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ABSTRACT

ANTICIPATIVE STOCHASTIC CALCULUS WITH RESPECT

TO GAUSSIAN PROCESSES, STOCHASTIC KINEMATICS IN

HILBERT SPACE AND TIME REVERSAL PROBLEM

By

Leszek Piotr Gawarecki

Let {Xt,t E T} be a Gaussian process with reproducing kernel Hilbert space

(RKHS) K(C) of its covariance C. We first define the Ogawa integral (5(a) of a

function u E L2((S2, J:, P); K(0)) with respect to X and prove the relation

[3(u) = 6(u) — traceDMu,

where Is is the Skorohod integral with respect to X, defined by Mandrekar and

Zhang and DM is the Malliavin derivative. For the reader’s convenience we recall

the definition and important properties of Skorohod integral. We define, in a very

general setup, the Ito-Ramer integral L, generalizing earlier work of Ramer and

Kusuoka. The integral L can be considered with respect to a Gaussian process,

under the assumption that the measure P o X’1 on RT is Radon. We obtain that

L(u) = 6(a) — traceDFu,

where now, DF denotes the H-Fréchet derivative. This is done in Chapter 1, by

using our generalization of a result of Gross. Our work has been used to obtain

an extension of Girsanov’s theorem to the general case of Gaussian processes by

Gawarecki and Mandrekar.



In Chapter 2, we consider E. Nelson’s construction of diffusion in infinite dimen-

sional case. Nelson’s work on finite dimensional diffusions has proved important

in the study of stochastic kinematics and quantum theory models. Our gener-

alization involves the choice of stochastic driving term and rigorous definition of

stochastic integral with respect to it. We explain why the stochastic driving term

for the motion is a cylindrical Brownian motion and we introduce an extension of

the stochastic integral of Metivier and Pellaumail to cover the studied case. As a

consequence we derive results parallel to those of Nelson.

In order to apply the above results to physical problems one needs to study

time reversibility of stochastic processes. A preliminary research in this direction

is presented in Chapter 3. We investigate transformations of the Skorohod integral

under maps R : T —+ T. With mild assumptions on the transformation R we

obtain that

s s X t t

1X30) (Wm) = Ix.(ut) and (DM)s m ’um) = (DMliieWRuh

where the first integral is with respect to the transformed Gaussian process and the

second is with respect to the original process X and the same refers to the Malliavin

derivative. We also investigate connections with the time reversal problem and

Skorohod-type SDE’s.
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iv





Acknowledgment

My deepest thanks go to my thesis advisor and teacher, Professor V. Mandrekar.

He introduced me to the problems studied in the thesis and generously supported

me with his knowledge, wisdom and experience. His assistance in all aspects of

academic life was invaluable.

I appreciate the support of the Department of Statistics and Probability in

providing me with an opportunity for research and personal growth. Numerous

fruitful discussions with the faculty members will never be forgotten.

I would like to thank the members of my Guidance Committee for their com-

ments, which led to an improvement of the original presentation.

I will always be thankful to my parents for their efforts and wisdom in teaching

me what is the value of education and knowledge.

Finally, I am indebted to my wife Edyta for she supported me with all her

strength and sacrificed so much of her life. She is the most precious gift given to

me and my closest friend.





Contents

Introduction 1

1 Anticipative Integrals with respect to Gaussian Processes 4

1.1 Introduction ............................... 4

1.2 Preliminaries .............................. 5

1.3 Skorohod Integral and Stochastic Differentiation ........... 9

1.3.1 Multiple Wiener Integrals ................... 9

1.3.2 Malliavin Derivative ...................... 11

1.3.3 Skorohod Integral ........................ 13

1.4 Extension of Ogawa Integral and its Relationship to Skorohod Integral 14

1.5 Extension of Ité-Ramer integral .................... 19

1.5.1 Definition of Ité-Ramer Integral ................ 19

1.5.2 Preliminary Results ....................... 22

1.5.3 The Domain of Ito—Ramer Integral .............. 29

1.5.4 Comparison of Ito-Ramer and Skorohod Integration ..... 34

1.5.5 Ito-Ramer Integral as an Integration by Part Operator . . . 37

1.6 Examples ................................ 41

2 Kinematics of Hilbert Space Valued Stochastic Motion 48

vi





2. 1 Introduction ............................... 48

2.2 Hilbert-Schmidt and Trace Class Operators on Hilbert Space . . . . 49

2.3 Kinematics of Stochastic Motion .................... 50

2.4 Stochastic Integration in Hilbert Space ...... ' .......... 56

2.4.1 General Assumptions and their Consequences ........ 57

2.4.2 Doléans Measure of (R21) Elements of M? .......... 58

2.4.3 Inadequacy of the Isometric Stochastic Integral ....... 61

2.4.4 Cylindrical Stochastic Integration ............... 65

2.4.5 An Example Motivating Modification of the Cylindrical Stochas-

tic Integral ........................... 71

2.5 Extension of the Cylindrical Stochastic Integral and Application to

Nelson’s problem ............................ 75

3 Anticipative Stochastic Differential Equations 83

3.1 Introduction ............................... 83

3.2 Skorohod Integral under TYansformation of a Parameter Set . . . . 84

3.3 Skorohod-Type Linear Stochastic Differential Equations ....... 92

Appendix 99

A Abstract Wiener Space ......................... 99

B Backward Ito and Fisk—Stratonovich Integrals ............ 102

C Hilbert—Schmidt and Trace Class Operators on Hilbert Space . . . . 103

Bibliography 106

vii



Introduction

Anticipative Stochastic Differential Equations (SDE’s) arise in some practical prob-

lems. In the Filtering Theory, a symmetric treatment of the problem with respect

to the direction of the time flow was successfully applied by Pardoux [49]. This

technique is known as the Time Reversal of diffusion processes and it was itself of

interest of several authors: Follmer [17], Haussmann and Pardoux [23], who gave

conditions under which the time reversed process is again a diffusion and described

its infinitesimal operator. Recently, by application of Skorohod stochastic integra-

tion and Malliavin calculus, the results were improved by Millet, Nualart and Sanz

[34].

Studies of Boundary Value Problem for SDE’s lead to anticipative solutions if

the initial condition is a future dependent random variable (see Buckdahn and

Nualart [8], Nualart and Pardoux [40]). Another type of anticipative SDE’s arises

if the coefficients of the equation are allowed to be anticipative, which was studied

by Buckdahn [5H7].

Analysis of anticipative SDE’s requires extension of Girsanov Theorem. There

are two approaches to the problem. One, due to Ramer and Kusuoka, uses either

the Ramer integral (see Ramer [51], Kusuoka [29]) or the Skorohod integral (see

Nualart and Zakai [41], Buckdahn [5]-[7]). This raises the question about the re—

lationship between the Ito-Ramer and Skorohod integrals, which we study here.



Our analysis involves the Ogawa integral (see Ogawa [43]-[45]) in a natural way.

The other method is due to Bell [2]-[3] and Ustunel and Zakai [56]. It employs

Malliavin calculus and the concept of Integration by Parts Operator (IPO) with

respect to Gaussian measure, as a generalization of divergence operator. The

statement of the theorem of interest in [3] is inaccurate and we give precise gener—

alization of the divergence theorem of Goodman [20] for our setup. To carry out

this program one needs to generalize a fundamental result of Gross [22]. Then we

define the Ito-Ramer integral and we extend some work of Kusuoka [29] to the case

of Gaussian processes. The first Chapter is devoted to the above problem. This

work has been used to obtain an extension of Girsanov’s theorem to the general

case of Gaussian processes by Gawarecki and Mandrekar [18].

In the second Chapter we discuss the role of cylindrical Brownian motion in

Nelson’s Kinematic theory of stochastic motion (see [36]) in Hilbert space. First

we explain why a Hilbert space valued Brownian motion can not be recovered by

Nelson’s technique ([36]) as a stochastic driving term from a diffusion satisfying

Nelson’s regularity conditions. Therefore we consider cylindrical stochastic pro-

cesses. To construct a diffusion from Nelson’s assumptions, which is driven by a

cylindrical Brownian motion, one needs to introduce a class of integrable functions

with respect to 2—cylindrical martingales, which is larger than that used by Metivier

and Pellaumail. This requires modification of the work on stochastic integral of

Metivier and Pellaumail [35].

Applications of the results of Chapter 2 to physics require a study of Time Re-

versal problem. We begin this in Chapter 3 for Skorohod-type SDE’s. This handles

the case of reversal in time and space and, in particular, relates backward and for-

ward Brownian motion. The harder problem of determining whether time reversal

of a (non-anticipating) diffusion is again a diffusion (see Folmer [17], Haussmann





and Pardoux [23]) is presently under study but the results, being incomplete, are

not presented here. However we show that the Go and Return problem of Ogawa

[46] can be handled by our techniques. We also show some applications of our

results on transformations of Gaussian processes to line integrals of Cairoli and

Walsh [9] (see Example 3.2.1).

The Appendix contains a review of some notions used in this work. It is included

to provide the reader with an easily available reference.





Chapter 1

Anticipative Integrals with

respect to Gaussian Processes

1 . 1 Introduction

There are several goals in the development of the theory of stochastic integration.

Two of them, very natural, are enlargement of the class of integrands and enlarge-

ment of the class of integrators. We are specifically interested in a generalization

leading to anticipating integrands and Gaussian integrators.

Extension of the Ito integral to not necessarily non-anticipating integrands was

first done by Ito [25] with the help of stochastic integration with respect to quasi-

martingales. Generalization of the class of integrands to Gaussian processes was

attempted for example by Cramér [13] and Cambanis and Huang [10]. Much of

their approach was defining the integral via step functions.

We will however concentrate on different techniques. Ramer [51] introduced

a stochastic integral on an Abstract Wiener Space using functional analysis ap-

proach. He recognized this integral as an abstract version of double centered

4



stochastic integral of Ito, introduced by Shepp [54]. Ramer’s integral, further re-

ferred to as the Ito-Ramer integral, proved to be much more general object which

will be discussed later. A completely different technique, based on Wiener Chaos

Decomposition, was used by Skorohod [55] to yield an integral with respect to a

white noise random measure. This idea was further developed by Mandrekar and

Zhang [33] who obtained an integral of not necessarily non-anticipating integrands

with respect to any Gaussian process.

Another interesting attempt was made by Kuo and Russek [28], Ogawa [43],

[44], [45] and Rosinski [52], who developed a stochastic integral, also without any

special kind of measurability assumptions, with respect to a white noise random

measure on an arbitrary set. This integral was defined in terms of random series

of usual Wiener integrals. We further refer to this integral as the Ogawa integral.

In the next sections we present the above ideas with more details. We study

the relationship between the Ito-Ramer and Skorohod integrals which unify the

results on Girsanov-type theorems obtained by Ramer [51], Kusuoka [29], Nualart

and Zakai [41] and Bell [2H3]. In particular we generalize the Ito-Ramer and

Ogawa integrals (the latter appears in the course of the analysis) to the case of

an arbitrary Gaussian integrand and, by extending a result of Gross [22], we carry

out the work of Kusuoka [29] in our setup.

1 .2 Preliminaries

We begin with some selected basic concepts to make this work more self-contained.

The material concerning covariances, Reproducing Kernel Hilbert Spaces and Gaus-

sian processes was taken from the book of Billingsley [4] and papers of Chatterji

and Mandrekar [12],[30]. For further details we refer to the work of Aronszajn [1],



Cross [21] and Kuo [27].

The ideas introduced in this section lead to a useful concept of the stochastic

integral with respect to Gaussian processes defined in [21] and [31]. This stochastic

integral was used in [31] and [33] to develop the theory of stochastic integration with

respect to Gaussian processes for integrands not requiring any special measurability

assumptions.

Let T be any set and let C be a real function on T x T. C is called a covariance

on T if C(s, t) = C(t, s) and Ease,- atasC(t, s) 2 0 for all finite subsets i C T and

{0.3, s E i} C R. For a covariance C on T, there exists a unique Hilbert space H

of real valued functions on T, called the Reproducing Kernel Hilbert Space

(RKHS for short) of the covariance C, satisfying Vt E T : C( -, t) E H and

Vt E T, f E H : (f(-),C(-,t))H = f(t). Here, for all t E T, C(-,t) denotes the

function of the first variable.

Notation. We denote a scalar product in a Hilbert space by (-, -) with possible

subscript if identification of the Hilbert space is ambiguous. For a Locally Convex

Topological Vector Space (LCTVS for short), by (~, ) we denote duality between

the space and its adjoint. Should any ambiguity arise, subscripts identifying the

space are added.

With a covariance C on T we associate a centered Gaussian process X =

{Xt, t E T} defined on a complete probability space (9, f, P), such that E(Xth) =

C(s,t), where we will always take .7: to be the a-field generated by the family

{Xt, t E T}. Without loss of generality we assume that all probability spaces con-

sidered here are complete. Denote by H(X) the closed linear span of {Xt, t E T}

in L2(Q,.7-', P). Note that if Y1,Y2, ...,Yn E H(X) then (Y1,Y2,...,Yn) is a multi-

variate normal variable. Then the RKHS H of the process X is of the following



form:

H = {f : f(t) = E(XtYf), for a unique Yf E H(X)}

Let 7r : H —-> H(X) be a map defined by: 7r(f) = Yf. Then 7r is an isometry.

In particular 7r(C(-, t)) = Xt.

Definition 1.2.1 (1} The isometry 7r : H —> H(X) is called a stochastic inte-

gral with respect to Gaussian processX .

(2) If K is a Hilbert space isometric to the RKHS H of the Gaussian process X

under an isometry V then we define a stochastic integral S of any k E K with

respect to X by S(k) = 7r(V(k)).

Several interesting examples of Gaussian processes, their RKHS’s and stochastic

integrals with respect to these processes can be found in [30] and [12]. We present

here only those examples which we discuss later.

Example 1.2.1 Gaussian processes.

(a) Brownian motion. Let T = {(t1,...,tn) = t E R“, t,- Z O} and define

C(t, t’) = f=1(t,- /\ t;). Then the function C is a covariance on T . For n = 1, the

associated Gaussian process is called the Wiener-Lévy Brownian motion or

Brownian motion for short, and for n > 1 the associated Gaussian process is

called the Cameron-Yeh process.

The RKHS H of the covariance C is given by

H = {f: N) = jot" [0t1 9a., ...,u.)du....du.., g e 12.01“»

with the scalar product

(M2) = /0°° /O°°g.<u>gz<u>du

7



where du is Lebesgue measure on R”.

Denote the Brownian motion process by B and consider stochastic integral with

respect to this process. For h E H, 7r(h) = fol h’dB, h’ denoting the derivative of

h and the last integral is the Wiener integral. Indeed, it is an isometry between

H and H(B) because the Wiener integral is an isometry between L2([0,1]) and

H(B) ([27]). Also 7r(C(-,t)) = B, = fol 1[0,t](s)st, 1A(-) being the characteristic

function of set A. The RKHS H is isometric to the Hilbert space L2([0,1]), with

the Borel a-field and Lebesgue measure, by an isometry V(f)(t) = f; f (s)ds, for

f E L2([0,1]), t 6 [0,1]. The stochastic integral S for functions from L2([0,1]) is

then just the Wiener integral, S(f) = 7r(V(f)) = fol de.

(b) Gaussian white noise measure. Let (5,2, ,a) be a a-finite measurable

space, T = {A E Z : a(A) < oo} . For A,A’ E 2 define C(A, A’) = a(AflA’).

Then the function C is a covariance on T.The associated Gaussian process is called

Gaussian white noise measure. The RKHS of covariance C is given by

H = {f = f(A) = [A f(U)u(dU). f e L2(S.E,u)}-

Now let us consider stochastic integral with respect to Gaussian white noise

measure. The map V: L2(S,E,u) —+ H given by V(lA)(-) = a(- n A) = C(-,A)

is an isometry. Then the stochastic integral S : L2(S, 2, p.) —) H(X) is defined

by S(f) = 7r(V(f)). In case of S = [O,1],Z - the Borel a-field and ,u — Lebesgue

measure, the stochastic integral S is the Wiener integral.

(0) Generalized Gaussian process. Let T = C8°(G'), the space of smooth

(i.e. infinitely differentiable) functions with compact support in a bounded do-

main G with a smooth boundary in R". For qb 6 08° (C), we denote (D“¢)(a:) =

alal¢(ar)/893‘f1...3xg“, where la] = 23;, ca, oz,- are non-negative integers. If C is

a covariance on T, then the associated Gaussian process is called a generalized





Gaussian process.

(c1) In the case of

Com.) = [G ¢1(U)¢2(U)u(dU),

where a is Lebesgue measure on R", the associated process is called Gaussian

white noise. The RKHS of C is L2(G, a(du)).

(c2) For

C(¢1,¢2)=Z/G((D°‘¢1u(I)“¢2(U))/i(dU),

|oz|_<_m

the associated Gaussian process is called Gaussian White noise of order m.

The RKHS of C is the Sobolev space H5”(G).

1.3 Skorohod Integral and Stochastic Differen-

tiation

The Skorohod integral and stochastic differentiation as presented here was intro-

duced by Mandrekar and Zhang and most of this section recalls results of [33]. For

the original work of Skorohod we refer to [55].

1.3.1 Multiple Wiener Integrals

For the detailed construction of Multiple Wiener Integrals with respect to Gaussian

processes we refer to [33]. For the original construction of Ito see [24].

Let C be a covariance defined on an arbitrary set T with the RKHS H and let

p be a non-negative integer. Tensor product H‘8’” of p copies of RKHS’s H consists



ll



of all functions of p variables of the following form:

f(tla t2a "-7 tp) : Z aal,a2,...,apea1(tl)ea2(t2)---eap(tp)

a1,a2,...,ap

with Za1.a2....,ap agha2map < 00. Here {em 01 = 1, 2, ...} is an ONB of H and the

summation is over all tuples (a1, ..., 0110). Furthermore, the scalar product of two

functions f, g E H8’? is defined as

(fa g)H®P : Z aal,a2,...,apba1,a2 .....01p)

al,a2,...,ap

if

f(tlatZa "-atp) : Z aa1,a2,...,apeal (t1)ea2 (t2)---eap (tp)7

a1,a2,...,ap

g(t1, t2, ..., tp) = Z b0,1m ,,,,,0,1,60,1(t1)eo,2 (t2)...eap (tp).

a1,a2,.u,ap

Notation. For f E H8’? we denote by f its symmetrization, which is defined as

f = #23 f(ts(1)a ts(2)a ..., ts(p)), where the sum is over all permutations s of the set

{1, ..., p}. We denote by H0” the pth symmetrized tensor product of H, which is

a Hilbert subspace of H8’1” consisting of all symmetric functions in t1, ..., tn. Also,

H690 2 HC90 = R (real numbers). Note that if f E H699 then f 6 H91”.

For any p = 0,1,..., Multiple Wiener integral, 1,, is a linear map from HW

to L2(Q,.7:, P), where (9,37, P) is the underlying probability space on which the

Gaussian process X is defined. The integral is determined by the following prop-

erties:

(1>Io(f)=fforf€H®°=R-

(2)11(f)= 7r(f) for f E H®1=H

<3) 1p+1(fg)—— Imug) — Lap—logy) for f 6 He”, 9 6 He and f<§9 =

(f(t1,.. ..tp) 9(tk))H'

(4) [le (f:llL2(fl): pillfilH®p for fp E Hm-

10





Below we list some other useful properties of Multiple Wiener Integral. For

f,g E H®p and h 6 H8”, we have,

(5)Ip(ff)=Ip(f~)'

(6) E{I(m—— o and E{I()1p(g)} =p!<f,mm

(7)1p(HQZ’l’) 110(9) Ik(H®k) for all k < p.

(8) Ip+1(fh)—- I(f)11(h) —— 53:1 Ip—1(f§h) for f e W, h e W and fgh =

(f(t1,--- tp)ah(tk))H-

Let f EkH®p, f(t1,t2, ...,tp) : ea,(t1)eaz(t2)...eap(tp) where among

a1,...,ap only n are different with repeats p1,p2,...,p,,, p1 +p2 + + pa = p.

