fur»
.n‘t‘l‘d
Npr‘ 4-..
on»?!
r.“
‘0." r
'f ‘
v
.1.
f. I. Q
fii‘éTfih“
.3533?
H .71
”:5...
u I“
uh:
...-._
w—Z
' 1‘ 3n
.1 ,
‘ Ra. tam. v-
0... “up“.
‘ d: A... WM...»
"-' 15.19“" .64.“ :333“
*Qgttm‘fi;
.. -, ,_,.. ..
‘5 1.3%
-. 24m:-
3:96 '5’}: 1&3...
L.J.:'2‘€:"‘».3",.
I V-“ va
' "W3
('11:: .
.-
if“
2 .
'3:- u‘g :13? ,1,
;~2#32“:¢,.:': ,
. 1 . H
Sir-m
1-:
fig;
‘ i.
an.» :5».
«. v.42.
‘ai’y‘tfig .L- ...r.«;:&._..
«inr‘gfig ai‘w'm‘xz
a»
-
1%.»...1 .
w» . '
.—
fink..-
.r
$3.13.“
1. W
’5».-
i ~ 2w,
3‘5.
w ..
= A .. J33 as - s.-
”fi‘t"‘§é3§1‘ “- %‘ ‘
'W “aux-
‘L x“? “as.
t‘ . _ . . 2,;
333%?
M: $er-
1:; "
v m;- ‘4’ 577‘“ 4”,:
'75? ‘ 1??” {'3’ 7,- 513,, ‘ieh‘fisfi‘é
‘1 7‘ 11" u'; 4‘53”?"
fir! g.
":13.
7:1. -‘ g
.d @fi
L
, ii
, in ‘
{wax-
.,
~?‘
1
iii. ‘
.‘k’. .
My W .
35 1."
MIC CHIGAN STATEU
lllllllllllzll llllllllllllllHllllllllllllllll
301051 7864
ll
This is to certify that the
thesis entitled
ELASTIC AND THERMAL PROPERTIES OF PARTICULATE
COMPOSITES WITH INHOMOGENEOUS INTERPHASES
presented by
Wei Wang
has been accepted towards fulfillment
of the requirements for
MaStef degree in Mechanics
5 Major pr'gfessor
Date 1/1121!
0-7639 MS U is an Affirmative Action/Equal Opportunity Institution
LIBRARY
Mlchlgan State
Unlverslty
PLACE II RETURN BOX to roman this checkout from your record.
TO AVOID FINES Mum on or him dd. duo.
DATE DUE DATE DUE DATE DUE
MSU I: An Nflrmatlvo Amen/Equal Opportunny lawman
Wanna-9.1
ELASTIC AND THERMAL PROPERTIES OF PARTICULATE
COMPOSITES WITH INHOMOGENEOUS INTERPHASES
by
Wei Wang
A THESIS
Submitted To
Michigan State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
Department of Materials Science and Mechanics
1994
ABSTRACT
ELASTIC AND THERMAL PROPERTIES OF PARTICULATE
COMPOSITES WITH INHOMOGENEOUS INTERPHASES
by
Wei Wang
A particulate composite that consists of three phases: inclusion, interphase and
matrix, is considered. A mathematical procedure that is based on the composite spheres
assemblage method (CSA) and the generalized self-consistent method (GSC) is used to
evaluate the effective moduli and the thermal expansion coefficients of the composite. The
inclusion and matrix are assumed to be homogeneous and isotropic, and the interphase is
isotropic and inhomogeneous. The perfect bonding conditions are assumed at both the
inclusion—interphase and interphase-matrix interfaces. The power, linear and cubic func-
tions are chosen to simulate the variation in the Young’s modulus, Poisson’s ratio and the
thermal expansion coefficient in the interphase. In the analysis, the CSA method is
employed to calculate the effective bulk modulus and thermal expansion coefficient of the
composite, and the GSC method to calculate the effective shear modulus. The solution is
obtained either in a closed form or in a form of infinite series.
The numerical results are presented, which illustrate the effects of interphase. It is
shown that inhomogeneity of the interphase in particle reinforced composite does have an
influence the on effective properties of composite.
DEDICATION
To my wife, Yu Kui, my sister, my brother in law and my parents
iii
ACKNOWLEDGMENTS
I would like to express my gratitude to Dr. Iwona Jasiuk, my advisor, for her gui-
ance, encouragement, and support throughout the course of this research work. I thank her
for the excellent advice that I received in my research field.
I also would like to thank Dr. Nicholas Altiero and Dr. Dahsin Liu for their great
help when I met difficulties.
Grateful acknowledgment is extended to the Department of Materials Science and
Mechanics as well as all the faculty for the support and direction they gave me.
I would also like to acknowledge the financial support of the Research for Excel-
lence Fund from State of Michigan.
Finally, I am very grateful to those who have made my work become reality.
iv
TABLE OF CONTENTS
LIST OF TABLES ............................................................................................................ vii
LIST OF FIGURES ......................................................................................................... viii
NOMENCLATURE ........................................................................................................... xi
1. INTRODUCTION ........................................................................................................... 1
2. PROBLEM FORMULATION AND SOLUTION METHOD ........................................ 7
2.1. EFFECTIVE BULK MODULUS ............................................................................. 7
2.2. EFFECTIVE SHEAR MODULUS ........................................................................ 15
2.3. EFFECTIVE THERMAL EXPANSION COEFFICIENT ..................................... 24
3. NUMERICAL ANALYSIS ........................................................................................... 28
3.1. BULK MODULUS ANALYSIS ............................................................................ 28
3.2. SHEAR MODULUS ANALYSIS .......................................................................... 50
3.3. THERMAL EXPANSION COEFFICIENT ANALYSIS ....................................... 62
4. CONCLUSION .............................................................................................................. 75 ’
5. APPENDICES ............................................................................................................... 76
APPENDIX A ................................................................................................................ 78
APPENDIX B ................................................................................................................ 81
APPENDIX C ................................................................................................................ 83
APPENDIX D ................................................................................................................ 90
APPENDIX E ................................................................................................................ 93
APPENDIX F ................................................................................................................ 97
APPENDIX G .............................................................................................................. 101
APPENDIX H .............................................................................................................. 104
APPENDIX I .............................................................................................................. 107
BIBLIOGRAPHY ............................................................................................................ 1 10
vi
LIST OF TABLES
Table ............................................................................................................................... page
2.1 Direction cosines between Cartesian coordinates and spherical coordinates ................ 8
vii
LIST OF FIGURES
Figure ............................................................................................................................ page
1.1 The single composite sphere .......................................................................................... 4
1.2 The composite sphere assemblage model ...................................................................... 5
1.3 The generalized self-consistent model ........................................................................... 6
2.1 Relation between Cartesian coordinates and spherical coordinates .............................. 7
3.1 Variation of Young’s modulus in the interphase ..................................................... 28,29
3.2 Cubic variation simulating power variation ................................................................. 33
3.3 Effective bulk modulus vs. volume fraction f for no interphase case .......................... 36
3.4 Effective bulk modulus vs. f for a inhomogeneous interphase stiffer than
matrix; interphase has power variation in Young’s modulus and a constant
Poisson’s ratio .............................................................................................................. 37
3.5 Effective bulk modulus vs. f for a homogeneous interphase stiffer than matrix;
interphase has a constant Young’s modulus and a constant Poisson’s ratio ................ 38
3.6 Comparison between Fig. 3.3 and Fig. 3.4 .................................................................. 39
3.7 Effective bulk modulus vs. f for an inhomogeneous interphase softer than
matrix; interphase has power variation in Young’s modulus and a constant
Poisson’s ratio .............................................................................................................. 40
3.8 Effective bulk modulus vs. f for a homogeneous interphase softer than matrix;
interphase has a constant Young’s modulus and a constant Poisson’s ratio ................ 41
3.9 Comparison between Fig. 3.7 and Fig. 3.8 .................................................................. 42
3.10 Bulk modulus vs. f for inhomogeneous interphase with interchange in proper-
viii
ties ............................................................................................................................. 43
3.11 Effective bulk modulus vs. f for a homogeneous interphase with interchange
in the properties ........................................................................................................ 44
3.12 Comparison between Fig. 3.10 and Fig. 3.11 ............................................................ 45
3.13 Effective bulk modulus vs. f; the power variation of Young’s modulus in
interphase is simulated by cubic variation ................................................................ 46
3.14 Comparison of effective bulk moduli from different variations of Young’s
modulus in interphase ............................................................................................... 47
3.15 Bulk moduli of composite with different variations of Poisson’s ratio and a
uniform variation of Young’s modulus in the interphase .......................................... 48
3.16 Bulk moduli of composite with different variations of Poisson’s ratio and a
linear variation of Young’s modulus in the interphase .............................................. 49
3.17 Effective shear modulus vs. f for no interphase case ................................................. 52
3.18 Effective shear modulus vs. f for an inhomogeneous interphase that is stiffer
than matrix; interphase has a power variation Young’s modulus and a con-
stant Poisson’s ratio .................................................................................................. 53
3.19 Effective shear modulus vs. f for a homogeneous interphase that is stiffer than
matrix; interphase has constant a Young’s modulus and a constant Poisson’s
ratio ........................................................................................................................... 54
3.20 Comparison between Fig. 3.18 and Fig. 3.19 ............................................................ 55
3.21 Effective shear modulus vs. f for an inhomogeneous interphase softer than
matrix; interphase has power variation in Young’s modulus and a constant
Poisson’s ratio ........................................................................................................... 56
3.22 Effective shear modulus vs. f for a homogeneous interphase softer than
matrix; interphase has a constant Young’s modulus and a constant Poisson’s
ratio ........................................................................................................................... 57
3.23 Comparison between Fig. 3.21 and Fig. 3.22 ............................................................ 58
ix
3.24 Effective shear modulus vs. f for an inhomogeneous interphase with the inter-
change of properties .................................................................................................. 59
3.25 Effective shear modulus vs. f for a homogeneous interphase with the inter-
change of the properties ............................................................................................ 60
3.26 Comparison between Fig. 3.24 and Fig. 3.25 ............................................................ 61
3.27 Variation of thermal expansion coefficient in the interphase ..................................... 62
3.28 Effective thermal expansion coefficient vs. f for no interphase case ......................... 65
3.29 Effective thermal expansion coefficient vs. f for an inhomogeneous interphase
with power variation in the thermal expansion coefficient ....................................... 66
3.30 Effective thermal expansion coefficient vs. f for an inhomogeneous interphase
with the constant thermal expansion coefficient ....................................................... 67
3.31 Comparison between Fig. 3.29 and Fig. 3.30 ............................................................ 68
3.32 Effective thermal expansion coefficient vs. f for a homogeneous interphase
having a power variation in the thermal expansion coefficient ................................ 69
3.33 Effective thermal expansion coefficient vs. f for a homogeneous interphase
having a constant thermal expansion coefficient ...................................................... 70
3.34 Comparison between Fig. 3.32 and Fig. 3.33 ............................................................ 71
3.35 Comparison of effective thermal expansion coefficient for the case of differ-
ent variations of thermal expansion coefficients in the interphase ........................... 72
3.36 Comparison of effective thermal expansion coefficient for the case of differ-
ent variations of Young’s modulus in the interphase ................................................ 73
3.37 Comparison of effective thermal expansion coefficient for the case of differ-
ent variations of Poisson’s ratio in the interphase ..................................................... 74
NOMENCLATURE
RVE ..................................................................................... Representative volume element
CSA ............................................................................ Composite sphere assemblage model
GSC ................................................................................. Generalized self-consistent model
r, 0, (p .................................................................................................. Spherical coordinates
x, y, z ................................................................................................... Cartesian coordinates
u,, ue, u.p .................................................................. displacements in spherical coordinates
ux, uy, uZ .................................................................. displacements in Cartesian coordinates
p, l, m, e ...... superscripts which refer to inclusion(particle), interphase(layer), matrix and
equivalent homogeneous phase
C i, .............................................................. unknown constants in bulk moduli calculations
D; ............................................................. unknown constants in shear moduli calculations
C in .................................................... unknown constants in thermal expansion coefficients
1' .................................................................................... superscript which refers to p, l, m, e
n ..................................................................... subscripts which refer to numbers 1, 2, 3 ......
