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ABSTRACT

Blind Separation of Unknown Sources in Dynamic

Environments: Theoretical Formulation and

Micro-Electronic Implementation

By

Ammar B. Gharbz'

Novel learning algorithms for the problem of blind separation of signals in static

and dynamic environments are developed. The derived learning rules of these algo-

rithms are based on the minimization of mutual information functionals. A novel

learning rule is initially derived from the decorrelation of the output signals. This

rule is then enhanced by including higher order terms to test for the independence of

signals.

Optimization theory is utilized to derive a general framework to develop an update

rule for the parameters of a linear dynamical network model. Higher order statistics

are also explored to develop an approximate expression of the mutual information

which depends on the unknown probability density functions of the output signals.

The modeling of the environment is considered as an important factor in the de-

velopment of the update law. Keeping the analog implementation of the algorithms

in mind, state space realizations of the network which minimize the number of pa-



rameters are considered. Such choice of realization would result in a reduction of the

complexity of the network and also the corresponding circuit blocks.

Computer simulation are conducted to evaluate the performance of the devel-

oped algorithm. A circuit implementation of one of the developed algorithms for the

dynamic case is described and its performance is verified using the PSPICE circuit

simulator.

In summary, the main contributions of this thesis are the development of:

1. a novel update law for the static environment case based on the decorrelation

of the output signals and its invariants;

2. a novel energy function that characterizes the statistical independence of sig-

nals using higher order statistics for both the feedforward and the feedback

structures;

3. a novel framework to derive the update laws for the parameters of a dynamic

network using optimization theory and the calculus of variations; and

4. a circuit realization of one of the developed algorithms for a dynamic feedback

network.
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CHAPTER 1

Introduction

The Blind Separation of Sources is a challenging signal processing problem with signif-

icant potential applications. The problem is informally described as follows: several

unknown but independent temporal signals propagate through a mixing and/or filter-

ing, natural or synthetic environment. By observing the outputs of this environment,

a network (e.g., a system, a neural network, or a device) is configured to counteract

the effect of the environment and adaptively recovers the original signals. For this

processing, only the property of signal independence is assumed. No additional a

priori knowledge of the original signals is required. This processing represents a form

of self (or unsupervised) learning. The weak assumptions and the self-learning capa-

bility render such a network attractive from the vieWpoint of real-world applications

where training is not an option.

The blind separation approach has great advantages over the existing adaptive

filtering algorithms. For example, when the mixture of other signals is labeled as

noise in this approach, no specific a priori knowledge about any of the signals is

assumed; only that the processed signals are independent. This is in contrast with

the noise cancelation method proposed by Widrow et al. [1] which requires that a

reference signal be correlated exclusively to the part of the waveform (i.e., noise) that

needs to be filtered out. This latter requirement entails specific a priori knowledge



about the noise, as well as the signal(s).

The blind separation of sources is valuable in numerous and major applications in

areas as diverse as telecommunication systems, sonar and radar systems, audio and

acoustics, image/information processing, and biomedical engineering. Consider, e.g.,

the audio and sonar application where the original signals are sounds, and the mixed

signals are the output of several microphones or sensors placed at different vantage

points. A network would receive, via each microphone, a mixture of sounds that are

usually delayed relative to one another and/or the original sounds. The network’s

role is then to dynamically reproduce the original signals, where each separated signal

can be subsequently channeled for further processing or transmission. Similar appli-

cation scenarios can be described in situations involving heart-rate measurements,

. communication in noisy environments, engine diagnostics, and uncorrupted cellular

phone communications.

Adequate models of the environment that include time delays or filtering are very

important when the sensors are viewed as part of the environment. In many applica-

tions where the sensors (e.g., microphones) include their own dynamics, the model of

environment should include time-delays or filtering. Otherwise, assuming pure static

models of the environment would result in highly sensitive and unrobust processing for

any network. Indeed, in order to render the network operable in real-world applica-

tions, robust operations must be ensured to parameter variations, dynamic influences

and signal delays that often result in asynchronous signal propagation. Examples of

such effects include filters in the case of an audio system, or delay lines and/or echoes

as in the case of a radar system. The environment should be modeled as a dynamic

linear (or even, nonlinear) system [2, 3].

The challenges for this area reside in the development of a mathematical analysis

and framework to the problem of blind separation of sources. This is the angle from

which this research has been approached: a review of the current literature has been



conducted to study the various approaches to this problem, and a general framework

to develop an update law for the network parameters based on optimization theory,

the calculus of variations and higher order statistics has been proposed.

The thesis is divided into eight chapters. An introduction of this work is presented

in Chapter 1. Also included is the definition of the problem and some applications

which are given to illustrate the need for a solution to this problem. Chapter 2

presents an overview of the literature. The pioneering work of Herault and Jutten

is presented first followed by the work of Cardoso, Amari and Sejnowski and their

coworkers. This review presents the different approaches that have been attempted in

finding a solution to this problem, including neuro-biologically based findings, alge-

braic method solutions and higher order statistics methods. This chapter summarizes

a snapshot of the status of current approaches in the field. In Chapter 3, a solution to

the problem in a static environment is developed based on the decorrelation condition

of the output vector. However, decorrelation characterizes only second order statis-

tics, which are not sufficient for solving this problem. Therefore, improved versions

of the algorithm, built upon the works of Herault, Jutten and Amari, are developed,

and computer simulations are given which validate the performance of these proposed

algorithms. In Chapter 4, higher order statistics are introduced in order to develop an

approximation of an energy function. The developed energy function approximation

does not- assume that the output signals should have unit variance. The developed

energy function also uses a higher order approximation of the natural logarithmic

function. Such an energy function will require more computations. However, it is

shown that the adaptive laws based on such an energy function will perform well,

where other existing algorithms fail to perform the same task. In Chapter 5, the

environment and network models are represented by a dynamical system described

by a matrix transfer function. The existence of a theoretical solution to the problem

is presented. Then, a state space realization of the network is developed. Such a



realization is represented by the least number of parameters. This translates into

efficient computations and would eventually results in reduced chip area in electronic

implementation. The optimization theory and the calculus of variations are explored

in this chapter to establish a general framework for updating the parameters of the

dynamic network. Computer simulations show the performance and the limitations of

the developed algorithms. In Chapter 6, a feedback structure of the dynamic network

is considered. The derived update laws here are based on an extension of the static

case. Computer simulations for the feedback structure are presented and discussed.

In Chapter 7, the basic building blocks for the micro-electronic circuit implementation

of the algorithm are developed. Consequently, the complete realization of a feedback

neural network architecture with learning is presented and supported by PSPICE

computer simulations. Finally, concluding remarks and directions for future work are

presented in Chapter 8.



CHAPTER 2

Literature Review

In this chapter, a review of the present literature is presented in order to reveal the

different approaches already considered in solving the problem of the blind separation

of signals. These efforts have helped direct the path that the research has taken in

tackling this problem. Some of these ideas herein will be explored as possible solutions

and will be incorporated in the development of this work. A general overview is due,

however, in order to give credit to some of the scientists who have contributed to the

evolution of this exciting area of intelligent nonlinear signal processing. Yet, on the

outset, we confess that our overview would not be comprehensive, and very likely,

would overlook some portion of this revolutionary literature.

The blind separation of signals approach, motivated from neuro-biology, was first

introduced by Herault and Jutten in the late 1980’s. They developed an adaptive

algorithm based on neuro-biological findings [4, 5, 6, 7]. Some theoretical analysis

was later developed which provided some validation of the algorithm [8, 9, 10, 11].

This line of work, based on the neuromemitic approach, was further considered by

Karhunen [12] and Chichocki and Moszcznski [13].

The studies on the blind separation of signals are based on the assumption that

no a priori detailed knowledge of the unknown sources is available. However, the

unknown sources are assumed to be (statistically) independent. Thus, to solve the



problem one has to render the components of the output of the network statistically

independent. This hypothesis will be the basis for the development of various energy

functions, or sometimes called contrast functions or independence criteria.

Despite the fact that decorrelation of the components of a signal vector is a weaker

condition than independence, some researchers have considered such a necessary,

but not sufficient, conditions to develop criteria and corresponding algorithms [14].

However, decorrelation describes only 2'“ order statistics of the output signal vector.

Therefore, these criteria are valid only for a small set of input signals and higher order

statistics need to be considered when developing more capable algorithms.

Since the cross cumulants of independent signals are zero, several contrast func-

tions have been considered in solving the problem. For example, when the inde-

pendence is measured in terms of the cancelation of fourth order cumulants of the

outputs, cubic nonlinearity, similar to that defined in [4], will appear in the update of

the algorithm [15, 16, 17]. Cardoso, on the other hand, focused on the algebraic prop-

erties of fourth order cumulants and considered the problem as a series of whitening

and diagonalization processes [18, 19, 20, 21, 22].

These criteria are necessary, but not sufficient, as most of these conditions are

constrained to some specified set of inputs. Therefore, the celebrated work of Comon

[23] is considered an important framework. The mutual information is considered as

an energy function. The mutual information is expressed in terms of the marginal

probability density functions. However, knowledge of the densities is not accessible by

the hypothesis of the problem. Therefore, an Edgeworth expansion was considered

to approximate them. Amari et a1 [24] followed the same line of work by taking

a Charlier-Gram expansion. Bell and Sejnowski [25, 26] had also considered the

optimization of only one term of the mutual information, but had to resort to express

it in terms of a nonlinear function of the output signals in order to capture the

statistical information of the output.



It should be noted that an important technical difficulty faces the identifiability of

the solution to the problem of the blind separation of signals. Due to lack of informa-

tion, regarding such items as the signal power, the spectral content or the modulation

scheme, the output of the separating network cannot be ordered corresponding to the

order of sources signals. Thus, the signals can be identified up to an indetermination

in terms of scale and order. This identifiabity problem was first treated by Giannakis

et al [27] who used third order cumulants, and, it was further addressed by Tong et

a1 [28, 29, 30, 31] who used fourth order cumulants.

Several algorithms have been proposed in the literature for separating signals

based on the availability of prior spatial, temporal or statistical information. This

direction of work defines another approach to blind separation because necessary and

sufficient conditions of statistical independence are hard to satisfy. For example, the

MUSIC [32] and ESPRIT [33] algorithms take advantage of the structural informa-

tion of the channels based on the Vandermode matrix channel characterization to

obtain an estimate of the parameters. Unfortunately, such structural information is

not always available. Other algorithms that exploit the temporal structure of a com-

munication channel, while assuming no priori spatial knowledge, have been proposed

in the literature. These techniques consider the constant modulus property [34], dis-

crete alphabet [35], self-coherence [36] and the finite alphabet property [37]. Other

algorithms were developed based on a priori knowledge of the statistical information

of the signals. When the sources have known probability densities, the maximum

likelihood estimator is used to provide a solution to the problem [38, 39, 40].

So far, this review has focused on the case when a static modeling of the envi-

ronment is considered. How about the case when the environment is modeled as a

dynamic system? In this case, two lines of work can be described: digital versus

continuous. Most of the studies in the literature have tackled this problem using FIR

(finite impulse response) filters. For example, Moulines et a1 [41] considered the sub-



space method to decompose the signal-noise space from the noise space to recover the

unknown sources. Gerven and Compernolle [42] used a criteria based on the second

order statistics while Thi and Jutten [43] considered criteria based on the cancela-

tion of fourth order cumulants. In these works, the goal was to determine the FIR

coefficients that separate the signals. Bell and Sejnowski considered an information-

theoretic approach [44, 45]. In all these works, FIR’s were considered to model both

the environment and the network. This thesis intends to address the problem by

considering an environment and a network model that are described by a continuous

linear dynamical system [46, 47], and to define a general framework for solving the

problem.

Several analog implementations of the blind separation algorithms have been re-

ported in the literature. Vittoz and Arreguit [48] and Cohen and Andreou [49] have

considered the implementation of the static HJ algorithm. On the other hand, Gharbi

and Salam have considered an analog implementation of the dynamic HJ algorithm

[2, 50, 51, 52, 52, 47].

2.1 Neuromemitic Algorithm

Herault and Jutten have pioneered a new paradigm in the area of blind separation

of in the Ph.D. work of Jutten under the supervision of his advisor, Herault [4]. The

problem was labeled as the Independent Component Analyzer (ICA) [4, 6] because

of its similarity to the Principal Component Analysis [53, 54]. In [8, 9, 10, 7, 5],

Herault and Jutten proposed an algorithm for the separation of independent sources.

It was assumed that the medium is linear and static. The inputs to the network were

the measured signals eg(t), 1 S 1' _<_ n, which are linear combinations of the original

signals, namely,



 
 

 

_., e:- : 2;}:1 (15ij y.- = 31' — ngéi dijyj

     
 

Figure 2.1. Herault and Jutten Architecture

«(1) = iat- 3,.(1) (2.1)
i=1

which, in vector form, can be expressed as

e(t) = A 8(1) (22)

A is an n x 11 matrix whose components 0,3 are unknown. The matrix A models the

mixing static environment and is assumed to be a nonsingular matrix. Furthermore,

for normalized mixing, its diagonal entries are all ones, and each off- diagonal element

is less than one in absolute value. Herault and Jutten used a recursive architecture

made up of fully interconnected outputs. Each output, y,-(t),l S 1' S 11, received the

mixed signal, 6,-(t), and a weighted sum of all other outputs, — 2,,“ dij y,(t). Thus,

y,-(t) = e;(t) — gdij yj(t) 1 S i S n (2.3)

which, in vector form, becomes

3’0) = 8(0 - D 3’0) (2.4)

D is an n x 11 weight matrix whose main diagonal is zero. Now, the problem of

separation of signals translates to retrieving the original signals s(t). In the limit, it

is thus desired to have:

y(t) = P 8(t) (2.5)
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where P is a generalized permutation matrix; a matrix that is obtained from a non-

singular diagonal matrix by row and/or column permutation.

Herault and Jutten were motivated by some neuro—biological evidence that infor-

mation about the speed and position of body joints is mixed before being sent to

the brain by two different types of nerves. The brain, however, is perfectly capable

of separating (and recovering) speed and position signals. This biological and intu—

itive inspiration led Herault and Jutten to propose an update law, reminiscent of the

Hebbian rule, that presumed the independence of the original signals

do = nu f(yalgfyj) i #1 (2-6)

where f() and g(.) are two nonlinear odd functions and 17,-,- is a constant learning rate.

Despite the fact that their original idea came from a neuro-biological inspiration, the

authors supplied an initial mathematical reasoning for the update law.

2.1.1 Derivation of The H-J Update Law

In [10], the authors have introduced a justification of the developed update law defined

by (2.6). The work of the authors and some issues that may not have been considered

during the development of their algorithm will be presented.

This algorithm was developed by assuming that the network is near convergence.

This means that the first (11 — 1) outputs were assumed to have converged; y,- =

0553;, V1 < n. Then, the last output can be expressed as:

yn = 6.. — Zdnj 117 (2.7)

#11

n—l

= Zam- 31' - Z d",- yj (2.8)

.7 j=1

n-l

= 2 (Gui - d,,,-a,,-) 81' + annsn (2.9)

:‘=1
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Since the sources 37’s are independent, the cross correlation between two different

outputs is null. Therefore, the output power of y1, can be expressed as:

n-l

< 313, >= 2: (anj — dnjajj) < 8? > + am, < 83, > (2.10)

i=1

Thus in order to minimize the power of yn, it is required that

an,- — dnjaJ-J- = O, Vj 94 n (2.11)

In this case, the power of the 11.“ output yn(t) is proportional to that of 3,,(t). This

above relationship is true only for the nth output assuming that all other (11 - 1)

signals are at the desired sclution.

The authors proposed to develop the algorithm based on the principle of mini-

mizing the individual output powers using the gradient descent method which will

be presented in the next section. However, minimizing the individual powers of the

outputs does not lead, necessarily, to the minimization of the total energy function,

which is the sum of all individual powers. They assumed that the only contribution

from the total energy to a particular parameter dij comes only from the corresponding

output signal 77,-. Later, in this work, a different update law obtained from the sum of

all individual output powers will be considered as an energy function for the problem.

Due to the fact that the algorithm developed from this energy function is merely a

decorrelation of two output signals, it fails to separate sources. However, including

the nonlinearity functions f and g in (2.6) have provided some improvements.

2.1.2 Gradient Descent Method

As was discussed earlier, the authors in [10] proposed that the network parameters

dij would be updated using the gradient descent method in order to minimize the
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output power of the individual signals defined as

E,- = y? (2.12)

N
I
H

Thus the parameters were updated as follows:

_E;1'a_ a_yi

d,- = — , 2.1
J ’7—adij- -775, a_dij ( 3)

It is given that

ym = em " Z dmk g]: (2.14)

k¢m

= 8m - Z (1 - 6mk)dmk y):

I:

Now, differentiate both sides of the above equation with respect to (1,,- in order to

obtain the expression for fiym/adgj:

311m By

Evian. 5111/1. (1—61m)2dm1 8730-6...) (215)

Rearrange the above equation to obtain:

a 1‘

2(6... + d... (1— 6.5)) a—j" = 6....- (6.1—1):” = v1.2. (2.16)
I: '1

Let

Q = (1 + D)-1 ' (2.17)

and the previous equation becomes

33’. _ m
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Therefore,

aym _ 6y

adij " adij m (2.19)

= [Q 1'3”]m (2.20)

= quk ”3(1)
(2.21)

I:

= Zkayj 5“ (51¢ - 1) (2.22)

I:

= qm. 15 (6.1- 1) (2.23)

Consequently

' all;

do - '7) y. 67,; (2.24)

= ”7911 (511' - 1) yr yj (2.25)

= '1 (ii; 311' yj (1 - 511') (2.26)

2.1.3 Evaluation of the update law

The update law defined in (2.26) always converges to a symmetric solution matrix;

thus limiting the structure of the environment to a symmetric matrix. However,

the general environment cannot always be modeled by a symmetric matrix. This

represents a drawback of the update law defined by (2.26). Also, when equation

(2.26) is expressed on average as

< a,- >= 7) (111 < y.- yj > (511' - 1) _ (2-27)

this rule tests only the decorrelation of the output signal g(t). However, the goal is

to develop one update law which pushes for the independence of the components of

g(t). To do so, the rule was modified in order to accommodate higher order moments

by imposing a nonlinear function which produced various moments of the output, as
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follows:

€1.11 = '7 (Iii f(ya') g(yj) (1 - 51'1") (228)

where f and g are two odd functions. These two functions should be different. Oth-

erwise, the matrix D becomes symmetric. The use of such two functions introduces

higher- order moments. To illustrate this, consider the Taylor series expansion of

these two odd functions as

f(3) = 202k“ 50%“ and 9(3) = :52!“ 32’“ (2-29)

I: 1

Thus, the equilibria of equation (2.28) on the average satisfy

< 61:3 >= We." 202k+1521+1 < 3112H1 y?“ > = 0 (2-30)

k,i

ASsuming c127,.“ and [321.11 are not zero, this results in

< 1.2"“ 113’“ >= 0, V k, I (2.31)

This condition means that all joint odd moments are zero. This condition is stronger

than correlation. However, it is implied by independence of the components of the

signal vector y(t), when these signals have even probability density functions.

As a last approximation, the authors used the assumption that the diagonal entries

q;,-’s were very close to one, since the off-diagonal entries c,-,-, 1' 79 j, were less than

one. Thus, the proposed update law becomes as defined by equation (2.6).

2.1.4 Computer Simulations

Computer simulations were performed for the H-J algorithm defined by (2.6). The

unknown sources are two sine waveforms with respective frequencies lkHz and 2kHz.
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The environment mixing matrix is assumed to be

1.0 0.6

0.4 1.0

The learning rate is taken to be 17 = 100 and the initial conditions are all zero. Figure

2.2 shows the performance of the algorithm when the odd functions f and g are

respectively the cubic and the linear functions.

f(x) = x3 and g(x) = 1'

One observes that the off-diagonal coefficients of the D matrix converge to the desired

values. In Figure 2.2, the D matrix converges to

* 0.0000 0.4004
D, =

0.6004 0.0000

In addition, Figure 2.2 displays the performance index, which is defined next.

Performance Index

In the problem of blind separation of signals, one desires to design a network such

that its output is a replica of the unknown sources. Because of the lack of knowledge

of the unknown sources and the mixing matrix, one does not expect to completely

identify the unknown sources. Therefore, the order of the components of the output

cannot be determined, nor is their corresponding magnitudes. Consequently, one can

identify the unknown sources up to a permutation and a scaling. This is defined as

the wave preserving property [28]:
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Definition 1 (wave preserving property) The signals y(t) and s(t) satisfy the

wave-preserving property if and only if

y(t) = Ip I‘ s(t) = Ps(t) (2.32)

where Ip is a permutation matrix and I‘ is a diagonal matrix, and G is the general-

ized permutation matrix. The definitions of a permutation matrix and a generalized

permutation matrix are given in Appendix A.

In the case of the H-J work, the network input-output relationship is described by

equation (2.4). For the sake of generality, let’s assume that such a relationship is

represented by

y = We (2.33)

Thus, considering equations (2.32) and (2.33), one obtains

P = WA (2.34)

So, at convergence, the gain matrix WA, which is the product of the matrices W and

A, has to be a generalized matrix in order to claim that the network converged to a

solution that separates the mixed signals.

The following mapping

I: Rn“ —-»R+

P 1-—+I(P)=Z[Z—————'—p"' —1]
maxklpacl

+Z [Z——I?“ —1] (2.35)
maxi: lij l
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is always positive and is zero if and only if the matrix P is a generalized permutation

matrix. Therefore, this mapping will be considered as a performance index of any

given algorithm for blind signal separation. Its plot, versus the time of evolution of

the algorithm, represents a measure of the convergence of that algorithm.

Thus, one clearly observes that the performance index, shown in Figure 2.2, ap-

proaches zero and consequently the gain matrix P = WA becomes

1.0002 -0.0006

-0.0005 1.0004

Figure 2.3 displays the response of the network after convergence. The output signals

of the network, y,-(t), are approximately the unknown sources, s,-(t). There is an error

between the input and the output of few milli units.

Computer simulations were also performed using different types of odd functions.

In this case,

f(x) = sinhx and g(x) = tanh :1:

Figure 2.4 and 2.5 show the performance of the algorithm defined (2.6) using these odd

functions. The settings of this simulation are exactly the same as for the ones above,

in terms of initial conditions, learning rate, mixing matrix and unknown sources.

When, the training time is equal to 0.lsec, it was observed that the network did not

converge yet. Therefore, a longer training time, namely 0.2sec, was allocated. In

this case, the parameters converged to the near desired values as shown in Figure

2.4. Also, Figure 2.5 shows that the output represents a near replica of the unknown

sources

When computer simulations where performed for the algorithm defined by equa-

tion (2.26), the network converged to a symmetric matrix as it was anticipated in the
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discussion of the algorithm development. Figures 2.6 and 2.7 show the performance.

If one considers deriving the update law based on minimizing the total energy of

HJ Algorithm Phase Plot
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Figure 2.2. Performance of H-J Algorithm. The parameters are updated according

to ds = n y? 10'

the signal or any other energy function of the form

t = Z 4501?) (2'36)

N
I
H

one could use equation (2.23) to obtain

01.1 = ”72 ¢'(ym)quma y,- (511' - 1) (2-37)
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2.2 Mutual Information Approach

In [24], Amari et al. considered the following feedforward architecture for the blind

separation problem. They used the Independent Component Analyzer (ICA) frame-

X

3(1) e(t) \K W)
__., A :

\_.

  

  

    
 

 
 

Figure 2.8. Feedforward Architecture

work formulated by Comon [23] which is based on minimizing the dependency among

the output components. This dependency is measured by the Kullback-Leilber diver-

gence between the joint and the marginal probability density functions:

_f_y(Y)id
(2.38)

Equation (2.38) is minimum and is equal to zero only when all the components of

the output vector,namely y,-, are statistically independent. The averaged mutual

information can be expressed in terms of entropy as

1(1') = -H(1') + XH(31,-) (239)

where H(y) is the entropy of y which is a measure of uncertainty of the occurrence

of the event produced by y is defined in Appendix A.

