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ABSTRACT

MORPHOLOGIES OF METAL FILMS,

SURFACES AND CLUSTERS

by

Xinhua Yu

The topics concerning the healing process of metal surfaces; morphological changes of

metal films on insulator substrates; and small metal clusters, have been investigated using

computer simulation techniques.

Surface diffusion is usually the dominant dynamic process by which a solid surface

reaches equilibrium, particularly for metals at temperatures below melting. Above the

roughening temperature, the surface profile and surface tension are continuous functions

of surface geometry. At equilibrium, the chemical potential which is related to the surface

curvature, must be equal everywhere on the surface. Below the roughening temperature,

the surface tension has cusp points that have to be propertly treated in order to derive the

dynamic equations. Two different approaches are utilized and the corresponding dynamic

equations result in the formation of facets on an initially sinusoidal surface profile.

During the formation of thin metal films on an insulator substrate, a sequence of

morphologies occur as deposition continues. An interrupted coalescence model(ICM)

provides a good explanation of the high percolation coverage observed in experiments.

The interruption of coalescence is explained as the combined consequence of

inhomogeneous substrate pinning and thermal fluctuations.



Gold clusters of size N>lO, undergo a fairly sharp solid-liquid phase transition. The

transition temperature decreases as the cluster size decreases. When N is sufficiently

Iarge(>200), the surface atoms have diffirsive behavior in the solid phase. We use the

radius of gyration as a shape parameter to study the shape change of clusters. The radius

ofgyration behaves distinctly in various size and temperature regions.
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CHAPTER ONE

INTRODUCTION

W

During the past decade, surface research has clearly

shifted its interest from the macroscopic to the microscopic

scale, mainly thanks to the innovation and widening

applications of electron microscopes; a wealth of novel

experimental techniques and theoretical methods have been

applied and developed successfully. Many subjects such as

catalysis; microelectronic devices and contacts;

lubrication; resistance to erosion; creep and intragranular

fracture etc.; are brought alive again after years of

inefficiency and frustrations. To understand those complex

problems, one must address several fundamental problems:

atomic and electronic structure; diffusion along surfaces or

across interfaces; the energy and chemistry of surface

regions and the response to external forces. Existing

techniques for investigating surfaces have reached maturity

and are increasingly being applied to systems of practical

relevance. On the experimental side, a variety of

microscopes are providing structural and electronic

information about surfaces at a number of complementary

length scales. 0n the theoretical side, phenomenological
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theories for total energy calculations have had much success

in solving very complex structural problems on the atomic

scale. More sophisticated theories have been introduced to

direct calculations of motions of surface particles by

comparison with experimental data.

To gain comprehension of surface phenomena, it is

critical to understand the complexity aroused from the

termination of a crystal by a surface. The manifestation of

the complexity can be studied from two different aspects:

One is to study the atomic arrangement in the surface

region. Two particularly interesting effects may take place

due to the presence of a surface. (1)the distance between

the surface plane and those parallel to the surface deviate

from their bulk values; (2) some lateral structural change

may also occur to the atoms on certain surfaces(for

instance, Au:110 surface) and this phenomena is called

surface reconstruction which has caught much attention

lately. Another aspect is dynamic properties, for instance,

vibrations and diffusions, which are of considerable

importance to the elucidation of surface phenomena and rich

experimental results. The dynamic problems of surfaces are

usually very complicated and not analytically solvable

because of nonlinearity in dynamic equations and thus a

certain approximation like the harmonic approximation is

usually made. The surface atoms are less bonded than their



bulk counterparts and therefore their mean square amplitudes

are significantly greater than in the bulk. Even at very low

temperature the surfaces appear to be disordered while atoms

in the bulk are very much in order. Often, one needs to

study the migration of particles on a surface; for example

in wetting phenomena, surface flattening and roughening and

thin film formation. Other approaches have to be used to

tackle these difficult problems. Because many of those

problems are associated with phase transitions and critical

phenomena, scaling and renormalization are powerful tools in

the investigation. Computer simulation is adding a new

dimension to scientific investigation, establishing a role

of equal importance with the traditional approaches of

theory and experiment. As the speed and accuracy of

arithmetic computers improve tremendously, it is feasible

and advantageous to carry out quantitative investigation

through detailed computer simulation. It is thus no surprise

that many portions of this work are numerical analyses or

computer simulations.

In the next section, I will give a brief introduction to

the contents of each chapter of the thesis and some key

concepts are outlined.



The first part of the thesis studies the morphology of

thin metal films, surfaces and clusters. The equilibrium

geometry of a finite crystal is determined by many factors

among which the crystal structure, temperature and crystal

size are considered the most important. At any temperature,

the shape of a finite crystal can be found theoretically by

the Wulff construction( Wulff, 1901) provided that the

surface tension 7 as a function of crystalline orientation 9

is known. At finite temperature, the total free energy of

the system reaches a minimum at its equilibrium shape. If

the temperature is sufficiently low, it is expected that the

geometry does not change much from its ground state except

at those positions like corners and edges where atoms are

easily activated. As temperature increases, the surface

atoms start to diffuse prior to the bulk ones because of

their reduced binding. One fundamental question is how those

diffusing surface atoms alter the non-equilibrium shape of

crystals. This question is to be discussed in chapter two.

One approach is to view the surface to be a continuous

function f(x,y,z)=0. The diffusion of surface particles is

caused by the gradient of chemical potential p which is

proportional to the curvature K.of the surface if the

surface tension 7 is isotropic. As a result, a differential

equation describing the process can be derived. The surface

diffusion equation has many successful applications in
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studying systems at temperature T~0.75Tm, the bulk melting

temperature. Nevertheless, as a matter of fact, 7 is

strongly dependent on surface orientation at low

temperatures and particularly has a cusp singularity along

crystalline planes of high symmetry:y(€)=ro+7,|fl. To

overcome this difficulty, two methods are introduced and

alternative equations are derived. One method originally

developed by Bonzel etc.(Bonzel, 1984,1986) is to de-

singularize the cusp point by replacing the small angle 9

with ‘/92+6(2, -60 where 90 is a small constant. As a result,

the second derivative of 7 exists. The other method assumes

that the surface profile has a miscut angle with the high

symmetry lattice plane. The alteration of surface shape is

due to the motion of steps. Lancon and Villain(Lancon and

Villain, 1990) studied the chemical potential of steps and

obtained a different version of surface dynamics. Because of

the nonlinearity of the equations governing those dynamic

processes, their solutions are attained via finite

difference methods.

The work on the formation of thin metal films( Chapter

Three) on an insulating substrate was motivated by the

experiments by Dubson and Jeffers( Dubson etc. 1994). When

metal vapor condenses on a clean non-wetting insulating

substrate to form a thin film, a sequence of morphological

changes occurs as the thickness of the film increases, going
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from isolated compact islands, then a "wormy" structure, to

a percolating structure and finally a continuous thin film.

It is observed that an abnormally high percolating coverage

often occurs. Based upon the complete coalescence model by

Meakin and Family(MFM) ( Family and Meakin, 1988,1989), we

proposed the interrupted coalescence model(Yu etc.,1991), in

which two droplets on the substrate do not coalesce as long

as the sizes of both touched droplets reach a critical

dimension RC. Rc depends on deposition rate, substrate

temperature, as well as the substrate structure. Because of

the presence of RC, this "interrupted coalescence" model

goes through stages of early complete coalescence, crossover

to wormy structure, percolation and hole filling as in

experiments. Our computer simulation mimicking the

experiment showed that the coverage at the percolation point

increases with increasing RC. We also calculated the cluster

size distribution and the critical indices near percolation

and found that this model is in the same universality class

as the conventional percolation model(Satuffer,1985).

Furthermore, it is shown that the inhomogeneity of the

substrate may be the mechanism leading to the interruption

of coalescence. This is illustrated by a calculation of the

total energy of two droplets with a grain boundary in their

interior.



In Chapter Four, I deal with smaller physical systems,

metal clusters, using the molecular dynamics simulation

method that is becoming an increasingly powerful tool in

scientific investigation. The simple idea of molecular

dynamics is that the detailed information such as position,

velocity etc. of each atom in a system is calculated as a

function of time assuming that each atom complies with

Newtonian dynamics. From this information, thermal dynamics

quantities can be calculated straightforwardly. In a metal,

many experiments reveal that atoms have many-body

interactions, therefore it is critical to have a good

potential to describe the metal. We have chosen an embedded-

atom potential(Gupta, 1981) which gives good predictions for

many bulk properties of transition and noble metals. Because

of the outstanding surface properties of gold and the

availability of experimental data, we selected gold clusters

for study. The calculations of temperature and total energy

show that the liquid-solid phase transition is clearly

identified in clusters with size greater than about 10

atoms. The melting temperature Tm decreases as system size

decreases and obeys the following semi-empirical

relationship(Buffat,1976;Borel,1981):

TAR): Tm(oo)(l—%) (1.1)
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where Rc is constant and determined by the bulk properties

of gold. By calculating the mean square deviation of both

surface and bulk atoms, we found that the surface atoms have

diffusive behavior at temperature below melting for large

clusters(N>200) in comparison with the absence of surface

diffusion for small size clusters( N<150). The dynamics is

studied by looking into the shape of non-equilibrium gold

clusters and the radius of gyration rg represents the shape

parameter. We observe how r9 decays from its initial value.

Above the melting temperature, the correlation between atoms

is weak and r9 decays roughly exponentially with large

fluctuations. Below Tm, the decay of rg depends on the

cluster size N. When N is small (less than 150), r reaches
9

a meta-stable value quickly with typical time te and remains

almost unchanged for a long time tc and suddenly decreases

to a smaller value within a very short time tq. The three

time scales have the following relations: teth<<tc. When N

is large ( greater than 250), and the temperature is close

to Tm, rg decays like smaller clusters. But when T is

considerably away from the Tm, rg decays algebraically

because of the dominance of surface diffusion in large

clusters.

Chapter Five of the thesis describes work on quantum

transport of two-dimensional percolating lattices. Electrons

are permitted to hop between two bonded sites on a
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percolating two dimensional lattice. Therefore the

Hamiltonian describing the system is simply written

as:(Anderson,P.W., 1958)

H=Zt0(ata: +a:aj)+zsian+ai (1'2)

1'.) i

where i,j are nearest neighbor lattice sites and szl for a

present bond and zero for an absent one and 61 is the site

energy. From percolation theory, when the bond probability p

is less than a critical value pc( for a 2d square lattice

pc=0.5) there exists no infinitely large clusters. For a

system of large but finite dimension, the largest cluster

size has a size of the same order as the system. If all

present bonds are good conductors and a voltage is applied

to two sides of the system, a current will flow when p>pc,

and no current flows for p<pc. Because of quantum effects,

an electron is more likely to scatter backward and more

transmitting bonds are required for an electron to transmit

across the sample. In other word, the quantum threshold pQ

below which no current flows through the system ought to be

larger than pc. To find p9 and investigate the scaling of

conductance, we employed two methods in the calculation of

conductance: i) the linear response theory and ii) transfer

matrix and Landauer formula. In the linear response theory,

we introduce the Green's function G¥=(E-Hiin)'1 where E is

the Fermi energy and n is a small positive number. The
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conductance can be expressed as the product of two Green's

functions which are expressed in matrix form and are easily

calculated. The conductance Gc is related to electron

scattering by disorder via Landauer's formula:

Gc=(e2/h)tr(tt*) where t is the transfer matrix of the

disordered region. Our calculations show that p9 is one for

2d percolation lattices. This result supports the prediction

of weak localization that any finite disorder will cause

localization of the electron wavefunction in two dimensional

systems.

Finally I summarize the work in the thesis and discuss

several interesting future projects stimulated by the

analyses described here.



CHAPTER TWO

THE ALTERATION OF A SURFACE PROFILE

DUE TO SURFACE DIFFUSION

1.1mm

An isolated system, say a heated metal crystal, tends to

alter its shape in order to minimize its total surface free

energy. The common processes by which the shape change is

realized are evaporation-condensation, volume diffusion, and

surface diffusion. The process of evaporation-condensation

(Mullins, 1957, 1959) occurs when the chemical potential of

the system u differs from that of its co-existing vapor Ho.

Evaporation- condensation does not conserve the total number

of atoms in the system which gains atoms when its chemical

potential is lower and loses atoms when its chemical

potential is higher than the vapor's. At finite temperature,

there exist bulk vacancies and defects which allow the bulk

atoms to move, in which case volume diffusion is important.

The ratio of vacancy number to total atoms is approximated

to be exp(-Eb/kT) where Eb denotes the approximate energy

needed to create a vacancy. For most metals, £5 is of order

several electron volts, i.e. 104-105K and thus the ratio is

extremely small at room temperature. Surface diffusion

involves surface particles which move along the surface of

the material. Due to the reduced bonding at the surfaces,
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diffusion processes are much more probable at surfaces than

in the bulk. For a small metal particle with size 0.1 to 10

um at temperature of about 0.75Th (T5 is the bulk melting

temperature) the surface diffusion is considered to be a

dominant factor governing the morphological evolution.

The equilibrium properties of a surface can be described

by a few thermodynamic quantities like surface tension 7

defined as the surface free energy per unit area. Generally

y is anisotropic and depends on the orientation of the

surface. The lowest energy profile of a surface is then non-

trivial and the total surface free energy of a finite system

fizfiy-dA (2.1)

A

has to be minimized under the constraint that the volume is

constant. The equilibrium shape of a crystal of fixed volume

can be determined from the Wulff construction (Wulff,1901;

Herring,1951) which utilizes the result that the surface

tension 7 of any face is proportional to the distance of

that face from the center of the equilibrium shape.

Therefore, the process is described as follows: give a polar

plot of surface tension 7(6); draw a ray from the center at

any direction 6 and the line intersects with the y(9)

surface at a point; construct a plane perpendicular to the

ray(Wulff plane); the crystal shape is the envelope of all

those planes. One particularly
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Figure2.l:1hepreeenoeofacusppointin1(9)wiilieadtothe

facets on the equilibrium shape through Wulfi‘eoosuucuon whose

procedure was briefly described in the text. The polar plot near 9

=0 is forth: function 7(9)-yo+1,|0|.
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interesting consequence of the Wulff construction is that if

7(9) has cusp point, a finite flat area (facet) will be

produced in that direction. £1gn;g_zL1 shows why this is the

case. From this figure, it can been seen that the envelope

formed by plane SP is the plane P'P as we move S along O'Q.

The surface atoms are highly correlated at very low

temperature. As the temperature increases, a two dimensional

surface undergoes a roughening phase transition(Week,1980).

Let h(x,y) denote the height of a surface with respect to a

proper reference plane (e.g. the perfect surface at T=0),

where (x,y) labels the position on the plane. The roughness

of a surface is defined as the spatial correlation function:

(w = (Rm-(hf) (2.2)

Where <> stands for thermal average. Without loosing

generality, it is assumed that above the roughening

temperature TR, the leading terms in a Hamiltonian

describing the surface are(Fisher,M.E., 1988)

H=1/2j¢cdy[J(Vh)2+gh2] (2.3)

when both Vh and h are small. Here J and g are constants

relating to surface tension and external force respectively.

Then (Ah? is calculated according to a Boltzmann

distribution, giving (AhfcthL, where L is the surface

dimension. Below TR, the Hamiltonian ought to include terms

which favor h being integers. Using either solid-on-

solid(S.O.S) or the sine-Gordon model, it is theoretically
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proved that the roughness of a surface is only a function of

temperature and independent of system size at low

temperatures. The surface free energy at T-TR has a cusp

singularity point along directions of high symmetry.

The experimental methods(Schommers etc.,1987) used in

studying surface diffusion are roughly divided into three

groups: a) direct observation of diffusing atoms using field

ion microscopy (FIM) which records the motion of individual

atoms or clusters on a small metal surface area and electron

microscopy which observes the migration of surface atoms and

simultaneously the detailed surface structure. The diffusion

constant D can be directly obtained from FIM data using

<rflj)=4lh) and the temperature dependence of D gives the

magnitude of barriers over which the diffusion process is

thermally activated, i.e.

D=Doexp(-E,/kT) (2.4)

where E8 is a surface activation energy. b) Concentration

gradient methods such as scanning AES(Auger electron

spectroscopy) analysis that studies hetero-diffusion and

laser light diffraction which attains information on self-

diffusion on metal surfaces. The laser light diffraction

experiments measure the amplitude of a surface profile at

constant temperature as a function of annealing time by

recording the intensity distribution of laser-light

diffraction generated by the periodic profile. c)
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Equilibrium methods which include the field emission

fluctuation method, neutron scattering and He-atom

scattering, chiefly studying the diffusion of adsorbates.

These experiments employ inelastic scattering to measure

space and the time dependent self-correlation function

C(r,t) or its Fourier transform S(q,m).

Theoretical study of surface diffusion relies on the

continuum model which assumes a system surface is described

as a continuous function z(r,t). The model proposed that the

surface particles diffuse because the chemical potential u

varies along the surface. The mechanism is very similar to

the concept of electric charges moving along a conducting

surface when a conductor is not in equilibrium (equi-

potential condition). It will be seen that the continuum

model describes self-diffusion above TR quite successfully,

but has serious problems when the temperature is below TR.

More detailed study is possible with either molecular

dynamics(MD) or Monte Carlo(MC) simulation techniques, which

requires a suitable atom-atom interaction.

In this chapter, I will introduce previous work on

surface diffusion relating to our later discussions and

present some numerical calculation results. In the following

section, a diffusion-like equation describing the dynamics

of surface profile will be derived using a continuum model

and some simple applications will be presented. In section
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2‘; I will discuss surface diffusion below the roughening

temperature TR. We discuss the anisotropic model first and

then the miscut model. The conclusions are summarized also

in this section.

