

fl ? , h. u)-..
Mumumfm sflwflyfim. . s 4m

.m

...: Au: ., . i... v M :1: :4.”

Law. . . .

afiéfifimMWJ .14..”«Pn..rrzprhufflhrufri
hpflufi! .chu.” .xL.

r a. ... Juihszm afilfiafw .hm: :

5:...

ban» a... .. .r
rmxx??flr.m.r.fiio$..,

. I para... n. u. . .
1:0 dr r .. I

. Al I: o}. vol: r».

”J ..v n.ammwunnr

“Mafia
L: .41: : Av)“. L»

P: : . it?C
a .r 9)“?wau

(r a“. Q. . . .

l. x...?k:u.u..w.p..r
1. (LI-Err)? It!!!
an?!" .r (ll-u}

‘
.

K
g
:

5
-

:
5
7
.

3
. r
;

«
I

t4:r~.:4.
., .

”renummw. ”Aw .
1 fit if». 3.7.34.9
- «u.a& . x.
.X

.
1
0
7
‘
-
'
1
9

10.!

«
W
1
5

:

It 4 «WNW um!

: A. LfifivJJMMW

- “WW3
Max :4“... p.

.33....“

. 13..
.C.’

I. n

5.4.4:... Jaw? flaw
: . -J. r

1 3.9.3... .. .

3%. a. w. a- ., .MM»?

1. .

I‘w.a.u- Iflvo‘ 1:

tr. 6... .”

5.3.1.... :an}.
\« ~a Juwfuw. .c

:

.
u
m

I
r
v

:-
.

.
r

o A)“. I?

. a.m.,4hm. u. ‘. . .
:.u..

«an. fir.
if (‘34.

.

V...)

.A a
A”

THESIS

llllll

J llllllllllWill\llllllll‘lLll

This is to certify that the

dissertation entitled

Applying Formal Methods to Software Reuse

presented by

Jun-dang Jeng

has been accepted towards fulfillment

of the requirements for

Ph.D. Computer Science

 degree in

- Lu

Major professor

12/23/93

Date

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

LIBRARY

Michigan State

University

PLACE ll RETURII BOXto romovothb checkout from your record.

To AVOID FINES Mum on or baton doto duo.

DATE DUE DATE DUE DATE DUE

 I ”J T——‘ ——l '

L-:-_[———:_J

---J--:J———

-—-J[-—---J——-

:—__JT:_—:_ILJ

MSU Io An Atflrmotwo ActIon/Equol OpportunityInstitution

Wm

 .L‘L

Applying Formal Methods to Software Reuse

By

Jun-Jung Jeng

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1993

ABSTRACT

Applying Formal Methods to Software Reuse

By

Jun-Jung Jeng

This dissertation presents an approach, based on formal methods, to the specifica-

tion, classification, retrieval, and modification of reusable software components. From

a set of reusable components that are described by formal specifications, a two-tiered

hierarchy of software components is constructed. The hierarchical structure provides

a means for representing, storing, browsing, retrieving, and modifying the reusable

components; furthermore, the formal specifications provide a means for verifying that

a given software component correctly satisfies the current problem. The lower-level

hierarchy facilitates the application of logical reasoning techniques for a fine-grained,

exact determination of reusable candidates. The higher-level hierarchy provides a

coarse-grained determination of reusable candidates. Based upon the framework of

the two-tiered component hierarchy, a set of candidate components, which are more

general than or analogous to the query specification, can be retrieved from the hi-

erarchy. Two methods are proposed for the modification of candidate components

in order to satisfy the query specification. One is to modify the component that is

more general than the query specification; the other is to modify a component based

on analogy. The graphics-based implementation of the reuse framework is described.

ACKNOWLEDGMENTS

First of all, I’d like to thank my advisor, Dr. Betty H. C. Cheng for her constant

support over the years. Her advice, encouragement, and willingness to allow me so

much freedom of direction, provided a wonderful research environment to work.

I am grateful to my committee members, Professors Abdol H. Esfahanian, Jacob

M. Plotkin, and John Geske, for their interests in my work, and their helpful sug-

gestions. I am also indebted to Dr. Moon-Jung Chung for his guidance at the early

stage of my doctoral research.

My appreciation also extends to my colleaques of Computer Science Department at

Michigan State University for providing a great research atmosphere, and my friends

for making my life bountiful during these years at East Lansing.

This dissertation would not have been possible without the support from my

parents, sisters, and brother. Last but not least, I want to thank my dear wife

Shuefung for her continued trust and love to make this dissertation a reality.

iii

TABLE OF CONTENTS

LIST OF FIGURES viii

1 Introduction 1

1.1 The Need for Software Reuse 1

1.2 The Need for Formal Methods 3

1.3 Research Contributions 5

1.4 Organization of Chapters 6

2 Component Reuse E'amework 7

2.1 Research Problems/Challenges 7

2.1.1 Specification 8

2.1.2 Classification 8

2.1.3 Retrieval 8

2.1.4 Modification 9

2.1.5 Other Issues 9

2.2 Reuse Framework 9

2.3 Reuse Tools 12

3 Specification of Reusable Components 15

3.1 Introduction 15

3.2 Larch Shared Language 17

3.3 Larch Interface Language 19

3.4 Component Specification 21

3.5 Method Specification 24

3.6 Subtypes and Subclass 24

3.7 Defining Generality 28

4 Construction of Hierarchical Component Library 31

4.1 Lower-Level Hierarchy 31

4.1.1 Determining Generality 32

4.1.2 Building Lower-Level Hierarchy 33

iv

4.2 Higher-Level Hierarchy

4.2.1 Measure of Similarity between Components

4.2.2 Hierarchical Clustering

4.2.3 Hierarchical Clustering Algorithm

4.3 Implementation

4.3.1 Browsing Hierarchy

4.3.2 Implementation of the Construction of Hierarchy

4.4 Summary

Search and Retrieval of Reusable Components

5.1 Hashing Scheme for Software Components

5.2 Retrieval Algorithm

5.3 Implementation of Retrieval Process

Modification of Reusable Components Based on Generality

6.1 Introduction

6.2 Predicate Transformer wp

6.2.1 Simple C++ Statements

6.2.2 The abort Statement

6.2.3 The ship Statement

6.2.4 The assignment (y := E) Statement

6.2.5 The alternative (IF) Statement

6.2.6 The iterative (D0) Statement

6.2.7 The compound (50; 51) Statement

6.3 Modifying a More General Component

6.4 Modification Process

6.5 Modification Example

6.6 Summary

Modification of Reusable Components Based on Analogy

7.1 Introduction

7.2 Analogical Matching

7.3 Heuristics for the Matching Process

7.4 Top-Down Matching Approach

7.5 Matching Algorithm

7.6 Matching Example

7.7 Modification Example

7.8 Summary

38

39

43

46

47

47

49

53

55

55

58

62

65

65

66

68

68

69

69

69

72

73

73

76

78

84

86

86

89

90

92

95

99

108

8 Case Study 110

8.1 Introduction 110

8.2 Widgets and Larch 111

8.3 The Specification for Widgets 113

8.3.1 Primitive Widget 114

8.3.2 Object and SetResource 115

8.3.3 Well-Formed Window 119

8.4 Specification of Scrolled Text Editor with Popup Menus 120

8.4.1 The X Model 121

8.4.2 The LSL Level 122

8.4.3 The Interface Level 129

8.5 Applying Reuse Processes to Specification Components of Xt/Motif

Widgets 132

8.5.1 Construction Process 134

8.5.2 Retrieval Process 138

8.5.3 Modification Process 138

8.6 Summary 141

9 Related Work 145

9.1 Related Work for Reuse 145

9.2 Related Work for Analogy 150

9.2.1 Analogy in AI 150

9.2.2 Analogy in Software Engineering 153

9.3 Related Work of Specifying GUI 156

10 Concluding Remarks 158

10.1 Summary 158

10.1.1 Construction of Component Hierarchy 158

10.1.2 Incorporation of Formal Methods to Software Reuse 159

10.1.3 Retrieving Reusable Components from the Hierarchy 159

10.1.4 Modifying More General Components 160

10.1.5 Modifying Analogous Components 160

10.2 Future Work 161

A Analogical Reasoning 163

B Bottom-Up Matching Approach 167

C The Specifications for Motif Widgets 169

vi

CI The Functionalities of Motif Widgets 169

C.2 The LSL Traits of Motif Widgets 171

C.3 The LIL Specifications of Widgets 179

D Algorithm to find LGCs 183

E Program Listing 186

El C++ Implementation for List 186

E2 C++ Implementation for Array 188

E3 C++ Implementation for Stack 189

EA C++ Implementation for DoubleList 190

E5 A Window with Pulldown Menu (Existing Component) 193

E.6 A Window with Popup Menu (Modified Component) 196

BIBLIOGRAPHY 200

vii

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

LIST OF FIGURES

Development and Reuse Modules.....................

Overview of Component Reuse Module..................

Reuse Tools

An Example Trait: Table.

More Examples of Traits..........................

Basic Construct for Component Specifications

Component interfaces for intSet......................

Grammar for Component Methods.

The Borland C++ Subclass Relationship.

Relations Among the Traits

Subsumption Test Algorithm based on 2......

Resolution Rule

P1111 Resolution Rule

Modified Resolution Rule

Using MST to decide the generality relationship between components

Camp; and Comps.

Building the lower-level hierarchy by pair-wise comparison.......

Building lower-level hierarchy by recursive comparison.

Example of building hierarchy by recursive comparison.........

Example of comparing two SOLs.

Matrices for components X and Y.

Similarity matrix 3’(X, Y)

Refinement of partitions in an agglomerative clustering algorithm

Agglomerative Hierarchical Clustering Algorithm

Hierarchical Clustering Algorithm

Two-tiered hierarchy formed by the subsumption test and the cluster-

ing algorithms

Sample application of subsumption test algorithm

viii

10

13

14

22

23

25

26

29

30

32

32

33

34

35

37

38

39

42

43

45

46

48

50

4.16

4.17

4.18

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

Sample application of clustering algorithm 51

Specification of Component Queue. 52

Specification of Component DoubleQueue. 54

Knuth-Bendix Ordering 59

The Process of Retrieving Software Components. 60

The Algorithm for Retrieval by Subsumption Test. 61

Sample application of construction and retrieval processes 63

Modifying Implementation Based on Specification Changes....... 75

The Process of Modifying More a more general method......... 77

The LCL Specification of List Class. 79

The LCL Specification of Array Class................... 81

Analogical Reuse Modification Process.................. 88

Matching Algorithm 96

Simple example of the matching algorithm................ 100

Larch specification of Stack class..................... 102

Larch specification of DoubleList class. 103

An implementation for matching process................. 105

The ManagerWindow trait. 112

Part of the ScrolledTezt specification................... 113

The dependencies of the Window’s traits................. 114

The Basic Window trait. 115

The Primitive trait............................. 116

The Object trait. 118

The SetResource trait. 118

The WFWidget trait............................ 120

An Example of Scrolled Text Editor with Popup Menus. 121

Parent-child relationships between widgets................ 123

The LtScrolled trait. 124

The LtTextField trait. 126

The Lt'l‘ext trait.............................. 127

The LtMenu trait.............................. 128

The LtScrolledText trait. 129

The LtScrollod‘l‘oxtMenu trait...................... 130

Part of the Interface Specification of Primitive Widget. 131

The Larch Interface Specification of Popup................ 132

ix

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

A.1

A.2

A.3

D.1

D.2

The Larch Interface Specification of Popupmenu. 133

The unstructured widget components................... 135

The lower—level hierarchy of widget components............. 136

The two-tiered hierarchy of widget components. 137

An example of retrieving an exact—matched component......... 139

An example of retrieving a set of more general components....... 140

An example of computing matching between two methods. 142

The output of the pulldown menu implementation. 143

The output of the popup menu implementation. 143

Gentner’s Model of Analogy 164

P1 Model 165

Analogy and Generalization 166

The algorithm to find a set of LGCs. 184

Coloring, joining, and collecting a partial ordering set. 185

CHAPTER 1

Introduction

Software reuse has been claimed to be a means for overcoming the software crisis

[1, 2, 3, 4]. Some of the major issues that make software reuse difficult are com-

ponent classification, retrieval, modification, and library maintenance. Research in

Software Reuse has great potential to facilitate an improvement in the productivity,

the quality, and the reliability of software development. Results from this research

serve to enhance the practice of software reuse by using formal methods to provide a

means to construct a hierarchical structure of reusable software components, retrieve

reusable software components from the constructed hierarchy, and modify retrieved

reusable components based on a comparison between existing and user-supplied spec-

ifications.

1.1 The Need for Software Reuse

The rapid advancement in the hardware industry has provided users and developers

with increased and less expensive processing power and storage capacity in a rela-

tively short period of time. This new technology facilitates new applications, thus

leading to a growing demand for reliable and functionally complete systems. In to-

day’s technology race, software has proven to be the bottleneck in the production

process [5, 6, 7, 8, 9]. Delivered software is often of poor quality and is very difficult

to maintain. Software reuse has the potential to increase the quality of developed

software. Software reuse has been practiced for years, for example, the libraries of

mathematical subroutines, report generators, and many application packages. How-

ever, in order to achieve the desired benefits, software reuse must be expended beyond

small- or medium-sized software systems. In order to handle the size and complexity

of modern software, we are obliged to solve the problem of Very Large Scale Reuse

(VLSR). VLSR introduces a new area of research problems centered around the is-

sue of making the software representation sufficiently general to allow reuse over a

broad range of target systems, and of automating the reuse process, including the

understanding and adaptation of reusable components for a new system.

For more than twenty years, programmers dreamed of developing software system

that are engineered like traditional physical systems. They expressed great interest in

having a software components catalog from which software parts can be assembled,

much as is done with mechanical engineering or electronic engineering. Reusable

software component libraries have been suggested as a means for facilitating software

reuse [2, 3, 10]. The idea of a software component library was first invented by Mcllroy

in the NATO Software Engineering Conference of 1968 [11]. Mcllroy proposed a

library of reusable components and automated techniques for customizing components

for'difi'erent degrees of precision and robustness. A similar view based on software

103 has been proposed by Cox [12].

There is considerable room for transferring general purpose engineering design

and management techniques to reusable software component’s design and manage-

ment. Reusable hardware components, such as ‘I'TL integrated circuits are universally

used in hardware design [4]. In the Texas Instruments’ 'l'l'L Data Book, a diverse

collection of device abstractions are presented to help the users understand and select

among candidate components. The analogy is often drawn between 'I'TI. components

and offothe-shelf reusable software components. Some researchers believe that find-

ing an analogous diverse collection of expositions for the understanding of reusable

software components is the fundamental operational problem that must be solved in

the development of any reuse system. However, general purpose reusable components

libraries will likely consist of several orders of magnitude more components than the

libraries of hardware components. The issue of scale will make large scale reusable

component libraries more difficult to understand and use than the hardware analogy.

There are notable differences between software and products from other engineer-

ing disciplines, and these differences induce some technical and non-technical issues

of reusable software components. Despite some progress in the development of reuse

systems in recent years, most software systems are not developed from reusable com-

ponents.

There are both technical and non-technical impediments to achieving software

reuse. The examples of non-technical impediments include management resistance,

psychological barriers etc [13]. Serious efforts must be expanded in addressing these

two issues in order to achieve success, much as is true for software engineering. How-

ever, in this dissertation, only the technical issues will be addressed. The premise is

that with a solid foundation for software reuse, the tasks for the managers, designers,

programmers, and users will be greatly facilitated in making software reuse a reality.

1.2 The Need for Formal Methods

The goal of software reuse is to increase the productivity of programmers and improve

the quality of developed software [2]. Software reuse has been impeded by the lack of

effective techniques for representing and managing software component libraries. In

current industrial settings, software reuse is often based on the availability of the origi-

nal authors to act as consultants or the existence of relevant and descriptive documen-

tation. Another approach is to exploit information retrieval methods that are based

on analyses of natural language documentation. These methods have also been pro-

posed for constructing software libraries [14, 15]. Unfortunately, software components

represented by natural language may hinder the retrieval process due to the problems

of ambiguity, incompleteness, and inconsistency inherent to natural languages. Nei-

ther of these options facilitate the automation of software reuse determination, nor do

they provide a means for verifying that a given software component correctly satisfies

a new problem specification. The above mentioned problems can be minimized by

using formal specifications to represent software components [16, 17, 18, 19] and ap-

plying formal methods to the software artifacts that are formally described. Formal

methods provide a means for establishing properties by formal reasoning. This formal

reasoning is not possible by means of informal methods. Rigorous reasoning guar-

antees the correctness of some properties via strict argumentation. Formality also

allows for showing consequences of a specification. Therefore, implicit contradictions

of requirements that are not obvious in the process of software development can be

detected in an early stage of software production.

Formal methods enable people to write specifications that have precise meanings.

Precision demands deeper insight into the problem domain than informal specifica-

tions. Specifications usually become much clearer when expressed in a formal notation

and then rephrased into natural language. Thus, formal specifications can help clients

comprehend what they want to purchase. Formal specifications can be used to guide

the implementation of a system [20, 21]. Because of the precision of the description,

the programmers know exactly what needs to be implemented. Formal specifications

help clarify what the purpose of each component of a system, therefore increasing the

maintainability property. Formal methods also lead to software components that are

easier to reuse. A precise and clear description as provided by a formal specification

can provide assistance to the user of a software library.

As a consequence of all the advantages mentioned above, formal methods decrease

the cost of development. The investment in formal methods in the early stages of

production aims to eliminate errors and ambiguity and to discover missing properties

in the requirements and specifications. These assets minimizes costs impoud during

maintenance and implementation.

1.3 Research Contributions

This dissertation presents an approach, based on formal methods, to the specification,

classification, retrieval, and modification of reusable software components. Rom a

set of reusable components that are described by formal specifications, a two-tiered

hierarchy of software components is constructed. The hierarchical structure provides

a means for representing, storing, browsing, retrieving, and modifying the reusable

components; furthermore, the formal specifications provide a means for verifying that

a given software component correctly satisfies the current problem. The lower-level

hierarchy is created by a subsumption test algorithm; this level facilitates the ap-

plication of logical reasoning techniques for a fine-grained, exact determination of

reusable candidates. The higher-level hierarchy provides a coarse-grained determina-

tion of reusable candidates and is constructed by applying a hierarchical clustering

algorithm to the most general components from the lower-level hierarchy. Based upon

the framework of the two-tiered component hierarchy, a set of candidate components,

which are more general than or analogous to the query specification, can be retrieved

from the hierarchy. Two methods are proposed for the modification of candidate

components in order to satisfy the query specification. One is to modify the com-

ponent that is more general than the query specification; the other is to modify an

analogous component. All of the above reuse tools are incorporated and integrated

within a graphical reuse framework. In addition, we present several examples, includ-

ing a large scale example, to illustrate the applicability of the reuse framework on

real problems.

1.4 Organization of Chapters

The remainder of the dissertation is organized as follows. Chapter 2 gives the frame-

work of our reuse system for construction, retrieval, and modification of reusable

software components. Major research issues associated with component reuse are

identified. Chapter 3 describes the formal specification language that we use to spec-

ify the reusable software components. Chapter 4 focuses on the task of constructing

the two-tiered hierarchy of reusable components. Chapter 5 presents retrieval pro-

cesses for finding the candidate components from the two-tiered hierarchy. Chapter 6

describes a method to modify those retrieved components that are more general than

the query specification. Chapter 7 describes a new approach to modifying retrieved

components that are analogous to the problem specification. Chapter 8 presents a

moderate-sized example to illustrate the application of our reuse processes. Chap-

ter 9 reviews other projects that are related to our work. Chapter 10 summarizes the

dissertation and suggests future investigations.

CHAPTER 2

Component Reuse Framework

In order to make software reuse successful, several problems must be resolved includ

ing software classification, retrieval, modification, and library maintenance [22, 23].

Software component libraries have been suggested as a means for facilitating software

reuse [2, 3, 10, 24]. The potential benefits of software reuse and of large component

libraries are obvious but the promise of increased productivity and quality remain

elusive because several issues (problems) have not been resolved. In this chapter, we

describe the research issues associated with component reuse and give an overview

of our component reuse framework. Based on this framework, we have developed

several reuse processes to facilitate the reusability of software components. The reuse

tools associated with the reuse processes are also briefly described at the end of this

chapter.

2.1 Research Problems/Challenges

Reuse is a simple idea: attempt to use something for one purpose that was originally

intended and used for another purpose. It can be a procedure invoked several times

with different parameters. However, it is nontrivial to define the object that we will

reuse. A software component may consist of one or more of the following related items:

source code, specifications, requirement, architectures, and test cases, thus indicating

that we need to reuse more than code [25]. This dissertation focuses on the reusability

of software components based on formal specifications of the software components. In

general, to build a reuse system based on software components involves the following

techniques: specification, classification, retrieval, and modification. Each of these

topics will be described in turn.

2.1.1 Specification

Specification describe the behavior of reusable software components. One of the major

tasks in developing large reusable component libraries is in providing concise semantic

abstractions for components. It is not reasonable to present a large number of source

code components to a user and expect the source code to serve as the only description

of the component behavior. What is required is an abstraction specification level that

describes the behavior of the component in the library in a more succinct form. A

higher level than source code should be utilized because we want to emphasize what

the component does rather than how it does for the purpose of reuse.

2.1.2 Classification

Classification addresses the process how the system/designer catalogs the reusable

components in the software component library. Techniques may include the con-

struction of a component hierarchy and domain analysis. This dissertation focuses on

automating the former technique. The latter one has largely been addressed in [26].

2.1.3 Retrieval

Retrieval concerns the process how the programmers identify and retrieve a set of

reusable components from the software component library that could be unstructured

or hierarchical depending on the scheme of the construction process [27]. A retrieval

process should also provide some type of browsing mechanism to assist the user in

navigating through the library.

2.1.4 Modification

' Modification refers to changes to existing components needed to satisfy new/current

problem needs. Direct modification of source code is a difficult task for most reusers

of the software components from a component library. Therefore, we are interested

in modifying the specifications of retrieved components that are more general than

or analogous to the query specification. A user can modify the source code based on

the information of the specification that is required to be changed.

2.1.5 Other Issues

Decomposition of the query specification into simpler queries reduces the retrieval

complexity and enhances the reusability of the component library. Integration of

reusable components concerns the framework in which a collection of components

can be combined to form a set of reusable components and an executable system.

Synthesis of the complete reusable component represented formally specified refers to

the development of an executable code component from the specification component.

2.2 Reuse Framework

Our model for reusing software components divides the conventional life-cycle models

into two phases: first, the component development module delivers developed com-

ponents; second, the component reuse module supplies reusable components to com-

ponent development module and stores the developed components into the software

components library. The latter module primarily addresses the reusability of existing

10

library components and can be decomposed into several processes. Our approach to

reusability is based on software models and formal methods. The overview of com-

formaI/informal requirements

Component Component

Development ‘ reusable components Reuse

MOdUIC , developgd components : MOdulc

Figure 2.1. Development and Reuse Modules.

ponent reuse module is shown in Figure 2.2. Each box represents a different process

of the component reuse module.

Reusable Software Component Library contains the reusable software com-

ponents that include the requirements, specification, source code, and other sup-

porting documents. Components must be organized under a classification scheme to

facilitate any searching technique. The process for the Construction of a Hierarchy

supports to build up the hierarchies to classify the components in the library. Au-

tomation for component selection will be very essential since a manual search through

a library containing thousands of components is not practical. The Retrieval pro-

cess narrows the choice of candidate reusable components by applying automated

reasoning and hashing techniques to the specifications of software components in the

component library. The Modification process modifies the candidate components

to suit the required specification. The modification needs to be accomplished at a

higher level than the code level since direct editing of source code should be avoided as

much as possible. The above four processes (specification, construction, retrieval, and

ll

modification) are specifically addressed in this dissertation. However, other processes

are shown in Figure 2.2 in order to give a complete overview of our reuse framework.

The Component Development Module is project oriented. Its goal is to

deliver the products required by the customer and can be modeled by the traditional

software model, e.g., waterfall model. Two kinds of requirements may be given from

this module: informal or formal. Informal requirements need to be converted into

formal requirements, represented in the Larch specification language for our system,

by two processes, Requirement Analysis and Specification Editor. We believe

the full automation of these two processes are beyond current technology. But some

progress has been made in helping users create formal specification from informal

requirements [28, 29].

In order to reduce the complexity of the Retrieval and Modification processes,

decomposing the required specification into “smaller” specifications is necessary. But

some issues are still not clear, for example, “how to define the size of a specifica-

tion 7”, “how to automate the decomposition of a specification ?” and “what is the

cptimal level of granularity ?” etc. The Integration process attempts to integrate

the modified components to a reusable component. The correctness of components

should be preserved after integration. After obtaining a reusable component that fits

the requirement from the Component Development Module, the process Synthesis

transforms the reusable specifications into executable code such as C or Pascal based

upon the information from the modification process since we do not want to reim-

plement software that already exists. The classification of reusable components in a

library can be based on the application domain: each component hierarchy belongs

to a distinct domain. Examples of domains are flight control system, information

management software for insurance system, and so on. The purpose of the Domain

Analysis process is to catalog the reusable software components into different appli-

cation domains and to ensure that the components within a given hierarchy are in

12

the same domain.

2.3 Reuse Tools

The reuse processes of our system can be realized by the reuse tools shown in Fig—

ure 2.3. The Constructor performs the construction process with input compo-

nents from either existing libraries or a group of newly developed components. The

Browser enables the user browse through the constructed component hierarchy. The

Retriever retrieves a set of candidate components from the component library based

on the user’s query and returns them to the user. The user then can either accept

the candidate components or submit them to the Modifier, thus requesting assis-

tance from the system in the modification of the candidate components. Figure 2.3

only gives the reuse tools in which our investigations address. Other tools such as

the component specification editors, component synthesizer, and query specification

decomposer are also important in the Component Reuse Framework, but they are

beyond the scope of this dissertation.

reusable components

: informal query requirementu . .

Component : '1 Requirement Analysrs]

1

Development 1 forms] query specifications S if .

Module : Query pee icatIon] '

developed I
l . .

components 5
Decomposition l

I!

Domain '"

Analysis

h.

. znmjjggngpi. f‘. y" - ,. Integration

I. .. .deu '3 ,V"“. t

_- . 'j- I

‘ V l | Documentation]_.J

Component Reuse Module

Figure 2.2. Overview of Component Reuse Module.

l4

components

Constructor

component hierarchy

existing

components

J

User Brow

Modifier

candidate

components

1

{

l

@

Retriever

Figure 2.3. Reuse Tools

Component

Library

retrieved

components

CHAPTER 3

Specification of Reusable

Components

3.1 Introduction

A formal specification is a description that is expressed in a notation whose syntax and

semantics are well-defined. Musical compositions are commonly specified in standard

notation, which is understood by musicians everywhere. Such notations help us to

specify things very precisely, completely, and unambiguously.

Most software is made up of procedural and data abstractions, that is, procedures

and user-specified and system-defined data structures [30]. Object-oriented analysis

can be used to decompose complex software, which involves defining a set of user-

specified data abstractions or abstract data types (ADTs) [31, 32, 33, 34, 35, 36]. Thus,

in order to apply an object-oriented approach to software reuse, we focus on data ab-

straction, where it is assumed that procedural abstractions are implicitly addressed

when discussing the operations that are applicable to the data abstractions. The

specification for a software component corresponds to the specification of an ADT and

a set of methods that operate on that ADT. The specifications of object-oriented (or

object-based) languages have been explored by many researchers [37, 38, 39]. There-

15

16

fore, we intend to build on what has already been done when choosing a specification

language for object-oriented programming languages.

The formal specification language used in this work is Larch [39, 40]. Larch was

designed to specify the properties of ADTs. The advantage gained in using Larch is

the explicit separation of concerns between state-independent and state-dependent

properties. Larch provides a two-tiered approach to specification. In the first tier, the

specifier writes traits in the Larch Shared Language (1.31.) to assert state-independent

properties of a program. Each trait introduces sorts and operators and defines equality

between terms composed of the operators.

In the second tier, the specifier writes module specification in a Larch interface

language to describe state-dependent effects of a program, such as GCIL [41]. A

requires clause states each procedure’s precondition; a modifies clause lists those

objects whose values may possibly change; an ensures clause gives its postcondition.

The assertion language for the pre- and postconditions is drawn from LSL traits.

Through based on clauses, a Larch interface links to LSL traits by specifying a

correspondence between programming-language specific types and LSL sorts. An

object has a type and a value that ranges over terms of the corresponding sort.

The Larch Shared Language is presented in Section 3.2. The Larch interface

language is described in Section 3.3, where Larch/CH is used as an example to

demonstrate the concept of the interface language. Section 3.4 and Section 3.5 present

the specifications for component and method, respectively. The distinction between

subclass and subtype is discussed in Section 3.6. Finally, the generality relationship

between a pair of components is defined in Section 3.7.

17

3.2 Larch Shared Language

We use the interface languages to specify reusable program components (e.g. C++

classes). Since each LIL deals with specifying the behavior of components observable

in a particular programming language, it provides a mechanism for writing assertions,

in terms of pre- and postconditions, about the program states; these states can be

translated into predicate calculus formulas that are the specifications used for reusable

components in our system [42, 43, 44]. It incorporates programming-languagespecific

notations for constructs such as side effects, exception handling, and iterators. Several

programming languages have been specified by Larch interface languages, such as

C [45], Modula-a [37], and CLU [40]. been chosen as such role

The Larch family of specification languages supports many useful features for

designing modular and reusable systems. Many language-independent abstractions

are useful in a wide variety of specifications, for example, integers, lists, sets, queues,

arrays, relations, mappings, and orders. Larch facilitates the accumulation of open-

ended collections of reusable specification components in the form of LSL handbooks.

Based on the set of reusable specifications, larger reusable specification components

can be built. Data and functional abstractions play an important role in the program

design of Larch’s specifications from which modular programming components are

relatively easily constructed. In LSL, all the data types and terms appearing in inter-

face languages are explicitly defined to ensure that the understanding of programmers

matches the specifier’s. This feature is exploited in the reuse system when determin-

ing the candidate reusable components derived from the defined terms in LSL library.

The rest of this section presents an overview of the traits in the LSL. If the reader is

familiar with LSL then the remainder of this section may be skipped.

The trait is the basic unit of specification in the LSL. Sometimes the collection of

operations will correspond to an ADT. Frequently, however. it defines some type that is

18

not fully characterized. Figure 3.1 shows an example of a trait Table specifying a class

of tables that stores values in indexed places. It is similar to conventional algebraic

specifications. The part of the specifications following the introduces keyword gives

a list of operators, each with its signature. Each trait defines a theory in typed first-

Table: trait

introduces

new: —. Tab

E # : Ind, Tab -: Bool

lookup: Tab, Ind: —: Val

isEmpty: Tab rightarrow Bool

size: Tab -: Card

assert Vi,i’: Ind, val : Val. t : Tab

lookup(add(t,i,val),i’ == ifi = i’ then val else lookup(t, i’)

fi(i 6 new)

i6 add(t,i’,val) == i= 3" V i E t

size(new) ==

size(add(t,i,val)) == ifi E t then size(t) else lookup(t, i’)

isEmpty(t) == size(t) = 0

Figure 3.1. An Example Trait: Table.

order logic with equality. A theory is a set of formulas without free variables. It

contains the trait’s assertions, the conventional axioms of first-order logic, everything

that follows from them and nothing else. Equational theories are useful, but a stronger

theory is often needed, for example, when specifying ADTs. The clause generated

by asserts that all values of a sort can be generated by a given list of operators,

thus providing a generator induction schema for the sort. This clause is useful for

Specifying constructors of ADTs. The clause partitioned by asserts that all distinct

Vallues of a sort can be distinguished by a given list of operators. Terms that are not

19

distinguishable using any of the partitioning operators of their sort are equal.

For modularity, it is often useful to include a separate trait by reference. This

convention makes it easier to reuse pieces of others specifications and handbooks. We

might add a clause following the keyword include or import to some trait. The

theory with the including (importing) trait is the theory associated with the union

of all of the introduces and asserts clauses of the trait body and the included

traits. Figure 3.2 gives two more trait examples, Container and Member. A new

clause beginning with assumes is introduced. The trait Member builds on Container

by assuming it. It constrains the new and insert operators that it inherits from

Container, as well as the operators that it introduces, E and ¢. Similarly, the trait

Set assumes the traits Container and Member. The theories associated with any

trait includes the theories of the traits that is assumes, includes, or imports.

3.3 Larch Interface Language

The Larch Interface Language (LIL) describes the effects of a program component’s

loperations. In this section, we define the specifications related to a component of

object-oriented programming languages. Leavens and Choen have designed a pre-

liminary version of Larch/CH [38]. We use similar specifications to specify program

components (classes).

Most notations of Larch/CH are taken from LCL [45] that is a Larch interface

language for the C language. The basic notations from LCL are described as follows.

The states are mappings from lacs to objects, where lacs refer to the locations of

variables. Each variable identifier names a loc. The major kinds of objects are

0 basic values are mathematical abstractions defined by LSL.

o locs are abstractions of computer memory cells.

0 structs are collections of locs.

Container (E, C): trait

introduces

new: -: C

insert: C, E -+ C

asserts

C generated by new, insert

Member (E, C): trait

assumes Container

introduces

#€#: E,C—>Bool

#¢#: E,C—:Bool

asserts V c: C, e1, e2: E

-(e1 6 new)

e1 6 insert(c, e2) :2 el = e2 V e1 6 c

e1¢ c == -:(e1 6 C)

implies converts 6, ¢

Set (E, C): trait

assumes Container, Member

introduces

U #: C, C —: C

n #: C, C -r C

\ #1 C. C -+ C

delete: C, E: -> C

isempty: C -: 8001

size: C -> Card

asserts V c: C, e1, e2: E

C partitioned by E.

e1€(slU52)==e1651Ve1652

e16(slfis2)==e1€sl/\e1€s2

el€(sl\82)==eIEsl/\el¢s2

e1 6 delete(sl, e2) == e1 E 51 A e1 # e2

isEmpty({}) = a isEmpty(insert(s1, e1))

size(m ==
size(insert(sl, e1) == if e1 6 51 then size(sl) else succ(size(sl))

s1 Q 82 == isEmpty(sl \ 32)

Figure 3.2. More Examples of Traits.

21

o unions are similar to structs, except that their locs overlap.

o arrays are bounded vectors of adjacent locs, indexed from 0.

s pointers are references to collections of one or more adjacent locs.

The following LCL primitives are available for accessing the initial and final states.

o ” ”’ can be applied to locs, arrays and structs. It is used to extract their values

from the final states. If no symbol is applied then the extracted values are from

initial states.

0 t is used to dereference a pointer, producing its locs with offset 0.

o -> is a syntactic shorthand to deference a pointer to a struct and then select

one of its members.

o [i] is used to index an array, producing a loc.

[] is applied to a pointer to cast it into an array.