Denote the corresponding n different eai’s as u1,u2,...,un and assume that they

are orthonormal elements of H. Then Ip(f) = n_1 ’HP,(I1(u,-)) where ’Hp,’s are

Hermite polynomials normed in the following way: Hp(t) = 7i2?HP(7t'2') with

Hp(t) = (—1)Pe‘”2 $642.

A version of Wiener Chaos Decomposition is given in the next Lemma.

Lemma 1.3.1 L2(§2,}',P)= EBp—olp(HQP).

1.3.2 Malliavin Derivative

The Malliavin derivative defined in this section plays an analogous role in Skorohod

stochastic calculus with respect to Gaussian processes as the Malliavin derivative

in case of Skorohod calculus with respect to Brownian motion.

Let u = {uh t E T} be a measurable stochastic process defined on a probability

space ((2, .7, P), such that u.(w) can be considered as an H-valued random variable

in Bochner sense. We assume that u.(w) 6 L262, H), in particular, EHung, < 00.

This condition implies that at E L2(Q) for each t E T in view of the following

11



inequality:

uf(W) = (U-(w),C(nt))ii _<_ Ila-(W)II§;C(t,t)-

By Lemma 1.3.1, for each t E T, there exist unique f;(-) 6 H91”, p = 0,1,...,

f;(t1, Mat?) 2 fp(t1a ...,tp,t) E H®(P+1), SUCh that

ut<w> = i5 1mg) = i1p(fp<t.,...,tp,t>>. (1.1)
p=0 p=0

For computation of the L2(Q, H) norm of a stochastic process u it is very useful

that for ut = Ip(f(-,t)) and vt = [g(g(-,t)), where f(-,-) E H®<p+1), g(-,-) E

H®<q+1> and for each fixed t E T, f(-,t) 6 He” and g(-,t) 6 H99, we have,

E{(U.
,'U.)

H} :
{ p!(fa

g)H®(
p+1)

ifp :
q

0 fip#q'

Now we recall definition of Malliavin derivative.

Definition 1.3.1 Let u E L2(Q,H). By the Malliavin derivative Dfi’jut for

fixed h E H we understand a random variable in L2(Q), defined as a limit of the

following series:

imp—«(flab ...,tp_1,s,t>,h<s>)>
p:

where ut has the unique representation (1.1). If for fixed t E T, the Malliavin

derivative DQ’Iut erists for all h E H and the series

(X3

pIp—1(fp(t17 ...,tp_1,8,t))

p=1

defines a random variable in L2(SZ,H), then we define the Malliavin deriva-

tive Dyut E H, as a function of argument 3, in the following way: D3421, =

23:1 pI _1(fp(t1, ...,tp_1, s,t)). In this case (Dyut, h(s))H = D,1,”ut.

12



We give sufficient and necessary conditions for existence of Malliavin derivative

as well as for some regularity of this derivative in the following Lemma.

Lemma 1.3.2 Let u 6 L262, H) where ut has the representation (1.1).

(I) Let t E T be fired. 193%, 6 L262, H) exists if?”

00

prlllfphtfllfisp < oo

p=1

and in this case

Dig/fut : ZpIp—l(fp('asit)) and END-Mitt“; = prillfp('at)i|%{®l’ < 00'

(2) The Malliavin derivative Dsut E L2(§Z, H‘32), i.e. it is a Hilbert-Schmidt oper-

ator, iff

00

219p! “fplli{®(p+1)
< 00.

P=1

Example 1.3.1 Malliavin derivative for Brownian motion.

In the case of standard Brownian motion, Multiple Wiener Integrals 1,, and con—

sequently, the Malliavin derivative defined above, coincide with Multiple Wiener

Integrals I; and the Malliavin derivative Di defined in [41]. More precisely,

[g(fp) = [pa/Wf) and DSF = V(DiF)(s)

for any fp E L2([O,1]P) and F E L2(SZ) with the first equality in L262) and the

second in L262, H). Here V : L2([O,1]) ——> H is defined by: Vf 2 f0' f(s)ds (clearly

V®pr e H®P and VDI‘F e L2(o, H)).

1 .3.3 Skorohod Integral

We are ready to recall definition of the Skorohod integral, which is based on the

Wiener Chaos Decomposition of Lemma 1.3.1.
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Definition 1.3.2 Let u E L262, H) has the decomposition (1.1). If

2 Ip+1(fp) = Z Ip+1(fp) converges in L2 (9)

p=0 p=0

then the sum is called the Skorohod integral of u and is denoted by I3 (u).

Note that for u 6 L262, H), we have, I8(u) E L2(SZ) ifi 21:1(p+1)!||fp||§{®(p+1) is

finite and in this case, the L262) norm of the Skorohod integral I3 (u) coincides with

the above sum. Furthermore, the domain of the Skorohod integral I3 consists of

all u 6 L262, H) for which the above sum is finite. As we can see the measurability

condition for the integrand in the Ito integral is replaced in the Skorohod integral

by a ”growth” condition.

Example 1.3.2 Skorohod integral with respect to Brownian motion.

As a continuation of Example 1.3.1, we have

Ii(u) = [S(Vu)

for u E L2(Q,L2([0,1])) (clearly Vu E L2(§2,H)). Here Ii(u) is the Skorohod

integral defined in [41]. In the case when u is adapted to the natural filtration

of Brownian motion, ft = 0{B3,s g t}, then the Skorohod and Ito integrals

coincide: I’(Vu) = I2(u) = fol utdBt. If u is adapted to the future filtration

.77‘ = o{81 — B3,t S s g 1} then the Skorohod and backward Ito integrals coincide

(see [41]).

1.4 Extension of Ogawa Integral and its Rela-

tionship to Skorohod Integral

In this section we introduce the Ogawa integral with respect to Gaussian process

X = {Xt, t E T} defined on a probability space (SLIP, P). For original definition
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and for properties of the Ogawa integral we refer to [43]-[45],[28],[52],[41].

Definition 1.4.1 Let u = {uht E T} be a stochastic process on (9,]:, P), such

that u is an H-valued random variable. Let {en}$,;1 C H be an ONB in H. Assume

that H(Humq < oo) = 1.

(1) A process u is called Ogawa integrable with respect to the process X

and ONB {an}?=1 C H if the following series converges in probability:

62(u) = 2(u, en)H7r(en).

n=1

In this case 62(u) is called the Ogawa integral of the process u with respect to X

and ONB {en},‘.’,°=1.

{2) If the limit in (1) exists with respect to all ONB’s of H and does not depend on

the choice of basis, then process u is called universally Ogawa integrable with

respect to X and 6°(u) denotes its Ogawa integral.

To obtain the relationship between the Ogawa and Skorohod integrals one only

needs the following technical Lemma, which is an analogue of Proposition 3.5 [41].

Lemma 1.4.1 Let F E L2(Q) be such that its Malliavin derivative

DMF E L2(Q,H) and let f E H. Then,

13(Ff) = I$(f)F— (DMFJCD- (1-2)

Proof. Let F = Im(fm). Then,

13(Ff) = Im+1(f'mf)

= Im(fm)I1(f) — mIm_1((fm(t1,---,tm—1,')af()l)

= Fro) —D?‘F-
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If F: Enrolm(fm), then Ff E D(IS) because

00

Z(m + 1)! II—{fm(t1, tm)f(t)
m=0

m

+me(tla-"ti- 1)t ti+1w~ tm)f(ti)}”i{®(m+1)

=1

00
m!

3 Z In—+1(m + 1)2 “fmfllimonm

m=0

=2 m'((m + 1))llfmllyamllflly < 00
m=1

since E(||DMF||}°2,) 2 23:0 m!m||fm||§1,®m < 00. Because

1300;"Fr) = E(|(D.MF, f(cc))l2) s EIIDMFlliillflliq < 00.

we have

2 mIm—1 ((fm(t1a---atm—1") f())) _>D_1wa

m=1

in L262) as N —> 00 and therefore 2N_11m(fm)11(f) converges in L262) to

15(Ff)— DMF and (1.2) is valid for F=Zm_01m(fm), i.e. for any F 6 L262).

[:1

Proposition 1.4.1 Let u E L2(Q,H) and assume that the Malliavin derivative

DMu(w), of u exists and for every w E (I it is a Hilbert-Schmidt operator on H,

with EIIDMUlliigz < oo. Assume furthermore that DMu(w) is even a trace class

operator on H for every w E St. Then,

u 6 19(13) 0 13(6") and 6°(u) = Is(u) + trDMu u a.e.

Proof. The statement, u 6 13(13), follows from Theorem 3.1 in [33]. Let

PN E ’P(H), PN 2: 25:1 hk <8) hk where {hk}‘,:°=1 is an ONB in H. Compute the
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expression for IS(PNu). Begin with

13((Uahk)hk) = (“$013010—(DM((u,hk))ahk)

= (u. hk)Is(hk) — (1721“, his)

= (u, karat.) — (DMu(hk), hk).

The first equality is a consequence of Lemma 1.4.1. The second can be justified

as follows. Let u ——Zm_OIm(fm) be Wiener chaos expansion of u with fm E

H®(m+1),symmetric with respect to the first In variables, as proved to be possible

in Lemma 3.1 [33]. Since u is given by an L262, H) convergent series Zm-01(fm)1

we have,

i Im((fmahk)) : (Zn: Im(fm)ahk) —> (u, hk)

m=0 m=0

in L262). This means that (u, hk) has the following series representation:

(Milk) = Z Im((fmah'k))

m=0

with (fm, hk) E H9m. Consequently,

WWW.) = (if mam... hum.)
m=1

= (Dfiufik)

= (DMU, hk ® hk)

Finally, we get,

[3 ()(PNuw)=(u(w§: MfiM (1))hk,hk) (1.3)

k=1 k=1

i.e.

[3(PNu) = 6°(PNu) — tr(PNDMu).
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Next we want to show that IS(PNu) —> 13(u) in L2(Q). It is enough to prove

that

E II PNu—ulfii —) 0

E || DMPNu — DMu ”1,38,. —> o

as N —> 00 (see Theorem 3.1 in [33]).

Because PN —> IH strongly (1;; denotes the identity operator on H),

we have,

M PNu(w) — u(w) ||H—> 0 Vw E 9.

Therefore E || PNu — u I|§,—> O by the Lebesgue dominated convergence theorem.

Also,

N N

DMPNu = DM(§:(u, huh.) = Z DM(u, hk)hk

16:1 16:1

implies

00 N

H DMPN“ — DMU Him = Z{Z(DM(’U: hk), hj)(hka hj) — (DMu(hj)ahj)}2

j=1 k=1

= Z (DMu(h,-),h,-)2 —> 0

j=N+1

as N —> 00, because || DMu ||H®2< 00.

Since

N

H DMPNUI) Him: Z(DMU(hg-)ahj)2 SH DMU Him,
j=1

we obtain, again by the Lebesgue dominated convergence theorem, that

E || DMPNu — DMu “Ema 0.

This proves that IS(PNu) —> 13(u) in L262). Since trPNDMu(w) -—) trDMu(w)

for every w E 0 we have 25:1(u, hk)7r(hk)(w) converges in probability, indepen-

dently of the choice of the ONB in H.
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1.5 Extension of Ito—Ramer integral

In this section we extend the Ito-Ramer integral and give some properties of this

extended integral, which are parallel to those stated in Ramer [51] and Kusuoka

[29]. In these papers the Ito-Ramer integral was defined in two slightly different

ways. The main objective of both authors was to give a solution of the problem

of absolute continuity of non-linear transformations of a Gaussian measure on a

Banach space, which was first considered by Cameron and Martin [11]. Our work

on the Ito-Ramer integral is inspired by the ideas developed in [51] and [29].

Let (i, H, B) be an abstract Wiener space ([21]) and u be standard Wiener

measure on B i.e. the measure induced by isonormal cylindrical measure on H by

i. Ramer and Kusuoka considered a transformation T = I + F, where F : B -—> H

was such that DF, the Gateaux derivative of F in the direction of H, existed and

for each x E B, DF(x) was a Hilbert-Schmidt operator on H. Then under certain

conditions on T and F, the authors showed that,

d(II0T) l

d (x) = dC(IH + DK(x)) exp{—” < Kx,x > —trDK(x)” — 5 |Kx|i1}.

u

Here, ”< Kx,x > — tr DK(x)” was called the Ité-Ramer Integral. We extend

this integral for a very general setup as follows.

1.5.1 Definition of Ito-Ramer Integral

Let {Xt, ,t E T} be a Gaussian process defined on a probability space (9, f, P).

We consider Kolmogorov functional representation of the process X, i.e. the prob—

ability space RT, with the o-field RT generated by cylinder sets, and probability

measure ,u, such that the finite dimensional distributions of the canonical process

x(t) 6 RT coincide with the finite dimensional distributions of the process X. RT
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becomes a LCTVS when equipped with the product (Tihonov) topology. We as-

sume that the measure It on (RT, RT) is Radon and we denote its support by X

(see Proposition 3.4 in [57] and for an example of non-existence of a support in

case of a non-Radon measure see [14]). Then H, the RKHS of X is separable. The

measure [1 is Gaussian and X = HRT C RT (the closure of H in the topology of

RT). The triple (i, H, X) is not necessarily an Abstract Wiener Space (AWS, see

Appendix) but the following relation holds:

X*‘-*>H‘->X

i i

where 2* is the conjugate map to 2. Both 2* and i are continuous, dense embeddings.

Example 1.5.1 Stochastic integral of a linear functional.

The stochastic integral, introduced in Definition 1.2.1, of e E X“ is given by

7r(e)(x) = e(x) a.e. [x(dx).

We consider atriple (i, H, Z) where (i, H, Z) = (i, H, B) is an AWS or (i, H, Z) =

(i, H, X) is the triple associated with some Gaussian process. Let E be a real Ba-

nach space and L(H, E) denote the space of bounded linear operators from H

to E.

Definition 1.5.1 {1) A map f : R —> E is called absolutely continuous if for

any —00 < a < b < 00 and e > 0, there exists some (5(5, a, b) > 0 such that

f=1||f(t,) — f(s,)||E < 5 holds for any integer n and a S t1 < 81 S t2 < 52...t,, <

8,, _<_ b, Z?=1|t,-— si| < 5(e,a, b).

(2) A map f : R —) E is called strictly absolutely continuous if it is continu-

ous, strongly difierentiable almost everywhere and it satisfies that f: H (df/dt) (t) H Edt
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is finite and f(b)—f(a) : f:(df/dt) (t)dt for any —00 < a, b < oo , where (df/dt)(t)

denotes strong derivative of f at t.

We note that given a map f : R —> E, f is absolutely continuous if it is strictly

absolutely continuous. In the case of reflexive Banach space E absolute continuity

of f : R —> E implies its strict absolute continuity.

Definition 1.5.2 A strongly measurable map (in the sense of Bochner) F : Z —> E

is said to be Stochastic Gateaux H-Differentiable (SOD) if there exists a

strongly measurable map DGF : Z —> L(H, E) such that

is), F(2 + th) — F<z>> —> to. DGF<z>h>

in probability u as t —> O for every (p E E* and h E H. DGF is called the

Stochastic Gateaux H-Derivative of F.

Definition 1.5.3 A strongly measurable map F : Z —-) E is called Ray Abso-

lutely Continuous (RA C) if for every h E H there exists a strongly measurable

map Fh : Z —> E such that u(Fh = F) = 1 and Fh(z + th) is strictly absolutely

continuous in t for each z E Z.

Definition 1.5.4 A map F : Z —> E belongs to class H1(Z —> E;du) ifF is SGD

and RA 0.

Notation. For K, a linear subspace of H, we denote by P(K) the set of all finite

dimensional projections of H with range in K.

Now we define the Ito-Ramer integral with respect to a Gaussian process X.

21





Definition 1.5.5 A map F : Z -—> H is said to belong to D(L), the domain of the

Ité-Ramer integral, if the following conditions are satisfied .'

(1) F E H1(Z -—> H;du).

(2) DGF(z) E H®2 u a.e.

(3) there exists a measurable function LF : Z ——> R such that

LpF(z) 2: (PF(z), z) — trPDGF(z) —> LF(z)

in probability p. as P ——> IdH, P E P(Z*).

Remark 1.5.1 (1) In the definition of the Ito-Ramer integral we consider only fi—

nite dimensional projections P E P(Z*). If the triple (i, H, Z) is an AWS (i, H, B)

then the above definition coincides with the definition of Ito-Ramer integral given

in [29] for projections in ’P(H) with ranges in B“.

(2) If assumption (1) in Definition 1.5.5 is replaced by the requirement that F be

continuously Gateaux H-difierentiable, then Definition 1.5.5 coincides with the one

given in Lemma 4.2 [51].

From now on we will concentrate on the case when (i, H, Z) = (i, H, X) is the

triple associated with Gaussian process X. We will return to the case (i, H, Z) =

(i, H, B) in examples on Brownian motion.

1.5.2 Preliminary Results

In order to study the domain of the Ito-Ramer integral with respect to Gaussian

processes we need some general results. We begin with an extension of Fubini-type

theorem (Remark 2.2 in Gross [22]). The result in [22] is justified with help of AWS

arguments. Our reasoning is based on Karhiinen-Loéve representation ([33]).
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Proposition 1.5.1 Let (i, H, X) be as in Section 1.5.1 and u be a Gaussian mea-

sure supported by X. Let K Q X be a finite-dimensional linear subspace with K g

X“ and {k1, k2, . . . , kn} C K, its orthonormal basis (ONB). Let L = 03.;1 ker(kj)

(a closed complement of K in Xj and denote by PK and PL, the projections of X

onto K and L resp. Define MK = Bat, 11;, 2 Put, the image measures under PK

and PL. Then we have the following equalities:

[X f($)#(d$) = [UK f(a: + i)uL(dx) ® ,u.K(dx) (1.4)

2 Lan f (x +ngkj) ”L(dml ‘8 (21;)? exp (—%j2:x§) dx1 . . . dxm

for any measurable function f : X —) R+.

Remark 1.5.2 The formulation of the above proposition is correct. X is a Haus-

dorfir LCTVS and for any Hausdorfi LCTVS ifK is its finite dimensional subspace,

then K is closed and L C X defined as above is its closed complement, LEBK = X.

If x E X then x can be decomposed in a unique way into x = xL +xK with x1, E L

and xK E K. Projections PL and PK are linear and continuous (in our case

PK(x) = xK 2 31:1 kj(x)kj and PL(x) = x — xK).

Proof. (of the Proposition) Because PL,PK are linear and continuous, the

image measures PLu,PK/1 are Gaussian measures on L and K respectively. We

want to prove that u = uL®uK on L x K = X. First we will prove that uL®uK is a

Gaussian measure and then, that functionals on X can be decomposed into a sum

of two independent (with respect to the measure u) Gaussian random variables

related to subspaces L and K.

Claim 1. [IL (8) #K is a Gaussian measure.
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Proof(of Claim 1) ch E X*, (p 0 PL, (,0 0 PK are independent Gaussian random

variables with respect to I11, (8) fix on X. This is because

90 0 PL(37) = $00 PL(~’13L +51%) 2 99(le

hence, (,0 o PLIL = cplL E L* is normally distributed with respect to #1,.

Thus go 0 PL on X is also normally distributed with respect to I11, (8) pg since values

of this functional are independent of the component belonging to K. By the same

argument (p 0 PK and (4p 0 PL, (,0 0 PK) are Gaussian. Independence follows from

the equalities below,

[1: 90 0 PL(~T)90 0 PK($)#L ‘8 ”x(dflil

= foK 90 0 PL($L + 33K)<P 0 PK(IBL + $K)d#L ® MK

2 / SOIL($L)<P]K(CBK)dHL (X) #K

LxK

= /r|L(xL)duL/ r|K(:vK)dIIK
L K

= fxsoomvdm.aux/XsooPKWuLsux

Finally 90 _—_. (p 0 PL + (,0 0 PK is a Gaussian random variable with respect to

,aL (8) fig on X. This completes the proof of Claim 1.

