

SITY LIBRARIES
[

A i

31

This is to certify that the

thesis entitled
THREE DIMENSIONAL MODELLING AND SIMULATION OF
THE CURING OF POLYMER COMPOSITES

presented by

Ananthapadmanaban Sundaram

has been accepted towards fulfillment
of the requirements for

M.S. degree in _Chemical Engineering

PN Ced

Major professor

Martin C. Hawley

Date'lz_-L 02?:[/?4%-

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES retum on or before date due.

DATE DUE DATE DUE DATE DUE

MSU Is An Affirmative Action/E qual Opportunity institution
c\clrc\datadus om3-0. 1

THREE DIMENSIONAL MODELLING AND SIMULATION OF
THE CURING OF POLYMER COMPOSITES

By

Ananthapadmanaban Sundaram

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Chemical Engineering

1994

ABSTRACT

THREE DIMENSIONAL MODELLING AND SIMULATION OF
THE CURING OF POLYMER COMPOSITES

By

Ananthapadmanaban Sundaram

Curing of composite materials is an important process in enhancing the properties of the
material for its final application. Modeling of the curing process is required to predict the
variation of the different properties of the material and help control the process better. A
three dimensional dynamic model of the curing process over materials of complex shapes
has been developed using the Boundary Fitted Coordinate System for shape modeling. The
developed model has been implemented in numerical simulation which can simulate the
shape of the material as well as solve the thermal curing process model over the complex
shapes. The simulation software has been developed using the C programming language
and an output interface has been developed with the MATLAB(R) external library toolbox.
The simulation results have been verified with different analytical models for certain cases
and a qualitative treatment of different results in the three dimensional domain has also been

presented.

ACKNOWLEDGMENTS

I express my profound gratitude to my advisor Professor Martin Hawley for his guid-
ance, encouragement and support throughout the course of this work. I have at different
points of time sought the help of a number of people most notably Dr. James McDowell
who has provided a number of suggestions that have gone into my work. Dr. Jianghua Wei
provided me with an initial understanding of the problem and I am grateful to him for that.
I wish to express my thanks to my colleagues in the research group, Valerie Adegbite and
Dhulipala Ramakrishna as well as my friend Sanjay Mishra who have helped me greatly on
and off the project. I am always indebted to my parents, who have always been my source

of strength and inspiration in life.

il

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

1 Introduction
1.1 Motivation
1.2 Background
1.2.1 Previous Modelling Efforts
1.2.2 Fundamental Concepts

1.3 Objectives e

2 Shape and Process Modelling
2.1 TheProcessModel
2.2 The Boundary Fitted Coordinate System
2.2.1 Algebraic GenerationSystems
2.2.2 Elliptic Generation Systems

2.3 Process Model Transformation

3 Numerical Solution

3.1 Finite Difference Formulations

iv

vi

vii

ix

AN W W W

e

11
14
18
21

24

3.2 TheMulti-GridMethod L.

3.2.1 Introduction

3.3 Operators

3.4 The Multi-Grid Algorithm L.

Simulation

4.1 Programming Fundamentals

4.1.1 DataStructures

4.2 Graphical Output Interface

42.1 The

MATLAB External Library

Results and Discussion

5.1 ShapeSimulation
5.2 Profile Simulation Lo oL
5.2.1 Analytical Verification
5.2.2 Thermal Cure Simulation
523 NumericalErrors oL L oL oL

6 Summary and Conclusions

7

Future Work

BIBLIOGRAPHY

A

User’s Guide

A.1 The SimulationCode

A.2 Input Files

Supporting Files

.................................

41
41
42
46
48

50
50
53
53
57
67

71

75

82

84
87

C Matlab Script Files 98

D C Code For Simulation 107

vi

2.1

3.1

4.1
4.2
43

5.1

A.l
A2
A3

LIST OF TABLES

Transformation Relations 22
The FMV algorithm 39
Data structure for mesh generation 45
Conduit structure between mesh generation and profile simulation . . 45
Data structure for profile simulation 46
Data For SimulationRuns 58
Components of Code : MATLAB ScriptFiles 86
Components of Code : C Language Programs 87
Input files for simulationcode 88

vii

1.1

2.1
2.2
23

3.1
3.2
33
3.4
3.5

4.1

5.1
52
53
54
55
5.6
5.7
5.8

LIST OF FIGURES

Overall framework for cure process simulation

Boundary Conforming Transformation
Interpolation problem in two dimensions

Natural to Physical Coordinate Line Mapping

Types of finite difference formulations
Performance of relaxationmethods
Effect of relaxing over different gridsizes
Restriction and Prolongation Operators

The V and F cycles for multi-grid methods
Linked-list structure for Multi-grid method

Performance of BFCS method on bad initialguess
Sectionsof initial guess
Sections of boundary fittedobject
Analytical verification for a spherical body with Dirichlet conditions .
Analytical verification for a slab with convective boundaries
Geometry for simulationruns
Temperature profiles for varying heat transfer coefficient

Cure profiles for varying heat transfer coefficient

viii

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

7.1
72

Al

Effect of addition of convective boundary on temperature profiles . . 62
Effect of addition of convective boundary on cure profiles 62
Effect of unsymmetrical boundary conditions along 7 coordinate line . 63

Effect of unsymmetrical boundary conditions along ¢, (coordinate lines 63

Temperature profiles for varying thermal conductivity 65
Cure profiles for varying thermal conductivity 65
Temperature profiles for varying thickness along 7-direction 66
Cure profiles for varying thickness along 7-direction 67
Effect of time stepping on simulation : Temperature 69
Effect of time stepping on simulation: Cure 69
Adaptive Mesh Generation 76
Domain Decomposition Method For Shape Modelling 79

Compilingthecode 85

ix

LIST OF SYMBOLS

Symbol(s)

Meaning

(x,y,2)
(&, n, 0. (i,j.k), (u,v,w)
t
T

To

Physical coordinates

Natural coordinates

Time.

Temperature

Ambient or surrounding temperature.
Initial temperature.

Cure or extent of reaction
Microwave power absorbed per unit volume
Rate of cure reaction.

Radius.

Element (ij) of shape factor matrix.
Shape transformation matrix.
Cofactor of element (ij) of M.

Finite difference operator

Vector of dependent variables.
Restriction operator.

Prolongation operator.

Heat flux

Adaptive meshing functions

Symbol(s)

Meaning

J

Q0
AH,
A&, An, A¢

Jacobian of transformation.

Density of material.

Specific heat.

Thermal conductivity

Heat transfer coefficient

Grid size

Number of grid points along &, 7, (.
Boundary in physical coordinate system
Boundary in natural coordinate system
Heat of reaction.

Spatial steps in natural coordinates

X1

CHAPTER 1

Introduction

1.1 Motivation

Thermoset polymer composites are processed under a variety of different methods based
on the nature of the final products, as well as the characteristics of the different components
which make up the composite itself. The common basis for most of these methods involves
driving the thermosetting or cross-linking reaction to completion, to obtain better physical
and mechanical properties of the cured material. Different phenomena come into play dur-
ing the curing process which critically depend upon the process conditions. The reaction is
initiated by supplying heat to the material, in the form of thermal heat sources which prop-
agate heat by use of temperature gradients, or by focussing heat into the material by use of
other energy sources such as microwaves or radio waves.

Irrespective of the particular phenomena of heat transfer, the properties of the material
being processed could be considered as varying with respect to the extent of the thermoset
reaction, as well as the temperature. In practical industrial applications thick section com-
posites need to be processed, which have varying temperature and cure gradients along dif-
ferent directions which change dynamically as the reaction proceeds to completion. Hence,

the critical system parameters of, temperature and cure are dynamic functions in three di-

mensional space, and the domain of definition is the geometry of the material.

Any process model which describes these variables, does so, by relating the rate of
change of these variables to the different physical phenomena at play in the process. These
phenomena are in turn related to the different process parameters, depending upon the ac-
tual processing methods used. Hence, a generalized model provides the framework for pre-
dicting the critical system parameters of temperature and cure independent of the process-
ing conditions as well as the geometry of the material. The specifics of these conditions
are treated as various inputs, relevant to the process being considered. Two important as-
pects of the material affect the nature of the curing process. These are the geometry and
the anisotropy of the system with respect to the properties of the material. This work essen-
tially deals with the effects of shape and geometry only under isotropic conditions though
the properties are allowed to vary as a function of the dependent variables under this frame-
work.

Controlling the different processes, involves predicting the nature and magnitude of the
temperature and cure profiles. The main motivation for this work is the automation of the
control of curing processes which is able to take decisions based on generalized predictive
methods at a higher level, and base the lower level reactive control on the actual specifics
of the process being employed. The next major motivation for the effort, comes from the
fact that a generalized model, and, a simulation based on it would essentially encompass
all the different phenomena influencing the process, as well as incorporate into it the flexi-
bility to include different sub-models. This would retain the specific information about the
kinetics and the dependencies of the material properties on process parameters, as well as,
the mode of application of heat such as thermal or microwave. Such a simulation would
vastly enhance an automated control system which forms an essential unit of an expert sys-
tem for the design and processing of polymer composites. It should be noted, that as dif-

ferent sub-models become available, like the model for flow, or the model for microwave

power absorption, these should be readily incorporated into the generalized model.

1.2 Background

1.2.1 Previous Modelling Efforts

The previous modelling and simulation efforts in this area, have been vastly based on one
and two dimensional models (Bogetti & Gillespie [1]). These models though sufficient for
the purposes of the application they were put to, are insufficient to characterize the com-
plexities involved when the processing of thick section composites, of arbitrary shapes are
considered . Essentially, by accounting only for one or two dimensions the predictions that
are provided by these models do not include information of the gradients in the other direc-
tion(s) and hence also the interactions between the gradients in different directions. This
phenomenon would be especially amplified in cases when, there is a preferential curing of
the composite using different boundary conditions at the different surfaces. Also, in cases
where hybrid sources, that is both thermal and microwave are used for the curing process,
the different boundary conditions become especially critical though this case has not been

handled by the current effort.

