

IHIJ(HIIJ(HH(NH (’HHIHHI‘I! UL

01048 7563
\ oans

This is to certify that the

dissertation entitled

A DISCIPLINE INDEPENDENT FRAMEWORK FOR ENGINEERING DESIGN

's,
presented by

REID BALDWIN

has been accepted towards fulfillment
of the requirements for

PH.D. degree in PHILOSOPHY

Major professor U

Date \T“'ag 29, ’7 ?‘7‘

MSU is an Affirmative Action/Equal Opportunity Institution o-12m

LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES retum on or before date due.

DATE DUE DATE DUE DATE DUE

MSU Is An Affirmative Action/Equal Opportunity Institution
Cicirc\detedun.

pom3-p.1

A Discipline Independent Framework for
Engineering Design

By

Reid A. Baldwin

A Dissertation

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Department of Computer Science

1994

Moon Jung Chung

ABSTRACT

A Discipline Independent Framework for
Engineering Design

By

Reid A. Baldwin

Design frameworks are software environments that integrate the many application
tools used by engineers. These frameworks must manage the enormous quantity and
variety of data generated. A discipline independent design framework was developed
which facilitates the interdisciplinary interaction on which concurrent engineering
depends. This framework provides services needed by most engineering disciplines,

such as:
e version control,
e configuration management,
e constraint management,
e change notification, and
e methodology management.

Object oriented inheritance is employed to add discipline specific functionality to the
discipline independent framework by creating new classes for representation formats

such as schematic, solid model, etc.

A unique aspect of this framework is support for products with many user se-
lectable options. This support facilitates the design of versatile, parameterized prod-
uct families which can be quickly customized to meet customer needs. In addition
to increasing the products’ appeal to end users, parameterized options allow the pre-
design of major components before detailed specifications are developed, reducing

time to market. The support provided includes facilities to:
e describe what options are offered and describe legal combinations,
o describe how the structure and properties depend upon those options, and

e verify constraints over a large set of combinations.

Copyright © by
Reid A. Baldwin
1994

TABLE OF CONTENTS

LIST OF FIGURES

I Introduction

1 Introduction

1.1 Characteristics of the design process
1.2 Characteristics of designdata

1.3 Outline

...................................

II Design Data Management

2 Data Model

2.1 Previouswork e e
2.2 OVerview i i e e e e e e e e e e e e e e e e e e
2.3 Component hierarchy
2.4 Derivation hierarchy
2.5 Classification hierarchy
3 Optional Content
3.1 Optional features,
3.2 Selectingoptionvalues,
3.3 Specifying designs withoptions
3.4 Internal representation,

III Framework Services

4 Computing Property Values
4.1 Framerepresentations,
4.2 Implementation of frame representations

5 Constraint Management
5.1 Documenting constraints
5.2 Constraint checking

viii

N Nwhy =

10

11
11
17
22
24
29

31
32
34
36
39

53 Limitations i e e e e e e e e e e e e e e e e 62

6 Automated Component Selection 64
6.1 The basic component selection problem 65
6.2 The component selection problem withoptions 76
6.3 The recursive component selection problem 87

7 Change Notification 91
7.1 Notification triggers e 92
7.2 Notificationmethods 95

IV Design Methodology Management 97

8 Methodology Specification 100
81 Processflowgraphs 104
8.2 Design process rammars v v v v v v v v e e e e . 106
8.3 Guaranteeing successttt e e e e 110
8.4 Handling multipleversions 114

9 Execution Environment 120
9.1 Execution environment overview 121
9.2 Executionexample 125
9.3 Implementation options for manager programs 133

V Conclusion 138

10 Conclusion 139
10.1 Implementationstatus 140
10.2 Contributions e 141
103 Futurework e, 142

A Glossary 143

B Language Constructs 150
B.l Overview. e 150
B.2 Detailedsyntax 153

C Persistent Storage Implementation 159
C.1 Motivation e e e e 159
C2 Overview. i i i i i e e e e e e e e 160
C.3 Theserver processo i i i i, 161
C.4 Client library routines 162
C.5 Thepersistentclass 163
C.6 Virtualfunctions 163

vi

BIBLIOGRAPHY 170

vii

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7

LIST OF FIGURES

Layered Organization, 17
DataModel 18
Possible subclasses of Representation 20
Sample C++ code for message handling 21
Component Hierarchy of Cylinder Head Assembly 23
Cylinder Derivation Hierarchy 25
Workspaces Map Design Objects to Design Versions 28
Classification Hierarchy of Fuel Pump Design Objects 29
Example Option Selection Objects 36
Bindings of Cylinder Head Assembly 37
An MDD for the expression X*Y+Z 40
MDD for applicability set of engine 42
MDD for additional restrictions of red74DX 42
MDD produced by combining previous MDDs with AND 44
MDD after eliminating redundant nodes 45
Frame representations 48
A component selection searchtree 66
Digital Circuit Design Problem 73
MDD for Combined Constraints 74
MDD for Objective Function 75
MDD for Constraints, 85
Removing ambiguity by adding non-terminal nodes 85
MDD for Cases where P10047 is Used 86
Primary Region MDD for Cases where P10047 is Used 86
MDD for Cases where Shielded Spark Plugis Used 88
Primary Region MDD for Cases where Shielded Spark PLug is Used . 88
ANelsisFlowmap. 102
ATask Schema, 103
A Sample Process Flow Graph 105
Alternative productions based on input format 108
Productions indicating alternative algorithms 108
A Sample Graph Derivation 109
Sample Derivation in Versioned Flow Graph 116

viii

8.8 Incompatible Specification Nodes 117

9.1 System Organizationc.c.0... 122
9.2 Productions for Engine Mount Design 127
9.3 Sequence of actions during manual operation 127
9.4 Productions for Mount Ring Selection 128
9.5 Sequence of actions for query handling 129
9.6 Production for Cost Estimation 130
9.7 Productions for Propeller Cost Estimation 131
9.8 Sequence of actions during automatic operation 132
9.9 Task Execution Automata 135
9.10 Production Execution Automata for Mount2 136
C.1 Virtual functions for transient objects 165
C.2 Virtual functions on shared objects 166
C.3 Virtual Function implementation for persistent objects 167

ix

Part 1

Introduction

CHAPTER 1

Introduction

“Hey, Shelley, were the interface specs you gave me for the standard model or
the upgrade?”

“You’re not still using those specs are you? Those are version 6B. We’re up to 8C
now.”

“But I’'m working on a retrofit, I need what was in production in March.”

“Oh, I don’t think I have those. Try discerning them from Joe’s schematic.”

“Joe has schematics for 15 different controllers and doesn’t remember which one
was used.”

“Are you doing the retrofit for that problem with the 18 mm aperture? Everybody
orders the 21 mm aperture anyway. That’s why it wasn’t in the test set.”

How much time do engineers spend in conversations like this? A lot more than
they would like and certainly a lot more than those paying their salaries would like.
What can be done about it?

Design frameworks are computing environments that operate at a higher level than

the operating system and integrate the application tools used by designers, analysts,

and managers. The primary functions of frameworks are:

Design Data Management - managing the enormous amount of data generated
during the design process such that designers can easily find the data they

need,

Design Methodology Management - managing the design process such that the
most appropriate procedure is followed and important steps are not overlooked,

and

Services - miscellaneous functions that are enabled by the integration of design
activities and data, such as checking constraints, choosing components that

satisfy constraints, and notifying designers of changes that influence them.

Design data management includes storing meta-data - data about the relationships
among data entities [1, 2]. Important relationships such as “represents the same thing
as”, “is derived from”, “is a type of”, and “is a component of” are easily lost when
designers manage the data without the assistance of a design framework.

Methodology management includes functionality to help designers determine what
sequence of tools to use to complete a task. It enables more sophisticated tracking of
what is being done, reducing the probability that important steps will be left out.

Many services which were previously performed by stand-alone tools or were not
performed at all can be performed better within a design framework. Examples
include constraint management and checking, automated component selection, release

control, and change notification.

1.1 Characteristics of the design process

Bond and Ricci [3] describe the design process used by a large corporation to design
aircraft. Their observations are also applicable to most other product lines. Some of

their conclusions are that:

1. Design proceeds by the cooperation of specialists (specialists teams or depart-

ments).

2. Each specialist has his own model of the design and may use several different

models or partial models for different purposes.

3. Specialists have limited ability to understand each others models. Specialists
communicate using a shared vocabulary, but not necessarily shared technical

knowledge.

4. Design proceeds by successive refinement of the models which are coordinated

and updated together.

5. The design decisions, which are acts of commitment and model refinement, are

negotiated by the specialists among themselves.

The design team must specify not only the structure of the design, but the man-
ufacturing process, test procedures, and operating procedures. The resulting design
must meet diverse criteria such as performance, cost, aesthetics, and safety. These
various aspects of the design are often strongly interdependent, but are usually man-
aged by different individuals or even different departments.

Previously, the design process was largely sequential; marketing determined re-
quirements, the design department specified the products structure, then the manu-
facturing department decided how to build it and the maintenance department de-
cided how to repair it. Very little information traveled backwards during the process.
It was very expensive to modify the design or requirements to incorporate manu-
facturing or maintenance considerations. Concurrent engineering is the practice of
developing the manufacturing plans and maintenance plans simultaneously with the

design of the product itself. Manufacturability, maintainability, and other “ilities” can

then be incorporated into the product design. If certain requirements are determined
to be excessive cost drivers, the requirements can even be modified.

Obviously, communication between designers is crucial in order to perform the
necessary trade-offs. Facilitating this communication is an important goal of design
frameworks. Existing frameworks are oriented toward specific engineering disciplines,
such as VLSI design, structural design, mechanism design, etc. Each framework
focuses on integrating only the types of data that arise in that discipline. Since many
products require inter-disciplinary design, separate frameworks create an impediment
to concurrent engineering.

Complex designs can be synthesized either bottom up or top down. In bottom up
synthesis, components are designed first and then integrated to achieve the desired
function. In top down synthesis, the overall design is considered first. The components
are designed later to meet the constraints imposed by the system design. In practice,
both methodologies are combined. Component designers produce designs which do
not have specific applications identified, but which are likely to have many uses, such
as fasteners, motors, and switches. System designers perform top down design in
response to established specifications. The system designer attempts to structure the
design such that it uses existing components whenever possible.

The top down design process for mechanical systems is discussed in [4]. In top
down design, it is important to be able to represent a part that has not been de-
signed in detail. In mechanical design, representing parts that have not yet been
defined may imply representing the three dimensional space that will be occupied by
the part [4]. In VLSI design, representing these parts may imply representing their
behavior without regard to structure.

There are several different types of design problems. Navathe et. al. classify
design problems according to how previous designs are used [5]. In design from first

principles, no knowledge of previous solutions of similar problems is used. In design by

modification, a design for a similar problem is used and modified to meet the slightly
different requirements. Design by selection implies using the general arrangement of
parts from a previous design, but selecting different designs for the components. The
designs for the components may exist in a database or may be generated recursively
by selection. Most design work is either by modification or by selection. Brown and
Chandrasekaran have proposed a similar classification of design problems, based on
the degree to which previous design procedures can be used [6]. According to this
classification, most design activity is “routine design” in which design procedures that
worked in the past for similar products may be used.

Design would be simpler if detailed specifications were always available. Unfor-
tunately, the specific needs of the customer are often not known to the designer.
Component designers rarely know the specific needs of their customers, and system
designers, such as car designers who must satisfy a wide variety of customers, often
face the same problem. To succeed in this environment, it is necessary to design
families of products in order to maximize the likelihood of meeting the customers’
needs. The product family offers the customers many options, such as size, power,
and features. Each different combination of optional features is called a variant.
Representing the design data for families of products is much more difficult than
representing a single product. When applied by component designers, the practice
of offering options can dramatically reduce time to market. Offering a choice of
parameters allows the component designer to begin long before the system designer
sets exact specifications while maintaining a high probability of meeting the eventual
specifications.

In [7], Whitney notes that careful design of variants dramatically reduced manu-
facturing costs for Nippondenso. The designs for a line of panel meters were changed
such that the interfaces between the parts were always consistent. The result was

a single design with 40 variants that could be built by a single assembly machine.

Instead of requiring 48 different designs for the 6 parts, only 17 were needed with the

" new design, reducing the inventory control expense.

1.2 Characteristics of design data

The design of a complex product or a line of products involves the creation of an
enormous amount of data. Before examining how a framework can assist designers in
managing this data, let us discuss some characteristics of the data.

Engineering data can be organized along several different dimensions, as described
by Katz [1]. First, all the data which describes the same physical entity should
be organized such that it can be treated as a collection. Second, a designer may
wish to look at various versions of the same information in order to trace the design
history or see what alternatives have already been explored. Third, a classification
hierarchy is useful so that similar entities, such as fasteners, can be treated as a
collection. Finally, complex designs are frequently decomposed into simpler designs

which interact, yielding a component hierarchy.

1.3 Outline

A framework has been developed which addresses many of these problems. This

framework differs from others in four primary aspects:

1. The data model is discipline independent and extensible. New representation
formats can be integrated into the data model using the object oriented con-
cept of inheritance. A message handling mechanism allows engineers to extract
information from the data generated by others without an intimate knowledge
of the representation format. This feature facilitates the inter-disciplinary com-

munication which is so crucial to concurrent engineering.

2. Constructs are provided for modeling products with optional content. For-
mal treatment of optional content provides much more effective management
of product families. Without this modeling capability, many of the benefits of
frameworks were not available to firms which depend on offering users options

in order to be competitive.

3. The framework provides advanced support features which enable an interdisci-
plinary team of designers to create and verify complex designs. These features
include constraint documentation and checking, automated component selec-
tion, and change notification. Although these services are provided in other
frameworks for products without optional content, new techniques are necessary

to address products with options.

4. The framework includes features for managing the design process as well as the
design data. These process management features guide designers through an
appropriate design process and ensure that importaﬁt design steps are not in-
advertently omitted. These features also help capture the relationships between

data entities without relying on designers to enter relationships explicitly.

The main body of this dissertation is organized into three parts, which describe
data management, framework services, and process management respectively.

Part II describes the data management features of the framework. Chapter 2
provides an overview of the data model and describes how the component hierarchy,
derivation hierarchy, and classification hierarchy are handled. Chapter 3 describes
the constructs and algorithms which support the modeling of products with optional
content.

Part III describes services provided by the framework. Several of these services

require the ability to compute property values for designs. Chapter 4 describes a

flexible mechanism for designers to specify formulas for these property values. Chap-
ter 5 describes how designers may verify a design by expressing constraints which are
checked for all variants of a product family. Chapter 6 describes a framework service
which assists designers in choosing designs for components such that constraints are
satisfied. Unlike the other framework services, which operate on meta data, the au-
tomated component selection algorithms described in Chapter 6 directly manipulate
the design data. Once designs have been expressed and verified, designers must be
informed of certain changes made by other designers in order to keep the design data
consistent. Chapter 7 describes how change notification services can be provided
within the framework.

Finally, part IV describes framework support for controlling the design process
itself. Chapter 8 describes a formal representation of acceptable design processes. An
execution environment which uses this representation to help designers choose the
most appropriate process is discussed in Chapter 9. When sufficient knowledge is
encoded, this execution environment may even perform the more routine portions of
the design process automatically.

To assist the reader with the terminology used, a glossary is provided in Ap-
pendix A. Appendix B describes the language used to express option offerings, for-
mulas, and constraints. The implementation of persistent objects, which are used to
store the design data, is presented as Appendix C.

Throughout this dissertation, a manufacturer of small aircraft engines is used as
an example [8]. This company illustrates many of the typical challenges encountered
by a modern manufacturing enterprise. This company takes pride in being able to
customize its engines to suit the needs of each buyer. The customer can choose from
several displacements, ignition systems, carburetors, oil coolers, exhaust systems, etc.
and may select many optional features such as hydraulic lifters, an alternator, and a

starter.

Part 11

Design Data Management

10

CHAPTER 2

Data Model

A data model is a set of structures which organize the data and capture the relation-
ships among data entities. The first section of this chapter provides a survey previous
engineering data models. The following section provides an overview of the proposed
data model. Finally, Sections 2.3 through 2.5 discuss how the proposed data model
captures the component hierarchy, derivation hierarchy, and classification hierarchy,

respectively.

2.1 Previous work *

The majority of previous data management frameworks have concentrated on the
specific needs of a single engineering discipline such as VLSI design [1, 2, 9, 10],
mechanical design [4], building design [11], or chemical process plant design [12].
Sherpa [13] is the only system that currently supports multiple disciplines. Sherpa
plays the role of an electronic library for engineering documents, but does not ma-

nipulate any of the data within the documents.

*The terminology in the field of engineering data models is not well defined. Different authors
frequently use different words for the same concept and the same word for different, but related,
concepts. The words configuration and workspace are particularly troublesome. When describing
the work of others, their terminology is used.

11

12

-

Much of the early research in version control was performed in the context of
software engineering. Version control systems developed for software engineering
only address files of text and do not interpret the contents of the files. These systems
concentrate primarily on the efficient storage of many versions by storing only the
changes between versions [14, 15]. A check-in / check-out mechanism is employed.
New versions are created whenever previously checked out designs are modified and
checked back in. All modifications are made outside the system. One such system,
RCS [14], keeps track of an acyclic directed graph of versions called a revision tree.
Since the system keeps track of what was changed between versions, it can often
merge versions automatically by combining the changes.

When the data is divided into several related files, version control is not suffi-
cient. A version of a file must be matched up with the correct versions of related
files. These groups of versions are called configurations. RCS [14] keeps track of
configurations by allowing branches in the version history of each file to be named.
If an alternative requires changes to several files, the branches for that alternative in
each revision history would be given the same name. When the name is supplied as
an optional argument of the check-out command, the latest version in that branch is
retrieved. Using the same name when checking out several files ensures that the files
are compatible.

The Version Server [1], developed by Katz et. al. for managing VLSI design
data, uses a check-in / check-out model similar to software configuration manage-
ment systems. Representation objects must be checked out from a workspace for use
and new versions are created when representation objects are checked in. In this
system, workspaces are logically separate data bases. Three types of workspace are
identified and different rules are enforced regarding check-in and check-out. Archive
workspaces are reserved for versions that are safe for use in any design. Designs must

be thoroughly verified before check-ins are allowed. Anyone is allowed to check-out

13

an objects from an archive workspace. Private workspaces are intended for use by
a single individual. Only that individual is allowed to check-out objects. However,
that individual can check-in objects without any verification. Group workspaces allow
several designers to share data while they integrate their work.

Katz et. al. clearly identify three types of relationships that exist between objects
in a design data base: composition, derivation, and equivalence [1]. The objects which
directly contain the design data, called representation objects, are identified by name,
version number, and type. Several types of structural objects are used to record the
various relationships. Composite objects, which capture the component hierarchy, are
formed from representation objects and other composite objects. All of the objects
in a component hierarchy are assumed to have the same format. For example, a
component hierarchy might contain either layout data or behavioral data but not a
mixture of the two. Equivalence objects relate representation objects that describe the
same design but have a different type. Version history objects group representation
objects that have a “derived from” relationship.- Configuration objects associate a
composite object with versions of the composite object’s components.

In [16], Katz and Chang propose mechanisms for automatically creating new con-
figuration objects when new versions of a component object are checked in to a
workspace. This practice can result in an explosion of configuration objects. They
also address the issue of which equivalence objects should be added for the new
version. Under standard check-in, the new version is assumed to be equivalent to
all of the objects that the object it was derived from was equivalent to. In fact,
their validation subsystem does not allow a new version to be checked into an archive
workspace unless it can verify that it is equivalent. When several of the equivalent
objects are modified together a group check-in is required. The new objects are
assumed to be equivalent to each other but not necessarily equivalent to the versions

from which the other objects were derived.

14

Kim [17] proposes a data model specifically for VLSI design. He organizes the
data in that discipline into four levels of abstraction. CELL objects specify only the
interface but nothing about the implementation. DESIGN objects represent entities
whose arrangement of components is determined, but the design of the components
is not determined (each component is represented by a CELL object). CONF objects
represent designs in which at least one of the components is bound to a particular
implementation (which is represented by a CONF or DESIGN object). CLASS ob-
jects organize the CELL objects into a classification hierarchy. His data model is
based on the VHDL language, which clearly separates interface, implementation, and
configuration data. The data entities that are used in other disciplines, such as a
finite element model or a set of empirical equations, often do not fit well into these
categories.

There are a variety of ways of referring to versioned objects. Most systems support
some fashion of static binding, which explicitly specifies which version to access. Most
systems also support dynamic bindings which allow the “appropriate” version to be
determined when the object is accessed. Systems differ widely in how the “appropri-
ate” version is determined. Some systems have a movable pointer that specifies the
“current” version for each object. Others allow several such pointers and a mechanism
for specifying which pointer to use. These pointers may be automatically adjusted
when new versions are created or may be explicitly set by users.

DVSS [18] creates a separate pointer for each derivation path (linear chain of
revisions) which always indicates the most recent version in that path. A reference
that does not specify a path accesses the most recent version in a designated path
called the principal path. In [19], Beech and Mahbod describe a general, though
somewhat cumbersome, mechanism for specifying how references to versioned objects
should be handled. An object called a contezt contains user defined functions which

are applied to any reference to a versioned object in order to select a particular

15

version. Static and dynamic bindings are special cases that are expressible in their
system. Other possibilities would select versions based on user defined properties.

In [20], Dittrich and Lorie present a powerful mechanism for version selection.
They define concepts called version clusters which contain a group of versions and
environments which map version clusters to particular versions. One environment is
selected by the user at a time. Dynamic bindings reference version clusters and the
current environment determines which version to use. Dittrich and Lorie also present
a very powerful mechanism for defining these environments, but the definition must
be processed before use.

Banks et. al. [21] describe a mechanism, called workspaces, for mapping ver-
sioned objects to versions that is similar to the environments of Dittrich and Lorie.
However, users manipulate the mappings more directly. To facilitate the definition of
workspaces that are very similar to existing workspaces, the workspaces are organized
into a hierarchy. Each workspace only defines the mappings that differ from its parent
workspace. Banks et. al. also utilize a special type of workspace, called a checkpoint,
to freeze design states. The mappings in checkpoints cannot be changed and the
referenced versions are frozen.

Silva et. al. [22] define a workspace as a collection of versions, perhaps including
several versions of the same design. A separate concept, called a configuration con-
tains a subset of the versions in a particular workspace such that at most one version
for each design is in the configuration. Each workspace may contain several config-
urations, one of which is declared to be the current configuration for the workspace.
Workspaces are not permanently organized into a hierarchy, but users specify a search
order. A search is necessary because the current configurations of some workspaces
may not contain any versions of the desired design.

Biliris [23] takes a slightly different approach. Only one version of a design is

considered current at a given time. Each version of an object may have one of four

16

statuses: in-progress, stable, frozen, or released. In-progress versions are the only type
that may be modified. All bindings in a stable version are dynamic bindings which
reference whichever version is current at the time the binding is evaluated. Although
stable versions cannot be edited, their properties may change over time because the
bindings reference updated designs of components. When an object is promoted to
frozen status, all dynamic bindings are converted to static bindings which reference
whatever version is current at the time of promotion. Before promotion, the current
version of each current component designs must have either frozen or released status.
Frozen versions represent a fixed state of the entire component hierarchy. Released
versions are like frozen versions that cannot be deleted. A design cannot be promoted
to released status until all of its component designs have released status. By recording
the time that the current version is changed for every design, it is possible to re-create
the design state of the component hierarchy that a stable version represented at some
specific time in the past. Biliris also organizes the data into separate databases which
are nodes in a directed acyclic graph following the project decomposition. Each
version has a home database. A version is readable from a database if there is a path
from that version’s home database to the current database.

Several previous systems organize designs according to a classification hierarchy.
Cornelio and Navathe [5] present an interesting alternative called a Semantic Associ-
ation Graph (SAG). SAGs are acyclic directed graphs tlha.t organize designs according
to what properties (called capabilities) are defined for them. Each node represents a
property. Each design is associated with a node. The set of properties defined for
that design is given by all ancestor nodes in the graph. The SAG facilitates finding
existing designs with properties similar to those desired.

In summary, there are several existing systems which record some of the relation-

ships required for design data: classification, derivation, component, and equivalence.

17

User Interface

Discipline Specific Systems
Discipline Spccific Representations
Discipline Specific Design Processes

Discipline Independent System Release Control

Version Control Option Management
Configuration Management Constraint Management
Change Notification Methodology Management

Object Management System

Persistent Storage
Administrative Functions

Figure 2.1. Layered Organization

However, none of the systems surveyed records all of these relationships. Furthermore,

Sherpa is the only system that is discipline independent.

