

l

.r

3,3"; 2'.

.51" 25‘;

r."

M

@333.
JE‘fig—g 111,:

JG

1%" . v.

'0

"1'

38k" .-.
x -. > .52.. “b

1fififi‘iv
‘ ‘ ‘ ‘ “1235114
F ‘ ‘3‘ 3 ~95 ~

‘ '5‘???“ 3‘}. «drug

597%.? r
“‘ 1v ‘

THESIS
IVERSITY LIBRARIES

Iiiliiiiw\llHiliiiililiill \lilli\in
3 1293 010374

This is to certify that the

dissertation entitled

CLIENT SERVER CONTROL ARCHITECTURE

FOR ROBOT NAVIGATION

presented by

HANSYE SUDIANA DULIMARTA

has been accepted towards fulfillment

of the requirements for

PH . D . degree in COMPUTER SCIENCE

PROFESSOR ANIL K. JAIN

Major professor

Daemon 79: 1994

MSU is an Affirmative Action/Equal Opportunity Institution

0- 12771

\—_ __ ,,

LIBRARY

Michigan State

University

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

, DATE DUE DATE DUE DATE DUE

MSU Ie An Affirmative Action/Equal Opportunity institmion

Wales-9.1

...—__... , _ __ __ ___—__.. _ r »

LR

CLIENT-SERVER CONTROL

ARCHITECTURE FOR ROBOT NAVIGATION

By

Hansye Sudz'ana Dulz'marta

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science Department .

1994

7
-
1

(
)
0

p
i
t
:

ABSTRACT

CLIENT-SERVER CONTROL

ARCHITECTURE FOR ROBOT NAVIGATION

By

Hansye Sudz'ana Dulimarta

Autonomous navigation is one of the major issues in mobile robotics. This capa-

bility is the key to making mobile robots useful to humankind. When a mobile robot

is navigating inside its domain, the state of the world, as observed by the robot,

changes with time. In such a situation, the role of sensors is important for achiev-

ing a robust navigation system. Moreover, the amount of information that must be

processed is immense. This vast amount of data and the dynamic behavior of the

perceived domain make the navigation task difficult.

This thesis addresses the problem of task decomposition in a mobile robot navi-

gation system. The underlying supposition in this approach is that in a typical robot

navigation system, there are a number of modules running concurrently and each

module is assigned a specific subtask.‘ To accomplish the common goal of the navi-

gation task, these modules share the resources and common data in the system. In

such a system, resource access control and information sharing among the modules

must be properly managed.

In this thesis, a robot navigation system is decomposed into a number of client

and server modules. Resource access control, resource sharing, information sharing,

and process synchronization in the entire robot navigation system are delegated to

the server modules. The clients send appropriate requests to avail of these facilities.

There are two types of server modules defined in the system: data server and hardware

server. The core of the system consists of one data server and several hardware servers.

The data server acts as a common information exchange medium for all the clients,

while the hardware servers provide access interface to the hardware or peripherals on

the robot. By decoupling the hardware access routines from the hardware servers,

the modules in the navigation system can be made independent of hardware platform

being used.

An indoor navigation system developed using the Client-Server model described

above is presented. Probabilistic finite state automata have been developed for rep-

resenting the confidence level of successfully completing a navigation task given to

the system.

O LORD, you are my God;

I will exalt you and praise your name,

for in perfect faithfulness

you have done marvelous things,

things planned long ago.

— Psalm 25:1

iv

U}.

r. ..‘ ."
lil‘l‘h ‘10,

(film ..

d[,d (I

Walk

W01; I ‘

Dr,

The

lari

C P g

ACKNOWLEDGMENTS

This dissertation would not have been completed without the help given by many

individuals during my research and graduate study. I would like to acknowledge those

individuals here.

My first sincere thank goes to my dear wife Liana for her patience, sacrifices,

encouragement, support, and understanding. Being both a wife of a Ph.D. student

and a mother of a toddler has made her go through several difficult times. In many

ways, I share my academic accomplishment with her. Thanks to Louisa for being a

wonderful daughter. I feel pity for her for losing some of the time she should have

had with her dad.

Also, I would like to thank my academic adviser, Professor Anil K. Jain for pro-

viding me insight, guidance, encouragement and support during my research work.

During the first several months I worked with him, Professor Jain let me search for

a research topic before I came up with one to pursue. In this respect, I am very

grateful to him for his patience and kindness. As the Director of the PRIP labora-

tory, Professor Jain provided me a Research Assistantship by assigning me as a PRIP

Laboratory manager.

My gratitude also goes to my other committee members: Dr. Matt Mutka,

Dr. Richard Phillips, Dr. George Stockman, Dr. Lal Tummala, and Dr. John Weng.

The discussions I had with them have sharpened the ideas expressed in this disser-

tation. It was Dr. Stockman who introduced me to Robotics when I was taking his

CPS806 class. Dr. Tummala allowed Jeff Schneider and me to use his LABMATE

gVSlPlli

SOurCe

equip

lima.

Ptfipl.

Jim”,

(lan'

Nail“

Lij‘ K

them

H]

for m

Barb (

Engfih

mobile robot for our project in the class. Dr. Richard Enbody, my former adviser,

provided me with the initial directions when I started my graduate study at Michigan

State University.

During my assignment as a PRIP manager, I learned many things about Unix

system administration from John Lees, my office mate. He is also my ultimate re-

source of TEX and DATEX help whenever I came to a dead end. I would also like to

acknowledge Jon Courtney’s help in carefully proofreading most of my dissertation

drafts. He and Steve Walsh did the “hammer and nail” work on our mobile robot.

Jon, Steve and I were the robotics “subgroup” in the PRIP laboratory. Rick Herrell

then joined the “subgroup” and assisted me in implementing and testing some of the

modules used in my work.

Roxanne Fuller provided invaluable assistance by letting me use the EB shop

equipment when I had to fix the hardware on the robot. Brian Wright, Shanti Vedula,

Umashankar Iyer helped me in designing the circuit for the digital compass interface.

While working in the PRIP Laboratory, I also met a number of knowledgeable

people from different parts of the world. Sushma Agrawal, Yao Chen, Shaoyun Chen,

Jinlong Chen, Yuntao Cui, Chitra Dorai, Marrie-Piere Dubuisson, Sally Howden,

Qian Huang, Michiel Huizinga, Jan Linthorst, Jian-Chang Mao, Sharathcha Pankanti,

Nalini Ratha, Dan Swets, Marilyn Wulfekuhler, Yu Zhong, and former PRIPpies Greg

Lee, Sateesh Nadabar, Tim Newman, Narayan Raja, and Deborah Trytten, are among

them.

Finally, I would like to acknowledge my bible study group and Christian friends

for their spiritual support and prayers; thanks to Dr. Tom Manetsch, Kelly Bartllet,

Barb Czerny, Ralph Dicosty, Utami Rahardja, Ndibu Muamba, Christian Trefftz, Jon

Engelsma, Iskandar Winata, Richard Setyabudhy, and Sutarto Hartono.

vi

1.6

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 History of Robotics 2

1.2 Robotics Research 7

1.2.1 Kinematics and Dynamics 8

1.2.2 Trajectory Planning, Motion Control, and Obstacle Avoidance 8

1.2.3 Mobility 9

1.2.4 Map Building and Navigation 13

1.2.5 Multi- and Micro-Robotics 15

1.3 Formal Models for Robot Navigation 16

1.3.1 Finite State Machines 16

1.3.2 Robot Schema 18

1.3.3 Petri Nets - 20

1.4 Problem Definition and Approach 21

1.5 Overview of the Thesis 26

1.6 Achievements in Mobile Robotics 26

1.7 Difficult Problems in Mobile Robotics 29

1.8 Contributions of the Thesis 31

1.9 Summary 32

2 Sensors 34

2.1 Redundant Sensing 36

2.2 Sensor Model and Uncertainty 40

2.3 Computer Vision 42

2.3.1 Stereo Matching Algorithms 44

2.3.2 Stereo Vision in Mobile Robot Applications 45

2.4 Sonar 46

2.5 Infrared Proximity Detectors 48

2.6 Summary 48

3 Control Architectures 49

3.1 Multilevel Architecture 50

3.1.1 NASREM 51

vii

3.1.2 ARTICS 53

3.1.3 Task Control Architecture 54

3.1.4 HAREMS 58

3.1.5 Layered Architecture 58

3.2 Connectionist Architecture 60

3.2.1 Subsumption Architecture 62

3.2.2 Colony—Style Architecture 64

3.2.3 Autonomous Robot Architecture 67

3.2.4 ACBARR 69

3.2.5 Blackboard-Based Architecture 70

3.3 Hybrid Architecture 72

3.3.1 HRL/Voting-Based Architecture 72

3.3.2 Rational Behavior Model (RBM) 73

3.3.3 Concurrent Behavior Control Architecture 73

3.3.4 Independent Agents Architecture 75

3.4 Toolkit-Based Approach to Control Architecture 76

3.5 Summary 77

Client-Server Control Architecture 81

4.1 Client-Server Model 81

4.2 Remote Procedure Call 84

4.3 Client-Server Control Architecture 87

4.4 Related Work 91

4.5 Implementation 92

4.5.1 Interprocess Communication 92

4.5.2 Client Interface Functions 93

4.5.3 Server Interface Functions 95

4.6 Servers 98

4.6.1 DServer 100

4.6.2 PServer 103

4.6.3 RServer 104

4.6.4 CServer 110

4.7 Controlling Multiple Robots 110

4.8 Emulating Other Control Architectures 112

4.8.1 Emulating Hierarchical Systems 113

4.8.2 Emulating the Colony-Style Architecture 113

4.9 Summary 122

Indoor Navigation 124

5.1 World Representation 125

5.1.1 Map Construction 128

5.2 A Model of Robot Navigation 132

5.3 Path Planner 135

5.4 Navigator 138

5.4.1 Center-Hallway state 141

viii

5.4.2 Corner state 144

5.4.3 L-Goal 145

5.4.4 D-Goal 146

5.4.5 E-Goal 146

5.4.6 Entering and Exiting Elevators 146

5.5 Local Mapper for Heading Correction 150

5.6 Ceiling Light Tracking 152

5.7 Door Number Plate Detection 156

5.8 Information Sharing Among Clients 160

5.9 Summary 161

Experimental Results 162

6.1 Indoor Navigation Experiments 162

6.2 Door Number Plate Detection 168

6.3 Confidence Levels of Indoor Navigation 169

6.4 Summary 178

Conclusions and Future Research Directions 180

7.1 Conclusions 180

7.2 Limitations and Suggestions for Improvements 183

7.3 Contributions of the Thesis 185

7.4 Future Research Directions 186

A A Map Generated from StickRep 188

BIBLIOGRAPHY 190

ix

1.1

3.1

4.1

4.2

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

6.6

LIST OF TABLES

Navigation control program vs. finite state machine........... 17

Comparison of various control architectures. 79

Summary of commands to RServer.................... 106

Replacement rules for binary tree constructions. 119

Encoding of ceiling positions in the StickRep. 132

Relationship between modes, states, and goal functions......... 140

Camera setup for ceiling light tracking.................. 154

Information sharing via the Data Server. 160

Results of the indoor navigation in the old wing of the MSU Engineer-

ing Building................................. 165

Results of the indoor navigation in regions of the new wing of the MSU

Engineering Building............................ 167

Door number plate detection results. 170

Interpretation of states in Figure 6.6................... 173

Confidence levels of reaching goal positions. 175

Transition probabilities in Figure 6.9................... 177

1.1

1.2

1.3

1.4

1.5

1.6

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

LIST OF FIGURES

Robotics research.............................. 7

Driving mechanism of KR I 12

State transition diagram used by Crowley 18

Client-server interconnections....................... 24

A StickRep representation (b) of a building structure (a) 25

Front view of ROME. 27

Stereo imaging geometry.......................... 44

The NASREM Architecture for telerobots. 52

An example of a system using the TCA architecture. 56

Example of TCA task tree with a temporal constraint from task C to D. 57

HAREMS control architecture. 59

Crowley’s Layered Architecture...................... 61

An example of a module in the Subsumption Architecture. 63

An example of module interconnection in the Subsumption Architec-

ture (reproduced from [Brooks, 1986]).................. 63

Structure of two modules in the Colony-style Architecture. (a) memo-

ryless module; (b) module with memory. 66

An example of a network in the Colony-style Architecture with two

suppressor nodes and one inhibitor node................. 67

Navigation system in AuRA........................ 69

Structure of the distributed agent in blackboard-based architecture. . 71

The structure of the Concurrent Behavior Control Architecture. . . . 74

A model of Independent Agents Architecture. 76

Client-server relationship. 83

An example of a Remote Procedure Call................. 86

Typical configuration of the Client-Server Architecture......... 88

A segment of SockStr class declaration. 93

An example of a program communicating to RServer.......... 94

Public interfaces of Server class declaration............... 95

An example of a request handler in a server. 97

Library of functions defined on top of SockStr class. 99

An example of a multiple Client-Server Control Architecture...... 111

Intermodule communication in: (a) hierarchical systems, and (b) its

equivalent construct in the Client-Server Architecture.......... 113

xi

4.11

4.12

4.13

4.14

4.15

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

A.1

The internal structure of a module in Colony-Style architecture. . . . 114

Inhibition network in the Colony-style architecture. 115

Suppression network in the Colony-style architecture. 117

Two different suppression networks with the same priority assignment. 118

Binary trees constructed from suppression networks........... 120

Client modules and their data flow. 126

A partial map of the third floor of the MSU Engineering Building. . . 128

A hypothetical building structure..................... 129

A StickRep representation of the structure shown in Figure 5.3. . . . 130

Ceiling light projection for three lights (1,2,3) in a hallway....... 131

Navigation model.............................. 133

Different operating modes of the robot.................. 137

Control loop in the Navigator....................... 139

Sonar configuration. 141

Far and near sonars. 142

Barcode-like Markers representing binary values: (a) 000 and (b) 100. 148

An elevator door pasted with a barcode-like marker........... 149

An HIMM map created from a corner in the hallway. 151

ROME in the hallway of the MSU Engineering Building. 153

Camera setup for detecting ceiling lights (facing up) and door number

plates (facing sideways). 154

Door number plate detection result. (a) input image, (b) door number

plate detected................................ 156

Number Plate Detection Geometry. 158

Two overlapping snapshots. 159

Regions in the map............................. 163

Output produced by the digital compass while the robot is moving north. 163

A finite state automaton representing a landmark-based navigation task.171

A simplified representation of Figure 6.3................. 171

A finite state automaton for a path with k corners. 172

A generalized representation of the FSA in Figure 6.5. 172

The FSA in Figure 6.6 after the estimation of the probability values. 174

A probabilistic automaton for the PlFinder. 175

The modified finite automaton of Figure 6.8............... 176

A map of the third floor of the MSU Engineering Building....... 189

xii

CHAPTER 1

Introduction

ro-bot [Czech, fr. robota, work] 1: a machine in the form of a human being that

performs the mechanical functions of a human being but lacks sensitivity 2: an

automatic apparatus or device that performs functions ordinarily ascribed to

human beings or operates with what appears to be almost human intelligence

3: a mechanism guided by automatic controls. "'

For some people, when they hear the word “robot”, the image that comes to their

mind is a human-like figure with one head, two arms, and two legs, that is able to

move its arms and legs, or even “say” a few words. However, others have different

perception about the word “robot”, and they even might not come up with a simple

answer when they are asked to define what “robots” are.

In fact, a robot can be viewed as a complex system. How complex is it? It depends

on the level one considers. At the highest level, one could view a robot as composed

of hardware and software subsystems. At the next highest level, the hardware subsys-

tems can be decomposed into several sub-subsystems such as: sensing, manipulation,

locomotion, controller, and power subsystems. In general, these components can

be classified into: effectors, sensors, computers, and auxiliary equipments. On the

software side one can find, for instance, the navigation, perception, communication,

‘Electronic version of Webster’s 7th Collegiate Dictionary.

path-planning, motion control, and object recognition sub-subsystems. In some of

these sub-subsystems, there is no clear distinction between software and hardware.

The complexity of a robot system has led us to many different research areas in

robotics. Each one of these areas might be associated with one or more “nodes” in

the subdivision described above.

1.1 History of Robotics

The history of today’s robots could be traced back to the eighteenth century when

automatal were popular. Then, automata (or “automatons”) referred to mechanical

objects that moved automatically. Besides clockworks, some of the well-known au-

tomata during that era were de Vaucanson’s mechanical duck created in 1738, and

Jacquer-Droz’s automatic scribe created in 1774 [Asimov and Frenkel, 1985]. Later in

1745, de Vaucanson invented the first automatic weaving loom. His invention marks

the advance of controllable machines in which a program could be designed to control

their operation. Jacquard improved de Vaucanson’s idea and used punch cards for

controlling the motion of the needles to create intricate patterns on the cloth.

In the meantime, inventions that led to digital calculating machines were also in

progress. Pascal invented the adding machine; Leibnitz discovered how to do multipli-

cation mechanically. In 1823 Babbage attempted to design the first digital calculating

machine which was based on the new algebra developed by Boole. Babbage’s work

on the “Difference Engine” and the “Analytical Engine” was not completed. These

“engines” were derived from Jacquard’s loom, and punch cards were used to control

the arithmetic operations. While working with the US. Census Bureau, Hollerith

lIn this context, the word automata has a different meaning from what is used in theoretical

computer science.

(lth’lUEi

Home“:

in du’i

first ful

designs

N‘ ‘ 1 1

111101;;

Sl‘llttitfw"

used 1

I ['1

A
)

developed a method of recording statistics on punched cards and invented his elec-

tromechanical tabulating machine used in the U.S. censuses of 1890 and 1900. Later

in the twentieth century, Bush and his associates at MIT made history with the

first fully automatic calculator (also the first analog computer); Aiken at Harvard

designed his electromechanical scientific calculating machine called Mark I (the first

digital computer); Mauchly and Eckert at the University of Pennsylvania designed

ENIAC, the first electronic computer.

Motivated by all these inventions, people then began to consider incorporating

“intelligence” into computers to create “true” automatons. This idea had been con-

sidered not only by scientists but also by science-fiction writers. In 1920, Capek

used the word robot in a play entitled R.U.R. (Rossum’s Universal Robot). In the

play, robots were artificially manufactured persons, mechanically efficient, but devoid

of sensibility. Henceforth, the word robot was widely used in place of automaton

and popular robot science-fiction stories often portrayed robots as dangerous, wicked,

human-like figures. In 1939, Isaac Asimov, a young science-fiction writer, changed so-

ciety’s perception of robots. Contrary to contemporary ideas, he viewed robots merely

as machines, and he proposed his Three Laws of Robotics [Asimov and Frenkel, 1985]:

First Law: A robot may not injure a human being, or, through inaction,

allow a human being to come to harm.

Second Law: A robot must obey the orders given it by human beings

except where such orders would conflict with the First Law.

Third Law: A robot must protect its own existence as long as such pro-

tection does not conflict with the First or Second Law.

In 1985, Asimov revised his Three Laws of Robotics and proposed the following:

Zeroth Law: A robot may not injure humanity, or, through inaction,

allow humanity to come to harm.

First Law: A robot may not injure a human being, or, through inaction,

allow a human being to come to harm, unless this would violate the

Zeroth Law of Robotics.

Second Law: A robot must obey the orders given it by human beings

except where such orders would conflict with the Zeroth or First Law.

Third Law: A robot must protect its own existence as long as such pro-

tection does not conflict with the Zeroth, First, or Second Law.

As computer technology advanced, smaller computers were widely used in con-

trolling machine operations. Robots were then viewed as mobile computers which did

not have to look like humans, but instead were expected to duplicate human capa-

bilities. The outcome of this idea was the advent of computerized manipulator arms

which also made a debut in industry (and hence the name industrial robots). Devol

held the first patent on industrial robots. Together with Engelberger, Devol launched

industrial robot manufacturing by establishing their company, Universal Automation

(or “Unimation” for short). With this debut, Engelberger and Devol were also known

as the “Father and Grandfather of Industrial Robots”.

It is worth noting that automated manufacturing does not necessarily imply robo-

tization, because robotization is more than just automatization. The main criteria

used to justify automatization vs. robotization are flexibility and adaptability [Brady,

1985]. In general, robotization provides flexibility in operation but automatization

does not. Therefore, automatization is sometimes also called hard automation. In

hard automation, preprogrammed machines are used in place of manually operated

mechanical tools. Preprogrammed machines are dedicated to doing a single task

consisting of a known sequence of operations. On the other hand, programmable

machines offer more flexibility because they can be programmed for a number of dif-

ferent tasks. Robot manipulator arms can be categorized as this type of system. The

Robotics Institute of America (RIA) has provided the following definition of robots:

A robot is a reprogrammable, multifunctional manipulator designed

lions.

moving

mbm 5,1,

that is l'

Some 1;,

inspect].

bililtli
1

{'9’

Mel

lilc'il \V]

manly;

the “'0

1011015.

who],

”'5 a it

llldOI)(

to move materials, parts, tools, or specialized devices through variable

programmed motions to perform a variety of tasks.

One of the objectives for building robots is to make them duplicate human func-

tions. In accomplishing a task, humans do not just sit at one place, but might be

moving actively from place to place. Careful scrutiny of the RIA’s definition of a

robot shows that robots are designed to move objects. To move objects to a place

that is beyond the reach of the robot manipulator, the robot must possess mobility.

Some tasks that require mobility of the robots are: room cleaning, drainage pipe

inspection, exploration (outerspace as well as underwater), and cleaning of high-rise

buildings.

Mobile robots are often considered different from industrial robots, in the sense

that when people talk about industrial robots, they usually refer to programmable

manipulator arms and not to wheeled robots (or other types of locomotion). Likewise,

the word mobile robot often refers to wheeled, legged, submersible, and free-flying

robots. One of the factors which contributes to this distinction is that industrial

robots were invented by industrial demands whereas mobile robots were invented

as a result of academic research. Furthermore, research in both fields has evolved

independently.

As industrial robots were being developed, researchers in computer science were

also aiming to incorporate perceptual and problem-solving capabilities into robots.

This required attaching sensors to the robots that would bring the information from

the outside world to the computer—the “brain”—of the robot. The aim was to make

robots that could “see” (e.g., through TV cameras) and “feel” (e.g., through touch

sensors on robot grippers). In a more general setting, the overall goal is to make

robots “think”, “walk”, “grab”, “hear”, etc., enabling them to perform intelligent

tasks as humans do. Here, the role of sensory input is very important. Brady views

robotics as the intelligent connection between perception and action [Brady, 1985].

This view extends the meaning of sensing to intelligent sensing, i.e., perception. In

other words, intelligent machines are required to perceive or interpret, not merely

sense, the information obtained from their sensors.

Building intelligent machines has proved to be a difficult task. Iyengar and

Kashyap characterized the evolution of intelligent robots and cited the following four

levels of autonomy of robots [Iyengar and Kashyap, 1989]:

e Teleoperation — where machines are remotely operated under human control.

This setting merely follows a master-slave configuration, where the slave ma-

chine at a remote distance follows the instructions given by a master controller.

e Telesensing — where machines have additional sensing capability about the

teleoperator and environment. The perceived information is communicated back

to the human operator who controls the machine continuously. Here, the human

operator can sense what is happening at the remote site.

e Telerobotics —— where human operators do not have to control the machines

continuously, instead the operator intermittently communicates via a computer

about goals, plans, constraints, etc., and receives feedback from the telerobot.

The telerobot executes the task or goal given to it by its own sensors and

knowledge base.

e Autonomous Intelligent Machines —— where a human operator supplies a sin—

gle high-level command and the robot does all the necessary task sequencing

and planning to execute the command. In doing so, the robot needs a priori

knowledge for reasoning.

Manipulation

Kinematics

Programming W{ End-effectors

Language Tmm’ 111::

Hood/root Holder

Micromnipulator

Adaptive Control Mobility

Sensor utilitarian. Robotics Locomotion

Control

Research

Contact Sensing Robot Sensing

Touch sensors. Strategies.

For“ um" Non-Contact Coordination

Sensing

Range Sensors.

Image Processing

Figure 1.1. Robotics research.

1 .2 Robotics Research

The ultimate goal of robotics research is the design of intelligent machines which is

the highest level of autonomy cited by Iyengar and Kashyap. So far, no one has been

able to build a truly autonomous intelligent machine that satisfies the aforementioned

requirements. Brady showed a good example that proves this fact [Brady, 1985]. He

posed a very simple problem for humans: How does one disconnect a (car) battery?

Solving this simple problem requires its decomposition into a number of simple tasks

such as: determining the size of the bolt, finding the proper wrench that fits the bolt,

grasping the wrench properly, aligning and mating the wrench with the head of the

bolt, determining whether there is enough free space for wrench rotation, applying

enough force to unscrew the bolt and so on. To date, no robot is able to perform

such a task.

Research activities in the field of robotics have been pursued in a number of

discip‘

comp‘:

engine:

tion of

ada j i: j‘

LNiIza'

1.2.1

111(1)}?

irol 1

indix

this

file

10 d

the

the

$01]

1) \-

'4

()Tj.

high

disciplines, such as applied physics, applied mathematics, biomedical engineering,

computer science, control and systems science, electrical engineering, and mechanical

engineering. Nitzan has identified the following research areas in robotics: manipula-

tion of arms, end-effectors, mobility, general sensing, non-contact vs. contact sensing,

adaptive control, robot programming languages, and manufacturing process planning

(Nitzan, 1985]. Figure 1.1 shows the different areas in robotics research.

1.2.1 Kinematics and Dynamics

Industrial robot arms generally consist of several links connected by joints. To con-

trol the motion of such arms, one needs to understand the relationship between the

individual joint motions and the geometry of arm motions. Kinematics deals with

this issue. Suppose a robot hand is to be moved from one position to another. Given

the initial and final positions, kinematics tells us how much each joint has to move

to displace the hand from one position to the other, but it does not tell how to move

the joint (how fast?, how slow?, when?, etc.). Dynamics fills the gap by providing

the answer to these questions. Hence, kinematics and dynamics go hand in hand. A

general and systematic method of describing links or joints geometry was proposed

by [Denavit and Hartenberg, 1955].

1.2.2 Trajectory Planning, Motion Control, and Obstacle

Avoidance

One application example that requires trajectory planning is arc welding, where the

robot hand has to follow a specified path at a prespecified height above the metal

surface. This task can be formulated as follows: How does one control the joints so as

to make the hand follow the specified trajectory? In other applications, the trajectory

is not specified, but instead the end points are. Here, the robot arm is required to

have obstacle avoidance capability to move the arm from one end point to the other

without running into any objects. In motion control, the state description model of

the robot manipulator is given, and one needs to determine the control laws, derived

from the calculated trajectory, to achieve the desired system response. A common

approach to controlling the robot arm is to use a closed-loop feedback control.

A number of motion planning algorithms have been proposed by many au-

thors [Leven and Sharir, 1987; Lozano-Pérez and Wesley, 1979; Lozano—Pérez, 1983;

Lumelsky and Stepanov, 1987; Sharir, 1989]. Sharir wrote a series of papers on

this problem, known as the Piano Movers’ problem [Schwartz and Sharir, 1983a;

Schwartz and Sharir, 1983b; Sharir and Ariel-Sheffi, 1984; Schwartz and Sharir, 1984].

Most of these algorithms assume that the robot’s environment is known. A major

breakthrough in robot motion planning was shown in Canny’s thesis [Canny, 1987]

where he proposed the “roadmap” algorithm that reduces the complexity of the al-

gorithm from double exponential to single exponential.

Khatib approaches the obstacle avoidance problem using the Artificial Potential

Field method [Khatib, 1986]. Using this approach, the robot is considered to move

in a field of forces. The goal position of the robot is considered as an attractive pole

and obstacles are repulsive surfaces.

1.2.3 Mobility

Hirose and Morishima have identified three fundamental configurations of mobile

robots based on their means of locomotion: wheels (with or without a tractor chain),

legs, and articulated bodies [Hirose and Morishima, 1990]. Depending on the rough-

ness or irregularity of the terrain, one method of locomotion might be more suitable

than the others. The first configuration originated from locomotive vehicles like cars

and tractors, whereas the other two configurations originated from animal-like loco-

motion.

10

Wheeled Robots

In 1960’s, researchers at John Hopkins University were able to prowl their Hopkins’

Beast around the University’s corridors. Later in the decade, Stanford Mechanical

Engineering Department built the Stanford Cart subsequently acquired by the Stan-

ford Laboratory [Moravec, 1981]. Stanford Research Institute (SRI) International

also completed its mobile robots named Shakey I and Shakey II. Some more recent

mobile robot projects include: CMU Rover [Moravec, 1983], CMU NavLab [Thorpe

et al., 1991b; Thorpe et al., 1991a], JPL’s Rocky III, Rocky IV and Robby [Matthies,

19921

Legged Robots

Raibert has identified three main motivations for studying legged-locomotion: mobil-

ity, animal biology, and dynamics (Raibert, 1990]. Legged-locomotion can be used

on rough terrains, such as rocky areas, hilly regions, wooded areas, etc., as well as

indoors. Thus, it has higher versatility. Legged vehicles could also be beneficial to

biologists who want to study the properties of legged locomotion in people and ani-

mals. Since the legs have to support the weight of the robot, dynamics become more

complicated. Six-legged vehicles seem to be popular and the following is a list of

projects which have used this approach.

0 AMBLER [Bares et al., 1989] (Autonomous MoBiLe Exploration Robot) built

at Carnegie Mellon University for planetary exploration. The legs are attached

to a central pole and are controlled as two sets of three legs (using tripod gait

exclusively). Range sensors are attached to each leg to sense the topology of

the terrain.

e OSU Hexapod built by Ozguner et al. at Ohio State University [Ozguner et

al., 1983]. The height of each leg can be adjusted to keep the robot body level

11

when maneuvering on irregular terrains. Vertical gyroscope and pendulums are

also used to keep the body level. Each leg also has a force sensor that can be

used to “feel” the terrain.

e Sutherland’s walking machine. This robot weighs 1600 lbs. and uses hydraulic

actuators for leg motion [Sutherland and Ullner, 1984]. The on-board computer

controls the sequencing of each leg motion.

Besides six-legged robots, biped and quadruped locomotion are also popular.

“Quadruped” was built at the Tokyo Institute of Technology by [Hirose et al., 1983].

Self-balanced robots have also been studied by [Miura and Shimoyama, 1983] and

implemented as BIPER3 and BIPER4. Raibert et al. also experimented with a three-

dimensional hopping machine [Raibert et al., 1983] and bipedal locomotion robot.

The BLR-G2 biped [Furusho and Sano, 1990] built by Furusho and Sano at Gifu

University is another example of a self-balanced robot.

Articulated Body Robots

This novel approach has not been explored as much as the other two configura-

tions. Here, multiple segments (or articulated bodies) are joined one after another

to produce snake-like movement. Due to this type of structure and locomotion, ar-

ticulated body robots have a higher degree of freedom than any other type of robot.

Each segment contributes a small degree of freedom and hence, for multiple seg-

ments, the total number of degrees of freedom is a multiple of this value plus ad-

ditional joints connecting the segments. A number of examples of articulated body

robots can be found in [Maeda et al., 1985; McGhee et al., 1980; Ozaki et al., 1983;

Ohmichi, 1985].

As part of a research project in robots for atomic reactors, Hirose and Morishima

have built the robot KR I (Koryu I), which is a hybrid of wheeled and articulated

12

body configurations [Hirose and Morishima, 1990] . This six—segment articulated body

robot is 40 cm high, 20 cm wide, and has a length of 140 cm. Each joint in KR I has

two degrees of freedom (rotation and translation along the vertical axis), for a total of

16 degrees of freedom. This design has an advantage over the inflective joint design,

because less force is needed for elevation of each segment. Some capabilities that have

been demonstrated by KR I are: passing through a right—angle corner, striding over

duct obstacles, stepping over a ditch, stair-climbing, and traversing on an inclined

surface. In order to maintain stability in the latter case, the segments are configured

in a W—shape form so as to obtain a wider footprint and prevent the robot from falling

over. The control mechanism of this robot is also of interest. For instance, the robot

employs vertical force control to walk over an obstacle of a certain height, or walk on

an irregular surface. A thorough analysis is given in [Hirose and Morishima, 1990].

Figure 1.2 shows the driving mechanism of this articulated body robot.

1
1‘

O
‘V

I

*5/10

-
4
. af
t

(
'
9
(
‘

{s
}.

\

a

Figure 1.2. Driving mechanism of articulated body mobile robot KR I (reproduced

from [Hirose and Morishima, 1990]).

Earlier, Hirose also built ACM III (Active Cord Mechanism), which is comprised

hath

roboi.~ E

SPUsgy,

ii lf‘pfi"

df’Pi'W

in pm.

hfificp

”50]u

nan-3g

inap,

.\l

Not

The

13

of 20 segments and is about 2 meters long. Each segment is equipped with a tactile

sensor. ACM III has shown success in moving within a maze, or even curling around

objects. ACM VI, a successor of ACM III, is even more flexible, because each joint

has three degrees of freedom. The maximum speed that can be achieved by these

robots is 0.6 m/s.

1.2.4 Map Building and Navigation

In building a map of the environment, a robot takes several measurements using its

sensors from a number of distinct positions and orientations, and incrementally builds

a representation of the workspace. Each measurement is used to build a local map

which is then combined into a larger global map. The accuracy of the global map

depends on how accurately the local maps are registered to each other, which in turn

depends on how well the robot stores its internal position and orientation. However,

in practice, the true position and orientation of the robot cannot be obtained, and

hence the global map is not accurate. One of the major issues in map building is

resolution, i.e., the granularity of the map in the robot’s internal representation. For

navigation purpose, the robot can use the information gathered from either the local

maps or the more complete global maps.

Moravec and Elfes used ultrasonic sensors to build a map of the robot’s workspace

[Moravec and Elfes, 1985]. A probabilistic occupancy grid was used as the model.

The presence of objects within the workspace is shown as high probability values in

the occupancy grid. Initially, each cell in the grid is set to a probability value of 0.5,

which denotes that the robot has no knowledge about the cell. As the robot moves

around, each cell in the grid is updated with current sensor readings using a Bayesian

approach. A similar approach was used by [Elfes, 1989] for robot navigation.

Roth~Tabak and Jain used a 3-D discrete representation of the world [Roth-Tabak

and Jain, 1989]. Their volumetric model uses discrete values (void, full, unknown) to

earh rt

engfli.

found l

891:

 lflihfk)

:Bt‘flii‘ii

in I]

to rim

115ml ‘tw

18 ”Will,—

main Sf

relief: 51

authors

14

label each voxel. The environment was built from dense range data, as opposed to

the sparse data produced by an ultrasonic sensor.

Thorpe models floor space as a grid of cells containing a suitability measure of

each region to be on the robot path [Thorpe, 1984]. High values mean the cell is

empty, whereas low values were assigned to cells near obstacles. An optimum path is

found by a relaxation algorithm.

Beckerman and Oblow approached the navigation problem by using discrete labels

in the occupancy grid, as opposed to probabilistic values used by Moravec and Elfes

[Beckerman and Oblow, 1990].

In the Ambler Project [Bares et al., 1989], Bares et al. initiated a research project

to design a roving explorer capable of operating autonomously. Legged locomotion is

used because the robot is supposed to move on a rough terrain. Its perception system

is responsible for building and maintaining terrain maps and discrete objects. The

main sensors used for this purpose are a set of laser range finders that provide both

reflectance and range. The control algorithm implemented in Ambler is described

in [Simmons and Krotkov, 1991].

Borenstein and Koren used a slightly different approach which they called virtual

force field (VFF). In this approach the obstacle vectors were viewed as repulsive forces

acting on the robot, while the target point attracts the robot with another force. The

vector sum of these forces represents the direction the robot should proceed.