When using the mutual information as an independence criterion, partial knowl-

edge of the statistical information of the output is needed, since the chosen inde-

pendence criterion is a function of the probability density of the output. To surpass

that constraint, Amari [24], as well as Comon [23], used a truncation of infinite series
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expansion of the probability density functions. Unlike Comon, who used Edgeworth

expansion, Amari completed a Gram-Charlier expansion to approximate the proba-

bility distribution of the output. The fourth-order Gram-Charlier expansion of the

fin (311') IS

541'

f1. (1.)~ f..(y.-)—— a(3,.) [1 + —33,‘1Ha(y.-) +—12(4)] (2.40)

. _ 1

where 113,- = 1713;, 1:4,- = m4,-—3, mk; = E[y,’°] IS the kth moment of 77;, 0(2) = 715178 '57,

and H7,(x) are the Chebyshev-Hermite polynomials defined by

(—11)*-"——:0”) = Hk(x)o(x) (2.41)

It is assumed here that the variance term is unity, i.e.

mzi = 1, W (2.42)

A second approximation of the natural logarithmic function was used in order to be

able to compute the integrals

2

ln(1+ x) z x — 22— (2.43)

Assuming that the weighting matrix W was nonsingular, then the following would

hold

 

_ fx(x)

fy(1') - ,W, (2.44)

Therefore, H(y) can be rewritten as

H(3') = Elln |W|l - Elln fx(x)l = H(X) + Elln |W|l (2-45)



26

Thus,

I(y) = 2H0.) -E[1n|Wl] -H(x) (2.46)

Using the above approximations and the gradient descent method to minimize the

mutual independence, the authors arrived at the following update law [24]:

W = nlW‘T - f(3')le (247)

where

_311 2_59__1_‘£7_‘_115 E3
f(y)—4y +411 3y 411+,y (2.48)

This function is plotted in Figure 2.9 along with other functions that have been

considered in the literature. However using the information theory perspective [55]

and assuming the mixing matrix to be nonsingular, the above update law will be

rewritten as

W = n[1 — 1001”]W (249)

Computer simulations of this algorithm were performed. The unknown sources are

assumed to be two sine waveforms with respective frequencies 1H2 and 2H2. The

mixing matrix is chosen to be random

0.7012 0.7622

0.9103 0.2625

The learning rate is 17 = 0.1 and the random initial condition

0.0475 0.3282

0.7361 0.6326

0:
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Figure 2.9. Nonlinear functions

According to such a setting, the initial gain matrix is

0.3321 0.1223

G0 = WoA =

1.0920 0.7271

It is clear that the gain matrix, Go, is not a generalized permutation matrix. So,

the goal is that the network would update its parameters such that the gain matrix

becomes a generalized permutation matrix. Figure 2.10 shows the performance of the

algorithm using the settings described above. One can observe that all the parameters

of the matrix W converged to

—0.6835 1.9155

2.1673 —1.6387
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which corresponds to the gain matrix

1.2644 —0.0183
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Figure 2.10. Parameter convergence of the algorithm defined by equation (2.49)

It is very important to note that the gain matrix converged to a matrix differ-

ent from the identity, unlike the algorithm defined by H-J, which was discussed in

the previous section. The reason is that Herault and Jutten had assumed a special
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architecture of the environment by taking the diagonal of the A matrix to be one.

Thus, when developing the update law, they did not consider any law for the diagonal

elements of the network matrix. Therefore, the network converged to the exact in-

verse of the environment model. By doing so, the identifiability issue was eliminated.

However, in the work of Amari et al, no such special structure is assumed. Therefore,

the problem is not completely identifiable. Consequently, one should not expect to

obtain the inverse of the mixing matrix as the solution to the problem.

The authors’ main contribution is their analytical derivation to obtain a nonlinear

function f() which previously has been chosen in an ad hoc manner in the literature.

However, only a 2nd order approximation of the logarithmic function was considered

in which the derivation and output signal were assumed to have unit variance (2.42).

This certainly simplifies the computations. But, it does not generate the correct

nonlinear function, since these output signal variances will contribute to the higher-

order terms. Therefore, in Chapter 4, a new energy function that is based on 3"1

order approximation of the logarithmic function, with no unit variance assumption,

will be derived. A justification of this derivation will become apparent in the chapter.

Consequently, an update law based on the proposed energy function will perform

certain separation tasks, whereas the update law defined by equation (2.47) and

(2.49) will be shown to fail.

2.3 Information Theoretic Approach

The authors, Bell and Sejnowski [45, 45, 25], considered a feedforward neural network

described by Figure 2.11.

y is the output of the neural network, x is its input vector, W is the parameter

matrix and b is the bias vector.

In their work, the authors considered a criterion that maximized the information
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Figure 2.11. Bell and Sejnowski’s Architecture

transfered through the network, which is defined by

_ n fxylx3’)

1‘”) ‘ Ell ”11.011. (2'50)

Using the properties of the entropy given in appendix A, one can express equation

(2.50) as

1(x,y) = H(y)+H(X)-H(X.Y) (2-51)

01'

I(X.)’) = H(Y)-H(YIX) (252)

H(y) is the entropy of y and H(ny) is the entropy of y not generated from the input

x. The entropy of y is defined as:

+00

H(y) = -E any(Y)] = - (.0. Mr) lnfy(y) dy

where fy(y) is the probability density function (pdf) of y. These author state that

H(ylx) does not depend on W. Thus, maximizing the information transfered through

the network was equivalent to maximizing the entropy of y.

01(X.y) = 3116')

6W 6W
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Assuming that the nonlinearity function g is invertible, then the following will hold

_ fx(x)

f!(y) - IJI

 

where [J I is the determinant of the Jacobian matrix and J = 3%. So H(y) can be

rewritten as

H(Y) = Elln |J|l - Elln fx(X)l = H(X) + Elln lJll

Thus,

3__H(Wy) =E[_3_a__ln|J|

Consequently, the parameters will be updated according to

 61”IJ'] (2.53)AW: 178E[

Bell and Sejnowski suggested an approximation by dropping the expected value:

_a___1n|J|
AW=17-—a——W (2.54)

To compute the gradient, a compact form for In [J I must be found.

[6.1/L;=g—::= g’(us):—:—;= 9’(U:)w0= [Ag’(u)WL

Thus, [J I can be expressed as

IJ I = lAg'(u)Wl = lAg’(u)l-lWl = IWI H9110) (2-55)
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where Av = diag(vl, ~ . - ,0“).

In |J| = ln |W| + Zlng'(um)

Therefore

alnlJl

610.,-

17[—1 ('9_|__1’V|+ 1 32011)]

|W| away-+9111.) 810,-,-

(1:1))3] since |W| = ZWiJ'COCfiJ'

j

Ang =

 

      
   

= "[ |W|

_ -r 9_((_g”::1“xT

— ,7IW+1ij

In matrix form

_ -r 9_(__”“) xT
AW—r)[W+ 97,—“) ]

In particular, if

 

Then

AW = 17[W‘T + (1 — 2y) :8]

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

Computer simulations were performed in order to study the update law defined by

(2.63). Two prototype sine functions of respective frequencies 1kHz and 2kHz were

used as unknown sources. Computer simulations of various mixing matrices, initial

conditions and learning rates were performed. They all revealed that the algorithm

failed to separate signals. Figure 2.12 shows one example of its performance. Observe

that the performance index did not converge to zero and that the gain matrix P = WA
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is not a generalized permutation matrix. One could justify the failure of the update

law defined by (2.61) because it is an approximation of (2.53) in which the expected

value was dropped.
9
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Figure 2.12. Performance of Bell and Sejnowski Algorithm

In their work [25, 45, 26, 44], the authors did not simulate the update law as it is

defined in (2.61). Instead, they considered the following algorithm. Given n mixture

defined in a time interval [0, T], the authors first defined:

56) = (1 - 2Y(t))X(t)T
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Table 2.1. Information Theoretic Algorithm

 

f Step Action

1 Pick a random time point t,- such that t,- + 1' S T.

2 Compute

 

AW.- = £22? 6(t)

3 Evaluate I/VfT

4 Compute AW.- = l/VfT + AW}

5 Update the weights

Wi+1 = “I; + 17AM

6 Compute performance index P.-

7 While P.- > Paging), go back to step 1

 

   
 

Then the weights were updated according to the steps given in Table 2.1.

Computer simulations of this algorithm were conducted using speech and pro-

totype sine signals. The algorithm performed well when speech signals were used.

It was able to separate mixtures of two, three and five speech segments of different

speakers. Figure 2.13 shows one example of its performance. However, the algorithm

failed to separate prototype sine signals. Observe Figure 2.14.

One undesirable feature of the algorithm developed by the authors is the choice

of a random time t,- at every epoch. The authors claimed that such a choice of t;

would guarantee the input stationarity assumption. However, this choice makes the

algorithm implementation in digital signal processing cumbersome since it requires

the storage of all the data in memory. Consequently, the algorithm does not perform

in real time. Most applications of the blind separation of signals require real time

performance. Thus, the algorithm, as it is, is not attractive and needs to be modified.

One other undesirable feature of the algorithm is the computation of the inverse of

the weight matrix W. By analyzing the steps of the algorithm closely, one concludes

that the computation of the inverse occurs after all the weights were accumulated.
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Sejnowski algorithm using 2 speech inputs of 2 different speakers
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Figure 2.13. Performance of Bell and Sejnowski Algorithm Using Speech Signals



36

Sejnowski algorithm using 2 sine inputs of 1kl-Iz and 2kHz
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This means that the input signals are frozen until such computation is completed.

Thus, the algorithm is not suitable for real time performance as is. One should

reconsider the way, how and/or when such an expression is computed in order to

make the algorithm perform in real time. One solution would be to compute the

inverse while accumulating the weights. This means that the operation of weight

accumulation and inverse computation would be performed in parallel.

As a final remark, the algorithm defined by (2.63) is based on the maximization

of the information transferred through the network, defined by equation (2.52), with

appropriate choice of the neuron’s nonlinear function. One can interpret this devel-

opment based on the minimization of of the first term of the mutual information

defined by equation (2.39), namely the entropy of the output vector -H(y) This is

equivalent to the maximization of H(y)

2.4 Algebraic Approach

In [21, 56, 57, 22], Cardoso et al. proposed a series of two processes as shown in

the Figure below to achieve blind signal separation. The mixing matrix W was

factored out as the product of whitening matrix B and an orthogonalizing matrix

U; W = UB. Algorithms for updating the matrices B and U were developed, then

combined to obtain a one-stage update for the matrix W.

 

\

8(t) , X(t) B\ 26 ya)

\

\

\_

Figure 2.15. Cardoso’s Architecture
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The matrix B was updated such that the output vector 2 was white, i.e. R, = I

where z = Bx. This was obtained by minimizing the distance between the matrices

R, and I. Thus, the appropriate error function was the Kullback-Leibler divergence

[58] defined as

135(3) = Trace(R,) — In |R.| - n (2.64)

The matrix B was then updated along its gradient descent:

6E5

AB = "my?
: —1][zzT — [)3 (2-65)

The matrix U was updated such that Eu(U) = E f(y) = E f(U2) was minimized.

Since this minimization was not constrained and may lead to a solution that did not

preserve orthogonality, the matrix U will be updated according to

AU- - “ aE‘T]— [i’ T ’ U 266—-25€-3U —-nf()')y -yf(y)] (- )
 

By combining the whitening and the orthogonality stages, Cardoso et al obtained an

overall update for the matrix B:

AW= n[I-ny—f'(y)yT+yf’(y)]W (267)

Computer simulations were performed to study the update law defined by (2.67).

When the network dimension was two, the algorithm was able to separate signals

regardless of the initial conditions and the learning rate 1]. Figure 2.16 presents an

example of performance.

When developing the algorithm described by (2.67), the authors considered a Eu-

ler approximation of the gradient of the considered energy (contrast) functions. The

developed algorithm is suitable for digital implementation. Here, I will consider its
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continuous-time realization of the algorithm, investigate its performance and com-

pare it to its discrete-time counter part as defined by (2.67). The continuous-time

algorithm is now defined by the instantaneous update equation

W -—- n[I—ny— f’(y)yT +yf’(y)]W (2.68)

Starting from the same conditions, computer simulations for both realizations were

performed. A comparison of the cpu time taken by each algorithm is considered. It

can be concluded that the discrete-time version of the algorithm took more time than

its continuous-time counterpart when one compares the 74.85sec that the discrete-

time algorithm took compared to the 50.93sec for the continuous-time algorithm.

Examples of simulations for a two dimensional network are presented in Figures 2.16

and 2.18. However, when the network is of dimension 3, the algorithm converges, but

not to an acceptable solution. Observe in Figures 2.17 and 2.19 how more than 3

entries of the generalized permutation matrix converge to non-zero values. Thus, the

solution is not acceptable. One concludes that the algorithm developed by Cardoso

may not work for networks of dimension higher than 2.
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CHAPTER 3

Blind Separation in a Static

Environment

In this chapter, a blind separation algorithm in static environment will be devel-

oped. The mathematical analysis to develop adaptive laws for the problem will be

presented. The law will be derived based on the nonlinear decorrelation condition of

the output. The resulting update laws will then b to test for independence of the

output. Computer simulations will be presented to demonstrate the performance of

these novel algorithms.

3.1 Problem Definition and Architecture .

The problem can be posed as follows: given that some unknown sources are sent

from unknown sources, these sources are mixed according to some unknown model

that describes the medium through which these sources have traveled. The goal

then, is to construct a system that recovers these unknown sources based only on the

measurements of the mixtures of the original unknown sources. It is also assumed that

the environment is a static model. It can, therefore, be represented by a static matrix

to characterize its input-output relationship. Figure 3.1 describes the architecture of

44
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the system. The unknown sources, the output of the environment and of the network

are respectively labeled as s(t), x(t) and y(t).

\

8(t) x(i) \K W)
, A - :

\__

  

   

     
 

 

Figure 3.1. Static Environment Architecture

3.2 Theoretical Solution

Given the measured vector x(t), which is the only given data, the neural network

should be constructed to adaptively change the parameter W so that its output

g(t) and the original signal s(t) will satisfy the wave preserving property which was

defined section 2.1. This property implies that one is not after an exact replica of the

unknown, but rather a permutation and up to a constant of them.

Now, assume that the correct update law of the problem is developed and the

system converged to a solution W‘. Then,

y(t) = W'x(t) = W‘As(t) (3.1)

Therefore, by combining equations (2.32) and (3.1), one obtains

W“ A = P r (3.2)

Recall that P and I‘ are respectively a permutation and nonsingular diagonal matrix.
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Equation (3.2) can be rewritten as

W" = P I‘ A"1 (3.3)

This equation shows that a theoretical solution to the problem does exist and that

there are infinitely many possible solutions, thanks to the freedom that the matrices

P and F provide. Also, equation (3.2) requires that the gain matrix G = WA is a

generalized permutation matrix.

Knowing that a theoretical solution exists, one can now investigate possible ways

to construct a network 'with appropriate update laws that perform the task of sepa-

rating signals. To do so, an appropriate energy function is defined next.

3.3 Energy Function

To develop an update law, an energy function that characterizes the problem is now

defined. If it were a recognition or a classification problem, the energy function would

have been chosen as an error function; a difference between the desired output vector

3(1) and the observed output vector y(t) defined as:

«((2.6) = $- / 26.6) — y(t))” dt (3.4)

This criterion will, therefore, require the knowledge of the target signal. However,

by assumption, there is no a priori knowledge of the signal vector. In this problem,

it is expected that the network will reproduce, regenerate, and recover these sources

without any direct knowledge of them. Thus, such a traditional energy function will

not be appropriate.

On the other hand, some kind of knowledge about the original signals is assumed:

they are independent. This feature or criterion will be the basis for defining the
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energy function analogous to the one defined by (3.4). In order to define the energy

function that fits the problem at hand, one needs to rely on the definition of the

independence of signals [59].

Definition 2 (Deterministic Independence) The components

of an n-dimensional time-varying signal vector y(t) = [y1(t) - - -yn(t)]T are linearly

independent over a time interval [0,T] if and only if their auto-correlation matrix is

positive definite for all time t E [0, T]

t

Ry(t) = / y(r) y(r)T dr is positive definite for allt S T

0

Based on this definition, one possible energy function could be based on identify-

ing necessary and sufficient conditions for the autocorrelation matrix to be positive

definite. Theorem 1 defines this characterization [60].

Theorem 1 (Positive Definite) If a matrix M is positive definite, then

[M] S fi my; (3.5)

k=1

with equality if M is diagonal.

The operator |M| denotes the determinant in the case of a square matrix M. The

proof of this theorem is arrived at by induction and shown in appendix B.l. Using

Theorem 1, one can develop a criterion, or energy function, that is always positive,

but is minimum when the matrix is diagonal. To develop such a function, some

equivalent statements of Theorem 1 will be presented. Let M be a positive definite

matrix. Then,

11

M is positive definite => H m“; 2 [M I

Ic=l

=> lnHmkk ZlnIMI

i=1
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=2 Zlnmkk—lnIMI 20

k=1

with equality if and only if M is diagonal.

Define the mapping

J: Rm“ —-+R+

M l-—> J(M) = %[kz:: lnmkk - In [MI] (3.6)

When the energy function defined by (3.6) is minimized, one would obtain a diagonal

matrix. Thus, this energy function will be used in this problem by considering the

autocorrelation matrix, since the decorrelation of the components of the output signal

vector is obtained when the autocorrelation matrix of the output vector is diagonal.

In the work presented in this chapter, an update law that pushes for the decorrelation

condition only at the first step will be developed. Then, some techniques found in the

literature [8, 24] to push for the independence condition will be used. Also, different

numbers of measurements and sensors will be considered. Thus, the matrix W is an

n x m where m 79 n. A special form of the update law for the different scenarios of

the relationships between the number of sensors and measurements will be given.

The autocorrelation matrix of the output signal vector is defined as

12,6) = / y(rmoT dr =<M >. (3.7)

Thus, using the mapping defined by equation (3.6), the energy function will be defined

as

<I>=J(R,(t) =%]k§::lln<y§ >,—ln|<ny >: I] (3.8)
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The matrix W will be updated along the gradient descent of (I)

 

 

. 6(1)

W = "lo—n?

_ [_ 1 6|<ny>,|_1i 1 6<y§>t

"2|<ny>,| 6W 2k=1<yf>t 6W

3.4 Update law derivation

First compute

all):

6ng

a < 3113 >t

6ng

 

2<yk >t

However,

= Z wuss:

1

Therefore,

  

3 3

yk =26whiz =Z6ki5kj$l= 51:69:,“

 

310,-, r awe-2

Consequently,

'a < 2 >

——!"-—t- = 261,.“ < ykxj >¢

6ng

So,

1 n l a < y)“; >1 ._ = — ——26 - < :c- >

2g<y§>g 6W 2§<—_1_2yk>¢ h 311:] t

< ll;2 >:

= [(diag < ny >t)-l < yxT >¢] ..
U

(3.9)

(3.10)

(3.11)

(3.12)
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The other term

a|<ny>. | _ 8|<WxxTWT>tI

6W _ 6W

  (3.13)

In [60], it was derived that for any square matrix M and any matrix X such that

XMXT is nonsingular

BIXMXTI

ox = IXMXT|](XMXT)"XM+(XMXT)‘TXMT]

In addition, if M is symmetric, equation (3.14) becomes

T

M—X—l = 2|XMXT|(XMXT)-1XM
3X

Applying equation (3.15) to equation (3.13)

al<ny>rl

3W

 = 2 < |WxxTWT|(WxxTWT)-1WxxT >.

= 2 < Inyl(ny)"yxT >¢

Plug in equations (3.12) and (3.16) into (3.10), and one obtains

T|(ny)"yxT >

< IWTI >:

 

. < . _

W = 17] Iyy t—(dzag<ny>t) l<yxT>¢]

If W is a square nonsingular matrix, then (3.17) becomes

W = q[W"T — (diag < ny >.)'1 < yxT >.]

= 17]] — (diag < ny >t)‘l < ny >,]W‘T

= n[I —(diagR,)‘1Ry]W'T

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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At steady state, equation (3.19) becomes

W = 0 I = (diag < ny >1)“l < ny >1

< ny >¢ = diag < ny >1

< yiyj >1: 0,Vi géj

{
1
1
1
1
1
1
}

the components of the signal vector y(t) are decorrelated.

Thus, the algorithm defined by equation (3.19) tests only for decorrelation.

In order to compute the weight update according to equation (3.19), the time

average < ny >1 defined by equation (3.7) must be computed. To do so, a state

matrix Z(t) is defined as

Z(t) = y(t)y(t)T, with Z(to) = o (3.21)

Thus,

‘ T T
Z(t) = / Y(T))’(T) dT =< W >:

*0

Therefore, equation (3.19) is simplified to

W = n]I-(diag Z)“Z]W’T (3.22)

By running equations (3.21) and (3.22) simultaneously, the algorithm defined by

(3.19) will be successfully implemented.

3.5 Computer Simulations

Computer simulations were performed to study the derived algorithm. Starting with

two sine waveforms as the unknown sources and mixing them by a matrix A, the
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mixture signal vector will be obtained. This signal is then fed to the feed forward

neural network. If the output of the network is a constant of any of the two unknown

sources, then the algorithm would have succeeded in separating signals. The separa-

tion can also be achieved if the forward loop gain matrix P = WA is a generalized

permutation matrix, where a generalized permutation (GP) matrix is one that has

only one nonzero entry in each row and column.

Numerous simulations for various initial conditions and learning rates were per-

formed in order to study the algorithm as defined by (3.20). In all these simulations,

the algorithm failed to separate the signals. An example of such simulations is shown

in figure 3.2. The initial condition is

0.1352 0.4553

0.7832 0.3495

0:

The network converged to

0.2265 0.4187

0.8116 0.2758

which gives the over all gain matrix

0.1277 0.3293

0.9226 -0.3700

Figure 3.2 shows that the performance index does not go to zero, implying that the

gain matrix WA is not a generalized permutation matrix. This can also be observed

by looking at the plots of its entries and noting that none of them go to zero. If the

algorithm converged to a separating matrix W, then two entries of the gain matrix

should go to zero. However, the figure shows that all the entries converged to nonzero

values.



1
°

0
1

7
0

a
b

P
e
r
i
o
n
n
a
n
c
e
I
n
d
e
x

i
n

53

Simulation of eq1.m (eta,b)=(100,5) (l0,l)=(0.5418,1.817)
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Figure 3.2. Performance of Algorithm defined by equation (3.19)
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3.6 First Improvement

The algorithm defined in (3.19) failed to perform a separation of signals because it

tested only for decorrelation of the output signal. In [8, 9, 10], Herault and Jutten also

arrived initially at an algorithm that was similar to the one derived in (3.19). They

claimed that independence would be satisfied if higher order moments of the output

are generated within the update rule. Therefore, some odd nonlinear functions that

would exhibit an infinitely many order of moments by expanding these functions in

their Taylor series expressions was introduced.

Thus, by considering a similar approach [8], as was discussed in Chapter 2, (3.19)

becomes

W = n[1 — («hag < angry? >.)A‘ < f(y)g(y)T >.]W-T (3.23)

At steady state, (3.23) is

W = 0 I = (diag < f(y)g(y)T >:)‘1 < f(y)g(y)T >.

< f(y)g(y)T >: = diag < f(y)g(y)T >.

< f(ye)9(yj) >: = 0, W #J'

< Z a‘skyfyf >. = 0, Vi 7e j

1,): odd

< yfyf >. = 0, Vi ,1 j, w, W:

1
1
1
1
1
1
1
}

11

where the coefficients a; and B). are the Taylor series coefficients of the functions f and

g, respectively. This proves that the solution of this algorithm provides independent

output signals as a solution to the problem, which is the desired goal.
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3.6.1 Computer Simulations

To evaluate the update of the weight according to (3.23), the computation of <

f(y)g(y)T >1 must be performed. Thus, the state matrix

Z(t) = f(Y(t))y(Y(t))Ta with Z(to) = 0 (3-24)

is defined. Consequently, (3.23) becomes

W = 17]] — (diag Z)'1Z]W'T (3.25)

By running (3.24) and (3.25) simultaneously, the algorithm defined by (3.23) is real-

ized.

Computer simulations for the algorithm defined by (3.23) were performed using

different nonlinear functions. Therefore, different cases are considered.