t .................................................... subscript which refers to thennal expansion coefficients
t ......................................................................................................... thickness of interphase
a, b, c ..................................................................... radii of inclusion, interphase and matrix
f .................................................................................................................... volume fraction
PB ...................................................................................................................... perfect bond
E ................................................................................................................ Young’s modulus
xi
v ..................................................................................................................... Poisson’s ratio
G .................................................................................................................... shear modulus
K ...................................................................................................................... bulk modulus
7. ..................................................................................................................... Lame constant
0‘", 099, 0w ................................................................................................. normal stresses
1: r0’ 19¢, 1: (pr ..................................................................................................... shear stresses
8", 809, amp .................................................................................................... normal strains
7,9, 79¢, 7W ........................................................................................................ shear strains
W ...................................................................................................................... strain energy
P" .................................................................................... constants in interphase simulation
Q" ................................................................................... constants in interphase simulation
R ..................................................................................... constants in interphase simulation
S ...................................................................................... constants in interphase simulation
xii
1. INTRODUCTION
In a particle reinforced composite, the particle usually bears the major part of the
load. However, the important factor that will influence the reinforcement mechanism is the
interface. The interface, serving as a load transfer between the matrix and inclusions, is
known to have an important effect on the composite response [see Hughes (1991), Kerans
et a1. (1989), Wright (1990) and Jayararnan (1993), for example]
Many composites are made up of inclusions which are perfectly bonded to a sur-
rounding matrix. This model has been studied extensively [for reviews, see Christensen
(1979), Hashin (1983), Hine et a1. (1993), for example]. However, in many composites,
there is an interface layer between inclusions and matrix. This interface layer exists as a
natural consequence of composites processing or is intentionally introduced into the com-
posite to improve the properties of composite. It is a three dimensional region between the
inclusion and matrix and is usually called an interphase. The interphase can be very thin as
is the interphase between tungsten wire reinforcement and steel, or relatively thick as in
vapor deposited boron fiber in epoxy [Bogan and Hinder (1993)]. Although its volume
fraction is small as compared with the inclusions and matrix volume fractions, its exist-
ence is important and it strongly affects both the local field and the overall properties of
composites [Theocaris (1986)]. The structure of the interphase is very complicated [see
Hull (1981), Drzal (1983), Chawla (1987), Date et a1 (1993), for example]. For simplicity,
in the theoretical investigations many researchers modeled the interphase as a homoge-
neous region. These studies include those of Agarwal (1974), Mikata and Taya (1986),
Pagano (1988), Jasiuk and Tong (1989), Benveniste et al. (1989), Chen et al. (1990),
Pagano and Tandon (1990), Tong and Jasiuk (1990), Maurer (1990), Sullivan and Hashin
(1990), Qiu and Weng (1991), Dasgupa and Bhandarkar (1992), Bostroin et a1 (1992),
Theocaris and Demakos (1992), Herve and Zaoui (1993), Gregory (1993), and many oth-
ers.
The advantage of the homogeneous interphase model is that it gives relatively
simple mathematical analysis. However, it may not give a good representation of the com—
plex state at the interface that may be due to a chemical reaction or diffusion, for example.
In order to account for this complex microstructure, recently, a number of researchers
studied the inhomogeneous interphase. These publications include those of Theocaris et
a1. (1985), Theocaris (1986), Sideridis (1988), Papanicolaou et a1. (1989), Sottos et a1.
(1989), J ayaraman et a1. (1991), Jayaraman and Reifsnider (l992a,b), Jasiuk and Kouider
(1993), Bogan and Hinder (1993), Nassehi et a1. (1993), and other.
Most of the above papers discussed the fiber reinforced composite. In this thesis,
we evaluate the effective bulk modulus, shear modulus and thermal expansion coefficient
of particle reinforced composite. We assume that the particles are spherical in shape and
that there is an inhomogeneous interphase between each particle and the matrix. We fol-
low the classical elasticity methods to solve these problems and use some simplifying
assumptions
1. The composite is modeled as a representative volume element (RVE), Fig. 1.2
and Fig. 1.3, (see, Hashin ( 1983)].
2. The three phases: particle, interphase and matrix are linearly elastic.
3. The particle and matrix are homogeneous and isotropic.
4. The interphase is isotropic and inhomogeneous with the Young’s modulus, Pois-
son’s ratio and thermal expansion coefficient having a radial variation.
5. There is perfect bonding between the phases.
6. The temperature changes uniformly in all the phases.
To determine the effective elastic moduli of a multiphase composite, we follow Hashin
(1983) and subject the composite to homogeneous boundary conditions
o
ui(s) = 8‘.ij (1.1)
where 83. are constant strain tensors. Then by the average strain theorem
5.. = 59. (1.2)
where the overbars denote volume average over composite. According the linearity of the
equations of elastrcrty, the average stresses oil. and strarns 81.]. must obey followrng rela-
tion
—— _ — _ 0
or} ‘ ijklekz ‘ ijktekt (1'3)
where ijk, is defined as the effective elastic stiffness of a composite.
In our analysis, we evaluate the effective bulk modulus and thermal expansion
coefficient by using the composite spheres assemblage model (CSA)[Hashin and Rosen
(1964)]. In the CSA model we have three concentric spheres having radii a, b and c (Fig.
1.1), which correspond to the radius of particle, the outer radius of the interphase, and the
outer radius of matrix, respectively. The microstructure of composite is represented by a
collection of such various sizes of composite spheres which completely fill the space (Fig.
1.2). The ratios of radii a/b and a/c are taken to be constants for each composite sphere.
The major advantage of this model is that we can evaluate the effective bulk modulus by
using the single composite sphere (Fig. 1.1), and its result represents the effective bulk
modulus of composite spheres assemblage model (CSA) [Christensen (1979, p. 50)].
We evaluate the shear modulus by using the generalized self -consistent model
(GSC) [Christensen and Lo (1979)]. In the GSC method, a single composite sphere (Fig.
1.1) is embedded in the infinitely extended medium of yet unknown effective properties.
This geometric model is shown in Fig. 1.3. In both methods the volume fraction f of parti-
cles is defined by f = a3/c3. In this thesis, the superscripts p, l, m, e denote the inclusion
(particle), interphase (layer), matrix, and effective medium, respectively.
This thesis is an extension of previous theoretical works which dealt with the sub-
' f inhomogeneous interphases and which addressed the
[Theocaris
m.
m
N
. .
\Qs
\
\\\\
\
\ \
has
V\
\\\\\\\
so.
\s ss
ss . s; \' s w
‘ \\\\ \ .
Fig. 1.2
Composite spheres assemblage model
s
s
Vs
Fig. 1.3
Generalized self-consistent model
2. FORMULATION AND SOLUTION METHOD
2.1. EFFECTIVE BULK MODULUS
We use composite spheres assemblage model (CSA) to evaluate the bulk modulus of par-
ticulate reinforced composite. We subject a single composite sphere to the homogeneous
surface displacements, which in Cartesian coordinate system are given by
._ 0
ux—e x
0
u = .
._ 0
“Z _ 8222
where
0 _ 0 _ O _ 0
an — a” — Eu - e" (2.2)
[see Hashin (1983)]. It is convenient for us to use the spherical coordinate system (see
Fig. 2.1) which is related to the Cartesian system as given in Table 2.1,
N f
V~<
Fig. 2.1
Relation between Cartesian coordinates
and spherical coordinates
x y z
sincpcosO sintpsinO costp
costpcose costpsinO —sin(p
-sin6 c059 0
Table2.1
Direction cosines between Cartesian and spherical coordinates
and the Cartesian coordinates can be expressed by using spherical coordinates as
x = rsintpcosO
y = rsintpsinO (2.3)
2 = rcosrp
Using Table l, we express the displacements in the spherical coordinates as
u, = uxsrntpcose + uysrntpsrnO + uzcostp
u
q, = uxcosocose + uycososinO - uzsintp (2.4)
“9 = -uxsrn9 + uycose
Thus, when we substitute eqns. (2.3) into eqns. (2.1) and then put them into eqn. (2.4), we
get
u, = e‘r’rr
uq, = 0 (2.5)
“a = 0
Due to the spherically symmetric nature of the problem, the displacements in the bulk
modulus calculations are in the form
u, = u,(r)
u.p = 0 (2.6)
"9 = 0
that is, the displacement in r direction depends on r only and the displacement components
in (p and 0 direction are zero. Next, we use this displacement formulation approach to
determine the unknown displacement u (r)
The govemrng equations that we use to calculate the displacements are given
below:
1) Strain-displacement Relations
=3u,
r
e = 1 3u9+ u mu
99 rsintp50+ r r ‘P
13 u
=7§6¢+ 7
1 an due no (2.7)
7’9: r—_sin(p39r +37 7
1311, cottpu 1 auq,
'7an ' — “e + was
auq, u¢+13u
Y‘1” = 57' - — +115:
2) Constitutive Equations (Stress-strain Relations)
on = 26 (err+ fie) 1,9 = Gay,0
v "oo = 07%
0'99 — 20 (269 + T3258) {W = 67‘” (2.8)
(”2260ap ‘P+-1—_-2v e) e=€rr+809+etptp
3) Equilibrium Equations (with no body forces)
30,, 1 31,9 31w
5— sin
1 ((51) v' = constant (2.19)
case 2. Linear variation
5’ = [3(5) +Q2 v’ = constant (2.20)
case 3. Cubic variation
15" = P (5)3+Q (I)2+R(5) +5 v’ — P'(5)3+Q'(5)2+R'(5) +S' (221)
3 a 3 a a - a a a '
where, P, Q, R, S are constants
Substituting eqn. (2. 19) into eqn. (2.11), the governing equation is reduced to
azu Bu 2le
2 r r _ =
13
This is the Euler equation. The solution is given by
“Ir .—.- C‘llr‘”-I-Clzr"2 (2°23)
where
lOv’-—2
s1: -1 1+Q+ 9+Q3+——————Q (2.24)
2 v’-1
’-2
s2 = -1 1+Q— 9+Q2+M (2.25)
2 v’—1
C11 and C12 are constants. The superscript 1 represents the interphase (layer).
Substituting eqn. (2.23) into eqn. (2.7) and eqn. (2.8), we obtain the expression for
stress 0'".
For the cases 2 [eqn. (2.20)] and 3 [eqn. (2.21)], we follow the same procedure.
First, we get the series solution for the displacement in the interphase and then substitute it
into eqns. (2.7) and (2.8) to get the stresses. Thus, we know the expressions for displace-
ments and the stresses in the inclusion, matrix and interphase. These expressions include
five unknown constants C’l’ , C'l", C3", C11 and Ca. In order to evaluate these constants, we
use the boundary conditions. If we assume perfect bonding between the phases, we have at
r = a
0P 2 O”
" 1' r (2.26)
u: = u.
and at r = b
1
o = o’"
'1' " (2.27)
it, = u',"
In addition, on the outer surface we have
_ 0
ur((:) — enc (2.28)
as given in eqn. (2.5).
14
The bulk modulus is usually defined as [Mase and Mase (1992), Frederick and
Chang (1972)]
32..
H
6..
K = 1?. = __‘_'_ (2.29)
are
by which we infer that the bulk modulus K relates the pressure p to the volume change
given by the cubical dilatation 811° According to summation convention, we have
on. = o"+ Ow + 099 and a“. = e"+ 8W + 800. In our case, from eqns. (2.7) and (2.8),
we find on = OW = 699’ e" = em, = 909' So, eqn. (2.29) can be written as
K ._._. " . (2.30)
Combining eqns. (1.3) and (2.30), the bulk modulus of the composite [Hashin
(1983), Jasiuk and Kouider (1993)], Can be expressed as
(26'1”(l+v"‘) 4C3)G"'
5,, _ O’,"(C) __ 1—2v’” :3—
o ' o o
8" 3877' 3817'
K‘ = (2.31)
M
where 6'" is the average stress in the composite sphere, which is equal to the stress in the
matrix on the outer boundary a; (c) by using CSA model. The superscripts e and m rep-
resent the effective composite and the matrix, respectively.
It is worthwhile to mention that, if when the GSC model (Fig. 1.3) is used to eval-
uate the effective bulk modulus, it gives the identical result to that of above CSA model
[Christensen (1979)]. but it is more complicated to use.