Each identifier’s type defines the kind of objects which may be in any state. Each

LSL value has a unique sort. There is a mapping from LCL abstract types to 1.81. sorts.

Each abstract data types defined in LCL is based on an LSL sort. LCL specifications

are written using types and values. The properties of these values are defined in LSL,

using operators on the sorts on which those types are based. The mapping between

LCL (or Larch/CH) ADTs and LSL sorts enhances the reusability of specifications

and verifications.

3.4 Component Specification

The component construct is used as the vehicle for encapsulation and data hiding.

Objects are defined in terms of components. A component is a user-defined type. A

th

Cal

lug

ant

SPCI

Cons

22

component componentmameidentifier

{ .

inherit: componentmameidentifier’“

private:

members (data and methods)

protected:

members (data and methods)

public:

members (data and methods)

Figure 3.3. Basic Construct for Component Specifications

component description defines the characteristics of all objects declared to be in the

same component. The component construct also provides the basic unit of reusability.

It binds an underlying data type with a set of public, protected, and private methods

(functions) that allow the underlying data type to be manipulated by passing messages

to the object. The skeleton of a component specification is shown in Figure 3.4. The

key word inherit indicates that the current component inherits the properties from

the components of the following components. The specification of inheritance will

be discussed shortly. The specifications in the private section define the behavior of

private methods in this component. Similarly, protected and public sections specify

the corresponding methods in this component.

The objects declared to be a part of a given component may communicate with its

callers by returning a result, by accessing objects accessible to the caller, or by modify-

ing such objects. The specification of each method in an object can be comprehended

and used without reference to the specifications of other methods. An example of

specifying several methods in the component intSet is shown in Figure 3.4, which

consists of a function prototype followed by a body specified in terms of of pre- and

component intSet based on S from Set (Int for E)

{

public:

insert()

ensures new(return) A return’ = {}

insert(int e)

modifies (this)

requires this’ = add(this,e)

delete(int e)

modifies (this)

ensures this’ = rem(this,e)

Figure 3.4. Component interfaces for intSet.

postconditions. The requires clause describes restrictions on the arguments, thereby

defining how the caller may use the method. We interpret an omitted requires clause

‘as equivalent to “requires true.” The ensures clause places constraints on its be-

havior when it is called properly. They relate two states, the state when the method

is called, which we call preCondition, and the state when it terminates, which we

call postCondition. A requires only refers to the values in the preCondition. An

ensures clause may also refer to values in the postCondition. As in C++, this denotes

the object at which a component Operation is invoked. The reserved symbol return

is used as an implicit result to denote the object returned as a result of executing

an operation. An omitted modifies clause is equivalent to the assertion modifies

nothing, meaning no objects are allowed to change in value. A new(object_list)

predicate that appears in a constructor’s postcondition asserts that fresh storage is

allocated for each object listed in object-list. The values specified in the members

:24

of private segment are not allowed to be changed by the callers. It says that the

method must not change the value of any objects visible to the callers in the private

segment.

3.5 Method Specification

The expressions used in method of components are based on first-order predicate

logic. Figure 3.5 gives the grammar of the specification of expressions in methods.

In this grammar, symbols expressed in the Roman font represent terminals, italicized

symbols represent terminals, bold-faced symbols denote keywords, the Kleene star

(*) denotes zero or more repetitions of the preceding unit, and parentheses (‘0’)

indicate groupings. The symbol “:z” separates an identifier from a description of the

value denoted by the identifier, and the symbol “z” separates identifier declarations

from a description of the type associated with the identifier. The operators obey

the following decreasing precedence order: negation (a), conjunction (A), disjunction

(V), implication (=>), and if and only if (4:). Primitive types, e.g. Bool, Int, and

Real, are predefined in Larch traits and can be referenced by the users.

3.6 Subtypes and Subclass

The features that most distinguish object-oriented programming languages from those

only supporting data abstraction are message passing and inheritance. In this disser-

tation, only inheritance specification will be addressed since specification for message

passing is beyond the scope of this dissertation. A useful abstraction in an object-

oriented programming language method is the use of supertypes as abstractions of

their subtypes [46]. Because of the complex inheritance mechanism of C++, the sub-

typing relationship is abandoned in Larch/CH [38]. Since it is an interesting issue

method methodmame((variable: type_name) *)

requires: expression

modifies: expression

ensures: expression

expression = true

| false

I (expression)

I -. expression

| expression A expression

| expression V expression

| expression => expression

| expression 4: expression

| (V variable : type :: expression)

| (3 variable : type :: expression)

| predicatemame [(term (, term)*)]

I
def .

term 2 expression

term = variable

I functionmame [(term (, term)‘)]

Figure 3.5. Grammar for Component Methods.

when we attempt to define specifications of classes in an object-oriented programming

language, This section presents a discussion on the topic of subtyping [38, 47].

A type, that is, an AD’I‘, is a behavioral notion and may be implemented by many

different classes. A class is a program module that implements an AD‘l‘. A subtype

is also an AD’I‘, each of whose objects behave in a way similar to some objects of its

supertypes. A subclass is an implementation that is derived by inheritance from its

superclass. In contrast, a subtype represents a behavioral relationship. When a sub-

type is derived from some supertype, the object’s behavior with this subtype can be

verified by the objects with its supertype instead of reverifying this subtype, whereas

a subclass relationship is a purely implementation relationship. The generality rela-

tionship in our system [42, 44] is similar to the supertype-subtype relationship.

The C++ type system does not distinguish completely between subtypes and sub-

‘26

classes. Each class name is the name of a type for type checking purposes. The only

way to declare S as a subtype of T is to declare class 8 as a public subclass of T. S

and T may have an implementation relationship but have no subtype relationship.

Conversely, if S and T have a subtype relationship then they must have a subclass

relationship. Because the designers of Larch/0H tried to make Larch/C++ match

C++, there is no type keyword in the class specification of Larch/C++. Therefore,

S and T have a subclass relationship in C++ but they may not have the subtype re-

lationship at the specification level. For example, in the Borland C++ library, class

Set is a subclass of class Hash Table (See Figure 3.6) but we would not intuitively

consider HashTable to be a supertype of Set at the specification level. In the C++

language, the subclass relationship is implementation-specific and cannot represent

the true supertype-subtype relationship.

Figure 3.6. The Borland C++ Subclass Relationship.

._.

”ft
ital.

I'm

sea

era

ow

5P<

:io

ITIC

p
—
-

u

(
I
)

A

27

There are many ways to interpret what inheritance of specifications means for a

class specification. The goal of the semantics of inheritance should be to define the

interface of a class that implements the specification and to describe the effect of each

defined message sent to objects of that type or its subtype. This goal can be satisfied

by overloading the trait functions to interpret the inherited member functions, but

this kind of overloading is only meaningful for subtypes that are public subclasses.

The other goal is to construct a specification for a class that uses no specification in-

heritance, thus reducing the specification problem to an already specified component.

This goal can be achieved by in-line expansion of the inherited specification, and then

reinterpret the trait function in the specification by the used traits of the subclass.

Regarding the specifications of the semantics of multiple inheritance, current re-

search has not completely solved this problem so far. We say conflict happens when a

class inherits two methods with the same name from different classes. There are sev-

eral ways to eliminate the conflicts. The user is forced to give an explicit specification,

overriding all other specifications. Or the user may choose the most “representative”

specification. Finally, we can use some scheme of composing the inherited specifica-

tions. for example, taking the disjunction of the preconditions, the intersection of the

modifies clauses, or the conjunction of postconditions. It is not clear what approach

is appropriate for reusing the inherited specifications. Currently, the third alternative

is used as the semantics of multiple inheritance.

As for the definition of subclass, two classes A and B are used to explain the

concept of subclass. Ideally, a subclass should be designed to implement a subtype.

If r is an operation of A and B is a subclass of A, then the precondition of r in

the specification of B may be no stronger than the precondition of r in A, and the

postcondition of r in the specification of B must be no weaker than the postcondition

of r in A. This rule ensures that the implementation of an operation in subclass B

satisfies the specification of that operation in the superclass A. However, this case

IQ

of If

28

does not hold in C++ because, in C++, an operation in subclass B may not exist in the

superclass A. Therefore, the subtype relationship is changed to a new relationship

called generality that is defined in next section in order to match the C++ subclass

relationship.

3.7 Defining Generality

Chapter 4 will describe the construction of the lower-level hierarchy that serves to clas-

sify a set of software components according to the subsumption relationship between

reusable components. In simple terms, component A is said to subsume component

B if A is more general than B, denoted by A 230..., B. A new resolution rule is

described that increases the range of candidates, as compared to the number of exact

matches, that can be retrieved using automated reasoning techniques.

We use LSL traits as the basic reusable units in specifying program components.

All the terms (including predicates and functions) are assumed to be well defined in

the Larch trait library. Therefore, reusing traits drawn from a generally accessible

handbook will serve to standardize the notation. A Larch trait browser [48] is being

developed to facilitate the user’s search for suitable reusable components or the con-

struction of a query specification. Figure 3.7 shows the relations among some traits

with respect to a new relation 2“,... which is defined as follows:

Definition 3.1 Let the relationships of assumption, inclusion or importation among

traits be called the relationships of inheritance. Assume S and T are two traits in

the Larch library: S 2...... T ifS has the reflexive and transitive closure of inheritance

with respect to T.

In Figure 3.7, a trait inherits the properties of its parent traits. From the definition

of the relation 2...." a partial ordering is imposed upon the basic traits of the LSL

library. This partial ordering can be applied to the subsumption test algorithm,

inI

be?

tru

0rd:

Inefi

Pone

fis

PQM(

dith]

Condj

C11,,

fruits

in

defies

Figure 3.7. Relations Among the Traits

in the construction and retrieval processes, to determine the generality relationship

between every pair of specification components that are built from the set of LSL

traits. Figure 3.8 shows a modified subsumption test algorithm based on the partial

ordering 2......

Component A is more general than component B (A 2mm, 3) if, for every

method (operation) f in component A, there exists at least one method f’ in com-

ponent B such that f is more general. than f’, denoted by f 2mm»: f’. Method

f is said to be more general than another method f’ if pre(f’) 2cm.” pre(f) and

post(f) 2d...“ post(f’), where pre(f) and post(f) represent the pre- and postcon-

ditions of f. pre(f') 24“,, pre(f) (post(f) 2d,“, post(f’)) means that the pre-

condition(postcondition) of f(f’) subsumes the precondition(postcondition) of f'(f)

Chapter 4 gives an algorithm that builds the lower-level hierarchy based on the gen-

erality relationship between components (QCMP).

An ADT, is a behavioral notion and may be implemented by many different

classes. A class is a program module that implements an ADT. A subtype is also

»
—
i

ci

to [h

30

The input is the set of expressions W. The output is either an empty set or the empty

clause, represented as D.

1. L813 W ={"L10’, . . . , “Lm0’}.

2. Set I: = 0 and 20 = {A}, where A is the original set of clauses.

3. If Z" contains 0, terminate; A subsumes B, denoted as A 2cm.“ B.

Otherwise

let 2"“ = {Resolvents of C1 and C2 w.r.t. 2m... [[01 E Z“ and C; E W}.

4. If 2““ is empty, terminate; A does not subsume B. Otherwise, set k = k + 1

and go to (3).

Figure 3.8. Subsumption Test Algorithm based on 2......

an ADT, each of whose objects behave in a way similar to objects of its supertypes.

A subclass is an implementation that is derived by inheritance from its superclass.

A subtype represents a behavioral relationship. When a subtype is derived from

some supertype, the object’s behavior with this subtype can be verified according

to the objects with its supertype instead of reverifying this subtype. In contrast, a

subclass relationship is a purely implementation relationship. In the C++ language,

the subclass relationship is implementation-specific and cannot represent the true

supertype-subtype relationship. The generality relationship in our system is similar

to the supertype-subtype relationship.

OIEa

scri't

Cons

and

Paem

com;

4.1

The 0

0i fell

Search

.DLlCab]

5...?

lo the

CHAPTER 4

Construction of Hierarchical

Component Library

This chapter presents an approach, based on formal methods, to the classification and

organization of reusable software components. From a set of reusable components de-

scribed by formal specifications, a two-tiered hierarchy of software components is

constructed. The formal specifications represent software that has been implemented

and verified for correctness. The hierarchical organization of the software compo-

nent specifications provides a means for storing, browsing, and retrieving reusable

components that are amenable to automation.

4.1 Lower-Level Hierarchy

The objective of the construction process is to construct a hierarchical organization

of reusable components that will provide a fast means for browsing, retrieving, and

searching of software components exploiting the automated reasoning techniques ap-

plicable to formal specifications. The lower-level hierarchy provides a means for a

fine-grained, precise determination of reuse, where logical reasoning can be applied

to the specifications.

3l

toI

rt‘SC

32

4. 1 . 1 Determining Generality

Chang and Lee’s subsumption test algorithm [49] is used to decide the subsumption

relationship between clauses, that is, whether clause A subsumes clause B, denoted

by A 2d,“, B. We exploit the traditional resolution strategy [50] to compute the

resolvents of two clauses, say 01 and C; (Figure 4.1). The full resolution rule involves

Cl: L,K1,...,K,,

Cg: qL, M1, ..., Mm

resolvent: K1, ..., Kn, M1, ..., Mm.

Figure 4.1. Resolution Rule

an instantiation of the formulas by a substitution 0', which is a mapping of variables

to terms. Application of this substitution must result in the same atoms for both

resolution literals [51]. In Figure 4.2, if a is the most general substitution that makes

clause 1: L, K1,...,K,,

clause 2: nL’, M1, ...,Mm L0 = L’a

Figure 4.2. Full Resolution Rule

the atoms L and L’ equal, then it is the most general unifier for the two expressions,

where the resolvent is obtained by instantiating the remaining variables of clauses l

mmh

of [WC

4.1.2

8de

“Wm

33

and 2. Atom L is said to be congruent to atom L', denoted by L 2:: L', when both

L and L' are in an equivalence class partition eq-class that may be defined by the

user or the system (see Section 4.2.1 for further details). Following the approach of

the resolution rule, if a congruity relationship exists between L and L’, then L and

HL’ can be eliminated in order to obtain a c-resolvent, a resolvent with respect to the

congruity relationship. As a result, a modified resolution rule given in Figure 4.3 is

derived, where 0' is a substitution that maps variables to terms. Using the modified

Cl: L,1{1,...,1{n

Cg: "L’,M1,...,Mm L0 2 L’U

resolvent: K10, ..., Kna, M10, ..., Mme.

Figure 4.3. Modified Resolution Rule

resolution rule, the subsumption test algorithm [49] is modified to find the c-resolvent

of two clauses Cl and 02 rather than their resolvent. The modified subsumption test

(MST) algorithm can be applied to every pair of methods of the two components being

compared in order to determine the generality relationship between two components.

The MST algorithm between two sets of methods is shown in Figure 4.4, where

methodsA (methodsg) is the set containing the methods of the component CompA

(Comps). The cardinality of methodsA (methodsg) is m (n).

4.1.2 Building Lower-Level Hierarchy

Based on Algorithm 1, the generality relationship can be determined between any pair

of components in order to build the lower-level hierarchy. The straightforward ap-

pro

bell

Hon

OIde

find

to Cc

34

Algorithm 1 More_General-Component

Input: Two sets methodsA = {A1, A2, ..., Am} and methodsg = {81, B2, ..., Bu}.

Output: The generality relationship between components Camp, and Comps.

Procedure:

begin

find :— true;

while methodsA 74 {} and find = true do

select some A.- 6 methodsA;

methodsA «— method-9A \ At;

setg «— methodsg;

find «— false;

while sets # {} and find = false do

select some B, 6 sets;

setg «— setg \ B);

if Ai amethod Bj

then find «— true;

endwhile;

endwhile;

if find = false

then return(“-‘(C'0mm geomp C0771113) ’7"

else TCt‘llTfl(‘COTnPA acorn}: Compg ’7;

end.

Figure 4.4. Using MST to decide the generality relationship between components

CompA and Comps.

proach is to construct the lower-level hierarchy by performing a pair-wise comparison

between all components. The pairowise comparison algorithm is shown in Figure 4.5.

However, the transitivity property of the generality relationship can be exploited in

order to reduce the execution time of building the lower-level hierarchy. If A _:_J B

and B Q C then the relation A Q C is automatically established without having

to compare components A and C. A few definitions are given before presenting the

improved algorithm. For some set of lattices (SOL) \II, the set of top nodes in \I!

35

Algorithm 2 Pairwise.Comparison

Input: A set of components SET = {C1, Cg, ..., Cu}.

Output: A hierarchy of components based on the generality relationship.

Procedure:

begin

while SET # {}

select some component C.- 6 SET;

SET 0—- SET \ 0;;

set «— SET;

while set 96 {}

select some C,- 6 set;

set «— set \ 0,;

if C,- Qm, C,-

/"r More-General.Component algorithm will be used to

compare C,- and C,- */

then make C,- a parent of C1

else if C; 2mm, C;

then make C, a parent of C,-

endif

endif

endwhile;

endwhile;

end.

Figure 4.5. Building the lower-level hierarchy by pair-wise comparison.

36

is denoted by Top(\Il) and the set of bottom nodes by Bottom(\II). If node a has

no parent nodes in the SOL \II, then a E Top(\Il). Similarly, if a has no children

nodes in the SOL ‘11, then a E Bottom(\P). The internal nodes in \II are defined

as Internal(\II) = \II \ (Top(IIl) U Bottom(\II)), where ‘\’ represents set subtraction.

For some node a 6 \II, the set of parent nodes of a is denoted by parent(a) and

the set of children nodes by child(a). The set of the descendants of a, denoted by

descendant(a), is defined as follows:

fl 6 descendant(a) 4: ((fl 6 child(a)) V (37 : 7 6 child(a) : fl 6 descendant(7))

The set of the ancestors of a, denoted by ancestor(a), has a similar definition. A par-

allel algorithm to build the lower-level hierarchy based on recursive comparisons and

the generality relationship is given in Figure 4.6. A pictorial representation of an ex-

ample construction of the lower-level hierarchy by procedure Recursive_Comparison

is shown in Figure 4.7, where dashed lines represent the application of the procedure

Recursive.Comparison, solid lines represent the generality relationship, and the dot-

ted lines encapsulate SOLs. Initially, the example contains eight SOLs and each SOL

contains only one component. These eight SOLs are merged into one SOL after ap-

plying the two procedures Compare and Merge. Compare(\II,-, ‘11,) determines the

generality relationship between nodes in SOLs III,- and W,- by using a recursive ap-

proach. For example, if some node a is more general than some top node 19 of III,

then it is not necessary to compare a with the descendants of ,6. However, if some

top node ,3 is more general than a then the comparison between a and the descen-

dants of ,6 is required. The same reasoning can be applied to the comparison between

a and the bottom nodes of the SOL \II. The procedure Merge(\I’,~, ‘11,) “connects”

the newly generated generality relationship between SOLs ‘1',- and W,- to form a new

SOL. Recursive.Comparison can be implemented as a parallel algorithm since the

Al

Cu

Pr:

37

Algorithm 3 Recursive-Comparison

Input: A set {\IIo,\III,...,\II,,-1}, where W,- represents a set of lattices and assume

it = 2'”.

Initially, \I'; = {C,-} where C,- is a component.

Output: \Ilo contains a hierarchy of components based on the generality relationship.

Procedure:

begin

for i .'= 0 to m-I do

(I ‘__ 2:".

do all III). where 0 S k S 2'” — 1 /* Parallel execution of all iterations */

if 1: mod 2"H = 0

then

Compare(\I'k, \Pk+d);

\Pk «— Merge(\II;., \I’Hd);

endif;

end.do.all;

endfor;

end.

Figure 4.6. Building lower-level hierarchy by recursive comparison.

comparisons between the SOLs are independent of each other. Only the nodes in Top

and Bottom sets are compared in the procedure Compare.

Applying algorithm Compare(SOLA,SOL3) to two SOLs SOLA and SOLB is

illustrated in Figure 4.8. For discussion purposes, attention is focused on the top

node E in SOLA and the bottom node F in SOLE. If F 2 E, then make node F

a parent of node E since all nodes in ancestor(F) U {F} must subsume the nodes

in descendant(E) U {E}. However, if E 2 F, then node E needs to be compared

with the nodes in ancestor(F) and node F needs to be compared with the nodes

in descendant(E) in order to obtain complete generality relationships. Using the

recursive method to build the lower-level hierarchy may reduce the computational

38

 o ...a"’/.

K ',

~7“u-.--..-...unm

\

I, \

I \

Figure 4.7. Example of building hierarchy by recursive comparison.

time of construction since the comparisons of the internal nodes in the SOL can be

eliminated.

4.2 Higher-Level Hierarchy

After applying the MST, the software components may be grouped into disjoint clus-

ters in a set of graphs (ASG'). In order to form a connected hierarchy of software

components, a conventional clustering algorithm [52] is applied to the most general

components obtained from the MST, that is, the roots of trees and the top elements

Figure 4.8. Example of comparing two SOLs.

of the lattices in ASG.

Classification by clustering techniques has been used in many areas of research,

including information retrieval and image processing [53]. Typically, the objective

.of clustering is to form a set of clusters such that the intercluster similarity is low,

and the intracluster similarity is high. Applying a clustering algorithm to the most

general components of the lower-level hierarchy leads to the generation of the higher-

level hierarchy of the component library. The similarity between two components X

and X', denoted by s(X, X’), is used as the basic criterion to determine clusters. In

general, the criterion used to evaluate similarity determines the shape of the resultant

clusters.

4.2.1 Measure of Similarity between Components

In this section, a simple evaluation method for computing similarity is given. The

similarity between a pair of components, X and Y, is denoted by s(X, Y). Similarity

'The c

Where

Th.

Order a

repr65e

inequal

”foCia:

9’60tgr

The equ

The

40

is symmetric, thus for any two components, X and Y:

s(X, Y) = s(Y, X).

In addition, similarity s is said to be normalized if 0 S s(X, Y) S 1. Each predicate

formula in the library expressed in DNF represents a software component and is

regarded as one of the input objects that are to be classified by the hierarchical

clustering algorithm.

If s(X, Y) represents the similarity between two software components X and Y,

then it is assumed that X and Y are of the following forms.

X = xIngv...me and

Y = yIVygv...Vy,,.

The disjuncts x,- and y,- are defined in terms of conjuncts, that is,

x.- = p;,/\p;,/\...Ap.~u._, lgigm and

y.- = q,-,/\q,-,A...Aq,-vi,1<ign,

where u; and v,- are the number of conjuncts within disjunct x,- and y,-, respectively.

The disjuncts of each object are ordered from left to right in a nondecreasing

order according to the number of conjuncts in each disjunct. Given that u,- and v,-

represent the number of conjuncts for disjuncts x,- and y,-, respectively, the following

inequalities are true: u,-_1 S u,- and v,-_1 S v,-, for all i. Moreover, each conjunct pg, is

associated with an equivalence class eq.class. For example, if p:, = greater(a, b) and

greater is in the equivalence class for comparison, then eq.class(p,-,,) = comparison.

The equivalence classes may be specified by the users or be system-defined.

The number of equivalence classes in a software component library is assumed

from

SIYUCI

Where

The si

is cgc

We.

0“ 53's

41

to be a known value, say T. Using the above definitions, a matrix me(1~+1) is

constructed for every component X. The matrix me(T+1) derived from component

X has m rows and T+l columns. X(i, j) represents the entry in row i and column

j. Row i represents the i“ disjunct of X as follows, where there are u,- conjuncts in

disjunct x,-.

X(i,0) = u,-, 05ism—land

X(i,j) = l, x,- has 1 terms in eq_class j.

Similarly, for component Y containing v,- conjuncts in disjunct y,-, the corresponding

matrix is defined by

Y(i,0) = v,-, OSiSn-land

Y(i,j) = l, y,- has 1 terms in eq.class j.

From the derived matrices me(1+1) and Ynx(T+l): the similarity matrix 51“,, is con-

structed. The following expression defines sin“.

for all i,j if X(i,0) = Y(j,0)

,1, 2 .. min(X(i, t), Y(j, t))

ELKXUJ) + YUM)

else s'(i,j) = 0 (4.1)

 then s'(i,j) =

where s’(i, j) is the similarity of the i“ disjunct of X and the j‘h disjunct of Y.

The similarity between two conjunctive expressions from two software components

is calculated according to the minimum number of common occurrences of a given

equivalence class. Since the results from the clustering process are purely based

on syntactic similarities, only the disjuncts with the same number of conjuncts are

f
l
)

(
I
)

42

0 l 2 3 4 5

0 l 2 3 4 5 l I 0 0 I 0 0

l 2 1 1 0 0 0 2 2 0 1 1 0 0

2 3 0 1 2 0 0 3 3 0 0 2 0 1

3 3 0 0 I I I 4 3 0 I 0 0 2

(a) Matrix for X (b) Matrix for Y

Figure 4.9. Matrices for components X and Y.

selected for comparison. The semantic similarities are used in the construction of

the lower-level hierarchy. Assume N is the number of nonzero entries in sin“. The

similarity between software components X and Y is calculated as follows:

iii Eyre] $’(i,j)

N .
 3(X, Y) = (4.2)

Here, s(X, Y) is a normalized similarity since 0 S s(X, Y) S 1. The following example

is presented for clarification purposes.

Example 4.1 Suppose the similarity of two components X and Y is to be computed,

where both specifications are in DNF. Let X = (C1 A C2) V (C2 A C3 A C3) V (C3 A

C4 A Cs) and Y = (C3) V (Cg A Ca) V (Ca A C3 A C5) V (C; A Cs A C5), where C,- refers

to the term that corresponds to the i“ equivalence class. There are 5 equivalence

classes in this case, so T = 5. X has 3 disjuncts and Y has 4 disjuncts. The

corresponding matrices for X and Y are shown in Figure 4.9a and 4.9b, where the

vertical axis represents the disjuncts in each component and the horizontal axis refers

to the equivalence classes. From Formula (4.1), the similarity matrix s’(X, Y) can

be computed yielding results shown in Figure 4.9c, where the vertical axis represents

the disjuncts in component X and the horizontal axis refers to the disjuncts in the Y

1.,

U6:

{ind

43

1 2 3 4

1 0 2/4 0 0

2 o 0 4/6 2/6

3 o 0 4/6 3/6

Figure 4.10. Similarity matrix s’(X, Y)

2/4+4/6+2/6+4[e+2@ __ _1_ is
5 _

N

component. From Formula (4.2), the similarity s(X, Y) =

obtained. This value is used as input to the clustering algorithm when determining

which software components should be merged into one cluster.

A similarity value automatically determines the distance between two components.

That is, the distance between two components X and Y may be defined as d(X, Y) =

1 - s(X, Y). The distance between two components within a cluster should be small

and distance between two clusters should be large. However, a distance (computed

from similarity) does not necessarily satisfy the triangle inequality, and therefore is

unable to form a metric space [14].

4.2.2 Hierarchical Clustering

Input to a clustering algorithm is a set of components and the similarity val-

ues between each pair of components. A finite set of components is denoted by

X = {x1,xg,...,x,,}. Output from the clustering algorithm is a partition I‘ =

{01,632, ...,GN}, where 01,, k = 1, ..., N is a subset of X such that

GlUGgU...UGN=X, VI,k,I¢k,GmGk=0, (4.3)

and GI, Gg, ..., GN are the clusters of I‘.

44

The relationship between the partition of clusters generated from the intermediate

stages of refinement, denoted by I”, i = l, ..., K , is expressed as follows:

r‘ = {G§,...,G}',,..}, W: {G{,..., 1,6}, i: 1,...K, i<j < K+ 1, (4.4)

where for all I, N: Z N, and N is the final number of partitions. I" is a refinement

of I“, i < j, that is, for any member subset G}; E I", there exists Ci 6 1‘5 such that

G}; Q G;’ . Such groups formed by intermediate partitions yield a hierarchy of clusters.

A method for generating such a hierarchy is termed hierarchical clustering [52].

In general, hierarchical clustering algorithms are divided into two categories: di-

visive algorithms and agglomerative algorithms. A divisive algorithm starts with the

set X and divides it into a partition I‘K = {05, ...,G’fik}, then each cluster G,“ is

subdivided to form a finer partition PK'1, and so on. An agglomerative algorithm

initially regards each component as a single cluster: I‘1 = {{xl}, {x2}, ..., {xn}}. The

clusters are merged into a coarser partition I", and the merging process continues

until the trivial partition I‘K = {X} is obtained. Thus an agglomerative clustering

algorithm generates a sequence of partitions I‘1 —+ I" -: ...I‘K that is ordered from

a finer partition to a coarser one. This algorithm can be stopped at any partition

I",1 S l S K, if the maximum value of computed similarities is below a specified

threshold or if the number of clusters generated for a partition is equal to a user-

specified or system-defined value.

In most agglomerative algorithms, only one pair of clusters is merged at a time.

Hence if 1‘i = {Gj,...,G’jvi} and Pi“ = {G’]+’,...,G'j(',;1‘}, then N,“ = N; - 1. That

is, N; = n — i + 1,i = 1,...,n and I‘1 = {{xl},{x2},...,{x,,}},I‘N = {X}. Figure

4.11 gives a pictorial representation of the refinement process. Similarity between

clusters is used as the criterion for the selection of a pair of clusters in I“ that are

to be merged. A pair of clusters (GWG'Q) is selected to be merged if it has the

45

.. O...OO

6' O G“ 4 O".

at on“: G"

r... O 'i'OO

/\ l

.. oo- - co
0| G: 0 GM, -l on,

.. @- --ooo
0:

an, .1 0N,-i on,

Figure 4.11. Refinement of partitions in an agglomerative clustering algorithm

maximum value of similarity among all pairs of clusters. Let the current partition

be P = {G1,...,GN}. The similarity value between two clusters is the maximum

value of all similarities calculated between disjuncts from the respective components.

Formally, the sim relationship is expressed as

s(X, Y)).sim(G,,,Gq) = max (max

An agglomerative procedure is given in Figure 4.12. The similarities between the

new cluster and other clusters are computed as follows: if G, and G, are merged into

a new cluster G,, then

Vi, sim(G,.,G',-) = min(sim(Gp,G,),sim(Gq, 0.)).

be

,
8
:

46

Algorithm 4 Agglomerative Clustering

Input: A set of disjoint lattices.

Output: A unified cluster.

Procedure:

1. Let each root of a tree or the top element of a lattice of the ASG be an

initial cluster consisting of the single element.

2. Find the pair of clusters that has the maximum value of similarity among

all pairs of clusters.

3. Merge the pair of clusters found in step 2 into a new cluster.

4. If there is only one cluster remaining, then stop. Otherwise, update simi-

larity values between clusters; go back to step 2.

Figure 4.12. Agglomerative Hierarchical Clustering Algorithm

4.2.3 Hierarchical Clustering Algorithm

The hierarchical clustering algorithm used is similar to Kruskal’s algorithm for find—

ing a minimal spanning tree [54], which always chooses an edge with the least weight

in the construction of the spanning tree. In this case, weights are replaced by simi-

larity values for software components and the maximal weight rather than the least

weight is sought. After applying the algorithm, a tree-like hierarchical clustering is

obtained. Figure 4.13 contains the detailed description of the hierarchical clustering

algorithm where X is the set of predicate components, s(X,, X5) is the similarity be-

tween components X,- and Xj, and sim(Gk, Cl) is the similarity between clusters G].

and 0;. The algorithm begins by creating a cluster for each software component to

be classified, that is, the most general components found in the lower-level hierarchy,

and the first partition contains all of the initial clusters. Next, a pairwise calculation

of similarity between the clusters is made. Based on the similarity values, two clus-

47

ters yielding the greatest value are selected to be merged. After the two clusters are

merged, the similarity values between clusters is updated, thus defining the partition

for the next iteration of the clustering algorithm. The user may specify an upper

bound on the number of iterations (refinements) or stop the clustering algorithm

‘ while viewing the clustering process. This flexibility allows the user to incorporate

background experience in order to determine when further refinements will fail to

yield substantial changes between partitions. The final hierarchically organized li-

brary could be of the form given in Figure 4.14, where filled nodes, termed real nodes,

represent software components and unfilled nodes are newly generated nodes created

by the hierarchical clustering algorithm, called meta-nodes. A meta-node acts as a

container for the software components from it which it was derived. Dashed lines

represent relationships formed by the MST algorithm and the solid lines are formed

by the hierarchical clustering algorithm representing similarity relationships.

4.3 Implementation

iln order to facilitate the user’s involvement in determining reuse based on formal

specifications, the construction of the software component hierarchy has been imple-

mented in the framework of a graphical browser. This section discusses the imple-

mentation framework and describes an example construction of a hierarchy from a

set of software component specifications.

4.3.1 Browsing Hierarchy

A prototype system for constructing the hierarchical library has been implemented

in the Quintus ProWindows language ;‘ a dialect of Prolog that supports the object-

oriented organization of graphical elements. There are several advantages to using

'A product of Quintus Computer Systems, Inc.

48

Algorithm 5 Hierarchical Agglomerative Algorithm

Input: The set X = {$1,Ig,...,$n} and the similarities s(x,,x,-), 1 S i,j S n.

Output: one or more clusters.

Procedure:

begin

N = n;

for i = 1,...,N do

G.“ = {1;}

endfor;

F] = {61,02, GN};

Limit = I;

for 1 Si,j g .'V,i;éj do

sim(G’.-,G,) = s(x,,x,-)

endfor; /* Initialization */

/* If there is more than one cluster then iterate, otherwise stop. */

while (N > Limit) do

N = N - l;

/* Select the pair of clusters to be merged */

find a pair of clusters 6', and G, such that

sim(G,,, Gq) = maXGhGJ-ern_mg¢j sim(G.-, Gj)

= mach.G,EFn-N.i¢j maxrereG,‘ 3(zi 31);

G, = G, U 0,;

Fn-N+l = (Fit-N - {Gpqu}) U {Gr}

/* Update the similarity values */

for all G.- 6 EPA/+1, G.- # 0,, do

calculate sim(G',, 0;) = maxfiawegi s(r, y)

endfor;

Limit = query.user.for.number.of.clusters;

/* Query user for a limit on the number of generated clusters*/

endwhile;

return PM)”;

end.

Figure 4.13. Hierarchical Clustering Algorithm

49

Figure 4.14. Two-tiered hierarchy formed by the subsumption test and the clustering

algorithms

Prolog, and specifically ProWindows, as the implementation language. First, Pro-

log’s declarative properties facilitate the handling of first-order predicate logic spec-

ifications and the application of automated reasoning capabilities. Second, Prolog’s

procedural properties facilitate the implementation of backtracking algorithms such

as those used in the search for reusable components. Third, the support for graphics

in ProWindows using Prolog predicates facilitates a homogeneous implementation of

a system for handling the construction, searching, and browsing of a software compo-

nent library. Specifically,ProWindows provides direct support for high-level features

of the user interface such as dialog boxes, scrolling menus of sorted items, and term

editing windows.

