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ABSTRACT

HOST-SYMBIONT COEVOLUTION IN DIGITAL AND MICROBIAL
SYSTEMS

By

Luis Zaman

Darwin’s image of the entangled bank captures foremost the pervasiveness of life as it clothes

the earth, but it also captures how intimately species interact and often depend on one another. This

interaction is particularly pronounced for obligate parasites, who’s livelihoods depend on interactions

with their hosts and who’s hosts often pay severely. In my thesis, I first demonstrate how antagonistic

coevolution in Avida leads to a diverse set of interacting host and parasite phenotypes: a digital

entangled bank. Second, I show how further evolution is embedded within this community context

by studying the coevolution of complexity driven by parasites’ population genetic memory – where

the diversifying community of parasites “remembers” previously evolved hosts.

Continuing to study the intersection of coevolution and community ecology, I investigate the

structure of communities produced by the coevolutionary process in Avida. I show that a nested

structure of interactions is common in our experiments, which is the same structure often found in

natural host-parasite and plant-pollinator communities as well as many phage-bacteria interaction

networks. In addition, I show that “growing” networks are nested by virtue of the process of

incrementally adding nodes and edges. Thus, coevolution is expected to produce significantly nested

communities when compared to random networks. However, the coevolved digital host-parasite

networks are significantly more nested than expected from this neutral growth process.

The interactions between hosts and their intimately interacting partners are not just parasitic,

instead they span a broad range and include many mutualistic interactions. In the last section of

my thesis, I study evolution and coevolution along the parasitism-mutualism continuum using a

temperate λ phage system that provides its host with access to an otherwise unavailable metabolic

pathway. Instead of evolving more mutualistic phage as I predicted, both the phage and bacteria



evolved cheating strategies.
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Chapter 1

Introduction

The only thing harder than coming up with a title for this thesis is defining the discipline I belong

to. With absolute certainty, I started off as a computer scientist. But somewhere along the way, I

ended up on a path that would lead me to a pipet in one hand and the other waving a flask full of

E. coli over a Bunsen burner flame. Computer science is a discipline of abstraction; the core of an

algorithm is simply a well-defined process, and many details never matter in theory. I find computer

science attractive because, starting from a completely abstract foundation, engineers can build

things like telephones and unmanned aircraft. The first time evolution captured my attention was

while working with robots. Unfortunately, that sounds less dramatic at Michigan State University

than it would at many other places. I learned that evolution, just like the other abstract processes we

call algorithms, could be used as a tool to solve engineering problems [48].

The field of evolutionary computation, where ideas from evolution are borrowed to help find

solutions to a wide range of problems, started to gain popularity in the 1970s due to John Holland’s

theoretical work and the increase in available computational power [52, 73]. Fogel and Koza

took ideas from genetic algorithms and applied them to computer programs, letting evolutionary

exploration and optimization find new and hopefully better algorithms or automata rather than

just parameters [47, 86]. Expanding these techniques to the artificial intelligence domain lead to

a relatively large group of researchers interested in evolving the controllers and morphology of
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robots – their “bodies and brains” [103, 109]. Evolved controllers are most often artificial neural

networks, which are another biologically inspired abstraction of the networks and signals in nervous

systems [45, 119]. The field of evolutionary robotics has continued to adopt biological abstractions

such as genetic regulatory networks by HyperNEAT and the evolution of development in Josh

Bongard’s work [17, 152, 153].

Figure 1.1: Outline of the first published genetic algorithm used to study epistasis in 1960 (from [55]).

While robots initially peaked my interests in evolution, I quickly turned to another avenue of

research: using computer science as a way of studying evolution. Mathematical and computational

biology have a long history, and evolution has enjoyed a particularly prolific partnership with

computer science [102]. In fact, the first published genetic algorithm was used to simulate evolution

on epistatic landscapes in 1960, not to solve optimization problems (see Figure 1.1) [55]. Many

models in ecology and evolution require nothing more than pencil and paper, like Volterra’s famous

1926 model investigating Adriatic fisheries [173]. However, more complicated models often require

the use of extensive computational power such as the adaptive Dynamic Global Vegetation Model,

which attempts to capture the dynamics of plant productivity on a global scale (aDGVM) [49, 71].
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Computational contributions are not limited to methods of numerical integration. They include

individual and agent based systems that can be used to investigate the role of variation at different

scales (e.g., individual, spatial, genetic, etc.) [35, 101]. More recently, ”digital organisms” have

provided an alternative instance of Darwinian evolution to study in silico [124, 126].

It was the work done with Avida, a digital life platform, that convinced me computer scientists

could do more than develop tools to study evolutionary biology. Instead of using natural populations

or cultures of microbes to investigate the processes of evolution, Avida allows researchers to

study self-replicating computer programs competing for resources in a virtual world [3]. Avida

was originally inspired by the Core War video game, where hand written programs battled for

virtual space [38]. Steen Rasmussen added mutations to a system based on Core War and studied

interesting but short lived dynamics in his Coreworld system [131]. Tom Ray’s Tierra fixed some

of the shortcomings in Coreworld and was able to see interesting dynamics resulting from true

Darwinian evolution such as the evolution of cheaters and then cheater-resistant organisms (he

called these parasites in his original work, but they impose no direct cost to their victims) [134].

Avida added the ability to configure arbitrarily complex environments and sophisticated data

tracking tools, which enabled its use as a research platform. Studies using Avida as a model system

for experimental evolution have been well received, and topics such as the evolution of sexual

recombination, epistasis, evolvability, complexity, and adaptive radiations have been published in

top evolutionary biology journals [25, 96, 98, 113, 178].

The thought of studying host-parasite coevolution in Avida was immediately appealing to

me. My interests were very clearly in biology, though my direction was less than predictable. I

spent a year and a half exploring different directions without a clear desired outcome. Fortunately

the host-parasite coevolution literature is extensive, and the fairly new field of eco-evolutionary

dynamics grabbed my attention [144]. There is no better example of how ecology and evolution

interact than host-parasite or predator-prey coevolution [79]. The host population is a major part

of the parasites’ ecology, and evolution in the parasite population has immediate consequences

on the hosts’ ecology [15]. Some of the first published examples of “Rapid Evolution”, where
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evolution changes ecological dynamics on an ecological time scale, were of model predator-prey

systems [41, 43, 111, 183]. Since then, more and more studies have documented evolution occurring

in ecologically relevant timespans [5,24]. Hairston et al. used a novel statistical approach to partition

the effects of evolution from those of ecology in a theoretical predator-prey model, the Grant’s

longterm data set on Darwin’s finches, and the life history evolution of freshwater copepods [64].

In every case, evolution substantially affected ecology.

Diversity is often a major focus in ecological research, yet evolution is responsible for its

creation and occasionally its destruction. Host-parasite coevolution is one mechanism often cited as

creating diversity, and there are many empirical and theoretical studies confirming this hypothesis

[54, 66, 106]. Once I realized that diverse communities of interacting species were potential

outcomes of host-parasite coevolution, I began trying to understand how coevolution continues

embedded within a community context. There has been a recent push to bridge community ecology

and evolutionary biology, insisting that neither one can be understood without the other [80].

Historically, coevolution was thought of as the pair-wise coadaptation between two lineages, but

Daniel H. Janzen wrote in 1979 that coevolution could also be “diffuse”, where adaptation is

driven by “an array of populations that generate a selective pressure as a group” [34, 78]. Many

examples of diffuse coevolution come from the plant biology literature, where most focus on

evolutionary responses to a community of herbivores [65,155]. Several studies have found evidence

that the presence of an additional species alters patterns of focal trait evolution, which supports the

importance of diffuse coevolution [13, 77].

Around the same time I became interested in the role of community ecology in coevolution,

I started collaborating with Miguel Fortuna, who was then a postdoc at Princeton working with

Simon Levin. Miguel’s work was primarily on network analysis of mutualistic and antagonistic

communities, but he became interested in Avida because one could study how coevolution creates

and shapes the networks of interacting species in perfect detail. Network analysis became a

buzz word in the early 2000s, with small-world and scale-free networks showing up everywhere

anyone looked for them (e.g., airplane networks, the social web, metabolic networks, etc.) [18].
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However, Joshua Weitz pointed out that many of these studies are interesting to networkologists, but

perhaps not to biologists, since general patterns do not necessarily suggest general processes [176].

Fortunately, the history of food webs in ecology predates this network analysis boom, and there has

been real biological insight gained from networkology [10, 26]. One of the most intriguing results,

though it potentially falls victim to Wietz’s criticisms, is the pervasiveness of nested communities

in host-parasite and host-mutualist communities [11, 50]. A recent meta-analysis of bacteria-phage

assemblages found that 27 out of 38 analyzed communities obtained from the lab, the field, and

even dairy plants, were significantly nested [46]. The hypotheses about why nestedness is such a

pervasive pattern span the range from molecular details about interactions to the stability of overall

communities and remains an open problem for research in ecological networks [12, 91].

Much of the biological literature surveyed here has hinted at how parasites, despite being

harmful to their hosts, may promote properties that ecologists and evolutionary biologists consider

beneficial: diversity, stable communities, and rapid evolution [75]. Parasites may also evolve

lower virulence and thus a more benevolent interaction with their hosts. The old “conventional

wisdom” was that parasites ought to evolve complete avirulence since their livelihood depends on

interactions with hosts; however, a more integrated understanding of ecological and evolutionary

dynamics has replaced old conventional wisdom with one that predicts the evolution of intermediate

virulence [22, 95]. Parasites may even provide their hosts with benefits, and in some environments

be considered mutualists [42]. For example, some fish infected with acanthocephalan parasites

can thrive in higher levels of heavy metals than their “healthy” peers [156]. Examples of these

conditional benefits are most abundant in microbial systems, where plasmids and phages are the

offenders [137, 158]. Some of the most prevalent examples include parasitic plasmids that carry

antibiotic resistance accessory genes and pathogenicity factors, which convert otherwise benevolent

bacteria into disease causing agents [42,100]. While these may not seem like conditional mutualists,

they are from the bacterium’s perspective. But why do these parasites evolve to be conditional

mutualists? Does evolution or coevolution reinforce conditional mutualisms, or are they transient?

Since microbial examples made up many relevant instances of conditional mutualism, Justin Meyer
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and I started working together on developing a microbial system that could answer some of these

questions.

This path took me from a computer scientist studying robots to an evolutionary ecologist

with strong computational skills studying microbial evolution. However, I think many of the

results I’ve obtained along the way are relevant to computational endeavors. Niching and fitness

sharing methods attempt to overcome evolutionary computation’s propensity to converge on local

optima [143]. Multi-objective optimization is a relatively new approach that explicitly maintains

a population along multi-dimensional Pareto frontiers to maintain diverse solutions [36]. More

recently, the role of negative frequency-dependent selection has become appreciated in evolutionary

computation, with its own catchphrase of “novelty search” [93]. These computational methods

maintaining diversity necessarily ignore many ecological details. Adding ecologically mechanistic

processes to evolutionary computation may lead to more complex and more diverse solutions [58].

Indeed, parasites were first used to solve engineering problems with evolutionary computation

by Hillis in 1990 [72]. Hillis used groups of test-cases as the parasites that would exploit the

weaknesses in solutions to engineering problems. Thus, parasites would increase in fitness as they

found more and more cases where the candidate solutions would fail. Solutions would then continue

to improve as parasites continued to exploit new weaknesses [72]. However, understanding more

about the diversity created by coevolution, the structure of host-parasite communities, and the way

coevolution and communities interact at multiple scales will certainly lead to new computational

approaches.

My thesis includes several chapters highlighting work that moves along this path. First, we

demonstrate that coevolution with parasites rapidly produces a diverse community of interacting

hosts and parasites in Chapter 2. This chapter also describes an interesting interaction between

the presence of mutations and parasites, suggesting that the ecological host-parasite interaction

is altered by the presence of novel genetic variation. After showing that coevolution produces a

complex community, Chapter 3 demonstrates how outcomes of coevolution can be dependent on the

community context in which it occurs. Specifically, we show how antagonistic coevolution leads to
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a trend of increasing complexity because the community of coexisting parasites collectively imposes

selection for novel traits by maintaining a “population genetic memory” of previously evolved host

resistance. Thus, complexity arises due to simple initial conditions, and continued selection for

novel traits imposed by the parasite community. Chapter 4 provides an overview of how digital

evolution can be used to study ecological networks, while Chapter 5 details our first set of analyses

with these coevolved networks. Chapter 6 details lab work I have done investigating evolution along

the parasitism-mutualism continuum using a temperate phage system. Finally, Chapter 7 provides a

final synthesis of my work along this path, and outlines my future work on host-parasite coevolution

in digital and microbial model systems.
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Chapter 2

Coevolution of Diversity in a Digital

Host-Parasite System

Authors: Luis Zaman, Suhas Devangam, and Charles Ofria [184].

2.1 Introduction

Theodosius Dobzhansky’s now famous words, “Nothing makes sense in biology except in the light

of evolution” are especially true for the problem of biodiversity [39]. Evolution is the process that

shaped all of life, extant and extinct. However, biodiversity is typically thought of in an ecological

framework, interested in how a static set of species with static interactions can be stably maintained.

Evolution is instead reserved for grand scales, defined by Slobodkin as happening on the order of

half-a-million years [151]. Contrary to this view, many studies have revealed substantial evolution

occurring over very short time scales; this concept of rapid evolution is reviewed in [24, 56, 64, 144].

Sometimes evolution occurs on such short time scales that it has significant ecological effects

on communities [111, 183]. This new view of eco-evolutionary dynamics means the problem of

biodiversity must include the feedbacks between ecology and evolution to understand how diversity

is maintained in communities [161].

Parasitic species are paramount to biodiversity, where nearly half of all known species classified
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as parasites [129, 130]. They are not only incredibly diverse and successful, but parasites have been

shown to increase host diversity theoretically and experimentally [14, 21, 40, 41, 147]. Similarly, the

escape from natural parasites that would otherwise limit growth is a leading hypothesis for why

some introduced species become invasive [167]. For these and many other reasons, parasites can be

used counterintuitively as indicators of ecosystem health, where communities with a high diversity

of hosts often have many parasites [75]. Another counterintuitive effect of host-parasite coevolution

is the increase in protection against emerging diseases it provides. Host diversity is a key factor in

mitigating novel pathogens and their potential for rapid evolution, but a major source of genetic

diversity results from coevolution between hosts and parasites. Thus, in order to prevent emerging

disease disasters, we must learn how to protect and foster the coevolution of hosts and their native

parasites [8]. Antagonistic coevolution also offers a perfect scenario for studying the effects of rapid

evolution, since ecological feedbacks are inherent in their coevolutionary dynamics [15].

We are generally interested in how rapid coevolution creates and maintains diversity in host-

parasite communities, and specifically interested in how novel variation affects the resulting diversity.

Even when studying rapid evolution, several generations can take years to observe and performing

detailed experiments in a natural setting is infeasible. Thus, many examples of rapid evolution come

from experimental evolution experiments using microbes [144]. However, even these microbial

systems have drawbacks when studying rapid evolution, such as difficulties in assessing the entire

population of interesting traits, and the inability to control for random events like mutations. In

order to investigate the role of novel variation in host diversity, we turn to artificial communities.

To study the coevolution of host-parasite communities in silico, we used the Avida research

platform [120, 121]. We implemented parasitic organisms and a mechanism for them to infect

hosts based on genetically encoded phenotypes. We compared independent populations of digital

organisms in the presence and absence of these parasites, as well in the presence and absence of

novel variation created by random mutations. We found that hosts coevolving with parasites were

more diverse than hosts evolving alone. This result held both in the presence and absence of novel

variation. However, new variation increased diversity in host-parasite communities more than it did
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for hosts in the absence of parasites, suggesting the importance of novel variation in maintaining

stably diverse communities.

2.2 Materials and Methods

2.2.1 Avida

For all experiments in this chapter, we used Avida 2.13.0 r4173. Avida is a digital life research

platform that maintains a population of self-replicating computer programs (“digital organisms”),

which compete for resources. Digital organisms exist in a well-mixed environment, interacting

randomly with any other organism in their world. Genomes consist of a circular list of instructions

from a Turing complete programming language, executed on virtual hardware. Each instruction

directs the organism to perform a simple operation such as arithmetic, flow control, or environmental

interaction.

During replication, an organism loops through its genome copying each instruction sequentially

until reaching its end. It then executes a divide instruction, separating off its offspring and placing

it into a random cell in the world, replacing any previous occupant. Instead of always producing

a perfect replica of the parent genome, the copying process is noisy and introduces errors. These

mutations and can be insertions, deletions, or substitutions.

Organisms replicate by using their virtual CPU to execute an appropriate series of instructions.

In these experiments, there is a single type of resource that must be metabolized for successful

replication. To metabolize a portion of the available resource, organisms perform logical tasks

on environmental inputs. The default Avida environment contains nine logic tasks. In these

experiments, all nine default tasks are available, but they metabolize the same resource assuming

there is a sufficient quantity available (See section 2.2.3).

Organisms in Avida possess one of several virtual hardware types, varying in instruction set and

architecture. In the hardware type we used for this study, organisms have: four stacks to store and

manipulate numerical values, a set of genome memory spaces in which organisms execute and copy
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instructions, and a set of heads that point to positions in each memory space. Organisms identify a

specific stack, memory space, or head with a label consisting of no-operation instructions (“nops”).