15
2.2. EFFECTIVE SHEAR MODULUS
In this section, we evaluate the effective shear modulus of particulate composite.
The CSA model gives us a simple mathematical formalism in the bulk modulus evalua-
tion, but we cannot use it to evaluate the shear modulus uniquely. The reason is as fol-
lows. In the case where the simple shear type displacements are prescribed on the surface
of the composite sphere, the resulting boundary stresses are not those corresponding to a
state of simple shear stress. Correspondingly, when the simple shear stresses are pre-
scribed on the boundary, the resulting surface deformation state is not that of a simple
shear deformation. Accordingly, CSA model can only give the bounds on the shear modu-
lus. Therefore, as an alternate method, we choose the generalized self-consistent model
(GSC) to evaluate the effective shear modulus. In this method a single composite sphere
(Fig. 1.1) is embedded in the infinitely extended medium of yet unknown effective proper-
ties of the composite.
Again we first use the Cartesian coordinate system first, and we subject this com-
posite system to the remote displacement boundary conditions
“x = egyy
_ o
u), — exyx (232)
u2 = 0
Substituting eqn. (2.3) into eqn. (2.32) and then substituting them into eqn. (2.4),
we get
u, = egyr(sin(p) 2sin29
_ 0 '
“e .. exyrsrntpCOSZO (2.33)
u:
0 . .
q, exyrsm2tpsrn20
NIH
Guided by the eqn. (2.33), which represents the deformation of a homogeneous
medium, a general solution for the heterogeneous problem is in the form
16
u, = U, (r) (sintp) 2sin20
“e = US (r) sintpcosZO (2.34)
u(p = U,p (r) sin2tpsin20
Following the same procedures as in the bulk modulus calculations, we substitute
eqn. (2.34) into eqns. (2.7), (2.8) and the equilibrium eqns. (2.9). Consequently, each
equation can be separated into the sum of two parts
H (r) sinztp + J(r) = o (2.35)
where H (r) and J (r) can be expressed as
H (r) = h (E, v, ur, ue, 11¢)
. (2.36)
J(r) =1 (E, v, u,, rte, u¢)
We equate to zero the coefficients of sinztp and the term independent of (p, that is
H (r) = O
(2.37)
J (r) = 0
The three equilibrium equations give six equations, but only three of them are indepen-
dent. These three independent goveming equations are given as follows
at}, aqu, 30,,
where
E
I“ ' [rm-1)]
- zg—Evzr — £in + 35 — 35w.» 4E - 413v2 + 253—er
L = r Br Br Br Br
2 (1+v)(-1+2v)r2
-gEVr—2Ev—2E+E?—vr—§§r
L = r Br Br
3 (l+v)r
17
—12Ev2—Eg—vr —a—§vr +12E— ZaEv2r+aEr+ZEa—vvr
L = r ar ar ar ar
4 (l+v)(— 1+2v)
BZU, av, 30,,
L537 —L637_ +L7U,+L8—a—r -3L9Uq, = 0 (2.39)
where
_ '(v-l)E
L5 — - —1+2v]
’ C(r)
__(1+v)(—1+2v) r
-g§v2r—SE+13Ev+2Eg—Vr+4Egvv2 +2Ev2— 435v 3r+2§fvr-16Ev3
L =
7 (1+v)(-1+2v)2 r2
L8 = [(—13-t-E2v)r]
av av
- g§v3r+2g§ Vr— 8Ev3 -2%;Ev v2+4Eg;v2r+zEv2+7Ev+2Ea—;r—3E
L =
9 (1+v)(-1+2v)2r2
av
C(r)= ---%;r-t-4Ev-I-2Ev2 —4Ea—r —Vr+2-g—EVr
8E 3v
__ 2 _ _ 3__ 3 _ 2 _
+gr(E)v r Zarv 4Ev +2E8rv r 2E
and
(yo—2%) = 0 (2.40)
A computer program given in Appendix C was written by using MAPLE to simplify the
above algebraic manipulations. Next, we solve the differential equation system (2.38),
(2.39) and (2.40) to determine U ,, U9 and Uq,
For the homogeneous matrix and inclusion
E = constant = constant (2.41)
18
Then, eqns. (2.38), (2.39) and (2.40) give us
Bu, 2 q,
—r§— -4(1—v)U,—(1—2v)r 3—
’ r (2.42)
auop
—2(1—2v)r3—r +12(1—v) U¢=0
2
-(1-v)r23—U'-2(1-v)r3£]’+ (5 —8v) U
(Br Br ’
(2.43)
BUq,
+3537 —3 (3-4v) (1,, = 0
U9— 2U“, = 0 (2.44)
They are the same as in Christensen and Lo (1979). The method to solve the above differ-
ential system is to introduce an operator
r"3—:U=d(d—l 1)...(d-n+1)U (2.45)
So, we change the differential system to the general linear algebraic system. We can solve
the algebraic system easily, and the final solution of the differential system depends on the
roots of the algebraic system; again this technique to solve above differential system is
standard [for example, see Wyie and Barret (1982) p. 209)]. We will discuss it later in
more details in eqns. (2.55)—(2.57). Finally, the displacements in the homogeneous
medium are given as
6v +(5- 4v) 1 . .
u, = (Dlr— 1_ 2v D2 r 33+3D— +-(l ——)2v D4?) (srntp)zsrn20 (2.46)
7—4
“0 = (Dlr-—(—1——§—Y—)-D2r3-ZD3-17+20412)sin(p00820 (2.47)
" V r r
1 (7—4v) 3 1 1 . .
u = — (D r-———D r —2D — +2D —) srn2 srn20 (2.48)
where D1, D2, D3 and D4 are constants.
Guided by above equations, we can get displacements for different phases.
19
in the inclusion, O < r < a:
up = Dpr— 6v” Df’r3 (sintp)3sin20
(7 ’4VP) 3) .
up = r— —-———Dpr srn c0520 2.49
e ( 1 1_ 2vP 2 (P ( )
l (7 '4Vp) 3 . .
P = _ — .—
u.p 2 [D‘l’r 1_ 2vP D’z’r )srnthsrn29
1n the matrix b < r < c
6v’" 5 4vP
u'," = ( Tr— 0'2" r3+ 3D’3"- 4+-(————)-D"' 4—1-2)(sintp)2 sin20
1- 2V“ (1- 2 VP) 421‘
(7 '4Vp) 3 1 1 J .
um = mr - ————Dmr - ZDm— + 2Dm— srn cos20 2.50)
0 ( 1 1_ va 2 3 r4 4 r2 ‘9 (
1 (7 “4VP) 3 l 1 j . .
u'" = - "'r— ———D’"r —2D’"— + 2D’"— srn2 srn20
cP 2( 1 1_ va 2 3 r4 4 r2 (P
and in the equivalent homogeneous phase, c < r < co:
+-(5 4V‘)D 1)
D‘r + 3D§;— —— sin 2sin20
"i=2 (1 — v) D“ 2 ( (p)
= (D‘r— ZD‘— l +ZDZ— r33) sintpcosZO (2.51)
ufp= 9WD -2D;-1— +2D§— )sin2tpsin20
Some terms in the above equations are missing in order to avoid the unbounded
solution. The coefficient D? is specified by the displacement boundary conditions on the
remote outer boundary given in eqn. (2.33), that is D: = 82),
o n p p
The expressrons for the corresponding stresses off, 6‘39, 6:”, 1,9, 10¢, 15,, off,
m e e e
03,0,30’ 036' Tnii’ Tetp’ Tm ’ 0'", 0300’ 0'
8 e . . .
, (pr 99’ Ire, 13¢ and Tvr can be obtained by substituting
the above displacements (2.49), (2.50) and (2.51) into eqns. (2.7) and (2.8).
Next, we consider the inhomogeneous interphase region. Eqns. (2.38), (2.39) and
20
(2.40) are the general governing equations to determine the displacements in the inter-
phase. If we assume that the Young’ modulus and Poisson’s ratio have a radial variation,
the closed form solution usually cannot be obtained easily for this differential system
unless we consider a special case. In order to solve these equations we consider the power
variation case, that is E,“ = P (r/ a) Q and v1 = constant.
Then, eqns. (2.38) - (2.40) are reduced to
320
at], 2 q,
45— + (2Qv’-4—Q+4v’)U,+r (-1+2v’)-——2
’ 3’ (2.52)
Buq,
+r(Q+2) (—1+2v’)3—r + (12—12v—2Qv+Q)u¢=0
2 ,aZU, ,au, , ,
r (-1+v) +r(Q+2)(—1+v) +(—8v+5—2QV)U
W 57 ' (2.53)
3 all" 9 12’ 6 ' U —0
U9— 2Uq, = 0 (2.54)
If we introduce the operator eqn. (2.45), the differential system of eqns. (2.52) and
(2.53) changes to
(-d+4v’+2Qv’-4—Q) U,
2 2 (2.55)
+ (2v’d +2v’d—d -d— Qd+2dQv’—2Qv‘+Q+ 12— 12v) 0,, = o
(- d2 ~d+v’d2+v’d+dQv’ -dQ— 8v’+5 - ZQV’) U, (2 56)
+(3d+12v’—9+6Qv’)U¢=O '
Eliminating Uq, from eqn. (2.55) and eqn. (2.56), we finally get
(—1+v’)d4+ (-2Q+2v’+2Qv’-2)d3
2 I 2 l 2
+ v- -13v— v— +13d
(Q Q Q Q ) (2.57)
+(15Q-17Qv’—14v’+ Q2— 3szl+ 14) d
+4Q-4Qv’+24v’-4Q2 1= o
Eqn. (2.57) is a characteristic equation to determine U ,, which will give us four roots d1,
21
d2, d3 and d4. The calculation steps are given in the Appendix D.
For the our specified problem, the roots of characteristic equation usually follow
two cases:
case 1. all roots are real and unequal.
case 2. there are two different complex conjugate roots.
For the case 1, the displacements in the interphase are given as
“'2 1 d3
u’, = (12% +D’2r +D3r +05%“) sintpzsin29
uf, = 2 (blrd‘ + bzrd’ + [23rd3 + b4rd‘) sincpcos29 (2.58)
uzp = (blrd1 + bzrd’ + b3rd3 + b4rd‘) sin2cpsin29
For the case 2, if the complex roots are
dl=m1+ml
d2=m1—m1
d3 = m2 + inz (2'59)
(14 = m2 - inz
the displacements are given as
u', = [D’lcos (nllnr) r’"‘ + Dlzsin (nllnr) 2"“ + D; cos (nzlnr) r’"2 (2 60)
+Dl4sin (nzlnr) rmz] sintpzsin29 '
“b = 2[b1cos (nllnr) r'"1 + bzsin (nllnr) 1"“ + b3 cos (nzlnr) rm2 (2 61)
+b4sin(n21nr)r’"2]sin(pc0529
142, = [121 cos (nllnr) r’"' + bzsin (nllnr) r’"' + b3cos (nzlnr) r’”2 (2 62)
+b4sin (nzlnr) rmz] sin(p2sin29
The constants b1, b2, b3, (24 in eqns. (2.61)-(2.62) can be expressed in terms of unknown
constants DI , DI , D’ , D3. This is shown in the Appendix B. After we find ul,, us, ufp ,
we can substitute them into eqns. (2.7) and (2.8) to obtain the expressions for 0"", age,
I
‘P‘P’
l
1 z
0 1,9, 19¢ and 1,”.
22
Till now, we have the unknown coefficients D‘l’, D5, D11, DI , DI , DI , D’l", D’z",
3" . 2". §, DZ-
Although the perfect bond conditions produce eighteen equations at r = a, r = b
and r = c, only twelve equations are independent. These are
u, — u, u,p — u,p 0'" — 0'" Ire — trO at r - b. (2.63)
m _ e m _ e m _ e _ e _ .
u, — Ur 11¢ — 11¢ 0'" — 0'" ‘Cre — Ire at r — C.