4.3.2 Implementation of the Construction of Hierarchy

Figures 4.15 and 4.16 show screen dumps of sample applications of the subsump-

tion test algorithm and the hierarchical clustering algorithm, respectively, to a

50

set of software components. Originally, there were fifteen components in the li-

brary specified in the format described in Chapter 3. A larger example will be

described in Chapter 8. Selecting the Clustering option shown in the pop-up

menu in Figure 4.15 will execute the subsumption test algorithm, which causes

the four subwindows shown in Figure 4.15 to be displayed, where each window

contains one cluster. In the example, component DoubleQueue is a child of

re loose but!”

@"WDCEDCUM" c——3v...q....
@fiumsdon for!) Wblffiubdn) (Two-Thad marten) (Um Search) (Hierarchical Search) (Comput- Analog)

ET

F'""'j["“"‘”° fl chotna H um- “ an.-. H and chJom H unmet J

_
J

Figure 4.15. Sample application of subsumption test algorithm

..
_
.

.
__
_.
l
.
;
;
|

«
1

[
O
N
]

ll

51

louse Inner 38

GE) (15) @ CM") 0"" QM) OWE (5770 (WE

(w—bsumubn Test) (Watchful Chm-flan (Two-Tiered "£0th (Liner Search) (Hhmchlcal South) (Compute Ailey)

E

I“! cum

Figure 4.16. Sample application of clustering algorithm

the component Queue, where DoubleQueue and Queue represent the classes (or

types) DoubleQueue and Queue, respectively. Figure 4.17 gives the specification of

Queue, which contains five methods: Queue, ~Queue, Queue: :appendAtEnd, and

Queue: :clear. The first two methods Queue and ~Queue represent the construc-

tor and destructor of the component Queue, respectively. Queue: :appendAtEnd ap-

pends an element to Queue. Queue: :clear removes all objects that Queue con-

52

tains. Similarly, the specification of DoubleQueue is given in Figure 4.18, which

component Queue

abstract type Queue;

public

void Queue(Queue It-queue) {

modifies tqueue;

ensures (*queue)’ - NULL.Queue;

}

void ~Queue(Queue IInqueue) {

modifies Iliqueue;

ensures trashedhqueue) ;

}

void Queue::appendAtEnd(Queue *queue. Objectt element) {

requires fifuIICqueue);

modifies I«queue;

ensures 1ast(queue’) 3' element A

butLast<queue’) 8' butLast(queue) A

}

void Queue: :clear(Queue *queue) {

modifies It-queue;

ensures isEmpty(*queue)

}

Figure 4.17. Specification of Component Queue.

contains six methods: DoubleQueue, ~Doub1eQueue, DoubleQueue: :appendAtI-an,

DoubleQueue: :appendAtHead and DoubleQueue::c1ear. For data types Double-

Queue and Queue, (Queue: :appendAtEnd 2mg,“ DoubleQueue: :appendAtEnd), and

(Queue: :clear Qmethod DoubleQueue::c1ear). Therefore, Queue is more general

than DoubleQueue as a whole, and Queue is displayed as a parent of DoubleQueue in

the browser graphically.

After determining the generality relationships between components, the clustering

Te

53

algorithm is applied to the four groups, displayed in Figure 4.15, in order to create a

connected hierarchy in the library. At this stage, only the roots of the trees from the

output of the MST algorithm are chosen as input to the clustering algorithm. In the

example, components Table and Sequence are merged and the hierarchical clustering

algorithm yields a meta-node metal for them. Figure 4.16 shows the results of the

clustering algorithm, where the components metal, meta2, and meta? are represented

by newly~created meta-nodes. Finally, a two-tiered hierarchy of software components

is constructed, shown in Figure 4.16, that can be used in the retrieval process. Upon

completion of the construction process, the user may choose to rename meta-nodes

(e.g. metal and meta?) to more descriptive names.

4.4 Summary

A classification scheme of software components expressed in Larch specifications has

been presented in this chapter. We have also described algorithms for implement-

ing this scheme. The classification algorithms, implemented in Prolog, are able to

construct a two—tiered hierarchical library from formal specifications. Thus, the hi-

erarchy can help users store, browse, and search existing reusable components. The

two-tiered hierarchy of reusable components provides a framework for the following

reuse processes: retrieval and modification.

54

component DoubleQueue

abstract type DoubleQueue;

pubfic

void DoubleQueue(Deub1eQueue tdeque) {

modifies tdeque;

ensures (*deque)’ I NULLDoubleQueue;

}

void ~Doub1eQueue(Doub1eQueue lIndeque) {

modifies Itdeque;

ensures trashed(tdeque):

}

void DoubleQueue: :appendAtEndwoubleQueue Itrdeque, Objectt element) {

requires etu11(deque);

modifies tdeque;

ensures 1ast(deque’) " element A

butLast(deque’) '8 butLast(deque) A

}

void DoubleQueue: :appendAtlleadwoubleQueue Itideque, Objectl element) {

requires wrul1(d.que):

modifies Itideque;

ensures first(deque’) 8- element A

butFirst(deque’) -- butFirst(deque) A

}

void DoubleQueue::clear(Doub1eQueue *deque) {

modifies #deque;

ensures isEmpty(sdeque)

}

Figure 4.18. Specification of Component DoubleQueue.

CHAPTER 5

Search and Retrieval of Reusable

Components

In the previous chapter, we proposed a model to classify the reusable components by

forming a two-tiered hierarchy of software components that are specified in terms of

the Larch specification language. Based upon this framework, we address the issue

of identification and retrieval of reusable components in this chapter. We present a

_hashing scheme to provide an initial indication of components for a query. A retrieval

algorithm is described in detail in Section 5.2. The output of the retrieval algorithm

can be used as input to the modification process that examines and modifies the

extracted components for reusability.

5.1 Hashing Scheme for Software Components

In this section, the method used to retrieve software components is described. A

hashing function HF: Component —+ R is defined, which maps a component to a

unique real number used in the retrieval process to reduce the search space of reusable

components.

The following auxiliary definitions are necessary for the hashing function defini-

55

56

tion. For a given component C that is specified by the predicate P, the closure of P

has the following definition.

Definition 5.1 For some predicate P, let closure(P) denote the closure of P, a set

of predicates and symbols. Let pred-func be a predicate name or a function name.

closure(P) is defined as follows:

e P E closure(P).

e ifQ = pred_func(arg1.argg,...,argn) and Q E closure(P), then org: 6

closure(P), dry: 6 closure(P),..., and argn E closure(P).

The level of a term T with respect to predicate P is defined as follows:

Definition 5.2 Let pred_func be a predicate name or a function name. The level of

some term T upon predicate P is denoted as level(P, T) and

e If T é closure(P) then level(P,T) = 0.

e If T E closure(P) and T is a variable or a constant, then level(P, T) = I.

e If T e closure(P) and T is a predicate or a function and

T = pred-func(arg1,arg2, ...,argn), then level(P, T) =

ma:r{level(P,arg1),level(P,arg2),...,level(P,arg,,)} + 1.

For a predicate P, the set of variables X,, i > 0, contains the variables in

closure(P) with the i“ type, where it is assumed that all possible data types can

be referenced by an index and the indices range from 1 to the total number of data

types defined. Let X = U,” X,- and E = closure(P) \ X (set subtraction). The arity

of the element f of E is denoted by a(f). Ifa,t 6 closure(P) and level(t) Z level(a),

then n(a, t) is used to represent the number of occurrences of'a in t.

A partial ordering on a set of terms is an irreflexive transitive binary relation. If

>- is a partial ordering, then the symbol 2': is used to denote a >- b or a = b. Now a

partial ordering >1: is chosen for 2, and a non-negative number, or weight, w(f) is

assigned to each element f 6 S. and a positive weight w,- is assigned to each variable

of type i subject to the following conditions:

57

e If a(f) = 0 then w(f) >5 w,- for all i.

e If a(f) Z 1 and w(f) = 0 then f >~g g for all elements 9.

For each such choice of weights and partial ordering, the Knuth Bendix Ordering

(KBO) [55] is defined on the terms, which is denoted by >- (>g,w) or just >-. For

this ordering, a weight is assigned to each term as follows. For any term t, let

w(t) = Z Z n(r,t) *w, + Zn(g,t) *w(g).

i 36X. 962

Thus, for example, the weight of a variable of type i is w;, and the weight of a term

is the sum of the weights of all symbols appearing in it. Suppose some component

C is represented by a first-order predicate P. In order to incorporate the structural

information of P into the computation of the weight of P, the levels of the terms

(Definition 5.2) in P are determined, where the value of the level is used to redefine

the weight of the predicate P. For this case, a term can be a variable, a constant, a

predicate, or a function. Now the weight of the predicate P is defined as follows:

level(P,P)

w(P) = Z z: n($,P)*wi+ Z Z n(g,P)*w(g)*a,-

i sex.- j=l level(P,g)=jAg€E

where 0:,- denotes the input parameter, which emphasizes how the level of the terms

in P influences the weight of P, that is, part of the structural information of P is

incorporated in the calculation of w(P).

Since the software components in the framework are expressed in first-order logic,

which contains a relatively small set of different types of symbols, it is simple to

determine their weights. However, it is possible that two terms may have the same

weight, thereby allowing two components to be mapped to the same value. In order

to resolve this conflict, each component C is labeled with an index, ind(C) = (W, r)

containing a pair of real numbers, where W denotes the weight of the component and

58

r denotes the rank of this component with respect to the other components having

the same weight. The rank can be deterministically decided by the Knuth-Bendix

Ordering described in Figure 5.1.

Definition 5.3 For some component C with weight W, where no other component

has the same weight then ind(C) = (W, 1). If there exist 1: other components with

weight W and all of them are greater than C according to the [(80, then ind(C) =

(w,k+ 1).

Similarly, the partial ordering for an index is defined as follows:

Definition 5.4 For any two components C and C’, ind(C) = (w,i) and ind(C’) =

(w’,i’). We say ind(C) >- ind(C’) if either w >- w’ or w = w’ and i < 2”.

Finally, the hashing function HF is defined as follows.

Definition 5.5 For some component C with index ind(C) = (w, i), the hashing func-

tion is defined as HF(C) = w at at + i, where 43 is a parameter that can be set to a

value that is either pre-defined by the system or set by the user.

5.2 Retrieval Algorithm

The previous sections explained how software components are indexed, that is,

bashed to real numbers by the hashing function HF. We also need to be able to

retrieve the components that satisfy the requests if one exists and to help the user

select the most similar components via the two—tiered hierarchy. In order to retrieve

the candidates for a given query, we devise the algorithm in Figure 5.2. The hashing

scheme in steps 1 and 2 has been illustrated in Section 5.1. The following explains

how the last two stages are supported in our approach. According to the two-tiered

hierarchy of software components described in Chapter 4, there are two kinds of

59

If s and t are two terms, then s >- t if and only if n(x,s) :- n(x,t) for all variables x 6 X

and either

1. w(s) >- w(t), or

2. w(s) = w(t)

and either

(a) s = f"(x) and t = x for some n 21, or

(b) s = f(sl,...sa(n) and t = f(t1,...tam) and f >- g,

(>- represents well-founded ordering) or

(C) 8 = f(81,...Sau)) and t = fa], ...ta(f)) and 81 =t1,... ,Sk-1 =tk-1

and s], >- t]. for some lc with 1 S is S a(f).

Figure 5.1. Knuth-Bendix Ordering

nodes in the hierarchy. The first kind of nodes, called real nodes, are the original

components, located in the nodes of the lower-level hierarchy. The second kind of

nodes, called meta nodes, are those generated by the clustering algorithm and located

in the higher-level hierarchy. In step 2 of the algorithm in Figure 5.2, the components

retrieved are always located in the real nodes since only real nodes are mapped to

real numbers by the hashing function HF.

The subsumption relationship is the major structuring mechanism of the

lower-level hierarchy. For the real nodes, a parent node subsumes any one of its

child nodes, that is a parent node is more general than its child node. This property

can be exploited in the retrieval process. Whenever a component is retrieved, the

components located in its child nodes can also be suggested as reusable candidates

by traversing the component hierarchy. However, since we emphasize the retrieval of

large scale software components, we need to automate the retrieval process as much as

possible. Figure 5.3 describes the retrieval algorithm that applies the subsumption

test given a query specification and a set of candidate components. The output of

60

Algorithm 6 Retrieval Process

1.

2.

The query specification Q is hashed to some number HF(Q)

Given a fixed value 6, a set of components 9 is returned to the user and

(VC : C69 :IHF(C)-HF(Q)I S 6),

that is, the diflerence between the hashing function value of each retrieved com-

ponent and the hashing function value for the current problem is less than some

value 6 .

Find the nearest common ancestor of all nodes in it, that is, the retrieved nodes.

Depending on the type of ancestor node, one of the following steps should be

followed:

Case 1: If the nearest common ancestor is a meta-node, then compute the sim-

ilarity values for all specifications C: contained in the node with the current

specification and {2’ = {Cf}.

Case 2: If the nearest common ancestor is a real node R, then {2’ = {R}.

For all C 60’, apply subsumption test algorithm to C and Q to find the compo-

nents that subsume or are subsumed by Q. If there are such components, then

return them to the user otherwise go to step 6.

Using background information, the user may choose to browse through the hi-

erarchy of the software components in order to retrieve the components most

suitable for the new specification.

Figure 5.2. The Process of Retrieving Software Components.

61

Algorithm 7 Retrieval by Subsumption Test

Input: A set of candidate components 9 and Query Specification Q.

Output: Three sets of components Agemmz, Agpedlfc, and Anna”,

Procedure:

begin

Agenerel = Aspecific = Areference ‘— 0

for each real node C let mark(C) «— false; endfor;

while it 75 {}

for each component C E Q

mark(C) «— true;

9 ‘- n\ {0};

switch (Q,C):

Case (Q Q C and C Q Q): return(C);

Case {Q 2] C and C 23 Q):

for each component C’ 6 parent(C)

if C’ is a real node and mark(C’) = false

then D o— n U {C’}

else if C’ is a meta-node then [inference «— Anfflmc, U {C’}

endfor;

Case (Q Q C):

Aspecific h Aspecific U {C};

for each component C’ 6 parent(C)

.if mark(C’) = false then it i— Q U {C’}

endfor;

Case (C Q Q):

Ageneral f" Ageneral U {C}:

for each component C’ 6 children(C)

if mark(C’) = false then it ,_ Q U {C’}

endfor;

endswitch;

endfor;

endwhile;

return Ageneral, Aspecific; and Arcference;

end.

Figure 5.3. The Algorithm for Retrieval by Subsumption Test.

62

this algorithm is a set of updated candidate components that are more similar to the

query requirements. For two predicates A and B, A '__'_l 8 means that A subsumes B.

For some node A, in our two—tiered hierarchy, child(A) denotes the set of its child

nodes (components) and parent(A) denotes the set of the parent nodes of A. The

input to this algorithm is the query specification Q and a set of candidate components

fl derived from hashing scheme HC. The output from this algorithm contains three

sets of components: A,,,,,,.;, Away,“ and Awmna. Agnew; includes those com-

ponents that subsume Q and Amen-fie includes those components that are subsumed

by Q. Anjflem, holds a group of meta nodes produced from the retrieval algorithm.

Therefore, in our approach the user may obtain two sets of components, Agmd and

AMIic, that have a subsumption relationship to the user’s query specification. Oth-

erwise, the user may communicate interactively with the system’s browser to conduct

the browsing when A,,,,,,.; and Amdjgc return no reusable components. Typically,

the user starts from the nodes contained in the set Anjmme that contains a group

of meta nodes as references. Single meta node represents at least two real nodes.

Consequently, all meta nodes of Arden“, can be replaced by a number of real nodes

ranked by their similarity with the user’s query specification. Ranking is achieved

by comparing analogous functionalities shared by the new and reusable components.

The computation of similarity is described in further detail in Section 4.2.1.

5.3 Implementation of Retrieval Process

Figure 5.4 contains an example application of the construction and retrieval processes.

A group of reusable components are classified to from a two-tiered hierarchy. The

lower-level hierarchy generated by the subsumption test algorithm represents the

generality relationships among the components, where the parent component is more

general then the child component. The elliptic nodes are nodes newly created by the

63

Issse revises as ‘l

(Subsumption Test) Whlcslclusurlna (Two-Tiered Hierarchy) (Llneer Seu'ch) (Hierarchical Sect?!) (Compute Allele!)

a

-(E

' counutl‘laLQuu ' Hierarchical men- an.

Win-rebut sou-as an? H

Essa Matched Cos-mats

More General Cannon-nu

More Specific Commas

““80"“-n

“cm I

CW’I’UCB “000...) -> eeeee

m (causes. n-. elzeeeeel

.mwwwwsm l

"LCONDITION:

 (tree) 5 E masses» 1

I. c. see

We
MILCOIOITION:

“museum-«em!

tumnmusmmuasnmsnms

times: he.”

teem

smut: [seeeel -) beeIeee

m meeeee. k Useless]

Figure 5.4. Sample application of construction and retrieval processes

64

clustering algorithm to generate the higher-level hierarchy. On the right hand side,

a retrieval option is selected from the main menu to execute the retrieval process. In

this example, the user wants to find those components that are more general than

the query specification adt_queue, which is partially displayed on the left window

of Figure 5.4. Below the search menu, a window displays the result obtained by the

retrieval process. The result, in this case, is a set of components that are more general

than the query specification adt.queue.

CHAPTER 6

Modification of Reusable

Components Based on Generality

6.1 Introduction

In an attempt to perform software reuse, it is often the case that a given reuse can-

didate closely matches the needs of a query specification. A challenging problem is

to determine what modifications are necessary to an existing specification in order to

make it satisfy the query specification. Accordingly, the software implementation of

the existing specification must have corresponding changes. Modification differs from

transformation in that correctness with respect to the original specification is not

necessarily preserved. What we want is for the resultant program to be correct with

respect to the transformed specification. Correctness-preserving transformations and

specification-changing modifications are thus complementary. The objective of pro-

gram modification is to obtain a program that satisfies its input-output specification

along with the specification for a new program. Comparison of two specifications may

suggest a transformation of the given program that will bring it in line with the new

specification. Even if the transformed program does not fulfill the goal, it may serve

as a basis for constructing the desired program.

65

66

One of our reuse processes, modification, will be described in this chapter. This

process is based on our previous work in the construction and retrieval processes.

We will first present the specification of a C++ class in items of an existing specifica-

tion language Larch. Section 6.2 illustrates how to define the the expanded weakest

precondition semantics of the C++ language. Section 6.4 discusses the process of mod-

ifying a component that is more general than than a query specification. Section 6.6

summarizes this chapter.

6.2 Predicate Transformer wp

There are several approaches to describe the semantics of a given program. One

approach is to regard the final state in which statement S terminates as a function of

the initial state in which S has been started [56, 57]. For a given postcondition R and

a statement , the weakest precondition wp(S, R) describes the set of states in which

statement S can begin execution and terminate with R true and the weakest liberal

precondition wlp(S, R) is the weakest precondition under which 5 is guaranteed to

establish the postcondition R if the computation terminates. Generally, wlp(S, R) is

concerned with the partial correctness of S and wp(S, R) is concerned with the total

correctness of S. Since wp is more useful in program design, in this chapter, we only

use wp for the purpose of transforming predicates.

The following properties are from Gries’ book [56] except that the “Law of the

Excluded Miracle” is omitted, since in this law wp(S, false) holds precisely in those

initial states for which no computation under control of S exists. The “Law” erected

a considerable barrier for the conception of those initial states in which starting S

would be simply “inappropriate” or “impossible”.

Law of Monotonicity:

67

if Q ——+ R then wp(S,Q) —+ wp(S, R)

For two predicates Q and R, if the relation Q -> R holds then the relation wp(S, Q) —>

wp(S, R) also holds.

Distributivity of Conjunction:

wp(S, Q) A wp(S, R) = wp(S, Q A R)

Given a conjunction of two wps for one statement S with the two postconditions Q

and R, the conjunctive predicate can be converted into the wp of S with respect to

QAR.

Distributivity of Disjunction:

wp(S, Q) V wp(S, R) -* wp(fiQ V R)

A disjunction of two wp’s of a statement S with respect to different postcondition, Q

and R, implies the wp of S with respect to the disjunction of the two postconditions.

The syntax of a programming language defines the set of all programs that are

representable in it. In this chapter, the semantics of a programming language has to

define the semantics of each representable program, that is, it has to define the predi-

cate transformers wp and wlp of S. The definition of the semantics of a programming

language can be simplified to a definition of the functions wp and wlp, which are

functions from a representable program to predicate transformers. The domain, the

program, being recursively defined by the grammar, wlp and wp need to be defined

recursively over the grammar. Similarly, only the wp is defined in this chapter and

its semantics in Gries’ pseudo-language and C (C++) is summarized here.

68

6.2.1 Simple C++ Statements

The following is a list of the allowed simple statements in Borland C++ [58].

1. Expression statements: assignment and function call.

2. Alternative statements: if-else, switch, case, and default.

3. Iterative statements: while, do while, and for.

4. Others: break, continue, goto, and return.

A compound statement consists of a series of statements. A null statement per-

forms no operation and is the same as the skip statement. We will describe the wp

semantics of Gries’ primitive programming structures (statements), i.e. abort, skip,

assignment, alternative, iterative, and CMpound statements [56, 21]. For each

statement, we attempt to define the wp semantics of corresponding C (C++) state-

ments. The wp semantics of recursive functions is not described here because it is

tedious and difficult to use [59].

6.2.2 The abort Statement

For a given postcondition R, the abort command has the wp:

wp(abort, R) 5 false.

The operational interpretation of abort is that for all initial states its execution fails

to terminate. One of the corresponding C (C++) statements of abort is an infinite loop

of the form

:899;

vhile(x < 100){

x";

69

6.2.3 The skip Statement

The operational interpretation of skip is that its execution, which is guaranteed to

terminate, leaves the values of all variables unchanged. Its wp(S, R) is an identity

function as follows

wp(slcip. R) E R.

6.2.4 The assignment (y := E) Statement

wp(“y := E”,R) E (y 2,0 E) A domain(E) A 12%,,

where the predicate (y _>_,,,, E) is true when y is greater than E in the partial ordering

of symbols, and the predicate domain(E) is true when E is defined in the domain

of the current state. If both of the predicates are true, then all the occurrences of

y are replaced with E in R. The statement y := E is known as “the assignment

statement”. Its operational interpretation is that its execution, which is guaranteed

to terminate, leaves the values of all variables, except y, unchanged, whereas the final

value of y equals the initial value of E. In order to apply wp to C++ programming

language, the expression E can be generalized. For example, if S Ey++ then S can

be transformed into y := y + 1, hence E E y + 1. However, generalization sacrifices

the elegancy of predicate transformers.

6.2.5 The alternative (IF) Statement

The alternative statement is traditionally written as a list of guarded commands

Surrounded by the parenthesis pair “if-fi”. A fat bar “0” separates the guarded

commands in the list. A typical alternative statement is of the form:

ZfBl '451

DBz—v52

C] B" —-) 5,,

fi.

With the abbreviation BB given by

BB (3i i: B.)

where ‘::’ indicates the range of i is not needed for the discussion. The semantics of

the alternative statement S satisfies

wp(S, R) 5 BB /\ (Vi :: B, —i wp(S,-,R)),

It is straightforward to convert/transform an alternative statement in C++ into the

above general form. The if-else statement of the form

if (81)

81;

else if (B2)

82;

else 53;

is converted to

if31 "" 51

Cl (“Bl A 82) -> 52

U (“181 A fiBg) —* S3

fi.

In C++, the test condition is considered true if it is nonzero and false otherwise.

This means that even negative values are considered true but, in Gries’ primitive

programming language (GPPG), the test condition must be a Boolean expression.

For the purpose of brevity, we omit the information of type checking when we define

the wp semantics. For the switch statement of the form

switchCExpr) {

case Bl:

Si;

break;

case B2:

S2;

break;

case B3:

33;

is converted to

if (Expr 8 B1) —-> Si;

O (Expr 8 B2 —> S2;

Cl (Expr =- 83) -* 83;

fi

This type of statement is designed to facilitate the handling of multivalued branch-

ing. The expression Expr in C++ must be reducible or convertible to type int. The

constants B1, B2, and so on, must all be integers or must be unambiguously con-

vertible to integers. When a break expression is encountered in processing a case

.or default statement, the switch block is exited. In GPPG, if any of the guarded

command statements are executed successfully then the alternative structure is said

to have executed properly. The wp semantics of if-fi in GPPG can not describe the

default statement in C++. Let us consider another switch statement of the form

svitch(Expr) {

case Bl:

Si;

break;

case B2:

52;

default:

33;

break;

which is the same as

72

svitch(Expr) {

case Bl:

SI;

break;

case B2:

82;

case DEF: \\ if (Expr !- Bi /\ Expr !- B2)

33; \\ then Expr = DEF

break;

}

Its corresponding GPPG structure is

if (Expr - Bl) -> Si;

[3 (Expr 8 B2) —» S2;

[2] (Expr = DEF) —-+ 83;

fi

6.2.6 The iterative (D0) Statement

The iterative command is of the form

dOBl—tsl

DBz-tSz

Cl 8,, —+ 5,,

0d

The wp of the iterative command with respect to a postcondition R is implied by the

predicate

wp(do-od, R) +— (ElP :: P /\ “BB —+ R A(P A E.- -v wp(S,-,P)))

where P is an invariant of the do-od command and BB is the disjunction of the

guards. The while statement is one of the major constructs for iteration in C++. The

general format is

vhile(condition)

statement;

73

which can be converted to the GPPG iteration statement of the form

do condition —> statement

0d.

The most common iteration construct is the for statement. Here is the general form:

for(init,statement; condition; control_statement)

loop_statenent;

The for statement can be converted to the iterative GPPG statement of the form

do first.iteration —> init.statement

0 condition —+ loopstatenent; controLstatement

od

where the predicate first.iterat ion is true when the program is in the first iteration

of the 100p.

6.2.7 The compound (So;Sl) Statement

The expression So; 31 indicates that the statement SI is executed after So. The wp

of So is dependent on the wp of SI with respect to R. The wp semantics is

wp(So; 51, R) E wp(So. wp(Su R))

6.3 Modifying a More General Component

The modification process is part of our reuse system that applies formal methods to

the reuse of existing software. In this section, the problem definition, algorithm, and

example of program modification based on specification changes are presented.

After the retrieval process, if an exact-match component has been found then we

return it directly to the users for reuse. However, it is unlikely that we can retrieve the

components that are exactly the same as the input specification every time. A reuse

74

system supporting ones this approach will provide a minimal amount of assistance for

reusing existing software components, since generated specification components are

limited to at most combinations of existing software components. In order to overcome

this weakness, a mechanism for modifying a retrieved component to satisfy the query

specification is needed. In this section, we present the process of transforming some

retrieved component that is more general than the query specification with respect

to the Q...,., relationship (See Chapter 4 for details regarding this relationship).

The modification of software components can be accomplished by direct editing

of the source code. However, editing source code by intuition may invalidate the

correctness of the original components and force the developer or user to work at a

low level of abstraction. The effort of verification and modification of source code

components offsets a significant amount of the effort in component reuse.

Our approach is to modify the reusable component at the specification level instead

of the code level. Once the necessary changes the old specification needed to satisfy

the query specification have been determined, the information needed to modify the

specification is applied to some program synthesizer (or programmers) to generate

the required program. The degree of modification can be achieved through the use of

automated reasoning techniques since our components are represented by first order

logic. Using our approach reduces the drawbacks noted above for modification via

direct source editing. Use of automated reasoning and a program synthesizer preserve

the correctness of software components for all possible query specifications. Thus the

user will be less concerned about the validation of a reused component. Also, given

the behavior of what a software component does, it is possible to use and modify

a software component without having to understand the low level implementation

details in the component. Since fully automated modification is not possible now,

Semi-automatic modification is an alternative to expedite the whole process.

A query specification is a set of requirements that have a form similar to the

75

component specifications. We define that some existing specification Old_Spec is

reusable for the query specification Query.Spec if they satisfy the following conditions:

e 0ld.Spec.pre —> Query.Spec.pre

e Query.Specpost —* 0ld-Spec.post

In terms of logical reasoning, the above two conditions can be regarded as that the

preconditions of Query.Spec are a superset of Old-Spec preconditions and the post-

conditions of Query.Spec are a subset of Old-Spec postconditions.

The problem of modifying an implemented module based on the specification

changes is given in Figure 6.1. This diagram illustrates how the generality relationship

can be incorporated into the modification process. The refinement relationship defines

the relationship between the specification and implementation modules. Therefore,

this diagram can be applied to any level of program abstraction only if the generality

and refinement relationships hold. What we want to find is a mapping that transforms

the old implementation module to a new implementation module that satisfies the

query specification.

Recognition of Specification Changes

Old_Spec _ : Query_Spec

t t

refinement E refinement E

' Program Modification '

0ld_Progrern : QueryJ’rogrem

Figure 6.1. Modifying Implementation Based on Specification Changes.

76

6.4 Modification Process

Three sets of candidate components are output from the retrieval process for some

query specification [42] and they are Agencmz, Auna'fic, and Animnu. The set Agnew;

(Amen-1:5) contains the candidate components that are more general (specific) than

the query specification. The set Anhmm is used as a reference set for browsing the

component hierarchy so we regard it as a reusable set. Since the implementation of

a more specific component satisfies the query specification, it can be reused directly.

Only the generality relationship is used to facilitate the modification in Figure 6.1.

More helpful relationships will be added to our modification process, for example,

modifying the analogous components [60].

A process for modifying a more general component is presented in Figure 6.2.

From the definition of the generality relationship, component A is more general than

component B, i.e., A 2cm, B, only if all methods of A are more general than the

subset of the methods in B. Therefore, some methods in B may have no relationship

with any method of A, even if component A is more general than component B.

Hence, the modification process shown in Figure 6.2 can only give a partial imple-

mentation of a query specification. For the method Mold in an old component that is

more general than some method in a query component (specification), we attempt to

find the weakest precondition of its implementation with respect to the postcondition

of the subsumed query method M,,,,,,. The method for finding the wp for a C++

language construct is illustrated in Section 6.2. Then construct a conjunctive expres-

sion from the found weakest precondition with the precondition of Mold that is a new

precondition for the old implementation. Finally, input the new precondition, the old

implementation and the new query postcondition to some program synthesizer, either

a semi-automated program synthesis system or a programmer, in order to obtain a

new implementation satisfying the query specification.

Algorithm 8 Modifying a More General Component

Input: Two components SPECOM, SPECqucry, where the relationship

(SPECOM 2m, SPEC’qufly) holds.

Output: Partial implementation of SPECqucry.

begin

for every method Maid of SPECOM

for every method Mum, of SPECq,my

if (Mold Qmethod Mquery)

then

Let PROGOM be the implementation of Mom.

Find WP E wp(PROGou,Mquc,y.post).

Let NEW.pre 4— Moldpre A WP.

Let PROunm, «— synthesizer(NEWpre,PROGou,Mq,my.post).

Assign PROuncw as the implementation of M,,,,,,.

endif

endfor;

endfor;

end.

Figure 6.2. The Process of Modifying More a more general method.

Program synthesis will not be discussed here since it involves some techniques that

are beyond the scope of this report but one example will be shown shortly. In the

modification process, the relationships among components and methods have already

been established in the retrieval process so that the complexity of the modification

process only arises from the calculation of weakest preconditions and the process of

program synthesis. The former uses polynomial time in terms of the size of the query

specification plus the length of the old implementation, i.e., source code. It is difficult

to measure the complexity of program synthesis, however, we believe the complexity

is highly reduced since the needed changes at specification level are determined before

the source code is edited.

78

6.5 Modification Example

An example of the modification problem shown in Figure 6.1 is given in this section.

An old component, the specification of List class is given in Figure 6.3. Object in the

interface represents any kind of mathematical numbers, e.g., real number, characters,

strings, and so on. This component defines five methods and all of them will be

implemented in the public segment of a C++ class. The methods List and ~List are

the constructors and destructors of class List, respectively. By convention, an object

of a class is initiated by the constructor before any other use. A client of an object

should call the destructor when it knows that the object will never be referenced

again. The clause ensures trashed(*s) says that upon return from the destructor

nothing can be assumed about the storage pointed to by s in the precondition state.

A good implementation of a destructor will free storage that is no longer needed,

although the specification does not require it. The method List: :insert adds an

Object element to the tail of a List. The method List: :detach deletes an Object

element from List. The method List: :isA reports the user that this object belongs

to List class. Lists that are not aliased to any object visible in the precondition.

Thus the Lists that they return can be modified without affecting the values of other

list. One way of implementing this is to allocate new storage. The operators U and

n are assumed to be defined in LSL trait Set.

C++ currently has no standard classes or hierarchies other than those used with

streams. C++ compiler vendors used the NIH classes [61] to test their own compiler.

The Borland company decided to include a variation of the NIH classes with Borland

C++, which they called the Borland C++ container class library. The library contains

classes that are organized into three logical groups: simple classes, container classes,

and iterator classes. Simple classes are classes that cannot be iterated upon such as

class String. In contrast, the container classes can contain a whole series of other

79

component List

abstract type List;

public

void List(List *1ist) {

modifies I«list;

ensures (*list)’ = NulLList;

}

void ~List(List *list) {

modifies *list;

ensures trashed(*list);

}

void List: :add(List IIllist, Objectk e) {

modifies l“list;

ensures e1ement(list’,tail(list’)) 8= e A

length(1ist’) 88 1ength(list) + 1;

}

bool List::detach(List *list, Objecta e) {

requires e 6 (*list);

modifies l“list;

ensures in(list’,e) =8 FALSE;

}

string List::isA() {

ensures result 8 ”list class";

}

Figure 6.3. The LCL Specification of List Class.

80

objects, which in turn can be containers themselves. Examples of containers are

classes of Collection, Stack, Bag, and Set.

The container class library has several classes that are capable of storing multiple

objects. In order to handle the objects inside these containers, we need a way to

iterate through them. Borland C++ chose to do this with special iterator classes,

which allow us to iterate through the objects in a container. The implementation of

List class is given in Appendix E.1 (except for the destructor). List inherits some

operations from the Container class.

A query specification, the specification of Array class, given in Figure 6.4. This

component defines six methods: Array, ~Array, Array: :addEnd, Array: :addAt,

Array: :clear, and *Array: :isA. The method Array: :addAt has no corresponding

method specified in the specification of List class. Similarly, the operations ‘6’ and

‘delete’ are assumed to be defined in the LSL traits library. Let us consider the two

classes List and Array. From the definition of generality, List 2cm, Array since

the following relationships hold:

List 2mg.“ Array

~List QM,“ ~Array

List: :add 2mm“ Array: :addEnd

List: :detach 2mg,“ Array: :clear

List: :isA 2mg,“ Array: :isA

For the purpose of conciseness, we only consider the relationship between two

methods - List: :add and Array: :addEnd. Following the procedure of modifica-

tion process for more general component, we first find the weakest precondition

of the statements in the method List: :add with respect to the postcondition of

Array: :addEnd. The statements in the method List: :add are

81

component Array

abstract type Array;

public

void Array(Array tarray) {

modifies *array;

ensures (It-array) ’ 8 NULLJtrray;

}

void ~Array(Array *array) {

modifies *array;

ensures trashed(8array);

}

void Array::addEnd(Array 8array, Objectt element) {

modifies 8array;

ensures array’(maxIndex(array’)) 88 element A

size(array’) 88 size(array) + 1 A

naxIndex(array’) 88 maxIndexCarray) + 1;

}

void Array::addAt(Array 8array, Object! element, int atIndex) {

modifies I“array;

ensures array’(atIndex) 88 element A

size(array’) 88 size(array) + 1;

}

bool Array::c1ear(Array *array, int Index) {

modifies 8array;

ensures array’(Inder) 88 NULL;

}

string Array::isA() {

ensures result 8 "array class";

}

Figure 6.4. The LCL Specification of Array Class.