Case 1: f(x) = 3:3 g(z) = :1:

Numerous simulations were performed using different initial conditions and learn-

ing rates. The following set of simulations was obtained by using the same initial

conditions

0.4523 0.9317

0 _

0.8089 0.6516

but, different learning rates. Figures 3.3 through 3.5 show the performance of algo-

rithm (3.23) when the learning rate is equal to y(t) = 100, 10, 1006'5t Vt. In figure

3.3, One can observe that the algorithm converges. However, it exhibits some oscilla-

tions and never settles to a constant level of zero, though it oscillates around it. This
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behavior can be eliminated if a smaller learning rate is considered. Figure 3.4 shows

the simulations under the same conditions when n = 10. It can be observed that a

longer time is needed for the algorithm to converge. Therefore, a way of combining

the observed behaviors in figures 3.3 and 3.4 is to consider a time-varying learning

rate. Thus, when r] = 1006‘“, one observes a smooth convergence of the algorithm

as shown in figure 3.5.

Table 3.1 shows the performance of the algorithm for 20 different random initial

conditions, but all having the same time-varying learning rate 17 = 100e'5‘. It can be

observed that the algorithm converges in all cases.

Case 2 f(x) = sinha: g(x) = tanh :1:

Numerous simulations were performed using different initial conditions and learn-

ing rates. The following set of simulations was obtained by using the same initial

conditions

W0 = 0.1352 0.4553

0.7832 0.3495

and variable learning rates. Figures 3.6 through 3.8 show the performance of algo-

rithm (3.23) when the learning rate is y(t) = 100, 10, 1006‘5t Vt

Observe that a learning rate 1] of 10 was too small to obtain any concluding

results within the time span for training. When 17 is 100, one is able to observe that

the network is converging to a generalized permutation matrix. However, it can be

observed that the parameters exhibit some oscillations around a constant level. These

oscillations were eliminated by considering a learning rate that decays with time. The

appropriate function is 17(t) = 1006'“. A set of 20 simulations of the algorithm with

different initial conditions was performed. Table 3.2 represents the performance of the

algorithm in all these simulations. The initial conditions were chosen randomly. The



57

Simulation of eq4.m (eta,b) = (100.0) (l0,l) = (0.8499.0.03366)
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Simulation of eq4.m (eta,b) = (10.0) (l0.l) 2 (0849901006)
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Simulation of eq4.m (eta,b) = (100,5) (I0,l) 2 (03499002937)
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Table 3.1. Simulation Results Algorithm defined by equation (3.23). f(:c) = 2:3 and

9(3) = 1'

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

Simulation # Final Performance Index

1 0.1490 g

2 0.0125

3 0.0132

4 0.1692

5 0.0134

6 0.1036

7 0.0924

8 0.0157

9 0.0587

10 0.2035

11 0.0560

12 0.1302

13 0.0164

14 0.0266

15 0.7045

16 0.0377

17 0.0209

18 0.0244

19 0.0417

20 0.0526     
 



61

Simulation of eq2.m (eta,b) = (100.0) (|0,l) = (0849902341)
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Simulation of eq2.m (eta,b) = (10,0) (l0,l) = (0.8499.0.3421)
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Simulation of eq2.m (eta,b) = (100.5) (l0,l) = (03499007759)
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Table 3.2. Simulation Results Algorithm defined by equation (3.23). f(:0) = sinhx

and g(x) = tanhz '

 

 

 

 

 

 

 

   
 

 

 

 

   
 

 

 

 

 
 

 

 

Simulation # Final Performance Index

1 0.0066

2 0.1168

3 0.0517

4 0.1163

5 0.0543

6 0.0462

7 0.1836

8 0.2338

9 0.0062

10 0.0192

11 0.0084

12 0.0620

13 0.0347

14 . 0.0410

15 0.0038

16 0.2772

17 0.0165

18 0.0180

19 0.0510

20 0.0863     

results show that the convergence was obtained regardless of the initial conditions.

3.7 Second Improvement

In this section, the focus will change to an implementation view point in order to

modify the derived algorithm defined by (3.23). Recall that such equation is

W = n[1-(diag< 10090? >0“ < f(y)g(y)T >.]W
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This algorithm requires the computation of the inverse of the matrix W. This com-

putation is complex and time consuming. It will be of great advantage if such a term

could be eliminated from the update law. In [55], the author suggests that using the

information geometry perspective, the update equation of W defined by (3.9) can

become

0(1)

since the matrix A is assumed to be nonsingular. Therefore, equation (3.23) can be

modified to the following algorithm:

W = n[1 - (diag < f(Y)9(Y)T >:)“ < f(Y)9(Y)T >:]W (3-27)

3.7.1 Computer Simulations

By running (3.24) and

W = ”[1 - (diag Z)"‘Z]W (3.28)

simultaneously, the algorithm defined by (3.27) was implemented successfully. Com-

puter simulations for the algorithm were performed using different types of nonlin-

earities, as was done for the previous algorithm.

Case 1: f(x) = :63 and g(x) = :0

Numerous simulations were performed using different initial conditions and learn-

ing rates. The following set of simulations was obtained by using the same initial

conditions used to test the previous algorithm, in order to provide some comparison
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between the two. The initial condition is

0.4523 0.9317

0.8089 0.6516

Figures 3.9 through 3.11 show the performance of algorithm (3.27) when the learning

rates are y(t) = 100, 10, 1006’“ Vt, respectively. One can observe in Figure 3.9

that the network parameters oscillate around the the desired values when 1] = 100.

However, by considering a time-varying learning rate 77 = 1006’“, such oscillation

were eliminated and the parameters will settle to a constant value, as shown in Figure

3.11. Figure 3.10, however, demonstrates that a learning rate 17 = 10 is too small in

order to obtain any concluding results.

Table 3.3 shows the results of twenty simulations of the algorithm defined by

equation (3.27) with different initial conditions. It should be observed that 4 out of

the 20 simulations failed to converge to a separating network since the corresponding

performance indices are not near zero. Simulations that have a final performance

index of more than n/4, in this case 0.5 since 11 = 2, are considered as failures. These

simulations are labeled by an asterisk‘ in Table 3.3.

Case 2: f(x) = sinhx and g(x) = tanha:

Numerous simulations were performed using different initial conditions and learn-

ing rates. The following set of simulations was obtained by using the same initial

conditions used to test the previous algorithm in order to provide some comparison

between the two. The initial weight is

0.0475 0.3282

0.7361 0.6326
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Simulation of eq18.m (eta,b) = (100.0) (l0,l) = (08406006222)
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Figure 3.9. Performance of Algorithm defined by equation (3.27) for 17(t) = 100.

f(x) = $3 and g(x) = 3
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Simulation of eq18.m (eta,b) = (10,0) (I0,l) = (0840602191)
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Simulation of eq1 8.m (eta,b) a (100,5) (I0,l) = (08406001327)
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Table 3.3. Simulation Results Algorithm defined by equation (3.27). f(2:) = 2:3 and

y(t) = z

 

 

 

 

 

 

 

 

 

  
 

  
 

 

 

 

 

 

 

 

Simulation # Final Performance Index

1 0.0211

2 0.0733

3 0.3574

4 1.5079“

5 0.0138

6 0.0298

7 0.1022

8 0.2058

9 1.0605“

10 0.0478

11 0.0578

12 0.0228

13 0.0544

14 1.3249“

15 1.4127"

16 0.0254

17 0.0332

18 0.0636

19 0.0415

20 0.0467
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while the learning rates varied. Figures 3.12 through 3.14 show the performance of

algorithm (3.27) when the learning rates are 17(t) = 100, 10, 1006'“ Vt, respectively.

It can also be noted that, in the set of simulations, a time-varying learning rate

17 = 1006'“ Vt, had to be introduced in order to eliminate oscillations, as observed

in Figure 3.12, when the learning rate is of a constant value equal 100. Figure 3.14

shows the results for such a time-varying learning rate. On the other hand, when the

eta = 10, such a learning is to too small to enable the network to arrive at the desired

solutions.

Simulation of eq16.m (eta,b) = (100,0) (l0,l) n: (0878601088)
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Figure 3.12. Performance of Algorithm defined by equation (3.27) for y(t) = 100.
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Simulation of eq16.m (eta,b) = (10.0) (l0,l) :1: (08786008517)
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Figure 3.13. Performance of Algorithm defined by equation (3.27) for y(t) =

f(x) = sinhzr: and 9(2) = tanhz

Table 3.4 shows the results of twenty simulations of the algorithm defined by (3.27)

with different initial conditions. It should be observed that four simulations out of

these twenty did not succeed in separating the signals. They are marked with a star

in Table 3.4.

Table 3.5 shows the results of computer simulations between algorithms defined

by (3.23) and (3.27). One may conclude that both have similar performance.
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f(x) = sinha: and g(x) = tanha:
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Table 3.4. Simulation Results Algorithm defined by equation (3.27). f(0:) = sinhx

and 9(2) = tanh :1:

 

 

 

 

 

 

 

  
 

 

 

 

  

  
 

 

 

 

 

 

 

Simulation # Final Performance Index

1 0.2664

2 0.2652

3 0.0806

4 0.8735*

5 0.0906

6 0.0832

7 0.1283

8 0.7715"r

9 0.1956

10 0.2490

11 0.1415

12 0.0141

13 1.7091*

14 1.0756*

15 0.0776

16 0.3482

17 0.1142

18 0.0558

19 0.3650

20 0.0484      
 



Table 3.5. Results of Simulation Comparison between Algorithms defined by equa-

tions (3.23) and (3.27)
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Initial Conditions Final Results Of (3.23) Final Results Of (3.27)

__ W0 f WA WA

“'1' 0.9347 0.5194 0.8805 —0.0079 0.9906 0.0055

_ 0.3835 0.8310 ] 0.0082 0.8692 —0.0127 0.7380

If = 0.0366 If = 0.0433

0.0475 0.3282 -0.0054 0.3223 0.0229 0.3824

_ 0.7361 0.6326 . 0.8063 —0.0169 _ 0.7008 0.0089 .

7 If = 0.0966 If = 0.1283

0.1351 0.4553 —0.0091 0.4634 0.0069 0.4423

_ 0.7832 0.3495 . 0.6913 0.0163 . 1 0.8857 0.0091 J

7 If = 0.0916 I; = 0.0545

0.1351 0.4553 —0.0091 0.4634 0.0069 0.4423

[0.7832 0.3495 ] 0.6913 0.0163 . 0.8857 0.0091 2

I, = 0.0916 If = 0.0545     
 

3.8 Observation and Remarks

In this chapter, an algorithm based on the decorrelation condition between the com-

ponents of output of the signal vector was developed. The resulting algorithm was

improved in order to test for the independence between the components of the out-

put vector. It was shown that the algorithm defined by the first modification always

converged to a separating network regardless of the initial conditions. The algorithm

of the second modification is more attractive since it eliminates the computation of

the inverse of a matrix. However, such elimination resulted in an algorithm that has

a 20% chance of failure rate.



CHAPTER 4

Higher Order Statistics

It was proved in the literature [8, 23, 61] that second order statistics are not suf-

ficient to solve the problem of the blind separation of sources. One will also recall

that the static algorithm, developed in Chapter. 3, was initially based on the second

order statistics, since the correlation defined such characteristics as the statistical

description of a signal. Some techniques widely used in the literature were used to

improve the algorithm performance to test for higher order statistics by generating

infinitely many orders of moments through the injection of odd nonlinear functions

f and g in the algorithm. It will be shown how these functions can be determined

by defining an independence criterion that defines the problem. It was proved in the

literature, that cumulants up to the fourth order are sufficient to approximate the

probability density functions of a random variable using the fourth order Edgeworth

approximation [62]. Consequently, higher order statistics have enabled several re-

searchers to analyze the problem to some extent, Amari et a1 [24, 63, 64,.65], Comon

et al [23, 66, 22], Tong et al [29, 28]. However, one should keep in mind that these

algorithms were developed for a static environment or discrete dynamic Finite Im-

pulse Response (FIR) models. However, none of these approaches addressed a general

dynamical environment as it will be defined in this work. Such a dynamic system

has memory represented by its dynamical states. Through the framework of opti-
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mal control theory, or the calculus of variations, and through the use of higher order

statistics , this research will focus on developing new algorithms. In this chapter, an

independence criterion will be developed. It will be used to derive an update law for

the parameters of a static feedforward and feedback network models. The developed

independence criterion will be also used to derive update laws for the parameters of

a dynamic feedforward and feedback network models the subsequent two chapters.

To introduce higher order statistics, one must first give the definition of statistical

independence.

Definition 3 (Statistical Independence) The components of a random signal

vector y are statistically independent if and only if their joint probability density (pdf)

py(y) is the product of all individual marginal probability density functions p,“(y,-).

Symbolically,

:00) = Hat-(172°) (4.1)

4.1 Mutual information

One way to measure the independence of the components of a random vector is to

measure the distance between the right and the left hand sides of equation (4.1).

When such a distance is zero, then the random vector’s components are statistically

independent. A well known distance in the literature is the Kullback divergence

functional [58]

I(y) = / fy(u)1n 1311421341: (42)

where f,(y) is the pdf of a random vector y. The functional I(y) is always positive

and is zero if the components of the random vector y are statistically independent.

It defines the level of dependence between the components of the signal. Therefore,
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it represents a good functional for characterizing statistical independence. I(y) can

be expressed in terms of entropy as defined in Appendix A.

10) = —H(y) + 23110.) (4.3)

Some properties of entropy are presented in Appendix A.

Consider the vector y E ’R’" to be the output of a system described by the linear

mapping W = [W1 W2] due to the input signal vector x e R" as shown in Figure 4.1.

\

s(t) x(t) \\ Y“)
_. A 4

\_

  

  

     
 

 

Figure 4.1. Feedforward Architecture

Define the vector

z=[yl...ym,xm+l...xn] (4.4)

Then,

2 = Wx (4.5)

where

- W1 W:

W = (4.6)

0 In-m

W is a nonsingular square matrix with the assumption that W1 is also nonsingular.
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Using equation (4.5), a relationship between the probability density functions of the

random vectors 2 and x can be obtained

= 1}
IWI
 

f. (4.7)

Since 2 = [y1 - - -ym,:r:m+1 - - . :cn], one can express the pdf of y in terms of that of

i=[$,...xm]

 

 

f2 = _: Lawns-~45. (4.8)

= f-Sooo fX(x)'d;/fl;+l ' ' ' dz“
(49)

'5' (2.2)

Finally, using the entropy definition and the equation above

H(y) = —E[ln f,] = ln IWI + H(i)

Therefore, equation (4.3) becomes

I(y) = —H(5’r) - ln |W| 4.211(0) (4.11)

In equation (4.11), one may compute the first two terms of the expression. However,

the summation term is unknown since we have no knowledge of the probality densities

f2.-

H(y.-) = -/f2.-1nf2.dya (4.12)

Thus, one must approximate the probability density f,“ and also its logarithmic ln f,“

in order to obtain some approximate expression of the entropy as defined by equation

(4.12). To compute such an approximation, one would first need to introduce moments
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and cumulants. Then, an Edgeworth expansion will be used to approximate the

probality density f,“ and also its logarithmic ln f0:-

4.1.1 Cumulants and Moments

Given a random variable x, the nth order moment is defined as

Pa = Elma]

Moments are also often defined as the formal power series expansion of the moment

generation function defined as

 

x k I: 1:

M(fi) = E[efi”] = E]; (file!) ] = ; éTEl-Tkl = 225%"

The cumulant generation function is defined as

I:

Km) = 1114409) = lnElei’l = g "*5

where n), is the cumulant of the random variable 2:. One can express the moments in

terms of the cumulants, and vice versa, by solving the equation

2‘12?—

Table 4.1 shows the relationship between them for the first few orders of moments

and cumulants.

Cumulants proved to be computationally efficient compared to moments despite

the fact that the two quantities are equivalent. Some of the most important features

of cumulants , for statistically independent signals [67], are

e the cumulant of the sum is the sum of the cumulants,
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Table 4.1. Conversion of moments and cumulants

 

    

 

Cumulants in terms of moments ] Moments in terms of cumulants

'31 = #1 #1 = I‘31

”2:”2—f‘1
#2=K2+n§

I‘33 = fl3-3fl1#2+2I-‘i P3 = 53+351K2+I€¥

64 = #4 - 4111113 - 314% + 12112;“? - 61“} #4 = 64 + 46163 + 343 + 6626? + 51’    
 

e ~the cross cumulants are zero,

0 the Edgeworth expansion is most conveniently expressed in terms of cumulants,

and

0 most pdfs of practical signals can be approximated by a finite number of cumu-

lants.

4.1.2 Edgeworth Expansion

The Edgeworth expansion of a given distribution density function f(2') is formally

defined as a density function having cumulants x..- that are constructed from a modi-

fication of a baseline density function fo(:r:) having cumulants u; [67],

f(x) = 5(4) f 0011—7; (413)
k=0

where hk(:r) defines a family of orthogonal functions known as the Hermite polynomial

functions as seen below

fclklfit)
— — k—

hlc(x) "' ( 1) f0(3) (4'14)
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Here the 14’s are the pseudo-moment that satisfy the equation

00 flk oo . 1:

2(1):,- — 11,-)-k—' = ln 2 ”VIC—l (4.15)

k=0 ' k=0 '

The choice of the baseline depends on the the statistical properties of the variable

that is to be approximated. However, if no such information is available, it is most

convenient to use the normal density function

1 22

f0($) 0(1‘ ) me ( )

as a baseline. When fo(a:) = 0(3) and the equation (4.13) is truncated at some finite

number of terms, the resulting density function approximation is called a Gram-

Charlier series [68]. Expansions based on other than normal distributions are rare.

There are, however, some that are based on the x2 distribution density function [62].

Normal Baseline Expansion

It is intended here to determine an expression for the Edgeworth expansion when the

baseline is the normal distribution 0(3) as defined by (4.16). The cumulants of 0(3)

can be extracted from its cumulant generating function

32 I:

In E[expfl:c] = —2— = Erik-k7
k .

Therefore, all the cumulants of 0(3) are zero except V2 = 1. Thus, in this case, the

first two pseudo-moments p; are zero and the rest are the unmodified corresponding

cumulants of the distribution density function f(2:), namely 10),. Consequently, the

Edgeworth expansion of a density function with respect to a normal baseline is

f(x) = 5(2) [1 + $5202) + 535(5) + - - -] (4.17)
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Table 4.2. Hermite Polynomials derived from a normal baseline density function 0(2)

 

    

h1(a:) = a:

h2($) = $2 '— 1

h3(:r:) = 9:3 — 3x

h4(:r) = :1:4 — 6.732 + 3
 

Equation (4.14) defines the Hermite polynomials. In the case of a normal baseline,

they are easy to compute. Table 4.2 presents few orders of these polynomials.

4.1.3 Entropy Approximation

The tools to approximate the entropies are now developed. For ease of notation, a

random variable .7: having a density function f(2:) will be considered. Its fourth order

Gram-Charlier approximation will be as follows:

it 1:

f(x) 2. 2(2) [1 + 33-1120») + fibre] = 00110)

Therefore,

H(x) = — [101010) 22

z —/f(:r) ln 0(2) dz — /0(x)p(a:)lnp(:c) d2:

However,

-ln0(:c) = --ln

(4.18)

(4.19)

(4.20)
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Therefore,

—/f(2:)ln0(:r) d2: = éln27r/f(2:) dr+%/xzf(x) dz:

1

'2 ElDZW-Fég-

In order to compute the second term in equation (4.19), one must approximate the

logarithmic function as

2 $3

111(1+5) = :r- 52+ 3+0(x2) (4.21)

Therefore,

122(2) = 0141—11-10::1—112+§1p(x)-113

= §!1’c-%-h3+!—h4- '1'[3—!-h3 '1'?!1 4]2

LCM—ha+41’1“]

2 2
K K ’03K4
3__h2_ 4__h2_ —h3h4

2 3123 2 4!2 314!

3 2
3 ”4 3+ ”3‘4 2 “3‘4 2

3.”313,13 + 3.413h4+ 31271"3I“ +—31412—h3h4

+33!

= §—!h33:+-!’—h4—

+ 

Consequently,

11411111114) =1w<x)+—,h21np(x)+"—;h.1np(x)

2 2
It It K3K4
3__h2__ 4__h2_ _h3h4

2. 3123 2. 4124 3141

2

3 3+ ”3‘4 2 “3‘4 2

3"312,23.J'34I3h‘+ 31271"3h”4'3141—"2'h3h
2 2

fi’h§+—h2,1,— "3——hg- "4——h2h§— "3"“

3

= 37h33+',‘:—!h4-

+  

2

+3! 3! 2 3123 2 412 3141h3h“

"3 4+ ”4 3 “3‘4 3 “3‘4 2 2

+3.313h3+ 3.413h3h4+3—_1241h3h4++31412h3h4l

2

2 "3 2 "4 3 ”3‘4 2

+47 37h3h4+%_h‘i‘ 2312h3h‘ 24122"" h3h314!‘
3

1“"3 3 "4 4+ ”3‘4 2 2 “3"4 3

+.3313h3h4+ 3.413h4+ 31241h3h4++31412h3h4l
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In order to complete the integral in equation (4.19), one uses the following properties

of the Hermite polynomials

/h;(a:)hj(a:)a(a:) dz = i! 6...,- (4.22)

The following formulae for the moments of the normal density function 0(3) are also

needed

#2,. = [4220(4) dx=1-3---(2k— 1) (4.23)

p21,.“ = szk+lo(x) dx = 0 (4.24)

Consequently,

[h4(z)a(a:) d3: = 444 — 6142 + 3 = 0

/h§(a:)a(a:) d3: = #6 — 6114 + 9442 = 6

]hi(z)a(z) dx = #8 — 12416 + 42/44 — 36,112 + 9 = 24

/h§(a:)h4(z)a(:c) d2: = 1410 — 12118 + 48/46 — 72144 + 2744; = 216

/ h3(x)a(x) dz = W 481110 + 117118 —- 324116 + 351114 — 162,12 + 27 = 1728

/ hg(x)a(z) d2: = 1112 — 121410 + 54118 - 108146 + 81114 = 3348

/h§(z)hi(z)a(2)dx = p14—18p12+123p10—396p8
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+60326 — 378m + 81,22 = 30672

/ h:(z )dx = #16 - 24,114 + 226;;12 — 1080p10

+2646p8 - 3240;“. + 2052/14 - 648m + 81 = 368064

Consequently,

I 1 1 1 71

/U($)p($) lnp(3:) (137 = 12“3+.in —48N§K4- 48n4+ 24K3Ki

+31_K4+_71K4
36 "3 192"“

Finally,

~ 1 1‘2 1 2 1 1x3 71 2 2

H(x) ~ 21n27r+2n2—1—2x3—48n4+ -—84n3n4+4—8-x4 —24n3 4

32.4 7_1,.4
36 3 192 4

= ”(K2an3in4)

4.2 Independence Criteria

(4.25)

(4.26)

(4.27)

Mutual information is a good measure of the statistical independence of the com-

ponents of a random vector. Recall that a better expression for it as described by

equation (4.11) has been developed. In the previous two sections, it was explained

how the marginal entropies are approximated by

H(yt) = H(‘Zi: x33" 54;)
(4.23)
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where K4,,- and let" order cumulants of the random variable y,-. Thus, the mutual

information functional defined by equation (4.11) can be approximated by

I(y) z 41(2) — ln |W| + )3 H.- (4.29)

Note, however, that the term -H(i) is not a function of y, nor it is a function of W.

Therefore such a term can be eliminated from the independence criterion. Thus, the

independence criterion is

¢(y) = - 1n IWI + 2 H.- (4.30)

4.3 Static Case: Feedforward Network Structure

Consider the static environment case defined defined by

y = Wx (4.31)

The derivation will be made for the case when the number of outputs is equal to the

number of sensors. This implies that W is a square matrix. Since the environment

matrix is assumed to be nonsingular, so is W. Also, because W is a square matrix,

one has W = W. The parameters of the network will be updated according to

the gradient descent method along the energy function defined by (4.30). Thus, the

update law is

- 6

W = ”175% (4.32)

where 17 is the learning rate.

043 _ _Bln |W| 67"".

W - 8W +§W (4.33)
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= —W‘T + 2 ——BW (434)

However,

a¢ _ -T 3%"; an)";

6ng _ [W ]U +§ am 6ng (4.35)

.. 8H"; animaym_ _ T

— [W ]ij + ,2"; an)... 6y... 6ng (4.36)

and

? ym _ a
ang — 6212.,- r wmrsc, (4.37)

= Z 6mg6jrx,
(4'38)

= 6,"ng (4.39)

Therefore,

6¢ _ _ -T Wmanzm _ .

