

chi”!.1}.

v w
‘: ..

‘ 31,“

*SE {r

.n.
x.

.A 2&2 kg; ‘

- w

I

mm-Lfirr‘_ a

“335i "M
j

1‘

53
, x
2.. ‘
«39.?

.

J .1: ‘

#55535
:91}:- "

-
u
n
c
o
n
y
.
‘

”
A

-
\
.
L
2
9
.

-
.
‘
.
n
‘
.
o
'
h
’
n
/
y
u
m

~
.
'
.
.
'

.
.

‘. {Ex

£35133? ’Afl $3.31

.' r;.;«:».h‘1l.w_uz§%¢~ :

v, . Jew: "I! w

TH“

u RABIES

‘lllllllll‘llllill .
3 1293 01037 37

This is to certify that the

dissertation entitled

An Investigation of Abstraction

in Events-Based Accounting Systems

presented by

Cheryl Lynn Dunn

has been accepted towards fulfillment

of the requirements for

PhD degree inmm

Mme/me Gaze
Major professor \J

Date March 25, 1994

MSU is an Affirmative Action/Equal Opportunity Institution 0- 12771

LIBRARY

Michigan State

Universlty

PLACE IN RETURN BOXto mmwothb chockomhom younocord.

TO AVOID FINES Mum on or Moro dd. duo.

DATE DUE DATE DUE» DATE DUE

MSU I.An Afflnnauvo Action/EM Opportunuy Instltulon

7 i m

——““—k “

AN INVESTIGATION OF ABSTRACTION IN EVENTS-BASED

ACCOUNTING SYSTEMS

By

Cheryl Lynn Dunn

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Accounting

1994

ABSTRACT

AN INVESTIGATION OF ABSTRACTION IN EVENTS-BASED

ACCOUNTING SYSTEMS

By

Cheryl Lynn Dunn

Researchers have recently expounded the virtues of events-based accounting

systems. The most prominent criticism of events-based accounting systems is that they

provide more information than human users can handle, resulting in information

overload. The REA accounting model proposed by McCarthy (1982) suggests that the

inclusion of an abstraction hierarchy in the user interface of an events-based accounting

system will make the information load manageable. Abstraction is the suppression of

irrelevant details and the emphasis of details appropriate to a given decision. The

principle of abstraction has been highly touted in the computer science literature as a

means of controlling complexity.

Abstraction hierarchies decompose system models into multiple views with varying

levels of detail and are thus advocated for systems which have multiple users with varying

needs. The concepts of abstraction and abstraction hierarchies have been subject to little

empirical testing in the computer science literature. The only studies found examined

abstraction by comparing user performance with data models said to be more or less

abstract than one another. These studies found conflicting results. The current study

compares performance between two groups of users of an events-based accounting .

system: one with an abstraction hierarchy built into its user-interface and one without

the abstraction hierarchy in its user-interface.

Copyright by

CHERYL LYNN DUNN

1994

ACKNOWLEDGEMENTS

I would like to thank Matthew Anderson, William Punch III, and Jon Sticklen

for serving as committee members for this dissertation. Their comments and

assistance were invaluable to me.

Special thanks are due to William McCarthy for being the chairperson of this

committee. Bill’s expertise, guidance, and friendship were essential in enabling me

to see this project through to fruition.

I am also grateful to Deloitte & Touche and to the Department of Accounting

at Michigan State University for providing financial support for this dissertation.

The most heartfelt appreciation I feel is for my family: Jim and Jimmy Dunn.

Besides providing moral support, Jim took over almost all household chores in order

for me to devote maximum attention to this project. Jimmy was as patient and

understanding as any 2-3 year old could be, considering the number of times he

wanted Mommy to play and Mommy had to work. My parents, Bob and Issie Scott,

and my parents-in-law, James and Janet Dunn, also provided a great deal of moral

support throughout my doctoral program.

iv

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES --

CHAPTER 1 - INTRODUCTION - _

CHAPTER 2 - THEORETICAL FOUNDATIONS: PRINCIPLE OF

ABSTRACTION AND NORMALIZATION THEORY

2.1 The Principle of Abstraction

2.1.1 Abstraction Hierarchies

2.1.2 REA in an Abstraction Hierarchy

2.1.3 An REA Abstraction Hierarchy Example

2.1.4 Aggregation/Decomposition

2.1.5 Generalization/Specialization

2.1.6 Classification/Instantiation

2.1.7 Abstraction Hierarchies Revisited

2.2 Normalization Theory and the Universal Relation Model

2.2.1 Rules of Normalization -- First Normal Form

2.2.2 Rules of Normalization -- Second Normal Form

2.2.3 Rules of Normalization -- Third Normal Form

2.2.4 Rules of Normalization -- Boyce-Codd Normal Form

2.2.5 Rules of Normalization -- Higher Normal Forms

CHAPTER 3 - CONSTRUCT AND HYPOTHESIS DEVELOPMENT

3.1 Financial Statement Preparation and Information Overload

 3.2 Information Overload and Manageability

3.3 Proposed Means of Mitigating Information Overload

_ viii

27

27

28

28

CHAPTER 3 - CONSTRUCT AND HYPOTHESIS DEVELOPMENT (Continued)

3.4 Information Overload and User Performance 30

3.4.1 Ability and Knowledge as Determinants of Performance 30

3.4.2 Expected Effect of the Abstraction Hierarchy on Ability

and Knowledge 31

3.4.3 Environment as a Determinant of Performance 33

3.4.4 Motivation as a Determinant of Performance 34

3.5 Prior Studies of Database Query Performance -- 34

3.6 Conceptual Framework for Hypotheses 39

3.7 User Performance Measures and Hypothesis -- 40

3.8 User Perception Measures and Hypothesis _ _- - 41

CHAPTER 4 - METHODOLOGY 44

4.1 Research Framework - 44

4.1.1 Project 1: Building the Interfaces 46

4.1.2 Project 2: Evaluating the Interfaces 46

4.2 Interface Software 47

4.3 Experimental Treatments 47

4.3.1 Abstraction condition -_ 47

4.3.2 Non-abstraction condition 56

4.3.3 Querying the database - 58

4.4 Experimental Environment - - -- _ 58

4.4.1 Task 58

4.4.2 Variables - _- -- 64

4.4.3 Subjects - - 68

CHAPTER 5 - STATISTICAL TESTS AND EXPERIMENTAL RESULTS . 71

5.1 Analysis of User Performance Hypothesis - - 71

5.2 Analysis of User Perception Hypothesis 79

5.3 Summary of Findings - 83

CHAPTER 6 - DISCUSSION AND SUGGESTIONS FOR

FUTURE RESEARCH - _ 86

6.1 Discussion of Results 86

6.2 Implications for Events-Based Accounting System Design 87

6.3 Implications for Events-Based Accounting System Instruction 87

6.4 Future Research Directions - - __________ _ - -- 88

6.4.1 Further Examination of System Characteristics 88

6.4.2 Further Examination of Individual Differences 92

6.4.3 Further Examination of Task Characteristics 94

6.4.4 Refinement of Task Completion Time Measurement 94

6.5 Summary -- 95

APPENDIX 1: EXPERIMENTAL INSTRUCTIONS - _- _- 96

APPENDIX 2: EXPERIMENTAL QUESTIONNAIRE 98

LIST OF REFERENCES ... 101

vii

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

LIST OF TABLES

Descriptive Statistics for User Performance Model

Tests of Homogeneity of Variance for User

Performance Model

Within-Cell (Covariate) Analysis for User

Performance Model

Main-Effect (Group) Analysis of User Performance Model

Descriptive Statistics for User Perception Model

Tests of Homogeneity of Variance for User

Perception Model

Significance Test Results for User Perception Model

viii

73

74

75

77

80

80

81

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

LIST OF FIGURES

Progressive Zooming . - - v— vvvv—v v vvvvvv

 An Abstraction Hierarchy

An Abstraction Hierarchy (continued)

An Abstraction Hierarchy Summarized

Example Universal Relation with Functional Dependencies

for Sale Order Event

Conceptual Framework of Jih et a1. (1989)

IT Research Framework per March and Smith (1994)

Abstraction Interface Initial Screen ..

Abstraction Interface Cycle List Screen _

Abstraction Interface Cycle Template Screen

Abstraction Interface E-R Diagram Screen -_ - --

Abstraction Interface Relationship Schema Screen

Abstraction Interface Relationship Detail Screen

Abstraction Interface Overall Schema Screen _ -

Abstraction Interface Schema Detail Screen

Non-abstraction Interface Initial Screen

 Non-abstraction Interface Table 1 Screen

11

13

15

20

39

45

48

49

50

51

52

53

54

55

56

57

Figure 4.12

Figure 4.13

Figure 4.14

Figure 5.1

Figure 5.2

LIST OF FIGURES (Continued)

Wilson Company Income Statement

Wilson Company Statement of Changes in

Retained Earnings

Wilson Company Balance Sheet

 Summary of User Performance Results

Summary of User Perception Results

61

62

63

78

82

CHAPTER 1 - INTRODUCTION

The REA (Resources-Events-Agents) accounting model was proposed by

McCarthy (1982) as a new method for implementing accounting systems with

"events" orientations (Sorter 1969). The most prominent criticism of events

accounting systems is that information overload causes the benefit of

disaggregated information to be outweighed by the cost of additional cognitive

processing which is necessary (Davidson and Trueblood 1961, Revsine 1970).

Several empirical studies have compared user performance with aggregated versus

disaggregated data. Each study yielded results which support this criticism (e.g.

Chervany and Dickson 1974; Benbasat and Dexter 1979; Casey 1980; Otley and

Dias 1982). No empirical refutation of this criticism has been published in the

accounting literature.

The REA solution for information overload in an events-based accounting

systems implementation is abstraction. Abstraction is the suppression of detail

that is irrelevant for a given decision. Abstraction has been proposed as a means

for controlling complexity in the fields of computer science and cognitive

psychology. McCarthy (1982, 1987) has proposed applications of abstraction to

various elements of the REA model. These applications promote a user

orientation because they can be used to select various levels of detail of a

company’s financial database for further examination. By allowing selective

suppression of detail, the use of abstraction is consistent with FASB Concept

Statements 1 and 6 (FASB 1989). These concept statements attempt to provide

2

guidelines which will result in provision of information useful to present and

potential investors and creditors and to other users at a reasonable cost. The

Board considers it a dilemma that "the optimal information for one user will not

be optimal for another" (FASB 1989, 5199). It has sought means for allowing

users to select only the information that is relevant for given decisions. The REA

model’s recommended use of abstraction provides a possible solution because it

permits users to look at an overall schema of the available pieces of information

and to then select only the pieces deemed useful for further examination.

The research question addressed in this study is whether the inclusion of

abstraction in an interface to a financial database enhances user performance by

mitigating data overload. This question is addressed by first building two

interfaces to a database of financial information, one with abstraction and one

without. User performance with the two systems is then compared. Results have

implications for systems researchers and designers who are interested in

determining how best to implement events-based accounting systems and also for

systems instructors who are interested in determining how best to teach events-

based accounting systems. This project also contributes to the investigation of the

feasibility of database financial reporting, a goal which is consistent with a

proposition by the University of Southern California Financial Accounting Study

Group (1991, 11):

Research and field tests should be undertaken to determine the

feasibility of developing databases and systems to permit users to

obtain the information they perceive necessary to meet their

decision needs in whatever format they may desire, with the

3

expectation that such information would be subjected to the attest

process.

The remainder of this dissertation is organized as follows: Chapter Two

discusses the theoretical foundations for the experimental interfaces: the principle

of abstraction for the abstraction interface and the theory of normalization for the

non-abstraction interface. Chapter Three discusses construct development and

presents hypotheses arising from these discussions. Chapter Four describes the

methodology used to test the hypotheses. Chapter Five discusses statistical tests

and presents the results of the experiment. Concluding comments and suggestions

for future research are offered in the final chapter.1

End Notes:

1. This paper assumes some knowledge of technical terminology as it is used

in the events-based accounting and in the database literature. The reader

who is unfamiliar with such terminology is directed to McCarthy (1987) or

to Date (1986).

CHAPTER 2 - THEORETICAL FOUNDATIONS: PRINCIPLE OF

ABSTRACTION AND NORMALIZATION THEORY

2.1 THE PRINCIPLE OF ABSTRACTION

Brodie (1981) claims "The principle of abstraction is to suppress irrelevant

details of an object under consideration and to emphasize details appropriate to

the current context" (p. 102).1 This is a commonly accepted definition of

abstraction as it is used in computer science. Three types of abstraction are most

widely used in computer science. These include (types along with their inverses):

(1) aggregation (decomposition), (2) generalization (specialization), and (3)

classification (instantiation). These were proposed by Smith and Smith (1977,

1978) and further developed by Brodie (1981, 1984) and by Brodie and Ridjanovic

(1984). As of the present, these three types of abstraction seem to form the

standard in the database literature (Batini, Ceri and Navathe 1992).

Aggregation is a concept which implies a relationship between objects (e.g.

bride, groom, priest) connoting a higher level object or concept (e.g. marriage)

(Smith and Smith 1977). This allows suppression of detail in that many

component object details can be ignored, and focus may be placed on details

which apply to the overall relationship. Generalization is a process in which a set

of similar objects (e.g. cow, horse) is considered to be a generic object (e.g.

animal) (Smith and Smith 1977). Any individual differences between objects (e.g.

gives milk, has mane) may be ignored, and emphasis is placed on those attributes

common to all (e.g. breathes). Classification is an abstraction mechanism in

which instances of an object class (e.g. Clint Eastwood, Charles Bronson) are

6

categorized (e.g. movie star). As with generalization, any individual differences

between the instances may be ignored in such an abstraction. These three types

of abstraction will be discussed in more detail shortly.

2. 1.1 Abstraction Hierarchies

The current study will investigate the use of an "abstraction hierarchy" as

advocated by Smith and Smith (1977, 1978). An abstraction of a system is a

model of that system that deliberately omits certain details. A single abstraction

consists of one view of data resulting from the application of one or more of the

three abstraction methods. An abstraction hierarchy decomposes the model into

multiple views at varying levels of detail. Smith and Smith suggest two

disadvantages of single abstractions which can be alleviated by the use of

abstraction hierarchies. First, decomposition of a single abstraction into a

hierarchy may be necessary to make a system with many relevant details

intellectually manageable.

For example, a telephone directory for a company consisting of employee

name, position, department and telephone number (in alphabetical order by

employee name) contains many relevant details. Depending on the information

needed, it may not be intellectually manageable. If a user wanted to contact the

Personnel Director, but did not know that person by name, it would be quite a

task to find it. If abstraction methods are used to group employee names and

phone numbers according to their departments and positions, the information

would become more intellectually manageable.

7

Second, an abstraction hierarchy permits sharing of a single model by

several diverse users without compromising their access requirements. A single

abstraction omits details as dictated by the expected users and by the intended

application of the abstraction. That particular view may not be useful for other

applications or for other users. For example, consider a person with complex cash

flow management responsibilities. This user would need very detailed cash receipt

information, including trend analysis of which day(s) of the week cash is most

likely to come in, etc.

