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ABSTRACT

DESIGN AND ANALYSIS OF NEURAL

NETWORKS FOR PATTERN RECOGNITION

By

Jz'anchang Mao

There are many common links between neural networks and classical statistical

pattern recognition approaches for designing a recognition system. For example,

many statistical pattern recognition approaches can be mapped onto a neural net-

work architecture. On the other hand, some well-known neural network models are

related to classical statistical methods. In spite of numerous successful applications

of feedforward networks reported in the literature, their generalization behavior has

not been well-understood. This dissertation further expands the common links be-

tween the two disciplines through design of neural networks for pattern recognition

problems and analysis of the generalization ability of feedforward networks.

A number of neural networks and learning algorithms for feature extraction, data

projection, classification and clustering are proposed. These networks include: linear

discriminant analysis network, network for Sammon’s projection, nonlinear projection

based on Kohonen’s self-organizing maps, nonlinear discriminant analysis network,

network—based k-nearest neighbor classifier, and network for detecting hyperellip—

soidal clusters. A comparative study of five networks for feature extraction and data

projection is also conducted.



The generalization ability of a feedforward network refers to its performance on

independent test data relative to the performance on the training data. Two different

approaches, Vapnik’s theory and Moody’s approach, for studying the generalization

ability of feedforward networks are compared. Moody’s approach is extended to a

more general setting which allows the sampling points of test data to be different

from those in training data according to an additive noise model. Monte Carlo exper-

iments are conducted to verify Moody’s result and our extension of his model, and to

demonstrate the role of the weight-decay regularization in reducing the effective num-

ber of parameters. We also present a taxonomy of regularization techniques in neural

networks, and demonstrate that a variety of networks and learning algorithms can fit

into this framework. One significant impact of the theoretical analysis of the general-

ization ability of feedforward networks is that it reveals how different factors involved

in designing feedforward networks interact with each other. A practical node pruning

method is proposed for designing parsimonious networks which generalize well, and

for reducing the dimensionality of the feature vector.
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CHAPTER 1

Introduction

Automatic (machine) recognition, description, classification, and grouping of patterns

are important activities in a variety of engineering and scientific disciplines such

as biology, psychology, medicine, marketing, computer vision, artificial intelligence,

pattern recognition, and remote sensing. What is a pattern? Watanabe [172] defines

a pattern as an entity, vaguely defined, that could be given a name. A pattern is

represented by a vector of measured properties or features and their interrelationships.

For example, the recognition problem can range from using fingerprints to identify

a suspect in a criminal case to finding defects in a printed circuit board [79]. The

corresponding features could be minutiae (i.e., location of minutiae and pattern type)

in the fingerprint or the broken line segments or loops in the printed circuit board.

A pattern recognition system is expected to (i) identify a given pattern as a member

of already known or defined classes (supervised classification), or (ii) assign a pattern

to a so far unknown class of patterns (unsupervised classification or clustering).

Design of a pattern recognition system essentially involves the following three

steps: (i) data acquisition and preprocessing, (ii) representation/feature extraction,

and (iii) decision making or clustering. The problem domain dictates the choice of

sensor, preprocessing techniques, and decision making model. The domain-specific

knowledge is implicit in the design and is not represented in a separate module (as



is commonly done in expert systems). Some of the early work in pattern recognition

was biologically motivated; the objective was to develop a recognition system whose

structure and strategy followed the one utilized by humans. The work on perceptrons

[149] is a good example of such attempts which were not very successful. The current

serious activity in the area of artificial neural networks and connectionist models is

reminiscent of this early work.

The three most well-known models for designing a pattern recognition system

are: (i) statistical, (ii) syntactic or structural, and (iii) neural networks. This thesis

addresses the design and analysis of neural networks for pattern recognition. We

will show that there is a considerable amount of overlap between the statistical pat-

tern recognition (SPR) approaches and neural network approaches to design pattern

recognition systems. The following two subsections present an overview of these two

models.

1.1 Statistical Pattern Recognition

Statistical pattern recognition is a relatively mature discipline and a number of com-

mercial recognition systems have been designed based on this approach. In statistical

pattern recognition, a pattern is represented by a set of d numerical measurements

or a d—dimensional feature vector. Thus, a pattern can be viewed as a point in this

d-dimensional space. A SPR system is operated in two modes: training and recogni-

tion. In the training mode, the feature extractor is designed to find the appropriate

features for representing the input patterns and the classifier is trained by a set of

training data to partition the feature space so that the number of misclassified pat-

terns is minimized. In the recognition mode, the trained classifier assigns the input

test pattern to one of the categories/clusters based on the extracted feature vector.
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Figure 1.1. Dichotomies in the design of a SPR system.

The decision making process in SPR can be summarized as follows. Given a pat-

tern represented by a d-dimensional feature vector, x = (x1, x2, - - - , zd)T, assign it to

one of c categories, £01,002, - - - ,wc. Depending on what kind of information is avail-

able about the class-conditional densities, various strategies can be used to design a

classifier. If all the class-conditional densities p(x|w,-), z' = 1, 2, - - - , c are completely

specified, then the optimal Bayes decision rule can be used to establish the decision

boundaries between pattern classes. However, the class-conditional densities are never

known in practice and must be learned from the training patterns. If the functional

form of the class-conditional densities is known, but some of the parameters of the

densities are unknown, then the problem is called a parametric decision making prob-

lem. Otherwise, either the density function must be estimated or some nonparametric

decision rule must be used. The various dichotomies which appear in the design of a

SPR system are shown in the tree diagram of Fig. 1.1. Various approaches in neural

networks and statistical pattern recognition will be compared using this diagram.



1.2 Artificial Neural Networks

The field of neural networks is an interdisciplinary area of research. A thorough study

of neural networks requires some understanding of neurOphysiology, control theory,

mathematics, statistics, decision making, and distributed computing. The diverse

nature of topics studied under this heading makes it impossible for us to address

all the related issues and topics. Neural networks have been viewed under various

perspectives [109, 74, 147, 178, 9, 12].

Research in neural networks has experienced three consecutive cycles of enthusi-

asm and skepticism. The first peak, dating back to the 1940’s, is due to McCullough

and Pitt’s pioneering work [117]. The second period of intense activity occurred in

the 1960’s which featured, Rosenblatt’s perceptron convergence theorem [149] and

Minsky and Papert’s work showing the limitations of simple perceptron [122]. Min-

sky and Papert’s results dampened the enthusiasm of most researchers, especially

those in the computer science community. As a result, there was a lull in the neural

network research for almost 20 years. Since the early 1980’s, neural networks have re-

ceived considerable renewed interest. The major developments behind this resurgence

include Hopfield’s energy approach [68] in 1982, and the backpropagation learning al-

gorithm for multilayer perceptrons (multilayer feedforward networks) which was first

proposed by Werbos [176], reinvented several times, and popularized by Rumelhart

et al. [152] in 1986. Anderson and Rosenfeld [3] provide a detailed historical account

of developments in neural networks.

Different interconnection strategies lead to different types of neural networks (feed-

back versus feedforward) which require different learning algorithms. Another di-

chotomy is based on the type of learning algorithm used. There are three types of

learning algorithms: supervised, unsupervised, and hybrid (combination of supervised
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Figure 1.2. A typical three-layer feedforward network.

and unsupervised methods). Supervised learning includes a special case of reinforce-

ment learning in which only qualitative target values (yes or no) are used.

Multilayer feedforward networks have emerged as a popular model for pattern

classification tasks. A standard L—layer feedforward network" consists of one input

stage, L — 1 hidden layers, and one output layer of nodes which are successively

connected in a feedforward fashion with no connections between nodes in the same

layer and no feedback connections between layers. A typical three-layer feedforward

network is shown in Figure 1.2. It has been shown by many researchers that a

2-layer network is capable of forming an arbitrary nonlinear decision boundary and

approximating any continuous nonlinear function (see, [63, 188]), provided the number

of nodes in the hidden layer can be arbitrarily large. Unfortunately, these theoretical

studies have not addressed the practical problem of selecting the number of nodes

in the hidden layer. In fact, the number of nodes in the hidden layer can not be

arbitrarily large due to the phenomenon of “curse of dimensionality” [142]. Moreover,

these theoretical studies have not introduced any new practical learning methods. As

 

’In this thesis, we adopt the convention that the input nodes are not counted as a layer.



a result, the backpropagation algorithm [152] has been the most commonly used

method for training multilayer feedforward networks.

Neural networks were originally proposed as simplified models of biological neural

networks, and have been studied using mathematical tools, computer software simula-

tions, and hardware implementations. Although many existing neural network models

are extremely simplified versions of biological neural networks, they are valuable for

understanding some principles of biological computation. One of the ultimate goals

of neural networks is to explore why biological systems can effortlessly perform some

tasks, such as pattern recognition, which are so difficult for modern conventional com-

puters (Von Neumann architecture), and to build some working systems to perform

these tasks based on the state-of-the-art hardware (digital or analog) technology.

Neural networks offer some information processing advantages characterized by

their robustness, adaptivity, self-organization, distributed and massive parallelism,

and ease of implementation in hardware. In comparison to rule-based systems or

knowledge-based systems, neural networks are claimed to be capable of automatically

building the internal representation of knowledge from examples. Therefore, they can

be used in situations where the domain knowledge is neither available nor complete,

or the underlying problem is not fully understood (e.g., [155, 166]).



1.3 Common Links Between Neural Networks

and Statistical Pattern Recognition

Machine pattern recognition techniques attempt to endow modern computers some of

the recognition capabilities that humans possess. Some of the early work in pattern

recognition, such as the work on perceptrons [149], was biologically motivated. Such

approaches were not very successful in solving difficult recognition problems. As

a result, statistical pattern recognition became the model of choice for designing

recognition systems. The designers of pattern recognition systems are more concerned

with the efficiency and performance issues rather than the biological plausibility of the

underlying approaches. Interestingly, we have observed that many newly developed

neural network models have also been influenced by this philosophy.

Neural networks and statistical pattern recognition are two closely related disci-

plines which share several common design problems. In the neural network commu-

nity, pattern recognition is considered as one of the challenging problems. On the

other hand, in the pattern recognition community, neural networks are viewed as a

powerful complement to the well-known recognition approaches: statistical and struc-

tural. It is difficult to estimate the amount of overlap between neural networks and

statistical pattern recognition, because it requires knowing the precise boundary be-

tween the disciplines. Werbos [177] estimated that about 80% of the work being done

with neural networks deals with pattern recognition. Some links between the two

disciplines have been established [156]. In the following sections, we will address the

common links between neural networks and statistical pattern recognition according

to different components of recognition systems and design issues.



1.3.1 Representation

Representation addresses the problem of how an input pattern is represented in a

recognition system. How do we design a good representation scheme? A good pattern

representation should satisfy at least the following requirements: (i) high data com—

pression rate, (ii) good discriminatory power/information preservation, (iii) desired

invariance, and (iv) good robustness to noise. In most statistical pattern recogni-

tion systems, representation schemes are often developed by the designers using their

understanding of the underlying problem and the domain knowledge. These repre—

sentation schemes are fixed once the systems have been built. Similarly, in many

applications using multilayer feedforward networks, the extracted features are fed

into a network. So, the network essentially performs the classification task. However,

the feedforward networks have a desirable property of automatically building internal

representation of input patterns (feature extraction), although it is sometimes diffi-

cult to interpret these representations. Due to this property, some researchers feed

the raw data (e.g., pixels) into the network and let the network learn a representation

from the training patterns (e.g., [105, 155, 83]). For example, Jain and Karu [83] used

a feedforward network to learn texture discrimination masks directly from the input

image array.

Gallinari et al. [53] have established a link between linear discriminant analysis and

linear feedforward networks. Their theoretical analysis shows that in a linear two-

layer feedforward network trained to minimize the square-error criterion, the role of

the hidden layer with ran/C(23) units is to realize a linear discriminant analysis that

maximizes the criterion I23, I / IETh |, where BB is the between-class covariance matrix

in the input space, and Z33, and 27“,, are the between-class covariance and total-class

covariance matrices, respectively, in the space spanned by the hidden units.

Webb and Lowe [173] have investigated a class of multilayer feedforward networks



with nonlinear hidden units and linear output units, trained to minimize the squared

error between the desired output and actual output of the network. They have found

that the nonlinear transformation implemented by the subnetwork from the input

layer to the final hidden layer of such networks maximizes the so—called network

discriminant function, Tr{SBS$ }, where S} is the pseudo-inverse of the total scatter

matrix of the patterns at the output of the final hidden layer, and SB is the weighted

between-class scatter matrix of the output of the final hidden layer (the weights are

determined by the coding scheme of the desired outputs). The role of hidden layers

is to implement a nonlinear transformation which projects input patterns from the

original space to a space in which patterns are easily separated by the output layer.

A good representation can make the decision making process and network design

much simpler, and lead to a good generalization. However, designing a good repre-

sentation scheme requires a thorough understanding of the underlying problem and

substantial domain knowledge. How to learn the representation scheme from given

data remains an Open research issue.

1.3.2 Feature Extraction and Data Projection

Feature extraction has a two-fold meaning. It is often referred to as the process of

extracting some numerical measurements from the raw input patterns (initial rep-

resentation). On the other hand, it is also defined as the process of forming a new

(often smaller) set of features (refined representation) from the original feature set.

However, both the processes can be considered as a mapping (or projection) from a

d—dimensional input space to an m-dimensional output space (m < d).

A large number of artificial neural networks and learning algorithms have also been

proposed for feature extraction and data projection [113]. These research efforts can

be loosely classified into two groups. The first group contains new neural network

designs, or existing neural network models for feature extraction and data projection.
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Examples of this type of networks include Kohonen’s self-organizing maps [93], the

nonlinear projection methods (NP-SOM) [100], and nonlinear discriminant analysis

(NDA) based on the functionality of hidden units in feedforward network classifiers

[173, 111]. These networks exhibit some nice properties and can be used as new

tools or supplementary approaches to classical feature extraction and data projection

algorithms.

A second line of research has investigated the prOperties of neural networks and

learning rules to establish links between classical approaches and neural networks.

As a result, it has been found that some of these neural networks actually perform

many of the well-known feature extraction and data projection algorithms [61, 132,

53]. Several classical feature extraction and data projection approaches have been

implemented using neural “network architectures, e.g., PCA networks (see [63, 69]),

LDA networks [111, 102], and network for Sammon’s projection (SAMANN) [85].

Although such efforts do not necessarily provide new approaches to feature extraction

and data projection (from the view point of functionality performed by the networks),

the resulting networks do possess following advantages over traditional approaches:

(i) most learning algorithms and neural networks are adaptive in nature, thus they are

well-suited for many real environments where adaptive systems are required, (ii) for

real—time implementation, neural networks provide good, if not the best, architectures

which are relatively easily implemented using current VLSI and optical technologies,

and (iii) neural network implementations can overcome the drawbacks inherent in

the classical algorithms. For example, Jain and Mao [85] proposed a neural network

design for Sammon’s nonlinear projection algorithm which offers the generalization

ability of projecting new data, a property not present in the original algorithm.
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1.3.3 Classification

In statistical pattern recognition, the goal is to assign a d—dimensional input pattern

x to one of c classes, w1,w2, - - - ,wc. If the class-conditional densities, p(x|w,~), and a

priori class probabilities p(w,~), 2' = 1, 2, - - - , c, are completely known (the ideal case

in Fig. 1.1 where we have infinite number of labeled training samples), the “optimal”

strategy for making the assignment is the Bayes decision rule [34]: Assign pattern x

into class wk if

p(wk|x) > p(w,-|x), W = 1,2, - . -,c;z' 79 k, (1.1)

where p(wk|x) = p(wk)p(x|wk)/p(x) is called the a posteriori probability of class wk,

given the pattern vector x. The rule minimizes the probability of error. The result-

ing “optimal” Bayes error also provides a lower bound for studying the asymptotic

behavior of other classifiers.

In statistical pattern recognition, a decision rule can often be formulated as a

set of c discriminant functions, g,(x), z' 2: 1,2,-~-,c. We assign x to class an, if

gj(x) > gi(x),Vi 76 j. For the 2-class problem, only a single discriminant function is

needed. Feedforward networks such as multilayer perceptrons and radial basis func-

tion networks also use this familiar notion. Each output node implements a special

discriminant function, and the class membership of the input pattern is determined

by a “winner-take-all” scheme, which is the “max” operation.

There are two methods to construct the discriminant functions in statistical pattern

recognition. We can first estimate the class-conditional density functions and then

use these densities to form the discriminant functions. The second method is to

specify the form of discriminant functions and then learn the coefficients from training

patterns. The neural networks take the second approach. In the following, we will

discuss different classifiers in both statistical pattern recognition and neural networks

(parametric versus nonparametric, on-shot versus tree classifiers).



12

Parametric Classifiers

If we have a finite set of labeled training patterns and the form of density func-

tions is known (more often it is assumed), we can use either the “Optimal” rule or

the “plug-in” rule (see Fig. 1.1). In “optimal” decision rule, a Bayesian approach

involving an a priori density on the unknown parameters is used. Since this approach

is cumbersome, a simpler approach where parameter estimates are used to replace

the unknown parameters is preferred. If the class-conditional densities are assumed

to be multivariate Gaussian, then the “optimal” discriminant function is quadratic

in x. Further, if the covariance matrices of the pattern classes are equal, then the

“optimal” discriminant function reduces to a linear form. The well-known percep-

tron can implement a linear decision boundary. Therefore, the perceptron classifier

is optimal in the Bayes sense if the class-conditional densities of the pattern classes

are Gaussian with equal covariance matrices. Several polynomial networks have also

been proposed (e.g., [136, 164]).

We should be aware of the underlying assumptions which guarantee the optimality

of a classifier. If the assumptions are not valid, parametric classifiers may perform

very poorly. Yau and Manry [186] mapped the Gaussian classifier (quadratic un-

der Gaussian assumption) into a Gaussian isomorphic network which can be trained

by the backpropagation algorithm. They found that this mapping can improve the

performance when the Gaussian assumption is violated.

Non-parametric Classifiers

In many classification problems, we do not even know the form of the class-

conditional density functions. In such situations, the designer of a statistical pat—

tern recognition system either estimates the class-conditional densities from the finite

training set, or designs nonparametric classifiers such as k—nearest neighbor classifiers.

The two most well-known methods for estimating the class-conditional densities are

based on Parzen windows and k-nearest neighbors [34].
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A number of neural networks have been proposed which are closely related to

the Parzen window classifier. These networks essentially estimate class-conditional

densities and perform classification based on them. Some examples of these networks

are the probabilistic neural network (PNN) [164] and the Cerebellar Mode Arithmetic

Computer (CMAC) [119]. The PNN network uses a Gaussian window, while the

CMAC model uses a rectangular window. Another approach to the Parzen window

classifier is the Radial Basis Function (RBF) network [123], which is a two-layer

network. Each node in the hidden layer employs a radial basis function, such as a

Gaussian kernel, as the activation function. Each output node implements a linear

combination of these radial basis functions. Unlike in the Parzen window classifier,

the number of kernels in the REF network is usually less than the number of training

patterns. Furthermore, not only the width of kernels but also the position of these

kernels (windows) are learned from training patterns.

The Parzen window classifier and the related neural network models share another

important design issue: window width selection. The choice of the window width, h,

is very critical to Parzen density estimation [35, 164, 119, 123]. Too small a value of

h would give a spiky or noisy estimate of p(x|w,-) whereas large values of h result in

an oversmoothed estimate of p(x|w,-). In statistical pattern recognition literature, it

I: d
/ , whereis common to use a value of h based on the following relationship: h 0: n;—

k is a constant (0 < k < 0.5), and n,- is the number of training samples from class

w,-. This choice of h has been shown to be Optimal by Silverman [160] and Fukunaga

and Hostetler [47] for Gaussian class-conditional densities. Jain and Ramaswami [87]

used the bootstrap technique in selecting the optimal width. These techniques would

also be useful for the neural network models.

A number of stochastic network models have been proposed to learn the underly-

ing probability distributions for the given set of training patterns. The well-known

example is the Boltzmann machine [65]. The probability of the network states can
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be trained to comply with the desired probability distribution (class-conditional or

a posteriori densities). In a comparative study, Kohonen et al. [96] found that the

Boltzmann machine achieved considerably better accuracy than a feedforward net-

work trained using the backpropagation algorithm, and its performance was close to

the optimal Bayes rule. However, the basic Boltzmann learning algorithm employs

a Monte Carlo simulation and is extremely slow, which greatly limits the applica-

tion of the Boltzmann machine to real-world problems. A number of variations of

Boltzmann learning algorithm have been proposed [63] including the deterministic

Boltzmann machine [137] and the Boltzmann Perceptron Network [185].

It has been shown by many researchers, both theoretically and empirically, that

networks with the I-of-C' coding of the desired outputs, such as the multilayer per-

ceptron with sigmoidal nonlinearities, radial basis function networks, and high—order

polynomial networks, trained using the squared-error, cross-entropy, and normalized-

likelihood cost functions can produce outputs which estimate a posten’on’ probabilities

(e.g., [146]). The estimation accuracy depends on the network complexity, the amount

of training data, the degree to which training data reflect the true class-conditional

densities and a pm’orz’ probabilities. These results have shown that feedforward net-

works have the desirable property of providing both the discriminant functions (de—

cision boundaries) and a posteriori probabilities which can be used as a confidence

measure of the decision making process. This property also makes it easier to com-

bine outputs of multiple networks to form a high-level decision, and to determine a

meaningful rejection threshold.

Instead of explicitly estimating the class-conditional densities or a posteriori prob-

abilities, the K—nearest neighbor (K-NN) classifier is a nonparametric classifier that

directly constructs the decision rule from the training data. The K-NN rule classifies

a pattern x into the class which is most frequently represented among its K nearest

neighbors. The choice of K is data dependent. The rule of thumb is that K should
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be a fraction (e.g., \fi—z) of the number, n, of training samples. Several variants of

the K-NN classifier are available (e.g., condensed and edited), which reduce its time

complexity and memory requirements [30]. The K—NN classifier can be easily mapped

into a neural network architecture [84].

One can argue whether the feedforward networks belong to the class of paramet—

ric or nonparametric classifiers. Since a feedforward network of fixed size explicitly

specifies the form of the discriminant functions, it implicitly assumes the forms of

class-conditional densities which lead to the specified discriminant functions. In this

sense, feedforward networks are parametric classifiers. On the other hand, if the net-

work size is determined from data or the network is powerful enough to approximate

a large number of density and discriminant functions, we can say that feedforward

networks are nonparametric classifiers.

Tree Classifiers

In a tree classifier, a terminal decision is reached through a sequence of intermediate

decisions (nonterminal nodes) following a particular path from the root to a leaf node;

the remaining nodes in the tree need not be visited. In some situations, e.g., when

pairs of classes can be separated by only one or a few components of the feature vector,

tree classifiers can be much more efficient than single-stage classifiers. Moreover, tree

classifiers may have a better small training sample size performance than one-shot

classifiers because only a small number of features is used for decision making at

each node. Note that the decision rule used at each node of the tree can be either

parametric or nonparametric.

Sethi [157] investigated the link between tree classifiers and multilayer feedfor-

ward networks, and found that a decision tree can be restructured as a three-layer

feedforward network. This restructuring provided a different tool for network design

and training. It also solved the “credit-assignment” problem in training feedforward

networks thus making it possible to progressively train each layer separately. The
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backpropagation algorithm can be used to refine the weights in the network after the

initial restructuring.

There is not sufficient theoretical basis for making a conclusion on whether a

multilayer feedforward network or a tree classifier performs better [4]; the performance

is application-dependent. If the architecture of a feedforward network is carefully

designed, then it can have a more compact structure than the tree classifier.

1.3.4 Clustering

Various clustering or unsupervised learning algorithms proposed in the literature [81]

can be grouped into the following two categories: hierarchical and partitional. A hier-

archical clustering is a nested sequence of partitions, whereas a partitional clustering

is a single partition. A partition can be either hard or soft (e.g., fuzzy clustering

[15]). Commonly used partitional clustering algorithms are the k-means algorithm

and its variants (e.g., ISODATA [7]) which incorporate some heuristics for merging

and splitting clusters and for handling outliers [81]. Competitive neural networks are

often used to cluster input data. The well-known examples are Kohonen’s Learn-

ing Vector Quantization (LVQ) and self-organizing map [93], and ART (Adaptive

Resonance Theory) models [21, 22, 23]. Despite their attractive architectures and

biological and neurophysiological plausibility, the updating procedures used in these

neural network-based clustering are quite similar to some classical partitional clus-

tering approaches. For example, the relationship between the sequential k-means

algorithm and Kohonen’s learning vector quantization (LVQ) has been addressed by

Pal et al. [135]. The learning algorithm in ART models has been shown to be similar

to the sequential leader clustering algorithm [58, 127].

Many partitional clustering algorithms [81] and competitive neural networks for

unsupervised learning [63] are suitable primarily for detecting hyperspherical-shaped

clusters, because the Euclidean distance metric is commonly used to compute the
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distance between a pattern and the assigned cluster center. Other distance metrics,

such as the Mahalanobis distance, can also be used. Mao and Jain [114] (see Chapter

4) have proposed a network for detecting hyperellipsoidal clusters (HEC), which uses

the regularized squared Mahalanobis distance: In spite of the numerous research

efforts, data clustering remains a difficult and essentially an unsolved problem [81].

1.3.5 “Curse of Dimensionality” and Generalization Issues

It is well-known that the error rate of the optimal Bayes classifier will not increase

as the number of features is increased [34]. However, in a finite training sample

size case, the additional discriminatory information provided by the new features can

be outweighed by the increase in the inaccuracy of the parameter estimates needed

in the classification rule. Thus, in practical classifiers, a “peaking” phenomenon is

often observed: addition of new features decreases the classification error at first,

then the error levels off, and finally it begins to increase [80, 36]. This phenomenon,

often referred to as the “curse of dimensionality”, is also observed in neural networks

for both classification [142] and regression [55]. Many important results related to

the curse of dimensionality have been published in the statistical pattern recognition

literature. We summarize here some of these results.

Duin [36] derived a bound on the expected error of a classifier which uses the esti-

mated class-conditional density functions, 15,-(x), instead of the true class-conditional

density functions, p,(x), z' = 1, 2:

me} 3 5...... + §E {2: / lp.<x> — p.(x>ldx}. (1.2)

where 530,,” is the optimal Bayes error. The second term on the right-hand side is
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basically the expected Kolmogorov distance between the true and estimated class-

conditional densities. Simulations have shown that for Gaussian densities, the ad-

dition of new features may increase this expected Kolmogorov distance. However,

evaluation of this bound is difficult because we never know the true densities in prac-

tice.

Jain and Waller [88] investigated a 2-class problem involving normal distributions

with different class means but a common covariance matrix. They found that when

the “plug-in” decision rule is used, the “peaking” phenomenon can be avoided if the

addition of a new feature results in an increase in the Mahalanobis distance between

the two classes by at least 1/(n — d — 3) percent, where n is the number of training

patterns and d is the number of features.

Raudys and Jain [143] showed that for the linear and quadratic discriminant func-

tions which are obtained from the estimated mean vectors and covariance matrices,

the expected classification error is given by E{5} = E + i, where 5 is the asymptotic

error of the linear or quadratic classifier, and v is a constant which is proportional to

d for the linear classifier and d2 for the quadratic classifier. This relationship implies

that the number of training patterns should increase linearly according to the number

of free parameters in the classifier. This theoretical result is consistent with intensive

computer simulations [143, 80]. A general guideline of having five to ten times as

many training patterns as free parameters seems to be a good practice to follow [80].

The generalization ability of both statistical and network-based classifiers depends

on the following three factors: (i) the number of training patterns, (ii) the underly-

ing class-conditional distributions, and (iii) the discrimination ability (or complexity)

of the classifier. The theoretical and empirical results on curse of dimensionality

discussed above were obtained under the assumption of Gaussian class-conditional

distributions. For the general case, the exact relationship between these three factors
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becomes intractable. Vapnik’s theory [170] provides a bound on the maximum devi-

ation of the estimated error from the true error over a set of classifiers. The theory

was developed based on the notion of Vapnik-Chervonenkis (VC) dimension (or ca-

pacity), which is defined as the maximum number (V) of data points in the space for

which the classifier can implement all possible 2“ dichotomies. For example, the VC

dimension of a linear classifier in R“ is (d + 1), and the VC dimension of a quadratic

classifier is {2d+d(d —- 1) /2+ 1}. However, computing the VC dimension for a general

classifier is very difficult. Baum and Haussler [14] have shown that the VC dimension

of a one-hidden-layer feedforward network with threshold units and full connections

between adjacent layers is bounded by 2[H/2]d S V g 2W log(eN), where e is the

base of the natural logarithm, H, N and W are the number of hidden units, the total

number of units and the total number of weights in the network, respectively. Note

that the upper bound on the VC dimension is linear in W (assuming that N is fixed).

The bounds on the VC dimension of feedforward networks with continuous nonde-

creasing activation function are more complicated [60], but are still roughly linear in

W.

Once the VC dimension of a classifier is known, a lower bound can be established

on the (training) sample size requirement [17]:

n 2 max {$1n2, lglni—g}, (1.3)

where X and 6 are two parameters which determine the degree of the maximum devi-

ation of the estimated error from the true error, and the confidence on the maximum

deviation, respectively. Kraaijveld [98] has derived a slightly better bound. Note that

the sample size requirement is roughly linearly proportional to the VC dimension of

the classifier. For a feedforward network classifier, the number of training patterns
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should be approximately linearly proportional to the number of weights in the net-

work. These results derived from Vapnik’s theory have the following interesting and

unique properties: (i) any classifier (or system), no matter how complicated, is charac-

terized by a single number, i.e., the VC dimension; (ii) bounds on training sample size

and on the maximum deviation of the true and estimated errors are distribution-free;

(iii) bounds are independent of how the classifier is trained; and (iv) Vapnik’s theory

only captures the difference between the true and estimated errors, and provides no

statement about the value of the true error itself.

In some sense, properties (ii) and (iii) are desirable, but these properties also make

the bounds too conservative because now the worst case behavior must be considered.

Therefore, the practical applicability of these bounds is questionable. For example,

these bounds provide very little guidance even in the case of multivariate Gaussian

distributions. Moreover, the capacity (or VC dimension) of a classifier may not be

fully exploited by the learning algorithm, or may be restricted by regularization tech-

niques. This means that the efiective capacity of a classifier can be much smaller

than its true capacity. Kraaijveld [98] studied the effect of backpropagation algo—

rithm on the generalization properties of multilayer feedforward networks and found

that the search capability of the backpropagation algorithm (or any other iterative

algorithm) can not fully exploit the theoretical capacity of multilayer feedforward

networks. Kraaijveld proposed a simple but computationally intensive procedure to

estimate the effective capacity of a classifier. His simulation showed that the effective

capacity can be orders of magnitude smaller than the bound for the true capacity of

a multilayer feedforward network. We recommend that the number of training pat-

terns should be at least five to ten times as large as the VC dimension of a classifier

[80,182]

In many practical situations, collecting a large number of training samples is expen-

sive, time consuming, and sometimes impossible. Therefore, choosing a parsimonious
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system (with a small number of parameters) is a very important issue. Various efforts

have been made to improve the generalization ability of neural networks. This prob—

lem is similar to selecting the best classifier from a given set of classifiers in statistical

pattern recognition [143].