8ng _ [W l4,- + a: 66:... W...6mm, (4.40)

_ 570651-
— _ T __‘.__' ._ [W 133+ 1 K1,- 6.1/ng (4.41)

The computation of the second term may be cumbersome. What one needs to do

is to first compute 2:7? in terms of cumulants, use the convolution of polynomials

to compute the product of the cumulants by expressing the cumulants in terms of

moments as shown in Table 4.1 and finally convolve the results with gig. This

process is repeated 1 times. While evaluating the cumulants, one can now consider

any additional constraint on the statistical information of the output signal. For

example, one could consider normalizing the output by assuming that the output

signals have unit variance. A MALTAB code is provided in Appendix C to perform
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such computations accurately. When all the computations are complete, one obtains

 0“ = [W77]. - f(y.)x,- . (4.42)
6ng 'J

If no constraints are assumed, then the nonlinear function is computed to be

1 1 4 41 47L 15 _ 3823,13 + 223,11 __ _052 9 + 9__y7 + _y5 + 3,3 + y (4.43)

“30:12” 12 3 243’ 3 8

However, if the output signals are assumed to have unit variance, then

71y,;, 497 ,3 259 ,, 4265 9 1937 7 1285 _325 y,

My): + 123’ 6 y 24 y + 12 y 8 3’ 2" (444)

Therefore, the update law in the general case is defined as

W = 17[W-T — f(y)xT] (4.45)

In [24], the assumption that the variance of the signal is unity was considered from

the start of the derivation. In the work presented here, however, no such assumption

was considered. Instead, the signals are assumed to have unconstrained unknown

variance. Any constraint on the variance is considered only at the last step of the

algorithm derivation. Such considerations are supported in [67], where the author

makes the observation that one should not consider simplification of the expression

at the last step of the development. Because such last step simplification would give

rise to some other terms that are essential to describe the function. We note that, in

[24], the constraint that the variance is unity was assumed before taking the gradient

of the performance index. Therefore, the approximate expression of the entropy in

this case is

K2 2 521

H(z)~ -ln(27re)-23 "4—.—+ «3,14,49—
v 24! 8 16"3 (4'46)



90

and the corresponding the nonlinear function is

3,, 25,147 475 293
M1!) = 19 + Ty — 39 —- -4—y + -4-y (4.47)

If the constraint of unit variance on output is assumed at the end of the derivation,

then the nonlinear function becomes expressed differently in approximation

__ __ __ __ _ 3

fc(y)—4y 29 1237 29 31 +31 (4.48)

The graphs of the four different nonlinear functions described above are shown to-

gether in Figure 4.2.

In addition, a third order approximation of the logarithmic function is considered.

This would provide a better approximation of the entropies of the output signals.

Figure 4.3 shows the plot of the logarithmic function and its first, second and third

order approximations.

4.3.1 Computer Simulations

Using the feedforward structure as shown in Figure 4.1, computer simulations of

the algorithm defined by equation (4.45) are conducted by considering the developed

nonlinear function fa and the nonlinear function fd developed in [24]. The simulations

are performed using a uniformity distributed random signal over the interval [—1, 1]

and a sine waveform of frequency 1H2. The mixing matrix A is a random matrix

defined by

0.4385 0.2209

0.0421 0.7463
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Nonlinear Functions
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The initial weights are also randomly chosen and are defined by the matrix

0.5277 0.4755

0 =

0.7625 —0.5303

Thus, the initial overall gain matrix is

0.3356 0.5572

G0 = W014 =

-0.0647 —0.1067

Clearly, such a matrix is not a generalized permutation matrix. Thus, it is desired

that the network would update its parameters such that the gain matrix WfA, where

W, is the final weight matrix, is a generalized permutation matrix.

Using the algorithm defined by equation (4.45) and the nonlinear function fa

defined by equation (4.43) and considering a learning rate 17 = 0.005, the network

converges to

—0.0703 0.7625

1.8137 -—-0.5303

Thus,

0.0013 0.5535
W,A.-.

0.7729 0.0049

is a generalized matrix. Consequently, the algorithm converges to a separating solu-

tion. Figure 4.4 shows the results of such a simulations.

Using the same mixing matrix A and initial weight matrix W0, and considering

a learning rate r) = 0.1, the algorithm defined by equation (4.45) and the nonlinear
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3rd odor, last step approx. (‘), random and sine input
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function fd defined by equation (4.47) converges to the final weight matrix

—1.4506 3.3833
W, =

2.2009 —0.2815

Thus, final overall gain matrix

0.0127 1.2280

Gf = WfA =

1.6472 —0.0006

is also a generalized permutation matrix. Figure 4.5 shows the results of the sim-

ulations. These two simulations are a sample of numerous simulations that were

conducted to analyze the performance of the algorithms for various initial conditions.

In all cases, the algorithm always converges to a desired solution.

4.4 Static Case: Feedback Network Structure

Recall that the mutual information is the algebraic sum of the joint entropy and

the sum of all marginal entropies, as described in equation (4.3). Because of the

opposite signs that appear next to each of these two terms, one can deduce that the

minimization of the mutual information is somehow, but not exactly, equivalent to

the minimization of the sum of marginal entropies and/or the maximization of the

joint entropy. In the work of Bell and Sejnowski [45], the authors approached the

problem by maximizing the joint entropy in order to develop an update law for the

network. On the other hand, I propose an update law based on the minimization of

the sum of marginal entropies. Thus, the theorem below is stated.

Theorem 2 Under the assumption that qm, = 0 Vm aé i, the update law

(£3 = nfa(9.-)yj (4.49)
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is derived by minimizing the functional

q) = Z H(yi) (4.50)

Proof:

The parameters of the network are updated using the gradient descent method

d.” = _0— 4.51
J adij ( )

However, using equation (2.23), the gradient of the function is expressed as

695 _ 695 09...

6d,,- “ 5,; 6y... 8d,,- (4'52)

34>
_ -— ; Eqmiy] (4.53)

By considering the assumption that qm, = 0 Vm 51$ i, then

04> 343
adij — -9" ayi y] (454)

= -q.-.-fa(ye)yj (4'55)

Therefore , the parameters of the D matrix are updated according to

4.3 = flfa(yr)yj (4.56)

The algorithm described by equation (4.56) provides a justification of specialized

view of the algorithm developed by Herault and Jutten based on neuromimetic ap-

proach [8], since Equation (4.56) is analogous to equation (2.6) where f(1:) = fa(:c)

and y(t) = :c.
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4.4.1 Computer Simulations

Using the feedback structure as defined by Figure 2.1, the performance of the al-

gorithm defined by the nonlinear function fa, as described by equation (4.43), will

be compared to that defined by the nonlinear function fd which is developed in [24]

and is described by equation (4.47). Using this structure, the update law for the

parameters is as follows:

6..- = 4.7.09.9.- z'aé 73a = a.d (4.57)

Computer simulations using 2 sine functions of respective frequencies 1H2 and 2H2

are first conducted. The mixing matrix is

1.0 0.4
A =

(4.58)

0.6 1.0

The initial weight matrix is zero and the learning rates are the, following

1]“ = 0.005 17.1 = 0.1 (4.59)

Figures 4.6 and 4.7 show the performance of both algorithms. One can observe that

the algorithm defined by fa succeeded in separating the original sources, whereas the

algorithm defined by fd fails to perform separation.

Computer simulations are also performed using a Gaussian random signal and a

sine function of frequency 2H2. Also, other simulations using a Gaussian random

signal and a square function are completed. In each case, the algorithm defined by for

fails to separate the signals. On the other hand, the algorithm defined by fa performs

the separation task successfully. Figures 4.8and 4.9 show the performance of both

algorithms in the case of a Gaussian random signal and sine function were considered

as the unknown sources. Figure 4.10 shows the original sources, the mixtures and the



98

New Algorithm

e . n
.................................................................................................

-

.................................................................................................

. o c -

P
e
r
f
o
r
m
a
n
c
e
I
n
d
e
x

.....................................................................................................

 
  50 60 7O 80 90 100

  

 

  
 
 

 

 

0.8 * 1 .5 .

0.6 g 1w

E 2

’5 0.4 ' E 0.5

3 E

‘c’
0.2 8 O 4

O ‘ ‘ -O.5 * ‘

0 50 100 O 50 100

0.0000 0.4001 ]W _ 1.0000 —0.0001

f“ 0.6001 0.0000

-1 _.

(1 “W A" [ —0.0001 1.0001

Figure 4.6. Performance of the Algorithm defined by the nonlinear function f,,



99

 
 

 

 

 

 

 

 

  
  

AmariAlgorithm

Eternun. ..............................................................................................

E
o

IL1.6-

L 1 1 l l I l 4 l I

O 10 20 30 4O 50 60 70 80 90 100

0.6 ------------------- 12

0.4 -------------------- g 1

g) $0.8»

:5 0.2r _g

3 gas

:2

o (90.4].

-O.2 ‘ ‘ 0.2 ‘ ‘

O 50 100 O 50 100

_ 0.0000 0.0222 _, _ 0.9916 0.3797

W" [0.2229 00000] (”W’) A“ [0.3789 0.9154

Figure 4.7. Performance of the Algorithm defined by the nonlinear function fd



100

output of the network at convergence.
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CHAPTER 5

Blind Separation in a Dynamic

Environment: FeedForward

Structure

5.1 Problem Definition

In Chapter '3, static modeling for both the environment and the network was con-

sidered. However, media cannot always be modeled as such. Therefore, one must

consider more realistic environments, define their models and develop an update law

to recover the original signals. Such an environment will be modeled as a linear

dynamical system. Consequently, the network will also be modeled as a linear dy-

namical system. Figure 5.1 depicts the architecture of this situation. The realiza-

  

A

M

v

e(t) i=Ax+Be y

y=Cx+De 1
?

 

s(t)

b
l
m
l

 

0
'
3
M

  

G
N
I
.

X
I

)
0

+
+
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tion 5 = (A, B, C', D) represents the parameters of the environment, whereas

D = (A, B, C, D) is that of the network. These parameters dictate the dynamics of

both the environment and the network systems. While the realization T) is constant

and models the behavior of the environment, the realization D of the network are yet

to be modeled or defined. The goal here is to find an adaptive law (algorithm), in

such a way, that when these parameters converge to some stable solution, the network

output signals are replicas or similar to the original unknown sources. Or, by using

the definition of wave-preserving, it is desired that the output vector preserves the

waveforms of the components of the original signals. So, the question at hand is how

should one update these parameters to arrive at such values? and, do such values

exist in the first place? In this chapter, first, the existence of a theoretical solution to

the problem will be shown. Then, Optimization Theory will be utilized to develop an

adaptive rule based on a criterion that defines the independence of the output signals.

A state representation of the network model that renders its implementation in VLSI

attractive, and which also minimizes the number of parameters that characterize the

network, will be deve10ped. The algorithm will be tested via computer simulations.

Limitations and some possible improvements of the algorithm will also be discussed.

5-2 Existence of a Theoretical Solution

Suppose that an update necessary to recover the original signals is developed and

that the parameters of the neural networks have converged to the realization D“ =

(A', B’, C”, D'). Then, because of the wave preserving property, there exists a

Permutation matrix P and a. positive definite diagonal matrix I‘ such that

flfi=PFfifi



Co
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There also exists a nonsingular matrix T such that x = Tic. Thus, differentiating

both sides with respect to time:

szx => A’x+B'e=TAi+TBs

=> A“): + B'(Cx + D5) = TAT-1x + TBs

=> A‘x + B’Ds = (T/iT"l — B‘CT‘1)x + TBS (5.1)

Also,

y: PI‘s => PI‘s = C'X-l-D'e

=> PI‘s = C‘x + D'(C’x + Ds)

=> PFs = (C‘ + D‘C‘T’l)x + D‘Ds (5.2)

Therefore,

A" = TAT"1 — B"C-'T'1 (5.3)

B‘D = TB (5.4)

C“ + D"C'T‘1 = 0 (5.5)

D'D = I (5.6)

Consequently,

A‘ = T (A + BD“C’) :r-1 (5.7)

B' = TED" (5.8)

C" = --P1‘1')-1(7:I‘-l (5.9)

D‘ = PI‘D“ (5.10)
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Particular Case

Suppose that T = PI‘ = I where I is the identity square matrix, then

A" = A—BD-‘C‘ (5.11)

B“ = BI)“ (5.12)

C" = D-IC' (5.13)

D‘ = f)‘1 (5.14)

Thus, it is shown that the theoretical solution to the problem exists, and that if the

appropriate energy function of the independence criterion is defined for the problem,

then the parameters of the system will converge to one of the solutions defined by

equations (5.7)-(5.10). However, before going into defining such energy functions,

possible realizations of the system will be discussed;

5.3 State Realization

In this section, different network structures and their suitability to the problem of the

separation of signals will be introduced. The network is assumed to be a multi-input

multi-output system described by

Y(s) = H(3)U(s) (5.15)

H(s) is the m x r system’s transfer matrix where r and m are, respectively, the number

of input and output signals. The goal is to find a dynamical system D = (A, B, C, D)

whose transfer function is the m x r matrix H(s) where

H(s) = C(sI — A)“B + D (5.16)
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However, before starting the development of the structure, the following assumptions

on the transfer function matrix H(s) will be considered.

(A1) H(s) is stable and minimum phase

(A2) Each entry of the matrix H(s) is in its irreducible form

(A3) entries of H(s) have no common poles

The rationale behind these assumptions will be explained in the development of the

structure.

5.3.1 Controllable/Observable Canonical Form

The literature provides one with various realizations of H(s), [59]. Of these, a canoni-

cal controllable realization will be considered. The procedure to develop the proposed

structure is simple and straight forward. A main feature of the structure is that there

is no direct coupling between the input signals. This realization has very nice features,

in terms of its perfect fitness to the problem of blind separation, and also in terms

of circuit implementation. It presents the least number of parameters of the state

representation of the transfer matrix H(3). Such features will enable one to define

simple update laws for the parameters and to analyze their performance based on

the independence criterion of the output signals. The structure generates a bank of

filters that are jointly decoupled. The analysis provided below will display such char-

acteristics of the developed realization. Some figures are also presented to illustrate

this point.

Each output is described as

K-(s) = imam-(s) = inks) (5.17)
j=1 '=l
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According to assumption (A2), it is assumed that each H,,-(s) is irreducible. Thus,

we choose to represent H;,-(s) by the canonical controllable realization D;,- =

(Aiji bija Cg, dij)-

 

        

 

A.,eR"i:‘""-‘1 1,0512%:

. . -_ A 1 . . ’7":

55,1.) 0 1 o o 1 53,1.) 0

5S? 0 o 1 o 55,?) o

= + u,

53‘0") o o o o 1 mgr-1) 0

£351) _agfij) _as;) J $355) 1

y.- = as? as? ass-1) cw + a...
c§j62“‘i

where Org-c) are the coefficients of the characteristic polynomial of the matrix Ag,

defined by

det (AI — A”) = A“? + adj-EV“?1 + - - - + erg-“VIM + aff") (5.18)

The sub-realization D5,- : (Aij, bij, c5, dij) provides us with a set of different

filtered versions of the 1"” input 11,- that affect only the 2'“ output 3],. Figure 5.2(a)

presents the diagram of the state representation the sub-realization ’ng, whereas

Figure 5.2(b) shows the combination of the state and the output representation of

the sub-realization D5, = (A;,, b;,-, c3}, dij). The combination of these realizations

13.3, j = 1, - - - ,r, will provide us with the 2'“ output 3],. Figure 5.2(c) shows such a

structure. But, let’s proceed to see how it is obtained.

T

To do so, one must define the vector x; = [ x3; . . . x5 ] to be a vector in ’R’“
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where p,- = 237:1 11.5. Then,

  

      

 

 

A.eR:axua 3,53..."

51,-, A51 0 0 1 - bu 0 0

O 0

x.J = 0 A” 0 Xi + 0 b.J 0 l1

0 0

1 Sq, ‘ L 0 0 Ag,- . L 0 0 b.-,.

y,- = [cg CiTj cgJX, + [(1.1 db. £11,)“

CaG'R‘“ dgE‘R'

Therefore,

5:. = A;x.-+Bgu (5.19)

y.- = ciTx,+d,7'u . (5.20)

An important feature of this realization is the inherent parallel structure that it

possesses, as shown in Figure 5.2(c). This structure clearly decouples the inputs from

each other. This will be used as an advantage when an update law that pushes for

the output independence is to be developed.

At the final stage, all the filters will be combined and the structure below will

T

be developed. Thus, the vector x = [ x? . . . x; 1 in R” is defined, where n =



V1

llOI
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22;, [15. Then,

AERnx"
BERnx'

 

        

        
 

, r. n . . ’7‘“.

*1 A] ‘ 0 0 X1 Bl

- 0

X. = 0 ' Ag‘ 0 X. + B, u

- 0

. . . 1

1. - - 1 P a - -

y] c? . . . O . . . 0 x1 df

0

y. = 0 Cz‘r 0 X; ‘1' d? 11

0

y... 0 0 c; x... d:
‘ v a) b b -

Cekmxn De‘Rmxr

Thus,

51 = Ax + Bu (5.21)

y = Cx + Du (5.22)

where A, B, C and D are defined above. The realization D = (A, B, C, D) is called

the controllable canonical realization of H(s).

In [59], it is discussed that D};- = (A3}, b5, cijT, (1.3) is called the observable canon-

ical realization of H;j(s). Therefore, by following the same procedure, as discussed

above, to develop a controllable canonical realization of H(.3), one can demonstrate

that DT = (AT, BT, CT, D7) is an observable canonical realization of H(3).

By assumption (A2) and (A3), this structure is irreducible. If these two assump-

tions are not verified, then a more compact realization can be found [59]. But, for the
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sake of generality, it is safe to have such assumptions. Assumption (A1) is introduced

because, in real life applications and in computer implementation, such a feature is

needed in order to guarantee stability.

5.3.2 Features of the realization

In the course of development of the realization, some features of the proposed realiza-

tion have been mentioned. These include the decoupling between inputs, the inherent

parallel structure of the realization, and of most importance, the reduced number of

parameters by which the system can be defined. This last feature is very impor-

tant in terms of circuit implementation because, it implies reduction in the circuit

micro-electronic implemtation area.

Starting with a transfer matrix whose entries have no common poles, the state

representation of such a transfer matrix would require as many poles as the transfer

matrix has. This number is equal to the size of the state vector x, namely n. Despite

the fact that the matrix A is an n x 12 matrix, it is being represented by only 12 =

2,},- p;,-, since each matrix A;,- is represented only by the coefficients of is characteristic

polynomial, and the remaining entries are all ones and zeros. This represents a

reduction from n2 to just n parameters to represent the matrix A.

The matrix C is an m x n matrix. However, only 11 parameters of the matrix are

nonzero. The other n(m — 1) are all zeros. This again represents a reduction in the

number of parameters from nm to just 17..

The matrix B is formed by only zeros and ones. Thus, there is no parameter

for this matrix. Since B is an n x 1' matrix, this again represents a reduction of nr

parameters that must be updated. Finally the D matrix is represented by m x r

nonzero parameters.

Table 5.3.2 shows the number of parameters that would represent a general m x r

transfer matrix with no common poles between its entries in one column. The other
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Table 5.1. Number of parameters for 2 realizations

Realization

A n

B nr

nm n

mr mr

n +nr+nm+mr 2n+mr

 

column shows the number of parameters for the controllable canonical realization that

has been defined above. One observes that the order of the number of parameters

that define the system has been reduced from 0(n2) to 0(n).
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5.4 Adaptive Optimal Control Theory

Optimal adaptive control theory will be utilized to derive an update law for the blind

separation problem in a dynamical environment. The derivation will be valid for

both deterministic and stochastic cases. The update law will be derived for a general

nonlinear dynamical case. Then, the derivation of the linear dynamical case will be

straight forward.

Suppose that the independence of the output is characterized by

c(y,w) = ¢(t.x,w) (5.23)

The goal is then to optimize the functional defined by (5.23) subject to the dynamics

of the following system

it = f(t,x, W1), With X(to) = X0 (5.24)

y = g(t,X,W2) (5.25)

where f and g are two twice-differentiable continuous functions, and WI and W2 are

the parameters of the network model. To accomplish the task of optimization, the

following performance index is introduced

J( ) /T£(t ' )1 dtx w = x x w
i 0 , a 1 a 1)

where w = [w1, W2] and £(.) is the Lagrangian function defined as

C(tax: is Aiw) = ¢(t,X,W2) + AT (X - f(t,X,W1))

By introducing the Lagrangian parameters Mt), the functional J(x, w) will be op-

timized by considering the different variables w(t), x(t) and Mt) as independent

variables. There is no constraint on the final time condition of the system. Thus,
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the optimization of the functional J is called a free-end variational problem. The

variation of the integral leads to the following well-known Euler equations for the

variables x(t) and /\(t):

6.6 d 6L57g}-.. (5...)

BL (9L.5, -1-.{..}= . (.27)

with boundary condition

0.6

5? = o (5.28)
t=T 

Equation (5.26) is equivalent to

x = f(t,x,w1), with x(0) = x0 (5.29)

while equations (5.27) and (5.28) are equivalent to

i=—GOT) +—6:, with A(T) = o (5.30)

The parameters will be updated using the gradient of the performance index

‘ 0£d .
w-=na—w—_J=17/0— =1,2 (5.31)

where 17 is the learning rate and is positive (negative) if the goal is to maximize

(minimize) the performance index. Note here that A is obtained by performing a

back propagation through time starting at time t = T with zero initial value.
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Equation (5.31) can be simplified to

 

. ‘BATf
w, _ —.)/0 i 1 do (5.32)

. _ t 65
W2 — 7] 0 __52 d0 (5.33)

The parameters could also be updated using an instantaneous update

816
W; = 175-“; 2:1,2 (5.34)

and would result in the following update laws for WI and W2:

 

6)?f
° _

5.35

W] " CW1 ( )

. a.. = ...:é; (.3.)

Remark: one can observe that the update law for the parameter matrix W2 depends

on the independence criterion function (1), whereas that of w] depends on the choice

of both the nonlinear function f and the independence criterion <13 since the dynamics

of A depends on its direction along the state x.

5.4.1 Computer Implementation

The computer simulation of the algorithm will proceed as follows:

1. Perform a forward integration in the time interval [0, T] in order to obtain the

dynamic state equation and output equation defined by (5.24) and (5.25)

2. Perform a backward integration of the system’s adjoint equation defined by the

dynamics of equation (5.30)

3. Update the network parameters using either set of equations defined by (5.32-

5.33) or (5.35-5.36)
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4. While parameters are not convergent, go back to step 1.

This research has focused on the update of the parameters of W2 while keeping the

parameters of WI at their nominal solutions. In this case, one observes that the

update of W2 does not depend on the adjoint state. Therefore, step 2 described above

can be eliminated while we focus on the update of the W2 parameter.

5.5 Update Law Derivation

5.5.1 Nonlinear Dynamic Modeling

In this section, the output of the network is modeled as a nonlinear function of the

weighted sum of the input vector e and state vector x.

1’: = f(t.X.w1) = f(Ax + 36) = f(U) (5-37)

g(t. x, wz) = g(Cx + D8) = g(V) (5-38)‘
< ll

Then, the update law for the parameters, as well as the state equation of the adjoint

system, will be derived.

Update law Derivation for A and B

Let a = a, 6. Then,

 

_ a(/\Tf)

1’ 00;,“

afm(um)_ _ )m_____

a; 30:3

0::

172m: f ( )6a.,-

051' =
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Thus, one needs to compute 351,1:
‘1

an",

0a,,-

Bum (9me
5E;- _ P 6338? -- $677" 6PJCP — Cm'CJ

  

Bump

= a; = 6m;6 -:c =6mgl“
2p: 3m,- p Ep: 10: p .7

where 6 is the Kronecker-delta defined as

1 ifz' = '

6,,- = J

O ifz' 751'

Therefore,

dgj = —T]ZAmffn(um)6mixj = -7If,"(ui))‘i$j

5,-1- = -n21\mfr’n(um)5miej = —’7ff("i))‘iej

In matrix form,

A = -17Aft(u) /\ XT

B = —7]Afr(u) /\ 8T

where A. = diag(zl,zg, - . .,z,.)