WW

Let us start with the expression for the free energy of

a bulk-surface system with surface profile z(x,y). The

expression is written in the form:

F=poflm(x,y)+fiabcdya(zz.z;) (2.5)

Here the first term is the bulk free energy and the second

one is the surface free energy and 0 relates to surface

tension through

a: y(z',,z'y) l+:."2+z'2 (2.6)
3 y

The chemical potential is obtained from p=QéF/62,

yielding:

.—,.=-2[ film) (.7)
a: 3:, ay 52;

 

If y is constant, one has

a z' 6 23

fl'.“ ="Q}’ ———L—"—+—' ', (2-3)
0 6% /]+z':+z': @Jl+z';+z'i

It has been shown that the term in the parentheses on the

 

right hand side is exactly equal to -(K1+K2)=-K, here K1

and K2 are the two principal curvatures of the surface.

Therefore we have the Gibbs-Thompson relationship:
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F'flo=Q7K (2.9)

For better illustration, we consider one-dimensional

isotropic surfaces of height z(x,t) and derive the dynamic

equation first, then extend to anisotropic and higher

dimensional systems. Suppose z(x,t) coexists with its vapor

of chemical potential “0 and that the bulk chemical

potential is also “0 to suppress the evaporation-

condensation process and surface diffusion is the dominant

dynamic process to alter the surface profile. From equation

(2.9), if the curvature varies on the surface, the surface

particles undergo a "field", the gradient of chemical

potential which drives them to drift. The drift velocity

ought to be proportional to the magnitude of the field,

reading

v =-M —%2K—V = 2.10. . .# kg a ( )

Here the Einstein relation Aiszlg/kBT has been used and M8

and Da denote the mobility and surface diffusion constant

respectively. The corresponding surface current is the

product of drift velocity and area density v, reading:

L’flQVéK.
‘/=_ §_____

2.11

kBT & ( )

Applying the continuity equation to the surface,

£31,913 :0 .as a (2 12)
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where p denotes the particle number variation per unit

surface area, one easily obtains the distance change along

its normal by multiplying atomic volume (2

i: _ a _ 1),,azv52K

— a 1:32“ a2

 (2.13)

It is easily generalized to higher dimensions by replacing

0'2ch%2 with VfK, which gives

%=BV§K (2.14)

where B=D37flzvlkBT and K is sum of two principal curvatures

at a surface point. When 7 is not isotropic and dependent on

surface orientation 9, the modified Gibbs-Thompson relation

(Herring,1952)is:

(77 ¢?y

p-p0={2(7+—-2-]K,+Q[7+-—2-)K2 (2.15)

I 2

on the condition that the second derivative of 7 exists.

Here 61 and 62 are angles between the normal at a surface

point and two principal planes. Correspondingly the surface

diffusion equation becomes:

%=§V‘2[[7+%)K,+[y+%)1(2] (2-15)

The equilibrium shape when 7 is isotropic is trivial as

seen by setting fi to zero, and it is simple to show that

the equilibrium shape is a circle in two dimensions and a

sphere in three dimensions for a closed surface. Now we add

a perturbative term to a two dimensional equilibrium surface

and calculate how the shape relaxes under the perturbation.
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Figure 2.2: A perturbed spherical surface. The perturbation

magnitude is much smaller than the radius of the sphere so that

one can treat the problem as small perturbation.
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Adding a small circumferential perturbation R0A(6,¢) to the

equilibrium shape r=Ro with A(0,¢) <<l(see W). The

surface Laplacian is written in terms of spherical

coordinates (r,6,¢) to be(Brailsford and Gjostein, 1975):

 

1 a a 1 a?
V2=—sin —sin9—+ — 2.17

’ R0 39 59 sinzaaqfi] ( )

A(9,¢) can be expanded:

A=ZAM..(9.¢) (2.18)

1,»:

where Yim is the standard spherical harmonic function. To

the first order of A, the curvature is also written as:

K=KO+7I:;Z(I+2)(I-1)A,MY,M (2.19)

Ln:

It is immediate to obtain the differential equation for each

Am component

Alm=-%l(l+2XIz'-1)Alm (2.20)

whose solution is

Aim“) = A[m(O)CXP(—t/ Tim) (2 ° 21)

where i=-:—,l(l+2)(12-l). We have assumed that at equilibrium

0

A,m(oo)=0. The result shows that the relaxation time 11m for

mode {l,m) in proportional with R3. When l>0, thn-(Ro/l)4,

which is approximately the fourth power of the wavelength.

Therefore, short wave perturbations decay much faster than

long wave ones.
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(a)

(b)
 

   
 

Figure 2.3: Two touched droplets as an initial profile for

numerical simulations. The neck area has been smoothened using

a small circle of radius r. (a): overall profile (b): magnification of

neck area.
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Figure 2.4: Geometrical illustration of two droplets with a

connectingneckshowingtherelationshipbetweenrandy:

r-y3/2(l-y)~y’/2
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One of the very interesting applications of equation

(2.14) is the estimation of the complete coalescence time of

two droplets of size R with a very small neck connecting

them (£1gn;g_z‘1). The neck area is approximately the shape

of a circle of radius r. The geometrical relationship

between y, the neck size and r is better illustrated in

£1gg;g_2‘1. Actually, the growth in the neck area is

extremely rapid when y is small because of the large

curvature. Here we roughly estimate how fast y grows when r

is small. Using R=1, we can write down an approximate

dynamic equation for y: y=B§K/&2. Notice that r5y2/2 and

3K/o‘szz(2/r)/(n2r2), for very small y, therefore,

y=B(l6/n2)y" or tzO.ly7/B. Suppose y=0.2, tz1.2x10’5/B. In

order to perform numerical calculations, one needs to

convert the equation (2.13) into dimensionless form, which

is given by:

—=fo (2.22)

where N=n/R0,R=r/R0,S=s/RO,K=KRO,r=Bt/R:. It is convenient

to express K and the Laplacian in terms of polar

coordinates (R,8).

(23 ./R2+R'3 aecsaa '

From the illustration diagram Eiggre 2.5, the curvature is

defined as dV/ék. The relationship between 8 and w is

w=0+7r/2—tan"(R'/R) (2.24)
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Figure 2.5: Illustration of a surface segrnent. showing the

definitiooofvandeandtheirrelatiooship,fromwhiehthe

curvauireeenbeexpreuedinpolareoordinateflrfi).
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Therefore, the equation upon which numerical calculation is

performed can be written as:

an 15 1 a:__.___ _ 2.25
(9? R50 32.3259 ( ’

where R=dQ/69. In same notation, K is expressed as

x_ R2 +21?2 —RR”

(R2 +R‘2 )3/2

The surface shape is described by the function R(9). I

 (2.26)

employed the standard finite difference method to evaluate

the derivatives. Convergence requires that the von Neuman

stability criteria is

61am“ (2.27)

£1gg;g_2&§ shows how the surface shape evolves with time.

Because of the extremely large curvature near the neck area

in the early stage, the neck increments very rapidly. The

plot shows three stages of shape change: early neck growth,

neck elimination( at time t=0.17) and complete coalescence(

at time scale 1.0). As a matter of fact, the neck increments

from an initial y=0.05 to 0.6 within time scale 10’2. The

process slows down significantly when y20.7. Figure 2.7

explicitly demonstrates the temporal growth of neck, showing

that the growth speed is very large at the beginning and

slows down, eventually turning into an equilibrium shape.

Our calculation results are consistent with experimental

observations(Nichols and Mullins,1965). During the process

of coalscence of two droplets, the surface energy decreases



CO
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Figure 2.6. The droplets shape as a function of simulation time.

The figure shows three different coalescence stages: (a): early

stage: 3:055, t=0.008; (b): neck elimination: )=O.90, t=0.17 and

(c): full coalscence? }'=1.42, t=0.90.
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Figure 2.8: Surface energy as a function of droplet sizes. The

surface energy is directly related to total area or length of the

droplet surfaces. The droplet size is represented by the distance

between two farthest point on the surface. (a): two equal size

droplets (b): two droplets having different sizes.
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as the system approaches equilibrium. We studied how the

surface energy is altered as the system size and the

distance distance between two droplets various. This is

shown in Eigg;g_zL§. At the early stage, the relaxation

process in the neck area is so rapid that the system size

does not change at all while surface energy decreases

rapidly.

WW

2.3.1. Anisotropic effect of surface tension

The continuum surface diffusion theory has had much

success especially in the temperature region T>0.75Th close

to the melting temperature. As T is decreased to below TR,

the crystal tends to develop facets on its surface which has

been intensively studied by experimental physicists during

the last decade(Jayaprakash etc.,1983). Most experiments

were done on metals at room temperature, much lower than

their melting temperature. The samples are prepared with

periodic surface profiles and exposed directly to an

electron microscope which records the shape as a function of

time. It is observed that facets start to take shape at tops

and bottoms of the initial curve. At the beginning the

process is quite fast but slows down as the size of facets

becomes large. From the isotropic continuum model, this

phenomena is not expected to happen because a sine curve is
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a eigenfunction of the equation so that the sinusoidal shape

is preserved and only its amplitude decays exponentially.

As pointed out by Landau (Landau, 1986), the surface

tension 7 of a planar solid surface depends on the

crystallographic orientation 0 of the sample. Thus as we

calculate chemical potential, the modified Gibbs-Thompson

relationship is utilized. When 7V<7k, the surface tension 7

has a cusp point at 9:0. Near this point:

7(€)=7o+r.l6l (2.28)

When substituting equation (2.28) into equation (2.15),

immediately we have the difficulty that the second

derivative of 1(9) is singular(a 5-function) at 9=0. The

dilemma was first circumvented by Bonzel and coworkers

(Bonzel etc.1984; Preuss,1986) mathematically by

regularizing the 6-function.

For better illustration, again we consider a one—

dimensional surface z(x). The equation of motion for the

surface is written as:

-——[7(6’)+
 

a?

86;]Iqx) (2.29)

The above equation is greatly simplified using small slope

approximation z'<<1 and reads

. B

z=-—17"(x) (2.30)

0

where prime represents differentiation with respect to x and
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'Kx)=[r(9)+-§037-]2" (2.31)

Here 9 is also a function of x and Osz' for small slope. To

regularize the singularity of the second derivative of y,

the key substitution is to replace 9 with JON-6% —00, with

parameter 90 being very small. This substitution does not

change the:y(9) much when 9>>90 but provides finite second

derivative of 7(6) near 680. Equation (2. 31) turns into:

79;
17(x)=[70+7,(‘/z'2 +93- 6,, )+(z—-1—0¢:—-—£)3,2]z" (2.32)

by replacing y with 70+7,(W-(;o). To analyze the overall

behavior of this equation, we regard z', z", z'" and 2"" as

small so that the second term on the right hand side is

always small compared with the first term. Combining

equation (2.30) with equation (2.32), we have the simplified

differential equation:

 

(2.33)

The first term is the classical surface healing term

obtained by Mullins(Mullins,1957) and the second term

embodies the effect of anisotropic surface tension and

vanishes if Qy=0 and z'to. This equation can be discussed

in two specific regions. First in the region where z'SGO,

equation (2.33) becomes

. B
zz-BZNN___)/Lz"ll (2.34)

6070
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Typically 75/n320J, while 90 is taken to be less than 10’3,

therefore, the second term on the right hand side dominates.

In the region that z'>>90, the second term is negligible

compared to the first term. The speed of decaying in the

regions of z'SBo(flat region) is much faster than in the

other region, therefore an appreciable shape change of the

surface profile occurs at the tops and bottoms where facets

are initially developed.

The direct solution of equation(2.29) through numerical

methods is obtained by imposing periodic boundary conditions

and a sinusoidal form as an initial condition. Eigg;g_zg2

presents a sequence of surface shapes versus time. It is

clear that facets show up at the bottoms and tops of the

curve almost immediately after the simulation is started.

The size of those facets increases with time while the

height decreases and Eigg;g_z‘19 exhibits that time

evolution. Our calculation data shows that the facet width

increases with time t very rapidly at early stages and slows

down after reaching size of order one. Just prior to the

disappearance of facets(due to completion of flattening),

the widening speed increases again. The result is very

similar to the calculation by Lancon and Villain (Lancon and

Villain,1990) who utilized the evaporation-condensation

dynamics and miscut model that is the topic of next

subsection.
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Figure 2.9: Numerical solution to equation (2.29), showing the

surface profile decaying. The initial shape is sinusoidal. The

formation offaeets occurs at the tops and bottoms while the shape

between facets approximately maintains a sinusoidal solution.
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Figure 2.10: The size and height of those facets indicated in

Figure 2.8 as functions of time. (a): the facet size grows with time

rapidly at early stage, slows down after the size reaches the order

of l and vanishes as approaching equilibrium. (b): the vertical

position of facets decreases monotonically.
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2.3.2 Miscut model:

We start with equation (2.7) to calculate the chemical

potential. When T<TR, the surface consists of well developed

steps and terraces and the surface shape change is due to

the motion of steps. In general, a can be viewed as the sum

of two contributions: co, the free energy of terraces and

0,, the energy of steps. Further a, can be written as

a, = a, + a, , where 01 is the free energy of non-interacting

steps, which is proportional to the step density; 03 is the

interaction between steps. The existence of 03 is due to the

fact that two adjacent steps tend to be away from each other

such that they could have more space to wander around. A

detailed investigation(Gruber and Mullins, 1967) shows that

03 is proportional to the third power of step density.

Summarizing the above argument, 0 has the following

approximate expression:

a: 00+71|u|+13~y3|u|3 (2.35)

where hd=(ai+f:Y”, representing the step density. If we

substitute equation (2.35) into equation (2.7), the chemical

potential is still singular at u=0. However Lancon and

Villain found that if the lattice planes of high symmetry

are not perfectly aligned with the surface, but instead have

a small "miscut" angle, evaporation-condensation dynamics

leads to the formation of facets on the tops and bottoms of
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Figure 2.11: A geometrical picture of the miscut model, showing

that the lattice planes(x-y plane) and surface(X-Y plane) has a

small angle a. it also shows the steps and terraces.
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an initial sinusoidal surface. Here we apply the model to

the case of surface diffusion dynamics.

In the miscut model, the lattice planes of high symmetry

(e.g. Au 111) are not perfectly parallel to the surface, and

they makes a small angle a with the y-axis of a surface

whose geometric setting is shown in £1gnzg_zL11.

Consequently, each lattice plane will have an intersection

yn at the y-axis. Let yn and 2 be functions of x only, then

2 and yn have the relationship:

z(x,t)=y,,(x,t)sina+ncosa (2.36)

where n stands for the numbering of lattice planes. The

chemical potential 0 is calculated by inserting equation

(2.35) into (2.7) and setting 23==a.

ék

and a3 = 3 “((22 +2'2 )3/2 . The equation of

p-p. = -3[§Ia.(z'.a)+a.(zuan] (2.37)

where a, = (2'2 +012)"2

motion for z(x,t) is then written according to surface

diffusion dynamics:

0“: 5
-—=-B——, 2.353 ék‘w ( 3)

and here

(02+z.2)32 7’) 2.2+a2)1/2 "

2 12

[ a +73 22 +02 ]~" (2.38a)

Again we can analyze equation (2.38) in two distinct

regions. First consider the region where z'sa<<1, the second

term of equation (2.38a) is small compared with the first

term, and hence equation(2.38) is reduced to
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i=(—B/a)z'"' (2.39)

This is a linear differential equation whose solution is

simply z(t)=z(x,0)exp(-Bk‘t/a) for the initial curve

z(x,0)~sin(kx), and thus the decay is very rapid. When z'>>a,

equation(2.38) turns into:

z°=-B,§2-(|z°(z") (2.40)

The solution to equation (2.40) has been studied by Ozdemir

and Zangwill (Ozdemir and Zangwill, 1990) and it was found

that:

z(x,t)=z(x,0)/(l+}it) (2.41)

where l is constant. The shape preserving solution can be

fitted very closely to a sinusoidal function. Because of the

extremely large decay speed in the region where 2': 60, the

overall surface profile is broken into two kinds of regions:

one is totally relaxed and located at tOps and bottoms of

the surface(facets); the other regions are those between

facets whose decaying behavior is governed by equation

(2.40).

We studied the numerical solution of equation (2.38)

using finite difference methods. The initial condition has

been set to be sinusoidal again. Because a sine-curve is not

the eigenfunction of equation (2.40), it is anticipated that

the surface profile between two facets will slightly deviate

from its initial shape as seen from Figure 2.12. This plot
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shows that right after the simulation started, small facets

have been created at the tops and bottoms of the initial

sine curve. The size of facets grows with time while the

vertical position(height) of facets decreases(£ignzg_2&11).

It is noticeable that the behavior described by equation

(2.38) is very similar to that discussed in the previous

subsection. Actually, if we regard the miscut angle a as

the parameter 90, the surface tension in the anisotropic

l/2

model has the form:7=y0+yl(a2+z'2) which will certainly

give the same result as using the substitution

9—) 02+65 —60. The miscut angle (1 thus provides a physical

explanation of 60 introduced in the anisotropic model.

To conclude, a non-equilibrium crystal surface alters

its profile mainly through surface diffusion when the bulk

chemical potential is close to that of the environment the

crystal resides in. Above the roughening temperature, the

diffusion process is governed by a continuum model in which

the chemical potential on the surface is proportional to the

curvature and consequently a diffusion-like equation that

relates the alteration rate and its surface geometry can be

derived to closely describe the diffusion process. When

below the roughening temperature, the diffusion process is

complicated owing to the fact that the surface tension has

cusp singularity points in the direction of the crystal

planes of high symmetry. To circumvent this difficulty, two
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different models have been presented. The first is to de-

singularize the cusp point by making the second derivative

of the surface tension finite through introducing a small

constant. Consequently, the corresponding differential

equation governing the diffusion process yields solutions

that can explain the experiments that facets are observed at

certain locations. The second model studied the chemical

potential in more detail and proposed that the formation of

facets is possible when the surface is not perfectly

parallel to the lattice plane, but with a small miscut angle

a. If one regards the small parameter 90 as a, the two

models are mathematically very similar.



