EVALUATE | THEORIZE | JUSTIFY

CONSTRUCTS

MODELS

METHODS

INSTANTIATIONS

FIGURE 4.1: IT RESEARCH FRAMEWORK per MARCH AND SMITH (1994)

Research in the Build column seeks to show that a construct, model, method or
instantiation works, whereas work in the Evaluate activity attempts to determine
how well something works. Research in the Theorize category tries to show how
and why something works, and research in the Justify column tests those theories.
March and Smith note that within their framework different cells have different
objectives and different research methods are appropriate in different cells.

Evaluation of research depends on the cell(s) in which the research lies.

46

4.1.1 Project 1: Building the Interfaces

The first major project in this dissertation was the creation of instantiations
that operationalized the constructs, models and methods included in the REA
model with abstraction hierarchies and those in normalization theory. Thus, this
section of the dissertation fits the Build-Instantiations cell in March and Smith’s
matrix in Figure 4.1. According to March and Smith (1994) it is sometimes
necessary for an instantiation to precede the complete articulation of its
underlying constructs, models and methods, so that it can be studied and used in
order to formalize the constructs, models, and methods on which it is based. They
suggest criteria by which Build research should be evaluated, as follows:

Building the first of virtually any set of constructs, model, method,

or instantiation is deemed to be research, provided the artifact has

utility for an important task. The research contribution lies in the

novelty of the artifact and in the persuasiveness of the claims that it

is effective. Actual performance is not required at this stage (1994,

13).
March and Smith go on to say that “first’ is usually interpreted to mean, ‘never
done within the discipline.™ (1994, 13) The abstraction hierarchy interface built in
this dissertation is the first instantiation of the REA model including the

abstraction hierarchies thus providing research contribution per March and Smith

(1994).

4.1.2 Project 2: Evaluating the Interfaces
This dissertation continues beyond the build activity. The instantiations
were also evaluated using a laboratory experiment. March and Smith (1994, 14)

note that "research in the evaluate activity develops metrics and compares the

47

performance of constructs, models, methods, and instantiations for specific tasks."
The remainder of this chapter describes the experimental procedures, including

detailed illustrations of the two interfaces which were used.

4.2 Interface Software

An events-based accounting database for a sample company modeled with
RE accounting is used in both experiments. The sample company used is the
Wilson Company (McCarthy 1979). The interfaces were built using an object-
oriented, message-passing software package called VisualWorks (Version 1.0, Parc
Place Systems 1992). VisualWorks is a graphical user interface builder that uses
Smalltalk as its engine. This environment allows the creation of user interfaces
with features such as windows, buttons, and graphics that are purported to be

user-friendly (Shneiderman 1992).

4.3 Experimental Treatments
Both experiments consisted of two treatments: abstraction and non-abstraction.
4.3.1 Abstraction condition

Subjects in the abstraction condition used a computerized abstraction
hierarchy interface to Wilson Company’s database. Figures 4.2 through 4.9
represent example screens in the computerized abstraction hierarchy interface.
Figure 4.2 shows a representation of the initial screen. This gives a natural

language description of Wilson Company.

48

VMLSON COMPANY ACCOUNTING DATABASE

Wiison Company is a small retal enterprise thet was incorporated
on June 1 when Fred Vison soid sheres of stock inthe company
to various Investors. YWiison Company has operations which
consist simply of purchasing products from verious suppliers at
wholesale prices and then distributing them at retaid to customers.
The unit cost of sach inventory Rem Is updeted after avery
purchase with a weighted average algorthm. The margn of retal
over wholesale is intended to cover company operating expenses
and to generste a proft over the long term.

The tables in this reiational database are completely up to date as of
the end of the day on June 30. Tabile siemerts thet are caplalized
and bounded by asterisks (e.g. *SALE TIME*®) provide a unique and
universal instance by which values can be identified.

Please ciick the left mouse button on the box below to access the
Wiison Company Accourting Deatabase.

FIGURE 4.2: ABSTRACTION INTERFACE INITIAL SCREEN

When the user clicks the left mouse button on the Continue button, Figure 4.3a

(a) Cycle List Screen as it appears before the user highlights a cycle:

49

J Transfers uu]—@-‘ Transfers In

[Revenus Cycle
[Service Acquisition Cycle
linventory Acquistion Cycle
[Payrol Cycle

Stock Subscription Cycle
[Dividend Paymert Cycle

CLICK THE LEFT MOUSE BUTTON ON THE CYCLE FOR WHICH YOU WOULD LIKE TO
SEE MORE DETAL. THEN CLICK THE LEFT MOUSE BUTTON ON THE BOX LABLED
“SEE DETAL"

®)

]
oai

Cycle List Screen as it appears after the user highlights Revenue Cycle:
[<1]

WILSON COMPANY
i i /ACCOUNTING CYCLES

‘See Detail

CLICK THE LEFT MOUSE BUTTON ON THE CYCLE FOR WHICH YOU WOULD LKE TO
SEE MORE DETAL. THEN CLICK THE LEFT MOUSE BUTTON ON THE BOX LABLED
“SEE DETAL *

FIGURE 4.3: ABSTRACTION INTERFACE CYCLE LIST SCREEN

50

The six cycles which encompass Wilson’s financial activities are portrayed.
On this screen the user highlights the cycle of interest by clicking the left mouse
button on the cycle name. This makes the See Detail box active, allowing the user
to click the left mouse button on the box, as in Figure 4.3b. An overall REA
template of that cycle appears, as portrayed in Figure 4.4. This gives the user an
overall picture of the transfers in and out (events) in the cycle, and of the

resources, outside agents, and authorization units that are involved.

] [xix]

Inventory (1)
I:-—-mq Sain
@-

Go To £-R Dingram

FIGURE 4.4: ABSTRACTION INTERFACE CYCLE TEMPLATE SCREEN

Users then click the left mouse button on the box labeled Go To E-R

Diagram which reveals a detailed E-R diagram, as illustrated in Figure 4.5.

Back to Cycle Dverview REVENUE CYCLE

i

| e

& =]

oI g
& &

N

CLICK THE LEFT MOUSE BUTTON ON ANY ENTITY (BOX) OR RELATIONSHP
(DIAMOND) TO OBTAN THE DATABASE SCHEMA FOR THAT ITEM. TO SEE
THE OVERALL DATABASE SCHEMA FOR THIS CYCLE, CLICK THE LEFT
MOUSE BUTTON ON THE BOX LABLED "OVERALL SCHEMA *

Overait Schema

FIGURE 4.5: ABSTRACTION INTERFACE E-R DIAGRAM SCREEN

The user can utilize the E-R diagram to better understand what entities
and relationships exist in the cycle. From this screen, the user can choose to see
the table intension(s)' for a particular entity or relationship. For example, the
user may choose to click the left mouse button on the relationship labeled LINE

between the Inventory and Sale entities, bringing up the screen portrayed in Figure

4.6.

52

Sale

gne |sdoAman [ivoice Number [Customer Number | No. |
| 1 I |

Jnventors
["STOCK NUMBER"® IDescription June cost [Seting Price *gyoﬂmm |
1 I]

Sale - Inventory Line

[*sALE TME* ['stoocnuMBER* | Sale Line Quaniity |
I I]

FIGURE 4.6: ABSTRACTION INTERFACE RELATIONSHIP SCHEMA SCREEN

The user can look at the table intension to see if the attributes of interest
are included. If not, the user may return to the E-R Diagram by clicking the left
mouse button on the box labeled Back to E-R Diagram. If the attributes of
interest are included, the user can click the left mouse button on the box labeled

See Table Detail to bring up the screen shown in Figure 4.7.

53

Sate - tnvéﬁimy Uné né?ﬁ

E'S-AtE ™° Sale Amourt Invoice Number| Customer Number | Salesperson No.
$19,400 1 c100 E304

|s060900 $3,000 2 C101 E304

|6081000 $7.500 5" c102 E301

[s100800 $15,000 4 C100 E304

|8130800 $9,000 s C100 E304

Inveniore

STOCK NUMBER Description Unk Cost| Seling Price

7432 A $2.10 $3.00

8518) $420 $5.00

[s784 c $9.25 $12.00

|ses2 D $10.50 $15.00

{4888 E $1.00 $1.50

i-snz ™ *STOCK NUMBER* Sale Line Quantty

|s050800 7432 2,000 |#:

5050800 8519 1,000 i

8050800 8784 700 |

{8060900 7432 1,000 ki

|8081000 7432 2,000 [&

FIGURE 4.7: ABSTRACTION INTERFACE RELATIONSHIP DETAIL SCREEN

Each table contains a scroll bar, so the user may scroll to see every
instance in a table. From the table detail screen, the user returns directly to the
E-R Diagram, rather than having to view the table schema again. In pilot testing,
the system required users to go back up the hierarchy through exactly the same
path as they had come down. Several subjects complained that this was
unnecessary, time-consuming, and frustrating.?