Claim 2. (p 0 PL, (,0 0 PK are independent Gaussian random variables relative to ,u

on X.

Proof(of Claim 2). We E X*, go(x) = Zfi1(<,o,e,)7r(e,-)(x) = 21(go,e,-)e,-(x),

for ONB {6,},921 in H, where {6,},921 C X* and e,- = 19,-, (i = 1,...,n) (see [33]).

Therefore we can express compositions of functional (,0 with projections PK and

PL as follows:

roPK(w) = Z(r.ei)ei(m)

24



n

IpoPL(x) = :(fpaei)ei($— ej(5’7)€j)

j=1

= 20109506433) —§:(<P,€i)€i($) = Z: (90,e,-)e,-(x)

i=1 i=1 i=n+1

Because {ed-'5) = 7r(e,-)(x) 3:1 and {61(1B)},9°:n+1 are independent families of

random variables with respect to u, also (,0 0 PL and (p 0 PK are independent. Claim

2 is proved.

Now to prove that ,u :2 ML (8) ,uK we compare characteristic functionals of these

measures.

ut@7ux(<e) = fxexpfiflfllméwfldr)

= I. expvoo e(x) +900 mom. swam)

= fexp1leL(x.>}uL<de> [K explir|x(xx)}ux(dmx)

= f, GXPIW o mamas) f, expw o manage)

= f, exp{ir($)}u(dx) = no).

Because u 2 ML ® uK, we get,

I. f(x)u(dw) = foKfWL MK»... e Mombasa.)

for any measurable function f : X —+ R+. Now, L 2 39:1 kerkj, therefore the

random vector (k1, ..., kn) has the same distribution under both measures MK and

u = m, ®uK, that is n-dimensional standard normal. Hence equation (1.4) follows.

El

Next we extend the results of Kusuoka, contained in paragraph 4 of [29], that

are relevant to our work. Kusuoka was concerned the setup of AWS while we

are interested in a more general situation of the triple (i, H, X) associated with a

Gaussian process.
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Definition 1.5.6 Let A C X be any subset. Define function

p(' ;A) = X —> [0,+0<>l by

+oo otherwise

inf{||h]]H : 32+}. 6 A} if(A—x) nH ,I i

p($;A)=

Next Proposition can be proved in the same way as Proposition 4.1 in [29].

Proposition 1.5.2 (1) If subsets A and A’ of X satisfy A C A’ then p(x;A) Z

p(x;A’) Vx E X.

(2) VA C X, h E H, x E X , p(x+h;A) S [Ihl|H+p(x;A).

{3) Let {A,,}f,°=1 be an increasing sequence of subsets of X and A = U31, An, then

Vx E X p(x; An) \, p(x;A) as n —+ 00.

Theorem 1.5.1 (1) IfK is a compact subset of X, then p(-;K) : X —> [0, +00] is

lower semi-continuous.

(2) If G is a o-compact subset of X, then p(-; G) : X —> [0,+oo] is measurable.

Proof. Since (2) is a consequence of (1) and Proposition 1.5.2 (3), it is enough

to prove (1). We follow the idea of proof given in [29].

Define A0 = {x E X : p(x, K) g a}, B (a) - the closed ball of radius a, centered

at O, in H. We want to show that A, =- K + B(a). The inclusion AG 3 K+ B(a) is

clear. For the opposite inclusion, take x E Aa. Then 3{h,,}f,°=1 C (K — x) flH such

that ”hn“ S a + %. Being norm bounded, the sequence {h,,},°,°=1 contains a weakly

convergent subsequence {hnk}z‘_’__1. Let h E H denotes its limit. Since X* C H and

Vt E T xt(h) = h(t) (point evaluation) is an element of X* we also have hm, —> h

in X (convergence in X is a pointwise convergence). Also,

llhllH : SUP{|(h,CE)| W E X*, ”33“}; S 1}
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: Sllp{kli)ncl)lo](hnk,$)l ;CC 6 Xi!) llxllH S 1}

s 113...... ”an. 3a.

Thus h E B(a). Since K C X is compact and hnk —> h in X with x + hm. E K,

(k = 1,2, ...), also x + h E K and therefore x E K + B(a). Thus A = K + B(a).

We claim that B(a) C X is closed. Indeed, we have the following:

Lemma. Let X be a reflexive Banach space and Y be a LCTVS.

Let T : X —> Y be linear and continuous. Then T(BX(0,1)) C Y is closed, where

BX (0, 1) is a closed unit ball centered at 0 in X.

Proof(of Lemma). T : X —> Y is linear and continuous, hence T : Xw —> Yw is

linear and continuous (w - means weak topology). This is because if {xa} is a net

in X with xa —> x in Xw, then Vy“ E Y*, y*(Txa) = (y*T)xa ——> (y*T)x = y*(Tx),

for (y*T) E X“.

Because X** E X by the canonical isomorphism K3, we get,T o n—1 : X:,* —+ Yw

is linear and continuous and further, T 0 K71 : X51, —> Y... is linear and continuous

(where w — >1: denotes the w — * topology). The latter holds because reflexivity of

X implies reflexivity of X*. Now, the closed unit ball BX... (0, 1) is w — * compact

by Alaoglu-Banach theorem. That means K.(Bx(0,1)) is w — * compact in X**,

hence To n“1(n(BX(O, 1)) = T(BX(0,1)) is to closed in Y. Because Y and Yw have

the same closed, convex sets, T(BX(O,1)) is closed in the topology of Y and the

lemma is proved.

Thus i(B(a)) C X is closed, therefore A0 = K + B(a) C X is closed.

Next theorem can be proved as in [29] with obvious modifications.

Theorem 1.5.2 Let E be a separable, reflexive Banach space and F : X —-> E

be a measurable map and suppose that there exists a constant c > 0 such that
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Vx E X,h E H, “F(x + h) — F(x)||E _<_ c||h||H. Then there exists a measurable

subset D0 ofX and a map DF : X —+ L(H, E) such that :

(1) #(Do) = 1-

(2) limHO -:—(F(x + th) — F(x)) 2 DF(x)h, Vx E D0, h E H.

(3) DF(-)h : X —> E is measurable Vh E H.

In particular, if DF : X —% L(H, E) is strongly measurable then

F E H1(X —§ E;du).

Corollary 1.5.1 Let G be a o-compact subset of X and gt be a smooth function

with compact support in R. Then g() = ¢(p(- ; G)) : X —+ R ,with the convention

that 45(00) 2 0, belongs to H1(X —> R; d,a) and

61¢

IIDG9(~”3)HH S SWINE] 3 t E R}

for u a.e. x.

Proof. First we observe that by Theorem 1.5.1, (2) g is measurable. Also,

d¢

dt

d¢

a“

”9(33 + h) - g(cv)” S sup{ (t) ;t E R} (p(a? + ’74 G) - p(x, G))

  
S sup{ v ;t E R} llhllH

by Proposition 1.5.2, (2), (with the convention oo — oo = 0, note that p(x +

h; G) = 00 iff p(x; G) z 00). Therefore, assumptions of Theorem 1.5.2 are satisfied.

DGg(-)h can be thought ofas h(DGg(-)) with h E H“, DGg(-) : X —> H“. Thus we

have DGg : X —) H* is weakly measurable (by (3) of Theorem 1.5.2) and therefore

it is strongly measurable in view of separability of H. The inequality at the end

of Corollary is obvious.
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1.5.3 The Domain of Ito-Ramer Integral

In this section we specify two subclasses of the domain of the It6—Ramer integral.

We begin with generalization of Ramer’s result, Lemma 4.2 in [51]. As a tool we

use the inequality given by Ramer in Lemma 4.1, [51] but we need it for functions

in H1(R” —> R”, 7”), where 7,, is the standard Gauss measure on R” (see [29]).

Note. By Hm we denote the tensor product H (8) H which is identified with the

Hilbert space of Hilbert-Schmidt operators on H.

Lemma 1.5.1 Let f : R" —> R" be an H1(R"’ ——> R",’y,,) function. Assume ||f||Rn

and ”Baf ”(Rn)®2 E L2(R",'y,,) (the latter norm is the Hilbert-Schmidt norm).

Then,

/ "(ovum — tTDGf($))27n(d$) s Lamont. + llDGf(w)||?Rn)®2)7n(drv).

Theorem 1.5.3 Let F E H1(X ——> H;du) and assume that DGF(x) E H692 for ,u

a.e. x and F E L2(X,H), DGF E L2(X,H®2). Then F E D(L) and

/, ILF(a:)l2II(dI:) s Lamont. + HDGF<x>IIi®2>u<dsc>.

Proof. We use Proposition 1.5.1 to extend Lemma 4.2 in [51] to our case.

Any Pn E P(X*) with dim Pn(H) = n can be written as follows:

Pn226i®6i, €i€X*, {83' 21:1 ONB in H.

i=1

We will first show that {LpnF}f,°=1 is a Cauchy sequence in L2(X).

/,,<LP.F(:c> — mer<x>>2u<dm>

= lam — mm»). 32> — ma — pm)DcF(.)}2,.(d.)
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We can apply Proposition 1.5.1, to get that the last expression is equal to

fL/R{(((H— F(Zoqe,+x1,), Emei—l—xL) (1.5)

=1

+tr(B — Pm)DF(Z me,- + xL)}2u(de)d71

1:1

where we assume that l 2 m, K = span{el,...,el},L = ,_1 her 6, (the closed

complement of K in X from Proposition 1.5.1), x1, = PLx, PLIS the projection of

X onto L and 7) denotes the standard Gauss measure on R’.

Using Lemma 1.5.1 we can bound the last expression by

[XIIIIPI — P))Ia:)IIH + “(P)- PHI)DGFI)Hirmldel

Both components converge to zero as l, m —> 00. Indeed,

AIIIH—PHWIIMIHHIII) = / II ZI ))He.IIH)IIcI:c)
i=m+1

/ Z (e..F a:))HIIIcIa:)
i=m+1

|
/
\

since F E L2(X,H,du).

Similar argument shows that the second component converges to zero. Resum-

ing, we proved that,

PnF—->F E L2(X,H,du) and

PnDGF—> DGF e L2(X,H®2,du).

We also obtained the following estimate :

/ ILPHFI(mmH.) </{IIPKF()IIH + IIPHDGFII:)IIHH)HId:c) (1.6)

for PK E P(’P*).
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Furthermore, the L2(X) limit, LF, does not depend on the choice of the se-

quence of projections. Indeed, let {Pn};,'°:1, {62”}le be two sequences in ’P(X*)

converging to IdH. Then we have,

“LPHF _ LQmFllizw)

< “(10,, _ om)F(H)IIi,(X,H, + H(PH — QH)DGFII)Ili.Ix,H®2)

S 2{||P..F— FHL2(X,H) + lanDGF— DGF||i2(x,H®2)}

+ 2{llQmF “ FHL2(X,H) + llQmDGF —‘ DGFlli2(x,H®2)l

with the RHS converging to zero as m, n —> 00.

The inequality,

l. ILFII)|2II(d-'I) s /,,IIIFII:)I%, + llDGF(m)lliH®2)II(dI:)

follows from (1.6).

Now, Theorem 5.2 in [29] can be extended to our case.

Theorem 1.5.4 Let F E H1(X —> H; du) and to be a positive weight function, i.e.

w : X —> R is measurable, w(x) > 0 Vx E X and w(x+ ) : H —> R is continuous

\7’x E X. Assume that DGF(x) E H‘g’2 for u a.e. x and that

/,,IIIFI:c)IIIH + IIDGFIw)IIHH2)wa)uIdx) < oo.

Then F E D(L). Furthermore, there exists a positive, measurable function It :

X —> R, depending only on to, such that

f, ILFII)I2Ich)H(dm) s L(llflflllt + IIDGFIz)IIin)wa)H(dx) < oo.
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Proof. The proof in [29] applies if instead of references to Corollary to Theorem

4.2 and to Theorem 5.1 [29], references to Corollary 1.5.1 and to Theorem 1.5.3

are made.

E]

Definition 1.5.7 A measurable map F : Z —> H is said to be in class H — G1 if

the following conditions are satisfied :

(1) V2 E Z 3DF(z) E H692 such that

W2 + h) — F(z) — DF(z)hllH = oIIIhIIH) as IthH —+ o.

(2) Vz E Z, DF(z + ) : H —> H‘g’2 is continuous.

Now we obtain the following Corollary from Theorem 1.5.4.

Corollary 1.5.2 H — C'1 C ’D(L).

Proof. Clearly w(x) = {1 + HF($)“%{ + I]DF(x)|I§,®2}—1 is a weight function

for F E H— Cl. Also H — G1 C H1(X —> H,du). Indeed, first, F E H — G1

implies Fréchet differentiability of F which is stronger than SG-Differentiability.

Also F is strongly measurable in view of separability of H. Further we need strong

measurability of the H-Fréchet derivative of F, DF : X —> L(H). We have,

1

(H. 6 ag e H, g((FCv + th) — F(x)).g) —+ (DF(x))Ih s g).

The LHS of above is measurable, therefore the RHS, as a limit, is measurable.

Thus DF : X —> H‘32 is weakly measurable. Furthermore, the inclusion H8’2 ‘—>

L(H) is continuous and H‘32 is a separable subspace of L(H), giving that DF is

separably valued and weakly measurable as a function with range in L(H). Hence,

it is a strongly measurable map from X to L(H).
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To prove the RAC condition note that, by (2) in Definition 1.5.7

2 “F(x + tI+1h)- F(ft + tIh)||H S sup ”DF(I: + ah)||H®2 llhl|H(b — 0)
i=1 (:6 a,

where a = t1 3 t2 3 g tn+1 = b is a partition ofan interval [a, b]. Now, F(x+th)

is an absolutely continuous H valued function, so that it is RAC.

Cl

Since both, the Ité-Ramer and Ogawa integrals involve a series expansion of

the integrand with respect to one dimensional Wiener integrals, one can expect to

have a connection between these two types of integration. We give our result in

the next Proposition.

Proposition 1.5.3 Let u E H — C'1 and assume that the H-Fréchet derivative

of u, DFu(x), is a trace class operator on H for every x E X. Then u E D(L)

and u is Ogawa integrable with respect to all ONB’s {e,,},i,'°:1 C X* of H and

63(u) = L(u) + trDFu u a.e.

Proof. By Corollary 1.5.2 we already know that u E B(L). Since Lu exists

we can choose any sequence {P1(;}‘,’V°=1 C ’P(X*) of finite dimensional projections

of the form: PN = 2,19; he (8) h], with {hk},°c‘?:1 C X* being an ONB in H and we

have LpNu —> Lu in probability. Compute the expression for LpN (u)

N N

LF,,(H —Z(u( )hk)hk(x —Z(D x)hk,hk) (1.7)

(recall that hk(x) = 11(hk)(x)). The sum defining the Ogawa integral converges in

probability because the two other expressions in (1.7) converge.
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1.5.4 Comparison of Itfi-Ramer and Skorohod Integra-

tion

Let us first consider the problem of relationship between stochastic differentiation

in the sense of Gateaux and Malliavin. It will be used in comparing different types

of stochastic integration. This question was raised by Mandrekar and Zhang in

the concluding remarks of their paper [33].

Proposition 1.5.4 Let F E L2(X) and assume that %(F(x+th) — F(x)), h E H,

converges in L2(X) as t —-> 0. Then the Malliavin derivative D}?F exists and

coincides with the above limit.

Proof. We can apply the method of proof of Proposition 2.2. in [41]. The

following formula is valid for functions fm E HGm, m = 0, 1, :

I..If..)(x+eh)=i "7 5H.-
i=0 Z

I,-((fm(t1, 25,-, 25,11, tm), h(t,+1)...h(tm)))(x).

This can be justified first for functions fm of the form: fm(t1, ..., tm) = e(tl)...e(tm),

e E H, ||e||H = 1 and then for functions fm(t1, ...,tm) being a symmetrization of

e1(t1)...el(tp,)eg(tp,+1)...ek(tp,+m+pk) with p1 + +1);c = m and e1, ..., ek orthonor-

mal vectors in H. Finally one can use a convergence argument to get the above

formula for all f E H9m.

From this point we can proceed as in [41] with obvious changes.

[I

As an example for equivalence of SG and Malliavin differentiation consider

elementary processes ([41]) .
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Definition 1.5.8 A stochastic process u = {ut; t E T} on X is called elementary

if u is of the following form:

Mic) = 2:1 ¢j(61($),~ - .6N(:v))6j(t)

where 61,...,€N E X* and are orthonormal in H, w,- : RN _—-> RN (j = 1,...,N)

are smooth functions with all derivatives of polynomial growth.

Note. An elementary process can be considered as an H-va1ued random variable

onX.

Corollary 1.5.3 Let u be an elementary process. Then the Malliavin and SG and

Fréchet derivatives of u coincide,

Here e(x) = (el(x), ...,eN(x)).

Proof. The reminder in the form of Lagrange in Taylor series expansion of each

w,- is bounded above by a polynomial in ”x“, multiplied by a factor independent

of x and converging to zero as the increment converges to zero. Therefore the

reminder converges to zero in L2(X), hence Proposition 1.5.4 is applicable to each

of the random variables w,- (E) E L2(X). Assertion for process u follows.

Cl

Corollary 1.5.4 Let u E L2(X,H) be an H—valued, SG-Difierentiable random

variable. Assume that the following condition is satisfied:

1

Vic, h E H —((u(x + 5k),h) — (u(x), h)) (G — M)

e
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converges in L2(X) as e —> 0.

Then the Malliavin derivative Di"! (u, h)(x) exists and equals to (DGu(x)k,h) u

a.e. If SG—derivative DGu(x) is a trace class operator, then,

trDGu(x) = Z Dgflu, en)(x)

n=1

a a.e., for any {en}f;1 an ONB in H.

Proof. Existence of SG-derivative DGu implies that for all k, h E H,

(u(x + ck) — u(x), h)

E

— (DGu(x)(k), h) —> 0
 

in probability a. It follows by Proposition 1.5.4 that under condition {G-M) the

Malliavin derivative Di” (u, h) exists and

(DGUC’BWC), h) = DttIu, MCI?)

outside NW, C X with p(Nkfi) = 0.

Now the last statement of the Corollary follows because H is separable.

E]

Note. We do not claim that the Malliavin derivative of u exists or that it is a

trace class operator.

In view of the Corollary 1.5.4 we propose the following notion:

Definition 1.5.9 An H-valued random variable u E L2(X, H) will be called weakly

(G-M) difierentiable if u is SG diflerentiable and it satisfies condition (G-M).

We obtain our result on relationship between the It6—Ramer and Skorohod in-

tegrals as a conclusion from the above work.
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Theorem 1.5.5 Let u E L2(X, H) and assume that the Malliavin derivative DMu

exists and u is weakly (G-M) differentiable. Then the Malliavin derivative and

SG-Derivative of u coincide. If in addition, u E H — C’1 then the Malliavin and

H-Fre’chet derivatives ofu are the same. Consequently, iffor every x E X, DMu(x)

is a Hilbert-Schmidt operator on H, with E || DMu ||§i®2< 00 and u E H —C'1 then

Lu 2 Is(u) a.e. du.

Proof. Since for any k, h E H,

(DMUUCLh) = (DIWUXh) = Dim“) h) = (DGUW, h) II a-e.

we get the equality of derivatives. Equality of integrals follows from (1.3) of Propo-

sition 1.4.1 and (1.7) of Proposition 1.5.3,

[S(PNu) = LPN (u) u a.e.

with I3(PNu) —> Is(u) in L2(X) and LPN (u) —> Lu in probability.