Later on, [Borenstein and Koren, 1991b] implemented the vector field histogram

(VFH) in their obstacle avoidance algorithm. In this approach, a histogram grid was

used as the world model. Each cell in the grid keeps a tally of how many times the

sensors see an obstacle in the corresponding position. To achieve faster processing

rate, only one cell (the target cell) on the sonar axis is updated when a sensor detects

an object. The location of the target cell is computed from the sonar reading. The

authors also experimented with a different updating scheme [Borenstein and Koren,

15

1991a], where not only the target cell is updated but also the cells between the sensor

and the target cell. In order to determine the safe direction(s) the robot can proceed

from its current position (cell) P, a polar histogram is constructed using the length

of obstacle vectors. Each obstacle vector has its origin at P and ends at a cell Q

which lies within a certain distance from the robot’s current position. The tally of

cell Q determines the length of the obstacle vector Pa. The sum of magnitude or

length of all obstacle vectors that share a common wedge is used to construct the

polar histogram. Valleys in the resulting histogram represent safe directions along

which the robot can proceed.

Kweon and Kanade have experimented in building rugged terrain maps from mul-

tiple sensors [Kweon and Kanade, 1992]. The final map was constructed by merging a

large number of range images. With the knowledge of sensor geometry, locus methods

can be used to create elevation maps from range images.

1.2.5 Multi- and Micro-Robotics

There have been some experiments conducted on controlling several cooperating

robots for solving a common task. This approach is also known as multi-robotics.

Compared to the other research areas in robotics, multi-robotics has not received as

much attention.

Miller has been working on a team of microrovers for applications in exploration

[Miller, 1990]. Fujimura used a reactive planning approach for controlling multiple

mobile robots [Fujimura, 1991]. A distributed approach to controlling a number of

robots was also proposed by [Sugihara and Suzuki, 1990].

Besides searching for new configurations, miniaturization seems to be another

promising area of research in robotics. Brooks recently experimented with designing

and building micro robots named Attila and Genghis [Flynn et al., 1989; Brooks,

1991; Freedman, 1991].

16

1.3 Formal Models for Robot Navigation

There have been some attempts at formalizing robot behavior using mathematical

models. Some models that have been used in the literature are: finite state machines

(automata), Schema, and Petri Nets.

1.3.1 Finite State Machines

Finite automata (finite state machines) have been used for modeling the behavior of a

system with discrete inputs and outputs. The machine has a finite number of internal

“states” or configurations. State transitions occur when the machine receives an

input. Formally, a finite state machine consists of the following components [Hopcroft

and Ullman, 1979]:

e A finite set of states,

e A finite set of input symbols,

e A finite set of output symbols,

An initial state,

A set of final states, and

A transition function mapping that describes how the machine changes state

upon receiving an input symbol.

Instead of defining a mathematical function representing state transitions, one can

also draw a transition diagram using a directed graph in which a node represents a

state and an arc represents a state transition. The outputs of a finite state machine

can be associated with either its states or its transitions. In Moore machines, outputs

are associated with states, while in Mealy machines, outputs are associated with

transitions.

(
I
Q

and

(
f
)

.
o
-
o

17

In a navigation task, a robot is given a command to move from an initial to a

goal position. The robot starts at an initial state and upon reaching the goal position

it is at a final state. While the robot is maneuvering between the two positions, it

might change states. Intuitively, one can see that a navigation control program can

be modeled by a finite state machine. Table 1.1 shows the correspondences between

the two systems.

Table 1.1. Navigation control program vs. finite state machine.

FSM Navigation Control Program

states operational modes

inputs sensor measurements

outputs robot actions

transition function behavior activation

In controlling a mobile robot for straight-line motions, Crowley defined the state

transition shown in Figure 1.3. In the Hold state, the robot waits for a command

from a global path planner. Upon receiving a goal, the robot enters the Decide state.

Depending on the angle difference between the goal and current heading, the robot

enters either the Turn or Move state. The Blocked state is entered when the contact

sensor on the robot is triggered. In this state, the local path planner determines the

path for avoiding the obstacle. The Wait state is entered when the robot seems to be

moving away from the goal position.

Fok and Kabuka employ a 7-state Moore machine for controlling an Automated

Guided Vehicle (AGV) that is required to follow any route in a path network [Fok

and Kabuka, 1991]. Nodes in the networks are marked with bar codes. The seven

states are associated with the following actions:

0 Following an edge,

18

Wait Blocked

Move Decide Turn

I

Hold

Figure 1.3. State transition diagram used in Crowley’s mobile robot (reproduced from

[Crowley, 1985]).

e Reaching an expected node,

Leaving a visited node,

Encountering an obstacle in the current direction,

0 Reaching a nonidentifiable node,

Reaching a destination node, and

Reaching an isolated node.

Using a camera facing the floor, scene objects are classified into the following cat-

egories: obstacles, expected nodes, visited nodes, required node, destination node,

nonidentifiable nodes, edges, and background (floor). The category of the scene ob-

ject serves as an input for the finite state machine.

1.3.2 Robot Schema

Finite State Machines model a system by identifying its states, inputs, and outputs

and characterizing how the inputs to the entire system affect the states. However,

the effects of the input to a particular component of the system cannot be captured

19

by this model. Lyons and Arbib proposed a formal model for representing robot

programs [Lyons and Arbib, 1989]. Their model, Robot Schemas, employs a nested

network of computing agents called schemas. Each schema has a number of internal

variables, input and output ports. When a schema is created, one can specify how

the internal variables are initialized. A schema T with input ports i1, i2, . . ., output

ports 01, 02, . . . and its internal variables initialized by the expression v, is written in

the following Robot Schema notation:

Tv(il, 72, . . .)(01, 02,)

Output ports of one schema can be connected to input ports of the other. This

connection enables the schema to communicate to one another. A connection map

describes how several schemas are interconnected via their ports. For instance, to

denote that schemas A1, A2, . .. are connected as described in a connection map C

one writes:

(A1, A2, . . .)C.

The connection map C is written as a list of elements in the form:

(X47) -* (Y.q),

which indicates that the output port p of schema X is connected to the input port

q of schema Y. Each schema is associated with a behavioral description that defines

its response during communication.

By connecting several schemas in the above manner, one can create a network

of schemas, which is referred to as assemblage. An assemblage can be viewed as a

single large schema whose behavior is determined by the behavior of the constituent

schemas. Moreover, the input/output ports of the constituent schemas can be used

20

as the input/output ports of the assemblage. Hence, besides a connection map, an

assemblage requires a port equivalence map E that specifies the relationships between

the ports of the assemblage and those of component schemas. A port equivalence

map is a list of elements in the form of

(X4?) -* ((1).

which indicates that port p of schema X is equivalent to port q of the assemblage.

With these notations, an assemblage S is then written as:

Sv(i1,tz, . . .)(01, 02, . . .) 2 [A1, A2, . . .]C’E.

Thus, to the outside world, a basic schema and an assemblage have a similar appear-

ance, i.e., both of them have input and output ports, and their internal variables can

be initialized with a given expression. However, a basic schema defines the computing

behavior of the schema while an assemblage defines the instantiation procedure of the

assemblage (how to create and connect the constituent schemas).

A robot task T can then be represented as an assemblage of a sensory schema S,

a motor schema M, and a task schema t, and is written as:

T = [S,t,M]C.

1.3.3 Petri Nets

Another model mentioned in the robotic literature is Petri Nets. Some researchers

have even incorporated temporal information into Petri Nets and called them Timed

Petri Nets. So far, Petri Nets have been mostly used for modeling manufacturing

systems. Recently, Noreils employed the Pr/Tr Net, which is a Petri Net-based model,

21

for modeling the coordination of multiple robots [Noreils, 1993].

A Petri Net can be viewed as a graph whose nodes come in two different types:

places and transitions. More specifically, a Petri Net consists of the following com—

ponents:

e A set of places,

0 A set of transitions,

e An input function that defines the input places of each transition, and

e An output function that defines the output places of each transition.

The input and output functions are usually represented by arcs connecting pairs of

places and transitions. An input port p.- is connected to a transition t with an are

that goes from p,- to t. Similarly, an output port p0 is connected to a transition t with

an arc from t to p0.

We can put a number of markings inside each place. If the number of markings

in a place p is at least as many as the number of outgoing arcs, then p is active.

Additionally, a transition can be either enabled or disabled. A transition t is enabled

if all its input places are active, otherwise the transition is disabled. An enabled

transition can “fire”, causing the markings in all its input and output places to change.

1.4 Problem Definition and Approach

In this thesis, my interest is in the software subsystem of an indoor mobile robot

navigation system. I believe that navigation is an important issue in mobile robotics

research. A typical mobile robot application usually involves completion of several

subtasks that can be either cooperating or conflicting. For example, when a robot

is given a command to move in a straight line but it encounters an obstacle on its

,‘

i’mw- vi—

22

path, it has to modify the current path and avoid the obstacle. Here, the first subtask

(straight line motion) and the obstacle avoidance subtask are conflicting in the sense

that one subtask gives commands that might be unexpected by the other. In this

situation, arbitration of access control to the robot is required. In some cases, the

commands for controlling the robot are not atomic, i.e., they consist of a sequence

of interruptible computer instructions. Consequently, the current command executed

by the robot can be interrupted by another command.

I have designed a control mechanism that will assist in the development of such an

application. A task is usually associated with a user—process running on a computer.

Thus, one should expect a number of user-processes running concurrently to achieve

the common goal of interest.

In a system such as the one described above, process coordination and resource

sharing are important issues. My approach is to provide a core system that employs

a client-server model. Clients and servers are among the four basic types of processes

in a distributed program [Andrews, 1991], the other two kinds are filters and peers.

Due to the distributed nature of the processing, this approach is also referred to as

distributed robotics [Gauthier et al., 1987].

The core of the system consists of a set of servers that manages process coor-

dination, resource sharing, access control, and information sharing. Here, resources

refer to the hardware components on the robot. My scheme for controlling these

components is to employ at least as many servers as there are sensors or hardware

components. Thus, a single server is dedicated to controlling one hardware compo-

nent. Hardware components are considered independent of each other, thus all servers

can run concurrently. There are no dependencies among these servers. By using this

scheme, a new component and its server can be added to the system easily. In this

thesis, the peripheral-controlling servers will be referred to as hardware servers.

23

Besides the peripheral-controlling servers, this system is also comprised of a num-

ber of higher-level, task-specific modules that run concurrently. In relation to the

servers, these modules will be referred to as clients or agents. Each higher level mod-

ule might have a specific “mission” or “goal” to accomplish. Thus, the objective of

the entire system is to satisfy multiple subgoals to achieve a common goal of the task

being executed.

In a system where multiple concurrent modules are used to carry out the navi-

gation task, the modules might need to communicate with each other. In order to

facilitate cooperation among modules, I have designed a communication scheme be-

tween the modules and the servers, but not among the servers themselves. If direct

intermodule communications were allowed, the number of interconnections among the

modules would be numerous. My strategy is to allow only indirect communication

among these modules via a common data server which accepts all queries or system

information updates. To some extent, the data server can be considered as a sim-

plified database server. Before two modules can communicate with each other, they

have to agree upon the name and format of the shared data.

It is worth emphasizing that the data server and the hardware servers form the

core of the system. The remaining modules in the system will be referred to as clients.

A typical configuration of the system can be seen in Figure 4.3. All the servers are

independent of each other, and so are the clients. The interconnection among the

clients and the servers can be modeled by a bipartite graph, with one set of nodes

containing all the clients and the other set of nodes containing all the server modules.

Figure 1.4 shows the client-server interconnections in the system.

The system described above has been designed and implemented for controlling

our mobile robot for hallway navigation. In the experiments, I utilize a coarse-level

map of the hallway which contains locations of doors, corners, ceiling lights, walls,

and elevators. My goal is to command the robot to move from one point to another

24

-—-----‘

,
—
—
—
—
—
—
—
—
-
—
—
—
—
—
—
—
—
—
~

I I I I I I I I \
-

\
-
—
_
_
-
—
-
_
-
_
_
_
-
-
-
_
_
-
’

Figure 1.4. Client-server interconnections.

in the Engineering Building on the MSU campus. The initial and final locations can

be either on the same floor or different floors of the building. In the later case, it is

necessary for the robot to locate the elevator, enter it, and exit when the destination

floor is reached. In my experiments, a human operator will help the robot to operate

the elevator by pushing the buttons inside and outside the elevator.

I have adapted the StickRep representation for constructing our maps. The initial

maps were developed by [Walsh, 1992], and I have enhanced and modified them to

suit my requirements. A StickRep is an attributed edge graph and is a 1%—dimensional

representation of the robot’s environment. An edge in the graph contains information

about the type (door, elevator, wall, window), dimensions, and special markings

(window openings, fire extinguishers, posters, etc.) of the Object it represents. A

node holds adjacency information about the incident feature edges, and contains

adjacency angle between two edges and the node’s identifier. Figure 1.5 shows a

segment Of the map.

Our mobile robot, ROME (Robotic Mobile Experiment), has evolved from a single-

user DOS-based into a multitasking Unix-based autonomous platform. This evolution

25

I_20_*__m__x_20_>

————-—

door(123)

‘*“————‘ \NaH

(a)

(wall,30) (wall,20) (door,40) (wall,20) (wall,30)

------ k e a k F e

90,0ut-L 270,in-L 180,123L 180,123R 270,in-R 90,0ut-R

(b)

Figure 1.5. A StickRep representation (b) of a building structure (a).

provides a wider range Of Options for controlling the system as a whole. Currently,

hardware components Of ROME consist Of:

1. A Sun SPARCstation 1 enhanced with 10 serial ports (2 builtins + 8 addons

through the SPC board).

2. A 386SX laptop for Operator control.

3. TRC LABMATE wheeled locomotion base, which can be controlled from the

SPARCstation by sending commands via an RS-232 serial port.

4. Twenty-four ultrasonic sensors and eight infrared sensors attached to the TRC

Proximity SubSystem, which is controlled from the SPARCstation via an RS-

232 serial port. The maximum detection range of the ultrasonic sensors is 10 m.

The infrared sensors return a binary information indicating whether an Object

is detected within a distance of approximately 76 cm from the sensor.

5. Two Panasonic GP-KR202 CCD color cameras with 6 mm lenses.

26

6. Two Sun VideOPix image grabbers.

7. A pan/tilt carousel for mounting the cameras.

1.5 Overview of the Thesis

The rest Of this thesis is organized as follows. Chapter 2 discusses the issue Of multi-

sensor integration and the type of sensors that will be used in our research. Next

in Chapter 3 I present a survey of control architectures used in robotics research.

In Chapter 4, I discuss in more detail the Client-Server Control Architecture model

adapted in this thesis. Chapter 5 describes the system developed for indoor naviga-

tion. Chapter 6 describes the experimental results in indoor navigation that I have

Obtained using the Client-Server Architecture model. Finally, I conclude with what I

have learned from this research and mention areas of future research in Chapter 7.

1.6 Achievements in Mobile Robotics

Mobile robotics research is multidisciplinary, and the achievements in this area have

come from researches in a number Of other fields such as: robot vision, geometric

planning, locomotion design, control, and sensory interpretation. In this section, the

recent achievements in mobile robotics are identified. Most of the published works

described below have been cited elsewhere in this thesis.

0 Navigation algorithms for autonomous robots in both known and unexplored ter-

rain Of obstacles have been reported in the literature. For unexplored terrains,

the navigation algorithm usually creates a map Of the environment on the fly

[Asada, 1988; Asada, 1990; Borenstein and Koren, 1991a; Bozma and Kuc, 1991;

Kweon and Kanade, 1992; Moravec and Elfes, 1985]. The robot navigates using

27

Front view of ROME.61Figure

28

a partial information and incrementally updates the map with the most current

sensor data.

Various locomotion methods for mobile robots have been reported in the liter-

ature. Wheeled locomotion is the most popular method of locomotion. Legged

locomotion [Bares et al., 1989; Ozguner et al., 1983; Hirose et al., 1983;

Miura and Shimoyama, 1983; Raibert et al., 1983; Furusho and Sano, 1990]

is becoming more popular due to its utility in both smooth and rough terrains.

Locomotion with articulated body [Maeda et al., 1985; McGhee et al., 1980;

Ozaki et al., 1983; Ohmichi, 1985; Hirose and Morishima, 1990] leads to mobile

robots with a large number of degrees Of freedom.

Very small-sized robots have been successfully engineered at the MIT Artificial

Intelligence Laboratory [Brooks, 1991; Flynn et al., 1989; Connell, 1987].

Faster processors and algorithms have enabled mobile robots to maneuver at

a high speed. Some examples are: the vision-guided indoor mobile robot that

is capable Of navigating at a speed Of 8-10 m/min [Kosaka and Kak, 1992],

and CARMEL with its fast map building algorithm, HIMM, that enables the

robot to maneuver at a maximum speed of .78 m/sec [Borenstein and Koren,

1991a]. The latter robot won the AAAI’92 Robot Competition [Kortenkamp

et al., 1993]. In the competition, the mobile robots were required to visit 10

poles while avoiding static and dynamic obstacles. Each pole was ten feet tall

and three inches wide.

In the AAAI’93 Robot Competition, a number of mobile robots showed their

capabilities in three different events [Nourbakhsh et al., 1993]. In the first

event, the robots started inside an Office approximately 4 by 5 meters in size.

The robot had to find the way out Of the Office when one of the doors in the

29

office is Opened and then reach a finish line while avoiding Obstacles. In the

second event, the robot started in an unknown position and orientation inside

a realistic Office setting. The robot must locate a marked coffeepot and deliver

it to a particular Office. In the third event, the robot had to rearrange several

special boxes in a specified pattern.

0 Progress on Autonomous Road Vehicles (ARVs) has also been reported in the

literature [Masaki, 1992]. ARVs differ from Autonomous Mobile Robots in the

sense that ARVs are computer-controlled cars. Research projects in this field

include Harunobu-4 by Yamanashi University (Japan), Martin Marietta Au-

tonomous Land Vehicle, CMU NavLab, ROVA by RARDE (United Kingdom),

and OptOPilot Of Volkswagen AG (Germany). The fastest ARV was designed

and is Operated by the Universitat der Bundeswehr Miinchen (VaMORs), which

was reported to reach a maximum speed of 96 km/h on a newly constructed

freeway and 50 km/h on campus roads.

1.7 Difficult Problems in Mobile Robotics

Despite the aforementioned achievements in mobile robotics, there are still some

difficult problems to be solved. These problems are given in the following:

0 Fast and Robust Navigation. The existing mobile robot navigation systems

work well in only a few types Of domain. SO far, there is no general navigation

algorithm that will perform well in any environment.

e Exploration and Symbolic Map Construction. Imagine that we have a

“smart” mobile robot Operating in an indoor environment. The robot is given a

finite amount Of time to erplore its environment and to create a symbolic repre-

sentation Of it. The task of the robot is to extract features from the sensory data,

30

store them in the symbolic map, and derive the topological relationship among

the features. After the map construction is completed, then the robot must be

able to navigate to any location using all the information it has accumulated.

e Nanorobots. The advent Of nanotechnology Opens up a new era Of minuscule

mobile robots. Although there have been some successful experiments in fabri-

cating microdevices, these experiments are confined to making simple actuators

or mechanical systems. We need a few more leaps before we will manage to

build a functional nanorobot. Imagine a “teleoperated” nanorobot that can

crawl inside your blood vessel! [Lucky, 1990]

0 Household Robots. At the current stage, mobile robots are not ready to

be servants in our homes. Making robots that can do laundry, dishwashing,

cooking, lawn mowing, vacuum cleaning, etc. is a non-trivial task.

0 Space Robots. The Jet Propulsion Laboratory (JPL) has been active in

research on using robotics for space missions. The two categories Of robot tasks

needed in space missions are assembly and sample handling. Several papers

describing the progress Of the JPL Rover have been published [Dobrotin and

Scheinman, 1973; Lewis and Bejczy, 1973; Dobrotin and Lewis, 1977; Miller,

1977]. However, to date, no autonomous robots are being used in any space

missions.

In addition to the aforementioned problems in mobile robotics, additional prob-

lems can be found in the literature. Brady listed 30 problems that need to be solved

in robotics [Brady, 1989]. Specifically, in the context Of robot mobility, he mentioned

the following four problems:

P1 System Architecture for Mobility. This issue relates to the determination

Of appropriate hardware and software architecture for multisensor, purposive,

31

mobile vehicle.

P2 High Bandwidth Control. As the sensors used in the robot system produce

more information at much faster rates, high-bandwidth controllers are required.

P3 Sensor-based Steering and Foot Placement. This problem poses the issue

Of making the robot able to judge the quality Of the terrain and thus choose the

terrain locally.

P4 Energy and Legged Locomotion. For legged robots, how to change the

mode Of locomotion from one to the other.

Moreover, in the context Of system integration, the following two problems were

mentioned:

P5 Communicating Processes. This issue relates to determining the type of

asynchronous software architecture that is most appropriate for a given project.

P6 Distributed Hierarchical Organization. Mapping asynchronous software

architecture onto networked hardware architecture is a diflicult problem.

1.8 Contributions Of the Thesis

The contributions Of this thesis have been:

1. Design, development, and implementation of the Client-Server model using an

Object-oriented approach. This model provides a framework for controlling a

robot in a distributed manner, i.e., using a number Of processors connected

through a network Of computers. To my knowledge, this is the first attempt of

applying such a client-server model for robot navigation. The model developed

in this thesis can be used for controlling multiple cooperating robots as well.

32

2. Successful design and implementation Of a robot control model that enables

resource access sharing, data sharing, and event synchronization in a distributed

manner.

3. The implementation of C++ classes for the client-server interaction, low-level

access to various components of the robot, process creation and destruction,

interprocess synchronization in order to provide high-level abstraction and in-

formation consistency.

4. Development Of an algorithm for transforming the hierarchical and Colony-

style Architectures into the Client-Server Architecture. More specifically, an

algorithm for determining the priorities Of the modules in a Colony-style network

containing both suppressor and inhibitor nodes is presented.

5. A functional indoor mobile robot navigation system with an ability to Operate

in a large building (approximate size of the floor plan is 136 X 116 square

meters. The robot is capable Of navigating at 4.7—17.88 m/min and reaching

goal positions within a proximity of 1 m as demonstrated by dozens Of formal

test runs.

I believe that these contributions bring us one step ahead in solving Problem P6

described in Section 1.7. The Client-Server Architecture described in this thesis facil-

itates the mapping Of software architecture onto a networked hardware architecture.

1 .9 Summary

In this chapter, a brief history of robotics has been discussed with emphasis on a

number of milestones in the development of robots from automata. The differences

between manipulator arms and mobile robots are also examined. Moreover, a number

of major research areas in robotics are identified. This list is not at all comprehensive

33

and there is some overlap among those research areas. The research described in this

dissertation focuses on construction of a flexible control strategy for robot navigation

tasks. I propose the Client-Server Control Architecture as the standard for such a

control strategy.

CHAPTER 2

Sensors

sen-sor [L sensus, pp. Of sentire to perceive]: a device that responds to a physi-

cal stimulus (as heat, light, or a particular motion) and transmits a resulting

impulse (as for Operating a control). "

When performing a given task, a robot uses its sensors to determine its Operational

state as well as the state of its environment. For instance, when a mobile robot is given

a command to turn counter-clockwise by 90°, the robot controller has to determine if

the required amount Of rotation has been reached. When the mobile robot must keep

a minimum distance to any Object in its work space, a means Of distance measurement

must be incorporated into the system. Grasping Objects and moving them from one

place to another requires some mechanism for determining if the robot manipulator

arm has grasped the Object firmly, and if the arm controller has applied enough force

to pick up the Object Of interest.

The above examples show that sensors are important in providing information

to the robot when accomplishing a given task. Sensors that are used to Obtain the

Operational state of the robot are usually referred to as internal sensors. Sensors that

are used to Obtain the state Of the environment are referred to as external sensors.

One can also say that internal sensors perform regulatory functions while external

*Electronic version of Webster’s 7th Collegiate Dictionary.

34

35

sensors perform exploratory functions. In this chapter, the word “sensors” should be

interpreted as external sensors, unless noted otherwise. Within this context, the task

of a sensor is to observe the environment and provide necessary information to the

robot.

A partial list of sensors that have been used in robotics applications includes:

e Internal: potentiometer, Optical encoder, shaft encoder, resolver, gyroscope,

digital compass, slip sensor.

e External:

0 Range: laser range finders, proximity sensors, radar sensors.

0 Acoustic: ultrasound sensors, microphones.

o Tactile: touch sensors, sensitive “skin” sensors, piezoelectric sensors.

0 Vision: photodetectors, cameras.

0 Other: magnetic sensors, load sensors.

In my experiments, I have used ultrasonic sensors, CCD cameras, infrared prox-

imity sensors, touch sensors (contact-sensitive bumpers on the robot), and wheel

encoders on the robot. The main advantage Of these sensors is their low cost-to-

performance ratio. The ultrasonic sensors are used for local navigation, Obstacle

avoidance, and building local maps of the hallway. The range information returned

from a single scan of the ultrasonic sensors is used for determining the Open space in

front of the robot. The local maps Of the hallway are created by accumulating the

ultrasonic range information while the robot is in motion. The two CCD cameras are

used for detecting ceiling lights and door number plates in the hallway. The infrared

proximity sensors are used for a simple Obstacle avoidance capability, i.e., for stopping

the robot whenever the infrared proximity sensor detects an Obstacle. The contact

sensitive bumpers guarantee a safe Operation for both the robot and humans. Finally,

36

on many different occasions, the robot needs to Obtain its actual position, heading,

and speed.

The Obstacle avoidance capability Of our robot is achieved by integrating the

information from the ultrasonic sensors, infrared proximity detectors, and heading

direction Obtained from the robot. The ultrasonic data are used to determine the

Open space “in front Of” the robot. The heading direction guides the algorithm in

determining which ultrasonic sensors to read while it searches for the Open space.

The navigation algorithm uses information from the cameras and the robot position

and heading for registering the actual robot position within the stored map.

2.1 Redundant Sensing

It is very common to employ multiple sensors in a given robotic application. The

information Obtained from different sources is integrated systematically so as to Obtain

useful and robust data. Use of multiple sensors is often considered as a requirement for

building intelligent and autonomous robots. Sometimes, the term redundant sensing

is also used to indicate multiple sensing. Moreover, in this context, redundant can

mean [Brooks, 1988]: (1) duplicate (more than one sensor of the same type), (2) multi

(more than one sensor Of different types), or (3) distributed (network Of sensors). The

information provided by a single sensor is Often incomplete and contains a certain

amount Of uncertainty. By employing multiple sensors, information from a number

of different sources might be used to reduce this uncertainty. Of course, a trade-Off

between complexity and uncertainty has to be considered. When there are too many

sensors used in the system, the fusion process becomes more complicated.

Some motivations for using redundant and/or multiple sensors are:

0 Reliability. The system will not fail if one sensor is malfunctioning.

e Error Detection. A faulty sensor can be detected if its output does not conform

37

with the others.

0 Low Cost-to-Performance Ratio. Instead Of using a few high quality sensors,

the system can utilize many less accurate and low-cost sensors and still achieve

better performance.

e Distributed Processing. Each sensor is controlled independently by a dedicated

processor. de Almeida et al. showed an example of such a system [de Almeida

et al., 1988].

Despite the advantages we gain from redundant sensing, there are still several

problems to be addressed in integrating information from multiple sensors. The main

issues are: (i) sensor fusion, (ii) conflict resolution, and (iii) information enhancement

or update. One aspect of sensor fusion is “polymorphic” communication, in the

sense that each sensor produces a piece of information in its own “language”. Before

fusion can occur, all this information has to be converted to a common language.

Usually, this conversion involves some geometric transformations such as rotation,

scaling, etc. LuO and Lin distinguished between sensor fusion and integration by

emphasizing this aspect [Luo and Lin, 1988]. For instance, consider the situation

where a range detector and a camera are used as sensors, and data points Of the range

detector are to be registered with the intensity values Obtained from the camera. The

geometric transformation involved in this example is a change of coordinate systems,

i.e., transformation from both the range and camera coordinate system to the global

coordinate system.

Tou has cited a number of sensor fusion models [Tou, 1988]:

e Boolean fusion. This model simply says that for any two redundant sensors, the

fused data value is Obtained from the sensor whose reliability index is higher.

This scheme is similar to a winner-take-all strategy.

38

e Probabilistic fusion. Evidence from multiple sensors is combined using

Dempster-Shafer or Bayesian approach.

0 Markov Renewal Analysis. Markov chains are used for modeling the addition or

removal of sensors in the system. In the model, a state represents the number Of

sensors that are functioning properly, whereas a chain represents the state tran-

sition probabilities. A sensor is removed from the system if it is not functioning

properly. When the faulty sensor is fixed, it is added back to the system.

Hackett and Shah identified several methods of combining multiple data sources

[Hackett and Shah, 1990]:

e Deciding. Only one source is used during the fusion process. Which sensor to

use is based on confidence measures Of the sources.

0 Guiding. Information from one or more sources is used to focus the attention

Of the others.

e Averaging. All sources are used in the fusion process and weights are assigned

to each source depending on its reliability measure.

0 Bayesian statistics. One or more sources provide prior information to the others.

e Integration. Each source provides a certain type Of information specific to a

given subtask which is part Of a larger task. The main principle Of this method

is the delegation Of a subtask to a single source.

Tang and Lee proposed a graph-based approach for sensor fusion [Tang and Lee,

1990]. Geometric features Obtained from each sensor are represented by a Geometric

Feature Relation Graph (GFRG). Three types of features are used in the representa-

tion: (1) the sensor feature, which is the local coordinate frame Of each sensor, (2) the

null feature, which is the global coordinate frame, and (3) the normal feature, which

39

is the actual geometric feature Of the Object being Observed. The nodes Of the graph

represent the geometric features and the arcs represent the geometric or topological

relationship among the features. In Tang and Lee’s experiment [Tang and Lee, 1990],

only adjacency is used as the topological relation. TO facilitate the fusion process, the

notion of a feature-associated coordinate frame is used. Using this coordinate frame,

information about a particular feature can be fused without first transforming it to

a common coordinate frame.

Unlike the other approaches that fuse sensory measurements, Krzysztofowicz and

Long’s approach fuses the detection probabilities of the sensors [Kryzysztofowicz

and Long, 1990]. The processing model they employed consists of three major com-

ponents: sensor, forecaster, and decision-maker. Each sensor produces Observation

vectors to be used by the forecaster. Based on the information Obtained from these

Observation vector(s), the forecaster computes the detection probability, which in

turn is used by the decision-maker to determine what action(s) to take. Depending

on where the fusion takes place, there are three possible schemes Of fusion:

1. Observation fusion. A number of Observation vectors are fused to a single piece

of information to the forecaster.

2. Decision fusion. The actions chosen by all the decision-makers are fused to-

gether.

3. Detection probability fusion. The detection probabilities produced by the fore-

casters are fused into a single probability measurement and is passed to the

decision-maker.

Note that this scheme can only be used for binary sensors, and therefore it is

also called a multisensor detection scheme.

40

2.2 Sensor Model and Uncertainty

A common approach for modeling sensor measurement is to use Gaussian distribu-

tions. The parameters of the distribution are estimated via a calibration process.

This is necessary because measurements Obtained from a sensor are not always ac-

curate. TO account for this inaccuracy, mathematical models are used for describing

the behavior Of the sensor. Specifically, there are two models used for this purpose.

One model describes how the sensing process takes place, while the other describes

what Object is being sensed [Hager, 1990]. Modeling sensor uncertainty is also im-

portant since it provides the information about the influence of uncertainty on the

fused sensor data.

The mathematical tool commonly used in modeling uncertainty is the Dempster-

Shafer Theory. The theory differs from the Bayesian statistic in the sense that a

probability mass function can be assigned to a set Of propositions, as opposed to

a single proposition only. Also, the interval of uncertainty can be modeled by the

support and the plausibility functions. In Bayesian approach, these two functions

have the same value, and consequently the length of the uncertainty “interval” is

zero.

Durrant-Whyte viewed sensing in a multi sensor system as the Observations made

by the sensors on its environment [Durrant-Whyte, 1988]. Using this approach, an

observation (2;) is modeled as a function (17,-) Of the state of the sensor (x,), the state

of the environment (pi), and the actions (a,) taken by all other sensors within the

system. Formally, if there are n sensors in a system, the model for sensor i can be

written as:

z,- = 17,-(x,-, p,,a1, . . . , a;_1,a.~+1, . . . , an).

Moreover, Durrant-Whyte showed how to decompose the sensor model into three

components: the observation, dependency, and state models. By using an organization

41

theory approach, a multi-sensor system is viewed as a team of decision makers in which

each team member can exchange information with the others. Sensor uncertainties

are modeled by stochastic geometry.

Luo and Lin described a model for estimating fused data from a number Of sensors

measuring the same object property [Luo and Lin, 1988]. The probability density

function associated with each sensor was Obtained from a calibration process. Using

these probability density functions, the distance between any two measurements can

be computed. The distance dij between sensors i and j is defined as the area between

measurements as,- and 33,- under the probability distribution function of sensor i. The

Mahalanobis distance was also used as a metric for computing the distance. The

adjacency matrix representing a directed graph Of the measurements was obtained by

thresholding the distance matrix. Two adjacent nodes in the graph correspond to two

compatible sensor readings. Once the completely connected subgraph is identified,

spurious sensor readings (outliers) can be identified by searching for nodes whose

distance to the completely connected subgraph exceeds some threshold. An Optimum

estimation Of sonar readings was calculated from the connected components. Using

this approach, a malfunctioning sensor can be detected if its reading is very far from

the estimated value.

Hager used the state space approach for modeling the information gathering pro-

cess [Hager, 1990]. At any given time, the information processing system is described

by its information state. The information or data Obtained from the sensors modify

the (information) state of the system. The Objective of sensing could be either to

reach a goal state or to maintain a given state for a period of time. In other words,

the sensing is task-oriented. Moreover, he decomposed the sensing model into two

major components: sensing geometry and sensing error. The goal is to minimize the

error using a task-oriented (active) sensing model. Sensing geometry describes the

42

relationship between the unknown parameters and the observable values of the envi-

ronment. Using this model, Hager also described the notion Of system observability.

The sensing system is observable when the unknown parameters (or states) can be

determined from a finite number of Observations. These unknown parameters could

be: location or size of the Object being Observed, its color, the lighting conditions,

etc. Besides the unknown parameters, sensing geometry could also include: calibra-

tion parameters and control parameters (i.e., parameters for positioning the sensors in

an “active sensing” approach). The uncertainty in sensing can be either deterministic

or non-deterministic. Given the values Of calibration parameters, the effect of deter-

ministic uncertainty (like calibration or statistical error) Of the Observed values can

be accounted for. On the other hand, for non-deterministic uncertainties, only the

range Of uncertainty could be estimated and the error model is given using tolerance

sets.

2.3 Computer Vision

One of the important research problems in computer or robot vision is the recovery

Of 3D information from 2D intensity images. For Object recognition applications, one

of the goals is recovery of the shape of the Object found in the image. Given a single

intensity image, computer vision researchers have been approaching this problem by

shape from X paradigms, such as: shape from shading, shape from texture, shape

from contour, shape from focus, etc. For mobile robot navigation applications, the

recovery of depth information is more important than exact Object shape recovery.

This section explores the role of vision in depth recovery.

Depth information can be acquired either by active or passive sensing model.

Some of the popular methods for Obtaining depth information via active sensing are:

laser range finding, ultrasonic sensing, structured light, etc. Passive sensing methods

43

are: optic flow, stereo vision, and axial motion stereo.

The name “axial motion stereo” is used because the motion Of the Observer (the

robot) coincides with the Optical axis of the camera. In practice, this is not always

possible. The depth recovered from axial motion stereo depends on the distance

traveled by the robot between the two time instances when the image frames were

taken. This distance also determines the accuracy Of the depth obtained with this

method. Small interframe distances will result in less accurate depth information.