Since Avida has heritable variation, and environmentally driven selection, evolutionary dynamics

are a natural byproduct of the system [30]. For this reason, Avida has been used successfully to

understand ecological and evolutionary dynamics, as well as to perform more applied research in

distributed systems and software engineering. For a detailed introduction to Avida, see [120, 121].
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Figure 2.1: Host-Parasite ecological dynamics when parasites consume all of their host’s resources
(virulence of one). (a) shows host and parasite frequencies through time, it shows only the first
15,000 updates for clarity. (b) is a phase plane including data from all 200,000 updates. Both plots
demonstrate classic Lotka-Volterra dynamics with phase shifted oscillations and a limit cycle in
phase space.

2.2.2 Parasites

Parasitic digital organisms are self-replicators that operate inside hosts, relying on them to provide

energy in the form of CPU cycles. Note that these parasites are distinct from those in the Tierra

system, which operated independently of, and did not directly harm, their hosts [87,134]. Instead of

executing a divide instruction to finish replicating, a parasite must inject its offspring into a host.

When the inject instruction is executed, the parasite offspring attempts to infect the organism
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in a randomly chosen location. If successful, the new parasite is treated like a thread in the host

organism, consuming CPU cycles and thus reducing it’s host’s fitness. Infection is successful if

any of the logical tasks performed by the parasite match any of the tasks the host is performing.

Infection will fail if there is no overlap in tasks, if the chosen location is empty, or if the organism is

already infected. The probability of a parasite steeling a CPU cycle from its host is configurable,

and we will refer to it as “virulence”. When virulence is set to one, parasites steal all CPU cycles

from their hosts, killing them and using them for energy like predators. Indeed, when observing the

ecological dynamics of parasites with maximal virulence, we find classic Lotka-Volterra dynamics

(Figure 2.1) [85]. When virulence is set to 0.5, parasites and hosts split CPU cycles evenly and

there is a stable equilibrium where hosts and parasites coexist.

Hosts and parasites in Avida are similar to E. coli and lambda phages. These phages must attach

to receptors on the surface of bacteria in order to infect, and the bacteria must have receptors in order

to consume resources from the environment. However, consuming resources leaves them susceptible

to phages. The bacteria evolve resistance by changing their surface receptors, but lambda phages

can counter resistance by evolving their tail fibers to attach to these new proteins [90]. Similarly,

in Avida, hosts must perform logic tasks to consume resources and thus replicate, but this action

leaves them susceptible to infection. Resistance can evolve by changing the logic task(s) used to

consume resources, but the parasites can counter adapt by evolving the ability to perform the new

task. Figure 2.2 depicts the mechanics of infection in Avida.

2.2.3 Configuration

All experimental runs were done in a well-mixed environment, where host and parasite offspring

were randomly placed in the world. Each run started with a 320-instruction-long host organism

capable of performing only the NOT task and self-reproduction. In runs with parasites, after 3,000

updates 400 cells in the world were exposed to 80-instruction-long ancestral parasites capable of

performing only NOT and self-reproduction. The parasites in these experiments had a virulence

of 0.80 unless otherwise noted. In order to become resistant, hosts must lose their ancestral NOT
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Figure 2.2: A diagram of the traits governing host and parasite interactions. The single resource
type in the environment that must be consumed for successful host replication is depicted by the
green square. Hosts can use any of the nine default logic tasks, indicated in blue, to consume part of
this resource if it is available. Parasites, depicted as red triangles, target the mechanism hosts use to
consume resources - the logic tasks.
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Figure 2.3: Eco-evolutionary dynamics of host and parasite (blue solid and red dashed respectively)
interactions. (a) and (b) are respectively a typical frequency plot and phase plane of host-parasite
interactions in the absence of evolution - the ecological dynamics. (c) and (d) are the otherwise
identical, except that mutations are allowed, and thus evolution can occur. Both subfigures are of
approximately 100 generations, representing an ecological time scale. These figures demonstrate
the disruption of typical ecological dynamics (compare (a) to (c) and (b) to (d)) by evolution on
ecologically relevant time scales.
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function (so that the parasites cannot infect them) while also evolving a novel task (so that they can

continue to collect the resources required for replication). Similarly, in order for parasites to infect

hosts that evolve resistance, they must also evolve the novel task. These ancestral hosts and parasites

were capable of performing only the most basic task in the environment and self-replicating, the

rest of their genomes were padded with no-operation instructions. Each run was allowed to execute

for 200,000 updates, where one update is the amount of CPU time needed for each organism in the

population to execute an average of 30 genomic instructions.

We disallowed multiple infection by setting the maximum number of threads an organism

can have to two. Organisms were not given access to instructions manipulating or creating their

own threads, preventing host organisms from becoming resistant by simply creating additional

threads. We also disallowed vertical transmission, the direct inheritance of parental parasites, by

clearing infections on successful host division. Only allowing horizontal transmision prohibited the

association between parasite reproduction and host reproduction, since we consider cell devision

the birth of two daughter-cells.

Novel variation could take the form of point, insertion, and deletion mutations. These mutations

were applied per site, and are split 10:1 point mutations to insertions/deletions. The individual rates

were set so that, on average, hosts had a single mutation every four offspring, and parasites had a

single mutation every two offspring.

There was a single resource necessary for successful host replication. This resource was kept at

a low level to prevent the world from filling: there were 14,400 potential locations for organisms

and approximately 10,000 were filled in the absence of parasites. For a host to have successfully

consumed this resource, there must have been a sufficient quantity in the environment. For these

experiments we required two units be available, and one unit was consumed. If a host did not

successfully consume resources before executing the divide instruction, replication failed and the

organism began execution again without producing any offspring. Eventually, organisms died of

old age if they did not successfully divide (since asexual reproduction produced two daughter cells,

age was reset on successful division) before reaching the maximum age of 30 × genome length.
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Cell death also occurred as a result of offspring being randomly placed in the world. In this case,

the occupant was overwritten by the newly divided cell.

2.2.4 Measuring Diversity

We measured diversity as the Shannon diversity index (H) of binary phenotypes. That is, we looked

only at whether each of the nine tasks was performed or not without accounting for expression level

and considered each unique binary string a different phenotype. Thus, the maximum number of

phenotypes possible in an environment containing nine tasks is 29. To calculate diversity, we used

equation 2.1

H =−
S
∑

i=1
pi ln pi (2.1)

where S was the total number of phenotypes, and pi was the proportion of phenotype i in the

population. This metric is optimized when both species richness and evenness are maximized.

2.2.5 Measuring the Effect of Parasites on Host Diversity

To compare the overall effect of parasites on host diversity, we ran 50 replicate populations where

we introduced parasites and 50 replicates where we did not. We then measured the Shannon diversity

index of the final set of hosts as described in Section 2.2.4. The difference in host diversity between

these two treatments was the effect coevolution with parasites had in these communities.

We also measured how parasites influenced diversity in ecological communities, where no new

variation was being introduced, by running 50 replicate populations that contained parasites, and 50

replicates that did not. All runs (co)evolved for 100,000 updates, then we disallowed mutations and

the runs continued for an additional 100,000 updates to settle into an equilibrium. We then compared

the Shannon diversity index of hosts from the resulting communities in these two treatments to

quantify the parasites’ ecological contribution to diversity.

Note that both equilibrium and ecological are misnomers, though in this case they are the most
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proximate terms. Parasites are frequently in a state of non-equilibrium, even in ecological contexts,

and populations are technically evolving if there are changes in mean phenotype over time – which

can happen in a community context even in the absence of new variation.

2.2.6 Measuring the Effect of Novel Variation on Host Diversity

To control for novel variation in host-parasite communities, we harnessed the repeatability of

independent evolutionary runs in Avida. Essentially, we asked what would have happened if we

went back in time and allowed the communities to continue mutating by having ensured identical

coevolutionary histories. We determined the effect of novel variation by measuring the difference in

host diversity between paired runs where novel variation was continued versus when it was stopped.

Unfortunately, there are confounding effects when measuring the contribution of novel variation

this way, since new variation is obviously a source of diversity. To correct for this effect, we

compared the increase in diversity observed in communities with parasites to the level in communi-

ties without parasites (also pairing runs of only hosts as described above). If diversity increases

further with parasites than in hosts evolving alone, we know that the effect of novel variation in

communities with parasites is not due to the trivial additional diversity new variation brings about.

Additionally, the new variation in communities without parasites can still have some influence

on diversity above the trivial effect, but these analyses are conservative with respect to the actual

contribution of novel variation.

2.3 Results

The signature of rapid evolution is the disruption of typical ecological dynamics. Figure 2.3(a) and

2.3(b) show the frequency and phase plane plots for a typical host-parasite community without evo-

lution, describing the pure ecological dynamics for this system over approximately 100 generations.

Figure 2.3(c) and 2.3(d) depict the dynamics in the presence of novel variation and thus evolution.

If evolution occurs on different time scales than ecology, we would not expect differences over such
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Figure 2.4: Host diversity in runs that evolved without parasites compared against host diversity
in runs that coevolved with parasites. (a) depicts host diversity when all 200,000 updates had
mutations, and (b) depicts host diversity when mutations were stopped at 100,000 updates. Thus,
(b) shows the ecological effects parasites have on host diversity.

few generations. However, comparing 2.3(a) to 2.3(c) and 2.3(b) to 2.3(d) shows a pronounced

difference in community dynamics, suggesting that coevolution occurs on ecological time scales in

this system.

2.3.1 Effect of Parasites

When considering any replicate runs with parasites, we removed communities that lost parasites

in either the presence or absence of mutations from analysis. In other words, to be considered

in the analysis, parasites had to persist in both the 50 original runs, as well as the 50 replays

where mutations were continued. Only one of the paired-runs withheld from analysis came from

a community that maintained parasites in the absence of novel variation, but lost them when the

runs were replayed with mutations. A single community lost parasites after novel variation was

removed, but they were also lost when mutations were continued. Thus, the loss of parasites in this

case was not due to instability after stoping new variation. Seven other communities lost parasites

prior to losing novel variation. These nine runs, as well as their paired replayed runs were removed
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from analysis (a total of 18/100 runs were withheld). Coevolved communities were able to maintain

parasites robustly in the absence of novel variation.

Figure 2.4(a) depicts the Shannon diversity distributions of hosts in communities with and

without parasites. Communities with parasites had significantly more diversity (Mann-Whitney U =

1996, p� 0.001). The presence of parasites resulted in an increase of host Shannon diversity by

1.784 with a 95% confidence interval of [1.506, 2.063].

To measure the ecological effects parasites had on host diversity, we removed the possibility for

novel mutations and measured the resulting communities’ host diversity. Figure 2.4(b) depicts the

Shannon diversity distributions of communities evolved with and without parasites after 100,000

updates in the absense of mutations. Again, communities with parasites had significantly higher

diversity than those without parasites (Mann-Whitney U = 1816, p� 0.001). In these ecological

communities, parasites increased the Shannon diversity by 1.15 with a 95% confidence interval of

[0.933, 1.434].

2.3.2 Effect of Novel Variation

The pairwise subtraction of host diversity between runs where novel variation was stopped at

100,000 updates from the runs where mutations continued produced the distribution of increases in

Shannon diversity that would have occurred had the ecological community not lost their sources of

novel variation. We paired these runs since the communities at 100,000 updates were identical, and

thus the only difference was whether or not mutations continued. Figure 2.5 depicts the distribution

of increases in host diversity due to novel variation in communities with and without parasites.

The statistical difference between increases in diversity with and without parasites is a measure

of how novel variation affected host diversity in the presence of parasites above and beyond the

trivial effects of new mutations. There was a significant difference between these two distributions,

where communities with parasites had a 0.652 increase in host diversity with a 95% confidence

interval of [0.321, 0.973] (Mann-Whitney U = 1508, p = 0.00012).
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Figure 2.5: Increase in diversity when runs that lost novel variation were replayed with continued
mutations in communities with and without parasites. Runs with parasites had significantly larger
increases in host Shannon diversity in the presence of mutations than runs without parasites.
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Figure 2.6: Frequencies of phenotypic traits in hosts and parasites for a sample coevolutionary com-
munity where mutations stoped at 100,000 updates (grey line). (a) depicts the relative frequencies of
traits hosts used to consume resources in the community through time, while (b) depicts the relative
trait frequencies parasites used to infect hosts. Parasites tracking of host phenotypes is apparent
by the similarity between the phenotype heat maps. (c) depicts the number of hosts and parasites
through time.
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2.4 Discussion

Evidence of evolution happening rapidly enough to co-occur with and influence ecological dynamics

is now widely documented [24]. Host-parasite coevolution is intimately connected to ecological

dynamics, and thus a likely candidate for these eco-evolutionary feedbacks. Despite the large

amount of evidence showing ecological and evolutionary dynamics interacting, little is known about

how important this feedback is for maintaining communities. Novel variation is only one aspect of

rapid evolution, but it is an important one nearly impossible to test in laboratory or natural settings.

We have presented an in silico instance of coevolution and demonstrated ecological and evolu-

tionary dynamics interacting on similar time scales. If ecological processes were happening much

faster than evolution, we would not expect the rapid disruption of typical community behavior when

we introduce novel genetic variation. However, as Figure 2.3 depicts, novel variation did indeed

disrupt the ecological dynamics. To understand the effect that this eco-evolutionary feedback had

on host diversity in a community context, we first quantified the effects of parasites.

Regardless of whether there was a source of novel variation, parasite presence significantly

increased host diversity in this system, consistent with empirical and theoretical results [14,21,40,41].

There are multiple, non-exclusive mechanisms by which parasites can increase host diversity (see

discussion in [21]). Parasites may target the most frequent host phenotype, and the hosts would

then evolve resistance against these parasites. However, as the new resistant host increases in

frequency, parasites would experience selection to target it. Thus, parasite-imposed negative

frequency-dependent selection can maintain diversity by keeping the frequency of any one particular

host genotype (or phenotype) at bay. Alternatively, hosts may experience trade-offs between

resistance and competitive ability allowing coexistence of sensitive and resistant types. When

parasites are common, resistance may be worth the cost it carries; but at low parasite densities, the

cost of resistance may become a burden. We plan to disentangle these mechanisms maintaining

host diversity in the future.

The stability of these coevolved host-parasite communities is surprising. Of all 50 replicate

communities that experience the loss of new mutations, only one completely excludes parasites
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after losing novel variation (a handful eliminated parasites prior to the loss of new variation). In

other words, 41 out of 50 host-parasite communities were able to persist both in the presence and

absence of continuing novel variation.

Figure 2.6 depicts a single run where all mutations stopped at 100,000 updates. Moving from

left to right on the figure represents going forward in time, and the heat maps show the relative

frequencies of each task performed by hosts (a) and by parasites (b). In the first 100,000 updates,

there was rapid change in host and parasite phenotypes, but as time goes on the variation saturates.

This saturation is also evident in 2.6(c), which depicts host and parasite frequencies. Interestingly,

after mutations stopped, host and parasite frequencies appeared to reach an equilibrium, but

phenotypes still changed through time. Additionally, it is clear that neither hosts nor parasites

collapsed into just one or two phenotypes, rather community diversity persisted.

Having shown that parasites increased host diversity both in the presence and absence of novel

variation, we aimed to distinguish the effects that mutations had on diversity in host-parasite

communities. Novel variation trivially increased diversity, since it often produced new phenotypes.

However, host-parasite communities could have been affected by this novel variation differently

than hosts alone. By asking what would have happened had we not stopped novel variation at

100,000 updates in coevolved host-parasite communities, we effectively replayed the tape [60], but

this time allowing for continued mutations. This ability to replay the tape enabled us to measure

the actual increase in host diversity had novel variation continued. It is important to note that the

measured increase is the actual increase in diversity rather than an expected increase if mutations

continued, since we guaranteed identical coevolutionary history. We also measured the effect of

novel variation in communities without parasites to estimate the trivial effects of mutations on

diversity. Figure 2.5 depicts the distribution of actual increases in diversity had mutations continued

for the full 200,000 updates. We measured the statistical difference between these two distributions,

and conservatively called this value the non-trivial effect novel variation had on host-parasite

communities (see Section 2.3.2). Since the difference was significant, novel variation had more than

a trivial effect on host-parasite community dynamics.
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Figure 2.7: Relationship between host diversity and parasite diversity across 41 communities from
each treatment. Points with red “-” signs are from runs where mutations stopped at 100,000 updates,
and points with blue “+” signs are from replayed runs with continued mutations. There is a strong
relationship between host and parasite diversity in runs without new variation for 100,000 updates.
On the other hand, there is a weak relationship in paired runs with continued novel variation,
suggesting other factors contributing to diversity in the presence of mutations.