The techniques which attempt to improve the generalization ability of a network

can be grouped into the following four categories: (i) local connections and weight

sharing, (ii) adaptive network pruning, (iii) adaptive network growing, and (iv) reg-

ularization. The main idea behind these techniques can be related to the principle of

minimum description length [148] and the intuition of Occam’s Razor. Methods in

the first category try to reduce the number of free parameters (connection weights)

by connecting a node to only a local region of its inputs or by sharing the same weight

among many connections [106, 104]. Kraaijveld [98] has derived the upper bound on

the VC dimension of weight-sharing networks.

1.4 Contributions of This Thesis

The contributions of this thesis are made to both the fields of pattern recognition and

artificial neural networks. These contributions are summarized as follows.

1. Several links between statistical pattern recognition and neural networks have

been established [86] (Chapter 1). These links can encourage communication

between researchers in the two fields to inspire each other and to avoid repetitious

work.

2. A number of neural networks and learning algorithms have been proposed. These

include:

0 Linear Discriminant Analysis (LDA) network [111] (Chapter 2);

0 Nonlinear Discriminant Analysis (NDA) network [111] (Chapter 2);
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o A network for Sammon’s nonlinear projection (SAMANN) [85] (Chapter 2);

o A Nonlinear Projection algorithm based on Kohonen’s Self-Organizing Maps

(NP-SOM) [100] (Chapter 2);

o A network-based k-nearest neighbor classifier [84] (Chapter 3); and

o A self-organizing network for detecting HyperEllipsoidal Clusters (HEC)

[114] (Chapter 4).

A comparative study of five typical networks for feature extraction and data

projection has also been conducted [113] (Chapter 2).

3. The main theoretical contributions of this thesis are:

e Vapnik’s theory and Moody’s approach for studying the generalization abil-

ity of feedforward networks have been compared. Moody’s notion of the

eficctive number of parameters has been extended to a more general noise

model. We have shown that the addition of noise in both sampling points

in test data and observations increases the deviation of the expected test

set MSE from the expected training set MSE, and also increases the effec-

tive number of parameters. Monte Carlo experiments have been conducted

to verify Moody’s result and our extension, and to demonstrate the role of

the weight-decay regularization in improving the generalization ability of

feedforward networks. See Chapter 5.

0 We have provided a systematic study of regularization techniques in neural

network design. We present a taxonomy for various forms of regularization

and demonstrate that a variety of neural networks and learning algorithms

do fit into this framework. Some results discussed and developed in Chapter

5 are used to explain a counter-intuitive phenomenon that a network with
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a large number of free parameters and trained with a relative small number

of patterns can still generalize well. See Chapter 6 and [112].

4. A practical method of node pruning has been proposed to design minimal net-

works which generalize well. This method can also be used for feature selection.

See Chapter 7 and [115].

1.5 Organization of This Thesis

The rest of this thesis is organized as follows. The first part of this thesis (Chapters

2—4) focuses on designing neural networks for pattern recognition. Chapter 2 pro-

poses a number of neural networks and learning algorithms for feature extraction and

multivariate data projection. This chapter also conducts a comparative study of five

typical networks for feature extraction and multivariate data projection. Chapter 3

implements the well-known k-nearest neighbor classifier and its variants using neu-

ral network architecture. Chapter 4 presents a self-organizing network for detecting

hyperellipsoidal clusters.

The second part of this thesis (Chapters 5-7) is devoted to the theoretical analy-

sis of generalization ability and practical techniques for improving the generalization

ability of feedforward networks. Chapter 5 presents a theoretical study of the gener-

alization ability of feedforward networks. It first introduces two types of frameworks

for this study: Vapnik’s theory and Moody’s approach. The advantages and disad-

vantages of these two frameworks are analyzed. Then, we extend Moody’s model to a

more general setting. Monte Carlo experiments are conducted to verify both Moody’s

result and our extension, and to demonstrate the role of the weight-decay regular-

ization in reducing the effective number of parameters in feedforward networks. We

also summarize four different types of practical techniques for improving the gener-

alization ability of feedforward networks. Chapters 6 and 7 address two of these four
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types of techniques. Chapter 6 provides a survey of regularization techniques used in

neural networks. Some theoretical results in Chapter 5 are used to explain the role

of regularization techniques in the performance of neural networks. In Chapter 7, a

node pruning method is proposed for designing minimal networks which generalize

well, and for feature selection.

Finally, Chapter 8 summarizes this thesis and mentions topics for future research

work.



CHAPTER 2

Neural Networks for Feature

Extraction and Data Projection

Classical feature extraction and data projection methods have been well-studied in

the statistical pattern recognition and exploratory data analysis literature. In this

chapter, we propose a number of networks and learning algorithms which provide new

or alternative tools for feature extraction and data projection. These networks include

a network (SAMANN) for Sammon’s nonlinear projection, a linear discriminant anal-

ysis (LDA) network, a nonlinear discriminant analysis (NDA) network, and a network

for nonlinear projection (NP-SOM) based on Kohonen’s self organizing map. A com-

mon attribute of these networks is that they all employ adaptive learning algorithms

which makes them suitable in some environments where the distribution of patterns

in feature space changes with respect to time. The availability of these networks

also facilitates hardware implementation of well-known classical feature extraction

and projection approaches. Moreover, the SAMANN network offers the generaliza-

tion ability of projecting new data, which is not present in the original Sammon’s

projection algorithm; the NDA method and NP-SOM network provide new powerful

approaches for visualizing high dimensional data. We evaluate five representative

25
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neural networks for feature extraction and data projection based on a visual judge-

ment of the 2-dimensional projection maps and three quantitative criteria on eight

data sets with various properties. Our conclusions which are based on analysis and

simulations can be used as a guideline for choosing a proper method for a specific

application.

2.1 Feature Extraction and Data Projection

Feature extraction and data projection can be formulated as a mapping \II from a

d-dimensional input space to an m—dimensional output space (map space), \II : R“ —>

R”, m S d, such that some criterion, C, is optimized. This formulation is similar

to a function approximation problem. However, unlike the function approximation

problem where the mapping function is estimated from training patterns which are

input-output pairs (desired outputs are known), in feature extraction and data pro-

jection the desired outputs are often not available even for supervised approaches

(e.g., linear discriminant analysis). Feature selection, which is used for choosing an

optimal subset of features, can be viewed as a special case of feature extraction, where

\I! is a linear m x d permutation matrix. For data visualization purpose, the value of

m is usually set to 2 or 3.

A large number of approaches for feature extraction and data projection are avail-

able in the pattern recognition literature [16, 81]. These approaches differ from each

other in the characteristics of the mapping function \II, how \II is learned, and what op-

timization criterion C is used. The mapping function can be either linear or nonlinear,

and can be learned through either supervised or unsupervised methods. The combi-

nation of these two factors results in the following four categories of feature extraction

and data projection: (i) unsupervised linear, (ii) supervised linear, (iii) unsupervised

nonlinear, and (iv) supervised nonlinear. Within each category, the methods differ in
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the criterion function C being used. This taxonomy is shown in Figure 2.1. In general,

linear methods are attractive because they require less computation than nonlinear

methods. Analytical solution is often available for linear methods. On the other

hand, nonlinear methods are more powerful than linear methods. However, since the

analytical solution is often not available, a numerical optimization method must be

used to obtain the solution, which is usually computationally demanding. Further-

more, the optimization procedure often gets trapped into a local minimum. It is also

generally true that supervised methods have better performance than unsupervised

methods in situations where the category information is available [16].

Various neural networks including those proposed in this chapter for feature ex-

traction and data projection can also be grouped into the above four categories. The

boxes at the leaf nodes in Figure 2.1 list a number of representative networks in each

category which will be described and evaluated in this chapter.
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Figure 2.1. A taxonomy of neural networks for feature extraction and data projection.
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Choice of a proper feature extraction and data projection method (both the tra-

ditional and neural network approaches) for a given problem is driven by (i) the

available information (supervised versus unsupervised), (ii) a priori knowledge about

the underlying distribution of the data (linear versus nonlinear, and C), and (iii)

the task requirement (classification or visualization). Knowing the details and the

characteristics of all the available approaches is crucial to making a good choice. In

this chapter, we will investigate the characteristics of a number of neural networks

through analysis and evaluation experiments.

2.1.1 Principal Component Analysis (PCA) Networks

Principal component analysis, also called Karhunen-Loeve transform, is a well-known

statistical method for feature extraction, data compression and multivariate data

projection, and has been widely used in communication, signal and image processing,

pattern recognition and data analysis. It is a linear orthogonal transform from a

d—dimensional input space to an m—dimensional output space, m S d, such that

the coordinates of the data in the new m—dimensional space are uncorrelated and

maximal amount of variance of the original data is preserved by only a small number

of coordinates.

Projection pursuit is a more general approach in this category which includes prin-

cipal component analysis as a special case. Projection pursuit was first introduced by

Friedman and Tukey [44] as a technique for exploratory analysis of multivariate data

sets. Huber [73] provided a unified framework of projection pursuit which included

principal component analysis, multidimensional scaling, factor analysis, nonparamet-

ric regression (projection pursuit regression), density estimation (projection pursuit

density estimation) and deconvolution. The standard 2-layer (one hidden layer) feed-

forward network is closely related to projection pursuit regression in approximating

functions although the backpropagation algorithm used for training the feedforward
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network is different from the algorithms used in projection pursuit regression. A

number of researchers have explored using projection pursuit regression and density

estimation in training or constructing feedforward networks [13, 75, 187].

Let 5:: = (fk1,£k2,-~,€kd)T denote the k‘“ d—dimensional input vector, k =

1,2, - - -,n. Assume zero—mean vectors without a loss of generality. Let 2 be the

covariance matrix of the data, with eigenvalues, A1, A2, - - - , Ad, in the decreasing or—

der. The m principal components of the data can be obtained by a linear transform

0,. = <I>T£k, where o,c = (0k110k21' - . , 0km)T, and <I> is a d x m matrix whose columns

are m eigenvectors corresponding to the m largest eigenvalues of the covariance ma-

trix E. It is easy to show that the covariance matrix of the transformed data is

a diagonal matrix, diag{A1,A2, - - -,Am}, which means that the components of the

transformed data are uncorrelated. The variance of the original data retained in the

new m-dimensional space is 2311., which is the largest retained value among all

linear orthogonal transforms of the same output dimensionality. Principal compo-

nent analysis is optimal in the mean-square error sense among all linear orthogonal

transforms.

A large number of neural networks and learning algorithms have been proposed

for principal component analysis [1, 133, 151, 150, 154, 6, 40, 69, 101, 103]. We have

extremely used the PCA network proposed by Rubner et al. [151, 150].

Rubner et al.’s PCA network architecture is shown in Figure 2.2. It consists of

(1 input nodes and m output units. Assume m = (1 without any loss of generality.

Each input node i is connected to each output unit j with connection strength wij.

We denote the weight vector associated with output unit j from the (1 inputs by

wj = (wlj, ng, - - - , wdj)T. All the output units are hierarchically organized in such a

way that the output unit i is connected to the output unit j with connection strength

21,-,- if and only ifi < j. Let {5, | k = 1, 2, ~ - - ,n} be the set of n input vectors with

zero-mean, and {oh I k = 1, 2, - . - , n} be their corresponding output vectors produced
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by the network.

ij = Wj ° 5k + Z Uzjokl. (2.1)

l<j

The weights on connections between the input nodes and the output layer are adjusted

upon presentation of an input vector 5,. = (51m €k2, - - ' , 6“) according to the Hebbian

rule, i.e.

Awij = ngkiokj, Z,j 1‘ I, 2, ' ' ° , d, (2.2)

where 17 is the learning rate. The lateral synaptic weights, on the other hand, are

updated according to the anti-Hebbian rule:

Auzj = ‘HOkIij, l < f. (23)

where [1. is another positive learning parameter.

:EXE¥:uk01
02

>O—’ 0d

Figure 2.2. PCA network proposed by Rubner et al.
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Rubner and Tavan [151] proved that if the learning parameters 77 and ,u are properly

chosen according to

”(A1 — /\d)

in + m) < ” < 2”" “'4’
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then all the lateral weights will rapidly vanish and the network will converge to

a state in which the d weight vectors associated with the d output units are the d

eigenvectors of the covariance matrix of input patterns with eigenvalues, A1 2 A2 - - - 2

Ad. Although, in practice, it is difficult to determine the values of 77 and )1 according

to the inequalities in Eq. (2.4) without first computing the eigenvalues, Eq. (2.4) does

provide a range for the values of 1) and ,u if A1 and Ad can be somehow estimated.

The asymptotically vanishing connection strengths also provide a stopping criterion

for the learning procedure.

We have found that introducing the momentum term and letting the learning rate

and momentum decay with time can speed up the convergence. In our experiments,

we use

Awij (t + I) = "(t)€k10kj + fi(t)Aw,-j(t), (2.5)

and

Arm-(t + I) = -/.l.(t)0k(0kj + fi(t)Aulj (t), (2.6)

where 17(t + 1) = ma$(an(t),0.001), p(t + 1) = maa:(ap(t),0.002), C(t + 1) =

max(a,6(t), 0.001), t is the iteration index and a is the decay factor. The non-zero

minimum values for n, p. and 6 enable the network to retain the plasticity so that it

can adapt itself to the new input data.

We summarize the learning algorithm for principal component analysis [151, 150]
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in Box 1.

 

Box 1

PCA Algorithm

1. Initialize all connection weights to small random values and choose the

values of the learning parameters.

2. Randomly select a d—dimensional pattern and present it to the network.

3. Update the connection weights between the input nodes and the output

layer according to the Hebbian rule, Eq. (2.5).

4. Normalize each weight vector to a unit vector.

5. Update the lateral weights according to the anti-Hebbian rule, Eq. (2.6).

6. Modify parameters, 17, u and fl.

7. If all the lateral weights are sufiiciently small for a given number of pre-

sentations (their absolute values are below some threshold), then stop;   else go to step 2.
 

Our computer simulations of Runber’s PCA network have shown that the preci-

sion of the computed eigenvalues and eigenvectors is very high (of the order of 10‘5

compared to values obtained by the commercial Eispack software) [111]. However,

we have experienced a very slow convergence of the PCA algorithm when the input

dimensionality d is high and all the d eigenvectors need to be computed, especially

when some eigenvalues are very small.

2.1.2 Linear Discriminant Analysis (LDA) Network

If the category information of patterns is known, then it is more appropriate to use

supervised learning. Linear Discriminant Analysis incorporates the a priori category
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information into the projection or transform by maximizing the between-class scatter

while holding the within-class scatter constant.

Let £9) = ( ff), ,(é’,-- ,éfj’V denote the i‘” pattern in class 1, i = 1,2,-~-,n,,

l = 1, 2, - - - , c, where c is the number of categories. Let n = Zizl n, denote the total

number of patterns. Define the within-class covariance matrix, 2W, as

Ew=-Z:(.(z) _m(1)) (€51)_ m(l))T, (2.7)

"1:1i:

where m“) is the mean vector of class l, l = 1, 2, . ~ - , 0. Similarly, define the between-

class covariance matrix, 23, as

1 C

>3. = — 2: Mm“) — m)(m"’ - mi (2.8)
n

—1

where m is the mean vector of the pooled data. The total scatter matrix is, therefore,

= —£85.“)— mm.-”— m) = 2.. + 2.. (29)
"1:11.21

The goal of linear discriminant analysis is, then, to find a d x m transform (I) such

that [(DTEBQl/IQTZWQI is maximized, where I - | denotes the determinant. It can

be proved that such a transform, (I), is composed of m eigenvectors corresponding to

the m largest non-zero eigenvalues of 2,1533. Due to the fact that the matrix 23

has a maximum rank of c — 1, the value of m must be less than c. Therefore, the

dimensionality of the projected space is limited by the number of categories. Sev-

eral variations of linear discriminant analysis have been reported in the literature.

For example, Foley and Sammon [41] and Okada and Tomita [134] derived a set of

discriminant vectors by selecting the projection axes one at a time under an orthogo-

nality constraint. We use the total covariance matrix ET instead of the between—class

covariance matrix DB in the criterion, so that the output dimensionality is not limited
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by the number of categories.

We have proposed a neural network and a supervised self-organizing learning al-

gorithm for multivariate linear discriminant analysis [111]. The linear discriminant

 

 

 

 

5d :v '

Figure 2.3. Architecture of the LDA network.

analysis (LDA) network is shown in Figure 2.3. It consists of two layers, each of

which is identical to the PCA network proposed by Rubner et al. [151, 150] shown

in Figure 2.2. Linear activation function is used for all the units. Let 111,9) (1118’)

be the weights on the interlayer connections from the 2"“ unit in the input (hidden)

layer to the j”unit in the hidden (output) layer. Let all) (uS”) denote the lateral

weights from the it“ unit to the 3"” unit within the hidden (output) layer. Moreover,

let 6 = (£1,£2, - . -,€d)T be a d-dimensional input pattern, and p = (p1,p2,' ' ' ,Ple

and o = (01, 02, - - - , od)T be output vectors of the hidden layer and the output layer,

respectively. We can write these outputs as

Pj = wa;)§i+zuigl)l)h (2-10)

i=1 l<j

0.- = waf’p.+2ui”oz,j=l.2.---.d.
l<j

Let T = {($61) | k = 1, 2, ---,n,, l = 1,2,---,c} denote the set of input training

patterns. Let TTo“— [6“), = 1,2,---,n¢, l = 1,2,~-,c} denote the normalized
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training data set obtained by subtracting each pattern in T by the global mean

vector of the pooled training data set T, 5],” = (j!) — m. We form another training

data set with class-conditional zero-mean vectors, Two = [17]:), k = 1, 2, - - - , m, l =

1, 2, - . - , c} by subtracting each pattern in T by the mean vector of the corresponding

class, 17$,” = (S) — m“). The category information is only used to form the class-

conditional zero-mean training set TWO. Once this is done, the learning algorithm is

fully self-organizing.

The proposed supervised self-organizing learning algorithm is given in Box 2.

 

Box 2

LDA Algorithm

1. Form training sets Two and TTO from T.

2. Train the first layer using the PCA algorithm (Box 1) using Two-

3. Project all the patterns in Two using the first trained layer; compute

the standard deviation for each output unit; scale all the weights on

connections to each output unit by the standard deviation associated

with this unit. 2123" = ugly/0,, i,j=1,2,---,d.

4. Form data set TH by collecting the output of the hidden layer when the

training set TTO is presented to the input layer.   5. Train the second layer using the PCA algorithm (Box 1) on data set TH.
 

The learning parameters for the PCA and LDA algorithms in all the experi-

ments in this chapter are specified as follows: 17(0) = 0.2, 71(0) = 1.5, 6(0) = 0.1,

a = 0.99999. The learning process stops when the sum of weights on the lateral con-

nections is below the threshold tu = 0.000001, or the maximum number of iterations,

1,000,000, is reached? All the data sets are normalized by their maximum range, so

 

‘In this chapter, one iteration means one presentation of a pattern.
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these learning parameters satisfy the inequalities in Eq. (2.4).

The LDA algorithm actually performs a simultaneous diagonalization of two co-

variance matrices, Ew and Dr, of training data sets, Two and Tan, respectively. In

Step 2 of the LDA algorithm, the first layer tries to find the principal vectors of the

data Two- Step 3 “whitens” the data set Two and, in the meantime, changes the

distribution of the data set T70 when it is transformed by the first layer in Step 4.

Then, in Step 5 of the LDA algorithm, the second layer attempts to search for the

principal vectors of TH, the transformed version of TTO.

Let (I) = [w],1 ’]dxd and (I), be the weight matrix when Steps 2 and 3 are executed,

respectively. Let ‘1! = [wff’hxd be the weight matrix of the second layer after training.

The overall mapping that the network performs is 0],” = ATfig’, where A = <I>,\II. We

have shown that the columns of matrix A are composed of the eigenvectors of 25,1 ET

corresponding to the eigenvalues in the decreasing order [111]. When the learning

process is finished, these eigenvalues can be obtained by computing the variances of

the output units when the training set Tan is presented to the input nodes. The

precision of the neural computation is shown to be high enough for feature selection

and projection purposes [111].

Independently of our work, Kuhnel and Tavan [102] have also investigated a net—

work for linear discriminant analysis, but no simulation and comparison results were

provided in [102].

Gallinari et al. [53] have established a link between linear discriminant analysis

and linear feedforward networks. Their theoretical analysis shows that in a linear

two-layer feedforward network with ran/C(23) units in the hidden layer, trained to

minimize the square-error criterion, the role of the hidden layer is to realize a lin-

ear discriminant analysis that maximizes the criterion lthl/lznl: where 23 is the

between-class covariance matrix in the input space, and 23,, and 2'1). are the between-

class covariance and total-class covariance matrices, respectively, in the space spanned
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by the hidden units. This result provides another method to perform a discriminant

analysis of the input data by simply collecting the outputs of the hidden units. Com-

paring our proposed LDA network with this approach, the LDA network has the

following two main advantages. First, the LDA algorithm operates in a “forward-

propagation” fashion (first train the first layer, then the second layer, thus training

of the two layers is independent), while the most commonly used method, backprop-

agation algorithm, for training the multilayer feedforward is in a “backpropagation”

mode. Therefore, the convergence speed of the LDA algorithm is faster than the

backpropagation algorithm. Secondly, the weight updating rules (strictly local) for

the LDA network are much simpler than the one used in backpropagation algorithm

where the updating a weight needs information to be back-propagated from all the

units in the next layer. Therefore, the learning circuit of the LDA network is simpler

than the one for the backpropagation network (feedforword network trained using

backpropagation algorithm).

2.1.3 A Neural Network for Sammon’s Projection

(SAMANN)

Sammon [153] proposed a nonlinear projection technique that attempts to maxi-

mally preserve all the interpattern distances. Let {(71), p = 1,2, - - -,n, be the n

d—dimensional patterns, and y(7i), 71 = 1, 2, - - - , n, be the n corresponding patterns in

the m-dimensional projected space, m < d. The mapping error, also called Sammon’s

stress, is defined as

E: 1 2:1 Z [d.(1”,")- (10‘”if/>12, (2'11)

p;1lznzfl-l-ld(’1', V) p:1u-p+1 (11.1“? V)

 
 

where d*(p, u) and d(p, V) are the distances between pattern p and pattern V in the

input space and in the projected space, respectively. Euclidean distance is commonly
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used in this projection algorithm.

Sammon’s stress E is a measure Of how well the interpattern distances are preserved

when the patterns are projected from a high dimensional space to a lower dimensional

space. Sammon [153] used a gradient descent algorithm to find a configuration of

n patterns in the m-dimensional space that minimizes E. This method views the

positions Of n patterns in the m—dimensional space as nm variables in an Optimization

problem. There are many local minima on the energy (or error) surface and it is

unavoidable for the algorithm to get stuck in a local minimum. One usually runs the

algorithm several times with different random initial configurations and chooses the

configuration with the lowest stress. Sammon’s algorithm involves a large amount Of

computation. Since for every step within an iteration, n(n — 1) /2 distances have to be

computed, the algorithm quickly becomes impractical for a large number of patterns.

Sammon’s algorithm does not provide an explicit mapping function governing the

relationship between the patterns in the original space and in the configuration (pro-

jected) space. Therefore, it is impossible to decide where to place new d-dimensional

data in the final m-dimensional configuration created by Sammon’s algorithm. In

other words, Sammon’s algorithm has no generalization capability. In order to project

new data, one has to run the program again on pooled data (Old data and new data).

We have proposed an unsupervised backpropagation learning algorithm to train a

multilayer feedforward neural network to perform the well-known Sammon’s nonlinear

projection. The proposed learning algorithm, which needs no category information

about patterns, is an extension of the backpropagation algorithm. Figure 1.2 shows

the neural network architecture. The number Of input nodes, d, is set to the input

dimensionality Of the feature space. The number Of output units, m, is specified as

the dimensionality Of the projected space, m < (1.

Let £= (51,62, - - 3&1) be a d-dimensional input pattern vector. We denote the

output of j‘“ unit in layer l by yy), j =1,2,~-,n¢, [2 0,1,2, - --,L, where n, is the
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number of units in layer l, L is the number Of layers, and yg-O’ = 63-, j = 1, 2, - - - , d. The

weight on connection between unit 2' in layer l — 1 and unit j in layer 1 is represented

by 1113-). We denote w“,-’ as the bias1n the 3"”unit in the It” layer, and y“): 1.0. The

sigmoid activation function g(h) whose range is (0.0, 1.0) is used for each unit, where

h is the weighted sum of all the inputs to the unit. Therefore, the output of the j‘”

unit in layer I can be written as

——9)(ZWSW?1))l1 21-121 ° ° '11” (212)

Using the above notation, the (101,1!) term in Eq. (2.11) can be expressed as

= {farm-111W>121”? (213)
k=l

where 71. and u are the two pattern indices.

Note that the range of each output is between 0.0 and 1.0. If the range of input

values is large, it is impossible for the projection algorithm to preserve the interpattern

distances no matter which learning rule is used. Therefore, we normalize all the input

patterns to equalize the maximum interpattern distances in the original space and in

the projected space. Let

1
 

 

A = n_ n , (2.14)

p=I u=77+1 d* (#1 V)

which is independent of the network and can be computed beforehand, and

ld*(f‘1u) - (“”1 ”H2

E V = A , 2.15

" at». u) ( ’

then

n—l n

E = Z 2 E”. (2.16)

71:1 u=7i+l
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Note that Em, is proportional to the interpattern distance changes between pat-

terns 7i and V, due to the projection from the d—dimensional feature space to the

m-dimensional projected space. SO, E7“, is more appropriate for the pattern-by-

pattern-based updating rules.

We have derived the updating rule for the multilayer feedforward network which

minimizes Sammon’s stress defined in Eq. (2.11) based on the gradient descent

method. For the output layer (l = L),

3E1» = ( 3E1... )( 3d(u. V) ) 3lrl”’(u)- ylL’(V)l

6212‘? 041111!) Blyf.”()- ylLl<11 awéi’

(-2,\d*(V,V)-d(/1,V)) (yylL’(V)- ylL’(V))

 
   

  

d* (H, V) (10‘1”)

(911212121?”(111— g’(h§.L31y§-L ”(111) (2.171

where g’(h],L’) is the derivative of the sigmoid function of unit k in layer L (output

layer) with respect to the net input, h,“ of this unit,

 

g'<h.,.1 = <1— ,7L1(.)),7L>(., (2181

Let

61‘.“ (u, u) = —2A“1“]...ESE”)’ y£L’(u1-y1.L’<11. (2.191

AlL’(u)=5lL’(u.V)[1- ylL’m11.11%.) (2.201

AtL’<1=6"<u.1—11yiL’(11ylL><u,1 (2.211

where 6],“(71, V) is the change in the output scaled by the normalized interpattern

distance change when we present patterns 71 and V. As we will see later, A5901) and

AEL’(V) will be backpropagated to layer L — 1. Substituting Eqs. (2.18)-(2.21) into
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Eq. (2.17), we get

as“.
aw(L) __A(L)(#)y(_L- 1101)_ A(L)(V)yJ(L— 11(V). (2.22)

y]

 

The updating rule for the output layer is

"as”.

flaw“)

= —n(A1L’<u1y.L111—<1 A1L’(1y1L”<1), (2.231

Awa)  

where 17 is the learning rate.

Similarly, we can obtain the general updating rule for all the hidden layers,

l=1,---,L—1.

(t1 _ 3E u

= —n (111-”(111.111 "(111 — 111-”(211211411211 (2.241

where

A1001) = 61%1111—y1"<u11y1”<u1. (2.251

A1L<u1= 61"<u1[1— y1”<11y1”<1. (2.261

and

(“not =ZA(’:+1)(H)w(lk+1), (2.27)

6(I)(V =ZA(1+1)(I/)w(lk+l). (228)

Analogous to the backpropagation learning algorithm, 65-1) (71) and 6;”(11) are

changes in layer l backprOpagated from its successor layer, 1 + 1, for pattern [1. and

pattern V, respectively. As we can see from Eqs. (2.23) and (2.24), to update the
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weights, we need to present a pair of patterns to the network instead of one pat-

tern at a time in the backpropagation learning algorithm. This can be accomplished

by either building two identical networks or just storing all the outputs of the first

pattern before presenting the second pattern. The above learning rule for Sammdn’s

projection makes use of the popular backpropagation algorithm. But, we do not need

category information of the patterns. Therefore, we have extended the backpropaga-

tion algorithm to perform unsupervised learning.

The SAMANN unsupervised backpropagation algorithm is summarized in Box 3.

 

Box 3

SAMANN Unsupervised Backpropagatz'on Algorithm

1. Initialize weights randomly in the SAMANN network.

2. Select a pair of patterns randomly, present them to the network one at a

time, and evaluate the network in a feedforward fashion.

3. Update the weights using Eqs. (2.23) and (2.24) in the backpropagation

fashion starting from the output layer.

4. Repeat steps 2—3 a number of times.

5. Present all the patterns and evaluate the outputs of the network; compute

Sammon’s stress; if the value of Sammon’s stress is below a prespecified

threshold or the number of iterations (from steps 2—5) exceeds the pre-   specified maximum number, then stop; otherwise, go to step 2.
 

Similar to the backpropagation algorithm, we can add a momentum term in up—

dating the weights in order to speed up the convergence.

The selection of the number of hidden layers and the number of units in each hidden

layer in a multilayer feedforward network is an important yet difficult problem. In

order to achieve the representation power of Sammon’s algorithm, we have to use a
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network with at least mn free parameters, where mn is the number of variables in

Sammon’s algorithm. So, mn becomes a lower bound for the total number of free

parameters. This lower bound becomes very large when the number of patterns is

large. However, we have found that it is often not necessary to use such a large

number of free parameters to obtain reasonable projection maps. On the other hand,

the network should be as small as possible to obtain good generalization capability.

A compromise between these two factors is necessary for selecting an appropriate

network.

A significant advantage of the SAMANN network is that the network is able to

project new patterns after training because of the effect of regularization [112]. Some

preliminary simulation results were reported in [85], which demonstrated this good

generalization capability.

The local minimum problem in both the methods can be improved by choosing

good initial configuration in the original Sammon’s algorithm and good initial weights

in the SAMANN network. We have found that the values of Sammon’s stress of prin-

cipal component analysis and of Sammon’s projection are close for many data sets.

This is because when all the interpattern distances in a data set are maximally pre-

served, the variance of the data is also retained to a very high degree. Therefore,

we pr0pose to use the PCA projection map as an initial configuration in Sammon’s

projection. The PCA projection map can be obtained from the PCA network. Then,

the SAMANN network is trained using the standard backpropagation algorithm to

approximate principal component analysis. Finally, the proposed unsupervised back-

propagation algorithm is used to take advantage of the nonlinearity of the SAMANN

network to refine the projection map.

In all the experiments reported in this chapter, a two-layer (one hidden layer)

network with 20 hidden units is used. The SAMANN network is trained using the

standard backpropagation algorithm with a learning rate of 0.7 and momentum value
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of 0.3 for 200,000 iterations. Then, the unsupervised backpropagation algorithm is

used to train the SAMANN network for 60,000 iterations. The learning rate and

momentum value in the unsupervised backpropagation algorithm are 0.02 and 0.01,

respectively for the artificial data sets, and 0.05 and 0.02, respectively for the real

data sets.