Table 5.5.1 presents some nonlinear functions and their corresponding Anti-

hebbian like update rules for the matrices A and B.

Update Law Derivation for C and D

The independence criterion ¢ is a function of the output y, 45 = ¢(y)

Let Oz = c, d again. Then,

645(11)

60.3

 

61,-,- =77



Th
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Table 5 2. Different Nonlinearity functions and their derivatives

 
 

 
 

 

    
 

 

Function Derivative Anti-Hebb Anti-Hebb

f(u) f’(u) for A for B

u 1 AxT AeT

Tit—‘3 f(u) - f(u) Af(u)_,(u)2AxT Af(u)_fm2).eT

tanh(u) 1 — f(U)2 A1_f(u)2)tXT A1_f(u)2AeT

arctan(u) 1%; A141/RT A141 z\e

e"“2 -2uf(u) A-2uf(u)AxT A-2uf(u)).e  
 

_ 3¢(y)0ym

— 712 By". CagJ'

_ 395(31))39m(vm)

_ '12 By... 60,-,

17236;:9Im(vm)a—:m

 
 

Thus, we need to compute 3724'

 

avm cm

66" = 2p: E3212? = $6,,“ (Swat? = 6";ng

0v", _ 0d,”,
561—1; _ p —ad:jep 2:6,,"- 6,,Jep-— 6me,-

Therefore,

5 9,
Cu = ’72—fig—1) m(vm)5mexj = ng.(vs)—a:

- 3 g' 3

d..- = n}:—¢—-:f::) ..(um)6m.-e.- = ng:(v.-)—45.
3y,- ej

In matrix form,

- 6

C = ”A9'(V)-3_:XT
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59¢
D = ”quv) b—y—eT

Below, two simple independence criteria are listed.

1. ¢(y) = £2,312 = §yTy. Therefore,

13,-, = 71930031131

3:5 = ng£(v.-)y.~ej

2. ¢(y) =% ,y3. Therefore,

«2.. = 129512.55.-

Jij = 7795(vi)y? 61‘

Adjoint State Equation Derivation

Now, the adjoint state equation will be computed.

3f T 6f,~( j)

= f§(uj)g—:

— I . . axm

— fj(u1);aJm_a—£

f,’-(u,-) Z ajm6mi

= f;- ("0013'

= [ATAI'(“)] ij

[555)] = 65(1)

6x 5 0x,- '

_. 22%
— gay,- 6x.-

(5.39)

(5.40)
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_ 34> g)(
_ Z— 1(vJ)-6—_8:.“

34> ,

= ;—9j(vj) CJi

= [CTJAggroggy¢]_

Thus, in compact form:

. 345

A=-ATA ...A+CTA..—
If) aflay

In conclusion, given a network whose states follow the dynamics described by

= f(Ax + Be), x0 = x(to) (5,41)

and whose output is

y = 9(0): + De) (5.42)

The dynamics of the adjoint system are described by

A = —ATA,.(..)A + 07%,“)??? (5-43)

The parameters are updated according to:

A' = —nA,.(u)AzT (5.44)

B = —nAf:(u)AeT . (5.45)

C = 5A,.(,,%§zT (5.46)

11 34‘= ”A91(v)-a-§CT (5.47)
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5.5.2 Linear Dynamical Case

The derivation of the update laws for this model is a special case of the nonlinear

dynamic model discussed in the previous section. In this case, the functions f and g

in equations (5.41) and (5.42) are the identity functions. Thus, their derivatives are -

the identity matrices. Consequently, equation (5.43) is simplified to:

1 = —ATA + 0ng (5.48)

and (5.44)-(5.47) are simply:

A = -n)~ 5T (5.49)

B = -17).! (5.50)

C" = 17%ng (5.51)

1') = 52—3-3 (5.52)

In order to compute the term 33, one can make direct computation as was pursued in

Chapter 4 for the static case. One, however, can define new variables and transform

the problem into one that is similar to the static case. This will be accomplished by

considering the output equation of the linear dynamical system

y = Cx + De (5.53)

Then, define the vectors 3] and 5:, and the matrix W as

‘
(
t

ll )
4
:

II II (5.54)
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However,

y D C e

x 0 I x

Therefore, equation (5.53) can be written as

y = W52

Consequently, the update law for the parameters of the matrix W is

W = "[1474” — 5(9):?!) (1 e {a, b, c, d}

First, one needs to find W‘T

W-T: D(DTD)“1 0

—CTD(DTD)’1 I

since

D7 0 D(DTD)’1 0 I 0

CT I —CTD(DTD)‘1 I 0 I

Consequently, the update law for the matrix C _

C = "flfa(Y)xT

and that of matrix D is I

D = v[D(DTD)-‘ — fa(y)eT]

(5.55)

(5.55)

(5.57)

(5.58)

(5.59)

(5.50)

(5.61)
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If D is a square nonsingular matrix, then equation (5.61) becomes

D = )[D‘T—f.(y)eT]' (5.62)

= 7(1 — fa(Y)yT]D‘T (5-63)

5.6 Computer Simulations

Computer simulations of the update laws of the parameters of the matrices C and D,

as defined by equation (5.60) and (5.62), were performed. The considered unknown

sources are two sine waveforms with respective frequencies 1H2 and 2H2. The envi-

ronment model is the dynamical system represented by the following transfer matrix

—1

.92 a s

1.0% 068:5 = Ht(3)-l (5 64)

:2 28 3 32i6si8

0234-98440 1‘0: +133+42

One theoretical solution to the problem is the transfer function H‘(s) whose canonical

H(s) =

state representation, D‘ = (A’, B‘, C‘, D‘), is defined by

   

 

0 1 0 0 0 0 0 0 0‘

—2 —3 0 0 0 0 0 1 0

0 0 -3 0 0 0 0 0 1

A“: 0 0 0 0 1 0 0 8‘: 0 0

0 0 0 -20 —9 0 0 1 0

0 0 0 0 0 0 1 0 0

_ 0 0 0 0 0 —42 ‘13. _0 1‘

= 13 5 —1.2 0 0 0 0 . 0*: 1.0 0.6

0 0 0 -—-3.6 —1.2 —34 -7.0‘ 0.2 1.0
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The bode plots of the environment, defined by H(s), and the desired realization of

the network model, defined by H‘(s), are shown respectively in figures 5.3 and 5.4.

Gain dB Phase deg

 

 
  

 

 

  

 

 

  

 

  

 
 
  

f (rad/sec) 1 (rad/soc)

Figure 5.3. Bode plot of the environment model defined by H(s)

First, computer simulations were performed by updating only the parameters of

one matrix while holding the parameters of the other matrix at their nominal values,

as defined by D‘. In either experiments, the algorithm failed to converge to the

desired solution. Figures 5.5 and 5.6 show the the algorithm fails to converge to the

desired solution. Figure 5.5 shows the performance of the algorithm by updating the

parameters of the D matrix while those of the C matrix are held at their nominal

values. On the other hand, Figure 5.6 shows the performance of the algorithm by
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Figure 5.4. Bode plot of the network model defined by H‘(s)
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updating only the C matrix and fixing the parameters of the D matrix to their

nominal values. Observe that the algorithm fails to converge in both simulations.

The algorithm also fails to accomplish the convergence by considering the nonlinear

functions fb, fc, fd as well as the cubic and the sine hyperbolic ones. Figure 5.7

shows a case of simulations when the nonlinear function is fd. The reason for the

failure of the algorithm is the fact that the problem is not completely identifiable.

Recall that from equations (5.7)-(5.10), the system has infinitely many solutions that

it could converge to. The solution defined by D‘ = (A’, B‘, C‘, D‘) is one particular

solution. The realization D}; = (A‘, 8", PC“, PD") is also another possible solution

where P is generalized permutation matrix. Thus, by keeping one matrix constant

at its nominal value, one is limiting the set of all possible solutions to one particular

point in the set of equilibrium points.

Next, computer simulations were performed by considering the simultaneous up-

date of both parameters of the matrices C and D. Figure 5.8 shows the respective

performance of when two sine functions are assumed to be the unknown sources. One

observes that the all the parameters converge, but not to the desired values.

On the other hand, if one considers an update law for the matrix D defined by

(4.56)

D = —7fa(Y)yTa a E {0, b: C: d} (5'65)

the algorithm demonstrated its capability to converge only when the nonlinear func-

tion is defined by fa. Figure 5.9 and 5.10 are samples of such simulations. One can

observe the convergence of the matrix D in Figure 5.9 as all its parameters become

equal to the desired values in a finite time. On the other hand, the parameters of the

D matrix do converge in Figure 5.10, but not to the desired values. Figure 5.11 shows

the test simulation of the algorithm defined by equation (5.65) using the nonlinear
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Figure 5.5. Dynamic Forward Structure. Update only the D matrix according to

D = 7[D’T -— fa(y)eT] using two sine waveforms, 7 = 0.005 and D0 = 0
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Figure 5.6. Dynamic Forward Structure. Update only the C matrix according to

C = -17f..(y)xT using two sine waveforms, n = [1000 100 1 100 1 100 10] and

Co-— 0.80“
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Dynamic Environment eta = 0.5
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Figure 5.7. Dynamic Forward Structure. Update only the D matrix according to

D = 7[D‘T — fd(y)eT] using two sine waveforms, 7 = 0.5 and D0 = 0
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Figure 5.8. .Dynamic Forward Structure, Update both the C and D matrices ac-

cording to D = 7[D'T - fa(y)eT] and C = —17f.,(y)xT using two sine waveforms,

7 = 0.005, 17 = [100 10 1 1000 5 2000 10]. All initial conditions are zero



132

function fa at convergence. Obeserve that the output of the network is almost an

exact replica of the unknown sources.

Dynamic Environment eta = 0.005
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Figure 5.9. Dynamic Forward Structure. Update only the D matrix according to

D = —7f,,(y)yT using two sine waveforms, 7 = 0.005 and D0 = 0

Other nonlinear function, reported in [8], were also considered. Computer simu-

lation of the following algorithms were performed

1') = —7y3y (5.66)

D = —-7 sinh y tanh y (5.67)
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Figure 5.10. Dynamic Forward Structure. Update only the D matrix according to

D = -7f.1(y)yT using two sine waveforms, 7 = 0.5 and D0 = 0
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Figure 5.11. Dynamic Forward Structure. Test Simulation of the update law D =

--7fa(y)yT at convergence using two sine waveforms
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Figure 5.11. Dynamic Forward Structure. Test Simulation of the update law D =

-7fa(y)yT at convergence using two sine waveforms
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Figures 5.12 and 5.13 show their performance. Observe that both nonlinear functions

are capable of separating signals. The reason of exploring the algorithms defined by

equations (5.66) and (5.67) is to show that the nonlinear function fa performs as

equal to other nonlinear functions that have shown to provide excellent performance,

but that were chosen heuristically[8]. This is in contrast to the function fa that

was developed based on a well defined energy function and independence criterion.

However, the function fd, reported in [24], did not provide the same performance. This

is due to the poor approximation of entropy approximation and/or the assumption

of the unit variance.

 

Dynamic Environment eta = 1

 

0.3 '

0.2 '

8

0.1 "'

o I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(112

(112 II 0.6 (121 I: 0.2

0.8 '

 

 

 

O 5 10

time (sec)

15 20

0.3 [

 d
1
2

 

O 5 1O 15 20

time (sec)

Figure 5.12. Update of the D Matrix using D = —7y3y
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Figure 5.13. Update of the D Matrix using D = —7 sinhytanh y
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5.7 Observations

Despite the limited results that one obtained in this chapter, a general framework to

derive an update law was developed. Such a framework can be applied to any network

structure. It was also observed that the introduced forward structure , in this chapter,

is subject to an identifiability problem due the freedom of the possible solutions that

the network could converge to. Thus, the task is to define an identifiable structure

and to use the herein developed tools to define the update law for that structure. It

is intended to do so in the following chapter.



CHAPTER 6

Blind Separation in a Dynamic

Environment: Feedback Structure

In this chapter, an architecture different from the one discussed in the previous chapter

is considered. It does not represent a particular network architecture, nor does it limit

the type of environments that can be considered. In this research, however, it will be

shown that any type of environment can be considered. The state space representation

of the network will be presented and the existence of a theoretical solution to the

problem shown. Then, an update law for the parameters of the network based on an

analogy of the static case will be developed.

6.1 Architecture

General systems are defined by their input-output relationship. For time-invariant

systems, such a relation is described by a transfer function L(s) which relates the

input S(s) to the output E(s)

E(s) = L(s)S(3) (6.1)

138
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If s 6 'R" and e 6 72'", then L(s) is an m x 1' matrix

  

r 1

L11 L..- 1...

L(3) = L11 Lit" Lir (6-2)

Lml ' Lm: LmrJ

    

1 £11. 111,1 L11 0 o l

L(3) = I?“ 1 f1,r 0 L“ 0 (6.3)

H... H...- 1 0 o L...

where

H.,-=%:—:j (64)

Let’s denote Z(s) to be the diagonal matrix of L(s). Thus, equation (6.1) is equivalent

to the following two equations:

13(3) = g(3)g(3) (6-5)

and

3(8) = 13(3)S(3) (66)

Therefore, the system described by equation (6.1) is equivalent to the cascaded pro-

cessing of two systems described by equations (6.5) and (6.6). Equation (6.5) performs
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the pre-filtering process, while equation (6.6) performs the mixing and/or filtering

process that describes the model of the environment.

In the blind separation of signals, the goal is to recover the unknown sources.

This requires the development of a network that performs the inverse function of the

pre-filtering and mixing/filtering processes. Thus, such a network is also a cascade

of two processes. The first one will be devoted to reverse the mixing and/or filtering

process, while the second one will be devoted to the inverse filtering. Let’s denote

y and y to be the respective outputs of these processes. A feedback structure that

models the inverse process of the mixing and/or filtering is as follows

173) = 13(5) — H(s) 17(3) (6.7)

where H(s) is a matrix with zero diagonal entries. Thus, the goal of such a process is

to recover a replica of the §. Therefore, using equations (6.5) and (6.7), the following

equation is obtained:

I + H(s) = H(s) (6.8)

Thus, with an appropriate update law of the parameters of the matrix transfer func-

tion H(s), the problem has the solution

110(3) = 1310(3) W 751' (6-9)

Finally, to recover the original signal 8, some filter K(s) will be applied to 5', which

would result in an output

Y(s) = 1(5):: (6.10)

= K(s)§ (6.11)

K(s)l(s)5(s) (6.12)



141

If the goal is to recover S(s), then

K(s) = Z(s)"l (6.13)

However, no knowledge of the Z(s) is available. Thus, one could suffice with a solution

to the problem that is up to a filter of the unknown sources. Figure 6.1 shows a

schematic diagram of these processes.

I’m-Filtering Mixing/Filtering Separation Algorithm Inverse Filtering

 
 

 

its) W0

---—9
  8(5) H(s) ashSts>__., I.(s) K0)

LH(s) +—l

 

       

   

      

Figure 6.1. Feedback Processing Structure

6.2 State Representation

In the last chapter, the canonical controllable realization to define the state space

realization of a given transfer function matrix was considered. Such realization will

also be used here to model the network. However, one should keep in mind that the

transfer matrix H(s) has zero diagonal entries. Therefore, the state space represen-

tation of H,,-(s) is ’D.-,- = (0,0,0, 0). Consequently, the 1"“ entries of the matrices Ag,
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b,-, c? and 03‘, as defined in equations (5.19) and (5.19), are null. Despite the fact

that these entries are redundant to the network model, they will be preserved for the

sake of clarity of the presentation of the model.

Here is a canonical controllable realization ’D = (A,B,C, D) for H(3) Such a

realization is defined by equations (5.21) and (5.21). The state equation is described

by i

x = Ax + By (6.14)

while the output equation is described by

y = e — Cx — Dy (6.15)

Having defined the structure and the realization of the network model, the update

laws for the parameters C and D are now ready to be developed.

6.3 Update Law Derivation

To develop the update law for the feedback structure, one needs first to define the

vectors 5' and E and the matrix W as

y e .. D C

y = x = W = (6.16)

x 0 0 I

However,

e D C

y = — _ y (6.17)
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Therefore, equation (6.15) can be rewritten as

~

5' = é - W? (6.18)

Using Theorem 2, the parameters of the matrix W are updated according to

W = 0.000? a e {a, b, c, d} (6.19)

This will reduce to

= nfa(Y)XT (6'20)

D = 7fa(y)yT (6'21)

where 1) and 7 are respectively the learning rates of the matrices C and D.

6.4 Computer Simulation Results

To study the performance of the algorithm and the feedback structure, one needs

to consider two approaches depending on the origin of the nonlinear function. Two

different approaches will be considered. One approach will be based on the nonlinear

functions fa and fd, which were developed in Chapter 4, based on the mutual infor-

mation functional. The other will based on selecting the nonlinear functions reported

in [8]. These two parts define functions that were developed based on the mutual in-

formation approach and others that were based on the neuromemitic approach. This

comparative study will be considered as a mean to quantify the performance of the

developed nonlinear function fa vis-c‘z-vis other existing nonlinear functions.

Computer simulations were conducted for the proposed architecture. A two di-

mensional network was considered. The two unknown sources were filtered and mixed
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according to the following transfer function defined by

0.6 3+1 3+4 ‘

11(3): 1 W = 1 H12“)

#4403454: 1 Hats) 1

Therefore, the canonical controllable realization is D = (fl, 3, C, D) defined below as

 

  

1

 

0 0 0 0 O 0 0 0

0 0 1 0 0 0 0 0

_ 0 —42 —13 0 0 0 _ 0 l

A: B:

0 0 O 0 1 0 0 0

0 0 0 —40 —13 0 1 O

0 0 0 0 0 0 _0 0

_ 0 -22.8 —4.8 0 0 0 _ 1.0 0.6

C: D:

0 0 0 —13.6 —3.2 0 L0'4 1.0

The bode plots of 312(3) and 1.121(3) are shown in Figure 6.2. Also, the bode plot of

H(s) = H(s)‘l is shown in Figure 6.3.

6.4.1 The Approach Based on Mutual Information

The algorithm defined by equations (6.20) and (6.21) will be studied by exploring the

nonlinear functions fa and fa.

Algorithm defined by fa

Computer simulations of the algorithm defined by the equations (6.20) and (6.21)

and the nonlinear function fa was studied.

C = Ufa(y)xT

D = 7fa(Y)yT

(6.22)

(6.23)
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Figure 6.2. Frequency response of the environment model
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Figure 6.3. Frequency response of the network model
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In order to study its performance thoroughly, the parameters of the network will be

initially updated separately. This was accomplished by updating some parameters

of the network, while holding the remaining parameters, constant to their nominal

values.

The first set of simulations considered the update of the individual parameters

of the C matrix, namely €12, c13, 621 and 022. The initial value of each of these

parameters was equal to 0.8 of their nominal values. Also, the unknown sources

, were assumed to be 2 sine waveforms with respective frequencies 1H2 and 2H2.

Figures 6.4 through 6.7 display the results of such simulation. One could observe

that all the parameters converge individually to the desired values. It is important to

note that the learning rates of each of the parameters of the C matrix are different,

[1712, 1713, 1121, rm] = [101 10’1 10° 10’2].

Once it was demonstrated that each of the parameters converged to the desired

value, the update law of all the parameters of the C matrix were combined. Computer

simulation were conducted assuming different initial conditions of the parameters of

the C matrix. Figures 6.8 through 6.11 represent the results of simulations when the

initial conditions are respectively 0.8C", 0.5C‘, 0.10“ and 0. In all these simulations,

one could observe that all the parameters of the C matrix converge to the desired

values.

So far, only simulation results of the performance of the parameters of the C

matrix were considered. These simulations showed excellent results in terms of the

performance of the algorithm in separating the unknown sources. The performance

of the algorithm in updating the parameters of the D matrix is considered next.

Computer simulations for different initial conditions of the D matrix, while the

parameters of the C matrix are held at their nominal values. were considered. Figures

6.12 through 6.15 show the results of the simulations when the initial conditions are

respectively (d12, d21) = (0,0), (0,1), (1,0) and (1,1). Figure 6.16 combines the
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performance of the algorithm for all these tests. One could observe that that the

parameters of the D matrix also converged to the desired ’values.

Despite the fact that the matrices C and D converged to the desired parameters

when each one of these matrices was updated separately, some parameters of the

network failed to converge when both matrices are updated simultaneously. Therefore,

sequential update will be considered in the next section to resolve this problem.

Algorithm defined by fd

When the nonlinear function fd is assumed to define the nonlinear function of the

algorithm described by equations (6.20) (6.21), the parameters of the matrices C and

D converged to some undesirable solution, causing the algorithm to fail in separating

the unknown sources. Figures 6.17 and 6.18 display the performance of the algorithm

when each matrix is updated separately.

This last result shows again the superior performance of the algorithm defined by

the nonlinear function fa compared to the one defined by fd, as developed in [24].
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Update the parameter 012 while keeping all other parameters fixed
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Update the parameter c21 while keeping all other parameters fixed
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Figure 6.6 Cij = ngjfa(y.-)x.-j and 1751' = 100
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Update the parameter (:22 while keeping all other parameters fixed
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Figure 6.7. c1)- = ngjfa(y.-):r,-J- and 17.5 = 10"2

6.4.2 An Approach Based on Neuromemitic

Update of C Matrix

The parameters of the C matrix will be updated according to a decorrelation between

the output and the state. Therefore, its parameters will be updated according to:

(:5,- = flijyixij (6-24)

Computer simulations were performed for each of the parameters of the matrix C

individually. Then, the update of all of these parameters together was performed
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C12 C13

  
 
 

   
  

Figure 6.8. Update all the parameters of the 0' matrix according to (3,5 = 7].-]- fa(y,-)a:,-J-,

(’712, 7’13, 7’21, "22) = (101 01a 2a 01) and CO = 080
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Figure 6.9. Update all the parameters of the C matrix according to éij = ngjfa(yi)$ij,

(7)12, 7713, 1721, 1722) = (10, 0.1, 2, 0.1) and Co = 0.50
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Figure 6.10. Update all the parameters of the 0 matrix according to (3,5 = 7].-,- fa(y,-):c,-j,

(7)12, 7113, 7121, 17213) = (10, 0.1, 2, 0.1) and Co = 0.10
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Figure 6.11. Update all the parameters of the C matrix according to éij = Uij fa(yi)$.‘j,

(1712: 013, 7121, 7122) = (10, 0.1, 2, 0.1) and Co = 0
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Update D while C is at the nominal value with eta = 0.0005
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Figure 6.12. Update all the parameters of the D matrix according to dij = 7fa(y,-)yj,

7 = 0.0005 and (d120, (1210) = (0.0, 0.0). The unknown sources are 31(t) = sin(27rt)

and 32(t) = sin(47rt)
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Update D while C is at the nominal value with eta = 0.0005

 
 

  
  
  

0.8 r

g 0.6 -

0.4 -

0.2 l l l l l L l I

-0.1 O O 1 0 2 0.3 0.4 0.5 0.6 0.7

d12

d12 = 0.6 d21 = 0.4

0.8 ' 1

' 0.8 »

N v-

15 $61 0.6’

0.4 , . . . . . . . . .

-O.2 ‘ ‘ 4 ‘ 0.2 4 ‘ ‘ d

0 50 100 150 200 O 50 100 150 200

time (sec) time (sec)

Figure 6.13. Update all the parameters of the D matrix according to (L'j = 7fa(y.-)yj,

7 = 0.0005 and (d120, (1210) = (0.0, 1.0). The unknown sources are 31 (t) = sin(21rt)

and 32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.0005
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Figure 6.14. Update all the parameters of the D matrix according to dij = 7fa(y.-)y,-,

7 = 0.0005 and (d120, (1210) = (1.0, 0.0). The unknown sources are 31(t) = sin(21rt)

and 32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.0005
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Figure 6.15. Update all the parameters of the D matrix according to (15,- = 7fa(y.-)yj,

7 = 0.0005 and (d120, (1210) = (1.0, 1.0). The unknown sources are 31(t) = sin(27rt)

and 32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.0005
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Figure 6.16. Update all the parameters of the D matrix according to dgj = 7fa(y.-)yj

and 7 = 0.0005 for different initial conditions. The unknown sources are 31(t) =

sin(21rt) and 32(t) = sin(41rt)
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Figure 6.17. Dynamic Feedback Structure. Update only the C matrix according to

C = 17fd(y)xT using two sine waveforms, r] = [100 10 100 10] and Co = 0.8C”
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Update D while 0 is at the nominal value with eta a: 0.2
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Figure 6.18. Dynamic Feedback Structure. Update only the D matrix according to

D = nfd(y)yT using two sine waveforms, 17 = 0.2 and D0 = 0
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while keeping the parameters of the matrix D fixed at their nominal values at all times.