Contrast such information needs with those of a user who simply needs to

know overall accounts receivable information. If a single abstraction is provided

which contains the detailed information needed by the cash flow manager, the

accounts receivable user is likely to be lost in the detail. If a single abstraction

which contains total cash receipts categorized by type (e.g. sales, stock issuances,

loan proceeds, etc.), the accounts receivable user will be satisfied, but the cash

flow manager will not have enough detail. An abstraction hierarchy would allow

the user to select a presentation of the cash receipt information congruent with

the level of detail needed.

The use of abstraction hierarchies suggested by Smith and Smith is

consistent with the concept of recursive decomposition which Palmer and Kimchi

(1986) claim is central to information processing theories. They discuss this

concept, as it applies to aggregation, as follows:

Any complex (non-primitive) informational event at one level of

description can be specified more fully at a lower level by

decomposing it into (1) a number of components, each of which is

8

itself an informational event, and (2) the temporal ordering relations

among them that specify how the information "flows" through the

system of components (p. 47).

Palmer and Kimchi claim the rationale for using recursive decomposition is to

reduce complexity. They note that (at least in principle) the decomposition should

"factor out" some portion of the complexity implicit in a unitary information event

by making it explicit in the flow relations among a number of simpler events.

They note that as a user moves down a decomposition tree, the internal

complexity of the component operation should decrease, warning that this

reduction comes at the cost of more components and more complex flow relations

among them.

2.1.2 REA in an Abstraction Hierarchy

The abstraction hierarchy which is included in the interface tested in this

study is based on the REA applications of abstraction proposed by McCarthy

(1982, 1987) and further developed by Gal and McCarthy (1992). When used in

an interface to an events-based database, an abstraction hierarchy allows a user to

first examine an overall picture of a company and then to select an area of the

firm on which to "zoom in." From an overall picture of that area, the user can

zoom in further to examine sub-areas, then specific data types, and finally data

instances. The concept of progressive "zooming" is presented clearly in Figure 2.1,

which is taken from Davis and Olson (1985, 550) and in turn from Herot, Carling,

Friedell, Kramlich, and Rosenberg (1981).

Illustration of progressive "zooming" through a spatial data management system.

[Figure 17-10 from Davis and Olson (1985) and Figure 2.2 from Herot et al.

(1981)]

FIGURE 2.1: PROGRESSIVE ZOOMING

As this example illustrates, the user is first presented with an overall map of the

United States, on which low level details are omitted (i.e. with only major

interstate highways and names of major cities included). The user can select a

portion of the United States (e.g. a state) to see more detail. The user would be

presented with a map of that state, with not only major interstate highways and

large cities, but also intrastate highways, main roads, and names of all cities. The

10

user can then focus on a part of that state, for example a city. The user would

zoom in to bring up a city map, with all streets identified, and any other low-level

details that expected users of the map may need.

2.1.3 An RIM Abstraction Hierarchy Example

To make the three abstraction techniques as applied to REA more clearly

understood, a series of conceptual models is provided as an example.2 The first

model presented (Figure 2.2a) is a natural language description of the economic

philosophy of business enterprises. The second (2.2b) depicts an accounting cycle

template (pattern or guide) which is an overall picture of the inherent duality of

economic transactions of business enterprises (Dunn and McCarthy 1992). A

company will transfer economic resources to outside agents with the optimistic

expectation that these transfers-out will eventually result in transfers-in of more

valuable economic resources.

Figure 2.2(c) expands the overall accounting template into a more detailed

diagram. Some of the various cycles which are typically found in manufacturing

companies are presented. The user can get a quick overall picture of the firm

from this diagram without needing to see detailed information about every

transaction. The user can choose a cycle to focus on (for example the conversion

cycle). Figure 2.2(d) presents an entity-relationship3 (E-R) diagram which

partially represents the conversion cycle. With E—R modeling, entities are

portrayed as boxes, and the relationships between entities are represented by

diamonds. Typically only two boxes are present in an overall diagram of a given

11

(a)

mmmmmmmmmmmm-mmmmmbehavior.

(b)

Economlc Economic

Rm TRANSFER TRANSFER

our IN
0mmAgent _. _. Outside Agent

 é»

cm (1) WIP (1)

wm___.cm Job _5éé mplovoflz)

0mm!" “WW

Scum-lemon

g ..

FIGURE 2.2: AN ABSTRACTION HIERARCHY

[adapted from Gal and McCarthy (1992)]

12

cycle. One represents the transferring in of a resource, the other a transferring

out, consistent with the overall diagram in Figure 2.2(b).

The model in Figure 2.2(d) consists of two entities: Job Operations (the

transferring in of a resource) and Cash Disbursements (the transferring out of a

resource). These are two parts of a company’s conversion cycle (Raw Material

Issues and Transfers of WIP to Finished Goods would be two additional parts

which could be modeled separately). The diagram in 2.2(d) does not provide

much detail; it portrays the company’s job operations portion of the conversion

cycle at a very high level of abstraction (low level detail is suppressed). A user

can, however, "zoom in" on this cycle and get a more detailed picture.

Figure 2.3(a) shows a more detailed, partial E-R diagram of the job

operations portion of the firrn’s conversion cycle. The notations of "1" or "n" on

the lines connecting entities indicate the cardinality of the relationship between

those entities. The cardinality of a relationship refers to the maximum number of

objects of one entity set that can be related to another set, and vice versa. For

each mapping of a relation we can specify cardinalitics for both directions. For

example, the "1" by WIP Job and the "n" by Job Operation indicate that for this

company, one WIP Job can have more than one job operation, but any job

operation can belong to only one WIP Job. It is also possible to model "many-to-

many" or "one-to-one" relationships in an ER diagram. For example, many-to-

many relationships are portrayed with an "m" on one side of the diamond and an

"n" on the other. Such a relationship is depicted in Figure 2.3(a) between

Department and Employee. This relationship indicates that for this company, a

13

(a)

INVENTORY

”“03 1 <>—nOPEFIATION

EMPLOYEE "__<>_mOEPARTMEN1’

(b)

INVENTORY wwoe

W Deecrhtlon Won Job Number Total Cost

EMPLOYEE EMPLOYEE . DEPARTMENT

are an” am. we we
DEPARTMENT “WWW

W WSW w" an.“

JOBOPERATION

Job Tlmecard 41%“ ”b #3390” Esmfilwee Job Number

(6)

EMPLOYEE

Employee SSN Employee Name 532.0)!” Wage

001 -01M1 J06 $8.72

002-02-0002 Dan $6.80

003.03.0003 Bob $3.13

FIGURE 2.3: AN ABSTRACTION HIERARCHY (continued)

14

department can have more than one employee, and that an employee may be

assigned to more than one department. The "is-a" relationship included in this

diagram represents a generalization and will be discussed directly in the

Generalization/Specialization subsection.

Although the picture in Figure 2.3(a) portrays the major objects in this

cycle (entities and the relationships between them) it does not include lower level

details about the attributes of these entities and relationships. The user can

progress down yet another level to examine the relational tables for any of the

objects in this diagram. Figure 2.3(b) illustrates example table headings. Such a

view informs users of which attributes of the entities and relationships are

included in the database. A user can then select specific tables for detailed

examination. For example, if the user is interested in the employees of the firm,

looking at Figure 2.3(b) may reveal that all of the relevant attributes are

represented in the Employee table. The user can then zoom down as in Figure

2.3(c) and look at the specific Employee instances to obtain the desired

information.

The reader should now have a general idea of what the individual levels

within an REA model abstraction hierarchy might look like. The levels used in

Figures 2.2, 2.3 and 2.4 are theoretically based on the ordering of the abstractions

used by McCarthy (1982, 1987) and by Gal and McCarthy (1992). Figure 2.4

presents a picture of the overall hierarchy, and is discussed further in the

Abstraction Hierarchies subsection. Following is a more detailed discussion of the

various types of abstraction, and of how they are represented in this hierarchy.

15

 give and take

cycles

FIGURE 2.4: AN ABSTRACTTON HIERARCHY SUMMARIZED

16

2.1.4 Aggregation/Decomposition:

Aggregation is the clustering of different items to form an aggregate entity.

This is a type-to-type relationship in that it deals only with the object types (table

intension in a relational model), and not with the instances (table extension).

Aggregation is used as an abstraction technique in this conceptual model in two

ways. First, the entities are aggregations of different attributes. For example, the

two attributes Job # and Total-Cost are aggregated to form the entity WIP Job

(see Figure 3b). Or inversely, the entity WIP Job can be decomposed into the

attributes Job# and Total-Cosh The aggregation relationship is often described as

"is-part-of." For example, Job # is part of WIP Job, and Total-Cost is part of WIP

Job. A higher level of aggregation is also included in this model, in that entities

may be aggregated to form relationships. For instance, the two different entities

WIP Job and Job Operation are aggregated to form a relationship containing the

attributes Job # and Job-Time-Card. Or inversely, the relationship of WIP Job to

Job Operation can be decomposed into the two separate entities.

2.1.5 Generalization/Specialization:

Another type-to-type relationship that can be specified in a conceptual

model is that of generalization. Generalization clusters related items to form a

generic entity. This type of relationship is often discussed in terms of subtypes

and supertypes. For example, "hammer," "screwdriver," and "wrench" could be

considered subtypes of the supertype "tools." "Tools" is a generalization of those

three subtypes. The presence of generalization as an abstraction technique is

17

usually indicated by an "Is-A" relationship in the model (as in Figure 2.3a). In this

example, WIP Job is a type of Inventory. Other types of inventory would be Raw

Materials (RM) and Finished Goods (FG). These are related items. Thus

Inventory is a generalization of RM, FG and WIP Job, and RM, FG and WIP Job

are specializations of Inventory.

2.1.6 Classificatiofllnstantiation:

Classification is a simple form of data abstraction in which a set of

instances is grouped into a single class. It represents a type-instance relationship

(a relationship between an object type and the specific instances of that object),

thus it represents a lower level of abstraction than do aggregation and

generalization. That is, lower level details are highlighted, and higher level parts

of the model are suppressed. Figure 2.3(c) zooms in further on the conversion

cycle example, to reveal the actual instances of the entity Employee. Joe, Dan and

Bob are all instances of the Employee entity. Inversely, Joe, Dan and Bob all

could be classified as employees.

2.1.7 Abstraction Hierarchies Revisited:

Abstraction hierarchies consist of multiple single abstractions which are

connected to each other by one of the abstraction techniques. Figure 2.4 shows

the entire abstraction hierarchy which represents Figures 2.2(a-d) and 2.3(a-c).

Figure 2.2(b) is simply a data model representation of the natural language found

in 2.2(a). Figures 2.2(b) and 2(c) are related by generalization (the conversion

Cycle is a general economic cycle, the acquisition cycle is a general economic

18

cycle, etc). Figures 2.2(c) and 2.2(d), and Figures 2.2(d) and 2.3(a) are related by

aggregation/decomposition. Cash, Employee, Inventory, etc are all components of

the job operations portion of the conversion cycle. The relationships between

those various entities are also components of the partial conversion cycle. Figure

2.3(b) is a relational representation (a decomposition) of the ER diagram found

in 2.3(a). Figures 2.3(b) and 2.3(c) are related by classification/instantiation. Joe,

Dan, and Bob are instances of the entity Employee.

The order of the abstractions used in this abstraction hierarchy is the same

as those used in the REA literature (McCarthy 1982, 1987; Ga] and McCarthy

1992). Application of the abstraction mechanisms in various orders is certainly

possible. However, there is no theoretical foundation for alternative orderings, as

there is for the order suggested by the REA model. The abstraction hierarchy

interface used in this experiment thus represents the REA model.

2.2 NORMALIZATION THEORY AND THE UNIVERSAL RELATION MODEL

Normalization theory was introduced to database design as a means of

controlling integrity maintenance problems such as insertion, deletion, and update

anomalies‘. These problems cause inconsistency (e.g. requiring the same changes

to be applied to multiple data instances) or accidental loss of data. Normalization

is driven by functional dependencies (Date 1986; Loomis 1987; Batini et al. 1992).

A functional dependency exists between two single-valued attributes if each value

of attribute 1 (a1) corresponds to exactly one value of attribute 2 (a2). In a well-

normalized database, the only theoretically desirable functional dependencies are

19

between the key(s) of an entity and each of the other attributes of that entity.

The process of normalization is a set of rules for systematic detection and

elimination of undesired functional dependencies. Each rule which is successfully

applied results in a particular "form" of normalization, e.g. First Normal Form

(1NF), Second Normal Form (2NF), Third Normal Form (3NF), etc.

The universal relation is often discussed in conjunction with normalization.

This model suggests that it is possible to define an initial universal relation,

involving all attributes relevant to a database under consideration. A

decomposition algorithm can then be applied to create a well-normalized structure

for that database (Kent 1981, 1983; Ullman 1983). A database created by such an

algorithm would be identical to one created by conceptual modeling, with the

exception that the tables would not be given semantic names. Thus the tables

would be called something like R1, R2, R3, etc.

An example of a dependency diagram for a universal relation is presented

in Figure 2.5. This figure contains the attributes associated with an example sale

order file? The functional dependencies between the attributes are represented

by the arrows in the diagram. The attribute at the flat end of each arrow

determines the attribute toward which it is pointing. For example, Customer

Number determines Customer Credit Rating. Alternatively this can be read as

Customer Credit Rating is functionally dependent on Customer Number.

20

itnll PrIce lnvernory

Gunny on

Hand

lrwermry

Cm

/ Coot

lrwermry ’
lnvermry

m mcm

\ \ ‘

\ W

8*Order W

Numb.

W W

Order

N W

FIGURE 2.5: EXAMPLE UNIVERSAL RELATTON WITH FUNCTIONAL

DEPENDENCIES FOR SALE ORDER EVENT

A database table representing this universal relation (with the primary key

double underlined) would be structured as follows:

R1: |§a_le order time, Sale_order_number, Customer_order_number,

Customer_ship-to_street, Customer_ship-to_city, Customer_number,

Customer_last_name, Customerfist_name, Customer_credit_rating,

Customer_street_uddress, Customr_city_address, {Sale_order_quantity,

Inventory_stock_number, Inventory_descriptton, Inventory_unit_price,

Inventory_quantity_on_hand, Inventory_canying_cost,

Inventory_item_cost, Inventory_replacement_cost}]

21

The attributes from Sale_order_quantity through Inventory_replacement_cost are

enclosed in {}’s to indicate that there can be more than one inventory item

included on a sale order, with different quantities for each item This notation is

consistent with the definition conventions of DeMarco (1979, 133) who defines {}

as "ITERATIONS OF the component enclosed."

Examination of this database table reveals several maintenance anomalies

that would exist. An insertion anomaly would be present, because one would not

be able to add a customer unless a sale order had been received from that

customer. Thus it would be impossible to add prospective customers. A deletion

anomaly would occur in that if the last sale order for a customer6 was deleted all

information about that customer would also be removed. An update anomaly

would also exist. For example, if the inventory carrying cost of an item changed,

the change would have to be made to multiple instances in the database (i.e. to

every instance of sale order that included the associated inventory item).