From the E-R Diagram screen, the user may opt to view the overall
database intension for the cycle, as in Figure 4.8, rather than focusing on a
particular entity or relationship. This is accomplished by clicking the left mouse

button on the box labeled Overall Schema.

54

DOUBLE-CLICK THE LEFT MOUSE BUTTON ON ANY TABLE NAME FOR WHICH YOU WOULD
UKE TO SEE MORE DETAL.

[S-s"tsw |Sale Amount invoice Number [Customer Number [SaiespersonNo. |

w&m Joescription [unk Cost |Seting Price |oty ontiand |
Wmaxmw |Sale Quartty |

MWlmam | r:d-cAs;éRMR- [Fideity Bond Rating |
MW[L.@M [First Name [crect Rating [Street Address [Cly Addvess |
'c.qsukecé’rme [Cash Receipt Amount [Cashier Number [cash Account Number | i
-CASHRECE.PHME' *SALE TIME* [amourt Appted J
Mmmwlmw]
mmcmwlcmmrm [cash Accournt Location |Cash Accourt Balance |

FIGURE 4.8: ABSTRACTION INTERFACE OVERALL SCHEMA SCREEN

From the overall schema, the user may select a table of interest by double-
clicking the left mouse button on the table name. This brings up a screen such as

that shown in Figure 4.9.

55

Batednventany t i:)é L fnt;te ;

'SALE TME® ['sTock Noveer® Sele Line Guartty |
Jra32 2,000 [+
5050800 8519 1,000
5050800 6784 700
6080900 7432 1,000
6081000 l7432 2,000

FIGURE 4.9: ABSTRACTION INTERFACE SCHEMA DETAIL SCREEN

Any table with more than five instances has a scroll bar to allow users to
see every instance. All tables in both interfaces were limited to having at most
five instances visible at a time. The purpose for this was twofold -- (1) to ensure
that any differences in performance were due to the abstraction hierarchy as
opposed to more table detail being visible at one time, and (2) to make the task
as realistic as possible. The sample company’s database was fairly small with a
limited number of transactions. Although it would be possible to view entire
tables at one time for Wilson Company, this would be impossible for most real-

world companies.

56

4.3.2 Non-abstraction condition

Subjects in the non-abstraction condition used a computerized non-
abstraction interface to Wilson’s database. Consistent with some commercial
database interfaces, this interface allowed users to simply scroll through the
database tables to obtain the needed information. This system provided access to
all of the same data as the abstraction system (i.e. the detailed Boyce-Codd
Normal Form relational tables). The difference was in the exclusion of the
abstraction hierarchy from the interface. The initial screen for the non-abstraction

system is identical to that of the abstraction system, as illustrated in Figure 4.10.

YMLSON COMPANY ACCOUNTING DATABASE

Wison Company is a small retall enterprise thet was incorporated
on Juns 1 when Fred Wison sold shares of stock in the company to
various investors. Yiison Compeany has operations which consist
simply of purchasing products from various suppliers at wholesale
prices and then distributing them et retall to customers. The unt
cost of sach inventory tem is updated after every purchase with a
weighted average aigorthm. The margin of retall over wholesale is
intended to cover compeany operating expenses and to generate a
proft over the long term.

The tables in the relational datebese are compietely up to date as of
the end of the day on June 30. Table slements that are caplalized

and bounded by asterisks (e.g. "SALE TME") provide a unique and

universal instance by which values can be identified.

Please ciick the left mouse button on the box below to access the
Wiison Compeny Accourting Database.

FIGURE 4.10: NON-ABSTRACTION INTERFACE INITIAL SCREEN

[~ tabie. 1 -1-1
['saLe Tver Sale Amourt| Customer Number | Salesperson No.|
c100 B304 |*
16060900 c101 E304
6081000 €102 E30
6100800 100 E304
6130800 €100 E304

Back to Introduction Previous Table Nest T. 1

FIGURE 4.11: NON-ABSTRACTION INTERFACE TABLE 1 SCREEN

Figure 4.11 portrays the screen for Table 1 in the non-abstraction interface.
Subsequent table screens have a similar appearance (identical except for the table
content). Users may scroll both forward and backward through the tables, by
clicking the left mouse button on either the Next Table box or the Previous Table
box. Alternatively, the user may return to the initial screen at any time by clicking
the left mouse button on the box labeled Back to Introduction. Consistent with
the decomposition approach to database design, the table names in the non-

abstraction interface are non-semantic. Thus they are labeled Table 1, Table 2,

Table 3, etc.

58
4.3.3 Querying the Database

No automated querying capabilities were built into either interface.
Subjects were required to locate the table(s) containing the data they needed, and
to make any necessary calculations with only the assistance of a calculator. This
reduces the realism of the systems (i.e. any commercial database interface would
have automated query capabilities). However, the inclusion of automated
querying would likely have introduced other confounds into the task and obscured

the effects of the abstraction hierarchy on the dependent variables.

4.4 Experimental Environment
4.4.1 Task

The task completed by subjects was the preparation of the Income
Statement, Statement of Changes in Retained Earnings, and Balance Sheet for
Wilson Company’s first month of operations. Preparation of simple® retail
company financial statements is a task with which subjects were expected to be
very familiar and is one that does not require subspecialty knowledge (general
accounting domain knowledge should be sufficient). If the task required
subspecialty knowledge, per Bonner and Lewis (1990), it would be advisable to use
subjects experienced in that subspecialty.

The experiment was conducted in a computer laboratory in six separate
sessions. Subjects were given a set of written instructions which were read aloud
by the experimenter. These instructions are included as Appendix 1. The

instruction period lasted 10 minutes for each session. All subjects claimed they

59

had used a mouse and felt comfortable using a mouse to point and click. No
extensive mouse training was given, since only pointing and clicking were required.
There was no need for window movement or resizing (which have been reported
to cause problems with lack of training in other studies). Pilot testing indicated
that, with only one exception, students felt comfortable using the mouse for
pointing and clicking. During the instruction period subjects were told that they
were to write their financial statements on paper that was provided to them.
Along with the financial statement line items and numbers, subjects were
instructed to write a brief explanation as to how they computed each number (e.g.
which attribute(s) of which table(s) they used and what mathematical operation(s)
they performed). An example explanation was included in the instructions.
Subjects had been instructed to bring their calculators with them, and the
experimenter had extras available so that every subject had a calculator to use.
Subjects were not allowed to use any notes or accounting textbooks; rather, they
were expected to rely on their own accounting and data modeling knowledge in
combination with their interface to the database. This represented a change from
pilot testing, in which subjects were given a chapter from an introductory
accounting textbook which included example financial statements. This change
was made because it was believed that the textbook chapter in effect provided an
abstraction mechanism for the subjects. This belief was formulated through
experimenter observation. For example, although Wilson Company has no fixed
assets (it rents them), several subjects included "Fixed Assets - $0" as a line item

on their balance sheets. The example financial statements in the textbook chapter

60

were for a company which had fixed assets. The students thus seemed to be using
the example financial statements as a template or abstraction to which they tried
to match Wilson Company. Another reason the use of example financial
statements is a potential problem is that the abstraction interface is expected to
aid users in recall of accounting domain knowledge. Any such effect would be
obscured because the example financial statements would make recall largely
unnecessary (replacing it with recognition).

Subjects were given scrap paper to use if needed, but were instructed to
use it as little as possible. Minimal use was expected to be necessary. At least
one financial statement line item (Cost of Goods Sold) required use of scrap
paper (or use of the memory function on a calculator, which some people feel
uncomfortable using). Therefore, the scrap paper could not be taken away
altogether. However, in pilot testing, many subjects used the scrap paper not only
to make computations, but also to create abstractions for themselves. For
example, several subjects in the non-abstraction condition wrote notes on their
paper such as "Table 1 = Sales, Table 2 = Inventory," etc. Others went so far as
to write out the attributes for each table (i.e. the table intension).