1.5.5 It6—Ramer Integral as an Integration by Part Op-

erator

The idea to exploit an integration by parts formula in the problem of transfor-

mations of Gaussian measures on a Banach space was used by Bell in [2], [3] and

by Ustunel and Zakai in [56]. The question of absolute continuity of the origi-

nal and transformed measures was considered. Therefore it is of an interest to

know whether the It6—Ramer integral operator L satisfies the integration by parts

formula.
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Let us recall definition of Integration by Parts Operator (IPO) as in Bell [2],

however we use a different class of test functions.

Definition 1.5.10 A linear operator A : D —> L2(X,du), where D C HX, is

called an Integration by Parts Operator (1P0) on D for u if the relation

L(DF¢($).U($))II(d-r) = f, ¢(z)(Au)(rc)II(drv)

holds for all 0;on functions 45 : X —> R (continuously Fréchet H—Difierentiable

functions with the Fréchet derivative DF of polynomial growth in directions of H),

and all u E D for which either side of the above exists.

It will be useful to note that the Ito-Ramer operator L is continuous in the

norm

ll’ull2 = EllUlliq + EIIDGUIlimz- (1-8)

This follows directly from the proof of Theorem 1.5.3.

Theorem 1.5.6 The It6-Ramer operator L is an [PC on the closure in the norm

(1.8}, of the linear space of elementary processes in D(L).

Proof. We need to show that for any C501,, function (I) : X —> R and any u E D,

fX¢(w)Lu(w)II(dw) = / IDFIIx).qu))HIdH) (1.9)
x

where D is the closure in the norm (1.8) of the set of elementary processes in D(L).

Let PN = 25:, f). (a f). e P(X*), where {12.33:1 c X* is an ONB in H. We

begin with an elementary process

uiw(x) = Z; w,(e1(x)...eM(x))e,-(t).





Note that in the case of elementary processes,the Fréchet derivative and SG-

derivative coincide. We have the following expression for L[2,, (uM)(x)

 

LP~(UM)($) = g(U-WLfkkllekW) _I;(DGUI($)(fk)Ifk)H

= _ 231M“€33())(ez‘IfIcleII($ )

_ [2:22:12]: (g(x))(eiafk)H(ejafk)I-I

where e(x) = (e1(x), ..., eN(x)) for short.

We want to find the Ito-Ramer integral of uM , that is we need to find an L2(X)

limit of LPN (uM)(x) as N —-> 00. We have the following:

N M M

Eh; ;¢I(é)(€z', fk)ka — Eda-(5)632

M 00

= Eli: ¢i(é) Z (31" fk)ka}2

i=1 II=N+1

M 00

s M2;E{¢I(é) Z IeI.fI)HfI}2.
k=N+1

Each of the M terms in the latter sum converges to zero in L2(X). Also,

N M M a i M a i

_ a:(e(x))IeI. II)HIe.-, II)H — Z 3‘: (5(2))

M M awiw N

8$j(t‘3 $))21(e(iafk)H (eijk)H—(€II€I')H)

  

 

converges to zero in L2(X) since it is a finite sum of square integrable random

variables multiplied by non-randomfactors converging to zero. Therefore,

L(HM) : Z II,(H)H, — Z 8331(5). 

On the other hand,

(DF¢($)I W (93)) = 2(DF¢($)I ¢I(é(iv))eI-).



Thus it is enough to show the following equality:

3 I-

fX¢(m){¢I-(é(x))eI-(r) — a:i(é(:v))}u(dx)

=[x(DFquv),¢I(é($))€z')#(d$)-

 

By Proposition 1.5.1, for K = span{e1, ..., 6M} and K, its closed complement

in X from the Proposition, we have,

— 8‘:IIII))}IIIII~)
i

 l. IIcc)III.IeIx))eI-Ix)

 

M

Z I H IIIHH + Z eI-IIH + II)eI){II.-IéI:cH + “))H-(II + IX)X j=1

8 I-
— 51::(e(xk + $K))}#R(d$f<) ® WWW)

M

= fl? [RM ¢<$K + jZ21ajejfllpilozla"'IO‘M)O""

8 I-_ 8: (H1, HHHIHIdamI-IIIIH)

where a = (a1, ...,aN) E RM, xx :2 29:1 e,v(x)e,-, x1? = x — xK and 7M is the M

dimensional Gauss measure on RM. Using the fact that the divergence operator is

an IPO on RM ([20]) we get, that the last expression equals to,

M

f1? /RM(DF¢($R + 2 (13'8le ¢I(0IiI ---I aMleIl’YM(d&)Mk(d$R)

j=1

= LIDFIIH),I,IH.II), eHIx))e.-)IIIII~)-

Hence we have formula (1.9) for the Ité—Ramer integral L and the class of

elementary processes. Next, if uM ——> u in the norm (1.8), then because the

operator L is continuous in this norm we get LuM —> u in L2(X). This implies,

/¢L’U,Md,UI—)/ quudu and f(DF¢,uM)du—>/(DF¢,u)du.

X X x X

This completes the proof.
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D

The problem is to show that the closure, in the norm (1.8), of elementary

processes in D(L) coincides or contains the class of processes introduced in Theo-

rem 1.5.3. We do not investigate this question here, however we have one simple

Corollary (due to the IPO property of the Skorohod integral ([33])).

Corollary 1.5.5 L is an [PC on the class of processes u E L2(X,H) satisfy-

ing assumptions of Theorem 1.5.5 when the class of test functions is restricted to

elements Ip for which DMIp = DGIp.

Notice, that the IPO property of the Skorohod integral involves the Malliavin

derivative DM which is the adjoint operator to the integral operator of Skorohod.

Our work indicates that, in the sense of Theorem 1.5.6, the adjoint operator to the

It6-Ramer integral L is the SG-Derivative DG.

1 .6 Examples

1. Elementary processes. Let u be an elementary process (see Definition 1.5.8)

of the form: ut = Zj-Vzl ij(é)e,-(t). Then u is Ito-Ramer integrable and

N N ,

Lu = XIII-(ea.- — Z Z—fje)
j=1 j=1

(see the proof of Theorem 1.5.6). The Ogawa integral of u also exists, 6°(u) =

9:1 lpj (5)63”

2. Brownian motion. Let {Bt,t E [0,1]} be the standard Brownian motion of

Example 1.2.1. Then the process ut 2 f5 Bsds is an H valued stochastic process,

where H is the RKHS of Brownian motion. The Ogawa integral of u is given by

°° °° 1 1 , den

6°(u) = ZIu.eI)I(e.) = ZIB.e:.)I.II,II f0 eidB = ,3? (e. = a)
71:1 11:1
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as proved in Example 3.2 [52] (the above formula is correct for any ONB {e,,}f,°=1

in H).

Compute the Gateaux derivative of u in the direction of h E H. Since u(x +

h) — u(x) = f0 h(s)ds, we get that DGu(x)h = ID h(s)ds independently of x E X.

Operator DGu(x) on H is Hilbert-Schmidt because it has the same Hilbert-Schmidt

norm as the kernel operator on L2([0, 1]) given by a kernel 1[o,t](S)- Thus it is Ito-

Ramer integrable by Theorem 1.5.3. By Example 3.2 in [52]

N

IIIPNDGIIII» = ZI/ en(s)ds, III-))H
n=1 0

converges as N -—> 00 independently of the choice of an ONB {e,,},j’,°=1 C H. For

the ONB consisting of indefinite integrals of the Haar functions the result is easy

to obtain and it is equal to %' Thus Lu 2 %B12 — %. Ité-Ramer integrability of u

also follows from Corollary 1.5.2 since Du(x + ) : H —> H8’2 is continuous (it does

not depend on h). Hence, u : X —+ H is an H — G1 map. The Skorohod integral

I3(u) is the same as the Ito integral f01 BtdBt (see Example 1.3.2). Hence,

3 1 1
I (II) = L(u) = 53? — 5.

Notice that all the above could be also justified in a similar way by use of

Ramer’s and Kusuoka’s results in view of the relationship given in Examples 1.3.2

and 1.3.1.

3. Reversed Brownian motion. Let us now consider the reversed Brownian

motion process B1_t. By Theorem 1.5.3 and arguments as in (2) above, the process

ut 2 f5“ Bl_sds is Ito-Ramer integrable. Also the Skorohod integral I3 (u) exists.

The Malliavin and Gateaux derivatives of process u coincide and are given by

Du(h) = f6 h(1 — s)ds. Theorem 1.5.5 implies that Lu 2 Is(u).

Example in [52] shows that u is not universally Ogawa integrable in the sense

of [52]. Note that convergence in [52] is in L2(Q).
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4. Ogawa non-integrable process. The following example in [44] shows that

given any ONB in H one can construct a process that is not Ogawa integrable

with respect to this basis. Let

u. = i: n—Z-eIIt)sIgnIvrIe.)) I; < p s 1).

then u E L2“), H), but the series defining 6°(u),

i —sIgnIvrIeH))IrIe.) = i iIIIe.)I
n? n?

n=1 n=1

diverges a.e.

5. An example of a process with an infinite Wiener Chaos expansion.

Consider the general case of a Gaussian process X = {Xh t E T} defined on a

probability space (9, f, P) and the associated triple (i, H, X). Let

M
8

In(el(t1)...e1(tn))en(t)“It 2

3 ll H

7III(II(€1))6II(I)

II

M
8

fi
l
e

fi
l
e

a
r
a
-

3 ll H

where {en};',°=1 C H is an ONB of H, ’Hn’s are Hermite polynomials normalized as

in Section 1.3.1.

(a) u E L2(Q, H) iffp >2- ,since

00 l 1 0° 1

EHUHH=E§fi57HIZIW7H3(11)):231335'

(b) u is Ogawa integrable with respect to ONB {e,,}f,"=1 if p > %

We have

glIu,e.)IIe.)=:_:n1,«1va(6))«Ie.).

We need to check when this series converges in probability. Since (excluding

the first term) the series consists of centered, integrable random variables adapted
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to the filtration .71}, = o{7r(e1),7r(e2), ...,7r(e,,)}, (n 2 1), f0 = {0, (2}, it converges

P-a.e. on the following set (see Proposition IV.6.2 in [38]):

Q0 2 {:Eflnpan—lIHM(61))”(en))2lfn—1}<OO}

°°11

= {:1fi—Hz61)) < 00}.

But

El: i‘1!"l'LI2I(7r(61))}= Z 512; < 00,

therefore P(Qo) = 1, and

6::Iu)= i;—j——§IIH(rIe))IIe.).

(c) u E D(IS) iff p > %. We need to show L262) convergence of the series defining

the Skorohod integral of u. This can be proved as follows:

236+ 1)III3—field)...eIIIH)eHII))II§,H..I

1:"?p1”n:1(I,(II)...H1(I.,)H.,,(I) 

n

+ Z 61(t1)...61(t,_1)el(t)el(t,-+1)...e1(tn)e,,(t,))“2,8,“,qu

—_2 + 272—2——1;.||e1 616IIIIH®IH+I)— 2 +

n=2 n=2 E; I

Second equality follows from orthogonality of components under norm.

Also, by property (3) of Multiple Wiener Integrals, we get

Iu)=5:fifiw(6))Ir(eI) — 1 = 62(10-

(d) Malliavin derivative.

(d.1) at E D(DM) with DMut E L2(X,H) for t fixed, ifp Z 5
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For the above to be true the following series must converge.

°° 1 1 °° 1
1 __ 2 = 2

Ennllnp ,__n!{el...el}en(t)||H@n "i=1 n2p—16n(t) < 00,

because 22le e,,(t)2 < oo (en(t) are the Fourier coefficients of C(, t) in H).

(d.2) u E D(DM) with Du E L2(Q, Hm) iffp > 1.

Indeed

oo 1 1 °° 1

!—— 2 n = —< .£77.77. “n? Mel 618nI|H®( +1) 7121 n2P—1 00

Thus for % < p S 1, u E D(Is) and can be Ogawa integrable with respect to

some basis while Du ¢ L2(X , H®2).

(e) u E D(DG) ifp > %.

Now we have to restrict our considerations from general probability space (Q, .77, P)

to the triple (2, H, X) and Kolmogorov functional representation of the process X.

This is because the Ito—Ramer integral requires linear and topological structures

on a probability space. Moreover, let us assume that {en}f,°=1 C X" C H.

Fix a: E X. Let 7" E (—1, 1). Denote

1 1

Em

We will use the following estimate for Hermite polynomials (see 7.125 [53]):

UH?) = ’Hn(el(:z: + rh))en(t).

H2n(t) = (—1)"(2n—1)!!et2[c03(/2n+ét+0(1/{‘/fi)]

H2n+1(t) = (—1)”(2n—1)!! 2n+let2[sin(/2n+gt+0(l/\4/R)]

where 0(t) denotes a quantity such that 0—9 = 0(1) and 0(1) denotes a quantity

which is bounded as t —> 00. Note that expressions:

((217. — 1)!!)2/(2n)! and ((Zn —1)!!)2(2n +1)/(2n + 1)! are identical and are of the
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__1.
2order n as n —> 00. Hence,

I i: gfiunIelIx) + relIh))enIt)ni. s 0(1) i: :1—

Thus u"(-) : (—1,1)—) H and Zf=1u”(r)—> u(x + Th) in H for every 7‘ E (—1, 1)

and p > i.

By properties of Hermite polynomials, a.e. [u],

 DG(%—\/l;l_—!7{n(e1)en)(x+rh)(h) = dug)”

1 1
.: fi—nTn’Hwfiefi )+rel(h))(el,h)en

so that du”(r)/dr : (—1, 1) ——) H is continuous. Furthermore,

if iinzflf.Ie(as)+ relIh))Ie1, h)2 s 0(1) SE —,,—_1—,—+—.
2 I

n=171p72 n=171

and the last series converges for p >3— .Hence the series 20:1 dun (7") /dr converges

uniformly for r E (—1,1). Therefore, with the same proof as for a series of real

valued functions, a.e. [a],

 : f: n if: $%NHn—1(€1($))(€1ahlen

for p > 2. Note that for p > %, a.e. [,u],

(DC I )h)( ) DMut(x)h = i -n1—P%an—1(ex($))(euh)en(t)

(f) By Theorem 1.5.3 11 E D(L) for p > 1.

Indeed, it E L2(X, H) (proved in (a)) and Dan E L2(X , H‘32) follows from

E{||DGUII%®2} = wig—5712113.(61)}

 

11121971.

0011

= E < 00.

2p—1

n=171
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Now assume that p > 4; Then Dan E H‘g’2 a.e. [,u]. Indeed, ||DGu|[H®2 =

°° ——n27-l,2,_1(e1(a:)) converges as in (d.2). Also condition (G-M) holds, be—
n=1 ",2? 71!

cause, as noticedin (e), we even have equality of derivatives. Finally, D. (u, h)H E

L2 (X , H), in view of the following equalities:

EIID.(u,h)II% = En:$%nun1(61())Ie...h)Helu'2

 

Also 21. E D(IS). As it can be seen from (1.3) in the proof of Theorem 1.4.1

and (1.7) in the proof of Proposition 1.5.3, u E D(L). The above reasoning is more

refined than that in [59].
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Chapter 2

Kinematics of Hilbert Space

Valued Stochastic Motion

2.1 Introduction

In this Chapter we study two topics. First, we want to adopt Nelson’s intuitive

ideas on kinematics of stochastic motion to Hilbert space valued stochastic motion.

The results we obtain show strong relation between Nelson’s regularity assump-

tions for a diffusion and some properties of Doléans measure of some martingale

associated with the diffusion. Next we can see that the Brownian motion process

that arises in this analysis plays similar role as its finite dimensional counterpart

in the analysis of finite dimensional stochastic motion. For this, it is necessary

to modify the stochastic integral of Metivier and Pellaumail [35] with respect to

2—cylindrical martingales. The properties of Doléans measure are used here exten-

sively, which again emphasizes the role of Nelson’s conditions.
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2.2 Hilbert-Schmidt and Trace Class Operators

on Hilbert Space

In the previous Chapters we identified tensor product of Hilbert spaces, H8’2, with

Hilbert-Schmidt operators T on H by (Th, 9);; = (T, h ® g)H®2. Now we want to

discuss an analogous identification connected with trace class (or nuclear) operators

on H.

Let us think of H as a unitary space and take H (29 H, a unitary space, with the

usual scalar product defined by (h ® 9, k 8) l)H®H = (h, k)H(g,l)H. Now H”, as a

tensor product of Hilbert spaces, identified with Hilbert-Schmidt operators on H,

is the completion of H (X) H in this usual scalar product.

For any continuous, linear operator T on H with an N dimensional range (N =

1, 2, ...), there exist orthonormal bases {en};°,°=1,{fn}:°=1 C H such that Vh E H,

N"

Th = E ,\,,(h, en)Hf,,, A, > 0,72. = 1, ...N.

n=1

Let us identify such an operator T with the element 2,721 An(en ® fn) E H I8) H

and let us define a norm in H 8) H by

N N

ll 2 Men ® fn)“1 = ||T||1 = Z An
n=1 n=1

where HTH1 denotes the trace class norm of the operator T. The Banach space

H (8)1 H is the completion of the unitary space H <8) H in the norm || - [[1. Since the

completion in the trace class norm of the space of continuous, linear operators on

H with finite dimensional ranges is precisely the space of trace class operators on

H, any element of H ®1 H can be uniquely identified with a trace class operator.

Note that for 9 I8) h E H (8)1 H we have

llg®h||1 = llg®hlln®2 = llgllnllhllH (2-1)

49



and in general || - ”L(H) g [I - “Ham 3 || - [[1. For more details we refer to [19] and

[35].

Identification of the spaces H(8)1H and H8’2 with subspaces of the space of linear

operators on a Hilbert space H allows to define symmetric and positive elements

of H (8)1 H and H®2 (see [35]).

Definition 2.2.1 We say that an element b E H (8)1 H, or b E Hm, is sym-

metric (positive) if the associated linear operator is self-adjoint (positive), that

is if (bh,g)H = (h, bg)H, i.e. b = b* where b‘“ denotes the adjoint operator,

2.3 Kinematics of Stochastic Motion

Let H be a separable, real Hilbert space. We assume that {Xt}t61, I 2 [0, T], T >

O, is an H-valued stochastic process defined on some probability space (52, .7, P)

and adapted to an increasing family of o-fields {Ftheh where .7, C .73, Vt E I . For

simplicity we always assume that X0 = 0. Let us recall that a stochastic process

{Xt}t€1 is an H-valued martingale with respect to an increasing family of o—fields

{ft}tEI if Vt E I, X, E L1(Q,}"t,H) and Vs S t, E(Xt|f's) = X, P—a.e.

We introduce, as in Nelson ([36]), the following regularity assumptions on the

stochastic motion X, and, mostly using Nelson’s techniques, we study their conse-

quences.

(R0) t )—> Xt is continuous from I to L1(Q, H)

(R1) Condition (R0) holds and

_ . Xt+A — Xt

BX. — g%{E(—|ft)}
A

exists in L1((Q, E), H) and t +—> DXt is continuous from I to L162, H).
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Note. DXt defined in condition (R1) can be interpreted as the mean forward

velocity.

With an (R1) process X we will associate the following process:

t

Y, = X, — / stds, te I. (2.2)
0

We will introduce one more regularity condition for a process Y, which may or

may not be associated with an (R1) process X.

(Rm)

__ 8’2

AV, A IE}
 

exists in L1(Q, 7'}, H (8)1 H) and t +—> If”, t 1—> 02(t) are continuous mappings from

I to L1(SZ,H®1 H).

(R23) Same as condition (R24) but with HQ92 replacing H (8)1 H.

We will now show that the mean forward velocity has a similar property as

its analogues: the velocity in a physical phenomenon of motion and the mean

forward velocity in stochastic motion in a finite dimensional space. The latter was

investigated by Nelson in [36].

Theorem 2.3.1 Let {X,hel be an (R1) process. Then for any a g i) with 11,1) E I

E{x, — Xulfu} = E{/ stds|f,}.

Proof. Note that by assumption t I——> Xt and t +—+ DXt are continuous mappings

from I to L1(SZ, H) and so is t +—> f3 DXsds.