But, too large a distance may cause the image matching to be impossible because there

is no overlap between successive image frames. Besides, over a longer travel distance,

the robot’s wheels are likely to slip, resulting in erroneous Odometry readings.

Besides axial motion stereo, stereo vision is also used for estimating depth. In

this method, depth information is recovered from multiple (typically two or three) 2D

images, which are usually taken by multiple cameras placed in a certain arrangement

or by a single camera translated (and rotated) to different positions to Obtain multiple

views Of the same 3D scene. The common practice is to use a pair Of cameras and, for

this reason, stereo vision is also known as binocular vision. Other names that have

been used for this approach are: stereopsis, stereo or stereoscopic vision, binocular

stereo, binocular vision, and binocular stereoscopic vision. Recently, there have been

some attempts to recover depth using three cameras. This approach is known as

trinocular stereo [Ayache, 1991; Ayache and Lustman, 1991].

In general, the positions of the two cameras could be arbitrary, in the sense that

the relative position and orientation (or pose) Of both the cameras can be specified

by six degrees of freedom. However, the choice Of the relative pose imposes some

geometric constraints which might simplify the depth recovery process. For instance,

in the special configuration where both the Optical axes are parallel, the matching

needs to be performed only along the horizontal scan lines. The matching in the non-

parallel configuration can be transformed to this special configuration by a process

44

called rectification, which involves a computation Of new perspective matrices using

the calibration parameters (Optical centers and perspective transformation matrices)

Of the non-rectified configuration.

 / /

o/ t.l

Figure 2.1. Stereo imaging geometry.

2.3.1 Stereo Matching Algorithms

In stereo vision problems, there are three major tasks tO be solved: feature extraction,

feature matching, and depth recovery. In their survey paper, Barnard and Fischler

cited three additional steps: image acquisition, camera modeling/calibration and in-

terpolation [Barnard and Fischler, 1982]. Once the correspondence or matching prob-

lem is solved, the computation Of depth is relatively simple via the triangulation

principle. The recovered depth can be either absolute or relative, depending on the

availability Of camera imaging parameters recovered through camera calibration. It

is worth noting that solving the image correspondence problem is the hardest task of

a stereo algorithm.

In general, solving the correspondence problem requires finding the correct match

45

in a 2D search space. The dimension Of this search space can be further reduced by

imposing the epipolar constraint in the matching process. The epipolar constraint

simply says that given a point P in 3D space (Figure 2.1) whose projection in the left

image is I], the match of I; can be found along a straight line in the right image. This

line is known as the epipolar line and is the intersection between the epipolar plane

and the image plane. The epipolar plane itself is a plane that spans P and both the

optical centers (01 and 0,).

2.3.2 Stereo Vision in Mobile Robot Applications

Moravec was one Of the first researchers to put a stereo vision system on a mobile

robot [Moravec, 1980]. Depth information Obtained from stereo vision provides an

alternative to active range measurement. Nishihara and Poggio cited three types Of

3-D information that may be derived from stereopsis [Nishihara and Poggio, 1983]:

e Volume Occupancy. Given a specified volume of space, stereo vision can deter-

mine whether any Object exists in the volume.

0 Surface Location. Given an estimated position Of a surface patch, stereo vision

can compute the orientation, range, and size Of the patch.

e Edge Location. Given an estimated position of an edge, stereo vision can com-

pute its position in space.

The above types of 3-D information are presented in increasing level of detail and

complexity. For instance, when a stereo vision system is used for Obstacle avoidance

applications, information about volume occupancy is sufficient, whereas in Object

tracking applications, information about edge location might be necessary.

An interesting approach to stereo vision has been proposed in [Storjohann et

al., 1990] where an inverse perspective mapping was employed. Inverse perspective

fifll

('1 it

I .

aid”.

. l

((110

46

mappings are usually applied tO images to undo the perspective distortion with respect

to a certain planar surface whose orientation is known. By applying this technique

to a pair Of images Obtained from stereo cameras tilted down to view the floor, the

perspective distortions Of the floor were eliminated. The resulting images show the

floor as tiles of squares as if they were viewed from overhead. By subtracting one

image from the other, existence of Obstacles on the floor can be easily detected.

In the dynamic stereo vision approach, depth information is usually Obtained

using knowledge Of the Observer’s motion. However, using an Object-centered fusion

scheme, Moezzi et al. have shown how one can combine several local spatial maps

of the environment without using the knowledge of Observer’s motion parameters

[Moezzi et al., 1991]. The main idea in their approach is the computation Of the

relative distance between Objects.

Matthies and Okutomi have proposed a bootstrap algorithm that combines nar-

row and wide baseline stereo to utilize the strengths of both approaches [Matthies

and Okutomi, 1989]. The depth map Obtained from a narrow baseline stereo was

used to constrain the matching process in the wider baseline stereo. More formally,

the matching problem was formulated using a Bayesian approach where the prior

probability was provided by the narrow baseline stereo.

2.4 Sonar

Another method for Obtaining range measurements from the robot’s environment

employs ultrasonic sensors (sonar). Range measurements can be Obtained by sending

a wave train (pulse) of a very high frequency sound wave and then detecting the echo

reflected back to the sensor. Usually, the sound wave is generated by a piezoelectric

transducer. The time between the transmission of the pulse and the reception Of an

echo is called the time of flight. In practice, only the time to the first echo whose

47

amplitude exceeds a certain threshold is measured.

The characteristic Of the echo varies depending on the type of the surface reflecting

the ultrasonic pulse. A surface is considered specular (mirror-like) if its roughness

is much smaller than the pulse wavelength [Bozma and Kuc, 1991]. When a sound

wave hits a specular surface, there will be no strong reflection from the surface to

the ultrasonic sensor, thus making it “invisible” to the ultrasonic sensor. Usually,

this situation can be overcome by using a higher ultrasonic frequency, and hence a

shorter wavelength. Typical Polaroid sensors use a frequency of 50 kHz. The distance

2 from the sensor to a non-specular surface is equal to half of the distance traveled by

the pulse from the time it is transmitted until the echo is received at time to. More

formally,

where c is the speed Of sound in the medium (typically air or water).

Ultrasonic sensors provide good depth measurements, but poor angular resolution.

This is mainly due to the wide beam angle (12°—17° for Polaroid sensors) used in most

ultrasonic sensors. The beam angle is also determined by the wavelength Of the sound

wave and the diameter of the transducer. If 0 is half of the beam angle, A is the wave

length of the sound wave, and D is the diameter Of the transducer, then the following

relation holds:

1.2).

sin 0 z: D .

An echo received from an object at distance d, might come from any point in an

arc Of radial distance d from the sensor and Of width 0 degrees. There are a number Of

different approaches to interpret this data. Moravec and Elfes employed a paraboloid

for modeling both the radial and angular sonar readings [Moravec and Elfes, 1985].

Elfes employed a Gaussian model [Elfes, 1989]. Borenstein and Koren used only one

reading at a normal angle to the sensor [Borenstein and Koren, 1991a]. One could

of

an

48

also model all the readings in the are as equally probable [Beckerman and Oblow,

1990i

2.5 Infrared Proximity Detectors

In some situations, we need tO detect only the presence, not the exact location,

of an Obstacle in the vicinity of the robot. Proximity detectors give this type Of

information. A typical infrared proximity sensor uses a light whose frequency is just

below the visible light, usually around 880 nanometers in wavelength. The sensor,

consisting of an infrared emitter and detector, operates by detecting the reflection of

its own light from Objects. A proximity detector is a binary sensor, i.e., it returns

only “on” or “Off” values.

2.6 Summary

In this chapter, the role Of sensors in robotics applications has been described. In

my experiments, I used cameras, ultrasonic sensors, infrared proximity detectors, and

the robot’s internal sensors for Obtaining the position, heading, speed, and bumper

status of the robot. Internal sensors were distinguished from external ones. In order to

build a fault—tolerant system, the redundant sensing approach is commonly employed

in robotics applications. A number of different approaches to sensor fusion and sensor

modeling were also given. The role of vision has been explicitly emphasized because

of its extensive use in many robotics research projects. In addition, ultrasonic sensors

are also of interest because they provide a low-cost method of range detection that

can be used in Obstacle avoidance tasks.

is 5

D6

CHAPTER 3

Control Architectures

Sensing, planning, and control are three main design issues in autonomous robot

systems. From one perspective, they can be considered as the input—process-output

model of a system. In robotics research, there has been a significant amount Of time

and effort devoted to each one of these areas.

As the tasks given tO a robot become more difficult, the planning algorithm needed

to carry out the task becomes more complex accordingly. Managing such a complex

planning algorithm to achieve a good working system is an important issue. The

common approach in reducing the complexity of a large system is to decompose the

system into a number Of smaller modules, each one performing a specific task. The

method of building such a large system from smaller modules is sometimes referred

to as control architecture.

The domain of discourse Of this chapter is related to the research in control archi-

tecture. Control architecture is an area of active research. Some Of the early work in

this area was published in the late 1980’s [Kaelbling, 1987; Wong and Payton, 1987;

Kadonoff et al., 1986]. TO date, there have been five workshops held to discuss this

issue. Three Of the workshops, held annually since 1990, were sponsored by the US.

Department Of Defense (DOD) and were aimed at specifying control system architec-

ture for the first and second generations of DOD’s unmanned ground vehicles (UGV).

49

50

The other two workshops were held in association with the IEEE Conference on Intel-

ligent Control. The first DOD-sponsored workshop was aimed at defining the UGV

specifications and identifying its impact on design requirements for intelligent control

architectures. The second workshop was aimed at identifying the technical options

and viable approaches to real-time intelligent control architecture. The goal of the

third workshop was to draft recommendations for specifications Of the control system

architectures.

Despite the immaturity Of the area Of control architecture, a number of different

architectures have been proposed by robotics researchers. At present, there are no

rigorous methodologies for designing a control architecture; design, implementation,

and testing are done in non-standard manners. On the other hand, some efforts

for formalizing a computational model for robot programming have been undertaken

[Lyons and Arbib, 1989; Steenstrup et al., 1983]. Still, no quantitative study which

compares the performances Of various control architectures is available. Also, since

there are no common terminologies used by the researchers in this field, different

names might be used for referring to the same entity.

The existing control architectures can be classified into four different categories

[Quintero, 1991]: multilevel, connectionist, hybrid, and toolkit-based. In the following

sections, these categories are described and some examples Of the control architecture

in each category are given.

3.1 Multilevel Architecture

The control architectures in this class are characterized by a hierarchical design ap-

proach, where a task is performed at a number of levels by decomposing the task into

smaller subtasks at each level. Typically, one level can communicate with its two

adjacent levels. Commands flow from higher to lower levels, and data flow the other

51

way around. The highest level typically consists of coarse-grained processes, while

the lowest level consists of fine—grained processes.

Some advantages Of multilevel architectures are:

e Provide a systematic approach for task executions.

e Top-down refinement is the paradigm used by most computer programmers,

therefore writing programs in this system does not require the programmers to

think in a different way.

Some disadvantages of multilevel architectures are:

0 There are no rigorous methodologies for determining how to decompose a task

into its constituent subtasks.

e The number Of levels in the system is determined in an ad hoc manner.

e Higher levels depend on the result Of Operation Of the lower level. If at some

point lower levels fail, higher levels might not be able to complete the opera-

tion successfully. The failing level might become the single-point failure of the

system.

Some examples Of multilevel architecture which have been implemented are given

below.

3.1.1 NASREM

NASA and National Bureau of Standards have defined a hierarchical control archi-

tecture called NASA/NBS“ Standard Reference Model (NASREM) for the NASA

Space Station IOC Flight Telerobot Servicer [Albus et al., 1989]. Each layer in the

*The National Bureau Of Standards (NBS) is now known as National Institute of Standards and

Technology (NIST).

52

hierarchy performs a mathematical transformation of its input to its output. The

current specification defines six layers of modules partitioned into three sections for

controlling a telemanipulator arm. The transformation between physical coordinates

and the robot joint coordinates is performed at layer one (the lowest layer). Layer

two deals with mechanical dynamics. Layer three handles the Obstacle avoidance.

At level four, the robot tasks are transformed into movements Of manipulator arm.

Level five performs the sequencing and scheduling Of tasks. Level six, the highest

level, performs the higher level Of scheduling, resource assignment, part routing, and

object grouping.

Sensory World Task

Processing Modeling Decomposiotion

Service

Mission

1 I _I_ I NI

1 l I i—‘_'—'

Service Bay

I I F I I

l I I I——-——

Task

GI MI I l I LJ

° J l I r-———— °"°""°'

Memo” E-Move Interface

I I I I l

l | I i——

Primitive

I I I I I_I

| | I :——i

Coordinate

Transform

l i I I l

Sense Action

Figure 3.1. The NASREM Architecture for telerobots.

The three horizontal partitions defined in the architecture are: Task Decomposi-

tion, World Modeling, and Sensory Processing. Actually, these partitions correspond

to the sense-plan-action cycle model commonly used in robotics and hence each layer

in the architecture performs the sense-plan-action cycle independently. Figure 3.1

53

shows the NASREM architecture.

The Task Decomposition modules consist Of assignment modules, planner mod-

ules, and executor modules. Upon receiving a goal task, the assignment module

decomposes the task into both temporal and spatial subtasks to be executed by the

planner modules. The spatial decomposition Of a task causes a number of planner

modules to run concurrently. On the other hand, the temporal decomposition causes

each planner module to control a sequence of actions/subtasks, each assigned tO an

executor module.

The World Modeling modules employ geometric models for representing the robot

workspace, update the state variables, generate predictions, and compute evaluation

functions based on planned actions. Here, the “world model” refers to the system’s

best estimate of the state Of the world. The information about the state of the world,

maps, lists of objects and events, are stored in a global memory.

The Sensory Processing modules deal with the processing of sensory data such as

pattern recognition, event detection, filtering, and integration of sensory data over

space and time. These spatial and temporal integration Of sensory data can be viewed

as a fusion of information from multiple sources over a time interval.

The modules in the architecture can communicate either horizontally or hierar-

chically. Commands and status feedbacks are communicated hierarchically, while

data are shared horizontally. The information flow on the horizontal communication

channels is greater than that of the hierarchical channels.

3.1 .2 ARTICS

Another standard model proposed by NIST is ARTICS (Architecture for Real-Time

Intelligent Control Systems) [Albus et al., 1991]. This model closely resembles the

NASREM architecture and is meant to provide guidelines for implementing real-

time and intelligent control systems for robotics applications. In addition to the

54

multi-layer hierarchy architecture defined in NASREM, ARTICS also specifies the

communication speed requirement of each layer and describes the possible hardware

implementation Of each level. Based on the communication speed requirement, the

six layers in NASREM (hence in ARTICS) can be organized into three levels. The

top level whose communication speed requirement is the slowest, consists Of a number

of workstations connected via ethernet. The communication requirement at this level

is on the order of 1 second. Specifically, this means that the Operating system used

at this level must be able to give a response time on the order Of 1 second. The

middle level of ARTICS consists of single-board computers, memory boards whose

speed requirement is within the range Of 10 ms—l sec. The lowest level consists Of

special purpose hardware and has the communication speed requirement on the order

of 10 ,usec—IO msec.

3.1.3 Task Control Architecture

Simmons et al. proposed a general-purpose process control mechanism for mobile

robots. The mechanism, called Task Control Architecture [Simmons et al., 1990],

provides facilities for managing concurrent tasks that control the robot. Applica-

tion of the system in controlling a legged robot is discussed in [Lin et al., 1989;

Simmons, 1992].

The architecture is designed specifically for robots that have multiple goals to

achieve with a variety Of strategies to achieve them. Constructed on a layered system,

the architecture provides mechanism for [Fedor and Simmons, 1991]:

e Message passing,

e Resource management,

e Task management,

55

e Event monitoring,

0 Exception handling, and

e “Wiretaps” construction.

Message Passing

The interprocess communication mechanism Operates by passing messages through

a central server. Using this approach, one can build a number Of modules that

communicate with each other. Each module in the control system must connect to the

central server before communication with the other modules can be established. Also,

modules must register the types, message format, and the message handlers defined

in the module. The Task Control Architecture provides a mechanism for connecting

to the central server [Simmons et al., 1992]. The types of messages supported by the

architecture are: query, command, and constraint messages. A module that sends

a query message expects a response from the receiver of the message. Sending a

command message to a module makes that module perform an action. Constraint

messages expect neither response nor action from the receiver. A typical configuration

of a system built using the TCA architecture is given in Figure 3.2.

Resource Management

In TCA terminology, a resource is a collection Of message handlers that are related

to a common task. For instance, one can define a resource that serves all movement-

related procedures of a mobile robot. Another way Of viewing this idea is to consider

a resource as a module. All messages sent to a resource (i.e., to the handlers within

the resource) are queued in a common message queue. TCA provides mechanisms for

building, locking, and reserving a resource. If a resource is locked, no message can

be sent to it. On the other hand, if a resource is reserved for a module, then that

56

Module 2 Module 3

central

server

Module 4 Module 5

Module 6

Figure 3.2. An example Of a system using the TCA architecture.

resource will accept only the messages from that module.

Task Management

It is a common practice in software design to decompose a problem into a number

of smaller subtasks. TCA provides this facility as well, and the relationship among

tasks is represented as a task tree. In the tree, each task is represented by a node

and task—subtask relationships are represented by parent-child links. In addition

to these links, there is another type Of link that one can use to impose a temporal

constraint between two tasks. This type Of link is also known as the precedence

relation in Operating system terminology. A temporal constraint linking node A to

node B implies that task B cannot start until task A is completed. An example of a

task tree is given in Figure 3.3, where the two types of links are shown.

Monitors

There are two kinds of monitors that TCA provides: point and interval monitors.

The former tests a condition only once, while the latter tests a condition many times

57

Figure 3.3. Example Of TCA task tree with a temporal constraint from task C to D

over a specified time interval. Monitors behave like a conditional statement in a

program, that is, to perform an action if some event Of interest occurs.

Another facility similar to monitors provided by TCA is wiretaps. This facility is

useful for doing incremental system development. A wiretap is a facility to receive a

copy of a message destined for another module. Thus, using this facility, the existing

system does not have to be modified to make the sender duplicate the message.

Exception Handlers

Usually, one can write a well-structured (sequential) program so that each primitive

block in the program has exactly one entry point and one exit point (Single-In-

Single-Out). However, when the program has to deal with exception conditions,

some primitive blocks might have more than one exit point. TCA also provides a

mechanism for handling exceptions during the execution Of a task. The error recovery

procedure for a task can be attached to that task, and the structure Of the task tree

is modified accordingly.

58

Wiretaps

This is a facility that allows one module to receive a copy Of a message destined for

another module. Wiretaps are also useful for adding new behavior to the control

system without rewriting the main algorithms.

3.1.4 HAREMS

A hierarchical architecture specifically designed for controlling multisensory robots

was proposed by [Buttazzo, 1992]. HAREMS stands for Hierarchical Architecture for

Robotics Experiments with Multiple Sensors. The main strategy of this architecture

is to utilize a bottom-up approach in building the system, i.e., higher level processes

are developed from a number Of lower level activities. At the highest level, there is

a supervisor process that controls all subordinate processes. Hence, this architecture

defines a tree Of tasks, where each intermediate (internal) node of the tree represents

an active computing agent, while the terminal nodes correspond to the sensors used

by the robot. Figure 3.4 shows an example Of the architecture.

Each computing node possesses a number of acquisition and communication

boards that enable the node to handle input/output as well as to communicate with

the other nodes Of the system. In this architecture, interprocess communication is

implemented using message passing mechanism.

3.1 .5 Layered Architecture

CrOwley has proposed another hierarchical control architecture for robotic devices

[Crowley and Causse, 1992]. The main approach in the layered architecture is the

use of abstraction, implemented with a hierarchy of state spaces and control loops.

A control loop in the hierarchy might have at most three communication paths. The

first path goes to the subordinate control loop and is used to set the desired state of

59

 supervisor

node

node 5

Sensor node 3 node 4

Subsystem 1

ROBOT

Sensor Sensor

Subsystem 2 Subsystem 3

Figure 3.4. HAREMS control architecture.

the subordinate control loop. The other two paths are used for communicating the

state Of a control loop via an upward path to the control loop directly above it or

to the control loop at the same level. This approach reduces the complexity Of the

control loops because each one of them Operates only in a reduced parameter space.

The layered control used by Crowley in the project EUREKA EU 110 is a twin

hierarchical control of four layers. This design is based on the Observation that for

most robotic devices, the control exists at the signal, device, action, and task levels.

The first of the two hierarchies controls the locomotion actions while the other controls

the perception actions. Figure 3.5 shows this control architecture.

The signal level, the lowest level in the hierarchy, deals with raw signals from the

devices and has the fastest response time. On the perception side, the signal level

is responsible for converting them into an initial symbolic representation. On the

locomotion side, the signal level is responsible for maintaining a specified velocity of

the motors and capturing the signal from the internal sensors Of the robot.

60

The device level, the next lowest level, is responsible for representing the infor-

mation in a higher context. The states controlled at this level are the position and

' orientation Of the robot and the geometric structure of the environment. On the

locomotion side, the vehicle contrOller accepts asynchronous commands to move and

turn the robot vehicle and sends the appropriate control commands to the motor

control. On the perception side, the sensor signals are projected into a common co-

ordinate system. The projected information is used tO update a composite model of

the environment.

The action level coordinates a sequence Of commands at the device level. In this

context, actions can be viewed as procedures whose behavior depends on the timing

and position parameters. The sequence Of commands is defined in advance while the

timing and position parameters are determined in real-time based on perception.

At the topmost level is the intelligent supervisor that has access to a cartographic

and Object database. This level is responsible for selecting the appropriate actions for

each hierarchy to achieve the specified goal given to the system. The goal is expressed

as a sequence of tasks to be accomplished by the robot.

3.2 Connectionist Architecture

The main characteristic of the architectures in this class is that they employ a network

Of modules, each performing information acquisition and decision making. Typically,

a module is a simple processing element. Incremental development of the system is

possible in this approach, i.e., one can first design a system that can handle only

simple tasks, and then more capabilities can be added to the system later so that it

can cope with more complex tasks.

Some advantages Of this system are:

e The system can be built incrementally by incorporating the simple tasks into

61

artosraphic Intelligent Object

KDOWIOdgC Supervisor Knowledge

Navigation Perception ‘ Scene

Actions Actions Interpretation

Vehicle Composite Composite

Control Modeling Model

Motor Sensor Data f Abstract

Control Description u Description

Motors, Encoders, Sensors & Cameras

accelerometers,

Figure 3.5. Crowley’s Layered Architecture.

the system when it is first built. More complex tasks can be incorporated later.

0 Unlike the multilevel architecture where higher levels depend on the result Of

Operations at the lower level, each element in the connectionist architecture is

almost independent of each other and this implies that single point failure can

be avoided.

e The system Operates with intrinsically parallel behavior.

Some disadvantages of this system are:

e In the multilevel architecture, determining the number of levels and task de-

composition are done in an ad hoc manner without any formal methodology.

Likewise, in the connectionist architecture, determining the connections among

the elements is done in an ad hoc manner.

e Since the system is intrinsically parallel, the programmers have to think in

62

terms of co-routines instead of sub—routines. Hence, it forces the programmer

to employ an unusual conceptualization Of programming.

3.2.1 Subsumption Architecture

Brooks described a new architecture known as the subsumption architecture for con-

trolling mobile robots with both multiple goals and multiple sensors [Brooks, 1986].

The heart Of the architecture is layers Of control systems that run asynchronously.

Each layer can communicate with the others over a low-bandwidth communication

channel (24—bit packets at 300 baud). The entire control system is built up by incre-

mentally adding new levels Or layers to the existing system. Each layer is composed

of a number Of modules, which in turn is an (augmented) finite state machine with a

number Of input and output lines. A module usually represents a primitive behavior

of a mobile robot such as avoid, wander, hide, etc.

The input to a module can originate from either sensors or outputs Of other mod-

ules. The output of a module can be used to command the Operation Of actuators

or used as input to other modules. Basically, an augmented finite state machine can

be viewed as a very small sequential program. Each state in a module can be one of

four types: output, side-effect, conditional-dispatch, and event-dispatch.

Output of one module can inhibit or suppress output Of another module at a lower

layer. In this manner, higher layers can subsume lower layers but lower layers con—

tinue to work if the higher levels fail or remain inactive. An example Of a module

is given in Figure 3.6. In the example, the augmented finite state machine contains

four states: nil, plan, go, and start. Figure 3.7 shows an example of a network

in the subsumption architecture. To use the system for controlling an autonomous

robot, each module is implemented in hardware as a single processor board (3 inches

by 4 inches) and connection among modules is achieved by actually connecting wires

between these modules [Brooks, 1987].

63

(defmodule avoid 1

:inputs (force heading)

:outputs (command)

:instance-vars (resultforce)

:states

((nil (event-dispatch (and force heading) plan))

(plan (setf resultforce (select-direction force heading)) go)

(go (conditional-dispatch

(significant-force-p resultforce 1.0)

start

nil))

(start (output command (follow-force resultforce))

nil)))

Figure 3.6. An example of a module in the Subsumption Architecture.

heading

 wander

avoid heading

tofu

tort

'0 t f If ——833i0 ee orce force runaway headi g tum

heading forward

9

—| encoders

map

sonar

 halt

collide

Figure 3.7. An example Of module interconnection in the Subsumption Architecture

(reproduced from [Brooks, 1986]).

64

The subsumption architecture uses neither a central representation of the environ-

ment nor a control supervisor Of the modules. Actually, the architecture is considered

both non-representational and distributed. Much Of the “intelligence” is found in the

module that implements a specific behavior. This is the main characteristic of the

system compared to the others. This unconventional approach leads to controversy

over whether “insect-like” behavior is sufficient for mobile robots.

This control architecture has been implemented in software using Lisp code and

in hardware using custom chips and tested in several mobile robot projects at MIT.

Flynn and Brooks have even demonstrated that the hardware implementation can be

engineered to a very small size by incorporating it in small sized robots such as toy

cars [Flynn and Brooks, 1988; Flynn et al., 1989; Brooks, 1991].

TO summarize, some of the features Offered by the subsumption architecture are

given below:

e Decomposition Of a control system into a number Of layers (levels Of compe-

tence).

e Decomposition Of a single layer into cooperating modules.

0 Connections among modules, suppression and inhibition Of output from a mod-

ule.

Unfortunately, there is no general guideline for implementing a control system

in this architecture and one has to use intuition before coming up with a complete

implementation of a control system. In my Opinion, the interconnections among

modules somehow encode the “main control algorithm” of the system.

3.2.2 Colony-Style Architecture

As part of his doctoral dissertation, Connell adopted Brooks’ subsumption architec-

ture for controlling a mobile robot that is capable Of collecting empty soda cans in a

65

hallway [Connell, 1990]. Starting from an initial position, the robot wanders around

in its environment, looking for empty soda cans. Once the robot finds an empty soda

can, it grabs the can, and returns to its initial position to drop the can in a box.

Connell referred to his control architecture as a colony-style architecture, since the

system is visualized as a colony of locally autonomous agents that coordinate their

actions to accomplish the robot’s task. The colony-style architecture can be catego-

rized as behavior-based architecture, since it consists Of a number of modules, each

of which implements some primitive behavior. In Connell’s implementation, some

modifications were made to the original specification Of subsumption architecture.

In the colony-style architecture, a module consists of two major parts. The first

part, the transfer function, defines the action that will be performed on the input

signal to produce the output signal. The second part of the module, the applicability

predicate, determines whether this output Of the transfer function should be gated

to the output port. Viewed this way, a module can be considered as a production

rule. Sometimes the robot is required to possess a reactive behavior by responding

to events or situations. When a certain event is triggered, a module might need to

set a flag in its own memory to indicate that the event has occurred. For this type

Of modules, the applicability predicate has to be modified. Figure 3.8 shows the two

types Of modules which exist in the colony-style architecture.

Unlike the subsumption architecture, where a control system is decomposed into

several layers such that a total order is defined, the colony-style architecture defines

only a tree-like partial ordering Of the layers. Also, the colony-style architecture

requires more independence Of modules. For instance, the subsumption architecture

allows the output Of one module connected tO the input of another. The colony-style

architecture disallows this type Of connection, and consequently connections that cross

layer boundaries are eliminated. However, the suppression and inhibition Of output

signals are retained in the colony-style architecture, and in fact these are the only

66

ooo

Applicability

Predicate

‘ t3 5 t

mpu i Transfer Function / 5 2’9”)“

(a)

Initiation Mode
I 9 7

clause Memory 5

Satisfaction]

clause

'n t i ou ut

I pu i Transfer Function / g > tp

(b)

Figure 3.8. Structure of two modules in the Colony-style Architecture. (a) memory-

less module; (b) module with memory.

67

ways of “communication” among modules. Using this construct, a more powerful

behavior can take over from general-purpose behaviors. Figure 3.9 shows an example

of module interconnection in the colony-style architecture.

_. e 4b~
\

’

Figure 3.9. An example Of a network in the Colony-style Architecture with two

suppressor nodes and one inhibitor node.

By modifying the way signals are generated from a module, Connell has elimi-

nated the lock-out problem that might occur in the subsumption architecture. In

the subsumption architecture, suppressor and inhibitor nodes have a preset time con-

stant associated with them. When a dominant module sends an output pulse to a

suppressor (inhibitor) node, this output will be retained for a prespecified length Of

time. If during this time interval the inferior module connected to the node also

sends an output, it will never be Observed on the output line of the node, even after

the dominant module relinquishes control. In the Colony-style, a module generates a

stream of outputs rather than a single—pulse output.

3.2.3 Autonomous Robot Architecture

Arkin proposed a motor schema-based control system called the Autonomous Robot

68

Architecture (AuRA) [Arkin, 1989]. The concept of schemas originated from psychol-

ogy and neurology, in which many different types of schema have been used. AuRA

defines two types Of schema: motor and perceptual. A schema can be viewed as a

primitive behavior that a robot can perform. Generally, to accomplish a given task,

a robot must” have a number Of distinct schemas. Examples of motor schema are:

move-tO-goal, avoid-obstacle, and move-ahead, while examples of perceptual

schema are: find-landmark and find-intersection. In this sense, motor schemas

are related to actuation tasks, while perceptual schemas are related to sensing or

perception tasks. A schema becomes active when it is instantiated by specifying its

parameters and activated as a computing agent. For this reason, a schema is also

referred to as “a generic specification of a computing agent”. The implementation of

schemas in AuRA is mainly influenced by potential fields approach.

AuRA is composed Of five major components [Arkin and Murphy, 1990]: percep-

tion, cartographic, planning, motor, and homeostatic control system. The perception

subsystem is responsible for acquiring sensory data and performing some preprocess—

ing on the raw data. The cartographic subsystem is responsible for navigational

planning and model building Of the environment. The planning subsystem acts both

as a hierarchical planner and a motor schema manager. The motor subsystem acts

as the lower-level interface to the mobile robot. Lastly, the homeostatic control sub-

system deals with robot survivability in dangerous environment.

During navigation, the planning subsystem will determine which schemas to dis-

patch based on the output of the perception subsystem. All activated schemas will

run concurrently, and the potential fields Of each schema will be combined into a single

potential field used by the navigation algorithm. If the planning subsystem decides

that a particular schema is no longer appropriate, that schema will be deactivated

by the schema manager. Therefore, AuRA can be considered a dynamic network of

active computing agents. Figure 3.10 shows a navigation system in AuRA.

69

Navigator

World .

Pilot schemas

Model

Motor

Cartographer Schema

Manager

[SCDSOI'S] [motors]

Figure 3.10. Navigation system in AuRA.

As a result of combining several potential fields into a single one, some dead spots

(i.e., points with no potential), might be encountered. This problem can be eliminated

by introducing a noise schema to the current network Of active schemas.

3.2.4 ACBARR

Moorman and Ram proposed their system, ACBARR — A Case BAsed Reactive

Robotics — for autonomous navigation [Moorman and Ram, 1992]. In general, the sys-

tem has many commonalities with the schema-based approach. However, ACBARR

design was based on the Case-Based Reasoning approach in Al. Thus, the system has

the capability to modify its current behavior based on the system’s immediate past

experience. For instance, if a particular behavior is working well, the system will set

a higher gain for that behavior. On the other hand, the system might reduce the gain

of a particular behavior that is not working well. To facilitate this gain adjustment,

ACBARR monitors the feedback for failure situations.

its:

ilffli

_i.;‘

ill'lil

70

The set of behaviors used by ACBARR is organized into a case library. A case

describes the desired behavior and the environment suitable for this behavior. The

behavior information contains the range Of gain values that can be used for this case,

while the environment information is used as an index when this case is retrieved.

3.2.5 Blackboard-Based Architecture

Paul et al. have proposed a distributed control mechanism which incorporates a

network of intelligent sensing, action, and reasoning agents for a robot system [Paul

et al., 1985]. The framework is used for integrating a number of sensors such as

vision, range, touch, force, and motion. The use Of a distributed approach is the

main characteristic Of this architecture compared to others that are designed around a

hierarchical structure. A pure hierarchical design precludes interaction with low-level

sensors, and processes at higher level totally depend on the output Of the processes

at lower level. In addition, a hierarchical structure is generally not easily expandable;

i.e., addition Of a new process might result in a modification of the entire structure.

To overcome the drawbacks of the hierarchical structure, Paul et al. proposed a

distributed approach that employs a number of sensor agents controlled by a higher

level coordinator via a blackboard structure. The coordinator maintains a world

model represented as a set Of states of the environment and is responsible for integrat-

ing the information given by the sensors, making decisions about the task allocation

for each agent, and arbitrating between the distributed agents. Additionally, each

agent is provided with a significant amount of self—knowledge to allow it tO recover

from local errors and to decide what information is to be supplied to the coordinator.

The structure of this system is shown in Figure 3.11.

In the system, all sensors and actuators run in parallel and supply partial informa-

tion to the coordinator via a blackboard database. Three types Of agents are defined

in the system:

71

World Motion Se

Model Planner nsor

Agent

Sensor

Agent

Sensor

Agent

Coordinator Blackboard

\

Sensor

Agent

0

O

0

Sensor

Blackboard

Agent

Manager

Figure 3.11. Structure of the distributed agent in blackboard-based architecture.

0 A sensing agent that provides information about the environment.

e An action agent that performs Operations that modify the state of the environ—

ment.

0 A reasoning agent that provides information based on its reasoning expertise.

An agent in the system can be Of more than one type simultaneously. The crucial

agents in the system are the manipulator, hand, and vision agents. These are crucial

in the sense that without any one Of these agents the entire system is considered to be

non-operational. On the other hand, other agents can be removed from the system

without crippling the entire system.

72

3.3 Hybrid Architecture

Control architectures in this class combine the multilevel and connectionist ap-

proaches by merging positive features Of the two approaches. At a higher level of

abstraction, the hybrid architecture employs the multilevel approach while at a lower

level of abstraction, the connectionist approach is used. Thus, in a hybrid control

architecture, one will find both task decomposition into subtasks and a network Of

computing agents executing the subtasks.

3.3.1 HRL/Voting-Based Architecture

Hughes Research Laboratories has developed a hybrid architecture for real-time in-

telligent control systems. In the architecture, the control system is modeled as an

intelligent system driven by a number of goal-directed behaviors. Four types of pro-

cesses are defined in the architecture: coordinator/planner, behavior system, sensing

processes, and control processors. Except for the behavior system, the remaining

three types Of processes perform the well-known “sense-plan-action” cycle. The in-

clusion of the behavior system adds a new flavor to the architecture. The behavior

system is capable of maintaining goals which are both parallel and interact to various

degrees. These concurrent goals may interact with one another in constructive or

destructive ways. The behavior system determines the commands sent to the control

processes depending on the task goals and the current task status. Since multiple

behaviors can be active at the same time, and goals can be conflicting, the control

process might receive conflicting commands. This situation is resolved by employing

a voting mechanism to check for consistencies in the commands.