Next we apply the Eshelby formula, derived by Eshelby (1956), to evaluate the
strain energy stored in the configuration of Fig. 1.3 [Christensen and Lo (1979)]. Accord-
ing to this formula, we have the elastic strain energy W under the applied displacement
conditions at infinity
Wamp— = w0 +— :1 (0,312,149 -o9 n uf)ds (2.64)
where S is the surface of the composite sphere defined by r=c, 63. and u? are stresses
and displacements in the composite in the absence of inclusion, and of]. and uf are stresses
and displacement disturbances in the effective medium. mep is the elastic strain energy
stored in the model of composite given in Fig. 1.3, W0 is the strain energy in the sphere
having the effective properties of composite. Since the outer equivalent region has the
properties of composite, which we want to evaluate, we can conclude that
Wcomp = W0 (2.65)
Combining eqn (2.64) and eqn (2.65), we obtain
I(Of.jn u 0—o'f.)jnju‘.’)dS= 0 (2.66)
For our problem, eqn. (2.66) yields
23
o o o
J(Ggru,+12¢ufp+1°9ur Girur-Tiouo’Tee 149) (IS = O (2.67)
where
d5 = czsintpdedcp (2.68)
Since this composite is subjected to the displacement boundary conditions at infinity, the
stresses and displacements in the composite without inclusion are given as
u‘,’ = Dir(sintp) 2511129
113 = Dirsintpcos29
ug= éD‘; rsin2" £3 4—»
g 8 .><
.... J: E
e E
B
4—4—> .5
4 ’2 >
d L h
2.
radius p
Fig.3.1a
Schematic variation of Young’s modulus in the interphase
In our calculation, we keep the values of E” , E'" constant and change the thickness
t of the interphase. When r=a, from the relation in Fig. 3.1, we have E1 = E” , then we can
get P1 = E” from E’ = P1 (r/a)Q‘. When r = b,we have E1 = E'", and finally we get
Ql = [In (Em/EpH/[ln (b/a)] P1 = E" (3.1)
Analogous to the power variation case, for linear variation, we have
28
29
3 2
E’ = 103(2) +9.15) mg) +5
E’ = P2(-:2)+Q2
Fig. 3.1b
Variation of Young’s modulus in the composite’s interphase
30
_bEp—Ema _a(Em"Ep)
Qz'W P2“—‘1:T— (32)
and for cubic variation case
223 = 2a3b (1?" - 19")
2b4 - 3123a - 3b2a2 + 70312 — 3a4
_ 3a3 (bEp—bgn—ali'"+aEp)
Q3 _ 2b4 - 3123a - 3b2a2 + 7a3b - 3a4
_ 6a4 (Em - B")
_ 2b4 - 3b3a - 3b2a2 + 7a3b — 3a4
_ 2b4li‘”-3530122",—390230-1-6a3bE"’+a3bEm—3a4Efl
_ 2b4 - 3b3a - 3b202 + 7a3b - 3a“
(3.3)
R
S
where we assume that when r=a, ad-r-E' (r) = 0; r=a, $15 (r) = 0. We have similar pro-
cedure for v1. It should be emphasized that we can change the parameters P3, Q3, R, S,
P', Q', R' and S' in eqn. (2.21) to obtain different variations of E1 and v1 in the inter-
phase. For example, if we let P3 = 0, Q3 = 0 and R at 0, S 99 0, we obtain linear varia-
tion in Young’ modulus. When P3 = 0 and Q3 #0, R #0, S ,4 0, we get the quadratic
variation of Young’modulus in the interphase.
Also, when Ql = 0, P1 at 0, eqn. (2.19) will give us a homogeneous interphase sit-
uation, and when Q1 = 0, P1 = E” , eqn. (2.19) yields no interphase situation. Now, in the
numerical examples presented in this thesis, we first consider the following elastic proper-
ties:
P =
V 0.3 VI = 0.3
GP = ZSGPA vm = 0.4 (3.4)
Q
E1=P(g) G’”=1.0GPA
and other elastic properties can be obtained directly from the following relationships
31
G(3}.+ZG) G=E/(2(1+v))
E:
1+0 K=3/(E(1-2v))
v=>./(2(7.+G)) [2:230 (3.5)
2_ Ev 3
‘ (1+v)(1-2v) E=2G(1+v)
Now, we start the numerical analysis by considering different variations in the
interphase. First, we consider the inhomogeneous interphase case where the Young’s mod-
ulus has power variation. Substituting eqn. (3.4) into eqn. (3.1), we can determine the con-
stant P. If we choose the different thicknesses t as follows
t= 0.010 b = 1.10
t = 0.050 b = 1.050
t = 0.020 b = 1.020
t = 0.0080 b = 1.0080
t = 0.0050 b = 1.0050
t = 0 b = 0
(3.6)
and substitute these t’s into eqn. (3.1), we can calculate the values of constant Q. We sub-
stitute 0, b, c, Q as well as eqn. (3.4) into eqns. (2.26), (2.27) and (2.28), solve for the
unknown coefficients, and substitute them into eqn. (2.31). We can obtain the effective
bulk modulus in terms of volume fraction f = (03/c3) and the elastic properties of inclu-
sion, interphase and matrix. We plot it for different values of thickness 1‘, (see Fig. 3.4). In
order to compare the power variation result with the homogeneous interphase assumption,
we introduce the following relationship
b r Q2
(15(5) dr
5’, = b_a (3.7)
Eqn. (3.7) gives the same “area” average of Young’s modulus as the power variation in
interphase. Following the above steps and setting Q1 = 0, P1 = Ell we obtain the homo-
geneous interphase case (Fig. 3.5). Finally, we take P1 = E'", Q1 = 0 and plot the no
interphase case as Fig. 3.3, which agrees with Christensen and Lo’s (1979) result as
32
expected. Observing Fig. 3.4 and Fig. 3.5, we find how the bulk modulus depends on the
thickness 1‘, and we observe that the thicker is the interphase, the higher is the bulk modu-
lus, and the effect of interphase is higher at the larger’volume fraction of particles. We
choose t = 0.10 and t = 0.050 cases from Fig3.4 and compare with the same thickness
situation in Fig. 3.5, and then compare with perfect bond situation. This comparison is
given in Fig. 3.6. We are also considering the following two situations for the bulk modu-
lus case. One is when the interphase is softer than the matrix and has a power variation in
Ii" and v1 is constant, and the second is when the properties of the particles and the matrix
are interchanged. Then the corresponding homogeneous interphase assumptions are con-
sidered too, the results of comparison are similar to the above analysis. These results are
displayed in Fig. 3.7 - Fig. 3.12. We find that the power variation interphase model gives
the lower prediction for the effective bulk modulus than the homogeneous interphase
model and the higher prediction than the perfect bonding case. This agrees with Jasiuk and
Kouider (1993). In this case, the homogeneous interphase model overestimates the effec-
tive bulk modulus.
Before we study the linear and cubic variations in Young’s modulus in the inter-
phase, we should discuss the series solution and test its convergence. Here, we choose one
case from eqn. (3.6), with b = 1.050 for our analysis. When we fix the relation
b = 1.050, from eqn. (3.1), we find that the Young’s modulus in the power variation has
the relation .
15’ = 65 (g).64 (3.8)
Now, we use the cubic variation to simulate this power variation as shown in Fig. 3.2
So, the approximate expression can be achieved as
3 2
15’ = —541314.1362(—;.) +1697798.147(£) -1775237.386(§) +618818.3794(3.9)
by using the curve fitting method. Substituting eqn. (3.9) and eqn. (3.4) into eqn. (2.16),
33
60 «F
3 2
2 5‘ = — 541314.1362 (2’2) +1697798.147(-2E)
SO
-1775237.386(g) + 618818.3794'
40»
30 .1_
20 «-
10 «-
1i01 1i02 1i03 1i04 1105
fig3 2 r/a
cubic variation simulating power variation
we obtain
8211, au, 0 3 10
'a—rj'l’fU'); +8(")“r" (' )
where
7'3 r2 r
-2706570.679—3 + 6791192590—2 - 5325712126; + 1237636750
f(r) = a3 02 (3.11)
r [- 54131413652 + 169779814712 - 17752373862 + 618818.379)
a 0
r3 r2 2,
-309322.364—3 - 485085.186—2 + 2028842729 H — 1237636750
0 a 0
g (r) = 3 2 (3.12)
r2 (— 541314.136’—3 + 169779814712- — 17752373862 + 618818.379)
0 0
f (r) and g (r) both have the Taylor series expansion as
f(r) = anh-ro)" (3.13)
n=0
34
g(r) = Zgn(r—r9)n (3.14)
n=0
If r9 = 0 is a regular singular point, then according to Fuchs’ theorem, we can
find a convergent series solution as
u = 2 a,r""" (3.15)
But r0 = 0 is located at the center of inclusion and not in the interphase. One can also
show that the other regular singular points lie outside the interphase region a < r < b, so
we choose ordinary point r0 in the interphase. It is also more convenient to choose
0 5 19 S. b, since this will require a smaller radius of convergence and thus a number of
terms in the series will be smaller than for the case when r9 is outside this interval. The
series solution is expressed as follows
u. = Z 4.0-6)" (216)
n=0
Eqns. (3.16), (3.14) and (3.13) are substituted into the differential eqn. (3.10) and coeffi-
cients of same powers of (r — r9) are set equal to zero to determine 0,,. Since the center
point in the interphase gives a faster covergence than the boundary point, we take
r0 = (0+b) / 2 and this is an ordinary point in our series solution. In this case,
r9 = 1.0250. The MAPLE computer program was written to solve this problem. Finally,
we get solution of eqn. (3.10) in the form
u, = c“, 2 b,,(r-1.02511)"+c‘2 2 any-1.02511)" (3.17)
n=0 n=0
where bu and on are known, and C11 and C12 are the unknown constants. After we have
the expression given in eqn. (3.17), the effective bulk modulus can be evaluated easily fol-
lowing the previous steps.
35
The bulk moduli for the interphase properties given in Fig. 3.2 are shown in Fig.
3.13. These two curves almost overlap with each other, and the small difference comes
mainly from the small difference between the cubic polynomial fit and the power varia-
tion. We must mention that when the series solution includes over sixty terms, the curve 1
in Fig. 3.13 does not change when the number of terms is increased. This implies that sixty
terms series solution will give convergent solution for this particular case. We have also
tested the convergence of our series by using the ratio test that is
0 (r-r )"+l
lim "+1 0 <1 (3.18)
n—>oo
n
0 ,2 (r - r9)
We found that our series solutions satisfy this condition
Repeating the above procedures, we can derive bulk moduli for cases given in
eqns. (2.20) and (2.21). First, we assume that v’ is constant and take different variations
of E," . The comparison of linear variation of E, cubic variation of El, uniform interphase
and no interphase case are given in Fig. 3.14. We observe that the homogeneous inter-
phase yields the highest modulus. Again, the tendency of this results is the same as in Jas-
iuk and Kouider (1993). Then, we let E‘ be constant and compare different variations of
V, (Fig. 3.15). We also let El be the linear variation and compare the different variations
of v’ (3.16). We find that when 15’ is fixed, power variation of v’ gives highest value in
effective bulk modulus and uniform case gives lowest result. This tendency is opposite to
the one for varying E1.
Observing Fig. 3.14, we may infer that the smoother variation of Young’s modulus
in the interphase gives the lower estimation of the effective bulk modulus, while the
rougher variation of v1 gives the lower estimation of the effective bulk modulus.
36
BULK MODULUS
(no interphase)
54 . 16 .
50"
74‘
g .9.
1t
8
g t=0(no interphase)
g Km =4. 667(GPA )
Kp=54.167(GPA)
E _ #03
a, 3" ope-mam)
G'"=1(GPA)
E 10:04
E
Fig. 3.3 Effective bulk modulus vs. volume fraction f for the no interphase case.
37
BULK MODULUS
25.. (inhomogeneous interphase)
’4
Q
. E: El _ p2(:) '
i i .
20" .4 g
5’ '3.
>- .§
2 1. €80 c
D. 2. t=0.0050 >1“
9. 3. c=0.008a
k 4. t=0.028
Vt 5. t=0.050
b 6. t-0.10
§ 15" Km=4.667(GPA)
g 119:0.3
a =25(GPA)
“2 =0.3
Gm=I(GPA)
E v’"=0.4 r a,
a El = P1(-)
U a
H
5,,
1.5.5?
I l l l l l l
T I T I I I j
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t'
Fig. 3.4 Effective bulk modulus of the composite with an inhomogeneous interphase.
38
BULK MODULUS
(homogeneous interphase)
35-- ‘ EA
b
Ep 5‘ =IP1(r/0)Q‘dr/(b-0)
a 32‘ ‘2
'3 .