2.2 Overview

To facilitate the creation of multidisciplinary frameworks, the data model is organized
in layers, as shown in Figure 2.1. The discipline independent data model provides
services that are required in most or all disciplines, such as option management,
version control, and configuration management. Discipline specific functionality, pos-
sibly from several disciplines, can easily be added on top of the discipline independent
data model. The advantage of the proposed data model is not that the services, taken
individually, are better than all other systems, but that the services are all provided
seamlessly within a single discipline independent framework.

The data model is illustrated in Figure 2.2. The basic unit of data is a rep-
resentation, which describes a particular aspect of a design, such as its structure,
performance, manufacturing process, etc. The various representations that collec-
tively describe the same version of a physical entity are grouped into design versions.

Design versions have a series of named slots, one for each different type of information

Design

Design
Version
Design
Version
Formats
Rep. Rep.

Assm. Rep. Rep.

Derivation

Figure 2.2. Data Model

to be retained about a design. Each slot points to a representation that describes
the corresponding aspect. “Derived from” relationships are captured at both the
representation and design version levels. Representation and Design Version objects
contain flags indicating whether they are currently editable or deleteable. Design
Versions also have a flag indicating if it is currently considered valid. The use of this
flag is discussed further in Chapter 7.

Unlike most other systems, a check-in / check-out protocol is not used.! If data
is editable, it can be modified in place, implying that the previous data is lost. New
versions are created explicitly when the user decides to save the current state.

The design versions representing the various design states of a particular design
are grouped into a design object. Design objects are organized into a classification

hierarchy. The relationship between design objects and design versions is analogous to

1The release operation described in Section 2.4 is similar to the check-in operation.

19

the relationship between classes and instances in object oriented programming. The
non-leaf objects in this classification hierarchy represent generic designs or classes of
designs. Like leaf design objects, non-leaf design objects also have a collection of
design versions. Of course, the representations in the slots of these design versions
contain less specific descriptions of structure and performance than those under leaf
designs.

The component relationships are captured by a particular type of representation
called an assembly representation. Each of these types of objects and relationships is
described in more detail in the sections that follow.

Each different data format is called a representation type. Discipline specific func-
tionality is added to this framework by creating new representation types using object
oriented inheritance. The Representation class is used as a base class for defining
other representation types. For example, a derived class called File_Rep stores de-
sign data in a standard computer file (other representation types might store the
data in databases). New representation types for solid models, CAD/CAM models,
etc. may easily be created as derived classes of the File Rep class, without having
to re-program the routines to manipulate files. New methods would be defined to
manipulate the design data within the file, probably by invoking the appropriate
application program. Figure 2.3 shows some example representation types that could
be defined.

Users must be able to utilize the data contained in representations and design
versions without detailed knowledge of representation formats. A message handling
system has been implemented to support this interaction. Data from different dis-
ciplines can interact by exchanging these messages. The semantics of the messages
are defined by the implementors of the representation types. For example, the rep-
resentation type Solid Model would handle a request to compute the volume, etc.

as illustrated in Figure 2.4. Specifically, each representation type has a method to

20

I Representation
e ~
OODB object File Relational DB record
/ \
Solid Model Textfile CAD Drawing
A\ T
Fortran Program FMEA Nastran Input

Figure 2.3. Possible subclasses of Representation

respond to a message encoded as a text string.? This method decodes the string
according to whatever calling syntax the representation programmer determines and
takes the appropriate action. If the message cannot be decoded and handled, then
the representation type reports failure to the requester. To extract information from
a representation, a user needs to consult a message dictionary for the representation
type to determine what messages have been implemented. Consulting a message
dictionary is easier than learning to interpret the representation semantics.

In a similar fashion, messages may be sent directly to design versions. The de-
sign version forwards the message to the representations in its slots. Since each slot
generally contains a different type of information, usually only one is able to decode
and respond to the message. If none can respond, or if two or more can respond
and disagree, the design version reports failure to the requester. The sender of the
message must have some knowledge about what representation types are likely to fill
the slots of the design version. Designers usually know what type of information to

expect in design versions with which they interact.

$ Readers may wonder why this could not be accomplished by defining a method for each message
type. The problem with this approach is that the user interface cannot provide access to these new
methods unless the methods are known to the developer of the interface. The interface would require
reprogramming whenever new representation types are added or additional functionality is added
to existing types.

21

int
solid_model::handle_message(char *message, void *answer,
environment *home) {
/* handle messages sent to solid model representations */
if (!strncmp(message, "get volume", 10)) {
/* if this is a request to compute volume */
float *result = (float *) answer;
/* response will be a floating point number */
*result = compute_volume();
/* do whatever is needed to compute volume,
probably invoking a tool */
return 1; /* indicate success to caller */

¥

/* similar code for other message types,

such as "get surface area" */
return file_rep::handle_message(message, answer, home);
/* msg doesn’t apply to solid models,

see if parent type can handle it */

};

Figure 2.4. Sample C++ code for message handling

22

A representation type called frame provides a convenient way to access the mes-
sage handling system for computing properties of a design. Frames are discussed in

detail in Chapter 4.

2.3 Component hierarchy

A representation type called an Assembly represents designs that are decomposed
into simpler designs. An assembly simply contains a list of components and a list
of connections, which indicate what the parts are and how they are connected.
Specifically, assembly representations contain instances of two classes, Component
and Connection. The Component class contains a component name and a binding
indicating what design should be used for that component. A Connection simply
contains a list of components that are to be connected. As illustrated in Figure 2.5, a
design version for Cylinder_Head_Asm would contain an assembly representation in-
dicating that it is composed of a cylinder, a cylinder head, spark plugs, and a rocker
arm assembly. A design version for Rocker_.Asm would contain another assembly
representation indicating that rocker arm assemblies contain rocker arms and valve
springs.

A reference to another design from within a representation is called a binding.
Bindings are evaluated to determine what design version object should be referenced.
Several different types of bindings are supported. The simplest type of binding, called
a static binding, allows the designer to specify the design version directly. A more
sophisticated type of binding, called a dynamic binding, allows the designer to specify
only the design object. When dynamic bindings are used, the system determines, at
the time the binding is evaluated, which design version would be appropriate. The
mechanism for making this determination is discussed in the next section. Users may

set a flag indicating that binding evaluations that would reference a design version

23

Cylinder_Head_Asm.v3
sucture propertics

Assembly rep Head_Assm.v2

cylinder head rocker_asm spark_plugs

Py \

L \
() (=) (=) =)

Assembly Rocker_Assm.v2
rocker_arm valve spring

/ \
=] (=)

Figure 2.5. Component Hierarchy of Cylinder Head Assembly

with invalid status should fail. This flag prevents the unintentional use of invalid
data.

Because each discipline needs to store different information about the structure
of a design, the Assembly representation type is extensible. For example, electri-
cal engineers may need to indicate which pins on an integrated circuit to connect,
and mechanical engineers may need to specify the torque to which a nut should be
tightened. Property lists associated with each component and connection provide
designers a way to express discipline specific information without the need to do any
programming. These properties are simply expressed as < property name, value >
pairs. Numeric, string valued, and Boolean properties are all allowed. If property
lists are not sufficient to express the discipline specific information, a programmer
can extend Assembly representations by creating new classes which are derived from

the Component and Connection classes. For example, a representation suitable for

24

discrete event simulations might use a subclass of Component called DES_component

that defines an additional method handle_event ().

2.4 Derivation hierarchy

Consider a scenario of an engineer designing a new cylinder for the aircraft engine.
As she worked, she created several versions of the design. The geometry of the first
version was drawn using a drafting package. A program for a numerically controlled
(NC) machine was generated to manufacture the part. She was not pleased with
the NC program so she modified the program without changing the part’s geometry.
Unable to generate a satisfactory NC program for the original geometry, she even-
tually decided to modify the geometry and generate a new NC program. When she
finished, she had five data files representing three different design states. Unless the
relationships between files are carefully documented, there is a danger of using old
versions or using an NC program that is inconsistent with the geometry.

Under the proposed data model, this design data would be captured by the design
version objects and representation objects illustrated in Figure 2.6. The design data
is contained directly in representation objects. Each design version object has a series
of named slots and a pointer to a representation object corresponding to each slot.
Collectively, these representation objects describe the design state of the design, but
not the states of other designs that are referenced within the representations, such
as components. A broader concept of design state is discussed below. A design
state is modified by changing which representation is associated with a slot or by
modifying the data within one of the representations. Slots can also be added or
removed. Version relationships are maintained separately for design versions and

representations, although the derivation hierarchies are usually similar.

25

Figure 2.6. Cylinder Derivation Hierarchy

A set of rules, which determine when representations and design versions may be

modified or deleted, must be enforced. These rules are:

1. A design version should not be modified when one or more design versions
have been derived from it. If the design state described by the design version
were changed, the “derived from” relationship would no longer hold. Instead,
the designer should create a derived design version and modify the new design

version.

2. A representation with derived versions should not be modified for the same

reason as above.

3. A representation which is currently referenced by a slot of a design version

should not be deleted.

4. If a design version cannot be modified, then no representation which is refer-

enced by a slot of that design version should be modified.

26

Suppose that the engineer responsible for designing the cylinder head assembly
wants to do an analysis of its performance. He must reference the design of the
cylinder. Which version of the cylinder design should he use? He would want to use
a recent version, yet one that is fairly stable.

Selecting the correct version requires input from both the designer of the part
in question and the person performing the analysis. The choice of versions depends
upon the intent of the analysis, which is known to the analyst. The objective might
be to determine the performance of a proposed design or might be to investigate a
failure of a prototype or unit in the field. Input is also required from the designer
of the part in question because he would know which version is appropriate once the
purpose is defined.

Workspaces provide a convenient mechanism for version selection. My data model
adapts the workspace concept described by Banks et. al. in [21]. This mechanism
is not as expressive as the mechanisms of Beech and Mahbod [19] or Dittrich and
Lorie [20], but is conceptually simpler. Typical design activities do not require the
additional expressiveness of the more complex mechanisms.

A workspace is a mapping (possibly a partial mapping) from design objects to
design versions. At any point in time, a workspace defines the design state for the
complete component hierarchy, called a configuration. A separate workspace is defined
for each different analysis situation. The designer of each part decides which version
is appropriate for each workspace. Specifying that a workspace should map a design
object into a particular design version is called releasing the design into the workspace.
Workspaces are organized hierarchically to facilitate specifying the mappings. The
designer of a part only needs to specify the version for a workspace if it differs from
the parent workspace. This organization allows the creation of many workspaces
without interfering with the work of designers. The analyst specifies a workspace

before constructing the configuration. The mapping of the selected workspace is

27

used to determine which design version to use for the referenced design object. If no
mapping is specified for the current workspace, the parent workspace is searched. The
process continues until a mapping is found or a workspace does not have a parent. If
the entire ancestry of a workspace is searched unsuccessfully, the evaluation fails.

Figure 2.7 shows and example workspace hierarchy and how each workspace maps
design objects to design versions. In this example, a workspace called “Project” has
been created that contains stable versions of both the cylinder design (version 1) and
cylinder head assembly design (version 3). To perform analysis on a new cylinder head
assembly (version 4) using the stable cylinder design, the head assembly designer can
create a new workspace called “Head_Assm_Test” as a child of “Project” and release
the experimental version of the head assembly into that workspace. The analysis
can then be performed without disturbing the cylinder designer. However, when an
updated cylinder design (version 2) becomes sufficiently stable, it will be released
into the “Project” workspace in place of the old version. The new version will then
automatically be included in any analysis done by the head assembly designer without
any explicit action on his part.

Sometimes a designer needs to freeze the state of referenced designs so that future
analysis is possible using exactly the same versions. A special type of workspace,
called a checkpoint, is used to freeze the state of the complete component hierar-
chy. Like a regular workspace, a checkpoint maps design objects to design versions.
However, all of the design versions used must be frozen and the mapping cannot be
modified, which implies that all ancestor workspaces must be checkpoints. Otherwise,
a checkpoint could inherit a mapping to a design version which is not frozen. Using
the framework, users can quickly create checkpoints as a copy of the current state of
a workspace. In Figure 2.7, a checkpoint of the “Project” workspace was made to
record the status at the end of 1992, making it easy to determine what has changed

since then.

28

\
\
]
'
1

’

Tso % CP-Pro92
LY
-

Design Object Head_Assm

Cyl_Test Head_Assm_Test

CP - Proj92 — | Design Version Head_Assm.v2]

Project =* | Design Version Head_Assm.v3]

Design Object Cyl llcad_Assm_Test —* | Design Version Head_Assm.v4)

CP - Proj92 (]
Design Version Cyl.vi
Project > gn Version Cy!

Cyl_Test —> (Design Version Cyl.v2J

Figure 2.7. Workspaces Map Design Objects to Design Versions

Mechanical
Fuel Pumps

#40.401

Non-
Aecrobatic
Fucl Pumps

Figure 2.8. Classification Hierarchy of Fuel Pump Design Objects

For storage efficiency, the framework makes the new checkpoint a child of the
most recent checkpoint of the copied workspace. Explicit mappings are only needed
for design versions that have been added to the workspace since the last checkpoint. If
the copied workspace has never been checkpointed, a recent checkpoint of an ancestor

workspace may be used.

2.5 Classification hierarchy

Suppose that an engineer is designing a new fuel system for use with the aircraft
engines. In the early stages of design, he does not want to decide exactly what
fuel pump to specify. Instead, he would like to perform some preliminary analysis
assuming a generic model of a fuel pump. When he is ready to specify a particular
fuel pump design, his job will be much easier if the available designs are organized

into a classification hierarchy, as shown in Figure 2.8.

30

Design objects are organized into such a hierarchy. Each design object contains a
list of other design objects which describe entities that are specializations or general-
izations. Each design object has an “is a type of” relationship with its parent design

objects. The classification hierarchy is useful in two ways:

1. It organizes the designs for easy browsing, making it easier for a designer to
find out about all available designs when selecting a component or creating a

similar design.

2. Non-leaf design objects provide a convenient repository for models that apply

to many different designs.

New design objects can be created by design engineers without doing any program-
ming.

A list of constraints associated with each design object guides designers looking
for designs with certain capabilities. The language for expressing these constraints
is described in Appendix B. Constraints can either restrict the situations in which
a design may be used or guarantee a certain level of performance. The constraints
are automatically inherited by all of the ancestor design objects in the classification

hierarchy. The design object Fuel Pumps in Figure 2.8 may have the constraints:
o pressure_oul > pressure_in
e flow_out = flow.in

The design object #40.102 would inherit these constraints and could add:
e pressure_out — pressure_in > 6

The added constraints may supersede inherited constraints, but should not contradict
them. Constraint checking functionality, presented in Chapter 5, helps designers

detect contradictory constraints.

CHAPTER 3

Optional Content

When a family of products with many variants is designed, additional constructs must
be added to the data model. Very little work has been done representing families of
products that have many variants based on user selectable options, although the
practice of designing such families is common [27]. Traditionally, variants have been
described by notes on drawings. The drawing illustrates a certain variant, and the
notes describe how to modify the design to produce other variants. These textual
notes are not amenable to automated processing. It is also very difficult to determine
if all of the conceivable variants are correct or even unambiguously specified.

Inventory control experts created representation formats called hierarchical bills
of material and product structure charts which provide a formal means of expressing
what components should be used for each combination of option choices [28). These
concepts add some formalism and allow automated processing. However, they only
represent the list of parts, not the fabrication, assembly, operating, and maintenance
information.

The most significant effort to date in the field of representing products with options
is the generic bill-of-material product model of Hegge and Wortmann [29]. This
extension of bills of material, which are common in industry, allows generic products

to be defined which have a set of variants determined by values for a set of parameters.

31

32

Each parameter, like color, has a finite set of possible values. Generic bill-of-material
product models, however, are not sufficiently expressive to describe many products.
The mechanism for restricting what combinations of parameter values are allowed is
also very weak?

In this chapter, the constructs in the proposed data model that handle products
with optional content are described. Section 3.1 describes constructs for specifying
what variants are to be offered. Section 3.2 describes constructs for specifying which
variants are to be produced or analyzed. Section 3.3 introduces constructs for de-
scribing the structure and performance of designs as a function of what options are
ordered.

Several of the operations that manipulate these constructs are NP-complete. How-
ever, the problem instances that typically occur display characteristics that allow
them to be solved practically if sophisticated algorithms are employed. In Section 3.4,
a data structure that enables these operations to be performed efficiently in most cases
is described along with a description of problem characteristics which influence the

efficiency.

3.1 Optional features

For each design object, designers must specify what optional features the customer is
allowed to select and what choices are available for each. In the proposed data model,
each customer selectable parameter is called an option variable. Option variables are
automatically inherited by descendant design objects in the classification hierarchy.
Each option variable has an enumerated list of possible values. Boolean variables

always have the possible values TRUE or FALSE, but designers must specify the list

* A more powerful mechanism for describing not-allowed combinations is promised as future work.

33

of possible values for numeric and string option variables. Option variables are very
similar to what Hegge and Wortmann refer to as parameters [29].

Optional features are not necessarily independent. Therefore, the designer may
not want to offer all combinations of values for option variables. There are several

reasons to restrict the option combinations for a design object:

e Some combinations are not manufacturable or would not perform satisfactorily.

For example, ordering a large engine without an oil cooler might not be allowed.

e Some combinations are unlikely to be ordered in sufficient volume to justify the

expense of offering them.

e A design object may not offer all of the choices for an inherited option variable.
The choices not offered would presumably be available from a sibling design

object in the classification hierarchy.

Using a subset of the language described in Appendix B, designers specify the restric-
tions for each design object as a set of Boolean expressions. Like option variables,
option restrictions are automatically inherited by all descendant design objects in
the classification hierarchy. The set of legal option combinations for a design object
is called the applicability set. Generic bill-of-material product models [29] do not
offer any powerful constructs for restricting the legal combinations. The only type
of restriction is that several components with the same parameters can be forced to
use the same value for that parameter. For example, if several components have a
parameter color, the designer can insist that all of the components be the same color.

Some of the option variables for the aircraft engine would be the numeric variable
Disp with possible values {2165, 2074, 1915, 1835}, the string variable $Ign_type
with values {‘dual_elec’, ‘dualmixed’, ‘singleelec’, ‘singlemag’}, and

the Boolean variables %Starter, Alternator, and Aerobatic. (The first character

34

of the option variable’s name indicates its type.) The applicability set for the line of

aircraft engines includes the following restrictions:

(%Starter -> %Alternator) indicating that a starter cannot be ordered unless an

alternator is also ordered.

(Disp >= 2074) -> ($Ign_type={‘dual_elec’, ‘dualmixed’}) indicating that

single ignition is not offered with the larger displacements.

The design object for a particular engine design, red74DX, would inherit these restric-

tions and add the following restrictions:
(%Starter) indicating that a starter always comes with this particular engine design.
(Disp = 2074) indicating that this engine comes in only the displacement 2074 cc.

($Ign_type = ‘dual_elec’) indicating that this engine uses dual electronic igni-

tion.

The added restrictions may make some of the inherited restrictions unnecessary, but
they should never be contradictory. If contradictory restrictions are accidentally

imposed, it would be detected whenever analysis was performed on the design.

3.2 Selecting option values

Option selection objects specify the option combinations for the top level design in a
component hierarchy. Each option selection object specifies a set of option combina-
tions. Option selection objects are associated with particular design objects and are
inherited by descendant design objects in the classification hierarchy. To perform an
analysis, a designer must specify both an option selection object and a workspace.
An option selection object contains an ordered list of statements. Most of the

statements are interpreted as Boolean expressions representing option restrictions.

35

To determine the set of option combinations from an option selection object, the
restrictions are processed in order, progressively narrowing the option combinations.
Initially, all combinations in the applicability set are considered! If an option re-
striction expression is satisfiable by at least one combination under consideration,
all combinations that violate the restriction are dropped from consideration. If the
restriction is not satisfied by any combination under consideration, it is ignored.

Often, the desired combination of option values differs only slightly from an exist-
ing option selection object. To facilitate specifying the options in this situation, some
of the statements in an option selection object specify another option selection object
(from the same design object or a parent in the classification hierarchy) to include at
that point. By specifying the differences from an existing option selection, and then
including that option selection at the end, the included option selection is effectively
used as a default. When two or more restrictions conflict, the restrictions processed
earlier take precedence.

For option selection object A of Figure 3.1, dual mixed ignition would be used, and
the bore would be set to 92mm. The first statement of option selection B excludes
any option combination which uses dual mixed ignition and a bore other than 94mm
from consideration. The second statement indicates that the restrictions of option
selection A should be considered next. By the time the second statement of option
selection A is reached, it is not satisfiable and is ignored.

To specify a variant using Hegge and Wortmann’s generic bill-of-material product
model [29], the user must assign values for parameters at all levels of the component

hierarchy.

tIf the object contains contradictory restrictions, the applicability set would be empty, so the
contradiction would be discovered at this point.

36

Option Selection Object A

($Ign_type = ‘dual_mixed’)
(Bore = 92)

Option Selection Object B

($Ign_type = ‘dual_mixed’) -> (Bore = 94)
#include A

Figure 3.1. Example Option Selection Objects

3.3 Specifying designs with options

The option combinations for each component must be specified in the binding as
a function of the option combination of the aggregate design. For example, the
cylinder head component used for the assembly illustrated in Figure 3.2 should have
an inside diameter, IDiam, determined by the Bore option variable of the referencing
design. Options of referenced designs are specified by adding a list of string valued
expressions to static and dynamic bindings. These expressions are evaluated using the
option combinations for the referencing design. The resulting strings are interpreted
as option restrictions which, combined with the restrictions defining the applicability
set of the component design, restrict the option values of the component. The binding
for cylinder head in Figure 3.2 indicates that when the option variable Bore takes the
value 92 the design for individual_head with the option restriction (IDiam = 92)
should be used. When more than one option combination is being considered for the
referencing design, it may be impossible to evaluate some of the string expressions in
which case the binding evaluation fails and the analyst should try the analysis with

a smaller set of option combinations.

37

Rocker Box Assembly
Spark Plug 1 rocker_assm, “$SLifters = ‘*hydraulic™
\
plug, "%Shiclded’™ \

\

Cylinder Head
individual_head,
Spark Plug 2 EaE "(IDiam =" + :Bore: +)"
for | o

($Ign_type = ‘dual_elcc’) use plug, "%Shiclded™;

($1gn_type = ‘dual_mixed") use plug, "%Shiclded”; }

Cylinder

for (
(Bore = 92) usc #10.100;
(Bore = 94) use #10.101;)

Applicability Set:
(Bore = {92, 94))
($Slgn_type = (‘dual_elec’, *dual_mixed'})
Figure 3.2. Bindings of Cylinder Head Assembly

38

Hegge and Wortmann [29] avoid specifying component options within bindings by
requiring the user to specify the parameters of the component directly when spec-
ifying the parameters of the aggregate design. A construct called phantom generic
products provides some limited authority for a designer to restrict the option choices
of components.

In many cases, the designer may wish to specify a completely different binding
depending on what options are selected for the referencing design, such as for the
cylinder component in Figure 3.2, which should be a different design depending on
Bore. Generalized bindings allow designers to specify multiple bindings and indicate
when each should be used. The designer uses a Boolean expression called a case label
to specify when each binding applies. In this example, the case labels are (Bore = 92)
and (Bore = 94). Every option combination in the applicability set should satisfy
exactly one of the case labels. A generalized binding is evaluated by determining which
case applies to the current option combinations and then evaluating the corresponding
binding. When more than one option combination is being considered and no case
label satisfies them all, the generalized binding cannot be evaluated. Hegge and
Wortmann do not provide any constructs similar to generalized bindings [29].

Although bindings are most common in assembly representations, they also appear
in other representations. For example, manufacturing instructions may contain a
reference to the design of the tooling used. If different tooling is used depending
on which options are selected, a generalized binding would be used. The tools or
machinery may have optional features or settings, such as different speeds for a drill
press. These features can be modcled as options and specified within the bindings.

Another construct for specifying designs with options, called conditional inclusion,
is used to include some portion of a representation for some option combinations and
not for others. For example, the engine case is cast with a cylinder opening sized

for the smallest cylinder bore. These openings must be enlarged when the larger

39

cylinders are used. The representation describing the manufacturing procedure for
the engine case would include the following step:

If (Bore = 94), machine cylinder openings to 47mm radius.