2.1.4 A Nonlinear Projection Based on Kohonen’s Self-

Organizing Map (NP-SOM)

Kohonen’s self-organizing map (SOM) [92, 93, 94] belongs to the category of unsu-

pervised nonlinear projection methods. Kohonen’s Self-Organizing map has a very

desirable property of topology preserving, which captures an important aspect of the

feature maps in human brain. The network architecture is shown in Figure 2.4. It

basically consists of a two-dimensional array of units, each of which is connected to

all the d input nodes. Let Wij denote the d—dimensional vector associated with the

unit at location (2', j) of the 2-D array. Kohonen’s self-organizing map algorithm is

briefly summarized in Box 4.

A slightly different formulation of the learning rule, which is used in this chapter,

is the kernel updating rule [94]:

We“ + 1) = We“) + thcj (t)[€(t) - w.,-(t)], (2-29)

where how]. (t) is a Gaussian weighting function:

[(i - 61-)2 + (j — le2l) . (2.30)
hag-(t) = ho(t)eivp (— 20(t)2

Here, h0(t) and 00(t) are chosen as suitable decreasing functions of time. We use the

following parameters in all our experiments: h0(0) = 0.05, 0(0) = 66.666, h0(t + 1) =
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max{0.9999 x h0(t), 0.0001}, 0(t + 1) = maa:{0.9999 x 0(t), 1.0}, and the maximum

number of iterations is 100,000.

 

Box 4

Kohonen’s Self-Organizing Map Algorithm

1. Initialize weights to small random numbers, set initial learning rate and

neighborhood;

2. Present a pattern E, and evaluate the network outputs;

3. Select the unit (Ci, Cj) with the minimum output:

”6 _ WCiCj” : mill Hg — WU”

U

4. Update all the weights according to the kernel-based learning rule;

wt-(t) + a(t)[£(t) — w..-(t)1. if (M) e N... (t),

w,,- (t), otherwise,

Wij(t+1) =

where New]. (t) is the neighborhood of unit (Chg) at time t, and a(t) is

the learning rate.

5. Decrease the value of a(t) and shrink the neighborhood NM,- (t);

6. Repeat steps 2 — 5 until the change in weight values is less than a pre-

specified threshold, or the maximum number of iterations is reached.   
 

Because of the topology-preserving property of the SOM map, some insight into

the data can be gained by examining the activation pattern of the 2D array of units

when all the input patterns are presented to the network after the training is done.

If the category information of the data is available, we can label each unit in the

array by the majority class label of the patterns which are projected onto the unit.
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Figure 2.4. A sketch of the NP-SOM network.

If the classes in the data are well-separated, the 2D projection map will be divided

into regions by classes. Kohonen [93] used this method to obtain the phoneme map

which was used in the phonetic typewriten Since each unit in the network has a

tendency to encode (become a prototype of) a region in the input space according to

the density distribution of the data, all the units have approximately the same chance

to be activated. Therefore, patterns in the SOM map are quite uniformly distributed.

This makes it very difficult to visualize the structure of the data when the category

information is not available. Moreover, we are not able to display high dimensional

weight vector associated with each unit. So, Kohonen’s SOM maps are not suitable

for visualization of high dimensional data with no category information.

We have developed a nonlinear projection method (NP-SOM) based on Kohonen’s

SOM to facilitate visualization of data, where a 100x 100 array of units is used [100].

A sketch of the NP-SOM network is shown in Figure 2.4. First, we train the network

using Kohonen’s self-organizing learning algorithm on a data set. Then, we display

the network as a two-dimensional distance image, in which each pixel represents
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a unit in the 2-D network. The gray value of a pixel is the maximum distance

in the weight vector space between the corresponding unit and its four neighbors.

In the distance image, dark regions separated by bright curves represent different

clusters. This display technique helps us in visualizing the clustering tendency and

underlying structure of the data. Experiments in Section 2.2 will show that the

clustering tendency of many data sets becomes apparent in the 2D distance image.

The inter-unit distance is also defined which enables us to compute Sammon’s stress

for this projection [100].

2.1.5 Nonlinear Discriminant Analysis (NDA) Network

Webb and Lowe [173] have investigated a class of multilayer feedforward networks

with nonlinear hidden units and linear output units, trained to minimize the squared

error between the desired output and actual output of the network. They have found

that the nonlinear transformation implemented by the subnetwork from the input

layer to the final hidden layer of such networks maximizes the so—called network

discriminant function, Tr{SBS$}, where S}: is the pseudo—inverse of the total scatter

matrix of the patterns at the output of the final hidden layer, and SB is the weighted

between-class scatter matrix of the output of the final hidden layer (the weights

are determined by the coding scheme of the desired outputs). Although this result

was derived for the specific class of multilayer feedforward networks with nonlinear

hidden units and linear output units, its interpretation can be extended to general

multilayer feedforward networks. The role of hidden layers is to implement a nonlinear

transformation which projects input patterns from the original space to a space in

which patterns are easily separated by the output layer. The first part of the network

(from the input layer to the output layer) actually realizes a nonlinear discriminant

analysis.

We have used this theoretical result to perform a nonlinear discriminant analysis
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(NDA) of input data [111]. The main objective of this method is to visualize high

dimensional data to determine whether it is necessary to compute a nonlinear decision

boundary in the output layer (e.g., by using another multilayer network, or k-nearest

neighbor classifier). This projection method falls into the category of supervised

nonlinear approaches. The network architecture is the same as the SAMANN (Figure

1.2). We specify the number of input nodes to be the number of features and the

number of units in the output layer to be the number of pattern classes in the data

set. Furthermore, we fix the number of units in the last hidden layer to m, the

dimensionality of the projected space. Thus, from input layer to the last hidden

layer, the network implements a nonlinear projection from d—dimensional space to m-

dimensional space. If the entire network can correctly classify a linearly-nonseparable

data set, then this projection actually transforms the linearly-nonseparable data to

a linearly-separable data in some “other” space. Therefore, by visualizing the data

in this m-dimensional space (m = 2, 3), we can gain some insight into the structure

of the data. In all our simulations, we use m = 2. The backpropagation learning

algorithm is used to train the feedforward network with two hidden layers. Sigmoid

activation function is used in all the units. In order to avoid squashing the data for

the projection map, we replace the sigmoid activation function by a linear function

in all the units in the last hidden layer after the training is done.

2.1.6 Summary of Networks for Feature Extraction and

Data Projection

Table 2.1 lists several important features of the five representative networks for feature

extraction and data projection: PCA, LDA, SAMANN, NDA and NP-SOM.
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Table 2.1. Some features of the five representative networks.

 

 

 

 

 

 

 

 

      

Network PCA LDA SAMANN NDA NP-SOM

Class in unsupervised unsupervised unsupervised supervised unsupervised

taxonomy linear linear nonlinear nonlinear nonlinear

of Fig. 2.1

Architecture Fig. 2.2 Fig. 2.3 Fig. 1.2 Fig. 1.2 Fig. 2.4

Activation linear linear sigmoid sigmoid Euclidean

function

No. inputs d d d d d

No. outputs m m m c 100 X 100

No. layers 1 2 > 2 > 2 1

Learning PCA LDA unsupervised standard Kohonen’s

algorithm (Box 1) (Box 2) backpropagation backpropagation SOM (Box 4)

(Box 3)
 

2.2 Comparative Study

We will evaluate the performance of the five networks for feature extraction and

data projection based on a visual judgment of the 2D projection maps and three

numerical criteria over eight data sets with various properties. These networks are:

(i) Rubner’s PCA network, (ii) LDA network, (iii) NDA network, (iv) network for

Sammon’s projection (SAMANN), and (v) the nonlinear projection method based on

Kohonen’s self-organizing map (NP-SOM).

2.2.1 Methodology

We have generated or collected eight data sets for evaluating feature extraction and

data projection approaches. These 8 data sets are briefly described below.

1. Two normally distributed clusters (21 = 232 = I and pl = —,u2 = (1, 1, -- 'a1)T)

in a 10-dimensional space with 500 patterns per class. This is a well-separated

data set with a Bayes error of 0.078%.
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. Two elongated clusters in a 3—dimensional space. A perspective view of this data

set is shown in Figure 2.5(a). This example is not linearly separable.

. Two uniformly distributed sets of points on two 3-dimensional spherical surfaces.

One sphere containing 800 patterns is centered at (0, 0, 0) with radius 1, and

the other containing 200 patterns is centered at (0, 0, 0.2) with radius 0.1. This

data set has a relatively symmetric structure and its two classes are not linearly

separable.

. Uniformly distributed “noise” in a 10-dimensional unit hypercube. All the 1,000

points are randomly labeled into two classes with 500 points per class. This data

set is used to test how feature extraction and data projection algorithms behave

on data sets with no meaningful structure.

. IRIS data set. The well-known data set consisting of 150 4-dimensional patterns

from 3 classes. It contains 4 measurements on 50 flowers from each of the 3

species of the Iris flower.

. 80X data set. It consists of 45 8—dimensional patterns from 3 classes (the hand-

printed characters “8”, “O” and “X”) with 15 patterns per class. This is a very

sparse data set.

. Data set containing 4 features extracted from a range image [66]. Figure 2.5(b)

shows the range image of a polyhedral object. The gray level at each pixel in this

range image encodes the distance (depth) from the sensor to the corresponding

point on the object’s surface. The 4 features are the three components of the

surface normal vector and the depth value at each pixel. A total of 1,000 pixels

are randomly chosen from the polyhedral object. These 1,000 patterns are la-

beled with 5 classes (4 visible surfaces plus a class of boundary and edge points).

. Data set containing 22 Gabor filter features [82] extracted from an image with

16 different textures shown in Figure 2.5(c). A total of 1,000 pixels are randomly



51

 

(a) (b) (C)

Figure 2.5. Some data sets used in the comparative study. (a) A perspective view of

data set 2. (b) Range image and (c) texture image from which data sets 7 and 8 are

extracted, respectively.

chosen from the image (512x512).

These eight data sets differ from each other in one or more characteristics, such

as the data source (artificial/real data), dimensionality of the pattern vector (d),

linear dimensionality (d1), number of classes/clusters (c), number of patterns (n),

linear separability (A3), inherent structure of the data, and sparseness. The linear

dimensionality ((1,) of a data set is measured by the number of significant eigenvalues

(more than 97% of the total variance is retained by the first (1, principal components)

of the covariance matrix of the data. The linear separability (A,) is defined as the

largest eigenvalue of 277123 [53]. Note that A, is restricted to the [0.0,].0] range. As

A, increases from 0.0 to 1.0, the data set becomes more and more linearly separable.

The inherent structure of the data is ranked as “random”, “weak”, “mediun” or

“strong” based on our a priori knowledge about the data set. The sparseness of a

data set is measured by the ratio of the dimensionality to the number of patterns in

the data set; the larger this ratio, the sparser the data. This index does not take
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the spread of data into consideration because the spread can be easily scaled. These

characteristics of the 8 data sets are summarized in Table 2.2, from which we can see

that they constitute a reasonable benchmark for the evaluation of feature extraction

and data projection methods.

Table 2.2. Characteristics of the eight data sets.

 

 

 

 

 

 

 

 

           

Data set Name source d d; c n A, structure sparseness

1 Gauss2 artificial 10 10 2 1000 0.91 strong 0.01

2 Curve2 artificial 3 2 2 1000 0.70 strong 0.003

3 Sphere2 artificial 3 3 2 1000 0.38 strong 0.003

4 Random artificial 10 10 1(2) 1000 0.48 random 0.01

5 IRIS real 4 2 3 150 0.97 medium 0.027

6 80X real 8 7 3 45 0.87 weak 0.178

7 Range real 4 3 5 1000 0.81 strong 0.004

8 Texture real 22 15 16 1000 0.95 medium 0.022
 

 

The performance of the five neural networks on these 8 data sets are evaluated

based on visual judgment of the 2D projection maps and three numerical criteria.

The three criteria proposed in [100] are modified and utilized in this chapter for the

numerical evaluation of neural networks for feature extraction and data projection.

These are: (i) Sammon’s stress (Eq. (2.11)), (ii) the nearest-neighbor classification

error rate PeNN on projected data, and (iii) the minimum-distance classification error

rate PMD of projected data. Since the classification error of the projected data
e

R, (projection) depends on the classification error of the original data Pe(original), we

 

. . _ 1+Pe(projection) . . .
pr0pose to use a normallzed ratio, R... — ”PC (original) . The value of Re 1S Within the

range of (0.5,2.0). When Re = 1.0, it means that the extracted features have the same

discriminatory power as the original features for a given classifier. If R, < 1.0, the

extracted features have a better performance in terms of classification accuracy. This

could happen, for example, if the effect of the “curse of dimensionality” is eliminated
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by the feature extraction and data projection. Sammon’s stress measures how well the

projection preserves the interpattern distances. The nearest-neighbor classification

error rate indicates how well the extracted features or projection preserves the local

category structure of the data, while the minimum-distance classification error rate

provides some information on the linear separability in the new feature space. The

error rates are evaluated using the “leave-one—out” (cross-validation) technique.

2.2.2 Visualization of Projection Maps

Information about the structure, intrinsic dimensionality, clustering tendency and

cluster shape of the data is very useful in choosing a proper classification or clustering

method. However, this information is not directly accessible for high dimensional

data. Data projection is a tool which is frequently used to explore various properties

of the data. Here, we project all the 8 data sets onto two dimensions using the five

networks. From these maps, we can observe not only some of the properties of the

8 data sets, but also different characteristics of the five networks. Figures 2.6-2.13

show the 2D projection maps for the 8 data sets (for the data sets containing 1,000

patterns, only 500 randomly-chosen patterns are displayed). In each of these figures,

there are four 2D maps which are generated by the following four networks: PCA,

LDA, SAMANN and NDA networks. The projection maps obtained by the NP—SOM

network will be discussed later.

The PCA network performs a linear orthogonal projection. The 2D PCA map

produced by the PCA network is spanned by two orthogonal vectors (in the origi-

nal space) along which the data have the largest and the second largest variances.

Therefore, PCA maps are the easiest one to interpret. For some of the data sets, for

example, Gaussz (Figure 2.6(a)), IRIS (Figure 2.10(a)), and Range (Figure 2.12(a)),

their PCA maps also exhibit much of the class-discriminatory information. But, this

is not always true. For some other data sets, e.g., Sphere2 (Figure 2.8(a)), Curve2
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(Figure 2.7(a)), and 80X (Figure 2.11(a)), patterns from different classes either overlap

or are not linearly separable in the PCA projection.

The LDA network also implements a linear, but not necessarily orthogonal, pro-

jection. It first attempts to find a plane in the high dimensional space and then skews

the plane in order to increase the discriminatory ability of both the projection axes.

Examples are the LDA maps of the data sets: Curve2 (Figure 2.7(b)), 80X (Figure

2.11(b)) and IRIS (Figure 2.10(b)). Note that the elongated clusters in the PCA map

of the Range data are squashed in the LDA map. However, the LDA network can not

improve the linear separability of the data sets Sphere2 (Figure 2.8(b)) and Random

(Figure 2.9(b)), because it is a linear method.

The SAMANN maps are very similar to the PCA maps for all the 8 data sets. This

is not only because the SAMANN network uses the PCA map as the initial pattern

configuration which determines the initial weights of the SAMANN network, but also

because the Sammon’s projection attempts to maximally preserve the interpattern

distances, which means that it also preserves the variance as much as possible. How-

ever, the SAMANN network can refine the PCA map using its inherent nonlinearity

in order to obtain a map with less distortion in interpattern distances.

The NDA network tries to reorganize and group all the patterns by categories

such that patterns in the projection map can be separated much more easily. This

property is fully demonstrated on all the 8 data sets, especially on the linearly non-

separable data sets such as, Curve2 (Figure 2.7(d)) and Sphere2 (Figure 2.8(d)). It

is remarkable to see that the data points on the entire outer sphere are stripped off

from the inner sphere (see the small black “blob” which is isolated from a cloud of

patterns (on the outer sphere) in Figure 2.8(d))l This indicates that incorporating a

nonlinear transform as well as category information leads to a very powerful method

for projecting multivariate data.

Figure 2.14 shows the distance images of Kohonen’s SOM superimposed on the
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2D projection maps (white dots) for the 8 data sets using the NP-SOM network. We

can see that these distance images are divided into several dark regions separated

by bright wide curves. Pixels (units) in the same dark region usually have relatively

small distances to each other in the original feature space. The clustering tendency

of the 8 data sets becomes apparent from these distance images. Data sets, Gaussz

(Figure 2.14(a)), Curve2 (Figure 2.14(b)), Sphere2 (Figure 2.14(c)) and Range (Fig-

ure 2.14(g)), have well-separated (linearly or nonlinearly) clusters. The IRIS data set

(Figure 2.14(e)) has two well-isolated clusters, which is consistent with our a prion'

knowledge about the IRIS data set (two of the three categories are slightly overlap-

ping in the feature space). The Random data set has no clustering tendency. The

number of clusters in a data set can be roughly estimated by counting the number of

dark regions in the corresponding distance image. This is easy to do with data sets

containing well-isolated clusters, but difficult with others. The separation between

two clusters is indicated by the brightness of the boundary between them. It is in-

teresting to notice that each pattern in the 80X data set (Figure 2.14(f)) occupies a

separate dark region. This is because 80X data set (containing only 45 patterns in

an 8D space) is too sparse and the size of the map (100x100) is too large. Since the

category information for all the data sets except for the Random data set is known, we

can determine the class labels for these white dots on the projection maps. If more

than one pattern is projected into the same unit (pixel) in the map, the class label of

the pixel is determined by the majority pattern class (ties are broken arbitrarily).

We have manually drawn the boundaries (bright thin curves) between different

classes on the projection maps, which are superimposed on the corresponding distance

images. We can see from Figure 2.14 that the 2D projection maps fit the correspond-

ing distance images very well. The patterns from the same class are grouped into a

single region except for the Random data set. For the IRIS data set (Figure 2.14(e)),

even though there is no clear bright curve between two of the three classes, the two
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classes occupy different regions in the image. For the Range data set, most patterns

from the class containing edge (jump and crease) points in the range image (Figure

2.5(b)) are scattered over a bright region in Figure 2.14(g), which implies that these

patterns do not form a compact cluster in the feature space, and should be considered

as outliers. This observation is consistent with the fact that the surface normals at

these points on the object are not reliably estimated. The distance images are quite

helpful in exploring the structure of the data, when the category information is not

available. Since the patterns are relatively uniformly distributed in the 2D projection

maps generated by the NP—SOM network compared to the PCA and SAMANN net-

works, it is very difficult to observe the clustering tendency based on the unlabeled

2D projection map for most data sets without the distance image.

Properties of the 8 data sets revealed by visualizing them in 2D maps can suggest

what type of classification or clustering algorithms to use. For the Gauss2 data

set, a linear classifier or a squared-error clustering algorithm can be applied. In

fact, most classifiers and clustering algorithms will work well on this data set. We

also notice that one single feature (the first principal component) contains almost

all the discriminatory information. On the other hand, from the projection maps

of the Curve2 and Sphere2 data sets, linear classifiers are not powerful enough to

distinguish the two classes in these data sets. It also becomes clear that the square-

error clustering algorithm is not suitable for these two data sets. These projection

maps suggest the use of nonlinear classifiers such as, the k-nearest neighbor classifier

and multilayer feedforward networks, or some hierarchical clustering algorithms [81]

such as, single-link and complete-link clustering algorithms. For the data sets, IRIS,

80X and Texture, both linear and nonlinear classifiers can be applied, but a nonlinear

classifier may give a better performance. The square-error clustering algorithm may

also be applied to these data sets. Moreover, from the projection maps of the Texture

data (Figure 2.13), it is apparent that the two extracted features are not sufficient for
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classification. This will be demonstrated further by the classification error rate using

the 2D projection maps. An interesting property of the Range data set revealed by

the projection maps in Figure 2.12 is that this data contains mainly four elongated

clusters. These elongated clusters are roughly linearly separable. This property

suggests that a square-error clustering algorithm with the Euclidean distance should

not be used for this data set. The regularized Mahalanobis distance (see Chapter 4)

would lead to a better clustering solution.
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Figure 2.6. 2D projection maps of data set Gauss2 using the four networks. (a) PCA

network, (b) LDA network, (c) SAMANN network, and (d) NDA network.
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Figure 2.7. 2D projection maps of data set Curve2 using the four networks. (a) PCA

network, (b) LDA network, (c) SAMANN network, and (d) NDA network (2 classes

become linearly well-separable).
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Figure 2.8. 2D projection maps of data set Sphere2 using the four networks. (a)

PCA network, (b) LDA network, (c) SAMANN network, and (d) NDA network (the

black blob exclusively contains all the patterns on the surface of the inner sphere).
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Figure 2.9. 2D projection maps of data set Random using the four networks. (a) PCA

network, (b) LDA network, (c) SAMANN network, and (d) NDA network.
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PCA network, (b) LDA network, (c) SAMANN network, and (d) NDA network.
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Figure 2.12. 2D projection maps of data set Range using the four networks. (a) PCA

+A b‘ A

—I OI‘M‘ ‘

o o

o

\xKXx 0 0°
w x o

_ 0 Mo :9:

fl 0

“I. Mi"

I I I

-2 1 O 1 2

10011101

(80

_
M

+

+

M
* +. .

A

‘M

o o

"xO 00 00 x I“ “X

o I!" y

—4 h.

I I I I I I

0.1 0.2 0.3 0.4 05 0.8 07 0.8

64

t
e
n
u
r
e
2

t
e
n
u
r
e
2

 

 

 

  

 

   

Q

IO

0'" u 0

AAA

0

+ + 00+ (:9 0

f O 00 XX

+ o x

q _ x

0 fl

'0.9 _

O.

'7 I I T

-0.8 -O.3 0.2 0.7

Iontunn

8

2 —4

~ — 4
‘ 00°00 ‘0

o

O -< 290‘.

9 o ‘

‘9

. _ ‘0.

o 1 “ AM

5 A Ag. 0

° 0

Y —

o

0 $5

00
W o o

x

£2 _

' ”xx

" x ixx‘

:9 _ '

8. I I I I I I I l

46 12 -8 4 0 4 a 12 18 20

loam!

network, (b) LDA network, (0) SAMANN network, and (d) NDA network.



65

 

 1
0

1
0
0
1
1
1
0
2

 
  

1
.
0

   

 
 

l
e
c
t
u
r
e
2

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

0
.
4

0
.
3

 0
.
2

IQ

N

.0

a
.. I:

0' .-

ll ' '.O U. I

a 8* . ~ g_ I.‘ 0‘ ..

I o

If '. h :. . ‘

n I 'A i‘ .‘0‘ fl

all. A I. ‘ an

8 I II v v x X ' 'i l.‘ a n

I... . v “'2- ’5: I I g. '

29.3 . " ° ‘9‘“ x“: "'1' A" ' .
9 V': N . . I. I .

0 HI. ‘1 .:.v' 'Wv 5 fix ....u.- h. 0.. t. g

0° Ill ' v‘ 'v. 5 ' l I .0 . d
o O o 4. . g o .

o o 9 ' A. In K ‘4' J 'VV
0 o I . 1 ..0 9‘“ + +4» v Q

o °° o A 8 v‘ t" r 3+3 v 'wvv . o .0

o oo °o o v. +r‘flmb‘v vv 09.0...‘.

o oo ‘ A" ° o ‘39.
O r ‘5 A“ o

’. I i
‘0 o o ‘

fi :0 o . ++ “. IO_ AA $0 9 0°

°..° " 3°. ' °' i I Q: 3
o z I

006’ go

Boo

.. of?
I I I I I I I <9 I I I I

-8 -6 4 -2 0 2 4 6 -2.5 15 -0.5 05 15

b80301 M11101

(a) (b)

9

o— $ .4;

Q +

A. .‘

~_ 9 0‘.‘v .' fi

2 9° °O . x '

2

3 . x ' '
a

N_ duo ° .’J

A

9
o ‘7’

g. a»
v

A

 
   -

1
0

 

.
—

—
I

. ~ ‘ —
1

.
_ —
1

—
1

'
1

—
4

team 1 foam 1

(C) ((1)

Figure 2.13. 2D projection maps of data set Texture using the four networks. (a)

PCA network, (b) LDA network, (c) SAMANN network, and (d) NDA network.
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Figure 2.14. The distance images of Kohonen’s SOM superimposed by the 2D pro-

jection maps and boundaries between classes for the 8 data sets using the NP-SOM

network. (a) Gauss2, (b) Curve2, (c) Sphere2, (d) Random, (e) IRIS, (f) 80X, (g)

Range, and (h) Texture.
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2.2.3 Evaluation Based on Quantitative Criteria

We have seen various characteristics of the five networks for the purpose of visualizing

high dimensional data. In this subsection, we provide a quantitative evaluation of

these five networks based on three criteria using the 8 data sets. The dimensionality

of the output space is 2 for all the five networks. Every simulation of each of the

five networks on each of the 8 data sets was repeated 10 times with different initial

random weights in the networks. The average performance over these ten trials is

reported in the following tables.

Table 2.3 shows the average values of Sammon’s stress of the projections performed

by the five networks on the 8 data sets. Among the 5 networks, the SAMANN

network performs the best for 7 out of the 8 data sets in terms of Sammon’s stress.

The exception is the Curve2 data set on which the PCA network has the lowest

Sammon’s stress. This happens because the initial configuration generated by the

backpropagation algorithm in the SAMANN network is not a perfect PCA map due

to the local minimum problem. These results are not surprising because the SAMANN

network is designed to minimize the Sammon’s stress, while others are not. The PCA

network performs the second best on all the 8 data sets (except the Curve2 data on

which it is the best). This is largely because the PCA network performs a linear

orthogonal projection which maximally retains the variance of the data. The LDA

network is comparable to the PCA network on the Gauss2, Sphere2 and Random

data sets because for these data sets, the discriminant vectors are similar to the

principal vectors (see Figures 2.6(a), 2.6(b), 2.8(a), 2.8(b), 2.9(a), and 2.9(b)). For

other data sets, the LDA network generates large values of Sammon’s stress because

the discriminant vectors are not orthogonal. The NDA network produces large values

of Sammon’s stress due to the fact that it reorganizes patterns and groups them

by categories such that they can be easily separated, resulting in distortions in the
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interpattern distances. Some values are extremely large due to the different spreads

of the input features and output features. The average performance of the NP-SOM

network is similar to that of the LDA network.

Table 2.3. The average values of Sammon’s stress for the PCA, LDA, SAMANN,

NDA and NP-SOM networks on eight data sets.

 

 

 

 

 

 

Data set 1 2 3 4 5 6 7 8

PCA 0.151 0.003 0.062 0.361 0.007 0.141 0.009 0.147

Sammon’s LDA 0.161 0.169 0.077 0.386 0.134 0.289 0.408 0.519

stress, E NDA 1.400 53.78 116.1 335.5 27.15 0.224 146.7 1.513

SAMANN 0.115 0.005 0.052 0.231 0.007 0.084 0.008 0.084

NP-SOM 0.346 0.005 0.299 0.954 0.034 0.493 0.069 0.420            

Table 2.4 lists the average values of the nearest-neighbor classification error rate

PeNN and relative ratio R3,” for the five networks on the 8 data sets. The NDA

network achieves the best performance in terms of the nearest—neighbor classification

error rate among all the networks over all the 8 data sets with the exception of

Range and Texture on which the NP-SOM network performs slightly better. The

values of PeNN on the projected data is comparable to those on the data in the

original space (the values of 123’” are close to 1.0). These results are consistent with

the known fact that feedforward network classifiers and nearest-neighbor classifiers

have comparable performances [71]. The NP-SOM network also achieves comparable

performance with the nearest-neighbor classifier on the original data. This is because

in the NP-SOM network, the nearest-neighbor classification is actually done in the

quantized feature space with the same dimensionality as the input space rather than

in the projected space. The PCA and LDA networks perform worse than the NDA

and NP-SOM networks on most of the data sets because they are driven by the global

properties of the data, not by the nearest neighbor’s category information. Although



69

the SAMANN network is designed to maximally preserve the interpattern distances,

the nearest neighbor classification is not good for some projected data sets obtained

by this method since it makes no use of the category information.

Table 2.4. The average values of the nearest neighbor classification error rate PCNN

and relative ratio R?” for the PCA, LDA, SAMANN, NDA and NP-SOM networks

on eight data sets.

 

 

 

 

 

 

 

 

 

 

 

         

Data set 1 2 3 4 5 6 7 8

Original 0.002 0.000 0.000 0.521 0.040 0.044 0.041 0.036

PCA 0.005 0.000 0.007 0.479 0.040 0.216 0.083 0.405

LDA 0.003 0.037 0.009 0.501 0.037 0.067 0.126 0.101

PeNN NDA 0.000 0.000 0.000 0.355 0.035 0.002 0.078 0.080

SAMANN 0.004 0.000 0.005 0.488 0.051 0.200 0.084 0.405

NP-SOM 0.003 0.000 0.000 0.507 0.041 0.049 0.073 0.046

PCA 1.003 1.000 1.007 0.972 1.000 1.165 1.040 1.356

LDA 1.001 1.037 1.009 0.987 0.997 1.022 1.081 1.063

R?” NDA 0.998 1.000 1.000 0.891 0.995 0.960 1.036 1.042

SAMANN 1.002 1.000 1.005 0.978 1.011 1.149 1.041 1.356

NP-SOM 1.001 1.000 1.000 0.991 1.001 1.005 1.031 1.010
    

The average values of the minimum-distance classification error rate PCMD and

relative ratio R2“) for the five networks on the 8 data sets are shown in Table 2.5.

Comparing the PCA network and the LDA network (both are linear networks), the

LDA network performs better than the PCA network over all the eight data sets. For

the IRIS, 8011 and Texture data sets, which are all real data sets, the LDA network

achieves significant improvements over the PCA network. Note that the nearest

mean classifier is a linear classifier based on global structure of the data set. The

LDA network can find the best two features which have the most linear discriminant

power. The NDA algorithm is comparable to the LDA for the linearly-separable data

sets (Gauss2, IRIS, Range, and Texture), but much better for linearly nonseparable

data sets (Curves, Sphere2, and 80X). In general, the NDA network performs the best
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on most of the data sets. The performances of the PCA, SAMANN and NP-SOM

networks are comparable.

Table 2.5. The average values of the minimum distance classification error rate PCMD

and relative ratio R3“) for the PCA, LDA, SAMANN, NDA and NP-SOM networks

on eight data sets.

 

 

 

 

 

 

 

 

 

 

 

 

         

Data set 1 2 3 4 5 6 7 8

Original 0.001 0.133 0.390 0.483 0.080 0.044 0.152 0.065

PCA 0.001 0.133 0.391 0.458 0.100 0.164 0.187 0.420

LDA 0.001 0.106 0.387 0.455 0.020 0.022 0.166 0.112

PCMD NDA 0.001 0.006 0.072 0.487 0.058 0.007 0.117 0.100

SAMANN 0.001 0.136 0.409 0.458 0.093 0.178 0.186 0.413

NP-SOM 0.031 0.135 0.474 0.506 0.066 0.129 0.158 0.088

PCA 1.000 1.000 1.001 0.983 1.019 1.115 1.030 1.333

LDA 1.000 0.976 0.998 0.981 0.944 0.979 1.012 1.044

R340 NDA 1.000 0.888 0.771 1.003 0.980 0.965 0.970 1.033

SAMANN 1.000 1.003 1.014 0.983 1.012 1.128 1.030 1.328

NP-SOM 1.030 1.002 1.060 1.016 0.987 1.081 1.005 1.022 
  

Both the PCA and SAMANN networks perform very badly on the Texture data in

terms of the nearest neighbor and minimum distance classification error rates. This is

because the linear dimensionality of the Texture data is 15, which is much larger than

the number of extracted features (dimensionality of the projected map). However,

other networks still perform reasonably well on this data set due to their nonlinearity

and the use of category information. We should mention an interesting phenomenon,

namely that sometimes the nearest neighbor classifier and minimum distance classifier

perform better on projected data than on the original data (Re < 1.0), particularly

for the IRIS and 80X data sets which have a relatively small number of patterns. This

phenomenon may be explained by the fact that the effect of “curse of dimensionality”

[80] can be reduced by feature extraction or data projection, which are obtained using

the entire data set (not just the training data) in our experiments (but classification
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errors are evaluated using the “leave-one-out” technique).