1.2.2 Fundamental Concepts

The basis of the process model are the energy and material balance equations in three dimen-
sions, which are coupled in different ways depending upon the type of process employed for
curing, as well as the nature and characteristics of the material being cured.

The basic approach for a modelling effort of this type consists of the following steps.
1. Modelling the domain of definition.

2. Model the process in the original domain.

3. Transformation of the process model equations into the modelled domain.
4. Solve the transformed process model.
5. Representation of the solution in the original domain.

Normal modelling efforts tend to keep the domain model the same as the physical one or,
at least approximately so. This situation is not possible when the domain is complex with
irregular boundaries. Extensive information about the exact shape of the domain is pro-
hibitive on the time available, and the process models created in the original domain, cannot
be easily solved accurately, in their original domain. Hence a method is required which mar-
ries the efficiency of the solution or simulation, with the nature of the problem being solved.
The coordinates of the model domain should, in essence, reflect the natural dependencies of
the process parameters in space.

A finite difference approach, tends to model the domain by assuming that the entire do-
main is composed of regular patterns of certain shapes such as rectangular, triangular, spher-
ical etc, depending upon the accuracy of the representation using such a pattern, as well as
the coordinate system used to represent the model equations. A finite element method on
the other hand divides the domain into a number of elements that are polynomially depen-
dent on regular coordinates. This gives the flexibility of handling complex shapes not suit-
ably solved by the finite difference methods. But there is an increase in the computational
complexity and once again, very accurate domain representation is necessary for the imple-
mentation of the method. The major drawback of the finite element methods is, there is an
uniform use of the same type of elements over the entire domain. The use of varying el-
ements is not popular and also requires extensive information from the user for an useful
implementation.

The next major obstacle in using any of the above methods for the model, is the repre-

sentation of boundary conditions especially the conditions involving the flow of heat, mass

etc. Typically the flow through any element, is determined by evaluating the normal to the
element and projecting the flow parallel to it. For an arbitrary shaped body, this involves ap-
proximating the normal derivatives and when the dimensionality of the problem increases,
the accuracy of such a representation critically depends on the exactness of the boundary
coordinate information provided by the user. For processes whose parameters critically de-
pend on the nature of such boundary flow conditions, like the curing process, a good process
simulation should provide, a flexible and accurate way of representing these conditions nu-
merically, without overwhelming the user with the tedious responsibility of coordinate gen-
eration for the complex domain.

Finally, from a framework aspect any simulation of a model, of the kind being solved
in this effort, should include the necessary tools to extend the same to more general condi-
tions. In summary, the programming framework should provide constructs, that would help
use different sub-models of varying levels of complexity. For example, under the current
implementation, the diffusional effects in the mass transfer are considered not limiting and
the concentration profile is solely dependent on the reaction under progress. But an addi-
tion of the diffusion phenomena, could be done essentially with little work, without going
through the entire process of formulation, representation and solution. Since there exists,
a fundamental analogy between the various phenomena being solved, i.e mass, momentum
and heat , modelling one with the necessary generality, would imply, that any of the others
can be implemented in addition to, or independently, under the same programming frame-
work. This is a very important aspect of a good simulation and the necessary framework

has been provided in the current effort.

1.3 Objectives

The previous section brought out the main objectives of the modelling effort. The modelling

goals are

1. Evolve a shape modelling framework to model the arbitrary nature of shapes encoun-

tered in a curing process.

2. The shape model of the given domain should aid in a simple representation of the
boundary conditions over the surface of the domain, as these critically affect the ac-

curacy of the simulation solution.

3. Provide a simulation framework using basic constructs, that help to incorporate var-

ious phenomena and sub-models.

4. Provide an accurate and at the same time, convenient representation of the process

equations for computationally efficient simulation in the modelled domain.

5. Evolve a solution framework, that is both general, in the sense of using different math-

ematical tools, and accurate for the problems being solved.

Figure 1.1 indicates the overall framework for the simulation effort. All the differentaspects
represented in bold indicate the work covered under the current effort. Enhancements that

could be added to the current simulation framework have also been indicated in the figure.

Mode Swiching Critet |

o
Thermal cure eycle

Processtype

Property to state relationships

(ThermallMW)

l Kinetic expressions

Initial geometry

Initial conditions

Mesh size

Structure

Retranormation
1o original
geometry

Changing Geometry

Process criteria

Transformed Coordinates
Mesh Generation [~
(Transformation)

Profile Solver

e

Temperature, Cure
Density, Sp.heat,
Thermal Conductivty

Energy Model

Power Model

Flow Model

e e

Figure 1.1. Overall framework for cure process simulation

CHAPTER 2

Shape and Process Modelling

2.1 The Process Model

Consider, a material of arbitrary shape undergoing the process of curing. Heat is supplied
to the body in some manner and this causes the startup of the curing reaction within the
body. The reaction releases exothermic heat and this further causes changes in the curing
pattern within the body. Hence, the entire process of curing is a dynamic one and since, the
heat propagation mechanism also involves conduction the curing pattern is also dependent
on the location within the material, or in other words the spatial coordinates. There is no
flow within the system and shape of the material is constant throughout the process. The
basic equation governing this process is the energy balance equation, which accounts for
the heat flux entering and leaving a differential element of the body over time. Under the
above conditions and assumptions, this equation is written in standard notation as

pc,,‘:)—:tr =-V-§+Q 2.1)
In the above energy balance p is the density of the material, c,, is the specific heat, T is the

temperature at any point within the material at a given time, t is the time coordinate, q is the

heat flux across any differential surface element inside the material, Q is the net rate of heat
generation due to different phenomena. The first term in the above equation involves the
conduction of heat. The material properties in the above equation can reflect the changes in
the curing process by being dependent on the state of the material i.e., its temperature and
extent of cross-linking. A Fourier type relation for the heat flux is assumed which relates the
energy balance in heat flux terms to the temperature of the system under isotropic conditions.
This is then given as

§=—kVT 2.2)

In the above expression the term k is the thermal conductivity of the material and can be
a function of the temperature and other process parameters. In the energy balance, Equa-
tion 2.1, the net heat generation term, Q specifically depends on the mode of supply of heat
to the body. In the case of thermal cure, the application of the heat from the external source
to the body is by convection and hence the term Q contains only the exothermic heat due to
the cross-linking reaction. In the case of a microwave(MW) application of heat, this term
contains two parts. The reaction heat part would be included because the reaction is still
present. However, it has to be noted that the form and functionality of the reaction term
may be different in the case of microwave curing for the same material, when compared
with thermal curing. It is known that excitation of dipoles causes the evolution of heat dur-
ing MW curing. This might influence the reaction mechanism itself by affecting the reaction
centers at a molecular level leading to a change in the rate equation for the reaction in the
MW case. dditionally, there is another term in Q which accounts for the energy absorbed
due to the microwave. Unlike thermal means, which supply heat directly only to the bound-
ing surfaces of the material by convection, the microwave radiation focusses heat into the
body. The interactions of the dipoles of the body with the electromagnetic waves causes
successive alignment and relaxation of these dipoles leading to an absorption and release of

energy. This energy being absorbed from the MW, depends on the dielectric properties of

10

the material which are once again functions of the temperature, and the degree of cure of the
material. Hence, the microwave power absorption by the body might be envisioned to be
a function of the above mentioned parameters. Expanding the gradient operator in Equa-
tion 2.2, substituting into Equation 2.1 and rewriting the heat generation term in terms of
its two constituents i.e reaction and MW parts we get the following equation in Cartesian
coordinates.
p(T, X)c,,(T,X)(ZTY; = % (/c—(;—z_:) + (—% (n%g) + % (ng—f)
+po(T, X)r.(-AH)+ P, (T, X, z,y, z,t) 2.3)

In the above equation r. is the rate of the thermosetting reaction, expressed as time~!, AH is
the heat of reaction and is negative for exothermic reaction, P,, is the power being absorbed
from the microwave radiation per unit area and X is the degree or extent of cure. In the case
of conventional thermal curing the P,,, is zero and this will be assumed through the rest of the
Thesis. The reaction rate needs to be accounted, in terms of the different process variables

and this is given by an ordinary differential equation as follows.

—dL\,- =r(X,T) 2.4)
dt

The above equation neglects diffusion, and hence explicit spatial dependency of the extent
of reaction. The termr.(X,T) is the rate equation of the thermosetting reaction available as a
function of temperature and cure. The coupled Equations 2.3 and 2.4 form the mathematical
process model for curing. The above equations are part of the boundary value problem for T
and X. The boundary conditions for this problem come from the convective type boundary.

The heat exchange at the bounding surfaces of the body being cured can be modelled as a

11

convection process. This leads to the following boundary condition,
n-g=h(T-T,(t)) onT (2.5)

where I is the bounding surface of the arbitrary shaped body, 7 is the outward normal on
the surface I, h is the heat transfer coefficient on the surface of the body, T, is the ambi-
ent temperature. In deriving the above boundary condition, the effect of radiation has been
assumed to be negligible. Equations 2.3, 2.4 and 2.5 complete the process model for the

curing process under the assumptions and conditions explained in this section.