These simulations were performed with two sine waveforms of respective frequencies

f1 = 1H2 and f2 = 2H2. The initial conditions for each case were such that the

parameters to be updated were 0.8 of the nominal values. Figures 6.19 through

6.22 show, respectively, the convergence of the parameters 612, cm, 621, (:22. Each

one of these parameters required a different learning rate. The fact that each of

these parameters is the coefficient of some power 3, where s is the time derivative

operator, may reveal the reason for this behavior. Therefore, there is an order of

time scale between these parameters. Later in this chapter, this concept will be

introduced. In addition, it will be shown that, under a well defined transformation,

such a time scale could be reduced, as well as all the parameters of C, to be in the

same order of magnitude. Figure 6.23 shows the convergence of the parameters of the

matrix C when all the parameters were updated simultaneously. Observe that all the

parameters have converged to the correct values. K

Using the update law defined by (6.24), a set of simulations was conducted to

study the performance of the algorithm for the C matrix based on the choice of the

initial conditions. Figures 6.23 through 6.26 show the performance when the initial

conditions were respectively 0.8, 0.5, 0.1 and 0.0 of the nominal value of the C matrix.

Regardless of the initial conditions, the parameters converge to the desired values.

These simulations were also repeated with square and sawtooth waveform functions.

The same results were obtained as when using sine waveforms. Some sample results of

using different unknown sources were as follows. For instance, Figure 6.27 shows the

performance of a sine waveform of frequency 1H2 and a square waveform of frequency

2H2. The initial conditions were all at 0. Figure 6.28 shows the performance of a

sawtooth waveform of frequency 1H2 and a square waveform of frequency 2Hz. The

initial conditions were all at 0.

The update law defined by equation (6.24) was modified to include some nonlin—
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earities. This was motivated from the work of Herault and Jutten [8, 9]. The update

equations were the following:

(3:5 = nut/fixa- (5-25)

and

a, = 17,-,- sinh y.- tanh 33,-,- (6.26)

Computer simulation of both algorithms were conducted using the same initial condi-

tions, and mixing matrix, and unknown sources. The results of these two simulations

are displayed respectively in Figures 6.29 and 6.30. One observes that both algorithms

converge.

Update of Matrix D

Starting from the energy function that defines the total power in the signal, one would

derive an derive an update law for the parameters of the matrix D similar to (5.40)

d5,- = 7.13/{61'

Computer simulations were performed using 2 sine waveforms of respective frequen-

cies 1112 and 2H2. Zero initial conditions were considered. The results of such a

simulation is displayed in Figure 6.31. It should be noted that the network failed to

converge to the desired values.

On the other hand, successful update of the D matrix, based on the rules developed

in [8], was also accomplished.

do = vomit/j (6.27)
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and

dgj = 7,-1- sinh y,- tanh y, (6.28)

The performance of the algorithms defined by equations (6.27) and (6.28) are shown

respectively in Figures 6.32 and 6.33. The learning rate 7 is taken to be the same for

all the parameters in each of the above simulations, and is equal to 0.2.

The algorithm defined by equation (6.28) will now be considered and its perfor-

mance will be studied. First, its performance for different initial conditions will be

investigated. Figures 6.33 through 6.36 represent a set of simulations for 4 different

initial conditions. The algorithm always converges to the desired values regardless of

the initial condition. Figure 6.37 shows the convergence of the algorithm defined by

equation (6.28) for the above initial conditions when plotted together.

The performance of the algorithm for various unknown types of sources, sawtooth,

square and sine functions was also studied. Figures 6.38 through 6.40 show respec-

tively the performance of the algorithm for the following scenarios: (i) using a sine

and a square of respective frequencies 1H2 and 2H2, (ii) using a sine and a sawtooth

of respective frequencies 1H2 and 2H2, and (iii) using a a sawtooth and a square of

respective frequencies 1H2 and 2H2. One can observe that the parameters converge

to the desired values in all these scenarios.

In conclusion, it was demonstrated that the algorithms for. updating the matrices

C and D have converged when each of these parameters is updated individually by

considering the mutual information approach or the neuromimetic approach. It was

also shown that both algorithms perform well under various initial conditions, for

different types of unknown sources, as well as for different learning rates in the case

of the C matrix parameters. It was also shown that the algorithm, defined by the

function fd, which was developed in [24] failed to perform the separation task. It
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was also shown that the algorithm defined by fa has equivalent performance to those

defined based on the neuromimetic approach. The novelty of our approach resides in

the fact that the nonlinear function f,I was developed based on the minimization of

an energy function that defines the independence of signals while the other functions

in the literature were motivated from biological inspirations.

Update C and D

In the previous two sections, the performance of the algorithms for updating the

matrices C and D, separately was explored. In this section, both update laws will

be combined. In this case, the parameters will be updated simultaneously. The

parameters of the C matrix were updated according to

a, = 770316150 (6-29)

and those of the D matrix were updated according to

dgj = 7;, sinh y; tanh g,» (6.30)

One parameter at a time

In the first set of simulations, only one parameter of each of the matrices C and D,

namely cm and d12 were updated. These two parameters will be updated according

to the equations (6.29) and (6.30).

In the first simulation, the parameter d12 was initially set at its nominal value,

£2 = 12, while the parameter cm is initially set to be 0.8 of its nominal value,

offs = 0.8613. The results of this simulations are presented in Figure 6.41. In this case,

both parameters converge to the desired values as it can be observed in Figure 6.41.

In the next simulation, the initial conditions of the parameters were reversed. The

parameter cm was initially set at its nominal value, cfl’3 = Cisa while the parameter
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cm is initially set to be 0.0, diz = 0.0. The results of this simulations are presented in

Figure 6.42. One, however, observes that the parameter c13 did not converge yet, as

it is shown in Figure 6.42. This is due to its small learning rate 1713 = 20. Thus, when

the learning rate is increased to 1713 = 40, both parameters converge, as displayed

in Figure 6.43. It should be noted that, in Figure 6.43, despite the fact that the

parameter cm was initially at the desired value, it was pushed away from it while the

parameter d12 was still searching for the path to correct solution. Ultimately, both

parameters converge to the desired values. Figure 6.44 shows the phase plot of the

parameters d12 and c13.

All the parameters together

The previous section proved that the update laws of the matrices C and D were

successful when only some parameters of each matrix were updated. The idea behind

this set of simulations was to study any coupling effect between the two update laws.

It was concluded that the algorithm performs well. In this section, all the parameters

of the matrices C and D will be updated and the algorithm’s performance will be

observed. A set of simulations will be conducted in which some parameters were

given their nominal values as the initial conditions, while starting others at some

values other than their nominal values. The unknown sources used, for this case,

were the sawtooth and the square waveforms with respective frequencies f; = 1H2

and f2 = 2H2. Figures 6.45 through 6.48 show the performance of the network for

different initial conditions, while the learning rates for the matrices C and D were

held constant at all simulations. Figure 6.45 shows that the algorithm could not

converge for the specified time range and learning rate. Thus, a simulation with a

higher learning rate for the parameters 621 and 622 was required, as shown in Figure

6.46. However, a longer running time was also needed. Thus, when T = 1000,

the algorithm was able to converge. Figure 6.47 shows that all the parameters. did



169

converge, except for one, on. One possible route to solve this problem is to consider

sequential update.

6.5 Sequential Update

In Figure 6.47, it was noted that all the parameters converged except for one parame-

ter, 6;]. In order to eliminate this phenomenon, we consider updating the parameters

”sequentially”. This was accomplished by updating the set of parameters of the C

and D matrices at alternate time intervals of length AT. This means that starting

at time to, and without loss of generality, the parameters of the matrix D will be

updated during the time interval [to+ (k —1)AT,to kAT] while those of the C matrix

will be held constant. However, during the time interval [to + IcAT, to + (k + 1)AT],

the order of update will be switched so that the parameters of C will now be updated,

while those of D will remain constant at their nominal values.

Figures 6.49 through 6.51 show the performance of the algorithm when such a

sequential training method is applied with AT = 50 seconds. Figure 6.49 shows

the performance when the learning rates of the parameters of the C matrix were

77 = [103 10 102 10] and that of the D matrix is 7 = 0.2. Observe in this case that the

parameter 621 is converging but a longer time is required for it to converge, or a larger

learning rate is required. Also, one observes that in Figure 6.49, all the parameters

of the C matrix, except €21, converged in a small period of time, while exhibiting

some oscillation. This is due to the large learning rates at which they were updated.

Thus, smaller update rates were considered and taken to be 7; = [200 10 200 10]. The

results of these simulations are presented in Figure 6.51. Also, Figure 6.50 shows a

simulation when '1] = [1000 10 500 10].

Figure 6.52 shows the response of the network at the start of the update. One

observes that the output signals y(t) were different from the desired signals s(t).
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Recall that the initial condition of the system was not set at the nominal values, but

rather Co = 080' and Do = 0. Figure 6.53 shows the performance of the algorithm

after all the parameters have converged. It can clearly be observed that the original

signals were recovered and that the error was in the order of 10’3. The network is

tested by changing the unknown source to a pair of a sawtooth and a sine functions.

Figure 6.54 shows the signal recovery performed by the network. The final values to

which the network converged were [cu cm, 621 622] = {—21.9783 —4.7968 — 13.4989 —

3.3635] and [(112 d21] = [0.3992 0.6006]

Update the parameter c12 while keeping all other parameters fixed

-1 5

-16

       C12 = -23.25
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Figure 6.19. 6,3 = mjygxgj and 1751' = 2000
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Update the parameter c1 3 while keeping all other parameters fixed
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Figure 6.20. c},- = flijyil'gj and m,- = 20
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Update the parameter (:21 while keeping all other parameters fixed
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Figure 6.21. é,,- = 17.33/ng and 1);,- = 500
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Update the parameter c22 while keeping all other parameters fixed

c22 = —3.225
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Figure 6.22. 6;,- = mJ-ygmgj and 17,-,- = 10
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Figure 6.23. Update all the parameters of the C matrix according to Cij = mJ-ngj,

(7’12, "131 "213 ”22) = (103,10, 102, 1) and 0'0 = 08C
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Figure 6.24. Update all the parameters of the C matrix according to c},- = nijyixij,

(7712, 7713, 1721, ’722) = (103,10, 102, 1) and Co = 0-50
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Figure 6.25. Update all the parameters of the C matrix according to (3.-,- = mJ-ygxgj,

(7)12, 013, '721, 7722) = (103,10,102,1) and Co = 0-10
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Figure 6.26. Update all the parameters of the C matrix according to 6,,- :: 7103151713,

(nu, ms, 1721, 7122)=(103,10,102,1) and c0 = o
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Figure 6.27. Update all the parameters of the C matrix according to a, = flijyixij,

(7)12, 1113, 1721, 1722) = (103,10,102, 1) and Co = 0. The unknown sources are 31(t) =

sin(21rt) and 32(t) = square(41rt)
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Figure 6.28. Update all the parameters of the C matrix according to é.)- = flijyiitgj,

(1)12, 1713, 7121, 1122) = (103,10,105,102) and Co = 0. The unknown sources are 31(t) =

sawtooth(27rt) and 32(t) = square(41rt)
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Figure 6.29. Update all the parameters of the C matrix according to (3;,- =

17;,- sinh ygtanh 3.3, (1112, 1713, 7721, 1122) = (103,10,102,10) and Co = 0. The unknown

sources are 31(t) = sin(27rt) and 32(t) = sin(47rt)
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Figure 6.30. Update all the parameters of the C matrix according to (3.-,- = nag/£322,”

(1)12, 1713, 1721, 1722) = (103, 10, 102, 10) and Co = 0. The unknown sources are 31(t) =

sin(2nt) and 32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.1
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Figure 6.31. Update all the parameters of the D matrix according to d5,- = 73/56,,

7 = 0.2 and (d120, (1210) = (0.0, 0.0). The unknown sources are 31(t) = sin(27rt) and

32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.1
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Figure 6.32. Update all the parameters of the D matrix according to (iij = 7y?y,-,

7 = 0.2 and (due, (1210) = (0.0, 0.0). The unknown sources are 31(t) = sin(21rt) and

32(t) = sin(47rt)
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Update D while C is at the nominal value with eta = 0.2
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Figure 6.33. Update all the parameters of the D matrix according to d},- =

7sinh ygtanh 31,-, 7 = 0.2 and (d120, (1210) = (0.0, 0.0). The unknown sources are

31 (t) = sin(21rt) and 32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.2
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Figure 6.34. Update all the parameters of the D matrix according to d},- =

7sinh ygtanh y,-, 7 = 0.2 and (d120, (1210) = (0.0, 0.9). The unknown sources are

31(t) = sin(21rt) and 32(t) = sin(47rt)
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Update D while C is at the nominal value with eta = 0.2
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Figure 6.35. Update all the parameters of the D matrix according to al,-,- ==

7sinh ygtanh 31,-, 7 = 0.2 and (d120, (1210) = (0.9, 0.0). The unknown sources are

31(t) = sin(27rt) and 32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.2
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Figure 6.36. Update all the parameters of the D matrix according to (iij =

7sinh ygtanh y,-, 7 = 0.2 and (d120, duo) = (0.9, 0.9). The unknown sources are

31(t) = sin(21rt) and 32(t) = sin(41rt)
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Update D while C is at the nominal value with eta = 0.2
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Figure 6.37. Update all the parameters of the D matrix according to d},- =

7sinh y.- tanh y,- and 7 = 0.2 for different initial conditions. The unknown sources

are 31(t) = sin(21rt) and 32(t) = sin(47rt)
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Update D while C is at the nominal value with eta = 0.2
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Figure 6.38. Update all the parameters of the D matrix according to d},- =

7sinh ygtanh yj, 7 = 0.2 and (due, duo) = (0.0, 0.0). The unknown sources are

31(t) = sin(27rt) and 32(t) = square(41rt)
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Update D while C is at the nominal value with eta = 0.2

0.5
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time (sec) 

Figure 6.39. Update all the parameters of the D matrix according to d},- =

7sinh ygtanh 3],, 7 = 0.2 and (due, (1210) = (0.0, 0.0). The unknown sources are

31 (t) = sin(21rt) and 32(t) = sawtooth(47rt)
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Update D while C is at the nominal value with eta = 0.2
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Figure 6.40. Update all the parameters of the D matrix according to d},- =

7sinh ygtanh 3],, 7 = 0.2 and (due, dglo) = (0.0, 0.0). The unknown sources are

.91 (t) = sawtooth(21rt) and 32(t) = square(47rt)
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Update the parameter c13 and d12 while keeping all other parameters fixed
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c13=-4.715
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Figure 6.41. Update only one parameter of each matrix: update the parameters on

and d12 with 17 = 20, 7 = 0.2 and (c130, duo) = (0.8ci‘3, (11,). The unknown sources

are 31(t) = sawtooth(21rt) and 32(t) = square(41rt)
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Update the parameter 013 and d12 while keeping all other parameters fixed

   

 

C13 = -4.509
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Figure 6.42. Update only one parameter of each matrix: update the parameters cm

and d12 with 17 = 20, 7 = 0.2 and (c130, duo) = (cia, 0.0). The unknown sources are

31 (t) = sawtooth(21rt) and 32(t) = square(41rt)
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Update the parameter c13 and d12 while keeping all other parameters fixed

  
C13 = -4.583

  

 
 

_4

_5 '4 1 1 1 1 1 1 1 4 1

0 1 0 20 3O 4O 50 60 70 80 90 1 00

time (sec)

0.8 l-

 
 

 

Figure 6.43. Update only one parameter of each matrix: update the parameters cm

and d12 with n = 40, 7 = 0.2 and (013°, duo) = (cis, 0.0). The unknown sources are

.91 (t) = sawtooth(27rt) and 32(t) = square(41rt)
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Phase Plot of two parameters convergence
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d12

Figure 6.44. Update only one parameter of each matrix: update the parameters cm,

and (112 with 1] = 40, 7 = 0.2 and (c130, (1120) = (ch, 0.0). The unknown sources are

.91 (t) = sawtooth(27rt) and 32(t) = square(47rt)
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Figure 6.45. Update all parameters of each matrix. Co = 0.80‘ and D0 = D‘, 1] =

[103 10 102 10] , 7 = 0.2 and T = 500 The unknown sources are 31(t) = sawtooth(21rt)

and 32(t) = square(47rt)
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c12 c13
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Figure 6.46. Update all parameters of each matrix. Co = 0.8C" and D0 = D‘,

17 = [103 10 104 102], 7 = 0.2 and T = 500. The unknown sources are 31(t) =

sawtooth(27rt) and 32(t) = square(4xt)
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0 500 1000 0 500 1000

time (sec) time (sec)

Figure 6.47. Update all parameters of each matrix. Co = 0.8C‘ and D0 = D‘,

r] = [103 10 104 102], 7 = 0.2 and T = 1000. The unknown sources are 31(t) =

sawtooth(27rt) and 32(t) = square(41rt)
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Figure 6.48. Update all parameters of each matrix. Co = 080" and D0 = 0,

r} = [103 10 10‘ 102], 7 = 0.2 and T = 1000. The unknown sources are

.31 (t) = sawtooth(21rt) and 32(t) = square(41rt)
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6.6 Time and Weight Scaling

It has been observed that the algorithm fails to converge when the parameters of

the C matrix are too large. This is not a limitation of the algorithm, but rather a

limitation of the computer implementation. Thus, a scaling down of these parameters

is proposed in order to make them equal in order of magnitude and in a range that

is acceptable for digital hardware implementation.

6.6.1 Mathematical Development

Given a single input-single output dynamical system described by its transfer function

313"-1 + 32311—2 + ' - ' + ,Bn-ls + 5n

3" + 013"“ + 02.9"—2 + - - - + art-13 + an

 H(s)= +d

Consider its canonical controllable realization D = (A,b, CT,d). Such realization

was presented in Chapter 5 to be of the form

    

- 0 1 0 0 . P0-

0 0 1 0 0

x = x+ u

0 0 0 0 1 0

_—a,, —a1_ 1‘
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Figure 6.49. Update all parameters of each matrix. Co = 0.8C‘ and D0 = 0,

17 = [1000 10 100 10], 7 = 0.2 and T = 10000. The unknown sources are

31 (t) = sawtooth(27rt) and 32(t) = square(47rt)
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0 5000 10000 0 5000 10000

time (see) time (see)

Figure 6.50. Update all parameters of each matrix. Co = 0.80“ and D0 = 0,

17 = [1000 10 500 10], 7 = 0.2 and T = 10000. The unknown sources are

31(t) = sawtooth(21rt) and 32(t) = square(41rt)
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Figure 6.51. Update all parameters of each matrix. Co = 0.8C’ and D0 = 0,

17 = [200 10 200 10], 7 = 0.2 and T = 10000. The unknown sources are

31 (t) = sawtooth(21rt) and 32(t) = square(41rt)
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Figure 6.52. Unknown sources, environment output and Network output at initial

time t = 0. Co = 0.80" and D0 = 0, 17 = [200 10 200 10], 7 = 0.2 and T = 10000.

The unknown sources are 31(t) = sawtooth(27rt) and 32(t) = square(41rt)
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Figure 6.53. Unknown sources, environment output and Network output at final time

t = T. Co = 0.80‘ and D0 = 0, r] = [200 10 200 10], 7 = 0.2 and T = 10000. The

unknown sources are 31(t) = sawtooth(27rt) and 32(t) = square(41rt)
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Figure 6.54. Test case: Unknown sources, environment output and Network output

at final timet = T. Co = 0.80“ and D0 = 0, 17 = [200 10 200 10], 7 = 0.2 and

T = 10000. The unknown sources are .31 (t) = sin(21rt) and 82(t) = sawtooth(41rt)
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The diagonal transformation TM is defined as

 

e"'1+ 0 0

0 0 0

TM = N 0 6"". 0

0 0 0

0 0 0 1

Under the transformation T“, the new

~

system is D = (l1, b, ET, (1), defined as

 

0 e 0

0 0 e

A — TMATJ,‘l =

0 0 0

_an

6T = CTTJKI = [ 8n Bra—1

Where

a.- = (ml-i, W = 1, ,n

and

16.}: flie- ,Vi=1,---,n
 

q

 
realization of H(s) in the new coordinate

   

o C '0-

o o

13:1},sz

0 6 0

-&l .n.

3, 3,] J=d

One observes that under such transformation, the coefficients of

~

0 A and 2': are both inversely proportional to some power of e,
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o the nonzero parameter of f) is proportional to I: while those of C are inversely

proportional to n,

0 the parameters of d are independent of c and n,

0 the parameters of 14 are independent of 10.

Using this transformation, one could scale the parameters that are to be updated up

or down in order to make their numerical computation possible by digital machines.

The scaling is achieved by the appropriate choice of e and depends on the application

for which the problem is being set. For example, the parameters can be scaled down

by choosing a value for 6 less than 1. Thus, there is no optimum value of c that can

be used for all possible environments. However, one should have some knowledge of

the desired environment and use that information to select the appropriate value of

6. Such information could be based on the frequency bandwidth of the environment.

In the following example, it will be shown how the choice of 6 can be considered. K.

can be considered as a normalizing coefficient for the parameters of 6.

6.6.2 Example

The following example illustrates the necessity of scaling in order to make the digital

implementation of the algorithm possible. Given the transfer function

(3 + 100)(3 + 200)

(3 + 1000)(s + 2000)(s + 3000) + 0‘6
 

H(S)

or in an expanded form

_ 32+3x1023+2x104 +06

" 33+6x10332+11x106s+6x109 -’
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The realization of H(s) is

0 1 0

0 0 1

  —6 x109 —11x106 —6 x103

[2x104 3x1021]

  

0

b 0

1

d=0.6

However, by considering the transformation TM with c = 103 and I: = 1, H(s) can

be realized by

i
n

0 103 0

0 0 103

  —6 x103 -11x103 -6 x103 J
L.

[0.02 0.3 1]
0
‘
1

(
3

  

J=0.6

and by considering the transformation TM with e = 102 and K. = l, H(s) can be

realized by

a
n

0 102 0

0 0 102

 h

[.3.]

 —6 x105 —11x10“ —6 x103

5
"
:

O

  

One may conclude that in order to scale the parameters of the matrix 6, one should

choose 6 on the order of the zeros. Whereas 6 should be on the order of the poles of

the transfer function if one wishes to scale the parameters of the matrix A. While 6

accomplishes the time scaling task, it performs magnitude scaling. By taking a value
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for 1: different than 1, one could increase (decrease) the parameters of the E (5) vector

and vice versa.

6.7 Observations

In this chapter, a solution to the blind separation of signals in dynamical network

model was developed. The network parameters of the proposed feedback structure,

with the update law as defined by Theorem 2, has shown to converge to the desired

values. In addition, other update laws based on neuromemitic approach were consid-

ered in order to provide a comparative performance between the developed algorithm

and the existing ones in the literature. Thanks to the special structure of the state

space realization of the network model, an update law of the C matrix based on the

decorrelation between the output vector and the state vector was developed. Also,

such a representation of the network model is suitable for circuit implementation

which will be presented in the following chapter.



CHAPTER 7

Micro-electronic Implementation

7.1 CMOS Building Blocks

7.1 .1 Transistor

The transistor represents the basic building block of a circuit. Designers must have a

good understanding of its functionality in order to produce any circuit. Models which

accurately define the characteristics of the transistor can be extremely complex and

not at all possible for manual calculation. On the other hand, if a computer is

employed to handle such a complex model, circuit design can become simple enough

to model it.