E 3 La
30" 00 .9
a
+1.;
5 r
2 252-
g 1. taro
2: 2. 6:0. 005a
3. t=0.00Ba
g 4. t~0.020
g 5. t=0.058
q 60 t=0.18
20--
% K"'=4.667(GPA)
E Kp=54.167(GPA)
1P=0.3
“2 912200111)
2% fi’éuam)
- =0.4
N 15- 2 2/
:1 I Q '
.9 E = jP,(r/a) 'dr/(b—a)
a
(P1 and Q, are from Fig. 3.3)
10-
4.665;.
I I L I l I I
I I I I I I I
0 0.1 0.2 0.3 0.4 0 5 0.6 0.
f
Fig. 3.5 Effective bulk modulus of the composite with a homogenous interphase.
39
BULK MODULUS
(power-homogeneous)
30""
1. t=0(no interphase)
_\ 2. t=0.05a(power variation)
a 25.. 3. t=0.05a(homogeneoua interphase) ,.
u 4. t=0.01a(power variation) :'
9: 5. t=0.01a(homogeneous interphase)
92 K'"=4.667(GPA) :'
b KP=54.167(GPA) 2.:
1% 19:03 .2
g =25(GPA)
22' =03
I»: Gm=1(GPA)
é v”'=0.4
in
§
2
H 15-
h
n
102- ..............
4.65-
k l I l I I I
l I I T I T I
0 0.1 0 2 0 3 0.4 0 5 0 6 0.7
f
Fig. 3.6 Comparison between the inhomogeneous and homogeneous interphase cases.
BULK MODULUS
(inhomogeneous interphase)
16" 5‘
Q.
. E” . 5‘ = 101(2)
% 3
3: i .2
1r ’3’ '9' 1
5‘5, ?~ ‘
1. tag ‘42
fl 2. €80.0058 Dr
'1 3. t=0.008a
{‘5 12- 4. t=0.02a
" 5. t=0.05a
k 6'. t=0.18
In
E K'"=4.667(GPA)
Q vP=0.3
g =25(GPA)
1m- =0.3 5
E G’"=1(GPA)
m v""=0.4 r
g E = PI(;)
an
S ._
.// 6'
er ’/
4.651
I I I I L I I
I I f T I I I
0 0.1 0.2 03 150.4 05 06 07
Fig. 3.7 Effective bulk modulus vs. f for an inhomogeneous interphase softer than matrix;
Interphase has a power variation in Young’s modulus and a constant Poisson’s ratio.
41
BULK MODULUS
(homogeneous interphase)
1e~- EA 2
b
Ep 5‘ = IP1(r/a)Q'dr/(b-a) 3
.3 g , a
E i 1’4"
2.“ .3. _._.
4—75
1. no "
—~ 2. t=0.005a
E _ 3. t=0.008a
2 1‘“ 4. t:0.02a
& 5. t=0.05a
m 6. t=0.1a
E K"'=4.667(GPA)
q KP=54.167(GPA)
g vP=0.3
.4 mi =25(GPA)
g v=dL3
v'”=0.4
g .
g E’ = [P1 (r/a)Q'dr/ (b —a)
E a
a 81’ (P1 and Q1 are from Fig. 3.7)
6'
.,,//
6+
4.661
I I I l I_ I I
I I I r T T I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t
Fig. 3.8 Effective bulk modulus vs. f for a homogeneous interphase softer than matrix;
Interphase has a constant Young’s modulus and a constant Poisson’s ratio.
42
BULK MODULUS ,1
(power-homogeneous) ;
(soft interphase)
16--
141--
1. t=0(no interphase)
2. t=0. 05a (homogeneous variation)
I; L 3. t=0.05a (power interphase)
g 12 4. t=0.1a (homogeneous variation)
c 5. t=0.1a(power interphase)
K"'=4.667(GPA)
{g KP=54.167(GPA)
g has ,3
9 =25 ( GPA )
g m. =0.3
G'"=I(GPA)
E v"'=0.4
0:
g
E .
6"- ......................
4.661 .....
I I L I I I I
F I I I I I I
0 0.1 0 2 0.3 0.4 0 5 0.6 o 7
Fig.3.9 The comparison between Fig. 3.7 and Fig. 3.8.
43
5‘ 161 BULK MODULUS
(inhomogeneous interphase)
interchange of properties
504*
Q:
,
EA 1:4 = 191(5)
E'"
_ .. ~° .
\ ’5 g S
.. =~ .
33 .2 -
{D
i; H
V)
b 30..
g
E 1. 12:0
2. t=0.005a
“ 3. t=0.008a
E 4. t=0.028
H 5. t=0.058
Q “P 6. t=0.1a
E K'"=4.667(GPA)
vP=0.4
=1(GPA)
=0.3
G'"=25(GPA)
1_ 5 '
10-- E _ P’(a)
I I I I I I I
I I I I I I I
0 0.1 0.2 0.3 f 0.4 0.5 0.6 0.7
Fig. 3.10 Effective bulk modulus vs. f for an inhomogeneous interphase with
interchange of the properties.
BULKHMDDULUS
54.161
(homogeneous interphase)
interchange of properties
50'
b
E’ = IP1(r/a)Q'dr/(b-a)
EA 0
E
3 E” I
.- 3 ."
‘°‘ 2 i 1" i
3 g i
A 3 .a
g 4‘15?
3 *—>
14
to
b
30*
§
B 1. t=0
K 2. t=0.005a
g 3. t=0.00Ba
m 4. t=0.028
5. t=0.05a
E 6. t=0.1a
£320.. K'"=4.667(GPA)
E yr=o.4
=1(GPA)
=0.3
G’"=25(GPA)
v’"=0.3
b
13': [P1 (r/a)Q'dr/ (b-a) \
10' a ,
(PI and Q1 are from Fig. 3.10)
I I I I I I I
I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
f
Fig. 3.11 Effective bulk modulus vs. f for a homogeneous interphase with interchange
of the properties.
45
54.151 sum: MODULUS
(power-homogeneous)
(interchange of properties)
5m-
1. t=0(no interphase)
2. t=0.05a (homogeneous interphase)
3. t=0.05a (power variation)
4. t=O.1a (homogeneous interphase)
5. t=0.1a (power variation)
4 g. KP=4.667(GPA)
K”=54.167(GPA)
v'"=0.3
"'=25(GPA)
—~ =0.3
E GP=1(GPA)
E vP=0.4
3.;
I0
g...
§
I4
E
0)
g
20-
E
............. 1
10*-
4
I I I I I I I
I I I I I I I
0 0 1 0 2 0 3 0.4 0 5 0 6 0 7
f
Fig. 3.12 The comparison between Fig. 3.10 and Fig. 3.11.
.BUEJKJMCHNILIHE
(cubic-power variations)
20.3-
20.20
20.1.
19.9‘
19 e 8'”
19.70
19.6-
0.74 01742 01744 0:746 0174: 0275
t
2 2%
£5.
10-
1:.
U:
E “T 1. t=0.05(cubic simulation)
q “- 2. t=0.05a (power variation)
g K'"=4.667(GPA)
.4 12? KP=54.167(GPA)
§ =0.3
_ =25(GPA)
g 1° $0.3
H G’"=1(GPA)
8 9" v’”=0.4
E".
h. 5"
u:
"661 i t : e : : :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
f'
Fig. 3.13 Effective bulk modulus vs. f; the power variation of Young’s modulus in
interphase is simulated by cubic variation.
47
EFFECTIVE BULK MODULUS x‘ (GPA)
BULK MODULUS
2r-
E
22- A
.g 23‘
g.
E g
1s~ .
~1———£———u~
pr
1&-
1r-
1. t=0(no interphase)
2. t=0.05a(cubic variation)
3. t=0.05a(linear variation)
4. t=0.05a(uni£orm interphase)
1’ ' K'"=4.667(GPA)
EW=51L6NGTM)
tsp-=0.3
fiflfiumGEA)
10' =03
GWEJWGBM)
v”'=0.4
/'//
8‘— /,.//
en-
4137
I I I I I I L
1 I l I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
f
Fig. 3.14 Comparison of effective bulk moduli from different variations of Young’s
moduli in the interphase
EFFECTIVE BULK MODULUS x‘ (GPA)
48
24.7.1 V'" = 0.4
VP = 0.3
24.64. EP = 65 (GPA)
E’" = 2.8(GPA)
24.5.. b = 1.050
24.44?
24 .3... 1. cubic variation of v1
2. linear variation of v
3. uniform variation of v
24.2..
0.745 0:746 01747 f 0I74e 0:749
g
VA
251*-
”J.
20-
inclusion(particlc)
15"
10-
J
j
1'
f
0 0.1 0.2 0.3 0.4 0.5 0.
0
Z75
J
0.7
Fig. 3.15 Bulk moduli of composite with different variations of Poisson’s ration
and uniform variation of Young’s modulus in the interphase.
49
v’" = 0.4 3
23.5 VP = 0.3
E” = 65 (GPA)
15'" = 2.8(GPA)
23 «b
b = 1.050
22. s- 1. cubic variation of v’
2. linear variation of v
3. uniform variation of v
22.
A L J I l
v r f
0.73 0.73m.734o.7360.7380.74 0.7420.7440.7460.7480.75
\ t /
EA v4
N
‘F
.0
'2’
H N
r 9.?
Young's modulus _
inclusionanicle) 1!;
Poisson's ratio
0.:
1‘
3
H
*
EFFECTIVE BULK MODULUS x‘ (GPA)
124
10
0-
@-
0i1 0‘.2 0‘.3 tofi 0i5 0i6 0i?-
Fig. 3.16 Bulk moduli of composite with different variations of Poisson’s ratio and
linear variation of Young’s modulus in the interphase.
50
3.2. SHEAR MODULUS ANALYSIS
In this section, we conduct the numerical analysis of the effective shear modulus.
We assume that the interphase between the matrix and inclusion is isotropic and inhomo-
geneous, and that the Young’s modulus of interphase has the elastic properties changing
with the radial distance from the inclusion boundary, and the Poisson’s ratio is constant.
We illustrate our analytical results by considering a particulate composite, with the proper-
ties K"11 = 4.667GPA, Kp = 54.167GPA, G“[1 = 1.0GPA, Gp = 25.0GPA,
v’" = 0.4, v? = 0.3 and v' = 0.3, which has an interphase region with spatially varying
properties given in eqn. (2.19). In our example we assume that E." (a) = E" and
E’ (b) = E'" (Fig. 3.1a.b); constants P1 and Q1 are found from these two consu'aints
[eqn. (3.1)]. For comparison we also consider a homogeneous interphase case such that
E’ = fip(r/a)9dr/(b-a) which can be obtained from eqn. (2.19) by setting Q1 = o
and P1 = E’. We can also obtain the perfect bonding case by setting Q1 = O and
P1 = F". We substitute the properties of the composite [eqn.(3.4)] into eqn. (2.57), and
solve this fourth order equation. We get two complex conjugate roots as in eqn. (2.59). So
we take the expressions (2.60), (2.61) and (2.62) as our displacements results. By using
eqns. (2.63) and the remote boundary condition (2.33), we can obtain a set of linear equa-
tions to be solved for the unknown coefficients. Then we set the coefficient D: = O and
we can obtain a quadratic equation for Gc . We neglect the negative root of the quadratic
equation and finally, we achieve the relation
a3
0‘ = 17(7) (3.19)
c
where F represents function in terms of volume fraction and depends on the properties of
inclusion, interphase and matrix, and superscripts e symbolizes the effective composite
region. We plot this power variation case in Fig. 3.18. The results that shows the same ten-
51
dency as the bulk modulus results. We see that the thickness of interphase has an impor-
tant influence on the effective shear modulus. The effect of interphase is more pronounced
at the higher volume fractions. The homogeneous interphase case is given in Fig. 3.19 and
the no interphase case is shown in Fig. 3.17. Similarly as in the bulk modulus analysis, we
compare the power variation case and homogeneous interphase model case in Fig. 3.18.