2.2 The Boundary Fitted Coordinate System

Consider the mathematical model for the curing process as presented in the previous sec-
tion. The system of equations is a second order partial differential equation(PDE) coupled
to an ordinary differential equation(ODE). The domain of definition for this system is the
geometry of the body. Consider now, the boundary conditions to this system of differen-
tial equations. They are defined over the entire bounding surface of the body. For a closed
simply connected body, this would be the entire outer surface of the body. Since the body
is arbitrary in shape, the surface I' is also a complex three dimensional surface. Equation
2.5 which is the boundary condition contains a term 7z which is the unit outward normal
from the surface of the body. For an arbitrary shaped surface, the orientation of this normal
vector is also arbitrary. Solution to this system of equations is essentially numerical, due to
the nonlinearities involved and lack of functional representations for some of the parame-
ters involved. Thus, the solution strategy would basically involve, the discretisation of the
domain including the boundary into a number of elements. In such a case, the boundary nor-
mal has to be approximated by using the nearest neighbor elements. Such a procedure has

to be carried over all the elements on the boundary. This often involves tedious computation

12

which is not very accurate. Besides, the boundary surface also needs to be approximated,
usually by use of polynomial fits for the evaluation of the spatial derivatives involved in the
boundary condition. These polynomial approximations do not work very well in a number
of cases, due to the fact that these approximations themselves have to vary over the sur-
face. In other words, different order polynomials may be required at different regions of
the boundary for a good approximation, and the decision as to which to use, is not arbitrary.
The Introduction chapter explained the different pitfalls of the finite difference and finite el-
ement formulations, as far as the shape modelling was concerned. Both these formulations
use some, or all of the techniques explained above, for domain and boundary approxima-
tion. There is a lot of user effort involved in the decision making for the shape modelling
aspect of the problem solving. The criteria used to make the decisions involved in finite
element and difference approximations of arbitrary shapes is a complex numerical exercise
and no generic technique exists to evolve them. This is by far the most unattractive aspect in
using either of these methods for complex shape modelling. Therefore, it is necessary that
the complex geometry be represented in a regular manner by a suitable transformation, for
the task of solving the process model. The tradeoff in such a case is the additional work, in-
volved in re-formulating the process model in the new domain which introduces additional
terms in the model. Consider now, the problem of transforming a complex geometry of three
dimensions into a regular shape, say a cubical domain. The aim of this representation is to
provide a mapping from each point on the surface of the irregular boundary, to a point on
the surface of the regular transformed domain. The advantage of the transformation besides
the fact that the domain becomes regular is that there is no necessity for normal evaluation
on the boundaries of the regular domain. The entire domain being cubic, the normals are
along the positive and negative transformed coordinate directions. Thus, given the surface
coordinates of the original domain for the process model, a transformed domain is to be

generated by some means, which also imposes, continuity along the coordinate directions

13

Original Geometry Boundary Fitted Regular Geometry

PN T

Physical Coordinates Natural Coordinates

Figure 2.1. Boundary Conforming Transformation

within the interior. This problem is basically a Boundary Value problem to be solved for the
transformed coordinates, also called the Natural Coordinates, given the surface coordinate
values of the natural coordinates as a discrete function of the original or Physical Coordi-
nates of the system. The resulting solution of natural coordinates as a function of physical
coordinates defined over the entire domain is called the Boundary Fitted Coordinate Sys-
tem(BFCS). Figure 2.1 gives the pictorial representation of the method. In the analysis to
be developed in the rest of the Thesis, the physical coordinates are denoted as (x,y,z) and
the natural coordinates are denoted as (£,7,().

The boundary fitted coordinate system technique attempts to generate a set of natural

coordinates £(x,y,z), n(x,y,z), ((x,y,z) under certain constraints. As already mentioned, this

14

problem is a boundary value problem and different methods exist which can be applied to

obtain a solution. The most common methods which are employed for this purpose are
1. Algebraic grid generation methods.
2. Elliptic grid generation methods.

Algebraic generation methods use algebraic interpolation techniques along different direc-
tions, using boundary information, to obtain a natural coordinate mapping for the given do-
main. Elliptic generation methods make use of elliptic equations of the natural coordinates,
with the physical coordinates as the independent variables to solve for the same problem.
But, the elliptic methods normally require an initial approximate solution which is then re-
fined by use of a generating system of elliptic differential equations. That initial guess, is
provided by the algebraic generation methods. The next two sections develop the details of

the two methods in light of their implementation in the present work.

2.2.1 Algebraic Generation Systems

The shape modelling problem requires the generation of a regular rectangular grid, given
the correspondence of the grid points on the bounding surfaces of the regular transformed
domain, to the original boundary information on the irregular domain. Consider Figure 2.2
which shows the pictorial representation of the problem on a three dimensional surface. The
natural coordinates assume integral values from (0,0,0) to (n,m,l) and let (i,j,k) be the coor-
dinates of any point on the natural coordinate space spanned by (£,7,(). The grid points are
shown at their corresponding positions in the physical coordinate space. The figure shows
a surface over which (is constant but not necessarily a bounding surface. The intermedi-
ate points in the figure are the interior grid points on the regular domain. Corresponding

to every value (i,j,k) on the regular grid, there exists a value (x(i,}.k),y(i,j.k),z(i,j,k)). The

15

g__ﬂ

€ = constant boundaries
(x,y,z) or r specified at all points on boundaries

Figure 2.2. Interpolation problem in two dimensions

problem is to find the triplets (x,y,z) for every value of (i,j,k), given the values at all the ex-
treme points. Since each of the physical coordinates x, y or z, are exclusive functions of
(i,j,k) the problem is nothing, but one of three dimensional interpolation. The method used
to perform this three dimensional interpolation in this simulation is called Transfinite In-
terpolation. The basis of this method is independent interpolation along three directions.
Consider the three dimensional grid shown in the Figure 2.3. Let ¢, interpolate the vector
1(£,n,¢) along the n direction. For the purpose of this interpolation, any standard technique
such as cubic splines, B-spline, Hermite interpolation can be used. Transfinite interpolation

performs the following operations

Er = o) (2.6)

16

Figure 2.3. Natural to Physical Coordinate Line Mapping

E, = ¢,(F— E) Q@.7)
Es = ¢ —E) —E)) (2.8)
7€, ¢) = E + Ey+ E; 2.9

In the steps above, 7 refers to a vector in the physical coordinate system with components
X, Y, z respectively along the three principal directions. The Figure 2.3 indicates the dif-
ferent bounding surfaces on which &, 7 and (are constant, respectively. Step 2.7 performs
interpolation along the ¢ direction across the 7 surfaces. This step yields the value of the
dependent vector I along the £ coordinate lines on all surfaces including the boundaries in-

dicated as 1 and 2 in the figure. The next step 2.8 calculates the error (I — E.‘l) in the one

17

dimensional interpolation on the boundaries 1 and 2 and interpolates this error along the 7
direction. Itis to be noted, that the sum of the vectors E; and E, exactly matches the bound-
ary coordinate information on both {=constant and n=constant surfaces. The next step in-
terpolates the total error (r — E, — E,) due to the two previous interpolations, along the
¢ coordinate lines, using the values of this error vector on the boundaries 3 & 4 where (is
constant. As before, the sum of all the three vectors E,, E,, Es exactly matches the supplied
coordinate information on all the bounding surfaces. Thus the transfinite interpolation, uses
standard one dimensional interpolation techniques to perform three dimensional grid gen-
eration. The advantage of this technique is that, one can use any known one dimensional
interpolation technique depending upon the nature of the shape and the constraints on the
continuity involved. The code developed for algebraic grid generation in this effort makes
use of linear interpolation as only two points, one on each opposing boundary is specified
for every coordinate line. Sometimes, even in a three dimensional algebraic grid genera-
tion only the edge and corner point coordinate information is available. In such cases a two
dimensional transfinite interpolation is performed on all the six bounding surfaces first and
then a three dimensional transfinite interpolation is performed using the different steps as
explained above. For the general case of three dimensional problems algebraic grid gener-
ation does not provide a good mapping, in the sense that sometimes the interior point map-
pings are not accurate and might appear outside the boundaries. Thus, the algebraic grid
generation is not a good stand alone technique for mapping physical coordinates to natural
coordinates. In the present formulation an elliptic generating system which makes use of
an algebraic grid as an initial guess and refines the solution using continuity and boundary

constraints on the natural coordinates has been used to perform the grid generation.

18

2.2.2 Elliptic Generation Systems

Elliptic generation systems are natural coordinate systems generated by solving for a set
(as many as the dimensions involved) of coupled elliptic partial differential equations, con-
structed as a boundary value problem, using the boundary physical coordinate information
as the constraining boundary conditions. The idea behind the elliptic generation systems is
to evolve natural coordinate surfaces along which one coordinate remains constant, which
is similar to a problem of generating stream functions. In this case however the boundary
conditions on these natural coordinates or streamlines are the boundary coordinate informa-
tion of the object. Elliptic generation systems are guaranteed to provide one to one mapping
when the generating equations are Laplacian (Mastin & Thompson [2]). The fundamental
basis of the Laplace generating equations is the Eulerian equation for the error (Thompson

et. al. [3]) given by the following expression.

1://y/ > (Vi) av (2.10)

Yi=£m.

where 1; are the natural coordinates. This error is minimized under the following conditions

for the natural coordinates given as the Laplacian system of equations,

Vi = 0
Vip = 0
Vi = 0 (2.11)

The boundary conditions to the above system of equations are as mentioned earlier, the

known surface coordinate information of the domain. These are given as

5 = 6F(Iay’z)0nr

19

n = nr(z,y,z)onT

¢ = ¢r(x,y,2)on T (2.12)

It is to be noted that, the functionalities above are normally available only as discrete val-
ues at different points. Thus, the accuracy of surface coordinate information determines
the spacings of the grid on the transformed domain. The system of Equations 2.11 with the
boundary conditions 2.12 form the elliptic generation system of equations. The characteris-
tic of the Laplacian system of equations is that, the generated solution has continuous second
derivatives and smooth coordinate lines.