73

3.3.2 Rational Behavior Model (RBM)

In the RBM, behaviors are internally represented using a backward—chaining rule-

based programming language like Prolog. Satisfying a goal is similar to satisfying

a corresponding predicate in a rule-based system. In a rule-based representation, a

predicate can be satisfied if all the constituent clauses of the predicate are satisfied.

In the RBM, each predicate or clause is either a complex or a primitive behavior.

Thus, when a goal is triggered and the corresponding predicate is resolved, all con-

stituent clauses have to be resolved. In the same manner, this also shows how a

complex behavior is activated. When a primitive behavior is activated during the

resolution process, function calls to imperative programming languages will be made

for performing the requested behavior.

3.3.3 Concurrent Behavior Control Architecture

Zimmerman proposed another behavior-based control architecture. One of the crite-

ria of this architecture design is to allow high reactivity Of the robot. The architecture

is composed Of a number of concurrently Operating, multiple independent layers of

behaviors. Each behavior layer performs its own perception and control, and con-

flicts between layers are resolved by a separate behavior fusion block. The conflict

resolution mechanism used by the fusion block is a weighted sum Of all behavior layer

outputs. Behavior layers with larger weights have a higher priority over the other

layers. This weighting scheme has the advantage that a behavior layer can be in-

hibited by assigning a very low weight to it. Figure 3.12 shows the structure of this

architecture.

The design of this architecture was based on the Objective Of building “intelligent”

locomotion with insect-like characteristics and on the Observation that in biological

7 4
:
.

 1

Layers of Behavior

Control Layers ”

r 1

Behavior Fusion

A”

O/

/

\
\
\
\
\

actuator

L

k

commands r——W sensor

data
aosor

Figure 3.12. The structure Of the Concurrent Behavior Control Architecture.

1.1le

.
T
i

75

systems, the overall intelligence emerges from a collection Of simple and simulta-

neously Operating “behaviors”. In the architecture, two sets Of layers are defined:

control and reflex layers. The control layers are always active and generate output

continuously, while the reflex layers become active only when a certain context is

triggered.

Each layer Of behavior performs its own sensing, planning, and action to achieve

the goal associated with the behavior. This approach allows each layer to be reactive

to the changes in the environment. The input Of each layer is real physical sensor

data as well as preprocessed virtual sensor data, while the output Of each layer is the

desired actuation commands necessary to achieve the behavior. The response of each

behavior layer is determined using both classical and fuzzy logic rules.

3.3.4 Independent Agents Architecture

Another behavior-based architecture is reported in [Yamauchi and Nelson, 1991].

This architecture decomposes control systems into three vertical layers: perception,

behavior, and motor control. The behavior layer is also decomposed into independent

sensorimotor behaviors (agents). In this architecture, the concept Of stimulus and

response spaces is used to describe the role Of perception and behavior layers. The

stimulus space is the space of all possible processed sensory inputs, while the response

space is the space Of all possible actions that may be taken by the robot. The

perception layer is responsible for mapping the raw sensor into stimuli in the stimulus

space, while the behavior layer maps a stimulus into a response which will be used

by the motor control layer to decide the proper action the robot has to execute. In

other words, the three layers in the Independent Agents Architecture link perception

to action. Figure 3.13 shows this link.

76

1 response

" Agent

stimulus Agent

, -:~ Agent

Perception

C Sensors)

[World
I

Motor

Control

(Robot)

T

Figure 3.13. A model of Independent Agents Architecture.

3.4 Toolkit-Based Approach to Control Architec-

ture

While no specific control architecture has been agreed to best fit a certain type Of

robotics application, a programming tOOl that can be used to aid the implementation

of a particular architecture would be useful. This is the underlying philosophy of the

toolkit-based approach, i.e., not to use an architectural standard, but to construct

task-specific architectures with the help of toolkits. By doing this, the architecture

implementor can concentrate mainly on the higher level aspects of the architecture.

In general, such a toolkit should provide utilities for:

e Interprocess communication,

e Control Flow,

e Shared access to global data,

e Task coordination,

77

e Resource sharing, and

e Real-time control.

Some advantages Of this approach are:

e A toolkit for constructing task-specific architectures can be viewed as a general-

purpose programming language for implementing problem-specific algorithms.

Thus, using this approach one can construct a control architecture that best

fits the task of interest.

Some disadvantages of this approach are:

0 When the best architecture for a certain type Of application exists, adapting

that architecture to fit the task of interest is usually a matter Of “filling-in-the—

blanks”, i.e., one has to provide routines to be plugged into the architecture so

that the architecture functions as desired. Here, it is much easier to use that

architecture instead of constructing it using the toolkit approach.

0 The toolkit designer has to ensure that the toolkit is complete, so that it provides

all the required functionalities for constructing a working control architecture.

3.5 Summary

This chapter has reviewed a number Of different architectures for controlling the

execution of tasks to be performed by a robot. In general, control architectures can

be classified into one of the four principle organizations: multilevel, connectionist,

hybrid, and toolkit. Due to the immaturity Of the control architecture technology,

we lack a rigorous method for designing a standard control architecture, common

terminologies, and common comparative measures.

fun—-

78

The multilevel/hierarchical architecture emphasizes decomposing the given task

in a top-down refinement approach, thus breaking down a large task into a number

Of smaller subtasks. On the other hand, the connectionist architecture deviates from

this approach by forcing the programmer to decompose a large task into a number

Of coroutines. Hierarchical architectures are widely used and seem to be a “natural”

choice of system decomposition.

The hybrid architecture takes the positive features Of both multilevel and connec-

tionist architectures. In such systems, a multilevel organization is used at the higher

levels Of abstraction and a connectionist organization is used at the lower levels.

The toolkit-based approach views the design Of control architectures in a different

way. Instead Of using a particular architectural standard, it constructs a task-specific

control architecture with the help of a toolkit. Thus, its role is very similar to a

general-purpose programming language for constructing a problem-specific algorithm.

All control architectures, except the toolkit-based, have been used in various mobile

robot applications. The NASREM control architecture and its derivatives have been

applied to a number of applications. I believe that NASREM and the Subsumption

Architecture are among the most popular architectures.

Table 3.1 summarizes the control architectures described in this chapter.

T
a
b
l
e

3
.
1
.
C
o
m
p
a
r
i
s
o
n

O
f
v
a
r
i
o
u
s
c
o
n
t
r
o
l
a
r
c
h
i
t
e
c
t
u
r
e
s
.

A
r
c
h
i
t
e
c
t
u
r
e

A
d
v
a
n
t
a
g
e
s

D
i
s
a
d
v
a
n
t
a
g
e
s

M
u
l
t
i
l
e
v
e
l

A
r
c
h
i
t
e
c
t
u
r
e

N
A
S
R
E
M

A
R
T
I
C
S

T
C
A

H
A
R
E
M
S

L
a
y
e
r
e
d

S
y
s
t
e
m
a
t
i
c
a
p
p
r
o
a
c
h

f
o
r
t
a
s
k
e
x
e
c
u
t
i
o
n
s
.

T
o
p
-
d
o
w
n

d
e
s
i
g
n

i
s
c
o
m
m
o
n
l
y

u
s
e
d

i
n
p
r
o
-

g
r
a
m
m
i
n
g
,

s
o

t
h
i
s
a
p
p
r
o
a
c
h

i
s
“
n
a
t
u
r
a
l
”
.

N
o

r
i
g
o
r
o
u
s
m
e
t
h
o
d
o
l
o
g
i
e
s

f
o
r
t
a
s
k
d
e
c
o
m
-

p
o
s
i
t
i
o
n
.

T
h
e
n
u
m
b
e
r

O
f
l
e
v
e
l
s
i
n
t
h
e
s
y
s
t
e
m

i
s
d
e
t
e
r
-

m
i
n
e
d

i
n
a
n
a
d
h
o
c
m
a
n
n
e
r
.

I
n
t
e
r
l
e
v
e
l
d
e
p
e
n
d
e
n
c
y
m
i
g
h
t
b
e
c
o
m
e
t
h
e
s
i
n
-

g
l
e
p
o
i
n
t

f
a
i
l
u
r
e
O
f
t
h
e
e
n
t
i
r
e
s
y
s
t
e
m
.

C
o
n
n
e
c
t
i
o
n
i
s
t

A
r
c
h
i
t
e
c
t
u
r
e

S
u
b
s
u
m
p
t
i
o
n

C
o
l
o
n
y
-
S
t
y
l
e

A
u
R
A

A
C
B
A
R
R

B
l
a
c
k
b
o
a
r
d
-

b
a
s
e
d

I
n
c
r
e
m
e
n
t
a
l
s
y
s
t
e
m
d
e
v
e
l
o
p
m
e
n
t

i
s
p
o
s
s
i
b
l
e
.

E
l
e
m
e
n
t
s

i
n

t
h
e

c
o
n
n
e
c
t
i
o
n
i
s
t

a
r
c
h
i
t
e
c
t
u
r
e

a
r
e

a
l
m
o
s
t

i
n
d
e
p
e
n
d
e
n
t

O
f
e
a
c
h

o
t
h
e
r
a
n
d

t
h
u
s

s
i
n
g
l
e
p
o
i
n
t

f
a
i
l
u
r
e
c
a
n
b
e

a
v
o
i
d
e
d
.

T
h
e
s
y
s
t
e
m
O
p
e
r
a
t
e
s

i
n
i
n
t
r
i
n
s
i
c
a
l
l
y
p
a
r
a
l
l
e
l

b
e
h
a
v
i
o
r
.

N
O

f
o
r
m
a
l

m
e
t
h
o
d
o
l
o
g
i
e
s

f
o
r

d
e
t
e
r
m
i
n
i
n
g

t
h
e

c
o
n
n
e
c
t
i
o
n
s
a
m
o
n
g

t
h
e
e
l
e
m
e
n
t
s
.

I
t

i
s

d
o
n
e

i
n
a
n
a
d
h
o
c
m
a
n
n
e
r
.

D
u
e

t
o
t
h
e
s
y
s
t
e
m
’
s

p
a
r
a
l
l
e
l
b
e
h
a
v
i
o
r
,

p
r
o
-

g
r
a
m
m
e
r
s

h
a
v
e

t
o

t
h
i
n
k

i
n

t
e
r
m
s

o
f

c
o
-

r
o
u
t
i
n
e
s
i
n
s
t
e
a
d
O
f
s
u
b
-
r
o
u
t
i
n
e
s
.

 H
y
b
r
i
d
A
r
c
h
i
t
e
c
t
u
r
e

e
H
R
L

e
R
B
M

e
C
B
C

0
I
n
d
e
p
e
n
d
e
n
t

A
g
e
n
t

 M
e
r
g
e
s
t
h
e
p
o
s
i
t
i
v
e
f
e
a
t
u
r
e
s
o
f
b
o
t
h
t
h
e
m
u
l
-

t
i
l
e
v
e
l
a
n
d

c
o
n
n
e
c
t
i
o
n
i
s
t
a
p
p
r
o
a
c
h
.

 D
e
t
e
r
m
i
n
i
n
g

t
h
e
b
o
u
n
d
a
r
y

b
e
t
w
e
e
n

m
u
l
t
i
-

l
e
v
e
l
a
n
d

c
o
n
n
e
c
t
i
o
n
i
s
t

i
m
p
l
e
m
e
n
t
a
t
i
o
n

i
s

d
o
n
e

i
n
a
n
a
d
h
o
c
m
a
n
n
e
r
.

R
e
q
u
i
r
e
s
p
r
o
g
r
a
m
m
e
r
s

t
o
t
h
i
n
k

i
n
t
e
r
m
s

o
f

b
o
t
h
s
u
b
r
o
u
t
i
n
e
a
n
d

c
o
-
r
o
u
t
i
n
e
a
p
p
r
o
a
c
h
e
s
.

79

T
a
b
l
e

3
.
1
.

(
c
o
n
t
’
d
)
.

A
r
c
h
i
t
e
c
t
u
r
e

A
d
v
a
n
t
a
g
e
s

D
i
s
a
d
v
a
n
t
a
g
e
s

T
o
o
l
k
i
t
-
b
a
s
e
d

0
U
s
i
n
g
a

t
o
o
l
k
i
t
,
o
n
e
c
a
n
c
o
n
s
t
r
u
c
t
a
c
o
n
t
r
o
l

a
r
c
h
i
t
e
c
t
u
r
e
t
h
a
t
b
e
s
t

fi
t
s
t
h
e
t
a
s
k
o
f
i
n
t
e
r
-

e
s
t
.

0
W
h
e
n

t
h
e

b
e
s
t

a
r
c
h
i
t
e
c
t
u
r
e

f
o
r

a
c
e
r
t
a
i
n

t
y
p
e
o
f
a
p
p
l
i
c
a
t
i
o
n

e
x
i
s
t
s
,
a
d
a
p
t
i
n
g
t
h
a
t

a
r
-

c
h
i
t
e
c
t
u
r
e
t
o
fi
t
t
h
e
t
a
s
k
o
f
i
n
t
e
r
e
s
t

i
s
p
r
e
f
e
r
-

a
b
l
e
t
o
c
o
n
s
t
r
u
c
t
i
n
g
o
n
e
f
r
o
m

s
c
r
a
t
c
h
u
s
i
n
g

t
h
e

t
o
o
l
k
i
t
.

 C
l
i
e
n
t
-
S
e
r
v
e
r

a

 U
n
i
fi
e
d
f
r
a
m
e
w
o
r
k

f
o
r

d
i
s
t
r
i
b
u
t
e
d

p
r
o
c
e
s
s
-

i
n
g
,

r
e
s
o
u
r
c
e

s
h
a
r
i
n
g
,

r
e
s
o
u
r
c
e

a
c
c
e
s
s

c
o
n
-

t
r
o
l
,
a
n
d

s
y
n
c
h
r
o
n
i
z
a
t
i
o
n
.

I
n
c
r
e
m
e
n
t
a
l
d
e
v
e
l
o
p
m
e
n
t

i
s
p
o
s
s
i
b
l
e
.

G
e
n
e
r
a
l
e
n
o
u
g
h

t
o
e
m
u
l
a
t
e
o
t
h
e
r
c
o
n
t
r
o
l

a
r
-

c
h
i
t
e
c
t
u
r
e
s
.

H
a
r
d
w
a
r
e

s
e
r
v
e
r
s

c
a
n

b
e

d
e
s
i
g
n
e
d

t
O

b
e

s
m
a
l
l
e
n
o
u
g
h

t
o
r
u
n
o
n
p
r
o
c
e
s
s
o
r
s
w
i
t
h
l
i
m
-

i
t
e
d
r
e
s
o
u
r
c
e
s
.

C
l
i
e
n
t
s
c
a
n
b
e
a
s
s
i
g
n
e
d
“
e
x
e
c
u
t
i
o
n
”

p
r
i
o
r
i
t
y

r
e
g
a
r
d
l
e
s
s
o
f
t
h
e
f
a
c
i
l
i
t
y
o
f
s
e
t
t
i
n
g
e
x
e
c
u
t
i
o
n

p
r
i
o
r
i
t
y
f
r
o
m
t
h
e
u
n
d
e
r
l
y
i
n
g
O
p
e
r
a
t
i
n
g

s
y
s
-

t
e
m
.

 0
C
o
m
m
u
n
i
c
a
t
i
o
n

t
i
m
e

o
v
e
r
h
e
a
d

t
h
a
t

m
i
g
h
t

b
e
i
n
c
u
r
r
e
d
b
y
t
h
e
”
c
l
i
e
n
t
-
s
e
r
v
e
r
i
n
t
e
r
a
c
t
i
o
n
s
.

e
T
h
e
r
e

i
s
n
o

f
o
r
m
a
l
m
e
t
h
o
d
o
l
o
g
y

f
o
r

d
e
t
e
r
-

m
i
n
i
n
g
t
h
e

s
i
z
e
O
f
a

c
l
i
e
n
t
m
o
d
u
l
e
.

“
C
o
n
t
r
o
l
A
r
c
h
i
t
e
c
t
u
r
e
p
r
o
p
o
s
e
d

i
n
t
h
i
s

t
h
e
s
i
s
.

I
t

i
s
d
e
s
c
r
i
b
e
d

i
n
d
e
t
a
i
l
i
n
C
h
a
p
t
e
r

4
.

80

CHAPTER 4

Client-Server Control

Architecture

Recently, “client-server” has become a buzzword in the commercial market, and a

number Of software vendors claim that their products support the client-server model.

Also, tools for software development in client-server environments and for migration

of existing applications to a client-server environment are being routinely mentioned

in the media. In this chapter, I will explain the client-server model in general and

how this model is applied to a system for controlling mobile robot navigation.

4.1 Client-Server Model

In a large software system it is very common to find several programs or processes

running concurrently. These processes cooperate and interact with each other with

a certain mechanism. Physically, these processes can reside on a single processor,

a number of different processors, or even across several computers connected via a

network. A program consisting of several cooperating and interacting concurrent

Processes is sometimes referred to as a distributed program. The word “distributed”

should not be interpreted as “geographically distributed”, but rather in the sense

81

82

that the program execution is distributed across several processes. Andrews described

four kinds Of processes in a distributed program: filters, clients, servers, and peers

[Andrews, 1991]. A filter acts like a data transformer; it transforms input data to

output by performing some Operations on the input data. A peer is one of a collection

of identical processes that interact to provide a service. For instance, in a parallel

programming environment several peers interact to solve a problem, each solving a

piece of the problem.

A client initiates a request, and a server responds to requests. Thus, a client sends

requests to a server which, in turn, reacts to the request by sending the information

needed by the client. Client and server types should be viewed in the context of their

relationship; for instance, a server process can also be a client if that process sends

requests to another server. Also, it should be emphasized that requests flow from the

client to the server. This distinguishes client-server from peer-tO-peer relationship

where requests can flow from either side.

Typically, a client can make requests to several servers and a server can accept

requests from a number Of clients. Thus, designing a server is more complicated

than designing a client. A server has to multiplex requests from a number of clients

simultaneously, and a failing client should not prevent the server from accepting

and completing requests from other clients. Figure 4.1 shows a typical client-server

relationship.

Due to the nature of the division Of an application into the “client” and “server”

parts, the client-server model is also known as a two-tier model. This characteristic

is important to distinguish the client-server model from subroutine calls, where the

caller and subroutine being called are parts Of a common process.

Some examples Of applications that employ the client-server model are Internet

computer networking, X-Window systems, and Sun’s Network File System. For in-

stance, programs running under an X-Window environment are considered clients to

V

Client Client Client

Figure 4.1. Client-server relationship.

the X-Server. These clients do not have direct access to the peripherals (keyboard,

mouse, display screen, etc.) of the workstation where the X-Server is running. When-

ever a client needs to access one of these peripherals, it sends a request containing the

type of Operation to be performed on the requested peripheral. In response, the X-

server will perform the requested Operation on the peripheral and notify the caller of

completion Of the Operation. By directing all requests to the X-Server, the peripherals

are accessible from a remote site.

Client-Server Interaction

Figure 4.1 shows a simplified communication model between clients and server. In

practice, the communication involves intermediate steps in the Operating system

where the client/server runs. Some of these steps are: execution Of the operating

system’s kernel code and transmission of data through the communication network

(if the client and the server reside on different machines).

There are a number Of issues one has to consider when implementing the inter-

action between clients and servers. Tanenbaum mentions the following four issues

[Tanenbaum, 1992]:

1. Addressing. Before a client can communicate with a server, the server’s ad-

dress has to be Obtained. There are at least three approaches for resolving

84

this situation. The first is to hardwire the server’s address into the client’s

codes. For this approach to work, the addresses have to be fixed. The second

approach is to use random addresses and let the client determine the address

via broadcasting and waiting for a response from the appropriate server. The

last approach is to use a symbolic name and resolve the physical address at run

time through a name server.

2. Blocking vs. non-blocking. The low-level primitives for sending and re—

ceiving messages can be either blocking (synchronous) or non-blocking (asyn-

chronous). After a non-blocking send/receive, control returns to the caller im-

mediately. A blocking send/receive does not return the control until the other

party completes its corresponding receive/send command.

3. Buffered vs. unbuffered. In a buffered receive, the kernel reserves a buffer

for storing messages before they are read by the designated process. This mech-

anism allows the sender to send the message before the client is waiting for the

data. In an unbuffered receive, when the above situation occurs, the message is

lost.

4. Reliability. It is always possible that the messages sent by a process do not

actually reach the destination. In this event, there has to be a way of detecting

such a situation and restarting the message transfer.

4.2 Remote Procedure Call

In using the client-server model, a programmer has to pay attention to the input

and output Operations for all communication between clients and servers. Hence,

the programmer has to think in a slightly different way from writing a centralized

(non-distributed) program. Remote Procedure Call (RPC) alleviates this drawback

85

by allowing a process to call a procedure on a remote site.

RPC provides a way to make the call to a remote procedure look very much

like a local procedure call. This transparency is made possible by using stubs. A

stub is a different version Of the procedure with a remote call embedded in it. In a

local procedure call, the parameters of the procedure are passed from the caller to

the callee through the stack in the same address space. In a remote procedure call,

the parameters are passed to the remote machine. The client stub is responsible for

packing the parameters into a format acceptable to the server stub. Upon receiving

the parameters, the server stub unpacks them and performs a local procedure call

on the remote side. After the remote procedure completes execution, the results are

passed back to the calling procedure by the server stub. The client stub will unpack

the results and return them to the client. Figure 4.2 shows the steps involved in a

remote procedure call. The numbers in the figure correspond to the following steps:

1. The client calls the local client stub.

2. After packing the parameters, the client stub passes them to the kernel.

3. The kernel on the client machine sends the request to the remote kernel over

the network.

4. The remote kernel passes the message to the server stub.

5. The server stub uses the unpacked parameters to call the server.

6. The result from the server is passed back to the server stub.

7. After packing the results, the server stub passes them to the kernel on the server

machine.

8. Over the communication network, the kernel on the remote machine sends the

message to the kernel on the client machine.

86

9. The client stub receives the packed results from the kernel.

10. After being unpacked, the results are returned to the client.

Figure 4.2 shows how the client sees the remote procedure as if it were a local

routine.

clien stub
serve Stub

Client machine Server machine

 call
Client

3
7

Kernel Kernel

8

communication over

the network

Figure 4.2. An example Of a Remote Procedure Call.

Because different hardware platforms might be used on the client and the server

sites, the byte ordering of data on both machines might be different as well. Thus,

when the parameters and the results are transferred from one machine to the other,

a convention must be established to avoid misinterpretation Of the data due to the

different byte ordering on the two machines. The stubs handle this task and guarantee

that data has the same interpretation both to the client and the server.

87

4.3 Client-Server Control Architecture

In my opinion, the client-server model can be appropriately applied to controlling

the operation Of a mobile robot. It is common to find a number of concurrent pro-

cesses (modules) running on a mobile robot to accomplish the subtask assigned to the

controlling process. It is most likely that these concurrently running processes will

acquire data from the peripherals/sensors available on the robot. Thus, a mechanism

for controlling resource sharing among these processes is needed. Moreover, since the

processes cooperate to achieve a common goal of the robot, they need to interact

and exchange information with one another. This situation dictates the need for a

common communication medium for the processes.

Based on the above Observations, I have designed and implemented a control

architecture for mobile robots that employs a number Of servers to act as the interface

between the processes and the sensors/peripheral devices and a single server that

serves as a common communication channel for the modules. For each hardware

component accessed by the modules, there is one server dedicated to it. This type of

server will be referred to as the hardware server or HServer for short. All modules

that need to use this hardware component have to send a request to the HServer.

The actual operation is performed by the HServer and the module requesting the

Operation will be notified by the HServer when the Operation is completed, or if an

exception arises.

TO provide a common communication medium for all modules, we need to incorpo-

rate another server that acts as an information center. This server is referred to as the

data server (DServer). Any two modules can interact with each other with the help Of

the data server. Thus, the two modules are not exchanging messages directly. A sim-

ilar mechanism is also used in Linda parallel programming model [Ahuja et al., 1986;

Carriero and Gelernter, 1989]. One might think that the role Of the data server is

88

similar to Linda’s tuple space. However, the data server does not have an equivalent

operator for Linda’s operators out() and eval().

I

I I

I I

Client] ; i Client4

I I
I I

I I

I l

I I

I I

I I

Client2 ’ Data ‘ ClientS
: Server :

I I

I I

I I

I I

I I

I I

I I

Client3 i f Client6

: I
I I

I I

I I

_u_JL_l ____________. .____________ -JL-M-
I I

i Hserverl Hserver2 Hserver3 Hserver4 HserverS i

I

I I

I I

Figure 4.3. Typical configuration Of the Client-Server Architecture.

A typical configuration Of the system would look like Figure 4.3. In this figure,

all client modules can communicate to the Data Server as well as to the hardware

servers (HServer’s). By using this approach, all modules can share data with each

other. The hardware and data servers will always exist in a system and they can

be considered to form the core Of the entire system. However, the existence of the

other modules depends on the type of application assigned to the robot. Since the

client-server model allows us to distribute the client and server modules across several

processors, the physical address Of the servers can be assigned on demand. In this

situation, a name server is needed when a client has to resolve the physical address

89

of a particular server. Upon initialization, all the other servers must register their

physical addresses to the name server.

Also, more than one copy of each server can run simultaneously to provide a more

reliable system. When a client thinks that a particular server is not active any more,

the client can direct its requests to an alternate server.

It should be emphasized that the servers do not communicate with each other, and

neither do the clients have direct communication among themselves. Clients make

requests to servers only. Indirect communication among the clients are achieved

through the Data Server. Due to the independence Of the servers as well as the

clients, the module interconnections in the Client-Server Control Architecture can be

modeled using a bipartite graph. See Figure 1.4. All the client modules belong to one

set of nodes and all the server modules belong to the other set of nodes.

A module running in the system described above will have to use a communication

scheme to send requests and receive the results. Therefore, the system has to be run

on an Operating system that supports an interprocess communication facility.

Some advantages of the client-server model as described here are given below:

0 Each client—server connection can be assigned a priority value indicating how

the requests from the client will be processed by the corresponding server. Thus,

a client module might have several priority values depending on the number of

open connections to the servers. By assigning priority values to the connection,

not to the client module itself, the client appears to have a different level Of im-

portance to each server. This feature is useful, for instance, when the operation

of a client module relies mostly on the data from a particular sensor and needs

to Obtain a fast response from the sensor server. Also, by using this priority

scheme, the priority of execution Of a client module can be controlled regardless

Of the availability of this facility on the underlying Operating system.

90

o By delegating the hardware accesses to the hardware servers, a client module

that needs to access a particular hardware component does not have to run

on the machine where the hardware resides. Only the hardware server has to

run on that particular machine. This situation enables us to use small-sized

machines on the robot to run the hardware servers and let the clients run on

more powerful machines perhaps at a remote site. This approach also makes the

hardware transparent to the clients. When the hardware needs to be replaced or

upgraded, the client codes need not be rewritten. Clients can keep sending the

same requests to the server and the server takes care of the low-level interface

to the upgraded hardware.

e The services offered by the Data Server and the Hardware Servers provide suffi-

cient constructs for information sharing, resource sharing, resource access con-

trol, and process synchronization. These facilities are inherently used by all

control architectures for robot navigation system. Thus, the client-server model

described here can be used as a general control architecture for robot navigation.

0 Due to the distributed nature Of processing in the model, it is possible to em-

ploy a combination Of different hardware platforms and Operating systems for

controlling the robot. Each client or server can run on its own hardware and

Operating system. Thus, the underlying hardware platforms can be heteroge-

neous .

0 Besides the current two types, “variables” and “semaphores”, data in the Data

Server can also be used for storing other types Of structured information. For

instance, one can store “rules”, “action”, “predicates”, etc.

TO summarize, the Client-Server Architecture described in this thesis provides the

necessary constructs for writing distributed control programs for mobile robot navi-

gation. What one needs to do is to identify all the clients required in the navigation

91

program and write a separate module for each client. Usually, a client is associated

with a specific subtask Of the entire navigation task. The priority assignment to the

client-server connection is another unique feature Of the Client-Server Architecture.

The above facilities were not found in the other control architectures discussed in

Chapter 3.

4.4 Related Work

Other research projects which have some commonalities to my approach have been

reported in the literature. Bagchi and Kawamura employed the blackboard approach

for task decomposition and execution [Bagchi and Kawamura, 1992]. Therefore, all

the modules in their system are controlled through a central blackboard manager.

The blackboard is viewed as a software resource. They also employ client and server

Objects. For instance, a module can create a client arm Object that corresponds to

a physical robot arm associated with the server arm object. TO some extent, this is

similar to the hardware server in my implementation. However, their implementation

does not have the capability of synchronization, information sharing, and interprocess

communication provided by the Data Server in my implementation. Moreover, in the

Client—Server Control Architecture, no central manager exists.

The system described in [Chocon, 1992] consists of a number Of functional sub-

systems. A functional subsystem corresponds tO a set of data, functions, and tasks

and implemented as an object. A functional subsystem is allowed tO have a direct

access to the other subsystems through a client/server mechanism. There is no clear

distinction between the client and server modules. It appears that peer-tO—peer rela-

tionships are employed in the system. In my approach, the distinction between client

and server modules is explicit.

TelRIP (TeleRObotics Interconnect Protocol) provides a “virtual” fully connected

92

network of user programs via a special type Of process called router [Wise and Ciscon,

1992]. These user programs can either reside on the same processor or distributed

across several processors. In the former, intraprocessor communications are handled

by the router on the processor. While in the latter, interprocessor communications are

directed from the router in one processor to the router on the other processor. Thus,

the number Of routers in the system will be the same as the number of processors.

To some extent, this approach is similar to the Task Control Architecture de-

scribed in Section 3.1.3. Although, TelRIP and TCA were developed by two different

institutions, I view the former as a precursor of the latter. The routers in TelRIP

and the central server in TCA act as the “reflector” for all the message traffic in the

system. The design of the Client-Server Control Architecture allows the messages for

hardware control to be routed separately from those for interprocess communication.

4.5 Implementation

In the following sections, a more detailed description Of the interprocess communica-

tion, client interface, and server interface functions is given. The initial implemen-

tation Of the Client-Server Control Architecture is reported in [Dulimarta and Jain,

1993i

4.5.1 Interprocess Communication

The communication scheme is implemented using the Interprocess Communication

(IPC) facilities available in the UNIX" operating system. The possible choices of

IPC are: (1) shared memory, (2) semaphores, (3) message passing, (4) sockets, and

(5) remote procedure calls (RPC). Among these choices, sockets or RPC seem to

be the most preferable mechanisms, since they also support communication across

“UNIX is a trademark of AT&T Bell Laboratories.

93

different hosts (machines). The first three choices support communication within the

same host only.

My implementation employs the socket-based communication mechanism. One

of the reasons this approach was chosen is because sockets are widely used on the

Internet. Also, socket-based communication has been adapted to run on personal

computers as well. Therefore, this approach can be applied to a wide choice of

computers.

To relieve the users of the system from writing low-level socket-related system

calls, I have designed two C++ classes SockStr and Server that include methods

for opening and closing connections, exchanging data, and processing requests from

clients by a server.

4.5.2 Client Interface Functions

Before a client can communicate with a particular server, an object of type SockStr

has to be created.

class SockStr {

public:

open_comm (char *);

close();

/* the following functions are overloaded */

send (...);

recv (...);

Figure 4.4. A segment of SockStr class declaration.

94

Sending or receiving several different data formats is made possible by imple-

menting the interface methods send() and recv() as overloaded functionsl Using

this class, a client initiates a communication with a server by first calling open_comm()

and then exchanging data using send() and recv(). Before exiting, the client should

call close() to terminate the communication. A SockStr object can be viewed as

a duplex communication channel between a client and a single server. Thus, a client

that communicates with several servers has to allocate a separate channel to each

server. An example of a client that connects to a server named “RServer” is given in

Figure 4.5.

main()

{

SockStr S;

int speed;

S.open_comm ("RServer");

S.send (ROBOT_GETSPEED);

S.recv (speed);

S.close();
Figure 4.5. An example of a program communicating to RServer.

As shown in the above example, a client does not need to know the details of how

the server obtains information about the robot speed. Instead, the servers are respon-

sible for converting data or commands into and from a generic device-independent

format known to the client. Besides controlling the operation of the hardware at-

tached to it, a server can also be assigned an intermediate—level task. For instance,

the camera server can be used not only for acquiring images, but also for extracting

IA method is a procedure associated with an object.

95

image features.

4.5.3 Server Interface Functions

The single and multiple process concurrent servers described in [Comer and Stevens,

1993] were used in the system. For these types of servers, the necessary methods

needed to partially implement a server have been identified, and the Server class was

designed accordingly. Since the actual interpretation of the requests varies from one

server to another, the Server class provides a dynamic linking point to invoke the

processing or interpretation of a specific request.

class Server {

public:

open (char *);

close ();

mainloop (int (*) (int));

forkloop (int (*) (int));

exitloop ();

Figure 4.6. Public interfaces of Server class declaration.

Using the method openC), a server announces the given service name to the world.

A client that wants to communicate with this server must use this name to initiate

communication. To process all requests using a single process, a server would call

the mainloopO method. A multi-process concurrent server can be established via

the forkloopO method. Earlier, it was mentioned that the above C++ class partially

implements a server since the processing of the client requests varies from server to

server. For this reason, a server that calls either mainloopC) or forkloopO must

provide a function name that will process or interpret individual client requests. This

function is referred to as the request handler. For each request, the request handler

96

is invoked with the “channel number” in which the request arrives. When the server

does not want to serve any more requests, it should call the method close(). The

method exitloopO is provided so that the server can terminate its infinite loop

processing inside mainloopC) or forkloopO. Since the last two methods run in an

infinite loop, the method exitloopO has to be called asynchronously such as through

an interrupt handler. An example of a server whose service name is "XServer" is

given in Figure 4.7

Once a SockStr object associated with the communication channel is created, the

request handler can use the send() and recv() methods to exchange data with the

clients. These high-level interface functions greatly simplify the design of a server.

All requests from the clients to the sensors must be directed to the appropriate

HServer. Enforcing this policy has an important effect on the overall sensor data pro-

cessing. Since a sensor might be utilized by more than one client, access to the sensor

has to be serialized and protected. This means that a request from one client should

not interfere with the request of another client. This is particularly important when

the sensor has the capability of executing asynchronously, i.e., it can execute a new

command before the previous command has been completed. Thus, each HServer has

to be capable of accepting multiple requests concurrently while providing protection

to the sensor processing of an individual client. This should be accomplished with-

out complicating the communication protocol used by the clients. In other words,

a client should be able to employ a very simple protocol to initiate or terminate a

communication session, and to transfer information to/from an HServer. Also, the

sensor should appear to a client as being owned only by itself, i.e., a client should not

have to worry if the sensor it is using is shared among several other clients.

Some advantages of this system are given below:

0 The control scheme can be ported to a non Unix-based system as long as it

provides multi-tasking and inter-module communication facilities.

97

Server S;

mainC)

{

S.open ("XServer");

S.mainloop (Request_handler);

S.olose ();

}

int Request_handler(int channel-id)

{

/*--- create a SockStr for this "channel_id" ---*/

SockStr CommCh(channe1-id);

int rval;

char end;

while (1) {

if (CommCh -> dataReady() == 0) /* no data to read */

break;

rval 8 CommCh -> recv (end);

if (rval == 0) {

delete CommCh;

return 0;

}

switch (cmd) {

/*

* following these lines are the codes

* for interpret requests

* that are sent thru CommCh.

*/

}

}

return 1;

}

Figure 4.7. An example of a request handler in a server.

98

o The use of sockets or RPC for the communication scheme enables us to use a

distributed computing approach when additional processors are added to the

mobile robot. Also, when a wireless communication method is available, the

processing can be distributed to other machines. Of course, when this approach

is pursued, the communication bandwidth between the mobile robot and the

other hosts must not be a bottleneck in the processing.

0 By forcing all clients to communicate through a single HServer for each sen-

sor, the system is guaranteed to be free of interference among clients’ sensor

processing.