The general expression for the drain-to-source current of a transistor operation in

a sub-threshold region is given below

14, = 10 cw“ (e‘v‘ — 6"“)

At saturation, the drain voltage Vd is much higher than the gate voltage V}. Therefore,

the above expression of drain-to-source current at saturation is

Ida = 10 envy—V,

211
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7.1.2 Current mirror

In circuit design, it is often necessary to have a copy of a current to perform different

operations on that particular current. Thus, a circuit that provides a replica of a

current is needed. The circuit shown in Figure 7.1 performs such a function. Both

n-channel and p—channel current mirrors are shown.

 

 

(a) (b)

Figure 7.1. Current Mirror (a) n-channel, (b) p-channel

7.1.3 Transconductance Amplifier

Figure 7.2(a) represents the circuit diagram of a transconductance amplifier. The

circuit will exhibit a sigmoidal function of the differential voltage V1 and V2 presented

at the gates of the transistors M1 and M2 , respectively. The circuit is being driven

by a biasing current 11, which is controlled by the voltage Vb applied to the transistor

Mb.

1.... = I. tanh g—(V. — v2) (7.1)



213

where

[0 = 1010 eKVb
(7.2)

w is the width to length ratio of the biasing transistor Mb. For small-signal analysis

the current-voltage relationship of a transconductance amplifier described by equation

(7.1) is simply

Iout = ng/r (7.3)

where V,-,, = V1 - V2 and gm is the transconductance defined as

_ 610111 16

9m - av... 'Vm=° = 507023 (7“)

It is important that the transconductance depends on the biasing voltage Vb. This pa-

  

 
(a) Original Transconductance Amplifier (b) Improved Transconductance Amplifier

Figure 7.2. Transconductance Design
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rameter will be the key to adjusting the behavior of circuits that include the transcon-

ductance amplifiers as will be shown in the next section. In [69], the author proposed

an improved design of the transconductance amplifier as shown in Figure 7.2(b). This

design enables the transconductance amplifier to increase its dynamic range. Circuit

simulations of this design are shown in Figure 7.3. Figure 7.3(a) shows the output

current of the transconductance amplifier for different width to length ratios of the

biasing transistor Mb, while Figure 7.3(b) shows the same response of the amplifier

for different biasing voltages V2,.

m.1111. um1.1m-

  

      
(a) % = 2, 3, 4, 5, 8 (b) Vb =. 625, 250, 675, 700, 725mV

Figure 7.3. PSPICE simulation of a transconductance amplifier

7.1.4 Hyperbolic Sine Function

A circuit that exhibits the sine hyperbolic function is shown in Figure 7.4. In [48], it
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Figure 7.4. Circuit Realization of tan and sine hyperbolic functions

was derived that the output current of this circuit can be expressed as

[out = 2one"(V"'6V) sinh 10V

where V1, is the biasing voltage. A PSPICE simulation of the circuit is shown in Figure

7.5

7.1.5 Gilbert Multiplier

A circuit that produces the product of two voltages is needed in order to perform

the implementation of algorithms that involves such an operation. In [70], the author

presented the 1-dimensional multiplier as shown in Figure 7.6. It is now known in

literature as the Gilbert multiplier. The output current of this circuit is

1: x

101“: I], tanh 5(I/1 — I/g) tanh '2-(I/3 -' I4) (7.5)

For small-signal analysis, the current described by equation (7.5) can be expressed as

10111 0< 11(V1 - V2)(V3 - V11) (7.6)
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11

Figure 7.5. PSPICE simulation of the sine hyperbolic circuit for different biasing

voltages Vb

PSPICE simulation of the circuit for various biasing voltages is presented in Figure

7.7. Observe the linear range for which the current is linear. It is desirable that one

defines the range of operation to be within that linear range.

7.1 .6 Vector Multipliers

Using the design of a single dimensional Gilbert multiplier, one may design the multi-

dimensional multiplier. Such a design is shown in the Figure 7.8easily. In this case,

the output current is

1..., = Ithanh g(x, — tad) tanh 125(11- — V..,) (7.7)

For small-signal analysis, the current expressed by equation (7.7) is approximated by

1out 0( IbH(Xi - ‘40fo - I/ref) (7-8)
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Figure 7.6. l-dimensional Gilbert multiplier

mm- 1.. am»: 01:11.10 " I m. 11.-

my 

 

 

  
Figure 7.7. PSPICE simulation of of Modified Gilbert Multiplier using different bi-

asing voltages
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Thus, this circuit realizes the dot product of two n-dimensional vectors X and Y and

gives such a value as a current. If one wishes to convert such a quantity to a voltage,

then s/he can utilize the linear resistors to do so.

 1%.

 
 

 

 

L
i

.
.

y
i

i"

 
 

 
   

  

Figure 7.8. n-dimensional Gilbert multiplier

7.1.7 Current to Voltage Converter

All the basic analog components that have been presented so far produce a current

output function. If one wishes to convert the current quantity to a voltage quantity,

he or she can rely on the linear resistors. Linear resistor can be used to realize the

Conversion of a current to a voltage. A circuit realization of such a block is shown in

Figure 7.9.
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out

Figure 7.9. Current to Voltage Converter

7.1.8 Second Order Section

The second order section is a circuit that can be used to generate a response that

Can be represented by two poles in the complex plane. By adjusting its parameters,

one can position the locations of these poles anywhere in the complex plane. A

realization of such a circuit was presented by Mead in [71] and is shown in Figure

7.10. By performing a small-signal analysis, one can derive the transfer function of

such a circuit.

The transconductance amplifier A2 is a follower integrator and is described by the

following equation

02132 2 92(02 —' 01) (7.9)

At the node (1), the current generated by the transconductance amplifiers A1 and A3
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' A. v,
+

u

V...

2: CI

Figure 7.10. Second Order Section Circuit

will charge or discharge the capacitor C1

C1131 = g1(u — v1)+ 93(01— 02) (7.10)

By taking the Laplace transform of equations (7.9) and (7.10)

3021/2 = 92(1/2 — 1/1) (7.11)

sC'lVl = 91(U - V1) + 93(V1- V2) (7-12)

and combining these two equations, the following relationship relating the output V2
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to the input 11 can be obtained

 

 

 

 

Xe. = 9.
U (301 + 91 — 93)(1+ 372) + g3

_ 91

— 720182 + (C1 + 7291 — 72908 + 91

l
=

7.13

1372.32 + (7'1 + 1'2)(1 — a)s +1 ( )

where

01‘T, = __ 7.14g.- ( )

and

a = TI 33 (7.15)
7’1 + 7'2 .91

In [71], the authors concentrated their analysis on the case when C1 = C2 = C. In

this particular case, the expression for a in (7.15) is, therefore, reduced to

“=gfg gm)
1 2

 

and the transfer function described by (7.13) is expressed as

V; 1

U - 7232 + 27(1- a)s +1 (7.17)

 

Figure 7.11 shows the frequency response of the second order section for different

values of a.

Based on the small-signal analysis, the second order section is stable for any a

satisfying 0 < a < 1. Also, in the case where a = 1, the poles are purely imaginary

and the circuit is unstable. However, a large-signal analysis for the circuit developed

experimentally by Watts [69] shows that the second order section can be unstable
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Figure 7.11. PSPICE Simulations of Second Order Section for V1,, =

625, 650, 675, 700, 725mV

within the specified range of stability based on the small-signal analysis. It was

proven that this nonlinear circuit exhibits some instabilities. Therefore, an improved

design of the second order section was developed based on the improved design of the

transconductance amplifier that is shown in Figure 7.2(b).

7.1.9 Second Order Filter Design

The design of the second order section developed by Mead and Watts birthed the

inspiration to develop the circuit realization of the state equation for the canonical

controllable state representation of a dynamical system. To start, a circuit realization

for a 2-dimensional system using the second order section will be developed. Then, the

development of the circuit realization for higher dimensions will be straight forward.

The second order section uses the transconductance amplifier A1 as an integrator

follower and thus it realizes a low pass filter. However, here a pure integrator for A1

will be implemented. Therefore, Al was modified to produce a pure integrator circuit



 

 

‘
1
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instead.

7.1.10 Circuit Implementation of Second Order Filter

Consider the second order filter described by the transfer function

  

H(s) = :8) = 52 + ablls + (1; (7.18)

The canonical controllable state representation of H(s) is

231 = :02 (7.19)

:02 = —a2x1 — (11172 + 0111 (7.20)

and the output equation is

y = 2:1 (7.21)

It will be shown that a circuit realization of the filter described by equation (7.18) is

shown in Figure 7.12. A1 is a pure integrator. Therefore

01131 = 91(01 - Vrcf) (7.22)

At node (2), Kirchoff’s current law suggests that

02132 = 92(0 — '02) + 9304.; " ”1) . (7-23)

Let 2; = v.- - V"; and 0 = u — ‘43". Therefore, equations (7.22) and (7.22) become

012.1 = 9122

0252 = 92(11 - 22) - 9321)
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Figure 7.12. Filter Design. Circuit realization of controllable canonical form of a

second order filter

which give us the generalized canonical controllable realization defined by

a, = 3122 (7.24)

2. = was — £122. + £12 (7.25)

The canonical controllable realization is obtained by using the transformation T9,,

1

defined by :01 = 21 and 2:2 = fizz. Therefore

271 = 1132 (7.26)

1 1 l

232 = ———$1 — —$2 + —‘II (7.27)

T173 T2 T172

where

Cl C: 02

T] = — T2 = — T3 = —

91 92 93
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Equations (7.26) and (7.27) describe the canonical controllable of (7.18) where

1 1 1

02 = — a] = — bl = _—

T1T3 T2 717'3

It is important to note that the developed second order filter described by equation

(7.25) is always stable since the coefficients a1 and a; are positive. In circuit imple—

mentation, it is often assumed that all the capacitors C,- are equal to C, which is in

the order of a few pico Fayrads. The characteristics of the second order filter, i.e. its

pole locations and gain, are controlled by the biasing voltages of the transconductance

amplifiers shown in Figure 7.12. Figure 7.13 shows the transistor level design of the

filter. PSPICE simulations of this circuit were performed. Figures 7.14(a) and 7.l4(b)

show the frequency response of the filter for various biasing voltages of transconduc-

tance A2 and A3, respectively. Observe how changing V1,, and V1,, impacts the gain

as well as the pole locations of the filter. Having developed the circuit realization of

a second order filter, that of an n-dimensional filter becomes straight forward as it is

shown in the next section.

7.1.11 Circuit Realization for n-dimensional Filter

Figure 7.15 represents the circuit realization of an n-dimensional filter described by

the equation

_ Y(8) _ b1

- U(s) — s" + ale"-l + - - - + ands + an

  H(s) (7.28)

By looking at Figure 7.15, A,- is a pure integrator. Therefore,

0.13; = 91(vi+1 - Vrcf) (7.29)
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Figure 7.13. Filter Design. Circuit realization of controllable canonical form of a

second order filter

mm 1-1 10mm 11.11.31 W‘ 11.0 with rw imam 11.11.11 m ”I

my _v0"
  

 

 

 

  
  

(a) Vb, = 650, 675, 700, 725mV (b) Vb, = 650, 675, 700, 725mV

Figure 7.14. PSPICE Simulations of second order filter
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At node (vn), Kirchoff’s current law suggests that

n-l

Cnén = Z 550/”; - v.) + gn(u - vn) (7.30)

i=1

Let 2.- = v,- — 14,; and i1 = u — va. Therefore. equations (7.29) and (7.30) become

 

 

 

 

 

 

 

  

  

A.‘

‘7»

__EF"
1 A."

‘7.

_31"
1 A:
’ _-

- vbl

A.

u .. V +A, ._.. .. --

v _l - v,. v. ’
'- L. c v. == C» v __ c. V

H

-r- 1,—
.

' =4,—

Figure 7.15. Filter Design, Circuit realization of a controllable canonical form of a

n“ order filter

Cd; = gg25+1 i=1,---,n—1

n-l

Cnén = — Z 3523 + git“; — 2")

i=1
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which gives us the generalized canonical controllable realization defined by

i,- = %z,~+1 i=1,---,n—1 (7.31)

2,, — —%zl—...—g—gizn_l—-.-—%—"—zn+%’ia (7.32)

Based on the developed small-signal analysis, one can use the Routh Hurwitz criteria

to design the necessary parameters to obtain a stable filter.

Define T.- = 1'} f.- = 11, Vi = 1,--- n -1 and in = Tn. Therefore e uationsC.’ C" a , q

(7.31) and (7.32) become

2.; = T;Z,'+1 2: 1,° H ,n —1 (7.33)

£7; = —7_-121 _ ° ° ° — fn-lZn-l — ° ° ° — fnZn + Tna (7.34)

In matrix form

 

Azennxn
b36Rn

:- II rp 1i - n I- d

2.1 0 T1 0 ' ' ' 0 21 0

:22 O 0 12 . - - 0 22 0

= + 11

if 0 0 0 0 Tn...1 Z.‘ 0

in .4 "fl ' ' ' ' ' ' —fn—l -731 Zn Tn        
Define the transformation T as

  

’1 0 0 i

0 0 0

T: i 0 $2113- 0

0 0 0

_0 0 0 11;:qu
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Therefore

r

0 1 0 0 l 0

O 0 1 0 0

A=TA,T“= 5 5 b=sz=

0 0 0 0 1 0

—a.. -a1 b1

where

75111.7. "-1

ai=71n—i+1'—,.J:‘i——f=7‘n-i+1 H “G

j=n—i J ‘ j=n—i+l

and

71—1 11

b1 =7'n H73: H13

j=l j=l

7.2 Circuit Realization

Having introduced the library of basic building blOcks for analog CMOS implemen-

tations, it is possible to develop a circuit realization of the network and the update

laws.

7.2.1 Implementation of the output equation

The output equation

31; = 8i - 63X; - dgTy (7.35)

is simplified to

y; = e.- - étTi. - 3T5! (7.36)
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where z.- is a vector having one dimension less than 2 and is obtained by eliminating

the 2"” component of 2. For the algorithm development, equation (7.35) was used

rather than (7.36) in order to create a matching in the dimensions for clarity. It

should be recalled that m.- = 0, C.'.' = 0 and d,-.- = 0. Equation (7.36) is realized by

using a transconductance amplifier to convert the input voltage e.- into a current. In

addition, two multi-dimensional vector multipliers are used to compute the product

6,732.- and dTS'. The currents coming out of the vector multipliers are subtracted from

that of the transconductance amplifier to obtain the y.- in current form. Then, a linear

resistor is used to convert the current into a voltage. Figure 7.16 shows the schematic

of circuit realization.

 ._, c-jyfli
 

 

 

     

c: X ’ [1]—W-

d.

9 X

 
Figure 7.16. Circuit Realization of the output equation
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7.2.2 Implementation of the state equation

The state equation is described by the transfer function

II r q |- -I P q

        

233;) o 1 0 0 35,1.) 0

if? 0 0 1 0 .53) 0

= i E E + E u,(7.37)

233“?“ 0 0 0 0 1 mfg-“1"“ 0

55:0) . __aff-‘fl _ag)‘ . 1390') ‘ _flij‘

The circuit implementation of this transfer function was completed in the previous

section. Figure 7.15 shows the schematic for a filter of order n. Thus, to implement

the equation (7.37) one needs to designs a pgjth order filter. In this case

I: Any-1

(151') = ij..k+1 H T] (7.38)

l=u5j-k+l

and

I‘ij

fiij = H T]
(7'39)

(=1

7.2.3 Implementation of the C update equation

The update law of the parameters of the C matrix is described by

(EV-c) = nff’ygxli) ' Vj 75 2' and k = 1, ~ - - , p,,- (7.40)
’J ‘1

Equation (7.40) is implemented using a 1-dimensional gilbert multiplier. The output

current of the multiplier is dumped to a capacitor Cg“) as shown in Figure 7.17. In

this case

(1‘) _ V ._ V

(1.) tanthtanhxgi—"L (7.41)

I:

.(l‘) 'l") =C c I 2 2
t1 31' b
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Therefore

éif) = 773:) (935:) - Vrcf) (yi - Vrcf) (7-42)

where

(’F) = 155;) (fi)2”'1 0;) 2kT

 (7.43)

Thus, the leaning rate of such parameter is controlled the bias voltage of the multi-

plier, VCon

0

 

  
 

 

V...

Xk —.. k
I X C.

Y: ——-I

vc‘,

 

Figure 7.17. Circuit Realization the update equation of the C matrix parameters

7.2.4 Implementation of the D update equation

The update law of the parameters of the C matrix is described by

(£3 = 751' sinh y,- tanh yj Vj 7Q i (7.44)

Equation (7.44) is implemented using the sine hyperbolic circuit and the transcon-

ductance amplifier that were described in the previous section. Figure 7.18 shows the
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circuit implementation. The algebraic sum of all the current at the (+) node of the

capacitor 0.3 is

sinh K

Iout = Iout tanh g(yj _ Vrc'f) (7'45)

where

I”M = 2one"(V"+6V) sinh x(y; — an) (7.46)
out

The current described by equation (7.45) is dumped to the capacitor C5,. Therefore,

when equations (7.45) and (7.46) are combined together, one obtains

 

d..- = ‘m sinh x(y. - v...) tanh g(y. — v...) (7.47)

where

2w] eK(VDb.-j+6V)

70' = o 0..
(7.48)

It is important to observe the parameters that the the learning rate 7.3 depends

on. They are the biasing voltage VDbU; the ratio of width of the biasing transistor

to the width of the arm transistors w; and the offset voltage 6V. In the circuit

implementation, all these parameters will be held constant except the bias gate voltage

VD],w which will control the learning rate of the parameter dij.

7.3 Circuit Simulation

In this section, the circuit simulation of a 2 x 2 network is performed using the circuit

simulator PSPICE. The block diagram of the overall circuit including network and

learning is shown in Figure 7.19.



 

 

 

     

    
   

V.

Figure 7.18. Circuit Realization of tan and sine hyperbolic functions

The unknown signals are two sine waveforms with respective frequencies 1kHz

and 2kHz as shown in Figure 7.20. These two signals are filtered and mixed in order

to obtain the signals e1 (t) and 82(t) which are the output signals of the environment as

presented in Figure 7.21. The transfer functions Hub) and 1.1721(3), shown in Figure

7.21, are two second order filters whose state and output equations are respectively

defined by equations (7.37) and (7.35), with the exception that d5,- = l in this case.

ii: = A.,-x.~,-+3.~,u,- (7-49)

e, = Eng5j + u.- + Jgj‘uj (7.50)

The circuit implementation of equation (7.49) is shown in Figure 7.15. However, the

circuit implementation of equation (7.50) is obtained in a similar fashion as that of

the output equation of the network model described by equation (7.35) whose circuit

implementation is shown in Figure 7.16.

The parameters of the matrix 1,-1- are defined by the biasing voltages of the

transconductance amplifiers and the capacitors shown in Figure 7.15. The parameters

of the column vector 6.3 and the parameter 3;, are defined by the voltages at the cor-
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Figure 7.19. Block diagram of overall circuit including network and learning
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Figure 7.21. Environment Circuit Model
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Table 7.1. Parameters of the Environment Circuit Realization

 

 

 

   
 

 

 

 

[ A12 I A21 1

V,1 0.69V v; 0.69V

V,2 0.69V V,2 0.69V

V3 0.71V V3 0.71v

Cl 5pF Cl 4pF

Cg 5pF Cg 4pF

; 512 521

V5,, 2.60V V5,, 2.65V

V5,, 2.40v V5,, 2.45v

d1 d2

VJ“ 2.70V 14,-” 2.56V

VJ” 2.54v VJ” 2.70V      

responding gates of the transistor at the positive arm of the gilbert multiplier. Table

7.3 shows all these parameters. A PSPICE simulation of the frequency response of

the filters 312(3) and {121(3) was conducted. The results of this simulation are shown

in Figure 7.22. Observe that the cutoff frequencies of the filters H12 and H21 are

within the 1kHz and the 5kHz range, which is the operating frequency range. The

transient response of these filters is shown in Figure 7.23 where the input signals are

the two sine waveforms shown in Figure 7.20.

The output of the environment is fed to the transconductance amplifier as shown

in Figure 7.16. Unlike the environment circuit model whose parameters (3.-j and d,-

are constant and are defined in Table 7.3, the parameters (3.-,- and d,- of the network

model are controlled by the ‘ time-varying charges, accross the capacitors shown in

figures 7.17 and 7.18, defined by equations (7.42) and (7.47). The initial voltages

across these capacitors are shown in Table 7.3. Figure 7.24 shows the results of
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Figure 7.22. Frequency Response of the Environment Circuit Realization
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Figure 7.23. Transient Response of The Environment Circuit Realization

the network performance for the first 50msec. Observe that all the parameters have

converged to the values as shown in Table 7.3. By fixing the parameters of the network

to these final values, the network reproduced the original signals as shown in Figure

7.25. The transistor PSPICE model and the PSPICE source code used to simulate

the developed circuit implementation is given in Appendix D.

In this chapter, a subthreshold circuit implementation of the dynamic feedback

network and the learning algorithm was developed. The performance analysis of

circuit realization was conducted using two prototype signals as the unknown sources.

It was observed that the network parameters converge to a separating solution and

thus recover the original unknown sources.
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Table 7.2. Parameters of the Environment Circuit Realization

 

 

 

 

 

 

 

Parameter Initial Final

d12 1.0V 4.80V

d21 4.0V 4.80V

€11 1.0V 2.31V

cm 4.0V 2.20V

€21 1.0V 2.73V

€22 4.0V 2.36V     
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Figure 7.24. Parameters’ Convergence of the Network Circuit Realization
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Figure 7.25. Output of the Network Circuit Realization at Convergence



CHAPTER 8

Conclusion

In this work, a novel algorithm for the blind separation of signals in static environment

based on the decorrelation condition of the output signals was developed. It was then

improved to test for independence. An energy function for the problem based on

the minimization of the mutual information functional was also developed. A fourth

order Edgeworth expansion was used in order to find an approximate expression of

the probability density function. The new energy function considered a larger set

of signals as compared to the existing energy function, since the assumption of unit

variance of the output was not considered. Also, the energy function represented a

better estimate of the mutual information functional.

A mathematical framework for the development of update laws for the network

parameters based on the theory of adaptive optimal control theory was also developed.

A realization of the environment that represents the least number of parameters was

also introduced. A forward and an feedback structure were considered to model the

environment and hence the network. Computer simulations showed that the update

of the parameters of the matrix D converge for both structures. However, successful

learning of the C matrix was realized only for the feedback structure. The coupling of

both learning rules was eliminated by considering a sequential update method. Basic

building blocks for the circuit implementation of an algorithm in the dynamic feedback

242
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network model were developed. Overall circuit implementation of the algorithm was

also developed and tested for prototype waveforms.



APPENDICES



APPENDIX A

Definitions

A.1 Statistical Definitions

Definition 4 (Entropy) Entropy is a measure of uncertainty of the occurrence of

an event in an ensemble of experiments described by the random variable (rv) x [72].

It is defined as:

H(X) = -E{1n fx(X)}

where fx(x) is the probability density function (pdf) of the rv x.

Definition 5 (Joint Entropy) The joint entropy of two random variables x and y

is [72]:

H(X.y) = -E{lnfxy(X.y)}

where fxy(x,y) is the joint pdf of the rv’s x and y

Definition 6 (Mutual Information) The mutual information among the compo-

nents of a random vector x is defined as [72]:

'_ n fX(x)
I(x)—E{l ___lli“(x0 (A.1)

244



245 .

In the above definitions, E{} denotes the expected value and is defined as:

Definition 7 (Expected Value) The expected value of a function of an rv x is

defined as [72]:

was)}= [_°° g((x)f.xdx)

Definition 8 (Conditional Probability Denesity)

f(X.y) = f(XIy)f(y) = f(yIX)f(X)

Proposition 1 (Properties of Entropy)

P1 H(x) Z 0

P2 H(XJ) = H(X) + H(yIX) = I160+ H(XIy)

P3 H(X.Y)SH(X)+H(y)

P4 H(XIY) S 1100

P5 H(x1,x2,-~ ,xn) = H(x1)+ H(x2lx1)

+H(x3|x2,x1) + - - - + H(xnlxn-1, - - - ,xl)

P6 H(x1,x2,-~,x,,) S H(x1)+ H(xz) +--- +H(x,,)

P7 Equality in P6 will hold if x; ’s are statistically independent.