82

void List::add(Objecta nevElement)

{

ListElenent 8nevElenent 8

use ListElenent(tnevElenent);

nevElenent->next 8 head;

head 8 nevElenent;

itensInContainer++;

}

The corresponding GPPG structure of the body statements is

List-Prog:

{

nevElenent->next :8 head;

head :8 nevElenent;

1ength(1ist) :8 length(list) + 1;

}

The postcondition of List: :add in Figure 6.3 is

List_Post:

{

element(list’,head(list’)) 88 nevElement /\

1ength(list’) 88 length(list) + 1

l‘

The postcondition of Array: :addEnd in Figure 6.4 is

Array_Post:

{

elenent(array’ ,naxIndex(array’)) 88 nevElement /\

size(array’) 88 size(array) + 1 /\

naxIndex(array’) 88 naxIndex(array) + 1

l

The relationship

(List :: add) 2mm.) (Array :: addEnd)

holds because the following relationships hold:

list 3“,", array

head(1ist) 2m... maxIndex(array)

length 2“,", size

The relationship (list 2m", array) refers to the generality relationship defined

in the LSL level. The second and the third relationships hold since the corresponding

83

terms are defined in the same equivalence classes, for example, length and size are

both in the class referring to the cardinality of the objects in some ADT. Replacing

the terms in List.Prog by the more specific terms, we have

Array-Prog,1:

{

nevElement->next :8 arrayEmaxIndex(array)];

array[naxIndex(array)] :8 newElement;

size(array) :8 size(array) + 1;

}

The first statement is unexecutable since the assignment command is applied to two

objects with different types, so we discard this statement momentarily and have the

following candidate program for Array: :addEnd:

Array_Prog-2:

{

array [maxIndex(array)] :8 nevElement ;

size(array) :8 size(array) + 1;

}

Applying predicate transformer wp to Array_Prog_2 with respect to ArrayJ’ost, we

have

wp(Array.Prog.2, Array_Post)

= (newElement == newElement) A

(size(array) + 1 == size(array) + I) A

(maxIndex(array’) == maxIndex(array) + 1)

= TRUE A TRUE A (maxIndex(array’) == maxIndex(array) + 1)

= (maxIndex(array’) == maxIndex(array) + I)

Since the precondition of List: :add it TRUE, the NEW.pre of the modified pro-

gram will be

maxIndex(array’) == maxIndex(array) + 1.

Based on the information of the above weakest precondition, we know that the value of

maxIndex of some array needs to be incremented by one first before Array.Prog_2

84

executes to compute the correct result. Therefore, we have the following modified

GPPG statements that satisfy Array_Post:

Array_Prog_3:

{

maxIndex(array) 8 maxIndex(array) + 1;

array [maxIndex (array)] : 8 nevElenent ;

size(array) :8 size(array) + 1;

}

And we convert Arrayfrogrj into C++ program and have the implementation for

Array:addEnd:

void Array: :addEnd(Obj ectt newElement)

{

vhi1e(theArray[whereToAdd] !8 ZERO as

vhereToAdd <8 upperbound)

{

whereToAdd++;

}

if(vhereToAdd > upperbound)

{

reallocate(vhereToAdd - loverbound + 1);

}

theArray[vhereToAdd - loverbound] 8 tnevElenent;

vhereToAdd++;

itemsInContainer++;

}

Other parts of the implementation of Array class are illustrated in Appendix E.2.

Clearly, modifying the source code of a reusable class such as List is not fully au-

tomated yet. However, the modification process can be greatly facilitated given the

information from the specification changes as described in the above example.

6.6 Summary

This chapter showed how C++ statements can be generalized to GPPG and defined the

wp semantics for simple GPPG constructs. More definitions will be required for the wp

85

semantics like function and recursion in the future. We also described the modifica-

tion process as applied to modify the source code whose specification is more general

than the query specification. A general issue of modifying a reusable program-com-

ponent from the specification changes is the incompatibility of subclass definition in

the application language and the generality definition in the specification level. The

subclass definitions in C++ are so implementation specific such that they cannot be

used in the specification level. In the next chapter, we will generalize our modifica-

tion process to other types of specification revision problems, i.e., using analogy to

determine program modification [60].

CHAPTER 7

Modification of Reusable

Components Based on Analogy

This chapter presents an approach, based on formal methods, to the modification

of reusable software components. I'l'om the framework of a two-tiered hierarchy of

reusable software components, the candidate components that are analogous to the

query specification are retrieved from the hierarchy. An analogous retrieved compo-

nent is compared to the query specification to determine what changes need to be

applied to the corresponding program component in order to make it satisfy the query

specification.

7.1 Introduction

Analogy is often used in everyday situations to assist in decision making. The main

objective of analogy is to make use of past experiences to solve similar problems.

Analogical reasoning has long been recognized as an important tool to overcome

the search complexity of finding solutions to novel problems or inducing generalized

knowledge from experience. Analogy presents a basic and challenging question: when

are two specifications (problem representations), for some purpose, alike? [62]. This

86

87

section outlines the scope of analogical reasoning techniques that we are using to

enhance our software reuse system [43, 42].

We regard the modification process as a problem solving process, where-Figure 7.1

contains a framework for modifying components based on the analogy of formal spec-

ifications and is similar to the problem of modifying an implemented program pre-

sented in Chapter 6. The problems in this process are the specifications that represent

reusable software components and the solutions become the executable implementa-

tions of the corresponding specifications. The objective of software development in

our context is to “solve” specification Query.Spec which is referred to as a query

specification. 0ld.Spec is referred to as a candidate specification whose implementa-

tion 0ld.Program is known. A match that is found between the two specifications

represents the similarity of the two specifications. Based on this match, the analogy is

used to guide the modification process, i.e., the software developer. Figure 7.1 shows

how the match can be incorporated into the modification process. The refinement

relationship defines the relationship between the specification and implementation

modules.

If a “good” analogical match between the candidate and query specifications

can be found, then the effort required to develop the appropriate implementation,

Query.Program, will be reduced. We call this approach to modify existing program

based on an analogical match between two specifications, the Analogical Reuse Mod-

ification Process (ARMP). The problem of finding promising candidate specifications

for some query specification from large knowledge bases of known and implemented

specifications is referred to as the base filtering problem [63]. In Chapter 5, a retrieval

scheme based on the similarities among reusable components finds a set of candi-

date specifications that are similar to the query specification. Our retrieval process

augments the ARMP model in the form of a pre-processing phase/stage.

The idea that programs should be constructed by a series of transformations has

88

Find Analogical Matches

Old_Spec : : Query_Spec

. e
refinement E

refinement :

' Program Modification ' ’

OldJ’rogreln : QueryJ’I-ogrem

Figure 7.1. Analogical Reuse Modification Process.

been widely promoted. Modification is different from traditional program transfor-

mation because a program transformation is typically correctness preserving with

respect to the original specification, but the program modification approach needs a

program that satisfies its input-output specification along with the specification for a

new program. Program modification process can be divided into the following phases:

e Match: discover an analogy between two specifications.

Verification: check the validity of the proposed modification.

Replacement: apply the proposed modification to the program.

Recoding: rewrite any unexecutable statements.

Synthesis: synthesize new segments.

Optimization: make the new program optimized, e.g., more efficient.

We emphasize the matching process in the ARMP model, i.e., the first phase

of the modification process because we try to find an effective way to reduce the

effort of modification by providing a set of “useful” matches to the programmers.

Dershowitz [64] presents an appealing approach .to program construction by modifi-

cation. His method reflects the observation that programmers only devoted a limited

amount of time and effort to create code for a given specification from scratch. Pro-

grammers often apply their knowledge about earlier programs to the development of

89

similar problems. Our work focuses on augmenting Dershowitz’s methods in order to

make it amenable to automatic applications.

In attempt to analyze and design programs to perform the analogical matching

process. We found it useful to consider the phenomenon of analogical reasoning as

a whole. Both the brief accounts of analogy in human reasoning and the difference

between analogy and generalization are described in Appendix A.

7.2 Analogical Matching

An analogical match is defined to be a group of pairings between symbols in

terms of candidate and query specifications. It consists of the following form:

(symboll, symbol2,position1,positiong) where symbol; is located at positionl of term

term“ and similarly for symbolg, positiong, and termg. The two symbols in any

associated pair in their corresponding positions are called the match. For instance,

for the two terms max(a,array(b)) and min(queue(c),a). An analogical matching

process may generate the following match:

((max! min, [ii ll): (at a, [I], [2])? (array, queue, [2]) [1]), (btci[291l)[1,1]))'

The above example exhibits a bijective mapping between terms max(a,array(b))

and min(queue(c),a). However, as far as the flexibility of a match is concerned,

some required features of match are needed to enhance the power of the matcher.

’ For example, (1) predicates, function, and constant symbols may be matched with

different predicate, function, and constant symbols, respectively; (2) the arguments

for predicates and functions that are matched may be permuted by the matching

process. Since the argument order of functions and predicates is often arbitrary, it is

obviously unreasonable to insist that matches preserve argument order; (3) matches

may contain inconsistencies where a symbol on one side is matched with two distinct

90

symbols on the other; (4) finally, symbols and subterms may be left unmatched in an

analogy.

According to Hesse’s theory [65], analogy is most useful when the domain of

query specification is not well understood. Applying his theory to the software reuse

problem, if the relationships between the query and candidate specifications are not

well known, e.g. no generality relationship [43], then we apply the analogical matching

process because we are uncertain as to whether we can reuse the old programs to

satisfy the new specification. Furthermore, it seems that the nature of analogy is

empirical, that is, only after analogy has been applied to a query specification can

we determine whether a specific match is good or bad. There is no formal theory or

rule that rigorously describes the process for generating a reliable analogical match.

Therefore, most analogical matching algorithms use heuristics to direct searches for

good analogical matches. A given heuristic captures system-defined criteria as to what

constitutes a reasonable analogy. It is believed that the notion of analogical heuristics

is a useful tool in building analogical reasoning systems. A top-down matching process

is described in this chapter and a bottom-up approach can be found in Appendix B.

7.3 Heuristics for the Matching Process

Since the search for analogical matches can potentially be combinatorially explosive,

using an exhaustive search mechanism is certainly not feasible. Consider the following

two expressions from propositional logic:

{aV(bAc) = (aVb)A(aVc), aA(ch) = (aAb)V(aAc) }.

A matching is an association between the two expressions; i.e., a subset of the Carte-

sian product of the sets of symbol occurrences in the expressions. In this example, each

expression contains 13 symbols, so the Cartesian product contains 13 x 13 = 169

l.—

91

symbols, and hence has 2169 subsets. Obviously, some heuristics are definitely needed

to prune the search space.

-- When aheuristic is used in analogy systems, issue is to determine-what. kindof

information should the system have to enhance the applicability of the heuristics,

that is, what contextual knowledge should be included in the heuristics. A powerful

automated analogy system should be able to operate without much contextual knowl-

edge. However, if the context is very important, a “pure” syntactic analogy system

may fail on some intuitively straightforward examples. Therefore, an ideal analogy

system should allow some contextual knowledge to be supplied interactively by the

users or domain experts.

Identical associations are often believed to make good analogues, similarly, the

matchings containing high proportions of identical associations make good analogies.

We call this approach the identical symbols heuristic. While it is obvious that most

interesting analogies involve a significant proportion of non-identical associations.

However, the identical symbols heuristic is valuable in finding similar specifications

(problems). This heuristic has already been incorporated in the construction and

retrieval processes in our system. In the analogical matching process, we also use this

heuristic since the candidates to be matched are retrieved from a hierarchy by the

retrieval process (See Chapter 5).

Another promising analogical approach is to consider matchings that respect the

structure of the terms. We call this approach a homomorphism heuristic. A homomor-

phism is a mapping that obeys the structure of the entities to which it relates. Most

analogy systems use some form of structural mapping. For example, Gentner [63]

introduces the notion of systematicity of a structural mapping; this property refers to

the extent to which matched objects are mutually constrained by identical relations.

For some heuristic criteria preferring matchings between items (predicates, func-

tion symbols, or atoms) of the same or similar semantic type according to an equiv-

92

alence class partition of symbols, we call this approach the semantic type heuristic,

which requires some kind of type hierarchy or other means to make a similarity judge-

ment. In Chapter 3, we used the Larch LSL trait hierarchy as the semantic type hier-

archy to determine the generality relations between two terms. Since the semantics of

an LSL trait hierarchy is well-defined, an LSL trait hierarchy can be used as the basis

for a heuristic to determine the similarity between any two logical entities. In Chap—

ter 4, the construction process accesses the semantic class (or equivalence class) for

each of the predicates and functions in the pre- and postconditions that are clustered

into a unified hierarchy. For example, the predicate bigger(a, b) denoting that atom

a is bigger than atom b, belongs to the semantic class comparison(atom1,atom3).

The intended meaning is that bigger is a comparison operator applied to two atoms.

Similarly, the predicate smaller(a, b) belongs to the same semantic class. In all the

. analogies considered in ARMP, predicates are only mapped to predicates, and propo-

sitional connectives are mapped only to propositional connectives. All functions and

constants are converted to predicates. Thus there are no functions and constants.

7.4 Top-Down Matching Approach

In the context of recognizing reusable candidate specifications for solving query spec-

ifications, the analogical matching process should have a flexible notion of analogy-

based match rather than imposing a design bias towards any single heuristic. It

should be easily tailorable to any particular domain-specific heuristic (knowledge).

The heuristics mentioned in Section 7.3 should be refined to precisely defined val-

ues. That is, some numerical metric should be invented to measure the usefulness

of a given analogy. Once a precise definition for the goodness of an analogy match

is given, the analogy problem can be regarded as an optimization problem. For an

optimization problem, finding a global optimum is not feasible at most of the time

93

therefore we might reasonably want to generate a set of local optimal analogies.

Since predicate logic is used to express the behavior of software components, the

object language of our analogy system is based upon first-order logic. A semantic

type heuristic suggests the match of two terms but the pairings are not limited to

the terms in the same semantic group. We explore how to include the properties of

associativity and commutativity in predicate logic in the analogy matching process.

For example, it is unsatisfactory that the analogical matches from a set of paired

atoms is based on an arbitrary preservation of argument order.

The analogical matching can be regarded as a recursive problem solving process.

The initial problem is to match two terms expressed in predicate logic. As the match-

ing process continues, new subproblems are produced and recursively solved. No more

subproblems will be produced in two cases: (1) one of the subproblem’s terms is a

constant or variable; (2) no new analogical pairing is applicable for this subproblem.

The generation of subproblems from the matching process can be classified into

two kinds of branches: or—branch and and-branch. When we want to match terms

containing a commutative operator, the set of derived subproblems may suggest more .

than one way of solving the problem. Therefore, this case applies, the current problem

Should branch into a set of new subproblems, each generating a new group of pairings.

For example, consider the following problem:

{fl(xliyl) A f2($2,y2),91(01,51) A 92(021 b2) }'

Since /\ is a commutative operator, the matching process may produce two sets of

Inatches:

((AiAillill)’ (flaglilllilllli (f27921[2]’[2]))

l (AiAillill): (fligztllltlzl), (f2aglil2lil1l) l

Respectively, the matching process generates the following two sets of subproblems:

;_

94

l “xiii/1), (“1, bill, {(172,312), (02, b2)}}

and

{ {(31,311), (029 ’92)}, {($2,y2),(01, bill}

Thus, the current state of matching between a pair of terms involves a set of partial

matches and two sets of or-branch subproblems. We only need one of the or-branch

subproblems to be solved in order to proceed to later stages of the matching process.

The or-branch subproblems are generated by permuting the order of arguments to

obtain new sets of argument mappings.

In contrast, if the match process tries to match two terms where one or both

of them are predicates, then the problem is branched into two subproblems, each

yielding one set of pairings. For the purpose of illustration, we change the operator

A of the previous example to an equality predicate as follows:

{fl(xliyl) > f2($2,y2): 91(01J71) Z 92(02,52) }

Where > and Z are not commutative operators. Hence, only one match is generated

((>:Z:llill)9 (fliglilllilllli (f2’g2’[2]’[2])>

And the matching process generates the following two sets of subproblems:

{hut/1), (a1, 51)}

{(xh y2)i (02) b2)}-

31101) that the current problem is split into two new sets of subproblems, with each

represented as an and-branch together with a partial mapping. The newly generated

matches from these two subproblems should not conflict with each other, that is, no

inconsistent pairings will be generated. We will define inconsistency shortly.

Pram the above examples, we may conclude that and-branch subproblems are

g("Etuitrated whenever the argument pairing within an identical argument mapping is

‘—

95

performed; or-branch subproblems are generated whenever the matching process en-

counters commutative terms and attempts to perform argument pairings of permuted

argument mappings of the terms. The terms in the latter case include ordinary. pred-

icative connectives, for example, A and V.

Definition 7.1 Conflict. Some pairing 01 = (x,y,P,,P,,) has a conflict with an

existing mapping Q ifi' (1) there is some pairing 0; E Q, and 02 consists of either x

or y but not both; or (2) there exists some pairing or; = (x, y, Q,, Q”) E Q and both

01 and 02 are argument pairings within the same predicates or functions, but either

P29£Qz 0er7£Qr

Definition 7.2 Consistency. Some pairing 0' is consistent with some existing map-

ping Q if a has no conflicts with Q.

If the matching algorithm is restricted to the preservation of argument order, then the

second requirement of Definition 7.1 will never be applicable in the matching process.

7.5 Matching Algorithm

Given a matching subproblem, consisting of a pair of specifications or and fl rep«

resented in first-order logic, and an existing mapping Q0”, the matching algorithm

attempts to find a new consistent mapping QM,” and returns it to the user. We assume

all variables of a and ,6 have been either skolemized or universally quantified. The

matching algorithm is given in Figure 7.2. This algorithm is based on the matching

Process approach presented in Section 7.4.

Several heuristics are exploited in Algorithm 9. This algorithm uses a top-down

8S-‘lleme to compare two input terms. The functor symbols of two input terms should

be matched before argument pairing tests are performed, hence a homomorphism

helll‘istic is partially incorporated. It is denoted as a partial homomorphism because

commutative argument pairings are allowed in this algorithm. If some term is a

Commutative operator, then several versions of the term with permuted arguments

are Created to generate the or-branch subproblems, which is case 3 in Algorithm 9.

M

96

Algorithm 9 Match(a, 13. Qozd, Qnm)

Input: Two terms 01,5, and a current partial mapping Q0“.

Output: A new partial mapping an.

Procedure:

begin

switch(a, fl)

case 1: one of a and fl is a constant or variable

if consistent((a, ,6),Qou) then

Qnew ‘- Qold U {(013)};

8188 Qnew "" Wold;

return;

we 2: a = f(21332i Hutu) and)6 = 9(yliy2i "'9 ya):

either f or g is not commutative % and-branch subproblems

if consistent((f,g),Qou) then

4’0 *- Qold U {(faglli

for all i do

.l!atch(x,-,y,-,Q,--1,Q,-);

end_for;

Qnew '- Q7”.

else Qnew "" field;

return;

case 3: a = f(21.22) and fl = 9(3’193/2):

both I and g are commutative % or-brunch subproblems

if consistent((f, g),QoM) then

Q0 "" Qold U «[99»;

Q0, ._ permutation(x1,x2)

‘Ilg .— permutation(y1, ya)

‘I' .— argumentmappingOI’a, \Ilp)

for all [a.argJist,-,B.arg.list,-] 6 ‘I’ do in parallel

for all x], 6 a.arg..list,- and y], 6 fl-arg.list; E ‘I' do

Match($k,yk.Qk—1,Qk);

end.for;

Qi ‘- Qn

endJ'or;

QM,” — evaluate(f21 , 92, ..., 060,4”);

else Qnew ‘- Qoldi

return;

case 4: a = f(z19 329 ..., 3m) and fl = 9(3/19 3’2, "-9 ya):

m #5 n % difl'erent number of arguments

if ((ahfil) = transform(a,fi)) then

MatCh(al i 31 i Qold: Qnew);

return;

end.

Figure 7.2. Matching Algorithm

97

Otherwise, and-branch subproblems for case 2 are generated for each pair of permuted

arguments of the input terms.

The definition of predicate consistency is given in Definition 7.2. Therefore, im-

plicitly, we exclude the possibility of mismatched analogy that allows a mapping that

is not one-to-one, even though it may be a useful analogy in the real world. If mis-

matches are allowed in the analogy system, then a considerably large amount for

domain knowledge would need to be encoded in the system’s knowledge base.

Case 4 in Algorithm 9 deals with the condition when the arguments of two input

terms have different sizes (m # n). In this case, we need some transformation rules to

“rephrase” the input terms to make their arguments have the same cardinality. The

transformation rules require domain knowledge. For example, suppose we want to

match (fa- and 5, since the functions square-root and division have different numbers

of arguments, they need to be transformed. If the system knows the rule J- = 3?,

then a match can be easily found:

((/,/, ll, [Dix/5.6.11], [1]),(1,d, [21.12]))-

If the system only knows the rule (fl:— = fl x 1, then we have the following match:

(U, x, I], U), (x/ic, [1], [1]),(1,d, [2]. 121)).

Our algorithm provides a framework for a domain-independent matching process but

t'11": domain knowledge is tailorable to more specific types of information.

The complexity of this algorithm increased when each operator is commutative.

Suppose P is a predicate, then we define

maxJevel(P) = Tedrga:(P){level(P, T)}

where closure(P) and level(P, T) have been defined in Chapter 5. From the top-down

matching algorithm, two terms A, A E closure(a), and B, B inclosurew), are to be

 M

98

matched if and only if

maxJevel(a) - level(a, A) = maxJevel(fl) — level(fl, B)

For each pair of commutative operators, the matching process generates two subprob-

lems. Therefore, it is trivial to determine the number of the levels in the search tree

since it is bounded from above by min{max.level(a),maxJevel(B)}. If length(P)

represents the number of symbols in the predicate P, then this algorithm’s upper

bound is

min{max.level(a),maxJevel(B)} x 2mlm°""”°’(°’l'm’ch’ml.

The function permutation() generates all possible permuted argument lists for a

commutative operator. In Algorithm 9, permutation() always generates two sets of

permuted arguments because, currently, the operators that are able to generate or-

branch subproblems are commutative and they consist of only two arguments. Once

associativity is incorporated into the case of generating an or-branch, then the number

of the sets of permuted arguments becomes exponential with respect to the lengths

Of input terms and the matching process encounters the possibility of combinatorial

eJ'tplosion.

The function argument-mapping() creates bindings between a pair of selected ar-

gument lists that are the output of the function permutation(). In our approach,

the corresponding arguments of two terms should be defined over the same semantic

Class, i.e., equivalence class (semantic type) heuristic.

The function evaluate() chooses the best mapping from a set of mappings that are

output from a set of or-branch subproblems. Certainly, evaluate() needs some assess-

nlent scheme that determines the degree of reusability for some analogical mapping.

99

The assessment scheme should be able to select the most promising mapping from a

set of candidate mappings to be reused, and it needs much programming and domain

knowledge. The assessment scheme is not formally addressed in this dissertation, but

a simple assessment scheme is given in the matching example of Section 7.6.

7.6 Matching Example

A simple example given in Figure 7.3 is used to illustrate the matching algorithm

presented in the previous section. The initial problem with input terms is formulated

as:

{ x Z max(a,array(b)), y S min(queue(c),d) }.

And we use the procedure call

Match(x Z max(a,array(b)),y _<_ min(queue(c),d),{ }, anw)

to initiate the matching process.

Figure 7.3 shows the processing tree of the matching procedure. Each node rep-

resents a matching problem and the root is the input problem being considered. We

define the and-node (or-node) to be a node generating and-branch (or-branch) sub-

Pl‘Oblems. A mapping-node is a node that generates a pair of matched terms, i.e.,

match. Every mapping-node has only one child node. For example, matching the op-

erators ‘2’ and ‘3’ creates and-branch subproblems since the comparison operators

ate not commutative. In contrast, the match of the operators max() and min() pro-

duCes or-branch subproblems because max and min are commutative. The matching

a‘lgorithm is recursively applied to the subproblems until either an empty set is gen-

erated or an inconsistency occurs. In this example, the only or-node generates the

following two subproblems:

{ {(0, queue(e)), (array(b). (1)}, {(0.61), (queue(6),array(b))} }.

100

 A

[(x > max(e. any(b)), y < min(queue(c). 4)”

n(m/O\c

((1.!)1 ((Mamwnn'dwcmm

[(Is) (:8 I“)

(1 mm».((Wcmlll

/<-\
l (we). (m0). «Di 1 (ad). (we). 8181(5))!

{(I. We») Harald)! Had)! ((Mc).m0»!

(till-Kc» l (mm 1 (I1)”(lMI

I

I) ll ((c.b)l

..., 1

I)

Figure 7.3. Simple example of the matching algorithm.

Where one of them is chosen to be returned to the parent node based on some assess-

ment scheme. Currently, we apply a simple assessment scheme where we assign the

weights 1, 2, and 3 to constants, variables and operators, respectively. The weight of

an and-node is the sum of the absolute values of its children’s weights. The weight of

an or—node is the minimum of the weights of its children. The weight of a mapping-

nOde is the difference of the matched terms’ weights plus the weight of its child. The

empty node has weight 0. The or-node chooses the set of matched pairs from the

children with minimum weight and passes them to its parent node. In this example,

the weights of nodes D and E are -1 and 1, respectively, so the weight of node B is

2° The weight of node C is 0 since both its children have weight 0. Therefore, node

A will return the matched pairs from node C to its parent node.

101

As shown in Figure 7.3, there is no inconsistency in this example. Moreover, we

assume that the arguments are defined over the same semantic domain. Since an

or-branch is created, we should have two sets of matched matches returned from this

process. From the processing tree, we can easily recognize two sets of matches:

((2, S) ll: ll), (1’, yillli [1]),(max. min, [2], [2]),

(a: queue(c),[2,l],[2,1]),(array(b), (l, [2, 2]: l2, 2]) l

and

< (2.5,I],[DA-fwd”,[1]),(matamin, [21,12]),

(array, queue, [2, 2], [2, 1]), (a, d,[2,1],[2, 2]), (b, c, [2, 2,1],[2,1,1]));

where the latter set of matches is chosen according to our assessment scheme. A

more advanced assessment scheme is necessary to evaluate the matches and to give

the match information to the users. The assessment scheme can be an explanation-

based or tutoring system that contains a large amount of programming knowledge.

The final “best” match is located in the set of final partial mappings an.

The rest of this section presents another example to show the applicability of

the matching algorithm. An existing component, the Larch specification of the

Stack class is given in Figure 7.4. This component defines three methods and

all of them are implemented in the public segment of a C++ class. The methods

Stack and ~Stack are the constructor and destructor of class Stack, respectively.

The method Stack: :push (Stack: :pop) adds (deletes) an Object element to (from)

Stack. Stack: :top returns the topmost element of Stack. The C++ implementations

for the methods of Stack class are given in Appendix E.3.

A query specification, the specification of DoubleList class, is given in Figure 7.5.

In addition to constructor and destructor, this component defines four methods:

DoubleList: :addAtHead, DoubleList : :addAtTail, DoubleList : :detachAtHead,

and DoubleList: :detachAtTail. For the purpose of conciseness, we only consider

102

component Stack

abstract type Stack;

public

void Stack(Stack 8stack) {

modifies 8stack;

ensures (*stack)’ 8 Nulljtack;

}

void ~Stack(Stack *stack) {

modifies *stack;

ensures trashed(8stack) ;

}

void Stack: :push(Stack 8stack, Objectt newElement) {

requires -fu11(*stack) ;

modifies 8stack;

ensures top(*stack’ ,nevElenent) A

size(stack’) 88 size(stack) + 1;

}

bool Stack: :detach(8tack tstack, Objectt topElenent) {

requires nenpty(*stack) ;

modifies 8stack;

ensures top(*stack, topElenent) A

size(stack’) 88 size(stack) - 1;

}

Objectt Stack::topElenent() {

requires qemptyOO'stack) ;

ensures result 8 topElement A top(8stack,topElement) ;

}

Figure 7.4. Larch specification of Stack class.

103

component DoubleList

abstract type DoubleList;

public

void DoubleList(DoubleList *dbllist) {

modifies lt'dbllist;

ensures (*dbllist)’ 8 NULLDoubleList;

}

void ~DoubleList(DoubleList 8dbllist) {

modifies *dbllist;

ensures trashed(8dbllist) ;

}

void DoubleList::addAtHead(Doub1eList 8dbllist, Objects newElement) {

modifies 8dbllist;

ensures head(tdbllist’ ,nevElement) A

length(dbllist’) 88 length(dbllist) + 1;

}

void DoubleList::addAtTail(DoubleList *dbllist, Objectt newElement) {

modifies 8db11ist;

ensures tail(8dbllist’ ,nevElement) A

length(dbllist’) 88 length(dbllist) + 1;

}

void DoubleList::detachAtHeadCDoubleList 8dbllist, Objectt eleuent) {

requires head(8dbllist , element)

modifies 8dbllist;

ensures nhead(*dbllist’,element) A

(element ¢ *dbllist’) A

length(dbllist’) 88 length(dbllist) - 1;

}

void DoubleList: :detachAtTailCDoubleList Itdbllist, Objectt element) {

requires tail (*dbllist , element)

modifies I'Idbll:i.st;

ensures ntail(*dbllist’,element) A

(element ¢ *dbllist’) A

length(dbllist’) 88 length(dbllist) - 1;

}

Figure 7.5. Larch specification of DoubleList class.

104

the relationship between two methods - Stack: :push and DoubleList: :addAtTail.

In order to find an analogous existing component based on query specification

DoubleList, we apply our matching algorithm to the methods of DoubleList. Fig-

ure 7.6 shows the results of the application of the matching algorithm to the method

DoubleList: :addAtTail and the method Stack: :push.

A prototype system for facilitating software reuse has been implemented in the

Quintus ProWindows language: a dialect of Prolog that supports the objest-oriented

organization of graphical elements. Our system provides the functions of constructing

the hierarchical library [42], retrieving the existing components that have a generality

relationship with the query component [44], and assisting users in the modification of

more general and analogous existing components to satisfy the query specification [66].

The left part of Figure 7.6 displays the two-tiered hierarchy of a group of components

described by formal specifications. The Candidate Analogies window displays the

matches that are the results of the matching algorithm. The matches are helpful in

terms of modifying the existing components for reuse because the users may discover

inherent similarities between two components that have no logical relationships that

can be found by automated reasoning. Given these candidate matches, the user can

reuse or redesign the query component. In this example, the system suggests several

matches that may be useful in the modification process. The result suggests that, in

order to satisfy the query specification, the input object should be changed from stack

t"O dbllist and the new element should be added at the tail of dbllist instead of

the top of stack. The C++ implementation for the method DoubleList: :addAtTail

and other methods of DoubleList class is shown in Appendix EA.

The results from the matching process potentially facilitate the modification pro-

cIess by providing the necessary information of specification changes as described in

the above examples. A modification example based on analogy will be illustrated in

" A product of Quintus Computer Systems, Inc.

105

mmmmmfimm

eJeed

C... '001’

Come-e- unselecte-

sebaee nee" Coupe-ens:mes-em

low Gooey flatbed: MT.“

Belem-d m0" Genus-oat: 6.“.

tel-me Win. fleshed: one.

c-uuee- Analog...

aeefithst s-> 0”...th

nee QIHst t-D stock

 rut e-s see

Figure 7.6. An implementation for matching process.

106

detail in next section. Another challenge is to provide the candidates for the match

process, i.e., how to solve the base filtering problem mentioned in Section 7.1. Based

upon the similarity defined in the construction and retrieval processes, the system

returns a set of similar components (to the query specification) to the users as the

candidate specifications for the matching process.

7.7 Modification Example

Program modification is a combination of analogy, transformation, synthesis, and

verification. In this section, we give an example of program modification based on

analogy. We can see how the matching process plays an important role in the modi-

fication process. Consider the following specification of a square root program:

{011 020Ae>0Ar€Real}

{Rtilfi—rke}

where Q1 and R1 are the pre- and postconditions of the square root program, re-

Spectively. We are given two numbers a and e and the desired result is an ap-

proximation r, which is a real number, to the square root of a with a tolerance

Value e. Assume we have an existing program that performs real division as follows:

{Qg:0_<_c<dAe>0}

begin

s:=1;q:=0;

whiles>edo

s:=s/2;

ifd*(q+s)$cthenq:=q+sfi

od.

end.

{Rz=IC/d-q|<e}

Then we apply the matching process to the pair of postconditions of these two

Programs, i.e., R1 and R2: { (I fi— r |< e), (I c/d— q K e)]. If the system has the

transformation rule: \/€—l = 5?, then a match can be found as follows:

107

<(/, /’ U, U), (fl, C, [1’ 1’ ll? [1’ 1’ 1]), (d’ 1" [1’ 1’ 2], [1’ 1’ 2])(1', q? [172]? [112]), (e? e, [2], [2]))

The match is then applied to the real division program and it becomes

begin

3 := l; r:= 0;

while 3 > e do

3 := s/2;

if1*(r+s) S fithenr:=r+s fi

od.

end.

However, 1 :0: (r + s) S J; contains \fd which is to be implemented so we need to

rewrite the statement

1*(r+s)S\/d

by

(r+s)zga

that preserves the semantics but eliminates J5 from the program. Squaring, addition,

- and comparison are regarded as elementary operations. We obtain the following

program:

{leaZOAe>0ArEReal}

begin

3 := 1; r:= 0;

while 3 > e do

8 := s/2;

if(r-l-s)2 Sathenrz=r+s fi

od.

end.

{Rt=l\/5-7‘|<€}

In this algorithm, the result r falls in the range [0,s), i.e., 0 S r < 3. However,

0 S r S {EU/2)" < 27°(1/2)" =1 so 0 g r <1. Once a > (1+ e)’, this program

will never find the desired answer. This problem can be solved by replacing the

initialization command 3 := l by s := a + 1 because the square root of a is bounded

108

from above by a + 1. Consequently, the desired program becomes

{Q1:a20Ae>0Ar€Real}

begin

3 := a+1; r:= 0;

whiles>edo

s:=s/2;

if(r+s)2_<_athenr:=r+sfi

od.

end.