The system of equations as defined above is defined on the original domain of the body.
Since the body is of arbitrary geometry, once again there is a problem of irregular coordinate
lines and surfaces. Thus, the equations formulated to avoid the above problem, themselves
have to be solved in a similar domain. This is overcome by reformulating the above equa-
tions with a change in the dependent variables. As already stated equations 2.11 and 2.12
provide the solutions £(x,y,z), 7(x,y,z), ((x.,y,z). By switching the dependent and indepen-
dent variables the equations can be transformed to be solved for x(&,7,(), y(€,7.(), z(€,9,0).
This is the same as reformulating the problem with a change of the coordinate system from
the covariant base vectors to contravariant base vectors. However the two coordinate base
vectors need not be parallel as it happens in orthogonal coordinate systems. The advantage
of this transformation is the fact that the new set of equations are defined on a regular rect-
angular geometry, and hence standard numerical techniques can be used to solve these dif-
ferential equations, without the need for approximate interpolation or fitting. The necessary
analysis that has to be used to obtain this new set of equations for the three dimensional case
can be found in [2] . Basically, this involves determining the matrix of the transformation,

in terms of the derivatives of the natural coordinates with respect to each of the physical

20

coordinates. Upon such a transformation the following set of differential equations result.

a)ree + 20’121{" + 20131‘« + 20231‘,7(+ azzrec = 0
anYee + 2002Yen + 2013Yec + 2003Yn¢ + a3y = 0

ai1zee + 2a123¢y + 20033 + 202320 + azzz¢ = 0 (2.13)

where the ajj are the shape factors of the transformation and are defined as

3
Qi; = Z ﬂmigmj; i=1$2s3; j=1v293 (214)

m=1

and iy, is the cofactor of the element in the position (j,k) of the matrix M, which is defined

by the expression
TIe Ip JI¢

-~ -~ -~
<

“§ <“n <~C

The boundary conditions 2.12 are transformed by the change of dependent variables as,

r=1rq(&n,¢) onQ
y=yal(&n.¢) onQ

:=z2q(&1,() onQ (2.16)

where (1 is the regular boundary(six bounding surfaces) of the regular domain as indicated
in Figure 2.1. The coefficients in the differential Equations 2.13 are variable as they are
functions of the dependent variables, but the nature of the equations is still elliptic. That
is, the transformation does not change the nature of the original formulation. Any numeri-

cal method used to solve elliptic equations with nonlinear coefficients is applicable for this

21

system of equations. The solution to the above equations yields the values of x, y, z at the
different grid points on the regular or natural coordinate system. But the original process
model is defined over the irregular domain. The mathematical formulation of the process
model needs to be transformed into the regular domain before it is solved. The transfor-
mation of the different terms in the process model 2.3 and the process boundary conditions
(Equation 2.5) depends on the different derivatives involved. The next section details these

transformations and presents the process model in the natural coordinates.

2.3 Process Model Transformation

The process model presented in Section 2.1 is defined over the physical coordinate system.
The next section presented the transformation of the domain from physical to natural co-
ordinates. Correspondingly, the process model should also be represented in its equivalent
form in the natural coordinate system using the solution to the elliptic generating system
(Equations 2.13 and 2.16). The boundary fitted coordinate generation technique actually ob-
tains the natural coordinates as functions of the physical coordinates using the contravariant
(normal to coordinate surfaces) base vectors of the system. The curvilinear coordinate lines
of the three dimensional system are space curves formed by the intersection of surfaces on
which one of the coordinates is constant. Thus, along coordinate lines only one coordinate
varies and the others are constant. The various operators such as the gradient, the Laplacian,
divergence etc can now be redefined in terms of the base vectors. These base vectors are in
turn, related to the physical coordinates through the shape transformation matrix M and the
shape factors as which were defined in he previous section. Table 2.1 gives the transforma-
tion relations for the different operators involved in the original process model in terms of
the covariant and contravariant base vectors as well as the relations of these base vectors to

the physical coordinates. In the table the variable £ can be £, nor (wheni=1,2or 3. All

22

Table 2.1. Transformation Relations

Name Symbol Transformation/Definition
Jacobian J det—M—
Covariant base vector a; T €l + Yo €s + 2063
Contravariant base vector a' 1 (Bi€1 + Bia€3 + Bia€3)
Gradient VA Y2, a4,
Divergence(A) V-A 2 at Ag
Laplacian VA HrLi T o Aee

+ ZZ:] (V2f") A(’
Time Derivative £ oz

the other variables have already been defined. The exact details of these transformations
and their derivations can be found in [3]. The above transformations can be used in Equa-
tions 2.3 and 2.5 to obtain the differential equations and boundary conditions in the natural
coordinates given by Equations 2.17 and 2.18 below. These equations are more complex
than the original model in the sense that additional terms as well as nonlinearities have been
introduced. But the nature of the differential equation is still the same and the boundary con-
ditions do not contain anything more than the first derivatives. Besides, these equations are

defined over a rectangular grid and hence any method employed to solve parabolic

ai(kTe)e + a(&Ty), + as(&T¢)¢
72

iz {(T¢), + (kT }
+ 72

013{(RT5)C + (KTc)é}
+ 72

axs {(KTy), + (xT0), }
+ 72
+o(T, X)r(T,X)(-AH) + P, (T, X) (2.17)

, , 0T
P(T. X)eo(T.X) %

23

th+7n]\/_IZm,Ty = hcTy(t); 11 = £1 when £ =0orn
heT + Ve = Zaz]’l}; = hcTy(t); 2= £1 whennp=0o0rm
heT + Ny = Zas_]Tfl = hcTs(t); v3 =21 when{ =0orl (2.18)

PDEs over regular domains can be used to solve the transformed set of equations. Once a
solution is obtained, it can be mapped back to the original domain using the solution of the
shape model. In the above development, it has been assumed that the shape model is time
invariant i.e. the shape of the body does not change with respect to time. When flow prob-
lems need to be solved this assumption is not valid anymore and the boundaries themselves
change with time depending upon the flow parameters such as pressure and viscosity of the
system. In such a case, a shape model has to be solved at every step in time with the bound-
ary coordinate information calculated from the changing geometry of the body being cured.
In this case, the time derivatives of the process dependent variables need to be transformed

in the formulation of the process model in natural coordinates. This relation is given as

9A 9A o7
(W), _ (E) _%4. (8{) 2.19)

In the above equation 7 is a vector in the physical coordinate system and £is the correspond-
ing vector in natural coordinate system. The subscripts attached to the time derivatives indi-
cate the variable being held constant in the partial differential equation. The time derivative
on the right hand side is at a fixed position in the transformed space i.e, at a given grid point.
Similarly the time derivative on the left hand side is at a fixed position in the physical space
i.e., the time derivative that appears in the equations of motion. So, in the case of changing
geometry the problem can essentially be solved on a fixed grid though the corresponding

physical coordinates change over time.

CHAPTER 3

Numerical Solution

3.1 Finite Difference Formulations

The last chapter dealt with the different differential formulations involved in the shape mod-
elling and process simulation aspects of the given problem. Different methods are available
for the effective solution to these problems. However the geometry that is of concern in the
transformed problem is a regular (cubical) one and hence the finite difference representation
affords a simple and effective means of solving the equations over this domain. Several dif-
ferent kinds of formulations exist in determining these finite difference representations to be
used. Since a finite difference representation essentially divides up the domain into discrete
points along the different directions, two different methods exist, depending on the points
at which the derivatives are evaluated. In a Cell Centered approach the variable values are
assigned to the center of the cells while the derivative values are evaluated on the edges us-
ing the cell centered values. In the Vertex Centered approach, the derivative evaluation
is performed on the vertices of the cell which are the grid points for this formulation. Fig-
ure 3.1 shows a two dimensional representation of the vertex and cell centered approaches.
The next step in the finite difference formulation is, the approximation of the differentials

using differences. This is done by using a local Taylor’s series expansion about the grid

24

25

BN EE RN RN

— 4 4
 EE RN NN AN
Cell Centered Scheme Vertex Centered Scheme

Figure 3.1. Types of finite difference formulations

point under consideration. When the expansions involve only the neighbors on one side of
the grid point, one sided differences result. Besides, these Taylor’s expansions are only of
first order and hence they have an error term associated with them. But different one sided
differences can be added together to eliminate some of the terms in the error to get second
or higher order accurate differences. These are the central difference representations which
almost always involve the values of the dependent variables on either side of the grid point
at which the derivative is being determined. Thus, depending upon the centering of the grid
points and the order of the difference formulations, the derivatives are approximated in dif-
ferent manners. The differential equations in the current effort have been approximated us-

ing a second order, vertex centered approach. The derivatives at the interior points of the

26

domain have been approximated using the following difference formulations.

_ fx+l.],k - fi~—l.].k
fil,‘,_,’_k - 2A§
_ fiserk = fij-1k
fn‘,"_,_k = 247
f(lij k = fi‘j‘k+|2;éfi‘j‘k—l (3-1)

where f, f,, f; are the &, 7, ¢ derivatives of a three dimensional function f, (i,j,k) is the
point at which the derivative is evaluated and A¢, An, A(are the grid spacings along each

of those directions. The double derivatives are approximated as,

fivrgk —2fije + ficrjk

fff‘i,),k = A€2
Jisork = 2fijn + fij-1x
fnnl,‘,j_k = A"‘z
ikt — 2fijk + fisk-
fedlse = Jisk+1 iék Jisk- 32)

and the cross derivatives are approximated as follows.

fivrgerk = fixrj=rk = ficrjore + fici -1k

fEﬂ',‘,j,k = 4A£Ar;
_ fistrksr = figorksr = fijerk—r + fi—1k=
fn(I,‘_,‘k - 4A77AC
felie = fivr ks — fz‘—l.].kZlAEAf?l.j.k—l + fiz1jk-1 (3.3)

Whenever the second derivatives contain a variable coefficient for the first derivative a local
average is used to evaluate the coefficient while the above formulation is used to determine
the second derivative of the dependent variable at that grid point. Since the partial differ-
ential equation also involves a time derivative all the second space derivatives used in the

difference model, are averaged over time according to the Crank-Nicolson scheme. This

27

completes the finite difference development for the differential equations at all the interior
points.