2.2.] Rules of Normalization -- First Normal Form:

Several rules of normalization can be applied to this relation in order to

convert it into a well-normalized structure which eliminates. these anomalies. A

relation is in first normal form if, and only if, every attribute in every row can

contain only a single value (Date 1986; Loomis 1987). Thus, repeating groups

must be removed from the relation. The attributes in the sale order relation

which were included inside the {}’s make up a repeating group. The key attribute

Sale order m could correspond to multiple values of Inventory_stock_number

22

since a sale order can be for more than one kind of inventory. To convert this

relation to first normal form, the table must be flattened. One way to achieve this

is to decompose the universal relation into multiple relations, propagating the

original key down to form a composite key for the repeating group (Howe 1983).

In the example discussed earlier, the repeating group could be broken out as a

separate relation, with the original key Sale order time propagated down to form a

composite key with Inventory stock number for R2. The resulting lNF relations

are as follows:

R1: [M order time, Sale_order_number, Customer_order_number,

Customer_ship-to_street, Customer_ship-to_city, Customer_number,

Customer_last_name, Customerfirst_name, Customer_credit_rating,

Customer_street_address, Customer_city_address]

R2: Sale order _I_ven_o_ number Sale_order_quanfity,

Inventory_description, Inventory_unit_price,

Inventory_quantity_on_hand, Inventory_carrying_cost,

Inventory_item_cost, Inventory_replacement_cost]

2.2.2 Rules of Normalizatio -- Second Normal Form:

Second normal form calls for the elimination of non-prime (partial)

functional dependencies (that is, if an attribute depends on only part of the

primary key of the relation). A non-prime functional dependency can only exist if

the primary key (identifier) of a relation is composite. R1 is in 2NF since it has

only a single key. R2 has partial functional dependencies. The attributes

Inventory_description, Inventory_unit_price, Inventory_quantity_on_hand,

Inventory_canying_cost~, Inventoty_item_cost, and Inventory_replacement_cost all are

dependent only on the Inventory gock number portion of the composite key. This

23

problem can be remedied by replacing the composite key in R2 with

ILWM M number and breaking out an additional relation (R3) with the

composite key and any attributes that are dependent on both parts. In this

example, only Sale_order_quantity depends on both Sale order time and on

[WM Mk ngmber. The revised relations in 2NF are as follows:

R1: [Sale order time, Sale_order_number, Customer_order_number,

Customer_ship-to_street, Customer_ship-to_city, Customer_number,

Customer_last_name, CustomerJirst_name, Customer_credit_rating,

Customer_street_address, Customer_city_address]

R2: |Inventog stock number, Inventory_description,

Inventory_unit_price, Inventory_quantity_on_hand,

Inventoty_canying_cost, Inventory_item_cost,

Inventory_replacement_cost]

R3: I% order time, Inventog stock number, Sale_order_quantity]

2.2.3 Rules of Normalization -- Third Normal Form:

Third normal form calls for the elimination of transitive functional

dependencies. That is, no non-key attribute can be dependent on another non-key

attribute. In the sale order event example, there is a transitive functional

dependence. The non-key attributes Customer_last_name, Customer_first_name,

Customer_credit_mting, Customer_city_address, and Customer_street_address, are

dependent on the non-key attribute Customer_number7. Since Customer_number is

dependent onWthere is a transitive dependency. This can be

removed by further decomposing R1. The relations in third normal form are

presented as follows:

R1: |& enter time, Sale_order_number, Customer_order_number,

Customer_ship-to_street, Customer_ship-to_city, Customer_number]

24

R2: luv 0 k number Inventory_description,

Inventory_unit_price, Inventory_quantity_on_hand,

Inventory_carrying_cost, Inventory_item_cost,

Inventory_replacement_cost]

R3: [fig grder time, Inventog stock number, Sale_order_quantity]

R4: Iwom number, Customer_last_name, Customerfirst_name,

Customer_credit_rating, Customer_street_address,

Customer_city_address]

2.2.4 Rules of Normalization -- Boyce-Codd Normal Form:

A stronger version of 3NF is Boyce-Codd Normal Form (BCNF), which

accomplishes the same objectives as 3NF with only one rule. A relation is BCNF

if, and only if, every determinant is a candidate key (Date 1986; Loomis 1987). A

candidate key is an attribute which has a unique value for each relation instance,

but has not been identified as the primary key. Thus it is one which could be used

as the primary key, but hasn’t been declared as such. The attribute

Sale_order_number is a candidate key. Relations R1 through R4 meet the criteria

of BCNF.

2.2.5 Rules of Normalization -- Higher Normal Fonns:

Higher forms of normalization have been discussed in the database design

literature, such as Fourth and Fifth Normal Forms (4NF and 5NF), both of which

were created to handle very rare occurrences in database tables. 4NF eliminates

all multi-valued dependencies that are not also functional dependencies. A

relation is 5NF if it cannot be split into smaller relations and then rejoined

25

without changing its facts and meaning. In practice, 4NF and 5NF rules are rarely

applied; therefore they are not discussed in detail in this project.

The tables created by starting with a universal relation and decomposing it

according to normalization theory coincide with the tables created by the use of

conceptual modeling with the exception that the decomposition tables would not

be assigned semantic names. The decomposition algorithm may be applied to the

universal relation by a database designer. Alternatively, the algorithm may be

employed by a computer which is furnished with the attributes and functional

dependencies which make up the universal relation. Either way, the tables that

result from the decomposition approach are often used in practice. The interface

to such a database typically will either allow users to enter a table name in order

to view it, or it will allow them to scroll through the tables one at a time. The

non-abstraction interface used in this experiment represents such a system.

26

End Notes:

1. The determination of which details are irrelevant or appropriate to a given

context is made by the individual who applies the abstraction.

For simplicity sake, the REA abstraction hierarchies used in this

explanation and in the actual study have been modified from the

theoretical norms originally specified in McCarthy (1982, 564). On pages

570-575, he suggests alterations to full REA specification to accommodate

current GAAP practice. These include items such as combination of

entities and treatment of claims as base objects that have been

incorporated here. For further detail on the use of such procedures, see

Geerts and McCarthy (1992).

Entities are defined as classes of objects or events (either real or

conceptual). Relationships represent associations between two or more

entities.

Such anomalies are problems which result when adding data to, removing

data from, or updating existing data in a database. Specific examples of

each type of anomaly are discussed later in this section.

The database designer would obtain the set of attributes which are to be

included in the database, along with their functional dependencies, during

the requirements analysis phase of database design. There is no "correct"

set of attributes -- the decision of which attributes to include depends on

the information needs of the intended users.

Such a deletion may occur as a result of a practice companies may use to

reduce the storage requirements of their database. For example, a

company may decide to keep sale order detail for only six months. After

that time, the amounts are rolled into a summary table, and the detail

erased.

Note that Customer_ship-to_street, Customer_ship-to_city, and

Customer_order_number are related to the entity "Customer", but they can

vary from one sale order to another. That is, a customer can order

something and have it sent to an address other than his or her own

address. Thus, those three attributes are not functionally dependent on

womer number, but instead are determined byM order time.

CHAPTER 3 - CONSTRUCT AND HYPOTHESIS DEVELOPMENT

The question researched in this study is whether the use of an abstraction

hierarchy in an interface to an events-based accounting system will enhance user

performance in preparing financial statements from an events-based accounting

database. Use of such a system is compared to that of an events-based accounting

system without an abstraction hierarchy in its interface. Comparisons of both user

performance and user perceptions are made.

3.1 Financial Statement Preparation and Information Overload

Financial statement preparation was chosen as the task of interest in this

study because this task represents a recurring theme in events accounting research.

The events-accounting literature began with Sorter’s (1969) discussion of how

financial statements may be appropriately prepared and presented using an events

approach. Financial reporting has continued to be the focus of many events

accounting and database accounting papers (e.g. Beaver and Rappaport 1984;

Abramson 1986; Cushing 1989). The feasibility of providing an interface to a

financial reporting database that is manageable for external users is among the

issues discussed in these studies. Revsine’s (1970) criticism of data expansion

approaches (such as the REA model) is made with regard to the provision of data

to external users. He agrees that expanding the range of data provided could help

to overcome the many limitations of traditional financial statements without

requiring detailed knowledge of user decision models. However, he contends that

such an approach ignores the user processing constraint of finite channel capacity

27

28

and warns that information overload (implicitly defined as information provided in

excess of that which users can manage) would likely result.

3.2 Information Overload and Manageability

Information overload is defined by Casey (1980) as: "a decline in user

performance due to the assimilation of additional information" (pp. 36-37).

Information overload occurs because of the limited ability of humans to absorb

and process information. Simon (1990) claims that human attention, not

information, is the scarce resource which puts a tight constraint on how much

information can be input. The construct of manageability appears to be very

closely related to overload. For instance, Snowball and Brown (1979) note that

aggregation or condensation of data is performed "to reduce decision inputs to

manageable proportions" (p. 527, italics added). Schick, Gordon and Haka (1990)

define information overload in terms of time rather than user performance. Still,

they note that "the occurrence of information overload would signify problems in

organizing (i.e. problems in the management of time)" (p. 33, italics added). Like

information overload, manageability is indicated by user performance. The

American Heritage Dictionary definition of manageability includes the ability "to

direct or control the use of; handle, wield, or use", and also the ability "to succeed

in doing or accomplishing something, especially with difficulty."

3.3 Proposed Means of Mitigating Information Overload

Ogden (1991) claims that there’s no such thing as information overload; the

user just has to have ways of organizing the data so that it is manageable. Some

29

researchers claim that filtration and condensation mechanisms enable users to

access a larger base of information while limiting the amount the user must

actually assimilate (Ackoff 1967; Morris, Kasper and Adams 1992). An

abstraction hierarchy filters and condenses data via the abstraction mechanisms.

Filtration occurs in that the user can choose from a high level of the hierarchy (an

overall picture in which low level detail is suppressed) specific items for which

more detail is required. The low level detail for irrelevant items can be ignored

entirely (thus accomplishing filtration). Condensation is incorporated in the

abstraction hierarchy since each level is a condensation of the level below it.

These filtering and condensing features may provide the organization suggested by

Ogden to make large data loads manageable.

Conversely, over-filtration or over-condensation can pose problems in

accessing the needed information (Rappaport 1968; Chervany and Dickson 1974).

A well-normalized database created through decomposition may not need any

further filtration or condensation. As mentioned, the end-result of decomposition

via normalization rules resembles commercial entity-oriented databases. If such a

system provides adequate filtering and condensing, then addition of an abstraction

hierarchy may result in over-filtration or over-condensation, thus leading to

reduced manageability. The following section discusses benefits expected from the

abstraction hierarchy which suggest that manageability (and performance) should

be enhanced rather than reduced.

30

3.4 Information Overload and User Performance

This study examines information overload from a user performance

perspective. Libby and Luft (1993) identify determinants of decision performance

using a relation from Einhom and Hogarth (1980) and Libby (1983):

Performance = f(Ability, Knowledge, Environment, Motivation) (1)

Ability is defined1 as the capacity to complete information encoding, retrieval,

and analysis tasks. Knowledge is described as highly task-specific. Libby and Luft

(1993) note that both the content and the organization of knowledge can be

changed by learning opportunities and that both can independently affect

judgment performance. Environment includes such features as judgment

guidance, technological aid, and substantial monetary incentives for good

performance. Motivation is determined jointly by environmental features such as

monetary incentives and by individual characteristics such as utility functions and

abilities.

3.4.1 Ability and Knowledge as Determinants of Performance

The preparation of financial statements from a relational database of a

particular company involves several cognitive abilities and types of knowledge.

The overall activity can be broken down into several subtasks.2 One subtask is

recall3 of potential elements of financial statements and of the types of events

comprising those elements. The user must also recall the format of the various

financial statements. This subtask requires accounting domain knowledge.

Another subtask is navigation of the database. This requires data modeling

31

domain knowledge. Recognition‘ of potential elements present in a particular

company in searching its database is a subtask which requires accounting domain

knowledge. Extraction of database information needed to compute a financial

statement line item is a subtask which requires both accounting domain knowledge

and data modeling domain knowledge. The user must have some knowledge of

how relational database tables are structured in order to understand how to

navigate through them and extract information from them. Accounting domain

knowledge is required for understanding which information to extract, and for

understanding which arithmetic or other operations must be performed to derive

the financial statement elements.

The information extraction process will differ for various financial

statement line items. Some will involve retrieval of numeric values from a single

table and application of summation. Other elements require retrieval of data

from multiple tables, matching on a common factor, and application of various

arithmetic operations. For example, to compute Accounts Payable for a given

company, a user must determine acquisition amounts for all items acquired on

credit (such as Inventory, General and Administrative Services, and Fixed Assets.)

Cash Disbursement amounts corresponding to those acquisitions must then be

retrieved and subtracted from the acquisition amounts.

3.4.2 Expected Efl‘ect of the Abstraction Hierarchy on Ability and Knowledge

The abstraction hierarchy interface is believed to aid users in performing

several of the identified subtasks. The views of a company presented at varying

32

levels of detail are intended to aid the user in understanding the company’s

operations and in determining which financial statement elements are likely to be

present. The hierarchy is also expected to facilitate search for particular tables

which are needed to compute a financial statement line item. By identifying

which transaction cycle would contain the needed table(s), the search space is

reduced by as much as 80%. Examination of the cycle diagrams and table

intensions should lead the user directly to the table(s) of interest and assist the

user in matching related tables.

The abstraction hierarchy interface is expected to substitute for some of the

task-specific domain knowledge. Navigation and extraction without the

abstraction hierarchy require extensive use of database domain knowledge.

Relational tables are structured so that relationships between entities are

identified via matching keys of two or more tables. The user must apply

knowledge of data modeling to determine what relationships are present. The

abstraction hierarchy user need not recall data modeling knowledge from memory

because the relationships are portrayed directly in the interface. The reduction in

the amount of necessary recall for users of the abstraction hierarchy interface is

expected to enhance performance both in terms of shorter completion time and in

terms of greater accuracy.

The abstraction hierarchy also reduces the need for recall of financial

statement elements from memory. Since users of the hierarchy interface are

presented with adequate opportunities to recognize applicable financial statement

elements, there would be little need to recall potential elements from memory.

33

Without the abstraction hierarchy this recall is essential in order to direct the

search.

3.4.3 Environment as a Determinant of Performance

The interfaces in this study can be classified as technological aids and thus

fall under the environment variable described by Libby and Luft (1993). The

expected effects of the two interfaces (abstraction hierarchy versus normalization)

on ability, knowledge, and motivation help to develop predictions about

performance. As discussed in the previous subsection, the abstraction hierarchy

interface is expected to interact with knowledge and abilities by reducing the

amount of recall users must employ. Prior research has shown that recall requires

more cognitive effort than does recognition (Libby and Lipe 1992). The

normalization interface requires considerable recall. This is predicted to cause

declines in performance, both in terms of time and in terms of accuracy. The

time is expected to lengthen because of the increased effort. Accuracy is expected

to decrease because people may recall items incorrectly or they may not recall

some pieces of knowledge that are necessary.

No other environmental variables are present in this study with which the

two technological interfaces are expected to interact. Possible environmental

variables mentioned by Libby and Luft (1993) as being typical of accounting

settings include hierarchical group and accountability relationships (as are often

present in audit teams). Neither of these factors is present in this study, and there

34

appear to be no other environmental characteristics expected to vary between

subjects in the two conditions.