{Rlzlfi—rke}

Despite the simplicity of this example, the potential benefits of program by mod-

ification is apparent. In the example of this section, the programmer can save some

programming effort by reusing the modified program instead of having to program

everything from scratch. Once the analogical match is found, the programmer has

to develop only those parts of the program that cannot be reused from the old one,

which hopefully is much less than to generate the entire program.

7.8 Summary

This chapter presents the framework and an approach to applying analogical matching

process to reusing software components that are described by formal specifications.

Section 7.5 presents a top-down matching algorithm that is consistent, equivalence-

class based, and partial homomorphism-preserving. This algorithm allows the com-

mutative operator to be matched with another commutative operator, thus increasing

the power of the matching process, i.e., the possibility of finding more analogies. In

Section 7.7, an example shows the applicability of the matching process to program

modification that assists the user in developing programs that make use of existing

Software.

The specification of the query and candidate specifications may be given in a

form that obscures any analogical matching. Thus, we would like to express the spec-

109

ification in some equivalent form that makes their similarity more pronounced, for

example, the transformational process transform() changes the form of some speci-

fication but preserves its meaning. This problem is in general difficult to solve. Two

functions in the matching algorithm that are not presented in detail are evaluation()

and argument-mapping. The latter can be implemented by sorting arguments and

binding the arguments with same or similar semantic types. The challenge is how to

allow associativity to be incorporated into the matching algorithm and to avoid the

combinatory explosion. The evaluation function is more complex in the sense of a

large amount of domain and programming knowledge required to make a reasonable

assessment and return the best mapping to users.

CHAPTER 8

Case Study

8.1 Introduction

This chapter describes the application of our reuse framework on a large-scale exam-

ple. More specifically, the problem domain is the construction of graphical user inter-

faces based on existing graphical software components. The Larch specification lan-

guage is used to specify the X window’s widgets, where we include a discussion of the

issues that we encountered in the process of specifying widgets. We also include a dis-

cussion of the strengths and weaknesses of our reuse processes [42, 43, 44, 60, 67, 68].

Several toolkits such as Xt [69], Motif [70, 71] and XView [72] have been built to

enhance the development of graphical user interface software. However, these toolkits

can only be applied at the implementation level and not at the specification level.

Therefore, some common problems in software engineering, such as completeness and

Consistency, may arise during the life cycle of a software system that includes the

graphical user interface developed by these toolkits [73].

We begin with a brief description of X window’s widget set/library and Larch

in Section 8.2. In Section 8.3, we present a sketch of the specification for window

Widgets. The full specification is in Appendix C.2 and C.3. Section 8.4 gives an

example of specifying a scrolled text editor with popup menus. Section 8.5 shows the

110

111

application of the reuse process to a set of formally specified window widgets. Finally,

Section 8.6 summarizes this chapter.

8.2 Widgets and Larch

This section gives a brief introduction to Motif widgets and their Larch specifica-

tions. Detailed descriptions of Motif widgets can be found in Motif programming

manuals [70, 71, 74]. Complete Larch specification languages (LSL and Larch inter-

face languages) can be found in [37, 40, 45, 75, 76].

The Motif widget set contains many components, including scrollbars, menus,

buttons, etc., and they can be combined to create user interfaces. The Motif widget

set is designed to encourage the programmer to follow the Motif Style Guide, which

is based on the behavior of Microsoft’s Presentation Manager [70]. We can divide

the widget classes provided by Motif into several categories based on the general

functionality they offer. For example, some widgets display information, while others

allow the user to select from a set of choices. Still others allow other widgets to be

grouped together in various combinations. Appendix C.1 lists the developed Motif

widgets of X window systems.

As mentioned in Chapter 3, the Larch Shared Language (LSL) describes state-

independent properties of a program. For example, the ManagerWindow trait (Fig-

ure 8.1) introduces the sort ManagerWin and the operators move-win and resize-win;

three equations constrain the meanings of move_win and resize-win, respectively. Each

trait name starts with “Lt” represents “Larch Trait”.

We write the module specification in a Larch interface language to describe state—

dependent effects of a program. A requires clause states each procedure’s precon-

dition; a modifies clause lists those objects whose values may possibly change; an

ensures clause, given the postcondition. The assertion language for the pre- and post-

112

LtManager Window(Manager Win): trait

includes LtComposite Window

ManagerWin tuple of pos: Coord,

size: Size,

label: String

introduces

move-win: ManagerWin _. ManagerWin

resize-win: ManagerWin —> ManagerWin

asserts

V win: ManagerWin

move-win(win)pos == coord..map(win.pos)

move-win(win).size == win.size

move-win(win).label == win.label

resize-win(win).label == coord.map(win.pos)

resize-win(win). label == length-map(win.size)

resize_win(win).label == win.label

Figure 8.1. The ManagerWindow trait.

conditions is drawn from LSL traits. Through based on clauses, a Larch interface

links to LSL traits by specifying a correspondence between programming language-

specific types and LSL sorts. An object has a type and a value that ranges over terms

of the corresponding sort. Part of the interface specification for the Scrollable Text

widget (Figure 8.2) defines the type ScrolledText, which is based on the Scrollable sort

and Text sort, introduced in the ScrollableState and TextState traits, respectively. The

scroll.win procedure’s precondition requires that the window selected is exactly the

window that is to be scrolled, where window_to-0(win) is a coercion operator. The

postcondition states that the display value of the window is updated (as defined by

the set-display operator whose meaning is obtained from ScrollableState) and that all

windows are unselected. In a postcondition, an undecorated formal e, stands for the

initial value of the object; e’ stands for the final value. The modifies clause states

that scroll.win may change only the display of the selected window.

113

type ScrolledText based on Scrollable from Scrollable Window

Text from Text Window

operation scroll.win(w: Window, view: View)

requires e.selected_win = {window.to-0(win)}

modifies (ew;,,)

ensures win’ = set.scrolled.display(win,view) A e’.seleeted.win = {}

Figure 8.2. Part of the ScrolledText specification.

8.3 The Specification for Widgets

Several software systems have been formally specified by the Larch specification lan-

guage. For example, one of the earliest case studies of formally specifying “real”

systems with the language Larch involves Avalon/C++ objects [77]. Also Larch has

been used to specify visual editor Miro [78, 79, 80]. The behavior of concurrent sys-

tems are formally described by a Larch interface language GCIL [81, 41]. A copying

collector for garbage collection has also been specified in Larch [82].

In this section, we specify the Motif widgets in Larch. The specification itself

is composed of two parts, one in the Larch Shared Language (LSL) which is used

to specify general Motif widgets, and one in the Larch/C (LCL) which uses the LSL

traits to specify the specific C implementation of the widgets. Figure 8.3 illustrates

the hierarchical structure of LSL traits, where a trait inherits all the properties of its

parent trait. Each oval corresponds to a trait, and an arrow indicates that one trait

i ncludes another.

114

Om-

“medd-

Figure 8.3. The dependencies of the Window’s traits.

8.3.1 Primitive Widget

Figure 8.4 shows a trait that defines a window as an object composed of content and

clipping regions, foreground and background colors. and a window identifier. The

member symbol ‘6’ is qualified by a signature in the last line of the trait because it

is overloaded, and it is necessary to indicate ‘6’ is converted. Figure 8.5 shows the

trait Primitive that defines a primitive widget used in the definitions of most widgets.

The Set trait is defined in the Larch Handbook; the renaming of sort identifier in the

first Set trait gives the sort WidgetSet for sets of items of sort Widget and all other

Operators. The operator that generates a widget is create-win.

We define each of the remaining operators in the trait with equations in the

asserts clause. The operator create(w) creates: the widget w, and quit(w) destroys

the widget w. The operator open(w) opens current widget w, and close(w) closes

115

LtBasic Window: trait

assumes LtCoordinate

includes LtRegion, LtView, Displayable(Window)

asserts Window tuple of pas: Coord,

size: Size,

cont, clip: Region,

front, back: View,

id: WId

forall w: Window, ed: Coord

cd 6 w == cd 6 w.clip

w/cd] == if cd 6 w.cont w.front else w.back

implies converts -l-l: E: Coord, Window —-> Bool

Figure 8.4. The Basic Window trait.

current widget w. The operator move(w,6) moves the widget w in the screen by 6.

The operator resize(w,7) resizes the widget w to the size 7. The observer operator

size(w) reports the size of the widget w and pos(w) the position of the widget w.

The operator overlap(w1, wg) determines if widgets wl and w; overlap. The operator

id(w) returns the identifier of w. The operator parent(w) returns the parent widget of

w, and child(w) the child widgets of w. The observer operator is_child(w1, 102) decides

if wl is a child widget of 102. The function coor.map is a function that transforms

some widget’s coordinates from its original position to the destination. Similarly, the

function lengtthap is a function that transforms some widget’s geometry and size.

A new sort Widget is introduced and will be inherited by all widget traits that are

defined in Appendix C.2.

8.3.2 Object and SetResource

The Object trait defines two new sorts that are useful in manipulating objects in a

trait regardless of what kind of widgets they are; the SetResource trait introduces

116

LtPrimitive: trait

includes LtBasic Window, LtView, Set(Widget, WidgetSet)

Widget tuple of pos: Coord

size: Size

id: Real

introduces

create: —+ Widget

destroy: -8 Widget

open: Widget —* View

quit: Widget -8 View

selected: Widget —. Bool

move: Widget, Coord —v Widget

size: Widget -> Size % observers

set-size: Widget, Size —> Widget

pos: Widget -i Coord

set_pos: Widget, Coord —-v Widget

overlap: Widget, Widget —: Bool

id: Widget —* Integer

parent: Widget -> Widget

child: Widget, Real —. WidgetSet

is-child: Widget, Widget -> Real

asserts

V w: Widget

move(w).pos == coord_map(w.pos)

move(w).size == w.size

move(w).id == w.id

resize(w).id == coord..map(w.pos)

resize (w).id == length-map(w.size)

resize(w).id == w.id

w generated by create

w partitioned by id

Figure 8.5. The Primitive trait.

117

sorts and operators to change an arbitrary resource’s attribute in a widget. Since

many of the widget operators are essentially the same, we would like to operate on

objects or a set of objects rather than having separate operators for different widgets

in window systems. For example, selecting a displayable widget does not depend on

what kind of widget is selected, so would be appropriate to have a single operator

to select a widget. The Object trait (Figure 8.6) introduces the new sorts Obj, a

union of all widget types, and ObjSet, a set of objects [80]. The union of shorthand

provides coercion operators between the union set and its component sorts. So the

union declaration:

Obj union of wgt: Widget

produces operators with the following signatures:

WGT..O: WidgetSet —+ Obj

_. WGT.TYPE: Obj -» WidgetSet

TAG: Obj -+ Obj.tag

The operator WGT..O coerces a set of widgets to an object, .WGT coerces an

object back into a set of widgets, and TAG is used to determine what kind of widgets

the object contains. The Object trait also introduces operators to manipulate sets

of objects. The operator objects returns the set of all objects in a window; widgets

extracts the set of widgets from a set of objects. The operator toggle_in adds the

specified object to a set of objects if it is not in it, otherwise it deletes the object.

Moreover, the coercion function is defined recursively, that is, a set of objects can

also be coerced into an object.

The SetResource trait (Figure 8.7) contains the specification for the set..attr oper-

ator, which takes an object Object, field name, and a value, and returns a new object

that is the same as Object except that it has a new value for its field Attr.

118

LtObject(Obj): trait

includes LtBasicWindow, LtPrimitive Widget, Set(Obj, ObjSet)

Obj union of widget: Widget

introduces

objects: Window -+ ObjSet

widgets: ObjSet —v WidgetSet

asserts

V w: Widget, ws: WidgetSet, a: Attr,

as: AttrSet, obj: Obj, as: ObjSet, win: Window

objects(create-window == {}

objects(insert.widget(win, w)) ==

insert(objects(win), { w} . wgtJype ({ w}))

widgets(m == {}
widgets(insert(os,obj)) ==

if TAG(obj) = win-type(obj)

then insert(widgets(os), obj. wgt-type(obj))

else widgets(os)

implies converts objects, widgets: ObjSet -> WidgetSet

Figure 8.6. The Object trait.

LtSetResoumeMttr, Val): trait

includes Set(Attr for E, AttrSet for C), LtObject(Ob for Obj)

introduces

valid.attr: Ob, Attr -’ Bool

valid.value: Attr, Val —> Bool

get.value: 0b, Attr -> Val

set-attr: Ob, Attr, Val -> Ob

asserts

get-value(set_attr (Ob, Attr, Val), Attr’) ==

if equal(Attr,Attr’)

then Val

else get-value(Ob, Attr’)

Figure 8.7. The SetResource trait.

119

8.3.3 Well-Formed Window

Before introducing well-formedness, we define some relationships between widgets.

For two widgets w, and 1.02, if wl contains w, then w] is the parent of w; and 102

is a child widget of w. We define w; to be a descendant of w if either (1) w; is

a child of w or, (2) there is another widget w3, where w3 is a child of wl and w;

is a descendant of 1.03. The relationship ancestor is defined similarly to descendant.

With LtPrimitive trait, we have introduced the widget sort, Widget, and the basic

operators. One well-formedness condition for widgets is that for any two widgets,

say w, and 102, if wg is a descendant of wl, then w] must not be a descendant of

1.02. Another constraint is that the geometry, size, and location of a descendant is

determined by its parent widget. If a widget is destroyed then all of its child widgets

are destroyed, too. The widgets with the above constraints are called well—formed

widgets. If all widgets of a window are well-formed, then the window is a well-formed

window.

The well-formed Widget trait in Figure 8.8 introduces operators that define well-

formedness properties and the new well-formed version of the operators that create

and modify a widget. In many cases, the result of a well-formed operator differs

from the result of its non-well-formed counterpart. For example, deleting just a wid-

get may violate well-formedness, since it may result in “dangling” widgets that have

no parent. Hence, delete-wf_widget must delete all child widgets before deleting the

widget. Thus, we introduce an additional operator, delete-children to handle the

deletion of a set of child widgets of a widget. The operator delete-objs returns a

widget that is the result of deleting a set of objects in a well-formed manner. The

Operator extract-wf returns a widget w that is a maximally well-formed subset of a

Set of objects, i.e., no ancestor of w is well-formed. The result of extract_wf(os) is a

widget that contains all the objects of 03 except the dangling widgets. The mean-

120

ing of the operators child, parent. descendant, and ancestor are straight forward.

The operator is-well.formed(w) checks if w is a well-formed widget. The result of

managed.by(w1, 102) will show whether the resources of wl is managed by 102. The

formal assertion of well-formedness is defined in Figure 8.8.

LtWFWidget(WFWidget) trait

includes LtPrimitive, Set(Widget, WidgetSet), LtSetResource, Object

introduces

ancestor: Widget, Widget — Bool

descendant: Widget, Widget —» Bool

is-well.formed: Widget —. Bool

managed.by: Widget, Widget —. Bool

extract-wf: ObjSet —+ WidgetSet

delete_wf.widget: Widget, Widget—v Widget

delete-objs: Widget, ObjSet -+ Widget

delete_children: Widget .. Widget

asserts for all w, w’: WFWidget

is-well.formed(w) ==

(managed.by(w, parent(w)) A

(for all w’::descendant(w’,w) => -i ancestor(w’, w)))

parent(w,w’) == child(w’,w)

ancestor(w,w’) == descendant(w’, w)

for all w’ E extract..wf(w) => is-well.formed(w’)

Figure 8.8. The WFWidget trait.

8.4 Specification of Scrolled Text Editor with

Popup Menus

Given the Motif Widget Model, we now build the formal specification for a text

editor with scroll bars and popup menus, which is shown in Figure 8.9. We begin

by establishing a model of the text editor state at the trait level. Since the text

121

editor widget with the popup menu has child widgets ScrolledText and PopupMenu,

we also need to specify their traits in advance. The interface level specification then

introduces the editor operations defined in terms of changes to the state. Much of

the lower-level detail is assumed, e.g. mapping a mouse to keyboard actions and

how text interacts with words. Many of the details can be found in X window’s

manuals [83, 84].

Text EditorV3- helloc,dlr; /ho me/goldsn/uZS/jeng/motlflchoz

Mnc] uds (XI/th)

E

#1 nc] ude <xI/Push8. h>

Text Pane

Load File...

Vlsw Sa-eimmmhw

widget toplsvsl . button: Edlt Store as New File...

XtAppContsxt app;

void 1_vas ushedO: Include File...

“String 1 91; Empty Document

toplsvsl - XtvaAppIn1t1a1129(&a

aargc. argv, NULL. NULL):

IabeI - XIStringCreateS1ane('Push here to say hello“);

button - XtVaCreatsHana?edw1dgstC'pushss' .

stushButtonwidgetC ass. toplevs]

XuNlabeIString. labs].

NULL);

XsStringFreeCIabei):

sainCargc. argv)

Ehar *argvl]:

Figure 8.9. An Example of Scrolled Text Editor with Popup Menus.

8.4.1 The X Model

The basic interface of this editor is straightforward. The main part of this editor

is the editing area, where the user actually edits the document. On the top of the

122

editing area, there are several popup menus that allow the user to specify operations,

e.g., load a new file. The user can also click in the editing area to popup the same

menu as those on the top of the editor. Along the right side of the editing window,

there is a scroll bar that allows the user to view the text vertically if the text is longer

than the display area.

The scrolled text editor with a popup menu contains a number of different man-

agers and primitive widgets, but appears to the user as a single, conceptually focused

user-interface object. The parent-child relationships among the widgets in this edi-

tor can be graphically illustrated using the tree-structure shown in Figure 8.10. A

widget contains a set of child widgets. for example, the MenuBar widget at the top

of the editor contains four PullDownHenu widgets with labels File, View, Edit, and

Find, respectively. Each PullDovnMenu widget contains a CompoundString widget

for labeling and a CascadeButton widget which also contains a set of PushButton

widgets. Due to limited space, not all widgets used in Figure 8.9 are shown, e.g., only

the child widgets of MenuItem File are displayed in Figure 8.10.

8.4.2 The LSL Level

The main purpose of formal specification is to help the user grasp the concept of the

system easily instead of becoming immersed in implementation details. For example,

a user is not concerned with how a managed widget is mapped to the pixel level

(intensity and location) on the screen. For another example, in the domain of Motif

widgets, there is not a specific widget designed for a scrolled text editor. A user can

create a scrolled text editor by using the text editor widget (Xm’l'ext) and scrolled

window widget XnScrolledllindow). However, at the specification level, we are free

to design such a specification component in order to enhance the understandability of

the system. The specification of the scrolled text editor with popup menus consists

of several widget traits. The interface specifications of those objects are described in

123

She’ll—J

ScrolledWindow

[DrawingAres] I MefuBsr j I TenPane I WenjaISaollBsn

l

[moaning] [rainbow-Meg] [MIDOWIIMGHI] [PullDownMenuJ IPuIIDownMeou]

(View) ‘ (Edit) (Find) (Esau)

Cogs-El

SE 1" + -l-
(mm) (macaw-vi

(MMf) (man-cm; (MMMM)

Figure 8.10. Parent-child relationships between widgets.

the following section. Before describing the trait of the scrolled text editor with a

popup menu, we specify five constituent traits: LtScrolled, LtTextField, Lt'l‘ext,

LtScrolled‘l‘ext, and LtMenu.

Figure 8.11 gives the trait LtScrolled that is the Larch Shared specification of the

ScrolledWindow widget XnScrolledHindow. ScrolledWindow provides a scrollable

view of data that may not be visible all at once. ScrollBars allow a user to scroll the

visible part of the window through the large display. A ScrolledWindow widget can

be created so that it scrolls automatically without application intervention or so that

an application provides support for all scrolling functions. Our ScrolledWindow trait

LtScrolled only gives necessary operators for a ScrolledWindow, and other features

124

such as “scroll up by the size of the viewing window” are omitted.

LtScrolled: trait

includes LtView, LtManager, LtPrimitive

Scrolled tuple of type: {vertical,horizontal},

policy: { automatic, app-defined} ,

introduces

create: —. Scrolled

destroy: Scrolled —.

scrolLup: Scrolled -+ Scrolled

scroll.down: Scrolled —* Scrolled

scrollJeft: Scrolled —> Scrolled

scroll..right: Scrolled —. Scrolled

asserts

scroll.up(create).cont == Empty

scroll.down(create).cont == Empty

scroll.left(create).cont == Empty

scroll.right(create).cont == Empty

scroll.up(scroll_down).cont == scmll.down(scmll.up).cont

scmll.left(scroll.right).cont == scroll..right(scmll_left).cont

Figure 8.11. The LtScrolled trait.

A TextField widget provides a single-line text editor that has a subset of the

Text widget that is a text editor. We put the specification of TextField first, since it

is easier to specify a full text editor if we have ideas about how to specify a single-line

text editor. The line editor allows movement of a cursor on a line of text and provides

a means to change symbols on the line. A user of this line editor will be offered the

following facilities [85]:

1. Generating an empty line and placing the cursor at the initial position

2. Inserting a symbol at the cursor position, and moving the cursor to the right of

the new symbol.

3. Deleting a symbol to the right of the cursor position.

125

4. Moving the cursor one position to the left, provided that it is not already at

the beginning of the line.

5. Moving the cursor one position to the right, provided it is not already at the

end of the line.

6. Moving the cursor to the beginning of the line.

7. Moving the cursor to the end of the line.

8. Clearing the whole line.

The cursor will be placed between symbols, so it divides a line into two parts:

what is to the left of it and what is to the right of it. This observation proposes to

specify a line together with its cursor as a pair of strings, where the cursor is viewed as

taking a position between two strings, and the line is viewed to be the concatenation

of two strings. The following specification given Figure 8.12 is based on this idea.

A Text widget (Xm'l'ext) provides a text editor that allows text to be inserted,

modified, deleted, and selected. The operations of Text subsume those of single-line

editor. We may generalize the operators used in Lt‘l‘extField to design the new

trait Lt‘l‘ext for the Text widget. A document (file) is regarded as a stream in UNIX

system. Borrowing the concept of a file from UNIXt we introduce a new abstract data

type stream that is a list of symbols. Similarly, we specify a text together with its

cursor as a pair of streams, where the cursor is viewed as taking a position between

two streams, and the text is viewed as the concatenation of two streams. Figure 8.13

gives the Lt'l‘ext trait. The difference between a text and a line is that the former

has a two-dimensional layout and a user can move the cursor around the screen in

both horizontal and vertical directions. Therefore, we introduce the operator line

to indicate at which line the cursor is currently located. Other parts of Lt‘I‘ext are

analogous to those of LtTextField.

Menus are basic interactive components used in the design of a graphical user

interface. A Menu consists of a set of items and allows the user to choose one of

‘UNIX is a trademark of AT& T.

126

Lt Tethield(TF): trait

includes Lt View, String, LtCharacter, LtPrimitive

introduces

cursor: String, String —+ TF

create: —-> TF

insert: TF -o TF

delete: TF —* TF

moveJeft: TF -> TF

move-right: TF —> TF

first: TF —v Char

last: TF -* Char

clear: —+ TF

asserts forall c: Char; 3,31,32: String; tf: TF

insert(c,cursor(sl,82)) == cursor(append(sl,c),s2)

delete(cursor(sI,Empty)) == cursor(sI,Empty)

delete(cursor(sl,append(c,s2))) == cursor(sl,s2)

move-left(cursor(Empty,8)) == cursor(Empty,s)

move-left(cursor(append(sl,c),82)) == cursor(sI,append(c,s2))

move-right(cursor(s,Empty)) == cursor(s,Empty)

move-right(sl,cursor(append(c,s'2))) == cursor(append(sl,c),s2)

first(cursor(sl,82)) == cursor(Empty,concat(s],82))

last(cursor(sl,32)) == cursor(concat(31,s2),Empty)

clear(tf) == cursor(Empty,Empty)

Figure 8.12. The LtTextField trait.

the items to perform the desired event. In Figure 8.9, the menubar consists of four

items: File, View, Edit, and Find. The popup menu contains the same items plus

one more item, Extras. Each item of the menubar and popup menu is a pulldown

menu that displays another set of items to be selected. In the domain of Motif,

HenuBar, PopupMenu, and PulldownMenu are all instances of the RowColunn widget

with different types of XmNrowColumnType resource. However, at the specification

level, we should not restrict the menu systems to one implementation such as Motif.

The specification of menu should be abstract enough so that it can describe how a

menu behaves without regards to the underlying implementation details. Figure 8.14

127

LtTezt(Te1:t): trait

includes LtTethield, Lt View, LtLine (LN for Line_Number)

LtCharacter(CN for Chamcter.Number), LtPrimitive

introduces

cursor: LN, String, String —. Text

create: _. Text

insert: Text, Stream —. Text

delete: Text, Stream —. Text

moveJeft: Test -> Text

move-right: Text _. Test

move-up: Test —> Text

move-down: Test —> Text

first: Text -> LN

last: Text —v LN

line: —§ LN

contents: Tezt, LN —. Stream

clear: Text —*

asserts forall c: Char; cn:CN; 8,51,32: Stream: n, n1, n2: LN; t: Text

first(cneate) == Empty

last(create) == Empty

first(cursor(sl,s2)) == cursor(Empty,concat(s1,32))

last(cursor(sl,32)) == cursor(concat(sl,52),Empty)

insert(c,cursor(sl,s2)) == cursor(append(s1,c),s2)

delete(cursor(sI,Empty)) == cursor(sI,Empty)

delete(cursor(sl,append(c,.92))) == cursor(sl,32)

move-left(cursor(Empty,s)) == cursor(Empty,s)

move-left(cursor(append(sl,c),s2)) == cursor(sI,append(c,32))

move-right(cursor(s,Empty)) == cursor-(s. Empty)

move_right(sl,cursor(append(c,s2))) == cursor(append(sl,c),s2)

line(move-up((cursor(31,52))) ==

if equal(line (cursor(sI,32)), 1)

then 1 else line(cursor(sl,s2)) - 1

line(move-down((cursor(sl , 82))) ==

if equal(line(cursor(sl,s‘2)),line.mar)

then line.ma1: else line(cursor(sl,s2)) + I

clear(t) == cursor(Empty,Empty)

Figure 8.13. The LtText trait.

128

LtMenu(Menu): trait

includes LtPrimitive, LtButton

Menu tuple of b1: Button,

b2: Button,

bu: Button

introduces

open: —' Menu

close: Menu -+

display: Menu -> Bool

submenu: Button -’ Menu

selected: Button -» Bool

associated: Button, Event -v 8001

fire: Event -—> Baal

act: State. Event -» State

asserts forall b. b,-, b,- 6 ButtonSet; e 6 EventSet

if selected(b,-) A i ¢ j then -1 selected(b,-)

if selected(b) A associated(b,e) then fire(e)

if selected(b) A associated(b,DisplaySubmenu)

then display(submenu(b))

Figure 8.14. The LtMenu trait.

contains a specification of LtMenu trait, where Menu is defined as a new type con-

sisting of a set of buttons. The type Button is assumed to be predefined. Only one

button is allowed to be selected at one time. Each button is associated with one

event. As long as some button is selected the associated event is fired and the state

will be changed. Since only state independent properties are specified in traits, the

operator act will be described in the interface level. The submenu denotes the Motif’s

Pulldowflenu which is a menu pane for all types of pulldown menu systems, including

menus of a menu bar, cascading submenus, and the menu associated with the op-

tion menu. A PulldownMenu is associated with a CascadeButton. A PulldownMenu

can contain PushButton, ToggleButton, and CascadeButton. Here, we represent the

event displaying all types of such buttons by the operator submenu that can popup

129

a new Henu object and the associated event is DisplaySubmenu. Various kinds of

events can be defined by the users.

LtScrolledTert(Scth): trait

includes LtScrolled, LtTert

introduces

all.visible: Scth —§ Bool

visible: Scth, View —> Bool

visible-content: Scth -> View

asserts

all.visible(visible..wntent(Sc th)) == true

visible(Scth, visible-content(ScTz-t) == true

Figure 8.15. The LtScrolledText trait.

The LtScrolled‘I‘ext trait can easily be specified by including predefined traits

LtScrolled and LtText (Figure 8.15). The operator a11_visible checks if the entire

text is visible to the user. The operator visiblexontent will return the contents

of the visible text. Finally, the trait for the scrolled text editor with its menu is

formally described in the LtScrolledTextMenu trait (Figure 8.16). The specifier may

include any primitive traits into the final design, e.g., deciding that either popupbar

or menubar is needed in the text editor.

8.4.3 The Interface Level

An interface specification language is not tailored to specifying the behavior of an

entire program; instead it is tailored to specifying the behavior of a part of a program

(a module) [86], e.g. the Xt/Motif widgets. The LSL trait utilized in the interface

language describes the abstract values and some vocabulary that is used to manipulate

the abstract values. For example, Figure 8.17 shows part of the specification for

130

LtScrolledTethenu(ScrolledTethenu): trait

includes LtScrolledTezt, LtMenu

introduces

with.popupmenu: ScrolledTethenu -v Bool

witlunenubar: ScrolledTethenu —» Bool

label: ScrolledTethenu —. String

asserts

label(set.attr(ScrolledTethenu. Label, Value)) == Value

with-popupmenu(set_attr(ScmlledTertMenu, Popup, -)) == true

with-menubar(set-attr(ScrolledTertMenu, MenuBar, .)) == true

Figure 8.16. The LtScrolledTextMenu trait.

primitive widgets based on the Larch generic interface language. Each method in

the specification component Primitive corresponds to an operation associated with

this component. Select takes a displayable widget as a parameter and makes the

widget be in a state of having been selected. If the widget is already selected, then

it remains selected. Thus, the ensures clause states that the return value of the

.Boolean operator selected applied to the chosen widget is always true. Unselect is

very straightforward in that there are no preconditions, and the effect of the operation

is that the selected operator returns false. Move(w, delta) moves each widget w

by delta. For each widget w, the value of w after Move is the result of setting

the position of the widget to its previous position plus delta. Once the Move is

performed, the widget is unselected. This action/behavior is reflected in the second

clause of the ensures clause. The specification of Resize is similar; it takes one

widget as a parameter. The ensures clause changes both the position and size of the

selected widget and unselects the widget. '

Figure 8.18 states the behavior of a Popup widget in a window. The operation

Push(p) makes a popup widget viewable at the topmost level among current viewable

widgets. On the other hand, Release(p) makes it disappear and become unselected.

131

component Primitive Widget based on Widget from LtPrimitive Widget

method Select(w: Widget)

requires (w e DisplayableSet)

modifies (w.view)

ensures selected(w’) == true

method Unselect(w: Widget)

requires true

modifies (w.view)

ensures selected(w’) == false

method Move(w: Widget, delta: Coord)

requires true

modifies w

ensures selected(w) == true =

(pas(w’) == pas(w) + delta) A selected(w’) == false

method Resize(w: Widget, pas: Coord, size: Size)

requires selected(w)

modifies w

ensures w’ == set.size(set.pas(w,pos),size) A selected(w’) == false

Figure 8.17. Part of the Interface Specification of Primitive Widget.

The component Popupnenu inherits the operations from Popup and adds more oper-

ations, and we can say Popupnenu is a subclass of Popup. The interface specification

can be reused by inheritance. A subclass inherits its parent class’s specification; that

is, the data member declarations and member methods of parent classes are inherited

by the a derived class.

Specification inheritance provides a simple flexible mechanism for specifying a

widget without respecifying existing widgets. In C++, only public functions can be

inherited by derived class. This constraint is not imposed on our widget specifications

for brevity purposes. Figure 8.19 is an example of a derived widget that inherits the

132

component Popup

inherits Primitive

method Push(p: Popup)

requires a displayable(p)

modifies p.view

ensures displayable(p’) A selected(p) A top_level(p)

method Release(p: Popup Widget)

requires displayable(p)

modifies p.view

ensures - displayable(p’) A n selected(p)

Figure 8.18. The Larch Interface Specification of Popup.

member functions of the widget specification component Popup and introduces more

member functions belonging to itself only, i.e., Createltem, Deleteltem, Choose, and

Actor. The operation Choose selects an item from the popup menu and fires the

corresponding event. Actor makes the state of the current system change to reflect

the fired event.

8.5 Applying Reuse Processes to Specification

Components of Xt/Motif Widgets

This section describes an example that applies the reuse processes (construction,

retrieval and modification) to the specification components of Motif widgets. More

specifically, this section provides the reader with a documented example of a moderate

size reusable component library and gives the reader some feel for the applicability

of the reuse processes for real-world problems. We have specified about 80 widgets

that have been implemented and described informally in the Motif Programming

133

component Papupmenu

inherits Popup

uses Menu from LtMenu

method CreateItem(p: Popupmenu. i: Item, e: Event)

requires i ¢ ItemSet(p)

modifies p

ensures i E ItemSet(p) A associated(i,e)

method DeleteItem(p: Popupmenu. i: Item)

requires i E ItemSet(p)

modifies p

ensures i ¢ ItemSet(p)

method Choose(p: Popupmenu, i: Item)

requires selected(p) A -: selected(i)

modifies i

ensures (associated(i,e) => fire(e) A selected(i))

A (i;£j => q selected(j))

method Actar(s: State, e: Event)

requires fire(e)

modifies s

ensures 8’ == act(s,e) A -. fire(e)

Figure 8.19. The Larch Interface Specification of Popupmenu.

134

Reference[70l

Figure 8.20 shows a set of unstructured widget components that are to be used

as an example. The system allows several operations on the components and their

methods. The user may add, delete, or view some component in the workspace.

Similarly, the user may also add, delete or edit some method of a component. The

constructed hierarchy can also be saved in the system library that contains a set of

reusable components.

8.5.1 Construction Process

Figure 8.21 gives a snapshot of the result of applying the subsumption test to the

above set of widget components, i.e., a low-level hierarchy is formed among the above

widget components. The parent-child relationship between two components reflects

their generality relationship that is described in Chapter 4. Then applying the clus-

tering test to the set of the most general components of the lower-level hierarchy

generates a unified two-tiered hierarchy of the widget components which is shown in

.Figure 8.22, where the box represents a real specification component of some wid-

get and the ellipse represents a meta component which is created by the clustering

algorithm. As for the construction of the two~tiered hierarchy of the above compo-

nents, it took about 10 minutes to construct the hierarchical structure of the widget

components. Actually, most of the computation time is due to the the calculation of

the subsumption relationship among components. The subsumption test algorithm

is applied to a set of “flat” components so the time complexity is proportional to

the square of the number of the components. In Chapter 4, some algorithms are

provided to improve the efficiency of this process. However, in most cases, the time

complexity that it takes to construct the hierarchy is not critical since we are more

interested in the ability to search and retrieve a set of reusable components efficiently

and modifying them to satisfy the query specifications correctly.

Figure 8.20. The. unstructured widget components.