Proof of P7

In this case, by the definition of statistical independence, one has fx(x) 2 1'1,- f,;,(x,-)

"Eiln fx(X)}

= ”Eilanx.(xi)l

= ‘ZEilnfx.(xi)}

H(xlix2i ' ' ' ix")
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= ZH(X.‘)

A.2 Matrix Notations

Definition 9 A permutation matrix is a square matrix whose rows and columns con-

tain only one nonzero entry that is equal to 1.

Definition 10 A generalized permutation matrix is a square matrix whose rows and

columns contain only one nonzero entry.



APPENDIX B

Proofs

B.1 Proof of Theorem 3.5

The proof of this theorem is conducted by induction. However, the following theorem

is needed.

Theorem 3 Let A be a positive definite n X n matrix, and B be the (n +1) x (n +1)

matrix

Then

(i) [B] S alAl, with equality if and only ifb = 0;

(ii) B is positive definite if and only if IBI > 0

Proof of theorem 3:

Define the (n + 1) x (n + 1) matrix

1,. —A-1b

0T 1

247
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Then

T 0

P BP =

0T 0 — bTA‘lb

so that

[B] = IPTBPI = IAI I (a — bTA'lb)

A is positive definite. Then, A‘1 is positive definite. Therefore, bTA‘lb > 0,Vb.

Consequently, we prove (i). To prove (ii), we observe that |B| > 0 if and only if

a -— bTA'lb > 0, which is the case if and only if PTBP is positive definite. Since P

is positive definite, so is B. D

Proof of theorem 1:

As stated earlier, the proof will be conducted by induction. If M is a positive scalar,

then equation (3.5) is always true. Now, we will assume that the equation (3.5) true

for matrix M of rank 12. Theorem 3 shows that equation (3.5) is also true for (n + 1).

Cl

B.2 CMOS Circuit Function Derivation

Derivation of The 'h'ansconductance Amplifier Function

Figure 7.2(a) represents the circuit diagram of a transconductance amplifier. The

circuit will exhibit a sigmoidal function of the differential voltage V1 and V2 presented

at the gates of the transistors M1 and M2, respectively. The circuit is being driven

by a biasing current 15 which is controlled by the voltage Vb applied to the transistor

Mb. Using KCL at node (1), we have:

11+12=Ib
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where

I] = 10 eKVI—VI

12 = Io enV2—V,

15 = on e‘V" (l — e’V’)

Solving for e'V‘ to obtain:

V w eKVb

 

Substituting the above expression in the expressions of currents 11 and 12, one obtains:

 

V

e" 1
_ "Vb

NV:

V, e
 12 = on e"
85V] +enV2 +108an

To acquire the difference of the two currents, a current mirror circuit is employed.

The current mirror circuit produces a replica of the current 11 flowing through M4.

Thus,

10.: = 11 - 12

KV1 RV;

C ‘- C

 

= 21210 e‘v"

Multiply numerator and denominator by e"(V1+V2)/2

eIt(V1 -V2)/2 _ e-K(V1-V2)/2

en(Vl-Vg)/2 + ‘3'”‘(VI-Vzl/2 + weK(Vb-(V1+V2)/2)

Vb
 

Iout = on 6"

However,

V1+V2

2

 

Vb<<
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Therefore,

eK(V1-V2)/2 _ e-K(V1-V2)/2

Iout = on er: b

e"(Vi-V2)/2 + 3"‘(V1-Vzl/2

which is

[out = on e‘V" tanhn(V1 — V2)/2

Derivation of Hyperbolic Sine Function

A circuit that exhibits the sine hyperbolic function is shown in figure 7.4. The output

current is expressed as

[out = 1+ - I“

where

I+ = h(V,6V) and 1+ = h(—6V, V)

Now, it is desired to deternime the function h(V1, V2).

11 = IoC‘VI-V’

[2 = Ioean-V,

1;, = one"V’(l — ev’)

Using KCL at node V,,:

h+h=h+Ah
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Substituting for all expressions and solve for e'v’ to obtain:

KVb

—v, w e

= (1 — A)e"V1 + e""2 + w eKVb

 

6

Therefore with unity feedback (A = 1):

KV1

8Vb e

65V; + w 65V),

 

I} = 1.0108

Multiplying numerator and denominator by e"V2 to obtain:

x(V1 —V2)

KVb e
 

11 = 1.0106 1+ w eK(Vb"’V2)

However, Vb << V2. Thus, e"(V°’V’) << 1. Consequently,

I = h(Vla V2) = 11 = one‘V" e"(V“V’)

Coming back to find the output current of figure 7.4:

I... h(V,6V) — h(—6V, V)

one

..v, [adv-(W) _ e..(—asv-V)]

x(Vb—JV) [65V _ -..v]
= one e

= 2one"(V°‘6V) sinth
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Matlab

C.1 Derivation of fa

Consider the assumption that the output signals have zero mean.

cumulants are expressed as follows:

N2i = #2.‘=E[yil

Kai = flair-Elyil

N4; = #4.‘ - 31“; = Ell/fl “ 3Elyil2

Express the approximation of the entropy as

2881n 21r — 288K2,‘ - 48kg,- — 12x3,- + 12%,...-
 

 

 

"‘ = 576

+1216}, — 17045;"; — 496mg, — 213x;-

576

Compute

91- _ 2a
K2; _ 576

a _ _96531' + 2453;54" '— 3408fl3if€3i "" 1984,03,:

K3.‘ — 576

252

Therefore, the



253

8H,- —24I€4i + 12mg,- + 36K},- — 3408K§i54g — 85253,-
 

541 576

Compute also

8’62; 6 6

  

   

— ' = — .2 = . .

awij — 8212,,- [II 2’] 6w,,- Ell/J EDI/.173]

5K3. __ a -__ a 3 __ 2 '

6ng — awij [#3'] _ ngjEiyi] _ EBB/,- $1]

3541‘ a
 

_. _ __ 2. = 3 . - - . .

5.0,]. - awijlu. 3112.] E[4y,x,] 12,12,3W1]

C.2 Matlab Source Code

XXZ221%!XXZXZXZXXZZZZXZZXXXZZZXXZXXZZX

function F 8 func(unit-var,order);

2%XXXx121222XX%%%%%%%%%%ZZZZXXXZXXXXXZ

if unit-var '3 1

k3-[O 1 o o 01’;

k4 . [1 o o o -3]’;

p3 - [o o 3 o -3]’;

p4 - [o 4 o —12 01’;

else

k3 - [o 1 o o 01’;

k4 - [1 o o o -3]’;

p3 - [o o 3 o 01’;

p4 - [o 4 o o 01';

end

if order =8 3

n 3 13;

H3 - 96*pad(k3,n) - 24*pad(conv(k3,k4),n)

+ 3408*pad(conv(conv(k4,k4),k3),n)

+ 1984*pad(conv(conv(k3,k3),k3),n);

H4 I 24*pad(k4,n) - 12*pad(conv(k3,k3),n)

+ 3408*pad(conv(conv(k3,k3),k4),n)

- 36*pad(conv(k4,k4),n) + 852*pad(conv(conv(k4,k4),k4),n);

H3 8 conv(H3,p3);

H4 I conv(H4,p4);

c 8 576;

elseif order =3 2

n 3 9;

H3 I -8*pad(k3,n) + 60*pad(conv(k3,k4),n);

H4 - -2*pad(k4,n) + 30*pad(conv(k3,k3),n) + 9*pad(conv(k4,k4),n);
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H3 8 conv(H3,p3);

H4 8 conv(H4,p4);

c t 48;

else

fprintf(’\n No order is defined ..\n’);

break;

end

if unit_var =3 1

H2 8 c*pad([1 O],length(H3));

else

H2 - pad(0,1ength(H3));

end

F ' (H2 + H3 + H4)/c;

XXXXXXXXXXXXZXXXZXXZZXXXXXXXXXZXXXXXXX

function y = pad(x,n);

11111111211ZZXXXXXZXXZXXXXZXXXZXXXZZXX

y 8 zeroan,1);

x I x(z);

m 3 length(x);

y(n-m+1:n) = x;



APPENDIX D

PSPICE Files -

D.1 Circuit File

2 by 2 Separation Network Circuit

*****************

* Apply Voltages

*****************

Vdd 80 0 5.0V

V38 70 0 0.0V

Vref 3 0 2.50

meul 4 0 0.70

VbIV 5 0 10

Vdp 6 0 2.8

Vdm 7 0 2.2

V31 11 0 sin(2.5 0.1 1k)

V32 12 0 sin(2.5 0.1 2k)

de11 121 0 2.70

de12 122 0 2.54

Vcb11 141 0 2.60

Vcb12 142 0 2.40

de21 221 0 2.56

de22 222 0 2.70

Vcb21 241 0 2.65

Vcb22 242 0 2.45

255



*Vd11

*Vd12

*Vc11

*Vc12

*Vd21

*Vd22

*Vc21

*Vc22

Vbsosll

Vbsosl2

Vbsosl3

Vbsos21

Vbsos22

Vbsos23

******************************

* Identify Nodes

******************************

t

* meul

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

321

322

341

342

421

422

441

442

151

152

153

251

252

253

Vref

4

s1

s2

db11

db12

xb11

xb12

cb11

cb12

d11

d12

111

0
0
0
0

0
0
0
0

c
$
<
>

0

0

0

e1+ 21 e2+ 31

e1- 22 e2- 32

.70

.54

.60

.40M
M
N
M

.56

.70

.65

.45[
O
N
I
O
N

0.69

0.69

0.71

0.69

0.69

0.71

3

11

12'

121

122

131

132

141

142

321

322

331

Vblsosl 151 Vb2sosl 251

Vbisos2 152 Vb2sos2 252

Vblsos3 153 Vb2sos3 253

db21

db22

xb21

xb22

cb21

cb22

d21

d22

121

256

221

222

231

232

241

242

421

422

431
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* 112 332 x22 432

* c11 341 C21 441

* c12 342 C22 442

* y1 61 y2 62

************************************************************

* MYSOS s2 xb12 xb11 Vblsosl Vblsos2 Vb18083 Vdd Vgnd Vref

* 1 2 3 11 12 13 8 7 9

44*4444444*:s*******4444444***********************s*********

XSOSEI 12 132 131 151 152 153 80 7O 3 MYSDS

CE11 131 O SpF

CE12 132 0 SpF

******************************************************

* Subcircuit GMULDI Vdd Vss V1 Vref V2 Vref Vb I+ I-

t 8 7 1 2 3 4 5 21 22

******************************************************

* realize e1 8 cb11*111 + cb12*xb12 + db11*31 + db12*s2

xs11 so 70 141 3 131 3 4 21 22 GMULDl

x312 so 70 142 3 132 3 4 21 22 GMULDi

xs13 so 70 121 3 11 3 4 21 22 GMULDI

x314 so 70 122 3 12 3 4 21 22 ' GMULDI

*********#**********#***************#*#***t*****************

* MYSOS 31 xb22 xb21 Vblsosl Vb1sos2 Vblsos3 Vdd Vgnd Vref

**************#*********************************************

XSOSE2 11 232 231 251 252 253 80 70 3 MYSOS

CE21 231 O 4pF

C222 232 O 4pF

* realize e2 8 cb21*x21 + cb22*xb22 + db21*s1 + db22*s2

XE21 80 70 241 3 231 3 4 31 32 GMULDI

X322 80 70 242 3 232 3 4 31 32 GMULDi

X823 80 70 221 3 11 3 4 31 32 GMULDl

XE24 80 70 222 3 12 3 4 31 32 GMULDI

***********t**********t***********************************

* MYSOS y2 112 :11 Vblsosl Vbisos2 VbisosS Vdd Vgnd Vref

*ttttttttttttt***#*******it*tt******#******#**************

XSOSY1 62 332 331 151 152 153 80 7O 3 MYSOS

CY11 331 0 5p?

CY12 332 0 5p?

4*444444444444444444444444:4*:444*********¢****s******

* Subcircuit GMULDI Vdd Vss V1 Vref V2 Vref Vb I+ I-

*4*44444*4444*44*4444*44444**4444444444444444444444444

* realize y1 8 e1 - c11*111 - c12*112 - d12*y2 ’

XY11 80 7O 3 341 331 3 4 21 22 GMULDI

XY12 80 70 3 342 332 3 4 21 22 GMULDi

XY13 80 7O 3 322 62 3 _4 21 22 GMULD1
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*********************************III************************

* MYSOS y1 :22 x21 Vbisosi Vblsos2 Vb13083 Vdd Vgnd Vref

**********************************************************

XSOSY2 11 432 431 251 252 253 80 70 3 MYSOS

CY21 431 O 4pF

CY22' 432 0 4p?

******************************************************

* Subcircuit GMULDI Vdd Vss V1 Vref V2 Vref Vb I+ I-

* 8 7 1 2 3 4 5 21 22

****¢***************4*************************4444:444

* realize y2 8 e2 - c21*x21 - c22*x22 - d21*y1

XY21 8O 70 3 441 431 3 4 31 32 GMULDI

XY22 80 7O 3 442 432 3 ‘4 31 32 GMULD1

XY23 80 7O 3 421 61 3 4 31 32 GMULD1

4444444444444444*##4##********s*********¢*****44:44:44

* Subcircuit MYIV Vdd Vss I+ I- Vbias Vout

* 8 7 1 2 4 3

4444444444444444*44*4444444444444444444444:44444444444

XIV1 80 70 21 22 5 7 MYIV

XIV2 80 70 31 32 5 72 MYIV

444444444444444444:44444444444444444444444*:

* Subcircuit TRANSAMl V1 V2 Vb Vout Vdd Vgnd

#**************#****************************

* Use Follower

XF1 71 61 4 61 80 7O TRANSAMI

XF2 72 62 4 62 80 7O TRANSAMl

4:44:4444444444444444:44::

* Update equation of dij

44444444444444444444444444

* Subcircuit BLOCK Vdd Vss yi Vdm yj Vb Vdp dij Vref

1812 80 7O 61 6 62 4 7 322 3 F68

CD12 322 O SnF

* Subcircuit BLOCK Vdd Vss y2 Vdm y2 Vb Vdp d21 Vref

X821 80 70 62 6 61 4 7 421 3 F68

CD21 421 0 5nF

**************************

* Update equations of cij

***##********************t

* Subcircuit HGMUL Vdd Vss yi Vref xij Vref Vbias cij

XMUL11 80 7O 61 3 331 3 4 341 HGMUL

XHUL12 80 70 61 3 332 3 4 342 HGMUL

XHUL21 80 70 62 3 431 3 4 441 UGMUL

XMUL22 80 7O 62 3 432 3 4 442 HGMUL

CC11 341 0 1nf

CC12 342 O inf
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CC21 441 0 inf

CC22 442 0 1nf

*4444s4ts4#44

* Simulations

44:44:4444444

.LIB comp.lib

.TRAN .Sm 50m

.IC V(322) ' 1

.IC V(421) 4

.IC V(341)

.IC V(342)

.IC v(441)

.IC V(442)

.OP

.PROBE

.END

m
.
»
4
.
p
-

D.2 Library File

************************************************

* Transistor Models

***********¢********s*****s444444444444444444444

.MODEL nmos NMDS LEVEL=2

+ VT080.783736 KP-5.46E-5 GAMMA-0.5262 LAMBDA-3.533329£-2

+ TOX=412E-10 CGSOI2.6695658-10 CGDO-2.6695652-1O CJ-1.134E-4

+ MJ-O.708 CJSH-4.77E-1O MJSH-O.253 XJ=0.1500U

+ TPG=1.0000 LDIO.212340U NSUB-5.86OE+15 NFS=9.54427OE+11

+ NEFF=1.0 NSS=1.0000E+12 DELTA-1.99612 VHAX-57874.1

+ U0-651 UEXP-O.177364 UCRIT830664.6 PB-O.800 PHI-0.6

+ RSH=33.4OO CGBD-4.250255E-10

*

.MDDEL pmos PMOS LEVEL-2

+ VT08-0.807 KP-2.13E-5 GAMMA-0.5644 LAMBDA-5.6594915-2

+ TOX'412E-1O CGSO=3.143031E-10 CGDOI3.143O31E-10 CJ-2.54E-4

+ MJ-0.553 CJSU=3.31E-1O MJSH80.352 XJ-0.05U

+ TPGI-1.O LDtO.25U NSUB-6.74OOE+15 NFS=1.000E+11

+ NEFF-1.001 NSS=1.0000E+12 DELTA-1.001368E-6 VMAx-37082.8

+ U0=253.977 UEXP-O.2458 UCRIT=16929.2 PB-D.800 PHI80.6

+ RSH-121.6000 CGBOI4.574377E-10

********#********************************************

* Subcircuit FGB Vdd V88 81 Vdn S2 Vb Vdp Vout Vref

* 1 2 3 4 5 6 7 8 9

t*****************************#*****#****t**#*¢******

.SUBCKT FGB 1 2 3 4 5 6 7 8 9
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X1 1 2 3 4 9 6 11 12 5 FG

X2 1 2 7 3 9 6 12 11 5 FG

X3 1 12 10 PMIRRDR

X4 2 10 8 NMIRROR

X5 1 11 8 PMIRRUR

.ENDS

********************************************************

* Subcircuit FG Vdd Vss V1 Vd V2 Vb Vout1 Vout2 Vref

* 1 2 3 4 5 6 7 8 9

****************************************************#***

.SUBCKT F6 1 2 3 4 5 6 7 8 9

M1 1 3 12 nmos H-6.0U L-6.0U

M2 11 4 12 nmos H86.0U L86.OU

M3 12 6 2 nmos H86.OU L-6.0U

M4 12 13 2 nmos H-6.0U L-6.0U

M5 13 13 2 nmos “-6.00 L86.OU

M6 14 13 2 nmos U-6.0U L86.OU

M7 7 9 14 nmos U-6.0U L-6.0U

M8 8 5 14 nnos “-6.00 L-6.0U

M9 1 11 11 pmos W36.0U L86.OU

M10 1 11 13 pmos H-6.0U L86.OU

.ENDS

*********s***s*********4444444444*

* Subcircuit PMirror Vdd Vref Vmir

* 1 2 3

*tttttt*****#******************ttt

.SUBCKT PMIRROR 1 2 3

M1 1 2 2 1 pmos U-6.0U L-6.0U

M2 1 2 3 1 pmos H-6.0U L-6.0U

.ENDS

************#*************#******t

* Subcircuit NMirror Vss Vref Vnir

* 1 2 3

**********************************

.SUBCKT NMIRROR 1 2 3

M1 2 2 1 1 nmos H86.OU L-6.0U

M2 3 2 1 1 nmos H-6.0U L-6.0U

.ENDS

ti*t*ttt***********t****************************

* Subcircuit UGMUL Vdd Vss V1 V2 V3 V4 Vb Vout

4 8 7 1 2 3 4 5 6

* Schematic: Mead’s book page 95

*#**#**##*****#*#***it##***#********************

.SUBCKT HGMUL 8 7 1 2 3 4 5 6

M1 12 1 13 7 nmos H-6.0U L-6.0U

H
H
M
M
M
N
M
N
M
M
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M2 16 2 13 7 nmos “-6.00 L-6.0U

M3 12 12 8 8 pmos “=6.0U L-6.0U

M4 16 16 8 8 pmos “-6.00 L-6.00

M5 15 12 8 8 pmos “-6.00 L=6.00

M6 18 16 8 8 pmos “-6.00 L=6.0U

M7 11 4 15 8 pmos “-6.00 L-6.00

M8 14 4 18 8 pmos “-6.00 L-6.0U

M9 14 3 15 8 pmos “-6.00 L-6.0U

M10 11 3 18 8 pmos “-6.00 L-6.0U

M11 11 11 7 7 nmos “-6.00 L-6.0U

M12 14 14 7 7 nmos “-6.00 L-6.0U

M13 17 11 7 7 nmos “-6.00 L-6.0U

M14 6 14 7 7 nmos “-6.00 L-6.00

M15 17 17 8 8 pmos “-6.00 L-6.0U

M16 6 17 8 8 pmos “-6.00 L-6.0U

Mb 13 5 7 7 nmos “-6.00 L-6.0U

.ENDS

*******************t****tttttt****#*************

* Subcircuit GMULD1 Vdd Vss V1 V2 V3 V4 Vb I+ I-

* 8 7 1 2 3 4 5 21 22

* Schematic: Mead’s book page 95

tit******it***********t****¢#******************t

.SUBCKT GMULD1 8 7 1 2 3 4 5 21 22

M1 12 1 13 7 nmos “-6.00 L-6.0U

142' 16 2 13 7 nmos “-6.00 L-6.0U

M3 12 12 8 8 pmos “-6.00 L-6.0U

M4 16 16 8 8 pmos “-6.00 L-6.0U

M5 15 12 8 8 pnos “-6.00 L-6.0U

M6 18 16 8 8 pmos “-6.00 L-6.0U

M7 11 4 15 8 pmos “-6.00 L-6.00

M8 14 4 18 8 pmos “-6.00 L-6.0U

M9 14 3 15 8 pmos “-6.00 L-6.0U

M10 11 3 18 8 pnos “-6.00 L-6.0U

M11 11 11 7 7 nmos “-6.00 L-6.0U

M12 14 14 7 7 nmos “-6.00 L-6.0U

M13 21 11 7 7 nmos “-6.00 L-6.00

M14 22 14 7 7 nmos “-6.00 L-6.0U

Mb 13 5 7 7 nmos “-6.00 L-6.0U

.ENDS

.ENDS

##-*********************¥*****************************

* Subcircuit MYIV Vdd Vss I+ I- Vbias Vout

- 8 7 1 2 4 3

*****t************************************************

.SUBCKT’MYIV 8 7 1 2 3 4
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- Mirror current out of 1, add to to current coming from 2

M1 8 1 1 8 pmos “-4.00 L=12.00

M2 8 1 2 8 pmos “-4.00 L=12.00

* Output gain Stage

M3 8 2 4 7 nmos “-4.00 L-12.0U

M4 4 3 7 7 nmos “-4.00 L=12.00

.ENDS

**********************#44444444444444444444444

* Subcircuit STRANSAM V1 V2 Vb Vout Vdd Vgnd

* 1 2 3 4 5 6

* “/L . 1/1

*********************4***************s********

.SUBCKT STRANSAM 1 2 3 4 5 6

M1 7 1 9 6 nmos “-6.00 L-6.00

M2 4 2 10 6 nmos “-6.00 L-6.00

M5 9 9 8 6 nmos “-6.00 L-6.00

M6 10 10 8 6 nmos “-6.00 L-6.0U

Mb 8 3 6 6 nmos “-6.00 L-6.00

M3 7 7 5 5 pmos “-6.00 L-6.00

M4 4 7 5 5 pnos “-6.00 L-6.00

.ENDS

**************#**********************¥********

* Subcircuit TRANSAMl V1 V2 Vb Vout Vdd Vgnd

* . 1 2 3 4 5 6

4 “/L - 1/1

#4444444:44:44:444*44*444444444444444444444444

.SUBCKT TRANSAMi 1 2 3 4 5 6

M1 7 1 8 6 nmos “-6.00 L-6.0U

M2 4 2 8 6 nmos “-6.00 L-6.00

Mb 8 3 6 6 nmos “-6.00 L-6.0U

M3 7 7 5 5 pmos “-6.00 L-6.00

M4 4 7 5 5 pnos “-6.00 L-6.0U

.ENDS

t**t****************************************t*

* Subcircuit TRANSAM V1 V2 Vb Vout Vdd Vgnd

* 1 2 3 4 5 6

* “/L - 1/3

***t***********#*#*#********#***************#*

.SUBCKT TRANSAM13 1 2 3 4 5 6

M1 7 1 s 6 nmos “-6.00 L-6.0U

M2 4 2 s 6 nmos “-6.00 L-6.0U

Mb 6 3 6 6 nmos w-6.ou L-18.00

M3 7 7 5 5 pmos “-6.00 L-6.00

M4 4 7 5 5 pmos “-6.00 ]..-6.00

.ENDS
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#**********************IN:*************************IkIHIIHI

* Subcircuit MYSDS V1 V2 V3 Vb1 Vb2 Vb3 Vdd Vgnd Vref

* 1‘ 2 3 11 12 13 s 7 9

* C(Al) > G(A3)

annualan:************************************************

.susch MYSOS 1 2 3 11 12 13 s 7 9

XA1 1 2 1 1 2 8 7 STRANSAM

XA2 2 9 12 3 8 7 STRANSAM

XA3 2 3 13 2 8 7 TRANSAM13

.ENDS
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