24



Looking at how host diversity varies with parasite diversity between runs that experienced

continued mutations and those without continued novel variation further suggests the interaction

of new variation on community dynamics. Figure 2.7 is a plot of host diversity versus parasite

diversity, and the linear regression for the two treatments of novel variation. The relationship

between host and parasite diversity in runs without novel variation for 100,000 updates was strong

(Adjusted R2 = 0.70). On the other hand, when novel variation was continued throughout the run,

the relationship was much weaker (Adjusted R2 = 0.18). The amount of variation unexplained by

the relationship of host and parasite diversity in runs that continued to experience novel variation

suggests that additional community or evolutionary dynamics are influencing host and parasite

diversity. The large amount of explanatory power the relationship has in the absence of novel

variation adds support to this view. Understanding the mechanisms acting on this variation to

produce non-trivial increases in host diversity will shed light on the important eco-evolutionary

interactions shaping community dynamics [144].
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Chapter 3

Coevolution Drives the Emergence of

Complex Traits and Promotes Evolvability

Authors: Luis Zaman, Justin R. Meyer, Suhas Devangam, David M. Bryson, Richard E. Lenski,

Charles Ofria

3.1 Introduction

Life emerged on Earth some four billion years ago and has evolved increasingly complex traits,

including intricate biochemical pathways, elaborate developmental networks, and powerful neural

architectures [146, 157]. However, the processes responsible for promoting this complexity remain

poorly understood [33, 34, 62, 76, 104, 145, 146, 150, 157]. Is adaptation by natural selection

largely responsible for this complexity and, if so, what is the nature of that selection? Or is this

apparent trend an artifact that reflects the initial conditions and lower bounds to complexity? Given

the limitations of historical data for answering these questions, experimental evolution offers an

alternative approach to explore these issues and test specific hypotheses. However, the emergence

of complexity in nature is a slow process, one not readily replicated in the laboratory [34, 68]; and

without an objective way to measure the complexity of organismal traits [1, 2], rhetorical arguments

may obscure and delay empirical research on this fundamental problem.
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Fortunately, computational approaches have advanced beyond traditional numerical simulations,

and it is now possible to test evolutionary hypotheses by running experiments with computer

programs that self-replicate, mutate, compete, and evolve [126]. In one study, Lenski et al. [98]

used the Avida [120] system to examine the role of selection for intermediate steps along many

evolutionary paths to a particularly complex trait, the EQUALS (EQU) logic function. Because Avida is

computational, the authors could readily observe changes over thousands of generations; moreover,

the complexity of traits could be objectively quantified as the number of building blocks (in this

case, NAND instructions) required for their execution. By allowing initially identical populations to

evolve in different environments, Lenski et al. demonstrated that the most complex traits emerged

only when simpler functions were also selectively favored, which promoted the accumulation of the

necessary building blocks [98].

Here we use this system to ask whether coevolution–specifically, parasite-host interactions–can

drive complexity to higher levels than would otherwise be achieved. Several authors, including

Dawkins and Krebs [33] and Vermeij [171], have proposed that coevolutionary arms races” lead

to increased complexity as adaptations and counter-adaptations favor more and more extreme

traits [62]. Indeed, we show that host-parasite coevolution produced substantially more complex

host traits than did evolution in the absence of parasites. Moreover, we show that this complexity

arose in the evolving computer programs, in part, by an unexpected process: selection for increased

evolvability, which was achieved by genetic mechanisms reminiscent of so-called contingency loci”

that are found in many pathogenic bacteria [117].

In Avida, both host and parasite organisms are self-replicating programs that must expend CPU

cycles to execute instructions in their genomes [184]. The genetic instruction set includes basic

arithmetic and input/output operations as well as operations that allow storage and manipulation of

binary numbers in temporary memory via a set of stacks. Coordinated execution of appropriate sets

of instructions allows organisms to obtain resources (in the case of hosts) or infect hosts (in the case

of parasites) and copy their genomes instruction-by-instruction to produce offspring. The copying

process occasionally introduces mutations including point mutations, insertions, and deletions that
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may affect the progenys phenotype. As in nature, most mutations are deleterious or neutral, but

occasional beneficial mutations improve an organisms ability to acquire resources, infect hosts or

resist parasites, or reproduce. These benefits may enable genotypes to increase in frequency as they

displace less fit conspecifics because of their faster acquisition and more efficient use of CPU cycles.

Thus, populations of digital organisms, like their counterparts in nature, typically evolve to better fit

their environments [126].

Figure 3.1 shows a schematic overview of the relationships between hosts, functions, resources,

and parasites in our experiments. Hosts obtain the resources necessary for their reproduction by

performing one or more logic functions, but those functions also make the host vulnerable to

infection by a parasite that can perform the same function. Thus, an infection can occur only if a

particular host and parasite share at least one function, although the specific genetic encoding that a

host and parasite employ to perform that function rarely, if ever, correspond at the sequence level.

After a successful infection, the parasite acquires 80% of the infected hosts CPU cycles, which the

parasite uses to execute and copy its own genome, while imposing a severe cost on the host. As a

consequence, coevolution occurs when hosts and parasites acquire and lose functions.

The experimental configuration allowed for nine different logic functions, which require varying

numbers of NAND instructions to be executed with the proper inputs used for each; NAND is the only

logic function available in the genetic instruction set. The minimum number of NANDs required for

each function’s performance is known and provides a simple, objective measure of the complexity

of that function [98]. The most complex function, EQU, requires five NANDs, and the shortest

program that can perform EQU requires nearly 20 precisely interacting instructions, although there

are many longer programs that also encode EQU [98]. In the absence of parasites, a previous study

found that 23 of 50 populations evolved the ability to perform EQU when the other eight functions

were rewarded with additional CPU cycles that increased with their complexity (i.e., minimum

required NANDs), thus allowing essential building blocks to accumulate in the evolving genomes [98].

Here, we test whether host-parasite coevolution can drive increased complexity without explicitly

rewarding building blocks. To that end, we ran similar experiments except with coevolving parasites
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Figure 3.1: Hosts, parasites, functions and resources in Avida. (A) A host organism with stacks
used to store binary values, a circular genome with pointers used to execute its code, and three
functionsNOT, AND, and ORshown in different colors. Functions vary in complexity as measured by
the number of NAND gates (shown as 1, 2, and 3 logic gates within the respective colored function
circuits) required to perform them. (B), These functions enable organisms to take up resources
from their environment. (C), Parasites target the resource-uptake mechanisms of the hosts in this
system by performing the corresponding function. Note that some parasites can perform multiple
functions (shown by multiple colors) and thus infect hosts via multiple uptake systems. When a
parasite infects a host, it acquires a portion of the hosts CPU cycles. Executing a single operation
costs an organism a single CPU cycle. Time in these experiments is measured in “updates”, which
corresponds to a per capita average of 30 executed CPU cycles.
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in one-half of the replicates and without the progressive reward structure used in the previous work.

3.2 Results and Discussion

3.2.1 Parasites Drive Greater Host Complexity

Figure 3.2 shows that coevolution with parasites drove host populations to evolve more complex

functions in order to obtain the resources necessary for their replication, without any greater reward

for performing the more difficult functions. Host complexity increased in both the presence (red)

and absence (blue) of parasites, but it did so much faster and reached much higher levels in the

coevolution treatment (p� 0.001, Mann-Whitney U = 2304). The effect of parasites on the rise of

complexity is exemplified by EQU, the most complex function; the ability to perform EQU evolved

in 17/50 host populations that coevolved with parasites, but in none that evolved without parasites

(p� 0.001, Fishers exact test). In a third treatment, parasites were removed at the mid-point of the

runs, and the cured host populations (green) evolved substantially reduced complexity relative to the

coevolution treatment (p� 0.001, Mann-Whitney U = 543.5), although the cured hosts retained

greater complexity than those that never saw the parasites (p = 0.002, Mann-Whitney U = 1703).

The increased complexity relative to the ancestor observed in the absence of parasites (p� 0.001,

Wilcoxon signed-rank W = 1275) accords with a simple model that couples a random walk in

complexity with a selective constraint that limits functional degradation; Gould dubbed this model

the “drunkards walk”, alluding to how a patron leaving a pub eventually stumbles to the curb because

the pub itself limits backward movement [104]. In our experiments, all populations started from the

same ancestral program that could perform only the simplest function, NOT, and hence they were

the least complex programs able to obtain resources and reproduce. Any less complex genotypes

generated by mutation could not reproduce and were thus eliminated. More complex organisms also

arose by mutation; although they obtained no additional resources for performing more complex

functions (and, in fact, might replicate more slowly), they nonetheless could reproduce and thereby

persist. Over time, this asymmetrical constraint allowed complexity to increase, albeit slowly and to
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Figure 3.2: Parasites promote the evolution of host complexity. Complexity was measured as the
minimum number of NAND instructions that must be executed by a host to perform its most complex
logic function, averaged over all individuals in a population. The blue trajectory shows the grand
mean complexity across 50 replicate populations (i.e., runs) that evolved in the absence of parasites.
The red trajectory shows the corresponding values for 50 host populations that coevolved with
parasites. In 12 runs, the parasites went extinct, in all but one case after 22,000 updates and after
the hosts had evolved either the XOR (complexity 4) or EQU (complexity 5) function. The green
trajectory shows mean values for the same 50 parasite populations, except here they were cured”
by experimentally eliminating the parasites after 250,000 updates. All populations started with a
single host genotype that performs only the NOT function. Updates are arbitrary Avida time units
(see Methods). Error bars are +/- 2 Standard Errors of the Mean (SEM).
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a limited extent. This explanation of complexity evolving as a “drunkards walk” does not imply

that evolution as a whole operates as a random walk; instead, it only implies that complexity might

follow such a pattern.

The coevolutionary process clearly produced greater functional complexity in the hosts. In

broad outline, this effect occurs because parasites constantly select for new host phenotypes and

thereby cause host populations to explore adaptive landscapes more broadly than hosts that are

evolving alone [180]. However, it is not obvious why the effect was so large and continued for so

long. Understanding the initial increase in complexity is seemingly straightforward–hosts must

evolve some function other than NOT to avoid infection yet still reproduce, and all except one of the

other functions have higher complexity than NOT. But this explanation alone cannot explain even

the initial step, because the first new function to arise by mutation was, in the vast majority of cases,

the one other function, NAND, that also requires executing only a single NAND instruction. In fact, the

average complexity of the first new function was only 1.10 (1.011.19 95% confidence interval), and

the maximum was only 2 in any case. What then might account for the large and sustained rise in

complexity? One plausible explanation is an escalatory arms race that gives rise to progressively

more extreme and complex adaptations [33, 177, 180]. For example, coevolution between cheetahs

and gazelles may have favored ever-increasing speed, which was achieved by evolving more complex

musculoskeletal systems. In many systems, however, coevolution does not occur along a single

axis, but instead involves many traits [57] and can lead to fluctuating frequency-dependent selection

instead of an arms race [181]. For example, such frequency-dependent fluctuations appear to

dominate the interactions between Daphnia magna and its parasite Pasteuria ramosa, as determined

by reviving eggs and spores from various sediment depths representing different historical states of

the interaction [37].

Escalating arms races and negative frequency-dependent cycling, in general, are the two main

outcomes of host-parasite coevolution. Escalation could lead to an increase in complexity if,

for example, more complex tasks provided hosts with resistance to any less complex parasites.

However, there is no such task “dominance” in Avida. Instead, a particular parasite can infect
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a particular host provided they share at least one function. Given that requirement, there is no

inherent reason that escalation must occur [163,164]–for example, the host and parasite populations

could cycle repeatedly between two states–and so we can reject the arms-race hypothesis as a

sufficient explanation for the emergence of more complex traits in hosts that coevolved with

parasites. Nonetheless, it is important to note that frequency-dependence and escalation are not

mutually exclusive processes.

3.2.2 Parasites Retain “Memory” of Previous Hosts

How could negative frequency-dependence drive a sustained increase in host complexity rather

than producing simple cycles? One possible explanation is that parasites maintain a “memory” of

previously encountered host states. If so, then hosts can escape infection only by evolving in a

previously unexplored direction–in the Avida system, by evolving an entirely new and therefore

usually more complex function to acquire resources, rather than recycling one that was previously

discarded after it was targeted by the parasite. The simplest way to achieve such memory is if a

parasite population evolves generalist phenotypes that can infect multiple hosts, including types no

longer common in the community. Indeed, the coexistence of multiple host types maintained by

negative frequency-dependent selection would favor parasites with broad host-ranges. To examine

whether this population-genetic memory existed, we quantified the average number of functions

that parasites could perform. Consistent with the memory hypothesis, parasites evolved to become

generalists that often performed four or five functions and thereby could infect several different

host types (Figure 3.3). By contrast, we expect the hosts to evolve primarily as specialists because

an individual needs to perform only one function to obtain resources, and performing multiple

functions makes it vulnerable to a broader range of parasites. Indeed, most hosts performed only a

single function (Figure 3.3), although that function became much more complex over time (Figure

3.2).

To verify that the parasites population-genetic memory drove the evolution of host complexity,

we performed another set of coevolution experiments using a “challenge” design. This design is
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Figure 3.3: Parasites evolve generalist strategies while hosts remain specialists. The purple
trajectory shows the average number of different functions performed by individual parasites across
50 replicates of the coevolution treatment. In 12 cases, the parasite population eventually went
extinct, and so the number of replicates declines to 38 over time. The black trajectory shows the
corresponding average for individual hosts; host populations were excluded from the average after
the corresponding parasite populations had gone extinct. Error bars are +/- 2 SEM.
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analogous to a microbiological approach in which bacteria are challenged with phage, a single

resistant mutant is isolated, the phage are then challenged with the resistant host, a single host-range

mutant is isolated that can overcome the resistance, and the cycle is repeated [105]. Using this

design, diversity is lost because only individual mutants are retained at each step, and the advantage

to the parasite of retaining a broad host-range (i.e., memory of prior hosts) is reduced or eliminated.

Therefore, if the parasites population-genetic memory drove the evolution of host complexity in the

original coevolution treatment (Figure 3.2), then we expect hosts to achieve reduced complexity

under the challenge regime. Indeed, the resulting host complexity was much lower in the challenge

treatment than with coevolution (p� 0.001, Mann-Whitney U = 2373); in fact, the challenge

treatment was indistinguishable from the populations that had evolved without parasites (p = 0.43,

Mann-Whitney U = 1298).

We can form an intuitive understanding of the parasites population-genetic memory and its

effects on the evolution of complexity using the imagery of an adaptive landscape. Consider the

case where increasing complexity is disadvantageous because performing more complex functions

requires more resources than performing simpler tasks. In the absence of parasites, hosts will evolve

the simplest viable functions (Figure 3.4A). However, when this host is targeted by parasites, the

landscape is deformed, creating a new peak at a slightly more complex task (Figure 3.4B). As

coevolution continues, additional hosts and parasites will evolve and a diverse set may be maintained

through negative frequency-dependent selection. This community further depresses the landscape,

thus moving the peak toward even higher levels of complexity (Figure 3.4 C-D). To evaluate whether

our experiments supported this intuitive model, we measured the proportion of parasites unable to

infect hosts performing each one of the nine logic functions on its own. That proportion represents

a critical fitness component of the host because it reflects the hosts ability to resist infections by

the parasites present in its environment. Figure 3.4 E-H shows the empirical relationship between

average host fitness (i.e., resistance) and the complexity of the task performed over evolutionary

time. In support of our population-genetic memory hypothesis, the fitness peak shifted strikingly

toward higher levels of complexity as coevolution progressed. Thus, the diversity of parasites–with
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their individually and collectively broad host-ranges–sustained a memory of previously evolved

host phenotypes and generated an adaptive landscape for the host that favored increasingly complex

tasks.
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Figure 3.4: Effects of parasites on the hosts adaptive landscape. (A) Assuming that unnecessary
complexity is costly in the absence of any direct benefit, the fitness peak corresponds to the simplest
host phenotype. (B) Once parasites are introduced, the landscape is deformed and selection favors a
more complex host phenotype. (C-D) As coevolution continues, the parasites maintain a population-
genetic memory of host phenotypes, which pushes the fitness peak toward higher and higher levels
of complexity. (E-H) In the coevolution runs, we quantified the effect of parasites on the host
adaptive landscape as the proportion of parasites that were unable to infect hosts performing each
of the nine logic functions.

3.2.3 Effects of Breaking the Coevolutionary Feedback

To test whether the fitness landscape shaped by a coevolved population of parasites was sufficient to

drive the evolution of complexity observed in our original coevolution treatment, we performed a

new treatment in which the parasite population began with genotypes frozen” at the frequency they

occurred within each original replicate at 250,000 updates (the halfway point, when the majority

of host complexity and parasite diversity had evolved), but further evolution of the parasite was

precluded. To maintain constant frequencies of the parasite genotypes, each newly reproduced

parasite was assigned a random genotype from the 250,000-update set. After 500,000 updates

in this complex-but-static environment of frozen parasite frequencies, hosts evolved significantly
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higher complexity than in the treatment without parasites (p = 0.003, Mann-Whitney U = 1684).

However, the hosts confronted with the complex-but-static parasite populations did not reach as high

a level of complexity as when the parasites coevolved (p� 0.001, Mann-Whitney U = 1946, Figure

3.5). This disparity may indicate an effect of fluctuating environments, such that dynamic parasite

environments favor increased host complexity more than complex-but-static parasite environments.

To test this hypothesis, we then allowed hosts to evolve in environments where we “replayed”

the changing parasite genotype frequencies over time from the coevolution treatment, but where

these parasite genotypes did not respond to the host evolution that was occurring within any

particular replicate. Again, the host populations that evolved in this replay treatment achieved

significantly greater complexity than those that evolved without the parasites (p = 0.034, Mann-

Whitney U = 1529), but the hosts in the replay treatment still did not reach as high levels of

complexity as the coevolved hosts (p� 0.001, Mann-Whitney U = 1908, Figure 3.5).

Thus, coevolved parasites–whether constant (frozen) or varying over time (replayed)– favored

the evolution of hosts with more complex functions than hosts that evolved without parasites at all.