[
E
]

R
e
u
s
e
B
r
o
w
s
e
r
3
n

(
S
u
b
s
u
m
p
t
l
o
n
T
e
s
t
)

(
H
l
e
r
a
r
c
h
l
c
a
l
C
l
u
s
t
e
r
l
n
g
)

(
T
w
o
—
T
i
e
r
e
d

H
i
e
r
a
r
c
h
y
)

(
L
l
n
e
a
r
S
e
a
r
c
h

)
H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h

C
o
m
p
u
t
e

A
n
a
l
o
g
y

]

[
s
T
-
u
m
e
n
u
n
a
r
“

s
t
a
n
r
l
a
l
d

1

s
‘
r
o
a
n
v
-
l
s
h
-
I
l
I
l
s
T
o
g
n
l
e
l
u
u
-
n
d
”
x
T
o
g
g
l
e
I
u
l
l
o
n

[
x
t
e
-
l
r
u
l
l
d
e
w
n
l
[

x
T
e
u
r
o
p
u
p

[
s
w
a
r
n
l
n
n
b
l
a
l
n
’
J

[
u
m

H
:

,
-

-
-
H

.
.
-
:
,
H

H
-

-
-

-
H

-
-

H
x
s
c
r
e
l
l
e
d
w
l
n
d
i
l
l
s
s
r
r
n
l
l
e
l
‘
r
a
n

l

l
x
5
t
r
n
l
l
l
d
l
l
s
l
H

x
s
r
r
o
l
l
n
a
r

H
x
s
r
r
e
a
n
J
l

s
s
c
a
l
e

l
F
I
o
w
C
o
l
u
n
-
n
H

-
-
-

H
‘

-
-

-
H
.
.
.

L
J

r
m

H
x
r
u
l
i
a
o
w
n

H
u
r
o
n
-
m
o
l
a
r
”
e
r
r
i
m
m
v
n
s
i
n
n

s
r
r
l
m
l
l
l
v
-

J
F
P
O
p
u
P
M
I
n
u
j
l

x
r
o
p
u
v

l

1
"
"

It

 l
i
P
a
n
n
d
W
l
n
d
a
n

l
o
p
l
l
o
u
M
-
n
u

s
o
b
j
-
(
l

l
F
M
a
s
s
a
g
e
o
l
a
l
o
g
H
“
N
a
s
s
a
u
-
l
a
x

”
—
a
n
n
u
s
h
o
l
l

H
K
M
I
I
I
I
U
I
I

I
U
M
a
n
u
u

]

 I
m
u
n
w
i
n
u
n
w
H

s
L
l
s
t
M
u
l
t
l
p
l
e
H

x
L
l
s
t
s
l
n
g
l
e

j
l

u
m

H
s
L
a
h
e
l
G
a
d
g
e
T
l
r

n
u
n
:

l
f
x
n
n
r
o
r
m
a
r
I
o
-
o
q
r
z
c
‘
a
g
e
i

l

[
u
r
n
-
n
.

H
I
F
o
r
m
o
l
a
l
o
y

H
x
F
o
r
m

T
H
.
.
.
"

-
-

H
.
.
-

-
-

”
x
i
r
r
o
r
o
l
e
l
o
g

l
F
r
o
p
‘
l
’
r
a
r
-
s
f
u
r
“

x
o
r
o
p
s
n
.

I

 '
'
I

J
l
x
o
r
a
m
l
n
g
n
r
o
a

 l
-

J
L

-
l
L
-
‘
V

"
l
l

‘
l
l
"

l

I
H

‘
H

ll
‘
l
l

7
1
V
“
‘
H

'
"

[
"
“
W
”

l

[
A
l
f
-
W
I
U
I
‘
D
I
G

n
a
r
r
o
w
-
u
n
o
-

135

 Figure 8.21. The lower-level hierarchy of widget components.

]
[
E
]

R
e
u
s
e
B
r
o
w
s
e
r

3
.
0

(
i
f
)
g
m
-
-
m
@
m
—m
0
m
m

_
m
t
o
u
e
r
v
—
m
m
m

H
i
e
r
a
r
c
h
i
c
a
l
C
l
u
s
t
e
r
i
n
g

T
w
o
—
T
i
e
r
e
d

H
i
e
r
a
r
c
h
y

L
i
n
e
a
r
S
e
a
r
c
h

H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h

C
o
m
p
u
t
e
A
n
a
l
o
g
y

x
r
u
l
l
d
l
w
n

"
F
t
u
p
L
e
v
e
l
S
h
e
l
l
I
I
I
‘
r
-
x
t
r
u
l
l
d
o
w
n
I
F
T
Q
X
I
F
I
I
I
I

I
I

u
m

I
I

x
s
-
u
r
n
o
r
I
I

s
s
c
r
e
u
n

I
r

x
s
u
l
-

J

/
I
r
r
l
m
h
l
v
.

I
P
O
p
u
’

I
I

x
o
h
j
a
r
l

J
x
M
e
n
u
s
I
-
o
l
i

s
M
a
-
a
g
o
r

[
l
b
r
n
'
s
l
t
e

K
\

I
s
o
l
a
l
o
n
s
h
a
l
l

l
(
o
n

s
l
a
s

i
n
s
l
l

I
s
s
-

a
l

a
x
?

I
l
d
o

n
M
e

[
E
m
a
i
l

a
x

I
s
c
r
e
l

w
i
n

s
‘
l
'
e
x
t
o
p
u
p

I
«
R
i
g
e
l
/
I
r

x
M
e
n
-
l
a
W
o
p
l
l
o
n
M
n
n
u

I

I
C
O
I
I

I
I

I
D
I
’
I
‘
C
O
I
I
‘
C
I
‘

I

s
l
u
l
l
c
u
n
l
o
a
r
d

s
r
a
w
l

g
a
s
-

a
t

0
I
d
!
»

x
l
o
w
t
o
l
u

D
r
u

s
t
a
r

I
E
I
'
I
'
O
I
'

I
a
l
n
g

x
F
I
I
e
s
e
l
a
n
l
o
-
D
I

I
n
f
o
r
m
u
l
o

n
I
a

r
e

a
l
l
a
n
o
l
a
l
o

'
'
l
/

'
‘

'
l

x
g
a
l
a

n
a
r
r
o
w
-
a
n
o
n

x
c
a
s
u
d
a
l
u
u
o
n

-
.

‘
\

s
t
a
g
.

o
n

b
e
l
a
a
d
g

I
L
"

I
.

L
i
s
t
M
u
I
t
l
p
l
-

M
a
i
n

n
d
o
w

s
s
c
r
o
l
l
o
d
l
l
s
l

I
s
c
r
o
l
l
o
d
T
-
u

:
1
1
"

l
l
.
.
.

x
l
u
l
l
e
t
l
n
l
o
a
r

n
l
-
l
a
a
r

I
n
"
.

I
I
I

-
-

I
I

t
-

I

/
I

-
.

I
P
A
"

I
-

4
“

I
I
.
.

L
a
s
F

-
I
I
I
/
m
-
o
n
n
o
u
u
n
g

I
I
n
m
u
n
g
n
o
m
a
g
I

 136

138

8.5.2 Retrieval Process

The time spent in the construction process is compensated by the time saved in the

retrieval process. Due to the hierarchical structure of the components, a user is able

to retrieve a set of components that exactly match the query specification, or are

more general than the query specification. Figure 8.23 gives an example of retrieving

an exactly-matched component. Given the query specification vinficrolled‘rext

which is partially shown in the left side of the browser, the system returns the

exactly-matched component xScrolled‘I‘ext. Figure 8.24 gives another snapshot of

the result of retrieval process, where a group of more general components than the

query component winficrolled‘rext is returned to the user. The specification of

winjcrolledText is shown in Appendix C.3. The system takes only several seconds

to return the set of more general components (or exactly-matched component) to the

user and this example shows the applicability of the retrieval process in the framework

of a two-tiered hierarchy.

8.5.3 Modification Process

As illustrated in Chapter 7, the matching process helps the user to recognize the

similarity (or difference) between two components’ methods and to modify an existing

component to fit the query specification. Figure 8.25 gives an example of applying

the matching process to the method select of the query component winjopflenu

and the method push of an existing component xPullDownMenu. The Candidate

Analogies window displays the matchings found between the above two methods.

The result shows that these two methods almost have the same form except that the

term pulldovn in xPullDownMenu: :push should be replaced by the term popup in

win.PopMenu: :select. The same process can be applied to other methods of these

two components to obtain similar results.

 Figure 8.23. An example of retrieving an exact-matched component.

R
e
u
s
e
B
r
o
w
s
e
r
3
.
0

G
E
u
-c
-
m
-
w
m
m
—

_
.
.
.
.
Q
.
.
.
.
.
_
m
o
u
e
r
v
m
m
@

H
i
e
r
a
r
c
h
i
c
a
l
C
l
u
s
t
e
r
i
n
g

T
w
o
—T
-
l
a
r
e
d

H
i
e
r
a
r
c
h
y

L
i
n
e
a
r
S
e
a
r
c
h

H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h

C
o
m
p
u
t
e
A
n
a
l
o
g
y

W
\
I
“
;
/
W

1
@

V
i
e
w
M
e
t
h
o
d
s

r
©

H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h
M
e
n

'
1
.

X
Y
C
I
‘
P
I

H
l
e
r
a
r
c
h
l
c
a
l
S
e
a
r
c
h
M
e
n
u

G
E
D
G
E
D

'
-
-

E
x
a
c
t
M
a
t
c
h
e
d
C
o
m
p
o
n
e
n
t
s

 E
x
i
t

C
O
M
P
O
N
E
N
T
:
w
l
n
_
$
c
r
o
l
l
e
d
T
e
x
t

?
M
o
r
e
G
e
n
e
r
a
l
C
o
m
p
o
n
e
n
t
s

M
o
r
e

S
p
e
c
i
f
i
c
C
o
m
p
o
n
e
n
t
s

1

M
E
T
H
O
D
:
s
c
r
o
i
l
w
l
n
d
o
w

'
L

,
J

B
E
G
I
N

A
"

l
l

.
|

\7El

S
I
G
N
A
T
U
R
E
:

[
x
S
c
r
o
l
l
e
d
T
e
x
t
.
_
]

—
>
_

f
®

E
x
a
c
t
M
a
t
c
h
e
d

T
Y
P
E
:

[
w
l
s
z
c
r
o
I
l
e
d
T
e
i
m

a
t
t
r
:
_
.

v
a
i
:
_
]

/
—

'
—
J

x
S
c
r
o
l
'
i
e
d
T
e
x
t

m
e

,

P
R
E
_
C
O
N
D
I
T
I
O
N
:

é

[
s
e
l
e
c
t
e
d
(
w
t

)
1

P
O
S
T
-
C
O
N
D
I
T
I
O
N
:

[
w
l
-
s
e
t
_
s
a
'
o
l
l
_
d
i
s
p
l
a
y
(
w
1
)
&
~
s
e
l
e
c
t
e
d
(
w
1

)
1

E
j
—
j

E
N
D

l
o
r
e
-
I
c
o
n

x
r
r
l
-
I
l
l
v
e

I
m

I
—
fl
l
n
l
r
fi
j
m
n
n
r

I

l
l
I
I
I
‘
I
I
-
I
-

l
s
u
e
l
l
e
d
o
n
e
a
e

s
s
c
r
e
l
l
e
d
‘
r
e
n

"
i

 139

 Figure 8.24. An example of retrieving a set 'of more general components.

J
‘
E
]

R
e
u
s
e
B
r
o
w
s
e
r

3
.
0

(
C
o
m
p
u
t
e
A
n
a
l
o
g
y
)

H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h

(
L
i
n
e
a
r
S
e
a
r
c
h

)

T
w
o
-
T
i
e
r
e
d

H
i
e
r
a
r
c
h
y

 3:131],

E
u
r
—
”
’
7

Q
“

'
u
_
.
’
-
/
\
x
/

I
‘
m

V
i
e
w
M
e
t
h
o
d
s

F
l

I
:

I
T
O
I
I
P
M

J
‘
E

H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h

M
e
n
-
1
‘

H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h
M
e
n
u

E
x
a
c
t
M
a
t
c
h
e

(
1
C
o
m
p
o
n
e
n
t
s

M
o
r
e
G
e
n
e
r
a
l
C
o
m
p
o
n
e
n
t
s

M
o
r
e

S
p
e
c
i
f
i
c
C
o
m
p
o
n
e
n
t
s

a
C
O
M
P
O
N
E
N
T
:
w
I
n
_
S
c
r
o
l
l
e
d
T
e
x
t

T

w

E
x
i
t

M
E
T
fl
o
o
z
s
c
r
o
I
I
W
I
n
d
o
w

'
L
.

.
J

B
E
G
I
N

L
l
.

"
‘
m

S
I
G
N
A
T
U
R
E
:

[
x
S
c
r
o
l
l
e
d
'
r
e
x
t
.
_
]

-
>

r
@

M
o
r
e
G
e
n
e
r
a
l

‘
—
‘

x
S
c
r
o
'
l

i
e
d
T
e
x
t

T
Y
P
E
:

[
w
1
:
x
S
c
r
o
I
I
e
d
T
e
x
t
,

a
t
t
r
:
_
,

v
a
l
:
_
]

x
S
c
r
o
l

l
e
d
w
i
n
d
o
v

O

I
D
I
’
.

m
l

P
R
E
_
C
O
N
D
I
T
I
O
N
:

fl

I
s
e
l
e
c
t
e
d
(
w
1
)
]

W
”

P
O
S
T
_
C
O
N
D
I
T
I
O
N
:

[
w
l
-
s
e
t
_
s
c
r
o
l
l
_
d
I
s
p
l
a
v
(
w
1
)
&
-
s
e
|
e
c
t
e
d
(
w
1
)
]

I
‘
O
U
N
‘
 _l

\7llLlEllfl'

5

E
N
D

f

I"

L
,.

l
I

J
i

®
I
S
I
'
I
C
I
.

I
I
’
I
Y
Q
I
F
M
I
I
I
I

'
A
:

s
t
o
u
r
o
p
u
p

r
—
r
'
l

G
E
)

L
I
f

s
r
r
l
m
l
'
l
v
e

o
x
o
r
a
g
c
o
-
I
u
l

I
s
u
n

I
s
r
r
l
m
l
s
l
v
e
s
l
z
e

l
s
r
r
o
l
l
l
a
r

/

_
_
_
_
‘
_
~
_

m
I
I
.
r
"
K
.
"

I

I
s
l

I
a
n
l
e
s
C
I
n
-
l
e

l
x
s
c
r
e
l
l
e
d
T
o
l
l

i

flE

 140

141

The implementation of the existing component xPullDownMenu is shown in Ap-

pendix ES. The output of this implementation is displayed in Figure 8.26 that is

a window containing a pulldown menu. Based on the matching information, the

user can easily modify the implementation of xPullDovnMenu to support popup

menu type. The only thing we need to do is to specify a set of new parameters

that are required in a window containing popup menus. Motif defines two con-

venient functions XmCreatePopupMenu and XmCreatePulldownMenu to initiate the

popup menu and pulldown menu respectively. Therefore, we exploit the function

XmCreatePopupMenuO to obtain a popup menu. The main routine was modified

slightly to move the menu out of the menubar and into the DrawingArea widget as

a popup menu. The menu item declarations from the program of xPullDownMenu

may still be used. The final implementation of the query component uinJopMenu is

shown in Appendix E.6. The output of this program is given in Figure 8.27.

8.6 Summary

This chapter provides a case study of applying formal methods to a real world example

GUI programming, specifically in terms of X window’s widgets. The specification

process formally describes the Motif widget’s components and helps the users to

understand more about the behavior of the window’s widgets. The construction

process built a two-tiered hierarchy of widget components and can assist the users

in the browsing, the retrieving, and the modifying of existing components. The

retrieval process has shown the ability to find a set of existing components that are

more general or more specific than the query component. Finally, we gave an example

of modifying an existing widget component to satisfy the query specification based ~

upon the matching information. This chapter demonstrates how formal methods can

be used in the specification of the software components, construction of the software

 e

Figure 8.25. An example of computing matching between two methods.

F
®

R
e
u
s
e
B
r
o
w
s
e
r

3
.
0

S
u
b
s
u
m
p
t
i
o
n

T
e
s
t

H
i
e
r
a
r
c
h
i
c
a
l
C
l
u
s
t
e
r
i
n
g

(
T
w
o
—
T
i
e
r
e
d

H
i
e
r
a
r
c
h
y
)

(
L
i
n
e
a
r
S
e
a
r
c
h
)

(
H
i
e
r
a
r
c
h
i
c
a
l
S
e
a
r
c
h

)
(
C
o
m
p
u
t
e
A
n
a
l
o
g
y
)

 H
1
‘
@

Q
u
e
r
y

E
d
i
t
o
r

‘
1

<
C
o
m
p
u
r
e
A
n
a
l
o
g
l
e
s

E
l

m
fi
m

C
m
m

I
:
 :
J

C
O
M
P
O
N
E
N
T
:
w
l
n
_
P
o
p
u
p
M
e
n
u

S
e
l
e
c
t
e
d
Q
u
e
r
y
r

r
*
w
I
n
_
:
‘

r
r

v
M
E
T
H
O
D
:
s
e
l
e
c
t

S
e
l
e
c
t
e
d
Q
u
e
r
y
M
e
t
h
o
d
:
s
e
l
e
c
t

T
V

B
E
G
I
N

:
—

S
I
C
N
A
T
U
R
E
:

[
"
3
"

,
.

,
_
"

‘
-
>
a
?

,
.

,
.
"

E

n
u
.
-

.
-

S
e
l
e
c
t
e
d

E
x
i
s
t
i
n
g

r
r

‘
n
r

S
e
l
e
c
t
e
d

E
x
i
s
t
i
n
g
M
e
t
h
o
d
:
p
u
s
h

T
V
P
E
:
[
p
o
p
u
p
_
m
e
n
u
:
x
P
o
p
u
p
M
e
n
u
]

P
R
E
_
C
O
N
D
I
T
I
O
N
:

[
~
d
i
s
p
l
a
v
a
b
l
e
(
p
o
p
u
p
_
m
e
n
u
”

P
O
S
T
_
C
O
N
D
I
T
I
O
N
I

.

r
'
@

C
a
n
d
l
d
a
l
e
A
n
a
l
o
g
l
e
s

/

,
,
.
_
.
.
.
.

r
r

r
_
m
e
n
u
)
]

I
E

'
—
’

d
i
s
p
l
a
y
a
b
l
e

<
-
>

d
i
s
p
fi
a
y
a
b
l
e

M

F—

'
J
I

.
I

I
I
n
n
n
l
‘
n

.
-

v
r
—

p
o
p
u
p
_
m
e
n
u

<
-

>
p
u
l

l
d
o
w
n
_
n
e
n
u

p
o
p
u
p
J
I
e
n
u

<
-
>

p
u
l
l
d
o
u
n
_
u
e
n
u

-
-

t
o
p
_

e
v
e
l

<
-
>

t
o
p
_
l
e
v
e
l

“
r
w
w
n
-
W
J
'
W
‘
M
-

.
4
*

m
fi
i
’
l
’

m
r
o
l
l
e
r
l
n

o
a
r
‘
o

e
l
u
l
l
u
l
n
l
e
e
r
d
o
m
-

I
—
‘
a
r
—
a

4
,
.
.
.
.
.
.

.
.
.
-
n
.

l
l

J
Z

A
"
'

-
0
5
;

—
r
-
‘

'

o
.

s
s
s
e
l
o

I
t
o
-
I
M
e
n
u

'
t
i
c
-
a
g
e
!

"
-

r
e
w
n
M

r
x
r
o
p
u
p
M
e
n
u

I

V

I
x
c
o
m
m
a
-
d

I

x
l
e
l
P
I
n
u
p

I
I

x
r
e
r
m
D
I
a
I
O
a
J

l
e
e
s
-
I
e
r
l
l
e
n
l
o

M
o
s
s
e
g
e
o
l
a
l
o
'

x
D
r
a
g
(
o
u
l
u
l
l

I
r
r
l
-
I
I
I
V
I

s
s
c
r
e
l
l
e
l
w
l
n
l
e

m

l
,

“
*
3
I
J
I

s
t
i
l
l

I
I
x
n
l
m
m
v
c
s
n
-
I

I
1
5
(
7
0
I
I
I
I
P
J

3
m

.L.

142

143

make_pulldown

le

Line Lblght h

Line Color D

Lin 3313 D

rum

[slice

Plasma

gnu

Figure 8.26. The output of the pulldown menu implementation.

@ simple_ponun

Yello-

 mm.

0m. Ctrl-C

Figure 8.27. The output of the popup menu implementation.

comp<

retrie‘

144

component hierarchy, retrieval of the reusable components and modification of the

retrieved reusable components.

CHAPTER 9

Related Work

This chapter describes systems that have been built to perform software component

reuse, including description of the specific methods used by each system. The related

work discussed is categorized according to software reuse, uses of analogy, and specifi-

cations of graphical user interface. While this survey is comprehensive, it is certainly

not exhaustive.

9.1 Related Work for Reuse

Caldiera and Basili

Caldiera and Basili [25, 22] propose a reuse framework that defines a project or-

ganization and an experience factory. The project organization performs activities

specific to the implementation of the system to which it is dedicated. The project

organization engineers may request a list of reusable components from the experience

factory. The experience factory’s process model is twofold: it satisfies requests for

components from the project organization, but it also prepares the pool of choices

for the requests. The work in this paper is similar to the latter task in that we also

prepare a component library, however, our library is hierarchically organized. We

also use a formal representation for the software components in order to facilitate an

145

146

automated approach for determining software reuse, whereas their approach requires

domain experts to select a set of reusable components. They produce software com-

ponents by developing a component production plan - the experience factory extracts

reusable components from existing systems or generalizes components previously pro-

duced on request from the project organization. They need domain analysts to study

each component in order to determine the service it can provide. Then components

are stored in the repository with all information that has been obtained about them.

However, we prefer our approach for reasons of cost and extensibility. First, many

domains cannot be easily described by domain analysts and domain analysis is very

difficult and expensive. Our library can be automatically constructed without human

intervention. Our library can be built for any domain and can easily be modified.

GURU

The GURU project [14, 15] automatically assembles large components by using in-

formation retrievai techniques. The construction of the library consists of two steps.

First, attributes are automatically extracted from natural language documentation

by using an indexing scheme. Then a hierarchy is automatically generated using a

clustering technique similar to our hierarchical clustering algorithm. The indexing

scheme is based on the analysis of natural language documents obtained from man-

ual pages or comments. The assumption is that natural language documentation is

a rich source of conceptual information. However, natural language is not a rigor-

ous language to specify the behavior of software components. One concept may be

expressed in different ways or styles between two natural language documentations.

In contrast, a formal specification language can serve as a contract, and a means of

communication among a client, a specifier, and an implementer [19] with applicable

formal verification techniques. Because of their mathematical basis, formal speci-

fications are more precise and more concise than natural language documentation.

Another presumption of their indexing scheme is that 98 percent of lexical relations

147

relate words that are separated by at most five words within a single sentence. There-

fore, they extract pairs of words by sliding a window over the target-text.

MAPS

Nishida and others [17] developed a method of semi-automatic specification refine-

ment and program generation using library modules. Users write their specifications,

modify and rearrange them so that. the specification can be refined with the aid of

the library modules. When a specification is given, a refinement system called MAPS

searches for library modules applicable to the given specification, replaces the specifi-

cation with a more detailed descriptionwritten in the operation part of the modules,

and convert the refined specification into a programming language designated by the

user. Case-like expressions or pseudo-natural language expressions are used for de-

scribing user’s specification and specifications for library modules. MAPS exploits

the unification capability to search through reusable modules in library. However,

their library is not hierarchically organized, thus the search space could become very

large once the number of software modules in the library increases.

Draco

The Draco project [87] focuses on the use of domain engineering of software reuse [26].

The goal of this project is to increase the productivity of software engineers in the

construction of similar systems by organizing reusable software components by do-

main analysis. Draco was among the first systems to promote the reuse of products

from all phases of software life cycle. from analysis, design to implementation (com-

ponents). The most important aspect of Draco is the domain language that describes

objects and operations of a particular domain and hence represents analysis informa-

tion about that domain. The object and operation also describes the design informa-

tion. There is a reusable component associated with each domain language object or

operation. Since there is a potentially large number of components within a domain,

Draco uses a classification scheme for the components called faceted classification to

148

aid in organizing and retrieving the components [88, 89, 23].

Using faceted classification, each component is described by a set of attributes.

The attributes are chosen to best characterize the components of a particular domain.

Each attribute is filled with a term from a well-defined vocabulary. A thesaurus is

provided to determine the proper term to apply. A query is a tuple with selected terms

used as keys to search the database. In general, a query session begins with with the

most specific query, that is, all attributes are filled in. If the results of the query are

unsatisfactory, the user may generalize the query by inserting a wildcard character (*)

for attribute values. Draco maintains a measure of conceptual closeness for the term

lists of each attribute as a weighted, acyclic, directed graph. This way, an unsuccessful

search can be tried again using an alternative but similar term in one of the attributes.

The advantage of using faceted classification is that it is conceptually simple for users

and relatively easy to implement. However, the disadvantage to faceted classification

is that it is not suitable for unconstrained domains. Also, even with a conceptual

closeness measure, semantically similar components may be overlooked, especially

components from different domains.

The Reusable Software Library

The Reusable Software Library is a system designed to make software reuse an in-

tegral part of the software development process [90]. The components of RSL are

stored in the database with attributes that provides a basis for retrieval. RSL has

two methods to search for components: standard multi-attribute search and natural

language. The former method provides a menu-driven interface in which the user

selects the attributes with which to perform the search. Alternatively, the user may

express a query in the form of natural language. The system parses the input, ex-

tracts keywords from the query and uses those keywords as attributes to perform the

search. The natural language front end is apparently easy to use, however, it is also

expected to be inaccurate and slow because of the nature of the natural language

1:19

parser.

The Programmer’s Apprentice

The goal of the Programmer’s Apprentice is to exploit artificial intelligence techniques

in an effort to automate the programming process [91, 18, 92]. It is designed to pro-

vide intelligent assistance in all phases of a programming task. The designer thinks

of the Apprentice as an agent in the process rather than as a tool. A reusable com-

ponent in the Programmer’s Apprentice is called a cliche’ that represents a commonly

used combination of elements. A formalism called a Plan Calculus has been devel-

oped to represent a cliche’. The Program’s Apprentice automates cliche’ recognition

as a means to understand existing programs and facilitate program optimization. It

uses graph parsing to recognize cliche’ in program in order to recognize a program’s

design. A maintenance tool called Recognizer automatically finds all occurrences of

a given set of cliche’s in a program and builds a hierarchical description of the pro-

gram in terms of cliche’s found. Since plan is essentially a directed graph, the system

uses graph-parsing to identify sub-graphs that are then replaced with more abstract

operations. However, it is not efficient to search desired cliches via purely structural

exhaustive strategy graph parsing. Some heuristics are expected to be added in order

to enhance the system’s performance.

Steigerwald

Steigerwald [27] describes a tool used in Computer Aided Prototyping System

(CAPS), developed at the Naval Postgraduate School, which retrieves reusable com-

ponents from a software base using a formal specification as a search key. The query

specification that represents a design requirement is compared to formal specifica-

tions of Ada reusable components stored in an object—oriented database management

system. A syntactic search compares specification interfaces, identifying reusable

candidates based on types of parameters. The semantic search rank orders a set of

candidates based on semantic similarity to the query. The method, query by consis-

150

tency, compares terms that are reduced in the axioms of each specification. Spec-

ifications are normalized to facilitate the matching between query specification and

reusable component specifications in the retrieval. A formal proof verifies that query

consistency can retrieve components to meet specified requirements. The framework

of this tool is similar to ours, however, there is no classification scheme exploited in

it to enhance retrieval.

Zaremski and Wing

Zaremski and Wing [93] propose signature matching as a method for achieving soft-

ware reuse by using signature information easily derived from a reusable component.

They consider two kinds of software components, functions and modules, and hence

two kinds of matching, function matching and module matching. The signature of

a function is simply its type; the signature of a module is a multiset of user-defined

types and a multiset of function signatures. They consider both the exact match and

relaxed match. In their work, the pre- and postconditions are not used as a key to

find a set of reusable components.

9.2 Related Work for Analogy

Several researchers have applied analogical reasoning to real-world problems e.g. au-

tomated theorem proving. education, artificial intelligence, and software engineering.

This section provides a brief overview of some analogical applications in the AI and

software engineering fields.

9.2.1 Analogy in AI

Much of the work done in Al not use analogies in problem solving, and therefore turns

out to be less interesting to our concerns in the application of analogy in solving reuse

problems. This section is presented for the purpose of giving a brief history of analogy

in the AI community.

Evans

One of the earliest computational accounts of analogy is due to Evans [94].. Evans

wrote a program that attempted to solve geometric problems of the kind that occur in

intelligence tests. These problems test the ability to perceive relations and analogies,

or rather the ability to perceive the same analogy as the person who defined the

problem. The analogies are not used for any external purposes. Evans’ early work

on analogy is an important part of the development of analogy with AI. Evans was

the first person to articulate analogies as symbolic correspondences between formal

representations. The notion of what an analogy exists implicitly in the work of both

Hesse [65] and Polya [95], but is not developed to the stage of being made explicitly.

Kling

Kling [96] developed an analogical reasoning system for use with an existing resolution

theorem proving system. It was the first attempt to automate the use of analogies to

solve problems. That is, Kling was the first to introduce the paradigm for reasoning by

analogy. Kling was mainly concerned with the analogies that exist between different

branches of abstract algebra, particularly group theory and ring theory.

Carbonnell

Carbonnell [97] has discussed how a problem solving system can be augmented with

analogy components. He proposes various operators that may be applied to a faulty

plan in a hope of transforming it into a valid target solution. The branching rate

at the solution transformation level is much greater than that at the original state

space level, and the solution level may lie at greater depth than the object level; thus,

without some account of the control regime at the transformation level, the use of the

analogy is likely to make the target problem harder to solve. Carbonnell proposed

a new model for reasoning by analogy within an automated problem solver [98],

where he coined the phrase derivational analogy. Instead of looking for analogies

between problem representations alone, analogies are sought between initial segments

of problem solving activity between the target and the base. That is, the target

problem is attacked by the problem solver (presumably with some general purpose

search technique); the entire trace of the problem solver’s search at any stage is

retained, including all failed branches and intermediate states; matching takes place

between this structure and the corresponding initial trace for candidate base problems;

once an adequate match is found, the later stages of the process proceed in a way

similar to Carbonnell’s earlier model.

Indurkhya

Indurkhya [99] describes a knowledge representation scheme, very similar to first-order

logic, and defines a notion of analogy within it. While Indurkhya does consider the

problem of reasoning with analogies, he requires an analogy to be an isomorphism

between formulas, where predicates and objects may be associated with different

predicates and objects, but only in a strictly consistent manner. There can be no

permutation of arguments between associated terms and formulas, and there can be

.no unmatched arguments.

Gentner et al

Gentner and colleagues perform investigation with analogy from both a psychological

and computational standpoint [100, 101]. They have developed a model for analogical

reasoning called structural mapping theory. In the mapping stage, a symbolic match

is formed between the base and target descriptions. Such a mapping is then used

to make predictions about the target domain from known properties of the base

domain. Gentner’s work has focused on modeling famous scientific analogies such as

Rutherford’s solar system model of the atom and the fluid flow model of electricity,

and also analogies used in cognitive experiments. Gentner uses what is known as a

restrictive notion of analogy match; matches must be isomorphisms between parts

of the base and target descriptions, with relations being matched only with identical

153

relations. Gentner has also considered the problem of base filetering: that is the

determination of a small set of plausible base problems/descriptions from a potentially

vast base of descriptions.

Kedar-Cabelli

Kedar-Cabelli [102] introduces purpose as an additional constraint on a structure-

mapping mechanism. Their motivation is that the similar purpose for two problems

often lead to similar solutions. With the constraint purpose, the analogical reasoning

system needs to generate causal structures of both base and target problems for the

mapping process. Purpose—directed analogy satisfies the constraint of mapping only

those causal relations that share similar purposes.

Owen

Owen [103] addresses the use of analogy to guide the search in theorem proving

systems. The goal has been to develop mechanisms for constructing and exploiting

simple analogies between mathematical problems. As with others work on genuine

problem solving analogies, a flexible notion of an analogy match is necessary. Much

of his effort has been towards a more flexible, powerful, and unstandable matching

algorithm than those of Munyer and Kling.

9.2.2 Analogy in Software Engineering

Dershowitz

Dershowitz [104] suggested the formulation of program of analogies as a basic tool

in program abstraction. An analogy is first sought between the specification of the

given programs; this process yields an abstract specification that may be instantiated

to any of the given concrete specifications. The analogy is then used as a basis

for transforming the existing program into abstract schemas helping to verify and

complete the analogy. A given concrete specification of a new problem may then be

compared with the abstract specification of the schema to suggest an instantiation of

tr

dc

co:

8.111

154

the schema that yields a correct program.

Goldberg

Goldberg [105] explores how an implementation of a modified specification can be

realized by replaying the transformational derivation of the original implementation

and modifying it as required by changes made to the specification. They structure

derivations using the notion of tactics and record derivation histories as an execution

trace of the application of tactics. One key idea is that tactics are compositional:

higher level tactics are constructed from more rudimentary ones using defined control

primitives. Given such a derivation history and a modified specification, the corre-

spondence between program parts of the original and modified program is established.

Their approach uses a combination of name association, structural properties, and

associating components to one another by intensional descriptions of objects defined

in the transformations themselves.

Lubars, et al

The ROSE-2 project [106] is based on the knowledge-based refinement paradigm,

which is a software development process in which user-supplied requirements are

used to select and customize a high-level design. The paradigm is supported by a

knowledge base of high-level design abstractions called design schemas and refinement

rules. The schemas and rules are used to customize the user’s designs to satisfy the

user’s requirements and design decisions.

Bhansali

Bhansali [107] describes the derivation of a concrete program from a semi-formal

specification of a problem. He used a transformational approach based on a set of

transformational rules that produce a top-down decomposition of a problem statement

down to the level of target language primitives. The top-down decomposition process

combines ideas from AI research in planning to generate programs efficiently. The

author emphasizes the reuse of domain specific knowledge. APU is a system which

155

uses the proposed paradigm to synthesize UNIX programs (shell scripts) from semi-

formal specifications of programs. He proposes an analogy approach to automate

software derivation.- .A- knowledge base. contains formal and informal specifications

from past experience. The formal specification is described in pre- and postconditions.

n order to describe a target problem, its informal specification is provided in the form

of a systematic representation of information about the domain: objects, attributes,

relations between objects, and problem descriptions. The informal specification is

analyzed and compared to extract analogies. An analogy algorithm is proposed to

detect the analogies from the knowledge base, which is then used to derive the formal

specification for the target problem.

Maiden et al

Maiden and Sutcliffe [108] investigate the potential of specification reuse by analogy

and its possible benefits for requirements analysis. They have developed two non-

simple examples to examine the potential for specification reuse by analogy. The

first example illustrates an analogy between air-traffic controller (ATC) and a flexible

manufacturing system (FMS). The second example shows analogy between the ATC

and a classroom administration system (CAS), and the FMS and the CAS. They

propose a software engineering analogy model based upon three types of knowledge:

solution knowledge, domain knowledge, and goal knowledge.