3.4.4 Motivation as a Determinant of Performance

No motivation variables are expected to have a direct effect in this study.

All subjects will be offered the same incentive to perform well: to achieve a

desired grade. Although different students may aspire to different grades, there is

no reason to expect the average desired grade to differ between groups. Some

interaction may exist between motivation and the knowledge and ability variables.

To the extent that the abstraction hierarchy interface reduces the cognitive effort

required for recall, subjects in that condition may be willing to exert more effort

in other aspects of the task, such as the computations needed for financial

statement elements. This possible interaction lends additional support for the

prediction that the abstraction hierarchy interface users will exhibit higher task

accuracy. There is no clear prediction for task completion time; subjects may or

may not increase their cognitive time spent on computations to the same level as

their recall requirements were reduced.

3.5 Prior Studies of Database Query Performance

The behavioral accounting literature discussed in Section 3.4 provides

valuable insights for studying user performance. Additional insights are gained

from the database literature. Most of the studies in this literature focused on one

or more query languages without varying the data model. Jih, Bradbard, Snyder

and Thompson (1989) note that the data model portrays the logical organization

35

of a database and is therefore a critical part of the user-system interface. Those

studies which did not vary the data model are thus not considered to be relevant

for the current project and are not described herein.

Batra, Hoffer and Bostrom (1990) examined differences in user

performance with different data models (relational versus extended-entity-

relationship). However, their task involved the design of a database rather than

the retrieval of information from a database. Their results can not necessarily be

extended to a retrieval task such as is used in the current study. The remainder of

this section thus describes studies which involved database querying. Several

studies in the database literature have examined user performance with different

data models and with different database query languages. Brief descriptions of

these studies are followed by a discussion of how the current project compares to

them.

Lochovsky and Tsichritzis (1977) attempted to examine the effect of the

data model on user performance. They compared user performance using three

different data models (hierarchical, network and relational), each with a different

query language. They found that the relational model with its query language was

superior to the others. Unfortunately, the confounding effect of having both

different data models and different query languages makes it impossible to isolate

the effect attributable to one or the other.

Jih et al. (1989) examined user performance using one query language

(Structured Query Language or SQL) with both the entity-relationship data model

and the relational model. They were interested in which model was an easier-to-

36

comprehend database interface for end-users and in whether the result was

consistent for both simple and complex queries. They noted that the entity-

relationship model had a higher power of abstraction than does the relational

model. They claim:

a data model at a higher level of abstraction not only shields users

better from complexity of the system, hence is easier to work with,

but also is capable of modeling more domain-specific semantics

(p. 260).

Based on this claim, they expected that the users would perform better with the

entity-relationship model than with the relational model. However, they found

that fewer syntax errors were committed with the relational model. Users of the

relational model also took more time. They found no significant difference in the

number of semantic errors between the two models. Since SQL was originally

created specifically for the relational model, that could account for the difference

in syntax errors between the two groups. Jih et al. state that for one model to be

declared as better than the other, there must be a difference in the number of

semantic errors. A semantic error is a logical error resulting from a

misunderstanding of the problem (a data model-related error) or from a mistake

in problem-solving logic (possrbly an intelligence-related error). They conclude

that since no difference was found in semantic errors, neither can be considered

easier to comprehend by end-users.

Chan, Wei, and Siau (1991) argue that it is not possible to compare

separate data models using the same query language because no query language

can suit two data models. They state that if two data models differ, it is because

37

they contain different constructs and their languages must necessarily differ. They

contend that Jih et al.’s use of SQL to generate queries with the entity-

relationship model confounded the results and made it impossible to draw any

conclusions. Chan et al. constructed a language called KQL, tailored for the

entity-relationship model. They compared performance between users of the

entity-relationship model using KQL and users of the relational model using SQL.

Like Jih et al., Chan et al. expected the entity—relationship model users to exhibit

better performance in writing queries because of the higher power of abstraction

offered in the entity-relationship model. They indeed found the entity-relationship

user group performed significantly better, used significantly less time, and were

more confident in their answers.

The current project follows Jih et al. (1989) in that two data models are

used, with the same query techniques used for both. Although Chan et al. (1991)

claim that KQL and SQL are so similar that their subjects’ performance

differences can be attributed only to the effect of the data models, we believe that

the data model effect in their experiment can not truly be isolated. In this

dissertation, the querying involved is not done through a formal query language,

so it is not expected to be biased toward one interface or the other. All retrieval

from the interfaces is done manually, with paper, pencil and calculator. While

this makes the systems somewhat unrealistic, it is necessary to isolate the effect on

users of the theoretical construct of interest -- the presence or absence of an

abstraction hierarchy in an interface.

38

The current project differs from Jih et al. (1989) in that the task is much

more complicated. Their data models consisted of only three entities and one

relationship. Even their "complex" queries were quite simple. All of their subjects

in both groups were nearly 100% accurate in their query writing, therefore it is

possible that the simplicity of their task contributed to their finding of no

difference. The use of a more complex task such as creating financial statements

from a database of accounting information should produce a stronger treatment

effect.

One important distinction of the current study from both Jih et al. (1989)

and Chan et al. (1991) is that the data models used in those projects were single

abstractions. There was no abstraction hierarchy present in any of their models.

Thus while they argue that the entity-relationship model has more abstraction

power, that power is not utilized in their systems. There is no provision of views

with differing levels of detail to the users. Chan et al. are not really justified in

making their claim that

The results supported the basic hypothesis that users can perform

better at higher abstraction levels. The reason is that the higher

levels have semantics closer to the user’s world (p. 34).

All they can legitimately claim is that users with the combination of KQL and the

entity-relationship model exhibited better performance at their task. They cannot

further isolate the reason for the increased accuracy and time. The current

project thus goes beyond the testing of two data models to isolate the effect of an

abstraction hierarchy.

39

3.6 Conceptual Framework for Hypotheses

The conceptual framework used in this project fits that used by Jih et al.

(1989). Their framework is illustrated as Figure 3.1.

Systems

Characteristics:

-DataModel

-Qnu1hneuse

Individual User

Differences: Performance:

:C"':""““"'yle > > 2%..."m
-,,, -Confldenee

Task

Character-flies:

-Structnredvs. \

Unstructured /

-Conplexity
FIGURE 3.1: CONCEPTUAL FRAMEWORK OF JIH et al. (1989)

In this framework there are three types of variables that can influence user

performance: system characteristics such as data model or data query language,

individual differences such as cognitive style or knowledge, and task characteristics

such as complexity or degree of structure. The measures of user performance in

this framework include correctness, time, and confidence. Jih et al.’s framework is

similar to Einhorn and Hogarth’s (1980) determinants of user performance

40

described in Section 3.4. System characteristics fit into the environment category.

Individual differences encompass ability, knowledge, and motivation. The current

study examines the effect of the system characteristic (type of interface) on user

performance while controlling for individual differences between subjects in

accounting and data modeling domain knowledge.

3.7 User Performance Measures and Hypothesis

Prior research studies of information overload employing user performance

measures have typically included two dependent variables: decision accuracy and

decision time (e.g. Davidson and Trueblood 1961; Chervany and Dickson 1974,

Benbasat and Dexter 1979; Casey 1980, Otley and Dias 1982). Studies in the

database literature on database query performance have also used accuracy and

time as dependent variables (Jih et al. 1989, Chan et al. 1991). Therefore task

accuracy and task completion time are included as user performance measures in

the current study. The discussion in section 3.4 illustrates how the abstraction

hierarchy is expected to improve performance in terms of both accuracy and time.

This expectation is supported by the results of Chan et al. (1991). The hypothesis

regarding user performance in this study (stated in both null and alternative

forms) is:

H1: There will be no significant difference in financial statement

preparation performance (measured as a combination of accuracy

and speed) between users of an events-based accounting database

with an abstraction hierarchy interface and users of the same

database with a non-abstraction interface, controlling for domain

knowledge in accounting and data modeling.

41

HlA: Financial statement preparation performance (measured as a

combination of accuracy and speed) of users of an events-based

accounting database with an abstraction hierarchy interface will be

significantly better than that of users of the same database with a

non-abstraction interface, controlling for domain

knowledge in accounting and data modeling.

3.8 User Perception Measures and Hypothesis

Performance is not the only indicator of a manageable information system.

User perceptions may also provide evidence as to whether a system is manageable.

A person could conceivably perform well in a reasonable length of time and yet

still feel overwhelmed. If a user feels overloaded, the user may reject the

information system in spite of adequate performance. This is undesirable because

acceptance of users has been identified as one of the critical determinants of

system success (Shneiderman 1980). Prior research studies which examined

information overload employing user perception measures have typically examined

overall user satisfaction (e.g. Chervany and Dickson 1974; Casey 1980; Otley and

Dias 1982). Prior studies in database query performance have typically included

ease-of-use or user confidence as dependent variables.

In this project the user perception measured is perceived manageability‘.

This construct is believed to be quite similar to ease-of-use. Perceived

manageability is expected to identify whether a subject felt overloaded, regardless

of performance. Since the abstraction hierarchy interface is expected to ease

cognitive efforts, it is expected to be perceived as more manageable than the

42

non-abstraction interface. The hypothesis regarding user perceptions in this study

(in both null and alternative forms) is:

H2: There will be no significant difference in the perceived

manageability of financial statement preparation between users of an

events-based accounting database with an abstraction hierarchy

interface and users of the same database with a non-abstraction

interface, controlling for domain knowledge in accounting and data

modeling.

H2A: Perceived manageability of financial statement preparation by

users of an events-based accounting database with an abstraction

hierarchy interface will be significantly greater than that of users of

the same database with a non-abstraction interface, controlling for

domain knowledge in accounting and data modeling.

Tests of the two hypotheses are described in the next chapter.

43

End Notes:

1. The definitions given here were adapted from Einhorn and Hogarth (1980)

by Libby (1983) and by Libby and Luft (1993) to make them consistent

with typical accounting settings.

Each of these subtasks could be broken down into finer detail. The level

of detail presented seems adequate for understanding the overall benefits

expected from the abstraction hierarchy.

Recall is generally defined as a retrieval process that may involve the

generation of alternatives (Libby and Lipe 1992).

Recognition is defined by Libby and Lipe (1992) as the matching of a

presented cue to prior knowledge. Alternatively the matching may be to a

trace of some type.

There are multiple aspects of user satisfaction of which perceived

manageability is only a part. Other constructs which are considered part of

user satisfaction include perceived usefulness, the degree to which subjects’

use is voluntary, compatrbility of system with work, and perceived prestige

(Moore and Benbasat 1991). While these constructs are interesting, they

do not appear to be indicators of information overload.

CHAPTER 4: METHODOLOGY

4.1 Research Framework

In order to test the hypotheses put forth in this dissertation, two major

projects were completed. March and Smith (1994) describe the difficulties

inherent in information technology (IT) research and suggest a framework for use

in planning and in evaluating IT research. They begin their framework

development with a discussion of the differences and interactions between design

science and natural science. March and Smith note that natural science typically

consists of two stages - theorize and justify. In natural science theories arise from

naturally occurring phenomena. They can be observed and tested in controlled

settings, resulting in justifcation. In design science the constructs, models, and

methods are created or "built." These phenomena are artifactual rather than

naturally occurring. March and Smith propose that design science consists of two

stages - build and evaluate -- which parallel the two stages of natural science.

They point out that in the computer science literature it is widely recognized that

constructs, models, and methods that work “on paper" do not necessarily work in

real-world contexts. Thus, instantiations (physical implementations of the

constructs, models, or methods) provide the real proof. Once adequate

evaluations of the instantiations (and the underlying constructs, models, and

methods) have been made to determine how well they work, theories may be

developed and justified as to why they work. According to March and Smith

(1994, 6)

44

45

IT research builds and evaluates constructs, models, methods, and

instantiations. It also theorizes about these artifacts and attempts to

justify these theories. Building and evaluating IT artifacts have

design science intent. Theorizing and justifying have natural science

intent. ‘

Based on this belief, March and Smith propose a 4 x 4 matrix of research

possibilities for use in planning and evaluating IT research. This matrix is

presented as Figure 4.1.

BUILD EVALUATE THEORIZE JUSTIFY

CONSTRUCTS

MODELS

METHODS

INSTANTIATIONS

FIGURE 4.]: IT RESEARCH FRAMEWORK per MARCH AND SMITH (1994)

Research in the Build column seeks to show that a construct, model, method or

instantiation works, whereas work in the Evaluate activity attempts to determine

how well something works. Research in the Theorize category tries to show how

and why something works, and research in the Justify column tests those theories.

March and Smith note that within their framework different cells have different

objectives and different research methods are appropriate in different cells.

Evaluation of research depends on the cell(s) in which the research lies.

46

4. 1. 1 Project 1: Building the Interfaces

The first major project in this dissertation was the creation of instantiations

that Operationalized the constructs, models and methods included in the REA

model with abstraction hierarchies and those in normalization theory. Thus, this

section of the dissertation fits the Build-Instantiations cell in March and Smith’s

matrix in Figure 4.1. According to March and Smith (1994) it is sometimes

necessary for an instantiation to precede the complete articulation of its

underlying constructs, models and methods, so that it can be studied and used in

order to formalize the constructs, models, and methods on which it is based. They

suggest criteria by which Build research should be evaluated, as follows:

Building the fig; of virtually any set of constructs, model, method,

or instantiation is deemed to be research, provided the artifact has

utility for an important task. The research contribution lies in the

novelty of the artifact and in the persuasiveness of the claims that it

is effective. Actual performance is not required at this stage (1994,

13).

March and Smith go on to say that "‘first’ is usually interpreted to mean, ‘never

done within the discipline.” (1994, 13) The abstraction hierarchy interface built in

this dissertation is the first instantiation of the REA model including the

abstraction hierarchies thus providing research contribution per March and Smith

(1994).

4. 1.2 Project 2: Evaluating the Interfaces

This dissertation continues beyond the build activity. The instantiations

were also evaluated using a laboratory experiment. March and Smith (1994, 14)

note that "research in the evaluate activity develops metrics and compares the

47

performance of constructs, models, methods, and instantiations for specific tasks."

The remainder of this chapter describes the experimental procedures, including

detailed illustrations of the two interfaces which were used.

4.2 Interface Software

An events-based accounting database for a sample company modeled with

RE accounting is used in both experiments. The sample company used is the

Wilson Company (McCarthy 1979). The interfaces were built using an object-

oriented, message-passing software package called VisualWorks (Version 1.0, Parc

Place Systems 1992). VisualWorks is a graphical user interface builder that uses

Smalltalk as its engine. This environment allows the creation of user interfaces

with features such as windows, buttons, and graphics that are purported to be

user-friendly (Shneiderman 1992).

4.3 Experimental Treatments

Both experiments consisted of two treatments: abstraction and non-abstraction.

4.3.1 Abstraction condition

Subjects in the abstraction condition used a computerized abstraction

hierarchy interface to Wilson Company’s database. Figures 4.2 through 4.9

represent example screens in the computerized abstraction hierarchy interface.

Figure 4.2 shows a representation of the initial screen. This gives a natural

language description of Wilson Company.