2.3 Summary

We have designed the following neural networks for projecting multivariate pattern

vectors: linear discriminant analysis (LDA) network, SAMANN network for Sam-

mon’s projection, nonlinear projection based on Kohonen’s SOM (NP-SOM), and

nonlinear discriminant analysis network (NDA) using a feedforward network classi-

fier. A common attribute of these networks is that they all employ adaptive learning

algorithms which makes them suitable in some environments where the distribution

of patterns in feature space changes with respect to time. The availability of these

networks also facilitates hardware implementation of the well-known classical feature

extraction and projection approaches. Moreover, the SAMANN network offers the

generalization ability of projecting new data, which is not present in the original

Sammon’s projection algorithm; the NDA method and NP-SOM network provide

new powerful approaches for visualizing high dimensional data.

The performances of the five networks (PCA, LDA, SAMANN, NDA and NP-

SOM) for feature extraction and data projection have been evaluated based on visual

inspection of the projection maps and on three numerical criteria on 8 data sets.

Based on our experimental results and analysis, we draw the following general con-

clusions: (i) the NP-SOM network has a good performance for data visualization. It

reveals the cluster tendency in the multivariate data very well due to the role of the

distance image; (ii) the SAMANN and PCA networks preserve the data structure,

cluster shape, and interpattern distances better than the LDA, NDA and NP—SOM

networks; (iii) the NDA network is superior to all the other networks for classification

purposes, especially when the data are not linearly-separable, but it severely distorts
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the structure of the data and the interpattern distances; (iv) there is no general con-

clusion on whether the PCA or the LDA is better for preserving the nearest-neighbor

category information; (v) the LDA network outperforms the PCA, SAMANN and

NP-SOM networks in the sense of nearest mean classification error; (vi) feature ex-

traction can help to reduce or eliminate the “curse of dimensionality”; (vii) it is often

necessary to use more than one method (network) in order to reveal various properties

of multivariate data; and (viii) knowledge of the structure of the data set obtained

from the projection maps can guide in choosing a proper classification and clustering

tools.

Our simulation results are consistent with the high-level analysis based on our

knowledge of the traditional feature extraction and data projection approaches. This

is one of the main advantage of studying the links between neural networks and

traditional pattern recognition and data analysis approaches.



CHAPTER 3

Neural Network-Based K-Nearest

Neighbor Classifier

We propose a neural network architecture to implement the well-known k-nearest

neighbor (k-NN) classifier. This neural network architecture employs a k-Maximum

network which has some advantages over the “winner-take-all” type of networks and

other techniques used to select the maximum input. This k-Maximum network has

fewer interconnections than other networks, and is able to select exactly k maximum

inputs as long as its km and (k + 1)“ maximum inputs are distinct. The classification

performance of the k-NN neural network classifier is exactly the same as the tra-

ditional k-NN classifier, hence the well-established characteristics of the traditional

k-NN classifier can be directly applied to the k-NN neural network classifier. How-

ever, the parallelism of the network greatly reduces the computational requirement

of the traditional k—NN classifier. Unlike the multilayer perceptrons which involve

slowly-converging back-propagation algorithms, the basic k-NN neural network clas-

sifier only needs a one-pass training algorithm. Three modified k-NN rules, including

the condensed nearest neighbor rule, reduced nearest neighbor rule and edited near-

est neighbor rule, have also been incorporated in the learning algorithms of the k-NN

neural network in order to reduce the number of nodes.

73
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3.1 K-Nearest Neighbor Classifier

The k-nearest neighbor classifier [34, 45] is a well-known and commonly used classifier

in statistical pattern recognition. It is a nonparametric classifier which makes no

assumption about the underlying pattern distributions.

Let the n training pattern vectors be denoted as: x“)(l), i = 1,2,---,n,, l =

1, 2, - - - , c, where n, is the number of training patterns from class wt, 2,21 n, = n, and

c is the total number of categories.

The k-nearest neighbor classifier examines the k nearest neighbors of a test pattern

x and assigns it to the pattern class most heavily represented among the k neighbors.

In mathematical terms, let Kl(k, n) be the number of patterns from class w; among

the k nearest neighbors of pattern x. The nearest neighbors are computed from the

n training patterns. The k-NN decision rule (5(x) is defined as

6(x) = w, if Kj(k,n) 2 K,(k,n) for all i 963'

The Euclidean distance metric is commonly used to calculate the k nearest neighbors.

Other metrics, such as the optimal global nearest neighbor metric proposed by Fuku-

naga and Flick [46], can also be used. Let D(x,x(‘)) denote the Euclidean distance

between two pattern vectors, x and x“), then

d

D(,x x(‘))—=jz::(xj — 117;) =—2M(x, xm) + 2 mg, (3.1)

i=1

where

M(,x xm) 23:13x}—1/2Z(xi- (3.2)

and d is the number of features. We define M(x, xm) as the matching score between

the test pattern x and the training pattern x“). If all patterns are normalized to
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unit vectors, the second term in Eq. (3.1) will be a constant and can be ignored.

So, finding the minimum Euclidean distance is equivalent to finding the maximum

matching score. Computation of the matching scores can be easily done using a neural

network architecture.

A severe drawback of the k-NN classifier is that it requires a large amount of

computation time. In order to find the k nearest neighbors of an input pattern,

we have to compute its distances to all the stored training patterns. Because of

this computational burden, the k-NN classifier is not very popular where real-time

requirements have to be met. Two approaches are commonly used to cut down the

computational effort needed to compute the nearest neighbors: i) Several efficient

algorithms for computing nearest neighbors, such as the branch and bound algorithm

[48], have been proposed; and ii) many modifications to the k-NN classifier have

been pr0posed in the literature to eliminate a large number of “redundant” training

patterns, such as, the condensed nearest neighbor (CNN) rule [57], the reduced nearest

neighbor (RNN) rule [54], and the edited nearest neighbor (ENN) rule [183, 29]. In

Section 3.3, we will show that all these methods can be incorporated in the learning

algorithms of the k-NN neural network classifier.

3.2 A Neural Network Architecture for the k-NN

Classifier

The k-NN classifier can be directly mapped into a neural network architecture [84].

Figure 3.1 shows the schematic diagram of this neural network architecture. This

architecture is similar to the feature map classifier and the kernel-based classifier

[72, 110]. However, the k-NN neural network classifier only needs a one-pass training

algorithm which requires only the initial setting of the connection weights.

As shown in Figure 3.1, the k-NN neural network consists of four basic building
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Figure 3.1. A neural network architecture of the k-NN classifier

blocks: Matching network, k-Maximum network, Counting network, and 1-Maximum

network. The functions performed by these subnetworks are described below.

Matching network

As the name implies, the Matching network calculates the matching scores between

the input pattern and each of the stored patterns (training patterns), M(x, x(‘)).

The network has d input nodes corresponding to a d—dimensional pattern vector, and

72 output nodes generating n matching scores, one for each training pattern. The

training patterns are stored in the interconnections of this network in the following

way. We label the n output nodes of the Matching network in the same order as

the training patterns, 5',“ i, = 1,2,-~,n;, l = 1,2,---,c. Let WM denote the

weight assigned to the connection between the input node j and the output node 2",
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j = 1,2,-~,d, i=1,2,---,n¢, l=1,2,---,c. Then we set W,,,-, = $90), and the

bias, b,” of node 8,, to b,, = — j=1($§i)(l))2. So, the output of node 5,, is equal to

the matching score M(x, x(‘)(l)).

The outputs of the Matching network provide a set of initial values for the k-

Maximum network.

K-Maximum network

The function of the k-Maximum network is to select 1: maximum matching scores

among the n outputs of the Matching network. Details of this network are given in

Section 3.1.

Counting network

The Counting network provides a count of how many nodes in each pattern class are

excited, i.e., it calculates K;(k,n). All the interconnection weights in this network

are set to “1”. The specific activation functions used in nodes in this network are not

important as long as they are the same monotonically increasing function, because

the next stage determines the maximum output of the Counting network.

l-Maximum network

The function of the 1-Maximum network is to select the maximum output of the

Counting network, i.e., it finds the maximum of K¢(k,n), l = 1, - - -,c. There are 0

output nodes corresponding to c pattern classes. The 1-Maximum network is a special

case of the k-Maximum network with k = 1.

3.2.1 Design of the k-Maximum Network

In statistical pattern recognition, we frequently need to compute a maximum or a

minimum value (e.g., maximum a posteriori density function, minimum Mahalanobis

distance). Many neural networks, such as ART models, Kohonen’s self-organizing

network, Hamming network, kernel-based classifiers, etc., often employ a subnetwork
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to select the most “active” node. Several different types of neural networks can be

used to perform this operation. In this section, we briefly compare three different

types of networks and propose a simple, stable, and efficient Ira-Maximum network

which is best suited for the k-NN neural network classifier.

“winner-take-all” type of networks

The “winner—take—all” networks, such as the MAXNET used in the Hamming net-

work [109], are commonly used networks to select the maximum value. These net-

works mimic the lateral inhibition observed in the biological neural networks [90] and

can be generalized to a k-Maximum network which selects the k maximum inputs

[84]. When the k-Maximum network reaches an equilibrium state, hopefully, exactly

k nodes corresponding to k maximum initial input values will be “on”. Unfortu-

nately, simulation experiments [84] showed that the actual number of “on” nodes at

the equilibrium state is often not equal to the specified value of 1:, especially when the

network involves a large number of nodes. Table 3.1 shows the simulation results on

two different sized networks: n = 10 and n = 100, where n is the number of nodes in

the k-Maximum network. The value kn, n = 10, 100, is the average number of nodes

which are “on” when the network reaches an equilibrium state over ten trials with

different input values. In our experiments, the local capacities and local resistances,

C, = R,,z' = 1, 2, - - - , n, were chosen to be “1”. From Table 3.1, we see that when the

number of nodes is small, the network is likely to reach the global minimum state.

However, when the number of nodes is large, the network can reach a local minimum.

Note that 79100 < k for all 1:. Another problem is that the k-Maximum network is

Table 3.1. Actual number of “on” nodes

k 1 2 3 4 5 6 7 8 9 10

km 1 10

[9100 0 0 1 2 3 4 4 5 7 8
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nearly fully-connected (no self-feedback), so there are n2 — 72. connections. This makes

the construction of a k-Maximum network with a large number of nodes infeasible.

An additional problem with the “winner-take—all” network is that it only selects

the nodes with maximum input values, but the maximum input values are neither

kept nor passed through the network. Some modifications of the k-NN classifier such

as the distance-weighted k—NN classifier [5] do need the distances of the test pattern

to its 1: nearest neighbors.

Comparator-based technique

This technique [109] uses a comparator subnet as the building block, which uses

threshold logic nodes to select and forward the maximum value. N0 feedback connec-

tions are needed in this kind of network and all the weights are fixed. The advantage

is that the maximum value is passed through the network. However, there are two

disadvantages. First, the network cannot select more than one maximum input. The

other drawback is that the network involves a large number of nodes if it is used to

select the maximum from n inputs, because in this case, comparator subnets must be

layered into roughly log2(n) layers.

Threshold-based techniques

Here the maximum input is selected by using an array of hard-limiting nodes with

internal thresholds set to the desired threshold values [109]. Outputs of these nodes

will be —1 unless the inputs exceed the threshold values. Alternatively, thresholds

could be set adaptively using a common inhibitory input fed to all the nodes. This

threshold could be ramped up or down until the output of only one node is positive.

Note that the input values do not pass through the network. This method can be

easily generalized to select 1: maximum inputs. The problem is how to adjust the

thresholds adaptively.

K-Maximum network

We have designed a k-Maximum network which uses a common feedback node (the
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right most node in Figure 3.2) to adjust adaptively the input signals instead of the

internal thresholds. Figure 3.2 shows the network architecture to implement the

adaptive selection of k maxima. In Figure 3.2, all the nodes which connect to inputs,

V1 V2 ... Vn

. («I .
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Figure 3.2. k-Maximum network

U1, U2, - - - , Un, use the same hard-limiting activation function with internal threshold

set to zero. The feedback node uses a sigmoid function, tanh(-). All the connection

weights between the feedback node and the outputs of all other nodes are set to 1,

and the weight on connection to the input k is set to —1, so that the input of the

feedback node is a summation of the outputs of all other nodes with bias —k. In other

words, S = 2?:1Vi — k. The feedback node monitors the states of all other nodes,

and its output serves as a common adaptive signal fed to all other nodes through an

inverse weight —5. When the summation of the outputs of all other nodes is greater

than k, the output of the feedback node is positive, so it tries to inhibit more nodes.

On the other hand, when the summation of the outputs of all other nodes is less

than k, it serves the role of an excitatory signal which tries to turn more nodes “on”.

Only when the summation of the outputs of all other nodes is equal to k, which is

the desired situation, will the network reach the equilibrium state. Therefore, we get

exactly k nodes “on” when the network reaches the equilibrium state. The weight 5
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controls the speed of convergence and also determines the stability of the network.

Large values of 5 can lead the network to quickly approach the equilibrium state at

first, but may cause oscillations near the equilibrium state. Small values of 5 will

guarantee the stability of the Ire-Maximum network.

The k-Maximum network has many desirable properties. First, we avoid the local

minimum problem which is always associated with the “winner-take—all” types of

networks. Secondly, it greatly reduces the number of connections which is desirable

for hardware implementation. Besides, the k-Maximum network pr0posed here has

fewer nodes and connections than the comparator-based network. Unlike the “winner-

take-all” type of network whose connection weights are dependent on the value of k,

the k-Maximum network is more flexible because I: is the external input.

3.2.2 Performance of the k-NN Neural Network Classifier

Because the k-Maximum network can select exactly k maximum inputs as long as its

kt” and (k + 1)“ maximum inputs are distinct, the classification rate of the k-NN

neural network classifier is the same as the traditional k-NN classifier. However, due

to the parallelism of the network, the large amount of computation involved in the

traditional k-NN classifier is drastically reduced.

Table 3.2 lists the classification error rates of the k-NN classifiers on three well-

known data sets [81]: 80X, IRIS, IMOX. The 80X and IMOX data sets consist of

8—dimensional patterns extracted from the Munson’s handprinted character database

on the characters, 8, 0, and X and I, M, O, and X, respectively. The 80X data

set contains 15 patterns from each of the 3 classes, and IMOX data set contains 48

patterns from each of the 4 classes. The IRIS data set consists of 150 4—dimensional

patterns from 3 classes. It contains 4 measurements on 50 flowers from each of the

3 species of the Iris flower. The error rates are estimated using the “leave-one—out”

method.
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Table 3.2. Error rates of k-NN classifiers

 

 

 

 

k 1 3 5 7 9

11% (80X) 4.4 6.7 8.9 13.3 13.3

P,% (IRIS) 4.0 4.0 3.3 3.3 3.3

Pe%(IMOX) 5.7 4.2 5.2 6.8 6.8       
 

3.3 Modified k-NN algorithms

We note that the total number of nodes required in the design of a k-NN neural

network is N = 2(n + c + 1), where n is the number of training patterns and c

is the number of categories. When n is large which is often the case in practice,

the network will require a large number of nodes. Several approaches to reduce the

number of stored training patterns have been proposed. These include, Condensed

Nearest Neighbor rule [57], Reduced Nearest Neighbor rule [54], and Edited Nearest

Neighbor rules [183, 29]. These methods can be used for “preprocessing” the training

data. In this section, we will show that these methods can also be incorporated in the

learning algorithms of the k-NN neural network. Note that the original k-NN neural

network needs only a one-pass training procedure.

3.3.1 Condensed nearest neighbor algorithm

The condensed nearest neighbor algorithm [57] begins with the set T of all the training

patterns and creates a consistent subset TCNN that may or may not be minimal. Let

{(x1,61), (x2, 02), - - - , (xn, 0,,)} be the n pairs of training pattern vectors (x) and the

corresponding class labels (6), and 6(xj, TCNN) be the nearest neighbor decision given

by the k-NN neural network based on the training pattern set TCNN.

The k-NN neural network which incorporates the condensed nearest neighbor rule

begins with one node in each subnetwork. The node in the Matching network stores
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the first training pattern x1 (it can be any other pattern also). Then, the k-NN

neural network classifies each pattern in the set (T —- TCNN) sequentially. Every time

a pattern, say xj, is misclassified, this pattern is added to TCNN, and the Matching

network adds a new node to store this pattern. Correspondingly, the k-Maximum

network also adds a new node to collect the matching score. A node corresponding to

the label of the training pattern x, in the Counting network and 1-Maximum network

is added, provided no pattern from that class has been presented yet. Connections

between newly added nodes and others are established according to the k-NN neural

network architecture. This process is repeated until all the patterns in the set (T —

TCNN) are correctly classified or (T — TCNN) is empty. The CNN algorithm is given

below.

Table 3.3 lists the classification error rates of the 1-NN classifier on T and TCNN,

the number of original training patterns (717»), the average number of patterns in TCNN

(MOW) obtained by the CNN rules in 10 trials with different random orderings of

the input pattern, and the average percentage of training patterns used in the CNN

rule. Again, we perform experiments on the three well-known data sets: 80X, IRIS,

IMOX. The “leave-one—out” error estimation technique is used. We see from Table

3.3 that the classification error rate of the CNN rule is higher than that of the l-NN

classifier. The large difference between the error rates of the l-NN and CNN rules

for the 80X data is due to the small number of training patterns. Still, the CNN rule

selects only a small portion of the original training set.

Table 3.3. Error rates and number of training patterns retained in the CNN rule

 

Data Set TIT ”TON” Pe%(T) Pe%(TCNN) nTCNN/nT

80X 44 12 4.4 10.2 27.3%

IRIS 149 18 4.0 5.5 12.1%

IMOX 191 35 5.7 7.1 18.3%
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3.3.2 Reduced nearest neighbor rule

The subset TCNN obtained from the condensed nearest neighbor rule is not necessarily

a minimal consistent subset. The resulting subset depends on the order in which the

patterns are presented. Gates [54] proposed an extension to the CNN called the

reduced nearest neighbor rule (RNN) whose objective is to minimize the number of

training patterns in the consistent subset and, thus, approach the ideal of a minimal

consistent subset of training patterns.

Table 3.4 shows the classification error rate of the RNN rule, and the number of

patterns in the TRNN set. The values presented in Table 3.4 for the RNN rule are

averaged over 10 trials. Note that the RNN rule also depends on the order in which

the patterns are presented. However, the RNN rule can further reduce the number of

patterns in the CNN rule without significantly sacrificing the classification accuracy

of the CNN rule.

Table 3.4. Error rates and number of training patterns in the RNN rule

 

 

 

 

Data Set 7LT nTRNN Pe%(T) Pe%(TRNN) nTRNN /nT

80X 44 10 4.4 12.0 22.7%

IRIS 149 16 4.0 6.3 10.7%

IMOX 191 30 5.7 7.8 15.7%        

3.3.3 Edited nearest neighbor rule

The drawback of the condensed nearest neighbor rule and the reduced nearest neigh-

bor rule is that they cannot eliminate or reduce the affects of the outliers. After

the training patterns are condensed and reduced, one cannot use k—nearest neighbor
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classifiers with a large value of 16. Wilson [183] and Devijver and Kittler [29] pro-

posed another modification of the k-NN rule called the edited nearest neighbor rule

(ENN). The idea here is to eliminate patterns which are sparsely represented among

pattern classes. This type of editing does not seek a consistent subset of the original

training patterns, but tries to smooth the data by eliminating those patterns which,

by chance, are in the “wrong” parts of the pattern space. It has been proven that

the performance of the edited nearest neighbor rule is very close to the Bayes optimal

rule, provided that the learning set is sufficiently large. Kraaijveld and Duin [99]

investigated the behavior of the back-propagation learning algorithm on the edited

data set and found that the editing algorithm can effectively lead to a near Bayes

performance.

The basic editing procedure is relatively simple. For a suitable value of k, eliminate

all the training patterns which are misclassified by a k-NN classifier. The remaining

patterns can, therefore, be used in the 1-NN classifier. This procedure can be in-

corporated in the k-NN neural network by removing all the nodes corresponding to

misclassified training patterns. The edited set of training patterns does not depend

on the order in which the patterns are inspected.

Table 3.5 shows the classification error rates of the 1-NN classifier on the original

training set and on the TENN, which was obtained by the ENN rule with k = 1,

and the numbers of patterns in T and TENN. Only a small number of patterns are

removed as outliers. The classification error rate remains essentially the same for the

80x and IMOX data sets, but decreases slightly for the IRIS data set.

It is easy to calculate how many nodes have been removed and what is the reduction

 

rate in terms of the number of training patterns: N — N. = 2(n - nag), and vaN‘ =

n—nT,

nH+1, where N (N.) and n (nT) are the total number of nodes in the network and 

the number of training patterns, respectively. The symbol “at” represents one of the

three modified k-NN rules: CNN, RNN and ENN. Note that the reduction in number



Table 3.5. Error rates and number of training patterns in the ENN rule
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Data Set 7LT nTENN Pe%(T) Pe%(TENN) TLTRNN /TI.T

80X 44 41 4.4 4.4 93.2%

IRIS 149 143 4.0 3.3 96.0%

IMOX 191 181 5.7 5.7 94.8%       

of nodes and the reduction rate are data-dependent. Table 3.6 shows these values on

three data sets. We can see that the CNN and RNN rules have high reduction rates,

but the ENN rule has very low reduction rates.

Table 3.6. Reductions in number of nodes and reduction rates of the CNN, RNN and

ENN rules on three data sets

 

 

 

 

        

Data Set N N — NCNN W N — NRNN W N — NENN W

80X 96 64 66.7% 68 70.8% 6 6.3%

IRIS 306 262 85.6% 266 86.9% 12 3.9%

IMOX 392 312 79.6% 322 82.1% 20 5.1%
 

3.4 Summary

We have presented a neural network architecture to implement the well-known k-

NN classifier. Although the k-NN neural network classifier and the traditional k-NN

classifier have the same classification performance, the large amount of computation

required in the traditional k-NN classifier is reduced due to the parallelism of the net-

work. However, the well-established characteristics of the traditional k-NN classifier,

such as the bound on its asymptotic error probability, can be directly applied to the
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k-NN neural network classifier. Some modified k-NN rules have also been incorpo.

rated in the learning algorithms of the k-NN neural network classifier to reduce the

total number of nodes without significantly sacrificing the classification accuracy.

The k-Maximum network, which is used in the proposed k-NN architecture, has

many advantages over the “winner-take-all” type of networks and other techniques in

selecting k maximum inputs. It has the properties of adaptivity, flexibility, and fewer

connections, and it guarantees the selection of exactly k “on” nodes as long as its 16‘"

and (k + 1)“ maximum inputs are distinct.



CHAPTER 4

A Network for Detecting

Hyperellipsoidal Clusters (HEC)

We propose a self-organizing network (HEC) for detecting hyperellipsoidal clusters.

The HEC network consists of two layers. The first layer employs a number of princi-

pal component analysis subnetworks which are used to estimate the hyperellipsoidal

shapes of currently-formed clusters. The second layer then performs a competitive

learning using the cluster shape information provided by the first layer. The HEC

network performs a partitional clustering using the proposed regularized Mahalanobis

distance. This regularized Mahalanobis distance is designed to deal with the problems

in estimating the Mahalanobis distance when the number of patterns in a cluster is

less than (ill-posed problem) or not considerablely larger than (poorly-posed prob-

lem) the dimensionality of the feature space. This regularized distance also achieves

a tradeoff between hyperspherical and hyperellipsoidal cluster shapes so as to prevent

the HEC network from producing unusually large or unusually small clusters. The

significance level of the Kolmogrov-Smirnov test on the distribution of the Maha-

lanobis distances of patterns in a cluster to the cluster center under the Gaussian

cluster assumption is used as a compactness measure of the cluster. The HEC net-

work has been tested on a number of artificial data sets and real data sets. We also

88
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apply the HEC network to texture segmentation problems. Experiments show that

the HEC network can lead to a significant improvement in the clustering results over

the K-means algorithm (and other partitional clustering algorithms and competitive

learning networks) with the Euclidean distance measure. Our results on real data sets

also indicate that hyperellipsoidal shaped clusters are often encountered in practice.

4.1 Hyperspherical Versus Hyperellipsoidal

Clusters

Given a set of n patterns in a d—dimensional space, {x,- | x,- E R“, z' = 1, 2, ~ . - ,n},

the objective of a partitional clustering algorithm is to determine an assignment (or

a partition) {Mileij E {0,1};z' = 1,2, - --,n; j = 1,2, - --,K}, such that some cost

function is minimized, where M,,- = 1 if pattern x,- is assigned to the 3"" cluster,

and M,-,- = 0 otherwise; K is the number of clusters which is usually specified by

the user? For the unique assignment (non-overlapping partition), 2le M5,- = 1, i =

1, 2, - - - , n. In the soft clustering approaches, such as fuzzy c-means [15], M,,- can be

any continuous value in [0,1]. Let D(x,, xj) denote a distance measure between two

pattern vectors x,- and Xj. The cost function can be defined as

n K

EK(M) = ZZMIJ-Dmmj). (4-1)
i=1 j=l

where m, = Ell-1 Mini/Z?=1Mij. Vector m,- is called the center (or prototype) of

the 3"" cluster, j = 1, 2, - - - , K. The most commonly used distance measure is the

 

‘Automatically determining the number of clusters in a data set is an extremely difficult problem

[81, 33] which has not been solved in a general setting. Although some clustering algorithms do

not require the user to explicitly specify the number of clusters, the number of clusters produced by

these algorithms is controlled by some other parameters in the algorithm.
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Euclidean distance:

DEW, m1) = (Xi — mj)T(Xz' — mj). (4-2)

A clustering algorithm with the Euclidean distance favors hyperspherical-shaped

clusters of equal size. This has the undesirable effect of splitting large as well as

elongated clusters under some circumstances [34] (see also Figures 4.2, 4.7(a) and

4.8(a)). Simple feature normalization schemes can not solve this problem [34, 120].

First, the same feature normalization scheme must be applied to the whole data set,

not individual clusters, because we do not know the clusters a priori. Therefore,

feature values in individual clusters are often not normalized. Moreover, the global

normalization may adversely affect the shape of individual clusters [34]. For example,

normalizing the two components in Figure 4.1(a) so that they have the same range

will make the three clusters even more elongated. Second, most feature normalization

schemes do not consider the correlations between the features, which implies that

these methods can not “whiten” the pattern distribution (features are uncorrelated

and have the same spread) if the features are correlated. In Section 4.3, we will show

that the commonly used z-score normalization scheme can only slightly improve the

segmentation results.

It is easy to find examples of data sets in real applications which do not have

spherically-shaped clusters of equal size. For example, Figure 4.1 shows the 2-

dimensional projections of the well-known IRIS data (see Chapter 2 for its description)

onto two planes spanned by the first two principal eigenvectors (Figure 4.1(a)) and

the first and the fourth principal eigenvectors (Figure 4.1(b)). Since we know the true

category information of the patterns in the IRIS data set, we label each pattern by its

category in the projection maps. There are two obvious clusters, but neither of them

has a spherical shape. From Figure 4.1, we can see that the larger cluster is a mixture

of two classes (iris versicolor and iris virginica) which have nonspherical distributions.
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Figure 4.1. Principal component (eigenvector) projection of the IRIS data. (a) Pro—

jection on the first and the second components. (b) Projection on the first and fourth

components. Small circles (0), triangles (A) and “plus” sign (+) denote patterns

from classes 1 (iris setosa), 2 (iris versicolor) and 3 (iris virginica), respectively.

The nonspherical nature of the clusters can be easily observed by examining their co-

variance matrices as shown in Table 4.1. We notice that all the off-diagonal elements

of these covariance matrices are not zero, and the diagonal elements are not identical.

Other distance measures, such as the Mahalanobis distance, can also be used in the

clustering criterion to take care of hyperellipsoidal-shaped clusters. The Mahalanobis



Table 4.1. The 4 x 4 covariance matrices of the three classes in the IRIS data set.
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class 1 class 2 class 3

0.124 0.099 0.016 0.010 0.266 0.085 0.183 0.056 0.404 0.094 0.303 0.049

0.099 0.144 0.012 0.009 0.085 0.098 0.083 0.041 0.094 0.104 0.071 0.048

0.016 0.012 0.030 0.006 0.183 0.083 0.221 0.073 0.303 0.071 0.304 0.049

0.010 0.009 0.006 0.011 0.056 0.041 0.073 0.039 0.049 0.048 0.049 0.075    

distance between pattern vector x,- and the center of the 3"" cluster m, is defined as

DM(x,-, mj) = (x,- — mj)TZJ-—1(x,- — mj), (4.3)

where 2371 is the inverse of the d x d covariance matrix of the 3"” cluster. However,

there are a number of difficulties associated with incorporating the Mahalanobis dis-

tance in a clustering method: (i) The pattern category information is not available in

unsupervised learning, thus the covariance matrices can not be computed a priori; the

Mahalanobis distance requires computation of the inverse of the sample covariance

matrix every time a pattern changes its cluster category (sequential mode), which is

computationally expensive. (ii) If the number of patterns in a cluster is small com-

pared to the input dimensionality d, then the d x d sample covariance matrix of the

cluster may be singular. (iii) According to our experience, the K-means clustering al-

gorithm with the Mahalanobis distance tends to produce unusually large or unusually

small clusters. A number of graph-theoretic clustering methods, such as the minimal

spanning tree (MST) approach, can handle nonspherical clusters. But, they all suffer

from other difficulties such as definition of “inconsistent” edges [81]. As a result, the

squared-error clustering method with Euclidean distance is the most commonly used

partitional clustering method in practice.

Jolion et al. [89] proposed an iterative clustering algorithm based on the minimum

volume ellipsoid (MVE) robust estimator. At each iteration in this algorithm, the
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best fitting hyperellipsoidal-shaped cluster is detected by comparing the distribution

of the patterns inside a minimum volume hyperellipsoid (containing a fraction of

the data points) with a Gaussian density, and then this cluster is removed from the

data. The process stops whenever the number of remaining data points is less than

the prespecified minimum cluster size, or the number of clusters detected exceeds an

upper bound. Theoretically, one has to search over the entire feature space to locate

the best-fitting cluster, which is extremely computationally demanding. Jolion et

al. [89] employed a subsampling technique to reduce the computational requirements.

At each iteration, a number of sampling positions (25 in [89]) are randomly located

in the d—dimensional space, and (d + 1) patterns are then randomly sampled inside

a hypercube centered at each of these positions. The fitness is computed from only

these (d+ 1) patterns. Since clusters are sequentially detected, there is no competition

between different clusters. If clusters in a data set do not have hyperellipsoidal shape,

then this algorithm may produce many fragments which are not assigned to any

cluster but scattered in the feature space.