To curb this creation of abstraction in the experiment, subjects in both
conditions were only allowed to keep a given piece of scrap paper for 10 minutes.
The task time period for the experiment was 60 minutes, thus there were six 10
minute cycles. Subjects were given six different colored pieces of scrap paper.
Subjects worked uninterrupted for the first 9 minutes of each cycle. After 9

minutes, a bell was rung as a one-minute warning. At that point, students could

61

complete whatever calculation they were working on. If they were starting a new

calculation, they could turn their scrap paper over and start with the next color.

After the one-minute transition period, the designated color scrap paper was

collected. Subjects did not appear to be bothered by the interruptions, although

no conclusion can be drawn as to their effect.

Figures 4.12 - 4.14 illustrate the financial statements for Wilson Company.

For each line item, an explanation is provided as to which database tables

contained the necessary information and what computations were necessary.

Income Statement:

Sales $125,500
COGS (93,250)
Gross Margin $ 32,250
G&A Expense (10,495)
Wages Expense (7,216)

Net Income $ 14,539

Add up the "Sale Amount" column of the Sale table

Get the "Line Qty" column of the Sale-Inv-Line table
Get the "Unit Cost" column of the Inventory table
Match the two columns by "Agleclap Number"

For each item number, multiply the qty by the cost
Add all of them together.

Add up the "Amount" column of the G&A Service
Acquisition table

Add up the "Gross Pay" column of the Personnel
Service Acquisition table

FIGURE 4.12: WILSON COMPANY INCOME STATEMENT

62
Statement of Changes in Retained Earnings:

Beginning Balance 0 from Introduction screen information

+ Net Income 14,539

- Dividends (6,000) Add up "Amount” column of Dividend Declaration
table

= Ending Balance @ § 8,539

FIGURE 4.13: WILSON COMPANY STATEMENT OF CHANGES IN
RETAINED EARNINGS

Balance Sheet:

Cash $ 60,095
Accts Receivable 76,850

Inventory 31,375

Total Assets $ 168,320
Accounts Payable

for Purchases 4,625

for G&A Services 4,500

Wages Payable 656

Capital Stock 150,000
Retained Earnings 8,539

Total Liab & Eq

$ 168,320

63

Add up "Balance” column of Cash table

Add up "Sale Amount” column of Sale table

Add up "Amount Applied" column of Cash Receipt
for Sales table

Subtract the latter from the former to get A/R

Get "Unit Cost" column of Inventory table
Get "QOH" column of Inventory table
Multiply unit cost by qoh for each item
Add all item subtotals to get total Inventory

Add up "Amount" column from Purchase table
Add up "Amount Applied” column from Cash
Disbursements for Purchases table

Subtract the latter from the former

Add up "Amount" column from G&A Service
Acquisition table

Add up "Amount" column from Cash Disbursements
for G&A Services table

Subtract the latter from the former

Add up "Amount" column from Personnel Service
Acquisition table

Add up "Amount" column from Cash Disbursements
for Personnel Services table

Subtract the latter from the former

Add up "Amount" column of Stock Subscriptions
table

From Stmt of Changes in Retained Earnings

FIGURE 4.14: WILSON COMPANY BALANCE SHEET

4.4.2 Variables

Three independent variables are measured in this study. The first
independent variable is the type of interface to which subjects were assigned.
There are two levels of this variable -- abstraction and non-abstraction -- as
described in Section 4.3. This independent variable fits into the "System
Characteristics" box of the conceptual framework of Jih et al. (1989). The second
and third independent variables are the subjects’ accounting domain knowledge
and data modeling domain knowledge. These variables fit into the "Individual
Differences” box of the conceptual framework of Jih et al. (1989) and were
expected to have an influence on user performance based on Einhorn and
Hogarth’s (1980) equation in Section 3.4.

The subjects’ grade in the first intermediate accounting course was used as
a surrogate for accounting domain knowledge. This was determined to be the
most adequate surrogate for two reasons. First, several subjects had taken their
two introductory accounting courses at other schools (typically community
colleges). This makes it difficult to compare these grades across subjects. Second,
several subjects had not yet taken any accounting courses higher than the first
intermediate accounting course. To include higher accounting course grades for
some subjects and not for others would diminish the comparability. Comparability
of the first intermediate accounting course grade is believed to be quite strong
because all sections are taught by one of two instructors who work together closely
to ensure consistency of material and presentation. Data modeling domain

knowledge was measured as the numerical score each subject earned on a data

65

modeling question on the first exam administered in the accounting information
systems course for which they were concurrently enrolled.

The dependent variables measured in this study include task accuracy, task
completion time, and perceived manageability. These all fit into the "User
Performance” box of Jih et al.’s framework. Because there is a correct answer for
the individual line items and amounts which should be included in Wilson’s
financial statements, it was possible to derive an accuracy measure. Subjects
received points for each necessary account name (e.g. Cash, Accounts Receivable),
points for each correct numerical value, and points for having the correct
explanation of how to derive the figure. Subtotals and totals were not awarded
points in order to avoid double-counting errors as much as possible.

Accuracy scores consisted of total points earned. More points were
awarded for those line items that required more mathematical operations. For
example, on the Income Statement a correct answer for Sales was worth four
points —- one for including it as a line item, two for getting the right number (since
it involved two operations: [1] isolating the "Sale Amount" column of the Sale
table and [2] adding up the numbers in the column), and one for giving the
correct explanation. Cost of Goods Sold was worth a total of fifteen points -- one
for including it as a line item, thirteen for getting the right number (since it
involved thirteen operations as illustrated in Figure 4.12) and one for providing
the correct explanation. This grading scheme was followed with one exception --
if a subject gave the correct explanation for deriving a number, and the scrap

paper revealed that the error was clerical in nature, the subject was only penalized

66

one point. This situation only occurred three times. The grading scheme was
determined before the experiment was administered and was based on relational
algebra operators typically used in database query languages.

Task completion time was measured as the number of minutes a subject
worked on the task. Subjects were allowed up to 60 minutes to complete the task.
Completion time was recorded before the questionnaire was administered in order
to isolate time spent on the task itself. The 60 minute time period turned out to
be inadequate for most subjects to complete the entire task. This time period was
chosen based on pilot testing. In pilot testing, subjects did not have incentive to
work quickly. They were allowed up to 120 minutes to complete both the task
and the questionnaire. As in an examination situation, many subjects probably
kept their financial statements for the entire period, even though they could not
improve their performance by doing so. The fastest completion time was 65
minutes, with 100% accuracy (again, this included time to fill out the
questionnaire).

In conversations after the pilot test sessions, several subjects said they had
computed figures for every line item within approximately 40-45 minutes, and
spent the rest of their time "spinning their wheels" because their financial
statements did not balance. The resulting situation was like starting a race
between a Corvette and a bicycle and allowing them both an hour to go 10 miles.
Arriving at the finish line after an hour, it is seen that both have indeed crossed
the finish line; however, the discrimination between the two performances is lost.

It was expected that the 60 minute time period would encourage subjects to work

67

as quickly as possible, and provide a clearer measure of how long it took subjects
to develop a set of financial statements (correct or not). To further discourage
"wheel spinning,” subjects were thus told their grades would be based on both
accuracy and completion time, with statements that are 90% accurate completed
in 40 minutes being worth more than 100% accurate statements completed in 60
minutes.

Perceived manageability was measured using a seven point Likert scale
questionnaire. The five questions used to measure this variable are reproduced in
Appendix 2. These five questions are identical to those used in Batra, Hoffer, and
Bostrom (1990), except their words "data modeling technique" are replaced by
"database interface”. Batra et al. (1990) had adapted their instrument from Davis
(1989). The reported reliability for their instrument was .83. The Batra et al.
(1990) and Davis (1989) instruments purport to measure "perceived ease of use,"
which Davis defines as the degree to which an individual believes that using a
particular system would be free of physical and mental effort. That definition is
consistent with the definition of perceived manageability used in this study.

Several concomitant and prior influence variables were identified and
measured via subject’s completion of background questions which were mostly
closed-ended (see Appendix 2). These data were run as covariates to ensure that

they did not account for variation in the dependent variable.