As the generic model of a mobile robot, I have adopted the “virtual controller”

model described in [Crowley, 1989]. This model is used to command a robot to

achieve coordinated motion in a Cartesian coordinate space. Commands can be sent

to the controller asynchronously, i.e., a new command can be given at any time

without having to wait for the completion of the current command. The controller is

composed of independent control of forward displacement and orientation.

The external interface protocol described in Crowley’s controller includes the fol-

lowing commands: Move, Turn, Stop, GetEstPos, GetEstSpeed, CorrectPos,

ResetPos [Crowley, 1989]. The virtual controller proposed by Crowley is organized

into three layers. The top layer is the command interpreter. The middle layer is the

main control loop that consists of a motor command generator and control parame-

ter (vehicle position, velocity, covariance, incremental displacement) estimator. The

bottom layer is the interface to the particular vehicle geometry.

4.6 Servers

Section 4.5 describes how to write the client program interface that communicates

with the servers. The following sections describe the possible commands accepted

99

by each server in the system. These servers are: Data Server (DServer), Proximity

Server (PServer), Robot Server (RServer), and Camera Server (CServer). For each

server described here, there is a library of functions that acts as another layer of

programming interface that runs on top of the SockStr class. The libraries are not

part of the SockStr class, but they use the SockStr class to provide yet a higher

level of abstraction. Using these libraries a user does not have to write the sequence

of send/receive operations. Figure 4.8 shows the relationship between this layer, the

user program, SockStr class, and the servers. Functions in the libraries are accessible

only if the connection to the corresponding server has been established.

User 1

L Program J

romelib

l"""’“""""""‘ """"""""""""'""' """l

i l

' 0 g a I

: Datale Robotle Proxle Camerale :

I DataSctValuc RobotGo ProxSonar CamcmGetSize :

: DalaGclValuc RobotTurn ProxlnfraRed CamcraGrab .

I DataCrcatcScmaphorc RobotSctBumper CamcraGrablmagc l

. DataWait Robod.ock :

| DataSignal RobotUnLock |

: RobotStop I

, I

l I

... _ I

E S 5 o c k S t 51‘ E

DServer RServer PServer CServer

Figure 4.8. Library of functions defined on top of SockStr class.

100

4.6.1 DServer

This program implements the Data/Information Server in which all global variables

used in the system are stored. Since variable names can be of any length, in the trans-

mission to/from the server, they are preceded by a byte length value. For instance,

the name “DRIVE” will be transmitted as six ASCII characters : END (05 octal), ‘D’,

‘R’, ‘I’, ‘V’, and ‘E’. Internally, the server uses a two-level linked list for keeping all

variable names. The first level stores the list of variable names defined by the clients

to the Data Server. For each variable, there is a “history” of values associated with

the variable. For instance, if the length of the history of a variable is N, only the

last N values will be kept in the list. The user can set the length of the history of

each variable independently. The history list is maintained in a FIFO manner, i.e.,

when a new value arrives, the oldest value will be discarded. Two types of variables

in the Data Server are: (i) semaphores for synchronization of events among clients,

and (ii) ordinary variables for sharing information among clients.

In the following sections, it is assumed that the connection to the Data Server has

been established by the following code:

SockStr DS;

DS.open_comm ("DServer");

Semaphores

For synchronization purposes, the Data Server initializes and maintains all semaphore

identifiers used by the system. These identifiers are returned by the system call

semgetO in the SunOS operating system. To enable access by the clients, the Data

Server associates each semaphore identifier with a variable name. A client who wants

to operate on a semaphore has to send a request to the Data Server and use the

variable name to refer to the semaphore. In my implementation, the Data Server

101

provides three services for manipulating semaphores via the following command bytes:

DATA_CREATE_SEM, DATAJIAIT, and DATA_SIGNAL.

1. The function DataCreateSemaphoreC) can be used by a client to create a

semaphore. The client must pass the name and initial value of the semaphore:

DataCreateSemaphore (DS, ”$XYZ”, 1);

The above function call creates the semaphore $XYZ on the data server associ-

ated with variable DS and sets the semaphore’s initial value to 1.

2. To increment the value of a semaphore, a user can write:

DataSignal (DS,”$XYZ”);

3. To decrement the value of a semaphore, a user can write:

DataWait (Ds,”$XYZ”);

Using these three functions, the Data Server provides semaphores to the clients.

Physically, the semaphores are defined only inside the Data Server. However, the

synchronization using the semaphores can be effective even across several machines.

The actual up() and down() operations on a semaphore are carried out by the Data

Server upon requests from clients.

For single-process concurrent servers, there is a potential blocking by a client

requesting a DataHaitO operation on a semaphore, i.e., when the semaphore is

not available. To avoid this situation, I have implemented the non-blocking down()

operation on the semaphores (down_nowait()). By observing the return value of

the operation, a decision can be made whether the down_nowait() operation was

102

successful or would have been blocked. In the latter operation, a list of socket identifier

waiting for the specified “event” is maintained in the Data Server.

When a client requests a DataSignal operation on a semaphore, the Data Server

consults the list of socket identifiers associated with the semaphore. If the list is not

empty, the first socket identifier in the list will be notified to indicate that the event

associated with the semaphore has occurred. Upon receiving the notification, the

blocked client can continue processing. Also, the socket identifier is removed from

the list and the actual down() operation is performed by the Data Server on behalf

of the blocked client.

Ordinary Variables

In my implementation, only integer variables and the following commands are ac-

cepted by DServer:

1. Set Value. This command is used to modify the value of a variable. Clients

can execute this command by sending DATA_SETVALUE request byte using the

following function:

DataSetValue (DS, ”PosX”, 4);

The effect of the above command is to set the value of variable PosX to 4.

2. Get Value. This command is used to get the value of a variable from its history

list. The format of this command is:

DataGetValue (DS, ”PosX”, —N);

103

3. Set History. This command is used to modify the length of the history to be

maintained for a variable name. The format of this command is:

DataSetHistory (DS, ”PosX”, N);

In the last two commands, N determines which value of the variable is to be

retrieved. If this value is zero, the current content of the variable will be retrieved.

A value of -—1 denotes the previous value, —2 denotes the value before the previous

value, and so on.

4.6.2 PServer

This server handles all requests to the Proximity Subsystem. Currently, two com-

mands are supported: PROX_SONAR, for acquiring all ultrasonic sensor readings, and

PROX_IR, for acquiring the proximity infrared detector readings.

o PROX_SONAR. Upon sending a single byte (PROX_SONAR), the client will receive

a 4-byte length code and 24 X sizeof(int) bytes of sonar readings. Each one

of the sonar readings is a distance in millimeters. In the library, this function

is implemented in ProxReadSonarO.

int sonar[24];

ProxReadSonar (PS, sonar);

0 PROXJR. Upon sending a single byte (PROX_IR), the client will receive a 4—byte

length code and 24 X sizeof(char) bytes of infrared detector readings. Each

reading is a binary value and a value of 1 means that the corresponding infrared

sensor detects an object within its detection range. Our mobile robot has only

104

eight infrared sensors, but a 24-element is returned since the controller board

supports a maximum of 24 infrared sensors. The library function to be used for

this purpose is ProxReadInfraReadO;

char infraredf24];

ProxReadSonar (PS, infrared);

o PROX_TIMEOUT. A client can set the maximum range reading of individual sen-

sors by sending this command byte.

int max_r[24], i;

for (i=0; i<24; i++)

max_r[i] = 5000; /* set maximum range to 5000 mm */

ProxSetTimeout (PS, max_r);

4.6.3 RServer

This is the Robot Server and it acts as the interface between programs/modules and

the TRC Labmate mobile robot. The set of commands accepted by the Robot Server

is a subset of all commands understood by the Labmate. The implemented command

subset is sufficient for the purpose of robot navigation. Our mobile robot, ROME,

employs two independently controlled wheels located near the center of the base.

When the two wheels spin at the same speed, the robot will either move in a straight

line or turn with respect to its vertical axis, depending on the direction of spin of the

two wheels. By applying different speeds (or velocities) to the two wheels, various

types of motion configuration can be achieved. The microprocessor that controls the

105

operation of the TRC Labmate is a Motorola 68HC11 chip. The heading of the robot

is calculated from the two wheel encoders.

The Labmate has seven operating modes [TRC, 1991]:

1. Joystick Mode. The Labmate can be controlled using a joystick. This is the

default mode on power-up and reset.

2. Go Mode. The Labmate moves in a straight line at the current velocity setting.

While in this mode, the Labmate can accept another command and execute it.

3. Proportional Go Mode. Similar to Go Mode, but without error integration.

4. Continuous Turn Mode. The robot turns a specified number of degrees in

a specified radius. Upon completion of this command, the Labmate enters the

Go Mode.

5. Point-to-Point Go Mode. The Labmate moves in a straight line by a spec-

ified distance. Upon completion of this command, the Labmate enters the Go

Mode.

6. Point-to—Point Turn Mode. Similar to Continuous Turn, but using a

trapezoidal control profile.

7. Jog Mode. The Labmate superimposes a turning mode on forward motion.

This mode continues until the robot receives a Go Mode, or another Jog

Mode.

The commands accepted by the Robot Server are described below and Table 4.1

summarizes all these commands. Most of the commands are for motion control and

status enquiry. A command of this type corresponds to a primitive command in

the Labmate. In addition, I have identified that in some situations there is a need

for gaining exclusive control of the robot by a client. For this reason, a “locking”

106

Table 4.1. Summary of commands to RServer.

Command Parameters

Adjust Position dX, dY, dHeading

Get Bumper Status -

Get Mode -

Get Position —

Get Speed Setting -

Get Wheel Speed -

Set GO Mode Velocity

Set JOG Mode Jog rate

Move Distance, Vel, Accel

Set Bumper Setting

Set Position X, Y, Heading

Stop Stop Mode

Turn Degree, Vel, Accel

Lock -

UnLock -

mechanism was also implemented in the Robot Server. The functions related to this

are RobotLockO and RobotUnlockO.

0 Adjust Position (ROBOT_ADJPOS). This command adjusts (increments or decre-

ments) the robot position and heading with the given integer values.

0 Get Bumper Status (ROBOT-GETBMPR). This command is used to check the

bumper status. Upon sending this command, the client will receive an inte-

ger value indicating the status of the bumpers. A zero value means that the

bumper is not in contact with any object, while a non-zero value indicates

whether the front or rear bumper is in contact with any object.

0 Get Robot Mode (ROBOT-GETMODE). Our TRC Labmate can operate in several

modes. This command is used to enquire which mode the robot is currently in.

107

0 Get Robot Position (ROBOT_GETPDS). Get the robot’s current heading and po-

sition. On return, the client will receive three integer values representing X-

position, Y-position, and Heading in that order.

0 Get Speed Setting (RDBOT_GETSPEED). This command is used to enquire the

most recent value passed to the robot controller to set its straight-line velocity.

This value can be considered as an approximation to the actual straight-line

velocity of the robot. The server will respond by sending an integer value

indicating the speed setting.

0 Get Wheel Speed (ROBOT_GETHSPEED). Unlike the previous command, this com-

mand sends the actual speed of the robot. The value sent to the client is ob—

tained by averaging the magnitude of left and right wheel velocities.

0 Set Go Mode (ROBDT_GO). This command sets the robot into the GO mode,

where the robot will keep moving in a straight line with its current velocity

setting. The integer value parameter specifies the velocity to be used in this

mode.

0 Set Jog Mode (ROBOT_JOG). This command is similar to Set Go mode, except

the robot is set into the JOG mode. The integer parameter specifies the jog

rate to be used in this mode.

0 Move (ROBO‘LMOVE). This command is used to make the robot move in a straight

line. The only difference between this command and the Set Go mode command

is that the robot will stop after it travels a certain distance. The first parameter

specifies the distance the robot has to travel, the second parameter specifies its

velocity, and the third parameter specifies its acceleration. A negative distance

value will make the robot to move backward, while a negative velocity or accel—

eration means that the robot should use the current velocity and acceleration

108

settings.

0 Set Bumpers (ROBOT_SETBMPR). This command is used to specify whether the

robot should ignore or watch for bumper switchs. When the bumper switch

is ignored, the robot will not stop even when the bumper is in contact with

objects. A zero value given to the first parameter will make the robot ignore

the bumper switch.

0 Set Position (ROBOT_SETPOS). This command is used for setting the internal

registers of the robot that keep the position and heading information. The first

two parameters are the X and Y positions that should be assigned to the robot.

The third parameter is its heading.

0 Stop (ROBOT_STOP). This command is used for stopping the motion of the robot.

The first parameter determines how the robot will be stopped. A non-zero value

means the the robot should be stopped immediately using emergency_stop()

Labmate command. Otherwise, the robot will be stopped gradually using

pause().

0 Turn (ROBOT_TURN). This command makes the robot to change its heading by

physically turning by a specified amount (in degrees). The first parameter

determines the number of degrees the robot has to turn (positive value means

clockwise turning). The second parameter determines the velocity to be used

during the turn, and the third parameter is its acceleration. Negative values can

be specified for the velocity and acceleration to indicate that the robot should

use the current velocity and acceleration settings.

Locking Mechanism

The locking mechanism used by the Robot Server is a token-based approach, i.e., to

lock the Robot Server, a client has to obtain a “token” first. When a client requests

109

a lock through RobotLockO, the Robot Server will grant it if the lock is not being

held by another client. When a client sends a request while the lock is being held by

another client, the request will be postponed until the lock is available.

Virtual X-Y Coordinate

The internal X-Y positions in the Labmate are stored as 16-bit signed integers. Using

these values, the area in which the 2D positions can be correctly reported by the robot,

is limited to 65536 X 65536 millimeter squares. RServer makes this area virtually much

larger. By anticipating the underflow/overflow in the 16-bit registers, RServer returns

32-bit signed integer values, thus enlarging the area by a factor of 232 (216 on each

side).

The underflow/overflow is detected only when a ROBOT_GETPOS request is received.

Each time a new position is acquired from the robot, it is compared with the last

acquired position. If the two values have different signs, it is a necessary condition

for an overflow/underflow. For the sufficient condition, I assume that the magnitude

difference of the two values exceeds 32768 (215) millimeters. Theoretically, this as-

Sumption is incorrect, but in practice the time interval between two ROBDT_GETPOS

I‘equests is much shorter than the time needed for the robot to travel 32768 millime—

t'ers. Specifically, an overflow from Xold to Xnew is detected when the following

Condition holds:

sgn(X01d) = +1 A 8gn(Xnew) 2' —1 /\ anew — XOldl > 215.

Similarly, an underflow is detected when the following condition holds:

8gn(Xold) = —1 /\ 8gn(Xnew) = +1 A anew — XOldl > 215.

110

4.6.4 CServer

The Camera Server (CServer) controls the image grabbing operation of a single cam-

era. When multiple cameras are used, multiple CServer processes have to be activated

with different service names. In my implementation, the Camera Server periodically

grabs a new image approximately every 0.5 seconds. The objective of this approach

is to reduce the processing time when a client requests an image, because the Camera

Server will just return the image that was grabbed previously. However, the client

might not receive the most up-to-date image. The implemented commands in the

Camera Server provide some basic interfaces for camera operation which include:

1. CameraGetSize() for acquiring the size of the image grabbed by the Camera

Server.

2. CameraGrab() for obtaining the full image grabbed by the Camera Server.

3. CameraGrabRowO for obtaining a particular row in the image. This function is

provided because, in some situations, a client is interested in only a small region

of the entire image. Using this command, a client can select the image rows of

interest.

4. CameraLock() and CameraUnLock() provide a mechanism for “freezing” the

Camera Server. When a lock request is granted, the Camera Server will not

update the image periodically. Both the Camera Server and the Robot Server

use the same locking mechanism.

4.7 Controlling Multiple Robots

The client-server model enables distributed control of robot systems. This implies

that the execution of all clients and servers can be distributed across a number of

111

processors connected to a computer network. The Client-Server Control Architecture

described in this thesis does not require any particular media or method of com-

puter communication. It only requires that socket-based communication is available

between the two parties. The physical connection can be an ethernet cable, wire-

less modem, packet radio, or any other communication technology. This advantage

provides us capability of controlling multiple robots using the Client-Server Control

Architecture.

Client] Client4

Client2 Data Client5

Server

Client3 Client6

.......... ll...If....11..........

Figure 4.9. An example of a multiple Client—Server Control Architecture.

It was mentioned that the collection of servers in the Client-Server Control Ar-

chitecture forms the core of the model. This core consists of a single Data Server

(DServer) that serves as the common communication medium among the clients,

and a number of hardware servers (HServer) that serve as interfaces to the various

hardware/peripherals on the robot. When our client-server model is used for control-

ling multiple robots, each robot must be equipped with a set of HServers that acts as

112

the interface to its own hardware. However, the DServer is shared by all clients on

all robots. For instance, when we have two identical robots, the core of the Client-

Server Control Architecture will consist of a single Data Server and two replicas of

HServers, each controlling a single robot. This model will be referred to as multiple

client-server model. Figure 4.9 shows the configuration of a “double” client-server

architecture. In the figure, the core servers are shown in thick boxes.

In this situation, every hardware server must have a unique identity. This is

necessary to guarantee the clients will access the proper server. In general, the number

of requests sent to the Data Server is less than those to the Hardware Servers. This

is due to the fact that Hardware Servers serve as the gateway to the resources on

the robot and resources are frequently needed and consulted by the client modules.

Due to the relatively small number of requests to the Data Server, I claim that a

single Data Server that acts as the common communication media for all the clients

on multiple robots is sufficient. However, if a high bandwidth to the Data Server

is necessary for a particular system, local Data Servers can be incorporated in the

system. The attribute “local” is used to denote that the Data Server is used locally

on a single mobile robot. This can be used for managing the facilities provided by

the Local Data Server to all clients in a single mobile robot. Facilities intended

for system-wide use should be directed to the “global” Data Server. It should be

noted that the independence among the server modules should not be violated by the

addition of local Data Servers. All servers are to be kept independent of each other.

4.8 Emulating Other Control Architectures

In this section, we will show how the other control architectures which have been

reported in the literature can be emulated by the Client-Server Architecture. We

will focus our attention to hierarchical architectures due to its wide use and to the

113

Colony-style architecture due to its uniqueness in its subsumptive property.

4.8.1 Emulating Hierarchical Systems

A hierarchical system consists of several modules configured in a number of layers.

These modules exchange information either vertically with the modules in different

layers or horizontally with the modules in the same layer. In the Client-Server ar-

chitecture, communication between two modules can always be accomplished via the

Data Server (See Figure 4.10). Therefore, for any hierarchical system configuration,

its functionality can always be emulated in the Client-Server Control Architecture.

B

(a) (b)

Figure 4.10. Intermodule communication in: (a) hierarchical systems, and (b) its

equivalent construct in the Client-Server Architecture.

4.8.2 Emulating the Colony-Style Architecture

The unique characteristic of the Colony-Style Architecture lies in its subsumptive

behavior, where higher level modules can take over the lower level modules. A more

comprehensive description of this architecture is given in Section 3.2.2. Connell has

showed that a pure suppression network defines a total ordering on the priority of the

modules [Connell, 1990]. In this dissertation I present a method for determining the

priorities of the modules even for a network containing inhibitor nodes. By assigning

114

each module a fixed priority value, Colony—style networks can be emulated in the

Client-Server Architecture. A module in the Colony-style network becomes a client

module in the Client-Server Architecture. Client modules with higher priority will

be served before the other client modules. Thus a high-priority module subsumes the

lower-priority ones.

Each module in the Colony-Style architecture can be modeled by Figure 4.11. The

transfer function cp outputs a command using the information from the sensory input

3:, while the applicability predicate P decides whether the command should be gated

as output y. We will denote a module in such a model with the following notation:

M(PM3“IDM)'

...1Y1.

P

—:—=— —é—>
(p /

Figure 4.11. The internal structure of a module in Colony-Style architecture.

The semantics or functionality of a module in a Colony-Style architecture can be

described by the following semantically equivalent block of statementf

¥

fthe subscript M is used to denote the entity belonging to module M.

115

if PM(x) then

== <PM(-T);

fi

Modules in the Colony-style architecture are connected by either suppressor or in-

hibitor nodes. In the following sections, the semantics of networks that contain mod-

ules connected by inhibitor or suppressor nodes is described. Examples for two-

module networks are presented, but the method given here can be iteratively applied

to networks containing more than two modules.

Inhibition Networks

In a Colony-style network, a module can inhibit the output of the other modules

through an inhibitor node. The inhibition occurs when the dominant module is

producing outputs.

Given two modules A(PA,90A) and B(PB,ch), the inhibition of B by module A

as shown in Figure 4.12 will be denoted by:

A(PA, 99A) <8 B(PB, 903)-

Figure 4.12. Inhibition network in the Colony-style architecture.

Lemma 4.1 A(PA,<,oA) <8) B(PB,<pB) can be replaced by C(nPA /\ PB,<,oB).

116

Proof: When the module A inhibits the output of module B, the transfer function

90A of A does not affect the output of an inhibition network. Only the applicability

predicate PA of module A is effective in determining the final output of the network.

If the applicability predicate PA is true, then the network will not produce any output.

Outputs of the transfer function 903 will be produced when the applicability predicate

P3 is true and the applicability predicate PA of the inhibiting module is false. It

should be clear now that the behavior of an inhibition network can be described by

the following code segment:

if -1PA(:r) /\ PB(.2:) then

31 1: 993(1');

ii

In fact, the above code segment describes the semantics of a module whose applica-

bi lity predicate is -IPA A PB and whose transfer function is 903. El

Using the above lemma, any Colony—style network can always be transformed into

an equivalent network without inhibition nodes.

Suppression Networks

Given two modules A(PA,<,0A) and B(PB,<,oB), the network containing a suppression

of B by module A as shown in Figure 4.13 will be denoted by:

A(PA999A) EB B(PB,<PB)-

117

Here, we will say that A suppresses B or A l B for short. This relation is transitive,

i.e., if A l B and B l C, then A105 It is also associative, i.e., (A l B) l C = A l

(B l C). The expression (A l B) l C can be interpreted as a subnetwork containing

A and B that suppresses C.

Figure 4.13. Suppression network in the Colony-style architecture.

When the output of a module A is connected to the output of module B via a

suppressor node, then module A dominates the output if its applicability predicate

returns a logical TRUE value and the result of the transfer function 90,4(3) is observed

on the output line y. On the other hand, if module A is not suppressing the output of

B, then B continues to operate as if module A does not exist. The behavior described

above can be depicted by the following code segment:

if PA(:r) then

31 1: WW);

else

if P3(a:) then

31 == Watt);

fi

fi

§I do not distinguish the configuration where A “directly” suppresses B vs. A suppresses B via

a number of intermediate suppressor nodes.

118

The above code segment indicates that the applicability predicate PA will always

be checked prior to P3. In other words, the module A has a higher priority than

module B. Intuitively, the “higher” the position of a module in a suppression network,

the higher is its priority.

Determining Module Priorities in Suppression Networks

In the following section, an algorithm for determining the priority of each module in

a suppression network is presented.

A A

B B

C C

x y x y

D D s

Figure 4.14. Two different suppression networks with the same priority assignment.

Figure 4.14 shows two networks with the same priority values aSSigned to each

module. The priorities in a suppression network can be obtained by first constructing

a binary tree that represents the intermodule connection in the network, and then

assigning priority from the order of visit of the node by a forward traversal algorithm

in the binary tree (See Definition 4.1). Since inhibitor nodes can be removed from

the network by the method described in Section 4.8.2, the approach presented here

can also be applied to a general Colony-style network.

In the following sections, T(V, E1, Br, '0) denotes a binary tree, where V is the set

of nodes, E; (E,) is the set of links to left (right) children, and v E V is the root of the

tree. A suppression network will be denoted as N(M, S, Ld, L;, a), where M is the set

119

of all modules in N, S is the set of its suppressor nodes, Ld, L,- C (M x S) U (S x S),

are the set of dominant and inferior links, respectively, and a E S is the distinguished

suppressor node connected to the output of the network. For instance, the network

on the left side in Figure 4.14 can be represented by N(M, S, Ld, L;, 33), where:

M = {A,B,C,D}

S = {31,32,333}

L; = {(A,31)»(C,52)a(31»33)}

Li : {(3,81), (0,32), (52733)}'

Binary Tree Construction The following paragraphs show how to construct a

binary tree T from a suppression network N. The number of interior nodes in T is

equal to the number of suppressor nodes in N, and the number of leaves in T is equal

to the number of modules in N. On a suppressor node, the output of the suppressing

module will be referred to as dominate arrow, while the output of the suppressed

module will be referred to as inferior arrow. The binary tree T is constructed from

N using the replacement rules given in Table 4.2.

Table 4.2. Replacement rules for binary tree constructions.

Suppression Network N(M, S, Ld, 115,0) Binary Tree T(V, E1, Er, v)

o v

Suppressor nodes S Interior nodes of T

Dominate arrows Ld Links to right child E,

Inferior arrows L,- Links to left child E1

Module M Leaf nodes

It is obvious that in Table 4.2, V = M U S. Figure 4.15 shows some examples of

binary trees constructed from their corresponding suppression networks.

120

Figure 4.15. Binary trees constructed from suppression networks.

121

Binary Tree Traversal For clarification of presentation, the following definition

will be used in this thesis.

Definition 4.1 A forward binary tree traversal algorithm is a tree traversal algorithm

that visits the left subtree prior to visiting the right subtree.

Definition 4.2 The order of visit of a traversal algorithm on a tree T(V, E) with K

nodes is a one-to-one mapping:

O:V—>{1,2,...,K},

where for any a: and y in V, 0(r) < (9(y) if and only if node :1: is visited before node

y.

By using a forward algorithm for traversing the tree constructed from a suppres—

sion network, the order of visit of the leaf nodes can be used to determine the priority

of the corresponding module in the suppression network. The node visited first has

the lowest priority, while the node visited last has the highest priority. The order of

visit of a forward algorithm applied to the examples in Figure 4.15 is D—C—B—A.

Lemma 4.2 Given a tree T constructed from a suppressor network N using the re-

placement rules in Table 4.2, and two modules A and B, then

0(A) > 0(3) 4:» A i B.

Proof: Let s be the closest common ancestor of A and B, then 3 must be a

suppressor node in N. First we want to show that A i B => 0(A) > 0(8). Since

module A can suppress module B, then A must be within a subnetwork connected

through the dominate arrow of the suppressor node 3, and module B is within a

subnetwork connected to the inferior arrow of s. In T, node A will be on the right

122

subtree of interior node 5 and node B will be on its left subtree. Therefore, using a

forward traversal algorithm, 0(B) < 0(A).

Now we want to show that 0(A) > C(B) 2? A i B. 0(A) > C(B) implies that

the forward traversal algorithm visits B before it visits A. This also implies that B

resides on the left subtree while A resides on the right subtree of 3. Four different

configurations will be considered here:

1. Both A and B are immediate children of 3. Here, the outputs of A and B are

directly connected to the suppressor node. Moreover, A is connected to the

dominate arrow and B is connected to the inferior arrow.

2. Only A is the immediate child of s. In the suppression network N, A suppresses

the subnetwork containing B.

3. Only B is the immediate child of s; A is inside a subnetwork whose output is

connected to the same suppressor node as that of B. When the output of A

reaches the output of the subnetwork, it suppresses the output of B.

4. Neither A nor B are immediate children of s; A resides in a subnetwork NA and

B resides inside another subnetwork NB. When the output of A reaches the

output of NA, it will suppress the output of N3, hence it also suppresses the

output of module B.

4.9 Summary

In this chapter the client-server model for coordination of a distributed program was

described. In addition, the other two types of processes, peers and filters, that exist in

123

distributed programs were also discussed briefly. Some major characteristics of client

and server processes were also explained. In addition, some of the important issues in

the client-server interaction were also discussed. Although my implementation of the

client-server model employs a socket-based communication, the Remote Procedure

Call mechanism was briefly described. In Section 4.3 the details of the Client-Server

Control Architecture used in my experiments were given by describing how the in-

terprocess communication, server interface functions, and client interface functions

are implemented using C++ classes. The Client-Server Control Architecture has been

implemented on a SunOS 4.1 operating system. The size of the server source code

is approximately 2500 lines. This small size is possible due to the use of C++ in my

implementation. We also discussed the internal implementation of the Data Server,

Proximity Server, Robot Server, and Camera Server. Finally, we showed that it is

possible to use the Client-Server Control Architecture for controlling multiple robots

and presented an algorithm for converting hierarchical systems and Colony-style net-

works to the Client-Server Architecture.

CHAPTER 5

Indoor Navigation

The generic structure of the Client-Server architecture was explained in Chapter 4.

This chapter describes how the architecture was employed in controlling our mobile

robot for indoor navigation. The initial implementation of the navigation system

can be found in [Dulimarta and Jain, 1993]. In my experiments, the robot was

commanded to move from one place to another in the Engineering building by giving

the room numbers of the initial and final positions. Initially, the robot is provided its

true heading. I have used the convention that North is 0 degrees, West is 90 degrees,

South is 180 degrees, and East is 270 degrees. This choice follows the coordinate

frame used by TRC in its LABMATE mobile robots [TRC, 1991].

A common approach to robot navigation within a dynamic environment is to use

both global and local navigation plans. Global navigation is more likely to be a

symbolic approach while local navigation is not. Humans use a similar strategy; for

global navigation, we think in terms of coarse directions. For instance, one possible

route to go from city X to city Y is via freeways I-xx South, I-yy South, I-zz West,

and so on. On the other hand, during the local navigation on each freeway, we think

in terms of how to control the steering wheel so that our car stays in the proper lane

of the freeway at all times.

When applied to a mobile robot, global navigation deals with establishing its

124

125

coarse path, while the local navigation controls the robot so that the given path is

followed as closely as possible and the robot does not run into any obstacles. In my

indoor navigation program, the following modules were developed:

0 Path Planner

Navigator

Ceiling Light Tracker

Local Mapper

Door Number Plate Detector

In the context of the client-server control architecture, the above modules should

be considered as clients of the servers discussed in Chapter 4. Figure 5.1 shows the

above clients and the data shared among the client modules.

5.1 World Representation

I have chosen to use the StickRep attributed graph representation developed by

(Walsh, 1992], because it is well-suited for representing the hallway structure of most

large buildings. Usually, wall segments and doors form a closed contour, therefore,

the attributed graphs have a ring-like structure. An arc in the graph represents either

a wall segment or a door. A node stores information about the topological connec-

tivity of the arcs. Two entities are stored in a node: adjacency angle and node name.

Physically, nodes in the graph correspond to vertical edges in the building, such as

junctions between wall segments and door jambs. An arc contains information about

edge type, length of the edge, attributes of the edge, and the projected positions of

the ceiling lights in the hallway to the edge.

1 3.4.5.6

a.b.C.d.f

o E}

Planner Server $ Navigator

1. $8me

2. $LighIDeI

3. SGoalDaIa

4. SRoboISIams

5. S'I‘mckData

6. SEndLMode

P 9
'
o a

"
"
"
—
"
W
"
"

— N l 32.5.6

b.d,e.f

CTracker a. GoalDirection

b. GoalDistancc

c. Goal’l‘ype

d. LightOffsct

e. CeilingLighI

f. Overshoot

9 5
'

O

—
-
—
—
-
—
-
—
q
-

PlFinder

-ll__V_..I ____________

RServer PServer CServerO CServer]

 -
-
-
-
—
-
-
-
1
D

I I I I I I I I I I I I I I I
,

l__ll_

Figure 5.1. Client modules and their data flow.

A map file consists of header and data. The header of a map file contains the

information about the relative positions of this map with respect to the others and

the initial “heading” of the first entry in the map. Each of the remaining lines is

decoded in the following format:

a name 7' A d1d2...d,\ u attribute.

The first two fields are stored into a node, while the remaining fields are stored in

an arc in the graph. In the following, the meaning of each field is described:

1. The angle 0 denotes the adjacency angle (in degrees) between two neighboring

edges. If a node v connects two edges 61 and 62, where e1 is the “previous”

edge and eg is the “next” edge, then a is the positive angle measured from c;

to e1. The meaning of “previous” and “next” will be described in Section 5.1.1.

127

A negative value in this field indicates a heading change in the direction of the

subsequent edges. Corners in the map are represented by a negative entry in

this field.

2. The second entry is the name of the current node. The purpose of this entry is

to enable human operator to identify the nodes by their names.

3. The entry r E {‘W’, ‘D’, ‘E’} denotes the type of the edge (‘0’ is for walls, ‘D’

for doors, and ‘E’ for elevators).

4. A denotes the number of ceiling lights projected to this edge: d;,i = 1,.../\

indicates the position(s) (in inches) of projections of the ceiling lights relative

to the last node. For instance, if there are two ceiling lights on an edge and the

distance from the last edge to the first light is 10” and the distance between the

first and the second light is 120” inches, this will be written as:

2 10 130

L—* offset of the second light (d2)

offset of the first light (d1)

total number of lights on this edge (A)

v
V

5. Metric It indicates the length of the edge (in inches). Negative values indicate

that the metric does not contribute to the computation of the total distance

between two nodes. Door metrics come in five different values: 32”, 36”, 40”,

72”, and 80”. The last two values are metrics of double doors each of width

36” and 40”, respectively. Wall metrics are estimated by counting the number

of bricks on the wall and then multiplying that number with the length of the

brick.

6. Surface attribute (attribute) is used for documentation purpose only.

128

Figure 5.2 shows a partial map of the third floor of the MSU Engineering Building.

A complete map is given in Appendix A.

.340. I you» A

‘14-‘53. 3‘6.‘

D < 1133351" .

.......——.‘.......... 3 = =

335 335nm mu “1min: 3pm /

0 ‘

urn

1

ceiling light —L.[:]

0

mob! J.

346.2

T l I 0

II 0

Figure 5.2. A partial map of the third floor of the MSU Engineering Building.

5.1.1 Map Construction

In the following sections, the information stored in the maps and how it was obtained

from the third floor of the MSU Engineering Building are described in more detail.

Vertical Edges

A map is constructed as if a human operator were tracing the walls and doors on

his/her left side. Each time a door or a wall segment is encountered, an edge will

be created in the map and the appropriate information will be filled in. At the same

time, a node will be created to represent the junction between two wall segments

0r between a door and a wall. To clarify the presentation, consider a hypothetical

129

structure shown in Figure 5.3.

A 111—13 B

X1

X2

R

. Q V I i Y2

turning space ,

‘9’ 1

D C

Figure 5.3. A hypothetical building structure.

In this example, there are two closed contours: A—B—C—D-E—F and P—Q—R—S.

This structure is represented as two rings in the StickRep representation. The first

graph (ring), which represents the outer contour, will have twelve nodes and twelve

edges and the second ring will have eight nodes and eight edges. Using the convention

given above, the outer ring will be stored in the following order: A, L1, L2, B, X1,

X2, Y2, Y1, C, D, E, and F while the inner ring will be stored in the following order:

P, Q, R, and S. On North side of the outer ring, there is a door labeled L1L2, and on

the east side of the outer ring there is a small indentation labeled X1X2Y2Y1.

The adjacency angle at a node is determined as follows. Consider node L1 and

the two adjacent edges AL1 and Lng. Here, with respect to node L1, the edge L1L2

is considered as the “next” edge and the edge AL1 as the “previous” edge. Hence, the

adjacency angle at L1 is the positive angle from Lng to AL1 which is 180°. Using

this convention, the magnitude of the adjacency angles of nodes A, B, X2, Y2, C, D,

and F is 270°, and the magnitude of the adjacency angles of nodes E, X1, and Y1

130

is 90°. Nodes representing corners in the actual building are encoded by a negative

value in the adjacency angle; the adjacency angle of node E, for instance, is -90°. On

the other hand, nodes X1, X2, Y1, and Y; are not considered as corner nodes, so their

adjacency angles are all positive. The two rings of the structure shown in Figure 5.3

are given in Figure 5.4. This representation has a drawback in that the relative

position between items across two rings cannot be determined. This drawback can

be overcome by adding entries that link two rings in some predetermined positions.