We propose a neural network (HEC) for hyperellipsoidal clustering which can adap-

tively estimate the hyperellipsoidal shape of each cluster, and use the estimated shape

information in competitive learning. The competitive learning will enforce an optimal

(or suboptimal) partition which minimizes the cost function even when the hyper-

ellipsoidal assumption is violated. By introducing the regularization technique, the

pr0posed network can recover from the singularity of the sample covariance matrices

of clusters.

The HEC network actually implements a partitional clustering algorithm using

the following regularized Mahalanobis distance:

DRM(Xi, m1) = (Xi — mleKl — ”(22' + Ell—1 + MKXI - mj): (4-4)
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where Z),- is the covariance matrix of the 3"" cluster, and I is the d x d identity matrix.

Let

2;“ = (1 — AXE,- +51)"1 +AI. (4.5)

We refer to 2371* as the regularized inverse of the covariance matrix 23,-. The proposed

self-organizing network performs clustering based on the regularized Mahalanobis

distance measure, which takes the shape of each cluster into consideration. When

A = 0 and 5 = 0, DRM becomes the Mahalanobis distance measure. When A =

1, DRM reduces to the Euclidean distance. When 0 < A < 1, DRM is a linear

combination of the Mahalanobis distance and the Euclidean distance. Therefore, A

can be used as a parameter to control the degree that the distance measure deviates

from the commonly used Euclidean distance. In situations where 23,:1 can not be

reliably estimated or learned, a larger value of A should be used. When 2,, is singular

which occurs very often during the first few cycles of learning, the regularization

parameters, A and 5, play a very important role in stabilizing the learning process.

The role of e is to convert a singular matrix (ill-posed problem) to a nonsingular

matrix by adding a diagonal matrix with small diagonal elements. In our method,

diagonal covariance matrix is an assumption of regularity.

It is well known that the K-means clustering algorithm with the Euclidean dis-

tance measure has the undesirable property of splitting big and elongated clusters

(see Figure 4.2). We will see an example of this property in Figures 4.7(a) and 4.8(a).

On the other hand, use of the Mahalanobis distance sometimes causes a big cluster

to absorb nearby small clusters, which leads to the creation of unusually large or

unusually small clusters (An unusually small cluster often consists of a single outlier

or few neighboring outliers). An illustrative scenario is shown in Figure 4.2 in which

two clusters (solid ellipsoids) are merged into a bigger cluster (dashed ellipsoid), and

an outlier forms a cluster of its own (this is one possible solution). Introducing the
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regularized Mahalanobis distance results in a tradeoff between the above two comple-

mentary properties and prevents the clustering algorithm from producing unusually

large or unusually small clusters.

Euclidean Metric

 

\\ Mahalanobis

\' Metric

Figure 4.2. A scenario showing the possible 2-cluster solutions by the K-means clus-

tering algorithm with the Euclidean and Mahalanobis distance measures.

Friedman [43] used other forms of regularized covariance matrices and demon-

strated the resulting improvements in the performance of quadratic discriminant

analysis when the number of patterns in a pattern class is less than (ill-posed) or

not considerablely larger than (poorly-posed) the input dimensionality.

The validity of the resulting partition (cluster validity problem) is an important

yet diflicult problem [81]. In this chapter, the compactness of a cluster is measured by

the significance level of the Kolmogorov-Smirnov test on the multivariate normality of

clusters. However, directly testing the normality of data in a high dimensional space

is a diflicult task [163]. Fortunately, under the Gaussian cluster assumption, we can

prove that the Mahalanobis distance DM satisfies the X2 distribution with number

of degrees of freedom equal to d, which is the input dimensionality. Therefore, the

test reduces to the Kolmogorov-Smirnov test on the distribution of the Mahalanobis

distances of patterns to their centroid with respect to the theoretical X2 distribution.
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Let Pn(x) be the empirical cumulative distribution function of a random variable :1:

based on n data points, and P(:r) be the theoretical cumulative distribution function.

The Kolmogorov-Smirnov statistic A is defined as the maximum absolute difference

between the two cumulative distributions.

A = max [Pn(:1:) - P(:1:)|. (4.6)
—oo<:r<oo

The distribution of the Kolmogorov-Smirnov statistic under the null hypothesis is

known. Given an observation of Kolmogorov-Smirnov statistic A063, the significance

(probability) of Am can be approximated as [141]

cm...) a P(A > 80,.) = QK5([\/N + 0.12 + 0.11 Afr—imam), (4.7)

where

QKS(Z) = 2 ;(-1)j“exp{—2j222}- (48)

Note that 0 S C(A0“) 3 1. The larger the value of C(Am), the closer are the two

distributions.

4.2 Network for Hyperellipsoidal Clusters (HEC)

In the previous section, we mentioned the three difficulties associated with integrat-

ing the Mahalanobis distance measure into the K-means clustering algorithm. The

proposed regularized Mahalanobis distance measure can overcome the second and the

third difliculties. However, the first difficulty dealing with the computational issue

still remains unsolved. Real-time implementation of the K-means algorithm with the

Mahalanobis distance measure may be pursued only through hardware implementa-

tion. What architecture to use is an important issue. In this section, we present a
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self—organizing network (HEC) for hyperellipsoidal clustering.

4.2.1 The HEC Network and Learning Algorithm

The proposed network architecture for detecting hyperellipsoidal clusters is shown in

Figure 4.3. The input layer has (1 input nodes, where d is the number of features. The

hidden layer is composed of K x 61 linear nodes which are grouped into K subnetworks

with d nodes each, where K is the number of clusters. We can view the hidden layer

as a K x d 2-dimensional array. Each subnetwork is designed to perform a principal

component analysis of a cluster consisting of those input patterns which activate the

corresponding output node. We choose the PCA network (see Figure 2.2 proposed

by Rubner et al. [151, 150] as a building block in our network for hyperellipsoidal

clustering, but other PCA networks [1, 6, 40, 101, 103, 133, 151, 150, 154] can also

be used here.

  
 

     

 
Figure 4.3. Architecture of the neural network (HEC) for hyperellipsoidal clustering.



98

Let Var{hkj|z,c = 1} be the variance of hkj based on only those transformed input

pattern vectors which are assigned to the kth cluster by the output layer. Then,

Akj = Var{hkj|z[c = 1} is the jth eigenvalue of the covariance matrix of the k‘“

cluster. If we choose skj as

 

3k,- =1/\/ch~{h,.,|z,c = 1} +5, k = 1,2, - ~,K, j = 1,2, . --,d, (4.9)

where 5 is a small positive number to prevent a zero denominator (in our experiments,

5 = 0.000001), then each subnetwork “whitens” its corresponding cluster [45, 111];

if a cluster in the input space has a hyperellipsoidal shape, then the output of its

corresponding subnetwork will have a hyperspherical shape.

The output layer has K nodes corresponding to K clusters, and is basically a

“winner-take-all” type of network; the lateral connections have not been shown. Com-

petitive learning is performed in the output layer. The input layer is fully connected

to the output layer (by dashed lines in Figure 4.3). However, all the output nodes

in the 16‘" subnetwork are connected only to the 16‘" node in the output layer. Let

my, denote the weight on the connection between the 2"" input node and the kth node

in the output layer, and 21,-), be the weight on the connection between the 3"" output

node of the 16‘" subnetwork and the 16‘“ output node in the output layer. Each output

node computes the weighted squared-Euclidean distance between its inputs (both the

input pattern and outputs of the connected subnetwork) and the stored pattern on

the connections. This node activation function is similar to the one used in Kohonen’s

self-organizing network [92, 93, 94].

Let 0,, denote the total signal intensity (potential value) which the 19‘" output

node receives from the input layer and hidden layer. Then,

d

i:

d

DI: = (1 - Al 2:067: - y“)? + AEWII: — 3.3-)2, ’6 = 1. 2. ' - - , K, (4-10)
3:1 1



99

where 0 S A S 1 is a regularization parameter. The output values, 27,, k = 1, 2, - - - , K,

are determined by competitive learning. The node with the smallest potential value

D; will be the winner.

The weight vector mk = (mm, mgk, - - - , mdk)T is designed to store the centroid (in

the original input space) of the 16‘“ cluster formed by the network, k = 1, 2, - - - , K.

Kohonen’s LVQ algorithm [93], for example, can be used to learn these weight vectors.

The weight vector, Ink, is used both in learning the weight matrix 4),, (to subtract

it from the input pattern vector) and in computing the distance Dk for competitive

learning as a stabilizer.

Similar to 1m, the weight vector VI, = (um, 7121:. - - - , vdk)T is designed to store the

centroid in the rotated and whitened space by <I>Ic and S}, of the 16‘" cluster currently

formed by the network, k = 1, 2, - - - , K. Again, Kohonen’s LVQ algorithm can be

used to learn vk, k = 1,2,---,K.

Rewriting Eq. (4.10) in the vector form, we obtain

D]: = (1 - A)(yk — Vk)T(Yk - Vk) + /\(x - mk)T(x - me)- (411)

Since skj = 1/,/Ak,- + 5, and

yk = A;1/2<I>kx, (4.12)

where

A]; = diag{Ak1, A132, ' ° ' , Akd} + 81, (4.13)

and I is a d x d identity matrix, then

Vk = A;1/2<I>kmk. (4.14)
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Substituting yk and vk into Eq. (4.11), we obtain

D); = (X — mk)T[(1— /\)(I)IA;1<I)]¢ + AI](X — Ink)

2 (x — mk)T[(1— AXE;c + EI)_1+ AI](x — mk), (4.15)

where 2,, is the covariance matrix of the kth cluster, and I is the d x d identity matrix.

Let

2;“ = (1 — A)(2,c + 51)"1 + A1. (4.16)

We refer to 2;“ as the regularized inverse of the covariance matrix 2],, and 0;, as

the regularized Mahalanobis distance. The proposed self—organizing network performs

clustering based on the regularized Mahalanobis distance measure, which takes the

shape of each cluster into consideration. In our implementation, the regularization pa—

rameter 6 = 0.000001, and A is a decreasing function of the number of cycles (number

of times that the algorithm performs Steps 2-4 in the HEC learning algorithm):

)‘t : ma’X(Amim )‘t—l - AA): (4°17)

where A0 = 1.0. The values of Am," and AA are specified by the user.

Note that in the HEC network, the following parameters need to be learned from

the input data: (i) weight matrix <I>;c = [wfyhxd for each subnetwork, k = 1, 2, - - - , K,

and scaling factors sk = {sk1,sk2, - --,skd}, k = 1,2, - - -,K; (ii) weight vector rm, 2

{m1k,m2k,---,mdk} for each output node, I: = 1,2,---,K; and (iii) weight vector

w, = {w1k,w2k,- - -,wdk} for each output node, k =1,2,---,K.

We summarize the learning algorithm for determining these weights and scaling
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factors in the HEC network as follows.

 

1. Initialization: set weights mm = 1),-k, z" = 1,2,---,d, k = 1,2,---,K, to

small random values; set all the weights, 1125],“) = 1 ifi = j, and 0 otherwise;

set all the scaling factors Skj = 1. Set a = 0.000001 and A0 = 1.0.

Therefore, the network starts with a preference for hyperspherical shaped

clusters.

2. Learn all the weights associated with the output nodes, Ink, [1: =

1,2,---,K, using the LVQ algorithm with the activation function de-

fined in Eq. (4.10). (In our implemetation, a batch-mode algorithm is

used) .

3. Learn all the weights in the subnetworks using the modified Rubner’s

PCA algorithm (with a momentum term and scaling factors). Note that

upon presentation of a pattern to the network, only the weights in the

winner PCA subnetwork (whose corresponding output node is the winner)

are updated.

4. Decrease the value of A according to Eq. (4.17).

5. Repeat steps 2-4 until the cluster membership of input patterns does not

change, or the maximum number of cycles is reached.   6. Perform the Kolmogrov-Smirnov test on all the clusters.
 

Step 6 can also be performed for every cycle so that we can monitor the compact-

ness of the currently-formed clusters. We can see that in the HEC learning algorithm,

all the weights associated with a subnetwork and its corresponding output node are

not updated unless the output node becomes the winner. However, some variations of
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this algorithm can be considered. For example, instead of updating the winner (win-

ner subnetwork) only, the neighborsl (neighboring subnetworks) are also updated in a

manner proposed by Pal at el. [135] in order for the HEC network to be less sensitive

to the initial weights. Conversely, the rival node (rival subnetwork) of the winner

[184] can be penalized so that the HEC network is able to recover a meaningful clus-

tering solution from an inappropriately-specified number of clusters. In this thesis,

we are not pursuing these variations.

The LVQ algorithm and Rubner’s PCA algorithm have been proved to converge

under certain conditions on the learning parameters [95, 151, 69]. However, we have

experienced slow convergence of Rubner’s PCA algorithm when the input feature di-

mensionality is high and some of the eigenvalues are small. After numerous trials with

different schemes for choosing the learning parameters, we have found the following

scheme to work relatively well on our data sets. The Hebbian rule (Eq. (4.18)) and

anti-Hebbian rule (Eq. (4.19)) are modified as follows.

Awglu + 1) = 17mm”,- + fi(t)Aw$)(t), (4.18)

and

Aug-”(t + 1) = wane}... + fl(t)Aug-"(t). (4.19)

where n(t + 1) = 0.99999n(t), 11(t + 1) = 0.99999p(t), ,B(t + 1) = 0.99999fl(t), t is

the iteration index in the PCA learning (one iteration means one presentation of a

pattern), with initial values 17(0) = 0.2, 41(0) 2 1.5, and 5(0) = 0.1. We scale all the

data sets to make the maximum range of feature values to be 1.0 without changing

the shape of clusters. Thus, the same set of parameter values is applied to all the

data sets.

 

lNeighbors can be either defined in the t0pological sense as in Kohonen’s self-organizing mapping

[93] or defined in the input feature space [135].
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4.2.2 Simulations

In this subsection, we demonstrate the performance of the HEC network on two

artificial data sets and the well-known IRIS data set. In all the experiments reported

in this subsection, Am,“ 2 0.0, AA = 0.2, and the maximum number of cycles (Steps

2-4) is 10. The batch-mode K-means algorithm (similar to Forgy’s K-means algorithm

[42]) is used for the comparison purpose in all our experiments. Since the clustering

solutions provided by the K-means algorithm and the HEC network depend on initial

centroids or initial weights, we repeated all the experiments ten times with different

initializations and the best solutions obtained by both the methods are reported.

We should mention that only a few distinct solutions were generated by both the

algorithms and the probability of producing the best solution is much higher than

producing other solutions. This sensitivity to the initialization can be reduced by

incorporating a technique proposed by Pal at e1. [135].

The two artificial data sets, which contain a mixture of spherical and ellipsoidal

clusters (Gaussian distributions with different mean vectors and covariance matrices),

are very illustrative of typical cases where the K-means clustering algorithm (and

other partitional algorithms and competitive networks) with the Euclidean distance

measure do not work well, but the HEC performs well. Figure 4.4 shows the results of

applying the K-means algorithm and the HEC network to the two artificial data sets.

We notice that several patterns which are “misclassified” by the K—means algorithm

are correctly assigned by the HEC network. Table 4.2 lists the significance levels of the

Kolmogrov-Smirnov test on all the clusters shown in Figures 4.4(a)-4.4(d). We should

point out that in all our experiments, the Kolmogrov-Smirnov test is applied to the

Mahalanobis distances (not the Euclidean distances) of the patterns in the individual

clusters. We can see from Table 4.2 that the compactness of all the clusters in terms

of the significance level of the Kolmogrov-Smirnov test is improved (by a substantial
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amount for some clusters) by using the HEC network. Of course since these artificial

data sets were generated from Gaussian distribution, the significance levels of the

Kolmogrov-Smirnov test is unusually high. Such large values are seldom observed for

real data sets.

Table 4.2. The significance levels of the Kolmogrov-Smirnov test for all the clusters

in Figures 3(a)-3(d).

 

 

 

 

clustering K-means HEC network

method cluster 1 (A) cluster 2 (0) cluster 1 (A) cluster 2 (0)

data set 1 0.318 0.954 0.857 0.989

data set 2 0.831 0.354 0.935 0.996       
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Figure 4.4. The K-means clustering with the Euclidean distance measure versus the

HEC clustering on two artificial data sets, each containing two clusters. (a)-(b): data

set 1; (c)—(d): data set 2; (a) and (c): results of the K-means clustering algorithm

with the Euclidean distance measure; (b) and (d): results of the HEC network.
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We also compare the HEC network with the K-means algorithm on the well-known

IRIS data set. Since the IRIS data are in a four-dimensional space, for the visual-

ization purpose, we display only its eigenvector projections onto the 2—dimensional

planes spanned by the first two principal eigenvectors and by the first and the fourth

principal eigenvectors (We use two projection maps so that we can easily visualize the

shape of clusters in the data). The position of each pattern in the map is determined

by its eigenvector projection, while its label is obtained by using either the K—means

algorithm or the HEC network operating in the original 4-dimensional space. For the

3-cluster solutions (the number of clusters is specified as three) as shown in Figures 4.5

and 4.6, both the K-means and the HEC network correctly group patterns from the

first class (setosa) into one cluster, because the patterns in the first class (setosa) are

well separated from the rest of the data. However, since the second class (versicolor)

and the third class (virginica) are slightly overlapped and both are not spherically

shaped (see Figures 4.5(a) and 4.6(a)), the K-means algorithm produces a partition

which does not correctly group patterns from these two classes; the compactness of

the corresponding two clusters is also poor. On the other hand, the HEC network

can recover the clusters which reflect the true classes very well. This can be observed

by comparing Figure 4.5(c) with Figure 4.5(a) and Figure 4.6(c) with Figure 4.6(a).

The numerical values of misclassification rate and compactness measures of the

clusters generated by the K-means algorithm and the HBO network are shown in

Table 4.3. Note that the K-means algorithm misclassifies 16 patterns (compared

to the true categories), while the HEC network has misclassified only five patterns.

The compactness of the second cluster is also significantly improved by using the

HEC network at the cost of slightly degrading the compactness of the third cluster.

Figures 4.7 and 4.8 show the eigenvector projections of the 2-cluster solutions by the

K-means algorithm and the HEC network. We notice that although the patterns

in the first class (setosa) are well-separated from the rest of the data, due to the
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substantially different spreads of the two natural clusters in the feature space, there

are still three patterns from the bigger cluster (mixture of classes 2 (versicolor) and

3 (virginica)) which are assigned to the smaller cluster by the K-means algorithm

with the Euclidean distance measure. These three misclassified patterns significantly

degrade the compactness of the two resulting clusters. On the other hand, the HEC

network correctly produces the two natural clusters.

Table 4.3. The significance levels of the Kolmogrov-Smirnov test and numbers of

misclassified patterns by the K—means algorithm and the HEC network for the IRIS

data. The eigenvector projections of the 3—cluster solutions are shown in Figures

4(b)-4(c) and 5(b)-5(c), and those of the 2-cluster solutions are shown in Figures 6

and 7.

 

 

 

 

 

  

method K-means HEC network

3-cluster #misclassified/n 16/ 150 5/150

solution compactness of the 3 clusters 0.559 I 0.676 I 0.857 0.559 I 0.897 I 0.814

2-cluster #misclassified/n 3/ 150 0/150

solution compactness of the 2 clusters 0.271 I 0.603 0.559 I 0.720   
 

We should point out that although the comparison is performed between the K-

means algorithm with the Euclidean distance measure and the HEC network, these

conclusions can also be applied to other partitional clustering algorithms and com-

petitive networks such as, Kohonen’s LVQ and ART models, which use the Euclidean

distance measure.
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Figure 4.5. Two-dimensional projection maps (the first two principal components) of

3-cluster solutions by the K—means clustering with the Euclidean distance measure

and the HEC clustering on the IRIS data. (a) The three true classes. (b) Result of

the K-means clustering algorithm with the Euclidean distance measure. (c) Result of

the HEC network.
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Figure 4.6. Two-dimensional projection maps (the first and fourth principal compo-

nents) of 3-cluster solutions by the K—means clustering with the Euclidean distance

measure and the HEC clustering on the IRIS data. (a) The three true classes. (b)

Result of the K-means clustering algorithm with the Euclidean distance measure. (c)

Result of the HEC network.
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Figure 4.7. Two-dimensional projection maps (the first two principal components) of

2-cluster solutions by the K—means clustering with the Euclidean distance measure

and the HEC clustering on the IRIS data. (a) Two clusters produced by the K-

means clustering algorithm with the Euclidean distance measure. Note the three

“misclassified” patterns. (b) Two clusters produced by the HEC network.
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Figure 4.8. Two-dimensional projection maps (the first and fourth principal compo-

nents) of 2-cluster solutions by the K-means clustering with the Euclidean distance

measure and the HEC clustering on the IRIS data. (a) Two clusters produced by the

K-means clustering algorithm with the Euclidean distance measure. Note the three

“misclassified” patterns. (b) Two clusters produced by the HEC network.
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4.3 Image Segmentation Using the HEC Network

Clustering-based image segmentation consists of two basic components: representa-

tion and grouping. The representation component can be considered as a transfor-

mation from the input image to a set of feature images. What representation scheme

to use is largely driven by image properties and the requirements of the segmentation

task. The next subsection will discuss the representation scheme that we will use for

texture segmentation problems. After the representation is obtained, the HEC net-

work is applied to group a set of 1,000 randomly sampled pixels from a typically large

image. This scheme was used [84, 39] in order to reduce the amount of computation.

The trained HEC network (or K-means algorithm for comparison) is then used to

classify every pixel in the image.

4.3.1 Representation

Texture can be characterized by the local spatial frequency and orientation properties

present in the image. Daugman [28] has shown that Gabor filters exhibit optimal

localization properties in both spatial domain and the frequency domain. So, Gabor

filters are ideally suited for texture segmentation problems [39, 84]. In spatial domain,

a two-dimensional even-symmetric Gabor filter is represented as

1 [1:2 y2

h(:1:, y) = exp {—§ 0—32 + 311—2] } cos(27ru0x),

where 03 and 0,, are the standard deviations of the Gaussian envelope along the a: and

y directions, respectively, and uo is the frequency of the sinusoidal plane wave along

the zit-direction (0° orientation) [84]. A rotation of the x—y plane by angle 0 will result

in Gabor filters at orientation 6. For an image with a width of Nc pixels (assume that

No is a power of 2), the following values of radial frequency uo (cycles/image—width)
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can be used: 1J2, 2\/§, - - - , Nc/4\/2. The value of 6 is quantized into four orientations

(6 = O°,45°,90°, 135°). The standard deviations of the Gaussian envelope (0,, and

03,) are specified in terms of no [39].

A texture representation scheme using Gabor filters, which was used in [84], is

adopted here. It consists of two main steps: (i) Filter the input image through a

bank of n even-symmetric Gabor filters, to obtain 72. filtered images. (ii) Compute

the feature images which are the “local energy” estimates over Gaussian windows of

appropriate size centered at every pixel in each of the filtered images. Thus, each

pixel in a textured image is represented as a point in an n—dimensional feature space.

Regions of homogeneous texture can then be segmented by a clustering algorithm.

Choice of a set of appropriate filters to a class of images is often crucial to achieve

a good segmentation [39, 84]. This filter selection problem is beyond the scope of

this thesis. We will use the four highest-frequency filters for segmenting textured

images. Since there are four different orientations for each frequency, a total of 16

feature images for a single texture image are generated. The spatial information (x-y

coordinates) is not used in our segmentation scheme.

4.3.2 Segmentation Results

Figures 4.9(a) and 4.9(b) show the two 256 x 256 texture images, containing 4 (D68,

D55, D84, D77) and 5 (D77, D55, D24, D84, D17) different textures, respectively,

from the Brodatz album [18]. Sixteen Gabor filters (4 highest radial frequencies

and 4 different orientations per frequency) are applied to these two texture images.

Therefore, 16 256 x 256 feature images are obtained for each texture image. A total

number of 1,000 pixels are randomly chosen to form a set of “training” (without

category labels) patterns. The K-means algorithm and the HEC network are applied

only to this set of 1,000 patterns instead of all the 64K pixels in order to reduce the

amount of computation. For both the K—means and the HEC network, we specify
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the number of clusters to be 4 for the texture image in 4.9(a) and 5 for 4.9(b). The

minimum Euclidean distance classifier with the centroids obtained from the K-means

algorithm is used to classify every pixel in the image.

We apply the K-means algorithm to both the 16 Gabor filter features and the 16

z—score normalized Gabor filter features to investigate the effect of normalization on

the segmentation results. Figures 4.9(c) and 4.9(f) show the segmentation results

using the K-means algorithm without feature normalization, and Figures 4.9(d) and

4.9(g) show the results with the z-score normalization. We can see that the z-score

normalization does not help a lot in improving the segmentation results. The trained

HEC network (Am-n = 0.5, AA = 0.1, and the maximum number of cycles is 10) is

also used to classify every pixel in the image, and the segmentation results are shown

in Figures 4.9(e) and 4.9(h). Note that the HEC network does not need any normal-

ization scheme. Comparing Figure 4.9(e) with Figures 4.9(c)-4.9(d) and Figure 4.9(h)

with Figures 4.9(f)-4.9(g), we find that a significant improvement has been achieved

by using the regularized Mahalanobis distance measure. Many small noisy patches

in Figures 4.9(c)-4.9(d) disappear as shown in Figure 4.9(e). The texture bound-

aries in Figures 4.9(f)-4.9(g) are improved as shown in Figure 4.9(h). Table 4.4 lists

the “misclassification” rates of the segmentation results in Figures 10(c)-10(h) with

respect to the ground-truth images of textures in Figures 10(a) and 10(b). The “mis-

classification” rate is defined as the ratio of the number of “misclassified” pixels to

the total number of pixels in the image. We should point out that this measurement

is not a very reliable indicator of segmentation quality, because the “misclassifica-

tion” rate can be small but the visual quality of the resulting segmentation may still

be poor. We can see from Table 4.4 that the K-means algorithm with the z-score

normalization slightly reduces the “misclassification” rate. However, these slight re-

ductions in the “misclassification” rate do not noticeably improve the visual quality

of the segmentation results (see Figures 10(d) and 10(g)). On the other hand, the
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HEC network achieves consistent improvements in both the visual quality and the

“misclassification” rate.

Table 4.4. The “misclassification” rates of the texture segmentation results in Figures

10(c)-10(h).

 

 

 

texture K-means without K-means with z—score HEC network

image normalization normalization

Figure 10(a) 7.1% 6.5% 5.8%

Figure 10(b) 5.4% 4.8% 2.9%      
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 (g) C i (h)

Figure 4.9. The K-means clustering with the Euclidean distance measure versus the HEC

clustering for texture segmentation. (a) and (b): Original composite textured images. (c)

and (d): 4-class segmentations of the image in (a) using the K-means algorithm on the

original features and z-score normalized features, respectively. (e): 4-class segmentation

using the HEC network. (f) and (g): 5-c1ass segmentations of the image in (b) using the

K-means algorithm on the original features and z-score normalized features, respectively.

(h): 5-class segmentation using the HEC network.
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4.4 Summary

We have proposed a self-organizing network for hyperellipsoidal clustering. The net-

work performs a partitional clustering using the proposed regularized Mahalanobis

distance measure. This measure can deal with the ill-posed and poorly-posed prob—

lems in estimating the Mahalanobis distance and achieves a tradeoff between using

the Euclidean distance and the Mahalanobis distance so as to prevent the HEC net-

work from producing unusually large or unusually small clusters. Experiments on

both artificial data and real data (the IRIS data and texture images) have shown

that the HEC network provides better clusters than the K-means algorithm. Same

improvement will be achieved over any other partitional clustering method which uses

the Euclidean distance measure if the underlying hyperellipsoidal assumption made

in the HEC network is valid. However, even if this hyperellipsoidal assumption is

not true, the HEC network can still be used to tune the results produced by the

K—means algorithm. The Komogrov-Smirnov test on the distribution of the Maha-

lanobis distances between patterns in a cluster and the corresponding cluster center

provides a compactness measure and a validity test of the hyperellipsoidal assump—

tion. In conclusion, the HEC network is an admissible clustering algorithm [81] which

should be utilized along with other clustering algorithms to understand the structure

of multidimensional patterns.

Future work in this area will be on improving the convergence of the PCA sub-

networks, used in the HEC network, especially when the input dimensionality is high

and many eigenvalues of the covariance matrices of individual clusters are small. Re-

moving outliers in estimating the shapes of clusters can also improve the clustering

results. Other schemes for introducing penalty on illformed clusters (e.g., clusters

with poor compactness, unusually large or unusually small) in competitive learning

Should be further investigated. The current implementation of the HEC network
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requires a prespecified number of clusters. The rival penalized competitive learning

proposed by Xu at e1. [184] may be incorporated into the HEC network to recover a

meaningful clustering solution if an inappropriate number of clusters is specified.



CHAPTER 5

Generalization Ability of

Feedforward Networks

Supervised learning from examples can be formulated as a problem of function regres-

sion or approximation. We are given a set of n training patterns, 7:, = {z1, 22, - - - , 2"},

where z, = (x,,y,-) is an input-output pair, x,- 6 Rd, 2' = 1, 2, - - - ,n. Without a loss

of generality, assume that y,- E R. We assume that all the patterns in 7;, are inde-

pendently drawn from an unknown joint distribution, E'.(x, y). The goal of supervised

learning is to determine a function f : Rd —-> R from the training samples such that

y = f(x), is an estimator of the unknown function, M(x), which governs the input-

output relationship. A mathematical criterion is needed to determine how good f(x)

approximates and generalizes the unknown function M(x). In the neural network liter-

ature, the squared error criterion is most commonly used to measure the error between

the observed value y and estimated value f (x), d(y, f(x)) = (y — f(x))2. Other error

criteria can also be used. In this thesis, the approximation error is measured by the

empirical squared error on the training set,

E(72) = d(y.-,f(X.-))- (5.1)

3
1
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The generalization error is defined as

E = (d(y,f(X))), (5-2)

where () denote the mathematical expectation. In order to evaluate E, one needs

to know the joint distribution 3 which is usually not available. In this case, the

generalization error is replaced by the empirical prediction error on a set of n’ test

patterns, n’, = {z’1,z’2, - - -,z;,,}, where z] = (x£,y,’-), i = 1,2, - - -,n’.

1 n’
I I

Em) = a? zd<y..f<x.>>. (5.3)
1:1

For classification problems, the two corresponding classification error probabilities

(on training set and test set) are used. The objective of supervised learning is to

find a function f"‘ E A such that both E(7;) and E or E( ,,’,) are minimized over

A, where A is the set of all measurable functions in R“. Therefore, there are two

tasks involved in supervised learning. First, we need to determine what form the

function f should take, i.e., to determine a subset f of A. For example, .7 can be C,

a set of all continuous functions, or a set of all polynomial functions of order up to

some value, or a set of all functions that a feedforward network with a given topology

can approximate. Second, once the form of the function f is determined, we need

to estimate the parameters involved in the function from the training samples. The

generalization ability of feedforward networks can be measured by the deviation of

the empirical prediction error (on test set) from the empirical error on the training

set. The smaller this deviation is, the better generalization ability the network has.

There are three fundamental and practical issues associated with learning from

samples: i) adequacy of .7, ii) sample complexity, and iii) time complexity. Any

learning theory must address these three issues.

..
a
n
:
m
m
—

 



121

The first issue concerns whether the set .7 contains the true solution g(x). If not,

we can never hope to obtain the optimal solution. This remains a difficult and open

problem. Choosing a right solution space .7 often requires both a considerable insight

into the particular problem domain (the nature of the true solution p(x)) and the ap-

proximation capabilities of available networks (what functions can be implemented).