68
4.4.3 Subjects

Subjects were students enrolled in an intermediate level accounting
information systems course. Students at this level were expected to have the
necessary domain knowledge, in both accounting and in data modeling. All
subjects had either completed or were concurrently taking the first intermediate
level financial accounting course. All had been taught and tested on data
modeling techniques and on REA modeling of accounting phenomena in the
systems course prior to administration of the experiment. Subjects received class
credit for participation, with varying grades based on performance. To ensure
fairness, the grading was done separately for each condition. For example, the top
performers in each condition received top grades, the lowest performers in each
condition received low grades, and similarly in-between.

All subjects completed the task as an in-class computer assignment.
Students enrolled in the course were offered a choice between completing this
task as 5% of their grade or assigning an extra 5% to their second examination.
All but one student chose to complete this task. Subjects were randomly assigned
to the two experimental conditions. Sixty-two subjects participated in the
experiment; however, fifteen were dropped from the main data analysis. Three
were dropped because they arrived at their sessions late (just as the experimenter
had finished reading the instructions aloud). Two were dropped because it was
discovered that they were using their accounting textbooks as an aid (in spite of
being told to keep all personal books and materials other than their calculators

put away). Ten were eliminated because they did not grant permission for the

69

experimenters to obtain their intermediate accounting grade, which was the
measure of accounting domain knowledge.* Thus, the final sample used for the

experiment consisted of forty-seven subjects (20 Abstraction, 27 Non-abstraction).

70

Endnotes:

1.

The terms intension and extension refer to a database’s structure and its
detail. Table headings make up the database intension. Instances or rows
in the database tables constitute the extension.

Other minor adjustments were made to the database tables in both systems
due to feedback of pilot subjects. For example, in using the original
database, students were confused between "Amount" fields and "Quantity"
fields. Since amounts were monetary and quantities were numeric, dollar
signs were inserted into all of the amount fields. Students were also
confused by the terms "Replacement Cost," "Carrying Cost," and "Volume"
in the Inventory table, and by the terms "Interest Cost," and "Withdraw
Cost" in the Cash table. Since these fields were not required for
calculation of any financial statement items, they were deleted from the
database.

Classification of these statements as simple is based on the fact that they
only involve line items which are common to most companies and which
are typically taught to students in introductory accounting courses.

Data were also run with the full sample of 57 (27 abstraction, 30 non-
abstraction) substituting a grosser measure of accounting domain
knowledge. This measure is a category variable indicating the range in
which each subject’s self-reported average grade point in accounting classes
falls, with 1 for < 2.5, 2 for 2.5-2.99, 3 for 3.0-3.49, and 4 for 3.54.0.
Results of these tests did not differ substantially from the tests of the 47
subjects.

CHAPTER S - STATISTICAL TESTS AND EXPERIMENTAL RESULTS

This chapter presents the statistical tests used to test the experimental

hypotheses and provides a discussion of the results of each of the tests.

5.1 Analysis of User Performance Hypothesis

Hypothesis One in null form suggests no difference in task performance (in
terms of accuracy and of completion time) between groups of subjects using the
abstraction interface versus the non-abstraction interface, controlling for
accounting and data modeling domain knowledge. This hypothesis is tested using
multivariate analysis of variance (MANOVA). The test, which tests the effect of
the interface on the combination of task accuracy and task completion time, is
necessary because task accuracy and task completion time are believed to be
inextricably linked. Subjects were told their class grade for the project would
depend both on their accuracy and on their speed, thus their performance is
expected to reflect an accuracy-speed tradeoff.

Hypothesis One calls for the measurement of the effect of the interface
(abstraction versus non-abstraction) to be done while holding the accounting and
data modeling domain knowledge levels constant. Accounting domain knowledge
and data modeling domain knowledge measures were thus included as covariates
in the MANOVA model. The model included Score and Time as a combined
dependent variable, Group as the factor, and IntAcc and DataMod as covariates.
The variables in the model are defined as follows. Score represents the task

accuracy score earned by a subject. Time is measured as the weighted number of

!

72

financial statement line items a subject attempted to complete’, divided by the
number of minutes the subject took to complete the project. Group represents

the interface to which the subject was assigned (0 = non-abstraction, 1 =
abstraction). IntAcc is the grade each subject earned in the first intermediate
accounting course (on a scale from 0.0 to 4.0). DataMod is the numerical score
each subject earned on a data modeling question on the first exam administered in
the accounting information systems course for which they were concurrently
enrolled.

The MANOVA model was run using SPSSX. Descriptive statistics for the
model are presented in Table 5.1. The direction of effect results indicate that
overall, subjects in the non-abstraction group demonstrated higher accuracy and
used less time to complete the task. They had a higher grade point average in
intermediate accounting but exhibited a lower performance on the data modeling
test problem than did subjects in the abstraction group. However, no conclusion
can be drawn from these trends without performing significance tests. Results of
significance tests indicate no statistical differences, as discussed later in this

chapter.

73

Table 5.1: Descriptive Statistics for User Performance Model

SCORE Mean Std Deviation N
Non-abstraction 47.7 16.5 27
Abstraction 39.3 11.7 20

Total 44.1 15.1 47
TIME Mean Std Deviation N
Non-abstraction 1.09 22 27
Abstraction 97 21 20

Total 1.04 22 47
INTA Mean Std Deviation N
Non-abstraction 3.09 .76 27
Abstraction 2.85 .86 20

Total 2.99 80 47
DATAMOD Mean Std Deviation N
Non-abstraction 91.6 26.9 27
Abstraction 99.4 22.7 20

Total 94.9 25.3 47

Results of testing for homogeneity of variance are presented in Table 5.2.
The Cochran’s C test and Bartlett-Box F test reveal no significant violations of the

assumption of homogeneous variances.

74

Table 5.2: Tests of Homogeneity of Variance for User Performance Model

Value Significance
SCORE
Cochran’s C 67 P=.101 (approx)
Bartlett-Box F 247 P=.116
TIME
Cochran’s C S1 P=.936 (approx)
Bartlett-Box F 01 P=.937
INTA
Cochran’s C 56 P=.558 (approx)
Bartlett-Box F 33 P=.565
DATAMOD
Cochran’s C S8 P=.421 (approx)
Bartlett-Box F .61 P=.436

The MANOVA procedure of SPSSX generates within-cells regression tests
of significance, which measure the strength of the relationship between the
covariates and the dependent variables. The within-cells results are summarized in
Table 5.3. Part (a) of the table contains the multivariate test, which indicates
whether the combined covariates are contributing to the overall model (using a
linear, equally weighted combination of the dependent variables). Three test
statistics are generated with significance levels: Pillai’s criterion, Hotelling’s trace,
and Wilks’ lambda. Part (b) of the table contains univariate F tests which indicate
the effect the combined covariates have on each of the dependent variables
separately. Part (c) of the table contains individual univariate tests indicating the

strength of the relationships between each covariate and each dependent variable.

75

Table 5.3: Within-Cell (Covariate) Analysis for User Performance Model

(a) Multivariate tests of significance

Test Name Value Approx F df Error df Significance
Pillai’s 225 2.77 4 86 035
Hotelling’s 286 2.93 4 82 025
Wilks’ 77 2.83 4 84 030

(b) Univariate test of significance

Variable F Significance
SCORE 5.78 006
TIME 4.59 016

(c) Individual Univariate tests of significance

Covariate B Beta Std Error t-value Significance
SCORE

INTACC 6.46 354 2.501 2.58 013
DATAMOD 14 245 0.080 1.79 081
TIME

INTACC 094 350 0.037 2.50 016
DATAMOD -.002 -.159 0.001 1.31 197

The data in Table 5.3 indicate that the combined covariates IntAcc and
DataMod contribute significantly to the combined dependent variables Score and
Time. This data also suggests that the combined covariates contribute significantly

to each dependent variable separately. The individual effect tests indicate that

76

IntAcc is the stronger of the two covariates, affecting both Score and Time
significantly. DataMod approaches significance in relation to Score, but does not
contribute significantly to Time. Overall, the tests in Table 5.3 indicate that
IntAcc is a valid covariate to include in the model, but that DataMod is somewhat
questionable. To be consistent with H1, which calls for the controlling of both
IntAcc and DataMod, both covariates are included in the analysis.