CHAPTER THREE

MORPHOLOGY OF THIN METAL FILMS

W

From an experimental point of view, thin metal films can

be prepared by a wide variety of techniques. The most common

method of preparing thin films is the so-called evaporation

method(Pashley,1965). This involves condensing the metal

onto a substrate with the vapor source being provided by

evaporation. The first important factor influencing film

growth is the quality of the vacuum in which the evaporation

is carried out. It is quite clear that the various types of

chemically reactive or condensable contaminants which are

present in such a system could have a major influence on the

growth and structure of the films. Modern vacuum technology

has enabled the production of high quality vacuums with

pressures of 10"11 torr(Umbach etc.,1991), which provides a

very clean condition for deposition studies. Many different

techniques are utilized for providing vapor sources, the

simplest being a tungsten or molybdenum spiral which is

heated by passing an electric current through it. The rate

of deposition, and the final film thickness , often needs

careful control, since the structure of a deposited film can

depend considerably upon both parameters. It is common to
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heat the substrate during deposition. The heating can have

important effects in relation to the cleaning of the

substrate, as well as enhancing recrystallization effects

and general structural changes during growth, which can be

important for increasing grain size. The invention and

improvement of electron microscopy have changed the method

of surface investigation significantly. The electron

microscope has a number of advantages for studies on thin

film growth: (1) the very high magnifications possible,

associated with a resolution below 1nm, allow very detailed

study of localized regions of specimens; (2) selected area

electron diffraction allows detailed correlation between the

image and the electron diffraction pattern; (3) internal

crystallographic structure can be detected and analyzed in

detail; (4) direct observation of the growth of thin films

can be made by carrying out the deposition inside the

microscope. Eiguzg 3.1 gives snapshots of the morphology of

an indium film on a silicon oxide substrate. In the next

section, I will discuss some interesting features of those

diagrams and present a theoretical model to simulate the

formation of these features.

3. Coa esce so a d e co on t etal lms:

As shown from many experiments(Paudit etc.,1982), most

metals do not wet insulating surfaces such as glass,
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graphite or silicon. In such case a thin film grown by

thermal evaporation passes through a sequence of

morphological changes as the film thickens. When

sufficiently thin, the film consists of isolated, compact

islands which, as more material is deposited, grow and

coalesce into larger, but still compact islands. At some

critical island size, islands that touch no longer fully

coalesce into near-equilibrium compact shapes but instead

form elongated wormlike structures. As growth proceeds,

these ”worms" grow longer and connect to form a percolating

structure, and finally, the channels between worms fill in

to form a continuous, hole free, film. This morphological

sequence is illustrated in Eiggzg&_1‘1 which shows an indium

film evaporated onto a room temperature SiOZ substrate. For

this film, the critical area coverage for percolation is

quite high (pc=0.82), a result of the fact that the channels

between worms are very long and narrow compared to the width

of the worms. High pc is a puzzling feature of the

morphology of many metal films grown on warm substrates.

As can be seen in Eiggzg_;‘;, in the early stage of

growth, the film has a distinctive morphology, consisting of

compact islands, all of about the same size, separated by

gaps which are comparable to or smaller than the island

radius. Actually, the gaps are filled with a population of

smaller islands which do not show well in these SEM
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Figure 3.]: SEM images of indium on an $02 substrate. showing

complete coalescence; partialdifierent stages: the early

coalescence; wonny stnicture; percolation and hole fiilmg.
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photographs. During film growth, islands are always growing

because of deposition of new material and accretion of

smaller draplets at the island perimeter. In this early

growth stage, when two islands touch, they quickly coalesce

in to a larger island, and in doing so, wipe clean part of

the substrate which was covered. This wiping action

constantly creates gaps comparable to the island radius, and

results in ever-larger islands separated by gaps filled with

smaller islands nucleated since the last wipe.

At a later stage of growth, full coalescence no longer

occurs. Instead a partial coalescence of touching islands

occurs, resulting in wormy structures and little wiping.

To accurately mimic the film growth we have described ,

a model must have the following key features: an early stage

of growth and coalescence of compact islands, a crossover to

wormy structures and, under certain conditions, a very high

pc. The morphology of discontinuous films has been analyzed

in terms of percolation models. Various geometrical

exponents (fractal dimensionality, correlation length etc.)

have been measured in real films and are found to coincide

with values found in 2D pure percolation patterns. It may

therefore be natural to assume that simple lattice model

with short range attractive interactions will accurately

reproduce the morphology of real discontinuous films.

However, we have found that a large class of lattice models
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fail to reproduce the essential phenomena of island

coalescence, worm growth, and high pc that occurs in the

growth of many thin metal films on room temperature

substrates.

The long and intertwined worms seen in Eignzg_1‘1 (lower

right) appear to be repelling each other. We will show that

a simple continuum model which incorporates the essential

feature of interrupted coalescence of large islands.and

which contains only short-ranged attractive interactions

accurately reproduces this apparent repulsion and high pc

which results from it.

Direct observation of growing metal films on warm

substrates has verified that full coalescence occurs when

the metal islands are small enough and partial coalescence

occurs when the islands reach a radius greater than a

critical value Re. In the regime that we are considering,

the substrate temperature is well below the droplet melting

temperature and the mechanism of coalescence is surface

diffusion (not bulk diffusion). The mechanism for the

interruption of full coalescence beyond a critical island

size is discussed in section 3.3. Here we consider Rc to be

determined by experiment.

The full coalescence stage has been previously studied

by Meakin and Family(Family and Meakin, 1988), and here we
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extend their model to include the island-to-worm cross-over

and eventual percolation.

The MFM is defined as follows. All islands are assumed

to be circles (D-2 model) or spherical caps (D-3 model).

Droplets of radius R0 rain down ballistically on a

substrate. If they land on a pre-existing droplet, a new

droplet of size

RD=R,°+R,° (3.1)

is generated. Here R1 is the radius of the pre-existing

droplet on the surface, while R2=Ro is the radius of the

droplet that is ballistically deposited onto the substrate.

D is the dimension of the depositing droplets (D=3 for

spherical caps, D82 for depositing circles). The center of

the new droplet is located at the center of mass of the old

droplet and the added droplet. If the new droplet now

overlaps an adjacent droplet on the surface, these two

droplets also coalesce according the rule (3.1). Complete

relaxation of the pre-existing droplets on the surface

occurs before the next new droplet is ballistically added to

the surface. According to this rule of coalescence, computer

simulation is easily carried out. Let the 2d coordinate

(x,y) stand for the position of a draplet which has the

shape of a circle. The original droplets have radius R0 and

are deposited randomly over system. The non-trivial physical

quantities are the coverage of film on the substrate and the
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droplet size distribution. In the case D82, the total area

covered by droplets is independent of the size distribution,

therefore the coverage will be proportional to the number of

deposited droplets. For D83, the situation is different, the

coalescence rule conserves volume, the height of a spherical

cap is proportional to its radius. £1gn:§_1‘z shows the

droplet configurations of 3D spherical caps(Figure 3.2a) and

2D circles(Figure 3.2b) on square substrates. Indeed, they

have distinct size distributions which are statistically

shown in £1gg;g_;&1. £1ggzg_1‘1g shows the droplet size

distribution for the case D83. The distribution has two

maxima located near RsRo and RsRm, where RE is a length

scale that grows with total deposited droplet number. The

asymptotically bi-modal feature is not shared by D=2

droplets which have only one maximum near R=Ro(£iggzg_;‘1p).

The interrupted coalescence model (ICM) we introduce is

a natural generalization of the Meakin/Family Model(MFM) to

include a cutoff radius Rc above which overlapping islands

no longer coalesce. The ICM rule are thus:

a) If R1<Rc or R2<Rc droplets coalesce according to

equation (3.1). The new droplet is at center of mass of the

old droplets.

b) If R1>Rc and R2>Rc the droplets do not coalesce.

Rc sets the length scale at which the cross-over from the

droplet to wormy stage occurs. In the ICM we must also
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Figure 3.3: Droplets size distribution (a): D83, showing two

peaks,oneislocatednearR=Ro;theotherincreaseswiththetotal

number of deposited primary droplets. (b): D82: the distribution

is monotonic, small size droplets have a large population.
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define the radius R0 of the small droplets being

ballistically deposited onto the surface, and the edge

length L of the system. The important independent variables

in our simulations are thus the ratios Rc/Ro and L/Ro. We

consider the D=2 and D=3 cases, but restrict our attention

to 2-dimensional substrates (d=2), as the d=1 case has a

trivial PC. Finally, note that when Rc/Ro<1.0, no

coalescence occurs, and both the D=2 and D=3 models return

to the D=2 inverse Swiss cheese model (Pc=0.676i0.002).

Eiggzg 3.5 presents the growth morphology generated by

the ICM for the case Rc/R088, L/Ro-ZOO and D=3. It is seen

that in the early stages of growth, the model is very

similar to the MFM. As deposition continues, the large

droplets begin to overlap, until finally a percolation path

of the large droplets occurs. The configuration at

percolation (Eiggrg_géfip) shows the high percolation

coverage generated by the ICM (in this configuration about

0.82).

The reason for the occurrence of high Pc is that the

initial droplet state is correlated, and that percolation

from this correlated state requires a higher coverage than

would random percolation of discs (inverse Swiss cheese).

The small droplets (R<Rc) do not lie on the final

percolation path, so the large droplets play the dominant

role. Given this, we can think of the final percolation path
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Figure 3.4: ICM simulation with URo=200 and lit/11088.0. (a):
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as evolving from a set of repelling discs (the large

droplets) with packing fraction about 0.57 (as measured on

configurations such as Eigg;g_1‘5§). If we now increase the

radius of these random discs (at a rate proportional to

their original radius - to model the cross-section available

to the ballistically depositing droplets), we naturally find

a high PC. If the original droplets lie on a triangular

lattice Pc=0.907, while if the initial state is like random

packing, we expect 0.82<Pc<0.89. The point is that starting

from a distribution of repelling droplets always leads to

high PC, and given an initial droplet configuration such as

Eiggzg_;&5g, it is not surprising that the ICM model does

too.

It takes the MFM many iterations to settle into a self

similar evolution. Prior to this equilibration time, the

droplets are not as strongly correlated. We would thus

expect that small Rc/Ro implies lower PC. This expectation

is supported by the data of Eiggzg_1&§, which shows results

for Pc as a function of Rc/Ro for D=3.

We have also studied the D=2 ICM model. Although the

MFM in D=2 leads to a very different distribution of droplet

sizes (bi-model in 3-D, monotonically decreasing in 2-D),

the final percolation coverage in D=2 is still enhanced in

the ICM. This is illustrated in Eiggrg 3.§ which shows two
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Figure 3.6: ICM simulation for D=2 with UR0=200 and

Rc/Ro=8.0. (a) early stage: similarly the early stage is identical to

the MFM case. Droplets are isolated. (b) percolation stage: the

introduction of the critical radius naturally leads to the

percolation structure.
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Figure 3.7: Percolation coverage as a function of lie/Ro for D=2 :

Here the percolation coverage is ealculated from averaging 200

samplesatpercolationforenchpoint. ltisalsoseenthatasRcho

increases from 1, Pc has a bigjump, but smallerthanthat in D=3.
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examples of the D=2 morphology and in Eiggzg_;&l which

presents Pc(Rc/Ro)

An important feature of the dependence of Pc on Rc/Ro,

in both D=3 and D=2 (see Eiguzg§_1gi_gng_1gl) is that there

is a first order jump in P6 as Rc/Ro—n. At Rc/Ro=1.0-,

Pc=0.676i0.002 in both D=2 and D=3, while we find that

Pc(l.0+)=0.745i0.005 (D=3) and Pc(l.0+)=0.740i0.005 (D=2).

These non-analytic changes in Pc at Rc/Ro=l.0 are physically

reasonable, because, as soon as Rc/Ro>1, all the droplets

that are being ballistically deposited onto the surface will

coalesce with any pre-existing droplet with which they

overlap i.e. an infinite sequence of coalescence events

occur in an infinite system. When Rc/Ro=1.0- however, no

coalescence at all occurs.

Since there is a jump singularity in Pc at Rc/Ro=1.0,

we must consider whether the universality class of the

percolation geometry is altered for all Rc/Ro>1. We have

tested the universality class of the percolation problem at

Pc in the ICM through calculating the cluster size

distribution, and find that, in the medium size range, the

distribution complies with the scaling law very well. figure

lgfi shows the cluster size distribution at the percolation

point. According to the scaling theory of percolation, the

size distribution na near the percolation point has the

scaling form:
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".(p)=3"f[(P-P.)S"] (3.2)

where t and c are critical exponents. The precise form of

the scaling function f(x) has be to determined by computer

experiments and other numerical methods. Other critical

exponents are to be expressed using I and 0. Here we omit

the derivation and give the results only(Stauffer,1985):

a=2-(r-l)/a (3.3a)

fl=(r-2)/a (3.3b)

y=(3—19/a (3.3c)

t is measured from the slope of a log-log plot of n,, y can

be determined from the measurement of average cluster size.

The values are listed in Igblg_3‘1 which shows the

comparison with conventional percolation results(Stauffer,

 

 

 

 

 

 

1985).

Table 3.1

2d 20 on 2d 30 on 2d

a -2/3 -0.7li0.08 -0.70i0.08

B 5/36 0.18:0.08 0.1510.08

1 43/18 2.35:0.04 2.40:0.04

t 187/91 2.07:0.04 2.06:0.04

0 36/91 0.39:0.04 0.39i0.04      
It is seen that within a comfortable tolerance(less than

10%), the critical exponents in the ICM model are matched

with the results from percolation theory. Therefore, the ICM
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percolation process appears to remain in the same

universality class as the uncorrelated case.

We note that the wormy structures of Eiguze 3.1 do not

at first sight resemble the percolation structure of Figure

3.4b. The main reason for this is that sharp grooves occur

at the intersection of the circles in Eiggrg_1‘1p, but do

not occur in Eigg:§_;‘1. In a real film these grooves would

round out to a radius of curvature RC, producing the wormy

appearance so characteristic of these films. Unfortunately,

we have found no efficient method for simulating this

rounding process in random continua shown in Eigure 3.52.

In summary, we have introduced a simple continuum model

of film growth. Our model is an extension of one by Meakin

and Family and includes a cross-over from an early island

stage to a later wormlike stage. This model provides a

natural explanation for the high Pc observed in many thin

metal films grown on insulating substrates.

 

As stated in last section, in many film/substrate

systems, the depositing material does not wet the substrate,

so that in the initial stages of growth, distinct islands of

the deposited material form (Volmer-Weber growth)(Pashley

etc., 1964). As deposition continues, these distinct islands

reach a critical size Rc(Rc-dependent on substrate
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temperature T, deposition rate and anneal time amongst other

things) at which they connect together to form a percolating

structure, and further deposition soon leads to a continuous

thin film. The case of layer by layer growth is the

exception rather than the rule, as films may be rough either

due to non-wetting, strain mismatch, due to kinetic

roughening, or due to a combination of these processes. The

early stages of film growth, and in particular the value of

Re are important in controlling the final morphology of

polycrystalline films.

A detailed experimental study of the Re dependence on

deposition rate t and substrate temperature T for Pb has

been performed on very smooth and clean amorphous Sioz

substrates(Dubson and Jeffers 1994). To explain this data, a

kinetic freezing model has been developed and provides a

semi-quantitative explanation of the deposition rate and

substrate temperature dependence of Re. In the kinetic

freezing model, it is considered that the complete

coalescence time for two spherical droplets is proportional

to the fourth power of radius, and thus the process of

complete coalescence is overtaken by deposition. However, we

also noted that the kinetic freezing model predicts a

stronger than observed dependence of Rc on deposition rate

(Jeffers etc., 1994), and suggested that this reduction in

coalescence may be due to substrate inhomogeneity pinning
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the islands in meta-stable states. Suppose that the surface

energy is isotropic, the gain in surface energy in forming a

compact shape from an elongated single crystal island scales

as R2, while it will be seen that the pinning energy scales

as R3/3. It would thus seem unlikely that pinning can

produce metastability of elongated single crystal metal

islands. In contrast, an elongated metal island containing

one or more grain boundaries in its interior is easily

pinned in a meta-stable state. The combination of grain

boundaries and substrate inhomogeneity thus provides an

important mechanism for strong substrate pinning effects on

the growth morphology of polycrystalline films on non-

wetting substrates.

Eiggzg_1‘2, gives experimental results for TC(R), the

critical temperature below which no complete coalescence

takes place at fixed deposition rate. It is obvious that

Tc(R) increases with R. The experimental data for the

Pb/Si02 system is shown as the solid dots in Eiggre 3.2.

Islands of size R>RC(T), touch and form a contact, but do

not coalesce, and this region has been labeled sintering as

it is similar to neck formation during the initial stage of

sintering of granular aggregates. The dotted line is a

schematic of experimental results on the bulk melting of

lead, which has a size dependence TM(R)=T,,,(00)(l—c/R), where c

is related to the densities and surface energies of the
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liquid and solid phases, and to the latent heat of the

liquid-solid transition. Typically metal clusters have to be

of radius of order Snm before a significant (of order 10%)

depression of bulk melting occurs(Buffat,1976). Between the

bulk melting curve and the curve Tc(R), there is a broad

regime in which solid metal islands coalesce, predominantly

by surface diffusion. In this regime, the island size

distribution can be described by breath figure models. As

the island size increases during growth, the film crosses

the curve Rc(T). At this point the metal islands do not

fully coalesce into compact shapes, elongated metal islands

are produced, and the film reaches the percolation point

shortly afterwards.

Since the substrates we are considering are amorphous,

separated metal islands grow with different crystallographic

orientations. Thus when they first overlap, there is a grain

boundary at their intersection. This grain boundary is

eliminated during the coalescence process, as evidenced by

the fact that for droplets R<<RC(T), each grain is a single

crystal. However, when elongated metal islands first form,

they usually contain a grain boundary in their interior,

suggesting that grain boundaries play an important role in

the energetics of coalescence.

When a grain boundary intersects the free surface of a

solid, it forms a grain boundary groove. The equilibrium
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grain boundary groove angle, w, is related to the surface

energy of the metal, 7, and the grain boundary energy, yb.