3.4 Internal representation

In this section, some implementation issues of option restrictions, option selection
objects, and generalized bindings are discussed. Although the proposed language is
convenient for designers, it must be translated into a data structure that the computer
can manipulate efficiently. Users of the framework would not be aware of these details.

The data structure used is an extension of Ordered Binary Decision Diagrams
(OBDDs) [30] called Multiway Decision Diagrams (MDDs). Standard OBDDs rep-
resent Boolean expressions of Boolean variables. MDDs extend them to represent
Boolean, string, or numeric valued expressions of enumerated Boolean, string, and
numeric variables. Most of the algorithms which construct and operate on MDDs are
natural extensions of the corresponding algorithms for standard OBDDs. MDDs are
created during the evaluation of option selection objects and generalized bindings, as
well as other operations that are discussed in Chapters 5 and 6. MDDs are transient
data structures that are deleted after the operation is completed.

Several other extensions of OBDD’s have been proposed previously. Algebraic De-
cision Diagrams (ADDs) [31] extend OBDDs to represent functions with any enumer-
ated domain. However, the functions must still use only Boolean variables. MDDs are
an éxtension of ADDs because the variables may be any enumerated type. Another ex-
tension of OBDDs, called Edge Valued Binary Decision Diagrams (EVBDDs) [32, 33]
represent integer valued functions of Boolean variables.

An example of a MDD is shown in Iigure 3.3. An MDD is a directed acyclic graph.

There are two types of nodes: terminal nodes and non-terminal nodes. Terminal nodes

40

X={(1,2)

Y=(24)

Z=(3,4,5)

X*Y+Z
Figure 3.3. An MDD for the expression X*Y+Z

(drawn as rectangles) have values corresponding to possible results of the expression.
Each non-terminal node (drawn as a circle) is associated with a variable and has an
outgoing edge for each possible value of that variable. The arcs leaving a non-terminal
node always go to a terminal node or a non-terminal corresponding to a variable later
in the ordering. One of the nodes is designated the start node. The value of the

expression for particular values of the variables is determined as follows:
1. Begin at the start node.

2. While at a non-terminal node, follow the outgoing edge corresponding to the

current value of the node’s variable.
3. When a terminal node is reached, the node’s value is the value of the expression.

A standard OBDD is a special case of an MDD in which the terminal nodes and all
of the variables are Boolean valued.

If there are N variables and variable ¢ has v; possible values, the worst case has [] v;
terminal nodes and O([] v;) non-terminal nodes. However, many expressions, such
as those that involve a small number of variables and have a small range of results,

can be represented by a small number of nodes. The number of non-terminal nodes

41

required sometimes depends heavily on the ordering of the variables. Determining
the optimal ordering is itself an NP-complete problem [30]. An effective hueristic for
reducing the number of non-terminal nodes is to keep variables that appear in the
same restrictions close together.

Figures 3.4 and 3.5 illustrate the efficiency of this representation. The MDD
for the two restrictions (YStarter -> %Alternator) and (Disp >= 2074) ->
($1gn_type={‘dual _elec’, ‘dualmixed’}) (Figure 3.4) only requires four non-
terminal nodes to represent a set of 72 out of 128 possible combinations of option
values. The MDD in Figure 3.5 requires only three nodes to represent the three
restrictions (%Starter), (Disp = 2074), and ($Ign_type = ‘dual_elec’). This
efficiency can be attributed to the fact that each of the restrictions involves only one
option variable. In general, MDDs represent sets of restrictions efficiently whenever

each restriction either
e involves only one option variable or

e involves a small number of option variables that are close together in the order-
ing.

The number of non-terminal nodes is likely to grow exponentially in the number of
restrictions that violate these conditions. However, the applicability sets that arise
in practice rarely contain more than a few restrictions violating these conditions.
The algorithms for manipulating MDDs are straight forward extensions of the cor-
responding algorithms for OBDDs [30]. The following recursive algorithm computes
a new node by combining nodes from two different MDDs using an operator. Given
MDDs for two subexpressions, the MDD for the combined expression is computed
by combining the start nodes with this algorithm. The variable ordering must be
the same for the MDDs being combined. This algorithm is very similar to algorithm

Apply in [30], so no proof of correctness is given here.

42

1-1835
_ 2-1915
D
“P 32074 @)
4-2165 3 12

1 - "dual_elec”
s]gn_[ype 2 - "dual_mixed” B
3 - "single_elec”

1,2
4 - "single_mag” 34
%Starter C
T

S S I & E ...
% Altemator D

F T
90 Acrobatic

False True
- E F
Restrictions:

(%Stanter -> %Alicrnator)
(Disp >= 2074) -> (SIgn_type={‘dual_elec’,'dual_mixed'})
Figure 3.4. MDD for applicability set of engine

1-1835
2-1915
3-2074
4-2165

Disp

1 - "dual_elcc”
Slgn_type 2 - "dual_mixed"

3 - "single_elec”

4 - "single_mag"

%Starter
o Alternator
% Acrobatic
. False True
Restrictions:
(%Starter) D E
(Disp = 2074)
(Sign_type = ‘dual_elec’)

Figure 3.5. MDD for additional restrictions of red74DX

43

Algorithm node_combine

Input:
One node from each of two MDDs being combined
The operator being used to combine the MDDs

Output:
A node from the combined MDD (If the input nodes are
the respective start nodes, the output node will be
the start node of the combined MDD.)

1. If both nodes are terminal, the result is a terminal node
with value determined by applying the operator to the
values of the two nodes.

2. If they are both non-terminals at the same level, the
result is a non-terminal at that level with children
determined by combining their corresponding children.

3. If nodel is a non-terminal at a higher level than node2, the
result is a non-terminal at the level of nodel, with children
determined by combining nodel’s children with node2.

4. Similarly, if node2 is a non-terminal at a higher level
than nodel, the result is a non-terminal at the level of
node2, with children determined by combining node2’s
children with nodel.

This algorithm is not very efficient because the combine procedure can be called
many times on the same pair of nodes. In fact, it is exponential because combining
two nodes at level : may require up to v; recursive calls to combine nodes at level
i — 1. Fortunately, several easy optimizations can be made [30]. The most significant
is to keep track of the results of previous calls to combine to avoid repeating the
computation on the same pair of nodes. With this optimization the computation
time and the size of the resulting MDD is bounded by the product of the sizes of the
input MDDs. Figure 3.6 shows the effect of applying this algorithm to the MDDs of
Figures 3.4 and 3.5 with the operator AND. The node labeled CD in Figure 3.6 is

44

- "dual_elec”
- "dual_mixed"
- "single_elec”
- "single_mag"

Sign_type

S W N -

%Stanter

%Altemator

cemememccccccncccabhabacaa

%Acrobatic

False True False False

ED FE EE FD
Figure 3.6. MDD produced by combining previous MDDs with AND

the result of combining the node labeled C in Figure 3.4 with the node labeled D in
Figure 3.5.

The MDD obtained often has more nodes than necessary. Two terminal nodes are
equivalent if they have the same value, such as nodes ED, FD, and EE in Figure 3.6.
Two non-terminal nodes, A and B, at the same level are equivalent if for every value,
i, of the variable, A— > child[i] is equivalent to B— > child[i]. Also, if all of the
children of a non-terminal node are equivalent, then the node is equivalent to its
children, as is the case for nodes DD, CD, and BD in Figure 3.6. MDDs may be
reduced by working from the bottom up and combining equivalent nodes. The result
of reducing the MDD in Figure 3.6 is shown in Figure 3.7.

In Chapter 6, an algorithm is presented which needs to build a string expres-

sion from an MDD. A string S can be constructed from a non-terminal MDD

45

- 1835
- 1915
-2074
- 2165

Disp

&S W N -

- " du‘l-el w"

- "dual_mixed”
- "single_elec”
- "single_mag"”

Sign_type

H W N -

FoSiarter

%Altemator

% Acrobatic

False True

ED,I'D.EE,DD,CD,BD FE
Figure 3.7. MDD after eliminating redundant nodes

node using the recurrence equation S = L, * S; + L2 * S2 + ... + L, * S, where
L; is a string characterizing an outgoing arc in terms of the corresponding option
variable and S; is a string characterizing the destination node of that arc. The
strings produced are often longer and more complex than what a human would pro-
duce. For example, the string produced by this method for the MDD in Figure 3.4
is (Disp<=1915) * (/Starter * (/Alternator) + %Starter‘) + (Disp>=2074)
* (($Ign_type={‘dual_elec’, ‘dualmixed’}) * (%Starter » (JAlternator) +

%Starter‘)).

Part III

Framework Services

46

CHAPTER 4

Computing Property Values

The real power of integrating diverse representations into a common data model is
only achieved if interdisciplinary communication is enhanced. In interdisciplinary
work, it is important that an engineer from one discipline be able to extract infor-
mation from representations used by other disciplines. It should not be necessary to
learn all of the representations and application tools from other disciplines in order
to get needed information.

The message handling system of the proposed framework partially addresses this
issue. However, an engineer would still need to know what message to send to the
representation in order to extract information from it. Also, many computations
involve information from several different representations. In this Chapter, a repre-
sentation type that provides a convenient interface to the message handling system
is presented. Section 4.1 discusses the operation of this representation type from the

user’s perspective. In the following Section, the implementation is discussed.

47

48

Design object
Engine
Design Version
Engine.vl
properties
Representation
Four_cyl_engine

Frame representation engine.vl

/* use engine_snalysis rep if available ¢/

max_hp : realCChorsepower_max ")

Four_cyl_engine.vl /* engine_snalysis rep not available, use approx. formula */
max_hp : disp ® density ® 15.93

assembly analysis_model propertics

\ \ /* use empirical formula for density */
density (alt < 10000) : 0.002377 - 0.000000062 * alt
density (alt < 20000) : 0.002231 - 0.000000049 * alt

Frame representation four_cyl_engine.v1
disp : bore * bore * stroke * 0.00314

/* bore is determined by cylinder heads */
heads : &Head 1 Engine_analysis rep four_cyl_engine.v2 bore : @heads->bore

crank_system : &Crank_sys_A = /* stroke is determined by crankshaft ¢/

stroke : @crank_system->stroke
Y o e

&Engine.v]

Assembly rep four_cyl_engine.v3

Figure 4.1. I'rame representations

4.1 Frame representations

One of the most common requests a designer would make is the computation of a prop-
erty of a design, such as its weight. A representation type called a Frame has been im-
plemented for the primary purpose of responding to “compute <property>” queries.
Frames are based on a knowledge representation structure from artificial intelli-
gence [34]. Two frames are illustrated in Figure 4.1. Most of the statements in a frame
are of the form <property name> <applicable condition> : <formula> indi-

cating a possible formula for computing the named property.

49

Frequently, there are different formulas that can be used to compute a given
property. Which one to use depends on what information is available. For example, if
there is a representation available that can respond to the message “horsepower_max”,
that would probably be the best way to compute the property max_hp. If no such
representation is available, a value could be computed using the displacement and the
air density. Frames are organized to allow for multiple formulas. A user can enter
several different formulas for any variable. The first one that can be successfully
evaluated is used.

Some formulas, especially empirical formulas, are only applicable under certain
conditions, so the user is allowed to enter a Boolcan expression indicating when each
formula is valid. When a query arrives for that variable, the Boolean expression is
evaluated. If it is false or cannot be evaluated, the formula is not used. If no condition
is entered, the formula is assumed to be valid all the time.

General formulas that yield approximate answers with few known parameters are
very useful during the early stages of design. For example, the aircraft engine company
may have developed empirical formulas, based on previous designs, for the weight of
a piston which is a function of bore and stroke only. This formula can be used before
the precise geometry and materials have been determined. These general formulas
would be placed in frame representations under design objects that are non-leaves
in the classification hierarchy. Statements of the form # <binding> forward the
message to the referenced design version before processing the remaining formulas.
These statements would usually appear at the end of frame representation to access
the more general formulas if no formula specific to that design is found.

Figure 4.1 shows typical frame representations. When the frame for
four_cyl_engine receives the query “compute max_hp”, it searches for an applica-

ble formula. Since no formula is encountered, the message is forwarded to the

50

design version Engine.v1. The first formula it encounters indicates that the mes-
sage “horsepower.max” is to be sent to the original design version. If there is an
engine_analysis representation in that design version, it provides the appropriate
value. If not, the message fails and the frame tries the next formula, which requires the
computation of density and displacement by the original design version. The compu-
tation of displacement requires computation of bore and stroke, which are determined
by the cylinder head and crank system components, respectively. Computation of
these values first requires a query to an Assembly representation to determine which
design version is used for the component followed by a query to the design version
of the component for the value. The empirical formulas for density are only valid
over certain altitude ranges. The frame representation uses the first valid formula it

encounters.

4.2 Implementation of frame representations

For convenience, frames are implemented as a subclass of textfiles. Thus, they are
edited by invoking a standard text editor. The code for computing property values,
in response to “compute” messages, is in the handle message() member function
of the frame class. The algorithm is shown below. Many calculations could involve
repeated attempts to evaluate the same property. To avoid repeated computations,
the results are stored until the initial message has been handled. The function checks
whether the property has already been computed before scanning the formulas. A
separate function, reset_results(), resets the list of previously computed values
each time the user sends a new message. It is assumed that the computations take

place quickly enough so that the design data is not modified during the calculation.

Algorithm frame_message

51

Input:
A frame representation containing formulas
The name of a property to compute

Output:
The property value

1. If this property has already been computed,
return previously computed result

2. Search through the frame representation line by line {

3. If the property name matches {
4. If there was no condition or if it evaluates to true,
evaluate the formula.
5. If the formula was evaluated successfully,
save the result and return the value
}
6. If the line is a directive to
try a different design version {
7. If binding can be parsed and evaluated,
send compute message to other design version
8. If message was handled successfully,

save the result and return the value

CHAPTER 5

Constraint Management

In order to verify that a design is correct, the criteria for correctness must be explicit.
These criteria for correctness, called constraints, must be managed along with the
design data itself. There are a varicty of ways of using constraints. The terminology
of other authors is used when describing their work.

Schmidtberg and Yerry [4] view constraints as the primary specifications given to
component designers by systems designers during top down design.

Buchmann and Perez de Celis [12] elaborate several types of constraints used
in chemical process design. The types include checking that a value is within a
range or is consistent among objects. In recognition of the need to define constraints
dynamically, Buchmann and Perez de Celis express all constraints using strings. They
also recognize the need to allow designers to specifically exempt certain designs from
certain constraints.

Brown and Breau [35] classify constraints according to how the constraints are
used as opposed to how they are expressed. Inherited constraints are stored in a
classification hierarchy of designs, and express the constraints that must be satisfied
by all instances of a design. In-place constraints are stored with the design plans
(see Part III) and describe conditions that must be satisfied after certain design tasks

have been completed. Implicit constraints have actually been absorbed into the design

52

53

process such that the process guarantees that they are satisfied. Therefore, implicit
constraints do not need to be checked. Accumulation constraints are similar to in-
place or inherited constraints except that they involve properties that are influenced
by many different design decisions and therefore must be treated differently.

In his dissertation, Kim describes four categories of constraints [17], which are
expressed within VHDL comments. Performance constraints restrict some measure
of performance of a design, such as arca or delay. Environment constraints restrict
the properties of the designs that can instantiate a design as a component, such as
fanout restrictions and operating temperatures. VHDL functions are employed to
compute any property values necessary to determine if performance or environment
constraints are satisfied. Relativity constraints restrict what other designs can be
used in conjunction with a design when it is instantiated as a component. Selection
constraints restrict what designs can he instantiated for a particular component of a
design.

A powerful language for expressing constraints.is proposed. Section 5.1 discusses
how this language is used to express the correctness criteria for designs. Once the
constraints are expressed, the framework can help the designer verify that the con-
straints are satisfied. Section 5.2 discusses how the proposed framework checks the
constraints for all variants of a design. It is also possible to make use of the constraints

in synthesizing a design, as is discussed in the next chapter.

5.1 Documenting constraints

In the proposed framework, designers can express a wide array of constraints using
Boolean expressions. These Boolean expressions are associated with design objects,
so they would be considered either inherited or accumulation constraints according

to Brown and Breau’s classifications [35]. The language allows designers to express

o4

many different types of constraints. For example, the following constraints may apply
to the design of the cylinder head assembly (the language syntax is described in
Appendix B):

(veight <= 12) speciﬁes.a maximum acceptable weight.

(\->stroke = [69,78]) specifies that this assembly is only usable on an engine with

a stroke between 69 and 78 mm.

("geom->diameter = “process->diameter) specifies that the diameter according
to the representation describing the manufacturing process is the same as the

diameter according to the representation describing the geometry.

(OHead->IDiam = Q@Cylinder->bore) spccifies that the inside diameter of the cylin-

der and cylinder head must be equal.

(“process->string(‘check buildable’) = ‘ok’) specifies that the design must
be manufacturable, which is checked by sending a message to the representation

describing the manufacturing process.

The degree to which a certain design version satisfies the constraints is a measure
of the designs maturity, and is therefore related to release control. Managers may
wish to insist that all constraints be satisfied before a design version may be released
into a workspace that is widely shared. However, the constraints may be relaxed
for workspaces that are intended for designs in progress. For example, the engi-
neers working on parts of the cylinder head assembly may use a certain workspace,
called Cyl Head Prelim, for sharing semi-validated designs among themselves. This
workspace would be a child of the workspace that contains highly validated designs for
company wide sharing. The individual engincers would create their own workspaces
as children of Cyl Head Prelim to work on experimental designs of each part. A

manager may decide to relax the constraint on maximum weight for releasing new

55

cylinder head design objects into the Cyl_Head Prelim workspace. Presumably, the
weight will be reduced by further design refinement before the design is released into
the parent workspace for wider sharing. Some type of inheritance of constraints within
workspaces is needed. Normal inheritance would produce the opposite of the desired
affect;1 child workspaces would be more constrained than parent workspaces. To get
the desired relationship between constraints and workspaces, designers may exempt
workspaces from certain constraints. These exemptions are inherited by children

workspaces.

5.2 Constraint checking

When a designer feels that a design version is correct, he verifies it by checking the
constraints. Constraints are evaluated the same way as other Boolean expressions are
evaluated. Specifically, when the user asks to evaluate the constraints, the Boolean
expression is evaluated using whatever workspace and option selection are currently in
force. For example, to evaluate the constraint on maximum weight, a message would
be sent to the design version to compute the weight. A frame representation would
handle the message, perhaps by sending messages to each component to compute
their weight and adding up the results. This result is compared to the constant 12 to
determine if the constraint is satisfied.

However, constraints containing references to the environment, called environment
constraints; cannot be evaluated until the design is instantiated as a component in
another design. Therefore, environment constraints must be treated separately. To
validate a design, the designer must check all of the non-environment constraints of

the design and all of the environment constraints of the components.

*This use of the term environment constraint is consistent with its use in [17].

56

The design must be validated for its entire applicability set. However, it is often
not possible to evaluate the expressions that define the constraints without specifying
some of the options. For example, if the choice of design for some of the components
depends upon the option variable Bore, then the weight could not be computed.
Two algorithms are proposed to check the constraints for the entire applicability
set. The first algorithm uses a primitive approach to divide the applicability set
into subsets such that the constraints can be evaluated directly for each subset. The
second algorithm utilizes the parse tree of the expression to build an MDD for the
expression.

When the constraints cannot be checked for the entire applicability set due to
resource limitations, it can be checked for only those option combinations defined by a
particular option selection object. Checking only some option combinations involves
some risk that a constraint would be violated by another combination. When all
combinations cannot be checked, it may be best to wait until the design is instantiated
as a component in another design (or ordered by a customer) and then check it only
for the combinations that actually get used.

The basic idea of the first algorithm is to divide the applicability set into disjoint
subsets such that the expression can be evaluated for each subset. There are many
different ways to divide the applicability set. The easiest way is to pick an option
variable and divide the applicability set according to the value of that variable. In the
cylinder head example, all of the option combinations with Bore = 92 might be placed
in one set and those with Bore = 94 in another set. Given an MDD enumerating the
entire applicability set, it is simple to construct an MDD enumerating each of the
subsets. It is likely that it ‘may still be impossible to evaluate the expression for some
of the subsets in which case another option variable must be chosen and the subset
divided further. The sets are repeatedly divided until the constraint can be evaluated

or the set contains a single option combination.

57

Once the system has evaluated a constraint, it reports to the user the number of
combinations for which the constraint is satisfied and the number of combinations
for which it fails. The user may choose to list only some of the option variables. If
the list of option variable has been exhausted and it is still impossible to evaluate
the expression, the system simply reports those cases as “unknown”. Users can also
request that the system print out one of the option combinations that failed or could
not be evaluated. This information about which option combinations failed is very
helpful in determining how to modify the design to satisfy the constraints.

Both algorithms are more general than they need to be for evaluating constraints,
because they can evaluate numeric and string valued expressions in addition to
Boolean expressions. The rcasons for this generality are be discussed when the second
algorithm is presented.

Algorithm check_constraint_A

Input:
A Boolean, numeric, or string valued expression, E
An MDD, S_in, representing a set option combinations
An ordered list of option variables, L

Output:
MDD S_out representing the result of evaluating the

expression for the combinations represented by S_in

1. Attempt to evaluate E directly for all
of the set of combination represented by S_in.

2. If E evaluates to X, return S_out = X for
combinations in S_in, unknown for others.

3. If evaluation fails {

4. If L is empty, return S_out = unknown.
5. Remove option variable V from the beginning of L
6. Produce new MDDs S_in[1]...S_in[n] by restricting S_in

to combinations with each value of V.

58

7. Call Algorithm check_constraint_A recursively with
S_in[1]...S_in[n] to determine S_out[1]...S_out[n].
L contains one fewer option variables in recursive call.

8. Compute S_out = by combining S_out[1]...S_out[n]
using Algorithm node_combine of Chapter 3.

Theorem 5.1 states that, if L contains all of the option variables, S_out will evalu-
ate to the same value as the expression for any combination of option values. However,
if some option values are not included in L, then S_out may not assert a value (evaluate
to unknown) for some option combinations. It will never incorrectly assert a value.
In order for the theorem to hold, an assumption must be made about the expression

evaluation algorithm called in step 1.

Assumption 1 If an ezpression evaluates to X for a set of option combinations,

then it also evaluates to X for each individual option combination in that set.

Theorem 5.1 If Assumption 1 holds and L contains all of the option variables, then
for any combination of option values C within the set represented by S_in, the MDD

S_out produced by Algorithm check_constraint_A will evaluate to the same value as E.

Proof: If the evaluation in step 1 is successful, Assumption 1 guarantees that
step 2 sets S_out such that the theorem holds. If the evaluation in step 1 fails, the
algorithm divides the set of combinations into progressively smaller subsets such that
C is included in exactly one of the subsets. After all of the variables have been used to
split S_in into subsets, each subset will contain a single combination. If the expression
can be evaluated for C, then the algorithm will eventually succeed in evaluating a
subset containing C and set S_out such that it evaluated to the same value for C If

the expression cannot be evaluated for C, then the algorithm will set S_out such that

59

it evaluates to unknown for C. 0

In the worst case, this algorithm ends up evaluating the constraint for each option
combination individually, making the complexity exponential in the number of option
variables. This complexity should not be surprising because the constraint checking
problem is NP-complete.! In many cases, however, it is able to evaluate many com-
binations at once because some option variables do not enter into the expression.
Unfortunately, the order in which option variables are used to divide the applicability
set has a profound effect on performance. It is not easy to determine an appropri-
ate order automatically. In the current implementation, the user must specify the
sequence of option variables to use in dividing the applicability set.}

A drawback of Algorithm check_constraint_A is that a subexpression that does not
depend on some of the option variables might be evaluated many times. Consider the
expression (@Head— > weight + QCylinder— > weight < 10). The subexpression
@Head— > weight might not depend on Stroke while @Cylinder— > weight does.
Under Algorithm check_constraint_A, both subexpressions must be re-evaluated for
the subsets defined by Stroke.

The next algorithm avoids unnecessary subexpression evaluations by utilizing the
expression’s parse tree. First, MDDs are constructed for each leaf in the expression’s
parse tree using Algorithm check_constraint_A. Then, these MDDs are combined using
Algorithm node_combine from Chapter 3. Algorithm check_constraint_B is potentially
much more efficient because most of the leaf subexpressions may depend on few option

variables whereas the expression as a whole may depend on several more.

'The constraint is a Boolean function of the option variables. Checking that the constraint
is satisfied is the same as testing satisfiability of its complement function. Option variables are
more general than Boolean variables. Therefore the Boolean satisfiability problem, a well known
NP-complete problem, is a special case of this problem.

$The order used to divide the applicability set may be different than the option variable ordering
of the MDD.