The next step in the MANOVA procedure is to compute multivariate and
univariate tests of the effect of Group. These tests indicate the effect strength of
the interface type that remains after the effect of the covariates has been
removed. This data is presented in Table 5.4. Results of these tests suggest that
once the effects of IntAcc and DataMod are removed, there is no statistically
significant difference in performance between users of the abstraction interface

and users of the non-abstraction interface.

77

Table 5.4: Main Effect (Group) Analysis of User Performance Model

(a) Multivariate tests of significance

Test Name Value Exact F df Error df Significance
Pillai’s 086 1.97 2 42 152
Hotelling’s 094 1.97 2 42 152
Wilks’ 914 1.97 2 42 152

(b) Univariate test of significance

Variable SS, SS, MS, MS, F Significance
SCORE 68795 763625 687.95 177.59 3.87 056
TIME 12 1.72 12 04 3.03 089

The overall adjusted R-squares for Score and Time, respectively, are .22
and .18. This suggests that approximately 22 percent of the variance in subjects’
accuracy scores and 18 percent of the variance in their scaled task completion
time is explained by the combination of their accounting domain knowledge, their
data modeling knowledge, and the type of interface they used.

Figure 5.1 summarizes these results in terms of the conceptual framework

adapted from Jih et al. (1989).

78

Characteristics:
- Interface used F= 197 (.152)
(Abstraction vs. >
Nonabstraction)
Individual
Differences: User
- Data Mod F-283 &030) \ Performance:
Knowledge 7 / - Accuracy and
) Knov;ﬁ—hflge I
Adjusted R-squares
none = 22 for Score
T ”k measured - .18 for Time
Characteristics: >
(held constant)

Note: effect strength given is the F-statistic for each variable
followed by the significance level in parentheses, The F-statistic
for the effect of Individual Differences on User Performance is
for the combined effect of accounting knowledge and data

modeling knowledge.

FIGURE 5.1: SUMMARY OF USER PERFORMANCE RESULTS

Analysis of the results reveals that subjects’ grades in intermediate
accounting are a stronger determinant of their task performance (in terms of

accuracy and speed) than was either the type of interface they used or their data

79

modeling problem score. The accounting grade was significant with higher
accounting grades associated with higher task performance. Data modeling
problem scores approached significance with higher data modeling scores
associated with higher task performance. The type of interface was not
statistically significant. Instead of abstraction group subjects exhibiting superior
performance, they demonstrated similar performance. This suggests the
abstraction hierarchy does not aid the user as we believed it would. Perhaps, as
suggested in Chapter 3, the abstraction hierarchy over-filters or over-condenses
the information presented to the users. This possibility is discussed further in

Chapter 6.

5.2 Analysis of User Perception Hypothesis

The user perception hypothesis is stated in terms of perceived
manageability. Subjects answered Likert scale questions as to how manageable
they perceived their database interface to be. Hypothesis Two in null form (H2)
suggests no difference in perceived manageability between groups of subjects using
the abstraction interface versus the non-abstraction interface, after controlling for
accounting and data modeling domain knowledge. This hypothesis was tested
using MANOVA in order to control for the covariates. A MANOVA model with
Satis as the dependent variable, Group as the factor and IntAcc and DataMod as
covariates was run. The Satis variable in the model is the average of a subject’s
responses to five 7 point Likert scale questions. Group, IntAcc, and DataMod are

defined as described in Section 5.1.

e

80
This MANOVA model was also run using SPSSX. Descriptive statistics for

the Satis variable are presented in Table 5.5. The descriptive statistics for Intdcc
and DataMod remain as presented in Table 5.1. The direction of effects indicate
that overall, subjects in the non-abstraction group perceived their interface as
more manageable than did subjects in the abstraction group; however, the
significance tests presented later in this section reveal the difference is not

statistically significant.

Table 5.5: Descriptive Statistics for User Perception Model

SATIS Mean Std Deviation N
Non-abstraction 3.67 1.52 27
Abstraction 3.54 1.30 20

Total 3.62 1.42 47

Results of testing for homogeneity of variance for the Satis variable are
presented in Table 5.6. Results for IntAcc and DataMod remain as illustrated in
Table 5.2. The Cochran’s C test and Bartlett-Box F test reveal no significant

violations of the assumption of homogeneous variances.

Table 5.6: Tests of Homogeneity of Variance for User Perception Model

Value Significance
SATIS
Cochran’s C S8 P=.463 (approx)

Bartlett-Box F S1 P=.477

81

The significance test results for the user perception model are summarized
in Table 5.7. Part (a) of the table contains the test of significance for Satis using
unique sums of squares. The line entitled "Within Cells" contains the error term
data. The "Regression" row indicates the significance of the combined covariates
(IntAcc and DataMod) in relation to Satis. The line called "Group" indicates the
significance of the type of interface used in relation to Satis. Part (b) of the table
breaks down the effect of the covariates, to indicate the individual strength of

each covariate in relation to Satis.

Table 5.7: Significance Test Results for User Perception Model

(a) Test of significance for Satis using unique sums of squares

SS df MS F Significance
Within Cells 85.91 43 2.00
Regression 6.75 2 3.37 1.69 197
Group 01 1 01 00 947

(b) Individual Univariate test of significance

Covariate B Beta Std Error t-value Significance
INTACC 184 .103 265 0.693 492
DATAMOD -015 -.266 008 -1.788 081

The overall adjusted R-square for Satis is .01. This suggests that only 1
percent of the variance in subjects’ perceived manageability is explained by the
combination of their accounting domain knowledge, their data modeling

knowledge, and the type of interface they used.

82

Figure 5.2 summarizes these results in terms of the conceptual framework

adapted from Jih et al. (1989).

Characteristics
- Interf nsed F= .00 (.947)
(Abstraction vs. >
Nonabstraction)
e
- Dea';nﬁt;deling F=1.69 (.197) per tion:
Knowledge > > P eretved
- Acf;:nﬁns Domain Manageability
Adjusted
: none R-square = .01
Task musu{ed
Characteristics: 7
(held constant)

Note: effect strength given is the F-statistic for each variable

followed by the significance level in parentheses. The F-statistic
for the effect of Individual Differences on User Perception is for
the combined effect of accounting knowledge and data modeling

knowledge.

FIGURE 5.2: SUMMARY OF USER PERCEPTION RESULTS

83

The data indicate that the combined covariates IntAcc and DataMod do not
contribute significantly to the dependent variable Satis, although DataMod taken
individually approaches significance in relation to Satis. The results also suggest
that, after controlling for the covariates, there is no statistically significant
difference in perceived manageability between users of the abstraction interface

and users of the non-abstraction interface.

53 Summary of Findings

Based on the tests of the hypotheses described in this chapter, the
following observations may be made. The provision of an abstraction hierarchy in
the interface used by the subjects in this experiment for purposes of producing
financial statements from an events-accounting database did not assist them as
predicted, either in terms of task accuracy or in terms of task completion time.
Therefore Hypothesis One in alternative form (H1A) is rejected. Hypotheses One
in null form (H1), predicting no difference, may not be rejected at generally
accepted levels of statistical significance as indicated by the MANOVA analysis in
Table 5.4. Possible reasons for this unexpected result and future research
directions resulting from it are discussed in Chapter 6.

Hypothesis Two in alternative form (H2A) predicted that users of the
abstraction interface would perceive their interface as more manageable than
would users of the non-abstraction interface. Thus, H2A is rejected. The null

form of this hypothesis (H2), predicting no differences, cannot be rejected at

84

generally accepted levels of statistical significance. Subjects perceived both

interfaces to be equally manageable.

85

End Notes:

1.

The weighting of the line items was the same as used for computing task
accuracy. Thus, the computation of Cost of Goods Sold (whether or not
the result was correct) was assigned a higher weight than the computation
of Sales. The line items assigned higher weights were expected to take
more time to compute than those to which lower weights were assigned.

CHAPTER 6 - DISCUSSION AND SUGGESTIONS FOR FUTURE RESEARCH

6.1 Discussion of Results

The research question addressed by this study is whether the inclusion of
an abstraction hierarchy in an interface to an events-based accounting database
facilitates the preparation of financial statements. The expectation, based on
previous studies in the behavioral accounting and database literatures, was that
users of an interface including an abstraction hierarchy would exhibit higher
accuracy, use less time, and perceive their system to be more manageable than
would users of an interface without the abstraction hierarchy.