A,-270

E,-90
[4,180 P.-90 S,-90

D,-270 B,-270

 X1,90

C, -270

Q! '90 R,'90

16,270

Figure 5.4. A StickRep representation of the structure shown in Figure 5.3.

Ceiling Lights

In the navigation process, ceiling lights are used as a landmark to be tracked by the

robot. For this purpose, the positions of the ceiling lights are encoded into the maps

by projecting the “reference point” of the lights to the edge closest to the light. Here,

the “reference point” is the axis of symmetry of the ceiling light which is perpendicular

131

to the edge.

- 1?

Figure 5.5. Ceiling light projection for three lights (1,2,3) in a hallway.

Figure 5.5 shows a situation where two ceiling lights are projected onto two dif-

ferent rings and a ceiling light residing in a turning space. A “turning space” is the

intersection of one or more corridors. The outer ring is traced in the direction A—B—

C—D—E, while the inner ring is traced in the direction P—Q—R. In the given figure,

edges AB and BC have one ceiling light each, and edge QR has two ceiling lights. In

some cases, ceiling lights that reside in a turning space have to be encoded differently

in the map. For instance, ceiling light 3 is projected twice, i.e., onto edges CD and

DE. To indicate that the two projections come from the same ceiling light, the offsets

are given as negative values. Table 5.1 shows the value of /\ and the light offsets

d1,d2, . . . ,d), for each edge.

132

Table 5.1. Encoding of ceiling positions in the StickRep.

Edge A d1,d2,...,dA

AB 1 p

BC 1 q

CD 1 —:v

DE 1 —y

QR 2 r s

5.2 A Model of Robot Navigation

Using global and local navigation as described earlier, we now formalize a model for

sensor-based robot navigation. I claim that the navigation system is composed of the

following components:

1. W: the subspace where the robot environment is defined. Typically, this space

is either two- or three-dimensional.

2. A set of static obstacles {51, 52, . . . , Sm}, each S.- is a subset of W. The static

free space .7 can be represented by f = W — (UIZISJ.

3. A set of dynamic obstacles {D1, D2, . . . , Dn}, with their unknown trajectories

X1(t), X2(t), . . . , Xn(t).

4. The initial position (X;) and the final position (Xf) of the robot, Where X;, X; E

.77.

5. The desired path IIX“X! (x) from X,- to Xf to be followed by the robot.

6. Controllable parameters of the robot: orientation 0(t) and position {(t) at time

t. Using these parameters, the footprint of the robot at time t, Fp(t), can be

defined as a function of 0(t) and {(t).

133

7. If there are 3 sensors in the system, then let V,-(t),i = 1,2, . . . ,3 denote the

subspace of W observed by sensor i at time t.

8. The neighborhood of the robot: N(t) = Uf=1l/}(t). Thus, N(t) represents the

subspace that lies within the range of the robot sensors. The free subspace of

N(t) can be denoted by (N(t) (if) — (Uf‘zl x;(t)). Local navigator uses this free

subspace to guide the robot so as to make it follow the global path l'IxhX! (x)

as closely as possible.

II(:I:)

Figure 5.6. Navigation model.

An obstacle X (static or dynamic) is visible if it lies within the current sensor

range of the robot, i.e:

Visible(X) a X n N(t) 7A 0. (5.1)

Figure 5.6 depicts the navigation model where W is a two-dimensional robot

Workspace. In the figure, the static obstacles 51 and S; are visible to the robot, while

D1 and 53 are not.

134

Using the above model, the problem of robot navigation “along” the path

IIx“x,(x) can be formulated in terms of the following goals:

1. The destination point XI should be reachable in a finite amount of time. Ex-

pressed in a predicate calculus expression, this goal becomes:

(3t!) 3 [(t, < 00) A (€01) = Xfll- (5-2)

2. Another capability that the robot must have is obstacle avoidance. This can be

expressed as the following predicate:

(Vt)(VX) [Visible(X) => Fp(t) C (N(t) — X)], (5.3)

which translates to the interpretation that at any given time, the robot does

not touch any visible obstacles.

3. The robot should follow the path H(x) as closely as possible. This implies that

the actual position of the robot should not be too far from the planned path

and the orientation of the robot should be about the same as the tangent vector

to the path at the closest point. More formally, first we would like to minimize

||€(t) - IIll» (5-4)

which is the distance between the robot and the desired path. Now, let us

denote E, to be the closest point on the path to the robot, i.e.,

We“ 6 II) [HE. — at)” 3 ME — «on 1.

135

The orientation constraint can be accomplished by minimizing

6(t) . VII(x)| (5.5)
Xzég.

It is possible to assign each goal to a separate computing agent or client and let

them run concurrently. Each client should then just concentrate on satisfying the

goal assigned to it.

5.3 Path Planner

The Path Planner implements the global navigation routine in the system. Given

the initial position X,- and final position Xf of the robot, Path Planner locates these

positions in the map and determines the “optimal” path between the two positions.

The path is segmented at corner points into a number of straight line subpaths.

Suppose the path II between X,- and Xf has been segmented into a sequence of

subpaths 81,52, . . . ,8". This will be denoted as

X; [11le = (31,Sg,...,Sn).

Using this strategy, on a path containing some corner points, the robot is com-

manded to move from the initial position X.- to the first corner, then to the second

corner, and so on until it finally reaches the last corner and proceeds to the final

position Xf. Otherwise, if no corners exist in the path, the robot will be commanded

to move directly from the initial to the final position.

Furthermore, a straight subpath S.- can be decomposed into at most three segments

8}, 8,“, and 8,9, in which the robot operates in different modes. Also, to denote that

the robot starts at location X and ends at location Y in subpath 8;, the following

136

notation will be used:

8,- E X [5,1] 11 [5:1]12[5§]Y,

where 11 and 12 are two intermediate points along the subpath 5;. When the inter-

mediate points are not of interest, the above notation will be written in a simplified

notation as:

s.- 2 X [5355253 Y.

In segment 8}, the robot moves from the starting point X to the intermediate

point I] while tracking the ceiling lights. Point [1 corresponds to the location Where

the last ceiling light in subpath 8.- is seen by the robot. The superscript l is used

to indicate that the robot is operating in “light-tracking” mode. Along the segment

5,“, the robot operates in “dead—reckoning” mode by relying only on the approximate

distance between the last ceiling light in subpath S,- to the center of the “turning

space” 72,-4.1 between subpaths S.- and 8,-4.1. Here, the turning space of the two paths

is defined as the intersection between the two corridors covering the path. More

formally,

713- = {C,- 0 CJIS.‘ E 0; A51“ 6 03'},

where C.- and 01- are corridors that cover the subpaths 8; and Sj, respectively. In

the turning space, the robot stops at point 12 and then leaves the turning space and

enters the initial part of subpath S;+1 and stops at Y. Within this context, the

corridor covering 8.- will be denoted as the “incoming” corridor, while the corridor

covering 8.41 will be denoted as the “outgoing” corridor. The superscript c in 5,9

indicates that the robot operates in the “leave-corner” mode while traveling along

the segment. Figure 5.7 shows the relation between a path with one corner and the

Operating modes of our robot.

Using this notation, a path IIAB from A to B consisting of two corners and three

137

D—mode L-modc C-mod:

—_.. =

.335 ° ' 335.de women

D-modc

L-modc

Figure 5.7. Different operating modes of the robot.

subpaths can be written as:

AIHABlB=(A [8l;5f;51°l U1,U1 [55;53; 2°] U2,U2 15:5,;55'; £13),

where U1 is a point in the turning space between 81 and 82, while U2 is a point in

the turning space between 82 and 83.

The Path Planner does not actually control the movement of the robot. This is

the responsibility of the Navigator module described in Section 5.4. Thus, the two

modules must be able to communicate with each other. For this reason, the vari-

ables GoalType, GoalDistance, and GoalDirect ion are declared to the Data Server

(DServer). The variable GoalType indicates the mode in which the robot operates

when traversing a segment. In my implementation, ‘C’ is used for segments 8c, ‘D’ or

‘E’ for segments 8d, and ‘L’ for segments 8'. The variable GoalDistance has different

138

interpretations depending on the operating mode of the robot. For the light-tracking

mode, this variable contains the number of ceiling lights to be tracked by the robot.

For the “dead-reckoning” and “leave-corner” modes, this variable contains the dis-

tance (in millimeters) that the robot should travel. Lastly, GoalDirection contains

the heading (in degrees) along which the robot should proceed when operating in each

mode. To synchronize the data transfer between the Path Planner and the Naviga—

tor, two semaphores, $GoalData and $RobotStatus are declared to the Data Server.

When the three variables described above have been set, the Path Planner will in-

crement the $GoalData semaphore. Before the Path Planner can assign a new set of

data, it has to wait until the $RobotStatus semaphore is incremented by Navigator.

In this context, there is a producer-consumer relationship between the Path Planner

and the Navigator.

5.4 Navigator

This client implements the local navigator described above. Here, the word “local”

implies that the Navigator employs only the most recent sensor data for controlling

the robot. This approach differs from what was implemented in my earlier experiment

on the mobile robot Sparta [Schneider et al., 1989].

The purpose of the Navigator module is to control the robot, so that plans gen-

erated by the Path Planner can be executed. At the same time, the Navigator is

also responsible for obstacle avoidance capability. Plans from the Path Planner are

communicated to the Navigator via the three variables described in Section 5.3.

In controlling our mobile robot, the Navigator module employs a deterministic

finite state machine approach. Each state corresponds to a primitive behavior of the

robot such as Move-to-Hallway-Center, Avoid-Trap, and Leave-Corner. It is worth

noting that the finite state machine is deterministic, which implies that at any given

139

time, the program can only be in a single state. The program changes from one state

to another when certain events arise, as determined from sensor observations. Based

on this characteristic, each behavior can be executed in a common control loop and

given the same type of sensor data, which includes the robot position, robot heading,

and ultrasonic and infrared sensor readings. In addition, the control loop requires two

other parameters, i.e., the goal checking function and the current state of the finite

state machine. The system exits the loop when the goal checking function returns

a logically true value. In Figure 5.8, these two parameters are shown in the shaded

boxes. Even though the structure of the loop is fixed, additional states and goal

checking functions can be added to provide new behaviors to the robot.

(Get Robot Pose J

C Get Sonar & IR data)

5:. , .- , 4 ; I i:

(....g(......3(....)

Figure 5.8. Control loop in the Navigator.

140

The Navigator also employs some checking functions that are activated periodi-

cally via a timer interrupt. The purpose of these functions is to complement both the

local navigation and the obstacle avoidance capabilities of the robot as carried out

by the control loop described above. These functions are activated only once every

3—5 seconds. Since they are activated through alarm interrupt handlers, calling these

functions too often might cause the main control loop to be preempted frequently,

causing the robot to be less responsive to the external events or sensor readings.

In Section 5.3 it was described how a path is decomposed into straight-line sub-

paths which are further decomposed into segments 8!, 8,“, and 8,“, in which the robot

operates in different modes. It is the responsibility of the Navigator to control the

robot so that it operates in the proper mode for each segment. The Navigator es-

tablishes a mode by selecting a proper combination of state and goal functions as

described above.

In the hallway navigation system, there are two states and three goal checking

functions. The states are Center-Hallway and Corner, while the goals are L-Goal,

D-Goal, and E-Goal. Table 5.2 shows the relationships between the modes and their

corresponding states and goal functions. Each one of these states and goal checking

functions is implemented as a C++ function in the program.

Table 5.2. Relationship between modes, states, and goal functions.

Mode State Goal Function

Ceiling—Light Tracking Center-Hallway L-Goal

Dead-Reckoning Center-Hallway D-Goal

Leave-Corner Corner D-Goal

Enter-Corner Corner E-Goal

Besides the above operating modes, the Navigator is also responsible for control-

ling the robot to enter and exit elevators. This function is provided as a step towards

141

making the robot navigate on different floors of the MSU Engineering Building. The

states, goals, and the control needed for the robot to enter and exit elevators are

described in the following sections.

5.4.1 Center-Hallway state

The behavior of the robot to be accomplished in this state is to move in the hallway

while maintaining its position approximately in the center of the corridor. The main

sensor data used in this state is the ultrasonic sensor readings. The configuration

of the 24 ultrasonic sensors attached to ROME and the coordinate frame used by

the TRC LABMATE is shown in Figure 5.9. In the figure, the y-axis indicates the

forward direction of the robot.

:l:76 cm

Figure 5.9. Sonar configuration.

The structure of most hallways usually consists of long parallel walls. When our

robot is placed in such a hallway, the walls constrain the robot maneuvers and this

information can be used to guide the robot to move along the mid axis of the hallway.

The sonar readings can be used to estimate the direction of the hallway axis

142

hallway axis

Figure 5.10. Far and near sonars.

relative to the robot’s heading. At any given time while the robot is maneuvering

in the hallway, each ultrasonic sensor can be classified into two types: far and near.

An ultrasonic sensor is labeled far if its axis creates an angle less than 45° with the

hallway axis. Otherwise, the sensor is labeled near. In Figure 5.10, sonars 0 and 12

are far, while sonars 6 and 18 are near.

Normally, far sensors will have longer distance readings than those of near ones.

Also, sonars which make the smallest angle with the hallway axis should return the

maximum reading. This approach can be used to determine which direction is “open”

or “closed”. The “open” direction should be identified by at least one of the far

sonars. It is Obvious that there are two possible “open” directions. In Figure 5.10

these directions correspond to sonar 14 and sonar 2. To control the robot to move

forward in the correct “open” direction only, the other “open” direction is ignored.

In my implementation, only sonars 6 through 18 are used in determining the “open”

direction.

Using this approach, controlling the robot to move along the hallway axis can be

accomplished by making sonar 12 point in the “open” direction. However, this might

not be sufficient to keep the robot away from the walls. In addition to controlling

sensor 12 to point in the open direction, the Center-Hallway state must check if the

robot is approaching the walls. This safety check is carried out by always monitoring

143

the near sonar readings. Ideally, sonars 6 and 18 should be near and should indicate

the “closed” direction, i.e., their readings are the minimum among all the sonar

readings. If other sonar readings besides those of sonar 6 and sonar 18 become too

low, it is an indication that the robot might be approaching a wall.

Combining the safety check and controlling sonar 12 to point in the “open” direc-

tion, the Center-Hallway state Operates in two different modes. In the first mode,

when the minimum sonar reading is very low (below a threshold), the state changes

the robot heading so that, in the new heading, the “closed” direction aligns with

either sonar 6 or sonar 18 (depending on the goal direction of the next target set by

the Planner). When this situation occurs, the robot is given a command to make an

in-place turn and the speed is decreased by 25%.

In the second mode, i.e., when the minimum sonar reading is “safe” (above a

threshold), the robot is controlled so that the “open” direction aligns with sonar 12.

Unlike in the first mode, where an in-place turn is used, this mode uses a superimposed

turn command. This command has the advantage that the robot does not have to

stop from moving before it turns. In the LABMATE, the superimposed turn is

implemented as the jog command. The turning rate is determined by the following

non-linear function:

turning rate = sgn(6) * 4,

where 6 is the deviation (in degrees) of the current robot heading from the “open”

direction. To reduce false detections of the “open” direction from the sonar readings,

the control algorithm first estimates the direction of the hallway axis from the current

robot heading and the goal direction. This estimate is then used to determine the

Sonar whose deviation angle from the hallway axis is the smallest. If this sonar is

numbered M, then “open” direction is determined by searching the largest reading

athong sonars {M — 2, M — 1, M, M + 1, M + 2}. A modulo-24 arithmetic is used to

144

resolve the “wrap-around” effect.

The threshold for determining the “safe” mode varies according to the behavior

of the robot. Initially, the threshold is set to 1 Hi. When the robot makes too many

turns in a short amount Of time, the threshold is decreased by 50%. Otherwise,

when the robot does not make any turn is a certain amount of time, the threshold

is increased by 25%. This approach proved to be useful for the adaptation of the

navigation program in corridors having different widths.

Using the above method, the robot is able to move in the hallways while main-

taining its position near the center of the hallway. It is worth noting that the

Center-Hallway state does not explicitly control the robot to move to the next target

position; the main control scheme used in this state simply looks for an Open direc-

tion. However, in addition to the control loop described in Section 5.4, the Navigator

also uses two checking functions which are activated via an alarm interrupt handler.

These functions are Check-Bumper and Check-Goal.

The Check-Bumper function is needed because in some situations, the sonar cannot

detect an obstacle that stands in front of the robot. For instance, an object whose

height is below the sonar scan level will not be “seen” by the sonar. Fortunately, the

bumper on our robot can be used to detect if the robot touches an obstacle. This

function periodically checks for bumper contact and maneuvers the robot to keep the

bumper away from the obstacles. The Check-Goal function is activated periodically

to check if the robot is moving in the specified heading. If it is not, corrective actions

will be taken to turn the robot to the correct heading.

5.4.2 Corner state

This state is invoked when the robot needs to make a turn at a corner. More precisely,

this state is activated when the Navigator is controlling the robot along segment 8,“

(after the robot is in a turning space and has to enter the next hallway in the specified

145

path). The Center-Hallway state cannot be used for this purpose, since that state

looks for an “open” direction in too wide a region (sonars 6 through 18). This might

“incoming” corridor. To avoidresult in the detection of an “open” direction in the

this situation, the Corner state interrogates a narrower range of sonars, where the

range is determined dynamically depending on the current heading of the robot and

the heading of the target point. By imposing this constraint, only an “open” direction

in the “outgoing” corridor is detected.

In the Center-Hallway state, obstacle avoidance is implemented using the sonar

data only. Since one of the objectives of the Corner state is to avoid detecting an

“open” direction in the “incoming” corridor, we want to keep the robot moving in a

straight line as much as possible. Consequently, the obstacle avoidance capability in

this state is implemented via the infrared sensor readings in a stop-and-go fashion.

Whenever any one of the forward-facing infrared sensors detects an Object, the robot

is stopped and put into jog mode with a small turning rate. The direction Of the turn

is determined by the deviation of the current heading from the goal direction. The

infrared sensors are rechecked in the next Navigator control loop after a delay of 1—2

seconds.

5.4.3 L-Goal

Together with the Center-Hallway state, this goal function controls the robot while

it operates in the “ceiling-light-tracking” mode. L-Goal is invoked when the robot is

in segment 8'. This function returns a logically true value when the robot camera has

counted a certain number of ceiling lights. This goal function does not perform the

actual ceiling light tracking, but instead it continually requests Data Server for the

current value of the variable Ceiling_Light. This variable is modified by the ceiling

light tracker module described in Section 5.6. Whenever the value of Ceiling_Light

matches the specified number of ceiling lights, this function returns a logically true

146

value causing the control loop in the Navigator to exit.

5.4.4 D-Goal

This goal function checks whether the robot has moved a certain distance in segment

8“. In this segment, there are no landmarks to use for position registration, therefore

the robot has to rely on dead-reckoning navigation. This function simply gets the

current robot position from the Robot Server (RServer) and calculates the distance

traveled since the beginning of the segment 8“.

As shown in Table 5.2, dead-reckoning navigation is implemented in combination

with the Center-Hallway state. Since the Center-Hallway state constrains the

robot to move in one direction of the hallway, there is no need to check the actual

final position of the robot; only the distance traversed needs to be checked.

5.4.5 E-Goal

This goal function is activated when the robot is entering a turning space in a corner.

Also, it is very similar to D-Goal, except for the test used to determine when this

function returns a logically true value. In D-Goal a logically true value is returned

when the robot has traveled the desired distance. Besides this test, E-Goal also

checks if the range reading of the sonar facing towards the goal direction is less than

a threshold. If this is true and the distance to the middle of the turning space is less

than a threshold, then a logically true value is returned.

5.4.6 Entering and Exiting Elevators

When the Planner specifies an elevator as the destination point, the Navigator will

control the robot to enter and exit the elevator upon reaching the destination point.

Here, the robot must perform the following tasks:

147

1. Locate and approach the elevator doors,

2. Wait until the elevator doors are Open after a human operator presses the ele-

vator button,

3. Enter the elevator,

4. Turn around when the robot reaches the back wall inside the elevator,

5. Wait for the door to reopen after a human operator tells the robot that the

destination floor is reached, and

6. Exit the elevator.

Using sonar for controlling the robot inside the elevator is not a reliable approach.

Due to the specular surface of the elevator walls, spurious sonar readings are unavoid-

able. For this reason, the sonar data are used only for detecting whether the elevator

doors are open when the robot stands in front of the elevator. Only the infrared

proximity detectors are used for controlling the robot inside the elevator. However,

in my initial experiments I observed that the metallic surface of the elevator walls

also caused strong reflections of the infrared light, resulting in spurious readings of

the infrared proximity detectors. To overcome this situation, the inner elevator walls

were covered with either newspapers or manila cartons.

Locating the elevator doors is carried out mostly by visual sensing. Initially,

the locations of vertical edges on the left and right sides of the elevator doors were

used to determine the center of the door. For this purpose, one of the cameras was

panned to the left and right until a strong edge appears in the center field of View.

However, false edges are likely to be detected, especially when the camera was not

initially facing the elevator doors. To overcome this situation, a barcode-like marker

was pasted on the elevator doors. Figure 5.11 shows the design of the barcodes. A

barcode consists of N bits interspersed within N + 1 black separators. A barcode

pa -
"

148

always starts and ends with a separator. A black bar on the bit field represents a

1 while white bar represents a 0. No consecutive 1’s can exist in a code. Thus, the

code in Figure 5.11 (b) represents a binary value 100. Separators and bits have the

same width (p) and height (q). When a binary 1 exists in a code, a black rectangle

of width 3p will exist in the code. In the experiment, we set N = 3, p = 3.5 inches,

p p

I I I I
(a)

3p

I I
(b)

and q = 6 inches.

Figure 5.11. Barcode-like Markers representing binary values: (a) 000 and (b) 100.

The above barcode design reduces the possibility of false positive detections and

yet provides easy detection by a computer program. This design was adapted from

the barcode design used by the University of Michigan mobile robot, CARMEL,

during the AAAI’92 Robot Competition [Kortenkamp et al., 1993]. The barcodes

used by CARMEL are vertically oriented. The barcodes used in my experiments

were horizontally oriented to take advantage of the CameraGetRow() function in the

Camera Server. By scanning each row in the image and computing the black and white

transitions, the program collects black and white patterns starting with a white-to-

black transition. Every detected black and white pattern is verified by checking the

149

ratio of the width of each stripe to the width of the smallest stripe. A pattern is

accepted if this ratio is either 1 or 3. Accepted patterns are stored and merged with

previous patterns within the neighboring rows/columns in the image. A valid barcode

is detected when the number of rows in the barcode exceeds some threshold.

Figure 5.12. An elevator door pasted with a barcode-like marker.

Since the robot must approach the marker on the elevator doors, the marker was

placed at the camera height above the floor. In our setup, this height is approximately

53 inches. The purpose of this placement is to make the marker visible in the rows

around the center of the image. Thus, when the robot approaches a barcode marker,

it will always be in the field of view of the camera. To locate a barcode marker, the

middle half of the input image is scanned while the robot turns to the left or right

at a sweeping angle of approximately 45 degrees on each side. Once the marker is

found, only the rows confining the marker are scanned. Figure 5.12 shows a picture

150

of an elevator door pasted with a barcode-like marker.

5.5 Local Mapper for Heading Correction

The internal heading information of the LABMATE mobile robot is determined by

encoders on the two drive wheels. When the encoders record the same distance

traversed by the respective wheels, the robot heading remains the same between the

initial and final locations. On the other hand, if the right wheel encoder records a

larger distance, the robot heading changes as if it is turning counter clockwise. In

reality, the encoders cannot record the actual distance traversed by the wheels, due

to errors caused mainly by wheel slippage.

In a situation where an absolute heading is required, the internal robot heading is

not a reliable source of such information. Another method of estimating the heading

information must be used. As an alternative, we can use an external source of heading

information such as a gyro or a digital compass, but adding such an equipment to

the robot means an additional hardware investment.

In my experiments, I have successfully developed a method for registering the

map constructed by the sonars and the stored StickRep map. The map created from

the sonar readings is “matched” to the preconstructed StickRep map. This method

is used to reset and correct the erroneous internal heading of the robot after it has

traveled a considerably long distance. While the robot is moving in segment 8’, one

or more local maps of the environment are created from the sonar readings. In the

experiments, a local sonar map is created for every three ceiling lights tracked by the

robot. Each local map covers a distance of approximately 10—12 meters. This process

is repeated until the robot reaches the last ceiling light in segment 81.

The Histogrammic In-Motion Mapping (HIMM) method [Borenstein and Koren,

1991a] has been adapted for the above purpose. The code was first implemented on

151

our mobile robot by Courtney [Courtney, 1993]. Figure 5.13 shows an example of

a map created by this method. The black dots are the accumulated sonar readings

and the grey lines are the lines detected by the Hough transform. While the robot

moves in the hallway, sonar data are collected and the inverse transformation of the

current robot pose relative to the initial pose of the map is determined. This inverse

transformation is used for plotting the sonar data on the map.

Figure 5.13. An HIMM map created from a corner in the hallway.

To estimate the relative orientation of the hallway from the sonar map created

by HIMM, the Hough transform was used for straight line detection. Only the two

parallel lines that correspond to the hallway walls need to be located. Assuming that

at least one of these lines will be mapped to a global maximum in the Hough space, a

guided search for the other line(s) is performed. This approach seems to be robust and

the relative orientation of the hallway can be determined with the accuracy needed

for indoor navigation. By comparing the actual heading of the robot with the hallway

orientation estimated by HIMM, a correction angle for registering the robot heading

with the hallway axis can be determined.

One minor problem with this approach is that the relative hallway orientation is

“directionless.” Suppose that the relative hallway orientation is 0. There are two

152

possibilities for aligning the robot heading to the hallway axis, a and (180° + a).

In this case, the correct hallway orientation is the one closer to the goal heading

direction. This can be easily determined by calculating the difference between the

destination angle and the two possible choices. Suppose the destination angle is F,

then the following quantities can be computed:

01 = (F — a) mod 180 and 02 = (F — a — 180) mod 180.

Then, the correct orientation 7 is determined by:

{ (I, If [01' < l62l

a + 180, otherwise.

5.6 Ceiling Light Tracking

It is a well-known fact that in any kind of navigation, we cannot rely solely on

Odometry information; some external information must be used. It was mentioned

earlier that one of the modes of operation of our mobile robot is the ceiling-light-

tracking mode. The objective of this mode is to register the robot position with

physical reference points in the robot workspace. I chose to utilize ceiling lights as

the reference points because they are easy to detect due to the high contrast between

the lights and the ceiling. Figure 5.14 shows a picture of our robot in the hallway of

the MSU Engineering Building.

For efficiency, the ceiling light tracking module, CTracker, uses only three scan

lines from the entire image (240 x 120 pixels). These lines are taken at distances

associated with 1 /4th, 1 /2, and 3/4th of the image height. The image is periodically

grabbed by the Camera Server every 0.5 seconds and then the CTracker requests

these three scanlines for further processing. By using only a small number of scan

lines, the data transfer between the Camera Server and CTracker is minimized. The

153

Figure 5.14. ROME in the hallway of the MSU Engineering Building.

ceiling light detection algorithm simply looks for strong leading edges of the ceiling

lights in the three scan lines. An edge is detected if the gradient of a pixel exceeds

some threshold. Since this information is used by other modules in the system, the

number of detected ceiling lights is stored into the variable CeilingLight in the Data

Server.

The parameters of our camera for ceiling light detection are given in Table 5.3.

Figure 5.15 shows how the two cameras are positioned. The camera facing up is used

for detecting ceiling lights and the other camera facing sideways is used for detecting

door number plates. With the given setup, the surface area on the ceiling that can be

captured by a single image is approximately 1.2 x 1.5 square meters. The maximum

width of our hallway is approximately 3.66 meters and the dimension of a ceiling light

is approximately 0.6 meters by 1.2 meters.

The ceiling light tracking module consists of a number of concurrent child processes

154

Figure 5.15. Camera setup for detecting ceiling lights (facing up) and door number

plates (facing sideways).

Table 5.3. Camera setup for ceiling light tracking.

Parameter Value

Lens focal length 6 mm

Camera field of view i60°

Distance from ceiling :l: 135cm

Pixel size 512 X 482

155

for detecting ceiling lights and a parent process that fuses information from the child

processes. Each child process receives input images from a separate camera. Using

several cameras is necessary if the ceiling lights are outside the field of view of a single

camera when the robot is not in the center of the hallway. In my experiments, the

field of View of a single camera is wide enough to detect the ceiling lights regardless

of the position of the robot.

Combining information from several different sources is not always straight for-

ward. It is possible that more than one child process detects the same light, so the

variable in the Data Server may get updated several times. To avoid this, I have

implemented a synchronization mechanism that combines a semaphore and a shared

variable used by the child processes. The synchronization policy used in my algo-

rithm forces the processes to acquire a “token” before it can update the information

in the Data Server. The “token” can be acquired by a process if it is not already

owned by any other process. When a process detects a transition from “no-light” to

“light”, it first tries to acquire the token and then update the global variable if the

“token” is available. On the other hand, when a transition from “light” to “no-light”

is detected, a process holding the “token” has to release it.

To avoid misdetections or false positives, the response from a child process is

verified by a parent process. Whenever the parent process receives a response from

the light detecting processes, it checks the distance the robot has traveled since the

last detected light. If this distance agrees with the actual distance between the two

lights computed from the stored map, then the response is valid. Otherwise, it is

considered invalid. Only valid responses are passed to the Data Server.

156

5.7 Door Number Plate Detection

In addition to ceiling lights, door number plates are also used as secondary landmarks

to guide navigation. In our domain, door number plates are found two or three times

more frequently than ceiling lights. Using a camera facing one side of the hallway, the

detection routine grabs images while the robot is moving. Since all the door number

plates in our Engineering building are located at about the same height from the floor,

only a small number of scan lines (40) need to be processed. The height of the camera

from the floor is adjusted so that the plates are located near the middle row of the

image. For a fast response, my plate detection algorithm searches for a closed contour

in a thresholded intensity image and calculates the curvature of each contour point.

The bounding box of the door number plate is determined by identifying contour

points with high curvature. This bounding box can then be used to obtain the door

number on the plates. Figure 5.16 shows the result of this detection.

Figure 5.16. Door number plate detection result. (a) input image, (b) door number

plate detected.

Since the input image to the number plate detector is captured while the robot

is moving, the “lock” facility offered by the Camera Server has to be used. If this

facility is not used, the input images to plate detector module might contain two

157

halves, each of a different portion of the wall/plate number.

All number plates in the MSU Engineering Building have a black background

and white letters. To “highlight” the number plates, the input image is preprocessed

by computing the negative image and then stretching the graylevel values using the

following non-linear function:

x:

, { (x/M)81M 0<xg M

(e-M)”’(255—M)+M M<x§255
255—M

In my experiments, I used M = .8 x 255, 61 = 5.0, and 62 = .5. The purpose of this

stretching operation is for contrast enhancement. After the graylevel stretching, the

image is thresholded to obtain a binary image.

The algorithm searches for dark to bright transition, first along the middle scan

line, and then in the upper half of the input image if such a transition could not be

found. In binary images, this dark to bright transition corresponds to a pixel on the

border of a region. Once such a transition is found, the algorithm will trace the border

and store the pixel’s row and column positions in a linked list. At the same time, the

chain code of the curve that is constructed by these pixels is determined. If a closed

border is found, the “curvature” of each pixel on the border is determined and corner

points can be located from the curvature values. I have used the corner detection

algorithm from chain code representation of curves described in [Beus and Tiu, 1987].

The detected corner points are then used for determining the bounding box of the

number plate. The size of the bounding box is used for rejecting or accepting the box

as a door number plate.

In order to avoid multiple detection of the same plate from several different po-

sitions and orientations of the robot, the algorithm has to determine whether two

image frames overlap. For this purpose, the geometries in Figures 5.17 and 5.18 have

been developed. Figure 5.17 shows how the length of left and right projections of the

158

field of view of the camera to the wall are calculated, given the heading angle of the

robot.

optical axis

camera field of iew (60 deg)

 V
robot heading

Figure 5.17. Number Plate Detection Geometry.

In Figure 5.17, 3 is the angle between the optical axis and the wall normal (mea-

sured from the wall normal). Since the optical axis of the side-looking camera coin-

cides with the axis of sensor 18, fl is also the angle between the robot heading and

the hallway axis (measured from the hallway axis); a is the angle between the right

ray of the camera field of View and the wall normal (measured from the right ray);

d is the sonar reading of the sensor approximately perpendicular to the wall; I and

r are the distances between the point of projection of the robot center and points of

projection of the left and right rays; 1 < 0 when 6 < —30°, and r < 0 when B > 30°.

The following equations hold for the above entities:

a = 30°—fl,

l = dtan(fl+30°),

159

r = d tan(a).

Since the above equations are valid only when [S I < 60°, and the error in the com-

putation is very large when |fi| a: 60, the door number plate detector performs no

action when lfll 2 50°.

Figure 5.18. Two overlapping snapshots.

The amount of overlap between two successive image frames can be determined

using the geometry in Figure 5.18. In the figure, the first image frame is captured

when the robot is at position (9:1, yl). The distance between the two wall normals is

D. An overlap occurs when D < (r1 + 12) and (r1 + [2 — D) denotes the length of

the overlapping segment. This length also determines the starting column number

for locating the number plate in the second image frame. For fast computation of D,

this value is approximated by the distance between ($1, yl) and (2:2, yg).

160

5.8 Information Sharing Among Clients

Table 5.4 summarizes the information shared among the client modules. In the table,

U/D entries mean up() /down() operations by the clients to a semaphore and R/W

entries mean read/write data to a variable.

Table 5.4. Information sharing via the Data Server.

Planner Navigator CTracker HIMM PlFinder

$StartMap [I I)

$LightDet [I I)

$GoalData

$RobotStatus

$TrackData

$EndLMode

GoalDirection

GoalDistance

GoalType

LightOffset

CeilingLight

Overshoot

C
i
t
:

w
é
é
é
é
c
c
u
c

a
:

m
a
c
r
o

€
2
2
1

:
0

c
c
:

o The semaphore $StartMap synchronizes the Local Mapper (HIMM) with the

Planner. The Planner does an up() operation to notify the HIMM that the

ceiling light tracking mode is activated.

0 The Navigator notifies the HIMM via semaphore $LightDet when a ceiling light

is detected. This event is used by the HIMM to determine when to start/stop

building a local map.

0 The semaphores $GoalData and $RobotStatus are used for the producer-

consumer interaction between the Planner and the Navigator. Here, the Planner

161

“produces” goal points and the Navigator “consumes” them. When the Navi-

gator is ready to “consume” a new goal point, it notifies the Planner through

$RobotStatus.

e The producer-consumer relationship also exists between the Planner and the

CTracker. The two clients synchronize themselves using $TrackData and

$EndLMode. When the CTracker completes its light detection cycle, it notifies

the Planner (via $EndLMode) of the overshoot distance as a result of detecting

the last ceiling light.

5.9 Summary

In this chapter the details of each client module for controlling the robot in hallway

navigation have been described. First, we described how the robot environment is

represented in a map using the StickRep representation. We also showed how the

maps are constructed from data (the locations of vertical edges and ceiling lights)

collected from the third floor of the MSU Engineering building. Next, the Path

Planner module was presented by describing how the path segmentation is performed,

and which robot operating mode corresponds to each subpath. Also, we described

how the Path Planner communicates its goal to the Navigator module. The internal

details of the Navigator module were discussed by describing its various states, the

goal functions, and the flexible control loop used in it. The implementation details of

the Obstacle avoidance capability in the Navigator module were also described. Next,

the module that continuously performs heading correction was presented. Finally,

the two landmark tracking modules (ceiling light and door number plate modules)

were described.