In the case of isotropic surface energies, the geometry is

as depicted in £1ggzg_1;lga, which leads to the expression,

7:. =27008¢ (3.4)

' For the purposes of illustration, we specialize to the case

of the wetting angle 9-90°, and with the variables as

defined in Eiggrg_;‘1g, the sum of the surface and grain

boundary energies is given by:

E = mR}(1+cosa)+R§(1+cosm]+ ngn—cosm- w] (3 . 5)

where

Rb=Rlsin a/sin(a- V!) (3.5a)

The angles a and B are as defined in zigu;§_;;1gb. Here, we

have used the fact that the grain boundary is a segment of

the surface of a sphere, which bisects the groove at the

triple point. It is assumed that the grain boundary energy

is isotropic. Although the surface energy is certainly

anisotropic, as evidenced by the anisotropic shape and

significant flattening of parts of equilibrium crystals,

this should not change our prediction for the scaling

behavior of Tc(R). In fact the only thing that is important

for our argument to hold is that the presence of the grain

boundary lead to unstable equilibrium of an elongated metal

island. This feature should also be true for appropriately



7O

chosen anisotropic equilibrium and non-equilibrium crystals

shapes.

To ensure that the volume, V, of metal is conserved

during coalescence, we impose the condition,

V=(7r/6)[R,’(2+3cosa—cos’a)+R§(2+3cosfl-cos3fl)]=const. (3.6)

For 6<(90-w), the grain boundary groove tends to grow all

the way down to the substrate(Millins,1957), and hence

separate the elongated island into two single crystal

grains. If 9>(90-w), there is a finite groove depth, and

the energy by equation(3.2) is a monotonically decreasing

function of the size of the larger metal island R2(see

£1gu:g_;&;1). In particular, when the two metal islands are

nearly the same size R/Rzzl, there is a very small slope

in the surface energy curve and hence the driving force

toward coalescence is also very small. It ought to be

pointed out that the small slope is due to the presence of

the grain boundary. In the absence of a grain boundary,

there is a steep slope in the analogous surface energy plot

of elongated metal islands. Since the energy curve(£igu;e

1.11) is flat for nearly equi-sized islands, relatively weak

contact line pinning, by for example surface irregularities

or impurities, is able to prevent the metal islands from

coalescing. Once a pair of islands is pinned in a meta-

stable state, islands which are of similar or larger size,

which attach to the pinned pair further stabilize the
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structure. In this way, grains aggregate to form the

percolation structure characteristic of the morphology of

films grown on non-wetting substrates. Although the early

coalescence stage does have a strong effect on film

morphology, the large scale geometry at percolation is

insensitive to this short range correlation, as expected

from universality arguments.

We now concentrate on the case 9>(90-w) which is

applicable to many metal/insulating substrate systems, where

the wetting angle is typically quite large, but 90-w~10° for

high angle grain boundaries (where nfq/3). We develop a

scaling argument to estimate the temperature at which

thermal fluctuations can activate a pinned elongated metal

island from a meta-stable state. We build on the analysis of

contact angle hysteresis in fluid flow through capillaries

(Joanny and de Gennes,l984). Here we calculate the energy

due to the slight deformation n(x) of a contact line. The

surface profile of the liquid in the absence of bulk

external f:;ld‘;atisfies Laplace equation:

2 z

:a—z-i-E: (3.7)

with the boundary condition that z vanishes on the contact

line: z(x, n(x)) = O . For 71(x) = O,z(x,y) = ysin 6, which corresponds to

the ideal case. The solution of equation (3.7) can be

expressed as:
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. sinfim , ,
z(x,y)=ysm G-Tirflx)y2+(:-x.)2dx (3.3)

The incremental energy due to the presence of n is expressed

as

E. =-;- I drdyszY—(sin 6021 (3.9)

where y is the surface tension of liquid. Inserting equation

(3.8) into (3.9), and integrating over y, one has

. d

E.= 78m aldrrflx) (3.10)

0

 

d

Here 1/d is a low cutoff wavenumber. Defining

. 1"
2r zgjrflxyir (3. 11)

0

as the deformation magnitude, the energy increment becomes:

Ed=%kfl2 (3.12)

Where k==ynn26,independent of system size. Any deformation

of the contact line will cost energy. In reality, the

substrate is far away from perfect smoothness and

homogeneity, therefore a deformation may be energetically

favorable. Suppose the correlation length of random

potential is smaller than the deformation size n, the energy

gain is proportional to square root of deformed area JnL(

note that it is.JnL not nL due to randomness)(Robbins and

Joanny,1987) where L is the contact line length

E,=-h./nl. (3.13)
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where h is constant depending on pinning strength and liquid

surface tension. Thus the total energy change due to the

slight deformation of contact line is:

1

E(U.L)=5kfl’-NUL (3.14)

The minimization of equation (3.14) gives the deformation

magnitude

Lhz l/3

—- 3.15"4“[41‘2] ( )

and the corresponding energy gain:

m

5,0.) = 4.754%) L”3 (3.16)

while L=2nR, it thus follows that the pinning energy scales

as R3/3, as mentioned previously.

Although this argument was developed for liquids, it

applies for solids provided a significant fraction of the

exposed faces of the crystal are above their roughening

temperature. If the temperature is sufficiently high,

thermal fluctuations depin the contact line. We estimate the

depinning transition by comparing the thermally induced

contact line wandering with the disorder induced wall

wandering of equation (3.15). To calculate the typical

amplitude of thermal wall wandering, we consider the height-

height correlation expression

G(r) = ([z(r)z(0)]) (3 . 17)

The Hamiltonian related to the surface profile is roughly

expressed as(Week,1980):
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m=fidxayBy(V-z)’] (3.18)

where y is surface tension. From the Boltzmann distribution,

the correlation function becomes:

G(r) = ([z(r)z(0)]) =E i”— (3 . 19)
2

4

Turning the sum over q into an integral and introducing a

unit lower cutoff scale(lattice spacing), the thermal

fluctuations leads to the wandering amplitude

17, z(kBT/Znyln R)"2 /sin 0 (3.20)

Equating nT and flat

k,7;(R)ch2’3/lnR (3.21)

with c given by,

cz2n'ysin «trill/21:2)”3 (3.22)

Notice that k in equation (3.21) relates to y and 9 through

k=275in 9, thus the coefficient c is inversely proportional

to (sin9)'2/3. The smaller 9 is, the more effective is the

pinning, and hence the larger Tc(R) is (of course this

breaks down if 6>(90-w)is violated). As expected, larger h

implies larger c, which leads to larger TC(R). These general

conclusions hold even when more complex forms of thermal

Hamiltonian are used, although the R dependence in equation

(3.7) is clearly altered. Although based on several

oversimplified assumptions, equations (3.20)-(3.22) provide

a useful guide to the expected effect of substrate

inhomogeneity on growth morphology.
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So far, the experimental results are for Pb on very

smooth and clean amorphous 3102, and even there, there are

clear indications that both pinning and kinetic freezing

effects are important in determining film morphology. It

would be useful, although difficult, to develop a theory

addressing the combined effect of kinetic freezing and

substrate pinning. Another useful approach is to try to

experimentally isolate these two effects by varying

substrate roughness, substrate temperature and deposition

rate. For sufficiently strong substrate disorder, it is

probable that a strong pinning theory would be needed

instead of the weak pinning result used here.



CHAPTER FOUR

MOLECULAR DYNAMICS STUDY OF METAL CLUSTERS

W

In this section, I will review some fundamentals of

statistical mechanics and thermodynamics that are relevant

to our analysis of computer simulations. We assume all

particles are identical, have three spatial degrees of

freedom, and obey classical mechanics defined by a total

Hamiltonian flfl In the canonical ensemble, the number of

particles N, the volume V and the temperature are held

fixed. The motion state of the system is represented with

generalized coordinates r=(r1,...rN) and conjugate momenta

p=(p1,...pN). Generally, fl’is a function of r and p. The

probability density at (r,p) in phase space is of the form

‘P(N.V. T) = CXPl-WUJH (4 - 1a)
 

l

N!h3”Z(N,V, T)

with

l

AHh“

 2(N.V,T)= fidvdpexpt-Mrmn (4.1»)

The fundamental relationship between statistical mechanics

and thermodynamics is given by

T(N,V,T)=—lenZ(N,V,T) (4.2)

where T is Helmoltz free energy and is minimized at

equilibrium. The Hamiltonian fl'is a sum of kinetic energy

71p) and potential energy TKr) for most systems we are
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discussing: ififl4TC Therefore, the momentum part of the

partition function Z can be integrated out:

 

__ Q(N,V,T)

Z(N,V,T)-————N!A3N (4.3)

where Q and A are given by:

Q = j eXPI-flWrndr

4.3(kaT )1/2 ( a)

A== 2

h

The canonical average of a variable is given by:

(A) = j Aexp(—fi}{)/Z(N,V, T) (4.4)

The average of Q'thus is easily obtained: CT)=3A%T/2.

Molecular Dynamics simulation calculates the positions and

velocities of particles in the systems from the Hamiltonian

described above. The equations of motion of each particle

comply with Newtonian Dynamics:

gEv--——- /n: (4 5a)

dt 6p, 9" '

. ax av

95%“?“7 “-5”

In traditional molecular dynamics, the total energy E for a

fixed number of atoms in a fixed volume V is conserved as

the dynamics of system evolves in time, and the time average

of any property is an approximate measurement of the

microcanonical ensemble average of that property for a

thermodynamic state of N,V,E. However, for certain

applications, it may be desirable to perform dynamic

simulations at constant temperature. Several artificial
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inventions are used to achieve this goal and we will focus

on the Extended System Molecular Dynamics(ESMD) approach

(Nose,1984; Jellinek and Berry,1989; Anderson, H.C.,1980)

which allows the system to thermally contact with a heat

reservoir represented by an additional degree of freedom s.

To realize the objective that the average kinetic energy is

fixed at equilibrium, the Hamiltonian is postulated to be:

9f=2p3l2msz+'V(r,)+p,2/2Q+nglns (4.6)

P. is the conjugate momentum of s; Q is a parameter of the

heat reservoir and behaves as a mass for the motion of s; kT

has its regular meaning; it will be shown that g is

essentially equal to the degree of freedom of the physical

system. It is also assumed that the Hamiltonian equations of

motion of r and s are valid:

 

Erlhflbfl

dt 01, a

Jr,- _0’9‘{_ pi

dt - d),- -m,sz (4.7a)

and

ch 65 s t

(4.710)

£__£{_=Ps

d1 40. Q

It is easy to prove that 5{ is conserved through combining

equations (4.6) and (4.7). Therefore, the micro-ensemble

partition function can be expressed as:



 

whe

to

v}
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z=jdp,jdsjdpjdrx5{a{-E] (4.8)

where E is total energy. If we use p'=p/s, r'=r, and set

g-3N+1, the degree of freedom of the system, 2 yields the

following expression after integration over p, and s:

z=cfidp'w'exp[-fi(q'+a/)] (4.9)

where C is a constant. This is exactly the canonical

ensemble partition function. The MD simulation is to solve

the equations of motion (4.7) for appropriate initial

conditions.

- . -

One very important aspect of molecular dynamics

simulation is to have a good potential describing the

interactions of atoms in the system. The Lennard-Jones

potential is famous and successful when applied to rare

gases, e.g. Ar and Xe. But it fails to predict and explain

many experimental data of metals, especially the noble and

transition metals. For instance, the Cauchy relation of the

elastic constants Clz/C4¢=1(Landau,1984) is valid for any

pairwise central potential, of course including the Lennard-

Jones(LJ) potential while the experimental data for this

ratio is much higher: 3.7 for gold and 1.5-3.3 for

transition metals(Ercolessi etc.,1988). Another failure of

the LJ potential and other two-body interactions is that

they predict the cohesive energy BC, the energy needed to
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remove an atom from the bulk lattice is essentially equal to

the vacancy formation energy Ev; while the experimental data

show that EV/EC=O.25 for gold and about 0.35 for transition

metals. In a two-body system, the melting temperature is

usually near 0.1Ec; in gold, on the other hand T_~O.O3Ec/k8.

Some of those problems may be cured by adding new terms

which depend on the total volume of the system in the

potential. Therefore, it is clear that, to describe metals,

an adequate model must include many body contributions.

In metals, the conducting electrons are loose and their

collective Coulomb interaction with ions is the force which

maitains the lattice structure. For transition and noble

metals, the conduction electrons are d-electrons and d-

electrons. Generally the s-electrons form a very broad

energy band which overlaps with the narrower s-electron

band. The following calculation based upon the work by

J.Friedel(Friedel, 1969) and Gupta(Gupta, 1981) is to sketch

an interaction form starting from the tight binding model.

First, one considers d-electrons which have 10 atomic

states. For the sake of simplicity, the density of states is

represented by a rectangular function of width W and height

10/W. The Fermi energy E, for a metal with number 2 of d-

electrons is related to the bandwidth through:

EF=W(Z-S)/10 (4.10)
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The zero energy is at the center of the band. The cohesive

energy Ed from the d electrons is given by:

E

15,: [5,15% (4.11)

47/2

where p(E), the density of state has been assumed to be

constant. The integral then gives:

W’

E =—Z lO-Z 4.12. 20 ( ) < >

In the tight-binding model, the bandwidth W is determined by

the overlap integrals. The second moment of p(E):

m2

1 l

=_ 152 E)dE=-W2 4.13
#2 1041/2 A 6 ( )

On the other hand, u; can be expressed as:

u. =Z(kI(H-Eo)zlk) (4.14)
h

where H is Hamiltonian of the d-electrons and E0, the atomic

energy level at a selected site i can be taken to zero. k

labels the Block wavevectors. H2 is expressed in real space,

reading:

p. = (I‘IH’II')= 210mm)? (4.15)
2

where |i> denotes an atomic wavefunction of a d-electron at

site i. If only nearest neighbor overlap is taken into

account,

m=ZfW> MAM
133'

Here B(rij) is the hopping integral and ri is the distance
3
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between sites i and j. Combining all these equations and

eliminating W, one obtains:

Ed: 232(5)] (4.17)

132'

with C=(\/3/20)Z(10-Z). The hopping integral can be taken to

be of exponential form:

Ar) = 16.91"" (4 . 13)

where a is the bulk interatomic separation at equilibrium.

The equation above gives the d-band contribution to the

cohesive energy. The stability of the lattice requires that

there be a countervailing short range repulsive force, which

is provided by the compression of the free electron gas, in

the model, the s electrons. As the atoms are brought

together to form a solid, the free electron contribution to

the cohesive energy is at first attractive since the valence

charge density is expelled into a region of more attractive

potential. However as the interatomic separation is further

decreased, the potential reaches its minimum and the

repulsive force begins to dominate. According to this

picture, the short range repulsive force can be written as:

E, = 82e’M‘“ (4 . 19)

jai

and the parameter p characterizes the interaction range. The

total energy Ec=Ed+E8 ought to be minimized at r=a.

Consequently, the following expression can be obtained:
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-1 - - l/2- q - —

Isl-2V. [Zexpl 240.,- a)]] WZexpl p(r, a)] (4.20)
1:: 128'

where z is the number of nearest neighbors. For a specific

metal, the parameters p, q, and V0 can be determined by

experiments. While doing computer simulations, one just

needs the reduced expressions and any quantity in the final

results can be converted into real units by dimensional

analysis. To do that, we set a=1, Vb=1, thus the total

energy of a metal system with N atoms can be written as:

”2

N

V = —%Z [Ze‘mfl’] - AZe'M‘” (4 . 21)

F. pi

where A=q/pf . This energy form cannot be modeled by

pairwise forces because a two-body scheme implies a linear

dependence of energy of an atom upon its coordination;

Because of the presence of the square root term in the

expression, the energy is nonlinearly dependent on its

coordination. The potential has been used by many authors

(Bulgac,1992; Carson and Jellinek,1992) and proved to be

able to describe the bulk and surface properties of a

variety of metals well. Next, I will apply the potential to

gold clusters and study their equilibrium and dynamic

properties.
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The notion that small clusters might exhibit

distinguishable solid-like and liquid-like phases arose from

classical isoenergetic molecular dynamics(MD) simulations of

the 1970's(Briant and Burton,1975), largely of Argon

represented by pairwise Lennard-Jones interaction. Results

'of simulations indicated clearly that solid-like behavior

could be anticipated at sufficiently low energies and that

liquid-like behavior would appear at high energies( Berry,

1987; Jellinek etc.,1986). The typical curve of the

temperature versus energy is shown in Figure 4.1. This type

of behavior appeared for clusters with N>6 and was

interpreted as indicative of a first-order phase transition.

More recently, different potentials describing various

systems such as metal and carbon clusters have produced

similar results. The striking evidences of those simulations

inevitably raised the question of what the physical basis is

for the existence of solid and liquid phases in finite

systems, especially small clusters. The following argument

based on the thermodynamic point of view shows that it is

possible for small clusters to have a fairly sharp solid-

liquid phase transition. A solid-like phase can be

intuitively identified with a state of rigidity and liquid-

like phase with a state of floppiness. Hypothetically,

suppose an exact Hamiltonian describing a cluster could be
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solved, one would have the exact statistical properties of

the cluster and then one would know the cause of the phase

transition. In a theoretical study, most clusters are

customarily described by effective Hamiltonians that are

approximate in two ways. They are based on the adiabatic or

Born-Oppenheimer approximation which supposes separability

of the slow nuclear from fast electronic motion, and on the

assumption that the amplitudes of vibration are small

compared with the interatomic distances, the frequencies are

high compared with rotational frequencies and the moments of

initia are therefore nearly constant. The energy levels of a

cluster with the above approximation are described as the

electronic excitations plus vibrational spectra which are

surrounded by more detailed rotational energies. The density

of states D(E) of a system in such a rigid phase is higher

than in a floppy phase in the lowest range of energies. The

densities of states of both the solid-like and liquid-like

limits increase with energy, but D(E) of the liquid

increases much faster so that at sufficiently high energies,

the density of states of the liquid-like form becomes much

larger than that of the solid-like form. Here we introduce

an order parameter-like quantity ¢ to represent the

floppiness of a cluster, when ¢=1 the cluster is in the

completely floppy state while ¢=0 is the limit for the

solid-like phase. Consequently, at low energies, the



88

partition function Z(T,¢) mainly has a contribution from low

energy states and thus is a decreasing function of ¢. 0n the

other hand, at high energies, Z(T,¢) is an increasing

function of ¢. The free energy F(T,¢) has only one minimum

at ¢=0 at low temperatures and one minimum ¢=1 at high

temperatures. As the temperature is raised from the low

energy where only the solid is stable, D(E) near ¢=1

increases faster than that near ¢=0, so that Z(T,O)

increases slower with T than Z(T,1), and then F(T,O)

decreases slower with T than F(T,1). As T increases, it

reaches a value Tf at which the free energy F(T,¢) develops

a slope of zero at some value of ¢ at or near 1; that is

d7(T,¢)/0"¢1,=,I=O. At temperatures above Tf, F(T,¢) has two

minima. As T increases still further, it reaches a value Teq

for which the free energies at the two minima are equal.