The computer science literature has taken as conventional wisdom the idea
that abstraction and abstraction hierarchies are useful for controlling complexity.
Brodie (1984) claims

Abstraction is essential in database applications due to their inherent
complexity which must be managed (p. 40).

Data flow diagrams are subdivided into progressively lower levels in order to
provide greater amounts of detail, due to the belief that

users have differing needs, and the differing levels can better meet users’
needs for details about the system (Cushing and Romney 1993, 108).

The results of this dissertation suggest that this conventional wisdom should be
subjected to further testing. In this study, user performance results suggest that
there is no effect as predicted by the conventional wisdom, in terms of either
accuracy or speed. No significant differences were observed for user perceptions,

measured as perceived manageability.

86

87

These results do not appear to be an anomaly of the sample used in the
study. Pilot test results revealed no significant differences for any of the three
dependent variables, with the means showing the same directions as this
experiment (i.e. non-abstraction subjects were more accurate than abstraction
subjects, abstraction subjects took slightly more time, and abstraction subjects

perceived their system as slightly less manageable).

6.2 Implications for Events-Based Accounting System Design

The results of this study suggest that the typical commercial database
interfaces that do not contain any abstraction need not be replaced at this time by
interfaces with abstraction hierarchies. This is only a preliminary suggestion as
this study is the first to explore the user-computer interaction in events-based
accounting systems for the task of financial statement preparation. No definitive
statements may be made regarding events-based accounting system design until

more research is done.

6.3 Implications for Events-Based Accounting System Instruction

Instruction in events-based accounting systems has been largely centered
around teaching students how to design events-based databases. The results of
this study suggest that more guidance needs to be given to students in how to
retrieve information from an events-based database. One possibility that arose
from the observations in this study is that perhaps emphasis needs to be placed on
using REA models implemented in the form of E-R diagrams for information

retrieval. Of the few schools teaching the REA accounting model in accounting

88

information systems courses, all seem to teach information retrieval using only the
relational tables. The E-R diagrams are used for instruction on database design.
Students are taught to develop E-R diagrams from a textual description of
a company’s operations and information needs. Students then use the E-R
diagrams to design the relational tables. One would expect them to understand
that the E-R diagrams could be useful in helping them to retrieve information
from the tables; however, this expectation requires analogical reasoning which
students may not be using. Students may need explicit instruction as to the
usefulness of E-R diagrams (and of the abstraction hierarchies present in the

REA model) for information retrieval.

6.4 Future Research Directions

Overall, very little variance in user performance and in user perception was
accounted for in this study by the type of interface used and by subjects’
accounting and data modeling domain knowledge. This suggests the existence of
variables which affect user performance and perceptions that were not measured
in this study. The conceptual framework of Jih et al. (1989) may be examined to

provide directions for future research. (See Figure 3.1).

6.4.1 Further Examination of System Characteristics

System characteristics are included as one category expected to affect user
performance. In this study, both systems were created following the REA
accounting conceptual model implemented as relational database tables. The

abstraction system included in its interface an abstraction hierarchy intended to

89

aid users in navigating through the database. The result that users were not
assisted by the interface requires consideration of two possibilities. First, users
may not need any assistance in navigating the database tables. If that were the
case, the accuracy scores should have been much higher than they were. The
non-abstraction group scored an average of only 47 out of 84 possible points.
These scores were depressed partly because of the time pressure. In pilot testing,
where subjects had more than enough time to complete the task, the average
score was 66 out of 84. These scores are still low enough to suggest a need for
assisting users in navigating through the database tables.

The second possibility is that the abstraction hierarchy implemented may
need to be modified. Perhaps it has too many layers, thus over-filtering the data.
Perhaps the use of E-R diagrams in the hierarchy was confusing to subjects. Even
though subjects had been thoroughly instructed in E-R implementation of the
REA accounting model, many accounting information systems students claim they
do not understand E-R diagramming. Thus, if the abstraction mechanisms were
manifested in some format other than E-R diagrams, perhaps users would find
them more useful. As discussed in Section 6.3, switching the focus of instruction
from database design to information retrieval may reduce students’ confusion
regarding E-R diagrams and make the abstraction interface as implemented in this
study more helpful.

Training on use of the system is another factor which could be handled
differently in future research. Subjects were not given any advance training on the

specific systems used in the experiment. The abstraction system may have a

90

steeper learning curve than does the non-abstraction system, thus leading to
poorer performance for first-time use. The abstraction system had many screens
which required the user to read one or two sentence instructions before
proceeding, whereas the non-abstraction system’s instructions fit entirely onto
button labels (except for the initial screen which was identical to that of the
abstraction system). Since subjects hadn’t been specifically taught how to use the
REA abstraction hierarchy for information retrieval, abstraction system users had
to read and contemplate the instructions.

The non-abstraction subjects were able to concentrate immediately on the
tables themselves, which was more consistent with the method of information
retrieval they had been using in class. In future research, subjects should be
provided with explicit instructions on the use of the REA abstraction hierarchy to
retrieve data, and they should be allowed to practice using the system to which
they are assigned (with a different database and a different task) before
performing the experimental task. This may lead to very different results than
were found in this study. A follow-up study is being planned to determine
whether different learning curves for the two systems affected the results of this
particular experiment.

Another direction for future research is the examination of this research
question with a database that is made up of a greater number of tables and
attributes than the one used in this experiment. The database used in this study
was very simple. Wilson Company offered only one product line, consisting of six

different items. There were no fixed assets and no manufacturing cycle. The

91

attributes in the tables did not include many items that would be considered useful
for non-accounting decisions.

The database used in this experiment contained 33 tables with 132
attributes. Twenty of the 33 tables (61%) contained information needed for
financial statement preparation. Of the 132 attributes included in the database, 64
were needed for identifying instances in the tables or for identifying relationships
between tables in accordance with the relational model. Twenty-six of the
attributes contained data needed for financial statement item computations. The
remaining 42 attributes contained data useful for record-keeping or for other types
of decisions (e.g. vendor address, customer credit rating). Thus, 90 out of 132
(68%) of the attributes were needed for the financial statement preparation task.

The expected benefit of abstraction is to assist users in filtering out data
which is irrelevant for their task. Only 32% of the data in the Wilson Company
database could be considered irrelevant for the preparation of Wilson’s financial
statements. A corporate-wide database of a realistically complex company would
include many more attributes that would be irrelevant in generating financial
statements but would be useful for making marketing, management, personnel, or
logistics decisions. There does not appear to be any theory to guide us as to how
high the percentage of irrelevant data would need to be in order to demonstrate
the point at which abstraction becomes beneficial. Future research should
manipulate the size and complexity of the database, to try to identify a point (if
one exists) at which user performance and/or user perceptions are consistent with

the predictions made in this study.

92
6.4.2 Further Examination of Individual Differences

Individual differences make up the next category of variables which may
affect user performance. Only two types of domain knowledge were measured in
this study. Much of the variance unaccounted for could have been due to other
individual differences. Field dependence, cognitive style, and general problem-
solving ability are examples of other human characteristics that could be
incorporated into future research. Subjects used in this experiment were
knowledgeable in financial statement preparation, but were novices in terms of
real-world experience. Having not applied their knowledge on a regular basis,
they may not have demonstrated their true potential performance because they
were not confident in their knowledge.

Because the environment of the experiment was similar to an examination
situation, some subjects could have been stricken by test anxiety. Alternatively,
subjects may not have had adequate motivation to perform up to their potential.
Students should be motivated to attain as high a course grade as possible, but
many appear willing to settle for lower grades in exchange for less effort.

Data modeling domain knowledge was measured as an individual difference
variable in this study. However, there are two potential problems with this
variable’s measurement. One problem is that the data modeling test problem on
which they were scored was a database design problem. Subjects were given a
textual description of a company and asked to draw an E-R diagram and a set of
relational database tables to be used in that company. This may not adequately

tap their knowledge of data modeling from an information retrieval standpoint.