Again the perfect bonding condition yields lowest results, the power variation gives the
intermediate values and the homogeneous interphase model yields the highest shear mod-
ulus. This agrees with the effective bulk modulus results when the same comparison is
made. Comparing to Fig. 3.7 - Fig. 3.11 in the bulk modulus study, the analogous conse-
quences are obtained for softer interphase case (Fig. 3.21 - Fig. 3.23) and case when there
is an interchange of properties between the matrix and inclusion (Fig. 3.24 - Fig. 3.26). As
in the bulk modulus analysis, we would like to have calculated other variations of inter-
phase [eqn.(2.20), eqn.(2.21)]. However since these involve much complicated mathemat-
ical manipulations, we will leave it for the future study.
Summarizing the effective bulk modulus and shear modulus results we find that
the homogeneous variation of Young’s modulus in interphase overestimates the effective
elastic moduli in our study. This agrees with the observation in Jasiuk and Kouider (1993),
while homogeneous variation of Poisson’s ratio in interphase underestimates the effective
bulk modulus.
52
SHEAR MODULUS
(no interphase)
20'”
15v 1:20 (120 interphase)
fl
:5 GP=25(GPA)
- 6'" =1 (GPA)
'b has
v"'=0.4
Fig. 3.17 Effective shear modulus vs. f for the no interphase case
53
SHEAR.HODULUS
(inhomogeneous interphase)
E
in» A
g
‘5»
10-- >8:
1. t=0
*’ 2. t=0.005a
g 4. t-0.023
V- 5. t=0.0Sa ’
t, 6'. t-0.1a
GP=25(GPA) ‘
6" G’"=1(GPA)
vp=0.3
v7=0.4
v=0.3 r I
E’ = -
, (a)
4" /‘
2“ ,,
1
J l I l l l 1
fl 1 l l I I l
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
f
Fig. 3.18 Effective shear modulus vs. f for an inhomogeneous interphase stiffer than
matrix; interphase has a power variation Young’s modulus and a constant Poisson’s ratio.
19* SHEAR MODULUS
(homogeneous interphase)
E
16" A b
E)" E’ = ]P,(r/a)Qldr/(b—a)
a 3 l / a
. .. 8 5'"
14- ;. ..
g g ‘r
.a a E
<—‘—>
12* >'
1. t=0
2. 1:80.0058
3. t=0.008a
«10" 4. £30.028
a 5. t=0.0Sa
9, 6. £230.18
'20 GP=25(GPA)
G’"=1(GPA)
9" v”=0.3
v"'=0.4
v’=o.3
b
6.. E': IP1(r/a)Q‘dr/(b—a) //
a
(P I and Q, are from Fig. 3.16)
4-11-
2.1-
1
I I I I I l I
I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fig. 3.19 Effective shear modulus vs. f for a homogeneous interphase stiffer than matrix;
Interphase has a constant Young’s modulus and a constant Poisson’s ratio.
55
15" SHEAR MODULUS
(power-inhomogeneous)
16--
14%
12» "
1. t=0(no interphase)
2. t=0.05a(power variation)
3. t=0.05a(homogeneous interphase) '
«10" 4. t-0.1a(power variation)
5 5. tan-0.1a (homogeneous interphase)
{5' GP=25(GPA) '
G'"=I(GPA)
W vP=0.3
v’"=0.4
v’=o.3 1
6‘-
4-0-
2-- .................
1 I I l I l I I
I I I I I I I
0 0 1 0.2 0.3 0.4 0.5 . 0.
Fig. 3.20 Comparison between Fig. 3.18 and Fig. 3.19.
56
SHRAR.MODULUS
7“ (inhomogeneous interphase)
EA
Q
. E” E’ = 11>l (5)
a 3 E” a
9» g g r_.
"° '5 1
a—gi
5,-- ¢——-> r
1. tsO >
2. t=0.00Sa
3. t=0.008a
4. t=0.02a /
5. t=0.05a /
-\ 6. t=0.1a
E 4+
o K'"=4.667(GPA)
is has
3P=25(GPA)
=0.3
G'"=1(GPA)
3.. (=0.4 r
P1:
2.-
1-
i i : i i i i
0 0 1 0 2 0.3 0.4 0 5 o 6 0.7
f
Fig. 3.21 Effective shear modulus vs. f for an inhomogeneous interphase softer than
matrix; Interphase has a power variation in Young’s modulus and a constant Poisson’s
lflUO.
57
SHEAR.MODULUS
(homogeneous interphase)
7-:-
E
‘ b
51’ El = JP1(r/a)Q‘dr/(b-a)
% .3 a
6.. E i
L". .5 . ,
a 3
g 3 fl‘-
2...? i
H
d—L—h r
5~- 1. £80 >
2. t=0.0058
3. t=0.008a
4. t-0.02a
5. t=0.058
6. t-0.1a
E4. _ K’"=4.667(GPA)
g KP=54.167(GPA)
‘5 v”=0.3
=25(GPA)
=0.3
G'"=1(GPA)
v’"=0.4
3-- b
E’ = JPl(r/a)Q'dr/(b—a)
a
2--
1-1
} i i i i i i
0 0.1 0.2 0 3 0.4 0 5 0.6 0.7
Fig. 3.22 Effective shear modulus vs. f for a homogeneous interphase softer than matrix;
interphase has a constant Young’s modulus and a constant Poisson’s ratio.
G‘ (GPA)
58
SHEAR MODULUS
(power-homogeneous)
(soft interphase)
1. t=0. 05a (homogeneous variation)
4“ 2. t=0.05a (power interphase)
3 . t=0 . 1a (homogeneous variation)
4 . t=0.1a (power interphase)
K'"=4.667(GPA)
KP-—-54.167(GPA)
vp=0.3
=25(GPA)
v=0.3
G'"=1(GPA)
3" v"'=0.4
2m-
1.:
I I I I I I
I I I I I I
o 0 1 0 2 0.3 0.4 0 s .
Fig. 3.23 The comparison between Fig. 3.21 and Fig. 3.22
59
o‘ (GPA)
2% SHEAR MODULUS
(inhomogeneous interphase)
interchange of properties
20¢ EA I} = P1( )
\ 3.3%?—
5 8 g
>‘ 5
15" E .5
‘49
d—L—N
>r
1. t=0
2. t=0.005a
3. t=0.008a
10._ 4. t=0.02a
5. t=0.05a
6. t=0.18
K'"=4.667(GPA)
vP=0.4 \
=I(GPA) \‘
=0.3 \
G’"=25(GPA) \
S~~ v’"=0.3
Q \.
z r I g
E = P197)
1 i i i i i i
0 0.1 O 2 O 3 0.4 0 S 0 6 0 7
Fig. 3. 24 Effective shear modulus vs. f for an inhomogeneous interphase with the
interchange of properties.
25 SHEAR MODULUS
(homogeneous interphase)
interchange of properties
b
15‘ = IPl(r/a)Q‘dr/(b—a)
5‘ a
3"“ E
3.153
.2 g
3 .3.
>‘ a
g .5
15" A—flgJ
2
E5.
‘5 1. tBO
2. ts0.005a
3. t=0.008a
1o-- 4. t=0.02a
5. t=0.05a
6. t=0.18
K'"=4.667(GPA)
vP=o.4
=I(GPA)
=0.3
G’"=25(GPA)
5“ v"'=0.3
b
E’ = [P1 (r/a)Q'dr/ (b—a)
a
I I I 4 I I I
T I T I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
f
Fig. 3.25 Effective shear modulus vs. f for a homogeneous interphase with the
interchange of the properties
61
62
3.3. THERMAL EXPANSION COEFFICIENT ANALYSIS
We assume that the thermal expansion coefficients in the inclusion, matrix and
interphase are follows
or? = 5 x 10'6/0C
-6
a'" = 66 X 10 /0C (3.20)
erN
0"- (a)
where M, N are constants. We can sketch eqn.(3.20) in Fig. 3.27.
a A a’"
N
I r
on = M —
( a)
E
Q)
'8
8
§ on?
I:
'2
g t .x
e- a
q—p
o g E
'8 ”g
[5 E'
3
G
a ""
a a
b
Le +
C
« F
> r
radius
Fig. 3.27 Variation of a thermal expansion coefficient in the interphase.
where
M = or” (3.21)
N = (3.22)
b
I" (a)
We substitute eqn. (3.20) and (3.4) into the MAPLE computer program (Appendix H),
which gives thermal expansion coefficients for the inhomogeneous interphase with a
power variation at. The results are given in Fig. 3.29.
I N . 1 b N .
When we replace CL = M(r/a) With or = [IaM(r/a) dr] / (b -a) 1n eqn.
(3.20), we obtain Fig. 3.30. The comparison of the results between Fig. 3.29 and Fig. 3.30
are given in Fig. 3.31. Then we assume that the interphase is homogeneous, and we
re 1 El - P Q‘ El - ' ' ' I
p ace — 1 (r/ a) by — 34 (GPA) in eqn. (3.4). For power variation (1 and
constant (1.1 cases are illustrated in Fig. 3.32 and Fig. 3.33 respectively. We also compare
above two cases in Fig. 3.34, and then, we set b = a and calculate no interphase case in
Fig. 3.28. Finally, we assume that El has a power variation and v1 is constant, compare
those cases of different variations of (I! in Fig. 3.35. By studying Fig. 3.28 - Fig. 3.33, we
find that again the effect of interphase is pronounced and it is higher for the larger volume
fraction of particles and for the thicker interphase, and no interphase assumption produces
highest values of effective thermal expansion coefficient. The comparison shows that there
is not a big difference among different variations of at. But, we can see that these results
have the same tendency as elastic moduli study with El having different variations. The
tendency is that the smoother variation of or! gives the lower estimation of the effective
thermal expansion coefficient. In other words, the uniform variation of at overestimate the
thermal expansion coefficient. We may conclude that the influence of the thickness of
64
interphase is greater than the different variations of thermal expansion coefficient in inter-
phase, which have the same volumetric average value.
We also check the relationship between the thermal expansion coefficient and bulk
modulus that is given in Christensen and Lo (1979) for the two phase model.
1 1
(OED-am)(—-—)
ot" = ot’"+ 1 K: Km (3.23)
F-F
We find that our result for no interphase cases is identical to the eqn. (3.23) [Appendix I].
So we prove that eqn. (3.23) is valid in CSA model. This infers that the similar relation
may be obtained to our interphase problem. Here, we introduce two numerical conse-
quences to illustrate the possibility that we may obtain the similar relation. The first conse-
quence is the comparison of effective thermal expansion coefficient from different
variations of Young’s modulus in the interphase (Fig. 3.36). We compare this result (Fig.
3.36) to the similar result (Fig. 3.14) in bulk modulus analysis, we find that they have the
same tendency which is that uniform variation of El overestimates both K‘ and oc‘, and
the smoother variation of El gives lower estimations. The second consequence is the
Comparison of effective thermal expansion coefficient from different variations of Pois-
son’s ratio in the interphase (Fig. 3.37). We also compare Fig3.37 with Fig. 3.15 in bulk
modulus study. We note that the same tendency is achieved for both effective bulk modu-
lus and thermal expansion coefficient. When the Poisson’s ratio in the interphase has uni-
form variation, we obtain highest value in K‘ and of, and the sharper variation of v1 gives
the lower estimation of K‘ and or“. These two numerical consequences strongly support
our conjecture that there may be a relation similar to eqn. (3.23) in our interphase problem.
But for the mathematical proof, again we leave for the future study.
65
{RHERmUUD.EXTUUWSICHV«COEHHRICIIHflP
(perfect bond)
Gel-051*
50-05‘
4e-05‘
G
E
’8
30-05“
v”=0.3
v"'=0.4
GP=25(GPA)
Gm=1(GPA)
20-05‘“
or’" = 66 x 104/”C
01" = 5x 10"/°C
1e-054h
Se-Os .m
1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
f
Fig. 3.28 Effective thermal expansion coefficient vs. f for the no interphase case.
or" (loo)
THERMAL EXPANSION COEFFICIENT
(inhomogeneous interphase
with power variation at)
660-06
60-051"
Se-OS‘
4e-OS“
1. £30
2. t=0.0058 g
3"09' 3. t80.0088 \
4. t-0.02a ‘
5
, GP=25(GPA)
2"” G'"=I(GPA)
or” = 66x 10"/°C
of = 5x 104/"C
E'=E'"(‘;’)Q
U
1e-05'1 N
01' = a” (g)
1 r
I j
0 0.2 0.
f
Fig. 3.29 Effective thermal expansion coefficient vs. f for an inhomogeneous
interphase with a power variation in the thermal expansion coefficient
I
I
4 0.6
67
66 e-O 6 THERMAL EXPANSION COEFFICIENT
(inhomogeneous interphase
with constant 011 )
I
60-054
50-054
I
40-05-
0t‘ (l0C)
t=0
t=0.0058
t=0.0088
t=0.028
t=0.05a
t:0.1a
vP=0.3
v’"=0.4 \
\
=0.3
2.—os- GP=25(GPA)
G’”=I(GPA)
a” = 66x10“/°C
of = 5x10“/°c
_ E’ = E'"(a/r)Q’
ot’ = jjot”(a/r)9'dr/(b—a)
I
3e-05-
fiynunu
10-05-
l I I
I I I
0 0.3 0.4 0.6
f
Fig. 3.30 Effective thermal expansion coefficient vs. f for an inhomogeneous
interphase with the constant thermal expansion coefficient.