Because F(T,¢) becomes monotonically decreasing at

sufficiently high T, and is a smooth function of both T and

¢, there must be a temperature Th at which the minimum near

¢=O turns into a point of zero slope; above Th only the

liquid-like form is thermodynamically stable. Figure 4.2

schematically shows how F(T,¢) changes with T and ¢. So far,

we have used the properties of the densities of states to

argue about how the free energy of a system changes as

temperature increases. It should be pointed out that, in

general, the range Tf<T<Th is the transition region. In the
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oncnummum.
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following discussion, the transition temperature( melting

temperature) is defined from our MD calculation results.

Both experimental data and simulations show that the

melting temperature Tm is dependent on cluster size N. The

experimental data are summarized in Eignzg_4;; for Gold

(Buffat and Borel,1976; Borel,1981). The dots represent the

experimental data and the solid curve is the fitting

function which is of the following empirical expression:

T, =T,(oo)(1-5r‘-) (4.22)

where the bulk melting temperature, Tmon)=1338K for gold.

The following argument presents a verification of the above

relationship from the thermodynamic point of view .

Consider a solid gold spherical particle of radius r.

Its total free energy includes the surface term and bulk

term, reading: F,=Mp+A7. M and A are total mass and

surface area respectively. 7 and u are surface tension and

chemical potential. Suppose the same amount of gold is in

the liquid state, the free energy is rewritten as:

F, =Mp'+A'7' Notice that the total mass remains unchanged

while the surface area is altered because of the density

difference of liquid and solid gold. At the melting

temperature Tm, F;=F,, which leads to M(p-;1')=Ar—A'r'.

Assume that Tm is not very far away from the bulk melting

temperature Tmow), u could be expanded and

p(Tm)-,u'(T,,,)=p,-p,-AT(S,-S,) where p,=,u3 at Tm(oo) and S is the
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entropy of unit mass. S,-S,=~L/7;0w) at the bulk melting,

where L is latent heat of unit mass. AT=Tm(oo)-T,,,. The

geometry of liquid and solid sphere has the following

relation:

. 2 _ 21
2,3A7-A7'=47'(’.7 ’17): 3 [7-7c[£’1) ] (4.23) 

M Ami/3 m. p,

Combining all these equations, one has:

25

AT 3 ,‘p]

= 7‘7"' (4.24)

Tn(w) rpL[ [pl ]

Here we have dropped the subscript of solid. The equation is

 

consistent with the empirical result equation (4.22) with rc

given by r.=(3/pL)[7-r'(p/p1)”’].

To verify the occurrence of a phase transition utilizing

MD simulation, we studied the caloric curve i.e. the

relationship between the internal energy E and the

temperature T which is proportional to the average of the

kinetic energy. In the ESMD( extended system molecular

dynamics) simulation T is an input parameter. Any computer

simulation is a speed and accuracy trade-off. The minimum

requirement for MD simulation is to satisfy the conservation

laws(total momentum, total angular momentum and total

energy) in the predefined tolerance ranges. The computer

program is printed out in Appgng13_5 in which we utilized

the predictor-corrector algorithm to solve equation (4.7).

The first step of the MD simulation is to choose the atom-

atom interaction. The potential we have used in describing
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gold clusters is equation (4.20) discussed in fig;§ng_1Lz.

The parameters for gold are a-0.288nm, Vb=3.81eV, p=10.15

and q=4.13. In addition, the mass of the atom has been taken

to be one so that the force on an atom is equal to the

acceleration at that time. The conversion from a reduced

unit to real time unit is summarized in Table 4.1:

 

 

 

 

 

Table 4.1

conversion red. unit real unit

time t 1.0 2. 12x10'13s

length a 1.0 0.288nm

energy E 1.0 3.81eV

temperature T 0.01 441K    
 

The time step St has been chosen from 0.002 to 0.02,

depending on the temperature; high temperatures require

small time steps and low temperatures could have relatively

large fit for the same accuracy requirement. But in our

calculations 6t never exceeds 0.02 in reduced units, which

secures the deviation of total Hamiltonian H in

equation(4.6) within 10". The caloric curves are obtained

for four different cluster sizes: N=55, 177, 381, 725 which

roughly corresponds to spheres of radii r=2,3,4,5

respectively. The initial conditions have been set to be of

total zero momentum and angular momentum, preventing

clusters from drifting or rotating. Clusters are set in a

vacuum(free boundary) and low temperature environment at the
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beginning. To observe the correct equilibrium quantities,

the system must reach equilibrium before any quantity is

measured. To achieve that, the system is run about 10,000

(0.1ns) time steps and a set of physical quantities(

typically internal energy E and kinetic energy K) are

attained. A subsequent 10,000 time steps are taken to

compare statistical results of those quantities with

previous ones. Typically 10,000-100,000(1ns) time steps are

entailed for the system to reach equilibrium. The total

internal energy E is calculated from averaging over another

100,000 time steps. The results are illustrated in Figgrg

4r4. Each curve has a sharp increment in E as temperature

increases past a certain value as indicated in the figure.

It is very noticeable that the increment in E and the

temperature indicated in Figgrg 4.4 become greater as system

size increases. A more obvious definition of the transition

temperature is from the specific heat curves Cv(T) that are

easily found from the caloric curves(Figure 4.4a). Each

curve of CV(T) has a maximum defined as the melting

temperature 7; which moves to the right as N, the system

size increases. Also the peak of Cv sharpens and approaches

to the bulk limit where Cv diverges at melting. Figgre 4.5

is plotted to compare the relationship of Tm and size in the

simulation with experimental data in Figgre 4.3, and gives

good agreement.
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An alternative criteria for the phase transition is to

look at the mean square displacement(m.s.d.) as a function

of simulation time t because atoms in the liquid show

adiffusive behavior while atoms in the solid do not. The

m.s.d. is defined as:

N

(w)2=%2[ri(t+7})—ri(7i)]2 (4~25)

ri(t) is position of atom i at time t. In calculating 5d,

the system reaches equilibrium first and the position of

each atom at time T1 is recorded as the initial condition

and results for an additional time t is used to calculate

(5d)2(t). t is fixed while Ti is arbitrarily chosen from

different values so that (Ed)2 is obtained from averaging

over various configurations. In our calculations, typical

data is averaged over 100 configurations and t is 10,000

time steps. The simulation is focused on the N=725 cluster

first. Figgrg 4.§ gives (6d)2 as a function of t at various

temperatures. The picture shows that (5d)2 versus t has

different behavior at low temperatures from high

temperatures. At low temperature, (Ed)2 is small and

independent of simulation time t and increases monotonically

with temperatures; at sufficiently high temperatures, (8d)2

is of roughly linear dependence on t and 6d has magnitude of

order of distance between atoms. The small T behavior is due

to the oscillation of an individual atom near its
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equilibrium position. The potential energy deviation 5V from

the ground state is approximately proportional to (5d)2 from

the harmonic approximation. The thermal average of kinetic

energy is roughly equal to that of 5V, therefore (Ed)2 is

approximately proportional to temperature T. The high

temperature properties of the cluster are a consequence of

atomic diffusion. High T allows structural changes which

create vacancies in the cluster and activates energetic

atoms to move into those vacancies. To quantify, the

diffusion constant is approximately measured from the slope

of (5d)2(t). The temperature dependence of D is shown in

Figurg 4. . In the figure, D is zero or immeasurable at very

small T. There is a large change in D at the melting

temperature Tm. But it is also very remarkable that D has

non-zero values even at temperature well below Tm. This

implies the presence of diffusion in the solid-like phase, a

seeming contradiction with conventional wisdom. Tm for

cluster N=725 is roughly 0.0243(1070K) while the temperature

T. at which observable diffusion phenomena occurs is about

800K. This phenomena was not observed for clusters with

periodic boundaries and therefore, one has to look into the

detail of surface atoms. Surface atoms are less bonded and

easier to activate than bulk ones. We need to calculate mean

square displacements of bulk and surface atoms separately.

It is impossible to define a complete surface atom because
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it has a certain probability to be embedded in the bulk at

certain time. But it is unambiguous to define a group of

bulk atoms in the center of the cluster at low temperature

since the time needed for those atoms to move to the surface

is much longer than our simulation time. Therefore, in

defining the bulk atoms, the position of center of mass of a

cluster is calculated first and then the distance of each

atom to the center. A threshold value of distance is set to

identify the bulk and surface atoms. Atoms within the range

are called bulk atoms and those outside of the range are

surface atoms. Using the same technique, we repeated the

calculation of 5d but treated the bulk atoms and the surface

separately. The comparison is made at different

temperatures(Figgrg_4r§). At very low T( less than 700K), 6d

for the bulk atoms is similar to that of the rest and

independent of time t but has a lower value. At a medium

range of T (800K<T<1000K), (8d)2 for bulk is still

independent of t but (6d)2 for the rest exhibits diffusive

behavior, i.e. roughly proportional to t. It is clear now

that in this temperature range, diffusion does not exist for

bulk atoms but does appear to the rest of the atoms

including surface atoms. At high temperatures(T>1100K), the

bulk atoms and the rest do not act differently because then

it is meaningless to define the bulk atoms and surface atoms

as each atom diffuses around the cluster. Again from the
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relationship of (5d)2 and t, one is able to estimate the

diffusion constants D of the bulk atoms and D. of the

"surface" atoms. Figgrg_4r2 gives D, as a function of

temperature T. It is seen that the surface diffusion

constant D. decreases as temperature is decreased. Below

800K, surface diffusion is very small. The same calculations

were done on a cluster N=381 and similar phenomena is

observed. The simulation data are summarized in Figgrg_4rig.

It is also found that the temperature below which no surface

diffusion is observed is roughly equal to 800K, the same

value estimated from the pervious cluster calculation. But

when applying the calculation to N855 cluster, the surface

diffusion and the bulk diffusion seem to take place

synchronously and no diffusion occurs prior to melting. For

the intermediate size cluster N-177, we did observe surface

diffusion at the temperature below but very close to the

melting temperature. Because of the difficulty in separating

surface and bulk atoms at temperatures near Tm, our

calculation results are not conclusive. In summary, surface

diffusion exists in large clusters( N>200) at temperatures

below melting. But if the temperature is too low(T<800K), it

is very hard to observe. T.(about 800K) does not change much

for various size clusters but the melting temperature Tm

decreases rapidly as N decreases. As a result, there exists

a critical cluster size NC and when N<Nc the melting
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temperature of the cluster is too small (T<800K) to have

surface diffusion below melting. A very rough estimate of

the critical cluster size gives Ncslso.

WWW

Current researches on the dynamics of metal clusters are

limited to the calculation of vibrational frequencies by

utilizing fast Fourier Transform(FFT). The direct structural

changes a small metal cluster may undergo have not been

studied. On the other hand, the advanced microscopes enable

experimentalists to observe single atomic motion(Ajayan and

Marks, 1988,1989). In this section, an effort is made here

to narrow the gap between theory and experiment through

investigating the shape change kinetics from a non-

equilibrium state to an equilibrium state.

Simply, a system in non-equilibrium means that the

system deviates from an equilibrium state, which possesses

the lowest possible energy. In reality, a system could have

many states with energies very close to the ground state.

Those states usually have extremely large energy barriers

between them. At finite temperature, the free energy F can

be roughly considered as a function of configurations. F has

numerous minima and each of them represents a meta-stable

state. Large energy barriers separate those states and makes

it difficult to transfer from one to another. The higher the
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temperature is, the more likely it is for the transition

from a metastable state to another to occur.

We study small clusters( sto ) first. The initial

configurations of clusters are set to be of an elongated

shape. The goal of our calculations is to observe the shape

change of the cluster. Initially, any portion of a cluster

will have same temperature. It is realizable when the

temperature is small because the typical number of time

steps necessary for a system to complete heat exchange is

much smaller than the time entailed to alter its shape

significantly( as will be seen below). We concentrate on

cluster N=41, which initially is approximately a 4 by 1

cubic rod(£igu;g 5,11). We adopted the steep quenching

method(Stillinger and Weber, 1982) to freeze the positions

of the active corner and edge atoms in order to maintain the

initial elongated shape. In the quenching process, we reset

the velocities of all atoms to be zero after a short period

of simulation. Consequently, the cluster quickly reaches a

very low energy state and keeps its elongated shape. The

shape parameter is defined by the radius of gyration r
9!

written as:

l

r82=FZ[ri(t)-rc]2 (4.26)

where rc is the center of mass (c.o.m) of the system that is

stationary because of zero total momentum; ri(t) is the

position of atom i. Geometrically, rg measures the position
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Figure 4.11: Typical initial and final configurations of cluster

N=4| in studying the kinetics of non-equilibrium shape change.

The upper figure shows an elongated structure which has a value

of r =1.65; the lower figure is the configuration afier reaching

equilibrium with rg=l.43.
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distribution of atoms with respect to c.o.m, therefore an

elongated cluster has a larger value of rg than a round and

compact one. With the restriction of constant volume, it

also measures effective surface area. A configuration of

large rg is unstable and tends to decay to states of smaller

rg values. Our MD simulation is to look at the time

dependence of r9. £1gu;g_1;12 presents the time change of rg

for a cluster N=41 at temperatures T=300K and T=360K. To

interpret the phenomena explicitly, two time scales tc and

tq are defined as indicated in the figure. tc called the

completion time,is the time step at which rg is

approximately at middle of the initial and final value. tq,

the decaying time characterizes the time step needed to

finish the transition of rg from high to low. In Eigure

5‘12, tq is of order of tens of thousands of time steps

while tc is roughly one million time steps. tc is strongly

dependent on the temperature. At very low temperature, an

elongated configuration in a metastable state may not alter

its shape for such a long time that a time scale loans has

no impact on the overall profile of the cluster. I did

simulations on an N=41 cluster at about half of its melting

temperature(24OK), and the simulation was extended to 107

time steps. No big change in r occured. It is found that tc
9

also has a dependence on its initial configuration. We fix

temperature and change the initial condition for the cluster
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N-32 and find that tc has a distribution so broad that a

simple statistical analysis failed. Eigu;g_1L11 shows a log-

linear plot of distribution of tc, indicating that only

logtc has reasonable statistics. As to the system size

effect, we fixed temperature and chose clusters N=59 and 67

for comparison with the cluster N=41. We did observe that tc

increases as N increases. Nevertheless, the melting

temperature is also increasing with N, so the temperature

difference from melting point is also increasing with N.

In large clusters, it is more difficult to observe

substantial alteration in rg at low temperature, therefore

we restrict our calculations to temperatures close to

melting. The clusters chosen are N=711, 613, 515, 417, 319

and 213. First we estimate the melting temperatures of these

clusters and find that Tm=0.0242, 0.0238, 0.023, 0.022,

0.021, 0.019 respectively. Again, the starting profiles of

clusters are set to be elongated and the radius of gyration

is calculated as a function of temperature. We run the

simulation up to 3,000,000 time steps. Our calculation

results are presented in £1gu;g_1;15, which shows how rg

behaves at different temperatures and system sizes. For

cluster N=613, the temperatures are chosen to be T/Tm=0.96,

0.92, 0.86. At T=0.96Tm, rg has the abrupt decay as

described in the previous paragraph. But at T=0.92Tm and

0.86Tm, rg decays rather smoothly and gradually. It is also
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noticed that the decay at 0.86Th is significantly slower

than at T=0.90Tm. For the cluster N-SIS, the temperature

chosen are T/Tm=0.90,0.85 and 0.78. At T=0.90Tm, r has
9

arrupt decaying behavior while at T80.85Th and 0.78Tm, the

decay is gradual. For the cluster N=711, at temperatures

T/Tm=0.92,0.88,0.82, the decay of rg is always gradual, but

we expect as the temperature is close enough to the melting

temperature the abrupt decay behavior will eventually show

up. For the cluster N=213, we did not observe the slow decay

behavior. If temperature is close to melting, the abrupt

decay is observed and if temperature is low, the overall

shape is hardly changed. Accordingly, two distinct phases

can be categorized. Let Phase I label the gradual decay of

r9, and Phase II stand for the abrupt decay. Then we

observed that at temperatures very close to melting, the

cluster is in Phase I and crosses over to Phase II as

temperatures decreases. Because the slow and gradual decay

behavior of rg exists only in large size clusters, it

implies that the decay mechanism is surface diffusion below

Tm, which is absent in the small clusters.
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So far, only clusters of solid—like phase have been

considered. When the temperature is raised to surpass the

melting temperature, atoms in the cluster start to diffuse

and therefore, the transition from a non-equilibrium state

to equilibrium becomes much quicker than that in a solid

phase. Since the time scale of the transition is compatible

to that of thermal equilibration, the term isothermal shape

change is inadequate here to describe the prompt

equilibrating process. However, it is still feasible to

utilize rg as the parameter to look into the shape change

because the shape alteration of clusters will certainly not

change the phase of the cluster, in other words, the cluster

will remain in the liquid phase. A single configuration of

rg as a function of simulation time for a liquid cluster has

large fluctuations as seen in Eigg;g_5‘1§a. But it is clear

that the statistical average yields a rather smooth curve

which has a well defined behavior(£igg;g_fi;1§b), showing

roughly exponentially decay(£1gg;g_1&;§g). From the averaged

decay curve, we measured the decay constant I. We measured 1

as a function of temperature for three different sizes of

clusters(N=4l, N=213, and N=613). The results are plotted in

Eigg;§_5&1§, from which two conclusions can be drawn: (1) 1

decreases as temperature increases, and it reaches a stable

value at high temperature. (2) The stabilized value of t is
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a weakly increasing function of system size N. The

conclusion (1) is consistent with the phenomena that the

equilibration constant of a liquid droplet is weakly

dependent on temperature.