CHAPTER 6

Experimental Results

In this chapter, the experimental results of indoor navigation are presented. Based on

the results, a probabilistic automata for analyzing the confidence level for the robot

to reach the goal position from the initial specified robot position is derived.

6.1 Indoor Navigation Experiments

In this section, the results of indoor navigation of the robot both for straight line paths

and paths with corners are presented. The robot has been tested at several different

locations on the third floor of the MSU Engineering Building. Refer to Figure 6.1

for region notations. The MSU Engineering Building was built in two time periods.

The old wing consists of the corridors labeled A, B, C, and M. As can be seen from

Figure 6.1, the corridors in the new wing are narrower than those in the old wing.

Based on the experiments, I have determined that the corridors labeled G, N, and

J are the “trouble” spots for the robot. In each of these corridors, there are only two

ceiling lights and this often confuses the robot due to incorrect heading information.

In my implementation, the HIMM module corrects the robot heading at every other

light. This implies that in a corridor with less than three ceiling lights, the heading

correction will not be performed. If when entering one of these corridors the heading

162

163

.
_

—
d

a
l
A

4
q

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

_
q
I
I
I
I
I
I
I
I
I
I
B
I
I
I
I
I
I
I
I
I
I
I
I

1
|
]
.
l
C
-
l
l
-
l
.

f
+

I

_
_

_
.

h

_
_

_
_

a
n

_
_

.
-

_
"

D
.

.
I
N

_
_

u
.

m
.

_
_

I
I

I
I
.

_
A

.
.
I
I
H
I
V
I
.
.
.

e
1

_
_
_

_
.

h

.
_

_
_

_
.

t

_
.

.
i
.

.
_

.
m

I

_
.

_
"

_
_

E
.

m

_
.

_
_

.
.

.
m
o

1

_
.

I
I
n
I
L
w
l
I

_
_

H
.

m
m

.
I

I
I
I

I
.
.
.

_
_

.

.
I
I
M
I
I
I
.

_
_
I
l

I
l
l
.
_
l
l
l
l
.
l
_
_

.
I

o

-
:
.
_
_
:
-
-
_
_
:
N

m
_
_

.
l
l
.

8
I

_
_

u
.

m

R
L

.
s

.
.

F
.

F
r

_
_

_
.

_
_

u
.

_
_

p
_

_
.

.

.
.
.
-

L
“

w
u
m
u
m
w
m
s
o

—
I
I

I
I
I

3
3
3
3
3
8
2

2003004005006007008009001000

sample points

Figure 6.2. Output produced by the digital compass while the robot is moving north.

164

information is not accurate, the true heading of the robot cannot be determined by

the time the robot reaches the end of the corridor. If the goal location resides outside

these corridors and the robot has to pass through one of these corridors, the robot

might not orient itself correctly to navigate in the next corridor. I tried to fix this

problem by using a digital compass that works by detecting the Earth’s magnetic

field. However, after testing the compass inside the MSU Engineering Building, it

turns out that the heading information produced by the compass is not accurate

either. Figure 6.2 shows a plot the heading produced by the compass as the robot

moves in a straight line.

Tables 6.1 and 6.2 show the results of the indoor navigation on the third floor of the

MSU Engineering Building. The results dated after Dec 22, 1993 were obtained after

the addition of the overshoot compensation in the Navigator algorithm. Consequently,

the results of test runs using the new algorithm should show smaller values in the

column labeled “Dist. to Goal”.

In Section 5.4, four different modes Of operation of the robot were defined: Ceiling-

Light Tracking, Dead-Reckoning, Leave-Corner, and Enter-Corner mode. The last

three columns of Tables 6.1 and 6.2 show the number of occurrences of each mode in

the path. An entry of the form m/n in these columns means that in the given path,

the robot must enter the mode n times for a successful completion of the path and

during the experiment the robot entered the given mode m times. Some entries are

marked with a star to indicate that a failure occurred in the corresponding mode.

Since the Leave-Corner mode is always followed by Enter-Corner mode, these two

modes are shown as a single column labeled ‘C’. The other two columns are labeled

‘L’ for the Ceiling-Light Tracking mode, and ‘D’ for the Dead-Reckoning mode.

The results of indoor navigation show that in the old wing of the MSU Engi-

neering Building, the range of the robot average speed is 7.0-17.875 m/min. In the

new wing, this range is 4.7—10.25 m/min. This result is to be expected since the

T
a
b
l
e

6
.
1
.

R
e
s
u
l
t
s
o
f
t
h
e
i
n
d
o
o
r
n
a
v
i
g
a
t
i
o
n

i
n
t
h
e
o
l
d
w
i
n
g

o
f
t
h
e
M
S
U

E
n
g
i
n
e
e
r
i
n
g
B
u
i
l
d
i
n
g
.

:3

Z

P
a
t
h

D
a
t
e
a
n
d
T
i
m
e

A
c
t
u
a
l

D
i
s
t
.
(
m
)

D
i
s
t
.

t
o

G
o
a
l
(
c
m
)

R
u
n
T
i
m
e

(
m
m
z
s
s
)

M
o
d
e
s

L
C
 v—INC‘OV‘LDCONOOC) Ov—INC’DV‘H‘DQDNOOQO

I—Iv—II—II—Iv—II—II—II—II—II—IN

 3
5
0
R

t
o
3
7
6
L

3
5
0
R

t
o
3
7
6
L

3
5
0
R

t
o
3
7
6
L

3
5
0
R

t
o
3
7
6
L

3
5
0
R

t
o
3
7
6
L

3
5
0
R

t
o
3
7
6
L

3
5
0
R

t
o
3
7
6
L

3
8
1
L

t
o
3
4
3
R

3
8
1
L

t
o
3
4
3
R

3
8
1
L

t
o
3
4
3
R

3
8
1
L

t
o
3
4
3
R

3
8
1
L

t
o
3
4
3
R

3
8
1
L

t
o
3
4
3
R

3
4
6
L

t
o
3
8
8
R

3
4
1
L

t
o
3
1
1
R

3
0
3
.
s
e
c
o
n
d
.
R

t
o
3
5
0
R

3
4
5
R

t
o
3
1
1
.
d
o
u
b
l
e
.
R

3
4
1
L

t
o
3
1
1
L

3
0
3
.
s
e
c
o
n
d
.
L

t
o
3
5
0
R

3
4
5
R

t
o
3
1
1
R

 O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

O
c
t

3
1

1
9
9
3

N
o
v

1
0
1
9
9
3

N
o
v

1
5
1
9
9
3

N
o
v

1
5
1
9
9
3

N
o
v

2
2
1
9
9
3

N
o
v

2
2
1
9
9
3

N
o
v

2
2
1
9
9
3

D
e
c

5
1
9
9
3

1
2
:
3
3
p
m

1
2
:
4
3
p
m

1
:
0
7
p
m

1
:
2
5
p
m

8
:
0
0
p
m

8
:
1
7
p
m

8
:
3
2
p
m

1
2
:
5
9
p
m

1
:
1
7
p
m

1
:
3
3
p
m

8
:
0
7
p
m

8
:
2
4
p
m

8
:
4
3
p
m

1
0
:
3
2
a
m

3
:
5
0
p
m

4
:
0
3
p
m

1
2
:
1
6
p
m

1
:
5
0
p
m

2
:
0
5
p
m

1
0
:
0
5
p
m

 7
8
.
1
8
1

7
8
.
1
8
1

7
8
.
1
8
1

7
8
.
1
8
1

7
8
.
1
8
1

7
8
.
1
8
1

7
8
.
1
8
1

7
3
.
8
6
3

7
3
.
8
6
3

7
3
.
8
6
3

7
3
.
8
6
3

7
3
.
8
6
3

7
3
.
8
6
3

1
0
7
.
9
5

9
1
.
7
9
5

1
0
6
.
9
8
4

1
0
5
.
7
1
4

8
9
.
9
6
6

1
0
7
.
8
9
9

9
6
.
7
7
4

 —
1
3

+
4
6

—
1
5

+
2
0

+
4
3

+
6
1

+
5
3

+
8
1

+
3
0

+
6
6

+
4
1

+
2
5

F
a
i
l

—
4
5

+
6
0

+
1
0
0

+
3
6

+
5
0

+
6
2
.
5

+
4
8

 5
:
2
6

5
:
5
7

6
:
1
9

6
:
0
9

5
:
4
3

5
:
1
4

5
:
4
5

5
:
0
2

5
:
0
1

5
:
1
1

5
:
3
4

4
:
5
9

6
:
4
6

9
:
4
0

8
:
4
0

1
2
:
3
6

1
2
:
5
1

1
1
:
5
3

1
3
:
3
1

 1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

0
*
/
1

1
/
1

3
/
3

3
/
3

3
/
3

3
/
3

3
/
3

3
/
3

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

0
/
0

2
/
2

2
/
2

2
/
2

2
/
2

2
/
2

2
/
2

 1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

0
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

1
/
1

165

T
a
b
l
e

6
.
1
.

(
c
o
n
t
’
d
)
.

N
o
.

P
a
t
h

D
a
t
e
a
n
d
T
i
m
e

A
c
t
u
a
l

D
i
s
t
.

t
o

R
u
n
T
i
m
e

M
o
d
e
s

D
i
s
t
.
(
m
)

G
o
a
l
(
c
m
)

(
m
m
z
s
s
)

L
C

D

2
1

3
0
3
.
s
e
c
o
n
d
.
L

t
o
3
5
0
L

D
e
c

5
1
9
9
3

1
0
:
4
0
p
m

1
0
6
.
0
7
0

+
7
5

1
0
:
4
0

3
/
3

2
/
2

1
/
1

2
2

3
4
5
R

t
o
3
1
1
.
d
o
u
b
l
e
L

D
e
c

1
3
1
9
9
3

1
1
:
2
1
a
m

1
0
3
.
8
8
6

F
a
i
l
“

1
/
3

1
"
/
2

0
/
1

2
3

N
E
.
m
e
n
.
R

t
o
3
0
2
R

D
e
c

1
3
1
9
9
3

1
1
:
2
8
a
m

1
2
0
.
6
5
0

+
5
0

1
1
:
4
3

3
/
3

6
/
6

1
/
1

2
4

3
0
1
R

t
o
3
5
0
R

D
e
c

1
3
1
9
9
3

1
1
:
4
1
a
m

1
5
4
.
6
8
6

+
6
0

5
1
5
:
5
2

3
/
4

6
/
6

1
/
1

2
5

3
5
0
R

t
o
3
7
2
L

D
e
c

2
1

1
9
9
3

4
:
2
5
p
m

5
9
.
7
4
0

+
8
0

3
:
2
6

1
/
1

0
/
0

1
/
1

2
6

3
8
1
R

t
o
N
E
.
m
e
n
.
R

D
e
c

2
1

1
9
9
3

4
:
3
1
p
m

9
2
.
3
5
4

+
5
0

5
:
1
0

1
/
1

0
/
0

1
/
1

2
7

a
c
s
.
e
l
e
v
.
R
t
o
3
7
6
R

J
a
n

5
1
9
9
4

8
:
4
2
p
m

8
9
.
0
5
2

+
2
0

6
:
1
1

1
/
1

0
/
0

1
/
1

166

“
G
l
a
s
s
d
o
o
r
n
e
a
r
t
h
e
A
C
S

l
a
b
o
r
a
t
o
r
y
w
a
s

n
o
t
d
e
t
e
c
t
e
d
b
y
t
h
e
s
o
n
a
r
s
.
T
h
e

r
o
b
o
t
r
a
n
i
n
t
o

i
t
c
a
u
s
i
n
g
a
v
e
r
y

l
a
r
g
e
w
h
e
e
l

s
l
i
p
.

”
T
h
e
r
o
b
o
t
m
i
s
s
e
d
t
h
e
fi
r
s
t

c
e
i
l
i
n
g

l
i
g
h
t
i
n
f
r
o
n
t
o
f
E
B
3
0
3

c
a
u
s
i
n
g

i
t
t
o
c
o
m
e
t
o
o

c
l
o
s
e
t
o
t
h
e
w
a
l
l
t
o
t
h
e

l
e
f
t
o
f
E
B
3
1
2

T
a
b
l
e

6
.
2
.

R
e
s
u
l
t
s
o
f
t
h
e
i
n
d
o
o
r
n
a
v
i
g
a
t
i
o
n

i
n
r
e
g
i
o
n
s
o
f
t
h
e
n
e
w
w
i
n
g

o
f
t
h
e
M
S
U

E
n
g
i
n
e
e
r
i
n
g
B
u
i
l
d
i
n
g
.

6

Z

P
a
t
h

D
a
t
e
a
n
d
T
i
m
e

A
c
t
u
a
l

D
i
s
t
.

t
o

R
u
n
T
i
m
e

M
o
d
e
s

D
i
s
t
a
n
c
e
(
m
)

G
o
a
l
(
c
m
)

(
m
m
:
s
s
)

L
C

D

3
0
2
L

t
o
A
3
4
0
R

N
o
v

1
2
1
9
9
3

4
:
1
6
p
m

3
5
.
5
8
5

—
7

7
:
3
3

1
/
1

1
/
1

1
/
1

A
3
9
2
L

t
o
A
3
4
0
R

N
o
v

1
2
1
9
9
3

5
:
0
2
p
m

1
5
.
1
1
3

+
7

3
:
0
9

1
/
1

1
/
1

1
/
1

3
1
1
L

t
o
3
8
1
R

N
o
v

1
3
1
9
9
3

7
:
5
7
p
m

1
7
1
.
7
5
4

—
3
6

2
3
:
5
6

6
/
6

8
/
8

1
/
1

3
2
3
L

t
o
3
8
1
R

D
e
c

6
1
9
9
3

1
0
:
5
9
a
m

1
9
7
.
3
5
8

F
a
i
l
“

4
*
/
7

5
/
9

0
/
1

3
4
1
R

t
o
3
8
1
R

D
e
c

6
1
9
9
3

4
:
3
0
p
m

2
6
0
.
8
0
7

+
7
5

3
2
:
3
1

8
/
8

1
0
/
1
0

1
/
1

3
4
5
R

t
o
3
4
5
L
°

D
e
c

6
1
9
9
3

5
:
0
7
p
m

3
3
7
.
0
0
7

F
a
i
l
°

7
/
9

8
"
/
1
0

0
/
1

A
3
1
3
L

t
o
3
4
5
L

D
e
c

8
1
9
9
3

1
0
:
5
9
a
m

9
8
.
9
5
8

+
9
5

9
:
3
9

2
/
2

2
/
2

1
/
1

N
E
.
w
o
m
e
n
.
L

t
o
A
3
1
4
R

D
e
c

9
1
9
9
3

0
:
0
8
a
m

2
0
3
.
9
1
1

+
5
9

2
2
:
0
8

6
/
6

7
/
7

1
/
1

A
3
1
4
R

t
o
3
4
5
R

D
e
c

9
1
9
9
3

0
:
3
2
a
m

1
0
1
.
9
0
4

+
2
4

9
:
5
2

2
/
2

2
/
2

1
/
1

N
W
.
m
e
n
’
s
L

t
o
A
3
1
4
R

D
e
c
2
8

1
9
9
3

1
:
5
2
p
m

1
4
2
.
7
4
8

+
3
5

1
8
:
5
6

5
/
5

6
/
6

1
/
1

A
3
4
2
L

t
o
A
3
2
3
R

D
e
c
2
8

1
9
9
3

2
:
1
4
p
m

3
8
.
6
3
3

+
4
0

5
:
3
6

1
/
1

0
/
0

1
/
1

A
3
4
7
L

t
o
A
3
8
5
R

J
a
n

5
1
9
9
4

9
:
1
6
p
m

1
0
3
.
5
3
0

F
a
i
l
“

2
/
3

1
“
/
2

0
/
1

A
3
6
5
L

t
o
3
0
1
R

J
a
n

5
1
9
9
4

9
:
2
8
p
m

6
9
.
9
0
0

+
4
8

9
:
4
1

2
/
2

1
/
1

1
/
1

167

Hmmvmohoocsg Hm

F-tr-i

C0

F-t

“
I
n
c
o
r
r
e
c
t
h
e
a
d
i
n
g
d
u
e

t
o
w
h
e
e
l

s
l
i
p
p
a
g
e
o
n
t
h
e
m
e
t
a
l
j
u
n
c
t
i
o
n
o
n

t
h
e
fl
o
o
r
.

”
A
c
o
m
p
l
e
t
e

c
y
c
l
e
o
f
t
h
e
b
u
i
l
d
i
n
g
.

”
D
o
u
b
l
e
s
p
o
t

i
n
r
e
g
i
o
n

J
.

“
T
r
o
u
b
l
e
s
p
o
t

i
n
r
e
g
i
o
n
G
.

168

corridors in the new wing are narrower than those in the old wing. As a compari—

son, human normal walking speed is approximately 50—60 m/min. Recently, a mobile

robot that is capable of navigating at an average speed of 8—10 m/min was reported

in [Kosaka and Kak, 1992]. Our system can achieve a higher average speed because

its operation does not heavily rely on the visual processing. The results also show

that the implemented navigation algorithm tends to overshoot the goal point by a

maximum distance of 1 meter. Most of the results reported here were obtained before

the overshoot compensation capability was implemented in the Navigator.

6.2 Door Number Plate Detection

Table 6.3 shows the results of door number plate detection by the PlFinder. The table

shows the paths on which the program was tested, both detected and misdetected

plates, and the false positives detected by the program. In Section 5.7 it was men-

tioned that the equations derived from the geometries used for detecting overlapping

image frames are valid only for IE I < 60° ([3 is the deviation of the robot heading

relative to the hallway axis). To avoid large inaccuracies in the computations, the

PlFinder performs no action when IBI > 50°. Thus, when the deviation angle is too

large, door number plates are not detected. This situation can be remedied by having

more cameras whose fields of view overlap. These cameras must be arranged such

that when the angle between the optical axis of one camera and the wall normal is

approaching the fl-constraint described above, the input image to the PlFinder will

be taken from the other camera whose 6 angle is small(er). Most of the misdetections

shown in Table 6.3 were caused by this phenomena, while other misdetections were

caused by background interference, occlusion by people moving in the hallways, and

the 0.5-second sampling rate of the Camera Server. Initially, the pan tilt carousel

was used to control the camera so it always faces perpendicular to the wall, but the

169

response of the carousel is too slow compared to the speed of rotation of the robot.

The PlFinder module was not integrated with the ceiling light tracking module,

so the results shown in Tables 6.1 and 6.2 do not include door number plate detec-

tion. Also, the false positives detected during the experiments can be reduced if the

approximate locations of the door number plates were stored in the map.

6.3 Confidence Levels of Indoor Navigation

Based on the results shown in Tables 6.1 and 6.2, two finite state automata (FSA)

for analyzing the performance of my indoor mobile robot navigation system were

constructed. One finite state automaton models the confidence level of the robot for

reaching the goal position from the specified initial position using ceiling lights. The

other finite state automaton models the reliability of detecting all the door number

plates in a given path.

Let us consider a situation where our robot navigates from point A to point B

by using only ceiling lights as landmarks and operates in the three modes mentioned

in Section 6.1. Furthermore, suppose that from A to B the robot detects (m + n)

occurrences of ceiling lights. Here, the robot is supposed to detect the first m ceiling

lights, enter the C-mode, and then reenter the L-mode to detect the remaining n

ceiling lights, and finally enter the D-mode. The above situation can be represented

by a finite automaton with (m + n + 3) states as shown in Figure 6.3. Initially, the

robot is in state S, and it changes its states to 111,112 . . . 11m upon detecting the first m

ceiling lights. In the state 11m the robot operates in the C-mode until it turns around

the corner and then the robot enters the state C. After detecting an additional n

ceiling lights, the robot reaches its goal state C.

From the experiments, I have learned that when the robot is operating in the

L-mode, once the first ceiling light is correctly detected, then the remaining lights

.l
.
.
n
‘
.
H

T
a
b
l
e

6
.
3
.
D
o
o
r
n
u
m
b
e
r

p
l
a
t
e
d
e
t
e
c
t
i
o
n

r
e
s
u
l
t
s
.

C
o
r
r
e
c
t
l
y
D
e
t
e
c
t
e
d

M
i
s
s
e
d

F
a
l
s
e
D
e
t
e
c
t
i
o
n
s

3
5
2
L

t
o
3
8
4
R

3
5
2
,
3
5
4
,
3
5
6
,
3
6
0
,
3
6
4
,
3
6
8
,

e
l
e
v
,
3
7
2
,
3
7
6
,

3
8
0
,
3
8
2
,
3
8
4

3
5
8
,
3
6
4
.
d
o
u
b
l
e

B
l
a
c
k
p
o
s
t
e
r
b
e
t
w
e
e
n

3
6
4
.
d
o
u
b
l
e
a
n
d
3
6
4

3
8
1
L

t
o
N
E
.
m
e
n
.
L

3
8
1
,
3
7
9
,
3
7
7
,
3
7
5
,
3
7
3
,
3
7
1
,
3
6
9
,
3
6
7
,
3
6
3
,

3
6
1
,
3
5
9
,
3
5
7
,
3
5
5
,
3
4
9
,
3
4
7
,
3
4
5
,
3
4
3
,
3
3
9

3
5
3
,
3
5
1
,
3
4
1

3
4
6
R

t
o
3
7
6
R

3
5
0
.
1
,
3
5
0
,
3
5
2
,
3
5
4
,
3
5
6
,
3
5
8
,
3
6
0
,

3
6
4
.
d
o
u
b
l
e
,
3
6
4
,
3
6
8
,
o
l
d
.
e
1
e
v
a
t
o
r
,
3
7
2
,
3
7
6

3
5
6
,
3
6
4

3
8
1
R

t
o
N
E
.
m
e
n
.
R

3
8
1
,
3
7
9
,
3
7
7
,
3
7
5
,
3
7
1
,
3
6
9
,
3
6
7
,
3
6
1
,
3
5
9
,

3
5
7
,
3
5
5
,
3
5
3
,
3
5
1
,
3
4
9
,
3
4
7
,
3
4
5
,
3
4

3
7
3
,
3
6
3
,
3
4
3
,
3
3
9

N
E
.
w
o
m
e
n
.
L

t
o

V
3
1
7
R

3
3
5
,
3
2
9
,
3
2
7
,
3
2
5
,
3
2
3
,
3
1
7
.
1

3
1
7
.
2

b
e
t
w
e
e
n
3
3
5
a
n
d
3
2
9

3
1
4
L

t
o

3
4
0
.
c
m
p
t
r
.
r
o
o
m
.
R

3
1
4
,
3
2
0
,
3
2
0
,
3
2
6
,
3
4
0
.
c
m
p
t
r
.
r
o
o
m

3
2
4
,
3
4
0

A
3
4
2
L

t
o
A
3
2
3
R

A
3
4
2
,
A
3
4
0
,
A
3
3
9
,
A
3
3
8
,
A
3
3
6
,
A
3
3
5
,
A
3
3
4
,

A
3
3
2
,
A
3
3
1
,
A
3
3
0
,
A
3
2
8
,
A
3
2
6
,
A
3
2
5
,
A
3
2
4
,

A
3
2
3

A
3
2
7

A
3
4
2
,
A
3
4
0

a
c
s
.
e
l
e
v
a
t
o
r
.
R
t
o
3
7
6
R

3
6
4
,
3
5
0
.
1

3
5
0
.
2
,
3
5
2
,
3
5
4
,
3
5
6
,
3
5
8
,
3
6
0
,

3
6
4
.
1
,
3
6
4
.
2
,
3
6
8
,
3
7
2
,
3
7
6

3
5
6
,
b
e
t
w
e
e
n

3
6
4
.
1

a
n
d

3
6
4
.
2

3
8
1
R

t
o
N
E
.
m
e
n
.
R

3
8
1
,
3
7
9
,
3
7
7
,
3
7
5
,
3
7
3
,
3
7
1
,
3
6
9
,
3
6
7
,
3
6
3
,

3
6
1
,
3
5
9
,
3
5
7
,
3
5
5
,
3
5
3
,
3
5
1
,
3
4
7
,
3
4
5
,
3
4
3
,

3
3
9

3
4
9
,
3
4
1

p
o
s
t
e
r
o
n

3
7
7
,
3
7
1

N
E
.
w
o
m
e
n
.
L

t
o

3
1
1
.
d
o
u
b
l
e
R

3
3
5
,
3
2
9
,
3
2
7
,
3
2
5
,
3
2
3
,
3
1
7
.
1
,
3
1
7
.
2
,
3
1
1

 A
3
6
5
L

t
o
3
0
1
R

 A
3
6
5
,
A
3
6
7
,
A
3
6
8
,
A
3
7
1
,
A
3
7
2
,
A
3
7
3
,
A
3
7
7
,

A
3
7
8
,
A
3
7
9
,
A
3
8
0
,
A
3
8
1
,
A
3
8
3
,
A
3
8
5
,
A
3
9
1
,

A
3
9
3
,
A
3
9
5
,
3
0
1

 A
3
6
9
,
A
3
7
5
,
A
3
8
2
,

A
3
9
7

 9
f
a
l
s
e
l
a
b
e
l
s
f
r
o
m
t
h
e

g
l
a
s
s
b
r
i
c
k
s

‘
-
"
'

 170

171

o

e a

Figure 6.3. A finite state automaton representing a landmark-based navigation task.

will be located correctly. This is possible because the ceiling light detector module

uses information from both the camera and the stored maps. Therefore, instead of

representing each detection of a ceiling light by a single state, the entire L-mode will

be represented by a single state. Figure 6.4 shows a more concise representation of

the state transition diagram in Figure 6.3.

Figure 6.4. A simplified representation of Figure 6.3.

In Figure 6.4 it is assumed that the Planner generates the strings from the set of

symbols {c, d, I}. Each symbol corresponds to the mode (C-mode, D-mode, L-mode)

in which the Navigator operates during the navigation. Hence, the strings generated

by the Planner become the input strings to the finite state automaton. For any path

with k corner points, the state transitions of the finite state automaton can be depicted

in Figure 6.5. By eliminating the states that correspond to the same behavior, a more

general and concise finite state automaton that represents the internal behaviors of

the Navigator can be obtained. This automaton is given in Figure 6.6, where a

transition probability is also attached to each arc. The interpretation of each state is

172

given in Table 6.4.

Figure 6.5. A finite state automaton for a path with k corners.

d/Pe

Figure 6.6. A generalized representation of the FSA in Figure 6.5.

The calculation of the transition probabilities in Figure 6.6 is performed in the

following manner.

173

Table 6.4. Interpretation of states in Figure 6.6.

State Meaning

S Initial state.

F The first ceiling on the corridor is detected.

C The robot is in Corner mode.

G The robot reaches the goal.

1. Probability p1. This is the probability of detecting the first ceiling light imme-

diately after the robot starts navigating (i.e., the first ceiling light in the first

corridor on the path). We assume that the position of the robot in the map

and the distance to the first ceiling light are known exactly. Consequently, the

robot can rely on dead-reckoning to put itself under the first ceiling light in the

first corridor, even if the light is off. This was also supported by the results

of the experiments conducted approximately 100 times. Thus, the estimated

probability value of [)1 is effectively 1.0.

2. Probability 19;. This is the probability of successful completion of the L-mode.

In my experiments, there were 2 failures out of 102 test runs. Therefore, the

value of p2 is estimated to be 1 — 2/101 2 99/101 z .9802. The probability p6

is the same as pg.

3. p3, p4, and p; are the probabilities of successful completion of C-mode. In

my experiments there were 3 C-mode failures out of 79 test runs. Therefore,

P3 = P4 = P7 = 76/79 x .9620.

4. p5 is the probability of successful completion of C-mode and then detecting the

first ceiling light on the outgoing corridor after the robot makes a turn. In my

experiments there was 1 failure of the latter event out of 57 runs. Thus, the

estimated probability of the latter event is 56/57. Consequently, p5 has a value

of [)3 x (56/57) 2 4256/4503 z .9451.

174

d/.9802

Figure 6.7. The FSA in Figure 6.6 after the estimation of the probability values.

If we assume that S = 31, F = 32, C = 83, and G = 84, then we can define a 4 x 4

matrix P(:I:) = [p;j(.r.)], where p;,- is the probability of transition from state 3,- to state

s,- on input symbol :8. In our situation the input symbols come from the set {c, d, I},

therefore we have three 4 x 4 transition probability matrices as follows:

'0 0 .9620 0‘ r0 0 0 0 ' '0 1.0 0 0'

0 0 .9802 0 0 0 0 .9802 0 0 0 0

P(c) = P(d) = 19(1) =

0 0 .9620 0 0 0 0 .9620 0 .9451 0 0

_0000, 0000, _0000,

Using the finite state automaton in Figure 6.7, the probability of a successful nav-

igation from an initial point X,- to a final point Xf can be determined by calculating

the joint probability of reaching state C from S. Table 6.5 presents the confidence

levels of some paths excerpted from Tables 6.1 and 6.2.

The results in Table 6.5 show that confidence level decreases as path length in-

creases. Here, the path length is measured as the number of mode changes in the local

navigator. It is worth comparing this behavior with the solution to the “Where—Am-

I” problem studied by Walsh. In his formulation of the problem, a navigator starts in

an unknown position, and as it wanders around it has to determine, to a certain level

175

of confidence, its true position based on a sequence of detected landmarks [Walsh,

1992]. As the navigator wanders around, the uncertainty of the true position de-

creases because the navigator collects more evidence. On the contrary, the navigator

in my experiment starts in a known position, and as it wanders around uncertainty of

arriving at the goal position increases because the navigator encounters more “risks”.

Thus, the interpretation of “uncertainty” differs in the two experiments.

Figure 6.7 shows that the completion of the C-mode has the lowest probability.

The results of the test runs show that the two failures in the C-mode were caused by

the “trouble” spots mentioned earlier. If we know in advance that the path does not

include any of the “trouble” spots, then the values of probabilities 193, p4, and 127 can

be increased to 78/79 z .9873. Consequently, the value of probability p5 (from state

C to state F) can be increased to .97.

Table 6.5. Confidence levels of reaching goal positions.

Path Input String Confidence

350R to 376L Id .962

341L to 311R lclcld (1)(.9802)3(.9451)2 = .8412

NE.men.R to 302R clclcclccd (.962)“(.9451)3(.9802)3 = .6809

341R to 381R lclclcclcclclclclcd (.9451)7(.9802)8(.962)3 = .5110

Figure 6.8. A probabilistic automaton for the PlFinder.

176

Now we turn to computing the confidence level of the PlFinder. Our experiments

show that false positives and false negatives (misdetections) might be encountered

by the robot. Here, we will consider a simplified situation where the robot can

either encounter a false positive, detect the true landmark, or miss at most one

landmark from any state. Figure 6.8 shows a probabilistic automaton where the

robot is supposed to detect three landmarks before reaching a goal position associated

with the final state D. The “desired” state transitions, where the robot encounters

neither false positive nor false negative landmarks, are shown in thick lines. The are

from state S to D2, for instance, indicates the situation where the robot missed the

landmark associated with the state D1. The state P1 denotes the situation where the

robot encountered a false positive associated with the state D1. When this situation

happens, two cases are possible. In one case, the robot is able to detect the required

landmark, as shown by the vertical arrow from P1 to D1. In the other case, the robot

completely missed the required landmark and detects the next landmark associated

with the state D2. The same explanation applies to the states D1, D2, and D3.

Figure 6.9. The modified finite automaton of Figure 6.8.

177

After elimination of equivalent states and attaching a probability value to each

transition, the resulting finite state automaton is shown in Figure 6.9. For any tran-

sition p,- in the figure, we associate an event E,- as given in Table 6.6. In the table,

“detecting true landmark” means that the system decides “yes” when the input image

contains some landmarks. In the analysis, we consider only the input images that

contain landmarks. However, when the input image contains no landmarks the finite

state automaton remains in the same state.

Table 6.6. Transition probabilities in Figure 6.9.

Event Description Prob.

E1 false negative at the beginning of a detection sequence 0/11

E2 false negative in the middle of a detection sequence. 19/162

E3 a true landmark after the system decides a false 1.0

negative. Due to the assumption that the system

missed at most one landmark, the estimated

probability value 123 is 1.0.

E, a true landmark at the beginning of a detection 11/11

sequence.

E5 a true landmark in the middle of a detection sequence. 132/162

E5 a false negative after the system encounters a false 1/11

positive.

E; a false positive at the beginning of a detection 0/11

sequence.

E8 a true landmark after the system decides a false 10/11

positive.

E9 detecting a false positive. 11/162

178

From Table 6.6 it is evident that the transitions S —> M and S —+ P are impossible.

The probability of detecting all the door number plates in a corridor with N plates

is:

(165)” = .8148”.

The low probability of this result was caused by the high number of occurrences

of false negatives and false positives. In my implementation, the locations of door

number plates are not encoded in the maps, therefore the detection algorithm cannot

eliminate the false positives and false negatives. This also supports the necessity of

information integration from several different sources. For instance, the ceiling light

detection module integrates information from the camera, the map, and the robot.

Moreover, the above result also indicates that this method should not be used solely

for guiding the robot in the navigation.

The false negatives were caused mainly by the uncontrollable external events such

as fl-constraint violation, background interference, and occlusion. However, if these

events do not occur, the door number plate detection is robust enough. Therefore,

with the addition of digit recognition capability, this module can be used for verifying

the destination point and for adjusting the final position of the robot so it stops very

close to the destination point.

6.4 Summary

The results of indoor navigation, including ceiling light detection and door number

plate detection are presented in this chapter. I have also designed two probabilistic

finite state automata which have been used for describing the confidence level of

operation Of the robot. The transition probabilities in the finite state automata are

computed from the empirical results of the experiments. The transition probabilities

show that the confidence level of reaching the goal position using ceiling lights as

179

the landmarks is quite high. However, the confidence level of detecting all the door

number plates on any path is not sufficiently high. The latter is caused by a number of

false positives in the door number plate detection. This problem can be reduced if the

door number plate locations are incorporated into the maps. The average speed of the

robot during the navigation is approximately 4.7—17.875 m/min. The highest average

speed was attained in the old wing and the lowest average speed was attained in the

new wing of the Engineering Building. The navigation algorithm tends to overshoot

the goal destination by a distance bounded by 1 meter.

CHAPTER 7

Conclusions and Future Research

Directions

7. 1 Conclusions

In this dissertation, I have presented my research in developing a control architecture

for mobile robot navigation using the Client-Server model. Using this model, the

navigation task of interest is decomposed into a number of client and server mod-

ules running concurrently. The model enables us to run the modules across several

different processors or machines connected through a computer network.

The core of the Client-Server Architecture is a collection of server modules that

provide resource sharing, access control, process synchronization, and information

sharing among the client modules. These server modules are independent of each

other in the sense that a server does not rely on the results of operation of any other

server. There are two types of server modules: Data Server (DServer) and Hardware

Server (HServer). This configuration is applicable regardless of the navigation task

to be solved using the Client-Server model. The Data Server acts as the common

communication media among all the clients in the system. It also provides a syn-

chronization mechanism for the client modules. The other type of server, HServer,

180

181

provides access control to the hardware and peripherals on the robot. In the system

that has been designed, there are three hardware servers: Robot Server, Proximity

Server, and Camera Server. During the robot operation, two copies of Camera Server

are running, one for each camera attached to the robot.

Depending on the navigation task at hand, the configuration of the client modules

varies. A user has the choice of writing a single large and complicated client module

or designing a number of smaller and simpler client modules. At present, we do not

have a rigorous methodology for determining how big or small a module should be.

The situation is similar to subdividing a large program into subroutines. However,

software engineering provides guidelines for decomposing a program into a number of

subroutines. Those guidelines can also be applied to the problem of decomposing a

navigation task into a number of client modules.

It is important to note that there are no direct communication links among the

client modules as well as among the server modules. Indirect communication links

between two clients can be accomplished through the Data Server. Due to the inde-

pendence of the client and the server modules, the interconnection among them can

be modeled by a bipartite graph, where one set of nodes contains all the clients and

the other set of nodes contains all the server modules.