The boundary conditions of the differential problem needs to be transformed to its finite
difference approximation. These conditions may or may not involve derivatives depending
upon, whether they are Dirichlet or mixed type conditions. The finite difference formula-
tions for these two conditions are different depending upon the purpose of this evaluation.
In other words, if the boundary condition itself does not involve derivatives but the deriva-
tives on the boundary are required for other evaluations, then a simple one sided second
order accurate difference is used. The boundary point formulation in such a case for the

present problem is as follows.

3fn.1.k - 4fn—-|.1.k + fn—').).k

o = Y . i = n boundary (3.4)
fs —3f0,_j,k +')4h{|£,j.k - f2.f'k; i = 0 boundary (3.5)

Similar equations can be written for the other two derivatives on the boundary. In the case
of mixed boundary conditions the boundary conditions themselves involve first derivatives
to be evaluated on the boundary. In such cases a fictitious surface of points surrounding
the boundary surface on the outside is assumed. The first derivatives to be evaluated at the
boundary points are then approximated by normal central differences involving the single
interior point neighbor and the fictitious point on the surface outside the boundary, perpen-
dicular to the direction of evaluation as in Equation 3.1. The boundary conditions can then
be manipulated to get the value of the dependent variable at the fictitious point as a function
of the variable values on the boundary and interior points. Now, the differential equations
are written for the boundary point in terms of their finite difference formulations. The ap-
proximations used above for the second derivatives would now involve function evaluation

at points outside the boundary, which are fictitious. The values of the dependent variable

28

at these points have already been established as functions of variable values at the interior
and boundary points, and these functionalities are appropriately used to eliminate the ficti-
tious point evaluations. Thus, the final set of boundary difference equations obtained in this
manner can be added to the existing set of interior point difference equations to solve for the
dependent variable values over the entire grid. For, a three dimensional problem involving
various cross derivatives, this process of elimination of fictitious points by substitution is
a very tedious and time consuming process with lots of opportunities for mistakes, when
done by hand. But the basis of any variable elimination process is a simple concept of co-
efficient collection. A brief description of how this could be achieved in the coding without

cumbersome reformulation is given in the Simulation chapter of the Thesis.

3.2 The Multi-Grid Method

3.2.1 Introduction

Solution to a differential equation, involves a number of steps each of which derives from
different areas of mathematics. But essentially all differential equations when solved nu-
merically are reduced at some stage to an algebraic approximation either by using finite dif-
ference or variational formulations. This reduces the differential equations and the bound-
ary conditions, into a set of simultaneous linear or nonlinear algebraic equations. The clas-
sic techniques that are used to solve these problems involve matrix reduction or inversion,
or iterative solution by repeated correction of an initial guess in the case of nonlinear equa-
tions. Techniques such as multidimensional Newton-Raphson methods are also popular, but
are normally used in a modified form to overcome computational burden involving calcu-
lation of derivatives and huge matrix inversions. All the above methods belong to a class
of operations called Relaxations. All the methods start with an initial solution or guess and

relax the guess over multiple passes or iterations over the given set of equations. This can

29

also be seen as relaxation of an initial error over different iterations. Figure 3.2 shows the

AN DNANA
VN YT

Error -—-->

/—\ /\ A~ n = 20;

Independent Variable -------->

Figure 3.2. Performance of relaxation methods

performance of a typical relaxation method as a function of the number of iterations em-
ployed. The figure indicates two essential features. The first one is that, initially the error
is highly oscillatory in nature when seen as a function of the independent variable. But as
the number of iterations are increased, it becomes smoother and the average amplitude of
the oscillations is reduced. Secondly, after a certain number of iterations further relaxations
produce negligible change in reducing the remaining components of the error. The expla-
nation for this kind of performance is that, the relaxation methods operate efficiently on the
highly oscillatory components of the error to reduce them rapidly, until only the smooth

components are left. Their performance degrades when they operate on the smoother com-

30

ponents of the error. Different methods have been adopted in the past that reduce this effect
of relaxations by modifications to the actual relaxation algorithm. These include using it-
erative parameters which act as functions of the number of relaxations and approximating
the solution as weighted sums of solutions over successive relaxations. Multi-grid methods
are conceptually based on the reduction of the smooth components of the error by ampli-
fying their oscillatory nature. Briggs [4], Hackbusch [5], McCormick([6] and [7]) contain
different parts of the details for the development and implementation of multi-grid methods
for different problems. These references develop the methodology for one and two dimen-
sional problems. The extension to three dimensions is fairly straightforward, except some

coding detail which is dealt with, in the next chapter. Figure 3.3 shows the effect of reducing

_ Grid Size : h

\/

-->

Error ------

/\/&v Grid Size : 2h

Independent Variable ------- >

Figure 3.3. Effect of relaxing over different grid sizes

31

the number of grid points, in the solution to a set of difference equations. This reduces the
number of equations to be solved, for an approximate solution of the original problem. But
more importantly, the representation shows clearly that the error which appeared smooth on
the finer grid (containing more grid points) is now more oscillatory or contains oscillatory
components in the coarser grid (containing lesser number of grid points). In effect, we have
amplified the oscillations of the smooth components of the error by using a two grid rep-
resentation for the original problem. Hence, any relaxation method initially used to relax
the error on the fine grid could be used to do the same on the coarser grid. Multi-grid meth-
ods do this by representing the residue or the difference between the exact and approximate
solutions on the coarser grid and use the coarse grid relaxation to correct the smoothened
solution on the fine grid.

Let the finite difference representation of a differential equation do so on a grid of size
’h’. This is the finest grid over which the problem is being solved. The problem including

the boundary conditions can be represented in the operator notation as,

Ly (uh) = fh (36)

where the subscript h refers to the grid size. The operator L can be linear or nonlinear in
the dependent variable vector u. The term f), is the finite difference approximation to the
source terms or forcing terms (terms which are not functions of the dependent variable). A
relaxation of the above set of equations attempts to provide successive approximations to
the variables u,. Since the solution is only an approximation there is always a residual error
which is given as,

€Ch = fh - Lh (uh)

An approximation to this residual is obtained by relaxing the residual problem on a coarse

grid say 2h (larger grid size and hence lesser number of grid points), and using that solution

32

to correct the solution to the problem on grid h. The multi-grid algorithm is nothing, but an
extension of the two grid algorithm to the coarsest grid. That is, the multi-grid algorithm
successively solves the residual problem on coarser and coarser grids until the problem is
relaxed on a grid containing only a single interior point to a good enough accuracy. But there
still needs to be established a way to go from the solution on one grid to that of another grid.

The operators used for this purpose are discussed in the following section.

3.3 Operators

The multi-grid method works with three different kinds of generic operators, other than the
operators specific to the problem being solved. Two of these operators are used to obtain
coarse grid solutions from the dependent variable values on a fine grid and vice-versa. The
operator which calculates the coarse grid solution from the fine grid solution, is called the
Restriction operator. The other operator which performs the reverse of the preceding oper-
ation is called the Prolongation operator (also called Interpolation in some texts). The third
operator is the relaxation operator, which can be any one of a number of iterative methods
available for difference equations. The exact construction adopted for any of these oper-
ators is in general dependent on the problem being solved i.e the order of the differential
equation, the nature of non-linearities etc. The trans-grid operators i.e prolongation and re-
striction operators are also additionally dependent on the difference formulation used for
the solution. Different operators are used depending upon whether the finite difference for-
mulation is based on a vertex centered or cell centered approach. Figure 3.4 shows the two-
dimensional coarsening and refining of the grid as well as the solution using the restriction
and prolongation operators respectively. Hackbusch [5] provides a very detailed discussion
on the different kinds of restriction and prolongation operators in two dimensions. The de-

velopment to three dimensions is fairly straightforward. Since the problems being solved

33

Restriction Operator

Prolongation or Interpotafion

———t Operator I\ L ‘
Grid Size (h) Grid Size (2h)

Figure 3.4. Restriction and Prolongation Operators

are all second order partial differential equations, the recommended prolongation operator
is linear interpolation and the restriction operator is its inverse. For the problem at hand, the

following prolongation operator was used.

Ug.‘,zj,zk = uf’;k VO0<z,,k<nm,l
ugi+l,2j,2k = 0.50 * (“fl;k + u?-,;l,j,k) V(0 <i<n)
ubi i = 0.50 % (uf"}k + uf";ﬂ_k) V(0<j<m)
1‘3i.2j,2k+1 = 0.50 (“fljk + u?,l]l',k+l) ; 0< k<
u'hi,'zj+l.2k+l = 0.25 (“f’;k + uf_’}.*.],k + “?,l},kﬂ + “?.j+l‘k+1) V(0<j,k<ml)

h = 0.25

2h 2h 2h h coq.
Ui41,25,2k41 Uigk T WGk Uk T “z+l,1.k+1) V(0 <ik<nl)

h _ ¢ ~2h 2h 2h h <.
Upipr 25412k = 0.25 (“z‘.J,k tuy et U et uz+l,j+1,k) V(0<i,5<n,m)

h _ K 2h h
Upiprzj412k41 = 0.125 (“i,j.k Uk T UGk T W T U

34

2h 2h 2/

+0.125 (“;2,2+1.k+l + Il;z_:f]‘j+1‘k+‘) V(0 <,k <n,ml)

L 2h
1i+1k “i+1.j,k+1)

3.7

where i,j,k are the grid coordinates of any point in space, u is the dependent variable vector

of discretized values, h and 2h are the fine and coarse grids used and n,m,l are the num-

ber of grid points used along the three principal coordinate directions. The corresponding

restriction operator for the current formulation is given as follows.