48

"SON(MANY ACCOLNTNO DATABASE

NeonCmIcasnnlretalederprtsettuweshcorporded

onJmet MmFredMsonsoldcrnresotstockhthe my

tovertousrwestors. MsonConwwhesoperetlonswflch

consistsinplyotwchesmprodudslromverioussmpllersd

wholesale prices andthendistrmingthem droid to customers.

Theuloostoteechhvertorylemlstpddedeflaevery

mohasewlheweld'ted average mlhm. "mammotmtal

overwtdecelelsflendedtocovercmoperdhgexpemes

“tomeeprotloverthemtem.

Thetableshthisreldiomlddweseae cormldelytpto ddeesof

ttieeridolltndayonmm. Tobieelemedsthdueceplalzed

WWWMMOQfSALEMprMQWN

miversalhdancebywflchvdmcanbeldertlfled.

Pbeseclclrthelettmebdtonontheboxbebwtoeccesstm

MsonCompanvAccoutthdebose.

FIGURE 4.2: ABSTRACTION INTERFACE INITIAL SCREEN

When the user clicks the left mouse button on the Continue button, Figure 4.33

49

(a) Cycle List Screen as it appears before the user highlights a cycle:

mn-ELEFTWEMMONDECYQEFMWYWWLKETO

SEMEETAL WWTI‘ELEFTMJSEBUTTONOND‘EMXMED

'SEEDETAL'
(b) Cycle List Screen as it appears after the user highlights Revenue Cycle:

CLICKTPELE'TMOUSEHJTTWONTI'ECYQEFORWYOUWDLKETO

SEMDETAL WWMLEFIWBEEHTWWTPEWXLAEE)

'SEETAL.‘
FIGURE 4.3: ABSTRACTION INTERFACE CYCLE LIST SCREEN

50

The six cycles which encompass Wilson’s financial activities are portrayed.

On this screen the user highlights the cycle of interest by clicking the left mouse

button on the cycle name. This makes the See Detail box active, allowing the user

to click the left mouse button on the box, as in Figure 4.3b. An overall REA

template of that cycle appears, as portrayed in Figure 4.4. This gives the user an

overall picture of the transfers in and out (events) in the cycle, and of the

resources, outside agents, and authorization units that are involved.

FIGURE 4.4: ABSTRACTION INTERFACE CYCLE TEMPLATE SCREEN

Users then click the left mouse button on the box labeled Go To E-R

Diagram which reveals a detailed E-R diagram, as illustrated in Figure 4.5.

51

CLISKTPELEFIhOJSEflJTTCNWANYENflTYMXJWRfiATKNSI-P

W)TOWTANTIEDATABASESGBJAFCR THAT ITEM. IOSEE

TI'EOVERALL DATABASESCI‘EMAFORTHSCYQE,CLICKTPELET

MOLBEHJTTONON TI'EBOX LAflED 'OVERALL SCI-EMA".

FIGURE 4.5: ABSTRACTION INTERFACE E-R DIAGRAM SCREEN

The user can utilize the ER diagram to better understand what entities

and relationships exist in the cycle. From this screen, the user can choose to see

the table intension(s)1 for a particular entity or relationship. For example, the

user may choose to click the left mouse button on the relationship labeled LINE

between the Inventory and Sale entities, bringing up the screen portrayed in Figure

4.6.

52

Sate - inventory tine item

me- lsueAmom imam imam Ntmw ; “A]

l

l-srocxW I“ M {Uni Cost {Selling Price %On Hand }

.' - -.l. '. I.-

—-srocl<NLMBER'

FIGURE 4.6: ABSTRACITON INTERFACE RELATTONSHIP SCHEMA SCREEN

The user can look at the table intension to see if the attributes of interest

are included. If not, the user may return to the ER Diagram by clicking the left

mouse button on the box labeled Back to ER Diagram. If the attributes of

interest are included, the user can click the left mouse button on the box labeled

See Table Detail to bring up the screen shown in Figure 4.7.

53

FIGURE 4.7: ABSTRACTION INTERFACE RELATIONSHIP DETAIL SCREEN

Each table contains a scroll bar, so the user may scroll to see every

instance in a table. From the table detail screen, the user returns directly to the

ER Diagram, rather than having to view the table schema again. In pilot testing,

the system required users to go back up the hierarchy through exactly the same

path as they had come down. Several subjects complained that this was

unnecessary, time-consuming, and frustrating.2

From the ER Diagram screen, the user may opt to view the overall

database intension for the cycle, as in Figure 4.8, rather than focusing on a

particular entity or relationship. This is accomplished by clicking the left mouse

button on the box labeled Overall Schema.

54

H IIII ‘ mctydgfivcmfiScj-tema . . 3,2;7-.3.r:v:.:.:;:.:r:;:;.; - gfi:

DOLBLE-QEKTPELEFTWSERMONGIANYTABLENNEFORWYOUWLD ‘

LKE TOSEWREWTAL

@fim [860MM [twice Nunber Totem WJSelesperson No.]

[grow MMBER‘ lDeccription [um Cost [Song Price [cry on Hand]

isms tee l-srocx war [sue Querfly |

i'SALESPERSON men- IComnisslon Rea] [were muses" lFidelly Bond 1?de

i‘CUSTOIIERW[Last Name [first Name [on Rdhg [Street Address [cry mess I

mmeeceprme [Cuheeceiptm [Comm [WWW]

‘CASH RECBPT me- 'SALE rnE' [Armin Appled]

i‘CASHRECB’T I‘CASH accomr WINK!“Deposled]

 &accouo name-1cm Amour! Type ICesh Amour LocdioniCesh Accord Baum]

.....va..- .-......-..v.v........... t H. 1......41..w..v

FIGURE 4.8: ABSTRACTION INTERFACE OVERALL SCHEMA SCREEN

From the overall schema, the user may select a table of interest by double-

clicking the left mouse button on the table name. This brings up a screen such as

that shown in Figure 4.9.

55

FIGURE 4.9: ABSTRACTION INTERFACE SCHEMA DETAIL SCREEN

Any table with more than five instances has a scroll bar to allow users to

see every instance. All tables in both interfaces were limited to having at most

five instances visible at a time. The purpose for this was twofold -- (1) to ensure

that any differences in performance were due to the abstraction hierarchy as

opposed to more table detail being visible at one time, and (2) to make the task

as realistic as possible. The sample company’s database was fairly small with a

limited number of transactions. Although it would be possible to view entire

tables at one time for Wilson Company, this would be impossible for most real-

world companies.

56

4.3.2 Non-abstraction condition

Subjects in the non-abstraction condition used a computerized non-

abstraction interface to Wilson’s database. Consistent with some commercial

database interfaces, this interface allowed users to simply scroll through the

database tables to obtain the needed information. This system provided access to

all of the same data as the abstraction system (i.e. the detailed Boyce-Codd

Normal Form relational tables). The difference was in the exclusion of the

abstraction hierarchy from the interface. The initial screen for the non-abstraction

system is identical to that of the abstraction system, as illustrated in Figure 4.10.

MWOOWANY AOCOINTNG DATABASE

mmbamwmuummm

mm1wthredesoumthhmb

mmam. Namwrns operationsmum

Mofwchawwodmmmwpflmdm

mwflmmflmdrddbwstm. Thom!

mammaylmbmmdmmwmsowmo

management“. Tummofretdovorwholesdois

“mummymmWwwm.

profimflnlongtorm.

mmhuWMnmwwmum

firewoflhodcymmm. Tobbotomettettfiuooopldzod

wwwwmuodwmemmdumand

mmwmmmmm.

Pboseclckmelenmotmbutonmtheboxbelowtoaccessthe

NammeyAcdem.

FIGURE 4.10: NON-ABSTRACTION INTERFACE INITIAL SCREEN

Customer Number Sdespersm No.

FIGURE 4.1]: NON-ABSTRACTION INTERFACE TABLE 1 SCREEN

Figure 4.11 portrays the screen for Table 1 in the non-abstraction interface.

Subsequent table screens have a similar appearance (identical except for the table

content). Users may scroll both forward and backward through the tables, by

clicking the left mouse button on either the Next Table box or the Previous Table

box. Alternatively, the user may return to the initial screen at any time by clicking

the left mouse button on the box labeled Back to Introduction. Consistent with

the decomposition approach to database design, the table names in the non-

abstraction interface are non-semantic. Thus they are labeled Table 1, Table 2,

Table 3, etc.

58

4.3.3 Querying the Database

No automated querying capabilities were built into either interface.

Subjects were required to locate the table(s) containing the data they needed, and

to make any necessary calculations with only the assistance of a calculator. This

reduces the realism of the systems (i.e. any commercial database interface would

have automated query capabilities). However, the inclusion of automated

querying would likely have introduced other confounds into the task and obscured

the effects of the abstraction hierarchy on the dependent variables.

4.4 Experimental Environment

4.4.1 Task

The task completed by subjects was the preparation of the Income

Statement, Statement of Changes in Retained Earnings, and Balance Sheet for

Wilson Company’s first month of operations. Preparation of simple3 retail

company financial statements is a task with which subjects were expected to be

very familiar and is one that does not require subspecialty knowledge (general

accounting domain knowledge should be sufficient). If the task required

subspecialty knowledge, per Bonner and Lewis (1990), it would be advisable to use

subjects experienced in that subspecialty.

The experiment was conducted in a computer laboratory in six separate

sessions. Subjects were given a set of written instructions which were read aloud

by the experimenter. These instructions are included as Appendix 1. The

instruction period lasted 10 minutes for each session. All subjects claimed they

59

had used a mouse and felt comfortable using a mouse to point and click. No

extensive mouse training was given, since only pointing and clicking were required.

There was no need for window movement or resizing (which have been reported

to cause problems with lack of training in other studies). Pilot testing indicated

that, with only one exception, students felt comfortable using the mouse for

pointing and clicking. During the instruction period subjects were told that they

were to write their financial statements on paper that was provided to them.

Along with the financial statement line items and numbers, subjects were

instructed to write a brief explanation as to how they computed each number (e.g.

which attribute(s) of which table(s) they used and what mathematical operation(s)

they performed). An example explanation was included in the instructions.

Subjects had been instructed to bring their calculators with them, and the

experimenter had extras available so that every subject had a calculator to use.

Subjects were not allowed to use any notes or accounting textbooks; rather, they

were expected to rely on their own accounting and data modeling knowledge in

combination with their interface to the database. This represented a change from

pilot testing, in which subjects were given a chapter from an introductory

accounting textbook which included example financial statements. This change

was made because it was believed that the textbook chapter in effect provided an

abstraction mechanism for the subjects. This belief was formulated through

experimenter observation. For example, although Wilson Company has no fixed

assets (it rents them), several subjects included "Fixed Assets - $0" as a line item

on their balance sheets. The example financial statements in the textbook chapter

60

were for a company which had fixed assets. The students thus seemed to be using

the example financial statements as a template or abstraction to which they tried

to match Wilson Company. Another reason the use of example financial

statements is a potential problem is that the abstraction interface is expected to

aid users in recall of accounting domain knowledge. Any such effect would be

obscured because the example financial statements would make recall largely

unnecessary (replacing it with recognition).

Subjects were given scrap paper to use if needed, but were instructed to

use it as little as possible. Minimal use was expected to be necessary. At least

one financial statement line item (Cost of Goods Sold) required use of scrap

paper (or use of the memory function on a calculator, which some people feel

uncomfortable using). Therefore, the scrap paper could not be taken away

altogether. However, in pilot testing, many subjects used the scrap paper not only

to make computations, but also to create abstractions for themselves. For

example, several subjects in the non-abstraction condition wrote notes on their

paper such as "Table 1 = Sales, Table 2 = Inventory," etc. Others went so far as

to write out the attributes for each table (i.e. the table intension).

To curb this creation of abstraction in the experiment, subjects in both

conditions were only allowed to keep a given piece of scrap paper for 10 minutes.

The task time period for the experiment was 60 minutes, thus there were six 10

minute cycles. Subjects were given six different colored pieces of scrap paper.

Subjects worked uninterrupted for the first 9 minutes of each cycle. After 9

minutes, a bell was rung as a one-minute warning. At that point, students could

61

complete whatever calculation they were working on. If they were starting a new

calculation, they could turn their scrap paper over and start with the next color.

After the one-minute transition period, the designated color scrap paper was

collected. Subjects did not appear to be bothered by the interruptions, although

no conclusion can be drawn as to their effect.

Figures 4.12 - 4.14 illustrate the financial statements for Wilson Company.

For each line item, an explanation is provided as to which database tables

contained the necessary information and what computations were necessary.

Income Statement:

Sales $125,500

COGS (93,250)

Gross Margin $ 32,250

G&A Expense (10,495)

Wages Expense (7,216)

Net Income $ 14,539

Add up the "Sale Amount" column of the Sale table

Get the "Line Qty" column of the Sale-Inv-Line table

Get the "Unit Cost" column of the Inventory table

Match the two columns by "Agleclap Number"

For each item number, multiply the qty by the cost

Add all of them together.

Add up the "Amount" column of the G&A Service

Acquisition table

Add up the "Gross Pay" column of the Personnel

Service Acquisition table

FIGURE 4.12: WILSON COMPANY INCOME STATEMENT

62

Statement of Changes in Retained Earnings:

Beginning Balance 0 from Introduction screen information

+ Net Income 14,539

- Dividends (6,000) Add up "Amount" column of Dividend Declaration

table

= Ending Balance 3 8,539

FIGURE 4.13: WILSON COMPANY STATEMENT OF CHANGES IN

RETAINED EARNINGS

Balance Sheet:

Cash

Accts Receivable

Inventory

Total Assets

Accounts Payable

for Purchases

for G&A Services

Wages Payable

Capital Stock

Retained Earnings

Total Liab & Eq

3 60,095

76,850

31,375

3 168,320

4,625

4,500

656

150,000

8,539

3 168,320

63

Add up "Balance" column of Cash table

Add up "Sale Amount" column of Sale table

Add up "Amount Applied" column of Cash Receipt

for Sales table

Subtract the latter from the former to get A/R

Get "Unit Cost" column of Inventory table

Get "OOH" column of Inventory table

Multiply unit cost by qoh for each item

Add all item subtotals to get total Inventory

Add up "Amount" column from Purchase table

Add up "Amount Applied" column from Cash

Disbursements for Purchases table

Subtract the latter from the former

Add up "Amount" column from G&A Service

Acquisition table

Add up "Amount” column from Cash Disbursements

for G&A Services table

Subtract the latter from the former

Add up "Amount” column from Personnel Service

Acquisition table

Add up "Amount" column from Cash Disbursements

for Personnel Services table

Subtract the latter from the former

Add up ”Amount" column of Stock Subscriptions

table

From Strnt of Changes in Retained Earnings

FIGURE 4.14: WILSON COMPANY BALANCE SHEET

4.4.2 Variables

Three independent variables are measured in this study. The first

independent variable is the type of interface to which subjects were assigned.

There are two levels of this variable -- abstraction and non-abstraction -- as

described in Section 4.3. This independent variable fits into the "System

Characteristics" box of the conceptual framework of Jih et al. (1989). The second

and third independent variables are the subjects’ accounting domain knowledge

and data modeling domain knowledge. These variables fit into the "Individual

Differences" box of the conceptual framework of Jih et al. (1989) and were

expected to have an influence on user performance based on Einhorn and

Hogarth’s (1980) equation in Section 3.4.