In summary, the molecular dynamics simulation is carried

out to study the kinetics of non-equilibrium shape change in

clusters. We utilized the radius of gyration rb as a shape

parameter to monitor the equilibration process. It is found

that rg behaves distinctly in three temperature regions for

large clusters. Above melting, rg decays roughly

exponentially. Near and below melting point, clusters

undergoes rapid compactification at some characteristic

time. In large clusters at low temperatures, rg decays

rather smoothly and algebraically slowly. In small clusters,

rg rapidly compactified at temperature below melting. Those

decay behaviors of r are summerized in Eigurg 5,17 that
9

shows how rg decays at various temperatures and cluster

sizes.
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CHAPTER FIVE

QUANTUM TRANSPORT ON 2D PERCOLATING MEDIA

Wises.

5.1.1 Anderson localization

The electronic states in a perfect crystal material are

extended with Block wavevector k. An incidental defect in

the crystal can be viewed as a scattering problem of

electrons on the defect. When there are many defects

randomly located in the crystal, an extended electronic

state may be altered profoundly in nature( Anderson, P.W.,

1958) by the disorder and collective effect of defects.

Roughly speaking, there exist two broad distinct classes

of disordered systems: i)systems with substantial, cellular

or compositional disorder and ii)systems with positional,

topological or structural disorder. The first class of

disordered systems include the famous Anderson model

(Anderson,P.w., 1958,1961) which uses the following

Hamiltonian:

H = 28,0;0," + ZJM.(a;a,, +a;a,,,) (5 . 1)

an and

where a, is the energy level of site m, and J”, is the

overlap or hopping integral between site m and its nearest
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neighbor m'. The disorder was introduced by making the site

energy be uniformly distributed over a certain range, -W/2

to W/2. J“, was assumed constant. Let V stand for the energy

bandwidth in the absence of disorder, and the ratio W/v

represents the magnitude of disorder. When W/V is

sufficiently large, all electron states are localized,

having the asymptotic form(Lee etc.,1985):

|W(r)l~eXP(-lr-ro|/€) (5-2)

where § is the localization length. When W/V is small, the

localized states show up only at the bottoms and tops of an

energy band. In an energy band, there exist energies called

mobility edges separating localized states and extended

states. As energy approaches a mobility edge, é diverges:

545-1%", (5-3)

where the index v reveals the critical behavior of E and Ec

is one of those mobility edges.

In terms of Hamiltonian (5.1), an alternative way of

introducing the randomness is to let a, be constant, and J”,

random, which corresponds to the situation of off-diagonal

disorder and the second class of disordered system. The

simplest model with off-diagonal disorder is that of quantum

percolation which takes p as the probability that a bond

exists or l-p as a bond is absent. The raised question is

whether the localization caused from off-diagonal disorder

falls in the same universality class as the well studied
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site disordered case. To gain a quantitative understanding

of the question, one obvious approach is to carry out

detailed numerical calculations or simulations and compare

the results with the theory. In this chapter, we performed a

detailed calculation and analysis of conductance of two

dimensional percolation systems. Two key issues are

addressed in the chapter: (1)all electronic states are

localized in 2-d percolation systems; (2)the wavefunctions

of those states might be superlocalized near classical

threshold. In the rest of the section, I will go over some

fundamental concepts in percolation theory and localization

theory. In §§g;19n_§&2, a description of two methods of

calculating conductance will be outlined. Then in Section

5&1, the numerical calculation results are presented.

Finally, conclusions and open questions are discussed.

5.1.2 Scaling of localization:

The nature of Anderson localization was unclear until

the scaling theory of localization was discovered(Thouless,

1977). The divergence of the localization length 5 near Ec

implies one could employ the renormalization group used in

analyzing thermal phase transitions where the correlation

length diverges as the temperature approaches the critical

temperature. When applying the real-space renormalization-

group method to localization problems, one divides the



127

infinite lattice into finite cells of bd and thus the

Hamiltonian is written as:

H=H0+H, (5-4)

where Ho includes all site-diagonal terms and off-diagonal

terms which connect sites m, m' within the same cell. The

remaining off-diagonal terms are included in H1. The

eigenvalues E; and normalized eigenfunctions PD“) of Ho can

be found by exact diagonalization. The objective of

renormalization is to find a mapping Hamiltonian

characterized by E;, the renormalized local energy and Jun

the renormalized nearest neighbor hopping cbnstant, i.e. the

relationship between (EMJM) and (£_,JM). From each cell,

one picks out one state which is included in the subspace D

of Hilbert space that Ho spans. Introducing the projection

operator PD of I‘i’) onto D, I‘PD)=PD|‘P) Where PD can be

expressed as:

PD =Z|¢a)(¢a| (5.5)

050

Defining the Green's Function

G=(E-Ho)"(1-PD) (5.6)

then

|‘P)=|\PD)+GH,|T) (5.7)

Defining another operator 0 by l‘P) = QI‘I’D), and then VD by

VD = H,Q, one finds Q=1+GHIQ and therefore

VD=H,+H,GVD (5-8)
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Noticing VDI‘I’D)=H.|‘I’), it is found that

(H.+VD)|*PD>=EIWD> (5.9)

One can obtain Vb by expansion in series of H1. Keeping only

the linear term i.e. VD-Hl and defining HD=H°+VD, we have

H=ZEaa;ad+ZJw(a;ad+a;aa) (5.10)

and

where (a,a') are nearest neighbor cell indices and Jaa.=(alHl

la'). Principally, one could find the recursive

relationships between (Jaa.,Ea) and (Jm.,em). Consider the

diagonal disorder situation, one could make the

approximation that J;,=.Q, are constant and.Eh has a new

distribution whose width or effective disorder is written as

"2

W‘:(<E§)-(E)2) (1., (5.11)

and the energy E is changed to E':

E=(E-(Ea))/J,J (5.12)

Then the scaling for localization length reads

€= 6(W'.E')=b"§(W.E) (5.13)

If one considers the case that the energy lies at the

center of the band, according to the symmetry, E=E'=0. In

other words, in the (W,E) plane the E=0 axis is invariant

under RG transformation. Thus the recursive equations become

W'=f(W) alone. The fixed points are given by solving the

equation W=f(W). Obviously W=O is a stable fixed point

because the renormalization process should not introduce

disorder in to a perfect system. The non-trivial solution
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W=Wc¢O, if it exists, represents a critical degree of

randomness above which all electron states are localized. In

that case, W - We is an unstable fixed point at which the

localization length a diverges.

More quantitative analysis of scaling of localization is

to consider the behavior of conductance F or reduced

conductance g defined as g=l" /(e2/h) as a function of system

size L. When randomness is small, the electronic wave

function is extended and is nearly plane wave-like. The

conventional transport theory is valid and the ohm's law

gives:

g(L)=ai."‘2/(e2/h) (5.14)

here 0 is the conductivity viewed as a local quantity

independent of system size L. Equation (5.14) is the ohmic

limit of g(L). In the limit of strong localization, the

conductance is due to hopping from one occupied state to an

unoccupied state. The conductance is then proportional to

the probability that an electron hops between two

energetically close states which have a typical separation

L. This probability is proportional to the overlap of two

localized wavefunctions, thus in the strong disorder limit,

g(L) has the scaling form:

g(L)=gOCXP(-L/§) (5.15)

go is some microscopic conductance value that is of order

one .
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For a particular degree of disorder, g(L) evolves

smoothly as L increases, crossing over to either an ohmic

region or to a strong localization limit. Here we use the

argument given by the gang of four(Abrahams,E., etc. 1979)

that assumed the quantity

fl=dlogg/dlogL (5.16)

is a function of g alone, not explicitly dependent on system

size L. When g is very large, equation (5.14) is used, then

B is easily computed: B(g)=d-2. Particularly for two

dimensional systems B=0. If g<<go, using the strong

localization limit(Equation (5.15)), B-ln(g/go), which still

depends on g only. Perturbation theory in the large 9 limit

proves that fi=d-2-a/g(Bergmann,1984) where a is a

positive constant. As it is presumed that B is a

monotonically increasing function of g, B is always negative

in one and two dimensional disordered systems. The non-

positivity of B implies that any finite degree of disorder

will cause non-conductivity in 1d or 2d macro-systems.

However, the conclusion is still controversial(Azbel,1991;

Soukoulis and Grest,l991; Stein and Krey,1987) in the

situation of two dimensional disordered system where the

localization length is very large at small disorder(Lee

etc.,1985).

5.1.3 Scaling behavior of percolating systems:
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The most important feature of the percolation model is

the occurrence of an infinite cluster(stauffer,1985) of

sites(or bonds) for p>pc, where pc denotes the percolation

threshold value. P(p) is an order parameter defined as the

probability that an arbitrary site(bond) belongs to the

infinite cluster. When p<pc no infinite cluster exists, thus

P(p)=0. As p is reduced to approach pc from above, P(p) has

the scaling behavior:

P(p)~(p-p.)‘ (5.17)

indicated by exponent B. The correlation length and

classical resistivity both diverge at pc.

§,~(p-P.)"’ (5.18a)

p.=l/a.=(p-p.)“‘ (5.1810)

Near pc, the structure of the infinite cluster is fractal

with dimension d . d, can be obtained from a simple scaling

argument. Consider a block of size L in the infinite cluster

and L satisfies: a<<L<<§p, where a is lattice constant. The

weight(mass) of the block is proportional to P(p)L" = Ld’ . Let

L==§,, in which case we have the following relationship:

(p-p.)”~§i"" ~(p-p.)"“""” (5.19)

and therefore d, =d-fl/ v.

Diffusion on the infinite incipient cluster at pc is

anomalous and the mean square distance of a random walker

from the origin after time t behaves as 03>~t”“ (when dw=2,

we get normal diffusion.) The diffusion constant on the
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cluster is defined as D=§d<r2>/dt and D relates to the dc

conductivity(Harris,1984) by

a=eanlkT (5.20)

where n, the density of charged carriers, is proportional to

P(p). Thus, the simple scaling argument yields

D~(p-pc)""~§: with 6=(p—fl)/ V. In general, for a scale L<E,,

D scales as D~§:f(L/§,). When L is small, D should not

depend on ép,'which implies the function fo)~x’ as x—9O.

Therefore D~dr2/dt~r’9 or

r’(t)~12"”’ (5.21)

This expression is useful in discussing of super-

localization( Levy and Souillard,1987; Brooks and Aharony,

1987) of electron states on a fractal lattice. The topic

will be briefly discussed in last section of this chapter.

MAW

5.2.1 Linear response theory:

Many experiments in condensed matter physics measure the

linear response to small external fields such as mechanical

forces, magnetic fields, electric fields or optic fields on

materials. In electrical conduction, a time dependent

external electrical field

E=Eoexp(iq-r-iwl) (5.22)
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is applied and the induced current is measured. Linear

response suggests that the induced current is proportional

to the applied field:

J(q.w)=0(q.w)-E(q.w) (5.23)

where o is a second rank tensor and the expression can be

viewed as the fundamental definition of the microscopic

conductivity. The dc conductivity is obtained from taking

the limits qe+o and m~+0 in that order.

When a field is applied, the Hamiltonian consists of two

parts: one is the unperturbed term Ho and the interaction

term H' is expressed as:

H'=-%Jd3rj(r)-A(r,t) (5.24)

lA(r,z)=-i1:(r,z) (5.24a)
C a)

The current density relates to average velocities through

J(r,t)=eZ(v,) and v, =-};[p,—§A(r,)]. Therefore, the current

density is sum of two parts: J231+Jz, with J} and 55 having

the following expressions:

 

. e

12 =(1(r,t))=;Z(p.-) (5.25)

J1 is the displacement current and proportional to B

- 2

J, =m°e E(r,t) (5.26a)

:nw

The expectation value of j(r,t) is expressed in the

interaction representation

J2(I'.t)=('//'|j(l'.t)|V") (5.26b)
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Iwfi represents wavefunction of the system at time t and it

evolves with time as:

IV)=S(-°°J)i W) (5.27)

lué denotes the wavefunction of the system when no field is

applied. For very small external fields, the 8 matrix is

expanded to the linear term of H', yielding

S(—oo,:)=[l-i/njdrH'(r)]+--. (5.2s)

Then the current J; can be expressed as a commutator:

Jz(r,t)=-i/hjdt'(w|[j(r,t),I-I'(t')|w) (5.29)

Expressing H' in terms of the electrical field and the

vector potential, one obtains

Jz(r, t) = J; Idt'e“"”( M[j(r,t),j(q, t)|w>E(r,t)exp(-iq ~r) (5 . 3 0)

Now one has the expression for each conductivity component

in terms of the current-current commutator

0a,,(q, w) = % jdt'e'w-r)< ”I“; (q, t), jp(q, t' )]| W) 1 no: 1'60), (5 . 3 1)

m

 

This equation is the Kubo formula for conductivity which is

fundamental in calculating the conductivity or conductance.

It is desirable to have the expression for conductivity

or conductance in terms of eigenvalues and eigenfunctions of

the Hamiltonian which describes the disordered system(

Fisher,D.S. and Lee, 1981). If the system is isotropic,

¢z¢==afiw and the real part of conductivity can be written
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Re<a>=i-jdte'“(wu<q.t),j(q.0)1 w) (5.32)

The expectation value of the current-current commutator is

expressed in terms of eigenfunctions of H0 at finite

temperature T (T=0 is obtained by taking the limit

fl=llkT —>oo) . The expectation of the commutator is

12} ..M)

where MD and h» are eigenfunctions of HQ with eigenenergies

)|e“-'~“" (5.33)       

Eh and En respectively. Z is partition function given by

Z=ng (5.34)

Integration over t in equation (5.32) gives

Re(a)=_a:’.z.(1—e-”°)Ze”- (m(j(q)|n)|’a(w-E, +E,,) (5.35)
 

Now we consider the disorder system of size L with two ends

attached to two perfect leads. The current flows along the

z-direction

J(z)=Id"'xj(x) (5.36)

j(p) is the Fourier component of j(x) thus as q—M)

l L

j(0)=L-7—,2Idz.l(z) (5.37)

Finally one takes the limit of B-MD

n>2          
 

Re(a)=-a—:—dIdE'z 0‘ 6(E'-E,)5(E'+w—E,,) (5.33)

The dc conductivity is attained by taking the limit of w=0.

This expression directly relates the conductance to the
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eigenvalues and eigenfunctions and is our starting point in

doing numerical calculations in segtign_§‘;.

5.2.2 Landauer's formula and transfer matrices:

The calculation of conductance in one dimension is

greatly simplified by the formula which expresses the

conductance of a system of random elastic scatterers in

terms of scattering properties at a fixed energy. The

formula is called Landauer's formula(Anderson,P.W. etc.,

1980; Azbel,1980) written as:

e2 T
=33; (5.39)

where R and T are reflection and transmission coefficients

respectively. Therefore if one knows the scattering matrix,

the conductance can be easily computed. The formula can be

derived rigorously in one dimension, however, the extension

to higher dimensions seems unclear. For multiple-channel

scattering, the generalized Landauer formula proposed by

Anderson etc.(Anderson,P.W.etc.,1980; Buttiker,1986) takes

the form

2

2 2|th
e a
 r: 5.40

ZMI-ZIIUF ( )

1

When the channel number n is large, tif~1/n2, thus

2

e
r wz—Trtt’ 5.41we Znh ( ) ( )

This expression is accurate for strong scattering.

Therefore, it may be advantageous to compute the transfer
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matrix first and then conductance can be fairly easily

obtained. As shown below, the transfer matrix can be

calculated column by column so this algorithm scales as L

while the matrix size of the Green's function method is L2.

Now let's consider in more detail about the propagation

of the wave function. We still consider the disordered

region to be attached with two perfect leads of infinite

length. Let ya be the wavefunction at the i-th column of the

disordered region. The tight binding model has the following

recursion relation:

Hy. =V.w.-.. +V.-.w.-. (5.42)

where H; is the diagonal matrix of column i and Vi is the

connection matrix between column i and i-l. This is

equivalent to:

-l _ 4

[we-3):“ H. V. (4.1),] (5.43)

V) I 0 WM

The above expression gives the relationship between two

consecutive column wavefunctions. Then the transfer matrix T

is simply expressed as:

-l _ 4

“(V-1H. V.OV.-.] (5,4,,

In order to get conductance, the transfer matrix has to be

converted into a scattering matrix S(Anderson,P.W.,1981).