60

Algorithm check_constraint_B is complicated by the fact that the appropriate se-
quence of option variables to send to Algorithm check_constraint_A may be different
for each leaf subexpression. The language syntax can be modified such that certain
types of expressions optionally contain a list of variables to assist the framework in
building the MDD. These lists of variables do not influence the value of the expression,
but do influence the resources needed to check constraints.

Another enhancement improves the efficiency for subexpressions that access a
property of a component design. For these subexpressions, using the case labels
of the generalized binding to subdivide the set of option combinations is likely to be

more effective than using an option variable list. The enhanced algorithm is presented

below:

Algorithm check_constraint_B

Input:
A Boolean, numeric, or string valued expression, E
An MDD, S_in, representing a set of option combinations
An ordered list of option variables, L

Determine:
MDD S_out representing the result of evaluating the

expression for the combinations represented by S_in

1. If expression E is formed by combining subexpressions
with an operator {

2. Compute S_1 and S_2 for each subexpression, E_1 and E_2,
using Algorithm check_constraint_B

(arguments E_1 or E_2, S_in, and L)

3. Compute S_out by combining S_1 and S_2
using Algorithm node_combine of Chapter 3

}
§. If expression E is a component property {

6. If the component uses a static or dynamic binding,

61

compute S_out using Algorithm check_constraint_A
(arguments E, S_in, and L)

7. If the component uses a generalized binding {

8. Produce new MDDs S_in[1]..S_in[n] by restricting S_in
according to the case labels

9. Compute S_out[1]...S_out[n] using Algorithm
check_constraint_A for S_in[1]...S_in[n]
(arguments E, S_in[i], and L)

10. Compute S_out by combining S_out[1]...S_out[n]
using Algorithm node_combine of Chapter 3

}

11. Otherwise, compute S_out using Algorithm check_constraint_A
(arguments E, S_in, and L concatenated to expression’s
list of option variables)

Theorem 5.2, which is similar to Theorem 5.1, states that, if L contains all of
the option variables, S_out will evaluate to the same value as the expression for any

combination of option values.

Theorem 5.2 If Assumption 1 holds and L contains all of the option variables, then
for any combination of option values C within the set represented by S_in, the MDD

S_out produced by Algorithm check_constraint_B will evaluate to the same value as E.

Proof: Let i denote the number of levels in the expression’s parse tree. The proof
is an induction on i. As an induction basis, consider only leaf subexpressions (i = 0).

The proof of the basis is separated into three cases:

Case 1 - Component properties with static or dynamic bindings This case

is handled in step 6, and is covered by Theorem 5.1.

62

Case 2 - Component properties with generalized bindings This case is han-
dled by steps 7-10, which are similar to steps 5-8 of Algorithm
check_constraint_A. The only difference is the method used to divide the set
of combinations into subsets. The proof of this case is similar to the proof of

Theorem 5.1.

Case 3 - Other leaf expressions This case is handled in step 11, and is covered

by Theorem 5.1.

Let us examine the result of evaluating an expression with an i + 1 level parse tree.
The induction hypothesis guarantees that the MDDs computed in step 2 obey the
theorem. Algorithm node_combine (called in step 3) guarantees that it holds for the

combined expression. m]

5.3 Limitations

One drawback of the proposed functionality is that it is very difficult to know when
constraints must be re-checked. Even if the design itself is not modified, changes
to components could cause some of the constraints to be violated. Change notifica-
tion functionality, which is discussed in Chapter 7, helps identify situations in which
constraints should be re-checked.

Although the constraint checking discussed above is a useful design tool, it does
not support a truly constraint driven design process. In a constraint driven process, a
designer would not look at the details of the component’s designs, but would instead
impose sufficient constraints upon the components to guarantee satisfaction of the
constraints imposed upon his design. For example, when checking that the maximum
weight is not exceeded, the designer would not use the exact weight of each compo-

nent, but rather the weight limit of each component as indicated in the component’s

63

constraints. That way, it does not matter what changes are made to the component’s
design as long as the components satisfy their constraints. Checking the constraints

using only the constraints of components is a much more difficult problem.

CHAPTER 6

Automated Component Selection

This chapter is a slight departure from the previous chapters in that it describes
algorithms for actually performing design as opposed to supporting design indirectly.
These algorithms would be implemented as tools which would be tightly integrated
into the framework.

For many design problems, the general arrangement of parts has already been
determined and the designer must select a design for each part. This type of design
problem is what Navathe describes as “design by selection” [5] * For example, the
designer of the cylinder head assembly may know that he needs a cylinder, a cylinder
head, spark plugs, and a rocker box assembly, but several of each are available.
The structure of this design would be described by an assembly representation with
bindings to design objects which are not leaves in the classification hierarchy. To
further specify the design, a specific design should be chosen for each component and
any options of those designs must be specified. Programs which can help the designer

find an acceptable combination of component designs would be very useful.

*Some authors refer to this type of design as “configuration design” or “configuration bind-
ing” [17). However, the term “configuration” has a different meaning in this dissertation (see Chap-
ter 2).

64

65

As observed by Kott and May [36], some products can be decomposed into nearly
independent components while others exhibit strong interactions between compo-
nents. When the product is nearly decomposable, the general structure of the design
is fixed a priori, at least to a small number of alternatives. The main task of the
designer is to select among those alternatives and determine what design to use for
each component. When the interactions are strong, the main task is to determine the
arrangement of parts. This chapter describes framework support for the former type
of problem.

The basic component selection problem is defined first. Then, two more interesting
variations of the component selection problem are defined: the component selection
problem with options, and the recursive component selection problem. Known solu-
tions to each of the variations are discussed. New solutions are proposed for the basic
component selection problem and the component selection problem with options. The
proposed algorithms are very general, but are inefficient under certain circumstances,

which are characterized.

6.1 The basic component selection problem

The basic component selection problem is defined as given:

o a design that specifies the arrangement of components, but not the design for

each component,
e a set of candidate designs for each component,
e a set of constraints, and

e an objective function,

determine which design should be used for each component such that the constraints

are satisfied and the objective function is optimized.

66

Component #1
choice A choice B choice C
/ + +

Component #2

/A

oice A choice B

-— 00 0
-— 00 @

ch
/ \ candidate candidate
@ solution solution

®
®
o ®
!

‘ . More levels
candidate candidate o — of
solution solution . Hierarchy

Figure 6.1. A component selection search tree

The component selection problem is NP-complete, but may be solved practically
in many cases, especially when the objective function is omitted (any solution satis-
fying the constraints is acceptable). Most previous algorithms employ a branch and
bound strategy. Branch and bound algorithms utilize a search tree as illustrated
in Figure 6.1. In order to avoid searching the entire tree, a rating is calculated for
interior nodes estimating the likelihood of meeting all constraints (or estimating the
objective function), based on the components that have been selected to that point.
The most promising paths are searched first. However, in many cases, such rating
functions do not exist.

A unique solution, employing a genetic algorithm, is presented by Brown and
Hwang [37]. Each candidate solution is represented by a binary string. An initial

population of candidates is generated randomly. Each candidate is rated according

67

to how well it satisfies constraints. New candidates are generated by selecting two
existing candidates such that highly rated candidates are more likely to be picked,
breaking each string at a randomly selected point, and combining the first part of one
with the last part of the other. During each generation, new candidates are added
to the population and low rated candidates are dropped from the population. Also,
a small percentage of the candidates are mutated by randomly switching a few bits.
The authors claim that for the domains they have investigated, this approach finds
acceptable solutions much faster than branch and bound algorithms for large search
spaces.

Kim [17] describes an algorithm for solving a special case of this problem where the
design is a combinational circuit and the constraints are restrictions on the maximum
delay and the total area. Kim’s algorithm is efficient when the circuit is mostly
series-parallel.

In the proposed algorithm, component selection is re-formulated as a constraint
problem. For each component, a new option variable is introduced with one value
for each possible choice. These new option variables are called supplemental option
variables. The supplemental option variables are discarded after the components are
selected. The bindings for unspecified components are temporarily replaced with
generalized bindings which use these supplemental option variables in the case labels.
An MDD is created for the conjunction of the constraints. This MDD provides the
designer with important information about which combinations of component selec-
tions satisfy the constraints. Specifically, one combination of values of supplemental
option variables which satisfies the constraints and optimizes the objective function
must be identified. The process is presented algorithmically below and illustrated
with an example.

In what situations is the proposed procedure be effective? If there are many

components and many candidate designs for each, then the procedure investigates an

68

extremely large search space. The previous observation about the efficiency of MDDs
for processing option restrictions relied on the fact that most option restrictions only
involve a small number of option variables. Similarly, MDDs are effective for this
problem when most of the constraints involve only one or a small number of option
variables. Fortunately, as noted by Kott et. al. [38], most constraints in many disci-
plines only apply to a single component. Others constraints check for compatibility
between two components. Very few involve all or most of the components.

Certainly, designers need to use this procedure carefully, with an understanding
of its limitations. In many cases, they may be able to create bindings for many of the
components themselves and only rely on the procedure to select a few components.
Also, designers should specify very simple objective functions whenever possible. If
the objective function has many different values, its MDD is very large. Still, there
are many situations where this procedure saves a designer considerable time relative
to manual exploration of the search space.

The overall algorithm is described as follows:

Algorithm select_components

Input:
A design with several undetermined components
For each undetermined component, a list of candidate designs
A set of constraints
An objective function

Output:
A binding for each component indicating the design
to be used such that:
- all constraints are satisfied.
- the objective function, if given, is optimized.

1. Create the supplemental option variables and temporary
bindings.

2. Compute the selection MDD

3. Determine the bindings for each component

69

The first step, setting up the supplemental option variables and temporary bind-

ings proceeds as follows:

Procedure setup_basic
/* Create the supplemental option variables and
temporary bindings. */

1. For each component {

2. Create a supplemental option variable.

3. Create a temporary generalized binding for the component.
4. For each candidate design {

5. add a possible value to the component’s supplemental
option variable.

6. Add a case to the components binding which binds to the
candidate whenever the supplemental option variable takes
on the new value.

The next step is computation of the selection MDD. The simplest constraints,
such as those that involve only a single component, are processed first. In that way,
the more complicated constraints are evaluated for fewer combinations. Any path
through this MDD to a terminal TRUE node represents a combination of component
designs that satisfy the constraints. Multiple possibilities manifest themselves in two
ways: non-terminal nodes with more than one outgoing edge to non-FALSE nodes
and edges that skip levels. The objective function is used to select one combination

from those that satisfy the constraints. Algorithmically,

Procedure compute_selectionMDD_basic
/* Compute the selection MDD */

70

1. Rank the constraints according to degree of complexity.
2. Let S be an MDD for the Boolean expression TRUE.
3. For each constraint, C, from simplest to most complicated {

4. Compute the MDD S’ which satisfies C using Algorithm
check_constraint_A or check_constraint_B with S_in = S.

§. Let S =S * S’, computed using algorithm node_combine
(S now represents the combinations that satisfy all
constraints processed so far)

}

6. Compute MDD S_sel for the objective function,
restricted to the combinations represented by S using
algorithm check_constraint_A or check_constraint_B.

7. For any edge that skips a level in S_sel, add non-terminal
nodes at each skipped level with one arbitrarily chosen edge
to the node at the next level.

Once the selection MDD has been computed, the bindings can be determined as

follows:

Procedure compute_bindings_basic
/* Determine the Bindings for each Component */

1. Choose one path through the selection MDD, S_sel, that
optimizes the objective function.

2. For each node in this path {
3. The binding for the component corresponding to this

node’s option variable is a dynamic binding to the design
corresponding to the outgoing arc on the selected path.

Theorem 6.1 states that algorithm select_components selects the optimum com-

bination of components that satisfy all of the constraints. The proof relies on the

71

following lemmas which state properties of the selection MDD produced in procedure

computeselectionMDD.

Lemma 6.1 If a combination of candidate components fails a constraint C, then
Sse does not assert a value (evaluate to false) for the corresponding combination of

supplemental option values.

Proof: When constraint C is processed in step 4 of Procedure com-
pute_selectionMDD _basic, the combination may or may not be included in the previ-
ous MDD S. If it is included, Theorems 5.1 and ?? guarantee that that combination
evaluates to false in S’. After step 5, S evaluates to false for that combination either
way. When additional constraints are processed, step 5 always computes S such
that it evaluates to false for the combination that failed C. Step 6 sets S, such
that it evaluates to unknown for the combination that failed constrai.nt C. Step 7
never causes S, to assn'ert, a value for any combination which previously evaluated to

unknown. O

Lemma 6.2 If the design which uses a combination of candidate components satisfies
all constraints and the objective function for that design evaluates to X, then S,

evaluates to X for the corresponding combination of option values.

Proof: If the constraints all evaluate to true, then S evaluates to true for that
combination in step 6, as described above. Theorems 5.1 and ?? guarantee that S,.

evaluates to the correct value after step 6. m]

Theorem 6.1 The components selected by Algorithm select.components satisfy all
of the constraints. Furthermore, no other combination of components (among those
listed as candidates) satisfies all of the constraints and evaluates to a superior value

of the objective function.

72

Proof: Each of the new bindings evaluates to the same design version as the
temporary binding with the option variables set to the selected components. Only
paths through S, which end in a numeric terminal node are considered by step 1
of procedure compute_bindings_basic. If the design failed a constraint, Lemma 6.1
states that the corresponding path through S, would not lead to a numeric terminal
node. If some other combination of components satisfied all constraints and resulted
in a superior value of the objective function, Lemma 6.2 guarantees that there would
be a path through S,,; leading to a terminal node with the superior value. That path

would have been selected in step 1 of procedure compute_bindings_basic. o

Suppose that a digital circuit designer has determined that a circuit should be
composed of five components, arranged as illustrated in Figure 6.2. For each compo-
nent, there are either two or three alternatives designs, with area and delay properties
as indicated. The circuit has constraints that the total area of the five components
must be less than 55 and the maximum delay must.be less than 36. The objective is to
determine which design should be used for each component such that the constraints
are satisfied and the least power is required. Note that these constraints all involve
several components, violating one of the conditions for efficiency of the proposed
algorithm. This example was chosen to illustrate the generality of the algorithm.

To solve this problem, the setup procedure creates one string valued supplemental
option variables for each component $C1, $C2, $C3, $C4, and $C5. Each variable has a
set of possible values indicating what designs may be used, for example $C2 has legal
values “F” and “G”. These option variables are used in generalized bindings for each
component. The binding for Comp2 would be: “for {($C2 = ‘F’) use &F; ($C2 =
‘G’) use &G;}”. These option variables allow 72 different combinations.

In the next phase, the MDD in Figure 6.3 is constructed by evaluating the con-

straints using one of the algorithms of the previous chapter. In this case, there are 5

Compl
A,B,C

CompS
D,E

Comp2 Comp3

Schematic

a0 W >

m

area=10
area=$
area=15

area= 15

area=10

area=10
area=$

Component Choices

delay =10
delay = 12

delay =10
delay =12

delay = 12
delay = 14

Figure 6.2. Digital Circuit Design Problem

power=9
power=10
power=11

power=3
power=4

power=$
power=$

Area <55 Delay <36

Figure 6.3. MDD for Combined Constraints

different combinations which satisfy all of the constraints. The selection MDD, which
represents the objective function restricted to the combinations that satisfy the con-
straints, is shown in Figure 6.4. Multiple combinations which satisfy the constraints
results in non-terminal nodes with more than one outgoing arc or in edges that skip
a level. In the final phase, A for Comp1, F for Comp2, B for Comp3, F for Comp4, and
D for Comp5 are chosen arbitrarily from among those combinations that minimize the

objective function.

75

Q,

- PO

:F \J%F
°“""<5 ??
- QP QRO

L

35

Power, subjectto Area<55 Delay < 36

Figure 6.4. MDD for Objective Function

76
6.2 The component selection problem with op-
tions

Recall that a product family is a design that offers an array of options and a variant
is a particular member of the product family. The use of product families with many
variants complicates the component selection problem. In the component selection
problem with options, the design and the candidate component designs each have
many variants. The component designs, including option values, must be selected for
all variants of the top level design.

In [27], Blaha et. al. describe a system which analyzes previous variants and
automatically develops rules for component selection. The population of variants
must initially be created manually by designers. There is no guarantee that a given
population of variants generates rules that are unambiguous and consistent.

Malmgqvist [39] discusses a system which assists the user in designing variants
using information stored about the product family and the component families. For
each product family, the set of components are stored in a database, but only the
component family is specified. The particular component variant is chosen later when
a product variant is designed. The user specifies parameters of the desired product
variant (choices for optional features), and the system calls programs that design
variants of each component.

Since most variants differ only slightly, it may be possible to avoid determining
the components for each variant independently. Also, when a candidate component
design is an entire family, treating each variant of that family as a separate candidate
should be avoided. The basic steps in the algorithm are the same. However, some of
the details must be modified as shown below. Due to the large number of candidate

variants that are likely to be available, the search space can be enormous. However,

77

this version of the algorithm is efficient under the same circumstances as the proposed
algorithm for the basic component selection problem.

Additional steps must be added to the procedure which creates supplemental
option variables and temporary bindings to handle candidate component designs with
options. For each option variable of the candidate component, a supplemental option
variable is created with the same choices. If two or more of the candidates inherit a
common option variable, only one supplemental option variable is needed. The option
values for the component are specified in the binding, as described in Chapter 3.
In the temporary bindings, the option value of the component is set equal to the

corresponding supplemental option variable.
Procedure setup_with_options
/* Create the supplemental option variables and

temporary bindings. */

1. For each component {

2. Create a supplemental option variable.

3. Create a temporary generalized binding for the component.
4. For each candidate design {

5. Add a possible value to the components supplemental

option variable.

6. Add a case to the components binding which binds to the
candidate whenever the supplemental option variable takes
on the new value.

7. Add a new supplemental option variable, V’, corresponding
to each option variable, V, of the candidate design.
(If another candidate has the same option variables,
they can share supplemental option variables.)

8. Add string expressions to the binding referencing
the candidate that equates V to V’.

78

The supplemental option variables always follow the regular option variables in
the selection MDD. The region of the selection MDD corresponding to supplemental
option variables is called the supplemental region, while the region corresponding to
regular option variables is called the primary region. The procedure for creating the
selection MDD is modified as shown below. In step 2, S is set to the applicability
set instead of the the Boolean expression TRUE. Steps 8 and 9 are added to remove
ambiguity when more than one combination of components satisfies the constraints.

Procedure compute_selectionMDD_with_options
/* Compute the selection MDD */

1. Rank the constraints according to degree of complexity.
2. Let S be an MDD for the applicability set.
3. For each constraint, C, from simplest to most complicated {

4. Compute the MDD S’ which satisfies C using Algorithm
check_constraint_A or check_constraint_B with S_in = S.

5. Let S =S * 5’, computed using Algorithm node_combine
(S now represents the combinations that satisfy all
constraints processed so far)

6. Compute MDD S_sel for the objective function,
restricted to the combinations represented by S using
Algorithm check_constraint_A or check_constraint_B.

7. For any edge that skips a level in S_sel, add non-terminal
nodes at each skipped level with one arbitrarily chosen edge
to the node at the next level.

8. Working from the bottom up, assign a value to all
non-terminal nodes in the supplemental region using the
recursive formula: The value of a non-terminal node is the
maximum of the values of any of its descendants.

79

9. For any non-terminal node N in the supplemental region,
remove all outgoing edges except one to a descendant
node N’ with the same value as N.

The procedure to determine the binding for each component is completely

changed, as shown below:

Procedure compute_bindings_with_options
/* Determine the Bindings for each Component */

1. For each component in the original design {

2. Create a generalized binding for the component.
3. For each candidate design {
4. Build a new MDD, A, by restricting S_sel to the

combinations for which the components supplemental
option variable takes on the value corresponding
to this candidate.

5. Replace all of the non-terminal nodes in the supplemental
region of A by terminal true nodes and reduce A.
(The result represents the option combinations for
which the candidate should be used for the component.)

6. If this MDD is not empty {

7. Create a string for the Boolean expression that is
equivalent to A. This will be the case label
for one case of the generalized binding.

8. The binding will be a dynamic binding, with string
expressions determined from the selection MDD
as follows {

9. For each option variable V {
10. For each potential value of that variable X {
11. Build a new MDD, B, by restricting S_sel to the

combinations in which V’ = X. Replace

80

non-terminals in the supplemental region by
terminal true nodes and reduce. (B describes the
option combinations that require choice X for V.)

12. If B is not empty, convert it to a string, C.
Add the string expression
:C: + => (option = value) to the dynamic binding.

Theorem 6.2 states that this algorithm results in a properly specified design.
Theorem 6.3 states that the design produced satisfies the constraints and optimizes

the objective function.

Theorem 6.2 If some combination of components salisfies the constraints
for a particular variant, then the bindings produced by procedure com-

pute_bindings_with_options specify a design for each component.

Proof: Notice that steps 7 through 9 of procedure

compute_selectionMDD_with_options ensure that:

e Starting at any edge that crosses the boundary between the primary region and
the supplemental region, there is exactly one path to a numeric terminal node

(no branching).

o All of these paths have one node for each supplemental option variable (no levels

are skipped).

Every variant of the design corresponds to an edge which crosses into the supplemental

region. The path starting with that edge indicates the components for that variant.

81

Suppose that candidate design D; is to be used for the component corresponding to
supplemental option variable V; of a particular variant K. K’s path through the sup-
plemental region has one node corresponding to V; with one outgoing edge correspond-
ing to D;. MDD A, produced in step 4 of procedure compute_bindings_with_options,
includes this path and all of the nodes in the primary region which lead to this path
(see Figure 6.7). In step 5, the supplemental region is removed from A such that A
evaluates to true for the option combination that defines K (see Figure 6.8). Step 7
creates a case label which evaluates to true for K. None of the case labels for other
candidates for this component evaluate to true for K.

Steps 9 through 12 create the string expressions that specify which variant of D;
to use. By similar arguments to those above, exactly one of the strings C in step 12
evaluates to true for K for each option variable V. Therefore, these string expressions
assign a value to each option variable of D;, uniquely identifying one variant of D;

for use in K. (8]

Theorem 6.3 For each variant, the components selected by Algorithm se-
lect_components satisfy all of the constraints. Furthermore, no other combination
of components (among those listed as candidates) satisfies all of the constraints and

evaluates to a superior value of the objective function.

Proof: The proof is similar to the proof of Theorem 6.1. m]

Consider an example in which a designer wishes to select the components for a
cylinder head assembly that consists of a cylinder, a head, and either one or two spark

plugs. The following options are to be offered:

Disp The displacement can be one of the five values 1679, 1835, 1915, 2074, 2165.

82

8Ign The following types of ignition systems are offered: ‘single_mag’, ‘single_elec’,

‘dual_elec’, ‘true_dual’.

%EMI_safe If the engine will be used near radio equipment it should not generate

interference.
The design must satisfy the following constraints:

(6Cylinder->(bore*bore*stroke*3.14)=[Disp-5,Disp+5]) - The actual dis-

placement must be within 5 cc of the specified value.

(6Cylinder->bore=QHead->bore) - The cylinder and head must have the same

bore.

($1gn={‘singlemag’, ‘single_elec’})->(QHead->$ign="‘single’) - If single

ignition is ordered, the head should have only one spark plug hole.

($1gn={ ‘dual_elec’, ‘truedual’})->(0Head->$ign =‘double’) - If dual igni-

tion is ordered, the head should have two spark plug holes.

(EMI_safe*($Ign={‘singlemag’, ‘truedual’}))->@Plugi->%Shielded - If
the first plug is fired by a magneto, it must be shielded to avoid radio in-

terference.

(O0Plugi->diam=QHead->plug.diam) - The first plug should be the right diameter
to fit the hole in the head.

($1gn={‘dual_elec’, ‘truedual’})->(QPlug2->diam=QHead->plug diam) - If
needed, the second plug should also be the right diameter to fit the hole in
the head.

($1gn={‘singlemag’, ‘single_elec’})->(0Plug2 =&NULL) - If single ignition is

ordered, there should not be a second spark plug.