Let e > 0 be arbitrary. We will prove that

J = {t E [um]: W s s s t ||E{X, — Xu|fu}

_E{/8 Derrlfu}||Ll 3 5(3 _ ,0}
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is a closed subinterval of [a, v] C I.

Clearly J 75 (I) (u E J) and J is an interval. Denote Tm = sup{t E J} and

we need to show that Tm E J. Let 51 > 0 be arbitrary. Then 35 > 0 such that

VT", — 6 S s g Tm,

51 Tm 51

IIXTm—Xsnm-g and n/ DxrdrnL.<-,-,

by continuity of t )——> X, and t +——> jot Derr.

Hence, for s E J,

Tm

||E{XT... — Xulfu} — E1/ DerrlquIL.

S ||E{XTm — XIII-7:11} "" E‘IXS — XuifuiliLl

+ ||E{X, — Xum} — E{/ DX.dr|f-,,}||L,

Tm

+ HEI/ DerrlquIL.

51

S 2 +e(s—u)+€2—1§el+e(Tm—u).

Since the above holds for arbitrary 51 > O, we get Tm E J.

Now it is enough to show that Tm can not be smaller than '0. If Tm < I) then

377 > 0, Tm + 77 S ’0, such that

||E{XTm+A — XTmlfu} — EfADXTmIquILI

5

S ”E{XTm+A — XTmlme} — E{DXT,,,}||L1 < 2A

and

Tm+A 5

||ADXTm — / Derr||L1 < 5A
Tm

for 0 < A g 77.

First estimate follows from definition of mean forward derivative and contractivity

of conditional expectation (Theorem 4, Chapter V, [15]). Second estimate is a
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consequence of the fundamental theorem for Bochner integral (Theorem 9, Chapter

II, [15]), in view of continuity of the mapping t )—) DX,.

Therefore

Tm+A

“axe... — mm — EI/ wanna

Tm+A

s IIEIXTm+A — XTmln} — E{/T Derrlf-quL.

+e(Tm — u) S e[(Tm + A) — n].

Thus Tm < Tm + 77 E J which can not happen.

Next theorem is an immediate consequence of Theorem 2.3.1.

Theorem 2.3.2 Let {X,},61 has property (R1), then Y, = X, — f5 DXsds is an

H-valned martingale.

We also have the following connection between the processes Y and 02.

Theorem 2.3.3 Let Y be as in Theorem 2.3.2 and has either property (RN) or

(R22). Let u S '0, 11,2) E I, then

E{(Yv — Yuma} = EI/v rams}.

Proof. Because of the martingale property of Y,

E{(Yv - Yu)®2|fu} = 53fo2 — Yu®2|ful

and we are exactly in the same situation as in Theorem 2.3.1, namely t +—) Y,®2,

t H DY,®2 = 02(t) and t I—-> f3 02(s)ds are all continuous mappings from I to

either L1(SZ, H ®1 H) or L1(Q, H592). Hence the assertion follows from the proof

of Theorem 2.3.1.
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Corollary 2.3.1 Let Y and 02 be as in Theorem 2.3.3 but we restrict ourselves

to the case of (R21) processes only. Then {||Y,||§,},€T is an {R1) process with

DllYtlliz = “772(10-

Hence

E{||Yv||iq — manila} = E{/u woman},

forug’v, u,vEI.

Proof. With an element h 8) h E H <8) H we associated a nuclear operator b

and the following holds:

|tr(h ® h)|=lt7‘b|S||b||1=llh ‘8 hl|1= llhlliz,

the inequality being valid for any trace class operator. Therefore

(Y,+A — Y2)” 2
A IE} — 0 (WM

(Y,+A — Ytlm 2

A IE} '— 0 (75))”

_ Y 2

A "'Hla} —tr02(t)|}

Y 2 — Y 2

= MEI“ ”M'HA “ "'Hla} —thIt)nL.Im

 

E{IIE{

 

Z E{ltr(E{

= E{|E{ “Y“ 

 

The last equality follows from martingale property of Y. Since Y is an (RN)

process the last expression converges to zero as A \, 0. Also, because |trT| S ”T“,

for a trace class operator T, the mapping t I——> DHY,||%, = tro2 (t) is continuous from

I to L1(Q). Finally, the mapping t +—> [|Y,||%, from I to L1(Q) is continuous because

EU HYtHIi—“YSHIJH = E{| ||K®2||1—||Ys®2||1|}

< E{||Yt®2-Ys®2||1}





and the mapping t l—> Yf’2 is assumed to be continuous from I to L1(§2, H (8)1 H).

The last assertion in the Corollary follows from Theorem 2.3.1.

B

One can show that Nelson’s requirement on existence of the process 02 can be

expressed directly in terms of process X, namely one can assume convergence of

E{%(X,+A — X,)®2|f,} either in L1(Q,H (8)1 H) or L1(Q,H®2). Because in this

case, both X‘g’2 and Y‘82 are integrable and ”h (8) hIIH®1H = IIhIIH®2 = “h“?! (by

equality (2.1)), adding an extra assumption on DX, to be in L2 (9, H) is reasonable.

Let us formulate our assertion.

Theorem 2.3.4 Assume that {X,},61 and {Y,},€1 satisfy assumption (R21), where

Y, = X, — f0t DXsds. We also require that the mapping t I-—> DX, be continuous

from I to L2(S2, H). The the following statements are equivalent:

(Xt+A — th®2

A
(1) El

(2) E{ (YHA; Yt)®2 [77,} —> 02(t) in L162, H (8)1 H) as A ‘3, O.

 

IE} —> W) in L162. H o1 H) as A \. 0.

 

If the limits exist then B(t) = 02(t) P-a.e. The above remains correct if the as-

sumption (Ru) and the space L1(Q, H (8)1 H) are replaced with assumption (R23)

and space L1(Q, Hm).

Proof. Consider

(Yt+A — Ytlm

t+A

= (Xt+A — th®2 — (Xt+A — Xt) ‘8 t DX,

t+A t+A

— wads e) (x,+A — X,) + ( DX,)®2.
t t
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Regardless of (l) and (2),

1 t+A W 1 t+A @2

X“ stds) =A(Z/t stds) +0

in L1(Q, H (8)1 H) as A —+ 0. Indeed,

I t+A m 1 t+A 2

E{||A(-A—(/t DX.ds) 11mm} = AE{||Z i stdsnfl} —+ 0

since the mapping t —> DX, is continuous from I to L2(Q, H). Now consider the

second term in the expansion of (Y,+A -— Y,)®2. Under the assumption (Rm) on X

we have by equality (2.1)

1 t+A

IEIHIXHA — XI) <2) (X /, DX.ds)HH®.H}>2

1 t+A

s EIIIX... — xtnimnz /, stdsllé}

1 t+A

= EIHIXHA — XI)®ZIIH®.H}EIHZ ft DXsdslliJ}

and, as A \, O, the first factor converges to zero in view of the assumption (R2,)

while the second factor converges to E{||DX,||}°1,} because the mapping t )—> DX,

is continuous from I to L2(Q, H). The same argument works for the third term

in the expansion of (Y,+A — Y,)®2. Hence the equivalence of ( 1) and (2) follows by

contractivity of conditional expectation. The last assertion of the Theorem follows

from equality (2.1).

2.4 Stochastic Integration in Hilbert Space

Stochastic integration in Hilbert and Banach spaces is a subject of the monograph

[35]. We recall here the isometric integral and we explain why it is not a sufficient
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tool for solving the problem of recovering the noise from stochastic motion in

Hilbert space. Then we recall the concept of 2~cylindrical martingales and, using

the main ideas in [35], Chapter 16, we introduce a stochastic integral with respect

to an H-valued (R21) martingale. This stochastic integral admits a wider class of

processes as integrands than the isometric integral and the cylindrical integral of

[35], Chapter 16. We use the results of this section to give a partial answer to the

question of the role of Brownian motion in stochastic motion in Hilbert space.

2.4.1 General Assumptions and their Consequences

In what follows we always assume that the filtration {Jihe1=[0,T] satisfies usual

conditions, i.e. that:

(1) The filtration is right-continuous, i.e. Vt E I, f, = 03),.733.

(2) The probability space (9,75%, P) is complete and Vt E I, .7, contains all sets

of P—measure zero, which belong to .7}.

Two processes X and Y are said to be P-equivalent if P({w : Elt,X,(w) 74

m2») = o.

A stochastic process X is called cadlag (in French: continue ‘a (_iroite et admet

une limite a. gauche) if Va) E Q the sample path t +—-> X, (w) is right continuous and

has left limits.

Definition 2.4.1 . We define M%, the space of H~valued, cadlag, square inte-

grable martingales (i.e. E{||MT]|%{} < 00, which implies that

sup,€1E{||M,||§,} < co) and we identify P-equivalent processes. In the case of

H = R we will write M%(R) to avoid a possible confusion.

As it is shown in [35], Section 10.1, M? is a Hilbert space with a scalar prod-

uct defined by (M, N)M? = E{(MT,NT)H}, because there is a one-to-one cor-
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respondence (up to P—equivalence) between H-valued, cadlag, square integrable

martingales and elements of L2 (S2, .Fp, H).

Remark 2.4.1 If Y, = X, — Id DXsds with X an (R1) process then there exists

a version Y’ of the process Y {i.e. Vt E I, P(Y, = Y,’) = 1) which is cadlag.

Moreover, if E{||YT||§,} < 00 then Y’ E M? and Y and Y’ are P-equivalent.

Indeed, Y is an L1(Q, H) continuous martingale and therefore it has a cadlag

version by Theorem D-6 in [50].

In view of the last Remark, from now on we assume that Y, = X, — f5 DXsds

is a cadlag martingale and if Y is an (Rm) or (R22) process then Y E M? follows

from equality (2.1).

2.4.2 Doléans Measure of (R2,) Elements of M],

First we recall basic definitions and properties of Doléans measure in general.

Let us recall our general assumption that {X,},EI=[0,T] is an H-valued stochastic

process, where H is a separable Hilbert space.

A set A = F x (s, t] C {2 x I, where F E f, is called a predictable rectangle

and the collection of predictable rectangles is denoted here by 3?. The o-field

generated by ER is called the o-field of predictable sets and denoted by ’P. A

stochastic process is called predictable if it is 73 measurable.

Assume that for a process {X,},EI, X, E L162, H), Vt E I. For each A =

F x (s,t] E 3? define

«m=mMmer.

If a extends to a o-additive, H-valued measure on ’P, then it is called Doléans
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measure of process X. The following results on Doléans measure are proved in

[35], Sections 2.6 and 14.3.

Theorem 2.4.1 Let M E M%, i.e. it is a cadlag, square integrable martingale

with values in a separable Hilbert space H. Then:

(I) {“Mtllirhel has Doléans measure, which will be denoted by 04an.

(2) {M92},61 has Doléans measure with values in the set of positive, symmetric

elements of H (X), H (see Definition 2.2.1). We will denote this measure by aM.

Moreover,

O‘IIMII = th = lam!

where | - | denotes variation of a measure.

{3) There exists a unique, up to allMll equivalence, predictable H(8)1H-valued process

QM, such that

aM(G) = [G QMdaHM”, voe P.

The process QM takes its values in the set of positive, symmetric elements of

H (X), H and

ter(w,t) = llQm(w,t)llH®.H = 1 0-6- O‘IIMII-

Now we will see how Nelson’s regularity assumptions interfere with properties of

Doléans measure. Because Doléans measure of an M? martingale takes its values

in trace class operators on H, from now on we restrict our considerations to (Rm)

processes only.

Theorem 2.4.2 Let X be an (R1) process and Y, = X, — f5 DXsds be an (R2,)

element of M2}. Then, with the notation of previous sections:

(1) There exists a jointly f (8) 3(1) measurable versions of D||Y||§1 and 02.
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Let us further consider these jointly measurable versions and let us denote these

versions by the same symbols. Also let us denote by EP®A expectation with respect

to the measure P <8) A, where A is Lebesgue measure on I.

(2) Doléans measure any” of the process “Y”2 has density

Ep®,\{D[|Y|]%,|P} = Ep®,\(tr02[P} with respect to the measure P <8) A,

dam = Ep®,{tro2|P}d(P s A).

(3) Doléans measure ozy of the process Y‘g’2 has density Ep®,\{02|P} with respect

to the measure P (X) A,

Clay 2 EP®A{02]p}d(P ® A).

and its density, Qy, with respect to the measure any” satisfies the following equa-

tion:

02 = Qytro2 a.e. P (8) A.

Proof. (1) Note that the mapping t )—> 02(t) is continuous from I to L1 (S2, H (8),

H) and hence, the mapping t H tr02(t) is continuous from I to L1(§2). Therefore

(1) follows by Theorem 1.2 in [16].

(2) For predictable rectangles F x (s, t] E 3? we have

O‘IIYII(F X (8, 15]) = E{1F(||Yt||i; — Ill/HIE}

= E{1p f: tr02(r)dr}

= foM ”0201(1)? (g) A)

The expressions at the beginning and at the end of the equality, both extend to

measures on P and these extensions agree on generators, 3?, of P, hence they are

identical.
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(3) An analogous equality as in the proof of (2) holds also here and the same

extension argument can be applied in this case to yield

day = Ep®,\{02|P}d(P <8) A).

Now, we have the following situation: ay << any” < P (8) A and therefore

day = day dallYll

W” 69 A) danvu 40’ <8 A)

Indeed, let {h,,}f,°=1 be a dense subset of H. Denote

 

day K. 2 day daily”

d(P ® A), dally" d(P ® A)

 0 =

and define

A, = U{((9 — n)h,,,hm),, > 0}, A_ = U{((6 — n)h,,,hm)H < 0}.

Because

fA ((9 — thn, hmlHdUD 69 A) =/ ((9 — K.)h,,, hm)Hd(P 8) A) = 0

we get that PIX) A a.e. Vn,m = 1, 2..., ((6’ — s)h,,, hm)” = O, implying I9 _-: It P®A

a.e.

2.4.3 Inadequacy of the Isometric Stochastic Integral

We recall the isometric stochastic integral of Metivier and Pellaumail [35] with

respect to martingales from Mg. We begin with defining the class of integrands,

however we will restrict ourselves to processes with values only in linear operators

on H. For a slightly more general case of operators from one Hilbert space H to

another Hilbert space K we refer to [35].
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According to Theorem 2.4.1, with a martingale M E Mg, we can uniquely as-

sociate predictable, H ®1 H-valued process QM. We can think about QM as taking

its values in the space of trace class operators on H using the usual identification

of Section 2.2. Since the values of QM are actually self-adjoint, positive operators,

there exists a square-root, denoted by Q32, which is a Hilbert-Schmidt operator

and is defined by Q12.” 0 Q15” 2 QM.

Definition 2.4.2 Let M E M? We call L*(H,P,M) the space of processes X,

the values of which are (possibly non-continuous) linear operators on H, with the

following properties:

{1) For every (w,t) E Q X I, the domain D(X(w,t)) of X(w,t) contains Qf],(H).

{2) For every h E H the H—valued process X o Qifih) is predictable.

(3) For every (w, t) E Q X I, X(w, t) o Qifiw, t) is a Hilbert-Schmidt operator and

_1_

[W “X o Qiuim < oo.

Proposition 2.4.1 For every X, Y E L*(H,P, M) the process X 062M oY* takes

its values in trace class operators on H, it is predictable and

/ tr(X o QM o Y*)da“M” < 00.

9x1

The bilinear form (X, Y) +—> fgxltr(X o QM o Y*)doz"M” is a scalar product on

L*(H,P, M) and for this scalar product this space complete.

A process X is called elementary if it is of the following form:

X(w,t) = fail/41'0”) t) (2.3)

i=1

where u,,i = 1, ..., n are continuous, linear operators on H and {A,-},?=1 C 5R.

Note. We will always assume that if A, = F,- x (3,, t,], A,- = F, x (3,, t,] and i ¢ 3',
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then (3,, ti] 0 (Sj, tj] = (b by taking more refined partition of I if necessary.Observe

that elementary processes are in L*(H, ’P, M).

Notation. The closure of the space of elementary processes in L*(H, ’P, M) will

be denoted by A2(H,’P, M). Let M E M? The isometric stochastic integral

is the unique isometric linear mapping from A2(H, ’P, M) into Mg, such that the

image of X = 1Fx(s,,]u, for every predictable rectangle F x (s,r] and continuous

linear operator u E L(H), is the martingale {1p[u(MMt) — u(MsAt)]}t€;.

We conclude this section with an example motivating extension of the isomet-

ric stochastic integral. Nelson’s idea to recover the noise from stochastic motion

described by a process X was to compute

t

Wt 2/ o_1(s)dYs.

0

Under some conditions the process W turned out to be a Brownian motion. Also

the stochastic motion X would satisfy the following stochastic integral equation

t t

X, =X0+ / DXSds+ / o(s)dWS
0 O

1 existed and were an admissible(see Paragraph 11 in [36]). In our case, if 0"

process for the isometric stochastic integral then we would get Wt = f0t o‘1(s)dY, E

M? However this does not happen and we give an example explaining why the

isometric stochastic integral is not a sufficient tool for Nelson’s technique.

Let us make some regularity assumptions about the process 02.

Definition 2.4.3 We will call the process 02 regular if.

(1) 02 is a predictable process which takes its values in positive, self-adjoint ele-

ments ofH ®1 H.
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(2) V(w, t) E QXI all eigenvalues An(w, t) of 02(w, t) are strictly positive, An(w, t) >

0, n = 1, 2...

Thus for a regular process 02, for every (w, t) E Q x I, there exists an orthonor-

mal basis {hn}f,°=1 C H such that

02(w,t)(h) = Z A..(w.t)(h, h..(w.t))Hh..(w.t). Vh e H
n=1

with An(w,t) > O, n = 1,2..., 230:1 An(w,t) : ||02(w,t)||1.

Also, there exists the square-root of 02, denoted by a, which is a Hilbert-Schmidt

operator (see [35]) and has the following representation:

0(h) = E @(h, h,),,h,,, Vh e H

n=1

(we will usually drop the dependence on (w, t)).

2

Note. From now on we will always assume that the process a is regular.

The generalized inverse of o ([32]), denoted by 0‘, is defined by a composition

P[K6,(a)]1 o 0‘1 o Pcl(Ran(0))v where P[Ke,.(o.)].1. and PCNRGMU» are respectively projec-

tions on the orthogonal complement of the kernel space and on the closure of the

range of o and 0—1 is the inverse relation to the operator 0. Note that because 02

is regular, cl(Ran(o)) = H. Then 0‘ takes the following form:

OO 1

_ h = —— h hn hn Vh R .
0’ ( ) ;m( a )H 6 (171(0)

It follows from Theorem 2.10, Corollary 2.13 in [32] and regularity of 02 that o

and o‘ are predictable processes. By Theorem 2.4.2 we have

0.2

 
Qy

tro2
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Hence, D(o'(w, t)) D Ran(o) = Qé(H).

Moreover, a" 0 Q; is a predictable process, so that requirements (1) and (2) of

Definition 2.4.2 are satisfied. However (see (2.12) in [32]),

1 1 1
1

0—0 §=———o’oo=——P era =—

QY x/tro2 \/tro2 [K ( )li x/tro2

is not a Hilbert-Schmidt operator unless H is finite dimensional. Thus 0‘ ¢

A2(H,’P, Y).

IdH

2.4.4 Cylindrical Stochastic Integration

We learned in Section 2.4.3 that the requirements imposed on integrands by the

isometric integral are too restrictive if one wishes to recover the noise from a

stochastic motion in a Hilbert space by using Nelson’s technique. We want to

preserve an (R21) martingale as an integrator, therefore our primary goal is to

increase the class of integrands, to include the process 0‘. Failure of the isometric

stochastic integral in Nelson’s procedure is due to non-existence of a standard

H-valued Brownian motion. In order to realize a Brownian motion process with

covariance associated with an identity operator on H one has to abandon H-valued

processes. It turns out that one can solve this problem with help of cylindrical

processes. It is enough for our purposes to study 2—cylindrical H-martingales,

with H - a separable Hilbert space. For the full theory we refer to [35]. Even

though we are mainly interested in stochastic integration with respect to an (Rm)

martingale, now treated as a 2—cylindrica1 H-martinga.le, eventually we want to be

able to integrate with respect to cylindrical Brownian motion. Therefore we recall

the definition of stochastic integral in full generality.