2h
1,7,k

Si
fa

e

fa

2h
“’i,j.k

h .= C g = L —
Uy giak 1 =0,m0or j=0,mor k=01

h
Ui 25,2k
Uyi_ya50k + u‘llli+1,'2j,2k + ugi.‘).j-l,‘lk
+“3i,2j+1,2k + ugi.zj,zk—l + ugi,zj.zku
“g;‘—l,zj-l,zk + “‘Izli—l,?.j+l,'2k + “gi+1,2j—l.2k
+"“’zli+1,2.;‘+1,2k + “'Izli-l,‘zj,‘zk—l + “"211‘—1,2]',21.-+1

~h h h
Flyipr 25 2k—1 T Ugigr,2j 2641 T Ui 2j—1,2k-1

h h h
Ui gj—12k41 T Wizjp1,2k—1 T U2i2541.2k41

h h h
Upi_1,25—1,2k=1 T Ugimq 25—1,2k41 T U2im1,2j41,2k-1

o h h h
Fgisy2i41,2k+1 T Yaigr2j-120-1 T U2ig1 2j-1,2k4+1

h h
FUpip1 241,21 T W2ig1 25412041

Bfi+4fe+2fs+ f4) /64

(3.8)

(3.9)

Finally, the choice of a relaxation operator has to be made before providing the formulation

for the multi-grid method for a set of nonlinear equations. Any standard matrix relaxation

algorithm is a candidate. A number of methods exist including the Jacobi iterations, the al-

ternating direction implicit method and the Gauss-Siedel method. All these methods have

35

their distinct features and advantages . But, in conjunction with the multi-grid algorithm
it has already been noted that the number of relaxations that are performed on a particular
grid is small (about five or six). This implies that the solution algorithm is not significantly
dependent on the relaxation procedure for its accuracy or computational efficiency. The sta-
bility of the multi-grid method is a characteristic that is dependent on the choice of the relax-
ation, but all the ones mentioned above are stable for similar kind of problems and hence
this is also not a constraining factor on the choice of the relaxation method. The Gauss-
Siedel iterative scheme is one of the most popular schemes used as a relaxation operator and
the same has been used in the multi-grid implementation for this simulation. Additionally
this method can be combined with a local Newton-Raphson(NR) operator to handle highly
non-linear equations ([8]). The NR method has not been specifically implemented for the
problems solved in this effort, but a tested routine has been included to do this if the need
arises at a later date. The Gauss-Siedel method in its implementation provides a number
of choices depending on the ordering of the points relaxed. In other words each of these
methods relax over a different ordering of the points at each pass. A Red-Black(odd-even)
ordering of points was chosen in the implementation. This essentially means, that the odd
numbered grid points along each direction are relaxed first followed by the even numbered
grid points. This method provides a very simple reduction to the algorithm when applied for
a linearized (all coefficients are locally linearized) coefficient finite difference formulation.
Consider the second order accurate representation that was proposed in Section 3.1. When
derivatives are approximated using that formulation, it is clear that at any point the differ-
ence equation is entirely in terms of the nearest neighbors assuming all the coefficients and
non-linear terms have been linearized in terms of the nearest neighbors. Thus at any point
the dependent variable value at that grid point can be obtained as a function of its nearest
neighbors. This implies that all the dependent variables at odd numbered grid points depend

on the variable values at even numbered grid points and vice-versa. Hence a complete re-

36

laxation sweep could be performed only over one set of points at a time. This completes the
definition and the choice of the different operators which form the backbone of the multi-
grid algorithm. Thus, a formal definition could now be made for this algorithm and the vari-
ation of the method that has been used to solve the current problem at this stage. The exact

methodology is established in the following section.

3.4 The Multi-Grid Algorithm

In the previous section the conceptual basis for the multi-grid method was given and a qual-
itative structure was established. This section formalizes and details the algorithms that are
used in the implementation. The development is standard and could be found in different
references already mentioned in the previous section. Each of these texts provides its own
structure and modularity to these algorithms. But the algorithm that is to be given has been
derived from these various texts by piecing together different structures as required.

Multi-Grid algorithms are defined differently for two different types of problems,
namely linear and nonlinear difference equations. The essential difference is in obtaining
the forcing vector for the coarse grid from the approximate solution on the fine grid. Due to
the non-linearities that are present in the formulated problem the nonlinear multi-grid algo-
rithm has been implemented. It was mentioned in the previous section that the coarsest grid
correction is obtained for a grid with a single interior point. In the case of Dirichlet boundary
condition, this implies that the value of the dependent variable at that interior point could
be solved for exactly if the equation is linear. If the equation is nonlinear the interior point
solution on the coarsest grid can be obtained only approximately by successive iteration.
Hence the algorithm which handles a completely nonlinear problem is called the Fully Ap-
proximate Storage (FAS) algorithm (Brandt [9]).

Consider the difference equation system of the form given in Equation 3.6 including

37

the discretized boundary conditions. The multi-grid method begins with an initial guess or
approximation for the dependent variable on the finest grid. The corresponding error in this
approximation on the finest grid is given by Equation 3.2.1. A few sweeps of an appropriate
relaxation scheme such as the Gauss-Siedel iteration would reduce the error to the smooth
components. This relaxation operator is denoted by Sf:’)(u,f), where v refers to the number
of sweeps that are performed on the given grid h. Now consider the immediate coarser grid
of size 2h. The above error could be approximated on this grid by using a restriction operator
as defined above. The restriction operator which restricts a variable vector on grid size h to
a grid of size 2h can be denoted as R?". This provides a first approximation to the error on

the grid of size 2h. This can be written as
ean = Ry (cn) (3.10)
Thus the forcing term on the coarser grid is given by the approximation
fan = Lan(uan) — €2 (3.11)

The operator L,;, used above refers to the set of difference equations formulated on the grid
of size 2h and not an operator obtained by restriction or other means. This implies that the
problem on the coarse grid is now defined as that of finding a solution for the system of

equations.

L'llx(u2/t) = f‘)h (312)

where f,), is as defined by Equation 3.11. There is only one thing that is to be defined and
that is the initial guess for u,;, and this given by a simple relaxation of the smoothed solution
on grid h.

ol = B2t (1) (3.13)

38

Now the coarse grid approximation is smoothened by performing relaxations on the coarse

grid to obtain the smoothened solution u,,,. The fine grid correction is then done as
wp = w, + 1), (war — BY(wy)) (3.14)

In the above equation I%, refers to the interpolation or prolongation operator that carries the
solution from a coarse grid to the fine grid. The above development provides the basic for-
mal structure for a two grid method or algorithm. The same could be extended by obtaining
corrections on the grid size 2h by solving for a similarly constructed problem on a grid of
size 4h and so on, till the coarsest grid containing a single grid point is reached. Here, one
can iteratively solve for the value of the dependent variable as mentioned earlier. This is
the essential multi-grid method. Figure 3.5 shows the pictorial representation of how this
algorithm works, that is, one passes from a fine grid to a coarse grid smoothening the initial
approximations by relaxation, till the coarsest grid is reached and moves from the coarsest to
the finest grid correcting the finer grid solutions along the way. This is called a Fully Multi-
Grid V (FMYV) algorithm indicative of the V shape pass involved. The FMV algorithm is
formally defined as n Table 3.1. The FAS algorithm which was mentioned prior to this de-
velopment makes use of the FMV cycle at each grid. This means that, both pre-smoothing
and correction using the coarser grids are performed on each of the grids, before moving
on to the next grid. The graphical representation of this scheme is given in Figure 3.5. It
is also called the F-cycle algorithm. In the FAS algorithm one can also control the number
of FMYV cycles to be performed and hence change the nature of the FAS cycle from the one
shown in Figure 3.5. In a general sense, any multi-grid operation is an offshoot or variation
of the methods explained in this section, but they operate on different kinds of variables de-
pending upon the nature of the problem being solved and the convenience of representation

as dictated by its complexity. Besides, use of the right kind of representation distributes the

39

h
2h
4h
eh
16h
32h
The V- Cycle (FMYV)
2h
e
sh
16n
32h

The F-Cycle

Figure 3.5. The V and F cycles for multi-grid methods

Table 3.1. The FMYV algorithm

FMV(h,Uh,fh)

if h is coarsest then u,=S;°(u;.f)
else

begin

w,=S) (u.f1)

vo,=R%*(uy)

f25=Ls (up)-REM(Ly (up)-fr)
FMV(2h,u,,,.f21)

up=upHA, (Vop-tin)

end

40

memory efficiently during simulation and helps to achieve a high degree of computational
speed. The next section deals with the different kinds of variable representations used in the

simulation and the manipulations that are performed on them to achieve the above goals.

CHAPTER 4

Simulation

4.1 Programming Fundamentals

The entire code for the simulation has been written in ANSI C with the supporting programs
for output graphical generation using MATLAB(R) script programs, which are essentially
programs with MATLAB(R) based commands. The development in the previous two chap-
ters indicate that, at the outset, any code for the simulation should contain two relatively

independent parts, namely
1. Mesh generation
2. Variable profile simulation (Temperature, Cure etc)

Though conceptually, the two parts are different in the sense of accomplishing different as-
pects of the simulation, both of them involve solving for differential equations of the same
kind. The basic difference is that, the mesh generation part aims to solve for a time invari-
ant set of partial differential equation and the profile simulation part involves solving for
time dependent set of partial differential equations. The domains of definition for the dif-
ferential equations are the same but the nature of boundary conditions may differ. For exam-
ple, the mesh generation part involves solving Dirichlet boundary conditions as explained in

4]

42

Chapter 2, while the profile simulation can involve solution to either Dirichlet or mixed type
boundary conditions. Hence, the basic set of routines that have to be constructed to solve
the difference equations in both these apparently different parts perform the same functions
using different operators and subject to different boundary conditions.