The approximation capabilities of feedforward neural networks have recently been

investigated by many researchers [27, 49, 51, 62, 70, 77, 165, 179, 52, 20, 78]. A fun-

damental result of these studies has shown that 3—layer, or even 2-layer, feedforward

networks with an arbitrarily large number of nonlinear hidden units are capable of im-

plementing any continuous mapping and its derivatives with a prespecified accuracy

under some mild conditions. Unfortunately, most of these theoretical studies ignore

the learnability problem that is concerned with whether there exist methods to learn

the network weights from empirical observations of the mappings. Furthermore, these

theoretical analyses have not introduced any new practical learning methods.

The second issue, sample complexity, determines the number of training patterns

needed to train the network in order to guarantee a valid generalization. Too few

patterns may cause the “overfitting” problem where the network performs well on

the training data set, but poorly on the independent test patterns drawn from the

same joint distribution E as the training patterns.

The third issue is the computational complexity of the learning algorithm used to

estimate a solution from the training patterns. Many existing learning algorithms

have high computational complexity. For example, the popular backpropagation

learning algorithm for feedforward networks is computationally demanding because

of its slow convergence. Designing efficient algorithms for neural network learning

is a very active research topic. Various learning algorithms have been proposed for

different types of neural networks. However, in some situations where learning can

be done off-line, this issue is less critical.
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This chapter will focus on the generalization and sample size requirement issues in

feedforward networks. We first introduce two different frameworks for studying the

generalization issue: Vapnik’s theory and Moody’s approach. We point out the advan-

tages and disadvantages of the two frameworks. We then extend Moody’s model to a

more general setting. Monte Carlo experiments are conducted to verify both Moody’s

result and our extension, and to demonstrate the role of the weight-decay regulariza-

tion in reducing the effective number of parameters in feedforward networks. At the

end of this chapter, we summarize four different practical techniques for improving

the generalization ability of feedforward networks.

5. 1 Vapnik’s Theory

Vapnik’s theory [170] provides a mathematical framework for studying the gener-

alization issue. The theory is based on the notion of Vapnik-Chervonenkis (VC)

dimension.

5.1.1 Vapnik-Chervonenkis Dimension

The VC dimension [170] (or capacity [26], index [31]) is defined as the maximum

number of points in the input space that can be given an arbitrary Boolean label by the

functions in f. It measures the power and complexity of the given class of functions.

We can define another quantity Ap(7;,) as the number of distinct dichotomies of 7;

induced by functions f E .7. Let Ap(n) denote the maximum of Ap(7;) over all

7:, 6 R“ of cardinality n. It is obvious that the maximum value of Ap(n) is 2".

Therefore, if V is the VC dimension of .’F, then Ap(V) = 2V, and V is the largest n

such that Ap(n) = 2".

The definition of the VC dimension is not difficult to understand, but comput-

ing it for classes of functions is not trivial. A substantial amount of research has
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been done on computing the VC dimensions of different types of classifiers in the

pattern recognition literature. For example, the VC dimension of a linear classifier

in Rd is (d + 1) [26, 175, 31]; the VC dimension of a quadratic classifier in R“ is

[2d + 911211 + 1], which can be derived by converting the quadratic classifier into a

generalized linear classifier [34]; Baum and Haussler [14] have proved that the VC

dimension of a multilayer feedforward network with hard-limiting units is bounded

by

V < 2W10g2(eN), (5.4)

where W and N are the number of weights and the number of nodes in the network,

respectively, and e is the base of the natural logarithm. It is also shown in [14]

that Ap(n) S (Nen/W)W for all n 2 W. The values of W and N are determined

by the t0pology of the network. Suppose the number of nodes, N, is fixed. Then,

the bound for the VC dimension of a feedforward network with hard-limiting units

is linear in W, the number of free parameters in the network. Therefore, a weight

pruning method can efficiently reduce the bound for the VC dimension. Computing

the VC dimension, or even a bound on the VC dimension of a feedforward network

with continuous units is very complicated. Haussler [60] has shown that the bound

for the VC dimension of a feedforward network with continuous units is still linear in

the number of weights in the network when the number of nodes is fixed.

5.1.2 Bound on Deviation of True Expected Error From

Empirical Error

Vapnik [170] has established a relationship between the true expected error probability

and the empirical error probability measured on the training data for a set of binary—

valued functions. Theorem 1 provides this relationship.

Theorem 1 [170]: Let F(x, oz) be the class of classification functions of bounded VC’
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dimension V, where a is the set of parameters involved in the class offunctions, and

let the frequency of errors computed on the training patterns of size n > V equal

camp. Then, with probability 1 - 6, one can assert that the following bound is valid

for all the functions in the class F(x, a).

 

ea 3 camp—+2

V(ln(2n/V) + 1) -— ln(6/12) neaemp

n (1+[/1+ V(ln(Zn/V) +1) —ln(6/12)) '

(5.5)

In Theorem 1, (1 — 6) is the confidence level. The proof of Theorem 1 is very

involved. However, the qualitative explanation is rather intuitive. As the number

of training patterns n approaches infinity, the empirical error probability for all the

functions in the class F(x, a) will simultaneously converge to the true expected error

probability, because the second term on the right-hand side of inequality in Eq. (5.5)

will approach zero. Furthermore, the rate of convergence of the empirical error prob-

ability to the true expected error probability is determined by the ratio, 6; the larger

the ratio, the faster the convergence. It is very important to note that Theorem 1

is independent of the distributions of the underlying classes. This implies that the

theorem is valid for any classification problem. While this is a very powerful aspect

of the theorem, the bound that the theorem provides is very conservative because

it covers the worst-case distribution in order to guarantee the uniform convergence

of the empirical error probability to the true expected error probability. Theorem 1

does not address the question of whether F(x, a) contains the true optimal solution

f’. Increasing the size of the set F(x, a) will increase the probability of containing

f*. However, doing this may increase the value of the VC dimension, thus sacrificing

the rate of convergence.

-
fl
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5.1.3 Bounds on Sample Size Requirements

Theorem 1 can be stated in many different ways to reveal some hidden properties, such

as the number of training patterns required for a valid generalization. For example,

Blumer [17] has shown the following bound for the number of training patterns.

Theorem 2 [17]: Let F(x, (1) be the class of classification functions of a bounded VC'

dimension V, and for each rule f(x, a) let the frequency of errors computed on the

training set of size n equal to 50. Then, for any n satisfying

8 8 16V 16
}. (5.6)n 2 max {:y2—Elng, $54,172;

the probability that there exists a classification function in F(x, 01) with 50, Z 6, such

that éa _<_ (1 —— ’y)ea is at most 6.

From Theorem 2, we can see that the number of training patterns required for a

valid generalization increases linearly with the VC dimension of the class of classifiers.

Since the upper bound for the VC dimension of feedforward networks is roughly linear

in the total number of weights (if the number of units N is fixed), the sample size

requirement is also linear in the total number of weights. This provides a theoretical

justification of the efficiency of weight pruning methods.

These theoretical results are of little practical value, because the bound for the

number of training patterns required for a valid generalization is very loose. For

example, for a linear classifier, V = d + 1. If we choose an = e = 'y = 0.1, the number

of training samples obtained from Theorem 2 should be at least 155, 000 x (d + 1),

which is much more than approximately 10 x (d + 1), a recommended rule of thumb

in pattern recognition practice [80]. Furthermore, this bound is a sufficient condition

for a valid generalization. This means that the network trained with a fewer number

of training patterns may also lead to a valid generalization.
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5.2 Moody’s Approach

Vapnik’s theory provides a bound on the maximum deviation of the expected true

probability of error from the empirical probability of error? To derive the exact

relationship between the expected true error and empirical error is extremely diffi-

cult, if not impossible. However, under some rather restrictive assumptions, a data-

dependent relationship can be established.

It is well known in the statistical literature [2, 8, 37] that for the linear model,

y = u(x) +5, where the noise term 5 is drawn from a noise distribution (not necessarily

Gaussian) with zero—mean and variance 02, the relationship between the expected

mean squared errors (MSES) on training set and test set is governed by

(Etest)7'n7;{ = (Etraining)7;, ‘1' 202%, (5.7)

where p is the number of free parameters in the linear model, p = (d + 1), and d

is the input dimensionality. 7;, and 7;: are the sets of training and test patterns,

respectively.

This result can also be applied to an L—layer feedforward network with a lin-

ear activation function. Let n; be the number of nodes in layer 1, l = 0,1,- - - , L,

no 2 d (l = 0 denotes the input layer). The total number of free parameters is

Nfree = 2f=1(n;-1 +1)n¢. Each layer implements a linear mapping, 0; = Alo¢-1, l =

1,2,-~,L, where A; is an n; x (n1_1 + 1) weight matrix for layer l, and 00 = x

and 0;, = y. Due to the fact that the composition of linear functions remains a

linear function, the whole network computes a linear mapping y = Ax, where A is a

m, x (d + 1) matrix, A = ALAL_1~-A1. If no other constraints on f are specified,

then the effective number of parameters (which will be defined shortly) is nL x (d+ 1).

 

‘Vapnik’s theory [170] also provides bound on the maximum deviation of the expected true

squared-error from the empirical square error.
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When nL = 1 (y is a scalar), Neff = d + 1, which is the number of free parameters

in a linear classifier (two-class case).

5.2.1 “Effective” Number of Parameters

Motivated by the above linear model, Moody [126] introduced the notion of the

“effective” number of parameters for nonlinear models. It is defined as

n

peff : fiKEtestlTn'm - (Etraining>7'n]- (5.8)

It is the effective number of parameters, not the number of free parameters, that

determines the complexity of networks (functions), and has a direct effect on the

sample size requirement and generalization ability. Analogous to the VC dimension, it

is a complexity measure of a nonlinear system. However, unlike the VC dimension, the

effective number of parameters is dependent on the data and the training algorithm.

5.2.2 Direct Relationship between Expected MSEs on

Training and Test Sets

Moody [126] extended the results for linear models to the following nonlinear model.

Consider a set of n real-valued training pattern pairs 7:, = {(x,, yi)|i = 1, 2, - - - , n}

drawn from a stationary distribution E(x, y), where x,- 6 R“, i = 1, 2, - - - , n. Without

a loss of generality, assume that y.- E R. These patterns can be viewed as being

generated according to the additive model:

11 = MX) + 6. (59)

where e is the i.i.d. noise term with zero mean and variance 02 which is sampled

with distribution <I>(e) (not necessarily Gaussian), and u(x) is the conditional mean,
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an unknown nonlinear function of x.

Suppose that a feedforward network is used to estimate this unknown function.

The weights in the network are determined by a training algorithm to minimize the

following regularized cost function (in Chapter 6, we will survey various forms of the

regularized cost function, E,\(w, 7,1), and the stabilizer P).

EA(W. 77.) = "EN. 77:) + Allellz, (5-10)

where

E(w T)=(H1—Zn:-—f(w,x,-))2 . (5.11)

i=1

Moody established the following relationship between the expected MSEs on training

set 7; and test set 7;: ={(x,~,y£)|i=1,2,---.,n}

2 peffy (A)

(Etest>7'n7;{ R5 (Etraining)7'n + 20 Ta (512)

where Pen, (A) is the effective number of parameters which is a function of the regu-

larization parameter A. The value of peffy(/\) can be computed using

 

Perm 57112(17.1%. (5-13)

2ijk

where

8 0

To - ayia—wijEWfll». (5-14)

B 6

Ujk — Ew—Ja—wkE)‘(W, 7;). (5.15)

Note that the value of peffy (A) is evaluated at the equilibrium point of the regularized

cost function, EA(w, 7;), minimized using a training algorithm, such as the backprop-

agation algorithm. We can see that the effective number of parameters peffy (A) differs
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from the true number of free parameters p and depends on the nonlinearity of the

model, the stabilizer and the regularization parameter. However, it is not easy to

observe the relationship between peffy(A), p and A.

In practice, we never know the variance of noise, 02. So, it must be estimated from

the training data. Moody [125] prOposed to use

0' = A Etrain(wy7:i) I (5.16)
 

as an estimate of 02.

5.2.3 Sample Size Requirement

Once we obtain the effective number of parameters, the samples size requirement

becomes obvious. If we follow the rule of thumb that the number of training patterns

should be at least 5 to 10 times larger than the effective number of parameters, i.e.,

n > Cpeffy(/\), 5 S c S 10, then we expect that the deviation of the expected MSE on

the test set and on training set will not exceed 0.402. We should point out here that

the value of pen, must be estimated using a training data set, and is also a function

of n. The sensitivity of pen" to the value of n has not been studied.

5.3 Vapnik’s Theorem Versus Moody’s Results

Vapnik’s framework and Moody’s approach have many interesting and rather con-

trasting properties:

1. Vapnik’s theory provides a universal framework. It is distribution-free (no data

model is assumed), and it does not depend on the training algorithm. In some

sense, these properties are desirable, but these properties also make the bounds
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too conservative because now the worst-case behavior must be considered. There-

fore, the practical applicability of these bounds is questionable. For example,

these bounds provide very little guidance even in the case of multivariate Gaus-

sian distributions. In contrast, Moody’s approach provides an approximate direct

relationship. However, Moody’s approach makes rather restrictive assumptions

on data model, training set and test set (see Section 5.4). It also depends on the

training algorithm.

. Vapnik’s theory offers only the bound for the maximum deviation of the true

error from empirical error, and the bound for the sample size requirement. How-

ever, Moody’s approach can establish an approximate direct relationship between

the expected MSEs on the training and test data sets.

. Vapnik’s theory [170] can deal with both classification error and MSE, whereas

Moody’s approach only applies to the MSE.

. Moody’s approach takes regularization into consideration, while Vapnik’s theory

does not.

. In Vapnik’s framework, any classifier (or system), no matter how complicated,

is characterized by a single number, i.e., the VC dimension. The VC dimension

is independent of data and learning algorithm. Therefore, the VC dimension

is an inherent property of the system. On the other hand, Moody’s notion

of the effective number of parameters in a nonlinear system (e.g., feedforward

networks) depends not only on the system itself, but also on the data and training

algorithm. Therefore, it is not an inherent property of the system.

The capacity (VC dimension) of feedforward networks is not likely to be fully

exploited by a learning algorithm, such as the backpropagation algorithm. Kraai-

jveld [98] studied the effect of backpropagation algorithm on the generalization
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properties of multilayer feedforward networks and found that the search capabil-

ity of the backpropagation algorithm (or any other iterative algorithm) can not

fully exploit the theoretical capacity of multilayer feedforward networks. Based

on this observation, the notion of effective capacity (or empirical VC dimension)

which depends on both the data and training algorithm has been introduced

[171, 98]. Kraaijveld proposed a simple but computationally intensive procedure

to estimate the effective capacity of a classifier. His simulation showed that the

effective capacity can be orders of magnitude smaller than the bound for the

true capacity of a multilayer feedforward network. Moody’s notion of effective

number of parameters can be viewed as a sort of effective capacity of feedforward

networks for a specific data model and a specific training algorithm.

6. Vapnik’s theory only captures the difference between the true and empirical

errors, and provides no statement about the value of the true error itself. In

contrast, Moody’s approach can predict the true expected MSE if the restrictive

assumptions on the data model, training and test sets are valid. Moody [125]

proposed a generalized prediction error (GPE) for this purpose.

‘ A

GPE(A) = E,m,-,,(w, 7;.) + 2.32%. (5.17)

Although their practical applicability is questionable, both Vapnik’s framework

and Moody’s approach provide considerable insights into how various quantities (e.g.,

the true error, empirical error, number of training patterns, expected test and training

set MSEs, nonlinearity, and regularization) interact with each other. These results

help us to understand the inner workings of the “black-box” (feedforward networks).
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5.4 Extension of Moody’s Model

The detailed derivation of Moody’s result (Eq. (5.12)) has not yet been published.

We have derived, under Moody’s assumptions, a more general formula for the number

of effective parameters (See Appendix A).

 

 

1

péffyO‘) = itrace[TU"lVT], (5.18)

where

32

T = E n , .ayaw" (w,T) (519)

62

V = E n , .oyaw A<w,r) (5 20)

and

82

Note that y is a vector, y = [y1,y2,---,yn]T, where n is the number of training

patterns. When there are no variables yi,i = 1, 2, - - - , it involved in the stabilizer P,

i.e., the partial derivative of the regularized term in EA(w, 7;) with respect to y,- is

zero for all i = 1,2, - - -,n, then pg”, (A) = peffy(A). Ffom now on, we assume that

the regularizer does not contain variables y,,i = 1, 2, ' . . , n.

Moody’s derivation (Eq. 5.12) is based on the following rather restrictive assump-

tion, which largely limits its applicability. The test set differs from the training set

only in the observed value y which is subject to the additive noise 5y, but the input

component x in the corresponding training pair and test pair must be the same. This

assumption may be true for some regression situations where observations are ob-

tained from a set of fixed measurement points. Unfortunately, it is generally violated

in most pattern recognition problems. However, it would still be valuable to gain

some insight on the effective number of parameters for pattern recognition problems.
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Now, we try to relax this restrictive assumption in Moody’s model. Consider that

the sampling points x2 are also subject to an additive noise model.

x' = x + 5;, (522)

where 5,, is the i.i.d. noise vector with mean zero and d x d covariance matrix Ax = 03]

(diagonal matrix).

We obtain the following relationship which governs the expected MSES on training

set 7;, and test set 7: = {(x£,y,’-)|i = 1, 2, - - -,n} (see Appendix A).

e /\

(Etestlnn '65 (Etraining>7;, + QUENE—Iil—(l, (5.23)

where

02 02

PeffO‘): 2—Pen.(") + +Peff.(/\). (5-24)
0eff ”en

Jeff ——02 '1‘ 02, (5.25)

1 —1 T
peffy(/\) = §trace[TU T ], (5.26)

1

peffz (A) = Ztrace[G], (5.27)

and

G: 8;; aa—gnE(w, (5.28)

Property 1: peffy(/\) is non-negative at minimal points of the regularized cost func-

tion EA(W, 77,) with respect to the weights in the feedforward network.

Moody [126] presumed that peffy(A) is non-negative without providing a proof.

We now prove this property.

Proof: At a minimal (either local or global) point w = w" of the regularized cost

function E)‘(W, 7;), the Hessian matrix prp defined in Eq. (5.21) is positive definite.



134

Therefore, U‘1 is also positive-definite, that is, for any p—dimensional vector a aé 0,

aTU’la > 0. Thus,

P
1 1

peff()1) = 5trace[TU‘1TT] = 5 2(a,TU"la,-) _>_ 0, (5.29)

i=1

where a,- is the it” row vector of the matrix T.

Property 2: p8,,” (A) is non-negative at pattern-wise minimal pointsl of the cost func-

tion (without regularization) E(w, 7;) with respect to the weights in the feedforward

network.

Proof: Let us first introduce an intermediate variable h’9 which is called the net

 

  

 

input to the jh'node1n the first hidden layer, hf — _1 wijxi, when the kth pattern

x" = [x’f,x’2‘, - - -,xd] is presented. We denote E = 77 22:1 Ek. Now compute

62E 82E 21;: 2 BE 6211’?

2'“Z——'2‘ +2__I.—]§ (530)

8x]c 8h" 8h, 8x:-c

. 625': M" .

S1nce W = 0 and 07.1? = w,,-, we obta1n

(:12 =2 253:5; (5.31)

wt J h]

Similarly, we have

2 2 8h’9 ’ E 0% 2E
5317,5- = g; (—’—) + a,f—j=xf26 ;. (5.32)

.7

At a pattern-wise minimal point of the cost function E(w,7;,), #3: > 0. Thus,

82E
,8”—;can not be

.975—7> 0 for 331‘95 0 In the case of x’-‘, =0, by the continuity of—a—ga;E

negative at xf -—,O DCCBUSG'Q—z > 0, for any x'-c -—5 7E 0, wheres can be arbitrarily
8h1

 

1Suppose that a pattern-wise iterative algorithm is used. At each iteration, the algorithm tries

to minimize the square error for the pattern which is currently presented.
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small. From Eq. (5.31), we prove that 372?; 2 0, which leads to peffz(/\) 2 0.

Note that we have not proved that the property pefszx) 2 0 still holds at a

minimal point of the regularized cost. We should also point out that a pattern-wise

minimal point is also a minimal point of E, but not vice versa. The positiveness

of Pen, at non-minimal points, batch-mode minimal points, and the minimal points

of the regularized cost function, needs to be investigated further. However, we find

that in our simulation, pen, is always positive in the neighborhood of the minimal

points of the regularized cost function. The significance of these properties is that i)

the noise in the observation will always (with or without regularization) increase the

effective number of parameters, and ii) the noise in the sampling points of test data

will always increase the effective number of parameters without using regularization.

5.5 Simulation Results

In this section, we use the Monte Carlo method to verify the relationship (in

Eq. (5.12)) established by Moody and our extension (in Eq. (5.23)). We also demon-

strate the role of the weight-decay regularization [64] in reducing the effective number

of parameters in feedforward networks.

The data used in our Monte Carlo experiments are generated from the following

nonlinear system.

y,- = sin(x,rl + (In) — sin(2x.-1) — sin(2x,-2) + 65, i = 1, 2, - ~ - , n, (5.33)

where xil and x52 are uniformly distributed in [—1.0, +1.0], and e,- is drawn from a

uniform distribution in [—0.1, +0.1]. In Moody’s model, the x-component of patterns

in the test set must be the same as in the training set. We choose the 8 x 8 equally-

spaced grid points in the [—1.0, +1.0] x [—1.0, +1.0] square area as 64 sampling points
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(n = 64). In the extended model, the sampling process of these grid points is subject

to a noise source which is again uniformly distributed in the [-0.1, +0.1] x [—0.1, +0.1]

square area. The weight-decay regularization term is used in the cost function.

as. 7:.) = :15.- — f(W.w + Auwnz, (5.34)
1

A total of 40 training data sets are generated from the model. For each training

data set, 10 independent test sets for both Moody’s model and our extended model

are drawn. A 2-layer network with two input nodes, 10 hidden nodes, and one output

node, is trained on each training data set 10 times with different initial random

weights. The empirical effective number of parameters, peff-em, is estimated using

Eq. (5.8), in which the expected training set MSE and the expected test set MSE

are estimated from these 400 and 4000 Monte Carlo trials, respectively. The value of

peff—em is compared with the averaged value of Pen obtained either from Eq. (5.13)

or from Eq. (5.24). Note that the total number of free parameters in the network is

41.

It is required (by the derivation in Appendix A) that all the Hessian matrices (U,

T, and G) should be evaluated at a minimal point. However, in simulation as well

as in practice, the training algorithm never reaches an exact minimal point (all the

derivatives of the cost function with respect to weights are zero). The training pro-

cedure is usually terminated when the network reaches a neighborhood of a minimal

point. Therefore, it is desirable to investigate the sensitivity of the effective number

of parameters to a small perturbation to the minimal point in the weight space. As a

case study, we first train the network using 4000 cycles (one pattern per cycle) with

the values of the learning rate 17 and momentum factor 7 in the backpropagation

algorithm set to 0.05 and 0.1, respectively. Then we train the network using another

2000 cycles with 17 = 0.01 and 7 = 0.01 which are very small because the square
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Figure 5.1. Values of pen, and Pen, at the 15 consecutive cycles starting with 6000.

The values of the square error (SE-cycle curve) on the training data set are also

shown.

error on the training data set has stabilized (see Figure 5.1). The square error cost

function with no regularization term is used in this case study. The values of Pen,

and peffy at the next 15 consecutive cycles are shown in Figure 5.1. We can see that

p6”, (peffx-cycle curve) and the square error (SE_cyc1e curve) on the training set

are almost constant. However, the value of 19.11, (peffy_cyc1e curve) oscillates with

a large amplitude as the number of cycles increases. It even takes negative values

(the positiveness of Pen, is guaranteed only at the minimal point). This observation

indicates that Pen, is very sensitive to a small perturbation in the minimal points in

the weight space. The standard deviations of the estimates of pent, pen” and pen

in our Monte Carlo experiments are shown in Figure 5.3. This undesirable behavior

makes the estimation of p6,,y very difficult. Fortunately, we notice that in spite of
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these outliers (e.g., negative values and extremely large values), most of the values

are rather close. Therefore, a robust estimator of pen, is desirable which can detect

and remove these outliers. In our Monte Carlo trials (each trial uses the same train—

ing procedure as in the case study), we simply use the following heuristics to discard

those Monte Carlo trials which satisfy i) Pen, < 0 or peffy > 1.5mm (pfm = 41);

or ii) the square error on the training set is two times larger than the average square

error on the training set. In the second case, it is more likely that the network does

not reach a minimal point. A more reliable method is to check if all the derivatives

of the cost function with respect to weights are smaller than some threshold.
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Figure 5.2. Empirical values of peffv_em and peff_em, and the average values of Pam,

Pen, and pen versus the regularization parameter A.

Figures 5.2 and 5.3 show the average values and standard deviations, respectively,
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of the effective number of parameters in the network (with 41 free parameters) versus

the regularization parameter A. These values are estimated from Eq. (5.8) (peffy_em

and peff-em curves) and from Eqs. (5.24) (peff curve), (5.27) (peffx curve) and

(5.26) (peffy curve). Note that the leftmost point on each curve corresponds to

A = 0. We obtain only a single value (for a fixed value of A and a fixed model) for

the empirical estimate of the effective number of parameters from our Monte Carlo

experiments, because the expectation in Eq. (5.8) is evaluated by taking an average

over all the valid trials. Therefore, the standard deviation information is not available

for peff_em and peffy_em in Figure 5.3. But, the standard deviation of the empirical

estimate should be a decreasing function of the number of trials used to evaluate the

mathematical expectation. We can make the following observations from Figures 5.2

and 5.3.

1. The effective number of parameters (peffy for Moody’s model and pen for the

extended model) is smaller than the number of free parameters in the network

(pfm = 41) even without an explicit regularization term (A = 0). In Moody’s

noise—free—input model, the effective number of parameters (peffy) is only about

one-fourth of pfree. However, in the extended model, the difference between p8”

and pfree becomes smaller. This indicates that the notion of the effective number

of parameters is very data-dependent.

2. The relationship (Eq. (5.12)) established by Moody causes a large discrepancy

if the input components in the test data set and training data set are not the

same.

3. The effective number of parameters generally decreases as the value of A in-

creases. There is a sudden drop in the effective number of parameters when

A changes from 0.0001 to 0.001. This demonstrates the role of weight-decay

regularization technique in improving the generalization ability of feedforward
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networks.

4. The theoretical estimates of peff and p8);" agree quite well with the empirical

estimates (Eq. (5.8)) of peff_em and peffrem, respectively, when A is small.

However, this is not true if the outliers are not removed. Note that one advantage

of using theoretical estimate as opposed to the empirical estimate is that only

the training data set is required to evaluate p8”, Pen, and Pen,-

5. The estimation of the effective number of parameters (Pam) using Eq. (5.26) is

not reliable; the estimator has a large variance (see Figure 5.3). This causes a

large variance in estimating peff using Eq. (5.24) even though the estimation of

pen, using Eq. (5.27) is very reliable.
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Figure 5.3. Standard deviations of the estimates of peffz, Pen, and peff with respect

to the regularization parameter A.
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5.6 Improving Generalization Abilities of Feed-

forward Networks

A common property shared by most artificial neural networks is that they involve a

large number of free parameters. For example, in an L-layer feedforward network, the

number of free parameters (connection weights and biases) is Nfree = 2f=1(n;_1+1)nl,

where n; is the number of nodes in layer l, l = 0,1,- - - , L. These free parameters have

to be estimated from training patterns. In Sections 5.1 and 5.2, we have shown that

the number of training patterns should be sufficiently large in order to guarantee a

reliable estimate of the free parameters thus leading to a valid generalization. Unfor-

tunately, collecting a large number of training samples is expensive, time consuming,

and sometimes impossible in many practical situations. Therefore, choosing a par-

simonious system (with a small number of parameters) is a very important issue in

network design. In addition to the good generalization ability, smaller networks (with

fewer parameters) also offer several computational and hardware implementational

advantages. Finding an optimal architecture or a network with a good generalization

ability principally requires an exhaustive search over all possible architectures, which

is not feasible. Various techniques have been proposed to avoid such an exhaustive

search. These techniques can be grouped into the following four categories:

1. local connections and weight sharing,

2. adaptive network pruning,

3. adaptive network growing, and

4. regularization.

The main idea behind these techniques can be related to the principle of minimum

description length [148, 32].
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Methods in the first category try to reduce the number of free parameters (connec-

tion weights) through connecting a node to only a local region of its inputs or sharing

the same weight among many connections [106, 104].

Adaptive network growing techniques start by training a small-sized network. The

size of the network grows if it can not approximate the training set well enough.

Examples of such techniques are the cascade-correlation algorithm [38], the tiling

algorithm [118], neural trees [161], projection pursuit [187, 75, 76], the constructive

algorithm [116], and synthesis of polynomial networks [12, 9].

In contrast to network growing techniques which start with a small network,

adaptive network pruning techniques start with a large (than necessary) net-

work, and prune its weights or nodes which are not important for the network

to perform function approximation and classification. A number of approaches

have been proposed for pruning weights and nodes in feedforward networks (e.g.,

[19, 107, 59, 159, 129, 91, 180]). Some of them, such as, the optimal brain damage

[107], optimal brain surgeon [59], and skeletonization [129], are based on certain sen-

sitivity measures of the cost function with respect to weights and nodes, while some

others are guided by a set of heuristics [19, 159]. Reed [144] provides a survey of such

pruning algorithms.

Regularization techniques are frequently employed to design neural networks. Typ-

ical examples are weight decay [64], non-proportional weight decay [24, 56], weight

elimination [174], soft weight sharing [131], and complexity regularization [10]. Mao

and Jain [112] (see Chapter 6) provide a survey of regularization techniques in design-

ing neural networks. The role of regularization techniques is to reduce the number

of efiectz've parameters in a neural network although the network size is often not

reduced [126, 124]. The reduction in the number of effective parameters helps neural

networks to generalize well. Some of these regularization techniques may be consid-

ered as a sort of soft pruning methods [144], because the training algorithm drives
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some weights and/or the outputs of nodes to zero. Regularization techniques are

often combined with the adaptive pruning algorithms.

5.7 Summary

The main contributions of this chapter are: i) The advantages and disadvantages of

Vapnik’s framework versus Moody’s approach are analyzed; ii) Moody’s notion of the

effective number of parameters has been extended to a more general noise model.

We have also proved that the effective number of parameters pen, (due to the noise

in observation values) is non-negative at the minimal points of the regularized cost

function, and that Pen, (due to the noise in sampling points) is non-negative at the

pattern—wise minimal points of the square-error cost function; iii) The relationships

established by Moody and our extension have been verified through Monte Carlo

experiments. We have observed that Moody’s result has a large discrepancy when

the sampling points of the test data are subject to noise. Moreover, the estimation

of Pen, is very unreliable. However, if the outliers in the empirical estimation can be

removed using some heuristics, then the theoretical estimate agrees quite well with

the empirical method; and iv) We have demonstrated the role of the weight-decay

regularization in reducing the effective number of parameters.



CHAPTER 6

Regularization Techniques in

Neural Networks

In Chapter 5, we analyzed the generalization ability of feedforward neural networks,

and pointed out four types of techniques for improving the generalization ability.