The subjects’ grade in the first intermediate accounting course was used as

a surrogate for accounting domain knowledge. This was determined to be the

most adequate surrogate for two reasons. First, several subjects had taken their

two introductory accounting courses at other schools (typically community

colleges). This makes it difficult to compare these grades across subjects. Second,

several subjects had not yet taken any accounting courses higher than the first

intermediate accounting course. To include higher accounting course grades for

some subjects and not for others would diminish the comparability. Comparability

of the first intermediate accounting course grade is believed to be quite strong

because all sections are taught by one of two instructors who work together closely

to ensure consistency of material and presentation. Data modeling domain

knowledge was measured as the numerical score each subject earned on a data

65

modeling question on the first exam administered in the accounting information

systems course for which they were concurrently enrolled.

The dependent variables measured in this study include task accuracy, task

completion time, and perceived manageability. These all fit into the "User

Performance" box of Jih et al.’s framework. Because there is a correct answer for

the individual line items and amounts which should be included in Wilson’s

financial statements, it was possible to derive an accuracy measure. Subjects

received points for each necessary account name (e.g. Cash, Accounts Receivable),

points for each correct numerical value, and points for having the correct

explanation of how to derive the figure. Subtotals and totals were not awarded

points in order to avoid double-counting errors as much as possible.

Accuracy scores consisted of total points earned. More points were

awarded for those line items that required more mathematical operations. For

example, on the Income Statement a correct answer for Sales was worth four

points -— one for including it as a line item, two for getting the right number (since

it involved two operations: [1] isolating the "Sale Amount" column of the Sale

table and [2] adding up the numbers in the column), and one for giving the

correct explanation. Cost of Goods Sold was worth a total of fifteen points -- one

for including it as a line item, thirteen for getting the right number (since it

involved thirteen operations as illustrated in Figure 4.12) and one for providing

the correct explanation. This grading scheme was followed with one exception --

if a subject gave the correct explanation for deriving a number, and the scrap

paper revealed that the error was clerical in nature, the subject was only penalized

66

one point. This situation only occurred three times. The grading scheme was

determined before the experiment was administered and was based on relational

algebra operators typically used in database query languages.

Task completion time was measured as the number of minutes a subject

worked on the task. Subjects were allowed up to 60 minutes to complete the task.

Completion time was recorded before the questionnaire was administered in order

to isolate time spent on the task itself. The 60 minute time period turned out to

be inadequate for most subjects to complete the entire task. This time period was

chosen based on pilot testing. In pilot testing, subjects did not have incentive to

work quickly. They were allowed up to 120 minutes to complete both the task

and the questionnaire. As in an examination situation, many subjects probably

kept their financial statements for the entire period, even though they could not

improve their performance by doing so. The fastest completion time was 65

minutes, with 100% accuracy (again, this included time to fill out the

questionnaire).

In conversations after the pilot test sessions, several subjects said they had

computed figures for every line item within approximately 40-45 minutes, and

spent the rest of their time "spinning their wheels" because their financial

statements did not balance. The resulting situation was like starting a race

between a Corvette and a bicycle and allowing them both an hour to go 10 miles.

Arriving at the finish line after an hour, it is seen that both have indeed crossed

the finish line; however, the discrimination between the two performances is lost.

It was expected that the 60 minute time period would encourage subjects to work

67

as quickly as possible, and provide a clearer measure of how long it took subjects

to develop a set of financial statements (correct or not). To further discourage

”wheel spinning," subjects were thus told their grades would be based on both

accuracy and completion time, with statements that are 90% accurate completed

in 40 minutes being worth more than 100% accurate statements completed in 60

minutes.

Perceived manageability was measured using a seven point Likert scale

questionnaire. The five questions used to measure this variable are reproduced in

Appendix 2. These five questions are identical to those used in Batra, Hoffer, and

Bostrom (1990), except their words "data modeling technique" are replaced by

"database interface". Batra et al. (1990) had adapted their instrument from Davis

(1989). The reported reliability for their instrument was .83. The Batra et al.

(1990) and Davis (1989) instruments purport to measure "perceived ease of use,"

which Davis defines as the degree to which an individual believes that using a

particular system would be free of physical and mental effort. That definition is

consistent with the definition of perceived manageability used in this study.

Several concomitant and prior influence variables were identified and

measured via subject’s completion of background questions which were mostly

closed-ended (see Appendix 2). These data were run as covariates to ensure that

they did not account for variation in the dependent variable.

68

4.4.3 Subjects

Subjects were students enrolled in an intermediate level accounting

information systems course. Students at this level were expected to have the

necessary domain knowledge, in both accounting and in data modeling. All

subjects had either completed or were concurrently taking the first intermediate

level financial accounting course. All had been taught and tested on data

modeling techniques and on REA modeling of accounting phenomena in the

systems course prior to administration of the experiment. Subjects received class

credit for participation, with varying grades based on performance. To ensure

fairness, the grading was done separately for each condition. For example, the top

performers in each condition received top grades, the lowest performers in each

condition received low grades, and similarly in-between.

All subjects completed the task as an in-class computer assignment.

Students enrolled in the course were offered a choice between completing this

task as 5% of their grade or assigning an extra 5% to their second examination.

All but one student chose to complete this task. Subjects were randomly assigned

to the two experimental conditions. Sixty-two subjects participated in the

experiment; however, fifteen were dropped from the main data analysis. Three

were dropped because they arrived at their sessions late (just as the experimenter

had finished reading the instructions aloud). Two were dropped because it was

discovered that they were using their accounting textbooks as an aid (in spite of

being told to keep all personal books and materials other than their calculators

put away). Ten were eliminated because they did not grant permission for the

69

experimenters to obtain their intermediate accounting grade, which was the

measure of accounting domain knowledge.4 Thus, the final sample used for the

experiment consisted of forty-seven subjects (20 Abstraction, 27 Non-abstraction).

7O

Endnotes:

1. The terms intension and extension refer to a database’s structure and its

detail. Table headings make up the database intension. Instances or rows

in the database tables constitute the extension.

Other minor adjustments were made to the database tables in both systems

due to feedback of pilot subjects. For example, in using the original

database, students were confused between "Amount" fields and "Quantity"

fields. Since amounts were monetary and quantities were numeric, dollar

signs were inserted into all of the amount fields. Students were also

confused by the terms "Replacement Cost," "Carrying Cost," and "Volume"

in the Inventory table, and by the terms "Interest Cost," and "Withdraw

Cost" in the Cash table. Since these fields were not required for

calculation of any financial statement items, they were deleted from the

database.

Classification of these statements as simple is based on the fact that they

only involve line items which are common to most companies and which

are typically taught to students in introductory accounting courses.

Data were also run with the full sample of 57 (27 abstraction, 30 non-

abstraction) substituting a grosser measure of accounting domain

knowledge. This measure is a category variable indicating the range in

which each subject’s self-reported average grade point in accounting classes

falls, with 1 for < 2.5, 2 for 25-299, 3 for 3.0-3.49, and 4 for 3.5-4.0.

Results of these tests did not differ substantially from the tests of the 47

subjects.

CHAPTER 5 - STATISTICAL TESTS AND EXPERIMENTAL RESULTS

This chapter presents the statistical tests used to test the experimental

hypotheses and provides a discussion of the results of each of the tests.

5.1 Analysis of User Performance Hypothesis

Hypothesis One in null form suggests no difference in task performance (in

terms of accuracy and of completion time) between groups of subjects using the

abstraction interface versus the non-abstraction interface, controlling for

accounting and data modeling domain knowledge. This hypothesis is tested using

multivariate analysis of variance (MANOVA). The test, which tests the effect of

the interface on the combination of task accuracy and task completion time, is

necessary because task accuracy and task completion time are believed to be

inextricably linked. Subjects were told their class grade for the project would

depend both on their accuracy and on their speed, thus their performance is

expected to reflect an accuracy-speed tradeoff.

Hypothesis One calls for the measurement of the effect of the interface

(abstraction versus non-abstraction) to be done while holding the accounting and

data modeling domain knowledge levels constant. Accounting domain knowledge

and data modeling domain knowledge measures were thus included as covariates

in the MANOVA model. The model included Score and Time as a combined

dependent variable, Group as the factor, and IntAcc and DataMod as covariates.

The variables in the model are defined as follows. Score represents the task

accuracy score earned by a subject. Time is measured as the weighted number of

71

72

financial statement line items a subject attempted to complete‘, divided by the

number of minutes the subject took to complete the project. Group represents

the interface to which the subject was assigned (0 = non-abstraction, 1 =

abstraction). IntAcc is the grade each subject earned in the first intermediate

accounting course (on a scale from 0.0 to 4.0). DataMod is the numerical score

each subject earned on a data modeling question on the first exam administered in

the accounting information systems course for which they were concurrently

enrolled.

The MANOVA model was run using SPSSX. Descriptive statistics for the

model are presented in Table 5.1. The direction of effect results indicate that

overall, subjects in the non-abstraction group demonstrated higher accuracy and

used less time to complete the task. They had a higher grade point average in

intermediate accounting but exhibited a lower performance on the data modeling

test problem than did subjects in the abstraction group. However, no conclusion

can be drawn from these trends without performing significance tests. Results of

significance tests indicate no statistical differences, as discussed later in this

chapter.

73

Table 5.1: Descriptive Statistics for User Performance Model

SCQRE Mean Std Deviation N

Non-abstraction 47.7 16.5 27

Abstraction 39.3 11.7 20

Total 44.1 15.1 47

TIME Mean Std Deviation N

Non-abstraction 1.09 .22 27

Abstraction .97 .21 20

Total 1.04 .22 47

INTA Mean Std Deviation N

Non-abstraction 3.09 .76 27

Abstraction 2.85 .86 20

Total 2.99 .80 47

DATAM D Mean Std Deviation N

Non-abstraction 91.6 26.9 27

Abstraction 99.4 22.7 20

Total 94.9 25.3 47

Results of testing for homogeneity of variance are presented in Table 5.2.

The Cochran’s C test and Bartlett-Box F test reveal no significant violations of the

assumption of homogeneous variances.

74

Table 5.2: Tests of Homogeneity of Variance for User Performance Model

Value Significance

$93.11:

Cochran’s C .67 P=.101 (approx)

Bartlett-Box F 2.47 P=.116

TIME

Cochran’s C .51 P=.936 (approx)

Bartlett-Box F .01 P=.937

INTAC_C_

Cochran’s C .56 P=.558 (approx)

Bartlett-Box F .33 P=.565

DATAM D

Cochran’s C .58 P=.421 (approx)

Bartlett-Box F .61 P=.436

The MANOVA procedure of SPSSX generates within-cells regression tests

of significance, which measure the strength of the relationship between the

covariates and the dependent variables. The within-cells results are summarized in

Table 5.3. Part (a) of the table contains the multivariate test, which indicates

whether the combined covariates are contributing to the overall model (using a

linear, equally weighted combination of the dependent variables). Three test

statistics are generated with significance levels: Pillai’s criterion, Hotelling’s trace,

and Wilks’ lambda. Part (b) of the table contains univariate F tests which indicate

the effect the combined covariates have on each of the dependent variables

separately. Part (c) of the table contains individual univariate tests indicating the

strength of the relationships between each covariate and each dependent variable.

75

Table 5.3: Within-Cell (Covariate) Analysis for User Performance Model

(a) Multivariate tests of significance

Test Name Value Approx F df Error df Significance

Pillai’s .225 2.77 4 86 .035

Hotelling’s .286 2.93 4 82 .025

Wilks’ .777 2.83 4 84 .030

(b) Univariate test of significance

Variable F Significance

SCORE 5.78 .006

TIME 4.59 .016

(c) Individual Univariate tests of significance

Covariate B Beta Std Error t-value Significance

SCQRE

INTACC 6.46 .354 2.501 2.58 .013

DATAMOD .14 .245 0.080 1.79 .081

1.1M.

INTACC .094 .350 0.037 2.50 .016

DATAMOD -.002 -.159 0.001 1.31 .197

The data in Table 5.3 indicate that the combined covariates IntAcc and

DataMod contribute significantly to the combined dependent variables Score and

Time. This data also suggests that the combined covariates contribute significantly

to each dependent variable separately. The individual effect tests indicate that

76

IntAcc is the stronger of the two covariates, affecting both Score and Time

significantly. DataMod approaches significance in relation to Score, but does not

contribute significantly to Time. Overall, the tests in Table 5.3 indicate that

IntAcc is a valid covariate to include in the model, but that DataMod is somewhat

questionable. To be consistent with H1, which calls for the controlling of both

IntAcc and DataMod, both covariates are included in the analysis.

The next step in the MANOVA procedure is to compute multivariate and

univariate tests of the effect of Group. These tests indicate the effect strength of

the interface type that remains after the effect of the covariates has been

removed. This data is presented in Table 5.4. Results of these tests suggest that

once the effects of IntAcc and DataMod are removed, there is no statistically

significant difference in performance between users of the abstraction interface

and users of the non-abstraction interface.

77

Table 5.4: Main Effect (Group) Analysis of User Performance Model

(a) Multivariate tests of significance

Test Name Value Exact F df Error df Significance

Pillai’s .086 1.97 2 42 .152

Hotelling’s .094 1.97 2 42 .152

Wilks’ .914 1.97 2 42 .152

(b) Univariate test of significance

Variable SSh SSe M8,, MSe F Significance

SCORE 687.95 7636.25 687.95 177.59 3.87 .056

TIME .12 1.72 .12 .04 3.03 .089

The overall adjusted R-squares for Score and Time, respectively, are .22

and .18. This suggests that approximately 22 percent of the variance in subjects’

accuracy scores and 18 percent of the variance in their scaled task completion

time is explained by the combination of their accounting domain knowledge, their

data modeling knowledge, and the type of interface they used.

Figure 5.1 summarizes these results in terms of the conceptual framework

adapted from Jih et al. (1989).

78

Characteristics

- Interface used 13" 1319152)
(Abstraction vs. /

Nonahstraction)

Individual

Merences:

Knowledge / /

- Accounting Domain

Knowledge

none

Task measured

Characteristics: >

(held comtant)

User

Performance:

- Accuracy and

Speed

Adjusted R-squares

- .22 for Sean

- .18 for flare

Note: effect strength given is the F-statistic for each variable

followed by the significance level in parentheses. The F—statistic

for the effect of Individual Differences on User Performance is

for the combined efl’ect of accounting knowledge and data

modeling knowledge.

FIGURE 5.]: SUMMARY OF USER PERFORMANCE RESULTS

Analysis of the results reveals that subjects’ grades in intermediate

accounting are a stronger determinant of their task performance (in terms of

accuracy and speed) than was either the type of interface they used or their data

79

modeling problem score. The accounting grade was significant with higher

accounting grades associated with higher task performance. Data modeling

problem scores approached significance with higher data modeling scores

associated with higher task performance. The type of interface was not

statistically significant. Instead of abstraction group subjects exhibiting superior

performance, they demonstrated similar performance. This suggests the

abstraction hierarchy does not aid the user as we believed it would. Perhaps, as

suggested in Chapter 3, the abstraction hierarchy over-filters or over-condenses

the information presented to the users. This possibility is discussed further in

Chapter 6.