Thus, any code written for this purpose, should have the necessary set of generality in
its basic set of routines to allow for usage for the two parts as mentioned above. The mesh

generation part consists of the following elements
1. Surface approximation
2. Initial volume generation using algebraic methods.
3. Mesh refinement using elliptic generation

The surface approximation involves the generation of a surface mesh using algebraic meth-
ods, using the edge and or surface coordinate information provided by the user. The elliptic
generation method was explained in detail in Chapter 2 . The finite difference representa-
tion of the various different terms involved was also presented there. The multi-grid method
is used to solve the finite difference representations of the differential equations in both the
above parts. This critically determines the various data structures for the representations to
be used for the variables to be used in the code. The next section discusses in detail the basic
structures used and their relevance to the understanding and implementation of the various
methods discussed so far. The Appendices contain the different routines with the notes on

the variables used and the details of the exact implementation of the different algorithms.

4.1.1 Data Structures

The basic variables to be solved for, in the simulation are the temperature and cure. Besides,

the mesh generation step involves determining the physical coordinates (i.e Cartesian) as a

43

function of the natural coordinates. All these variables are hence functions of the natural
coordinates, and hence three dimensional in nature at any point of time. The time depen-
dency of the temperature and cure variables is taken into account by replacing the current
set of variables, for their values at the previous time step but always retaining values one
time step old. This is required, because the finite difference representation for the second
derivatives in the process differential equations are done using the Crank-Nicholson tech-
nique which involves values of the variables at the previous time step. Hence, the basic
data structure unit of this code is a three dimensional matrix represented as U(i,j,k) where
U is any three dimensional variable under consideration and i,j,k is the grid position in the
natural coordinate system.

In addition, as explained in Chapter 3 the multi-grid algorithm also imposes some new
representation constraints on the code. Besides being three dimensional in nature, the vari-
ables to be solved for are also functions of the grid size. The multi-grid algorithm as de-
fined earlier requires that all the variables be calculated not only on the finest grid but also
on each of the grids up to the coarsest grid containing just one interior point and all the rest
boundary points. The logical solution to this problem is to use a series or a linked list of
structures, each of the structures corresponding to a particular grid size and containing in-
formation about the grid parameters, the values of the required variables as a function of
three dimensional space within that particular grid size. The structures are linked in the di-
rection of increasing grid size, to facilitate recursive computation of coarser grid variables,
in terms of the values of the same variables on the finer grid, initially before relaxation is
performed on the grid. Figure 4.1 shows the pictorial representation of a linked-list struc-
ture used for the purpose of multi-grid solution of the finite difference equations. Each of
the blocks in the figure could be one of the two array structures that are described below.
There are two of these structures that are used, one for the mesh generation part, and one

for the profile simulation part. The mesh generation code uses the structure in Table 4.1. In

I I I I kh (Coarsest Grid)

Figure 4.1. Linked-list structure for Multi-grid method

the above structure ’***u’ is the C notation, for a three dimensional variable. The source
terms are calculated for the coarse grid from the variable values and the source term values
for the fine grid as explained in Chapter 3.

Once the mesh generation is complete, it provides information on the functional depen-
dency of the physical coordinates on the natural coordinates. In addition it also provides
the local Jacobian values at each grid point as well as the shape transformation matrices i.e
the « at every grid point. Hence a new structure is defined which serves as the conduit
passing information between the mesh generation part and the profile simulation part. The
point structure accomplishes this objective. In the C language notation this is defined as in
Table 4.2. In the above definition, the variable definition D2_array defines the two dimen-
sional matrix « at each grid point which contains the shape factor information.

The profile simulation part performs the multi-grid algorithm at each time step from an

45

Table 4.1. Data structure for mesh generation

structure varray _xyz
{
int n,m,l; /* Number of grid points along the 3 directions */
double ***x *¥*y ***7. /* The physical coordinates
as three dimensional matrices */
double ***Sx ***Sy ¥**§7- /* Source terms in the
difference equations, as three
dimensional matrices */
struct varray_xyz *next; /* Pointer to the coarser grid */

}

Table 4.2. Conduit structure between mesh generation and profile simulation

structure point
{
double ***x *¥*y ¥¥x*z. /% Physical coordinate

information at each grid point */
struct D2 _array ***a; /* Shape factor information at

each grid point */
double ***J; /* Local Jacobian evaluated

at each grid point */

}

initial to a final point, but it uses a slightly different structure. Essentially, the shape infor-
mation available from mesh generation via the point structure has to be made available for
each of the different grids from the finest to the coarsest. Besides, the profile simulation
part involves solving for difference equations in its relaxation part that use time averaged
operators and hence information on the previous time values of the variables should also be
available. In addition, the process conditions such as heat transfer coefficients have to be
made available at each surface point and for each grid size. All these constraints motivates

the use of the structure defined as in Table 4.3 for the profile simulation part. The structures

46

Table 4.3. Data structure for profile simulation

structure varray
{
int n,m,]; /* Number of grid points */
struct point *grid_pt; /* Shape information */
double ***multp; /* Time derivative coefficients */
double ***Sf; /* Source term for difference equation */
double ***T***X: /*Temperature and Cure

variables at current time */
double ***Tg ***Xg: /* Temperature and Cure

variables at previous time step */

double ***conv; /* Heat transfer coefficient */
struct varray *next; /* Pointer to next level

coarser grid */
}

seem to carry a lot of computational burden but actually only the temperature and the cure
information are updated during every relaxation sweep. All the other information are either
constant throughout an entire step or through all the relaxation passes for a given grid. Be-
sides the memory allocation is done dynamically that is the memory is allocated only when
required and freed when a particular structure is not required anymore. It was stated earlier
that the number of relaxation sweeps on a given grid is very small and this greatly reduces

the computational time over the traditional single grid methods.

4.2 Graphical Output Interface

Mesh generation provides a model of the original domain on which the equations are to be
solved. The accuracy of this representation depends on a number of factors including the
nature of the shape and the user supplied surface coordinate information. Thus, the user has

to be sure that there exists a one to one correspondence between the modelled or transformed

47

domain and the original shape. The boundary fitted coordinate system generated using the
elliptic system of Laplacians ensures this, but the accuracy is not guaranteed. Hence, a vi-
sual interface has to be provided wherein the user can view the actual shape of the object
being modelled, in correspondence to the transformed coordinates. The user should also be
able to view different sections to decide if a more accurate surface representation is required
for the shape at hand. In addition, when the simulation moves into actually generating the
variable profiles there is a necessity to observe the development of these profiles both with
respect to time and space. This provides the user with the problem to shape correspondence
of the process in a qualitative sense in the least. The simulation though complete for certain
purposes is in its developmental stages, from the point of view of the different processes
being modelled, as well as the sophistication of the numerical grid generation procedures
which can be enhanced. There needs to be a justifiable tradeoff between the nature of prob-
lems being solved, the computational efficiency of the grid generation procedure in terms
of time and cost and the accuracy of the results required. Such information can be provided
only based on extensive testing of the simulation for different problems and verification with
experimental results. A graphical output interface achieves the goal of providing the user in-
formation of the magnitude and nature of variables at every stage of the simulation. Such an
interface has been established using the MATLAB(R) external interface library which pro-
vides tools for simultaneous display of variables as the solution evolves. The representation
that MATLAB(R) uses for its variables is different from the representation that is being used
within the C code for the simulation, the nature of which are dictated by the methods be-
ing used and the demands of generality on the simulation. The next section discusses some
details regarding the representational differences and the coding that has been included to

translate between the two.

48

4.2.1 The MATLAB External Library

MATLAB(R) is a mathematical, control and graphics tool which provides a lot of interac-
tive tools that can act as interfaces between the user and a C or FORTRAN code that per-
forms a complex numerical task. Besides, MATLAB(R) also provides for its own language
which operates on these structural units. In addition, it has a vast compilation of routines
which perform predefined functions which include manipulation of two and three dimen-
sional plots as well as contour maps. Hence MATLAB(R) can perform tasks based on com-
mands from external C code through its external library as well as operate using programs
written in its own language. The most efficient use of the tools available from this software
is made, when there exists a partition between the nature of the conduit created between the
C code and the MATLAB(R) workspace, and the kind of tasks controlled by programs writ-
ten in the MATLAB(R) language. This partition is the partition between information pass-
ing and information processing. In other words the best arrangement is when MATLAB(R)
receives only the data passed to it from the code for display and all the structural manipula-
tion and control of the graphical procedures such as plotting and sectioning occurs from the
MATLAB(R) language based programs. In any simulation, the graphical interface is just a
window through which the user is able to perceive at all times the status of the simulation in
an easily understandable form. In a simulation of a complex nature, the interface should pro-
vide only the minimum demands on the computer time and memory. This has to be borne
in mind when evolving criteria for implementation. To centralize the control the, C code
was initially given total control over the MATLAB(R) workspace by explicitly specifying
the different operations as well as performing different matrix manipulation operations. It
was found that from a speed point of view, the partitioning of the tasks as information pass-
ing and processing, between the code and the MATLAB(R) script files is much faster than
a centralized control of all operations . This is advised for all future implementations using

this workspace.

49

Programs based on the MATLAB(R) language are called script files. These script files
are functions which take in arguments which are allowed MATLAB(R) structures, and per-
form both numerical and graphical operations on them. The basic information containing
unit of the MATLAB(R) language is a matrix (utmost two dimensional). All the variables
that MATLAB(R) handles are matrices or vectors including string variables. On the other
hand the basic structural unit for all the key variables used in the simulation code are three
dimensional matrices. The passage from one representation to another is established from
within the C code itself. That is, whenever numerical information needs to be passed to the
MATLAB(R) workspace the C code manipulates the structure into the appropriate MAT-
LAB(R) format (a three dimensional matrix is converted to a vector in this case). Once the
information is passed all further operations to be performed on them is done using the MAT-
LAB(R) script files.