This chapter is devoted to one of these four types of techniques: the regularization

techniques. In Section 5.4, we established a direct relationship between expected MSE

on training set and test sets for a generic regularized cost function. This chapter will

present various forms of regularized cost functions.

Design of neural networks generally involves estimating a large number of free

parameters (connection weights) from a finite number of training patterns using some

learning algorithm. Even though the number of training patterns is often less than

the number of system parameters, many neural networks perform very well in various

pattern recognition and optimization applications. Learning the free parameters in

neural networks is often an ill-posed problem. In this chapter, we provide a systematic

study of the role that regularization theory plays in neural networks and present a

taxonomy of regularization techniques in neural networks: Type I (network-inherent),

Type II (algorithm-inherent), and Type III (explicitly-specified) regularization. A

particular neural network may employ more than one type of regularization technique.

144
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Our systematic study leads to a general framework for neural network design and

learning. We demonstrate that a variety of neural networks and learning algorithms

do fit into this framework. We study the role of regularization techniques in improving

robustness and generalization abilities of neural networks.

6.1 Introduction to Regularization Techniques

Many engineering and scientific problems, particularly in computer vision, are ill-

posed. The definition of the ill-posedness was first introduced by Hadamard in the

field of partial differential equations. For a long time, mathematicians felt that ill-

posed systems cannot describe real phenomena, because their solution is not unique,

not stable, or does not exist. It was not clear in what sense ill-posed problems

could have solutions that would be meaningful in applications. Tikhonov [168] gave

a precise mathematical definition of “approximate solutions” for general classes of

ill-posed problems, and provided a procedure for constructing “optimal” solutions.

Many application problems (e.g., computer vision problems) can be formulated as

finding the solution 2 6 Z from observed data u E U of the following equation

A2 = u, (6.1)

where A is an operator (not necessarily linear), and U, Z are two metric spaces with

metrics pU(u1, uz) for u1,u2 E U and pz(zl, 22) for z1,z2 E Z, respectively.

Tikhonov [168] gave the following precise definition of well-posedness. Eq. (6.1)

is said to be well-posed on the pair of metric spaces (Z, U) if the following three

conditions are satisfied:

(i) V u E U, there exists a solution z e Z (Solvability);

(ii) the solution is unique (Uniqueness);
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(iii) the problem is stable on the spaces (Z, U) (Stability).

Conditions (i) and (ii) guarantee the mathematical determinacy of the problem,

while condition (iii) is concerned with the physical determinacy and the possibility of

applying numerical methods to solve Eq. (6.1) based on approximate data. Condition

(iii) assures that small changes in observed data will not move the estimated solution

far away from the true solution. This condition requires the inverse operator A‘1

to be continuous on Z. A problem that does not satisfy one or more of these three

conditions is said to be ill-posed.

The main approach for solving the ill-posed problem is to reduce the solution space

by using an a priori knowledge of the problem, thus converting the ill-posed problem

to a well-posed problem. Regularization theory is a popular approach based on this

idea. The a priori knowledge appears in the form of quantitative and qualitative

constraints. In most cases, we only have some general natural constraints, such as

smoothness. These constraints are usually specified using a nonnegative functional,

92 (also called the stabilizing functional). In most computer vision problems [140],

02 takes the form of ||Pz||2, where [I - H2 is the Euclidean norm and P is called a

stabilizer or a stabilizing operator.

The regularization method of solving the ill—posed problem in Eq. (6.1) can be

formulated as finding 2 that minimizes

pU(Az, u) + Aflz, (6.2)

where /\ is a regularization parameter which controls the tradeoff between the degree

of regularization and the faithfulness of the solution to the data. Therefore, the choice

of /\ is an important issue. The standard regularization theory provides techniques

to choose the best value of /\ [168, 167, 50]. However, this applies only when A is a

linear operator, and metric pU and stabilizing functional (22 are quadratic. For general
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cases, the choice of A remains a difficult task, and is often determined empirically.

Another method to formulate the regularization method is as follows. Given an

error tolerance 5, find 2 that satisfies pU(Az, u) < 5, such that (22 is minimized. This

method tries to find the most “regular” solution which sufficiently “fits” the data.

This method can be integrated with the standard classical optimization problem.

Some classical optimization techniques, such as sequential quadratic programming,

can be used. We will show an example later.

Regularization techniques are very popular in computer vision, because most early

vision problems are ill-posed. Poggio et al. [140] provide an excellent review of

regularization techniques in computer vision, which contains a unified theoretical

framework for many of the early vision processes.

6.2 A Taxonomy of Regularization Techniques in

Neural Networks

It is well-known that neural networks usually involve a large number of parameters.

Estimation of these parameters is an underdetermined problem, so the second nec-

essary condition of well-posed problems is violated, resulting in ill-posed problems.

Therefore, regularization has been frequently employed in neural network paradigms.

Regularization techniques play an important role in neural network performance.

Unfortunately, unlike in computer vision, regularization theory has not received sig-

nificant attention from the neural network community.

In this section, we will provide a systematic study of regularization techniques

in neural networks. We classify various regularization techniques into three types:

Type I: Architecture-Inherent, Type II: Algorithm-Inherent, and Type III: Explicitly-

Specified. The following three subsections will give a detailed description of these

three types of regularization techniques.
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6.2.1 Type I: Architecture-Inherent Regularization

Type I regularization involves specifying a network architecture for a given problem.

This regularization scheme is obvious, but is often ignored. For example, in supervised

learning of feedforward networks, we often specify the network size and topology. This

actually limits the solution to f, a set of functions which can be implemented by the

specified network architecture. Consequently, specifying the network architecture

introduces some degree of regularization.

Poggio and Girosi [138] have shown the equivalence between regularization and

a class of 2-layer feedforward networks called regularization networks, which are not

only equivalent to generalized spline regressions, but also closely related to the Radial

Basis Function networks.

Poggio and Girosi [138] have shown that the solution of the following regularized

minimization problem

11

EU) = 2(313" f(XO)2 + /\|le||2, (6-3)
i=1

is given by

1 1:

f(x) = X 2(111' - f(xi))G(X, Xi) + fo(X), (6-4)

i=1

where P is a stabilizer, I] - [l2 is the L2 norm, G'(x, x.) is Green’s function centered at

' the point x;, and f0 is in the null space of the stabilizer P. Any function in the null

space will disappear when it is operated on by the stabilizer P. If P is a differential

operator of order larger than m, then the null space of this P is a set of all the

polynomial functions of order less than m. The form of f0 is determined by both the

stabilizer P and the boundary conditions. The following analysis ignores f0.



149

Let c,- = (y,- — f(xi))//\, then

f(x) = ZciG(x,x,-). (6.5)

The constants c,-, z' = 1, 2, - - - , n can be solved from 12 linear equations of Eq. (6.5)

by substituting n input-output training pairs. If the stabilizer P is rotational and

translational invariant, then G(x,x,-) will be a radial function: G(x,x,-) = G(||x —

xillz). In this case, the regularized solution is

n

f(X) = Zea-GUIX - xill2l- (5-6)

i=1

Eq. (6.6) has the same form as the Radial Basis Function network. Therefore, when we

apply a Radial Basis Function network to a problem, we unintentionally introduce a

rotational and translational invariant stabilizer to the function space. Regularization

is inherent whenever we choose a network even though we do not specify an explicit

regularization form.

Following are some of the examples of stabilizers.

(1) mth-order stabilizer

d

“Par = IIOmf||2 = 2 [m dX(0.-.,.-2,...,.-...f(X))’, (6.7)
1.1 vizvu'it

where m _>_ 1. It is rotational and translational invariant.

In this case, the Green’s function in Eq. (6.4) takes the following form.

||x||2m‘dln||xll, if 2m > d and dis even,

||x||2m‘d, otherwise.

 

‘
E
.
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In the special case of m = d = 2, the stabilizer takes the form

_ _ 02f ’ 62f 2 02f "
”Pf”2 _ ”02f”2 _ [12’ dzdy [(Q) + (262763;) + ((9—31?) , (6.9)

and the Green’s function is the well-known “thin plate spline”,

 

C(r) = r2lnr, (6.10)

where r = (x2 + y2)1/2.

(2) Infinite order stabilizer

llell’ = gator“? (6.11)

The corresponding Green’s function is

G(x, x.) = Cexp_”x’x‘”2/2”2, (6.12)

where C is a normalization constant. It is a Gaussian function which is frequently

used in Radial Basis Function Networks.

Based on these analyses, Poggio et al. [139, 138] have proposed a regularization

network. It is difficult to show what type of stabilizer leads to the solution of a regu-

larized minimization problem to be a feedforward network with sigmoid nonlinearity

in each node. However, it is clear that by choosing the standard feedforword network

of a fixed size, the solution space, denoted by f, is greatly reduced compared to the

function space A consisting of all functions with the same number of free parame-

ters as in the network. Furthermore, because the sigmoid function is a very smooth

function (all its derivatives of any order are continuous), the solution is very smooth.

Therefore, .7: C C°° C A, where C°° is a set of all continuous functions with continuous
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derivatives up to any order.

The neural network-based Sammon’s projection (SAMANN) proposed in Chapter

2 is a good example of using Type I regularization for improving the generalization

ability of the original Sammon’s projection algorithm. As we discussed in Chapter

2, the original Sammon’s algorithm, the positions of n patterns in the m-dimensional

output space are treated as mn free parameters in an optimization problem. It

does not provide an explicit function governing the relationship between patterns

in the original space and in the configuration (projected) space. Therefore, it is

impossible to decide where to place new d—dimensional data in the final m—dimensional

configuration created by Sammon’s algorithm. In other words, Sammon’s algorithm

has no generalization ability. However, SAMANN employs a feedforward network to

govern the projection mapping from the input space to the output space. Therefore,

the solution space is reduced to a set of functions which are realizable by a fixed-size

feedforward network. After training is done, the network can be used to project new

data. Figures 6.1 (a) and (b) show the projection maps of the IRIS data using a

2-layer neural network with 100 hidden nodes and the original Sammon’s procedure.

The network is trained on all the 150 patterns for 5,000,000 cycles (a pair of patterns

per cycle). Both the maps have very similar configurations and similar values of

stress. One advantage of the neural network-based projection method is that it is

able to project new data after training. To demonstrate this generalization ability,

we used 75 patterns, randomly chosen from the original 150 patterns, as the training

set. Figure 6.2 (a) shows the projection of these 75 training patterns after training the

network for 500,000 cycles. The corresponding stress is 0.0049. Figure 6.2 (b) shows

the projection of all the 150 patterns using this trained network. The corresponding

stress is 0.0057. Comparing Figure 6.2 (b) and Figure 6.1 (b), we find that the two

projections are very similar. The relative positions of the patterns in the projected

space are also roughly the same in the two configurations which indicates that the
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Figure 6.1. Projection maps of the IRIS data. (a) Original Sammon’s algorithm,

E=0.0068; (b) 2-layer neural network with 100 hidden nodes, E=0.006l.

network generalizes the projection well.

6.2.2 Type II: Algorithm-Inherent Regularization

Type II regularization is obtained by specifying a learning algorithm to train the

network. This regularization scheme is inherent in the learning algorithm, hence it is

not easily recognized.

In training the feedforward network using the backpropagation learning algorithm,

a number of stopping criteria can be used. Typical criteria are: (i) a prespecified

maximum number of iterations is reached; (ii) the squared error between the actual

outputs and desired outputs is below some threshold; and (iii) change in connection

weights between two successive iterations is less than some threshold. In practice,

non-zero thresholds and a maximum number of iterations are specified. Therefore,

when the training is terminated, a global minimum, or even a local minimum is seldom

reached. Surprisingly, this helps the network to generalize well sometimes.

Sjoberg and Ljung [162] have shown that terminating the learning process without



0
.
9

 

   

0
.
9

 

   

-1 Q d

O

a: ,3h h

o' ‘* o' ‘ 3

36@358 a 933

a, 3 33 33 ,0] 3.3

o’ 3 o'
2 3 3

N 223222 N 2

g ‘0. 2 g;
g r, q 2

2' °1 2 a ° 2.. 2 2 .. 32 a

Y .. v_ q 2

O O

(O (0

o' ‘ 1 d ‘ 1

11,1“,IH "W11,

2 - w 2 ~ *1 1

3 I I I I I I I S I I I I T I I

01 02 03 04 05 as OJ ca 09 01 a2 as 04 as a6 Q? as 09

feature 1 feature 1

(a) (b)

Figure 6.2. Generalization ability of the network. (a) Projection of 75 randomly

chosen training patterns from the IRIS data using a 2—layer network with 100 hidden

nodes, E=0.0049; (b) Projection of all the 150 patterns using the trained network in

(a), E=0.0057.

reaching a local/global minimum introduces a sort of regularization, which we refer

to as Algorithm-Inherent regularization in our taxonomy. Let 7:, denote the set of n

input-output training pairs, 7:, = { (x1, yl), (x2, yg), - . - , (xn, yn)}, and w be a vector

of all the weights in the network. Sjoberg and Ljung [162] have shown that the effect

of an “unfinished” search for minimum is very similar to minimizing the regularized

error function

E(w, 7:.) = ,1; :(y. — f(w,x.->)2 + AIIw — war, (6.13)
i=1

assuming that the learning rate is small, where w° is the initial weight vector and

A is the regularization parameter. The regularization term constrains the amount of

change in values of the connection weights. As a result, the final weight values should

not deviate too far from the initial weight values. This property also indicates that

the choice of initial weight values is very important in training the network.
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Adding noise to the training patterns has been shown to be helpful in obtaining

a good generalization [121, 67, 97, 108, 121, 128, 159]. This procedure artificially

increases the number of training patterns and is frequently utilized when the training

sample size is small. Reed et al. [145] have shown that adding i.i.d. Gaussian noise

with zero-mean and covariance matrix 021 to the training samples is approximately

(in the first-order) equivalent to minimizing the following cost function

E(W, 7:1) = :(yi — f(wa xi))2 + 02 2": ll6Xf(wa xi)ll2‘ (614)

i 1 i=1

Note that the regularization term imposes a smoothness constraint on the first-order

derivative of the function with respect to the input variables. Reed et al. [145]

also showed that if the second-order approximation is used, then the equivalent cost

function becomes

n 2
2

E<w, 7;.) = z: (y.- -— f(w, x.) — ”,mm) +02 i Ilaxf<w.x.->n2+i ”34TT(H3..),
1:1 z=1 1:1 (6.15)

where Tr(Hx,) is the trace of matrix qu the Hessian matrix of functional f with

respect to x evaluated at x,. The third term in Eq. (6.15) imposes a smoothness

constraint on the second-order derivative (curvature) of the function to be estimated

with respect to the input variables. However, this approximation also introduces a

bias of ”2—2Tr(Hx,) to the squared error.

Adding random noise to weights during training has also been proposed to increase

the robustness of the network. We now show that this method also regularizes the

solution by following the technique of Reed et al. [145]. When the second-order

approximation is used, adding the i.i.d. Gaussian noise with zero-mean and covariance

matrix 021 to the weights is equivalent to minimizing the following regularized cost
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function (see Appendix B).

n

E(w, 7;) = 2 (y,- — f(w, x,-) — gé—Tr(Hw,)) + i %Tr(H§vt), (6.16)

i=1 i=1

where Hw, is the Hessian matrix of function f with respect to the weight vector wt

evaluated at the t‘” iteration. Similarly, we impose a smoothness constraint on the

second-order derivative (curvature) with respect to the weights of the function to be

estimated. The smoothness of function f with respect to the weight vector w leads

to the robustness of the network to small changes in weight values or damage to some

connections.

What happens if we add noise to both the training patterns and the weights

simultaneously? Let us assume a noise model N(0, 0121) for the training patterns and

N(0, 031) for the weights, with the two noise sources being independent. Then it can

be shown (see Appendix B) that the net effect is to minimize the following regularized

cost function for the first-order approximation.

7!

E<w, T.) = :(y. — f(w, x»)? + of i llaxf(w,x.-)II2- (6.17)
i=1 i=1

For the second-order approximation, the regularized cost function becomes

1: 2 0,2 2

E(w, 7;.) = Z: (y, — f(x,,w) — %TT(HW) — 72Tr(Hx,))

+ :3 (0§||02f(w,x.')ll2) (6.18)

“

ll _
-

4

32Tr(H3,,) + 2 Tr(H,2(i) + afogTfingHwfl) .

'
0
.

ll p
—
o

+ M
=
A

w
]
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6.2.3 Type III: Explicitly—Specified Regularization

The most obvious way to reduce the solution space is to explicitly specify the regular-

ization stabilizer {22 based on our knowledge of the underlying function. Smoothness

is a natural constraint which is frequently used. In this case, the stabilizer is a differ-

ential operator. We call this type of regularization as Type III (Explicitly-Specified)

regularization.

We now briefly review the Type III regularization techniques in neural networks.

The simplest regularized cost function is the weight-decay regularization [64].

E(w,7;,) = Z(y,—— f(x,,w 2+ A2203, (6.19)

where the complexity of the network is defined as the sum of squared weights.

Rumelhart et al. [152], Weigend et al. [174], and Hanson and Pratt [56] used the

following cost function:

l
"
l
= P w2/u2

E(w,7;,) = (y,- f(x,-,w))2+A2——1+—w.—-’/u2’ (6.20)

I l

where u is a prespecified constant. The second term on the right hand side in

Eq. (6.20) penalizes very large and very small weights (lw,| > u). This regularization

term may be interpreted as the “complexity” of the network, which is approximately

proportional to the number of bits needed to encode the weights. The goal of the

learning algorithm is to find a network that has the lowest complexity and at the same

time fits the data adequately. Weigend et al. [174] developed a training algorithm to

adaptively choose the value of A.

Furthermore, Chauvin [25] studied the generalization behavior of the following
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regularized cost function.

  

1 n h h2 p w.2
Eh] : —- 1,“7 A z /\ z a '

)n;(’/’_ “x w)’+ 1§1+h3+ ’gnwf (621)

where h,- is the output of the it” hidden unit, 2' = 1, 2, . . - , h, and A1, A2 are regular-

ization parameters. The first regularization term penalizes large outputs of hidden

nodes. The second term is the same as in Rumelhart’s regularized cost function.

These two regularized terms help to obtain a network with a small number of bits

to encode the network weights and outputs of the hidden nodes. This regularization

also leads to a network with fewer crucial weights and units, thus making the network

more robust. Chauvin [25] showed that for the speech labeling task, the generalization

performance was stable at about the 95% level, independent of the network size.

Sjoberg [162] used the following regularized cost function to model a hydraulic

robot arm:

E(W, 7;) = — 201:- - f(xi, W))2 + /\||W - Wollz, (522)

where w0 is the initial weight vector. This regularization term prevents all the weights

from deviating too much from the initial values. Using this method, a good initial

guess of weight values is crucial. This regularized cost function is suitable in situations

where good initial weight values can either be obtained through other methods, or

from a previously trained network. So, the regularizer is used to refine the network.

We can also impose the smoothness constraints to the function implemented by

the network. Following are a few examples of the smoothness constraint.

E(w, 7:.) = 230.- — f(xi, w»? + A Z llaxf(x.-, “out (623)

E(w, 77.) = ia- — f(x.» w»? + ,\ 2": Hanan. “out (624)
i=1 i=1
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E(w, T.) = :(y. — f(x.» w))? + A Z": Ilawwf(x.-, w)ll"’- (6.25)
i 1 i=1

As we have shown in the previous section, adding the i.i.d. Gaussian noise with zero-

mean and covariance matrix 021 to the training samples and weights has the similar

effects as these explicitly specified regularizers.

Barron [11] proposed a complexity regularization criterion for model selection, and

applied it to neural networks. The idea is to define the complexity of a function (or

a network) in terms of the number of parameters in the function and the number

of training patterns, and use this complexity measure to penalize selection of com-

plicated functions. The motivation of the complexity regularization approach comes

from the well-known theoretical results by Vapnik [170], Devroye [31] and Haussler

[60], which show that the discrepancy between the empirical error and theoretical er-

ror is uniformly bounded by 0(\/C’n—/n) in probability for families of functions whose

complexity is bounded by C“. As a result, minimizing the complexity-regularized

cost function results in performance which is essentially as good as the one achievable

by the theoretical analog of the criterion.

Consider a two-layer feedforward network with H nodes in the hidden layer. The

complexity of a function fH(-, w) implemented by this network is defined as

E
Cn(fH(-, w)) = 2loggn + cW + CH, (6.26)

where n is the number of training patterns, and p is the total number of parameters

in the network. The value of gloggn + cw may be interpreted as a codelength for the

parameter w, and 2“” as a prior density function for the parameters. Similarly, CH

can be interpreted as a codelength for the network, or 2*” as a prior probability.

Given a collection fa of functions (a set of networks), the method of complexity
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regularization selects the function, f E f", to minimize

1 ”
1/2

gzdyuf(xu+)\(11l0m) , (6.27)
i=1

01‘

n

figdutflxtw» + A%0n(f), (6.28)

where d(-, ) is a distance metric, and A is the regularization parameter. The first

criterion (Eq. (6.27)) is used for the 0—1 distance metric and absolute distance metric

for which the ideal rate of convergence of the risk would be close to 1/\/fi. The second

criterion (Eq. (6.28)) is used for the squared error and log-likelihood based distances

for which the ideal rate would be close to 1/n.

Neti et al. [130] have developed a learning algorithm for feedforward networks

which can achieve uniform fault tolerance. The algorithm learns the weights in the

network to perform the given computational task and has an additional property that

whenever any single hidden unit is deleted from the network, the resulting reduced

network continues to perform the computation satisfactorily. The uniformity of fault-

tolerance is a measure of the extent to which the computation performed by the

network is distributed throughout the hidden layer. Compared to other methods

which also constrain the solution space by choosing a parsimonious network, such as

constraints on the size of the hidden layer [24, 129], weight pruning [19], node pruning

[158, 159], and optimal brain damage [107], the uniformly distributed computation is

biologically more plausible.

Let f"(x, w”) be a function implemented by the network whose hidden node, h,

and all the connections incident to this node are removed, where w” is the new weight
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vector of the resulting network. Let

anyi -f"(X6WW”))2, (6.29)

i=1

Eh(w =

:
I
H

and

=ijf(xi,W -f”(x.-, w"))2. (6.30)

i=1

:
B
H
I
H

9h(

The network is then called e—fault-tolemnt with respect to the training set 7; if

9h(w, Tn) S s, for all h 6 Sin (6.31)

where S), is the set of all hidden nodes. When y,- = f(xi,w) for all i = 1, 2, . - -,n,

9,,(w, 77:) = Eh(W, Tn)-

Given an e, the objective of creating an e-fault-tolerant network is to determine a

weight vector w", such that

E(w", 7;) = min E(w, 7;), (6.32)

subject to

Eh(w",7;) — E(w,7;) S 6, for all h E 5;. (6.33)

Note that this is the second formulation of the regularization problem in Section 6.1.

A maximally fault-tolerant network can then be obtained by solving this regular—

ization problem for a range of 6: values, and choosing the result with the smallest

8 whose corresponding E(w“,7;) is near zero. Neti et al. [130] used a successive

quadratic programming algorithm to solve this nonlinear optimization problem.

Experiments have shown that networks whose weights are learned using this al-

gorithm achieve a harmony between generalization and fault tolerance. The com—

putation is uniformly distributed among nodes, which leads to good fault tolerance.
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Furthermore, due to a reduction of the solution space, good generalization is also

achieved.

6.3 Role of Regularization in Neural Networks

In Chapter 5, we demonstrated that the weight-decay regularization can reduce the

effective number of parameters in feedforward networks, thereby reducing the devia-

tion of the expected MSE on the test set from the expected MSE on the training set.

It is reasonable to expect that other regularization techniques will have a similar effect

as the weight-decay regularization. We can give a general answer to the question of

why some large networks with a relatively small number of training patterns can gen-

eralize well. In the absence of any constraints, the solution Space is the entire space

spanned by the free parameters. Introducing regularization in neural networks greatly

reduces the solution space (the capacity or VC dimension of feedforward networks).

These constraints imposed by the user or inherent in the network architecture and

learning algorithms are usually designed to match the regularities of the underlying

problem. It is this match that leads to good generalization and robustness. According

to our classification of the regularization techniques in neural networks, application

of neural networks to real-world problems such as pattern classification, prediction,

and control, involves at least two types of regularization (Type I and Type 11). When

necessary, we can impose further constraints by using the Type III regularization.

This analysis provides a qualitative explanation of why a large system trained with

a relatively small number of patterns can generalize well.
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6.4 Summary

The main contribution of this chapter is a systematic study of regularization tech-

niques in neural network design. We have presented a taxonomy of regularization

techniques in neural networks, and demonstrated that a variety of networks and

learning algorithms can fit into this framework. Regularization plays a very impor-

tant role in the performance of neural networks. It helps neural networks to achieve

good generalization and robustness properties by introducing the a priori knowledge

and constraints of the underlying problem and desirable properties of the solution

into the optimization procedure. The reduction in the size of the solution space and

in the effective number of free parameters resulting from the three types of regular-

ization techniques is an important explanation of why many neural networks with a

large number of free parameters trained with a relatively small number of training

patterns perform well in several real applications.



CHAPTER 7

Improving Generalization Ability

Through Node Pruning

We propose a node saliency measure which measures the importance of nodes in

a feedforward network. A node is insalient if the removal of this node from the

network causes the least increase in the value of the cost function. We provide a

backpropagation type of algorithm to compute the node saliencies. A node-pruning

procedure is then presented to remove insalient nodes in the network to create a small-

sized network which can not only approximate faithfully the training set but also

generalize well on the test patterns. Feature selection is performed simultaneously.

The optimal/suboptimal subset of features are automatically selected by the network.

The performance of the proposed approach for feature selection purpose is compared

with the well-known Whitney’s feature selection method. The small sample size effect

on the computation of node/feature saliency is studied empirically. We conclude that

the node-pruning procedure can improve the generalization ability of neural network

classifiers even though the computation of node/feature saliency can not avoid the

small sample size effect (“curse of dimensionality”). Application of the node-pruning

procedure to feature selection in an OCR (optical character recognition) system is

also discussed. A large number of redundant features can be removed in our OCR

163
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systems using the proposed method.

The closest techniques to our work on node pruning are Le Cun’s optimal brain

damage (OBD) [107] and Mozer and Smolensky’s skeletonization algorithm [129].

In the optimal brain damage approach, a saliency measure is defined for individual

weights, and weights with low saliencies are removed from the network during the

training. As a result, a sparse network is created. However, the number of nodes may

remain approximately the same as the original network that the algorithm starts

with because a node can be removed only if all of its incident connections or all of

its outgoing connections have been removed. In contrast, the approach which we

propose here can produce a network with the small number of nodes and can perform

feature selection silmutaneously. In the skeletonization algorithm proposed by Mozer

and Smolensky, a node relevancy measure is defined as the difference in errors when

the node is removed and when it is left in place. The values of node relevancy are

evaluated through the first-order approximation in the Taylor expansion with respect

to a gate variable (for each node) which takes two values 0 (the node is removed) and

1 (the node is functioning). We have found that such a gate variable is not necessary

and the approximation is poor when the high-order terms are not negligible. In

our approach, the second-order information of the cost function is used. Similar to

Le Cun’s optimal brain damage approach, we approximate the Hessian matrix of

the cost function by a diagonal matrix. Our approach can also work together with

LeCun’s OBD approach to prune both the nodes and the weights simultaneously or

sequentially.

7.1 Node Saliency

Consider the feedforward network shown in Fig. 1.2. The number of input nodes,

d, is set to the input feature vector dimensionality. The number of output nodes,
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c, is specified as the dimensionality of the output space. For the classification pur-

pose, c is often set to the number of categories. Let x = ($1,a:2,-~,:cd)T be a

d-dimensional input vector. We denote the output of the 3""'node1n layer l by y(-),

j = 1,2,-um), l = 0, 1,2,---, L, where n, is the number of nodes in layer 1, L is

the total number of layers, andy(0) ——:1:j, j = 1, 2, - - - ,d. The weight)on connection

between node i in layer l—l and node j in layer 1IS represented by w]; .The sigmoid

activation function g(h) is used for each node, g(h) = where h is the net
1

l+exp(—h)’

input to the node, which is the weighted sum of all inputs to the node. Therefore,

the output of the 3"” node in layer 1 can be written as

ya) —g (:wgbfl‘1)), = 1,2,-~,L. (7.1)

i—l

The squared error function is most commonly used as a cost function in training the

feedforward network.

—-1 N (y§L’(k —d k 2 7 2

where d(k)= (d1(k), d2(k),~ ,dcJ(k))T is the desired output for the k‘” input pattern.

The backprOpagation learning algorithm [152] is commonly used to minimize this cost

function. In the pattern-based learning mode, only the squared error for the current

pattern is used to update the weights in the network.

E. = ;Z(y§-I’)(k)— dJ-(k))2, k =1,2,---,N. (7.3)

i=1

It is well-known that nodes and weights in the network trained using the backprop-

agation algorithm are not equally important to the cost function, especially when a

network with a size larger than necessary is used.

We define the saliency of a node in the network as the amount of increase in the

cost if this node is removed from the network.
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We consider the cost E as a function of the outputs (which are collected in a

vector y) of all the nodes in the network. From the Taylor series expansion of the

cost function with respect to the output of all the nodes, we have

as
ay

71 GE]; 1 n n

= Z By. Ag,- + -2- ZZ hijAyiij + H.O.T., (7.4)

i=1 i=1j=1

AEk = AyT + éAyTHAy + H.O.T.

 

where H = [hij] is the Hessian matrix of the cost E with respect to y, and hi]- = $517.

If we neglect the high-order term in the Taylor expansion, and only the 2"” compo-

nent of the vector y changes at a time (we remove one node at a time), then Eq. (7.4)

can be rewritten as

6E), 1

AE =—A,‘ —hi,‘Ai2. .. 61;. 11+, (y) (75)

Note that at this point we have not assumed that the Hessian matrix is a diagonal

matrix. We can now interpret the value of AE)c as the amount of increase in error

due to setting the output of the 2"” node from y,- to zero. The saliency of the 2"” node

is then defined as

S,“ = if: AEk. (7.6)

k=l

We still need to compute the first- and the second-order derivatives of the cost

function with respect to the output of individual nodes. We have found that these

derivatives can be computed in a backpropagation fashion.

For the output nodes,

 

3E]; (L)

6.2/(L) = y,- “ d” (7'7)

and

2

93’5— :10. (7.8)
L2

3211 ’
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For the nodes in the 1‘” layer,
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where 9’00)—— y§'+1’(1—y§'+1’), 9”(hj) = y§’+1’(1 — y§'+1’)(1-20('+1’). and

6 6E,c "m 6 6B,.

2: (——) 9’01 )wi -8y“) (8y§’+1))= q-l133/(TH) 831?“) q q

 

If we assume that 5003:1125???” = 0 if j ¢ q, then

0 ,-

82E]; 111+: 62E]: g(’ n1+19(” 2

a—_y(l)2 = Zlya——(—l
+l)2(g(hJ)w‘.7)

2+ 2lyaa(—l—-E+l)g
hj)wij.

(7.10)

(7.11)

(7.12)

From the above equations, we can see that these first-order and second-order

derivatives can be evaluated from the output layer back to the input layer for each

pattern presented to the network.

7.2 Node-Pruning Procedure

Having defined the saliency measure for each node, we now propose the following

node-pruning procedure to create a small network.