Nonetheless, the hosts under these treatments failed to evolve the highest level of complexity, which

they achieved with coevolving parasites. Coevolution involves reciprocal changes in which the host

population influences how the parasite population responds, both ecologically and evolutionarily,

and vice versa. Although the parasite population was diverse in both the frozen and replayed

treatments, and while it varied in time in the latter treatment, the evolution of the parasite population

was decoupled from the evolutionary changes that occurred in the host population. Taken together,

these experiments thus indicate that the special push-and-pull of coevolution played a major role

in the evolution of host complexity. They also imply a more dynamic view of population-genetic

memory, one in which negative frequency-dependence constantly tunes the parasite population in

response to host evolution. Without coevolutionary reciprocity, the interactions between host and

parasite populations are dissonant and population-genetic memory is ineffective.
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Figure 3.5: Frozen and replayed parasite genotypes fail to recapitulate the level of complexity seen
in the coevolution treatment. Host complexity was measured as in Figure 3.2, and the coevolved
(red) and evolved-without-parasites (blue) treatments are shown as before. The grey trajectory
indicates the mean level of host complexity that evolved when parasite genotype frequencies were
frozen at the values observed after 250,000 updates of coevolution. The orange trajectory shows the
level of complexity that hosts evolved in the replay treatment, where they faced changing, but not
coevolving, parasite populations. In this treatment, the parasite genotype frequencies were set to the
levels observed during coevolution runs at 1,000-update intervals. The parasites went extinct before
250,000 updates in one of the coevolution replicates, and so the frozen treatment started with 49
replicates. In three of the 49 replicates of the frozen treatment, the hosts overcame the parasites
and drove them extinct. In the replay treatment, a total of 30 host populations drove the replayed
parasites extinct (including the 12 that went extinct during coevolution). Error bars are +/- 2 SEMs.
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3.2.4 Effects of Coevolving Parasites on Host Phylogeny

Coevolution with parasites also had profound effects on the phylogenetic structure of host pop-

ulations and on the phenotypic evolvability of host genomes. With respect to phylogenies, the

frequency-dependent nature of host-parasite interactions promotes not only greater diversity at any

given moment but also deeper branches that reflect the preservation of diversity through time. In

Avida, we can track genealogies precisely and thus construct exact phylogenetic trees, avoiding

uncertainty about historical states and branch lengths. Figure 3.6 shows representative trees for

host populations that evolved in the presence and absence of parasites, and they differ strikingly in

their coalescence profiles. To formalize this difference, we calculated the time since the most recent

common ancestor (MRCA) for all 50 host populations in the coevolution and evolution-without-

parasites treatments (Figure 3.7). The MRCA in coevolved host populations usually arose soon after

the experiment began (median 6% of the total elapsed time), whereas the MRCA in the absence

of parasites typically dated to well after the midpoint (median 74%), and this difference is highly

significant (p� 0.001, Mann-Whitney U = 1975). Thus, coevolution not only affects the outcome

of adaptation, but also fundamentally changes how those outcomes are reached. Coevolution was

similarly found to increase the rate of adaptation when embedded in multispecies networks of

mutualists [63]. Although the systems and form of interactions are different, their similar results

suggest the important role reciprocity plays in evolving systems.

3.2.5 Effects of Coevolving Parasites on Host Evolvability

Previous research using Avida showed that different treatments could drive populations into qualita-

tively different regions of the fitness landscape; specifically, populations that experienced higher

mutation rates evolved onto lower but flatter regions of genotypic space than populations that

evolved at lower mutation rates, a phenomenon dubbed “survival of the flattest” [179]. Here we

examine whether coevolution with parasites produced host genomes that were more evolvable with

respect to escaping infections. To that end, we mapped phenotypic changes onto every possible one-

step point mutation for the most common host genotype from all evolved and coevolved populations
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Figure 3.6: Effect of coevolving parasites on host phylogenies. Representative phylogenies for
hosts that evolved in the (A) presence and (B) absence of parasites. The branch leading to the
original ancestor is too short to be seen in (A). The phylogenies show all of the host genotypes
present at the end of the run, and the phylogenies are known exactly in this system.
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Figure 3.7: Effect of coevolution on coalescence times in host phylogenies. The data are shown as
box plots and smoothed frequency distributions for the times of origin of the most recent common
ancestors (MRCA) in 38 host populations that coevolved with parasites (excluding the 12 runs where
the parasites went extinct) and 50 populations that evolved without parasites. The MRCAs arose
significantly earlier in the coevolution treatment. The tail of the distribution for the coevolution
treatment is more pronounced if we include the host populations where the parasites went extinct,
but the difference remains highly significant (p� 0.001, Mann-Whitney U = 2053). Box hinges
depict first and third quartiles and whiskers extend 1.5 x Inter Quartile Range (IQR) out from their
corresponding hinge.
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at the end of the experiment. Several types of phenotypic changes are possible including the gain

of a function, the loss of a function, or switching which function is performed without changing

the total number of functions performed. Mutations in the last category are of particular interest

because, in the presence of parasites, the ability to switch functions without requiring intermediate

steps (adding a new function before losing the old one) could be adaptive. That is, more evolvable

hosts would be able to change phenotypes faster and could thereby escape coevolving parasites more

readily. While selection does not directly favor hosts with more evolvable genotypes, they are more

likely to produce surviving lineages when coevolving with parasites; thus, second-order selection

could drive the evolution of evolvability. In strong support of this hypothesis, function-switching

mutations were > 10-fold more common in hosts that evolved with parasites than in hosts that

evolved without parasites (p� 0.001, Mann-Whitney U = 2338, Figure 3.8). To evaluate whether

this effect might somehow merely reflect the more complex tasks typically performed by coevolved

hosts, we analyzed pairs of genotypes from the coevolved and evolved host populations that perform

identical sets of tasks. The coevolved hosts were still significantly more evolvable than their paired

evolved host (p� 0.001, Wilcoxon signed-rank W = 112616.5, Figure 3.9), although the frequency

of task-switching mutations tended to be lower in both treatments after this pairing procedure. Thus,

coevolution drove host populations to occupy more evolvable regions of the adaptive landscape.

Taken together, our experiments show that parasites pushed hosts to levels of functional complex-

ity that were well beyond what they achieved by random walks (Figure 3.2). This complexity resulted

from population-level processes [81, 92, 168], in which frequency-dependent interactions sustained

generalist parasites (Figure 3.3) that were supported by phenotypically and phylogenetically diverse

hosts (Figures 3.6 and 3.7). If population-level effects were eliminated, as in the challenge experi-

ments, then host complexity remained low. Moreover, if the coevolutionary feedback between hosts

and parasites was broken by freezing or replaying parasite genotypes, then hosts did not evolve

such complex tasks as when parasite populations could respond to the changing host population

(Figures 3.4 and 3.5). Although the form of interactions between the hosts, their resources, and

parasites in our study system (Figure 3.1) strongly constrained host evolution (e.g., hosts performing
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Figure 3.8: Proportion of point mutations in host genomes that switch functions without changing
the number of functions performed. The data are shown as box plots and smoothed frequency
distributions. Proportions were obtained by testing all possible one-step point mutations in the
genetic background of the most abundant host genotype at the end of all 50 runs with and without
parasites. Box hinges depict first and third quartiles and whiskers extend 1.5 x IQR out from their
corresponding hinge.
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Figure 3.9: Proportion of point mutations that switch functions without changing the number of
tasks performed in paired genotypes, where each pair includes hosts from the coevolution and
evolution treatments that perform identical sets of tasks. Proportions were obtained by testing all
possible one-step point mutations in each genetic background. Box hinges depict first and third
quartiles and whiskers extend 1.5 x IQR out from their corresponding hinge.
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multiple functions were more broadly susceptible to parasites and rarely observed), hosts never-

theless overcame these limitations by becoming more evolvable (Figure 3.8). In particular, host

genomes evolved such that a much larger proportion of mutations caused a switch from one resource-

acquisition function to another, thereby allowing hosts to escape, in a single step, parasites that

targeted the first function. These results–from an unusual but highly tractable system–add to growing

evidence from experiments and theory that coevolutionary processes promote biological diversity,

new functions, and evolvability [37, 57, 81, 92, 106, 110, 112, 117, 163, 164, 166, 168, 171, 177, 181].

3.3 Materials and Methods

3.3.1 Evolution Experiments

All experiments were performed using the Avida 2.13.0 software, which is available without cost

(http://avida.devosoft.org/). Configuration files with the parameter settings used will be deposited in

the Dryad database upon publication. Host and parasite populations lived in a well-mixed chemostat-

like environment, with a single type of resource entering at a constant rate. Hosts obtained resources

required for replication by performing any of nine distinct one- and two-input logic functions,

provided there were resources available in the environment. A parasite could infect a host if they

performed at least one function in common, and an infecting parasite then acquired 80% of its

hosts energy (CPU cycles) [51]. The ancestral hosts and parasites could perform only NOT, one

of the two simplest functions. We initially monitored evolution under two main treatments, each

with 50-fold replication: host organisms evolved alone in one treatment, and they coevolved with

parasites in the other. Each replicate started with a different numerical seed, and the resulting

sequence of pseudo-random numbers influenced mutations, parasite-host encounters, and other

probabilistic events. The parasites went extinct in 12 coevolution runs; except where otherwise

noted, we included those runs in our analyses. In a third treatment, the parasites were experimentally

removed halfway through each run, with the first half being identical to a run in the coevolution

treatment (i.e., using the same initial seed).
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All runs lasted for 500,000 updates; an update is an absolute time unit in Avida equal to the

execution, on average, of 30 instructions per individual host organism. Generation times for the

ancestral host and parasite genotypes were 63 and 23 updates, respectively, although generation

times changed as genomes evolved. Each host population began with one individual; the carrying

capacity was 14,400 in the absence of parasites. In the coevolution treatment, 400 parasites were

introduced after 2,000 updates; only a single parasite could infect an individual host. Mutation

rates were 0.25 and 0.5 per genome replication for the ancestral host and parasite, respectively, of

which 90% were point mutations and 5% each were insertions or deletions of single instructions.

Per-site mutation rates were constant, so total genomic rates varied with changes in genome length.

Mutations occurred at random with respect to genome position.

3.3.2 Challenge Experiment

To eliminate all population-level interactions in both species, we screened individual hosts and

parasites for defenses and counter-defenses, rather than using evolving populations. Starting from

the same ancestral host, we generated thousands of individuals using the same mutation regime as

in the evolution experiments, and we randomly chose a single host mutant that was resistant to the

ancestral parasite. We then repeated this process for parasites, again using the same mutation regime

as in the evolution experiments, and we isolated a host-range mutant able to infect that resistant

host mutant. We continued the pairwise challenges using the derived host and parasite genotypes

for 50 rounds. A challenge experiment was stopped if we failed to isolate a relevant mutant after

screening 500,000 individuals. In the comparisons with the evolution and coevolution treatments,

we used 56 challenge experiments (out of 100 started) that achieved the full 50 rounds of reciprocal

defenses and counter-defenses. However, the truncated runs appeared to be indistinguishable from

those that went the full duration.
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3.3.3 Freeze and Replay Experiments

In these experiments, we allowed host populations to evolve with either “frozen” or “replayed”

parasites. During the original coevolution experiments, we saved each replicates entire set of host

and parasite genotypes every 1,000 updates. We modified the Avida source code such that this record

of genotypes can be loaded into an on-going run at any point by adding an option to override the

normal replication process with one that samples from a genotype list. When organisms reproduce,

instead of inheriting their parents genome, the offspring is assigned a random genotype from the list.

This procedure can be implemented for hosts, parasites, or both; however, in the freeze and replay

experiments presented here, we manipulated only the parasite populations using this new procedure.

In both treatments, we injected 1,500 parasites into the host population after 2,000 updates; this

number was increased relative to the coevolution treatment to ensure that the frozen and replayed

parasite populations, which were sometimes poorly adapted to the ancestral host, did not go extinct.

In the freeze treatment, each host population confronted a parasite population that was complex

and diverse, but constant in its genotypic frequencies over an entire run (except for the fluctuations

associated with births and deaths of the parasites). The composition of each parasite population was

based on the list of parasites taken at the mid-point (i.e., 250,000 updates) of one of the coevolution

treatment runs. Thus, the genetic composition of the parasite population was frozen throughout

the run, although the total number of parasites could rise or fall in accord with the dynamics of

infections. Under the replay treatment, the frequencies of parasite genotypes changed over time,

but those changes were based on parasite evolution that had taken place in an earlier coevolution

run, rather than on the dynamics that were occurring in the replay itself. That is, the list of parasite

genotypes from which new parasites were drawn was changed every 1,000 updates to reflect what

had happened in the earlier run. As a consequence, the host could evolve in response to the changing

frequencies of the various parasite genotypes, but not vice versa–the coevolutionary feedback was

broken, although parasite diversity and the temporal changes in that diversity were preserved.
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3.3.4 Phylogenetic Analysis

In Avida, the genealogy of organisms is known perfectly and, when coupled with the asexual

lineages studied here, allows construction of the exact phylogenetic history for a population. We

used the python ete2.1 module to represent (Figure 3.6) all of the genotypes present in two host

populations along with their ancestries through the various coalescences, the most recent common

ancestor for the entire population, and the founding genotype.

3.3.5 Evolvability Analysis

We tested every possible one-step point mutation in the genetic background of the most abundant

host genotype at the end of all 50 evolution and coevolution runs. Each mutant was placed into one

of the following categories based on the phenotypic changes relative to its parent: (i) the mutant

cannot perform any functions or is otherwise nonviable; or (ii) the mutant is viable and (a) there

is no difference in the number or identity of functions performed; (b) the mutant performs more

functions; (c) the mutant performs fewer functions; or (d) the identity of functions performed has

changed, but the number has not. The last category, which we call “switching”, was the focus of our

analysis.

We also modified this analysis to take into account possible effects of differences in the number

and complexity of tasks performed by pairing host genotypes isolated from the evolved and

coevolved populations that performed identical sets of tasks. Genotypes were pooled across the

replicate runs based on what tasks they could perform. All of the coevolved populations were

compared with all of the evolved populations to identify paired host phenotypes that performed

identical sets of tasks. For each pair of phenotypes thus identified, a genotype from the evolved and

coevolved populations that performed the appropriate set of tasks was chosen at random, and all

possible one-step mutations were then generated for both genotypes.
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Chapter 4

Evolving Digital Ecological Networks

Authors: Luis Zaman+, Miguel A. Fortuna+, Aaron P. Wagner, Charles Ofria [51]

+ These authors contributed equally

4.1 Overview

Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer

programs (i.e., digital organisms) that experience the same major ecological interactions as biological

organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational,

these programs evolve quickly in an open-ended way, and starting from only one or two ancestral

organisms, the formation of ecological networks can be observed in real-time by tracking interactions

between the constantly evolving organism phenotypes. These phenotypes may be defined by

combinations of logical computations (hereafter tasks) that digital organisms perform and by

expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes

are determined by task overlap for logic-defined phenotypes and by responses to encounters in

the case of behavioral phenotypes. Biologists use these evolving networks to study active and

fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of

multispecies networks shape coevolutionary outcomes, and the processes involved).
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4.2 Introduction

In nature, species do not evolve in isolation but in large networks of interacting species (see

Figure 4.1). One of the main goals in evolutionary ecology is to disentangle the evolutionary

mechanisms that shape and are shaped by patterns of interaction between species [56, 144, 165].

A particularly important question concerns how coevolution, the reciprocal evolutionary change

in local populations of interacting species driven by natural selection [162], is shaped by the

architecture of food webs, plantanimal mutualistic networks, and host-parasite communities. The

concept of diffuse coevolution, where adaptation is in response to a suite of biotic interactions [78],

was the first step towards a framework unifying relevant theories in community ecology and

coevolution. Understanding how individual interactions within networks influence coevolution, and

conversely how coevolution influences the overall structure of networks, requires an appreciation

for how pairwise interactions change due to their broader community contexts as well as how this

community context shapes selective pressures [53, 160]. Accordingly, research is now focusing on

how reciprocal selection influences and is embedded within the structure of multispecies interactive

webs, not only on particular species in isolation [165].

Coevolution in a community context can be addressed theoretically via mathematical modeling

and simulation [57, 182], by looking at ancient footprints of evolutionary history via ecological

patterns that persist and are observable today [59, 136], and by performing laboratory experiments

with microorganisms [16]. In spite of the long time scales involved and the substantial effort that

is necessary to isolate and quantify samples, the latter approach of testing biological evolution in

the lab has been successful over the last two decades [99]. However, studying the evolution of

interspecific interactions, which involves dealing with more complex webs of multiple interacting

species, has proven to be a much more difficult challenge. A meta-analysis of bacteria-phage

interaction networks, carried out by Weitz and his team [46], found a striking statistical structure to

the patterns of infection and resistance across a wide variety of environments and methods from

which the hosts and phage were obtained. However, the ecological mechanisms and evolutionary

processes responsible have yet to be unraveled.
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Figure 4.1: When Darwin received an orchid (Angraecum sesquipedale) from Madagascar whose
nectary was one and a half feet long, he surmised that there must be a pollinator moth with a
proboscis long enough to reach the nectar at the end of the spur [89]. In its attempt to get the
nectar, the moth would have pollen rubbed onto its head, and the next orchid visited would then
be pollinated. In 1903, such a moth was discovered: Xanthopan morgani. This was a remarkable
example of an evolutionary prediction. However, because species coevolve within large networks of
multispecies ecological interactions, this example of pairwise coevolution is more the exception
than the rule.
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Digital ecological networks enable the direct, comprehensive, and real time observation of

evolving ecological interactions between antagonistic and/or mutualistic digital organisms that

are difficult to study in nature. Research using self-replicating computer programs can help

us understand how coevolution shapes the emergence and diversification of coevolving species

interaction networks and, in turn, how changes in the overall structure of the web (e.g., through

extinction of taxa or the introduction of invasive species) affect the evolution of a given species.