Lung et al

Lung and Urban [109] have proposed an analogy model for software reuse. In addition

to the constraints proposed by by Maiden and Sutcliffe, more constraints are added

for software analogy analysis due to the complexity of the software system. They

have proposed an analogy-based domain analysis method that can support a high

level reuse across domains [110]. The purpose is to help users better understand

a domain and support potential future reuse in a different domain. Their method

generalizes that of Maiden and Sutcliffe.

156

Coen-Porisini et al.

Alberto Coen-Porisini, et al. [111] developed a technique and an environment-

supporting specialized software cornponents. The technique—is .based on symbolic

execution. It allows one to transform a more general software component into a more

specific and more efficient component. Specialization is motivated as a technique to

facilitate software reuse. They assume that a library of generalized components ex-

ists and the environment supports a designer in customizing a generalized component

when the need arises for it under more specialized conditions.

9.3 Related Work of Specifying GUI

There are several Larch Shared Language available, e.g. Larch Handbook and the

extended example of simple windowing system in [76]. Larch also has been used

to specify properties of objects in transaction-based distributed systems [77, 41].

Many formal specifications have been proposed to describe computer graphics sys-

tems [112, 113, 114, 115, 116, 117, 118, 119, 120] however none of them specify,

iimplementation-independent window systems. Mallgren [121, 122] introduces a lower-

level specification for the computer graphics languages, e.g. geometry and color trans-

formations. but the specification of higher-level GUI interface like window widgets is

not provided. The similar work closely related to [122, 121] is that by Guttag and

Homing [123]. They have designed a hierarchy of types to serve as the basis for dis-

play device interface and specified them algebraically. Sufrin [124] presents the formal

specification of a simple, display-oriented text editor. It is an early effort to incor-

porate formal specification in the design stage. Although their editor specification is

tedious, the experience can be used for future attempts of specifying GUI in a formal

means. Narayana and Dharap [125] give a formal specification of the look manager

of a dialog system. The look manager deals with the presentation of visual aspects

157

of objects and the editing of those visual objects. They provide a formal model for

specifying the look of the objects. Jacob [126, 127] describes the specification of the

user interface module for the family of message systems and provides the surveys of

formal specification techniques that can be applied to human-computer interfaces.

CHAPTER 10

Concluding Remarks

In this chapter, we summarize the contributions of this work and discuss potential

future investigations.

10.1 Summary

This dissertation contributes to the field of software engineering and component reuse

along the following dimensions:

1. Construction of component hierarchy.

Incorporation of formal methods to software reuse.

Retrieving reusable components from the component hierarchy.

Modifying more general components.

s
e
w
s
:

Modifying analogous components.

Each of these contributions are discussed in further detail.

10.1.1 Construction of Component Hierarchy

We have proposed classification schemes and algorithms for automatically construct-

ing a hierarchy of software components that provide a means for representing, storing,

158

159

browsing, retrieving and modifying reusable components. The hierarchical relation-

ships of the software components based on a generality relationship and similarities

between software components. The similarities are calculated with respect to a par-

tition of operators into equivalence classes. The resulting library structure consists

of lower-level and higher-level hierarchies. The lower-level hierarchy is created by a

subsumption test algorithm that determines whether one component is more general

than another. Based on the generality relationship, the most general components are

placed at the top of the hierarchy and the more detailed or restrictive components at

the bottom. All the generated components undergo another grouping scheme to yield

the higher-level hierarchy. The higher-level hierarchy is generated by a classical hier-

archical clustering algorithm that groups the most syntactically similar components

together. The end result is a connected hierarchy of software components organized

from the most general to the most specific.

10.1.2 Incorporation of Formal Methods to Software Reuse

Using formal specifications to represent software components facilitates determina-

tion of reusability because the formal representation more precisely characterizes the

functionality of the software. In addition, the well-defined syntax of formal specifica-

tion languages makes processing amenable to automation. In Chapter 8, a case study

involving the specification of X window widgets is described to demonstrate how to

perform reuse for solving a real-world problem.

10.1.3 Retrieving Reusable Components from the Hierar-

chy

Based on the two-tiered hierarchy of reusable components and formal description of

each component, we can easily locate the components that have the generality rela-

160

tionship with a user’s query that is also represented by a formal specification. This

approach is in contrasts to another another popular method used today, classification

schemes. The classification scheme approach attempts to store and retrieve compo-

nents based on attributes whose values are selected from a finite set of keywords.

Retrieving components, hence, needs some organizational knowledge of the software

structure and the knowledge of the keyword set. However, query by formal specifica-

tion requires no knowledge of the software component hierarchy from the user.

10.1.4 Modifying More General Components

From the framework of a two-tiered hierarchy of reusable software components, the

candidate components that are more general than the query specification will be re-

trieved from the hierarchy. A more general retrieved component is compared to the

query specification to determine what changes need to be applied to the corresponding

program component in order to make it satisfy the query specification. The weakest

preconditions of the retrieved specifications with respect to the corresponding pro-

. gram component are obtained and returned to the users to provide information to

guide the program modification.

10.1.5 Modifying Analogous Components

If there are no components in the hierarchy exhibiting the generality relationships

with the query specification, then the candidate components that are analogous to

the query specification are retrieved from the hierarchy. A set of analogical matches

between an analogous retrieved component and query specification are computed and

returned to the user. Based on the information, the user can determine what part of

the program needs to be modified to satisfy the query specification. This dissertation

has described a new approach to modifying the analogous components, the relevant

161

issues about this approach, and several examples to demonstrate the usefulness of

this approach.

10.2 Future Work

Based upon the framework that has been developed thus far, the approach of construc-

tion and retrieval processes will be extended in several aspects. First, new techniques

are being developed that may be more efficient than the currently used approach for

determining functional similarity between two software components. The abstraction

scheme for forming meta nodes of software components will also be further investi-

gated. The formal representation for the inheritance relationship and the genericity

of software components will be further investigated in order to better exploit the

properties of object-oriented development.

Regarding program modification, several issues need to be addressed in the fu-

ture. As mentioned in Chapter 7, program modification is a combination of ana-

logical reasoning, verification, transformation, and synthesis. These features should

be supported by an integrated system that contains programming tools, verification

assistant, and a domain-specific knowledge base. Some guidelines for programming

by modification need to be provided to the programmers in order to support the

development of correct programs. Some rules such as wp semantics are required to

assist the programmers verify that the “modified” program based on the results of

the matching process. Another set of rules may be needed to assist the programmers

update the unexecutable statements, i.e., change the non-primitive operators into

primitive operators.

As for the matching process, we recognize some problems should be solved be-

fore the potential benefits of the matching process can be fully exploited. Support-

ing the understanding of existing programs is an important factor to the successful

162

specification-level reuse. An ARMP needs didactic support for comprehension of

candidate specifications, which requires an explanation facility to help the software

developer understand the query domain and the candidate specifications. Since an

automated ARMP is unlikely to achieve a perfect match, explanation will also be

necessary for evaluating the appropriate query specifications.

Regarding the relationship of the matching process and the two—tiered hierarchy

used in the construction and retrieval processes, we have the following problems need

to be solved:

0 Apply the matching process to the abstraction of two real nodes into a meta

node. Currently, the meta node is just an aggregation of its child nodes. If the

abstraction is possible, then we can develop a middle layer in the hierarchy and

the nodes of this layer represent the program schemata of their child nodes.

0 Select a set of methods that are similar to the query specification and supply

them to the matching process as candidate specifications. We now use the

notion of similarity as a guidance, but we wish to have a selection scheme that

is beyond the syntax-based approach.

Regarding the reuse system, we are investigating the integration of the reuse

framework into a software development environment comprising tools for formal spec-

ification editing [29, 128], program visualization from formal specifications [129], and

a tool that abstracts formal specifications from program code [130, 131].

APPENDICES

APPENDIX A

Analogical Reasoning

In this appendix, we describe both normative and cognitive accounts of analogical

reasoning [103]. By normative accounts, we mean those that attempt to provide an

analytical justification for reasoning by analogy. In contrast, cognitive accounts refer

to those that attempt to model human analogical reasoning and hence gain insight

into how people are able to benefit from analogy.

Philosophers since Aristotle have tried to understand analogy by considering what

reason we have for believing an analogy is useful. Hesse’s theory of analogy [65]

addresses the use of analogical models to make predictions in science. When scientists

are investigating some new and unfamiliar system (the target system), with only a

few properties of the system known to them, an analogy with a familiar system (the

base system) may be applied in order to predict new properties of the unfamiliar

system. The most famous examples are Newton’s particle theory and Rutherford’s

solar system model of the atom. Typically, the base problem is well understood and

there is a successful theory with the observed properties. The model is used to predict

the target system because the corresponding properties are known to be true of the

base.

Recently, cognitive psychologists have attempted to model human analogical rea-

soning [100]. Early models tended to concentrate on isolated analogy like the IQ test.

163

164

More recent models explain analogy as part of a wider human reasoning. For exam-

ple, Gentner’s structure mapping theory (SMT) has presented a complete analogical

reasoning model from the computational point of view. As illustrated in Figure A.l,

the analogy retriever looks for potential analogies for the current state of working

memory and past experiences stored in long term memory. Potential analogies are

then passed to the analogy engine. The engine performs full matching on the potential

analogies and makes candidate inferences about the target situation and structural

evaluation of the strength of the analogy.

.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
’

Figure A.1. Gentner’s Model of Analogy

Gentner’s model construes analogy matching and analogical inference as being

isolated syntactic operations, i.e., it does not allow semantic or pragmatic factors to

directly influence the analogy process. The PI model of Hoyoak and Thagard [132]

takes a different approach to analogy. PI is a spreading activation model in which

165

currently active concepts, e.g. those involved in the current goals, spread activation

to other concepts with which they are associated. As shown in Figure A.2, analogy

is tightly coupled with normal problem solving. The loop in the figure represents the

principal cycle of rule retrieval and application in P1. If the current goal stored in

working memory has not been solved yet, then production rules that are relevant to

the problem may be retrieved and matched. The use of analogy suggests plausible

rules to fire for the current state, thus distinguishing PI from SMT [100].

Figure A.2. PI Model

As described in Section 7.1, the goal of ARMP is to enable a program synthesizing

system to reuse existing software components similar to a query specification. Thus

ARMP may be considered to be a type of machine learning. A popular machine learn-

ing system

solving be

lion. Fw

that sub

matte]

systems

new pn

lmowle

domau

experii

166

ing system is the generalization system. That is, given a set of examples of problem

solving behavior, it forms a generalization (schema) of both the problem and the solu-

tion. Faced with a new problem, the generalization system looks for a generalization

that subsumes the new problem. When one is found, the system tries to instanti-

ate the generalization solution to solve the given problem. In contrast, the analogy

system makes no generalization, but, instead, attempts to relate old problems with

new problems by matching. The generalization systems rely on sophisticated domain

knowledge. When such knowledge is lacking or insufficient, for example when a new

domain is to be explored, the analogy system could provide a means for reusing past

experience. The relationships of analogy and generalization are shown in Figure A.3.

generalization strict matching

Old Problem New Problem

Figure A.3. Analogy and Generalization

analogy

flexible matching

D

APPENDIX B

Bottom-Up Matching Approach

The algorithm presented in Section 7.5 is a top-down matching algorithm that em-

phasizes the higher-level predicate or function symbols. However, for the matching

problem, bottom-up matching is an alternative approach. It is believed that specifica-

tions can be represented as trees and the symbolic computation, analogical matching

in our case, can be described as tree replacement. In the papers [133, 134, 135], the

authors’ approach to automatic proving of equational theorems is to treat a set of

equational axioms as replacements rule and transform one side of the equation to be

proved into the other by a sequence of tree replacements. Knuth and Bendix [55]

discuss some of the cases in which tree replacements yield efficient theorem provers.

We present formally the tree-matching problem, but the detailed bottom-up tree-

patterning algorithms will not be discussed in this report. Suppose we are given a

finite ranked alphabet E of function symbols, including constants as nullary functions.

3 denotes the set of E-terms, formally defined as follows.

Definition 3.1 2 terms:

(I) For all I) in E of rank 0, b is a E-term.

(2) If a is a symbol of rank q in 2, then a(t1, ..., tq) is a E-term provided each of the

t,- is.

(3) Nothing else is a Z-term.

167

168

A nullary symbol :1 is used as a placeholder for a E-tree. We define the set E U {V}

just as E-terms, denoted by 5...

Definition 3.2 A tree pattern is any term in S”. If b(t1, ..., bq) is a term, then define

child;(t1,...,tq) to be t,- for l S i S q.

Definition B.3 A pattern p in 5,, with k occurrences of the symbol V matches a

subject tree t in S at node n if there exist 5.3-trees t1, ...,tk in S such that the E-tree

p’, obtained from p by substituting t,- for the ith occurrence of V in p, is equal to the

subtree of t rooted at n.

Definition BA The Tree Matching Problem.

A tree matching problem consists of a finite set ofpatterns p1, ..., pk in 3,, and a subject

tree in S. A solution to a matching problem is a list of all pairs (n,i), when n is a

node in t and p,- matches at n.

All suggested matched methods for tree matching should be compared to the naive

algorithm (based on the simple form of unification), which merely tries every pattern

at every position in the subject tree. The main objectives of the bottom-up matching

algorithm is to find, at each point in the subject tree, all patterns and all parts of

patterns that match at this point. Let n be a node in the subject tree labeled with

the q-ary symbol b, and suppose we wish to compute the set M of all those pattern

subtrees other than 11. Suppose we have already computed such sets for each of the

children of n, and call these sets, from left to right, M1, ..., M,. Then M contains 1!

plus exactly those pattern subtrees b(t1, ...,t,) such that t,- is in M5, for 1 S i _<_ q.

Therefore, we could compute M by forming trees b(t1, ..., tq) for all combinations of

(t1, ..., t,), where t,- are chosen from Mg, and then asking whether each candidate for

membership in M is a subpattern. Once we have assigned these sets to each node in

the subject tree, then the tree matching problem is solved.

APPENDIX C

The Specifications for Motif

Widgets

0.1 The Functionalities of Motif Widgets

This appendix contains the functionalities of Motif window widgets and formally

describes a set of Motif window widgets, which include their LSL traits and several

examples of the LIL specifications for application widgets.

Display Widgets

Motif provides many widgets whose primary purpose is to display information or

interact with the user. These widgets include:

XmArrowButton XmDrawButton

XmList XmPushButton

XmSeparator XmText

XmScale XmCreateButton

XmLabel XmToggleButton

XmScrollBar XmTextField

Container Widgets

Motif provides many widgets that can be used to combine other widgets into compos-

ite panels. Composite widgets allow endless combinations of buttons, scrollbars, text

169

170

panes, and so on, to be grouped together in an application. These widgets include:

XmDrawingArea XmFrame

XmRowColumn XmForm

XmPanedWindow XmBulletinBoard

XmMainWindow XmScrollWindow

Menu Widgets

Motif provides many widgets that allow applications to create popup, pulldown and

option menu. A menu pane consists of a popup Shell widget that manages an Xm-

RowColumn widget containing buttons, labels, and other types of widgets. The

buttons are selectable entries in the menu. By combining different types of widgets,

the programmer can create different types of menus: pulldown, popups, cascading

pulldowns, cascading popups, option menus, and so on. The following widgets can

be used to construct menus:

XmRowColumn XmToggleButton

XmPushButton XmCascadeButton

XmLabel XmSeparator

Dialog Widgets

The Motif widget set builds on the underlying popup facilities provided by the Xt

Intrinsics to provide a versatile set of dialog widgets. Motif uses a subclass of the

Shell widget class, the XmDialogShell widget class directly because Motif provides

convenience functions that create different types of dialogs and popups. Most Motif

widgets know they are the children of the XmDislogShell widget class and automat-

ically popup up and down the parent shell when managed and unmanaged. The

following are the Motif widgets classes designed to be used as dialog widgets.

XmBulletineBoard XmFileSelectionBox

XmCommand XmForm

XmMessageBox XmSelectionBox

By setting appropriate resources, many types of dialogs can be created from these

171

basic widget classes. Motif widgets provide a large set of convenience routines to make

dialogs easier to create and use. These convenience functions create the following

types and dialogs:

BulletineBoardDialog ErrorDialog

InformationDialog MessageDialog

SelectionDialog WarningDIalog

FormDIalog QuestionDialog

FileSelectionDialog WorkingDialog

PromptDialog

These dialogs are not really new widget classes, but are combinations of an XmDi-

alogShell widget and one of the manager widgets described earlier in this section.

Gadgets

In addition to widgets, Motif provides user interface components known as gadgets.

Gadgets are nearly the same as widgets, except that they have no windows of their

own. A gadget must display text or graphics in the window provided by its parent,

and also must rely on its parent for input. The Motif gadget classes include:

XmArrowButtonGadget XmLabelGadget

XmSeparatorGadget XmToggleButtonGadget

XmPushButtonWidget XmCascadeButtonGadget

Nearly all widgets can be customed by the user or the programmer. Widgets are

reuse and customized by specifying values for various resources by the widget. Based

on the set of Motif widgets, the programmer can create any reusable customized GUI

components with desired behavior.

C.2 The LSL Traits of Motif Widgets

This appendix describes the Larch traits of the widgets and gadgets available in Motif

toolkits. Since trait only describes state—independent properties of target objects, the

state dependent specifications are described in next section. Because of limited space,

not all developed Motif widgets will be formally described here. The prefix of the

Larch traits is “Lt” which stands for “Larch Trait”.

1. Basic Window

LtBasic Window: trait

assumes LtCoordinate

includes LtRegion, LtView, Displayable(Window)

asserts Window tuple of pas: Coord,

size: Size,

cont, clip: Region,

front, back: View,

id: WId

forall w: Window, cd: Coord

cd 6 w == cd 6 w.clip

w[cd] == if cd 6 w.cont w.front else w.baclc

implies converts -[.], 6: Coord, Window -o Bool

2. Color

LtColor(C): trait

includes Set, LtPizelMap

introduces

colon: -v C

colorg: ... C

color": -> C

equal: C, C -v Bool

- -: C, C -r C

-e-: C, C —’ C

3. Compound String

LtCompoundString(CS): trait

includes LtString(CS, CSSet)

introduces

conver.c-string: String —. CS

deconvert-c-string: CS —o String

4. Coordinate

173

LtCoonl: trait

introduces

origin —» Coord

---: Coord, Coord -+ Coord

asserts forall ed: Coord

Cd - Cd == origin

5. Displayable

LtDisplayable(T): trait

assumes LtCoond

includes LtRegion(T)

introduces

-[_]: T, Coord -> Color

6. label

LtLabel(L): trait

includes LtCompoundString(CompString)

introduces

set-label: L, CompString —. L

getJabel: L -> CompString

deleteJabel: L, CompString —+ L

7. Line

LtLine(Line): trait

includes Set(Line for E, LineSet for C), LtCoord(Coord)

introduces

create Coord, Coord —> Line

delete Line ->

meet Line, Line --> Coord

parallel Line, Line —* Bool

8. Manager W'indow

LtManager(M): trait

includes Lt View

assumes LtPrimitive

M tuple of pas: Coord,

174

size: Size,

introduces

create: —. M

realize: —v M

size: M —. Size % observers

pos: M -v Coord

id: M -+ Integer

child: M, Real -+ Widget

child.size: M -+ Size

child.pos: M —’ Coord

realize-child: Widget -> View

derealize-child: Widget -+ View

asserts

M generated by create

M partitioned by id

9. Pixel Map

LtPizelMap: trait

includes LtRegion(R)

asserts

Pixel tuple of int: Intensity,

pos: Coord

PizelMap enumeration of Pixel

10. Primitive Window

LtPrimitive: trait

includes LtBasicWindow, LtView, Set(Widget, WidgetSet)

Widget tuple of pas: Coord

size: Size

id: Real

introduces

create: -v Widget

destroy: —+ Widget

open: Widget -> View

quit: Widget —’ View

selected: Widget -+ Bool

move: Widget, Coord —-> Widget

size: Widget —’ Size % observers

set-size: Widget, Size —* Widget

pos: Widget —’ Coord

set.pos: Widget, Coord -» Widget

overlap: Widget, Widget -’ Bool

id: Widget -v Integer

parent: Widget —> Widget

175

child: Widget, Real _. WidgetSet

is_child: Widget. Widget —' Bool

asserts

V w: Widget

move(w).pos == coord.map(w.pos)

move(w).size == w.size

move(w).id == w.id

resize(w).id == coord.map(w.pos)

resize(w). id == length-map(w.size)

resize(w).id == w.id

w generated by create

w partitioned by id

11. Region

LtRegion(R): trait

assumes LtCoord

introduces

-€-: Coord, R -—> Bool

nullregion: -» R

point: Coord -+ R

lineseg: Coord, Coord -+ R

intersec: R, R — R

union: R, R —- R

difl'erence: R, R _. R

contains: R, R -~ Bool

equal: R, R -> Bool

empty: R -> Bool

12. Scrolled Text Window

LtScrolledTezt(S0 Tu): trait

includes LtScrolled, LtTezt

introduces

all.visible: Scth - Bool

visible: Scth, View —. Bool

visible-content: ScTrt —+ View

asserts

all.visible(visible.mntent(Scth)) == true

visible(ScT:rt, visible-content(Scth)) == true

13. Scrolled Text Editor with Menu

LtScrolledTethenu(ScrolledTethenu): trait

176

includes LtScrolledTezt, LtMenu

introduces

with-popupmenu: ScrolledTertMenu -> 8001

wit/Lmenubar: ScrolledTertMenu -+ Bool

label: ScrolledTertMenu —> String

asserts

label(set.attr(ScrolledTertMenu, Label, Value)) == Value

with.popupmenu(set_attr(ScrolledTethenu, Popup, ..)) == true

with-menubar(set.attr(ScrolledTethenu, MenuBar, ..)) == true

14. Scrolled Window

LtScrolled: trait

includes Lt View, LtManager, LtPrimitive

Scrolled tuple of type: {vertical,horizontal},

policy: { automatic,app-defined} ,

introduces

create: -+ Scrolled

destroy: Scrolled —-¢

scmll.up: Scrolled -» Scrolled

scrolLdown: Scrolled -v Scrolled

scrollJeft: Scrolled -o Scrolled

scrolLright: Scrolled ... Scrolled

asserts

scroll.up(create).cont == Empty

scroll.down(create).cont == Empty

scrollJeft(create).cont === Empty

scmll..right(create).cont == Empty

scroll..up(scmll.down).cont == scroll.down(scroll.up).cont

scmllJeft(scmll.right).cont == scroll.right(scmll.left).cont

15. SetResource

LtSetResource(Attr, Val): trait

includes Set(Attr for E, AttrSet for C), LtObject(0b for Obj)

introduces

valid.attr: 0b, Attr -> Bool

valid.value: Attr, Val -9 Bool

get-value: 0b, Attr —-> Val

set-attr: 0b, Attr, Val -+ 0b

asserts

get-value(set-attr (0b, Attr, Val), Attr’ ==

if equal(Attr,Attr’)

then Val

else get-value(0b, Attr’)

16. Size

177

LtSize(S) trait

includes Real

introduces

create.size Real, Real --» S

null.size —-> S

equal.size S, S -* Ecol

17. Text Window (Text Editor)

LtText(Text): trait

includes LtTextField, Lt View, LtLine (LN for Line_Number)

LtCharacter(CN for Character.Number), LtPrimitive

introduces

cursor: LN, String, String —> Text

create: —> Text

insert: Text, Stream -v Text

delete: Text, Stream -+ Text

moveJeft: Text -> Text

move-right: Text -> Text

move-up: Text -> Text

move-down: Text -+ Text

first: Text —. LN

last: Text —+ LN

line: —v LN

contents: Text, LN —’ Stream

clear: Text —>

asserts forall c: Char; cn:CN; 3,31,52: Stream; n, n1, n2: LN; t: Text

first(create) == Empty

last(create) == Empty

first(cursor(sl,s2)) == cursor(Empty,concat(sI,s2))

last(cursor(sl,32)) == cursor(concat(s1,s2),Empty)

insert(c,cursor(sl,82)) == cursor(append(s],c),32)

delete(cursor(s1,Empty)) == cursor(sI,Empty)

delete(cursor(s1,append(c,s2))) == cursor(sl,s2)

move-lefl(cursor(Empty,s)) == cursor(Empty,s)

moveJeft(cursor(append(sl,c),s2)) == cursor(sl,append(c,s2))

move-right(cursor(s, Empty)) == cursor(s, Empty)

move-right(sl,cursor(append(c,32))) == cursor(append(s1,c),s2)

line(move-up((cursor(s],32)) ==

if egual(line(cursor(sl,s2)), I)

then 1 else line(cursor(s1,32)) - I

line(move-down((cursor(s1,52))) ==

if equal(line(cursor(s],32)),line.max)

178

then line.max else line(cursor(sl,s2)) + I

clear(t) == cursor(Empty,Empty)

18. Text Field (Line Editor)

Lt TextField(TF): trait

includes Lt View, String, LtCharacter, LtPrimitive

introduces

cursor: String, String —+ TF

create: -» TF

insert: TF - TF

delete: TF —~ TF

moveJeft: TF _. TF

move-right: TF —+ TF

first: TF -¢ Char

last: TF —» Char

clear: —. TF

asserts forall c: Char; 3,81,52: String; tf: TF

19. View

insert(c,cursor(sl,s2)) == cursor(append(s1,c),s2)

delete(cursor(sI,Empty)) == cursor(sI,Empty)

delete(cursor(sl,append(c,s2))) == cursor(sl,s2)

move-left(cursor(Empty,s)) == cursor(Empty,s)

move-left(cursor(append(s1,c),32) == cursor(sI,append(c,s.2))

move_right(cursor(s,Empty)) == cursor(s,Empty)

move-right(sl,cursor(append(c,s2))) == cursor(append(sl,c),s2)

first(cursor(sl,s2)) == cursor(Empty,concat(s],82))

last(cursor(sI,sZ)) == cursor(concat(sI,82),Empty)

clear(tf) == cursor(Empty,Empty)

LtView(View): trait

includes LtCoord, LtSize, Lt Widget, PixelMap

introduces

create: —’ View

quit: View -+

size: View -> Size

pos: View —» Coord

ponent: View—i Widget

empty: View —. Bool

intensity: View -i Real

coord.map: Coord -> Coord

length-map: Size —-> Size

display: View -» PixelMap

179

'20. Well Formed Widgets

LtWFWidget(WFWidget): trait

includes LtPrimitive, Set(Widget, WidgetSet), LtSetResource, Object

introduces

ancestor: Widget, Widget —. Bool

descendant: Widget, Widget —+ Bool

is-well_formed: Widget -* Bool

managed.by: Widget, Widget -» Bool

extract.wf: ObjSet —> WidgetSet

delete-wf.widget: Widget, Widget—o Widget

delete-objs: Widget, ObjSet —» Widget

delete-children: Widget —’ Widget

asserts for all w, w’: WFWidget

is-well.formed(w) ==

(managed-by(w, parent(w)) A

(for all w’::descendant(w’,w) => -1 ancestor(w’, w)))

parent(w,w’) == child(w’,w)

ancestor(w, w ’) == descendant(w ’, w)

for all w’ E extract-wf(w) => is-well.formed(w’)

C.3 The LIL Specifications of Widgets

This appendix describes the Larch interface specifications of the widgets and gadgets

available in Motif toolkits. They are high-level specifications written using the Larch

Generic Interface Language (GIL). Mice or other indicators are not explicitly men-

tioned. Note that a ’ (‘prime’) is the new-value operator. That is, is x is a variable,

then x’ represents its value after the application of a transition. An unprimed x rep-

resents the old-value of x. We restrict operations to be pure functions, that is, each

operation returns a value that depends only on the parameters of the call, and there

are no side effects, either on the parameters or any other part of the system state.

1. Primitive

component Primitive Widget

based on Widget from

180

LtPrimitive Widget

method Select(w: Widget)

requires (w E DisplayableSet)

modifies (w.view)

ensures selected(w’) == true

method Unselect(w: Widget)

requires true

modifies (w.view)

ensures selected(w’) == false

method Move(w: Widget, delta: Coord)

requires true

modifies w

ensures selected(w) == true =>

(pas(w’) == pos(w) + delta) A selected(w’) == false

method Resize(w: Widget, pas: Coord, size: Size)

requires selected(w)

modifies w

ensures w’ == set.size(set.pos(w,pos),size) A selected(w’) == false

method ChangeAttr(w: Widget, attr: Attr, val: Val)

requires valid.attr(w, attr) A valid.value(attr, val)

modifies w.attr

ensures w’ = set.attr(w,attr,val)

method Open(w: Widget)

requires selected(w) A displayable(w) == false

modifies w.view

ensures displayable(w’) == true

method Close(w: Widget)

requires selected(w) A displayable(w) == true

modifies w.view

ensures displayable(w’) == false

method Delete(w: Widget)

requires selected(w)

modifies w

ensures selected(w’) == undefined

2. Popup

181

component Popup

inherits Primitive

method Push(p: Popup)

requires - displayable(p)

modifies p.view

ensures displayable(p’) A selected(p) A top_level(p)

method Release(p: PopupWidget)

requires displayable(p)

modifies p.view

ensures w displayable(p’) A -w selected(p)

. Popupmenu

component Popupmenu

inherits Popup

uses Menu from LtMenu

method CreateItem(p: Popupmenu, i: Item, e: Event)

requires i ¢ ItemSet(p)

modifies p

ensures i E ItemSet(p) A assaciated(i,e)

method DeleteItem(p: Popupmenu, i: Item)

requires i 6 ItemSet(p)

modifies p

ensures i ¢ ItemSet(p)

method Choose(p: Popupmenu, i: Item)

requires selected(p) A -: selected(i)

modifies i

ensures (associated(i,e) => fire(e) A selected(i))

A (#j => -1 selected(i))

method Actor(s: State, e: Event)

requires fire(e)

modifies s

ensures 8’ == act(s,e) A -1 fire(e)

. List

component List based on List from LtList

method Choose(w: List, i: Item, e: Event)

182

requires «selected(i) A selected(p)

ensures associated(i,e) => fire(e)

method CreateItem(w: List, i: Item, e: Event)

requires i é p

modifies w

ensures i 6 w A associated(i,e)

method DeleteItem(w: List, i: Item)

requires i e w

modifies w

ensures i ¢ w

method ChangeAttr(w: List, attr: xxx, val: xxx)

requires valid.attr(w,attr) A valid.value(attr, val)

modifies w

ensures w’ == set.attr(w,attr, val)

method Actor(w: List, e:Event, s:State)

requires fire(e)

modifies s

ensures 8’ == act(s,e) A wfim(e)

APPENDIX D

Algorithm to find LGCs

As described in Chapter 5, given a query specification, the process of searching a set

of candidate components is performed in the lower-level hierarchy that is basically

a partial ordering set The components called real nodes in the lower-level hierarchy

obey the subsumption relationship (2”,) that is a partial ordering. Since reusing a

more specific component by abstraction is believed to be difficult, we are interested in

reusing a more general component. In order to minimize the effort needed to modify a

reusable component, a least general component (LGC) is only sought from the lower-

level hierarchy. The definition of LGC will be given shortly. In this appendix, we

attempt to explore the complexity of finding a LGC from a partial ordering set, which

can be regarded as the upper bound of our retrieval algorithm. Some basic definitions

are presented that are necessary for the following proof.

Definition D.1 Least General Component (LGC). Assume L is a set with partial

ordering 2”,. Given a component x ¢ L, if there exists a component y E L such

that (V y’ 6 L \ {y}: (y’ 2%, x) => -v(y 2”,”, y’)) then y is called a Least General

Component (LGC) for x in the set L.

Our LGC problem is specified as follows:

183

C01

I18

1’8'

184

INSTANCE: A partial ordering set L and a given component x.

QUESTION: Find a set of LGCs for x in L.

The LGC problem is just a restricted version of our problem of retrieving a set of

more general components from a lower-level hierarchy given some query specification

component. In practice, we do not really need to find a set of “least” general compo

nents. However, studying this LGC problem helps us to understand how dificult the

retrieval problem would be if the search space is not limited explicitly.

The lower-level hierarchy can be a directed graph G = (V, E), where each com- ,

ponent is represented by a node in V and every edge (u, v) 6 E represents the sub-

sumption relationship v 2“,", u. The algorithm of finding a set of LGC is ducribed

in Figure D.l.

Algorithm 10 LGC

Input: G = (V,E) with partial ordering Q and query component x.

Output: A set of LGCs for x in G.

I. Coloring

Given a query component 2:, we color every node v e V by comparing v and

x. If v 2 x then v is colored as a black node, otherwise it is colored as a white

node.

2. Connecting

For every pair of nodes (u,v), if u 2" v then add an arc (v,u) to the set E,

where 2" is the transitive closure of 2.

3. Collecting

For every black node u, if no other white node v exists such that (v, u) 6 E then

LGC .- LGC u {u}.

Figure DJ. The algorithm to find a set of LGCs.

185

Figure D.2 is an example of finding a set of LGCs in a. partial ordering set. The

black nodes C,F,I,H,J are the nodes that subsume the input query specification. The

solid lines represent the subsumption relationships. The dotted lines represents the

transitive closure among the nodes. Assume there are n nodes in G, indegree,,m

denotes the maximum number of incident arcs for the nodes in G and heightmu.

denotes the maximum height of L. The final LGC set contains two nodes C and H.

The complexity of the coloring step is 0(n), the connecting step is 0(n x heightmu)

and the collecting step is 0(n x indegreemu). Hence, the overall complexity is 0(n x

max(indegreemu,heightmu». Therefore, we know that LGC is in the complexity

class P.

Figure D.2. Coloring, joining, and collecting a partial ordering set.

APPENDIX E

Program Listing

This appendix contains several programs that are mentioned in previous chapters.

The programs in the first four section are written in C++. The programs in the last

two sections are written in C and Motif.