Once the information is made available on the MATLAB(R) workspace, it needs to be
manipulated effectively to obtain the relevant graphical output. Since originally three di-
mensional matrices are converted into vectors, simple script programs were written to pro-
vide independent access along the different coordinate directions as required . Once this
is established, further manipulation of the operators is straightforward and are contained
in additional script files written for this purpose. For a detailed discussion of the various
commands involved and the exact implementation of the MATLAB(R) external library the
appropriate manuals [10] & '[1 1] are referred. The Appendices contain details of the dif-
ferent script files used and the tasks being performed by them. The next chapter contains
different plots generated by the MATLAB interface . In addition, the interface is also capa-
ble of generating color maps indicate of temperature profiles and also allows the user who

is conversant with MATLAB to manipulate shapes and figures.

CHAPTER §

Results and Discussion

5.1 Shape Simulation

The very first step in the profile prediction is the simulation of the shape of the domain.
The boundary fitted coordinate system was implemented using the multi-grid method for
the finite difference solution. As mentioned in Chapter 2, the shape simulation consists of
two parts, the algebraic grid generation and subsequent refinement using the elliptic system
of equations. The algebraic generation is often very approximate and serves only as a first
guess for the solution to the elliptic generation system. Thus the capability of the shape
simulation is critically dependent on the elliptic generating system.

In the current effort this capability was tested by providing a bad initial guess deliber-
ately over the entire domain with correct coordinate information being provided only on
the boundaries. The elliptic generating system was made to take over from that point on-
wards. Figure 5.1 shows the results of such a shape generation procedure starting from a
bad initial guess. The elliptic generation system performs very well as shown in the figure.
It refines the solution at the interior points so that the interior is boundary conforming and
also generates a one to one mapping between natural and physical coordinate systems in

the process. Figures 5.2 and 5.3 show the section wise comparison between the surfaces of

50

51

Initial Guess Boundary Fitted Object

Figure 5.1. Performance of BFCS method on bad initial guess

the initial guess and the corresponding surfaces on the boundary fitted object. In these fig-
ures u,v,w indicate the £ , 1) and ¢ coordinates respectively. These are plots generated by the
user interface created using the MATLAB(R) external library. It is evident that the Lapla-
cian system of generating equations provides a smooth solution to the shape simulation in
terms of coordinate line continuity in the interior. However, the surface coordinates remain
at their specified values. The results of the shape simulation include not only the coordinate
values but also the shape factors («;;s) and the Jacobian (J) values at each of the grid points
in the natural coordinate system. These values are then used for solving the process model

in the natural coordinate system.

u = 4 plane

52

v = 4 plane

w =4 plane |

u = 4 plane

Figure 5.2. Sections of initial guess

v = 4 plane

w = 4 plane |

Figure 5.3. Sections of boundary fitted object

53

5.2 Profile Simulation

5.2.1 Analytical Verification

The boundary fitted coordinate system guarantees a one to one mapping under the elliptic
generation system of Equation 2.13. But, the solution to this system is numerical and there
is limitation on the accuracy of the problem. The original shape modelling problem has been
solved using a system of non-linear elliptic system of equations and though apparently there
seems to be a good solution to the shape modelling problem the shape factors need to be
accurate to obtain a correct solution for the process model in the natural coordinate system.
Besides, the boundary conditions of the transformed problem need to be solved accurately
too. Consider for example, a uniform grid containing 10 points along the three principal
directions in the natural coordinate system. The entire domain contains 1000 grid points
out of which 488 are on the surface. Hence accurate solution to the boundary condition is
essential for a good solution to the process model especially in the case of mixed boundary
conditions. Hence a verification was performed using two simple cases for which there is

no internal heat generation and for which analytical solutions are available. These are
1. A spherical domain with Dirichlet boundary conditions
2. A slab with mixed type boundary conditions.

The spherical domain problem is essentially an one dimensional problem as represented in
spherical coordinates. But the three dimensional Cartesian coordinate counterpart for the
problem can be solved to get the same solution because all the points on the surface of the
body have the same temperature at all times and hence there is no conduction along the
and ¢ directions of the spherical coordinate system. The problem being solved here is

A (29T _ . o
r? (7 ('97') =P ot 5.1

54

with the conditions

T = T;0<r<R;t=0

T = To;r=R;t>0 (5.2)
oT
-(-}T = 0;,r=0;t>0

Of the above boundary conditions the symmetry boundary condition at r=0 cannot be repre-
sented easily in the transformed process model. But since this is only a symmetry condition
it is inherently present in the shape simulation i.e all the shape factors are symmetric w.r.t

the radial coordinate. The analytical solution to the above problem is

5 o _ n . 2.2
T(r,t) =T, +(To—T)) (1+27RZ(D" sin (%) exp(—"”'?t» (5.3)

2
n=1 n pCP R

Figure 5.4 shows the comparison of the analytical and simulation solutions for different ra-
dial positions within the material. It is evident that there is small error involved in the simu-
lation. The maximum observed error is about 1.5% and there is absolutely no propagation of
the error over time. The simulation was carried out at different radii and the error obtained
in the other cases were about the same. The error is basically in the dynamics of the problem
because over longer periods of time it dies down to zero as is evident from the figure. The
numerical simulation was performed using 3 relaxation sweeps before and after correction
and an F cycle algorithm as explained in Chapter 3. The next step in the verification is
the case of a three dimensional slab with all dimensions comparable, and with convective
boundary conditions. One end of the slab on each of the three directions is insulated while
the other end is a convective boundary with an applicable heat transfer coefticient. For sim-
plicity, it was assumed that all three dimensions were of the same magnitude and the heat

transfer coefficient was the same on all the convective boundaries of the body. The problem

55

&
(=]
]

440 3
Sphere
420f 3
400r (/R = 0.3y}
/R = 0.90

8
s

Temperature (K) ---->
g

a40l /R =0.67
........ Simulation
320 e 1
“ IR Analyﬁcal
» x"‘“
300 % 110 |
280

A 1 1 A 1 1 1 L '\
0 100 200 300 400 500 600 700 800 900 1000
Time (Seconds) ---->

Figure 5.4. Analytical verification for a spherical body with Dirichlet conditions

in mathematical terms is stated as follows

0*T *T 0T oT

“oer "oy TNom TP 64
oT
—— = 0;z=0;Vy,zt
g 0; 2=0; Vy,z;t>0
oT
— = 0 y=0;Va,z;t>0 (5.5)
dy
(_)—T = 0;,z=0;Vur,y; t>0
—n(?—T = h(T-To); ;2=L;Vy,z; t>0
Jz
0T
—nd— = h(T-To); ;y=L; Va,z; t >0 (5.6)

56

450
A 400
3
e
2
©
&
a' . 0
g -------- Simulation
" 350 .
21122 Analwical
30 - ! 1 1 L 1 L 1 1.3
0 500 1000 1500 2000 2500 3000 3500

Time (Seconds) ---->

Figure 5.5. Analytical verification for a slab with convective boundaries

—K((.))Y: = h(T-To); ;z=L; Vz,y; t >0
T = T;t=0;Vur,y,z 5.7

The analytical solution for the above problem is not obvious but is constructed as the prod-
uct of the solutions to three independent solutions of single dimensional problems under
variable transformations detailed in Crank [12]. Under these transformations the solution

to the above problem is given, as follows.

2accos (%) BikL
(BZ+a? +a)cos(B) " ("ﬁ)
ot - o) (i
NS po i b

m=

O,(z,t) = Z

00
n=1
00

57

o 2acos (22 2.
ount) = 3o 2o () emp(_ﬂw)
k=1 (ldk + o + Q) COS(/J() pcpt

T(x,y,z,t) = To+(Ti = To)O:(x,1)0y(y,1)0:(z,1) (5.8)

where (3, is the n*’* root of the equation

h.L

ﬁnta”(ﬂn) =a= %

(5.9

The results of the simulation and the analytical solution obtained as above, are shown in
Figure 5.5. Once again it is found that the simulation results are accurate and the maximum
error is about 2.0%. This indicates that the nature of the error could be due to truncation as
it seems to be independent of the nature of the problem. Smaller grid sizes are the solution
to this problem but increasing the grid points in all the three directions is computationally

inefficient.

5.2.2 Thermal Cure Simulation

The last section verified the results of the process model using certain simple cases. Both
these cases do not involve any nonlinearities and they were basically heating experiments
from the point of view of a chemical process. The advantage of a simulation package is
that effects of different process parameter variations can be studied. Since this simulation
is only in the developmental stages with regards to inclusion of different sub-models, it is
necessary to at least assess the qualitative correctness of the results for a generalized case
of thermal cure. A case study to this effect was performed on a general thermal cure pro-
cess for an epoxy/graphite composite using the material property and cure cycle data from

literature (Bogetti& Gillespie [1]). The data are given in Table 5.1. In the table the reaction

58

Table 5.1. Data For Simulation Runs

Parameter | Value

p 1.52 g/cm3

Cp 0.942 kJ/(gm K)

K 4.457 x 1073 kW/(cm K)
h 0.0022 kW/(cm? K)

A, 35.03 x 10%/sec

A, -33.5667 x 10%/sec

Aj 3266.67/sec
AF, 8.07 x 10* J/mol
AE, 7.78 x 10* J/mol
AFE; 5.66 x 10* J/mol
AH | -198.90K)/g

rate parameters are for the following rate equation.

!

% = (h + k2a)(1 — a)(0.47 — @); (a < 0.30)

da .

== k(1 —a) (a>030)

ki = Ajexp(—AFE;/RT); (1 =1,2,3) (5.10)

The shape on which the simulations were performed is shown in the Figure 5.6(an inverted
V). The base case values of the distance between the top and bottom V-shaped surfaces and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>