83

The following cylinder designs are available:
P10.025 - 88mm bore, 69mm stroke
P10.027 - 92mm bore, 69mm stroke
P10.100 - 94mm bore, 69mm stroke
P10.101 - 94mm bore, 78mm stroke
P10.138 - 92mm bore, 78mm stroke

The following head designs are available:
P10.043 - 88mm bore, single ign, takes 14mm plugs
P10.045 - 92mm bore, single ign, takes 14mm plugs
P10.047 - 92mm bore, dual ign, takes 14mm plugs
P10_.146 - 94mm bore, single ign, takes 14mm plugs
P10.147 - 94mm bore, dual ign, takes 14mm plugs

The following spark plug designs are available:
SP1 - 14mm, has option %Shielded
SP2 - 10mm, has option %Shielded

The setup procedure creates a supplemental option variable for each com-
ponent. In step 7, the procedure also creates the supplemental option vari-
ables %Plugl Shielded and %Plug2 Shielded because the candidate designs for
the spark plugs have an option. The binding for the first spark plug would
be: “for {(Plugl = 1) use &SP1, ‘(%Shielded = ’+:%Plugl Shielded:+‘)’;

(Plugl = 2) use &SP2, ‘(%Shielded = ’+:%Plugl Shielded:+‘)’;}”. This

84

binding states that the choice between SP1 and SP2 is determined by the supplemental
option variable Plugl and that the choice for the option 4Shielded is determined by
the option variable %Plugl _Shielded. Refer to Appendix B for a detailed description
of the syntax.

In the second phase, the MDD of Figure 6.5 is produced by evaluating the con-
straints (steps 1 through 5 of procedure computeselectionMDD). Arcs that go di-
rectly to a terminal false node are omited for clarity. The designer observes from
this MDD that there are no components available to construct a head assembly with
a displacement of 1679cc and dual ignition. Therefore, he adds a restriction to the
design object to preclude ordering a head assembly with those options.

For some variants, it does not matter whether the spark plug is shielded or not.
This situation is indicated by arcs which skip the levels of the supplemental option
variables %Plugl Shielded and %Plug2 Shielded. This ambiguity is handled by
adding nodes in these level which arbitrarily specify unshielded plugs as shown in
Figure 6.6 (step 7 in procedure compute_selectionMDD).

The final phase determines the actual bindings for each component. The bindings
are generalized bindings with one case for each component design. Let us examine how
the case label is determined for the component Head and the design P10_047. An MDD
is formed by restricting the selection MDD to the cases where P10_047 is used for Head,
yielding the MDD of Figure 6.7 (step 4 of procedure compute_bindings_with_options).
Then, all non-terminal nodes associated with supplemental option variables are
merged with the terminal true node and the MDD is reduced to the MDD in Figure 6.8
(step 5 of procedure compute_bindings_with_options). This MDD can be converted
into the case label (Disp ={1835,2074}) * ($Ign ={‘dual_elec’, ‘truedual’})
(step 7 of procedure compute_bindings.with_options). The other case labels are de-

termined similarly.

85

4=P10_
S=P10_

146
147

0=NULL

15P1
2a5P2

Plugl

®Plug]_Shielded

O=NULL

1=5P1
2a5P2

Plug2

®Plugl_Shickled

0=NULL

Pagl 1sSP1

OaNULL

Pugl 1=SP1

Phg]_Shicldnd

Plug!_Shinided

Pug2 1sSP1

Plug2. Shielded

Figure 6.6. Removing ambiguity by adding non-terminal nodes

86

1=167
Disp 2=1835
3=1915
42074
2165 2

lesingle_mag

S 2eeingle_siec
Smchual_slec 4 N
datruc_dual 3 3

SEMI_sale

seeecececcecscccscvcsrccsccccccccccccciobdeccsccocse egefecccscccsccscscsccccsnces eeeccccccccce

1=P10_025
2+P10.027
Cylinder 3-P10_100
4=P10_101
S=P10_138

1=P10_043
2-P10_045
Hed 3.p10 047
4=P10_146
5=P10_147

3
O=NULL
Phgl 1=SP1
252 1 1

Figure 6.7. MDD for Cases where P10_047 is Used

1=1679
Disp 2=1835
3=1915
4=2074 24
5=2165
34

1=single_mag
Sign 2=single_clec

3=dual_elec

4=true_dual
%EMI_safe

(o]

Figure 6.8. Primary Region MDD for Cases where P10_047 is Used

87

For the spark plugs, the designer must also find string expressions which indicate
whether the %Shielded option should be selected or not. Let us look at the case
when SP1 is used for Plugl. By restricting the selection MDD to the case where
the supplemental option variable ¥Plugl Shielded takes on the value TRUE, he
gets the MDD of Figure 6.9 (step 11 of procedure compute_bindings_with_options).
Then, all non-terminal nodes associated with supplemental option variables are
merged with the terminal true node and the MDD is reduced to the MDD in
Figure 6.10 (also in step 11). This MDD tells him to add the string expres-
sion : (Disp = 1679) * ($Ign = ‘singlemag’) * %EMI_safe + (Disp >= 1835)
* ($Ign = ‘singlemag’, ‘truedual’) * JEMI_safe): =-> (%Shielded) to the
dynamic binding for SP1 (step 12 of procedure compute_bindings_with_options). The
expressions generated by the algorithm are often messier than what a person would
produce. This expression can be simplified considerably.

In this example, the designer specified the components for 36 different variants and
determined that 4 others were not possible. He examined 900 different combinations of
component designs for each variant. However, many of the constraints were evaluated
for a large number of different combinations without enumerating the combinations.
Combinations which failed these simple constraints were not considered when the
more complex constraints were evaluated. Therefore, only a very small fraction of

the combinations had to be evaluated individually.

6.3 The recursive component selection problem

Several researchers have addressed another variation of the component selection prob-

lem called the recursive component selection problem. This variation is discussed

88

Figure 6.9. MDD for Cases where Shielded Spark Plug is Used

1=1679
Disp 2=1835
3=1915
4=2074 1 2345
5=2165

I=single_mag

$lgn 2=single_cloc
3=dual_clec 14
4=true_dual

SEMI_safe

Figure 6.10. Primary Region MDD for Cases where Shielded Spark Plug is Used

89

briefly to clarify the relationship of the proposed algorithms to those of other re-
searchers. No new algorithms are proposed for this variation. In the recursive com-
ponent selection problem, the candidate component designs may themselves have
unspecified components which must also be specified.

Kott et. al. [38] describe a system called the Configuration Tree Solver which
automates the component selection process for “nearly decomposable” artifacts. In-
formation about what structures are available is contained in an and-or tree called
a configuration knowledge tree. The or-nodes represent different implementations of
a design. The and-nodes represent decompositions of a design into components. A
configuration is a subtree such that for any or-node in the configuration, exactly one
child is in the configuration and for any and-node in the configuration, all children
are in the configuration. The objective is to find a configuration that satisfies a set of
constraints. The Configuration Tree Solver maintains a list of partial configurations,
selects the most promising, and refines it by making a decision for an or-node. The
new partial configuration is then evaluated according to how well it satisfies the
constraints and the process is repeated. The process is facilitated by local specialists
that contain domain specific knowledge. There are two types of local specialists,
or-specialists and and-specialists, which are associated with or-nodes and and-nodes
respectively. Or-specialists choose an alternative for a particular component subject
to the constraints imposed by previous decisions. And-specialists decide which com-
ponent should be chosen first, which is important because the first component chosen
constrains later choices.

Brown and Chandrasekaran [40, 6, 41] developed a language called Design Spe-
cialists and Plans Language (DSPL) for describing a hierarchy of specialists which
search the design space. Each specialist may have a variety of plans for completing its
task. Plans consist of a series of steps which can be either simple steps or can invoke

other specialists.

90

Kim [17] also addresses the recursive component selection problem using a separate
algorithm than mentioned previously for combinational circuits. He takes advantage
of the fact that some of the constraints apply to only one component. He uses these
constraints first to reduce the number of candidates for each component. Then, he
enumerates the combinations that remain and evaluates the remaining constraints for
each combination individually. Since the number of combinations to be evaluated is
very large, this phase dominates the solution time. If some of the candidate designs
themselves have undetermined components, he applies his algorithm to the component

designs first to enumerate all of the possibilities.

CHAPTER 7

Change Notification

Consider the following scenario. After completing the design of the head assembly and
verifying that it satisfied the constraints, a designer started work on other projects.
The designs of the components were all supposedly stable. However, a problem was
discovered with the cylinder design and it was modified. These changes could in-
fluence the head assembly, so some of the constraints of the head assembly need to
be re-checked. Unfortunately, it is difficult for the cylinder designer to anticipate
the ramifications of his change, and the head designer has no reason to go back and
re-check constraints unless he is made aware of the change. A mechanism is needed
to notify appropriate individuals when design changes are made.

The notification mechanism must propagate change information to the appropriate
people without inundating the designers with meaningless messages. Notifications
are requested by posting tnterest. Designers post interest in designs that influence
their own designs. When data is modified, the data management system checks
for applicable interest and notifies the appropriate designers. Systems that provide

notification differ in two primary respects:
1. what types of events trigger notifications, and

2. how designers are notified.

91

92

This chapter discusses how these issues may be handled within the proposed data
model. First, however, some existing systems that offer change notification function-
ality are discussed briefly.

DVSS [18] automatically generates notification messages whenever conflicting ac-
cesses to data are detected. For example, if two users check out a version, modify it,
and then check it in again, both users receive messages warning them that separate
derivation paths have been created. Users may also explicitly define certain events
that should result in notifications.

In [42], Chou and Kim discuss a system which notifies users when referenced ob-
jects are updated or deleted. The user specifies which references should be monitored.
The system maintains two timestamps for each object: the time of the last update,
and the time that changes to referenced objects were last approved. Whenever a
referenced object has a update timestamp later than the last approved timestamp,
a notification is generated. The notification can be a message to the owner of the
referencing object or a flag which warns any user of the referencing object that changes
have not been approved.

Agent systems [43] may be used for change notification. Instead of relying on
the data management system to recognize that a change has occurred, the interested
party runs an agent program that monitors the database. This implementation is most
useful when many different data sources are involved, such as news feeds. When a
CAD framework is managing the data, it is more natural to implement the notification

functionality as a framework service.

7.1 Notification triggers

Whenever a designer posts an interest, he must specify what event will trigger a

notification. In this section, the types of events that may be used are identified.

93

Modification of a Representation: The modification of a representation may im-
ply, for example, that constraints need to be re-checked. Notification would
be important if the designer making the modifications does not have primary

responsibility for the overall design.

Creation of a Derived Representation: A derived representation may be cre-
ated either to explore an improvement or to fix a bug in a frozen representation.
In either case, the designer with responsibility for a design version using the

representation may want to consider using the derived version instead.

Modification of a Design Version: When a design version is modified, either by
modifying its representations or changing which representations it uses, designs
which are influenced by it should be re-checked. Other designs would be influ-
enced only if the design version is current for some workspace or is referenced

via a static binding.

Violation of a Condition: A designer referencing this design might not care about
all modifications, but rather only those that cause some condition to become vi-
olated. The condition would be specified using the same language as constraints

and checked following each modification.

Change of Design Version Status: A designer may want to be notified when a

design version he references is marked invalid.

Creation of a Derived Design Version: If a design references a design version
with a static binding, the designer may want to consider using the updated

version.

Release of a Design Version into a Workspace: If a design is referenced with

a dynamic binding, then releasing a new design would influence the properties

94

of the referencing design. The designer of that design may wish to re-check

constraints.

Change of Option Variables or Restrictions: If the option offerings are chang-
ed, the design may be instantiated by other designs with a different set of option
values. The bindings may become impossible to evaluate (if they refer to choices
that are no longer available) or ambiguous. The referencing designs must be

re-checked.

Change of Constraints: If the constraints are changed, any design versions in use
should be re-checked. If the changed constraints are environment constraints,
referencing designs must re-check them. Also, although the framework’s con-
straint checking mechanism does not utilize constraints on components, de-
signers may consider them manually when verifying designs. If this has been
done for designs that reference the changed design, those designs should be

re-checked.

Creation of Child Design Object: When a new design is created, other designers

may want to use the new design as a component in their own designs.

For example, the designer of the head assembly would want to post interests that

would be triggered by the following events:

e Assuming that all components are referenced by dynamic bindings and that
stable designs are placed in a workspace called “stable,” the designer should be
notified whenever any new design is released into the “stable” workspace for

any of the component design objects.

e He should be notified whenever any of the design versions that are currently in

the “stable” workspace for any component design objects are modified. This

95

trigger also covers any modification to representations used by those design

versions.

e He should be notified whenever a referenced design version is changed from

“valid” to “invalid” status.

o He should be notified whenever the option variables or option restrictions are
changed for any components. If other people have authority to change the option
variables and restrictions for the head assembly, he should also be notified when

option variables or restrictions are changed.

e Similarly, if other people have authority to change the constraints for the head

assembly, he should be notified of any changes to constraints.

e He should be notified when new design objects are created that are children of
the non-leaf design objects Cylinder, Cylinder Head, etc. Incorporating these

new objects into his design may improve its performance or reduce its cost.

The modifications to the cylinder design would probably be done by creating a derived
design version, editing it, and releasing it into the “stable” workspace after it was

verified. The head assembly designer would be notified upon release.

7.2 Notification methods

Once a trigger event has been detected, there are many possible methods for notifying
a designer. Sometimes, it is desirable to use a method that interrupts his work so he
can respond immediately. At other times, it is sufficient to place a message somewhere
where he will see it when he checks. Sometimes, it may also be necessary to prevent
questionable data from being used until it is re-verified. In this section, methods that

could be employed with the proposed data model are identified.

96

Message to Representation or Design Version: The message handling system
of the data model may be employed by requesting a message to a particular
representation or design version. A representation type could easily be imple-
mented specifically for the purpose of receiving these messages. It would append

them to a file for later review by the designer.

Change Status of Design Version: It may be best to mark a design version in-
valid so that others do not use it. A user flag determines whether bindings to

invalid design versions succeed or fail.

Electronic Mail Message to User: The notified designer would probably check
electronic mail much more frequently than he checks the notification represen-
tations described above. Therefore, notifications that require quick attention

should use this method.

Re-checking Constraints: If the constraints can be checked quickly by the frame-
work, the designer may want to be notified by the above methods only when

the change results in a constraint violation.

Posting / Retraction of Interest: To avoid frequent interruptions, the designer
may want to retract an interest after the first notification and replace it after

he has taken appropriate action.

Unix Message or Signal to a Process: A process that displays information may
post an interest so that it can update the display whenever the information is

changed.

Part IV

Design Methodology Management

97

98

Previous chapters described constructs for managing the data generated during
design and described framework services that can save designers time and reduce
errors. However, further improvements in product quality and reductions in cost and
time to market require improving the design process itself. In order to improve the
design process, it must be possible to track the design process, and designers must
be encouraged to use an approved process.

Traditionally, designers used whatever process seemed convenient to them at the
time. It was virtually impossible to determine how a past design was produced. More-
over, this practice often resulted in steps being skipped. Designs were not checked for
important criteria such as manufacturability until it was too late to make changes.

Design methodology management is the selection and execution of an appropriate
sequence of tools to produce a design description from available specifications. Se-
lecting a sequence of tools can be a daunting task due to incompatible assumptions
and data formats among tools. Also, to support a higher degree of automation, CAD
frameworks must be able to select and execute tools automatically for frequently
repeated tasks, enabling designers to concentrate on higher level decisions.

Methodology management systems can be characterized by two criteria:

Methodology Specification How are legal methodology choices specified? Ideally,
the choices should be specified in a form that is maintainable as new tools are

acquired and new methodologies are developed.

Execution Environment How is a particular methodology chosen at run time?
Designers must be informed of their choices and given guidance about which

choices are preferred.

99

The proposed framework includes extensive methodology management function-
ality. In Chapter 8, the proposed specification formalism, called design process gram-
mars is discussed. In Chapter 9, an execution environment which helps the designer
choose between alternative methodologies is proposed.

The primary advantages of the proposed methodology management system are:

Formalism The system is based on a strong theoretical foundation, enabling admin-

istrators to analyze how the system will operate with different methodologies.

Parallelism The system allows several alternatives to be explored simultaneously,

enabling designers to make better use of idle computing resources.

Extensibility New tools can be integrated into the system easily by adding produc-

tions and control agents.

Flexibility Many different control strategies can be used. Several control strategies

can even be mixed within the same design exercise.

CHAPTER 8

Methodology Specification

An important ingredient in methodology management is a formal representation of
design processes. Many different formalisms have been proposed.

Directed graphs are used to represent design processes in systems such as the
program evaluation review technique (PERT) and critical path method (CPM). In
these representations, the nodes represent milestones and the arcs represent tasks.
These representations were invented to help managers schedule resources when the
duration of each task is known, at least probablistically. However, the duration of
design tasks is very difficult to predict, so these methods have limited use in design.

Steward [44] proposes a system for describing design processes using a precedence
matrix. A process consisting of n tasks is represented by a matrix with one row
and column per task. The rows and columns are labeled in the same order. An
entry in row A, column B implies that task B uses data generated by task A. The
objective is to re-order the tasks such that the matrix is lower triangular. However,
circular information flows make this impossible implying that some tasks must be
done iteratively. The data represented by entries above the diagonal must be guessed
on the first iteration and then refined in later iterations. Gebala et. al. [45, 46] extend
Stewards representation to numerical degrees of dependence as opposed to Boolean

entries. These numerical values provide assistance is determining which data to guess

100

101

on the initial iteration. These matrix methods are suitable only when the set of tasks
is constant.

Systems such as Configuration Trees [38] and DSPL [6, 40, 41] can also be treated
as methodology specifications. Configuration Trees organize the hierarchy of spe-
cialists according to the component hierarchy of the artifact being designed. DSPL
organizes the hierarchy according to the decompositions of the design tasks. In some
domains, but not all, the task decomposition is identical to the component hierarchy.
Organizing the hierarchy according to task decomposition is a more general approach.

Nelsis [10] provides a graph formalism, called flowmaps, for representing sets of
methodologies. An example flowmap is shown in Figure 8.1. Each task is referred to
as a functional unit. Flowmaps have a hierarchical structure in which some functional
units correspond to activities (atomic operations) and others correspond to more de-
tailed flowmaps. Some flowmaps are flagged to indicate that they should be executed
automatically as soon as the input data is available. Functional units are connected
to each other by channels, which have specific datatypes. The input (outpﬁt) ports of
a functional unit indicate what channels the functional unit receives (supplies) data
on (to). Some of the input ports are optional (indicated by a solid circle), indicating
that the functional unit can run with or without that data. These optional ports
are very important for iterative design processes, which result in cycles in a flowmap.
There is a distinction between output ports based on whether the data is added
to the input design object, called eztension, or placed in a separate design object,
called modification. When tasks are repeated, previous extension port outputs and
data derived from them must be invalidated. New versions are created for data on
extension ports. If two functional units have output ports to the same channels, they
are considered to be alternatives. Users must statically specify a preference among
alternatives or choose among them at run time. If two or more functional units do

not have any outputs, flowmaps do not indicate whether they are alternatives or must

102

. iy
N o
.. .
......
o s

.....
.., o
.....
.~ o
.....

:
3
i

)
1
;

.......
........

Figure 8.1. A Nelsis Flowmap (from [10])

all be completed (see SIM1, SIM2, and SIM3 in Figure 8.1). Further, Nelsis does not
provide any mechanism to pursue multiple versions simultaneously.

Sutton et. al. [47] use a similar graph formalism called a task graph. Tools and
data are both treated as design entities. Each design entity may have at most one
functional dependence indicating the tool that was used to create it and any number of
data dependences indicating the input data to that tool. The set of legal task graphs
is determined by a task schema as shown in Figure 8.2. The task schema indicates
which tools (f arrows) and data types (d arrows) can be used to create each type of
data. When more than one method is allowed, subtypes are used, as illustrated by the
circuit and layout types. As designers work, they build task graphs in a bottom-up
manner, as long as the nodes that are added to the task graph have the necessary
dependencies as indicated in the task schema. More than one alternative may be
pursued in parallel, although there is a risk of using incompatible data in later steps.

In this chapter, a formalism called process flow graphs, which represents individual
methodologies, is introduced. A type of graph grammar called a design process gram-

mar is used to document what methodologies are available in a framework. Designers

103

LSt iismiii

H

Figure 8.2. A Task Schema (from [47])

build process flow graphs in a top-down manner by applying productions from the
design process grammar to expand nodes that represent abstract tasks. When tasks
are repeated, such as in iterative design, there are multiple versions of its outputs.
A formalism called a versioned flow graph is used to represent design processes with
repeated tasks. Conditions for versions of specifications to be compatible are also
identified. Alternative methodologies are very explicit, making it easier to indicate
which methodologies should be chosen. Also, design process grammars are context
sensitive, making restrictions due to incompatible data formats explicit. By analyzing
the grammar, framework administrators can either prove that a tool set is capable of
performing all of the required tasks or can identify missing capabilities.

The proposed formalisms are more natural than the flowmaps of Nelsis. When
using a Nelsis flowmap, a design has to examine the output relationships between tasks
in order to determine if they are alternatives or must both be done. Alternatives are

very clear in the proposed formalisms. Once a particular alternative is chosen, the

104

other alternatives are not included in the process flow graph where they could confuse

a designer.

8.1 Process flow graphs

Process flow graphs describe the information flow of a design process. Formally, a
process flow graph is a bipartite acyclic directed graph of the form G = (T, S, E),

where

T is the set of task nodes. Each task node is labeled with a task description. (Task

nodes are drawn as circles.)

S is the set of specification nodes. Each specification node is labeled with a de-
sign object name and a representation type. (Specification nodes are drawn as

rectangles.)

E is the set of edges indicating which specifications are used and produced by each
task. Each specification must have at most one incoming edge. Specifications

with no incoming edges are assumed to be inputs of the design exercise.

T(G),S(G), E(G) are the sets of task nodes, specification nodes, and edges of graph

G, respectively.

Figure 8.3 shows a process flow graph that describes a possible design exercise un-
dertaken by the aircraft engine company to assist a customer.

As discussed in Section 2.2, the various representation types form a class hi-
erarchy, where each child is a specialization of the parent. There may be several
incompatible children. For example, AutoCAD file is a child of CAD Data, but is not
interchangeable with CADAM file. Descendant representation types are also called
subtypes. Representation types of specification nodes are used to avoid data format

incompatibilities between tools.

105

Alrcraft Aifcraft Aircraft
Acrodynamic Performance Geometric
Data Specification Data
Engine
Sel Fuel
System
Design
Engine
Specifications Fuel System Fuel System
Layout Bill of Materials
Propeller f:‘w: Comt
Design Desiga Estimation
Propeller Engine Mount Engine Packas:
Specifications Specifications

Figure 8.3. A Sample Process Flow Graph

106

Task nodes can be either terminal or non-terminal. A terminal task node repre-
sents a run of an application program, which is commonly called a tool invocation.
The representation type of the outputs of a terminal task node must have no sub-
types. Terminal task nodes are drawn with double circles. Non-terminal task nodes
represent abstract tasks, which could potentially be done with several different tools
or combinations of tools. Process flow graphs can describe design processes to varying
levels of detail. A graph containing many non-terminal nodes indicates roughly what
should be done and what information is desired without describing exactly which
tools should be used. Conversely, a graph in which all nodes are terminal, called a
terminal graph, completely describes a design process.

The following definitions are used:
In(N) is the set of input nodes of node N: In(N)={M € T U S|(M,N) € E}.
Out(N) is the set of output nodes of node N: Out(N) = {M € TUS|(N,M) € E}.

I(G) is the set of input specifications of graph G: I(G) = {N € S(G)|In(N) = 0}.

The representation types of nodes in I(G) must have no subtypes.

8.2 Design process grammars

Graph grammars provide a convenient means for transforming process flow graphs
into progressively more detailed process flow graphs. The user specifies the overall
objectives by supplying the initial graph, which indicates what input specifications are
available, what output specifications are desired, and what abstract tasks should be
performed. The start graph is progressively modified using a graph grammar, called a
design process grammar. The non-terminal task nodes, which represent abstract tasks,

are replaced by subgraphs of less abstract tasks and intermediate specifications. The

107

output specification nodes are also replaced by nodes that may have a more specific
format (a child representation type).

The productions in a graph grammar permit the replacement of one subgraph
by another. A production in a design process grammar can be expressed as a tuple

P = (GLHs,GRHS)Oiny Oout) Where

GLrus, Grus are process flow graphs for the left side and right side of the production,
respectively, such that T(GLus) is a single, non-terminal task node representing

the abstract task to be replaced.

0in i8 a mapping from I(Grys) onto I(GLys) indicating the correspondence between

input specifications. Types must match exactly.

Oout 18 a mapping from S(Grus) — I(GLus) to S(Grus) indicating the correspon-
dence between output specifications. Each output specification must map to a

specification with the same type or a subtype.