Studying the evolution of species interaction networks in these artificial evolving systems also

contributes to the development of the field, while overcoming limitations evolutionary biologists

may face. For example, laboratory studies have shown that historical contingency can enable

or impede the outcome of the interactions between bacteria and phage, depending on the order

in which mutations occur: the phage often, but not always, evolves the ability to infect a novel

host [110]. Therefore, in order to obtain statistical power for predicting such outcomes of the

coevolutionary process, experiments require a high level of replication. This stochastic nature of the

evolutionary process was exemplified by Stephen Jay Gould’s inquiry (“What would happen if the

tape of the history of life were rewound and replayed?”) [61]. Because of their ease in scalability

and replication, evolving digital ecological networks open the door to experiments that incorporate

this approach of replaying the tape of life. Such experiments allow researchers to quantify the role

of historical contingency and repeatability in network evolution, enabling predictions about the

architecture and dynamics of large networks of interacting species.

The inclusion of ecological interactions in digital systems enables new research avenues: inves-

tigations using self-replicating computer programs complement laboratory efforts by broadening

the breadth of viable experiments focused on the emergence and diversification of coevolving

interactions in complex communities. This cross-disciplinary research program provides fertile

grounds for new collaborations between computer scientists and evolutionary biologists.
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4.3 History

4.3.1 Coreworld

The field of digital life was inspired by the rampant computer viruses of the 1980s. These viruses

were self-replicating computer programs that spread from one computer to another, but they did

not evolve. Steen Rasmussen was the first to include the possibility of mutation in self-replicating

computer programs by extending the once-popular Core War game, where programs competed in

a digital battle ground for the computer’s resources [132]. Although Rasmussen observed some

interesting evolution, mutations in this early genetic programing language produced many unstable

organisms, thus prohibiting scientific experiments. Just one year later, Thomas S. Ray developed an

alternative system, Tierra, and performed the first successful experiments with evolving populations

of self-replicating computer programs [133].

4.3.2 Tierra

Thomas S. Ray created a genetic language similar to earlier digital systems, but added several key

features that made it more suitable for evolution in his artificial life system, Tierra. Primarily, he

prevented instructions from writing beyond the privately allocated memory space, thus limiting the

potential for organisms writing over others [20]. The only selective pressure in Tierra was for rapid

self-replication. Over the course of evolution, this pressure lead to shorter and shorter genomes,

reducing the time spent copying instructions during replication. Some individuals even started

executing the replication code in other organisms, allowing those cheaters, which were originally

referred to as parasites in Ray’s work, to further shrink their genetic programs. This form of cheating

was the first evolved ecological interaction between organisms in artificial life software. Ray’s

cheaters pre-dated the formal study of evolving ecological interactions using Tierra-like digital

evolution platforms by 20 years.
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4.3.3 Avida

In 1993, Christoph Adami, Charles Ofria, and C. Titus Brown created the artificial life platform

Avida [121] at the California Institute of Technology. They added the ability for digital organisms

to obtain bonus CPU cycles for performing computational tasks, like adding two numbers together.

In Avida, researchers can define the available tasks and set the consequences for organisms upon

successful calculation [121]. When organisms are rewarded with additional CPU cycles, their

replication rate increases. Since Avida was designed specifically as a scientific tool, it allows users

to collect a comprehensive suite of data about evolving populations. Due to its flexibility and data

tracking abilities, Avida has become the most widely used digital system for studying evolution.

The Devolab (http://devolab.msu.edu/) at the BEACON Center currently continues development of

Avida.

4.4 Implementation

4.4.1 Digital Organsims

Digital organisms in Avida are self-replicating computer programs with a genome composed of

assembly-like instructions. The genetic programing language in Avida contains instructions for

manipulating values in registers and stacks as well as for control flow and mathematical operations.

Each digital organism contains virtual hardware on which its genome is executed. To reproduce,

digital organisms must copy their genome instruction by instruction (see Figure 4.2) into a new

region of memory through a potentially noisy channel that may lead to errors (i.e., mutations).

While most mutations are detrimental, mutants will occasionally have higher fitness than their

parents, thereby providing the basis for natural selection with all of the necessary components for

Darwinian evolution. Digital organisms can acquire random binary numbers from the environment

and are able to manipulate them using their genetic instructions, including the logic instruction

NAND. With only this instruction, digital organisms can compute any other task by stringing together
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various operations because NAND is a universal logic function [97]. If the output of processing

random numbers from the environment corresponds to the result of a particular logic task, then that

task is incorporated into the set of tasks the organism performs, which, in turn, defines part of its

phenotype.

Figure 4.2: The circular genome of a digital organism, on the left, consists of a set of instructions
(represented here as letters). Some of these instructions are involved in the copy process and others
in completing computational tasks. The experimenter determines the probability of mutations. Copy
mutations occur when an instruction is copied incorrectly, and is instead replaced by a random
instruction in the forming offspring’s genome (as can be seen in the offspring, on the right). Other
types of mutations, such as insertions and deletions are also implemented. All three of the parent’s
hardware pointers are represented: the instruction pointer (indicated by an i), the write-head pointer
(indicated by a w), and the flow pointer (indicated by an f). Arcs inside the circular genome represent
the execution flow, showing most of the CPU cycles being used during the copying process. After
genome replication is complete, the parent organism divides off its offspring, which must now fend
for itself within the Avida world.

4.4.2 Digital Interactions

Interactions between digital organisms occur through phenotypic matching, which, in the case of

task-based phenotypes, results from the performance of overlapping logic functions (see Figure

4.3). Different mechanisms for mapping phenotypic matching to interactions can be implemented,
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depending on the antagonistic or mutualistic nature of the interaction.

4.4.2.1 Host-parasite interactions

In host-parasite interactions, the parasite organisms benefits at the expense of the host organisms.

Parasites in Avida are implemented just like other self-replicating digital organisms, but they live

inside hosts and execute parasitic threads using CPU cycles stolen from their hosts [184]. Because

parasites impose a cost (lost CPU cycles) on hosts, there is selection for resistance, and when

resistance starts to spread in a population, there is selective pressure for parasites to infect those new

resistant hosts. Infection occurs when both the parasite and host perform at least one overlapping

task. Thus a host is resistant to a particular parasite if they do not share any tasks (see Figure 4.3).

This mechanism of infection mimics the inverse-gene-for-gene model [44], in which infection only

occurs if a host susceptibility gene (the presence of a logic task) is matched by a parasite virulence

gene (a parasite performing the same task). Additional infection mechanisms, such as the matching

allele and gene-for-gene models [4], can also be implemented.

In traditional infection genetic models, host resistance and pathogen infectivity have associated

costs. These costs are an important part of theory about why defense genes do not always fix rapidly

within populations [16]. Costs are also present in digital hostparasite interactions: performing more

or more complex tasks implies larger genomes and hence slower reproduction. Tasks may also

allow organisms access to resources present in the abiotic environment, and the environment can be

carefully manipulated to control the relative costs or benefits of resistance.

By keeping track of task-based phenotypes as well as tracking information about successful

infections in the community, researchers are able to perfectly reconstruct the interaction networks of

digital coevolving hosts and parasites (see Figure 4.4). The structure of these networks is a result of

the interplay between ecological processes, mainly host abundance, and coevolutionary dynamics,

which lead to changes in host specificity [128].
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Figure 4.3: Digital organisms process binary numbers taken from the environment using the
instructions that constitute their genomes. When the output of processing those numbers equals
the result of applying a logic function, the digital organism is said to have performed that task.
The combination of tasks performed by a digital organism partially defines its phenotype. The
center of the figure depicts the output of applying eight logical operators (tasks) on the two input
numbers above. On the left and right, five hypothetical host (green) and parasite (red) phenotypes
are represented as columns (on the top) and as circles (below). On the top, each column depicts
a phenotype and each row represents a task. Tasks performed by each phenotype are filled. In
the lower part, the interaction networks between hosts and parasites are illustrated, which result
from phenotypic matching: a parasite infects a host (indicated by a line) if it performs at least
one task that is also performed by the host. Inset numbers indicate the identity of phenotypes
represented on the top. Arrows represent the temporal direction of the coevolutionary process: from
the earliest phenotype to the most recent one. The order of tasks (from top to bottom) indicates the
time needed for a digital organism to perform that task over the course of the evolutionary trajectory.
Depending on the pattern of tasks performed by the digital organisms, a modular (left) or nested
(right) interaction network can emerge.
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Figure 4.4: Starting from a host phenotype (green node) and a parasite phenotype (red node), a
complex network of interactions (arrows) between hosts and parasites emerges out of the coevolu-
tionary process. Nodes representing new host and parasite phenotypes appear and disappear over
evolutionary time. The abundance of individuals expressing each phenotype changes continuously
(indicated by node size) altering interaction patterns, and thus influencing subsequent coevolutionary
dynamics. Interactions between a host phenotype and a parasite phenotype are depicted as arrows
pointing in opposite directions: the thickness of red arrows indicates the fraction of infections that a
particular parasite is responsible for inflicting on the indicated host phenotype, while the thickness
of the green arrows indicates the fraction of all of the hosts a particular parasite phenotype infects
that is accounted for by the indicated host phenotype. Often asymmetry between the thicknesses of
arrow-pairs leads to red arrows dominating the picture. At these times, most parasite phenotypes
are infecting only a small fraction of hosts expressing a given phenotype. Instead, the majority of
those hosts are being infected by parasites with other phenotypes.

58



4.4.2.2 Mutualistic interactions

Interactions in which both species obtain mutual benefit, such as those between flowering plants

and pollinators, and birds and fleshy fruits, can be implemented in evolving digital experiments by

following the same task matching approach used for hostparasite interactions, but using free-living

organisms instead of parasitic threads. For example, one way to set up a plant-pollinator type of

interaction is to use an environment containing two mutually exclusive resources: one designated for

“plant” organisms and one for “pollinator” organisms. Similar to parasites attempting infection, if

tasks overlap between a pollinator and a plant it visits, pollination is successful and both organisms

obtain extra CPU cycles. Thus, these digital organisms obtain mutual benefit when they perform

at least one common task, and more common tasks lead to larger mutual benefits. While this is

one specific way to enable mutualistic interactions, many others are possible in Avida. Interactions

that begin as parasitic may even evolve to be mutualistic under the right conditions. In most cases,

coevolution will result in concurrent interactions between multiple phenotypes. Thus, observed

networks of mutualistic interactions can inform our understanding about the outcomes and processes

of coevolution in complex communities [63].

4.4.2.3 Predatorprey interactions.

While host-parasite and mutualistic interactions are determined by task-based phenotypes, predator-

prey interactions are determined by behavior. Predators are digital organisms that have evolved

from ancestral prey phenotypes to locate, attack, and consume organisms. When a predator

executes an attack instruction (acquired through mutation), it kills a neighboring organism. When

predators kill prey, they gain resources required for reproduction (e.g., CPU cycles) proportional

to the level accumulated by the consumed prey. Selection favors behavioral strategies in prey that

enable them to avoid being eaten. At the same time, selection favors predators with behavioral

strategies that improve their food finding and prey attacking abilities. The resulting diversity in the

continuously evolving behavioral phenotypes creates dynamic predatorprey interaction networks

in which selective forces are constantly changing as a consequence of the emergence of new, and
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loss of old, behaviors. Because predators and prey move around in and use information about their

environment, these experiments are typically carried out using spatially structured populations. On

the other hand, hostparasite and mutualistic coevolution are often done in well-mixed environments,

though the choice of the environment is at the discretion of the experimenter.

4.5 Research Directions

Understanding how biodiversity is organized in natural ecosystems requires going beyond the

study of pairs of interacting species. Using digital organisms, one can find generalities about the

evolutionary and ecological processes shaping the web of interactions among species, as well as

the coevolutionary processes embedded within these networks. By tracing the evolution of digital

communities and their ecological networks, researchers obtain perfect fossil records of how the

number and patterns of links among interacting phenotypes evolved.

The stabilitydiversity debate [108] is a long-standing debate about whether more diverse ecolog-

ical networks are also more stable. Until recently, this debate has focused on one component of

biodiversity: species diversity. However, newer research has begun dealing with another component

of biodiversity: diversity in species interactions. Mathematical models show that a mixture of

antagonistic and mutualistic interactions can stabilize population dynamics and that the loss of one

interaction type may critically destabilize ecosystems [116]. Studies with digital organisms can

shed light on this debate from an empirical perspective because the types of interactions included

can be manipulated and the stability of the resulting evolving digital ecological network can be

measured.

Equally addressable using evolving digital ecological networks are many of the open questions

concerning the coevolution of ecological interactions in multispecies communities. For example, do

coevolutionary dynamics change as communities become richer? Is there any limit to their richness?

Is the evolution of interactions between multispecies networks historically contingent Why do some

ecological scenarios lead to predictable network structures and others do not [159]? Do genetic
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constraints play a large role in the evolution of ecological networks? These are only a few of many

open questions concerning the coevolution of ecological interactions in multispecies communities.

These and many related questions require researchers to look across the evolutionary history of

ecological network formation. For natural systems, those data are very difficult to collect. With

digital organisms, watching both the coevolutionary process and ecological network formation is

possible in real time. Data on the abundance of interacting phenotypes are recorded without error;

hence, the evolutionary implications of ecological processes can be explored in-depth.

The study of self-replicating and evolving computer programs offers a tantalizing glimpse into

the evolution of interactions among organisms that do not share any ancestry with the biochemical

life of Earth. This comes with potential caveats in translating predictions of evolving digital networks

to biological ones because mechanistic details differ substantially between interacting digital

organisms and interacting biological organisms. Nevertheless, these digital networks contain the

necessary components for ongoing coevolutionary dynamics in large webs of interacting organisms.

In spite of the differences between biological and digital evolution, the study of evolving digital

ecological networks can lead to a more predictive understanding of natural dynamics. Because the

general operational processes (e.g., Darwinian evolution, mutualism, parasitism, etc.) do not differ,

studies utilizing digital networks can uncover rules operating on and within ecological networks.

Together with microbial experiments, they create opportunities for furthering the understanding of

the interplay between ecological and evolutionary processes among interacting species.
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Chapter 5

Coevolution of Nested Communities

Authors: Luis Zaman, Miguel A. Fortuna, Charles Ofria

5.1 Introduction

Coevolution rarely occurs between isolated species; it is often embedded within a complex web

of biotic interactions [11, 165]. With the incorporation of tools developed by the growing field of

network science, ecologists have been able to quantify the structures of ecological communities

[114]. By doing so, they have identified some seemingly general patterns in the structure of food

webs and, more recently, bipartite networks [10,127]. Host-parasite and host-mutualist communities

are prime examples of bipartite networks, where there are two types of nodes (organisms), and edges

(interactions) only occur between different types. In other words, pollinators can only pollinate

plants, not other pollinators.

Nestedness is a frequently observed pattern in host-parasite webs, where parasite species (or

phenotypes, more generally) with a narrow host-range interact with a subset of the hosts infected

by parasites with broader host-ranges. A meta-analysis of bacteria-phage communities found that

they were often nested (27/38), and several of these networks represented coevolved communities

starting from a single host and parasite genotype [46]. This structure has been shown to reduce the

effects of competition, as well as maintain more diversity than in unstructured communities [12].
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Thus, nestedness appears to be more than the consequence of probabilistic interactions between

species.

Why are host-parasite networks so often nested? Several mechanisms have been proposed as

explanations for nestedness, such as physical constraints on the mechanism of interaction (e.g.,

running speed in predator-prey interactions), community-level benefits such as ecological stability,

an ongoing process of coevolution which only appears nested when viewed statically, and finally that

the nested structure is a byproduct of a neutral process operating on species’ abundances [10,46,88].

While none of these mechanisms excludes the others, the prevalence of nested communities suggests

the mechanisms are also quite general. Coevolution is a universal process that is responsible for both

”growing” and constantly pruning the complex ecological networks we observe. Could nestedness

be an outcome of the coevolutionary process in general, rather than specific genetic or physical

constraints?

Although community level effects are important for the maintenance of ecological networks,

they are unlikely to explain the origin of nestedness in isolated coevolving communities like

several of the bacteria-phage networks in [46]. One of the few studies of dynamic bipartite

network formation monitored plant-pollinator interactions over a relatively short period of time (two

seasons) [123]. Although they found that abundance and phenophase were sufficient to explain the

level of nestedness observed, this mechanism cannot be separated from the evolutionary origin of the

plant-pollinator interactions in the first place. Additionally, abundance may be the result of nested

interaction networks rather than their cause. In order to tease apart the ecological and evolutionary

mechanisms shaping nested interaction networks, we need a tractable system that allows us to

gather high-resolution interaction data over many generations while still being open-ended so that

nestedness is not a ”built-in” feature.