E.1 C++ Implementation for List

.// List.cc

l/

// List::add

// List::detach

// List::isA

//

// END ----------------------------
--

L1st::'List()

{

sh11e(head !- O)

{

Listfilenent ttenp ' head;

head I head->next;

delete temp;

}

}

void List::add(Objectt toAdd)

{

186

}

187

ListElenent InesElenent I new ListElenent(ttoAdd);

newEleIent-)next I head;

head I newElement;

1tensInContainer++;

void List::detach(const Object: toDetach. int deleteObjectToo)

{

ListElenent Icursor I head;

it (I(head->data) II toDetach)

{

head I head->nert;

}

else

{

ListElenent Itrailer I head;

while (cursor !I O)

{

cursor I cursor->nert;

11 (I(cursor->data) II toDetach)

{

trailer->next I cursor->next;

break;

else

trailer I trailer->next;

}

it(cursor !I b)

{

itensInContainer--;

it (deleteObjectToo)

{

11(cursor->data) delete cursor->data;

cursor->data I O;

}

else

{

cursor->data I O;

}

delete cursor;

188

List List::isA() const

{

return listCIass;

}

char IList::nane0£() const

{

return "List";

}

E.2 C++ Implementation for Array

// Array.cc -----------

//

ll Array::addEnd

// ArrayzzaddAt

// Array::clear

// Array::isA

//

// End -------------
--

Array::'Arra
y()

{

}

‘1“’TYP° Array::ish()
const

{

return arrayClass;

}

void Array::addEnd(Object! toAdd)

{

vhi1e(theArrayE vhereToAdd] !I ZERO It vhereToAdd (I upperbound)

{

vhereToAdd++;

}

it(vhereToAdd > upperbound)

{

reallocate(vhereToAdd - loverbound + 1);

}

189

theArray[vhereToAdd - loverbound] I !toAdd;

shereToAdd++;

itensInContainer+*;

}

void Array::addlt(Object! toAdd, int atIndex)

{

it(atInder > upperbound)

I

reallocate(atIndex - loverbound + 1);

}

it (theArray[atIndex] !I ZERO)

{

delete theArrayE atIndex];

itensInContainer--;

}

theArrayE atIndex - loserboundJ I !toAdd;

itelsInContainer++;

}

B.3 C++ Implementation for Stack

// stack.cc -----------------

II Stack::push

// Stack::pop

// Stack::top

// End ------------------

void Stack::push(Object! toPush)

{

theStack.add(toPush):

iteusInContainer++;

}

Object! Stack::pop()

{

Object! temp I theStack.peekHead();

irc temp e- NOOBJECT)

{

theStack.detach(temp);

——Ii=——————==——..

190

itemsInContainer--;

}

return temp;

}

Object! Stack::top() const

{

return theStack.peekHead();

}

int Stack::isEmpty() const

{

return theStack.isEnpty();

}

classType Stack::isA() const

{

return stackClass;

}

char *Stack::name0f() const

{

return "Stack";

}

E.4 C++ Implementation for DoubleList

// dbllist.cc -------------------------

// DoubleList::addAtHead

// DoubleList::addAtTail

// DoubleList::detachFromHead

// DoubleList::detachFromTail

// End ----------------------------------

DoubleList::"DoubleList()

{

vhileC head != 0)

{

DoubleListElement *temp = head;

head I head->next;

delete temp;

}

101

void DoubleList::addAtHeadC Object! toAdd)

{

DoubleListElement *newElement = new DoubleListElement(&toAdd);

if (head)

{

head->previous I nevElement;

newElement->next I head;

head I newElement;

}

else

{

tail I head I newElement;

}

itemsInContainer++;

}

void DoubleList::addAtTail(Object! toAdd)

{

DoubleListElement *neuElement = new DoubleListElement(ttoAdd);

if (tail)

{

tail->next I newElement;

nevElement->previous I tail;

tail I newElement;

}

else

{

head I tail I newElement;

}

itemsInContainer++;

}

void DoubleList::detachFromHead(const Object! toDetach, int deleteToo)

{

if(head)

{

DoubleListElement *cursor I head;

if (*(head->data) == toDetach)

{

if(head->next II 0)

{

tail I 0;

head I head->next;

head->previous I 0;

else

{

while (cursor !I O)

{

if (I(cursor->data) II toDetach)

{

cursor->previous->next I cursor->next;

cursor->next->previous I cursor->previous;

break;

}

else

{

cursor I cursor->next;

}

}

}

1

if(cursor !I O)

{

itemsInContainer--;

if (deleteToo)

{

it(cursor->data) delete cursor->data;

cursor->data I 0;

}

else

{

cursor->data I O;

}

delete cursor;

cursor I 0;

}

}

void DoubleList::detachFromTail(const Object! toDetach, int deleteToo)

{

it(tail)

{

DoubleListElement *cursor I tail;

if (*(tai1->data) II toDetach)

{

if(tail->previous II 0)

{

head I 0;

tail I tail->previous;

tail->next I 0;

ifC

E.5

193

}

else

{

while (cursor !I O)

{

it (I(cursor->data) II toDetach)

{

cursor->previous->next I cursor->next;

cursor->next->previous I cursor->previous;

break;

}

else

{

cursor I cursor->previous;

}

}

}

cursor !I 0)

itemsInContainer--:

if (deleteToo)

{

ifC cursor->data) delete cursor->data;

cursor->data I O;

}

else

{

cursor->data I O;

}

delete cursor;

cursor I O;

A Window with Pulldown Menu (Existing

Component)

tinclude <Xm/RovColumn.h>

tinclude (Kn/Mainfl.h>

tinclude (Xn/DrasingA.h>

tinclude <Xm/CascadeBG.h>

tinclude <Xm/PushB.h>

linclude <Xm/PushBG.h>

typedef struct -menu-item {

char Ilabel; /*

HidgetClass Iclass; /*

char mnemonic; /*

char Iaccelerator; II

char Iaccel-text; /"l

void (*callback)(); /*

XtPointer callback-data; /*

194

the label for the item I/

pushbutton, label, separator... I/

mnemonic; NULL if none I/

accelerator; NULL if none I/

to be converted to compound string */

routine to call; NULL if none I/

client-data for callback() I/

struct -menu-item Isubitems; lt pullright menu items, if not NULL */

} Henultem;

Widget

BuildPulldownHenu(parent, menu_title, menu-mnemonic, items)

Widget parent;

char Imenu-title, menu-mnemonic;

MenuItem Iitems;

{

widget PullDown, cascade, widget;

int i;

XmString str;

PullDown I XmCreatePulldownHenu(parent, "-pulldown", NULL, 0);

str I XmStringCreateSimple(menu-tit1e);

cascade I XtVaCreateHanagedHidget(menu-title,

meascadeButtonGadgetClass, parent,

XmNsubMenuId, PullDown,

XleabelString, str,

XmNmnemonic. menu-mnemonic,

NULL);

XmStringFree(str);

for (i I 0; items[i].1abel !I NULL; i++) {

it (items[i].subitems)

widget I BuildPulldownHenu(PullDown,

itemsfi].label, itemsEi].mnemonic, itemsEiJ.subitems);

else

widget I XtVaCreateHanagedHidget(items[i].label,

*itemsEi].class, PullDown,

NULL);

if (items[i].mnemonic)

XtVaSetValues(widget, XmNmnemonic, itemsEi].mnemonic, NULL);

195

if (items[i].accelerator) {

str I XmStringCreateSimple(items[i].accel_t
ext);

XtVaSetValues(widget,

XmNaccelerator, itemsEi].accelerator,

XmNacceleratorText, str,

NULL);

XmStringFree(str);

}

if (items[i].callback)

XtAddCallback(widget, XmNactivateCallback,

itemsEi].callback, items[i1.callback_data);

}

return cascade;

void

set-color(widget, color)

widget widget;

char Icolor;

{

printf("Setting color to Zs\n“, color);

}

NenuItem color-menu[] I {

{ "Cyan", !meushButtonGadgetClass, ’C’, "Heta<Key>C", "Meta+C",

set_color, "cyan", (HenuItem *)NULL },

{ "Yellow", tmeushButtonGadgetClass, ’Y’, "Heta<Key>Y", "Meta+Y",

set_color, "yellow", (HenuItem I)NULL },

{ "Magenta", &meushButtonGadgetClass, ’N’, "Heta<Key>N", "Meta+H",

set_color, "magenta”, (MenuItem *)NULL },

{ "Black", !meushButtonGadgetClass, ’B’, "Meta<Key>B", ”Meta+B",

set-color, "black", (MenuItem *)NULL },

NULL,

};

HenuItem drawing_menus[] I {

{ "Line Height", tmeascadeButtonGadgetClass, ’W’, NULL, NULL,

0, 0, NULL }.

{ "Line Color", !meascadeButtonGadgetClass, ’C’, NULL, NULL,

0, 0, color_menu },

{ "Line Style", &meascadeButtonGadgetClass, ’5’, NULL, NULL,

0, 0, NULL }.

NULL,

};

main(argc, argv)

int argc;

char *arng];

{

196

Widget toplevel, main_w, menubar, drawing_a;

XtAppContext app;

toplevel I XtVaAppInitialize(!app, "Demos", NULL, 0,

!argc, argv, NULL, NULL);

main-w I XtVaCreateHanagedWidget("main_w",

meainWindowWidgetClass, toplevel.

XmNscrollingPolicy,

NULL);

XmAUTOMATIC,

menubar I XmCreateNenuBar(main-w, "menubar", NULL, 0);

BuildPulldownNenu(menubar, "Lines", ’L’. drawing-menus);

XtNanageChild(menubar);

drawing-a I XtVaCreateNanagedWidget("drawing-a”,

merawingAreaWidgetClass, main-w,

XtRealizeWidget(tOplevel);

XtAppNainLoopCapp);

Xmeidth, 500,

XmNheight, 500,

NULL);

E.6 A Window with Popup Menu (Modified

tinclude

tinclude

tinclude

tinclude

tinclude

tinclude

Component)

<Xm/RowColumn.h>

(Km/NainW.h>

<Xm/DrawingA.h>

<Xm/CascadeBG.h>

<Xm/PushB.h>

<Xm/PushBG.h>

typedef struct -menu-item {

char *label;

WidgetClass Iclass;

/* the label for the item */

/* pushbutton, label, separator... I/

char

char

char

void

197

mnemonic; /* mnemonic; NULL if none */

accelerator; / accelerator; NULL if none I/

Iaccel_text; /I to be converted to compound string */

(Icallback)(); /I routine to call; NULL if none I/

XtPointer callback-data; /* client-data for callbackC) */

struct -menu_item Isubitems; /* pullright menu items, if not NULL I/

} Henultem;

Widget

BuildPopupHenu(parent, menu-title, menu_mnemonic, items)

Widget parent;

char Imenu_title, menu-mnemonic;

Nenultem Iitems;

{

Widg

int

et PopUp, cascade, widget;

i;

XmString str;

PopUp I XmCreatePopupMenu(parent, "_popup”, NULL, 0);

for

}

(i = 0; itemin].label 2: NULL; i++) {

if (items[i].subitems)

widget I BuildPopupHenuCPopUp,

items[i].label, itemsEi].mnemonic, itemsEi].subitems);

else

widget I XtVaCreateHanagedWidget(items[i].label,

IitemsEi].class, PopUp,

NULL):

if (items[i].mnemonic)

XtVaSetValues(widget, XmNmnemonic, items[i].mnemonic, NULL);

if (items[i].accelerator) {

str I XmStringCreateSimple(items[i].accel_text);

XtVaSetValues(widget,

XmNaccelerator, items[i].acce1erator,

XmNacceleratorText, str,

NULL);

XmStringFree(str);

}

if (items[i].callback)

XtAddCallback(widget, XmNactivateCallback,

itemsEi].callback, itemsEi].callback_data);

return cascade;

198

void

set_color(widget, color)

Widget widget;

char Icolor;

{

printt("Setting color to Zs\n", color);

}

HenuItem color_menu[] I {

{ "Cyan", !meushButtonGadgetClass, ’C’, NULL, NULL,

set-color, "cyan", (NenuItem I)NULL },

{ "Yellow", !meushButtonGadgetC1ass, ’Y’, NULL, NULL,

set_color, "yellow", (NenuItem I)NULL },

{ ”Magenta", !meushButtonGadgetClass, ’N’, NULL, NULL,

set_color, "magenta", (HenuItem I)NULL },

{ “Black“, emeushButtonGadgetClass, ’8’, NULL, NULL,

set_color, "black", (Menultem *)NULL },

XmVaSEPARATOR,

{ ”Quit", ameushButtonGadgetClass, ’Q’, ”Ctrl<Key>c”, ”Ctrl-C",

NULL, NULL, (Nenultem *)NULL },

NULL.

};

mainCargc , argv)

int argc;

char IarngJ;

{

Widget menu, toplevel, main_w, menubar, drawing_a;

void popup-cb(). inputC);

XtAppContext app;

toplevel I XtVaAppInitialize(!app, "Demos”, NULL, 0,

!argc, argv, NULL, NULL);

main_w I XtVaCreateNanagedWidget("main_w",

meainWindowWidgetClass, toplevel,

XmNscrollingPolicy, XmAUTONATIC,

NULL);

drawing_a I XtVaCreateNanagedWidget(”drawing_a”,

merawingAreaWidgetClass, main_w,

Xmeidth, 500,

XmNheight, 500,

NULL);

menu I BuildPopupNenu(drawing_a, ”Lines”, ’L’, color_menus);

XtAddCallback(drawing-a, XmNinputCallback, input, menu);

199

XtRealizeWidget(toplevel);

XtAppHainLoop(app);

void

input(widget, popup, cbs)

Widget widget;

Widget popup; /* popup menu associated with drawing area */

XmDrawingAreaCallbackStruct #cbs;

{

if (cbs->event->xany.type !I ButtonPress ll

cbs->event->xbutton.button !I 3)

return;

/I Position the menu where the event occurred */

XmHenuPosition(popup, (XButtonPressedEvent *)(cbs->event));

XtHanageChild(popup);

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Ted .1. Biggerstaff. An Assessment and Analysis of Software Reuse. In Mar-

shall C. Yovits, editor, Advances in Computers, volume 34, pages 1-57. 1992.

[2] Ted J. Biggerstaff, editor. Software Reusability Vol. 1: Concepts and Models.

ACM Press, New York, 1989.

[3] Ted .1. Biggerstaff, editor. Software Reusability Vol. 1?: Applications and Expe-

rience. ACM Press, New York, 1989.

[4] Charles W. Krueger. Software Reuse. ACM Computing Surveys, 24(2):131-183,

June 1992.

[5] P.A.V. Hall, editor. Software Reuse and Reverse Engineering in Practice. UNI-

COM Applied Information Technology, Chapman & Hall, 1992.

[6] E. Horowitz and J .B. Munson. An Expansive View of Reusable Software. IEEE

Transaction on Software Engineering, 10(5):477—487, September 1984.

[7] M. Sitaraman. Mechanisms and Methods for Performance Tuning of Reusable

Software Components. PhD thesis, Ohio State University, Columbus, Ohio,

1990.

[8] W. Tracz. Where does reuse start? ACM SIGSOFT Software Engineering

Notes, 15(2):42-46, April 1990.

[9] B.W. Weide, W.F. Ogden, and SH. Zweben. Reusable Software Components.

Advances in Computers, 33:1-65, 1991.

[10] Ted .l. Biggerstaff. Design Recovery for Maintenance and Reuse. Technical

Report STP-378-88, MCC, November 1988.

[11] MD. Mcllroy. Mass Produced Software Components. In Proceedings of NATO

Conference on Software Engineering, pages 88—98, New York, 1969. Petro-

celli/Charter.

200

1121

1131

[14]

[151

[161

1171

118]

[191

[20]

[21]

1221

[231

201

B.J. Cox. Object-Oriented Programming - An Evolutionary Approach. Addison-

Wesley, Reading, Massachussets, 1991.

James W. Hooper and Rowena 0. Chester. Software Reuse: Guidelines and

Methods. Plenum Press, New York and London, 1991.

Y.S. Maarek, D.M. Berry, and GE. Kaiser. An Information Retrieval Ap-

proach for Automatic Constructing Software Libraries. IEEE Trans. Software

Engineering, l7(8):800—813, August 1991.

R. Helm and Y.S. Maarek. Integrating Information Retrieval and Domain Spe—

cific Approaches for Browsing and Retrieval in Object-Oriented Class Libraries.

In Proceedings of OOPSLA ’91, pages 47—61, 1991.

R.L. London. Specifying Reusable Components Using Z: Realistic Sets and

Dictionaries. ACA'I SIGSOFT Software Engineering Notes. 1i1(.’l):120—-l27, May

1989.

F. Nishida, S. Takamatsu, Y. Fujita, and T. Tani. Semi-Automatic Program

Construction from Specification Using Library Modules. IEEE Transaction on

Software Engineering, l7(9):853—870, 1991.

Charles Rich and Richard C. Waters. Formalizing Reusable Software Com-

ponents. In Proceedings of Workshop on Reusability in Programming, pages

152-158, Newport, RI, September 1983.

Jeannette M. Wing. A Specifier’s Introduction to Formal Methods. IEEE

Computer, 23(9):8-24, September 1990.

D. R. Smith. KIDS: A semiautomatic program development system. 16(9):1024—

1043, September 1990.

Betty Hsiao-Chih Cheng. Synthesis of Procedural and Data Abstractions.

PhD thesis, University of Illinois at Urbana-Champaign, 1990. Tech Report

UIUCDCS-R-90-1631.

G. Caldiera and V. Basili. Identifying and Qualifying Reusable Software Com-

ponents. IEEE Computer, 24(2):61—-70, Febrary 1991.

R. Prieto’Diaz and P. Freeman. Classifying Software for Reusability. IEEE

Software, 4(1):6-16, January 1987.

1241

1251

1261

[271

1281

[29]

[301

[311

1321

1331

[341

[351

302

CW. Krueger. Models of Reuse in Software Engineering. Technical Report

CMU-CS-89-188, Carnegie Mellon University, December 1989.

Victor R. Basili Gianluigi Caldiera and Giovanni Cantone. A Reference Archi-

tecture for the Component Factory. ACM Transaction on Software Engineering

and Methodology, 1(1):53—80, January 1992.

Rubén Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Soft-

ware Engineering Notes. 13(2):47—54, 1990.

Robert Allen Steigerwald. Reusable Software Component Retrieval via Normal-

ized Algebraic Specifications. PhD thesis, Naval Postgraduage School, Monterey,

California, 1991.

Tom Danieli and Betty H.C. Cheng. Construction of Formal Specifications from

an Object-Oriented Decomposition of Informal Problem Descriptions. Techni-

cal Report MSU-CPS—Sl‘l-OS. Department of Computer Science, Michigan State

University, 1992.

Robert H. Bourdeau and Betty H.C. Cheng. An object-oriented toolkit for

constructing specification editors. In Proceedings of COMPSAC’92: Computer

Software and Applications Conference, pages 239-244, September 1992.

Barbara Liskov and John Guttag. Abstraction and Specification in Program

Development. MIT Press and McGraw-Hill, Cambridge, 1986.

Rebecca Wirfs-Brock. Brian Wilkerson, and Lauren Wiener. Designing Object-

Oriented Software. Prentice Hall, Englewood, New Jersey, 1990.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and

William Lorensen. Object-Oriented Modeling and Design. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1991.

Peter Coad and Edward Yourdon. Object-Oriented Analysis. Yourdon Press,

Prentice Hall, Englewood. New Jersey, 1990.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Engle—

wood, New Jersey, 1988.

Keith E. Gorlen, Sanford .\I. Orlow, and Perry S. Plexico. Data Abstraction

and Object-oriented Programming in C++. John Wiley & Sons, 1990.

203

[36] Ann L. Winblad, Samuel D. Edwards, and David R. King. Object-Oriented

Software. Addison-Wesley, Publishing Company Inc., 1990.

[37] Kevin D. Jones. LM3: A Larch Interface Language for Module-3 - A Definition

and Introduction Version 1.0. Technical Report 72, Digital Systems Research

Center, June 1991.

[38] Gary T. Leavens and Yoonsik Cheon. Preliminay Design of Larch/C++. Tech-

nical Report 92-l6a, Department of Computer Science, Iowa State University,

May 1992.

[39] Jeannette M. Wing. Using Larch to Specify Avalon/C++ Objects. IEEE Trans-

action on Software engineering, 16(9):1076-1088, September 1990.

[40] J.V. Guttag, J. J. Horning, and J. M. Wing. Larch in Five Easy Pieces. Tech-

nical Report 5, Digital Equipment Corporation Systems Research Center, Palo

Alto, California, July 24 1985.

[41] Richard Allen Lerner. Specifying Objects of Current Systems. PhD thesis,

Caregie Mellon University, May 1991.

[42] Jun-Jang Jeng and Betty H.C. Cheng. Using formal methods to construct

a software component library. In Proceedings of the Fourth European Soft-

ware Engineering Conference, pages 397-417, Garmisch-Partenkirchen, Ger-

many, September 13-17, 1993.

[43] Betty H.C. Cheng and Jun-Jang Jeng. Formal methods applied to reuse. In

Proceedings of the Fifth Workshop in Software Reuse, 1992.

[44] Jun-Jang Jeng and Betty H.C. Cheng. Using Automated Reasoning to De-

termine Software Reuse. International Journal of Software Engineering and

Knowledge Engineering, 2(4):523-546, 1992.

[45] John V. Guttag and James J. Horning. Introduction to LCL, a Larch/C In-

terface Language. Technical Report 74, Digital Systems Research Center, July

1991.

[46] Gary T. Leavens. Modular Verification of Object-Oriented Programs with Sub-

types. Technical Report 92-09, Department of Computer Science, Iowa State

University, July 1990.

[47] Gary Leavens. Modular Specification and Verification of Objected-Oriented

Programs. IEEE Software, 8(4):?2—80, July 1991.

204

[48] Mike Laux. lb: A Larch Browser. Technical report, Dept. of Computer Science,

MSU, 1992. in preparation.

[49] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical

Theorem Proving. Academic Press, 1973.

[50] J.A. Robinson. A Machine Oriented Logic Based on Resolution Principle. Jour-

nal of ACM, 12(1):227-234, 1965.

[51] K.H. Blasius and H.J. Burchert, editors. Deduction Systems in Artificial Intel-

ligence. Ellis Horwood Series in Artificial Intelligence, 1989.

[52] S. Miyamoto. Fuzzy Sets in Informational Retrieval and Cluster Analysis.

Kluwer Academai Publishers, 1990.

[53] D.H. Ballard and CM. Brown. Computer Vision. Prentice-Hall, Englewood

Cliffs, New Jersey, 1982.

[54] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. In Proc. of the American Mathematical Society, 1956.

[55] D. Knuth and P. Bendix. Simple word problems in universal algebras. In

J. Leech, editor, Computational Problems in Abstract Algebra, pages 263-297.

Pergamon Press, Oxford, 1970.

[56] D. Gries. The Science of Programming. SpringeroVerlag, New-York, 1981.

[57] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood

Cliffs, NJ, 1976.

[58] Ted Faison. Borland C++ 3.1 Object-Oriented Programming. SAMS, 1992.

[59] Greg Nelson. A Generalization of Dijkstra's Calculus. ACM Transactions on

Programming Languages and Systems, 11(4):571—561, October 1989.

[60] Jun-Jang Jeng and Betty H. C. Cheng. Using Analogy to Determine Program

Modification Based on Specification Changes. In Proceedings of 5th Interna-

tional Conference on Tools with Artificial Intelligence, 1993, pages 113-116.

IEEE Computer Society, November 8-11, 1993.

[61] K.E. Gorlen. NIH Class Library. National Institute of Health, Computer System

Laboratory, Division of Computer Research and Technology, Bethesda, MD.

Public Domain Software.

205

[62] Roger P. Hall. Computational Approaches to Analogical Reasoning: A Com-

parative Analysis. Artificial Intelligence, 39:39—120, 1989.

[63] Dedre Gentner. Mechanisms of Analogical Reasoning. In Stella Vosniadou and

Andrew Ortony, editors, Similarity and Analogical Reasoning, pages 199—241.

Cambridge University Press, 1990.

[64] Nachun Dershowitz. The Evolution of Programs. Birkhauser, Boston, MA,

1983.

[65] MB. Hesse. Models and Analogies in Science. Notre-Dame, 1963.

[66] Jun-Jang Jeng and Betty H. C. Cheng. Program Modifications Based on Specifi-

cation Changes Part 1: More General Components. Technical report, Michigan

State University, 1993.

[67] Jun-Jang Jeng and Betty H.C. Cheng. Using Automated Reasoning to De-

termine Software Reuse. Technical Report MSU-CPS-ACS-64, Department of

Computer Science, Michigan State University, East Lansing, Michigan, June

1992. accepted for publication in IJSEKE.

[68] Jun-Jang Jeng and Betty H.C. Cheng. Using Formal Methods to Construct

a Software Component Library. Technical Report MSU-CPS-92—ll, Michigan

State University, Department of Computer Science, 1992.

[69] Adrian Nye and Tim O’Reilly. X Toolkit Intrinsics Programming Manual.

O’Reilly & Associate, Inc., 1990.

[70] Dan Heller. Motif Programming Manual. O’Reilly & Associate, Inc., 1991.

[71] Douglas A. Young. Object-Oriented Programming with C++ and OSF/Motif.

Prentice Hall Englewood Cliffs, 1992.

[72] Dan Heller. XView Programming Manual. O’Reilly & Associate, Inc., 1990.

[73] Michael Mehlich and Weishi Zhang. Specifying Interactive Components for

Configuring Graphical User Interfaces, May 1993. personal communication.

[74] Donald L. McMinds. Mastering OSF/Motif widgets. Reading, Mass. : Addison-

Wesley, 1993.

[75] John V. Guttag, James J. Horning, and Andres Modet. Report on the Larch

Shared Language: Version 2.3. Technical Report 58, Digital Systems Research

Center, April 1990.

206

[76] Stephen J. Garland, John V. Guttag, and James J Horning. Debugging Larch

Shared Language Specifications. IEEE Transactions on Software Engineering,

16(9):1044-1057, September 1990.

[77] Jeannette M. Wing. Using Larch to Specify Avalon/C++ Objects. IEEE Trans-

actions on Software Engineering, 16(9):1076-1088, September 1990.

[78] Allan Heydon, Mark W. Maimone, J.D. Tygar, Jeannette M. Wing, and

Amy Moormann Zaremski. Miro: Visual Specification of Security. IEEE Trans-

actions on Software Engineering, 16(10):1185-1197, October 1990.

[79] Jeannette M. Wing and Amy Moormann Zaremski. A Formal Specification of a

Visual Language Editor. Technical Report CMU-CS-91-112, February 25 1991.

[80] Amy Moormann Zaremski. A Larch Specification of Miro Editor. Technical

Report CMU-CS-9l-lll, February 25 1991.

[81] Jeannette M. Wing and Chun Gong. A Library of Concurrent Objects and

Their Proofs of Correctness. Technical Report CMU-CS-90-151, July 1990.

[82] Scott Nettles. A Larch Specification of Copying Garbage Collection. Tech-

nical Report CMU-CS-92-219, School of Computer Science, Carnegie Mellon

University, December 1992.

[83] Tim O’Reilly. Xlib Programming Manusl. O’Reilly & Associate, Inc., 1990.

[84] Tim O’Reilly. Xlib Reference Manusl. O’Reilly 8!. Associate, Inc., 1990.

[85] Hartmut Ehrig. Fundamentals of Algebraic Specification Vol 1 and 2. Springer-

Verlag, Berlin, New York, 1985.

[86] Yoonsik Cheon and Gary T. Leavens. A Quick Overview of Larch/C++. Tech-

nical Report 92-18, Department of Computer Science, Iowa State University,

June 1993.

[87] J.M. Neighbors. The draco approach to constructing software from reusable

components. IEEE Transaction on Software Engineering, 10(5):564-573, 1984.

[88] Rubén Prieto-Diaz. Implementing Faceted Classification for Software Reuse.

Communication of ACM, 34(5), May 1991.

[89] Rubén Prieto-Diaz. Implementation Faceted Classification for Software Reuse.

In IEEE International Conference on Software Engineering, pages 300—304,

1990.

207

[90] Bruce A. Burton, Rhonda Wienk, et al. The Reusable Software Library. IEEE

Software, 4:25—33, July 1987.

[91] Charles Rich and Richard C. Waters. The Programmer’s Apprentice. ACM

Press, 1990.

[92] Richard C. Waters. The programmer’s apprentice : A session with KBE—

macs. IEEE Transactions on Software Engineering, 11(11):1296-l320, Novem-

ber 1981.

[93] Amy Moormann Zaremski and Jeannette M. Wing. Signature Matching: A

Key to Reuse. In Proceedings of the ACM SIGSOFT ’93 Symposium on the

Foundations of Software Engineering, pages 182-190, December 1993.

[94] T. G. Evans. A program for solution of geometric analogy intelligence test

questions. 1968.

[95] G. Polya. Induction and Analogy in Mathematics. Princeton University Press,

1954.

[96] Robert E. Kling. A Paradigm for Reasoning by Analogy. Artificial Intelligence,

2:147—178, 1971.

[97] J. Carbonnell. Learning by Analogy: formulating and generalizing plans from

past experience. In Machine Learning. Tioga, 1983.

[98] J. Carbonnell. Derivational analogy. In AAAI-83. 1983.

[99] B. Indurkhya. A computational theory of metaphor comprehension and analog-

ical reasoning. PhD thesis, Boston University, 1985.

[100] Brian Falkenhainer, Kenneth D. Forbus, and Dedre Gentner. The Structure-

Mapping Engine: Algorithm and Examples. Artificial Intelligence, 41:1—63,

1989.

[101] Dendre Gentner. Structural Mapping: a theoretical framework for analogy.

Cognitive Science, 7, 1983.

[102] S. Kedar-Cabelli. Analogy - from a Unified Perspective. In D.H. Helman, editor,

Analogical Reasoning, pages 65-104. Klumer Academic Publishers, 1988.

[103] Stephen Owen. Analogy for Automated Reasoning. Academic Press, 1990.

208

[104] Nachum Dershowitz. Program Abstraction and Instantiation. ACM Transac-

tions on Programming Languages and Systems, 7(3):446—477, July 1985.

[105] A. Goldberg. Reusing Software Development. In Proceedings of the 4th

ACM SIGSOFT Symp. on Software Development Environment, pages 107-119,

Irvine, California, December 1990.

[106] Mitchell D. Lubars. The ROSE-2 Strategies for Supporting High Level Soft-

ware Design Reuse. In Michael R. Lowry and Robert D. McCartney, editors,

Automating Software Design. MIT Press, 1991.

[107] Sanjay Bhansali. Domain-Based Program Synthesis Using Planning and Deriva-

tional Analogy. Technical Report UIUCDCS-R-9l-l701, Department of Com-

puter Science, University of Illinois at Urbana-Champaign, May 1991.

[108] Neil A. Maiden and Alistair G. Sutcliffe. Exploiting Reusable Specifications

Through Analogy. Communications of the ACM, 35(4):55-64, August 1992.

[109] Chung-Horng Lung and Joseph E. Urban. Analogical Approach for Software

Reuse. In Proceedings of Golden West International Systems, 1992, Reno,

Nevada, June 1-3, 1992.

[110] Chung-Horng Lung and Joseph E. Urban. Integration of Domain Analysis and

Analogical Approach for Software Reuse, 1993.

[111] Alberto Coen-Porisini, Flavio De Paoli, Carlo Ghezzi, and Dino Mandrioli. Soft-

ware Specialization Via Symbolic Execution. IEEE Transactions on Software

Engineering, 17(9):884-899, September 1991.

[112] D.B. Arnold, D.A. Duce, and G.J. Reynolds. An approach to the formal speci-

fication of configurable models of graphics systems. In Eurographics ’87, pages

439—463, 1987.

[113] George S. Carson. The specification of computer graphics systems. IEEE Com-

puter Graphics and Applications, pages 27—41, September 1983.

[114] George S. Carson. An approach to the formal specification of computer graphics

systems. Computers and Graphics, 8(1):51—57, 1984.

[115] D.A. Duce. GKS, structures and formal specification. In Eurographics ’89,

pages 271-287, 1989.

209

[116] D.A. Duce and E.V.C. Fielding. Towards a formal specification of the GKS

output primitives. In Eurographics ’86, pages 307-323. 1986.

[117] D.A. Duce, E.V.C. Fielding, and LS. Marshall. Formal specification of a small

example based on GKS. ACM Transactions on Graphics, 7(3):180—197, July

1988.

[118] Eugene Fiume. Toward realistic formal specifications for non-trivial graphical

objects. In Eurographics ’89, pages 289—300, 1989.

[119] Rupert Gnatz. Approaching a formal framework for graphics software stan-

dards. Computers and Graphics, 8(1):39—-50, 1984.

[120] Joseph A. Goguen. Modular Algebraic Specification of Some Basic Geometrical

Constraints. Technical Report CLSI-87—87, March 1987.

[121] William R. Mallgren. ACM Distinguished Dissertation Series, The MIT Press,

Cambridge, Massachusetts, London, England, 1982.

[122] William R. Mallgren. Formal specification of graphic data types. ACM Trans-

actions on Programming Languages and Systems, 4(4):687—710, October 1982.

[123] John Guttag and Jim J. Horning. Formal Specification as a Design Tool. In Sev-

enth Annual ACM Symposium on Principles of Programming Language, pages

251—261, 1980.

[124] Bernard Sufrin. Formal Specification of a Display-Oroented Text Editor. Sci-

ence of Computer Programming, 1:157-202, 1982.

[125] K. T. Narayana and Sanjeev Dharap. Formal Specification of a Look Manager.

IEEE Transactions on Software Engineering, 16(9):1089—1103, September 1990.

[126] Robert J.K. Jacob. Using Formal Specification in the Design of a Human-

Computer Interface. Communication of ACM, 26(4):259-264, 1983.

[127] Robert J.K. Jacob. A Specification Language for Direct-Manipulation User

Interfaces. ACM Transactions on Graphics, 5(4):283-317, October 1986.

[128] Michael R. Laux, Robert H. Bourdeau, and Betty H.C. Cheng. An integrated

development environment for formal specifications. In Proc. of IEEE Inter-

national Conference on Software Engineering and Knowledge Engineering, San

Francisco, California, July 1993.

[129]

[130]

[131]

[132]

[133]

[134]

- [135]

210

M. V. LaPolla, J. L. Sharnowski, B. H. C. Cheng, and K. Anderson. Data

parallel program visualizations from formal specifications. Journal of Parallel

and Distributed Computing, May 1993.

Betty H.C. Cheng and Gerald C. Gannod. Constructing formal specifications

from program code. In Proc. of Third International Conference on Tools in

Artificial Intelligence, pages 125-128, November 1991.

Gerald C. Gannod and Betty H.C. Cheng. A two-phase approach to reverse en-

gineering using formal methods. In to appear in the Proc. of Formal. Methods in

Programming and Their Applications Conference, June 1993. The proceedings

will appear as part of the series of Lecture Notes in Computer Science (LNCS)

published by Springer-Verlag.

K.J. Holyoak and RR. Thagard. A Computational Model of Analogical Prob-

lem Solving. In A. Ortony and S. Vosniadou, editors, Similarity and Analogic

Learning, pages 242—266. Cambridge University Press, 1990.

Kuo—Chung Tai. The Tree-to-Tree Correction Problem. JACM, 26(3):422-433,

July 1979.

Christopher M. Hoffmann and Michael J. O’Donnell. Pattern Matching in Tree.

JACM, 29(1):68—95, January 1982.

Kaizhong Zhang, Dennis Shasha, and Jason Tsong-Li Wong. Approximate

Tree Matching in the Presence of Variable Length Don’t Cares. Technical

Report CIS—9l-2l, Department of Computer Science, New Jersey Institute of

Technology, Newark, New Jersey, 1991.

CHIGRN STATE UNIV.

11111111111191119]3 9111111191 191111[1|[1111[111111911119111Es