Definition 2.4.4 (1) A 2-cylindrical L2(SZ,.7:)-valued H~random element (I is a

continuous linear mapping from H to L2(Q, .7).
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(2) We call {Mt}tEI a 2- cylindrical H—martingale if each Mt is a 2—cylindrical,

L2 (9, ft)-valued H—random element and Vh E H the real valued process {Mt(h)}t€1

is a martingale relative to {E}t€[.

Note. The space of 2-cylindrical H-martingales can be identified with the space

L(H, M?(R))-

Next we will recall definition of the quadratic Doléans measure of a 2-cylindrical

H-martinga1e.

Definition 2.4.5 For a 2-cylindrical H-martingale M, the quadratic Doléans

function dM is the additive,(H (8)1 H)*-valued function on 3? defined by

(1?: WW X (s, 75D) = E{1F(Mt ® MM) - Ms ® 1913(5)”

where, for every t E I, M, (8) M, denotes the continuous linear mapping from

H (8)1 H into L1(Q,.7:t) which is the linear continuous extension of the mapping

b = h®g I—> Mt(h)Mt(g). Also, above, b E H®1 H, F E ft, s,t E I, s S t.

IfdM extends to a o-additive measure on ’P then the extension is called quadratic

Doléans measure of the 2-cylindrical H-martingale M and will be denoted by 05M-

A simple condition for the existence of quadratic Doléans measure for a 2-

cylindrical H-martingale M is that for all h E H, M(h) had a cadlag version ([35]).

Note that it assures existence of Doléans measure for a 2-cylindrical martingale

associated with a martingale M E M? by Mt(h) 2 (Mt, h)H, Vh E H.

Example 2.4.1 Cylindrical Brownian motion.

Let us recall (see Proposition 4.11 in [35]) that the H-valued Brownian motion W

has covariance C E H®1 H, i.e. Vh®g E H(X) H,

(E{Wt®2}, h <8 g)H®2 = “M ® 9)-
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C, being a trace class operator, cannot be an identity on infinite dimensional

Hilbert space H. If one wants to have a Brownian motion with C = IdH, one has

to consider cylindrical processes.

We say that a process {Wt}t61 is a cylindrical Brownian motion if:

(1) Vh E H, {VI/t(h)}t€1 is a Brownian motion.

(2) Vh,g E H, t E I, E{Wt(h)Wt(g)} = tC(h,g) Where C is a continuous bilinear

form on H x H.

Note, that given any continuous bilinear form C on H x H, there exists cylin-

drical Brownian motion with C as its covariance - see Paragraph 15.4 in [35]. In

the case of C(h, g) = (h, g)H, C is associated with an identity operator I(11; and

we call the cylindrical Brownian motion standard. Note that standard cylindrical

Brownian motion cannot be associated with any ordinary sense H-valued process.

Now we recall definition of cylindrical stochastic integral. We begin with a

proposition which is an analogue of Theorem 2.4.1.

Proposition 2.4.2 Let M be a 2-cylindrical H—martingale and 011;, its quadratic

Doléans measure with bounded variation [a,-4|. There exists a process QM with

values in the set ofpositive elements of (H (8)1 H)* (i.e. QM(h (8) h) 2 O, Vh E H),

such that for every b E H (8)1 H the real process (b, QM) is measurable for the

lam-completion of the o-field P, it is defined up to [aMl-equivalence and has the

property

<b,a.~.(A)> = l. a.e.-4w» lawman (2.4)

VbEH®1H,AEP.
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Now, if X is an elementary process of the form (2.3), we define for every

h e H,

(/ xenw) = ileumuxvm — (mummi (2.5)

where u* denotes the adjoint operator. The integral, (f XdM), is a

2-cylindrical H martingale and for every h E H the real valued square integrable

martingale (f XdM)(h) E M§(R) has norm given by (see 16.2.2 in [35])

”(f XdM)(h)llie(R) = / <X*<h> 69 mm. on diael. (2.6)

Definition 2.4.6 (A) L(M, H) is the set of processes X with the following prop-

erties:

(1) V(w,t) E Q X I, X(w,t) is a linear operator on H with domain D(X(w,t))

dense in H.

(2) Denoting by X*(w, t) the adjoint of X(w, t), the linear form

<X*(w,t)(h) ® X’(w,t)(g)aQM(wat)>

has [aM|-a.e. a unique continuous extension to H X H which results in a predictable

process.

(3)

we = "$55 <X*<h> e X*(h),QM(w,t)> diaelié < oo.

We define A(M,H) - the closure of the class of elementary processes of the

form (2.3) in the space L(M, H).

(B) The unique extension of the isometric mapping X i—> (f XdM) given by (2. 5),

from the space of elementary processes into the space of 2—cylindrical H-martingales,

to the isometric mapping from A(M, H) into the space of 2—cylindrical H-martingales

is called the stochastic integral and is denoted again by X H (f X419).
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Now we want to take advantage of the fact that the integrator in the cylindrical

stochastic integral, which we consider, is actually a square integrable martingale.

We therefore are able to express quadratic Doléans measure, its variation as well as

the process QM associated with the integrator in terms of its Doléans measure and

the process QM, which are simpler objects. If we apply this analysis to an (Rm) in-

tegrator, the situation simplifies even more by use of our results from Section 2.4.2.

Note that again, this is a consequence of Nelson’s regularity assumptions on the

stochastic motion.

Lemma 2.4.1 The Doléans measure of a martingale M E M? and quadratic

Doléans measure of M coincide as (H (81 H)*-valued measures on P.

Proof. Indeed, first note that M282 E L1((SZ,.7-}); (H (81 H)*) This is because

if T E H ®1 H then T(h (8 g) = (Th,g)H extends uniquely to an element of

(H (8)1 H)* with ||T||(H®,H)e S ||T||1 (see Paragraph 14.2 (2) in [35]). Therefore

M392 is integrable. Also,

h <59 9 H Mt®2(h ‘3 9) = (Mt, h)H(Mtag)H = M, 8’ Mt“ 8’ 9)-

Hence M592 = M, (8) Mt as elements of L1((Q,.7:t); (H (8)1 H)*). Therefore \7’b E

H®1H, FEft, s,t E I, s S t, we have,

(b, dM(F X (5: till : E{1F(Mt ‘8 Mtlb) _ Ms (8) M803)»

3 2)}

2)})

2 E{1F (b, M592 — M®

= (b, E{1F(M,®2 — M?

= (b, aM(F x (s,t])).

Note that on is an H (8)1 H-valued measure and can be treated as an (H (8)1 H)*-

valued measure. Because M is a 2-cylindrical martingale associated with M E M?,
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dM on the LHS of the above expression extends to (11,3, therefore QM = on as

(H ®1 H)*-valued measures on P.

C]

Now we explain how a cylindrical integral with respect to a square integrable

martingale can be computed using only the Doléans measure and the associated

process QM. In the case of a square integrable martingale we know that 01M = aM

as (H (8)1 H)"‘-valued measures. Thus

(5, 011C404» = (ham/1)) = <b9AQMda|IMII> = A (b: QM) dauMn,

(we denote an element of H (291 H and its extension to (H (8)1 H)* by the same

symbol) because

<h ’8 9’ [A QMda”M“> Z (A QMdallMll(h)a 9)H

: L(QMWLQMCIGHM”

[401 ® 9, QM) dauMu

so that operation of extension to element of (H (8)1 H)* and integration are inter-

changeable. Also

]aM[(H®1H)* = [01M](H®1H)* S [01M] : O‘IIMII’

where, to avoid a confusion, we denoted by |-|(H®,H). the variation of an (H (81 H)*

valued measure.

On the other hand if ”T“(H®1 H)..- = 0 then, by uniqueness of the extension, also

||T||1 = O. This gives that if [a,-4|(A) = 0 then [aM|(A) = 0f||M||(A) = 0. Thus we

arrived at the conclusion that

laMl(H®1H)* E aHMII-
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Further,

dlanl
 

(b, (rm/4)) = /A (b, QM) dlaMl = [1(1),in dO‘IIMII

dawn

so that we can choose

_ daIIMn
Q —QM

M ‘ dial

to be a predictable process.

We conclude that if in Definition 2.4.6 we replace the process QM with QM and

the measure [01M] with mm" to get its condition (2) to hold for

(X*(wat)(h) ® X*(w,t)(g), Qm(w,t)>

and measure CY||M|| it will not change the space L(M, H). Moreover, the seminorm

N<X> = sup{ <X*<h)eX*<h>,oM(w,t>>danMu}%,
llhllsl 9’”

the space of integrable processes A(M , H) together with the stochastic integral, all

remain unchanged. Thus we can integrate processes from the space A(M, H) with

respect to an element M E M? in the sense of cylindrical stochastic integration.

2.4.5 An Example Motivating Modification of the Cylin-

drical Stochastic Integral

In Section 2.4.3 we have seen that o‘ E A2(H,P,Y). The problem of non-

admissibility of 0‘ extends to the cylindrical case. Recall that 02 (see Defini-

tion 2.4.3) is assumed to be regular.

Lemma 2.4.2 For an (R21) process Y E M? we have a" E L(I’, H).
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Proof. We need to verify conditions (1)-(3) in part (A) of Definition 2.4.6.

Condition ( 1) is satisfied easily since D(o’) D Ran(o).

For condition (2) let us notice that Vh, g E D(o‘) we have,

(9 22—171—_(h )H(gahn)H = (0_(9)ah)H-

Therefore D(o‘) C D((o_)*). Now V(g, h) E D(o') x D(o’) we obtain

 (we a <<a->*(g>®<a->*<h>.c2y>=(fame-(I0. 02)
tro2

= 1 (02(o_(g)),0-(h))H = L(9t th
tro2 tro2

 

clearly extends continuously to H x H and this extension is predictable in view of

predictability of 02.

For justification of condition (3) let us compute

Nor-)2 = sup {/ <(a->*<h> e («r-m), Qt) dent/u}
Ilhllsl 9x1

1

= sup { [|hllH——tro2cl(P (8) A) = /\(I) < oo.

”hug 9x1 WU

As a consequence of regularity of 02 we obtain,

Corollary 2.4.1 Let 0;,(h) = 2713:, 713M", h)Hh,,. Then,

0;, e L2((Q x I,P,auyn); L(H)) c [\(17, H).

Proof. We have

Axlllafillhmdalh’ll s fa (eup{_})ZAd<P®A>
XI n<N An :1

g/XI((1)+trod(P®)\)<oo
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since Doléans measure of a square integrable martingale has bounded variation.

The assertion follows because L2((Q x I,P,a"y”);L(H)) C 11(17, H) in view of

Proposition in Paragraph 16.3 of [35].

Example 2.4.2 o— 9! AG}, H).

First let us note that

Marv — 0-) = sup (f f: (ht tram? eW = MI)?
IIhIIS1 QXIi=N+1

Thus 01]} does not converge to o’ in the seminorm N.

Assume that 0‘ E A(1~/, H), so that there exists a sequence {Xn }f,°=1 of elemen-

tary processes with N(Xn — o") —> 0 as n —> oo. Denote by PN the orthogonal

projection in H on the span{h1, hg, ..., hN}. We have the following:

N(XnOPN—0'E-)

2

= sup {/M ((X. 0 PN — are) e (X. 0 PN — 0mm. —"—)
“hug “‘02

x tr02d(P (8) A)}

:||h||<
1O(nX OPN _ 0N) (hllliflflpéb

/\)}

=||h|l<1{
mhz’X;00)” — (he, h)led(P

so A)}

< 811p Whi,X*(l'l/))H — (hi,h)H]2d(P® )0}

llhll<1

PM“;

lg

= sup {/W((1X, — o‘)*(h) a (X. — a’)*(h), Qy) dawn
||h||_<_1

=N(Xn—o_)—>0asn—>oo.
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We used the fact that for any h, g E D(U'),

((X, — e-)*(h) e (X. — a‘)*(g),Qy)

= —1-—((0' O Xn — IdH)*(h), (0' O Xn — IdH)*(g))H

tro2

and the bilinear form on the LHS extends uniquely to the continuous bilinear form

on the RHS which is well defined on all of H X H. Note that we proved the

following inequality:

N(X,, 0 PN — 0,7,) S N(X,, — o") Vn,N = 1,2...

Next we will prove that for any n = 1,2..., N(X,, 0 PN —> X”) as N —> oo,

Sllp{ ((Xn 0 PN _ Xn)*(h) ® (X11 0 PN _ Xn)*(h)a QY) daIIY”

llhllsl “XI

= sup {/W H 2: mm, X;:<h>)eh. — 5': We, X;(h))Hh.-lltd(P e a}
llhllsl

2 ”3,32%“ g; we, X.:(h>)i.d(P ® M}

sIIXaIEW/Q I Z A.d(P®A)->0
X i=N+1

by monotone convergence theorem. Finally,

N(o,§ — 0—) |
/
\

N(o,§ —X,,0PN)+N(XnoPN—Xn)+N(Xn—o')

< 2N(Xn —o—) +N(X,,OPN —X,,).

For any given 5, we can choose an n, such that N(X.,, -— 0—) < e and then 3N0

VN > No, N(Xn 0 PN — Xn) < 5. But this is in contradiction with what we proved

in the beginning of this Example. Hence 0‘ E 1107, H).
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2.5 Extension of the Cylindrical Stochastic In-

tegral and Application to Nelson’s problem

As we have seen in Section 2.4.3, 0‘ failed to be an admissible process for the

isometric integral. We need to find a larger space of which 0‘, assumed regular,

is an element. Motivation for further studies comes from the following Lemma.

Lemma 2.5.1 For every h E H,

fax] ((01? _ 0—)“) 8’ (”III - 0—)(h), QY) dozIIYlI —> 0 as N —+ 00.

Proof. V(w, t) E Q X I,

<th ((0.; — own 69 (a:v — a-xh). Qy>><w.t> = i (h. mat a o
i=N+1

and is bounded by ||h||§i independently of (w, t).

Now we consider an extension of the cylindrical stochastic integral.

Definition 2.5.1 Let M be a 2-cylindrical H—martingale with the Doléans measure

of finite variation.

(A) Define L'”(M,H) as the set of processes satisfying conditions {1) and (2) of

Part (A) of Definition 2.4.6 and the following condition:

(3) Vh e H, NrIX) = lfnxl <X*(h) e X*(h). an) dlanlfi < oo.

For every h E H, Ni" is a seminorm and we say that a sequence {X,,}f,"=1 C

PM, H) converges to X e from, H) if VII, 6 H N,’;”(X,, — X) —> 0. We will

denote this convergence by Xn => X.

75





(B) We denote by Aw(M,H) the closure in L“’(M, H) of the class of elementary

processes in the topology of convergence ” => ” defined in (A)-(3).

For everyX E Aw(M,H), h E H we define (f XdM)"’(h) as a limit of(andM)(h)

in MflR), where Xn => X and X,, are elementary processes. We call (f XdM)w E

L(H, M§(R)) the stochastic integral. ’

Note. We need to justify correctness of Part (B) of the above Definition. First,

for any sequence {X.,,}f,"__=1 of elementary processes, such that Xn => X we have

VhEH,

|l(/XndM)(h)—(medM)(h)lle;(R) = ||(/(Xn—Xm)dM)(h)l|M3(R)

= N,;”(X,, —Xm)

by equality (2.6). Therefore whenever Xn => X, then Vh E H, {X,,},i’,°=1 is a

Cauchy sequence for NZ” and hence, (f X,,dM)(h) converges in M%(R) to a square

integrable real valued martingale.

Now, the mappings h —> (f XndM)(h) from H to M%(R) are linear, continu—

ous and for every h E H there exists a limit, which we denote by (f XdM)"’(h).

Therefore, by Banach—Steinhaus theorem (f XdM)w(h) E L(H,M§(R)) - that

means (f XdM)1“ is a 2-cylindrical H-martingale.

We conclude our considerations on Nelson’s ideas with an analogue of Theorem

11.6 in [36]. As we proved in Lemma 2.5.1, 01?, => 0— with 0],", E A(l~/,H) C

TWO}, H) (see Corollary 2.4.1). Therefore 0‘ E Aw(17, H).

Theorem 2.5.1 Let X be an (R1) process and let Y, = Xt—fg DXsds be an (Rm)

process. Assume that 02 is regular. Then there exists a 2—cylindrical H~martingale
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W, such that for every h, g E H,

E{(Wt(h) — We(h))(Wt(g) — We(9))|}'s} = (t - 8)(h, 9);;

and

t ~

X, = / DXSds + (/ MW),
0

The above equality is in the following sense, ‘V’h E H, (X, — f; DXsds,h)H =

(f odW),(h) in M%(R). In particular, f odW is a 2-cylindrical H—martingale

associated with an ordinary H-valued martingale.

Proof. We define W = (f 0—d17)“’. Let us first prove that for X E A’”(i~/, H)

we have

E{[((/de/),—(/de/)',"M)[((/Xd17),—(/Xd1?)';”)(g)]|f,} (2.7)

= E{/(X; (h) ooX:(g),e2M(r)>dr|.7~',} vn e H.

Recall that by condition (2) of Definition 2.4.6 and because Qy = (Iz/tro2 and

dallYll = tr02d(P (X) A), the expression

(X*(h) a X*(g), 02) = (X*(h) ® X*(g), oy) troz

is well defined on H X H.

We first obtain equality (2.7) for elementary processes of the form (2.3).

E{[(/Xdl7);”(h)—(/Xd17);”h)][(/Xd1~/),)—(/Xdl7),(g)]|J-‘,}

: EU: 1Ft((Yttaui(h))H _ (YStiui(h))H)l

i=k

Milena an» —(n.,u;(g))e)nf.}
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where we assume (by refining the partition of I if necessary) that s), = s and tn 2 t.

The components with factors for which i yé j will give zero by the martingale

property of Y. For i = 3' we compute for each component

E(1Hu(:(h) on: (g) (Y. — mm) Ia}

= (1.,n,*(h)® *(g)E{/:o2(r)dr|r,,})

= E{/1p,x(,,,,,]u;‘(h) ®u,’-‘(g),02 (H)>de|r,.}.

By taking conditional expectation with respect to (F, C 7:3,. and summing all

terms from i = k to n we get the desired result.

Next,

E{/8t|(ooX;(h), ooX;(g))H— (ooX*(h), ooX*(g))Hm}

s (E(/ Hao((X. —X>WWW(E{/ IIaoX*(e>IIHdA}>%

+(E([ no o((X. — X)*(e>IIHdX}>)%((Etf Ila o X;:(h>IIHdX})%

g M:(X,, — X)N:(X) + N:(X,, — X)N:(X,,).

Therefore convergence Xn => X implies that, Vh E H,

t t

H] (mm o X;(g>.02> MA} —> E(/ (X*(h> o X*(g>, 0-2) dAlfs}

in L162) by contractivity of conditional expectation. Convergence Xn :> X implies

also that, Vh E H,

(/ X,dY)w(h) —> (/ XdY)w(h) in M§(R)

which, in turn, implies

E{[((/XdY),— (/X,,:ndY))(fXdY (fXdY),w)(g)]|J-'.}

—+E{[((fXdY): —:(/XdY) h,)][((/XdY) —(/XdY):)(g)]|f.}
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in L1(o), Vh e H. This concludes the proof of equality (2.7).

Using (2.7) we can now prove that

E{[Wt(h) -— W.(h>nWH(g> — moms}

= E{((/ Noah) — (fmore»

x [(/0“d17)2”(9) — (/ a-dY>:”(g>uJ-'.}

= E{/: ((a->*(h) ® (a-)*(g), 02) was}

: E{ t(h,g)Hd/\|]:s} : (t — S)(hag)H

S

(for the third equality recall the proof of Lemma 2.4.2).