The conversion utilizes the relationship: S=U"TU where U

is a unitary matrix and is determined by the Fermi energy

level.
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W

In the section, I will use the Kubo's formula(Eguation

5.38) for conductance to calculate the conductance of a 2-d

diluted square lattice which is described by the

Hamiltonian:

— x + y * +

H - 2V2“).u.ia)1 + Vfiafldafl + c.c.+ZEfiaflafi (4 . 45)

1* 1.1:

where j and k are position indeces in the x and y directions

respectively and Ejk are site energies. In the bond

percolation model, V;,V; are hopping constants which are one

when a bond exists and 0 otherwise and Ejk1are constant. In

site percolation case, Ejk1are either infinite for absent

sites and zero for present ones. For a finite system of

scale L, the Hamiltonian is a szl? matrix expressed as

following:

(11“ H” H”)

H: If“ H.” I" H.“ (5.45)

\Hu 1L1!”2 Ha}  

where each Hmn is an LxL matrix with Hhm,.Hmflmfl being non-

zero only if the nearest neighbor hopping is considered. We

start with the expression for the conductance of an LxL

lattice at frequency w. Equation (5.38) becomes:

2

n I O

Gunfight“: 6(E+m-EB)8(E‘-Ea) (5.47)

a..B

Z<alJ<j>IB>
J  
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where EWEB are the eigenvalues of H with 15°I <E<Ea where E

is the Fermi energy and |a),|B) are the corresponding

eigenvectors. Following P.A.Lee etc. (Lee and Fisher,D.,

1982) , one introduces the Green's functions 0* =(E-Hii17)"

where n is a small positive number. The imaginary part of

the Green's Function is G=(G’—G*)/2i. E and la) are

eigenvalues and eigenvectors of H respectively:

 

Hla)=Ea|a) (5.48)

and in terms of the Green's functions:

|a)=G*(E-Eaiin)|a) (5.49)

Taking the imaginary parts of both sides gives:

G|a>=(E-E:I)2+1fla> (5.50)

As co—)0, the continuity of current requires J (j) ought to be

independent of j, thus summation over j is trivially done,

yielding L2|(a|J(j)|fl)|2. Noticing that

. 17 _ _

m(£-E,)’+If-flaE Ea) (5.51) 

One employs the stepfunction f(x) to eliminate the

restriction: E, < E'< E,

11(90):;16I‘1E0 f(E-E.+(D)f(E"E)

co g(alJGIBXBlJGIa)

=Z<a|JGJGia)
(5.52)

 

The current operator J(j) of jth column is expressed as:

J(j)=ieZVl,(a;,a}_u—c.c) (5.53)

k
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Em: A 32x32 percolation square lattice embedded in a

perfectsquarelatticebeltofwith32andinfinitelengthwith

p=0.6 in the percolation structure. All the data in Chapter five

are based on the model shown in the picture. The adjustable

parametersarepandsystemsizel...
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one views the current operator to be a matrix of 2Lx2L(Lee

and Fisher,1982):

J(j)=[ .0 . ier] (5.54)
-reVJ 0

where V7 is the vortex diagonal matrix with.(Vf»,=P:6;. The

conductance at m=0 is simplified to:

r(0)=e2/nTr[G(j, j)V;G(j-1,j-1)V;+G(j—l, j-1)V;G(j, 1')ij

-G(J'.j -1)V,‘G(j.j -1)V,‘ - GU - 1.1')V,‘G(j - 1.1)V,’] (5 - 55)

where the trace is over the site index k. The boundary

condition is set to be periodic along the y-axis and the two

ends x=0,x=L are attached to two semi-infinite perfect leads

(Eiggzg_§;1). From equation (5.55), to calculate the

conductance, one only needs to know G(j,j), G(j-1,j-1) and

G(j,j-1). To avoid a huge matrix representation the

recursive method is utilized. We start with a perfect

lattice with width L and semi-infinite length. We define the

left Green's Function (V(j)2(fl,(flj)'with the columns of j'>j

absent. G'(j) has the following matrix recursion

relationship:

G'(j)" = (30(1)l -Vj"G’(j—1)Vf (5.55)

where G°(j) denotes the Green's function for the isolated

jth column. Similarly, one could define the right Green's

function Gr(j) with all the columns of j'<j absent. The

Green's function of the jth column which connects the (j-l)
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th column from left and the (j+1)th column from the right is

written as:

0031')" = (30(1)‘I - V,i.G'(j +1)V,.. - V,i.G'(j -1)V,‘.( (5 - 57)

and G(j-l,j) can be obtained from G(j-1,j-1) through:

G(j-l.j)=G(j-l.j-1)V,*G'(j) (5.58)

First, 61(0), the left Green's function for a semi-

infinite perfect lattice is computed. To find 61(0), one

just needs to solve the matrix equation

G’(0)‘I = G°(0)‘l -G’(0) (5. 59)

because Vf turns out to be a unit matrix. Because 60(0) and

61(0) have the same matrix form, the transfer matrix T which

leads to the diagnalization of 60(0) happens to diagonalize

the matrix 61(0) also. The eigenvalues and corresponding

eigenvectors for 60(0) are easily obtained and so that one

has the eigenvalues of 61(0) from the simple second order

equation.

1 l

where 2‘: denotes the eigenvalues of 60(0) . 61(0)is

calculated from G'(0)=T"AT, where A is the eigenvalue

matrix of 61(0).

Once 61(0) has been calculated, one can build the

disordered region onto the semi-infinite perfect lattice

according to equation (5.56). After the L-th column has been

attached, another semi-infinite perfect lattice is attached.
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The Green's functions G(L,L), G(L-l,L—1) and G(L-1,L) are

obtained through the recursion relationship described above.

5.3.1 Quantum percolation threshold:

The threshold for classical bond percolation is known to

be pc=0.5 for a two dimensional square lattice. The quantum

threshold pg is defined as the p value below which all

quantum states are localized. Obviously due to electronic

back scattering, it is expected that pg>pc. The scaling

theory of localization predicts that any finite degree of

disorder will result in all electronic states being

localized, i.e. pg=1.

It is noticed that if we apply the expression (5.55) to

calculate conductance, we always obtain finite values even

for a perfect lattice. Our calculation shows that g(LL)=Lq

the system width. Thus, pg is determined from calculating

the conductance as a function of system size L at a fixed

disorder quantified by p. We performed the calculation of

g(p,L) as a function of L at fixed p values(see Eigurg 5.2).

The results show that if p is very close to 1, g(p,L)

increases with L for small system size and reaches a maximum

at L=LM, and starts to decrease monotonically with L for

L>LM. When p is not very close to 1(p=0.95 or less), g(p,L)

is simply monotonically decreasing with the system size that

we chose. In other words, Lu decreases as p increases. The

point is that even for a very small disorder( p=0.98),
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mm: The reduced conductance g as a function'of system

size. 8 different sizes are considered. p is fixed at 0.98. Each

point is an average over 200 configurations. The conductance g

increaseswithLfirstandreachesarrmdmalvalueatL=280,then

startstodecrease.ltconecpondstothecrossoverfroma

"scattering" region to the weak localization region.



g
(
r
e
d
.

u
n
i
t
.
)

1
0
3
(
3
)

 

145

 

16

10

q «
4

q d

—
(

d I I I l I I r

(a): p-0.07

d

_
.
( q

 

3.1

r
I
I
l
I
I
I
I
l
T
I
f
I
r
I
I
T
I
'
I
I
—
T
‘
I
I
I
I
I
j
‘
I
'
I
I
I
I
l
'
I
I
I
I
'
l
I
I
I

 

d
b 1.

ZIOU‘V'SIO'J
)
-

.. .
.

p
a

3
' .. .(

(b): p=0.97

J
I
L
I
I
L
I
L
I
I
I
I
L
I
I
J
L
I
I
I
I
I
I
I
I
l
L
I
I
L
l
I
I
I
I
l
I
I
I
I
I
I
I
I

 
 2.7

0 100 200 300

WA similar plot to Figure 5.2 except that the calculation

is done for site percolation. The p value is fixed at 0.97 and again

each point is obtained from taking an average over 200 samples. g

increases with 1.. first but it reaches a maximum at 1.8120 and

starts to decrease.
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g(p,L) will eventually decreases with L monotonically.

Eigg;g_§‘z,shows the numerical results of g(p,L) of a bond

percolating lattice. Each point in the plot is an average

over 200 configurations. A similar behavior is seen in

zigg;g_§;1 which is the result from calculations carried out

on a site percolating square lattice. As will be shown in

the next subsection, g(p,L) decreases exponentially with L

when the system size is sufficiently large, for finite p.

Therefore, it is clear that the quantum threshold for a 2-

dimensional square lattice is 1; any finite disorder(site or

bond) will result in the localization of electronic states.

5.3.2 Scaling of conductance:

The heart of the scaling theory of localization is the

one-parameter assumption that the scaling function depends

on 9 only. In this subsection, our objective is to perform a

detailed calculation of g(p,L) and the B function and to

analyze their behaviors in several distinct regions.

£1gg;g_§L1 shows a log-linear plot of g(p,L) as a

function of p. g(p,L) monotonically decreases with

decreasing p, it is not difficult to divide the figure into

three regions. In region (I): In g(p,L) decreases rapidly, a

very small decrement in p results in a big change in 9. We

call this the scattering region because when (1-p) is small

the defects are very sparse and the mean free path exceeds

the system size L. In region (II): g(p,L) starts to degrade
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system size. Three distinct regions are classified: region (Dis very

narrowinwhichgdeeaysveryfastitcrossesovertoregion(ll)

at p=0.05. Regional) is the weak localization region in which g

deeays relatively slowly and g decreases as 1.. increases. As more

bonds are removed, g enters the strong loealization region, region

(III) in which g decays much fasterthan in region (11).
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slowly and it is called the weak localization region.

Finally in region (III): g(p,L) decreases very rapidly once

again. This corresponds to the strong localization region.

Our analysis is based upon the calculations of g(p,L)(or

ln g(p,L)) in those regions. Let pcl and pcz be the points

separating those regions. In general, Pol and pcz depend on

system size. A more precise definition of pcl and Pcz is as

follow.

For a particular L, pcl is defined as

@(L’pcl)=0 (5.61)

éL

When the impurity concentration is very small, the mean free

path of electron scattering is much larger than the system

size L. It has been shown that a single defect will cause a

decrement in conductance by order of unity in that limit. By

noting that the conductance g is proportional to the system

size L when p=1, we have the following scaling form:-

g(P.L)~L-a(1-p)L2 (5.62)

with parameter a being of order of one. Therefore Pbl can be

roughly obtained as a function of L:

l-pc,~l/L (5.63)

as L-NO, pcl-sl. In the region p>pc1, 9 increases as L

increases, so B is positive, which contradicts the scaling

theory of localization, which predicts non-positivity of B

in 2-dimensional disorder systems. It should be pointed here

that the scattering region is not physically reasonable as
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it fails to yield an infinite conductance for a perfect

system.

In the weak localization region, g is monotonically

decreasing with L, and the B function is negative. We varied

the p values and calculated the conductance g as a function

of system size. An attempt has been made to fit the data to

the equation g(L)=g0-cln(L/L0) and the data fits the curve

reasonably well as shown in Figure 5,5. It implies that the

B-function scales as

fl=—a/g (5.64)

Where the parameter a is equal to the slope of the line in

Eiggrg_§‘§. The result is perfectly consistent with

perturbation theory.

In region (III), g(L) crosses over to a strong

localization region. Care must be taken when calculating the

conductance as 9 becomes extremely small when p approaches

pc, so that the n factor in the Green's function(Equation

(5.49)) starts to play a significant role in the numerical

calculations. Generally, small 9 requires small n. Eiggrg

5‘6 presents the results on conductance for relatively large

disorder. The logarithmic function of g(p,L) was plotted

against system size L, showing the linear dependence between

them. The slope of the line is dependent on disorder alone.
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5.3.3 Conductance distribution:

The distribution of conductance has been investigated

first by B. Sharpiro(Sharpiro, 1986,1987) and coworkers

based on the concept that two quantum resistors p, and ,02 in

series have the total resistance:

p=p. +102 +2[p.p2(1 +p. )(1 +102)?” c089= "(14.19560 (5 . 55)

where 9 is the phase angle between )0, and p2. Suppose the

distributions of p, and p2 are known and denoted by P(p) and

P(p) , the distribution of p under condition p=u(p,,p2,€) is

given by:

l

P(p)=;Jdp.dp.d6P.<p.)P.(p.)6<p—u) (5.56)

Assume that pI and p2 have linear scales AL and L

respectively with AL being small and thus small p1, one

expands the above expression up to linear terms of pi,

yielding:

M] (a...)
PL+AL(p) = PL(p)+(p1>[§)(p+p2) 5p

where (,) is the average value of p1 and has been assumed to

be linearly dependent on AL as it is small. Let a=(p,)/AL,

one obtains a diffusion like equation:

OPLU’L j 2 at100)
d -a{ap(p+p) 5p] <5-68)

PL(p) can be easily solved for two limits of pw+0 and p—wn.

The former limit implies that the p2 term can be neglected

and thus the solution is written as:

P.(p)=iexp(-p/a£) (5.59)
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The average of p yields <p>=aL, recovering Ohm's law. When p

>>1, p2+p5p2, (5.68) turns into a diffusion equation and the

solution reads:

1 .

PL(p)=mcxp[—(lnp—aL)‘/4aL] (5.70)

In this case, the average of lnp depends linearly on L. Both

distributions support the single-parameter scaling theory

assumption.

The conductance distribution in two dimensions is

difficult to find because of the traverse scattering. Many

techniques such as the "fan transformation"(P.W.Anderson,

1980) and a Kadanoff type scaling transformation are

employed to generalize the one dimensional result. Here we

directly calculated the distribution of conductance and

found the distribution is log-normal when 9 is very small as

expected. Eiggrg 5,7 shows a typical distribution for a

strongly disordered system and the curve fits a gaussian

distribution well. But for medium disorder, the distribution

is anomalous and of bimodal structure. Eiguze 5.8 is the

distribution for a 16x16 square lattice with p=0.75. The

statistics was done for some 4000 samples. Clearly, the

graph shows that P(g) has two maxima: one is located near

g=1 and the other is close to g=0. When disorder is small,

the peak near g=0 is not seen. The peak near g=1 decreases

as disorder increases and will eventually disappear,
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merging into the strong localization case. So far, we do not

have physical explanation for this bi-modal structure.

u s t

It is interesting to study the scaling behavior of

conductance of a lattice near its classical percolation

threshold pc, where the backbone of the lattice structure is

fractal. It has been discovered that diffusion on a fractal

structure exhibits abnormal behavior and the diffusion

constant D algebraically decays with distance r as discussed

in §gg§ign_551‘z. About half a decade ago, several

authors(Shapir and Aharony,1982;Levy and Souillard,1987;

Lambert and Hughes,1991) studied quantum diffusion on a

fractal structure using scaling arguments and introduced the

concept of super-localization in contrast to the

localization behavior discussed earlier. Super-localization

claims that the electronic wavefunction on a fractal

structure decays faster than exponential against distance

and typically satisfies the following scaling form:

MVP M0)CXP[-(r/ 6)“) (5-71)

with a>1. This implies that the conductance g of a fractal

structure has a similar scaling with its size L. Because the

conductance is directly related to the electronic

wavefunctions, it is very desirable to carry out a

systematic numerical calculation of conductance to verify
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this relationship. It is noticed that near the percolation

point, the conductance is extremely small due to fewer

connected points, so in order to obtain reliable calculation

results, the hopping elements in the Hamiltonian are set to

be either 1 or a small finite number. This procedure will

certainly effect the consequences of calculations but it

does not effect the scaling behavior as no structural change

has been made. The two dimensional lattice sizes are

selected to be L=16, 32, 48, 64, 80, 96,112, 128, 144,160.

The conductance log(g) as a function of L is plotted in

Eigg;§_552, showing a linear dependence as predicted from

strong localization. It should be pointed out that because

of the introduction of a small hopping constant, the result

shows a normal localization behavior. More detailed

calculation needs to take the small hopping constant as

small as possible. Unfortunately, our method cannot handle

the situation well due to computer rounding error. One

appealing method is to utilize the transfer matrix approach

discussed in ggggign_552. It remains a prospective project

in the near future.

To conclude, we have calculated the conductance of a 2d

percolation lattice as a function of system size and p

value. Our calculation results strongly support the scaling

theory of localization.
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zip§1_ggmggkg; In the final section, I will provide a

limited discussions on three problems related to the work in

the thesis.

(a) Modification to the ICM model:

In the interrupted coalescence model(ICM), two

unrealistic assumptions have been made: (i) it is assumed

the surface tension of the droplets is isotropic so that the

equilibrium shape is a spherical cap. (ii) no dynamic

process has applied to the two large touched droplets whose

coalescing process has presumably been interrupted. The

touched area is unphysical as there exist singular points.

Both of those assumptions contribute to the deviation of the

simulation figures from the experimental results(fiigggg

551). Careful examination of Eiggr§_551,shows that the

droplet shape is not spherical, instead several well

developed facets are seen even in the early stage where

complete coalescence takes place. The complete coalescence

time in an anisotropic model has a stronger dependence on

system size than that in an isotropic model, which implies

the size effect may play an important role in the

interruption mechanism. The touched area of two large

droplets has to be smoothened out. A rather rigorous method

of doing this is to introduce the surface diffusion process

as discussed in §§Q§19n_z&2. However it becomes impractical

as the number of those droplets is large. The calculation in
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Chapter Two shows that the healing process in the neck area

is so speedy that only a small fraction of the total

coalescence time is needed to reach the neck elimination

stage. Therefore, as an approximation, the smoothening

procedure may directly incorperate the neck elimination

stage. The simulated figure would then be much closer to the

SEM photograph.

(b) Dynamic phase in Au clusters:

A solid phase has different dynamic behavior from a

liquid phase and whether a cluster is in a solid phase or in

a liquid phase depends not only on the temperature but also

on the cluster size. Our simulation results show that a

solid cluster may exhibit distinct dynamic behaviors(£igg;§

1511) at various sizes and temperatures. The physical basis

for the existence of those different dynamics is not very

clear. Our tentative explanation is that diffusion which

occurs in large solid clusters but is absent in small solid

clusters.

It has been pointed out that the strong existence of

surface diffusion in solid gold clusters is due to the many

body interaction which suggests a stronger coordination

dependence than pairwise interaction(Ercolessi etc.,1988).

An obvious choice is to test a Lennard-Jones(LJ) system and

observe if the system has a similar behavior to gold

clusters. Many MD calculations show that the system of LJ
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interaction exhibits a solid-liquid phase transition. The

surface atoms in any solid cluster have less binding energy

than their bulk counterparts and therefore may also have

similar dynamic behavior as observed in gold clusters. A

detailed MD simulation on LJ systems will answer part of the

question.