Figures 8.4 and 8.5 illustrates some productions f.or the tasks Fuel System Design
and Propeller Design. The mappings are indicated by the numbers beside the
specification nodes. The vertical bar is a shorthand notation to indicate multiple
rules with the same Grys but different Grys’s. Alternative productions may be
necessary to handle different formats (as in Figure 8.4), or because the right hand
sides perform differently in different situations (as in Figure 8.5).

Let A be the non-terminal task node in T'(GLys) of production P and A’ be a
non-terminal task node in the original process flow graph, G. Formally, P matches

A if:

1. A’ has the same task label as A,

108

Alnaa — 1
1 Comawy |1
wmcro | s Salid Medel e
Nd
p— —) >
Design
3 2 3
Fod Syasn Pedl Synss x..- Pasl Symem Pl Syuen Pual System I-'- Peal Symem
Layen e 5 AmeCAD B of Musials Lagen B of Masosials @ Selid Model B of Masasiels

Figure 8.4. Alternative productions based on input format

f
|
E

i
{
|
!

L]

.
wlk
»

bl
|

Figure 8.5. Productions indicating alternative algorithms

2. There is a mapping, pin, from In(A) onto In(A’), indicating how the inputs
should be mapped. For all nodes N € In(A), pin(N) should have the same type

as N or a subtype.

3. There is a mapping, pout, from Out(A’) onto Out(A), indicating how the outputs
should be mapped. For all nodes N € Out(A’), pout(N) should have the same

type as N or a subtype.

The mappings are used to determine how edges that had connected the replaced
subgraph to the remainder should be redirected to nodes in the new subgraph.

Once a match is found in graph G, the production is applied as follows:

1. Insert Grys—I(GRrrus) into G. The inputs of the replaced task are not replaced.

109

Figure 8.6. A Sample Graph Derivation

2. For every N in I(Grys) and edge (N, M) in Grys, add edge (pin(oin(N)), M)

to G. That is, connect the inputs of A’ to the new task nodes that use them.

3. For every N in Out(A’) and edge (N, M) in G, replace edge (N, M) with edge
(oout(Pout(N)), M) to G. That is, connect the new output nodes to the down-

stream tasks which use them.
4. Remove A’ and Out(A’) from G, along with all edges incident on them.

Figure 8.6 illustrates a derivation using a production from Figure 8.4. The dotted
lines outline the subgraph that is replaced.

How does the data generated during the execution of a methodology fit into the
proposed data model? When Cockpit processes the start graph at the beginning of a
design exercise, it creates a new design object for each different design object name
that appears in a specification node. If an existing design object has that name, the
newly created object is a child of that design, otherwise it has no parent design in the

classification hierarchy. Cockpit must create a new name for the new design object

110

by adding some characters to the name provided). Each of these new design objects
starts with a single design version, which contains slots for each specification node
with that design object name. The slot for each input specification node points to the
corresponding representation. The slots for output nodes initially have null pointers.

When a production is applied, new intermediate specification nodes (nodes that
are not inputs or outputs of the task being planned) may be introduced. If these new
nodes have a design objects name different than the name of any of the input and
output nodes in the production, a new design object and design version is created for
them. Otherwise, a new slot is added to an existing design version.

When a tool is executed, the pointers for the slots corresponding to its outputs
are set to the newly created representations. The new representations are “derived
from” the inputs to the task. Section 8.4 discusses how additional design versions are

created to explore alternatives.

8.3 Guaranteeing success

In this section, completeness of grammar symbols is discussed. Completeness guar-
antees that a process flow graph with no non-terminal task nodes can be generated
from an initial graph. Without this guarantee, it is dangerous to start execution of
any of the tasks before completely generating the process flow graph. The designer
might reach a dead end where, after investing considerable effort, there are no tools to
complete the job from the present state. Being able to start execution before planning
is completed is important because information generated by executing some tasks can
be very useful in planning others.

A task label is complete with respect to certain input and output types if it is
possible to produce acceptable output types from any combination of possible input

types for that task. Formally, let I = {in,,in,,...,in,} and O = {out,, out,, ..., outy}

111

be lists of types for a task’s input and output specifications, respectively. Let I' =
{in},in},...,in.} be a list of types such that each in} is in; or a subtype of in; and

in) has no subtypes for 1 <=1 <=n.

Definition 8.1 A terminal task label T is complete with respect to input types I
and output types O if and only if: for every possible I', there ezists an O' =

{out},out, ..., out!.} such that
i. out = out; or a subtype of out; for 1 <=1i <=m, and

ii. the tool represented by T can take inputs with types I' and produce outputs with

types O'.

Definition 8.2 A non-terminal task label T is complete with respect to input types I
and output types O if and only if: for every possible I', productions ezist to transform
a non-terminal task node with label T, inputs with types I', and outputs with types O
into a terminal graph in which all task nodes are complete with respect to their inputs

and outputs.

Completeness of the nodes in the initial graph guarantees success of design plan-
ning. If a task node, NV, has input types I, those types may be changed to types I
by productions applied to predecessor task nodes (tasks which supply data to N).
However, if the label of N is complete with respect to I and its output types O,
then it can operate on any I’ that might occur. Notice that the output types O are
never changed except by applying a production to N. If all task nodes in the initial
graph are complete with respect to the specification types with which they appear,
then there are tools available to transform the input specifications into outputs of the
desired type. Users should avoid applying a production which includes a task node in
GRrus which is not complete with respect to the input and output types with which

it appears.

112

Fortunately, a set of productions can be checked for completeness of non-terminal
tasks using Algorithm check completeness. A list is maintained of combinations
of task label, input types, and output types such that the task label is complete
with respect to the input and output types. The user must initiate the process by
indicating the capabilities of the individual tools (listing the complete combinations
for terminal task labels). New combinations are added by finding productions that
match non-terminal task labels with certain input and output types such that all of
the nodes on the right hand side are complete. The algorithm iterates until no new
combinations may be added.

Before the algorithm is described in detail, the conditions for combining two or
more complete combinations to form a new complete combination must be elaborated.
Let all subtypes of specification type ¢t be denoted by t; through t;. If task label T
is complete with respect to I; = {in,,...,t;,...,in,} and O; = {outy;,...,outy;} for
1 <= i <= k, then it is also complete with respect to I = {iny,...,t,...,in,} and
O = {out,,...,out,} such that each out;; is out; or a subtype. This assertion follows

directly from the definition of completeness for non-terminal task labels.

Algorithm check_completeness

Input:
A set of productions
A list, L_in, of complete terminal symbols,
indicating what output types, 0’, may be produced
from what input types, I’, by each tool

Output:

A list, L_out, of complete non-terminal symbols,
indicating what output types, 0’, may be produced
from what input types, I’, for each abstract task

1. Initially, L_out is empty

2. For each production {

3. Let S’ be a mapping from specification nodes to types such

113

that each node maps to the type of its label or a subtype.
For each possible S’ {

4. If every task node on the right hand side appears in
either L_in or L_out as complete with respect to the
types its inputs and outputs map to {

5. Add the task node on the left hand side of the
production to L_out with the types its inputs map to
and the types of its outputs (not mapped)

}
)
}

6. Add to L_out any new complete combinations possible by
combining combinations in L_out.

7. If any new productions were added to L_out, go to 2.

The following theorems state that Algorithm check_completeness finds all of the

combinations that are complete and none that are not complete.

Theorem 8.1 If the task label T with input types I and output types O is listed by

Algorithm check_completeness, then it is complete with respect to I and O.

Proof: Consider the ith combination added. The proof is an induction on
t. The first combination added must be added by step 5 and the production must
contain only terminal nodes on the right hand side. The combination is complete
since applying the production would transform task node with label T, inputs with
types I and outputs with types O into a terminal graph and all of the task nodes
added are listed as complete in L_in, which is assumed to be correct. Therefore, the
theorem holds for i = 1. The ith combination is added by either step 5 or step 6.
If it is added by step 5, it is complete because the production could be applied to
any node with label T, inputs with types I’, and outputs with types O and all of the

tasks nodes added by applying the production appear in either L_.in or L_out, and

114

can therefore be transformed into terminal graphs by the induction hypothesis. If the
combination is added by step 6, then any I’ must already be covered by a combination

in L_out and is therefore complete by the induction hypothesis. m]

Theorem 8.2 If a non-terminal task label, T, is complete with respect to input and

output types I and O, then the combination is listed by Algorithm check_completeness.

Proof: Consider a graph which consist only of a non-terminal task with label
T, input specification nodes with labels I’ and output specification nodes with labels
0. If T is complete with respect to I’ and O, then this graph can be transformed
into a terminal graph by a sequence of i production applications. The proof is an
induction on 1. If 1 = 1, then there is a production which matches T' with inputs I’
and outputs O and has no non-terminal task nodes on the right hand side. If each
of the terminal task labels on the right hand side is listed as complete with respect
to its input and output types in L_in, then step 5 adds the combination T, I’, O to
L_out. Now, assume that any complete combination that can be transformed into a
terminal graph by ¢ or fewer combinations is listed in L_out. In the following iteration,
Algorithm check_completeness finds that the first production in the sequence matches
T with inputs I’ and outputs O. By the induction hypothesis, all of the task nodes
on the right hand side are listed as complete with respect to their inputs and outputs,
8o the combination T', I’, O is added to L_out by step 5. Since the combinations T,

I', O is added for every I’, step 6 adds the combination T, I, O to L_out. (]

8.4 Handling multiple versions

The previous section described how process flow graphs are generated by replacing

abstract tasks with graphs of less abstract tasks. However, design involves a search

115

through the space of possible alternatives, implying that some of the tasks may be

executed several times. For example:

e The first execution might not produce an acceptable result, so backtracking

occurs and some of the decisions made on the first execution are changed.

e New information may become available which changes some of the decisions
made on the first execution, such as approximate characteristics of the final
design. In iterative design processes, this new information is a direct result of

earlier executions and is refined in later executions.

Each time a task is repeated, it produces new versions of its outputs. Multiple
executions of an abstract task often involve using a different production from the
design process grammar, implying that the space of possible methodologies is being
searched.

An extension of the process flow graph, called a versioned flow graph, captures
this dynamic nature of design processes. Like a process flow graph, a versioned flow
graph is a bipartite acyclic directed graph of the form G = (T, S, E) with the same
definitions for T', S, and E. However, the rules for applying a production are changed
slightly. When a production is applied in a versioned flow graph, the task node being
expanded, A’, and its outputs are not removed. A production can be applied to A’
again indicating that the task is to be repeated. Each time a production is fired, new
specification nodes are generated for the outputs of the abstract task represented by
A’. These nodes represent alternative versions of those specifications. The new task
nodes are called subtasks of A’, even if there is only one. Figure 8.7 shows how the
derivation of Figure 8.6 would be carried out in a versioned flow graph.

In versioned flow graphs, specification nodes resulting from different assumptions
can coexist, as shown in Figure 8.8. The bill of materials from alternative #1 must

not be used in conjunction with the layout from alternative #2 in a later task, such

116

Alrcraft Airaraft
Geometry Geometry
Alrcraft Alrcraft
Geomeury Geometry
as Solid Model > s Solid Modal
el Rl '\ qpask
s Sysem p---"""
— Design /s
\“
L)
E Fuel System
oot Symam |+ 1 soid Moda
Pucl System Fuel System Layou '
Layout Bill of Materials .
~
N
BOM
Ruel System Edit
Bill of Materials

versionof] Fuel Sysem
Bill of Materials

Figure 8.7. Sample Derivation in Versioned Flow Graph

Figure 8.8. Incompatible Specification Nodes

as producing a shop order. Notice that these two nodes would never appear in the
same non-versioned process flow graph because non-versioned process flow graphs do
not allow alternatives. Prior to applying a production in a versioned flow graph,
the non-terminal task node, input specifications, and output specifications must be

checked for compatibility.

Definition 8.3 Two or more nodes are called compatible if and only if a non-

versioned process flow graph could be constructed that contains all of them.

The above definition is not very practical for efficiently determining whether cer-
tain nodes are compatible. To develop an efficient algorithm for determining com-

patibility, it is necessary to define the sequence of production firings for a node. A

118

production firing can be characterized by the non-terminal task replaced, the pro-
duction used, and the-input and output mappings. The sequence of firings for a
node is defined recursively as the firing in which the node was added to the graph

concatenated to the sequence of firings for the task node replaced by that firing.

Theorem 8.3 Two nodes are NOT compatible if and only if

i. their sequences of firings contain different firings for the same non-terminal

task, or

ii. the sequence of firings for one node includes a firing applied to the other node

(if it is a task) or its source (if it is a specification).

Proof: If each sequence contains a different firing applied to non-terminal task
N, then adding the first node to a non-versioned process flow graph would delete N,
making it impossible to add the other node. If a production is applied to a task node
N with output specification node S, then both N and S would be deleted from the
non-versioned process flow graph. Any node with that firing in its sequence would
be incompatible with N and S. If neither of the above conditions hold, then a non-
versioned flow graph can be constructed by applying the sequence of firings for the
first node and then applying any firings in the sequence for the second that have not
already been applied. (=]

The set of compatible nodes produced by a sequence of firings is called a design
state. In order to apply a production, all of the nodes involved must be included
in the same design state. Applying the production removes the task node and its
outputs from the design state, but not from the versioned flow graph. To pursue an
additional alternative, a new design state is created. Productions fired in the new

design state have no effect on other design states and vice versa.

119

Using the data model of Chapter 2, design states correspond to new design ver-
sions and workspaces. To create a new design state, a new workspace is created.
Then, a new design version is created for each design object involved and the new
workspace is set to map the design objects to the new design versions. The new design
versions is initially identical to the previous design versions and has a “derived from”
relationship with them. However, representations added to the new design version as
tools complete are not added to the originals. Backtracking to the previous design

state simply requires making the previous workspace current again.

CHAPTER 9

Execution Environment

Once a formalism is available for representing methodologies, frameworks can pro-
vide support to the user in selecting an appropriate methodology and executing it.
Previous systems provide various degrees of assistance.

The simplest form of assistance is monitoring the designers’ actions. In [51], Di
Janni describes a monitor for CAD tools which models fixed methodologies using
extended Petri nets. The VOV system [52] records the sequence as the designer
executes tools. When an input file is modified, these systems help the user keep data
consistent by invalidating output files or by repeating previous tool executions.

There are several systems which automatically determine what tools to execute.
The Design Planning Engine of the ADAM system [53, 54] produces a plan graph
using a forward chaining approach. Acceptable methodologies are specified by listing
pre-conditions and post-conditions for each tool in a Lisp-like language. Estimation
programs are used to guide the chaining. Ulysses [55] and Cadweld [56] are blackboard
systems used to control design processes. A knowledge source, which encapsulates
each tool, views the information on the blackboard and determines when the tool
would be appropriate. Minerva [57] and the OCT task manager [58] use hierarchi-

cal strategies for planning the design process. Hierarchical planning strategies take

120

121

advantage of knowledge about how to perform abstract tasks which involve several
subtasks.

In [16], Katz and Chang discuss validation scripts for active equivalence con-
straints. When an object with an active equivalence constraint is checked into a
workspace, the validation script is executed to create new objects that are consistent.

In this chapter, the proposed execution environment is presented. Section 9.1 is a
high level overview of the environments architecture. An example is used to illustrate
its operation in Section 9.2. Finally, in Section 9.3, some of the implementation

options of manager programs are discussed.

9.1 Execution environment overview

The architecture of the proposed framework is illustrated in Figure 9.1. The designer
interacts with a program called Cockpit, which keeps track of the current status and
informs the user of possible actions. To assist the user in choosing an appropriate
action, Cockpit interacts with several manager programs, which encapsulate design
knowledge. The manager programs provide ratings for the productions, invoke tools,
and may perform some design tasks automatically. Manager programs must be main-
tained by tool integrators to reflect site specific information such as company design
practices and different ways of installing tools.

Cockpit keeps track of the current state of the design process. Unlike the manager
programs, Cockpit contains no task specific knowledge. Its information about the
design process comes entirely from an input file indicating the set of possible tasks
and what productions should be considered for each non-terminal task. For each task,
and for each production, the input file indicates a manager program that encapsulates

knowledge about that task or production.

122

Prod] (rating = 90)
Prod2 (sating = 70)

Manager C (written by vendor) i
hMml;u’B(wﬁnnbylmlm) r
hMuu;cA(wﬂmbyhalm)

Manage_wskQ (
|5

Designer

Start Graph

Constraints
Output Spec

Input Spec

Manage_prod0 (
-y
-y
e

Tool #3

Tool #2

Tool #1

Figure 9.1. System Organization

123

The designer directs the design process by interacting with Cockpit. Cockpit
displays a process flow graph indicating the current plan for completing the design ex-
ercise. Cockpit determines what productions are available for remaining non-terminal
tasks. For each production, it sends a message to the corresponding manager program
requesting that the manager compute a rating of the production’s usefulness in the
current situation. This information is displayed to the user. Initially, Cockpit waits for
the user to select productions. When the user requests that a production be applied,
Cockpit updates the graph. When the user asks that a task be ezecuted, Cockpit
sends a message to the task’s manager program. For terminal tasks, the manager
responds by invoking the tool. For non-terminal tasks, the manager responds by
using encoded knowledge to select one or more productions. Cockpit then applies
the productions and sends a message to each production’s manager program, which
executes the subtasks. The same sequence is repeated for the subtasks until terminal
subtasks are reached. In this automatic mode, the process proceeds without designer
intervention. The designer may, however, reverse any decision made by a manager
program.

When the output of a task is not satisfactory, it is necessary to backtrack. Either
different parameters must be supplied to some of the tools, different tools must be
chosen, or a task must be decomposed in an entirely different way. The designer
directs Cockpit to backtrack to before a certain production was applied. Cockpit
adjust the display so that the designer can start over at that point and applying
another production to the same non-terminal task node. Cockpit creates a new
design state before backtracking in case the designer later changes his mind.

In automatic mode, a hierarchy of managers is created. Some of the managers
are responsible for executing tasks, while others execute particular productions. In
the manager hierarchy, all of the children of a task manager are production managers

and all of the children of a production manager are task managers. Each production

124

manager has one child manager for each subtask (task node on the right hand side
of the production). Task managers have multiple children when several productions
are attempted, or the same production is attempted repeatedly.

In order to compute intelligent ratings and set parameters appropriately, the man-
agers must often gather more information. A query handling protocol allows managers
to request the desired information from other managers. Managers can send queries
to the managers of subtasks or parent tasks. Cockpit routes these query messages
to the appropriate manager, but does not interpret them. The architecture does not
specify which quantities may be queried; the implementor of each manager decides
what queries to send and respond to. This query mechanism may be used to find
the results of previous attempts to perform this task. Decisions can be adjusted
accordingly to improve upon the results, which is how iterative design processes are
implemented.

Each manager program may perform the following functions:

Pre-Evaluation (production managers only) Assign a rating indicating a produc-

tion’s likelihood of success in the current situation.

Task Execution (task managers only) For terminal tasks, invoke whatever tools
are needed. If the tool requires parameter settings, determine the parameters.
For non-terminal tasks, choose productions. This function has the authority
to choose multiple productions if it decides that exploring the alternatives in

parallel is warranted.

Production Execution (production managers only) Issue messages to Cockpit to
execute subtasks at the appropriate time. Usually, the scheduling of subtasks

is simply determined by data dependencies.

125

Post-Evaluation (task managers only) Once the tools or subtasks have completed,
check the appropriate constraints to determine whether the task was accom-

plished successfully.

Query Handling (both task and production managers) Respond to task specific
queries by estimating quantities or forwarding the query to a child or parent
manager. Implementors must negotiate with each other about what queries

should be handled by each manager.

The techniques used to perform these functions are intentionally not specified as
part of the architecture so that the most appropriate techniques may be used. For
example, some managers may be algorithmic while others use neural networks or rule
bases. The architecture simply defines a set of messages that managers are expected
to be able to respond to or are allowed to send to Cockpit. Some implementation
options are discussed in Section 9.3. A single manager program may encapsulate the
knowledge for several tasks. Each message from Cockpit indicates what task is being
evaluated or executed and provides the filenames for all of the inputs and outputs.
The constraints may be included in one of the input files or may be passed to the

manager by any other method the implementing programmer chooses.

9.2 Execution example

In this section, a synthesis scenario illustrates how the architecture is used. Suppose
that a customer of the aircraft engine company asks for help selecting an engine and
integrating it into the aircraft he is building. To start, the designer runs Cockpit with
an input file indicating the standard tools and productions that are available on his

site. The start graph is the one shown in Figure 8.3.

126

9.2.1 Manual operation

After selecting an engine, the designer decides to proceed to the task Engine Mount
Design. Upon selecting this task, Cockpit tells him that it can be decomposed in
two different ways, as indicated in Figure 9.2. Production Mount1 calls for the engine
mount design to be selected from a catalog, whereas production Mount2 describes
a procedure to design a custom engine mount. To help the designer decide which
production to choose, Cockpit sends a message to the manager program of each of
these productions. The manager program for Mount1 looks at the input files and
notices that there are no mounts for this airframe in the database. Therefore, there
is a low probability of finding an acceptable engine mount, and the manager assigns a
low rating. The rating for Mount2 is moderate because it is very likely to succeed but
requires considerable effort and often results in a more expensive mount. These ratings
are displayed by Cockpit, but are only advisory. Designers can choose whichever
production they prefer. In this case, the designer agrees with the ratings and ask
Cockpit to apply production Mount2. Cockpit adjusts the display to show icons for

the new subtasks. This sequence of actions is illustrated in Figure 9.3.

9.2.2 Query handling

Similarly, when the designer selects the icon for Mount Ring Selection, Cockpit
sends a pre-evaluation message to both of the productions in Figure 9.4. Often,
a manager can make use of information that is not in the input specifications in
assigning a more accurate rating. In this case, the manager of production RingSell
knows that the automatic ring selector tool usually does a good job, but does not
make use of stress information. RingSel1 should normally get a high rating because
it runs quickly with little user intervention. However, if stress in the ring is known

to be a problem, the production would get a low rating. The manager determines

127

Eagine
Specifications
Albersh Aol 3
Geemewy Engine O'I::'v Bngine Alrosalt
Den Specifications Specifications Geemeny |,
1 2 Duta
1 2
Bngime j Catalog
Mount Bngins Mount Mount Ring
Dusiga Selsction Specificstion
3
Bagine Moumt Bngins Moust
Specifications Spocifications Bngine Mowst Malntain-
3 Specifications abilisy
s Analysis
Bngine
Data Suress Bagine
Daia Maimtalnabilicy
Dem
Production Mount1
Preductien Mount2

Figure 9.2. Productions for Engine Mount Design

2 Cockpit scnds

/ pro-cval messages.

3. Manager programs
[*— retum ratings, which
cockpit displays o user.

“f Cat. Mount. Sel. Manager ‘

——o 6 Cockpitsends ___
execule message.

]

4. User selecis Mount]

1. Designer clicks ‘
joon. updates the display.
§. User asks o
exocute Catalog Engine
Mount Seclection
Designer

Figure 9.3. Sequence of actions during manual operation

128

Engine 1| Engine 1 Engine
Specifications | ! Specifications Specifications
Mount) Manual
w) Ty (e -
Ring
Selection Seleciar Selector

Mount Ring
Specification | 2 Mount Ring , | MoumRine
3 Specification
Production RingSell Production RingSel2

Figure 9.4. Productions for Mount Ring Selection

whether stress is a problem by sending a query to its parent, which is the manager
of the Mount Ring Selection task. That manager forwards the query to its parent,
the manager of the production Mount2. That manager recognizes that it can handle
the query by looking at the stress data produced from previous attempts. Since there
have been no previous attempts, no stress data is available. The manager replies
to the query, indicating that stress is not known. Cockpit routes this reply back to
the manager of RingSel1 which uses the information in computing its rating. This

sequence of actions is illustrated in Figure 9.5.

9.2.3 Backtracking

After a mount ring is selected, the designer performs Member Placement,Structural
Analysis,and Maintainability Analysis. During Maintainability Analysis,a
problem is discovered. While there is clearance between the oil filter and the engine
mount, the clearance is not sufficient to unscrew the oil filter when it needs to be
changed. The designer backtracks to Member Placement and places the offending part
elsewhere. Then he repeats Structural Analysis and Maintainability Analysis

on the new version of the design.