93

The second problem is that it is possible that all subjects had enough data
modeling domain knowledge such that those who did not have the abstraction
hierarchy interface were able to mentally picture the necessary parts of the
hierarchy. If this were the case, subjects without the abstraction interface could
scroll through the tables to see what was there and determine a financial
statement line item to compute. Seeing the tables may have triggered a mental
image of the abstraction hierarchy for the relevant cycle, which directed the user
as to the appropriate tables to use in computing a given financial statement line
item. The user could then scroll through the tables to find the other necessary
tables. Users with the abstraction interface who could already picture the
necessary parts of the abstraction hierarchy may have been frustrated by the
provision of useless overhead (particularly since it was accompanied by
instructions they needed to assimilate, as discussed earlier). This would explain
why the system may have actually hindered their performance and certainly did
not help them.

An experiment is being planned as an extension of this dissertation to test
this possibility. Subjects who have adequate accounting domain knowledge will be
given a short training session on information retrieval from an events-based
accounting database. These subjects will then prepare the same financial
statements that the current study’s subjects (with data modeling domain
knowledge) completed. Such a study will help to isolate whether there is an
interaction effect between the provision of an abstraction hierarchy interface and

the existence of subjects’ data modeling domain knowledge.

94
6.4.3 Further Examination of Task Characteristics

Task characteristics make up the third category which Jih et al. (1989)
expect to affect user performance. The task was held constant in this study.
Financial statement preparation is a task which is complex, but well-structured.
Future research could examine whether the abstraction interface would have a

different effect on user performance for tasks which are unstructured.

6.4.4 Refinement of Task Completion Time Measurement

Future research should refine the measurement of task completion time.
The 60 minute time frame allowed in this study was not adequate to allow most
subjects to complete the financial statement preparation task, thus causing a
ceiling effect for the raw time measurement. Scaling of this variable results in a
measure which is less precise than that which would have been obtained with a
longer time frame. Protocol analysis via computerized process tracing would allow

for an even finer measurement of time to be obtained.

6.5 Summary

The results of this dissertation can be summarized as follows. The
hypothesis of no difference in task performance between users of the two
interfaces could not be rejected. The user perception hypothesis put forth in this
dissertation also could not be rejected. This study has shown that the
conventional wisdom of abstraction as an aid to users requires empirical
examination to determine the types of situations in which it will provide assistance

and the occasions for which it may actually hinder users. Several future research

95

directions have been suggested as a result of the findings of this study. These
constitute the beginning of a research program on the use of abstraction in user

interfaces for information retrieval.

APPENDIX 1

APPENDIX 1: EXPERIMENTAL INSTRUCTIONS

To Computer Project Participants:

Thank you for coming today. The computer project in which you are participating is
being conducted in order to enable a comparison between users of events-based
accounting systems. The results should help in future design of such systems. This
project will require approximately 80 minutes of your time, in one session.

General Instructions:

Your task is to prepare handwritten financial statements (Income Statement, Balance
Sheet, and Statement of Changes in Retained Earnings) for Wilson Company as of June
30. All information needed to complete the statements is in Wilson’s database on the
computer you are using. IGNORE TAXES!

As a reminder, an Income Statement includes the company’s revenues and expenses. A
Balance Sheet includes the assets, liability, and stockholders’ equity of the company. A
Statement of Changes in Retained Earnings starts with the beginning balance of Retained
Earnings, lists additions and reductions and concludes with the ending balance of
Retained Earnings.

Beside each financial statement number, you must give a brief explanation of how you
calculated it. For example, if you were asked to compute the total number of students
enrolled at the Specialty Arts Academy (a student can only take 1 course) and you had
the following table included in your database:

e ————1

‘ Number of Students ;
{ *COURSE NUMBER* Course Name Enrolled

Your answer would be presented as follows:
70 - Went to the C-1 table and summed the "Number of Students Enrolled" column.

Tools:

You may use a calculator. You should be able to complete your task by using the
computer and your calculator. You have also been provided with a stack of scrap paper.
Each piece of scrap paper is a different color. You may use this paper for temporary
recording of information - if you need it. However, you may not use this paper to record
information you need on a long-term basis (you are to refer back to the database for such
things). To ensure that no-one uses the paper for such purposes, the paper will be
collected every 10 minutes. For example, if your session starts at 8:10, the first page (e.g.
yellow) will be collected at 8:20. The second page (e.g. green) will be collected at 8:30,

96

97

etc. You will be given a warning 1 minute before each collection so that you may begin
new calculations on the next page. This will prevent collection of paper in the middle of
a calculation you may be making. (Note: the ideal situation would be for you to not
need to use the paper at all).

If you have any mechanical difficulties with your computer or your mouse, please raise
your hand for assistance. No questions about Wilson Company, the database, or financial
statements can be answered. You should be able to figure out everything you need from
the database.

Maneuvering Through the Database:

On each screen you will see buttons with labels such as "Continue” to go from screen to
screen. Only use these buttons to maneuver through the system. Because this system was
created in a windowing environment, each screen is also a window. Like any windows,
they may be closed or iconicized by clicking on the arrows in the upper left and right
hand corners. DON'T DO THIS -- IT WILL THROW YOU OUT OF THE SYSTEM!
If you accidentally do this, raise your hand, and I'll come get you back in. But this will be
a waste of your time!

CAUTION!!: Each table ends with a blank row. Any table that has more than five rows
has a scroll bar on the right side. There are more entries in these tables than you see on
the screen! Click the left mouse button on the arrow-heads of the scrollbar to scroll
down and up through the table. You will know you have reached the end of a table when
you see the blank row.

Class Credit:
As you know, you are completing this project for class credit. Your grade will be
assigned based on the following criteria:

1) Accuracy and completeness of the financial statements you turn in.
2) How quickly you complete the task.

For example, a paper that is 90% accurate (with complete and correct explanations) that
is completed in 40 minutes would be graded higher than one which is 100% accurate and
is completed in 60 minutes. Thus, although you are allowed an hour to finish the task, if
you finish in less time, you should turn in your statements right away.

Questionnaire:

When you have turned in your financial statements, and your completion time has been
recorded, you will be given a questionnaire to complete. You must fully complete this
questionnaire in order to receive class credit for this project.

Confidentiality:

I will provide copies of your financial statements to your instructor. The financial
statements will be seen only by your instructor and by me. Your questionnaire will be
seen only by me (your instructor will not receive a copy). All responses will remain
confidential, and are obtained only for statistical purposes. Any results will be reported
in aggregate form. If you have any questions regarding this project, feel free to contact
me through the Accounting Department at 355-7486.

APPENDIX 2

APPENDIX 2: EXPERIMENTAL QUESTIONNAIRE

For each question that follows, please circle the number which corresponds most
closely to your experience in this project. (1 = Strongly Agree, 4 = Neutral, 7 =
Strongly Disagree)

[y

. I found the database interface cumbersome to use.
1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

2. Using the database interface was frustrating.
1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

3. Using the database interface required a lot of mental effort.
1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

H

. The database interface is clear and understandable to me.
1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

W

. Overall, I found the database interface easy to use.
1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

98

99

Demographic information (strictly confidential - for statistical purposes only)
Circle the appropriate category:

Your age: 0-19 20-21 22-24 25+

Your grade level: Fr. So. Jr. Sr. PPA Grad student (non-PPA)
Your GPA in accounting classes: <2.5 2.5-2.99 3.0-3.49 3.5-4.0
Your Overall GPA: <25 2.5-2.99 3.0-3.49 3.5-4.0
Place a check mark next to the accounting courses you have taken (besides 321).
If you are currently taking one of the courses, add a "c" next to the check mark.
If you took an equivalent of the MSU course at another school, add a "*" next to
the check mark.

______ACC 201 (Financial Accounting Principles)

____ACC 202 (Managerial Accounting Principles)

______ACC 251H (Honors Accounting Principles)

_____ACC 300 (Intermediate Financial Accounting I)

______ACC 301 (Intermediate Financial Accounting II)

______ACC 308 (Governmental/Not for Profit Accounting)

____ACC 341 (Cost and Managerial Accounting - used to be 303)

_____ACC 411 (Auditing)

_____ACC 419 (Auditing Theory)

_____ACC 431 (Federal Income Tax)

_____ACC 439 (Federal Taxes)

_____ACC 490 (Independent Study)

Please list the computer science courses you have taken:

100

How many months of work experience (paid or unpaid) involving accounting
responsibilities have you had (do not include being an accounting TA):

Are you (or have you been) an Accounting Teaching Assistant?

If yes, for which course (circle one): Acc 201 Acc 202 Acc 230

If yes, for how many months have you been an Accounting TA?