5.2 Analysis of User Perception Hypothesis

The user perception hypothesis is stated in terms of perceived

manageability. Subjects answered Likert scale questions as to how manageable

they perceived their database interface to be. Hypothesis Two in null form (H2)

suggests no difference in perceived manageability between groups of subjects using

the abstraction interface versus the non-abstraction interface, after controlling for

accounting and data modeling domain knowledge. This hypothesis was tested

using MANOVA in order to control for the covariates. A MANOVA model with

Satis as the dependent variable, Group as the factor and IntAcc and DataMod as

covariates was run. The Satis variable in the model is the average of a subject’s

responses to five 7 point Likert scale questions. Group, IntAcc, and DataMod are

defined as described in Section 5.1.

80

This MANOVA model was also run using SPSSX. Descriptive statistics for

the Satis variable are presented in Table 5.5. The descriptive statistics for IntAcc

and DataMod remain as presented in Table 5.1. The direction of effects indicate

that overall, subjects in the non-abstraction group perceived their interface as

more manageable than did subjects in the abstraction group; however, the

significance tests presented later in this section reveal the difference is not

statistically significant.

Table 5.5: Descriptive Statistics for User Perception Model

SATIS Mean Std Deviation N

Non-abstraction 3.67 1.52 27

Abstraction 3.54 1.30 20

Total 3.62 1.42 47

Results of testing for homogeneity of variance for the Satis variable are

presented in Table 5.6. Results for IntAcc and DataMod remain as illustrated in

Table 5.2. The Cochran’s C test and Bartlett-Box F test reveal no significant

violations of the assumption of homogeneous variances.

Table 5.6: Tests of Homogeneity of Variance for User Perception Model

Value Significance

ATIS

Cochran’s C .58 P=.463 (approx)

Bartlett-Box F .51 P=.477

81

The significance test results for the user perception model are summarized

in Table 5.7. Part (a) of the table contains the test of significance for Satis using

unique sums of squares. The line entitled "Within Cells" contains the error term

data. The "Regression" row indicates the significance of the combined covariates

(IntAcc and DataMod) in relation to Satis. The line called "Group" indicates the

significance of the type of interface used in relation to Satis. Part (b) of the table

breaks down the effect of the covariates, to indicate the individual strength of

each covariate in relation to Satis.

Table 5.7: Significance Test Results for User Perception Model

(a) Test of significance for Son's using unique sums of squares

SS df MS F Significance

Within Cells 85.91 43 2.00

Regression 6.75 2 3.37 1.69 .197

Group .01 1 .01 .00 .947

(b) Individual Univariate test of significance

Covariate B Beta Std Error t-value Significance

INTACC .184 .103 .265 0.693 .492

DATAMOD -.015 -.266 .008 -1.788 .081

The overall adjusted R-square for Satis is .01. This suggests that only 1

percent of the variance in subjects’ perceived manageability is explained by the

combination of their accounting domain knowledge, their data modeling

knowledge, and the type of interface they used.

82

Figure 5.2 summarizes these results in terms of the conceptual framework

adapted from Jih et al. (1989).

Chara rlstiea

- [nits-face used F- .00 (347)

(Abstraction vs. >

Nonabstraction)

Individual

Differences:

, pm Modem F-l.69 (.197) U!“
Kno > > Perception:

- Accounting Donnin - 3‘3"ng

Knowledge

Adjusted

. none R-square - .01

Task measured

Characteristics: >

(held constant)

Note: effect strength given is the F-statistic for each variable

followed by the significance level in parentheses. The F-statistic

for the effect of Individual Differences on User Perception is for

the combined effect of accounting knowledge and data modeling

knowledge-

FIGURE 5.2: SUMMARY OF USER PERCEPTION RESULTS

83

The data indicate that the combined covariates IntAcc and DataMod do not

contribute significantly to the dependent variable Satis, although DataMod taken

individually approaches significance in relation to Satis. The results also suggest

that, after controlling for the covariates, there is no statistically significant

difference in perceived manageability between users of the abstraction interface

and users of the non-abstraction interface.

5.3 Summary of Findings

Based on the tests of the hypotheses described in this chapter, the

following observations may be made. The provision of an abstraction hierarchy in

the interface used by the subjects in this experiment for purposes of producing

financial statements from an events-accounting database did not assist them as

predicted, either in terms of task accuracy or in terms of task completion time.

Therefore Hypothesis One in alternative form (HlA) is rejected. Hypotheses One

in null form (H1), predicting no difference, may not be rejected at generally

accepted levels of statistical significance as indicated by the MANOVA analysis in

Table 5.4. Possrble reasons for this unexpected result and future research

directions resulting from it are discussed in Chapter 6.

Hypothesis Two in alternative form (H2A) predicted that users of the

abstraction interface would perceive their interface as more manageable than

would users of the non-abstraction interface. Thus, H2A is rejected. The null

form of this hypothesis (H2), predicting no differences, cannot be rejected at

84

generally accepted levels of statistical significance. Subjects perceived both

interfaces to be equally manageable.

85

End Notes:

1. The weighting of the line items was the same as used for computing task

accuracy. Thus, the computation of Cost of Goods Sold (whether or not

the result was correct) was assigned a higher weight than the computation

of Sales. The line items assigned higher weights were expected to take

more time to compute than those to which lower weights were assigned.

CHAPTER 6 - DISCUSSION AND SUGGESTIONS FOR FUTURE RESEARCH

6.1 Discussion of Results

The research question addressed by this study is whether the inclusion of

an abstraction hierarchy in an interface to an events-based accounting database

facilitates the preparation of financial statements. The expectation, based on

previous studies in the behavioral accounting and database literatures, was that

users of an interface including an abstraction hierarchy would exhibit higher

accuracy, use less time, and perceive their system to be more manageable than

would users of an interface without the abstraction hierarchy.

The computer science literature has taken as conventional wisdom the idea

that abstraction and abstraction hierarchies are useful for controlling complexity.

Brodie (1984) claims

Abstraction is essential in database applications due to their inherent

complexity which must be managed (p. 40).

Data flow diagrams are subdivided into progressively lower levels in order to

provide greater amounts of detail, due to the belief that

users have differing needs, and the differing levels can better meet users’

needs for details about the system (Cushing and Romney 1993, 108).

The results of this dissertation suggest that this conventional wisdom should be

subjected to further testing. In this study, user performance results suggest that

there is no effect as predicted by the conventional wisdom, in terms of either

accuracy or speed. No significant differences were observed for user perceptions,

measured as perceived manageability.

86

87

These results do not appear to be an anomaly of the sample used in the

study. Pilot test results revealed no significant differences for any of the three

dependent variables, with the means showing the same directions as this

experiment (i.e. non-abstraction subjects were more accurate than abstraction

subjects, abstraction subjects took slightly more time, and abstraction subjects

perceived their system as slightly less manageable).

6.2 Implications for Events-Based Accounting System Design

The results of this study suggest that the typical commercial database

interfaces that do not contain any abstraction need not be replaced at this time by

interfaces with abstraction hierarchies. This is only a preliminary suggestion as

this study is the first to explore the user-computer interaction in events-based

accounting systems for the task of financial statement preparation. No definitive

statements may be made regarding events-based accounting system design until

more research is done.

6.3 Implications for Events-Based Accounting System Instruction

Instruction in events-based accounting systems has been largely centered

around teaching students how to design events-based databases. The results of

this study suggest that more guidance needs to be given to students in how to

retrieve information from an events-based database. One possibility that arose

from the observations in this study is that perhaps emphasis needs to be placed on

using REA models implemented in the form of ER diagrams for information

retrieval. Of the few schools teaching the REA accounting model in accounting

88

information systems courses, all seem to teach information retrieval using only the

relational tables. The E-R diagrams are used for instruction on database design.

Students are taught to develop E-R diagrams from a textual description of

a company’s operations and information needs. Students then use the ER

diagrams to design the relational tables. One would expect them to understand

that the ER diagrams could be useful in helping them to retrieve information

from the tables; however, this expectation requires analogical reasoning which

students may not be using. Students may need explicit instruction as to the

usefulness of E-R diagrams (and of the abstraction hierarchies present in the

REA model) for information retrieval.

6.4 Future Research Directions

Overall, very little variance in user performance and in user perception was

accounted for in this study by the type of interface used and by subjects’

accounting and data modeling domain knowledge. This suggests the existence of

variables which affect user performance and perceptions that were not measured

in this study. The conceptual framework of Jih et al. (1989) may be examined to

provide directions for future research. (See Figure 3.1).

6. 4. 1 Further Examination of System Characteristics

System characteristics are included as one category. expected to affect user

performance. In this study, both systems were created following the REA

accounting conceptual model implemented as relational database tables. The

abstraction system included in its interface an abstraction hierarchy intended to

89

aid users in navigating through the database. The result that users were not

assisted by the interface requires consideration of two possibilities. First, users

may not need any assistance in navigating the database tables. If that were the

case, the accuracy scores should have been much higher than they were. The

non-abstraction group scored an average of only 47 out of 84 possrble points.

These scores were depressed partly because of the time pressure. In pilot testing,

where subjects had more than enough time to complete the task, the average

score was 66 out of 84. These scores are still low enough to suggest a need for

assisting users in navigating through the database tables.

The second possibility is that the abstraction hierarchy implemented may

need to be modified. Perhaps it has too many layers, thus over-filtering the data.

Perhaps the use of ER diagrams in the hierarchy was confusing to subjects. Even

though subjects had been thoroughly instructed in ER implementation of the

REA accounting model, many accounting information systems students claim they

do not understand E-R diagramming. Thus, if the abstraction mechanisms were

manifested in some format other than E-R diagrams, perhaps users would find

them more useful. As discussed in Section 6.3, switching the focus of instruction

from database design to information retrieval may reduce students’ confusion

regarding E—R diagrams and make the abstraction interface as implemented in this

study more helpful.

Training on use of the system is another factor which could be handled

differently in future research. Subjects were not given any advance training on the

specific systems used in the experiment. The abstraction system may have a

90

steeper learning curve than does the non-abstraction system, thus leading to

poorer performance for first-time use. The abstraction system had many screens

which required the user to read one or two sentence instructions before

proceeding, whereas the non-abstraction system’s instructions fit entirely onto

button labels (except for the initial screen which was identical to that of the

abstraction system). Since subjects hadn’t been specifically taught how to use the

REA abstraction hierarchy for information retrieval, abstraction system users had

to read and contemplate the instructions.

The non-abstraction subjects were able to concentrate immediately on the

tables themselves, which was more consistent with the method of information

retrieval they had been using in class. In future research, subjects should be

provided with explicit instructions on the use of the REA abstraction hierarchy to

retrieve data, and they should be allowed to practice using the system to which

they are assigned (with a different database and a different task) before

performing the experimental task. This may lead to very different results than

were found in this study. A follow-up study is being planned to determine

whether different learning curves for the two systems affected the results of this

particular experiment.

Another direction for future research is the examination of this research

question with a database that is made up of a greater number of tables and

attributes than the one used in this experiment. The database used in this study

was very simple. Wilson Company offered only one product line, consisting of six

different items. There were no fixed assets and no manufacturing cycle. The

91

attributes in the tables did not include many items that would be considered useful

for non-accounting decisions.

The database used in this experiment contained 33 tables with 132

attributes. Twenty of the 33 tables (61%) contained information needed for

financial statement preparation. Of the 132 attributes included in the database, 64

were needed for identifying instances in the tables or for identifying relationships

between tables in accordance with the relational model. Twenty-six of the

attributes contained data needed for financial statement item computations. The

remaining 42 attributes contained data useful for record-keeping or for other types

of decisions (e.g. vendor address, customer credit rating). Thus, 90 out of 132

(68%) of the attributes were needed for the financial statement preparation task.

The expected benefit of abstraction is to assist users in filtering out data

which is irrelevant for their task. Only 32% of the data in the Wilson Company

database could be considered irrelevant for the preparation of Wilson’s financial

statements. A corporate-wide database of a realistically complex company would

include many more attributes that would be irrelevant in generating financial

statements but would be useful for making marketing, management, personnel, or

logistics decisions. There does not appear to be any theory to guide us as to how

high the percentage of irrelevant data would need to be in order to demonstrate

the point at which abstraction becomes beneficial. Future research should

manipulate the size and complexity of the database, to try to identify a point (if

one exists) at which user performance and/or user perceptions are consistent with

the predictions made in this study.

92

6.4.2 Further Examination of Individual Differences

Individual differences make up the next category of variables which may

affect user performance. Only two types of domain knowledge were measured in

this study. Much of the variance unaccounted for could have been due to other

individual differences. Field dependence, cognitive style, and general problem-

solving ability are examples of other human characteristics that could be

incorporated into future research. Subjects used in this experiment were

knowledgeable in financial statement preparation, but were novices in terms of

real-world experience. Having not applied their knowledge on a regular basis,

they may not have demonstrated their true potential performance because they

were not confident in their knowledge.

Because the environment of the experiment was similar to an examination

situation, some subjects could have been stricken by test anxiety. Alternatively,

subjects may not have had adequate motivation to perform up to their potential.

Students should be motivated to attain as high a course grade as possible, but

many appear willing to settle for lower grades in exchange for less effort.

Data modeling domain knowledge was measured as an individual difference

variable in this study. However, there are two potential problems with this

variable’s measurement. One problem is that the data modeling test problem on

which they were scored was a database design problem. Subjects were given a

textual description of a company and asked to draw an ER diagram and a set of

relational database tables to be used in that company. This may not adequately

tap their knowledge of data modeling from an information retrieval standpoint.

93

The second problem is that it is possrble that all subjects had enough data

modeling domain knowledge such that those who did not have the abstraction

hierarchy interface were able to mentally picture the necessary parts of the

hierarchy. If this were the case, subjects without the abstraction interface could

scroll through the tables to see what was there and determine a financial

statement line item to compute. Seeing the tables may have triggered a mental

image of the abstraction hierarchy for the relevant cycle, which directed the user

as to the appropriate tables to use in computing a given financial statement line

item. The user could then scroll through the tables to find the other necessary

tables. Users with the abstraction interface who could already picture the

necessary parts of the abstraction hierarchy may have been frustrated by the

provision of useless overhead (particularly since it was accompanied by

instructions they needed to assimilate, as discussed earlier). This would explain

why the system may have actually hindered their performance and certainly did

not help them.

An experiment is being planned as an extension of this dissertation to test

this possibility. Subjects who have adequate accounting domain knowledge will be

given a short training session on information retrieval from an events-based

accounting database. These subjects will then prepare the same financial

statements that the current study’s subjects (with data modeling domain

knowledge) completed. Such a study will help to isolate whether there is an

interaction effect between the provision of an abstraction hierarchy interface and

the existence of subjects’ data modeling domain knowledge.

94

6.4.3 Further Examination of Task Characteristics

Task characteristics make up the third category which Jih et al. (1989)

expect to affect user performance. The task was held constant in this study.

Financial statement preparation is a task which is complex, but well-structured.

Future research could examine whether the abstraction interface would have a

different effect on user performance for tasks which are unstructured.

6.4.4 Refinement of Task Completion Time Measurement

Future research should refine the measurement of task completion time.