Most of the existing control architectures fix the topology and/or the functionality

of the constituent modules. The Subsumption Architecture, Colony-style Architec-

ture as well as the Client-Server Architecture described in this thesis neither fix the

topology nor the functionality of the modules. Instead, these architectures specify

the “rules” for connecting one module to the other. The “rules” used in the Client-

Server Architecture allow connections only between clients and servers and disallow

interconnections among the clients or the servers.

It is also claimed that the Client-Server Control Architecture developed in this

thesis provides an incremental development of a task. From my own experience, this

182

is typically how a navigation task is approached. For example, I started by developing

a single client module for wandering around the hallway, then I modified the module

to make it “wander with a goal”. Later, I learned that another client module to

“direct” the first module with goal points is needed. The landmark detectors and a

local mapper were then incorporated to make the navigation algorithm more robust.

In the indoor navigation experiments, the only processor available on the robot

is a SPARCstation 1 for running all the client and server modules; however, the

Client-Server Control Architecture described in this dissertation can be run on a

number of processors. In the current configuration, the number of processes running

concurrently and competing for CPU time is of the order of 10.

In conclusion, the Client-Server Architecture can be viewed as a standard frame-

work for distributed control Of mobile robot navigation systems. The decomposition

of the navigation system into several client and server modules has a significant ad-

vantage in the sense that the hardware servers and the data server can be made

small enough (size of the code) to run on a system with limited resources. I have

also showed how some of the existing control architectures can be mapped onto the

Client-Server Architecture. In that sense, this control architecture can be considered

as a more general model.

All the existing control architectures that provide a distributed environment em-

ploy a “central” server for coordinating the constituent modules of the system. Using

this approach, the “central” server manages a large number of activities in the sys-

tem. In the Client-Server Control Architecture, some of the functionalities of this

“central” server are delegated to a number of hardware servers. I believe that a client

module generally performs a large amount of sensing and actuating the hardware on

the robot. By providing hardware servers, in addition to the data server, and letting

the client access each hardware server independently, the bandwidth of communica-

tion to the hardware is increased. I consider this as an improvement to the existing

183

control architectures.

7.2 Limitations and Suggestions for Improve-

ments

In this section, I describe the limitations of my approach and suggest what can be

done to improve the system.

0 The ceiling light tracker module does not perform well when there is not enough

contrast between the ceiling light and its surroundings.

0 When the robot stops inside a “turning space” before it enters the ceiling light

tracking mode in the outgoing corridor, its position cannot be determined ac-

curately and hence the approximate distance to the first ceiling light in the

outgoing corridor cannot be determined accurately. For this reason, I had to

assume in my analysis that the first ceiling light in the outgoing corridor is

always correctly detected. This situation can be improved by detecting the

relative position of the robot to the corner walls. To do this, the robot has to

collect sonar data and build a map while it is turning at a corner. Strong edges

corresponding to the walls in the corner can then be detected in the map.

0 When there is an open door in the hallway from which the ultrasonic sensors

can pick up strong reflections, HIMM might detect the orientation of the door

as the orientation of the hallway.

0 When the robot travels at a speed of greater than 500 mm/sec, the maps created

by HIMM are very sparse and the hallway orientation might not be detected

reliably.

184

0 Due to the communication time overhead, the client-server control architec-

ture cannot be used for applications requiring a response time smaller than the

communication time overhead. However, it is possible to use the Client-Server

Control Architecture for real-time applications“ as long as the real-time con-

straints of each client can be scheduled properly. Mutka and Li have developed

a tool for allocating a set of real-time tasks in a distributed environment such

that the real-time constraints are guaranteed [Mutka and Li, 1993].

o The proximity of the final robot location to some goal position that lie in a

turning space cannot be controlled. This is because the robot operates in a dead-

reckoning mode while moving from the last ceiling light to the goal position.

0 The current indoor navigation system can be used only for navigation between

two locations on the same ring. In order to enable the robot to navigate between

two locations on any ring, the map representation must include information on

the relative positions of the rings.

0 The current indoor navigation system assumes that the robot domain is com—

posed of hallways. The parallel walls in the hallway constrain the motion of the

robot and aid the robot to “flow” in the constrained space. This facilitates the

task of the local navigator module in controlling the robot. To enable the robot

to maneuver in a different building structure, the local navigator module must

be modified and adapted to the new structure.

0 In “short” hallways, i.e., hallways containing less than three ceiling lights, head-

ing correction cannot be made. This situation caused the robot to be “direc-

tionless” when arriving at the end Of a “short” hallway. There are two possible

‘Due to common misconceptions about “real-time” computing, it is worth emphasizing that real-

time computing is not identical to fast computing. The correctness of a program in a real-time

computing system depends not only on the result of computation but also on the time at which the

results are produced [Stankovic, 1988].

185

solutions to overcome this situation. A hardware solution is to provide a reli-

able source of heading on the robot. Another solution is to let the robot wander

around from its current position, and let it figure out where it is by solving the

“Where-Am—I” problem. Walsh has studied this problem, and conducted exper-

iments on our mobile robot. The result of his simulation showed that recovery

from positional error using vertical ribbons as landmarks is possible.

0 Specular reflections from glass doors make the doors “invisible” to the sonars.

Depending on the smoothness of the glass doors, using a higher frequency sonar

will solve this problem.

7.3 Contributions of the Thesis

The contributions of this thesis have been:

1. Design, development, and implementation of the Client-Server model using an

object-oriented approach. This model provides a framework for controlling a

robot in a distributed manner, i.e., using a number of processors connected

through a network of computers. To my knowledge, this is the first attempt of

applying such a client-server model for robot navigation. The model developed

in this thesis can be used for controlling multiple cooperating robots as well.

2. Successful design and implementation of a robot control model that enables

resource access sharing, data sharing, and event synchronization in a distributed

manner.

3. The implementation of C++ classes for the client-server interaction, low-level

access to various components of the robot, process creation and destruction,

interprocess synchronization in order to provide high—level abstraction and in—

formation consistency.

186

4. Development of an algorithm for transforming the hierarchical and Colony-

style Architectures into the Client-Server Architecture. More specifically, an

algorithm for determining the priorities of the modules in a Colony-style network

containing both suppressor and inhibitor nodes is presented.

5. A functional indoor mobile robot navigation system with an ability to operate

in a large building (approximate size of the floor plan is 136 x 116 square

 meters. The robot is capable of navigating at 4.7—17.88 m/min and reaching

goal positions within a proximity of 1 m as demonstrated by dozens of formal

test runs.

7.4 Future Research Directions

In this section I give some suggestions for future research.

0 Investigate the effect of adding more processors and use the AF_INET socket

interface. This socket interface enables us to run the client—server model across

a number of hosts.

0 Implementation of a priority scheme in the servers that allows a client to set the

priority of its request to a server. A request with a higher priority will be served

before the other requests. This facility is particularly useful for scheduling the

clients performing real-time tasks.

0 Analyze the performance of the architecture in terms of the average completion

time of client request. This can be performed by running a simulation of the

architecture and to do this, the following parameters must be determined:

0 The patterns of the request transmissions by the client modules.

0 The completion time of each request on each server.

187

0 Number of client and server modules.

The strategy employed by the clients in the current indoor navigation system is

“sense and act as fast as possible”. This brute-force approach might overburden

the servers due to the high traffic of “useless” requests from the clients. A

particular client might require a lower sensor scanning rate in order to function

properly. A study and analysis of sensing rate requirements of each client needs

to be done to better utilize the available computational resources. Once these

requirements are determined, the requests from the clients can be scheduled

accordingly.

The accomplishment of a functional mobile robot for indoor navigation result-

ing from this research opens the possibility for performing vision- and motion-

related research, such as depth from motion, structure from motion, and object

tracking.

Experiment with a higher level capability of the Camera Server in order to

provide services for feature extraction, instead of simply an intensity image

grabber.

Explore the utilization of wireless communication as the initial step towards

the development of a navigation system for multiple robots. How to establish a

secure system, i.e., to enforce authentication, authorization, and protection in

the servers when wireless communication is used, needs to be studied.

The current core of the Client-Server Architecture is a collection of a single

Data Server and a number of Hardware Servers. This core can be extended to

include a number of special clients that perform, for instance, event monitoring,

failure detection and recovery, or resource usage monitoring.

APPENDICES

APPENDIX A

A Map Generated from StickRep

The map of the third floor Of the MSU Engineering Building is shown in Figure A.1.

The StickRep representation of the map consists of four rings. The first ring cor-

responds to the outer ring enclosing the other three smaller rings; the second ring

encloses region A; the third ring encloses region B, and the last ring encloses region

C. The tick marks drawn on the map show the locations of the ceiling lights recorded

on each ring. Physically, the floor plan of the MSU Engineering Building covers an

area of approximately 136 x 116 square meters.

188

189

 —I—'Ll.r u + ‘ 'F—ylh—h’ w UJL—JL—g—J—IH—

Figure A.1. A map of the third floor of the MSU Engineering Building.

BIBLIOGRAPHY

BIBLIOGRAPHY

[Ahuja et al., 1986] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda

and friends. IEEE Computer, 19(8):26—34, August 1986.

[Albus et al., 1989] James S. Albus, Harry G. McCain, and Ronald Lumia.

NASA/NBS Standard reference model for telerobot control system architecture

(NASREM). Technical Report 1235, National Institute of Standards and Technol-

ogy, April 1989.

[Albus et al., 1991] James Albus, Richard Quintero, Ronald Lumia, Martin Herman,

Roger Kilmer, and Kenneth Goodwin. Concept for a reference model architec-

ture for real-time intelligent control systems (ARTICS). Technical Report 1277,

National Institute of Standards and Technology, April 1991.

[Andrews, 1991] Gregory R. Andrews. Paradigms for process interaction in dis-

tributed programs. ACM Computing Surveys, 23(1):49—90, March 1991.

[Arkin and Murphy, 1990] Ronald C. Arkin and Robin R. Murphy. Autonomous nav-

igation in a manufacturing environment. IEEE Transactions on Robotics and Au-

tomation, 6(4):445—454, August 1990.

[Arkin, 1989] Ronald C. Arkin. Motor schema-base mobile robot navigation. Inter-

national Journal of Robotics Research, 8(4):92—112, August 1989.

[Asada, 1988] Minoru Asada. Building a 3-d world model for a mobile robot from

sensory data. In Proceedings of IEEE International Conference on Robotics and

Automation, pages 918—923, Philadelphia, Pennsylvania, 1988.

[Asada, 1990] Minoru Asada. Map building for a mobile robot from sensory data.

IEEE Transactions on Systems, Man, and Cybernetics, 20(6), November/December

1990.

[Asimov and Frenkel, 1985] Isaac Asimov and Karen A. Frenkel. Robots. Machines

in Man’s Image. Harmony Books, New York, New York, 1985.

[Ayache and Lustman, 1991] N. Ayache and F. Lustman. Trinocular stereo vision

for robotics. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(1):73—85, January 1991.

190

191

[Ayache, 1991] Nicholas Ayache. Artificial Vision for Mobile Robots. The MIT Press,

1991.

[Bagchi and Kawamura, 1992] Sugato Bagchi and Kazuhiko Kawamura. An archi-

tecture of a distributed object-oriented robotic system. In Proceedings of the 19.92

IEEE/RS] International Conference on Intelligent Robots and Systems, Raleigh,

North Carolina, July 1992.

[Bares et al., 1989] John Bares, Martial Hebert, Takeo Kanade, Eric Krotkov, Tom

Mitchell, Reid Simmons, and William Whittaker. Ambler. An autonomous rover

for planetary exploration. IEEE Computer, 22(6):18-26, June 1989.

[Barnard and Fischler, 1982] Stephen T. Barnard and Martin A. Fischler. Compu-

tational stereo. Computing Surveys, 14(4):553—572, December 1982.

[Beckerman and Oblow, 1990] Martin Beckerman and EM. Oblow. Treatment of

systematic errors in the processing of wide-angle sonar sensor data for robotic

navigation. IEEE Transactions on Robotics and Automation, 6(2):137—145, April

1990.

[Beus and Tiu, 1987] H. Lynn Beus and Steven S.H. Tiu. An improved corner detec-

tion algorithm based on chain-coded plane curves. Pattern Recognition, 20(3):291—

296, 1987.

[Borenstein and Koren, 1991a] Johann Borenstein and Yoram Koren. Histogrammic

in-motion mapping for mobile robot obstacle avoidance. IEEE Transactions on

Robotics and Automation, 7(4):535—539, August 1991.

[Borenstein and Koren, 1991b] Johann Borenstein and Yoram Koren. The vector

field histogram—fast obstacle avoidance for mobile robots. IEEE Transactions on

Robotics and Automation, 7(3):278-288, June 1991.

[Bozma and Kuc, 1991] Omiir Bozma and Roman Kuc. Building a sonar map in a

specular environment using a single mobile robot. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13(12):1260—1269, December 1991.

[Brady, 1985] Michael Brady. Artificial intelligence and robotics. Artificial Intelli-

gence, 26279—121, 1985.

[Brady, 1989] Michael Brady. Robotics Science. The MIT Press, Cambridge, Mas-

sachussets, 1989.

[Brooks, 1986] Rodney A. Brooks. A robust layered control system for a mobile robot.

IEEE Journal of Robotics and Automation, RA-2(1):14-—23, March 1986.

[Brooks, 1987] Rodney A. Brooks. A hardware retargetable distributed layered archi—

tecture for mobile robot control. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 106-110, Raleigh, North Carolina, 1987.

192

[Brooks, 1988] Martin Brooks. Highly redundant sensing in robotics—analogies from

biology: Distributed sensing and learning. In Julius T. Tou and Jens G. Balchen,

editors, Highly Redundant Sensing in Robotic Systems, pages 35—42. Springer Ver-

lag, 1988.

[Brooks, 1991] Rodney Brooks. Small autonomous mobile robots: Sensing and action.

In Proceedings of the IEEE Computer Vision and Pattern Recognition Conference,

page 452, Lahaina, Maui, Hawaii, 1991.

[Buttazzo, 1992] Giorgio Buttazzo. HAREMS: Hierarchical architecture for robot

experiments with multiple sensors. In Raja Chatila and Scott Y. Harmon, ed-

itors, Workshop On Architecture For Intelligent Control Systems, Nice, France,

May 1992.

[Canny, 1987] John F. Canny. The Complexity of Robot Motion Planning. The MIT

Press, 1987.

[Carriero and Gelernter, 1989] Nicholas Carriero and David Gelernter. Linda in con-

text. Communication of Association for Computing Machinery, 32(4):444-458,

April 1989.

[Chocon, 1992] Hélene Chocon. Object-oriented design and distributed implemen-

tation of a mobile robot control system. In Raja Chatila and Scott Y. Harmon,

editors, Workshop On Architecture For Intelligent Control Systems, Nice, France,

May 1992.

[Comer and Stevens, 1993] Douglas E. Comer and David L. Stevens. Internetworking

with TCP/IP. Volume III: Client-Server Programming and Applications. Prentice-

Hall, Englewood Cliffs, New Jersey, 1993.

[Connell, 1987] Jonathan H. Connell. Creature design with the subsumption archi-

tecture. In Proceedings of the Tenth International Joint Conference on Artificial

Intelligence, pages 1124—1126, Milan, Italy, 1987.

[Connell,1990] Jonathan H. Connell. Minimalist Mobile Robotics. A Colony-style

Architecture for an Artificial Creature. Academic Press, 1990.

[Courtney, 1993] Jonathan D. Courtney. Mobile robot localization using pattern clas-

sification techniques. Master’s thesis, Michigan State University, 1993.

[Crowley and Causse, 1992] Jim Crowley and Olivier Causse. Layered control of in-

telligent robotic devices. In Raja Chatila and Scott Y. Harmon, editors, Workshop

On Architecture For Intelligent Control Systems, Nice, France, May 1992.

[Crowley, 1985] James L. Crowley. Navigation for an intelligent mobile robot. IEEE

Transactions on Robotics and Automation, RA-1(1):31—41, March 1985.

[Crowley, 1989] James L. Crowley. Asynchronous control Of orientation and dis-

placement in a robot vehicle. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 1277—1282, Scottsdale, Arizona, 1989.

193

[de Almeida et al., 1988] A. de Almeida, H. Araujo, J. Dias, L. de Sa, M. Criscos-

tomo, U. Nunes, and V. Silva. A multi-sensor distributed system for a flexible

assembly cell. In Julius T. Tou and Jens G. Balchen, editors, Highly Redundant

Sensing in Robotic Systems, pages 311—320. Springer Verlag, 1988.

[Denavit and Hartenberg, 1955] J. Denavit and RS. Hartenberg. A kinematic nota-

tion for lower-pair mechanism based on matrices. Journal of Applied Mechanics,

77:215—221, 1955.

[Dobrotin and Lewis, 1977] Boris Dobrotin and Richard Lewis. A practical manipula-

tion system. In Proceedings of the Fifth International Joint Conference on Artificial

Intelligence, Cambridge, Massachusetts, 1977.

[Dobrotin and Scheinman, 1973] Boris M. Dobrotin and Victor D. Scheinman. Design

of a computer controlled manipulator for robot research. In Proceedings of the Third

International Joint Conference on Artificial Intelligence, pages 291—297, Stanford,

California, 1973.

[Dulimarta and Jain, 1993] Hansye Dulimarta and Anil K. Jain. Modular agents for

robot navigation. In Proceedings of the SPIE Conference on Sensor Fusion VI,

volume 2059, Boston, Massachusetts, September 1993.

[Durrant-Whyte, 1988] Hugh F. Durrant-Whyte. Integration, Coordination and Con-

trol of Multi-Sensor Robot Systems. Kluwer Academic Publishers, 1988.

[Elfes, 1989] Alberto Elfes. Using occupancy grids for mobile robot perception and

navigation. IEEE Computer, 22(6):46—58, June 1989.

[Fedor and Simmons, 1991] Christopher Fedor and Reid Simmons. Task Control Ar-

chitecture User Manual. Carnegie-Mellon University, July 1991.

[Flynn and Brooks, 1988] Anita M. Flynn and Rodney A. Brooks. MIT mobile

robots-What’s next? In Proceedings of IEEE International Conference on Robotics

and Automation, pages 611—717, Philadelphia, Pennsylvania, 1988.

[Flynn et al., 1989] Anita M. Flynn, Rodney Brooks, W.M. Wells III, and DB. Bar-

rett. The world’s largest one cubic inch robot. In Proceedings: IEEE Micro Electro

Mechanical Systems, pages 98—101, Salt Lake City, Utah, 1989. IEEE.

[Fok and Kabuka, 1991] Koon—Yu Fok and Mansar R. Kabuka. An automatic navi-

gation system for vision guided vechicles using a double heuristic and a finite state

machine. IEEE Transactions on Robotics and Automation, 7(1):181—189, February

1991.

[Freedman, 1991] David H. Freedman. Invasion of the insect robots. Discover, pages

42-50, March 1991.

[Fujimura,1991] K. Fujimura. A model of reactive planning for multiple mobile

agents. In Proceedings of IEEE International Conference on Robotics and Au-

tomation, pages 1503—1509, Sacramento, California, 1991.

194

[Furusho and Sano, 1990] J. Furusho and A. Sano. Sensor-based control of a nine—link

biped. International Journal of Robotics Research, 9(2):83-98, April 1990.

[Gauthier et al., 1987] David Gauthier, Paul Freedman, Gregory Carayannis, and Al-

fred S. Malowany. Interprocess communication for distributed robotics. IEEE

Transactions on Robotics and Automation, RA-3(6):493—504, December 1987.

[Hackett and Shah, 1990] Jay K. Hackett and Mubarak Shah. Multi-sensor fusion:

A perspective. In Proceedings of IEEE International Conference on Robotics and

Automation, pages 1324—1330, Cincinnati, Ohio, 1990.

[Hager, 1990] Gregory D. Hager. Task-Directed Sensor Fusion and Planning. Kluwer

Academic Publishers, 1990.

[Hirose and Morishima, 1990] Shigeo Hirose and Akio Morishima. Design and control

of a mobile robot with articulated body. International Journal of Robotics Research,

9(2):99~114, April 1990.

[Hirose et al., 1983] S. Hirose, M. Nose, H. Kikuchi, and Y. Umetani. Adaptive gait

control of a quadruped walking machine. In Michael Brady and Richard Paul,

editors, Robotics Research: The First International Symposium, Brentton Woods,

New Hampshire, 1983.

[Hopcroft and Ullman, 1979] John E. Hopcroft and Jeffrey D. Ullman. Introduction

to Automata Theory, Languages, and Computation. Addison Wesley, 1979.

[Iyengar and Kashyap, 1989] S. Sitharama Iyengar and Rangasami L. Kashyap. Spe-

cial issue on autonomous intelligent machines. IEEE Computer, 22(6):14—15, June

1989.

[Kadonoff et al., 1986] Mark B. Kadonoff, Faycal Benayad-Cherif, Austin Frankllin,

James F. Maddox, Lon Muller, and Hans Moravec. Arbitration of multiple control

strategies for mobile robots. In W. Wolfe and N. Marquina, editors, Proceedings

SPIE. Mobile Robots, volume 727, pages 90—98, 1986.

[Kaelbling, 1987] Leslie Pack Kaelbling. An architecture for intelligent reactive sys-

tems. In P. Georgeff and A. Lansky, editors, Reasoning About Plans and Actions,

pages 395—410. Morgan Kaufman, 1987.

[Khatib, 1986] Oussama Khatib. Real-time obstacle avoidance for manipulators and

mobile robots. International Journal of Robotics Research, 5(1):90—98, Spring 1986.

[Kortenkamp et al., 1993] David Kortenkamp, Marcus Huber, Charles Cohen, Ulrich

Raschke, Clint Bidlack, Clare Bates Congdon, Frank K088, and Terry Weymouth.

Integrated mobile-robot design. IEEE Expert, pages 61—73, August 1993.

[Kosaka and Kak, 1992] Akio Kosaka and Avinash C. Kak. Fast vision-guided mo-

bile robot navigation using model-based reasoning and prediction of uncertainties.

CVGIP: Image Understanding, 56(3):271—329, 1992.

195

[Kryzysztofowicz and Long, 1990] Roman Kryzysztofowicz and Dou Long. Fusion of

detection probabilities and comparison of multisensor systems. IEEE Transactions

on Systems, Man, and Cybernetics, 20(3):665—677, 1990.

[Kweon and Kanade, 1992] LS. Kweon and Takeo Kanade. High-resolution terrain

map from multiple sensor data. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 14(2):278—292, February 1992.

[Leven and Sharir, 1987] D. Leven and M. Sharir. An efficient and simple motion-

planning algorithm for a ladder moving in two-dimensional space amidst polygonal

barriers. Journal of Algorithms, 8:192—215, 1987.

[Lewis and Bejczy, 1973] Richard A. Lewis and Antal K. Bejczy. Planning consider-

ations for a roving robot with arm. In Proceedings of the Third International Joint

Conference on Artificial Intelligence, pages 308—316, Stanford, California, 1973.

[Lin etal.,1989] Long-Ji Lin, Tom M. Mitchell, Andrew Philips, and Reid Sim-

mons. A case study in robot exploration. Technical Report CMU-RI-TR-89-l, The

Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,

1989.

[Lozano—Pérez and Wesley, 1979] Tomas Lozano-Pérez and Michael A. Wesley. An

algorithm for planning collision-free paths among polyhedral obstacles. Communi-

cation of Association for Computing Machinery, 22(10):560-—570, October 1979.

[Lozano-Pérez, 1983] Tomas Lozano-Pérez. Spatial planning: A configuration space

approach. IEEE Transactions on Systems, Man, and Cybernetics, C-32(2):108—120,

February 1983.

[Lucky, 1990] Robert W. Lucky. An BE in the land of lilliput. IEEE Spectrum, page 6,

March 1990.

[Lumelsky and Stepanov, 1987] Vladimir J. Lumelsky and Alexander A. Stepanov.

Path-planning strategies for a point mobile automaton moving amidst unknown

obstacles of arbitrary shape. Algorithmica, 2:403—430, 1987.

[Luo and Lin, 1988] Rem C. Luo and Min-Hsiung Lin. Hierarchical robot multi-sensor

data fusion system. In Julius T. Tou and Jens G. Balchen, editors, Highly Redun-

dant Sensing in Robotic Systems, pages 67—86. Springer Verlag, 1988.

[Lyons and Arbib, 1989] Damian M. Lyons and Michael A. Arbib. A formal model

of computation for sensory-based robotics. IEEE Transactions on Robotics and

Automation, 5(3):280—293, June 1989.

[Maeda et al., 1985] Y. Maeda, S. Tsutani, and S. Higihara. Prototype of multifunc-

tional robot vehicles. In Proceedings of ’85 International Conference on Advance

Robotics, pages 421—428, Tokyo, Japan, September 1985.

196

[Masaki,1992] Ichiro Masaki, editor. Vision-based Vehicle Guidance. Springer-

Verlag, 1992.

[Matthies and Okutomi, 1989] Larry Matthies and Masatoshi Okutomi. Bootstrap

algorithms for dynamic stereo vision. In Sixth Multidimensional Signal Processing

Workshop, page 12, 1989.

[Matthies, 1992] Larry Matthies. Passive stereo range imaging for semi-autonomous

land navigation. Journal of Robotics Systems, September 1992.

[McGhee et al., 1980] RB. McGhee, K.W. Olson, and R.L. Briggs. Electric coordi-

nation of joint motion for terrain-adaptive vehicles. In Proceedings of 1.980 SAE

Automotive Engineering Cong., pages 1—7, Detroit, Michigan, 1980.

[Miller, 1977] J .A. Miller. Autonomous guidance and control of a roving robot. In

Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

pages 759—760, Cambridge, Massachusetts, 1977.

[Miller, 1990] DR Miller. Multiple behavior-controlled micro-robots for planetary

surface missions. In Proceedings of IEEE International Conference on Systems,

Man and Cybernetics, pages 4—7, Los Angeles, California, 1990.

[Miura and Shimoyama, 1983] H. Miura and I. Shimoyama. Dynamical walk of biped

locomotion. In Michael Brady and Richard Paul, editors, Robotics Research: The

First International Symposium, Brentton Woods, New Hampshire, 1983.

[Moezzi et al., 1991] Saied Moezzi, Sandra L. Bartlett, and Terry E. Weymouth. The

camera stability problem and dynamic stereo vision. In Proceedings of the IEEE

Computer Vision and Pattern Recognition Conference, pages 109—114, Lahaina,

Maui, Hawaii, 1991.

[Moorman and Ram, 1992] Kenneth Moorman and Ashwin Ram. A case-based ap-

proach to reactive control for autonomous robots. In AAAI Fall Symposium on A1

for Real— World Autonomous Mobile Robots, Cambridge, Massachusetts, October

1992.

[Moravec and Elfes, 1985] Hans P. Moravec and Alberto Elfes. High resolution maps

from wide angle sonar. In Proceedings of IEEE International Conference on

Robotics and Automation, pages 116—121, St. Louis, Missouri, 1985.

[Moravec, 1980] Hans P. Moravec. Obstacle Avoidance and Navigation in the Real

World by a Seeing Robot Rover. PhD thesis, Stanford University, Stanford, CA,

September 1980.

[Moravec, 1981] Hans P. Moravec. Robot Rover Visual Navigation. UMI Research

Press, Ann Arbor, Michigan, 1981.

[Moravec, 1983] Hans P. Moravec. The Stanford Cart and the CMU Rover. Proced-

ings of the IEEE, 71(7):872-884, 1983.

197

[Mutka and Li, 1993] Matt W. Mutka and Jong-Pyng Li. A tool for allocating peri-

odic real-time tasks to a set of processors. Technical report, Department of Com-

puter Science, Michigan State University, East Lansing, Michigan 48824, 1993.

[Nishihara and Poggio, 1983] H. Keith Nishihara and Tomaso Poggio. Stereo vision

for robotics. In Michael Brady and Richard Paul, editors, Robotics Research: The

First International Symposium, pages 489—505, Brentton Woods, New Hampshire,

1983.

[Nitzan, 1985] David Nitzan. Development of intelligent robots: Achievements and

issues. IEEE Transactions on Robotics and Automation, RA-1(1):3—13, March

1985.

[Noreils, 1993] Fabrice R. Noreils. Toward a robot architecture integrating cooper-

ation between mobile robots: Application to indoor environment. International

Journal of Robotics Research, 12(1):79—98, February 1993.

[Nourbakhsh et al., 1993] Illah Nourbakhsh, Sarah Morse, Craig Becker, Marko Bal-

abanonic, Erann Gat, Reid Simmons, Steven Goodridge, Harsh Potlapalli, David

Hinkle, Ken Jung, and David Van Vactor. The winning robots from the 1993 robot

competition. AI Magazine, pages 51—62, Winter 1993.

[Ohmichi, 1985] T. Ohmichi. Development of the multi-function robot for the con-

tainment vessel of the nuclear plant. In Proceedings of ’85 International Conference

on Advance Robotics, pages 371—378, Tokyo, Japan, September 1985.

[Ozaki et al., 1983] N. Ozaki, M. Suzuki, and Y. Ichikawa. Tele-operated mobile

robot for remote maintenance in nuclear facilities. In Proceedings of ’83 Interna-

tional Conference on Advance Robotics, pages 371-378, Tokyo, Japan, September

1983.

[Ozguner et al., 1983] F. Ozguner, S.J. Tsai, and RB. McGhee. Rough terrain loco-

motion by a hexapod robot using a binocular system. In Michael Brady and Richard

Paul, editors, Robotics Research: The First International Symposium, Brentton

Woods, New Hampshire, 1983.

[Paul et al., 1985] Richard P. Paul, Hugh F. Durrant-Whyte, and Max Mintz. A ro-

bust, distributed sensor and actuation robot control system. In Oliver D. Faugeras

and Georges Giralt, editors, Robotics Research. The Third International Sympo-

sium, pages 93—100, Gouvieux, France, 1985.

[Quintero,1991] Richard Quintero, editor. Architecture for Real-Time Intelligent

Control of Unmanned Vehicle Systems. Minutes of Workshop #2 on Technology

Options and Architecture Approaches, January 1991.

[Raibert et al., 1983] M.H. Raibert, Jr. H.B. Brown, and SS. Murthy. 3D balance

using 2D algorithms? In Michael Brady and Richard Paul, editors, Robotics Re-

search: The First International Symposium, Brentton Woods, New Hampshire,

1983.

198

[Raibert, 1990] Marc H. Raibert. Foreword. International Journal of Robotics Re—

search, 9(2):2-3, April 1990.

[Roth-Tabak and Jain, 1989] Yuval Roth—Tabak and Ramesh C. Jain. Building an

environment model using depth information. IEEE Computer, 22(6):85—90, June

1989.

[Schneider et al., 1989] Jeff Schneider, Hansye Dulimarta, Lal Tummala, and George

Stockman. Robot navigation using ultrasonic sensors and labmate. Technical

report, Department of Computer Science, Michigan State University, East Lansing,

Michigan 48824, December 1989.

[Schwartz and Sharir, 1983a] J.T. Schwartz and M. Sharir. On the piano movers’

problem I. Comm. Pure and Applied Mathematics, 36:345—398, 1983.

[Schwartz and Sharir, 1983b] J .T. Schwartz and M. Sharir. On the piano movers’

problem: II. Advances in Applied Mathematics, 4:298—351, 1983.

[Schwartz and Sharir, 1984] J.T. Schwartz and M. Sharir. On the piano movers’ prob-

lem: V. Comm. Pure and Applied Mathematics, 37:815—848, 1984.

[Sharir and Ariel-Sheffi, 1984] M. Sharir and E. Ariel-Sheffi. On the piano movers’

problem: IV. Comm. Pure and Applied Math, 37:479-493, 1984.

[Sharir, 1989] Micha Sharir. Algorithmic motion planning in robotics. IEEE Com-

puter, 22(3):9—20, March 1989.

[Simmons and Krotkov, 1991] R. Simmons and Eric Krotkov. An integrated walk-

ing system for the Ambler planetary rover. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 2086—2091, Sacramento, California,

1991.

[Simmons et al., 1990] R. Simmons, L.J. Lin, and C. Fedor. Autonomous task con-

trol for mobile robots. In Proceedings of 5th IEEE International Symposium on

Intelligent Control, pages 663—668, 1990.

[Simmons et al., 1992] Reid Simmons, Chris Fedor, and Jeff Basista. Task Control

Architecture. Carnegie Mellon University, version 6.17 edition, November 1992.

[Simmons, 1992] RC. Simmons. Concurrent planning and execution for autonomous

robots. IEEE Control Systems Magazine, 12(1):46—50, February 1992.

[Stankovic, 1988] John A. Stankovic. Misconceptions about real-time computing: A

serious problem for next-generation systems. Computer, 21(10):10——19, October

1988.

[Steenstrup et al., 1983] Martha Steenstrup, Michael A. Arbib, and Ernest G. Manes.

Port automata and the algebra of concurrent process. Journal of Computer and

System Sciences, 27:29-50, 1983.

199

[Storjohann et al., 1990] K. Storjohann, Th Zielke, H.A. Mallot, and W. von Seelen.

Visual Obstacle detection for automatically guided vehicles. In Proceedings of IEEE

International Conference on Robotics and Automation, pages 761—766, Cincinnati,

Ohio, 1990.

[Sugihara and Suzuki, 1990] K. Sugihara and I. Suzuki. Distributed motion coordina-

tion of multiple mobile robots. In Proceedings of 5th IEEE International Symposium

on Intelligent Control, pages 138-143, 1990.

[Sutherland and Ullner, 1984] Ivan E. Sutherland and Michael K. Ullner. Footprints

in the asphalt. International Journal of Robotics Research, 3(2):29—36, 1984.

[Tanenbaum, 1992] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-

Hall, Inc., 1992.

[Tang and Lee, 1990] Y.C. Tang and C.S.G. Lee. A geometric feature relation graph

formulation for consistent sensor fusion. In Proceedings of IEEE International Con-

ference on Systems, Man and Cybernetics, pages 188-193, Los Angeles, California,

1990.

[Thorpe et al., 1991a] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer. Toward

autonomous driving: the CMU NavLab. I. Perception. IEEE Expert, 6(4), August

1991.

[Thorpe et al., 1991b] C. Thorpe, M. Herbert, T. Kanade, and S. Shafter. Toward

autonomous driving: the CMU NavLab. II. Architecture and systems. IEEE Expert,

6(4), August 1991.

[Thorpe, 1984] CE. Thorpe. Path relaxation: Path planning for a mobile robot.

Technical Report CMU-RI-TR-84-5, The Robotics Institute, Carnegie-Mellon Uni-

versity, April 1984.

[Tou, 1988] Julius T. Tou. A knowledge-based system for redundant and multi sens-

ing in intelligent robots. In Julius T. Tou and Jens G. Balchen, editors, Highly

Redundant Sensing in Robotics Systems, pages 3—20. Springer-Verlag, 1988.

[TRC, 1991] TRC. LABMATE User Manual. Version 5.21L-e. Transitions Research

Corporation, 1991.

[Walsh, 1992] Stephen J. Walsh. Indoor Robot Navigation Using A Symbolic Land—

mark Map. PhD thesis, Department of Computer Science, Michigan State Univer-

sity, East Lansing, Michigan, 1992.

[Wise and Ciscon, 1992] J.D. Wise and Larry Ciscon. TelRIP distributed application

environment operating manual. Version 1.6. Technical Report 9103, Universities

Space Automation/Robotics Consortium, March 1992.

[Wong and Payton, 1987] Vicent S. Wong and David W. Payton. Goal-oriented ob—

stacle avoidance through behavior selection. In SPIE Volume 852. Mobile Robots

II, pages 2—10, 1987.

200

[Yamauchi and Nelson, 1991] Brian Yamauchi and Randal Nelson. A behavior-based

architecture for robots using real-time vision. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 1822-1827, Sacramento, California,

1991.