The Avida digital evolution framework provides us with these features as well as many others

[121]. Host and parasite organisms are self-replicating computer programs living in a simulated

environment [184]. They can interact with their environment, other organisms, and their own

internal state through executing simple assembly-like instructions. While we have essentially
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perfect knowledge of digital organism biology, their complexity and ability to interact with their

biotic and abiotic environments make Avida an astonishingly rich open ended system for addressing

evolutionary questions [51]. With Avida, we can watch while populations initiated with a single

host and parasite genotype coevolve for thousands of generations into complex communities of

interacting phenotypes, all in a matter of hours. We can save data about every host and parasite

phenotype, and their interactions over time. It is this ability to collect such detailed data that allows

us to answer questions regarding the evolutionary formation of ecological networks, and what is

shaping their structure. [51].

Here we investigate the structure of diverse host-parasite communities that coevolve in Avida.

We find that they are significantly more nested than expected by chance. To test if the process of

a network growing from a single interaction into a full complex web is responsible for some or

all of the nestedness we observed, we developed new process-based null models. These models

generated significantly nested networks, but did not account for the level that coevolved. Next, we

turn our attention to abundance based drivers of nestedness. We argue that this is a potentially flawed

explanation of networks’ nestedness because abundance could itself be a product of the community

and its structure. We show that abundance indeed produces extremely nested communities, as the

literature suggests. However, when information about which phenotypes can and cannot interact is

included, abundance no longer accounts for the level of nestedness that coevolved.

5.2 Material and Methods

5.2.1 Avida

Avida runs were configured identically to those in Chapter 3, except the runs were shorter (50,000

updates) and data were collected much more frequently.

Every 50 updates, the location and phenotype of every host and parasite organism was recorded.

Co-occurring host and parasite phenotypes thus represent an active infection. By enumerating the

host-parasite co-occurrences, we compiled a quantitative interaction network of unique host and
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parasite phenotypes. Host and parasite abundances were similarly tabulated. This quantitative

interaction network can be represented by a M×N matrix by considering each row a unique host

phenotype from the set of M host phenotypes, and each column a unique parasite phenotype from

the set of N parasite phenotypes. The value at (mi,n j) thus corresponds to the number of host

organisms with phenotype i that are infected by parasites with phenotype j. This quantitative matrix

can also be transformed into a binary incidence matrix, where all non-zero values are replaced with

a value of 1.

We processed the time series of quantitative interaction networks to generate a new series of

network events. We compared each pair of consecutive timepoints to calculate the number of hosts,

parasites, and edges that were added or removed in each 50-update window.

5.2.2 Nestedness Calculations for Incidence Networks

Calculations of nestedness are performed using the Nestedness measure based on Overlap and

Decreasing Fill (NODF) metric [6, 169]. Each row and column of the incidence matrix is sorted

by the total number of unique interactions. Thus, the matrix is rearranged to create the highest

density of interactions in the top-left corner (and, therefore, the maximum amount of nestedness as

calculated by NODF), while preserving the identity of edges. NODF compares all-pairs of rows

and columns, and scores the pair based on their degree of overlap. A perfect score is given to a pair

when the more specialized species is a subset of the more generalized species. Thus, intermediate

scores are calculated based on the proportion of overlap between rows or columns. The scores for

rows and columns are normalized by the size of the matrix and combined when the final NODF

value is calculated.

5.2.2.1 Incidence Null Models

To test if an interaction matrix had a significant value of NODF, we compared the empirical value

with a null distribution. This test requires a method of generating null interaction matrices from our

empirical ones. The standard model generates null networks by randomizing the identity of edges
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while keeping the total number of interactions the same. We refer to this as the fill null model, since

it maintains the empirically observed matrix fill. Unless stated otherwise, we used 1000 randomly

generated networks to calculate null distributions.

When we begin considering how interaction networks grow over coevolutionary time, the typical

fill null models no longer capture all the relevant information; every time point is considered entirely

independent from the others. In reality, there is a great deal of interdependence in the sequence of

coevolved interaction networks, which is the product of a process that adds and removes nodes as

well as edges.

To account for this interdependence, we developed two null models using process-based Monte

Carlo simulations of network growth. The first recapitulates the exact sequence of network events

(e.g., adding host nodes, removing edges) that occurred in the coevolving communities. However,

the identity of nodes and edges are not preserved, thus producing a unique interaction network every

time one is grown. This method provides us with a time series of NODF values from networks that

share an evolutionary history, similar to those observed in coevolving networks. We refer to this

method as the event null model.

The second growth model aims to capture the same evolutionary history, but without detailed

information about the exact sequence of network events. We realize that computational systems like

Avida provide an incredible amount of information, but most coevolutionary systems will not be so

amenable to our event null model. Instead, we can grow networks assuming that they grow with

monotonically increasing numbers of hosts (M), parasites (N), and edges (E) over some number of

timesteps (tm). Given a quantitative interaction matrix and tm, this method adds hosts, parasites,

and edges every timestep based on a random draw from a Poisson distribution parameterized by the

expected number of events per timestep. The simulation is continued until all nodes and edges have

been added. We refer to this method as the monotonic null model.

Figure 5.1 shows that the level of nestedness produced from the monotonic null model is fairly

robust to the value of tm used.
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Figure 5.1: The effect of simulation length on NODF values. While the effect is significant, it
is relatively small. Nevertheless, we use a value of 10,000 for all our analyses since it is past the
inflection point. The blue line is a local regression function (loess) and the shaded region depicts
confidence in the regression.
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5.2.3 Nestedness Calculations for Quantitative Networks

We used the WNODF metric to calculate nestedness values in quantitative networks [7]. This metric

is similar to the NODF value introduced above, but is weighted by the proportion of interactions

that follow the expected quantitative decrease in the number of interactions as species become more

specialized. Thus, nestedness is maximized when the most generalist species also have the most

frequent associations with their partners.

5.2.3.1 Quantitative Null Models

Similar to NODF, statistical tests of WNODF require a null distribution, and thus a method of

generating null networks. We developed a simple Monte Carlo method to generate quantitative

networks. Our method requires a vector of host densities (dm), a vector of parasite densities (dn),

the total number of interactions (q), and a matrix (S) that describes the probability of a successful

infection for all pairs of M×N host and parasite phenotypes, where si, j is the probability that host

phenotype ni and parasite phenotype m j interact. In the simplest case, setting S to the all-ones

matrix would generate null networks based purely on abundances because all host and parasite

phenotypes are equally able to interact. The inclusion of an explicit S matrix thus allows us to

generate networks that take into account information about infection mechanisms and genetics when

constructing our null networks. While we use this S matrix to represent infection mechanisms here,

it is a generic probability matrix that can be used to capture spatial, temporal, or other ecological

information that affects the likelihood of infection.

A quantitative null network is thus generated by repeatedly sampling a host and parasite

phenotype based on their densities and connecting them with a probability of si, j. If the interaction

is added, the host and parasite densities are updated to reflect their removal from the available pool.

This process is repeated until all q edges have been added. However, with a sufficiently constrained

S matrix, it is possible to run out of potential interacting pairs before adding all q edges. To prevent

deadlock, we impose a maximum number of repetitions (100×q), after which the random matrix is

returned.
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5.3 Results and Discussion

5.3.1 Digital Host-Parasite Coevolution Produces Nested Interactions

We tested the final interaction networks (update 50,000) for nestedness by comparing the empirical

NODF value to its corresponding distribution of NODF values obtained using the fill method

to generate null interaction networks. Consistent with natural bipartite networks, we found a

substantial level of nestedness in each coevolved replicate (p < 0.001 by Monte Carlo Simulation,

Figure 5.2).
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Figure 5.2: NODF values observed from coevolved (red) networks and the null networks (blue)
using the fill method. Error bars depict 2x standard deviation.

One potential explanation for the level of nestedness we observed is that the phenotypic mecha-

nism that determines if a particular host can infect a particular parasite is itself nested. To test this,

we used the same fill method to generate a null NODF distribution for the network composed of all

possible interacting host and parasite phenotypes (511×511). We found that the Avida network

is actually slightly less nested than expected by chance (p < 0.001 by Monte Carlo Simulation).

Thus, the evolution of nestedness is not due to a random set of phenotypes interacting through an

inherently nested mechanism.
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5.3.2 Growing Networks Produces Nested Interactions

Although the complete interaction network is not nested, coevolution still produces nested networks.

Perhaps the process of growing a network from a few interactions into a full web of host and

parasite phenotypes creates significantly nested structures. We tested two different ways of growing

networks, the event and monotonic methods (Section 5.2.2.1).

Both the event and monotonic method produced significantly nested networks (Figure 5.3 and

5.4. This demonstrates that coevolution, in general, produces nested communities even in the

absence of ecological and genetic details. One reason these growth processes produce significant

levels of nestedness is that older nodes have had more chances at being randomly assigned edges.

Whether or not older species also have more interacting partners in nature is an empirical question,

which can be answered by combining phylogenetic information with interaction data.
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Figure 5.3: NODF values from the final monotonically grown network (green) compared to the
fill method (blue). Monotonically grown networks are significantly more nested than the randomly
shuffled networks traditionally used to generate null distributions. Error bars depict 2x standard
deviation.

Interestingly, the monotonic growth method lead to higher values of NODF than the event based

method Figure 5.4. Fortunately, this is also the method that is more generally useful. It is rare

that an empirical system provides enough detail to generate a sequence of network events, but the

monotonic method simply requires an empirical network and the length of time to run. In addition,

this method is fairly robust to changes in simulation length (tm), which effectively changes the
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number of nodes and edges added to the network in each timestep (Figure 5.1).

These methods for generating growing networks allow us to analyze the trajectory of nestedness

over time. They also provide a new null model that predicts significant levels of nestedness from

network growth processes, like the one present during coevolution. Using just the traditional fill

based null model would have led to a significantly over represented level of nestedness in our

system.

5.3.3 Coevolved Networks are Still Nested

Even after using our most conservative method to generate a null distribution, the coevolved

networks are still significantly nested (Figure 5.4, p� 0.001, Two Sample t = 17.7). Additionally,

it appears that coevolution is continuing to increase nestedness, while the null methods are leading to

decreased nestedness. Thus, simply considering a dynamic network of host and parasite phenotypes

and their interactions is not sufficient to explain the structure of coevolved networks. Coevolution,

of course, is more than just a random process of adding organisms and interactions. There are

complex frequency-dependent interactions (Chapter 3) which are responsible for the evolution and

maintenance of numerous host and parasite phenotypes (Chapter 2). There are also likely trade-offs

and constraints that contribute to the phenotypes likely to evolve [98]. While these go beyond the

scope of a null model, per se, our dynamic models can incorporate more information about the

ecology of host-parasite interactions.

5.3.4 Abundance as a Driver of Nestedness

Another mechanism potentially explaining the pervasive nested structure is that species abundances

combined with random interactions often lead to nested communities. The commonly observed

species richness distributions (exponential, log-normal, broken stick, etc. [107]) have a long tail of

rare species, and would lead to a densely connected core with rare species (specialists) much more

likely to interact with abundant ones (generalists). Indeed, this has been theoretically demonstrated

using Monte Carlo simulation and analytical derivations [9,88,170]. Non-manipulative observations
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Figure 5.4: Empirically coevolved communities (red) are still more nested than grown networks
using either the monotonic (blue) or event (green) method. Despite the significant level of nestedness
we observed by growing networks rather than shuffling edges, the empirical communities were still
significantly nested. Empirical and event values are calculated every 50 updates, but the monotonic
values are saved every 10 timesteps and are trimmed to the shortest length time series obtained.
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have also corroborated this mechanism [23, 32].

However, assuming that the species richness distributions are the cause of nested networks is a

potential logical flaw. It seems likely that these distributions could be the product of nested networks

rather than their cause. With Avida, we have previously shown that parasites are indeed responsible

for the maintenance of host diversity (Chapter 2). Although these experiments are carried out in

idealized communities, which are not embedded within larger ecological networks, they suggest

that abundance is driven by the community and its structure rather than the other way around.

In addition, abundance produces strongly nested networks when links are proportionally assigned

to hosts and parasites, but this proportional mechanism ignores any genetic and phenotypic informa-

tion about which organisms can interact and which cannot (i.e., forbidden links) [82,122]. Obtaining

data about these forbidden links is technically challenging and often not directly measurable [172].

However, we know what phenotypes can possibly interact in Avida.

We compared the quantitative nestedness metric, WNODF, measured for our empirical network

with null networks generated from the host-parasite abundance data. We either generated null

networks purely based on abundances, or used information about which phenotypes cannot interact

by providing our null model with appropriate S matrices. Similar to previous studies, we found that

networks constructed while only considering abundance data generate highly nested networks. In

fact, these networks are significantly more nested than our empirical ones (p� 0.001, Two Sample

t =−7.9). However, once we take into account the phenotypic mechanism that determines success-

ful infection attempts in addition to the abundance data, our empirical networks are significantly

more nested than expected (p� 0.001, Two Sample t = 9.5). This result suggests that abundance

may have a role in determining the degree of nestedness in bipartite networks, but its importance is

overrated due to the lack of direct information about forbidden interactions.
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Figure 5.5: Networks constructed using abundance data with completely neutral interactions (gray)
or with forbidden link information (orange). Empirical networks (red) are significantly less nested
than networks with neutral interactions, but are significantly more nested than networks that take
into account forbidden links. Error bars depict 2x standard deviation.

5.4 Conclusion

Together, our results suggest that the general and universal process of coevolution is likely re-

sponsible for significantly nested host-parasite networks. Exactly which aspects of coevolution

are responsible are still elusive; However, we have ruled out several mechanisms that consider

nestedness an incidental rather than primary outcome in our coevolving networks.

The methods presented here represent novel ways of accounting for dynamics in coevolving

interaction networks. While we apply these methods to Avida, a somewhat unnatural system [94],

we hope that ecologists and evolutionary biologists will find our methods broadly useful.
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Chapter 6

Evolution Along the Parasitism-Mutualism

Continuum

Authors: Luis Zaman, Justin R. Meyer, Charles Ofria, and Richard E. Lenski.

6.1 Introduction

Symbiotic interactions do not always fall neatly into discrete parasitic or mutualistic categories.

Interactions exist on a continuum with virulent parasitism and obligate mutualism at opposite ends.

In addition, their position along this continuum need not be fixed. The outcomes of many symbiotic

interactions are entangled in their environmental context. For example, plant-associated rhizobial

mutualists may become parasitic in nitrogen-rich soil, and costly plasmids carrying accessory genes

for antibiotic resistance are rapidly lost in the absence of selection yet abound in nature [69,100,118].

In addition, symbiotic interactions are evolutionarily labile. There are many examples of

mutualism breakdown, where altering environments or transmission modes can have dramatic

evolutionary consequences on symbiotic interactions [125, 139]. In one outstanding example of

a mutualism arising from parasitism, the long term tracking of Wolbachia populations identified

a rapid shift, where fecundity of infected Drosophila simulans went from having a 15%-20%

fecundity reduction to a 10% fecundity advantage [175]. The relative paucity of parasitism-to-
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mutualism examples is not due to their rarity in nature. Indeed, phylogenetic analyses have identified

several independent mutualistic clades that evolved from parasitic origins [138]. A more recent and

comprehensive analysis found that the majority of proteobacterial mutualists are more likely to have

evolved from parasitic ancestors rather than free-living ones [140].

Although observing these transitions is challenging, microbial evolution provides an opportunity

to empirically study the evolutionary flexibility of the parasitism-mutualism continuum. Sachs and

Wilcox manipulated a jellyfish mutualist’s transmission mode from primarily vertical to horizontal

and observed a resulting shift to parasitism [141]. J.J Bull et al. manipulated the level of partner

fidelity in a non-lethal filamentous phage infecting E. coli and observed a reduction in the cost of

infection when vertical transmission was allowed [22]. The importance of spatial structure for the

evolution of more prudent exploitation and even cooperation has been experimentally demonstrated

as well [67,84]. These results reinforce the view of symbiotic interactions as dynamic, environment-

dependent, and the targets of ongoing selection. Still, few studies have directly manipulated the

environment in a context-dependent interaction to test if evolution reinforces the interaction’s new

position on the parasitism-mutualism continuum (e.g., [19]).

Here we investigate evolution and coevolution along the parasitism-mutualism continuum with

bacteriophage λ and its E. coli host. Several factors make phages, and specifically λ, a useful

system for this investigation, including rapid generation times, large potential for evolution, and

well-characterized biology. Briefly, we used an engineered phage containing the lacZα subunit along

with a bacterial host that had a deficient allele of this subunit (REL606 lacZ−). In the absence of

phage, the ancestral host is unable to consume lactose in the growth media. Association with phage

may complement the host’s deficient machinery, enabling lactose metabolism. However, phage are

typically considered deadly parasites; how could this association become mutualistic? Crucially, λ

can employ either a lytic or lysogenic lifecycle (Figure 6.1A) and, evolution is able to tune the switch

between these alternate strategies [135]. Lysogens, bacterial hosts infected with a dormant phage

genome (prophage), thus have access to the lacZα subunit. Indeed, lysogenic phage in nature play

several mutualistic roles. Prophage can function as a toxin to sensitive (i.e., non-lysogenic) bacteria
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when they stochastically enter the lytic cycle, which enables lysogens to invade non-lysogenic

populations [137]. From the bacterial perspective, phage encoding virulence factors that facilitate

colonization of a human host are mutualists [20]. Recent work has also demonstrated that phage in

the mammalian gut can play a mutualistic role with their bacterial partners by providing mechanisms

for the rapid spread of antibiotic resistance genes after treatment [115].