. d_.
68
{RHIHUIALrIDKRAJHSIOQIICOEHHKICHJHMT
66 —0
. (inhomogeneous interphase)
(power variation Cit-constant 01’)
66-051-
5e-OS'”
40-05"
8
in
‘8
30-05“-
1. t=0(no interphase)
2. t=0.05a (constant or)
3. t=0.05a (power variation 0t!)
4 t=0.1a (constant )
“'05" 5. t=0.1a(power variation Otl)
vP=0.3
v”'=0.4
v’=o.3
GP=25(GPA)
G’"=I(GPA)
10-05“ a” = 5x10"/"C
ot'" = 66x10“/°C
I I I
I T I I
0 0 . 2 0 .4 0 . 6 0 . a
f
Fig. 3.31 Comparison between Fig. 3.29 and Fig. 3.30.
69
66e-06 THERMAL EXPANSION COEFFICIENT
(homogeneous interphase
with power variation at)
60-05-1-
5e-05--
4o-os.t
G
%" 1 t-O
'8 2. tsO. 005a
3. t=0.00Ba
4. t=0.02a
3o-05.L 5. t=0.05a
6. t=0.1a ,\
v”=0.3 \\
v;"=0.4
v=a3
GP=25(GPA)
G’"=I(GPA)
a.-os.. a’" = 66x10“/°c
a" = 5x104/°c
E’ = 34 (GPA)
N
a
0t, = am (7)
10-05..
I l l I
I r I I
0 0.2 0.4 0.6 0.9
f
Fig.3.32 Effective thermal expansion coefficient vs. f for a homogeneous interphase
having a power variation in the thermal expansion coefficient.
70
66 06 flflHEmUfllL IUKRAAHEIOMI(flQETTEDCIIMflP
" (homogeneous interphase
with constant or!)
60-05"
50-05" ‘\
4e-OS“
G
I:
”a 1. t=0
2. t=0.0058
3. t=0.008a
” 4. t=0.028
3"“ 5. t=0.05a
6. t=0.18
vp=0.3
v"'=0.4 \
v’=0.3 \
Gp=25(GPA) \
G’"=IGPA)
20-05“
or" = 66x10’6/“C
01" = 5 x10“/°c
E’ = 34(GPA)
a' = fiM(a/r)"’dr/ (b —a)
10-05"
1 1 r r
I 1 I 1
0 0.2 0.4 0,5 0.8
f
Fig. 3.33 Effective thermal expansion coefficient vs. f for a homogeneous interphase
having a constant thermal expansion coefficient
71
6 THERMAL EXPANSION COEFFICIM
6 "06 (homogeneous interphase)
(power variation Oil-constant at)
60-05"
50-05"
“-054-
G
i:
‘8
30-051”
1. t-0(no interphase)
2. ts0.05a(constant (ll)
3. t=0.05a (power variation Otl)
4. t=0.1a(constant or’)
5. t=0.1a (power variation Otl)
“'05" vP=0.3
v”'=0.4
v’=o.3
GP=25(GPA)
G'"=1(GPA)
01’ = 5x10"/°C
1"05" a” = 66x10‘6/0C
I I I
I I I
0 o . 2 0 .4 0 .
f
Fig. 3.34 Comparison between Fig. 3.32 and Fig. 3.33
72
£EHIHUMAIHlEXIUUMSIIHV CKMIFTHDCIIHWT
VA
60-05-
Se-05«
I
i 40-05~
‘8
3,4,5“ 1. uniform variation of 01'
2. linear variation of 01
3. cubic variation of 01
20-05-b
0 0 . 2 0 f
K t=0. 05a (power variation E‘) )
vP=0.3
v’"=0.4
1.211980-051- “—03
6'" =25( GPA)
Gm=1( GPA)
or" = 5 x 104/"C
or” = 66 x 104/"c
1.201980-05-
1.191980-05<-
1.181980-05--
1.171980-05dr
1.161980-05--
1.151980-05‘-
1.14198e-05 :41 1 1 1
0.79 0.792 0.794 t 0.796 0.798 0.0
\ J
Fig. 3.35 Comparison of effective thermal expansion coefficient for the case of
different variations of thermal expansion coefficients in the interphase.
73
{RHIHUIAIrlEXIUUMSIIHV CKHQEFURZIEEEP
EA
60-051-
.3
5.-05. g
E"
>-
40-054-
1. uniform variation of E1
01‘ (I00
3 -05~-
‘ 2. linear variation of El
3. cubic variation of El
20-054-
le-OSu : ‘
o 0.2 /.
K tsO. 05a (power variation 01') \
1.130-05 4- ”(4:03
v’"=0.4
1.120-OSd- V£413
Gp=25(GPA)
1.110—05 '1' Gm=1(GPA)
1.1e-05 -_ 01” = 5x10"/°C
_ -6 o
1.09.45" 01’" - 66x10 / C
1.080-05-r
1.07._05,.
1.060-05d-
1,05.—05-.
0.79 0:792 0:794 f 0:796 0:798 0.0
\
Fig. 3.36 Comparison of effective thermal expansion coefficient for the case of
different variations of Young’s modulus in the interphase.
J
74
amuuuuan EQHUUWEDON'CKHflEFICHJflWP
60-05"
Poisson’s ratio
50-051h
G - ..
it 4e 05
‘8 > r
3 -05--
‘ 1. cubic variation of v:
2. linear variation of v
3. uniform variation of v
20—05"
le-O 1 1
o 0.2 0.4
r
( taO. 05a (power variation 01’)
_ , vP=0.3
1.160 05 v"'=0.4
51.0.3
Gp=25(GPA)
1.1a-05+ G'"=1(GPA)
ot" = 5x10"/°C
or" = 66x10“/°C
1.12¢-05«
1.100-05«
1.08a-05h
0.79 0:792 0:794 : 0:796 0:798 6.8
k J
Fig. 3.37 Comparison of effective thermal expansion coefficient for the case of
different variations of Poisson’s ratio in the interphase.
4.CONCLUSION
We obtained the effective bulk modulus, shear modulus and thermal expansion
coefficient of particle reinforced composites with inhomogeneous interphases. We
explored the effects of interphases. both inhomogeneous and homogeneous, on the overall
elastic pr0perties of composites as well as thermal properties and showed that the study of
interphase in composite materials is important. The elastic and thermal properties of inter-
phase strongly influence the overall elastic and thermal properties of composite. Control-
ling the properties of interphase in order to improve the characteristics of composite is an
important topic in composite manufacturing.
In this thesis we consider an idealized interfacial model, in which the interphase is
inhomogeneous but isotrOpic. A more realistic model is the one that accounts for the
local anisotropy and randomness of the constitutive law of interphase. This is being stud-
ied by Ostoja-Starzewski and Jasiuk (1992), Jasiuk and Ostoja-Starzewski (1993) and
Ostoja-Starzewski et a1. (1994).
7C
APPENDICES
5.APPENDICES
NOMENCLATURE
u[r]=u [ r] .......................................................................................................................... u ,u
[theta]=u [9] ...................................................................................................................... “e
u[phi]=u [0] ....................................................................................................................... u,p
U[r]=U [,1 ......................................................................................................................... U ,
U[theta]= U [0] ................................................................................................................. U9
U[phi]= U [11] .................................................................................................................... Uq,
epsilon[rr]=e ["1 ............................................................................................................... a"
epsilon[theta,theta]=e [9’ 0] .............................................................................................. 899
epsilon[phi,phi]=e [ db 0] .................................................................................................. 8W
epsilon[r,theta]=e [ r, 9] ..................................................................................................... ere
epsilon[theta,phi]=£ [9‘ 0] ............................................................................................... 86¢
epsilon[r,phi]=e [r’ 4’] ....................................................................................................... em
sigma[rr]=0' [ rrl ............................................................................................................... a"
sigma[theta,theta]=o [9’ 9] .............................................................................................. 0'99
sigma[phi,phi]=0‘ [ 0. 0] ................................................................................................... 611) (p
tau[r,theta]=t [a 9] ........................................................................................................... '1: r0
tau[theta,phi]=1: [9, 4,] ...................................................................................................... 19¢
tau[r,phi]=t Ir. 0] .............................................................................................................. 1: r0
b[1],b[2],b[3],b[4]=b[1] ,bm ’bl3] ’bl4] ........................................................ bl, b2, b3, b4
D[1],D[2],D[3],D[4]=D[ I] ,D 121 ’D13] ,0 [4] ............................................. D’l, 05,191,, Df,
76
77
m[1],m[2],m[3],m[4]=mm,m[21,m[3],m[4] ............................................. ml, m2, m3, m4
n[1],n[2],n[3],n[4]=n [1] , n [2] , n [3] , n [4] ................................................. n1, n2, n3, n4
P,Q .............................................................................................................................. P1, Q1
nu(p),nu(l),nu(m) ................................................................................................... v”, v’, v’"
G(p),G(m) ................................................................................................................. 0°, 0'"
D[pl],D[p2] ............................................................................................................... 01,01;
D[ll],D[12],D[l3],D[l4] .............................................................................. D11, 1);, D’ , of,
D[m1],D[m2],D[m3],D[m4] .................................................................... D'l", Dif, D3",fo
D[el],D[e3],D[e4] ............................................................................................. D; , 0;, D;
E(p),E(m) ................................................................................................................... E", E'"
alpha(p),alpha(m) ....................................................................................................... 01p, 01'"
C[ptl] ............................................................................................................................... Cfl
C[lt1],C[lt2] .............................................................................................................. (3:1,sz
C[mt1],C[mt2] ......................................................................................................... Cf}, Cf;
78
APPENDIX A
This computer program generates the eqn. (2.11) in bulk
modulus the study.