To show the last assertion of the theorem let us prove that a E [\(W, H) and

that for an elementary process Xn of the form (2.3),

(/ XndW) = (/ Xn o a'dT/Y" (2.8)

(implicitly Xn o 0— 6 Jim“), H)). Indeed,

2d~</ 2d~=/E 2 dA<.f,“ HanHH) (aw! _ IIaIIHHH lawl , {IIaIIHHH} oo

Last equality follows from the fact that

E{E{1F(Wt(h)Wt(g) _ Ws(h)Ws(g)lfs}}

= P(F))\((s,t])(h,g)H

(h <59 sham/(F X (s,t]»

for F E .73, h,g E H and s S t, s,t 6 1. Therefore on = (P®A)tr as tr 6

(H (8)1 H)* is the extension of h (8) g H (h,g)H. Hence, lan = P (8) A.

Finiteness of f, E{||a||§,®lH}dA follows from the property (Rm) of Y. Also, a E

[\(W, H) (see the proof of Corollary 2.4.1).
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Let {X,,}f,°=1 be a sequence of elementary processes. First we will establish that

X, o 0‘ E RWY, H). The domain D(X, o 0‘) is dense in H and

((X, 0 0—)”‘(hl ‘8 (X, 0 0—)*(9), Qy) = {7:163(IdD(a_) 0 X300, 1dv(e-) ° X;(9))H

extends uniquely to a continuous bilinear form (1 /tr02)(X,’:(h), X;(g)) H.

Further, Vh E H (using the above extension),

fox; ((X” o ”T(h) ® (X" 0 ”T(h)’ QY) dallYll =/ ||X3(h)||§;d(P (8 A) < oo.
9x1

Therefore, X, o 0‘ E I~H(Y, H) C Z‘”(Y, H).

Since 0‘ E AWY, H), there exists a sequence {Z,,,}f,‘,’___1 of elementary processes,

such that Z, => 0' as m —-> oo. Now, for every h E H,

fox/“X" 0 Zn)“ — (XH o a‘)*](h) s [(X, o z,)* — (X, o o-)*](h), QYWHYH

: {2x1 <(Zm — 0—)*(X':(h)) <8) (Zm _ 0—)*(X;(h))7 QY> danyn -> 0.

Since {Xn o Z,,,}‘,’,,°=1 is a sequence of elementary processes, X, o 0' 6 IV“ (Y, H).

Next, we will prove that if X, —> a in [VI/Y, H) then Xnoa‘ => IdH in [\WY, H)

as n ——> 00. Clearly Rig 6 1~\(Y, H) C AWY, H). Observe that

02

<(Xn o 0- — IdH)*(h) (8) (X, o 0— — IdH)*(g), —>

tra2

1

= tm,((1dp(,-, o x; — a)(h),(1do(H—) o X; — 0)(g))H
 

extends uniquely to a continuous bilinear form on H X H, namely, to

—1—((X:; — a>(h). (X; - a>(g)>H.
lira2

For every h E H, and for this extension, we have

[M ((XH 0 0‘ — IdH)*(h) (a (X, o o- — IdH)*(h), QY> dO‘IIYII

: Qx1<()('n — 0)*(h) (8) (X71 _ GYM), t7“) dlaVl/l —> 0
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Since convergence in IV” implies convergence of stochastic integrals in MflR),

we conclude that Vh E H,

(j X, o zde)(h) —> (f X, o e-dY)w(h) as m —+ oo

and

(f X, o e-dY)w(h) —+ (/ IdeY)(h) = (Y, h)H as n —> oo

in MflR). Equality (2.8) can be proved as follows:

(/ XHdW)H(h)

= 2: 1H,.[(/ a-dY>::H(u:(h>) — (/ a-dY>::H(u:(h)>]

= Z 1H(M%(R) — ,gnwuf zdeHHXum» — (/ szY>..H(u:(h>)n

s

a
l
l H

1H.[M%(R> — ,gggoK/ u. o szYHMh) — (f u.- o Zde>..H.(h>n

Ti

H i%(R> — 4320:1qu o zdeHHH-(h) — (f u.- o zde>..HH(h>l

= Wm) — 413,514] X. o zde)H(h>

= (f X, o e-dY);“(h).

Because, Vh E H,

~

(/ X,dW)(h) —> (/ adW)(h)

in MflR), we get

(X, — jot DXSds, h)H = (Y,,h)H = (/ odW),(h),

in MflR). This concludes the proof.
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Let us mention that the assertion of the last theorem states in particular that

W is a 2—cylindrical standard Brownian motion, provided Wt(h) has continuous

sample paths in t for every h E H. The following Proposition gives some regularity

of the process W.

Proposition 2.5.1 Under the assumptions of Theorem 2.5.1, if X : I ——> H is

continuous, then Vh 6 H the real valued martingale

at

W) = (/ o’d?)‘”(h)

has P-a.e. continuous paths.

Proof. The proof is based on the following Lemma:

Lemma([35]). Let {M”}f,°=1 C M? be a sequence of H-valued martingales which

converges in M? toward M. Then there exists a subsequence {M”k},‘:°=1 with the

following property: for P—almost all to E Q, the paths t +—> M7”c (t,w) converge

uniformly on I to the paths t r—> M(t, w).

Since t I—-> DX, is continuous from I to L1(SZ,H) we can choose its jointly

measurable version in (t,w) (see [16], Theorem 1.2). Hence, t +—> f5 DXsds is

continuous from I to H. This, together with continuity of X : I —> H gives

continuity of Y : I —> H. Since for an elementary process of the form (2.3) the

stochastic process

(/ XHdY)(h> = :1(mom) — have»)

has continuous sample paths then, by choosing X, => 0—, we get,

Vh e H (/ X,dY)(h) —> (/ o-dY)w(h)

in MflR), which completes the proof.
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Chapter 3

Anticipative Stochastic

Differential Equations

3. 1 Introduction

Anticipative stochastic integration naturally leads to development of the theory

of anticipative Stochastic Differential Equations. This allows for analysis of non-

adapted processes as solutions of these equations. Anticipative SDE’s were con-

sidered by several authors. In particular Skorohod-type SDE’s were studied by

Buckdahn,Nualart Ocone and Pardoux ([5]-[8], [39],[40],[42]). Another approach

was presented by Ogawa, [46]-[47], where the author used his concept of stochastic

integration.

A natural way to obtain an anticipative SDE is to impose a boundary condition

to be a future-dependent random variable. In particular one can consider equations

with boundary condition of the type X0 = (p(X1). An interesting presentation of

Ogawa-type SDE’s is given in [46]. As a nice example the author considers Go

and Return problem. Recently, in [47] Ogawa studied multidimensional stochastic
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integral equations, which were linear of Fredholm-type. This seems to be a strong

application of anticipative calculus.

In this Chapter we consider a Gaussian process {X,, t E T} with arbitrary in-

dex set T and we study consequences of transformations of the index set T on the

Skorohod integral with respect to X. We obtain applications to time and space

reversal in case of Brownian motion and Brownian Sheet. Even though we con-

sider here general transformations of the parameter set our motivation came from

the Time Reversal Problem of a diffusion process and applications of this method

to the problem of filtering. In the case of Skorohod linear difiusions we obtain

existence and uniqueness of the solution for the reversed equation (a problem con-

sidered in [42]). As an example we formulate and solve Go and Return problem

for Skorohod linear diffusions. Further applications of anticipative stochastic cal-

culus and kinematics of Hilbert space valued stochastic motion to Time Reversal

Problem and Filtering Theory will be a subject of future research.

3.2 Skorohod Integral under Transformation of

a Parameter Set

Assume that {X,heT is a centered Gaussian process defined on a probability space

(52, .7, P) and indexed by an arbitrary parameter set T. The covariance function

of X will be denoted by CX and the RKHS of CX will be denoted by H(OX).

Definition 3.2.1 A map R : T —> T will be called a non-degenerate transforma-

tion of the parameter set T if

cl(span{Xt,t E T}) = cl(span{XR(,),t E T})

where ”cl” denotes closure in L2(Q,}', P).
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For any transformation R : T —) T let T1 C T be such a set for which Vt E

T, T1 0 R"1(t) is a single element of T. Thus R : T1 —> R(T1) is a bijection. In

particular if R : T —> T is bijective then T1 = T. There are possibly many choices

of T1. Now we consider behavior of the Skorohod integral under non-degenerate

transformations.

Proposition 3.2.1 Let {X,}teT be a Gaussian process and R be a non-degenerate

transformation on T. Denote by I3} the Skorohod integral with respect to X and by

I5212, the Skorohod integral with respect to (a Gaussian process) XR = {XR(,)}t€Tl.

Then:

(I) A map f, I—> ff 2 f(R(t1),...,R(tp))|Tlp is an isometry from H(CX)®P onto

H(C§%)-

(2) Ifu E ”D(IjQ) then uR = {uR(t),t 6 T1} 6 D( 32R) and

1;, (u) = 1;,H(uR). (3.1)

Moreover, denote by DX and DXR the Malliavin derivatives with respect to X

and XR respectively.

(3) If u, e D(DX), t 6 T1, then of e D(DX”) and

DjwulCt = D§(,)uR(t), s, t 6 T1, P-a.e. (3.2)

The equality is in the sense of H(0X12), with s 6 T1 as the variable. Also

Dsut E H(C'X)®2 (s,t E T) implies DfiwuiL2 E H(CxR)®2 (s,t 6 T1) and the

equality 0f norms, ||D3ut||L2(Q,H(CX)®2) = llDfRulillL2(Q,l-I(CXR)®2)'

va E L2(Q,H(CXR)) then,

(4) v = UR for some u E L2(X , H(Cx)) and llv||L2(n.H(cxH)) = IIUIlLe(n.H(cx))-

Moreover, v E D(ij) implies u E D(IjQ) and v, E D(DXR) implies u, E D(DX)

with D§(I:)v, = Dfut for s,t 6 T1.
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In the case of Dvat E H(C'th)®2 (s,t 6 T1) also Dsu, E H(CX)®2 (s,t E T)

and the H—S norms of these derivatives are equal.

Proof. (1) Let us denote fR(t1,...,t,,) = f(R(t1),...,R(t,,)) for (t1,...,t,) E

Tf’. Thus ff(t1,...,t,,,t) = f,(R(t1,...,R(t,,),R(t)),(t1,...,tp,t) 6 T5“. Denote

H(X) = cl(span{Xt,t E T}) = cl(span{XtR,t 6 T1}). Let f(t) E H(CX). Then

f(t) = E(Xt7rx(f)) with 7rX(f) E H(X) and, for any t 6 T1,

fR(t) = f(R(t)) = E(XR(t)7rX(f)) = E(Xll7rx(f))

i.e. fR E H(CxR) and nXR(fR) = 7rX(f).

Also, if g E H(CXR) then, for t 6 T1,

 

g(t) = E(X.R«X”(g>) = E(XH(.)«XR(9>>.

But, nXR(g) E H(X), then f(t) = E(X,7TXR(g)) defines an element of H(CX).

Hence, g(t) = f(R(t)), t 6 T1 and

H

llgllexH) = HEX ||L2(n.f~.P) = llfllH(Cx)'

Now (1) follows for any p in view of the form of ONB and scalar product in the

tensor product of RKHS’s.

(2) In order to obtain (2) we will first prove that for every p the following equality

holds:

[g((fp) : fling?)- (3-3)

Note that we have already proved the above for p = 1, as I1 = it by definition.

For p = O equality (3.3) is obvious.

Every f, E H(CX)®P can be represented as a following series (see Section 1.3.1):

f(t17t21”')tp) : Z aa1,a2 .....ap eal (t1)€a2 (t2)...€ap (tp)

(11,02 1111 a]!
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with Za1,a2,...,ap aghazmap < 00 and {emoz = 1,2, ...} an ONB of H(C'X). Then

ff 6 H(Cxfl)®p by (1). It is enough to prove equation (3.3) for functions of the

form: eal (t1)e,,2 (t2)...eap (tp), because for arbitrary f, E H(CX) we will have

n1 “P ~

[g((fp) : limn1,...,np—>OOI§((( Z Z aal,...,ozpea1---eozp))

a1=1 ap=1

_

R ~

— lzmnl .....np—moIxfl((:m 2? aa11'-eaap011'R'”eap))

a1=1 ap=1

: IPR(lzmm .....’np—)OO (:-- n: aal .....apea1“ ' eap))'

a1=1 op=1

We used properties (5) and (6) of Multiple Wiener Integrals (see Section 1.3.1)

as well as a simple fact that the operations f H fR and symmetrization ”"”

commute.

In View of (1) we have, 20,,a, a, aalm,, eR 6R” .eR —> ff in H(CxR)®p and
“p 011 02 Op

hence (2am, ,,,,,a? Claim...,,e§,e§2.. .efp) —> (ff) in H(CxR)®p. Thus,

152a.) = Inuit?) = 12120,?)-

Let us now prove equation (3.3) for functions of the form ea,1 (t1)ea,(t2)...eap(tp)

for p > 1. We can use property (8) of MWI and we only need to show that for

(t1, ...,tk_1, tk+1, ...,tp) E Tlpnl, one gets

R

[(prEgl)XlR(tla "')tk—13tk+17°"7tp) : (fflfgfz)x (t1) "'atk—1atk+la "')tp)a

Where the superscripts X and XR outside the brackets indicate that the operation

”g” is taken in H(C'X) and H(C'Xn) respectively.

We have

(fp%gl)x(t1,
..., tk_1, tk+1, ..., tp) :

= (fp(t1, ...,tk, ...,tp),g1(tk))H(Cx)
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: E{ITX(fp(t1, ---)tk—11'atk+17 ...,tp))’/TX(91())}

2': E{7I'XR(f;z(k)(tla “'3 tic—1) '3 tk+13 "'1 tp))7rXR(in())}

: (f:(k)(t13“'atk)-“)tp)igf(tk))H(CXR)

R

: (f:(k)%gf)x (t1) "'7 tk—l) tk+19 "'3 tp)

where R(k) transforms only the kth coordinate with t1, ...,tk_1,tk+1, ...,tp fixed.

But the above implies that

l(fp%91)XlR(t1) “'3 tic—1) tk+1a ---a tp)

: (fp®gl)X(R(tl) B(tk—1)iR(tk+1)a "°)R(tp))

=(fR<R>egRt)R”(E(t1...) H(tH-H).R(tH.H). ....R(tH))

: (fffg:)XR (t1, ..., tic-1) tk+1a "-3 tP)‘

Thus,

13((fp§91)")=13R(l(fp§91)X]R)HfflngERVR)

which allows us to use the inductive relation (8) for Multiple Wiener Integrals to

complete the proof of equality (3.3).

Now if u E ’D(I§() and u, 2 22:0 Ip(fp(t1, ...,t,, t)) then, for t 6 T1,

HHH) = i 1,? (fH(-.E(t))) = iIR’RoR-s»
p=0

hence,

1:.(u) = 21.55.1(fp)=2135.’i((ip)R )
p=0 p=0

= 2amR))=I§.n(uR)

proving (2).
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(3) Let u E D(DX). Then, for s,t 6 T1,

00

DR(s)uR(t) : Zplgi:1(fp('vR(3)vR(t)))

p=1

= 2121,5512de st))=D§RU?-

The equality of norms claimed in (3) follows by Lemma 1.3.2, (2) and by (1) of

this Proposition.

(4) To prove (4), let v E L2(X, H(CXR)). Then for t 6 T1 we have

= i1:“(gH(-.t)) = Emma),

as by (1), for any g E H(CxR)®(p+1) there exists f E H(CX)®(”+1) with g = fR.

Hence, for t 6 T1,

___le&<fR(' =ZIX(((f, t)))=uE(t)-
P=0 p=0

According to (1),u 2:10 If (fp(-, t)) E L2(X, H(CX)) and equality of norms

claimed in (4) is satisfied. The last part of assertion (4) follows from (1),(2) and (3)

since failure to satisfy any stated condition by u implies violation of this condition

by v.

Example 3.2.1 Transformations of parameter set and Skorohod integral.

1. Brownian motion and Time Reversal. Let .77, 2: o{B,, s g t} and {ut,t 6

[0,1]} be (T}),EmJ] adapted stochastic process, such that u E L2(Q,L2[O,1]). Then

{R = B1 — B1_t,t 6 [0,1]} is also a Brownian motion and {at = u1_,,t 6 [0,1]}

is adapted to filtration .73 = o{B1 — B3,t g s S 1}. Denote B, = B1_t. We have

fol UtdBt = [h(fo. urdr) = ISB(‘/1—iu,.dr). (3.4)

0
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By the same method as in the proof of Theorem 3.2.1 we can show that

~

I;((/,'u.d1~)) = Inf, ear)

with (f6 urdr) 2 f01 urdr — f01—' urdr. Hence, we get,

[01 11,113, = Ig((/O' 11.11155) = [gt—1):]: a, * dB,

where Ii is the Skorohod integral defined in [41] (see Example 1.3.2) and ” * ”

denotes the backward Ité integral. We obtained the relation: IE; (u) = I}, (27.) given

in [42]. In particular a E D(Ig). Note that in [42], the process 31-, - Bl = —Bt

was used as an integrator. But it is true that I3 = —If_X), which is easy to check

using recursive properties of Multiple Wiener Integrals.

Note also that B, is not a Brownian motion process and the Equation 3.4 is

reversed pathwise in H. In the case of Brownian motion, we also have,

at

1-. .

[g(f usds) = 183“] u,ds)).

o 0

Indeed,

1—- - . . -

I§(/ usds) 2 I133(/ usds) = I};(u) : [g(a) = I§(/ u1_3ds)

0 o o

1 1—-

= I§(/ usds ——/ usds).

0 o

2. Brownian Sheet. Let T = [0,1]2 and let us think of a point (:13, t) E Tas the

space-time parameter. Let W(a:, t) be a Brownian Sheet ([58]), that is, a Gaussian

process {Wt,t E T} defined by covariance CW((33,t), (y, s)) = (a; /\ y)(t /\ s), i.e.

CW 2 CB (8) CB where CB is the covariance of Brownian motion. In this case we

also have that H(CW), the RKHS of Cw, is the tensor product of the RKHS’s

H(CB) Of 032 H(Cw) = H(CB)®2.

(a) Time Reversal. Let R(:I:,t) 2 (113,1 —- t), then,

MHQWC’EH t)) = 15m,1_1)(U($11 — t))-
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(b) Space Reversal. This is the case of R(:z:, t) = (1 — 3:, t).

3. Generalized Processes (see Example 1.2.1 (0) and [19]). Let T = 03°(R)

and consider Generalized Wiener Process {BW (p E T} given by covariance func—

tion C((p,i/2) = f (a: /\ y)cp(ac)z/J(y)d:cdy. Consider R : T —> T a non—singular

transformation of the form: R((p)(:r) = (p(r(:2:)) E T. Let {HoloeT E D(Ig) then

{Hither 6 D(IER) and JEROME) = H“)-

In the particular case of R((p)(t) = (p(—t), R is non-singular and we have the

following ”time reversal”:

21M) = Ig,,_,(u..1_.)) = 1:1,, (now) = 12(1)).

4. Ogawa Line Integral Let {X,, t E T} be a Gaussian process and 7 : S —> T

be a bijective parametrization. Let Y, 2 X7“), then

(i) CX(7(81)17(82)) = (LE/(81182)

(ii) H(OX) and H(Cy) are isometric under the mapping f )—> f o 7 E H(Cy) for

f E H(Cxl-

(iii) 7rx(f) = 7rY(f 0’7) for f E H(Cx)-

Thus, 6°(u) = 6°(v), for v, = u,(,), provided either of the integrals exists.