In this system, λ prophage are maintained in their dormant state by the Repressor protein

(the product of gene cI). When Repressor is bound to three operators (OR{1,2,3}), most of

the prophage’s genes are silenced. Interestingly, the same mechanism that maintains prophage

integration also prevents coinfection since infecting phage DNA is bound by Repressor before it can

be circularized (Figure 6.1B). Lysogeny is a complex and curious trait of many bacteriophage, and is

itself environmentally dependent [85, 90]. Although much is known about the genetic mechanisms

of lysogeny, the conditions that favor its evolution and maintenance are still mysterious [154].

We performed evolution experiments where the evolving phage population was diluted and

transferred every 48 hours into a fresh culture of ancestral hosts. We also performed coevolution

experiments where both bacteria and phage were diluted into fresh media every transfer. Contrary

to our hypotheses, we found no signs of mutualism in the evolution experiments. In the coevolution

experiments, we did see mutualism arise, but it was short lived. Further investigation suggests that

novel cheaters evolved in both cases. In the evolution experiment, phage evolved the ability to infect

the otherwise resistant lysogens. In the coevolution experiment, hosts stole the lacZα subunit from

the phage rendering the association unnecessary.

6.2 Methods

6.2.1 Media

Unless otherwise stated, all cultures were grown in 50ml Erlenmeyer flasks containing 10ml of

media. Flasks were incubated at 30◦C and were shaken at 120rpm.

The abbreviation LB refers to Luria-Bertani media in this manuscript. Our primary experimental
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Figure 6.1: Lambda phage life history. (A) When a λ phage particle binds to an E. coli cell and
ejects its DNA, it can enter into either the lytic (left) or lysogenic (right) cycle. In the lytic cycle,
the phage chromosome is circularized, the host’s machinery is hijacked to replicate the phage
DNA and produce new virions. In the lysogenic cycle, the phage’s DNA is integrated into the host
chromosome and remains dormant through the binding of several Repressor proteins. However, our
phage ancestor has a temperature sensitive cI gene (the gene that is responsible for Repressor) that
degrades at high temperatures. When Repressor degrades, it induces the dormant prophage into
the lytic cycle. (B) Lysogens are resistant to coinfection because infecting phage DNA is bound by
extra Repressor proteins and fails to circularize or integrate into the host chromosome.

media (mM9) was M9 [142] supplemented with 4% v/v LB broth without added NaCl and 1g/L

MgSO4. The small amount of LB was added so bacteria could start growing in the media with

lactose since λ infection only succeeds when E. coli is metabolically active. The high concentration
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of MgSO4 was added to improve phage growth [110]. Sugar was added at a concentration of 1g/L

of either lactose (mM9L) or fructose (mM9F ). When we revived strains, we inoculated them in

M9LB, a rich media made by mixing M9 salts with LB that lacks NaCl.

LB agar plates were used extensively and were often supplemented with additional ingredients.

Ampicillin supplemented LB plates had a concentration of 100ug/ml (LB+Amp). We used LB plates

supplemented with X-Gal and IPTG to quantify the proportion of lactose metabolizing colonies

(LB+X-Gal) [149], and minimal lactose plates (ML) were used as a positive screen. Tetrazolium

maltose plates were used to quantify the proportion of λ resistant colonies since the most frequently

observed resistance mutations eliminate E. coli‘s ability to consume maltose [105,110]. Phage were

suspended in a layer of soft agar (LB with half the concentration of agar, SA) atop LB plates.

6.2.2 Bacteria and Phage Strains

Bacterial cultures were cryopreserved in 1ml aliquots supplemented with 20% glycerol by volume

and frozen at −80◦C. Cultures were revived by inoculating M9LB media with a scraping of the

frozen culture and growing overnight at 30◦C. Phage stocks were isolated from revived lysogens

with the protocol described bellow.

All experiments were performed using a modified strain of REL606 (E. coli B). We replaced

the wild type lacZα with a deficient copy into the REL606 ancestor, denoted REL606 lacZ−

here, through ”gene gorging” [70]. The deficient lacZα allele was moved from the plasmid

pSwtRlacZwhiteRz, which contains 5 alanine substitutions that disrupt the dimer- and trimerization

of β-gal [83, 148] We confirmed REL606 lacZ− was lactose deficient by monitoring for growth in

liquid media, solid media, dilute rich media supplemented with large amounts of lactose, and X-Gal

indicator plates. In addition, spontaneous recovery of lactose metabolism was never observed, likely

because recovery requires several reversions.

We were able to induce the prophage into the lytic cycle by heat shock because our phage has the

cI857 allele, and thus produces a Repressor protein that is unstable at high temperatures. Induction

is therefore performed by first growing a culture to exponential phase at 30◦C, heat shocking the
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culture in a water bath set to 42◦C for 30 minutes, and then allowing the induced prophage to

complete lysis at 37◦C for 45 minutes. After the induction cycle is complete, a 1ml aliquot is

treated with 10ul of chloroform and spun down at 16,873×g for one minute. The supernatant is

reserved as a phage stock. Any reference to phage stock was prepared using this outlined method.

During lysogeny, most phage genes are silenced [90]. Thus, while lysogens have access to

the lacZα subunit, it may not be expressed at substantial levels. To isolate a phage that conferred

active expression of lacZα during lysogeny, we first made a phage stock from E. coli lysogen

SYP045 [148], which contains a thermally inducible lambda prophage (cI857) with an R::lacZα

fusion. Because lacZα in this phage is fused with the R endolysin gene, it is only highly active

during the final stages of lysis [174]. We thus performed additional recombination and selection

steps to generate phages that provided more active lacZα expression.

To generate recombinant phage, we transfected REL606 lacZ− with the high-copy number

pCR 2.1 plasmid containing an active lacZα subunit and lac promoter. We screened potential

transformants on LB+Amp plates and isolated a viable colony. We then inoculated a culture of

transformants in M9LB and added 100ul of the phage stock induced from SYP045. By co-culturing

transformants and lysogenic phage overnight at 30◦C, we encourage the recombination of the phage

lacZα sequence with the region in the high-copy pCR plasmid. After overnight growth, a new phage

stock was made from the transfected lysogens following the heat-shock protocol above.

We treated 1ml of phage stock with 10ul of DNase for 24h to destroy any remnant plasmids that

may have contaminated the phage stock. We then used this treated phage stock to infect replicate

populations of REL606 lacZ− in mM9L. This additional step of growth in mM9L selects for

phage able to successfully lysogenize their hosts as well as grow on the large amounts of lactose in

the media. After the populations were visually more turbid than cultures without phage (approx.

48-72h), we streaked colonies on ML and LB+X-Gal plates to ensure we were isolating only

lysogens capable of growing on lactose. We re-streaked all isolated lysogens to ensure we were

not picking up any free phage particles. Finally, we haphazardly chose one of the lysogen clones,

LZL107, to prepare phage stocks that would serve as the ancestor for all of our experiments.
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6.2.3 Evolution and Coevolution Experiments

In the evolution experiment, we held the host constant and only allowed the phage to evolve. We

maintained 10 evolving phage populations, 5 of which were in mM9F , and the other 5 in mM9L.

Every 48 hours, we would induce all evolving populations by transferring 1ml of culture into tubes

with 4ml of fresh M9LB and heat shocking it following the protocol above. Then, 100ul of the

phage stock was used to infect a fresh corresponding flask of REL606 lacZ− with an initial host

density of approximately 5×107 colony forming units (cfu).

We also maintained 10 populations for the coevolution experiment, with 5 in mM9F and 5 in

mM9L, but instead of transferring only the phage population, we transferred 100ul of the mixed

population into fresh media (i.e., we performed a 100-fold dilution). Every 5 transfers we froze

a 1ml aliquot from each population of phage stocks from the evolution experiment and mixed

populations from the coevolution experiment.

6.2.4 Plating Assay for Phage Density

Phage density was estimated by plating 2ul of a 1/10 phage stock dilution series onto a lawn of

REL606 lacZ− hosts suspended in SA. The spot with the most clearly defined plaques was counted,

and the density of plaque forming units (pfu) per ml was calculated.

6.2.5 Cost/Benefit Assay

We developed an assay to measure the operational cost and benefit of hosts associating with phage

over time in the evolution experiment. The cost of association is apparent when we consider

obligately lytic phages, where every infection results in host sterility and death. On the other

hand, the benefit is easy to imagine with an obligately lysogenic phage: the prophage provides

resistance to coinfection (even of lytic conspecifics) as well as access to an otherwise unavailable

resource. However, a major complication of measuring the cost and benefit of associating with

lysogenic phage is the dynamic nature of their interaction. A typical growth cycle includes a period

81



of exponential growth followed by rapid killing by the phage, and a later growth phase of lysogens.

Calculating the area under a growth curve (AUC) provides a single value that summarizes the

periods of growth and death in a population. We can compare the values of AUC for populations with

phage (AUC+) and without phage (AUC−), which thus provides information about the cost and

benefit of the association. To tease apart part of the cost from the benefits, we can compare AUCs in

the fructose environment to AUCs in the lactose environment. Since lactose is only consumable

by lysogens, values of AUC+ that are greater than AUC− indicate a beneficial interaction. In the

fructose environment, there are no metabolic benefits of phage association, so we can get a clearer

picture its costs. We calculate the proportional reduction in AUC as (AUC−−AUC+)/AUC−,

thus normalizing the difference between growth curves by the value of AUC−, which we expect

to be the larger value, at least at first. If this proportion reduction value is positive, it represents a

cost to the association. However, if this value is negative, it means the association with the phage

produces a net increase in growth.

To measure growth curves, we used a Molecular Devices SpectraMax M3 configured to read

absorbance at 420nm every 3 minutes for a total of 48 hours. We used 96-well microtiter plates

with samples arranged such that each well with phage was adjacent to a paired well without phage

which was used in calculating the integral ratio. This pairing effectively eliminates any systematic

column or row effect.

Bacteria were inoculated at a density of approximately 5×107 per ml and phage were diluted

to approximately 1×104 per ml.

6.2.6 Plating Assay for Lactose Metabolism and Phage Resistance

Lactose metabolism was scored by plating cultures on LB+X-Gal plates, allowing them to grow

overnight at 30◦C, and then leaving them at 4◦C for another 24 hours. Colonies that were consuming

lactose turn bright blue, while lactose deficient cells grow into white colonies.

We used TM plates to score phage resistance. This is possible because mutations that eliminate

lamB, the porin that our phage infects through, also eliminate maltose metabolism. Although this is
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only one way our E. coli strain can evolve resistance, it is repeatedly observed as the first step of

coevolution with λ phage in previous experiments [105, 110].

6.3 Results and Discussion

6.3.1 Evolution Experiment

To empirically test our hypotheses, we performed a phage evolution experiment with two resource

treatments at opposite ends of the environmental spectrum, where the major carbon source was

either available to the ancestral host (fructose), or was only available to lysogens (lactose). Given

our hypothesis that evolution reinforces conditional mutualisms, we would predict that costs of

association would decrease when the phage was evolving in the lactose treatment, and increase

when evolving in the fructose treatment. On the other hand, benefits should only increase in the

lactose environment. Contrary to our expectations, we found essentially no change in cost or benefit

in either treatment (Figure 6.2).

The lack of change in the fructose environments could simply be due to our ancestral phage

starting off with nearly optimized lysogeny rates. However, the lack of change in the lactose

treatment is more puzzling. It is unlikely that phage populations lacked variation for rates of

induction given previous results showing that λ can evolutionarily tune its switch between lysis

and lysogeny on timescales shorter than our experiment [135]. Another explanation is that our

hypothesis does not take into account the full evolutionary potential of phage λ.

6.3.2 An Evolved Cheater

These complexities can be difficult to track down, but coincidentally we noticed that some of the

evolved phage from later in the experiment were able to infect lysogens. Recalling Figure 6.1B, wild

type λ confers lysogens with resistance to coinfection. However, a strain of λ able to productively

infect lysogens was first described in 1954 ( [74]). This vir phenotype requires 3 mutations that
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Figure 6.2: Cost and benefit of phage association assayed by growth curves in the evolution
experiment. The evolved sugar is indicated by line color, and the assay sugar is indicated by the two
panels. In the fructose assay environment, we are measuring the cost of phage association in the
absence of any metabolic benefit. In the lactose assay environment, we are measuring the benefit of
phage association. The green point indicates the ancestral phage values. Despite our hypotheses,
we saw essentially no change from the ancestor. Lines represent the mean of the 5 replicates, and
error bars depict 2× standard error of the mean.

disrupt the binding of Repressor protein to operators OR{1,2,3}. In 4/5 of the fructose replicates

and all of the lactose populations, this λ vir phenotype was first observed between the 20th and 30th

transfer, which is consistent with the difficulty of evolving multiple mutations.

Once this phenotype evolves, we no longer expect the evolution of more mutualistic interactions

since they would fall victim to λ vir. Although the evolution of this complex vir phenotype is inter-

esting in its own right, in the context our phage evolution experiment, it may technically be the de

novo evolution of cheaters. However, λ vir evolves in the fructose treatment as well. Understanding

the evolutionary dynamics that give rise to this phenotype is an interesting investigation, but it is

one that must be saved for future work.

6.3.3 Coevolution Experiment

In the coevolution experiment, the association between bacteria and phage has the potential to be

long lived. Where as, in the evolution experiment, the association between a prophage and its host
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is severed every transfer. As long as a prophage is dormant, its association is maintained in the

coevolution experiment. This provides the opportunity for a greater accumulation of benefit, as well

as coadaptation between the phage and the host. However, this potential for coadaptation makes

analyzing the cost and benefit of association combinatorially more difficult. While overall cost

and benefit may be difficult to measure, correlated responses such as phage titer and the speed at

which populations evolve resistance are readily observed. Results from the coevolution experiment

indicate that, at least at first, the host-phage association was likely beneficial. The phage titers were

higher in the lactose treatment, and despite this higher parasite load, resistance was slower to evolve

(Figure 6.3). Additionally, the proportion of lactose consuming colonies rapidly increased in the

lactose environment, but was never detectable in the fructose treatment (Figure 6.3). This suggests

that lysis was the primary mode of interaction in the fructose environment, or that the phage quickly

lost the lacZα gene.
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Figure 6.3: Phage titers and the proportions of resistant and lactose consuming cells in the
coevolution experiment. Phage titers are higher in the lactose environment, consistent with a
mutualistic interaction. In addition, resistance evolved more slowly and lactose consumption nearly
fixes in the lactose treatment. Note that phage PFU is on a log scale.

6.3.4 A Coevolved Cheater

Although lactose consumption nearly fixed in the lactose treatment, the phage titer was erratic, and

4/5 replicates dropped by several orders of magnitude by the end of the experiment. Thus, the
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association between the bacteria and phage became unstable. Confirming this, we isolated several

clones from the end of the lactose coevolution experiment and found that, although they could

consume lactose, they were no longer harboring inducible phage. This finding suggests that the

prophage either was inactivated or that its lacZα region was recombined with the host gene, thus

fixing our ancestor’s deficient copy. In either case, the hosts effectively defected on the symbiotic

relationship with their phage and became cheaters. Further analysis is required to uncover when

this transition occurred and how it affected coevolutionary dynamics.

6.4 Conclusion

In some respects, the evolution of cheaters makes this story more interesting than it would have

been if everything evolved as predicted. Cheaters, in the traditional social sense, are players that

get the benefits of an interaction without paying the full (or any) cost. In the case of the λ vir

phage, it is defecting on the association between lysogenic phage and their hosts rather than directly

defecting on the host. We never observed any vir phenotypes in the coevolution experiment, perhaps

because this extreme level of virulence is only beneficial when the association between host and

parasite is fleeting. Although there is a constant inflow of sensitive hosts, it seems unlikely that the

vir phenotype would have evolved in response to an advantage on these naive ancestral bacteria.

For one, it requires several mutations that are exceedingly unlikely to occur together by chance.

If, instead, these were individually beneficial mutations for phage growing on wild-type hosts, we

would expect the vir phenotype to be commonplace. Thus, some aspect of the ecology created by

lysogenic phage being transfered daily into fresh bacterial hosts creates a selective advantage for

λ vir. Understanding what exactly these aspects are will be the focus of our future work with this

system.

We uncovered two interesting cases of the evolution of de novo cheating. In the evolution

experiments, the phage evolved a vir phenotype, removing the benefit from mutualistic association.

In the coevolution experiments, the hosts ”duped” their phage partners by stealing the lacZα subunit,
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rendering the symbiotic interaction unnecessary. Although we did not predict these results, they

are retrospectively unsurprising. The evolutionary maintenance of cooperation is an intensely

studied subject, and our results reinforce the necessity of understanding its intricacies. That simple

environments can give rise to complex ecological interactions over shot evolutionary timescales has

been observed in many experimental evolution studies, and our results add to the growing evidence

that community complexity is a general evolutionary outcome.
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Chapter 7

Conclusion

Ecology’s importance in evolution has been appreciated since Darwin’s discovery of natural selection

[31]. However, evolution affecting ecology is only recently becoming appreciated [24, 144, 183].

Host-parasite coevolution is a perfect example of how ecology and evolution are intimately entangled.