1. Choose an initial network architecture, which is often larger than necessary.

2. Train the network a number of epochs on the training data set to obtain a

solution.
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3. For each pattern in the training data set, evaluate the first- and the second-order

derivatives in the backprOpagation fashion.

4. Compute the saliency values for each input node and hidden node.

5. Remove the input node or hidden node with the lowest saliency value, together

with all the incident and outgoing connections.

6. Retrain the new network on a small number of epochs.

7. Compute the squared errors and classification errors (if applicable) on both the

training data and the test data.

8. Repeat steps 3-8 until the stopping criterion is satisfied.

We now define an optimal stopping criterion.

In the small sample size situations where the number of training patterns is not

sufficiently larger than the number of weights in the network (an empirical guideline

is that the number of training patterns should be at least 5-10 times larger than the

number of weights in the network), the removal of a low saliency node will decrease the

test set error rate (both the squared error and classification error) at the beginning,

then level off, and eventually increase. The optimal network can be chosen at the

point where the test set error rate starts to increase. This phenomenon is often

referred to as the “curse of dimensionality”, which provides us an optimal stopping

criterion.

In the large sample size situations (the number of training patterns is sufficiently

larger than the number of weights in the initial network architecture), both the train-

ing set error rate and the test set error rate may consistently increase as more and

more nodes are removed. However, the errors increase very slowly at the beginning,

then may increase suddenly if a critical node has been removed. The stopping point

can be chosen just before a significant jump in errors occurs. If no significant jump
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appears, then the stopping criterion may be chosen to achieve a good tradeoff be-

tween the test set error rate and the complexity of the network which determines the

recognition time.

It would be better if we divide the available data into three subsets: training, test,

and validation sets. We can use the validation set to determine the stopping point

and use the test set to evaluate the performance of the resulting network. However,

doing this will make the training set even smaller. In our experiments, we choose to

use only the training set and test set.

7.3 Experimental Results

In this section, we demonstrate the behavior of our node/feature saliency measure and

the node-pruning procedure using the following three data sets: (i) modified Trunk’s

data set, (ii) 80x data set, and (iii) NIST handprint character data set.

The modified Trunk’s data set" is generated from two multivariate Gaussian distri-

butions. N(111.1) and N(112.1), where m = -m = (111,112, - - 311.073 and u.- = 1/2‘.

z' = 1, 2, - - -,d. In this data set, the rank-order of the importance of individual fea-

tures is the same as the feature index, provided the number of training samples is

sufficiently large. Therefore, it can be used to verify the consistency of the saliency-

based feature selection with the predetermined rank order. In our experiments, a total

of twenty 50—dimensional training data sets are generated from the modified Trunk’s

model. Ten of these 20 data sets contain 50 patterns per data set, and the other

ten sets have 500 patterns per data set. A test set containing 1000 patterns is also

generated from the model. The same test data set is used for estimating classification

 

”Trunk [169] used 11,- = 1 /\/f is his example to show the existence of the “curse of dimensionality”

in maximum likelihood classifiers. In his example, the Euclidean distance between the two class

means is infinite as the number of features approaches infinity. Our modification makes the “peaking”

phenomenon occur earlier than in the original Trunk’s data as the dimensionality increases.

 



170

accuracies.

8OX data set consists of 45 8-dimensional patterns from 3 classes (the handprinted

characters “8”, “O” and “X”) with 15 patterns per class [81]. This is a very sparse

data set.

The NIST handprint digit data set contains a total of 140,374 digit characters.

We partition the data into a training data set with 81,728 digits and a test set with

58,646 digits.

We used the same set of learning parameters in all our experiments. The learning

rate and momentum value in the backpropagation algorithm is set to 0.35 for the

initial training containing 1000 epochs, and to 0.1 for retraining (500 epochs) after

each pruning.

7.3.1 Rank-Order of Features

In this subsection, we verify the consistency of our feature saliency with other mea-

sures, such as the distance between class means, and k-nearest neighbor classification

accuracies of individual features. We also investigate the small sample size effect on

the computation of node/feature saliencies.

An interesting property of the modified Trunk’s data is that the separation of the

two classes with respect to individual features decreases as the feature index increases.

This is true for the model and data with a large number of patterns. In the finite

(especially small) sample size situations, the feature rank-order may not be consistent

with the feature index. To show this, we plot the value of the distance between the

two class means for each of the 50 features in Figure 7.1. The distance values are

computed from the model which generates data, and from the training data sets of

different size (50 and 500 patterns), respectively. For each size, the data are generated

ten times and the values of the distance between the two class means are averaged. We

can see that the distance obtained from training sets is not a monotonically decreasing
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Figure 7.1. The distances between the two class means for individual features. The

solid, dotted, and dashed curves plot the distance values obtained from the 500 train-

ing patterns, 50 training patterns, and the model which generates the data, respec-

tively. The solid and dotted curves are smoothed by averaging over ten data sets of

the corresponding sizes (500 and 50 patterns).

function of the feature index. The deviation from the model curve (dashed curve)

decreases as the sample size increases. Moreover, the small sample size may create

spurious correlation between individual features which can “fool” the neural network

classifier.

Figure 7.2 shows the classification accuracies of the nearest neighbor classifier

using individual features. Again, the values plotted in Figure 7.2 are averaged over 10

training data sets of specified size. Note that the overall nearest neighbor classification

accuracies using 500 training patterns are consistently better than using 50 training

patterns. Due to the finite sample size effect, the feature rank-order exhibits a certain

fluctuation except for the first four features.

The average values of saliency for the 50 features are shown in Figure 7.3. The
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Figure 7.2. The nearest neighbor classification accuracies of individual features. The

solid curve: using 500 training patterns. The dotted curve: using 50 training patterns.

The values of accuracy are averaged over 10 training sets of the corresponding size. A

test set containing 1000 patterns is used for estimating the classification accuracies.

averaging is taken over 100 trials (10 trials with different initial weights for each of the

10 training sets of a given size). The saliency values are normalized to a range of [0,1]

by dividing them by the maximum saliency value among all the 50 features. We can

see that the rank-order improves as the number of training patterns increases from

50 to 500. We should point out that although the saliency values are computed for

individual features (or nodes), these features and nodes are competing/cooperating

with each other to contribute to the target. Therefore, unlike the k—nearest neighbor

classification accuracies of individual features, the saliencies of individual features

from the network are not evaluated independently. The correlation between features

and nodes will affect the saliencies of individual features. However, our approach can

not detect the correlation between features or nodes. As a result, a high correlation

between two features may reduce both the individual saliencies, but none (or both)
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Figure 7.3. The averaged saliency measures for the 50 features. The averaging is

taken over 100 trials (10 trials with different initial weights for each of the 10 training

sets). Solid curve: data sets with 500 training patterns. Dotted curve: data sets with

50 training patterns.

of them would be removed by the node-pruning algorithm.

7.3.2 Feature Selection

Our node-pruning procedure is able to perform feature selection. We apply the node-

pruning procedure to prune the trained networks (50 input nodes, 1 hidden node, and

2 output nodes) in Section 7.3.1. The same training data set as used in the initial

training of the network is used for retraining after each pruning Operation. Figure 7.4

shows the probabilities of individual features being included in the subset of 5 selected

features over 100 trials using the node-pruning procedure. Both the curves oscillate.

However, if we carefully examine the oscillating patterns of the dotted curve in Figure

7.1 and the dotted curve in Figure 7.4, we notice that they fit each other quite well.

The oscillation is significantly reduced by increasing the number of training patterns.
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For comparison, Figure 7.5 shows the probability (frequency) of individual features

being included in the subset of 5 selected features using Whitney’s method [181] over

the 10 training data sets of each size. Whitney’s method is a forward feature selection

procedure which uses the k-nearest neighbor classifier (in our experiments, k = 1).

The roughness of these curves can be improved by averaging over more training data

sets. The first four features have a higher chance of being selected.

The average classification accuracies using the five features selected by the node-

pruning procedure (classification using the pruned network) and Whitney’s feature

selection procedure (classification using the nearest neighbor classifier) are shown in

Table 7.1. The classification accuracies are evaluated on the test data set with 1000

patterns. The pruned network achieves better classification accuracies than Whitney’s

approach. We should point out that this performance difference may be caused by

the fact that two different classifiers are used in the two methods and that the nearest

neighbor classifier is not an appropriate classifier for classifying 'I‘runk’s data and the

modified ’I‘runk’s data.

Table 7.1. Classification accuracies using 5 features selected by the node-pruning

procedure and Whitney’s feature selection procedure.

 

 

 

   

Node-Pruning Whitney

50 training patterns 79.1% 76.6%

500 training patterns 86.3% 81.8% 
 

Figure 7.6 shows the classification error rate versus the number of features being

removed. Again, each curve is averaged over 100 trials. As we can see, the classifica-

tion error rate slightly decreases as insalient features are removed, reaches a minimal

point when a total of 39 features (when using 50 training patterns) and 46 features

(when using 500 training patterns) have been removed, and then starts to increase.
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Figure 7.4. The probability of individual features belonging to the subset of 5 se-

lected features using the node-pruning procedure on the modified 'D‘unk’s data. Solid

curve: data sets with 500 training patterns. Dotted curve: data sets with 50 training

patterns.

We also notice that a consistent lower classification error rate is achieved by using a

larger number of training patterns. These results indicate that a large number of fea-

tures can be deleted without a loss in the classification performance for the modified

'Ifunk’s data. Note that the smoothness of these curses can be improved by repeating

more trials.

7.3.3 Creating a Small Network Through Node-Pruning

In many real classification problems, we often do not know what is the optimal size

of the network to use. With the help of the proposed node-pruning procedure, we

can start with a network which is larger than necessary, and then prune the network

until an appropriate sized network is found.
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Figure 7.5. The probability of individual features belonging to the subset of 5 selected

features using Whitney’s feature selection procedure on the modified Trunk’s data.

Solid curve: data sets with 500 training patterns. Dotted curve: data sets with 50

training patterns. The curves are averaged over 10 training data sets of each size.

In this experiment, we want to design an small network for classifying the well-

known 80X data set. We start with a 2-layer network with 8 input nodes corre-

sponding to 8 input features, 10 hidden nodes and 3 output nodes (corresponding to

the three categories). We randomly partitioned the available data into two halves for

training (23 patterns) and testing (22 patterns). We repeat this random partition ten

times. For each partition, ten networks of the same size are trained with different

initial weights. Figure 7.7 shows the classification error rates versus the number of

nodes being removed. Again, the curve is averaged over 100 trials. The “optimal”

network is found with 8 input nodes and 4 hidden nodes. Note that this “optimality”

is in the statistical sense. For some trials, we were able to generate a network with

lower test set error rate, but with 6 input nodes and 2 hidden nodes.
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Figure 7.6. Classification error rates for the modified Trunk’s data set versus the

number of features being removed. The initial network contains a total of 50 input

nodes (features). Solid curve: data sets with 500 training patterns. Dotted curve:

data sets with 50 training patterns.

7.3.4 Application to an OCR system

A feedforward network with 184 input nodes, 40 hidden nodes, and 10 output nodes

is designed to recognize handprinted digits. The network is fed with 184 features (88

local contour direction features and 96 features based on bending points) which are

extracted from the 24 x 16 bitmap for each character. The training data contains

81,728 handprinted digits from the NIST digit database. The number of training

patterns is substantially larger than the 7,810 total number of free parameters in the

network. The trained network is tested on the test set (also from the NIST digit

database) with 58,646 handprinted digits. A 96.4% recognition accuracy is achieved.

Using our node-pruning procedure, 96 out of the 184 features can be removed from the

original network, with only a slight loss of recognition accuracy (0.5%). The reduced

network can not only save the recognition time, but also the feature extraction time
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Figure 7.7. Classification error rates for the 801: data set versus the number of nodes

being removed. The initial network contains a total of 21 nodes.

because we do not need to extract those feature which were not selected by the node

pruning procedure.

7.4 Summary

We have presented a node/feature saliency measure for feedforward networks. The

node/feature saliency values can be evaluated using a backpropagation type of algo-

rithm. A node-pruning procedure is also provided to remove insalient nodes in the

network to create a small-sized network which can not only approximate faithfully

the training set but also generalize well on the test patterns. The finite sample size

effect on the computation of node/feature saliency is studied empirically. We have ob-

served that the node-pruning procedure can still improve the generalization ability of
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neural network classifiers if the sample size is sufficiently large even though the com-

putation of node/feature saliency can not avoid the finite sample size effect (“curse of

dimensionality”). The advantage of the node—pruning procedure over classical feature

selection methods is that the node-pruning procedure can simultaneously “Optimize”

both the feature set and the classifier, while classical feature selection methods select

the “best” subset of features with respect to a fixed classifier.

 



CHAPTER 8

Summary, Conclusions and Future

Work

This dissertation can be logically divided into two parts. The first part (Chapters

2—4) focuses on designing neural networks for pattern recognition. The second part

of this thesis (Chapters 5-7) is devoted to the theoretical analysis of generalization

ability and practical techniques for improving the generalization ability of feedforward

networks.

In Chapter 2, a number of neural networks and training algorithms for feature

extraction and multivariate data projection have been proposed. These networks in-

clude: linear discriminant analysis (LDA) network, SAMANN network for Sammon’s

projection, nonlinear projection based on Kohonen’s SOM (NP-SOM), and nonlinear

discriminant analysis network (NDA) using a feedforward network classifier. This

chapter also conducts a comparative study of five typical networks for feature ex-

traction and multivariate data projection. Chapter 3 implements the well-known

k-nearest neighbor classifier and its variants using neural network architecture. The

k-Maximum network used in this k-nearest neighbor network architecture is novel,

and has many advantages over the “winner-take—all” type of networks and other

techniques for selecting 16 maximum input values. It has properties of adaptivity,

180
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flexibility, and fewer connections, and it guarantees the selection of exactly 16 “on”

nodes as long as its k‘” and (k-l- 1)“ maximum inputs are distinct. Chapter 4 presents

a self—organizing network (HEC) for detecting hyperellipsoidal clusters. The network

performs a partitional clustering using the proposed regularized Mahalanobis dis-

tance. This distance measure can deal with the ill-posed and poorly-posed problems

in estimating the Mahalanobis distance and achieves a tradeoff between using the

Euclidean distance and the Mahalanobis distance so as to prevent the HEC network

from producing unusually large or unusually small clusters.

The significance of the research work in the first part of this dissertation is as fol—

lows. i) A common attribute of these networks is that most of them employ adaptive

training algorithms which make them suitable in environments where the distribution

of patterns in the feature space changes with respect to time. ii) The availability of

these networks also facilitates hardware implementation of well-known classical pat-

tern classification and clustering approaches. iii) Some network implementations of

classical pattern recognition approaches have additional advantages over the corre-

sponding classical approaches. For example, the SAMANN network offers the gener-

alization ability of projecting new data, which is not present in the original Sammon’s

projection algorithm; the HEC network employs the regularized Mahalanobis distance

which achieves a tradeoff between using the Euclidean distance (which is likely to split

large and elongated clusters) and the Mahalanobis distance (where large clusters tend

to absorb small nearby clusters). iv) Some networks offer new approaches for solving

pattern recognition problems. For instance, the NDA method and NP-SOM network

provide a different perspective for visualizing high dimensional data.

Chapter 5 presents a theoretical study of the generalization ability of feedforward

networks. We introduce two types of frameworks for this study: Vapnik’s theory

and Moody’s approach, and point out the advantages and disadvantages of these two
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frameworks. Vapnik’s theory provides the distribution-free and training algorithm-

free bounds for the maximum deviation of the true error from the empirical error,

and for the training sample size requirement. Unfortunately, these bounds are too

conservative to be of any practical use. On the other hand, Moody’s approach es-

tablishes an approximate direct relationship (as Oppose to the bounds in Vapnik’s

theory) between the expected MSEs on training and test data sets, and introduces

the notion of the effective number of parameters. This direct relationship and the ef-

fective number of parameters are data-dependent and training algorithm-dependent.

However, the rather restrictive assumptions on data model, training set and test set

limit the practical applicability of Moody’s approach.

We extend Moody’s model to a more general setting by relaxing his assumptions

on training and test data sets. This extension allows the sampling points of the test

data to be different from those in the training data according to an additive noise

model. We have shown that the noise in both sampling points in test data and ob-

servation increases the deviation of the expected test set MSE from the expected

training set MSE, and also increases the effective number of parameters. Our Monte

Carlo experiments have been conducted to verify Moody’s result and our extension,

and to demonstrate the role of the weight-decay regularization in improving the gen-

eralization ability of feedforward networks. Both Moody’s result and our extension

are consistent with the empirical results if the model assumptions are valid. However,

we observed that Moody’s result has a large discrepancy if the sampling points in the

test data are subject to noise. Our Monte Carlo experiments have also shown that the

estimation of the effective number of parameters is not reliable. Therefore, a robust

estimator is desirable. One significant impact of these theoretical results on studying

the generalization ability of feedforward networks is that they reveal how different

quantities (e.g., the true error, empirical error, number of training patterns, expected
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test and training set MSEs, nonlinearity, and regularization) which characterize feed-

forward networks interact with each other. Therefore, they shed some light on the

behavior of the “black-box” as feedforward networks are often referred.

While the utility of these theoretical results in practice is still questionable, there

are four different techniques in practice for improving the generalization ability of

feedforward networks. Chapters 6 and 7 address two of these four techniques. Chap-

ter 6 has provided a survey of regularization techniques used in neural networks.

We have presented a taxonomy of regularization techniques in neural networks, and

demonstrated that a variety of networks and learning algorithms can fit into this

framework. Regularization plays a very important role in the performance of neural

networks. It helps neural networks to achieve generalization and robustness properties

by introducing the a prion' knowledge and constraints of the underlying problem and

desirable properties of the solution into the optimization procedure. The reduction

in the size of the solution space and in the effective number of parameters resulting

from the three types of regularization techniques is an important explanation of why

many neural networks with a large number of free parameters trained with a relatively

small number of training patterns perform well in several real applications.

We have proposed a node pruning method in Chapter 7 for designing parsimo-

nious networks which generalize well, and for feature selection. We have presented

a node/feature saliency measure for feedforward networks, which can be evaluated

using a backpropagation type of algorithm. The insalient nodes are removed one at

a time to create a small sized network which can not only approximate faithfully

the training set but also generalize well on the test patterns. The finite sample size

effect on the computation of node/feature saliency is studied empirically. We have

found that the node-pruning procedure can still improve the generalization ability

of neural network classifiers if the sample size is sufficiently large even though the

computation of node/feature saliency suffers from the finite sample size effect (“curse
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of dimensionality”).

As we have pointed out, a large number of classical pattern recognition approaches

have been mapped onto neural network architectures. Can the hardware implemen-

tation of these approaches derive any benefit from the mapping? Our preliminary

and unpublished study (with Professor M. Shanblatt) on the VLSI implementation

of the LDA network has shown that a chip with an area of 1cm x 1cm can contain a

LDA network with 20 inputs and 20 outputs, and the convergence speed for learning

one pattern is of the order of a nano second. Since our experiments have shown that

the number of iterations needed for convergence is of the order of 103, the LDA net-

work can learn and perform discriminant analysis in about a microsecond. Although

hardware implementation of neural networks is beyond the scope of this dissertation,

it should be an important future research direction.

The practical value of the results on the generalization issue of feedforward net-

works needs to be verified through applications. It is generally believed that feature

extraction and feature selection can help to avoid the “curse of dimensionality” and

improve the generalization ability of a classifier. However, in finite sample size situ-

ations, since the transform from the original feature space to the new feature space

with a lower dimensionality is often estimated from the finite number of training

patterns, the feature extraction and selection itself suffers from the finite sample—size

effect. Therefore, it would be of significant value if the theoretical results on gen-

eralization could be used to analyze the finite sample-size effect on various feature

extraction and feature selection methods, such as principal component analysis and

the node-pruning method proposed in Chapter 7.

In Chapter 5, we have only studied the role of the weight-decay regularization in

reducing the effective number of parameters. A comparative study on the effect of

different regularization cost functions on the effective number of parameters should

also be conducted. This comparative study would be helpful in choosing a proper
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regularizer.
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APPENDIX A

Derivation of the Effective

Number of Parameters

Consider a set of n real-valued training pattern pairs 7; = {(x,, y,)|z' = 1, 2, - - -,n}

drawn from a stationary distribution E(x, y), where x,- E R”, z' = 1, 2, . - - , 71. Without

a loss of generality, assume that y, E R. These patterns can be viewed as being

generated according to the additive model:

. = 111x) + a. (1.1)

2
y which is sampled withwhere 5,, is the i.i.d. noise with zero mean and variance 0

distribution <I>(5) (not necessarily Gaussian), and p(x) is the conditional mean, an

unknown function. Let 7;’ = {(x[,y£)|z' = 1,2, - - - ,n} be a test set drawn from the

same distribution as 7;. We further assume that x2 is subject to another additive

noise model x; = x,- + 6.... Note that in Moody’s original model, x; in the test set

should be exactly the same as x, in the training set. Although Moody’s detailed

derivation has not yet been published, it should be a special case of our derivation.

In the following derivation, variables y, w and a: with no subscripts, and 5,, are

pooled vectors which collect all the corresponding scaler variables appearing in the
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cost function. We do not make an explicit notational distinction between scalars,

vectors, and 2-d, 3—d matrices. However, readers should be able to easily determine

if the variables y, w and a: are treated as vectors.

First, we define the training set MSE, expected training set MSE, test set MSE,

and expected test set MSE, respectively, as follows.

Etrain(7ft) : E(ya f(lU(7;),X)

||

:
I
H

M
=

{
E |

>
2

E
.

:
1

.?
<

“
(
a

:
>

£
3

(Etrain>7'n = <

ll

\
:

iiQ/i — f(w(7::), 1(1))? {f1 <I>(y,-|x,-)dyi} . (A3)

1:1

E....(T,:) = E(y’. f(w(Tn),x’) = 33:0: — f(wm). x2». (AA)

(Erastln’li: = {i " (yl—f(w(7fz):xl))2)7:.r,g

= fl " (31:- f(W(7:1),Xl))2 {fl @(y,|x,~)<1>(y£|x[)dyidy£} . (A.5)

n i=1 i=1

We treat the noise terms 5, in both the training and test data sets as small pertur-

bations to an ideal model which fits the corresponding noise-free data. The mathe-

matical expectation is taken over these noise terms. The perturbed cost function can

be expanded upto the second-order in the noise terms. Note that the test set MSE

has three perturbation terms associated with y’, y and 2’, respectively. First let us
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expand the test set MSE with respect to :13”?

BE 1 WE

E I n I I I z E I n I T — " T __ .1 0.101012: )1... l (y,f(w(7’).:v)l.. +c. [3.]; + 2c. [32.] ye.

(A.6)

Since the second term on the right-hand side of Eq. (A6) is already of the second-

3_E

6:1: yzy

[an , ~ 6E (.17)

order in 5..., we can approximate [ by its zero‘” order term, i.e.,

67: Na—z'

Now, we take a mathematical expectation over the noise associated with x’, and apply

the property of zero—mean noise, which leads to

<1E<y', f(w17:.>,c'>1...>. e [E(y', (1211171161.. + gm [27%] , (Ac)

where A; is a diagonal covariance matrix of the long noise vector 5., =

[ET T ~25")? The second term on the right-hand side of Eq. (A.8) can be
$1,822, .

rewritten into

n 62E] , (A9)
0213 " 32E

— :r: = —A1: = 2 _trace [ 8x2 A ] g trace [ 627,2 ] attrace [g 8 :2

where A.c = oil is the diagonal covariance matrix of 53,.

Similarly, we can expand the first term on the right-hand side of Eq. (A8).

0E 1 WE
~ _ T _ _ ’ _ T _ ’ _[E(c', Amman... ~ (E(., f(w(t.>.c>1.+(e;, e.) [By l,+.(e. e.) [ 32.], (e. e.)

(A.10)

 

*The subscripts of [ ] indicate those variables which are involved in the enclosed term and are

subject to noise perturbation.
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In Eq. (A.10), we can approximate [ZQTSL by the zero‘” order term,

[62E] ~ 82E (11.11)

023/ ~ 8231’

because the third term on the right-hand side of Eq. (A.10) is already of the second-

 

order in 53,.

8E 8E 82E 0111 62E 1 T63E
[a—ny ~ 53 away E5” ‘1' 'aTy'Ey '1' ‘2’Ey 679-53,. (A.12)

For the squared-error cost function, 652% = 0 (note that g? and 0 are three-

dimensional matrices). At the equilibrium point, we have

6E

Remember that EA is a function of 112 which is again a function of y. Taking partial

derivatives on both the sides of Eq. (A.13) with respect to y, we have

62E. 62E. 61.5 __ 0
 

  

ayaw + 6210 8y _ ’ (A14)

from which we obtain

610 6213. ‘1 6213.

6‘37 — — (02w) 0.1/6w. (A.15)

Note that 595;” is a two-dimensional matrix. Substituting Eq. (A.15) into Eq. (A.12),

we obtain

(A.16) 

[as] ~BE 6213 (6213.)‘16215. 62E

5; y N "a? + away 6% 63,6wa + “(92—3/5”

Substituting Eqs. (A.11) and (A.16) into Eq. (A.10), we have
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'
, 6E

lE<yaf(w<7a>ax>l.r. e [E(aflw.)x)1. + (e. —c.>T‘a?

62E 62E 62E
_ ’ _ )T

A

(5y 531) away (8211:)4 _Eyayaw

, 82E 6213

+ (511 -5y)Ta_2y_51/+ ‘2‘(5y“_Ey)T—32y (5;, -€y). (A.17)

Now taking expectation on both the sides of Eq. (A.17) over the noise variables, and

applying the Lemma in Appendix B, we obtain

  

(E(y’a f(UJ(7;), x)>y’y z <E(y,f(111(7;), x)>y + agtrace

 

62E. ‘1 62EA

away 6211) ('9wa '

(A.18)

Taking mathematical expectation on both the sides of Eq. (A.8) over y’ and y, and

substituting Eq. (A.18) into it, we get

(E(9,) “W(Tn)X))I”yy z (E(y)f(w(7fz)rx))y

 

  

 

62E ‘1 62E2 A A

+ aytrace away (6210) _awa (A.19)

1 2 ” 62E

+ iaxtrace [2; 63—3] .

Let

62

T = ayamemm», 01.20)

32

U = %E1(w,7;), (A21)

62

” 0271B
G:2—6x? , (A.23)

i=1

pgmu) = étrace[TU_1VT], (A24)
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and

, l

pefsz‘) = Ztrace[G]. (A25)

We finally obtain

e A e A
(Etest>7;.7',{ z (Etraining)7;1 + 203w + Qaggflx—H. (A26)

n n



APPENDIX B

Regularization via Adding Noise

to Weights and Training Patterns

The following lemma will be used in establishing the fact that adding noise to weights

and training patterns results in what we called Type II regularization of network

solution in Chapter 6. We state the lemma without proof.

Lemma: Let r, r1,r2 be p-, p1-, pg-dimensional random vectors drawn from iid

Gaussian noise distributions with zero mean vector and covariance matrices 021, of]1,

and 0312, respectively. Let H be a p x p symmetric matrix and H1 be a p1 x p2 matrix.

Then the following properties hold:

(1') (Hrlr = 0;

(ii) (rTHr)r = o2Tr(H);

(iii) (lerTng), = 0;

(iv) (rTHTrrTHr)r = o4Tr2(H) + 204Tr(H2);

(”)- (rile2rngrllr1.r2 = ”iagTT(H1Hir):

where ()r denotes the expectation with respect to r, and Tr(H) is the trace of matrix

H.
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B.1 Adding Noise to Weights Only

Let f(w,x) : B” x Rd -) R be a function implemented by a feedforward network

with a p—dimensional weight vector W and d input nodes. Adding noise to weights is

equivalent to minimizing the following cost function.

iia -f((mam->12. (13.1)

H
.

Suppose m is large enough, then the above equation can be approximated by

:1 :<<lyi— f(W + 1‘, Xi)l2)r- (8.2)

“
3
“

To simplify the notation, let

: (lyi — f(W + l‘, Xi)]2>r~ (B3)

For small values of 0, using the second-order approximation of Taylor series expansion,

we obtain

f(w + r, x) z f(W, x) + (awf)Tr + é—rTer, (8.4)

where HW is the Hessian matrix of function f with respect to the weight vector

w. Substituting Eq. (8.4) into Eq. (8.3) and applying the lemma to simplify the

right-hand side, we get

1

EXi : (lyi _ f(W,}(g) _ (awf)Tr _ '2—rTHer2ll‘

lyi - f(W,}(ill2 + 02ll0wfll2 - (lyi — f(W, xi) — (awf)Tr]rTer),

+(il'TH‘,7;rrTH‘,.,r)r

= lyi — f(Wixill2 + Uzllawfllz " lyi — f(W, x,)](rTer),
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+((3wf)Tl'l‘Tle‘)r + (irTHvTvrrTer),

= [y, — f(vv,x,-)]2 - [yi - f(w,x,-)]o2Tr(Hw) + OjTr2(Hw)

04

+—2Tr(HEV)

2

= v.- — f(w,x.) — ”gamer + ”gown. (8.5)

Note that at the minimal point, 8wf = 0.

The equivalence of adding noise to training patterns and regularization can be

shown in a similar way by exchanging w and x. See also [145].

B.2 Adding Noise to Weights and Training Pat-

terns Simultaneously

Adding a noise vector r1 to weights and r2 to training patterns is equivalent to

minimizing the following cost function.

: Eizl<[y1— f(W + r1,x1' + l‘2)] )r1r2. (8.6)

To simplify the notation, let

2 (ll/i _ f(W + 1'1, xi + r2)]2>r1r2- (B7)

Assume that 01 and 02 are small. Then using the first-order approximation of Taylor

series expansion, we have

f(W + r1, x + r2) % f(W, X) + (0xf)Tr2- (B-8)
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Substituting Eq. (38) into Eq. (B.7), expanding the square term, and then using the

lemma, we obtain

Ex.- z (ll/i — f(W,Xz') _ (axflTr2l2lr1r2

= [w - “Wm-ll2 + 0§||0xf||2- (39)

For higher precision, we can use the second—order approximation of Taylor series

expansion,

1

f(w + r1, x + r2) 2 f(w, x) + (Bxf)Tr2 + §[r1Ter1 + rngrg + 2erwxr2], (B.10)

where wa is the Hessian matrix of function f with respect to weight vector w and

input vector x. Therefore, it is a p x d matrix. Substituting Eq. (B.10) into Eq. (B.7),

expanding the square term, and then applying the lemma, we obtain

2
2

1 1

Ex.’ (lyi "‘ f(W,)(i) — (axf)Tr2 - ErTerl "' arngr2 — rTwar2l2)r1r2

= lyi — f(W, 3%)]2 - [yr - f(W, XilllUfTT(Hw) + 0§TT(Hx)l

4
o4 o4 o4 o

+0f||0wf||2 + 0§l|6xf||2 + 112/"ram + —1Tr<H3.> + lama.) + 32mm.)

 

2 4

afo’g 2 2 2
+ 4 Tr(Hw)Tr(Hx) + olo2Tr(wa)

0% 022 2 2 2

= [M “ f(Wixi) _ ‘2‘T7'(Hw) “ 3Tr(Hx)l + 02llaxfll

4 4

+%Tr(H3v) + ZZTr(H,i) + afa§Tr(H$wax). (13.11)
2

l
!
"
l
.
"
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