129

: 7. Cockpit routes reply to ariginal requestor
jo— &. RingSecl]l manager returns appropriate ratings

| 1. Cockpit sends pro-ovaluation message
le— 2. Managor sends query to paront \

sbout previcus stross analysis
RingSell Manager B2

le— 4. Task manager forwards ._m Mount Ring Selection Manager “
\ query to manager of production

S. Cockpit routes query to Rl Mount2 Manager m
Mount2 manager .
DeSIgner 6. Mount2 manager replies <+

Figure 9.5. Sequence of actions for query handling

Determining where to backtrack to is not always a simple problem. In this case,
the designer used domain knowledge to determine which task probably caused the
problem. There may be several alternative ways of correcting the problem. For
example, he could have backtracked all the way to Engine Selection and selected
an engine with the oil filter mounted elsewhere.

This example shows an important advantage of using a methodology manage-
ment system. The output of Engine Mount Design was produced after the Member
Placement task was completed the first time. Without a methodology management
system, it is tempting to consider the task done and release the design at that time.
Tasks like Maintainability Analysis are easily forgotten. The problem would have
shown up when the prototype was assembled, but would have been very expensive to

fix at that time.

130

Propaller Bngine Engine Mount Puel System
Engins Engine Mount Specifications Specifications Specifications Bill of Maseriale
Specifications Specifications
Propeller Fuel Symem Propeller Engins Mount Faal Sy
Specifications Bill of Materials Cont Comt Comt Cont
Batimation Bstimator Betimator Batimator
Cost
Batimstion
: Propeller Engins Engine Mours Puel System
Cast Data Cost Data Cost Data Cost Datm
Bngine System
Cost Data
Cost
Summarizer
Engine System
Cost Data

Figure 9.6. Production for Cost Estimation

9.2.4 Automatic operation

Later in the scenario, the designer comes to the task Cost Estimation. Since he
trusts the knowledge encoded for this task, he uses the automatic mode. He selects the
Cost Estimationicon and Cockpit displays the only choice. It tells him that the task
can be decomposed as shown in Figure 9.6. He executes the task in automatic mode
by clicking the “execute” button instead of the “apply” button. Cockpit sends an
execute message to the manager for Cost Estimation, indicating what productions
are available. Since only one is available in this case, the selection is trivial. The
execute function of the Cost Estimation manager sends messages back requesting
that the production be applied and executed.

The manager of the production then requests that the Propeller Cost Estim-

ation task be executed. Cockpit then determines that the two productions shown

131

Propeller Propeller Propeller
Specifications Specifications Specifications
Propeller Catalog Custom

Cont > Prop Cost Prop Cost
Estimation Estimass Estimnag
Propeller Propeller Propeller
Cost Data Cost Duta Cost Data

Figure 9.7. Productions for Propeller Cost Estimation

in Figure 9.7 could be applied. One of the productions works best for custom de-
signed propellers, while the other only works for standard propellers which have been
selected from a catalog. Cockpit gets ratings from both productions’ managers and
sends an execute message to the Propeller Cost Estimation manager (Execute
messages contain the ratings.). That manager selects the higher rated production
and sends messages to Cockpit asking that it be applied and executed. This sequence
is illustrated in Figure 9.8. The other subtasks of Cost Estimation are executed in
a similar fashion.

Managers of productions can execute subtasks simultaneously when there is no
dependence. If a subtask fails, the production manager may chose to backtrack by
re-executing an earlier subtask or may report failure to its parent. Also, if a manager
of a task deems it appropriate, multiple productions can be applied and executed
simultaneously. If the selected productions fail, the manager can select others or
report failure to its parent. Any decisions made by a manager program while in

automatic mode can be reversed by the designer if necessary.

132

2 Cockpit determines what akeratives will work and gess ratings for each,

8. Cockpit sends
execute message.

9. Manager chooses

that it be exocuted.

\ 6. When asked t0 execute Propeller

then sends execute message 1o Cost Estimation Managor.

3. Manager chooses one and then send message 1o Cockpit
requosting that production be applied and executed

4. Cockpit applics production and sends execution
/ message W production’s manager program. \

L S.Mamgauq\mlmiondwbulh.\— Cost Estination M. ‘

[— onc and asks —

[N pre——

Custom Prop Cost Est. Manager -

what alternative are svailable and

sends pre-cval messages. @ Catalog Prop Cost Est. Manager i

1. Designer asks that
Cost Estimation be
done in automatic mode 7. Managers respond.
10. Cockpit sends
execute message.
Designer

Figure 9.8. Sequence of actions during automatic operation

133
9.3 Implementation options for manager pro-
grams

Although the methodology management architecture does not specify how manager
programs should be implemented, this section discussed some possible implementa-
tions. Since manager programs operate by responding to messages from Cockpit,
an event driven programming style is most effective. Each of the responsibilities of
manager programs are addressed separately.

Ideally, a system integrator would be able to specify the behavior of each man-
ager in a data file using a convenient notation. Then, either source code could be
produced automatically from the file or a generic manager program could interpret
the data file at run time. However, whatever notation is chosen, there will probably
be some desired behavior that cannot be expressed. Therefore, it may occasionally
be necessary to modify the source code of manager programs manually. Even when
manager programs must be customized, other manager programs can easily be used

as templates, implementing the majority of the functionality.

9.3.1 Tool invocation

The manager of a terminal task node should respond to a TASK_EXECUTE message
by invoking the appropriate application program and reporting success or failure
when it completes. The filenames (or other identifiers) of inputs and outputs are
included in the TASK_EXECUTE message. In many cases, it would be sufficient to use
a predetermined command line that is stored in a data file. In other cases, however,
the manager must determine parameters of the tool using task specific knowledge. In

these cases, custom manager programs would be necessary.

134

9.3.2 Abstract task execution

The manager of a non-terminal task node should respond to a TASK_EXECUTE mes-
sage by choosing one or more productions. The TASK_EXECUTE message from cockpit
contains a list of candidate productions, sorted by the ratings that their managers
assigned to them. The manager can apply as many of these as it chooses. When the
production has been executed, Cockpit either sends a PROD_FAILED or PROD_SUCCESS
message to the manager. The manager can explicitly request re-evaluation later. The
results, reported in EVALUATION_REPORT messages, may be different due to information
generated by productions that have been executed.

One possible manager implementation would use the automata shown in Fig-
ure 9.9. The various states indicate how many productions are currently executing
and whether a re-evaluation is pending. This manager executes at most two produc-
tions at a time, but could easily be extended to run an arbitrary number. It continues
trying until there are no productions with a pre-evaluation above a threshold value.
If enough resources are available, the manager attempts two productions simulta-
neously. If any production succeeds, it immediately checks any constraints and, if
passed, reports success to Cockpit. This approach does not require any task specific

knowledge, so it could easily be included in a generic manager program.

9.3.3 Production execution

Another responsibility a manager program can have is production execution, which is
simply the task of executing the subtasks in an appropriate order. Cockpit requests
that the production be executed by sending a PROD_EXECUTE message. When a subtask
has completed, Cockpit sends a SUBTASK_FAILURE or SUBTASK_SUCCESS message to

the manager.

production.

135

TASK_EXBCUTE (m O) fm_‘ﬁq“m‘-o
I vopert vk faikre aecias
- State 0:
Start TASK_EXECUTE ¢ D
1 exocuse 2 mods
State & State 3:
PROD_FALL g
Fail Iroovehine 1 Running
PROD_SUCCESS
adk susenss
EVAL_REPORT fun 1)
State 1: {ounss | pred Sate S:
0 Rumni Succoed
BVAL_REFORT ¢ O R.—&.lwu‘ Irpat
gt uk hikwe LAULEI”OW tmd
Sune d:
PROD_FAIL 2 .
o sooxroma /02 Raseing
State 2: EVAL_REPORT (nm 1)
1R / mocuse | mod
Re-Evaluating PROD_SUCCESS
Ilq.-uue-

Figure 9.9. Task Execution Automata

Figure 9.10 shows an automata for managing the production Mount2. The various

fails.

states indicate the current status of each subtask. The first two subtasks must be
executed in series, while the later two may be executed in parallel (see Figure 9.2. If
any subtask fails, it immediately reports failure to Cockpit. If all subtasks succeed, the
manager checks any constraints and, if the constraints are satisfied, reports success
to Cockpit. The only task specific knowledge in this function comes directly from
the production. A similar manager could be generated automatically from any other
Task specific knowledge could be used to improve this function, for
example, by finding a way to re-execute either Ring Selectionor Member Placement

to correct a problem when Structural Analysis or Maintainability Analysis

136

State &
Ring Sel. complete

Memb. Place. complete
Struct. Anal. / Maint. Anal.
1 running, 1 complete

TASK_SUCCESS Siate §:

State 2: TASK_SUCCESS/
Ring Sel. complete ecute sructral analysis
Memb. Place. running | ™4 meintensce malysis

others not started

Figure 9.10. Production Execution Automata for Mount2

137

9.3.4 Pre-evaluation

The functions used to assign ratings to productions will differ widely. In some cases,
it may be sufficient to assign ratings statically based on which productions have
succeeded most often in the past. These static ratings could be adjusted downward if
the production has been tried unsuccessfully on this task node already (which could
be determined using the query mechanism). Alternatively, the ratings may be a func-
tion of parameters obtained through the query mechanism or by sending framework
messages (as discussed in Chapter 2 to input specification nodes. Sophisticated pre-
evaluation functions may gather metrics continuously about what conditions lead to

success and adjust their ratings accordingly.

9.3.5 Post-evaluation

After a task finishes, the manager needs to check for success. It may be possible to
express the criteria for success using constraints as described in Chapter5. If so, these
constraints could be stored in a simple data file. If more sophisticated checking is

required, custom manager programs must be written.

9.3.6 Query handling

Useful query handling almost always requires significant task specific information. In
some cases, a data file similar to a frame representation (see chapter 4) may be a
sufficient mechanism for indicating how to compute the needed information. In many

situations, however, customization is needed.

Part V

Conclusion

138

CHAPTER 10

Conclusion

A CAD framework has been described which would make designers more productive

and reduce design errors by:

e Organizing the design data such that important realationships are recorded.
Relationships include representations that describe different aspects of the same
object, derivation histories, component relationships, and generalization / spe-

cialization relationships.

e Effectively modeling product families that have many different variants deter-
mined by customer selected options. Designs can conveniently specify what
combinations of optional features are to be offered and how the products struc-

ture and performance varies depending on the options chosen.

e Providing services which utilize information from multiple sources and there-
fore cannot be provided by individual application tools. These services include
computing design properties, checking constraints, selecting components such
that constraints are satisfied, and notifying designers of changes that influence

them.

o Guiding designers through appropriate design methodologies such that impor-

tant tasks are not overlooked or delayed.

139

140
10.1 Implementation status

The data management and services functionality was implemented separately from
the methodology management functionality. Both were implemented as single user,
single processor systems.

The following functionality was completely implemented:

Discipline independent data model

Assembly Representations

Parser for language defined in appendix B

Most algorithms for manipulating MDDs

Frame Representations
The following functionality is partially implemented:

e Constraint checking - Implementation works but is not optimized for efficiency.
Only Algorithm check_constraint_A is implemented. The implementation does

not handle environment constraints differently, as it should.
e Cockpit Program - Manual mode is implemented, but automatic mode is not.

e Manager Programs - Automatic mode not implemented. Pre-evaluation func-

tions do not use any task specific knowledge.
The following functionality was not implemented as part of this research:

e Automated component selection - Only feature implemented is ability to print
combination satisfying all constraints. User must define supplemental variables

and form temporary bindings manually.

141

e Change notification - This functionality has a low priority in a single user sys-

tem.

e Release Controls - Currently, anyone is allowed to release designs into any

workspace. More restrictions would be needed in a multi-user system.

10.2 Contributions

This research has extended the theoretical foundation of CAD frameworks, making
more effective discipline specific and interdisciplinary CAD frameworks more likely

in the future. Specifically, this research has made the following contributions:
o Defined and implemented a discipline independent, extensible data model.

e Defined a powerful language for expressing constraints and bindings and devel-

oped and implemented algorithms for evaluating them.

e Defined and implemented powerful features for specifying and analyzing designs

with extensive optional content.

o Defined a flexible means for designers to express formulas for design properties

and implemented a system to apply these formulas to compute property values.

e Developed an algorithm for automatic component selection with optional con-
tent. Previous solutions do not address products or components with options.

The algorithm is efficient for many practical problems.
o Defined a formal representation of design methodologies using graph grammars.

o Defined and partially implemented an architecture which guides the designer

through a design exercise and automatically performs design tasks.

142
10.3 Future work

To capitalize on this research, it is recommended that the following topics be inves-

tigated in the future:

e A distributed implementation of both data management and methodology man-

agement functionality supporting multiple users.

e Discipline specific frameworks which extend the discipline independent func-

tionality defined in this thesis.
e Manager programs that encode realistic design knowledge.

e Methods for creating manager programs easily from convenient notations which

express desired manager program behavior.

¢ Extension of the methodology management functionality to handle dependen-
cies other than data dependencies between tasks, such as restrictions that two
tasks be run simultaneously or run in a specific order not determined by data

dependencies.

e Algorithms, similar to those implemented within frames, which solve equations

simultaneously to compute property values.

e Constraint checking algorithms that can reason with the constraints on com-
ponent designs to determine whether satisfying the components’ constraints

guarantees that the constraints of the main design are satisfied.

APPENDICES

APPENDIX A

Glossary

Abstract Task A step in a design process for which the work to be done is under-

stood, but the actual tools are not specified. See Chapter 8.

Applicability Set The set of option combinations offered for a design. See Chap-

ter 3.

Assembly Representation A representation type, provided as part of the disci-
pline independent system, that represents the structure of a design. See Chap-

ter 2.
Binary Decision Diagram See also Ordered Binary Decision Diagram.
Binding A reference to another design from within a representation. See Chapter 2.

Case Label Part of a generalized binding that indicates when a particular case ap-

plies. See Chapter 3.

Check-in / Check-out A version control paradigm in which objects are modified
outside the system and checked in (entered into the system) at various times.
Specific versions can then be checked out (copied to an external place). See

Chapter 2.

143

144

Checkpoint A configuration that cannot be modified. Checkpoints are used to
record the state of an entire component hierarchy for later reference. Other

authors use the term snapshot. See Chapter 2.

Classification Hierarchy A hierarchy in which each object has an “is a type of”

relationship with its ancestors. See Chapter 2.

Cockpit Program A program in the proposed methodology management system.
Cockpit records the current status of the design process and interacts with the

user and a set of manager programs. See Chapter 9.

Compatibility Suitability for combined use. In the context of this dissertation, rep-
resentations are compatible if they are not based on contradictory assumptions

or information. See Chapter 8.

Completeness In the context of this dissertation, completeness is a property of
design process grammars indicating that there are sufficient products in the

grammar to guarantee success of design planning. See Chapter 8.

Component Hierarchy A hierarchy in which each object has an “is part of” rela-

tionship with its ancestors. See Chapter 2.

Conditional Inclusion A construct used to model products with optional content.
A conditionally included portion of a representation should be ignored when

the specified Boolean expression of option variables is false. See Chapter 3.

Configuration In this dissertation, a description of a component hierarchy at a given
time. In [14], one version of each of a group of related files. In [22], one version
of each of a set of designs. In [1], an association between a composite object

and a version of each of the composite object’s components. See Chapter 2.

145

Constraint A condition which must be satisfied for a design to be considered ac-

ceptable. See Chapter 5.

Derivation Hierarchy A hierarchy in which each object has an “is derived from”

relationship with its ancestors. See Chapter 2.

Design Object A type of object in the proposed data model which keeps track of
all of the versions for a particular design. Design objects also record the option
variables, option restrictions, and constraints that apply to any of its versions.

See Chapter 2.

Design Process Grammar A proposed formalism for representing sets of accept-

able design processes. See Chapter 8.

Design State A single, consistent (though possibly partial) description of an artifact

being designed. See Chapters 8 and 2.

Design Version A type of object in the proposed data model which partially repre-
sents a design state. The states of component designs are represented elsewhere.

See Chapter 2.
Designer A person that contributes to the specification or analysis of a product.

Dynamic Binding A type of binding in which the referenced version is determined
when the binding is evaluated, as opposed to when the binding is defined. See
Chapter 2.

Environment Constraint A constraint that restricts the properties of the environ-

ment in which a design can be used. See Chapter 5.

Equivalence Relationship The relationship among representations that describe

different aspects of the same artifact. See Chapter 2.

146

Frame A representation type, provided as part of the discipline independent system,

that contains formulas for computing properties of a design. See Chapter 4.

Generalized Binding A type of binding which allows different bindings to be ap-

plied based on what options are selected. See Chapter 3.

Graph Production A rule which allows one subgraph to be replaced by another.

See also Design Process Grammar. See Chapter 9.

Interest A construct used to specify what events should trigger a notification and

what form the notification should take. See Chapter 7.

Manager Program Part of the proposed methodology management system. Man-
ager programs encapsulate task specific knowledge and make this knowledge
available to the designer and other manager programs by interacting with Cock-

pit. See Chapter 9.

Multiway Decision Diagram (MDD) A graphical data structure which effi-
ciently represents Boolean, string valued, and numeric valued functions of enu-

merated variables. See Chapter 3.
Non-terminal MDD Node A type of node in an MDD. See Chapter 3.

Non-terminal Task Node A node in a process flow graph representing an abstract

task. See Chapter 8.

Option Selection Object A type of object in the proposed data model that allows

users to specify a subset of the applicability set for analysis. See Chapter 3.

Option Variable A construct in the proposed data model that allows users to des-
ignate a feature or property as customer selectable. Option variables may be
either Boolean, string valued (with an enumerated set of possible values), or

numeric (with an enumerated set of possible values). See Chapter 3.

147

Optional Content Features of properties of a product for which the customer is

offered choices. See Chapter 3.

Ordered Binary Decision Diagram (OBDD) A graphical data structure for

representing Boolean functions of Boolean variables. See Chapter 3.

Predecessor Task A step in a design process which must be completed before an-

other (to which is a predecessor). See Chapter 9.

Primary Region The nodes of an MDD used for component selection that corre-

spond to regular (not supplemental) option variables. See Chapter 6.

Process Flow Graph A proposed formalism which represents a particular design
methodology (although the methodology may contain abstract tasks). See
Chapter 8.

Product Family The collection of variants produced by enumerating all of the dif-

ferent option combinations in the applicability set of a design. See Chapter 3.

Production Manager A manager program that manages a production (as opposed
to a task). Production managers assign ratings, schedule the execution of sub-

tasks, and handle queries. See Chapter 9.
Production See also Graph Production.

Representation An object in the proposed data model that directly describes some

aspect of an artifact. See Chapter 2.

Representation Type A particular data format for a particular type of design data.

See Chapter 2.

Release Make available for use for certain purposes. See Chapter 2.

148

Slots References from design version to representations indicating which representa-

tion describes a particular aspect a design state. See Chapter 2.
Snapshot See also Checkpoint.

Static Binding A type of binding in which the referenced version is determined
when the binding is defined, as opposed to waiting until it is evaluated. See
Chapter 2.

Subtask A task represented by one of the task nodes on the right hand side of a

graph production in a design process grammar. See Chapter 8.

Successor Task A step in a design process which must be completed after another

(to which is a successor). See Chapter 9.

Supplemental Option Variable An additional option variable introduced by the

proposed component selection algorithm. See Chapter 6.

Supplemental Region S The nodes of an MDD used for component selection that

correspond to supplemental option variables. See Chapter 6.
Task A step in a design process. See Chapter 8.

Task Manager A manager program that manages an a task (as opposed to a pro-
duction). Task managers invoke tools (terminal tasks only), select productions

(non-terminal tasks only) and handle queries. See Chapter 9.
Terminal MDD Node A type of node in an MDD. See Chapter 3.

Terminal Task A node in a process flow graph representing a particular tool invo-

cation. See See Chapter 8.

Tool Invocation An execution of an application program. See Chapter 8.

149

Variant The design corresponding to a particular combination of option choices for

a design that has optional content. See Chapters 1 and 3.

Version A description of a particular design concept at a particular time. See Chap-

ter 2.

Versioned Flow Graph A variation of a Process Flow Graph that allows multiple

alternatives for an abstract task to coexist. See Chapter 8.

Workspace In this dissertation and in [21], a mechanism for selecting version when
evaluating dynamic bindings. In [1], a logical data base. In [22], a collection
of versions of a set of objects, possibly including more than one version for
some objects. In [17], an object which stores process related meta-data. See

Chapter 2.

APPENDIX B

Language Constructs

B.1 Overview

Throughout this thesis, a special language has been used to express option restrictions,
case labels in generalized bindings, formulas, and constraints. The language design
objectives are to express all of the required information using syntax that is natural
for a designer and that may be rapidly parsed.

The proposed language includes constructs for numeric, Boolean, and string ex-
pressions. Option restrictions and case labels must depend solely on the options

chosen and can be formed using any of the following constructs:

e Numeric expressions may be constructed from numeric option variables, numeric

constants, and other numeric expressions using the operators +, —, *, and /.

e String expressions may be constructed from string option variables, string con-

stants, and other string expressions using the operator + (concatenate).

e String expressions may be constructed by enclosing a numeric or Boolean ex-
pression between colons. The result is computed by evaluating the expression

and printing the result in the standard fashion.

150

151

e Boolean expressions may be constructed from Boolean option variables and
other Boolean expressions using the operators + (AND), * (OR), ¢ (NOT), ©
(XOR), and — > (implies, A — > B is shorthand for NOT(A) OR B).

e Boolean expressions may be constructed by comparing numeric expressions us-
ing the operators =, ! = (not equal), <, >, <=, or >= or comparing string

expressions using the operators = and ! =.

e Boolean expressions may be constructed by testing a numeric or string expres-

sion for membership in a set of expressions using operators = and ! =.
The syntax for a static binding is
& <design object name>.v<version number>,<string expression list>.

As discussed in Section 3.3, the string expression list is used to indicate the options

for thg referenced design. Similarly, the syntax for a dynamic binding is
& <design object name>,<string expression list>.

The syntax for a generalized binding is
FOR {<case list>}.

The syntax for each item in the case list is
<Boolean expression> USE <binding>;.

Constraints and formulas in frames require access to the message handling system
and special access to assembly representations. Therefore, they may use any of the

constructs above plus the following:

o Expressions of the form real(<string expression>) are evaluated by evaluat-
ing the string expression and sending the result as a message to the design

version, expecting a numeric result. For example, if the design version has

152

a solid model in one of its slots, an expression for the volume would be
real(‘‘get volume’’). Similar string and Boolean expressions can be formed

as string(<string expression>) and bool(<string expression>).

Expressions can be simple property values. Property values can be of type
string, numeric, or Boolean with the type determined by the first character of the
name (like option variables). To distinguish properties from option variables,
the first letter in a property name is always lower case, whereas the first letter
of an option variable name is always capitalized. The value for a property is
determined by sending the message “compute <name>” to the design version.
For example, the subexpression volume would appear within an expression for
the mass of an object. Frame representations allows users to enter formulas
for computing property and then responds to “compute <name>” messages by

evaluating the formulas.

Expressions of the form @ <component name> . <parameter name> are eval-
uated by accessing the list of named parameters associated with the named
component object. For example, the x coordinate of the battery would be
O@battery.x. A special form is \ . <parameter name> which accesses the

component object that instantiated the current design.

Expressions of the form @ <component name> -> <expression> are evaluated
by computing the result of the expression with respect to a component design.
For example, the capacity of the battery would be @battery -> capacity.
This type of expression differs from the previous in that a property of the
component’s design is requested instead of a parameter of the component object
which instantiates it. A special form is \ -> <expression> which evaluates

the expression with respect to the design that instantiated the current design.

153

This special form is used for properties describing the environment in which

something is being used such as \-> temp for temperature.

e Expressions of the form ~ <slot name> -> <expression> are evaluated by
computing the result of the expression using the representation in the speci-
fied slot. These expressions are needed if a design version has more than one
representation capable of handling a particular message. For example, the ex-
pression “process -> cost would send the message “compute cost” only to

the representation describing the manufacturing process instead of trying all of

the representations in order.

o Expressions of the form <binding> -> <expression> are evaluated by comput-
ing the result of the expression with respect to the design version referenced
by the binding. It is convenient to model materials as designs and access their
properties with this type of expression. For example, the elastic modulus of

aluminum might be expressed as Zaluminum -> E.

o A Boolean expression of the form @ <component name> = <binding> eval-
uates to true if the binding for the named component evaluates to the same
design version as the binding. For example, the constraint €Head = P10.100

restricts the choice of designs for the component Head.