(c) Super-localization problem:

Scaling arguments reveal that due to the fractal

dimensionality of the incipient infinite cluster of a

percolation structure near its threshold, the diffusion on

such a structure is anomalous. Both theoretical arguments

and numerical simulations showed that the phonon's amplitude

decays faster than exponential as stated in equation(5.71)

on fractal structures. It is very desirable to perform a

detailed numerical calculation of conductance of a system

with fractal dimension. As pointed out in Chapter 5, the

conductance near threshold is so small that a finite hopping

constant(ideally zero) for an absent bond has to be used to

obtain reliable calculation results. The introduction of

this small number may profoundly alter the nature of its

wavefunction, so one has to make the value as small as

possible. The transfer matrix method described in sgction

552 provides an alternate and perhaps more efficient way to

calculate conductance. Along with the calculation, two

problems have to be addressed: (1) the relationship between
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the scattering matrix and conductance, i.e. the extension of

Landauer's formula; (ii) the conversion from the transfer

matrix to the scattering matrix.

As a closing statement, I quote the words from Einstein

"The nature is as complex as it needs to be, no more".

Although the nature is asymmetrical and dynamic( it is often

called beauty and mystery), life would be much easier if it

is understood in its least complex form, which may be the

ultimate goal for physicists.
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parameter (n=6l3)

,vx(800),vy(800),vz(800)

,ax(800),ay(800),az(800)

,bx(800),by(800),bz(800)

,cx(800),cy(800),cz(800)

,fit(800),fy(800),fz(800)

common/circles! rx(800),ry(800),rz(800)

&
&
&
&
&

common/circles/ s,sv,sa,sb,sc,sf

common/circles/ vexp(20000), vexq(20000)

common/circles/ nei(90000), lpoint(800)

integer free

p=10.15

q=4.l3

aa=0.ll8438

dt = 0.02

ne = le4

(M = 2-*q

Onewl)

open (unit=29, file='rg.out', status
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open (unit=28, file='[yuxinhua.md]en.out', status='new')

nstep = 2e5

ivt = le2

tmp = 1.0e-3

rcut2 = 3.0

qh = 40.

free = 3

call readin ( n,dt )

do 100 ie = 1,2‘ne

vexp(ie) = exp((1.-real(ie-0.5)/real(ne))"‘p)

vexq(ie) = exp(( 1 .-real(ie-0.S)/real(ne))*qq)

confinue

nfree = n*free

do itmp = 1,6

tmp = 5.0c-3 - (4.0e-4) "' float(itmp)

ten = 0.

Mm=0.

do 1000 istep = l,nstep

int = mod(istep-l,20)

if ( int.eq.0) call listn ( n, rcut2)

call predic (n, dt)

call force ( n, (it, aa, p, q, ne)

call kinet ( n, en_k )

sf= (2.0 " en__k- real (nfree + 1) * tmp ) / (s‘qh)

call correc (n, dt)

rxc = 0.0

ryc = 0.0

rzc = 0.0
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d010011=l,n

rxc =rxc+rx(i)

WC = We + r5'0)

rzc = rzc + rz(i)

confinue

rxc = rxc/rea1(n)

ryc = ryclreal(n)

rzc = rzc/real(n)

rg = 0.0

do 1010i = 1,n

r8 = r8 + (rX(i) - rXC)"2 + (Mi) - WC)"2 + (rZ(i)-rZC)“2

confinue

rg = sqrt(rg/real(n))

arrarg+rg

if (isteple. 1e5) goto 1000

md=mod(istep,ivt)

if (md.ne.0) goto 1000

itime = (istep-1e5)frvt

call energy ( n,cn,temp )

write ( 28,‘I )tmp,temp,en

ten=ten+en

atm=atm+temp

arg=arglreal(ivt)

write ( 29f) itime,arg

arg=0.

continue

ten=ten/ 100.

atm=atm/100.

write ( 28,‘ )tmp,ten,atm
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end do

call writin ( n )

close ( unit=28 )

c close ( unit=29 )

stop

end

C ++++-+—+—+—H—H—+—H—+—+ end of main program +++++—+—H++-+—+—+—+—+—++—+—H—++

CH4+H++++H—FF+H—+++4—HH+F++FH+FH+++++H+++4—H4+H+H+++H++

C begin subroutine readin

CWWWWHWWH

subroutine readin (n,dt)

common/circles/ rx(800),ry(800),rz(800),

& vx(800),vy(800),vz(800),

& ax(800),ay(800),az(800),

& bx(800),by(800),b2(800),

& cx(800),cy(800),cz(800),

& fir(800),fy(800),fz(800)

common/circles/ s,sv,sa,sb,sc,sf

open ( unit=21, file='[yuxinhua.md]xyz.in', status='old')

open ( unit=22, file='[yuxinhua.md]vcc.in', status='old')

open ( unit=23, filfi'[yuxinhua.md]acc.in', status='old')

open ( unit=24, file='[yuxinhua.md]bcc.in', status='old')

open ( unit=25, file='[yuxinhua.md]ccc.in', status='old')

open ( unit=26, file=’[yuxinhua.md]scc.in', status='old')

do 100 i=1,n

read (21,"' ) a,b,c

rx(iFa

ry(i)=b

rz(i)=c

100 confinue

do 200 i=1,n

read (22,*) a,b,c
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vx(i)=a

vy(i)=b

vz(i)==c

confinue

do 300 i=1,n

read (23,"') a,b,c

ax(i)=a

ay(i)=b

112(ti

continue

do 400 i=1,n

read (24,*) a,b,c

bx(iFa

by(i)=b

bz(i)=c

confinue

do 500 i=1,n

read (253') a,b,c

cx(i)=a

cy(i)=b

cz(i)=c

confinue

read (26,") s,sv,sa,sb,sc,sf

close ( unit=21 )

close ( unit=22 )

close ( unit=23 )

close ( unit=24 )

close ( unit=25 )

close ( unit=26 )

return

end

C4-+—+-+-+—+—+++—1—++—+—+ beginning of subroutine force 4—H-4—1—+—+—1—1—1-+-+—1—+—H—+—+++
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subroutine force ( n,dt,aa,p,q,ne )

common/circles/ rx(800),ry(800),rz(800),

vx(800),vy(800),vz(800),

ax(800),ay(800),az(800),

bx(800),by(800),bz(800),

cx(800),cy(800),cz(800),

fx(800),fy(800),fz(800)

common/circles/ s,sv,sa,sb,sc,sf

common/circles/ vexp(20000),vexq(20000)

common/circles/ nei(90000),1point(800)

qq=2-“q

rc2=2.25

do 200 i=1,n

rxi=rx(i)

ryi=ry(i)

rzi=rz(i)

fid=0.

fyi=0.

fzi=0.

nlow=lpoint(i)

nup=lpoint(i+1)-l

rxp=0.

do 10 list=nlow,nup

j=nei(list)

rxij=rxi-rx(i)

Mimi-Mi)

rzij=rzi~rz(i)

fi12=rxij*ndl+ryij’ryij+rzil*rzij

if(rij2.gt.rc2) goto 10

rij=sqfl(n'jz)
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ie=rij‘ne

rxp=rxp+vexq(ie)

continue

noc=sqrt(rxp)

do 190 list=nlow,nup

sxp=0.

j=nei(list)

do 1 80 ljst=|point(j),lpoint(j+1)-1

k=nei(ljst)

rxjk=rx(j)-rx(k)

rxik=w(i)-ry(k)

rzjk=rz(j)-rz(k)

rjk2=rxjk"2+ryjk"2+rzjlt"2

if(rjk2.gt.rc2) goto 180

Iik=sqn(o'k2)

ie=nc"rjk

sxp=sxp+vexq(ie)

confinue

sxx=sqrt(sxp)

rxiiji-rx(nei(list))

ryij=ryi-ry(nei(list))

rzij=rzi-rz(nei(list))

rij2=rxij"2+ryij"2+rzij"2

if(rij2.gt.rc2) goto 190

ril=sqn(ri12)

ie=ne*rij
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f1=aa*p"vexp(ie)

12=q"vexq(ie)/rxx

f3=q‘vexq(ie)/sxx

f12=fl -0.5"(f2+13)

fid=fid+(rxij/rij)"fl 2

fyi=fyi+(ryij/rij)‘f12

fzi=fzi+(rzij/rij)"'f12

190 confinue

fx(i)=fxi

60)“in

fz(i)=fzi

200 confinue

return

end

C+-+++-+—1-+-+—+~++—+—+—1—+- end of subroutine force +H—i-+++-+-+—l—+—+-+-+-+—+—+—+—+-++-+—+-l—l-+

C4-+—+-+—+—+—+—+—++—1-+—+—+—++ beginning of subroutine kinet ++++++++++++++++++

subroutine kinet (n,en_k)

common/circles/ rx(800),ry(800),rz(800),

vx(800),vy(800),vz(800),

ax(800),ay(800),az(800),

bx(800),by(800),bz(800),

cx(800),cy(800),cz(800),

fit(800),fy(800),fz(800)8
5
8
°
2
°
R
°
R
°

common/circles/ s,sv,sa,sb,sc,sf

en-k=0.

do 100 i=1,n

en_k=en_k+vx(i)"2+vy(i)**2+vz(i)**2

100 confinue

en_k=(0.5"en_k)*(s*s)
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return

end

C+-+-+-+-+-+-+-+-+—l-i-++++ end of subroutine kinet ++-l-l-H-i-i-+++-++++-l-H—F+++-+—i—+—+

C+—+-+—+-+—+—+++++-l-+-+-+ beginning as predictor +—+—++1—++H—+-l—+—++-+—+-+-+—+-+-+++-l-l--+—+-

subroutine predic ( n,dt)

common/circles/ rx(800),ry(800),rz(800),

& vx(800),vy(800),vz(800),

& ax(800),ay(800),az(800),

& bx(800),by(800),bz(800),

& cx(800),cy(800),cz(800),

& fx(800),fy(800),fz(800)

common/circles/ s,sv,sa,sb,sc,sf

cl=dt

c2=cl *dt/2.0

c3=c2*dt/3.0

c4=c3"'dt/4.0

do 100 i=1,n

rx(i)=rx(i)+cl *vx(i)+c2*ax(i)+c3 *bx(i)+c4*cx(i)

l'>'(i)=ry(i)+cl ‘Vy(i)+02*ay(i)+c3 *by(i)+c4*cy(i)

rz(i)=rz(i)+cl *vz(i)+c2*az(i)+c3 ’bz(i)+c4*cz(i)

vx(i)=vx(i)+cl *ax(i)+c2*bx(i)+c3 I"cx(i)

W(i)=VY(i)+cl ‘aY(i)+02‘by(i)+c3 *CYG)

vz(i)=vz(i)+c1 ’az(i)+c2"‘bz(i)+c3 *cz(i)

ax(i)=ax(i)+cl ‘bx(i)+c2"'cx(i)

ay(i}=ay(i)+01 *by(i)+02"cy(i)

az(i)=az(i)+c1 ‘bz(i)+c2"‘cz(i)

bx(i)=bx(i)+c1 1’cx(i)

bY(i)=b)'(i)+Cl ‘CY(i)

bz(i)=bz(i)+c1 *cz(i)
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100 confinuc

s = s+c1‘sv+c2*sa+c3*sb+c4*sc

sv=sv+c1 "sa+c2*sb+c3 " sc

sa=sa+cl "' sb+c2“' sc

sb=sb+c1"sc

return

end

C++—+—+-++-1—+—+—+—+-1—+-+-+—+—+—+—+—1— end of subroutine predictor ++-+—1—+—+—+—-+—+—+++—+++++-+—++

C++—+—+++++-+—+—r—+-++++—+—++ beginning of subroutine corrector +-+-+-+-i-+++++-H-++

subroutine correc (n,dt)

common/circles/ rx(800),ry(800),rz(800),

vx(800),vy(800),vz(800),

ax(800),ay(800),az(800),

bx(800),by(800),bz(800),

cx(800),cy(800),cz(800),

fit(800),fy(800),fz(800)s
e
a
m
s

common/circles/ s,sv,sa,sb,sc,sf

parameter ( g0=19.0/90.0, g1=3.0/4.0,g3=1.0/2.0,g4=1.0/12.0 )

cl=dt

c2=cl*dt/2.0

c3=c2"'dt/3.0

c4=c3"‘dt/4.0

cr=g0*c2

cv=gl "c2/cl

cb=g3"c2/c3

=g4‘c2/c4

dmmem

'axi=fx(i)/(s*s)-2.o*sv*vx(i)/s

ayi=fy(i)/(s‘s)-2.0*sv‘vy(i)/s

azi=fz(i)/(s*s)-2.0*sv*vz(i)/s

 



173

corx=axi-ax(i)

cory=ayi-ay(i)

corz=azi-az(i)

rx(i)=rx(i)+cr*corx

ry(i)=ry(i)+cr‘cory

rz(i)=rz(i)+cr*corz

vx(i)=vx(i)+cv*corx

vy(i)=vy(i)+CV*cory

vz(i)=vz(i)+cv*corz

ax(i)=axi

ay(i)=ayi

az(i)=azi

bx(i)=bx(i)+cb"corx

by(i)=by(i)+cb“‘cory

bz(i)=bz(i)+cb*corz

cx(i)=cx(i)+cc*corx

cy(i)=cy(i)+cc*cory

cz(i)=cz(i)+cc*corz

100 confinue

cors=sf-sa

5 =5 +cr‘cors

sv=sv+cv*cors

=sf

sb=sb+cb"cors

sc=sc+cc"‘cors

return

end

CW end of subroutine correc +—+++—+—+—+—+—H—+—+—+~+—++H—+—H++

C++++-+—+++—+—+—++ beginning of subroutine listn H—H—+—+-+-+-+-+—+—H—+—H—H—+—H—+

subroutine listn (n,rcut2)
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common/circlcs/ rx(800),ry(800),rz(800),

vx(800),vy(800),vz(800),

ax(800),ay(800),az(800),

bx(800),by(800),bz(800),

cx(800),cy(800),cz(800),

fit(800),fy(800),fz(800)

common/circles/ s,sv,sa,sb,sc,sf

common/circles/ vexp(20000),vexq(20000)

common/circles] nei(90000),lpoint(800)

integer list

list=0

do 100 i=1,n

rxi=rx(i)

wi=ry(i)

'=rz(i)

lpoint(i)=list+1

do 199 i=1,n

iflieqj) goto 199

rxij=rxi-rx(j)

ryij=ryi-ry(i)

rzij=rzi-rz(j)

rij2=ndj”2+ryij“2+rzij**2

if(rij2.1e.rcut2) then

list=list+ 1

nei(list)=j

endif

confinue

continue

1point(n+1)=list+l
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return

end

C++++-l-H—+—+—+-+++-+—+-i- end of subroutine listn ++-+—+—+—+—+—+—+—+—+—1-—++++++++++++—+—+—+

c+-+—+-+-1-+—+-++~+—+—+-+—+-++ beginning of subroutine writin +++-+++—+—++++++—+—+~1—1-++++

subroutine writin (n)

common/circles/ rx(800),ry(800),rz(800),

“(800).W(300).VZ(800).

ax(800),ay(800),az(800),

bx(800),by(800),bz(800),

cx(800),cy(800),cz(800),

fx(800),fy(800),fz(800)e
e
a
e
e

common/circles/ s,sv,sa,sb,sc,sf

open (unit=21,file='[yuxinhua.md]xyz.in',status='old')

open (unit=22,fi1e='[yuxinhua.md]vcc.in',status=’old‘)

open (unit=23,file='[yuxinhua.md]acc.in',status='old')

open (unit=24,file='[yuxinhua.md]bcc.in’,status='old')

Open (unit=25,file='[yuxinhua.md]ccc.in',status='old')

open (unit=26,file='[yuxinhua.md]scc.in',status='old')

do 100 i=1,n

write (213') rx(i),ry(i),rz(i)

write (223) VX(i).Vy(i).VZ(i)

write (211,“) ax(i),ay(i),az(i)

write (24,"') bx(i),by(i),bz(i)

write (25,") cx(i),cy(i),cz(i)

100 confinue

write (26,"‘) s,sv,sa,sb,sc,sf

close (unit=21)

close (unit=22)

close (unit=23)

close (unit=24)

close (unit=25)
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close (unit=26)

return

end

C ++—+—++—+—+++-+—+—+++++ end of subroutine writin +-+-+-+++-++-l—+—i—+—l—-+—H—+-+-1—+—+++-+—+-

c++++++-H—+—++++-+—+—++ beginnig of subroutine energy +4++-+—-1—+—+—+—+-+—++—+++—+—+—+++

subroutine energy (n,en,temp)

common/circles/ rx(800),ry(800),rz(800),

& vx(800),vy(800),vz(800),

& ax(800),ay(800),az(800),

& bx(800),by(800),bz(800),

& cx(800),cy(800),cz(800),

& fit(800),fy(800),fz(800)

common/circles/ s,sv,sa,sb,sc,sf

common/circles/ vexp(20000),vexq(20000)

common/circles/ nei(90000),lpoint(800)

temp = 0.0

do 100 i = 1,n

temp = temp + (vx(i)**2 + vy(i)"2 + vz(i)“2)

100 confinue

temp=0.5*(s"s)‘temp

p= 10.15

q=4.13

aa=0.118438

qq = 2-‘q

vn = 0.0

do 200 i=1,n

vnl=0.

vn2=0.

rxi=rx(i)

ryi=ry(i)

rzi=rz(i)
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do 190 j=1,n

if (j.eq.i) goto 190

airman)

ryij=ryi-ry(i)

rzij=rzi-r2(j)

rij2=rxij"2+ryij"2+rzij"2

rij=sqrt(fi12)

vn1=vn1+exp(-qq*(rij-l))

vn2=vn2+exp(-p*(rij- 1))

190 confinue

vn1=sqrt(vn1)

vn=vn+0. 5 ‘(aa‘an-vn 1)

200 confinue

en=temp+vn

en=enlreal(n)

temp=2. "temp/rea1(3“n)

return

end

C-l—+-+-++-i—+—i-+-+-+-l—+—+-++-+-l—+—l- end of energy -H—+++-l—H—l—H—+-++-l—l-+-i—+—+++++++++
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