How many months of work experience (paid or unpaid) involving regular use of
computers or computer systems have you had:

LIST OF REFERENCES

LIST OF REFERENCES

Abramson, D.H. 1986. The future of accounting: Scenarios for 1996. Journal of
Accountancy. October. 120-124.

Ackoff, RL. 1967. Management misinformation systems. Management Science.
December. B147-B156.

Batini, C,, S. Ceri, and S.B. Navathe. 1992. Conceptual Database Design: An
Entity-Relationship Approach. Benjamin/Cummings, California.

Batra, D., J.A. Hoffer, and R.P. Bostrom. 1990. Comparing representations with
relational and EER models. Communications of the ACM. February.
126-139.

Beaver, W.H. and A. Rappaport. 1984. Financial reporting needs more than the
computer. Business Week. August 13. 16.

Benbasat, 1. and A.S. Dexter. 1979. Value and events approaches to accounting:
An experimental evaluation. The Accounting Review. October. 735-748.

Bonner, S.E. and B.L. Lewis. 1990. Determinants of auditor expertise. Journal of
Accounting Research. Supplement. 1-20.

Brodie, M.L. 1981. Data abstraction for designing database-intensive
applications. Proceedings of the Workshop on Data Abstraction, Databases
and Conceptual Modeling (1980). Pingree Park, Colorado. SigArt, SigMod,
SigPlan, 101-103.

. 1984. On the development of data-models. On Conceptual Modelling. eds.
Brodie, M.L., Mylopolous, J. and Schmidt, J.W. Springer-Verlag, New
York. 19-47.

. and D. Ridjanovic. 1984. On the design and specification of database

transactions. On Conceptual Modelling. eds. Brodie, M.L,, J. Mylopolous,
and J.W. Schmidt. Springer-Verlag, New York. 277-306.

101

102

Casey, C., Jr. 1980. Variation in accounting information load: The effect on loan
officers’ predictions of bankruptcy. The Accounting Review. January. 36-49.

Chan, H.C,, K.K. Wei, and K.L. Siau. 1991. Conceptual level versus logical level
user-database interaction. Proceedings of the 12th International Conference
on Information Systems. New York. December. 29-40.

Chervany, N.L. and G.W. Dickson. 1974. An experimental evaluation of
information overload in a production environment. Management Science.
June. 1335-1344.

Cushing, B. 1989. On the feasibility and consequences of a database approach to
corporate financial reporting. The Journal of Information Systems. Spring.
29-51.

and M.B. Romney. 1993. Accounting Information Systems: A
Comprehensive Approach. Addison-Wesley.

Date, CJ. 1986. An Introduction to Database Systems. Fourth edition. Addison-
Wesley.

Davidson, H.J. and R.M. Trueblood. 1961. Accounting for decision making. The
Accounting Review. October. 577-582.

Davis, F.D. 1989. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Quarterly. September.
319-340.

Davis, G.B. and M.H. Olson. 1985. Management Information Systems: Conceptual
Foundations, Structure and Development. Second edition. McGraw-Hill.

DeMarco, T. 1979. Structured Analysis and System Specification. Prentice-Hall.

Dunn, C.L. and W.E. McCarthy. 1992. Conceptual models of economic exchange
phenomena: History’s third wave of accounting systems. Collected Papers
of the Sixth World Congress of Accounting Historians. Volume 1. August 20.
133-164.

Einhorn, HJ. and R.M. Hogarth. 1980. Rationality and the sanctity of
competence. Working paper.

Financial Accounting Standards Board. 1989. Accounting Standards, Original
Pronouncements July 1, 1973 - June 1, 1989. Irwin.

103

Gal, G. and W.E. McCarthy. 1992. Semantic specification and automated
enforcement of internal control procedures within accounting systems.
Working paper.

Geerts, G. and W.E. McCarthy. 1992. The extended use of intensional reasoning
and epistemologically adequate representations in knowledge-based
accounting systems. Proceedings of the Twelfth International Workshop on
Expert Systems and Their Applications. Avignon, France. June 1992.
321-332.

Herot, C,, R. Carling, M. Friedell, D. Kramlich, and R. Rosenberg. 1981.
Overview of the spatial data management system. Computer Corporation of
America, Technical Report CCA-81-08. November.

Howe, D.R. 1983. Data Analysis for Data Base Design. Edward Arnold.

Jih, WJ.K,, D.A. Bradbard, C.A. Snyder, N.G.A. Thompson. 1989. The effects
of relational and entity-relationship data models on query performance of
end users. International Journal of Man-Machine Studies. 257-267.

Kent, W. 1981. Consequences of assuming a universal relation. ACM
Transactions on Database Systems. December. 539-557.

. 1983. The universal relation revisited. ACM Transactions on Database
Systems. December.

Libby, R. 1983. Determinants of performance in accounting decisions.
Accounting Research Convocation. University of Alabama.

. and Lipe. M. 1992. Incentives, effort, and the cognitive processes involved
in accounting-related judgments. Journal of Accounting Research. Autumn.
249-273.

. and Luft, J. 1993. Determinants of judgment performance in accounting
settings: Ability, knowledge, motivation, and environment. Accounting,
Organizations, and Society. July. 425-450.

Lochovsky, F.H. and D.C. Tsichritzis. 1977. User performance considerations in
DBMS selection. ACM-SigMod International Conference on Management of
Data. August. 128-134.

Loomis, M.E.S. 1987. The Database Book. Macmillan. New York.

March, S.T. and G.F. Smith. 1994. Design and natural science research on
information technology. Decision Support Systems. forthcoming.

104

McCarthy, W.E. 1979. An entity-relationship view of accounting models. The
Accounting Review. October. 667-68S.

. 1982. The REA accounting model: A generalized framework for
accounting systems in a shared data environment. The Accounting Review.
July. 554-578.

. 1987. On the future of knowledge-based accounting systems. The D.R.
Scott Memorial Lecture Series. The University of Missouri. 19-42.

Moore, G.C. and 1. Benbasat. 1991. Development of an instrument to measure
the perceptions of adopting an information technology innovation.
Information Systems Research. September. 192-222,

Morris, A.H., G.M. Kasper. and D.A. Adams. 1992. The effects and limitations
of automated text condensing on reading comprehension performance.
Information Systems Research. 3:1. 17-35.

Ogden, F. 1991. Dr. Tomorrow searches for electronic future. Computerworld.
September 9. 19.

Otley, D.T. and FJ.B. Dias. 1982. Accounting aggregation and decision-making
performance: an empirical investigation. Journal of Accounting Research.
Spring. 171-188.

Palmer, S.E. and R. Kimchi. 1986. The information processing approach to

cognition. In T. Knapp & L. Robertson (Ed.) Approaches to Cognition.
Erlbaum. 37-77.

ParcPlace Systems. 1992. VisualWorks version 1.0.

Rappaport, A. 1968. Management misinformation systems - another perspective.
Management Science. December. B133-B136.

Revsine, L. 1970. Data expansion and conceptual structures. The Accounting
Review. October. 704-711.

Schick, A., L. Gordon, and S. Haka. 1990. Information overload: A temporal
approach. Accounting, Organizations, and Society. 15:3. 199-220.

Shneiderman, B. 1980. Software Psychology: Human factors in computer and
information systems. Winthrop Publishers, Massachusetts.

. 1992. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley.

105

Simon, H.A. 1990. Information technologies and organizations. The Accounting
Review. July. 658-667.

Smith J.M. and D.C. Smith. 1977. Database abstractions: aggregation and
generalization. ACM Transactions on Database Systems. June. 105-133.

. and . 1978. Principles of database conceptual design. Data Base
Design Techniques I: NYU Symposium. New York. May. 114-146.

Snowball, D. and C. Brown. 1979. Decision making involving sequential events:
some effects of disaggregated data and dispositions toward risk. Decision
Sciences. Vol. 10. 527-546.

Sorter, G.H. 1969. An ‘events’ approach to basic accounting theory. The
Accounting Review. January. 12-19.

The American Heritage Dictionary. 1980. W. Morris, ed. Houghton Mifflin.

Ullman, J.D. 1983. On Kent’s "Consequences of assuming a universal relation."
ACM Transactions on Database Systems. December 1983.

University of Southern California Financial Accounting Study Group. 1991.
Setting Financial Accounting Standards for the Twenty-first Century. Topical
Issue Study No. 4. School of Accounting, USC.