B.2 Detailed syntax

These are the lexical analysis rules in lex (or flex) format:

int [0-9]+

dreal ([0-9])*"."[0-9]+)

ereal ([0-9)*"."[0-9]+[eE][+-]7[0-9]+)
numb {dreal}|{ereal}

smid [a-z] [a-zA-Z0-9_]=*

capid [A-Z][a-zA-20-9_]*

154

anyid {smid}|{capid}
str VPN D\

wh

[\t\n] ;

TRUE { return TRUE; }
FALSE { return FALSE; }
for { return FOR; }

use { return USE; }
string { return STRING; }
num { return REAL; }

bool { return BOOL; }
{str} { return STRING; }
{numb} { return NUMBER; }
{int} { return INTEGER; }
&{anyid} { return DOBJ; }

{smid} { return N_PARAM; }
{capid} { return N_OPTION; }
${smid} { return S_PARAM; }
${capid} { return S_OPTION; }

\%{smid} { return B_PARAM; }
\%{capid} { return B_OPTION; }
\\ { return COMP; }
0{anyid} { return COMP; }
“{anyid} { return SLOT; }
\-\> { return ARROW; }
\.v { return DOTV; }
\¢ { return LT; }
\<\= { return LTE; }
\> { return GT; }
\>\= { return GTE; }
\=\= { return EQ; }
\= { return EQ; }
\'\= { return NEQ; }

{ return yytext[0]; }

These are the parsing rules in yacc (or bison) format:

value_list: value_list ’,’ value_choice
|

value_choice

value_choice: str_expr

155

num_expr

bind: DOBJ ’,’ opt_str_expr_list
|

DOBJ
|

DOBJ DOTV INTEGER ’,’ opt_str_expr_list
|

DOBJ DOTV INTEGER

|
FOR ’{’ gen_case_list ’}’

)

gen_case_list: gen_case_list gen_case
!

gen_case

gen_case: opt_bool_expr USE bind °’;’

.
)

str_expr: S_OPTION

S_PARAM !

STRING !

;LDT ARROW S_PARAM

;TRING *(’ str_expr ')’

;LOT ARROW STRING ’(’ str_expr ’)’
Lind ARROW str_expr

éOMP ARROW str_expr

éLOT ARROW COMP ARROW str_expr
éOMP *.? S_PARAM

;LOT ARROW COMP ’.’ S_PARAM

156

I
bind ARROW str_expr
I
str_expr ’+’ str_expr
I
*(’ str_expr ’)’
I
’:? num_expr ’:’
I
’:? bool_expr ’:’

num_expr: NUMBER

INTEGER |

;-OPTION

é-PARAM

;LDT ARROW N_PARAM

;EAL '(’ str_expr ')’

éLOT ARROW REAL °’(’ str_expr ’)’
Lind ARROW num_expr

éOMP ARROW num_expr

;LOT ARROW COMP ARROW num_expr
éOMP ’.? N_PARAM

;LOT ARROW COMP ’.’ N_PARAM
bind ARRéH num_expr

lum,expr ’+’ num_expr
Lum_expr ’=’ num_expr
lum_expr ’*’ num_expr

|

num_expr ’/’ num_expr

157

I

’=’ num_expr %prec UMINUS
|

’(’ num_expr ’)’

.
1

bool_expr: B_OPTION

|

TRUE

|

FALSE

|

B_PARAM

|

SLOT ARROW B_PARAM

|

BOOL ’(’ str_expr ’)’
|

SLOT ARROW BOOL ’(’ str_expr ’)’
|

bind ARROW bool_expr

éOMP ARROW bool_expr

éLOT ARROW COMP ARROW bool_expr
éOMP ’.’ B_PARAM

;LOT ARROW COMP ’.’ B_PARAM
bind ARRéW bool_expr
Lool-expr ’+’ bool_expr
iool_expr ’%’ bool_expr
iool_expr ’%’ bool_expr

!(’ bool_expr EQ bool_expr ’)’
Lool_expr r e

Lool-expr ARROW bool_expr

!(’ bool_expr ’)’

|
)()
|
;(:
|
;()
|
:()
|
)(:
|
)(:
|
»()
|
)(:
|
)()
|
;(;
I
;(;
|
)(:
|
)(;
|
)()
|
:()

?

num_expr
num_expr
num_expr
num_expr
num_expr
num_expr
num_expr
num_expr
num_expr
str_expr
str_expr
str_expr
str_expr

COMP NEQ

158

LT num_expr ’)’

LTE num_expr ’)’

GT num_expr ’)’

GTE num_expr *)’

EQ num_expr ’)’

EQ ’'[’ num_expr ’,’ num_expr ’]’ ’)°’
EQ ’'{’ num_expr_list ’}’ ’)°
NEQ ’{’ num_expr_list ’}’ ’)’
NEQ num_expr ’)’

EQ str_expr ')’

EQ ’{’ str_expr_list ’}’ ’)’
NEQ ’{’ str_expr_list ’}’ ’)’
NEQ str_expr ’)’

bind ’)’

COMP EQ bind)’

num_expr_list: num_expr_list ’,’ num_expr

num_expr

.
’

str_expr_list: str_expr_list ’,’ str_expr

str_expr

.
?

APPENDIX C

Persistent Storage

Implementation

C.1 Motivation

When the implementation of this work was initiated, it was believed that a commercial
object oriented data base management system would be available. However, it was
necessary to implement an interim persistent storage mechanism so work could begin
on implementation of the discipline independent layer. This interim system is still in
use.

The requirements of the interim system were much simpler than a true object

oriented database. Specifically,

e The data sets used during development would contain no more than a few
hundred kilobytes of data. This data could be re-generated by a program fol-
lowing a schema change, so no schema update functionality was needed in the
interim system. Administrative functions, such as backup and recovery, were

not needed.

159

160

e The data would be accessed from one machine by a single user, though possibly
by several processes. The user takes responsibility for not modifying data from

two programs simultaneously, so no object locking is necessary.

e Dynamic function binding (the generic name for C++ virtual functions) must

be supported for persistent objects.

e The interface must be such that migration to an object oriented database is

straight forward.

C.2 Overview

Unix shared memory segments are used as the storage medium, which simplified the
implementation. Unix shared memory segments survive after the processes that create
them exit, providing the necessary persistence. These segments may be attached to
other processes’ address spaces using provided library routines. Once the segment
is attached, persistent objects may be accessed by pointers in the same fashion as
non-persistent objects. To ensure that a pointer always points to the same object,
the shared memory segment must be attached at the same address in all processes.
A special process, called the persistence server, allocates and deallocates space in
the shared memory segment. User programs request and release space by sending
messages via a Unix message queue. A first fit allocation strategy is used. The data
about what space has been allocated is intermixed with the actual data, proved to
be a problem because errors in user programs could corrupt the space usage data
and cause symptoms that were very difficult to trace. In addition to allocating and
deallocating space, the server can write the contents of the segment to a disk file and
read it back again. By writing the data to a file, users can remove the segment and

recover the data several days later.

161

One of the unresolved issues in object oriented data base research is how user
programs should locate persistent objects that exist before startup. Most commercial
systems include some form of query processing. The approach taken in the interim
system, which is also used by several persistent programming languages, is to desig-
nate one object as the root object. That object should contain enough information
for the program to navigate to whatever objects are of interest. The server program
keeps track of the address of the root object and provides it to user programs on
demand.

Another unresolved issue is how user programs indicate whether the objects be-
ing created should be persistent or transient. Some systems add a keyword to the
language. A less flexible mechanism that does not require changes to the language is
to have a special persistent class. All instances of this class and any of its sub-classes
are persistent. This later approach is suitable for this application and was chosen

because it was much easier to implement.

C.3 The server process

The server is started from the command line, usually in the background. There
should be only one server process running at a time. Upon startup, the server creates
the shared memory segment and creates a message queue for incoming requests. An
optional command line argument indicates the name of a file in which previously
created data resides. If this argument is provided, the server reads the actual data
into the segment and retrieves the address of the root object. If the argument is
omitted, the server initializes the segment to contain no objects.

Then, the server simply retrieves messages from the message queue and handles

them. The following message types are supported:

162

Setup This message indicates that a user program (client) wants to begin using
persistent objects. The server responds with a message indicating at what

address the memory should be attached and the address of the root object.

Allocate The server allocates a block of sufficient size and sends a return message
indicating the address of this block. The size of the new object is passed in
the message. Blocks are always allocated in multiples of four bytes to avoid

alignment errors.

Deallocate The server releases previously allocated space. The address of the block
to be released is passed in the message. The server can determine the size of
the block from its internal tables. The return message simply acknowledges

completion.
Show-Status The server calculates statistics about memory usage and prints them.

Commit The server saves the contents of shared memory to a disk file. The attach
address and address of the root object are also recorded in the file. The name
of the file is passed in the message. The root address can also be updated by

this call.

Done The server destroys the shared memory segment and message queue and then

exits. (This function can also be invoked by a kill signal.)

C.4 Client library routines

A library of routines is provided which enable user programs to interact with a server

process. The following functions are included:

163

initialize Send a message to the server to determine attach address and root object
address. Attach shared memory at indicated address. Return address of root

object.
allocate Send a message to the server to allocate a block of specified size.
deallocate Send a message to the server to deallocate a previously allocated block.

commit Send a message to the server to write out the data to a specified disk file

and possibly to change the address of the root object.

mem-status Send a message to the server requesting that space usage data be

printed.

cleanup Send a message to the server to remove the shared memory segment and

message queue and stop.

C.5 The persistent class

A Persistent class is used as a base class for all classes which should be persistent.
This class has two member functions which override the default new and delete
operators by calling the allocate and deallocate functions from the client library.
Any time any of these classes are instantiated using the new operator, the new objects
are persistent. Objects created as automatic variables or as data members of other

classes are still transient.

C.6 Virtual functions

Dynamic function binding is implemented in C++ as virtual functions. Suppose that

there is a class foo with two subclasses foo1l and foo2 as shown in the code below.

164

All three classes have member functions called print (). Now suppose that there is an
instance of type foo1, called x, and a pointer of type (foo *), called y, which points
tox. If print () is a standard member function, y=>print () calls the print () routine
for foo, since the compiler has no way of knowing what class is actually pointed to by
y. Programmers may prefer to call the print () function corresponding to the actual
object’s class instead of the print() function corresponding to the pointer’s class,

which must be determined at run time.

class foo {
public:

foo();

virtual print();

};

class fool : public foo {
public:

foo1();

virtual print();

};

class foo2 : public foo {
public:

foo2();

virtual print();
};

Virtual functions are implemented in C++ as illustrated in Figure C.1. For each
class, the compiler creates a vtbl which stores pointers to all of the virtual functions
for that class. When objects are created, an extra (hidden) field in the object points
to the corresponding vtbl (the actual class is known at that time). When a virtual
function is called, the vtbl is consulted to determine the address of the correct function
to invoke.

The mechanism does not work well for objects that are shared between programs.

Suppose that process A in Figure C.2 creates object x, which is pointed to from

process B by pointer y (The two processes do not need to be running at the same

165

0x2000000 : pointer y

0x3000000 : object x €——
vibl

0x40001000 : foo::vtbl
print()
0x40002000 : fool::vtb]l <

print()
0x40003000 : foo2::vtbl

print()

0x50001000 : foo::print() <
0x50002000 : fool::print() <—
0x50003000 : foo2::print) <

Figure C.1. Virtual functions for transient objects

166

Process A Process B

»
..

0x40001000 : foo::vtbl

print) —
0x40002000 : fool::vibl = tp=------ > mn
printQ
0x40003000 : foo2::vibl
printQ 0x40004000 : foo::vtbl
printQ
0x40005000 : fool::vtbl
printQ
. ‘J 0x40006000 : foo2::vtbl
0x50001000 : foo::print() printQ)
0x50002000 : fool::print() <«—

0x50003000 : foo2::print() <+

0x50004000 : foo::print() <
0x50005000 : fool::print() —s—
0x50006000 : foo2::print() <+

Figure C.2. Virtual functions on shared objects

time). The vtbls and print () functions are likely to be at different addresses in the
two processes. (In this case it is usually the same program but has been modified
and re-compiled.) The vtbl pointer for object x points to a meaningless address in
process B. When y->print() is called, whatever happens to be at that address is
treated as a vtbl and the behavior is highly unlikely to be correct.

The implementation solves this problem by adding an extra level of indirection,
which must managed directly by programmers. The modified code is shown below.
Each process keeps a list of pointers to dummy objects of each subtype. These dummy

objects have correct vtbls for the program they are contained in. An integer type

167

Process A

...

vibl

0x38002000 : fool_dummy

0x3000000 : object x
vibl
typ

...................................

0x38001000 : foo_dummy

0x38004000 : foo_dummy
vtbl

vtbl

0x38003000 : foo2_dummy

vibl

printQ

printQ

printQ

0x50001000

0x40001000 :

0x40002000 :

foo::vib] +—

fool::vibl

0x40003000 :

: foo::print() <+
0x50002000 :
0x50003000 :

foo2::vibl =

fool::print() <«—
foo2::print() <*——

> 0x38005000 : fool_dummy
vtbl
0x38006000 : foo2_dummy
vibl

0x40004000 : foo::vtb] *—
printQ

0x40005000 : fool::vib] =
printQ

0x40006000 : foo2::vtb] =
printQ

0x50004000 : foo::print() <+
0x50005000 : fool::print() -—

0x50006000 : foo2::print) <+

Figure C.3. Virtual Function implementation for persistent objects

identifier is added to each object as a data member. This identifier is used to find the

dummy object of the same type in the list. The old print() functions are replaced

with print () functions that take a pointer to the object as an explicit argument (A

pointer to the object is usually a hidden argument for member functions). A non-

virtual print () function is added to the base class. This new function simply calls

the modified virtual print () function via the vtbl of the appropriate dummy object.

The modified print() function assigns the explicit argument to the variable this

(which the compiler hates) before doing the normal printing routine. This scheme is

illustrated in Figure C.3.

168

class foo {
int typ;
public:
foo();
void print(); /* NOT virtual */
virtual void print(foo *it);

};

class fool : public foo {
public:

fool();

virtual void print(foo *it);

};

class foo2 : public foo {
public:

foo2();

virtual void print(foo *it);

};

class foo_tbl {
public:
(foo *) 1list([3];
foo_tbl() {
static foo foo_dummy;
static fool fool_dummy;
static foo2 foo2_dummy;
1list[0] = foo_dummy;
list[1] = fool_dummy;
list[2] = foo2_dummy;
};
} foo_list;

void foo::print() {
foo_list.list[typ]->print(this);

};

fool::fool() {
typ = 1;

};

void fool::print(foo *it) {
this = (fool *) it;
/* whatever would have been in fool::print() */

};

169

This solution does produce correct behavior but is not convenient from a software
maintenance point of view. Each time a new subclass is created, a new type identifier
must be defined and new dummy objects must be created. Programmers adding new
subclasses must be familiar with this mechanism, which has not been a major issue
during the development of the prototype because only one programmer was involved.

It would be completely unacceptable, however, for a production framework.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] R. H. Katz, R. Bhateja, E. E.-L. Chang, D. Gedye, and V. Trijanto, “Design version
management,” in JEEE Design and Test, pp. 12-22, 1987.

[2] P. van der Wolf, G. Sloof, P. Bingley, and P. Dewilde, “Meta data management in
the NELSIS CAD framework,” in 27th ACM/IEEE Design Automation Conference,
pp. 142-145, 1990.

[3] A. H. Bond and R. J. Ricci, “Cooperation in aircraft design,” in Research in Engineer-
ing Design, vol. 4, pp. 115-130, 1992.

[4] R. A. Schmidtberg and M. A. Yerry, “Designing complex assemblies using the top-down
approach,” in AUTOFACT 8, 1986.

[5] S. B. Navathe, S. K. Murthy, and A. Cornelio, “A database approach to engineering
design by selection,” Journal of Intelligent Manufacturing, vol. 3, pp. 149-162, 1992.

[6] D. C. Brown and B. Chandresekaran, “Expert systems for a class of mechanical design
activity,” in Knowledge Engineering in Computer-Aided Design, Amsterdam: North-
Holland, 1985.

[7] D. E. Whitney, “Nippondenso co. Itd: A case study of strategic product design,” in
Research in Engineering Design, vol. 5, pp. 1-20, 1993.

[8] Personal Conversation with Tim Kern, former C.E.O. of Mosler Motors, Inc.

[9] L.-C. Liu, P.-C. Wu, and C.-H. Wu, “Design data management in a CAD framework
environment,” in 27th ACM/IEEE Design Automation Conference, pp. 156-161, 1990.

[10] K. ten Bosch, P. Bingley, and P. van der Wolf, “Design flow management in the NELSIS
CAD framework,” in 28th ACM/IEEE Design Automation Conference, pp. 711-716,
1991.

[11] A. Wong and D. Sriram, “SHARED: an information model for cooperative product
development,” in Research in Engineering Design, vol. 5, pp. 21-39, 1993.

[12] A. P. Buchmann and C. P. de Celis, “An architecture and data model for CAD
databases,” in Conference on Very Large Databases, 1985.

[13] L. Rice, “Managing CAD/CAM/CAE data and design processes in mechanical engi-
neering,” in International Computers in Engineering Conference and Ezhibit, pp. 421-
428, 1987.

[14] W. F. Tichy, “Design, implementation, and evaluation of a revision control system,”
in International Conference on Software Engineering, 1982.

170

171

[15) M. J. Rochkind, “The source code control system,” IEEE Transaction on Software
Engineering, pp. 364-370, 1975.

[16] R. H. Katz and E. Chang, “Managing change in a computer-aided design environment,”
in Conference on Very Large Databases, 1987.

[17] S. Kim, Configuration Managment and Version Data Modeling in VLSI Design Envi-
ronments. PhD thesis, Michigan State University, 1994.

(18] D. J. Ecklund, E. F. Ecklund, R. O. Eifrig, and F. M. Tonge, “DVSS: a distributed
version storage server for CAD applications,” in Conference on Very Large Databases,
1987.

[19] D. Beech and B. Mahbod, “Generalized version control in an object-oriented database,”
in IEEE Data Engineering Bulletin, pp. 14-22, 1988.

[20] K. R. Dittrich and R. A. Lorie, “Version support for engineering database systems,”
IEEFE Transactions on Software Engineering, pp. 429-436, 1988.

[21] S. Banks, C. Bunting, R. Edwards, L. Fleming, and P. Hackett, “A configuration
management system in a data management framework,” in 28th ACM/IEEE Design
Automation Conference, pp. 699-703, 1991.

[22] M. Silva, D. Gedye, R. Katz, and R. Newton, “Protection and versioning for OCT,”
in 26th ACM/IEEE Design Automation Conference, pp. 264-269, 1989.

[23] A. Biliris, “Database support for evolving design objects,” in 26th ACM/IEEFE Design
Automation Conference, pp. 258-263, 1989.

[24] E. C. VanHorn and R. R. Rezac, “Experience with the D-BUS architecture for a design
automation framework,” in 26th ACM/IEEE Design Automation Conference, pp. 209—
214, 1989.

[25] P. Klahold, G. Schlageter, and W. Wilkes, “A general model for version management
in databases,” in Conference on Very Large Databases, 1986.

[26] F. R. Wagner and A. H. V. de Lima, “Design version management in the GARDEN
framework,” in 28th ACM/IEEE Design Automation Conference, pp. 704-710, 1991.

[27] M. Blaha, W. Premerlani, A. Bender, R. Salemme, M. Kornfein, and C. Harkins, “Bill-
of-material configuration generation,” in International Data Engineering Conference,
pp. 237-244, 1990.

[28] D. P. Smolik, Material Requirements of Manufacturing. Van Nostrand Reinhold Com-
pany, 1983.

[29] H. Hegge and J. Wortmann, “Generic bill-of-material: A new product model,” Inter-
national Journal of Production Economics, vol. 23, pp. 117-128, 1991.

[30] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Transactions on Computers, pp. 677-691, August 1986.

172

[31] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macil, A. Pardo, and
F. Somenzi, “Algebraic decison diagrams and their applications,” in International
Conference on Computer Aided Design, pp. 188-191, 1993.

[32] Y.-T. Lai, M. Pedram, and S. B. Vrudhula, “Fgilp: An integer linear program solver
based on function graphs,” in International Conference on Computer Aided Design,
pp. 685-689, 1993.

[33] Y.-T. Lai and S. Sastry, “Edge-valued binary decision diagrams for multi-level hierar-
chical verificiation,” in 29th ACM/IEEE Design Automation Conference, pp. 608—613,
1992.

[34] M. Minsky, “A framework for representing knowledge,” in The Psychology of Computer
Vision, New York: Ed. Winston, P.II., McGraw-Hill Book Company, 1975.

[35] D. C. Brown and R. Breu, “Types of constraints in routine design problem-solving,”
in Applications of Artificial Intelligence in Engineering Problems, 1986.

[36] A. Kott and J. May, “Decomposition vs. transformation: Case studies of two models
of the design process,” in Computers in Engineering, 1989.

[37) D. R. Brown and K.-Y. Hwang, “Solving fixed configuration problems with genetic
search,” in Research in Engineering Design, vol. 5, pp. 80-87, 1993.

[38] A. Kott, G. Agin, and D. Fawcett, “Configuration tree solver: A technology for auto-
mated design and configuration,” in Advances in Design Automation, 1990.

[39] J. Malmgqvist, “A design system for parametric design of complex products,” in Ad-
vances in Design Automation, 1990.

[40] D. C. Brown and B. Chandresekaran, “Knowledge and control for a mechanical design
expert system,” IEEE Computer, pp. 92-100, July 1986.

[41] B. Chandresekaran, “Design problem solving: A task analysis,” Al Magazine, vol. 11,
no. 4, pp. 59-71, 1990.

[42] H.-T. Chou and W. Kim, “Versions and change notification in an object oriented
database system,” in ACM/IEEE Design Automation Conference, 1988.

[43] M. Palaniappan, N. Yankelovich, G. Fitzmaurice, A. Loomis, B. Haan, J. Coombs,
and N. Meyrowitz, “The envoy framework: An open architecture for agents,” acm
Transactions on Information Systems, pp. 233-264, July 1992.

[44] D. V. Steward, “The design structure system: A method for managing the design of
complex systems,” IEEE Transactions on Engineering Management, pp. 71-74, August
1981.

[45] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, “Organizing the tasks
in complex design projects,” in Design Theory and Methodology - DTM90, 1990.

[46] D. A. Gebala and S. D. Eppinger, “Methods for analyzing design procedures,” in Design
Theory and Methodology - DTA91, 1991.

173

[47] P. R. Sutton, J. B. Brockman, and S. W. Director, “Design management using dynam-
ically defined flows,” in 30th ACM/IEEFE Design Automation Conference, pp. 648-653,
1993.

[48] M. Nagl, “A tutorial and bibliographic survey on graph grammars,” in Graph Gram-
mars and their Application to Computer Science and Biology, Berlin: Springer-Verlag,
1979.

[49] H. Ehrig, “Introduction to the algebraic theory of graph grammars,” in Graph Gram-
mars and their Application to Computer Science and Biology, Berlin: Springer-Verlag,
1979.

[50) H. Ehrig, “Tutorial introduction to the algebraic theory of graph grammars,” in Graph
Grammars and their Application to Computer Science, Berlin: Springer-Verlag, 1987.

[51) A. D. Janni, “A monitor for complex CAD systems,” in 23rd ACM/IEEE Design
Automation Conference, pp. 145-151, 1986.

[52] A. Casotto, A. R. Newton, and A. Sangiovanni-Vincentelli, “Design management based
on design traces,” in 27th ACM/IEEFE Design Automation Conference, pp. 136-141,
1990.

[53] D. Knapp and A. Parker, “The ADAM design planning engine,” in Artificial Intelli-
gence in Design, Volume II, pp. 263-285, Academic Press, 1992. reprinted from IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, Vol. 10,
No. 7, July 1991.

[54) D. W. Knapp and A. C. Parker, “A design utility manager: The ADAM planning
engine,” in 23rd ACM/IEEE Design Automation Conference, pp. 48-54, 1986.

[55) M. L. Bushnell and S. W. Director, “VLSI CAD tool integration using the Ulysses
environement,” in 23rd ACM/IEEE Design Automation Conference, pp. 5561, 1986.

[56] J. Daniell and S. W. Director, “An object oriented approach to CAD tool control,”
IEEFE Transactions on Computer-Aided Design, pp. 698-713, June 1991.

[57) M. F. Jacome and S. W. Director, “Design process management for CAD frameworks,”
in 29th ACM/IEEE Design Automation Conference, pp. 500-505, 1992.

[58] T.-C. F. Chiueh and R. I. Katz, “A history model for managing the VLSI design
process,” in International Conference on Computer Aided Design, pp. 358-361, 1990.

MICHIGAN STATE UNIV. LIBRARIES

(PRAMMA Al
31293010487563

29301