However, coevolution is typically more complicated than the pair-wise adaptations often envisioned.

Instead, interactions occur in complex communities that vary in time and space [80, 163].

In this thesis, I followed the arrows from ecology to evolution and back again. In Chapter 2

I showed how host-parasite coevolution drives diversification in a computational model system.

Because a complex network of interacting host and parasite phenotypes arose, the ecological context

of adaptation evolved into community ecology. In Chapter 3 I showed that this community context

had substantial effects on further evolution in the hosts and, in this case, led to a trend of increasing

complexity. These two chapters together show how evolution can influence ecology, and how new

ecological conditions can influence further evolution. These results also lend insight to evolutionary

computation, where incorporating more ecologically mechanistic and open-ended coevolution in

evolutionary computation may produce far more complex solutions to problems than those typically

evolved.

The community that formed played a central role and, interestingly, was not just a random

assemblage of interacting host and parasite phenotypes. Instead, it exhibited a nested structure,
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which has been observed in many natural communities [12, 46]. Despite its prevalence, understand-

ing why nestedness arises has been challenging (Chapter 4) [10]. In Chapter 5 I investigated why

nestedness occurs in this particular computational system. By developing novel null models, I

demonstrated that coevolution as a process is responsible for the nested structure. Although the story

is incomplete, I was able to make significant advancements by using explicitly dynamic models and

the perfect information about phenotype interactions Avida provides.

In the first few chapters, I showed that parasites can be beneficial in an ecological and community

context by favoring diversity, complexity, and structured communities. In Chapter 6, I aimed to

study how evolution can move a deadly parasite along the parasitism-mutualism continuum, thus

turning harmful interactions into beneficial ones. Instead of using Avida, the computational model

system used in the previous chapters, I used a bacteria-phage model system. This chapter marked

my introduction to the world of wet biology. Phage were an ideal system for this study since

many relevant microbial traits are encoded by accessory genes, and temperate phage have well

characterized genetic switches that determine if they destroy their host immediately or lie dormant.

While similar experiments could have been carried out with Avida, the details of bacteria-phage

interactions were particularly pertinent in this case. Indeed, these details ended up being important

to the story that emerged. Instead of seeing evolution along the continuum as I predicted, the details

of the bacteria and phage biology led evolution sideways. Chapter 6 ended up being a story about

cheaters rather than mutualists, although the two strategies are inherently related.

I have used simple computational simulations, relatively simple models, complicated digital

organisms, and microbial model systems in this thesis. Instead of choosing one to use exclusively,

I have chosen a field to explore using the tools best suited to answer my questions. To build a

cohesive body of work for this thesis, I necessarily left out several ongoing and completed projects

using yet another tool. With Brian Connelly, I built an agent based simulation to investigate the

role spatial structure plays in ecology and evolution [27–29]. My major computational contribution

to this project was a dynamic programing method for building large random planar graphs with a

specified expected neighborhood size in a reasonable amount of time. These graphs allowed us to
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vary how far in space interactions could occur while maintaining two-dimensional geometry and

the computational speed of explicit neighborhood lists. While much of the work I contributed was

computational, the motivation was in answering biological questions.

All of the experiments presented in this thesis were done in simple well-mixed environments,

but nature is not so convenient. Just as investigating temporal dynamics in coevolutionary processes

is necessary to understand the outcomes (e.g., Chapters 3 and 4), investigating how structured

environments alter processes and patterns will lead to a broader and hopefully more predictive

understanding of coevolution. Every chapter of this thesis provides interesting followup questions

using structured populations. In structured populations, is the diversity driven by coevolution with

parasites split up into relatively homogenous patches with variation at the metapopulation level? Is

there substantial local adaptation and does the level of maladaptation vary with the spatial properties

of the patch (e.g., connectance and betweenness of patches)? Do we still see the coevolution of

complexity when the parasite communities are variable in space, or do we see more fluctuations like

we did in the absence of community effects? Is the network structure different within vs. between

populations? Perhaps we will see nestedness within populations and a more modular structure at

the metapopulation level. Does spatial heterogeneity promote or hinder the evolution of mutualism?

Can we virulent and mutualistic phage coexist when the benefits of mutualism are patchy?

As I move on, I will study some of these questions using computational, mathematical, and

microbial methods. Having just “gotten my hands wet” as Richard Lenski put it, I am spending

a postdoc learning more about experimental coevolution with phage as part of Ben Kerr and Eric

Klavins’ Lab at the University of Washington. In addition to addressing some of these followup

questions, I will be learning about new synthetic biology tools. These tools are enabling experiments

that would have been previously impossible in natural systems. I hope that by combining the digital

and computational approaches I have used in the past with these new biotechnology breakthroughs,

I will continue to shed light on the coevolutionary process and its outcomes.
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Appendix A

Glossary of Cross-Disciplinary Terms

CPU Cycles - Central processing unit cycles are the fundamental unit of time for computers. Every

cycle, the CPU executes a single instruction and continues to do so until the computer is powered

off.

Memory Space - A simple type of context, which includes the computer instructions to be executed

by the CPU as well as the values of local variables.

Thread - In its simplest form, a thread is a semi-independent series of instructions that can be

executed along side of other threads. They are only semi-independent because threads could

be executing the same set of instructions (the same program), or could be interacting through a

shared memory space or message passing. The most basic way of scheduling threads is through a

round-robin process where CPU cycles are distributed one at a time to each thread in turn.

Update - In Avida, time is measured in updates, a population-size dependent unit. An update

represents enough CPU cycles for every individual in the population to execute 30 instructions.

Task - Digital organisms perform computational tasks by manipulating random 32-bit numbers.

These tasks enable organisms to interact with resources and other organisms in their environment.

Coevolution - The reciprocal adaptation of one population to another.

Diffuse Coevolution - Coevolutionary adaptations to a suite of populations rather than just pair-

wise interactions. Although some contention exists about diffuse coevolution rendering traditional

pair-wise coevolution obsolete, the former is really just viewing the later in a more connectionist
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context.

Complexity - This is perhaps the most difficult term to succinctly define, in part because there

is no universally accepted definition. An intuitive metric I like and tend to use is the number of

interacting parts. Although this does not set a threshold for when something goes from being simple

to complex, it gives a quantitative scale that allows for comparisons.

Drunkard’s Walk - In general, the drunkard’s walk refers to a biased random walk. The story goes

that the drunkard leaving the pub will eventually stumble his way into the gutter because every time

he stumbles backwards, his fall is caught by the pub’s wall. Stephen Jay Gould conjured the illusion

of the drunkard’s walk to argue that apparent trends of increasing complexity is due simply to a

random walk where complexity is bounded below by the simplest living organism. Over billions of

years and countless diversification events, average complexity will have had to increase.

Arms Race - Another common image used in biology, especially when talking about antagonistic

coevolution. As one side builds up its armament, the other side must also in order to stay defended.

This creates a positive feedback loop, or a ”snowball” effect where both sides are racing to build

more and more arms.
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Appendix B

Introduction to Parasites in Avida

This introduction assumes some basic knowledge about Avida. In particular, familiarity with the

basic organism and hardware will be very useful to have.

(Very) Brief Overview of the TransSMT Hardware

With that said, parasites currently do not work in the default hardware but rather one that supports

better threading capabilities – the TransSMT hardware. The differences aren’t huge, but they deserve

their own documentation. Instead, I will just highlight major differences between the hardware

types important for parasites, namely memory spaces and threads.

Memory Spaces Memory spaces are regions of memory reserved for genetic instructions such

as an individual’s genome. To access these memory spaces, organisms execute the Set-Memory

instruction followed by one or more Nop instructions specifying which space to use. In this hardware,

the genome copy produced during self-replication must also be in a separate memory space, as well

as any thread processes an individual spawns.

Threads Threads in this hardware are distinct code sequences that are executed either in parallel,

where all threads execute an instruction per CPU cycle awarded to an individual, or round-robin,

where a single instruction from a single thread is executed per awarded CPU cycle and each thread
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executes in turn. The number of threads an organism is allowed to have, as well as how they are

scheduled is controlled by the following config options in the avida.cfg file.

• MAX CPU THREADS 1 - Maximum number of Threads a CPU can spawn

• THREAD SLICING METHOD 0 - 0 = One thread executed per time slice. - 1 = All threads

executed each time slice.

Parasites in the TransSMT Hardware

Parasites in Avida are almost identical to hosts, self-replicating by copying their genome instruction-

by-instruction into a new memory space. However, instead of dividing this new genome off into

the world, parasites attempt to infect a random organism in its host’s neighborhood (globaly if

BIRTH METHOD=4 or WORLD GEOMETRY=7, and honoring the WORLD GEOMETRY if BIRTH METHOD is

set to any other value) with their offspring parasite genome, becoming a new thread on the host

organism. Parasites attempt infection by calling the Inject instruction, which is also Nop-modified

to identify the memory space the parasitic thread should occupy.

In order for infection to succeed, the host must be able to accept a new thread in the mem-

ory space the parasite is attempting to occupy. This means the host must have fewer than

MAX CPU THREADS and that the host has not used the memory space specified by the Inject

instruction. More than one parasite per host is not currently supported, thus we typically set

MAX CPU THREADS=2. We can eliminate the effect of host-parasite coevolution via memory space

allocation and specification (as well as any unforeseen side-effects such as parasites overwriting

host offspring when specifying a particular memory space) by giving parasites memory spaces

entirely separate from their host’s (PARASITE MEM SPACES=1).

Parasites as well as hosts can perform logic tasks, and we can use their task-based phenotypes

to implement additional mechanisms determining if infection will succeed or not. The config option

INFECTION MECHANISM already has several mechanisms implemented. The implemented options

have the following behavior:
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• 0 - Infection will succeed independent of task-based phenotypes

• 1 - Infection will succeed if the parasite and host have at least one overlapping task (Inverse

Gene-for-Gene)

• 2 - Infection will succeed if the parasite does at least one task the host does not perform

• 3 - Infection will succeed if the parasite and host do the same tasks (Matching Alleles)

• 4 - Infection will succeed if the parasite performs all the tasks the host does as well as at least

one additional task (Gene-for-Gene)

• 5 - Infection will probabilistically succeed based on the proportion of tasks that match between

the host and parasite raised to a configurable exponent QMA EXPONENT. (Quantitative Matching

Allele)

To have more control over how many CPU cycles a parasite steals from it’s host,

PARASITE VIRULENCE determines the probability that a CPU cycle will be given to the para-

site. Thus, when this option is set to 1, the parasite is completely virulent and overtakes all of

its host’s CPU cycles. It is also possible to let the parasites evolve their own virulence by setting

VIRULENCE SOURCE=1, and choosing values for both VIRULENCE MUT RATE, which controls the

probability of mutating a parasites virulence when a new parasite is born, and VIRULENCE SD, which

is the standard deviation of a normal distribution used to determine how much virulence changes

when it mutates.

Events Typically Used With Parasites

InjectParasite is typically called near the beginning of a run to infect a range of cells. It takes a

parasite organism file, the memory space label, and the range of cells which should be infected.

PrintParasiteTasksData and PrintHostTasksData print the tasks performed

by parasites and hosts respectively. Similarly, PrintHostPhenotypeData and

PrintParasitePhenotypeData split up the phenotype data, such as the Shannon Diver-

sity and Richness of unique host and parasite phenotypes.
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FigureFigure B.1

Figure B.1: Depiction of a Host-Parasite Interaction. Here, the original memory space allocation
mechanism is depicted. The infected organism has a parasite thread that attempts to infect a host’s
“C” memory space, as indicated by the underlined sequence of instructions. Upon successful
infection, the offspring parasite is copied into the newly infected hosts’s memory. See Figure 3.1
for a depiction of the task based infection mechanism.

Typical Config Settings

• BIRTH METHOD 4 - Population is well-mixed

• INJECT METHOD 1 - Parasite thread is reset on successful infection

• MAX CPU THREADS 2 - Only allow one parasite per host

• INFECTION MECHANISM 1 - Parasites infect hosts when they have at least one overlapping

task

• PARASITE VIRULENCE 0.8 - Parasites steal 80$ of their host’s CPU cycles
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• VIRULENCE SOURCE 0 - Parasites use virulence value from config, instead of evolving it

• PARASITE MEM SPACES 1 - Parasites get their own memory spaces

• PARASITE NO COPY MUT 1 - Parasites don’t use copy mutation rates, so they can have

independent mutation rates

• REQUIRE SINGLE REACTION 1 - Require hosts to perform at least one successful reaction

to reproduce

A set of complete config files and ancestral organisms can be found at

https://github.com/zamanlh/AvidaConfigs.
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metric for nestedness analysis in ecological systems: reconciling concept and measurement.
Oikos, 117:1227–1239, 2008.

[7] M. Almeida-Neto and W. Ulrich. A straightforward computational approach for measuring
nestedness using quantitative matrices. Environmental Modelling & Software, 26:173–178,
2011.

[8] S. Altizer, D. Harvell, and E. Friedle. Rapid evolutionary dynamics and disease threats to
biodiversity. Trends in Ecology & Evolution, 18:589–596, 2003.

[9] A. I. Araujo, A. M. de Almeida, M. Z. Cardoso, and G. Corso. Abundance and nestedness in
interaction networks. Ecological Complexity, 7:494–499, 2010.

[10] J. Bascompte. Disentangling the web of life. Science, 325:416–419, 2009.

[11] J. Bascompte, P. Jordano, C. Melián, and J. M. Olesen. The nested assembly of plant–animal
mutualistic networks. Proceedings of the National Academy of Sciences of the United States
of America, 100:9383–9387, 2003.

[12] U. Bastolla, M. A. Fortuna, A. Pascual-Garcı́a, A. Ferrera, B. Luque, and J. Bascompte.
The architecture of mutualistic networks minimizes competition and increases biodiversity.
Nature, 458:1018–1020, 2009.

[13] C. W. Benkman, T. L. Parchman, and E. T. Mezquida. Patterns of coevolution in the adaptive
radiation of crossbills. Annals of the New York Academy of Sciences, 1206:1–16, 2010.

[14] C. Bérénos, K. M. Wegner, and P. Schmid-Hempel. Antagonistic coevolution with parasites
maintains host genetic diversity: an experimental test. Proceedings of the Royal Society B:
Biological Sciences, 278:218–224, January 2011.

100



[15] A. Best, A. White, E. Kisdi, J. Antonovics, M. A. Brockhurst, and M. Boots. The Evolution
of Host-Parasite Range. The American naturalist, 176:63–71, 2010.

[16] B. Bohannan and R. Lenski. Linking genetic change to community evolution: insights from
studies of bacteria and bacteriophage. Ecology Letters, 3:362–377, 2000.

[17] J. Bongard. Morphological change in machines accelerates the evolution of robust behavior.
Proceedings of the National Academy of Sciences, 108:1234–1239, 2011.

[18] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network analysis in the social
sciences. science, 323:892–895, 2009.

[19] J. E. Bouma and R. E. Lenski. Evolution of a bacteria/plasmid association. Nature, 335:351–
352, 09 1988.

[20] E. F. Boyd and H. Brüssow. Common themes among bacteriophage-encoded virulence factors
and diversity among the bacteriophages involved. TRENDS in Microbiology, 10:521–529,
2002.

[21] M. A. Brockhurst, P. B. Rainey, and A. Buckling. The effect of spatial heterogeneity and
parasites on the evolution of host diversity. Proceedings of the Royal Society of London.
Series B: Biological Sciences, 271:107–111, 2004.

[22] J. J. Bull, I. J. Molineux, and W. R. Rice. Selection of benevolence in a host-parasite system.
Evolution, pages 875–882, 1991.

[23] E. Canard, N. Mouquet, D. Mouillot, M. Stanko, D. Miklisova, and D. Gravel. Empiri-
cal evaluation of neutral interactions in host-parasite networks. The American Naturalist,
183:468–479, 2014.

[24] S. P. Carroll, A. P. Hendry, D. N. Reznick, and C. W. Fox. Evolution on ecological time-scales.
Functional Ecology, 21:387–393, 2007.

[25] S. S. Chow, C. O. Wilke, C. Ofria, R. E. Lenski, and C. Adami. Adaptive radiation from
resource competition in digital organisms. Science, 305:84–86, 2004.

[26] J. E. Cohen. Food webs and niche space. Princeton Univ Pr, 1978.

[27] B. D. Connelly, L. Zaman, and P. K. McKinley. The seeds platform for evolutionary and
ecological simulations. In Proceedings of the fourteenth international conference on Genetic
and evolutionary computation conference companion, pages 133–140. ACM, 2012.

[28] B. D. Connelly, L. Zaman, P. K. McKinley, and C. Ofria. Modeling the evolutionary dynamics
of plasmids in spatial populations. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pages 227–234. ACM, 2011.

[29] B. D. Connelly, L. Zaman, C. Ofria, and P. K. McKinley. Social structure and the maintenance
of biodiversity. In Proceedings of the 12th International Conference on the Synthesis and
Simulation of Living Systems (ALIFE), pages 461–468.

101



[30] T. F. Cooper and C. Ofria. Evolution of stable ecosystems in populations of digital organisms.
Artificial life eight, pages 227–232, 2003.

[31] C. Darwin. On the origin of species by means of natural selection. John Murray, London,
1859.

[32] W. Dáttilo, F. M. D. Marquitti, P. R. Guimarães Jr, and T. J. Izzo. The structure of ant-plant
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