Consider the Brownian Sheet {W(,,,t), (93,t) E [0,1]2}. One can define Ogawa

line integral, I‘ — 6", over a curve P C [0, 1]2 with respect to {W(:v,t)) (3:, t) E F} in

a usual way. Now assume that I‘ can be parametrized by a function '7 : [a, b] ——> F,

0 g a S b S 1 and 7(3) 2 (71(3), 72(3)) with both coordinates non-decreasing and

such that the map

Y‘1(71(8).72(8)) = 71(8)72(8)

is bijective from I‘ to S' = [71(a)ryz(a),'yl(b)'72(b)]. Then :5, : S ——> I‘ is a bijective

parametrization and the process B, 2 WW.) is a Brownian motion. Hence,

I‘ — 63,,(u) = 633(1)) : f1), 0 dB,
5
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where v, = us“) and the last integral is in the sense of Fisk and Stratonovich (see

[45] for a definition) and is assumed to exist. In particular if u(x,” = f (W(,,,t)) with

f E 0'2 then

r — 6w(f’(W)) = /, f’(BH) o dB. = f(W(H.(b).HH(b)) — f(W(’Y1(a), 1201)).

Thus in this case, the Ogawa line integral shares the property of the Lebesgue

integral. Properties of the Ogawa line integral and its relation to line integrals of

Cairoli and Walsh [9] will be a subject of further investigation.

3.3 Skorohod-Type Linear Stochastic Differen-

tial Equations

The class of Skorohod Linear SDE’s was considered by Buckdahn in [6] where the

author proved existence and uniqueness of the solution. We give a short review of

this result.

Assume that {Bt, t E [0, 1]} is a Brownian motion defined on a probability space

((2, J", P). Here (I = 00([O, 1]). We consider the following Skorohod Linear SDE:

t .

Z, = 17 +/ b(s)Z(s)ds + 11(021[O,]), 0 g t g 1 (3.5)
0

where b E L2([0,1],Loo(fl)),17 E Loo(fl)),o 6 141.00 = L2([O,1],D1’°°). The space

D1’°° is defined as follows. Let

8 : {F : f(Bt1)°")Btn)7n Z 13t17 "'atn E [011l7f E 050(Rn)}’

where C§°(Rn) denotes the space of C°° functions which are bounded with all

their derivatives. Recall the Malliavin derivative Di of [41] (see Example 1.3.1).

Denote by Dl’2 the closure of S in the following norm: llFll1,2 2 [IF [I L252) +
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||DiF || L2(91L2([0,ll))' Then Dl’°° is the restriction of D1:2 to these random variables

for which llFll1,oo = HF“,o + II [IDIFIIL2([0,1])”oo < 00. The stochastic integral If is

again as in Example 1.3.2.

The main result on Skorohod Linear SDE’s in [6] is the following.

Theorem 3.3.1 Suppose a E L1,oo,b E L2([O,1],LOO(Q)),77 E LOO(S2). Denote by

{Tt,t E T} the family of transformations associated with o as follows:

tA-

Ttw = w +/ 03(T3w)ds, w E C0([0,1]).

0

Let A, be the inverse to T, and L,, the density dP o Tfl/dP, where P is the

Wiener measure on C'0[O,1]. Then the process X defined by

X, = 77(At)ea;p{/ot b,(T3At)ds}Lt, t E [0, 1] (3.6)

belongs to L1([0, 1] X 0), 0X 1l01tl 6 DH“) Vt E [0, 1] and it verifies equation (3. 5)

Conversely, ifY E L1([0, 1] X (2) is such that oYlw] 6 DH“) Vt E [0, 1] and

verifies equation (3.5) and if moreover o,b E Loo([0, 1] X It) and the Malliavin

derivative Dio E L<,<,([0,1]2 X 9), then Y, is of the form (3. 6) Vt 6 [0,1].

Our purpose is to reverse equation (3.5). We begin with a supporting Lemma.

Lemma 3.3.1 Let {u,}s€[0,l] be such that u,1[0,t](s) E D(Ifg) Vt 6 [0,1]. Then

for the time reversed process, a, = u1_3, we have u31[0,t](s) E D(Ig) Vt E [0, 1]

and if we denote X, = I];(1[0,t](s)us) then,

X1_t — X1 = —IiB(1[0,t](S)fi3).

Here, B, 2 Bl — Bl_t.
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Proof. Because for v, E D(Ig) we know that o, E D(Ig) (as pointed out in

Example 3.2.1), by linearity of the domain of the Skorohod integral, we conclude

that

XI—t — X1 = [h(—1[1-t,1](3)us) = —Il§(1[1—t.1](1 — S)u1—s)

= —I;'~,(1[0,](s)1-1,).

In particular 1[0,,](s)u, E D(Ig).

Cl

Now we can easily derive a result about time reversal for Linear Skorohod SDE’s.

Theorem 3.3.2 Assume that the coefi‘icients of the linear Skorohod SDE satisfy

assumptions of Theorem 3.3.1. If {Zt},€[0,1] is the solution of equation (3. 5) then

the time reversed process Z, = Zl_t, is the unique solution in L1([O, 1] X 9) of the

time reversed equation

_ t _ .

X, — z, = [0 —b(s)X,ds + 1;,(—1[0,,15X) (3.7)

where b(t) = b(1 —— t), ("f(t) = 0(1 — t) and B, = 31 — Bl_,.

Proof. We need to prove uniqueness only. Let Y, E L1([0, 1] X 9) be another

solution of the Equation (3.7). Then Zt—Yt E L1([0, 1] X 82) is also a solution of (3.7)

with vanishing initial condition. Now all the assumptions of the Theorem 3.3.1 are

satisfied. Hence Z, — Y, = O.
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Example 3.3.1 Linear difiusions.

Applying Theorem 3.3.2 to the following diffusion equation:

X,=:E0+/0b((s),de+/0(5),,de

we get

_ _ t _ _ t _ ..

X, = X0 + / —b(e)X,de + / —c‘r(s)X, * dB,
0 o

where the last integral is the backward It6 integral. Thus we obtain the result in

[42] in this special case of linear equation.

Example 3.3.2 ”Go and Return” problem.

Let X (t, 3:), Y(t, y) be the unique solutions of the following equations:

X(t,:c)=3:+/Otb(s)X(,s3:)ds+/Oo(s (,)sa:)0st (G)

Y(ty)=y— [1(8)(8y)d8-/0(8)Y(8y)0d33 (R)
t

The solutions X,, Y, are adapted to o{B,,, s S t} and o{Bl—B,, s 2 t} respectively.

Ogawa ([46]) proves that Y(t,X (1,511)) solves a modified Equation (R) with y

replaced with X (1, 3:) and the stochastic integral changed to the Ogawa integral

6‘}, with respect to the system of Haar functions. Moreover the following equality

holds P—a.e., V3: 6 R,

Y(O, X(1, 33)) = 3: (G — R)

Note that the described above ”Go and Return” problem is meaningless, unless

it is stated with help of anticipative calculus.

Let us now consider the ”Go and Return” problem in terms of It6 and Sko-

rohod SDE’s. Since the rules of integration here are different from those for the

95

 



Stratonovich and Ogawa integrals, one cannot expect that Y(t, X (1, 33)) will be a

solution for the Skorohod equation corresponding to the Equation (R) if X, is a

solution of the Ité or Skorohod equation corresponding to the Equation (G). Also

the ”Go and Return” relation (G-R) may be violated. Indeed, let us examine the

following example:

t

X, = H + / XSdB, (GI)
o

1

n=y—fde. (R’)
t

The solutions are given by

l

X, = 33exp{B, — —2-t}

1

Y; = yexp{—(E1 — Bt) — ,(1 — t)}

In this case we have, Y(O, X(1, 33)) = 1136—1 and Y(t, X(1,3:)) does not satisfy

Y(t,X(1, 11)) = X(1,3:) — IR(1[,,](e)Y(e,X(1, 27)» (RR)

which is easy to check by simply comparing expectations of both sides.

Because of the above example we state the ”Go and Return” problem for Sko-

rohod equations in the following way:

X(t. 21) = a: + f; b(s)X(s. sods + 1,(1,,,,(,)0(.)X(., 22)) (0.,

Y(t,X(1,m)) = X(1,3:) —/t1b(s)Y(s,X(l,33))ds

— 12(11.,11(s)o(s)Y(s, X(1, a») (RS)

Y(O,X(1,33)) 2 3: (G — R3)

where the first equation is either an R6 or a Skorohod equation and we impose

conditions on the coefficients b and 0 sufficient for uniqueness and existence of
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solutions for the Equation (GS). Clearly

it .

X(t,:c) — X(1, 33) = —/ b(s)X(s, 33)ds —— Ig(1[,,1](s)o(s)X(s,:c)).

1

Thus Y(t, X(1,33)) = X(t, :c) satisfies Equations (R3) and (G — Rs). Note that

in the case when (G5) is an It6 equation, this solution is adapted to the natural

filtration of Brownian motion.

Let us now consider the following equation:

Y(t,X(1,3:)) = X(1,33) — fotb(1 — s)Y(s,X(1,3:))ds

— Il§(1[0.t](3)0(1 — 3)Y(8,X(1a$))- (Ri)

If process X, describes ”motion” of a particle then process Y, can serve as a model

for motion of a particle with reversed ”velocity” b and under reversed random

forces 6B (see Chapter 2 for more detailed discussion of kinematic properties of a

random motion).

By Theorem 3.3.2 X (t, 3:) satisfies

X(t, 33) = X(1,33) — [Qt b(s)X(s, 3;)ds — Ig(1[0,,](s)5(s)X(s,3:).

Hence Y(t,X(1,:c)) = X(t,3:) solves the Equation (Rf), Y(0,X(1,3:)) = X(1,3:),

and

Y(1,X(1,3:)) =33. (G—Ri)

Moreover, under the smoothness assumptions of Theorem 3.4 on b and a, process

X(t, 3:) is the unique solution in L1([0, 1] X 9) of the Equation (Rf).

Finally, let us note that equations (Rf) and (R3) are equivalent,

Y(t) X(la 37)) _ X(1, it)

= _ l1b(S)Y(S’X(1’””dS — Ig(1[t,11(s)a(8)Y(8.X (1,8)»
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= —/01—tb(1 — s)Y(1— s,X(1,3:))ds — Ig(1[,,1](1 — s)0(1 - S)

X Y(l — s,X(1,3:))),

which is equivalent to

Y(t, X(1,:r)) = X(1,H) — fOtE(8)Y(81X(118))d8 — 1R,(1,,,(e)o(e)Y(e,X(1, 3:))).

Thus also the Equation (R3) have a unique solution in L1([0, 1] X (2) since

otherwise the Equation (Rf) would have different solutions.
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Appendix

A Abstract Wiener Space

Our framework concerned a structure related to general Gaussian process, i.e.

(i, H, X) with X a LCTVS. However, it seems desirable to review construction of

an Abstract Wiener Space (AWS) in order to have better general background and

understanding in the case when the Gaussian process is a Brownian motion.

Here, H always denotes a Hilbert space and B a Banach space. Both spaces

are real and separable. H* and B* denote the dual spaces. We will always identify

H"‘ with H.

A subset C of a Banach space B is called a cylinder if it can be written in the

following form:

C = {e E B: ((e,y1), ..., (e,y,,)) E A}

where {y1, ..., y,} C B* and A is a Borel subset of R”. By Cyl(B) we will denote

the collection of all cylinders in B.

Note that, for example, any C 6 Cyl(H) can be written in the form: C = {h E

H, Ph 6 A}, where P E P(H) (a finite dimensional projection on H), and A is a

Borel subset of P(H).

The (canonical) Gauss measure 7,, with parameter a > 0, on a Hilbert space

99



H, is a function on cylinder subsets of H defined by

7,,(C) = (27r02)'%/ e3:p{—|—|£EI—}d33

A 202 ’

for C E Cyl(H), C = {h E H: Ph 6 A}, P E P(H). Here n = dimP(H), || - ”H

is the norm in H and dx denotes the Lebesgue measure on P(H). We will write 7

for '71.

The Gauss measure ,7 has no a-additive extension from Cyl(H) unless the

Hilbert space H is finite dimensional (see [27] for the proof). To obtain a 0-

additive extension one constructs a Banach space B containing H and studies

o-fields on B.

A seminorm [I - H on a Hilbert space H is called a measurable seminorm if

Vs > 0 3P0 E P(H) VP _1_ P0, P E P(H): ”)((IlPhH > e) < e.

Let H - ll be a measurable norm on a Hilbert space H and define B to be a

completion of H with respect to the norm I] ~ [I. Then B is a Banach space and

the following relation holds ([21]):

B*‘-,>H'—+B

i i

where i is the natural embedding and i* is its conjugate: 2*(e*)(h) = e*(i(h)), with

e* E B*, h E H. Both embeddings, i and 2* are continuous and have dense ranges.

Let a, be a function on cylinder subsets of B, induced by the Gauss measure

on H, that is,

MAC) = “MC 0 H),

for any C 6 Cyl(B) We will also write ,u for #1. Note that the above definition of

,u, is correct, since B*;;>H.

Next theorem ([21]) provides the o-additive extension of R), the following (The-

orem 4.2, [27]) identifies the cylindrical o-field with the Borel o-field on B.
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Theorem A.1 The set function ,u defined on Cyl(B) induced by the Gauss mea-

sure 7 on H has a o-additive extension {denoted further also by ,u) to the o—field

generated by Cyl(B).

Theorem A.2 The o-field generated by Cyl (B) is the Borel o-field of the Banach

space B.

The triple (i, H, B) is called an Abstract Wiener Space. The measure u on

B of Theorem A.1 is called the Wiener measure. The measure no, a o—additive

extension of the set function a, from Cyl(B), is called the Wiener measure with

variance 0”.

Example A.1 Standard AWS.

Let Co = CO[O, 1] be the Banach space of continuous functions on [0, 1] vanishing at

zero, endowed with the supremum norm. Let C" be the Hilbert space of absolutely

continuous functions in Co with square integrable derivatives, with respect to the

scalar product (f, g) = fol f’ (t)g’ (t)dt. Then the triple (i,C’,C0) is an AWS (see

[27] for the proof).

Now recall the Brownian motion process of Example 1.2.1 (a). There exists a

version of this process with continuous sample paths (Theorem 37.1, [4]). This

means that the Banach space C0 can be considered as the set of sample paths of

the continuous version of Brownian motion. As mentioned in Example 1.2.1 (a),

C’ is the RKHS of this process. The Wiener measure a on Co is the extension

of the Gauss measure on C’. For any C E Cyl(Co) of the form: C = {B E Co :

(B(tl), B(tz), ..., B(t,)) E A}, A - a Borel subset of R”, the Wiener measure u(C)

can be expressed as follows:
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I
H

u(C) : [(27r)"t1(t2 —- t1)...(t,, — t,_1)]—

2 2 2
u1 (u2 — ul) (u, — u,_1)

X _ Ill 2 d IOOd n-

fAemfl [t1+ 252—111 + + t,—t,,_1 ]/}11, u

 

This is the probability of the event {(3 (t1), B (t2), ..., B (t,)) E A} for Brownian

motion B = {B,, t 6 [0,1]}.

B Backward It6 and Fisk—Stratonovich Integrals

With Brownian motion {B,,t E [0, 1]}, we associate two filtrations, .77, = o{B,,, s S

 

t} and .7:1 = 0‘{31 — BS, 3 Z t}, with the convention .70 = .771 = the trivial 0—

field. The first filtration is increasing as t increases and the second is increasing

as t decreases. The forward It6 integral is defined for processes adapted to the

natural filtration, {f,},€[0,1]. The Backward Ité integral can be defined for pro-

cesses {u,,t 6 [0,1]}, adapted to the “backward” filtration {F},€[0,1] , satisfying

condition E/01ugds < 00.

Let u), E L2(Q,FR), k = O,1,...,n, un+1 an .71 measurable random variable.

Assume that the sum

71,—]

Z uk+llltt,tk+1) + “n+11m
k=0

converges to u in L2(Q X [0,1]). Here, 0 = to < t1 < t2 < < t, = 1. Then, the

backward It6 integral of u is defined as the limit in L2(Q) of the sum

n—l

Z Ult+1(Bt,,+1 '— Btk)

k=0

1

and denoted by f u, * dB,. This definition is not ambiguous because the limit

0

defining the backward It6 integral does not depend on the choice of the sequence

approximating u in L2(Q X [0,1]).
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Note, that the backward It6 integral of u coincides with the forward It6 integral

of the process {17, = u1_,,t 6 [0,1]} with respect to Brownian motion {31 —

B1_,, t 6 [0,1]}. For more extensive discussion and applications we refer to the

work of Kunita [26].

A random process {u,,t 6 [0,1]}, such that P(/01u,2dt < oo) = 1 is said to be

Fisk—Stratonovich integrable, if the following limit:

 
. "—10%. —Ut)

"11%; ”+12 k (Btk+1 — Btk)

exists in probability for any sequence of partitions O = to < t1 < t2 < < t, = 1,

with max{tk+1 — tk, k = 0, ...,n — 1} —+ O as n —) 00 and the limit is independent

of the choice of the sequence of partitions. The Fisk—Stratonovich integral of u is

1

denoted by f u, 0 dB,. For further properties and references see [45].

0

C Hilbert—Schmidt and Trace Class Operators

on Hilbert Space

Let H be a separable Hilbert space. A linear operator T : H —> H is called

Hilbert—Schmidt if it admits a representation of the form

00

Th 2 Z A'n,(h’) hn)Hen

n=1

where h E H, {e,}f,°=1, {h,}:°=1, are orthonormal sets in H, A, > O, n = 1,2,

and 2?le A3, < oo.

Equivalently, T is a Hilbert—Schmidt operator on H if for some (hence for any)

orthonormal basis {e,},‘i°___1 C H, illThnlliq < oo.

n=1
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With the above notation, the Hilbert—Schmidt norm of a Hilbert—Schmidt op-

erator T is defined as follows:

”Tllz =(ZIIThHIIi1)R =(Z A3,)8.

n=1 n=1

The middle sum above is independent of the choice of the orthonormal basis.

The collection of Hilbert—Schmidt operators on H, with the norm || [[2 is a

Hilbert space, denoted here by H‘82. The scalar product of two Hilbert—Schmidt

operators T, S E H‘82 is given explicitly by (T, S) H912 = i(Te,,Se,)H, where

{e,},’,°=1 C H is an orthonormal basis. ”:1

A linear operator T : H —) H is called trace class if

”T“, = sup 5: [(Th,, e,)H| < 00,

where the supremum is taken over all orthonormal systems of vectors {e,}f,°=1,

{h,};’,°=1 C H. The quantity ||T||1 is called the trace class norm of T.

Trace class operators on H, with the trace class norm [I [[1, form a Banach

space.

Every trace class operator is automatically a Hilbert—Schmidt operator and the

following relation holds:

l|T||1 Z ||T||2 2 ”TH

where the latter norm is the operator (supremum) norm.

In the conclusion, let us recall the notion of a tensor product of unitary spaces

(i.e. linear spaces with scalar products). Let H, K be unitary spaces with bases

{6,},E1, {jg-be] respectively. The tensor product H (8) K of the spaces H and K

is the linear space, whose basis is formed by the pairs (e,, f,), denoted by e,- ® fj.

With every pair 3: = 20361; 6 H, y = Zfijfj E K, we associate an element

x®y=Za,C,-e,®fj E H®K.
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The linear space H (8) K can be made into a unitary space by defining the scalar

product as follows:

(1131 ® 9111132 ‘3 y2)H®K = ($1,$2)H(3/1, 312%.

In particular, H‘82, the space of Hilbert—Schmidt operators on H, is the com-

pletion of the unitary space H (X) H in the Hilbert—Schmidt norm under the iden-

tification of Section 2.2.

The role of tensor product is emphasized by the fact that there exists a bilinear

map (,0 : H X K —> H (8 K, such that given any linear space L and a bilinear map

b : H X K ——> L, there exists a linear map l : H (X) K —+ L, replacing b, in the sense,

that b = l o (,0.
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