The 60 minute time frame allowed in this study was not adequate to allow most

subjects to complete the financial statement preparation task, thus causing a

ceiling effect for the raw time measurement. Scaling of this variable results in a

measure which is less precise than that which would have been obtained with a

longer time frame. Protocol analysis via computerized process tracing would allow

for an even finer measurement of time to be obtained.

6.5 Summary

The results of this dissertation can be summarized as follows. The

hypothesis of no difference in task performance between users of the two

interfaces could not be rejected. The user perception hypothesis put forth in this

dissertation also could not be rejected. This study has shown that the

conventional wisdom of abstraction as an aid to users requires empirical

examination to determine the types of situations in which it will provide assistance

and the occasions for which it may actually hinder users. Several future research

95

directions have been suggested as a result of the findings of this study. These

constitute the beginning of a research program on the use of abstraction in user

interfaces for information retrieval.

APPENDIX 1

APPENDIX 1: EXPERIMENTAL INSTRUCTIONS

To Computer Project Participants:

Thank you for coming today. The computer project in which you are participating is

being conducted in order to enable a comparison between users of events-based

accounting systems. The results should help in future design of such systems. This

project will require approximately 80 minutes of your time, in one session.

General Instructions:

Your task is to prepare handwritten financial statements (Income Statement, Balance

Sheet, and Statement of Changes in Retained Earnings) for Wilson Company as of June

30. All information needed to complete the statements is in Wilson’s database on the

computer you are using. IGNORE TAXES!

As a reminder, an Income Statement includes the company’s revenues and expenses. A

Balance Sheet includes the assets, liability, and stockholders’ equity of the company. A

Statement of Changes in Retained Earnings starts with the beginning balance of Retained

Earnings, lists additions and reductions and concludes with the ending balance of

Retained Earnings.

Beside each financial statement number, you must give a brief explanation of how you

calculated it. For example, if you were asked to compute the total number of students

enrolled at the Specialty Arts Academy (a student can only take 1 course) and you had

the following table included in your database:

C-1 a

; Number of Students j

j 100 Art 20

II 101 Dance 20 i

J___ __ ___ ___-_-_________Dm________________l

Your answer would be presented as follows:

70 - Went to the 01 table and summed the "Number of Students Enrolled" column.

Tools:

You may use a calculator. You should be able to complete your task by using the

computer and your calculator. You have also been provided with a stack of scrap paper.

Each piece of scrap paper is a different color. You may use this paper for temporary

recording of information - if you need it. However, you may not use this paper to record

information you need on a long-term basis (you are to refer back to the database for such

things). To ensure that no-one uses the paper for such purposes, the paper will be

collected every 10 minutes. For example, if your session starts at 8:10, the first page (e.g.

yellow) will be collected at 8:20. The second page (e.g. green) will be collected at 8:30,

96

97

etc. You will be given a warning 1 minute before each collection so that you may begin

new calculations on the next page. This will prevent collection of paper in the middle of

a calculation you may be making. (Note: the ideal situation would be for you to not

need to use the paper at all).

If you have any mechanical difficulties with your computer or your mouse, please raise

your hand for assistance. No questions about Wilson Company, the database, or financial

statements can be answered. You should be able to figure out everything you need from

the database.

Maneuvering Through the Database:

On each screen you will see buttons with labels such as "Continue" to go from screen to

screen. Only use these buttons to maneuver through the system. Because this system was

created in a windowing environment, each screen is also a window. Like any windows,

they may be closed or iconicized by clicking on the arrows in the upper left and right

hand corners. DON’T DO THIS - IT WILL THROW YOU OUT OF THE SYSTEM!

If you accidentally do this, raise your hand, and I’ll come get you back in. But this will be

a waste of your time!

CAUTION!!: Each table ends with a blank row. Any table that has more than five rows

has a scroll bar on the right side. There are more entries in these tables than you see on

the screen! Click the left mouse button on the arrow-heads of the scrollbar to scroll

down and up through the table. You will know you have reached the end of a table when

you see the blank row.

Class Credit:

As you know, you are completing this project for class credit. Your grade will be

assigned based on the following criteria:

1) Accuracy and completeness of the financial statements you turn in.

2) How quickly you complete the task.

For example, a paper that is 90% accurate (with complete and correct explanations) that

is completed in 40 minutes would be graded higher than one which is 100% accurate and

is completed in 60 minutes. Thus, although you are allowed an hour to finish the task, if

you finish in less time, you should turn in your statements right away.

Questionnaire:

When you have turned in your financial statements, and your completion time has been

recorded, you will be given a questionnaire to complete. You must fully complete this

questionnaire in order to receive class credit for this project.

Confidentiality:

I will provide copies of your financial statements to your instructor. The financial

statements will be seen only by your instructor and by me. Your questionnaire will be

seen only by me (your instructor will not receive a copy). All responses will remain

confidential, and are obtained only for statistical purposes. Any results will be reported

in aggregate form. If you have any questions regarding this project, feel free to contact

me through the Accounting Department at 355-7486.

APPENDIX 2

APPENDIX 2: EXPERIMENTAL QUESTIONNAIRE

For each question that follows, please circle the number which corresponds most

closely to your experience in this project. (1 = Strongly Agree, 4 = Neutral, 7 =

Strongly Disagree)

1. I found the database interface cumbersome to use.

1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

2. Using the database interface was frustrating.

1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

3. Using the database interface required a lot of mental effort.

1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

4. The database interface is clear and understandable to me.

1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

5. Overall, I found the database interface easy to use.

1 2 3 4 5 6 7

Strongly Agree Neutral Strongly Disagree

98

99

Demographic information (strictly confidential - for statistical purposes only)

Circle the appropriate category:

Your age: 0-19 20-21 22-24 25+

Your grade level: Fr. So. Ir. Sr. PPA Grad student (non-PPA)

Your GPA in accounting classes: <2.5 2.5-2.99 3.0-3.49 3.5-4.0

Your Overall GPA: <2.5 2.5-2.99 3.0-3.49 3.5-4.0

Place a check mark next to the accounting courses you have taken (besides 321).

If you are currently taking one of the courses, add a "c" next to the check mark.

If you took an equivalent of the MSU course at another school, add a "*" next to

the check mark.

__ ACC 201 (Financial Accounting Principles)

__ ACC 202 (Managerial Accounting Principles)

_ACC 251H (Honors Accounting Principles)

_ACC 300 (Intermediate Financial Accounting 1)

__ ACC 301 (Intermediate Financial Accounting 11)

_ACC 308 (Governmental/Not for Profit Accounting)

_ACC 341 (Cost and Managerial Accounting - used to be 303)

__ACC 411 (Auditing)

__ ACC 419 (Auditing Theory)

_ACC 431 (Federal Income Tax)

__ ACC 439 (Federal Taxes)

__ ACC 490 (Independent Study)

Please list the computer science courses you have taken:

100

How many months of work experience (paid or unpaid) involving accounting

responsrbilities have you had (do not include being an accounting TA):

Are you (or have you been) an Accounting Teaching Assistant?

If yes, for which course (circle one): Acc 201 Ace 202 Acc 230

If yes, for how many months have you been an Accounting TA?

How many months of work experience (paid or unpaid) involving regular use of

computers or computer systems have you had:

LIST OF REFERENCES

LIST OF REFERENCES

Abramson, DH. 1986. The future of accounting: Scenarios for 1996. Journal of

Accountancy. October. 120-124.

Ackoff, RI... 1967. Management misinformation systems. Management Science.

December. 8147-8156.

Batini, C., S. Ceri, and SB. Navathe. 1992. Conceptual Database Design: An

Entity-Relationship Approach. Benjamin/Cummings, California.

Batra, D., J.A. Hoffer, and RP. Bostrom. 1990. Comparing representations with

relational and EER models. Communications of the ACM. February.

126-139.

Beaver, W.H. and A. Rappaport. 1984. Financial reporting needs more than the

computer. Business Week. August 13. 16.

Benbasat, I. and AS. Dexter. 1979. Value and events approaches to accounting:

An experimental evaluation. The Accounting Review. October. 735-748.

Bonner, SE. and BL Lewis. 1990. Determinants of auditor expertise. Journal of

Accounting Research. Supplement. 1-20.

Brodie, ML. 1981. Data abstraction for designing database-intensive

applications. Proceedings of the Workshop on Data Abstraction, Databases

and Conceptual Modeling (I980). Pingree Park, Colorado. SigArt, SigMod,

SigPlan, 101-103.

. 1984. On the development of data-models. 0n Conceptual Modelling. eds.

Brodie, M.L., Mylopolous, J. and Schmidt, J.W. Springer-Verlag, New

York. 19-47.

. and D. Ridjanovic. 1984. On the design and specification of database

transactions. 0n Conceptual Modelling. eds. Brodie, M.L., J. Mylopolous,

and J.W. Schmidt. Springer-Verlag, New York. 277-306.

101

102

Casey, C., Jr. 1980. Variation in accounting information load: The effect on loan

officers’ predictions of bankruptcy. The Accounting Review. January. 36-49.

Chan, H.C., K.K. Wei, and KL. Siau. 1991. Conceptual level versus logical level

user-database interaction. Proceedings of the 12th International Conference

on Information Systems. New York. December. 29-40.

Chervany, N.L. and G.W. Dickson. 1974. An experimental evaluation of

information overload in a production environment. Management Science.

June. 1335-1344.

Cushing, B. 1989. On the feasibility and consequences of a database approach to

corporate financial reporting. The Journal of Information Systems. Spring.

29-51.

and MB. Romney. 1993. Accounting Information Systems: A

Comprehensive Approach. Addison-Wesley.

Date, CJ. 1986. An Introduction to Database Systems. Fourth edition. Addison-

Wesley.

Davidson, HJ. and R.M. Trueblood. 1961. Accounting for decision making. The

Accounting Review. October. 577-582.

Davis, ED. 1989. Perceived usefulness, perceived ease of use, and user

acceptance of information technology. MIS Quarterly. September.

319-340.

Davis, GB. and M.H. Olson. 1985. Management Information Systems: Conceptual

Foundations, Structure and Development. Second edition. McGraw-Hill.

DeMarco, T. 1979. Structured Analysis and System Specification. Prentice-Hall.

Dunn, CL. and WE. McCarthy. 1992. Conceptual models of economic exchange

phenomena: History’s third wave of accounting systems. Collected Papers

of the Sixth World Congress ofAccounting Historians. Volume I. August 20.

133-164.

Einhorn, H.J. and R.M. Hogarth. 1980. Rationality and the sanctity of

competence. Working paper.

Financial Accounting Standards Board. 1989. Accounting Standards, Original

Pronouncements July 1, 1973 - June I, 1989. Irwin.

103

Gal, G. and WE. McCarthy. 1992. Semantic specification and automated

enforcement of internal control procedures within accounting systems.

Working paper.

Geerts, G. and WE. McCarthy. 1992. The extended use of intensional reasoning

and epistemologically adequate representations in knowledge-based

accounting systems. Proceedings of the Twelfth International Workshop on

Expert Systems and Their Applications. Avignon, France. June 1992.

321-332.

Herot, C., R. Carling, M. Friedell, D. Kramlich, and R. Rosenberg. 1981.

Overview of the spatial data management system. Computer Corporation of

America, Technical Report CCA-81-08. November.

Howe, DR. 1983. Data Analysis for Data Base Design. Edward Arnold.

Jih, WJ.K., D.A. Bradbard, C.A. Snyder, N.G.A. Thompson. 1989. The effects

of relational and entity-relationship data models on query performance of

end users. International Journal of Man-Machine Studies. 257-267.

Kent, W. 1981. Consequences of assuming a universal relation. ACM

Transactions on Database Systems. December. 539-557.

. 1983. The universal relation revisited. ACM Transactions on Database

Systems. December.

Libby, R. 1983. Determinants of performance in accounting decisions.

Accounting Research Convocation. University of Alabama.

. and Lipe. M. 1992. Incentives, effort, and the cognitive processes involved

in accounting-related judgments. Journal ofAccounting Research. Autumn.

249-273.

. and Luft, J. 1993. Determinants of judgment performance in accounting

settings: Ability, knowledge, motivation, and environment. Accounting,

Organizations, and Society. July. 425-450.

Lochovsky, RH. and D.C. Tsichritzis. 1977. User performance considerations in

DBMS selection. ACM-SigMod International Conference on Management of

Data. August. 128-134.

Loomis, M.E.S. 1987. The Database Book. Macmillan. New York.

March, ST and G.F. Smith. 1994. Design and natural science research on

information technology. Decision Support Systems. forthcoming.

104

McCarthy, W.E. 1979. An entity-relationship view of accounting models. The

Accounting Review. October. 667-685.

. 1982. The REA accounting model: A generalized framework for

accounting systems in a shared data environment. The Accounting Review.

July. 554-578.

. 1987. On the future of knowledge-based accounting systems. The D.R.

Scott Memorial Lecture Series. The University of Missouri. 19-42.

Moore, G.C. and I. Benbasat. 1991. Development of an instrument to measure

the perceptions of adopting an information technology innovation.

Information Systems Research. September. 192-222.

Morris, A.H., G.M. Kasper. and DA. Adams. 1992. The effects and limitations

of automated text condensing on reading comprehension performance.

Information Systems Research. 3:1. 17-35.

Ogden, F. 1991. Dr. Tomorrow searches for electronic future. Computerworld.

September 9. 19.

Otley, D.T. and FJ.B. Dias. 1982. Accounting aggregation and decision-making

performance: an empirical investigation. Journal ofAccounting Research.

Spring. 171-188.

Palmer, SE. and R. Kimchi. 1986. The information processing approach to

cognition. In T. Knapp & L. Robertson (Ed.) Approaches to Cognition.

Erlbaum. 37-77.

ParcPlace Systems. 1992. VisualWorks version 1.0.

Rappaport, A. 1968. Management misinformation systems - another perspective.

Management Science. December. B133-Bl36.

Revsine, L. 1970. Data expansion and conceptual structures. The Accounting

Review. October. 704-711.

Schick, A., L. Gordon, and S. Haka. 1990. Information overload: A temporal

approach. Accounting, Organizations, and Society. 15:3. 199-220.

Shneiderman, B. 1980. Software Psychology: Human factors in computer and

information systems. Winthrop Publishers, Massachusetts.

. 1992. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. Addison-Wesley.

105

Simon, HA. 1990. Information technologies and organizations. The Accounting

Review. July. 658-667.

Smith J.M. and D.C. Smith. 1977. Database abstractions: aggregation and

generalization. ACM Transactions on Database Systems. June. 105-133.

. and . 1978. Principles of database conceptual design. Data Base

Design Techniques 1: NYU Symposium. New York. May. 114-146.

Snowball, D. and C. Brown. 1979. Decision making involving sequential events:

some effects of disaggregated data and dispositions toward risk. Decision

Sciences. Vol. 10. 527-546.

Sorter, G.H. 1969. An ‘events’ approach to basic accounting theory. The

Accounting Review. January. 12-19.

The American Heritage Dictionary. 1980. W. Morris, ed. Houghton Mifflin.

Ullman, J.D. 1983. On Kent’s "Consequences of assuming a universal relation."

ACM Transactions on Database Systems. December 1983.

University of Southern California Financial Accounting Study Group. 1991.

Setting Financial Accounting Standards for the Twenty-first Century. Topical

Issue Study No. 4. School of Accounting, USC.