> u[r](r,theta,phi):=u[r](r);
um(r, 9, 0) I= “M(T)
> u[theta](r,theta,phi):=0;
u[e](r, 0, 11)) := O
> u[phi](r,theta,phi):=0;
u[“(n 9, 0) := 0
> epsilon[rr]:=diff(u[r](r,theta,phi),r);
81171:: 5: u[r](r)
> epsilon[theta,theta]:=1/(r*sin(phi))*diff(u[theta](r,theta,phi),theta)+u[r](r,theta,p
hi)/r+(cot(phi)/r)*u[phi](r,theta,phi);
“I r]( r)
elm].— r
> epsilon[phi,phi]:=diff(u[phi](r,theta,phi),phi)/r+u[r](r,theta,phi)/r;
u (r)
._ _[_’1_
810.111" ,
> gamma[r, theta]:=1/(r*sin(phi))*diff(u[r](r,theta,phi),theta)+diff(u[theta](r,theta,
phi),r)-u[theta](r,theta,phi)/r;
Ytr.91:=0
> gamma[theta,phi]:=difl(u[theta](r,theta,phi),phi)/r-cot(phi)*u[theta](r,theta,phi)/
r+1/(r*sin(phi))*diff(u[phi](r,theta,phi),theta);
719.9130
> gamma[r,phi]:=difl(u[phi](r,theta,phi),r)-u[phi](r,theta,phi)/r+diff(u[r](r,theta,phi)
.phi)/r;
71M] :0
> e:=epsilon[rr]+epsilon[theta,theta]+epsilon[phi,phi];
21 um“)
e:= —um(r) +2—
8r r
79
> sigma[rr]:=E(r)/(1+nu(r))*(epsilon[rr]+(nu(r)/(1-2*nu(r)))*(e));
a um(r)
J v(r) [[5 um(r)]+ 2 -—r-—]
+
a
._ Em (514mm 1-2v(r)
o .—
["1 1+v(r)
> sigma[theta,theta]:=E(r)/(1+nu(r))*(epsilon[theta,theta]+(nu(r)/(1-2*nu(r)))*(e)):
a u[rl(r)
u[rl(r) V(r) Eulrfir) +2 r
+
._ Em r 1- 2v(r)
[9'91"- 1+v(r)
O'
> sigma[phi,phi]:=E(r)/(1+nu(r))*(epsilon[phi,phi]+(nu(r)/(1-2*nu(r)))*(e));
a 2u[r](r)
“M(r) v”) Bram“) + r
E( r) +
0’ ._ r l - 2 V(r)
1M!" 1+v(r)
> tau[r,theta]:=E(r)/2/(1+nu(r))*gamma[r,theta];
11 n 01 := O
> tau[theta,phi]:=E(r)/2/(1+nu(r))*gamma[theta.Phi];
1‘ 0, 0] := O
> taulr,phi]:=E(r)/2/(1+nu(r))*gamma[r,phi];
1:” 01 := 0
> equi1:=diff(sigma[rr],r)*sin(phi)+1/r*(2*sigma[rr]*sin(phi)-sigma[theta,theta]*si
n(phi)-sigma[phi,phi]*sin(phi)+tau[r,phi]*cos(phi)+diff(tau[r,theta],theta)+diff(ta
Ulnphi].phi)*sin(phi))=0;
(
313 ) 3 )‘ v(r)%1
8r (r Bram” +1-2V(r)
1+v(r)
equiI :=
\
Rm (9- (r)]+ ”(”7“ [3% >)
- arum 1'2V(") ar r +E(r) [ill (fl)
(1+v(r))2 13’: ‘”
80
a a
—v(r) %1 v(r)%1 —v(r)
Br Br
+ +2
l-2V(r) (l-2v(r))2
a ' W N
- (r)
82 Br “”1 u[r](r)
v(r) [[ar? um(r)]+2 r -2 r2
1-2v(r) /(l+v(r)) srn(¢)+
/ )
H > (_a_ (>]+ “”701 '( )
r arul’] r l-2v(r) srn ¢
1+v(r)
“mm v(r)%1 .
E(r)[ r +1-2v(r)Jsrn(¢)
1+v(r)
+
2
-2
r=0
“M(r)
a
%1’=[Eulrl(r)]+2—r_
> eqn1:=collect(equi1,[diff(u[r](r),r,r),diff(u[r](r),r),u[r](r)],factor):
> eqn2:=normal(eqn1*(-1+2*nu(r))/sin(phi)):
> eqn3:=co|lect(eqn2,[difl(u[r](r),r,r),diff(u[r](r),r),u[r](r)],factor):
> eqn4:=normal(eqn3*(-1+2*nu(r))*(1+nu(r))’\2*r’\2)z
> eqn5:=collect(eqn4,[diff(u[r](r),r,r),diff(u[r](r),r),u[r](r)],factor);
372 [’1
[a J [a J 2 (a J 3
-2 —E(r) rv(r)- —E(r) rv(r) +2 —E(r) rv(r)
Br Br Br
+ 4 E(r) [§v(r)]rv(r) - 2 E(r) [3 v(r)]rV(r)2 - 4 E(r) v(r)
r 3r
eqn5 := E(r)r2(-1+v(r))(-l+ 2 v(r))(l +v(r)) [flu (r)]+r[[%E(r)]r
\
-2E(r)v(r)2+4E(r)v(r)3+2E(r) in (r) + 2 59-130) rv(r)
8r [’1 ) 3r
[a ] 2 [a ] 3 a J 2
-2 -E(r) rv(r) -4 —E(r) rv(r) +4E(r) —v(r) rv(r)
Br Br Br
+ 2E(r) [gr-v(r)]r-1-4 E(r) v(r) +2 E(r) v(r)2 - 4E(r) v(r)3 - 2 E(r))
um(r)=0
81
APPENDIX B
Here, we discuss the condition of existence of convergent series solution. The first
concept we shall need is that of an analytic function: A function f(r) is said to be analytic
at a point r = r0 if and only if it has a Taylor series at r = r0 which represents the func-
tion in some neighborhood of r = r0. In particular, polynomial functions are analytic
everywhere, and rational functions are analytic at all points where they are defined, i.e., at
all points except the zeros in denominators. Using the concept of an analytic function, we
can classify the point r0 about which we seek a solution of eqn. (2.16), here we just con-
sider the general form of (2. 16) and neglect the physical meaning of g (r) and f (r) . If the
coefficient functions f (r) and g (r) in eqn. (2.16) are both analytic at r = r0, the r0 is
said to be an ordinary point of the equation.
r0 but if the
If at least one of the functions f (r) and g (r) is not analytic at r
functions defined by the products (r - r0) f (r) and (r — r0) 23 (r) are analytic at
r = r0, then r0 is said to be a regular singular point of the equation.
If at least one of the products (r - r0) f ( r) and (r — r0) 2g (r) is not analytic at
r = r0 then r0 is said to be an irregular singular point of equation.
If r0 is an ordinary point of (2.16), then a convergent series solution exists of the
form u, = 2 an (r — r0) ", if r0 is regular singular point, then convergent series solution
n = 0
exists of the form
u, = Zan(r—r0)"+k (B.1)
n=0
If r0 is an irregular point, there are in general no solutions with expansion consisting
solely of powers of r — re. The method is known as the Frobenius Method and the condi-
82
tions of
existence of the series solution are called the Fuchs’ theorem.
Even though the conditions of Fuchs’ theorem are satisfied, it may not be possible
to obtain two in dependent solutions.
Let us suppose now that r0 is a regular singular point of eqn. (2.16). This means
that both (r - r0) f (r) and (r — r0) 23 (r) are analytic at r0 and can be therefore written
in the form
(r—r0)f(r) =p0+p1(r—r0) +p2(r-ro)2+... (B2)
(r—r0)g(r)=q0+q1(r-r0)+q2(r—ro)2+... .
By substituting eqn. (3.1) and eqn. (B.2) into eqn. (2.16), we obtain the equation
k2 + (p0 — 1) k+ q0 = O. This quadratic equation is known as the indicial equation of
eqn. (2.16). If the roots of this indicial equation differ by an integer, this process yields
only one solution [Johnson and Johnson (1982), p. 47). However, a second independent
solution can be found by assuming u, = 0 (r) u,1 (r) , where u,l is the first series solu-
tion, and then determining o (r) so that the product 0 (r) u,1 (r) will satisfy the given
differential equation. By using MAPLE (1992) symbolic manipulation program, we can
solve eqn (2.16) in the series solution using Fuchs’ method.
83
APPENDIX C
This computer program generates the eqns. (2.38), (2.39) and
(2.40) in the shear modulus study.
> u[r](r,theta,phi):=U[r](r)*(sin(phi))"2*sin(2*theta);
um(r, 0, o) := 0mm sin(¢)2 sin(2 e)
> u[theta](r,theta,phi):=U[theta](r)*sin(phi)*cos(2*theta);
(r, 9, ¢) := U (r) sin(tp) cos(2 9)
“161 191
> u[phi](r,theta,phi):=U[phi](r)*sin(2*phi)*sin(2*theta);
um(r, 9, 11)):= Um(r) sin(2 (p) sin(2 9)
> epsilon[rr]:=diff(u[r](r,theta,phi),r);
3
em ;= [5 Um(r)]sin(¢)2 sin(2 0)
> epsilon[theta,theta]:=1/(r*sin(phi))*diff(u[theta](r,theta,phi),theta)+u[r](r,theta,p
hi)/r+(cot(phi)/r)*u[phi](r,theta,phi);
U (r) sin(2 9) U (r)sin(¢)2sin(2e)
[91 [fl
8 := -2 +
cot(¢) Um(r) sin(2 0) sin(2 9)
+
r
> epsilon[phi,phi]:=difl(u[phi](r,theta,phi),phi)/r+u[r](r,theta,phi)/r;
Um(r)cos(2¢)sin(2e) U[r](r)sin(¢)zsin(29)
2 +
810.0]; r r
> gamma[r, theta] :=1/(r*sin(phi))*diff(u[r](r,theta,phi),theta)+diff(u[theta](r,theta,
phi),r)-u[theta](r,theta,phi)/r;
sin(tp) U[rl(r)cos(26) a
Y[r,0]:=2 r +[$U[91(r))sin(¢)cos(2 9)
U[e](r) sin(¢)cos(26)
r
> gamma[theta,phi]:=diff(u[theta](r,theta,phi),phi)/r-cot(phi)*u[theta](r,theta,phi)/
r+1/(r*sin(phi))*diff(u[phi](r,theta,phi),theta);
Um(r) cos(¢) cos(2 9) cot(¢) U
719.01: '
[91(r)sin(¢)cos(2 9)
r r
Um(r) sin(2 (p) cos(2 9)
r sin(¢)
> gamma[r,phi]:=diff(u[phi](r,theta,phi),r)-u[phi](r,theta,phi)/r+diff(u[r](r,theta,phi)
.phi)/r;
+2
Um(r) sin(2 0) sin(2 9)
a
7W] := [3r- U[¢](r)]sin(2 o) sin(2 6) -
U[rl(r) sin(¢) sin(2 9) cos(¢)
r
+2
r
> e:=epsilon[rr]+epsiIon[theta,theta]+epsilon[phi,phi];
U191") sin(2 9) 0mm sin(¢)2 sin(2 0)
+2
e := [a U (r)]sin((1>)2 sin(2 9) - 2
3r ['1
r r
cot(¢) Um(r) sin(2 o) sin(2 0) Um(r) cos(2 1p) sin(2 0)
+ +2
r r
> sigma[rr]:=E(r)/(1+nu(r))*(epsilon[rr]+(nu(r)/(1-2*nu(r)))*(e));
a o 2 e a ' 2 .
OI ]:=E(r)[[—U (r)]srn(¢) s1n(29)+v(r) [(—U (r)]sm(¢) sm(29)
rr 8" [’1 ar [’1
U (r) sin(2 0) Um(r) sin(¢)2 sin(2 e)
9
[1 +2
r r
cot(¢) U[“(r) sin(2 41) sin(2 0) Um(r) cos(2 11>) sin(2 9) 1/
+ +2 (1‘2V(r)
r r
)1/(1+v(r))
> sigma[theta,theta]:=E(r)/(1+nu(r))*(epsiIon[theta,theta]+(nu(r)/(1-2*nu(r)))*(e));
11mm sin(2 9) U[rl(r)sin(¢)2sin(29)
010,91:=E(r) -2 +
-2
r r
cot(¢)Um(r)sin(2¢)sin(2e) a 2
+ +v(r) EUMU) sin(¢) sin(20)
r
Um(r) sin(2 9) 0mm sin(¢)2 sin(2 e)
.4.
2
r r
-2
85
cot(¢) Ul¢l(r) sin(2 0) sin(2 9) Um(r) cos(2 0) sin(2 9)}
+ +2 (1-2V(r)
r r
)]/(1+V(r))
> sigma[phi,phi]:=E(r)/(1+nu(r))*(epsilon[phi,phi]+(nu(r)/(1-2*nu(r)))*(e));
; U[ (r) cos(2¢)sin(29) U (r) sin(111)28in(2 9) [
01 m
+ + v(r)
010.01’=E(r)[2 r r
Um(r) sin(2 e) Um(r) sin(¢)2 sin(2 a)
+2
(9- U (r)]sin(¢)2 sin(2 0) - 2
3r "1
cot(¢) Um(r) sin(2 o) sin(2 9) Um(r) cos(2 o) sin(2 9) 1/
(1 - 2 v(r)
r
+ +2
r r
)1/(1+V(r))
> tau[r,theta]:=E(r)/2/(1+nu(r))*gamma[r,theta];
1 sin(¢)Um(r) cos(20) a
tlr.9]:=-2-E(r) 2 r + $U[9](r) sin(¢)cos(29)
Um(r) sin(o) cos(2 0)}
- (1 + v(r))
r
> tau[theta,phi]:;E(r)/2/(1+nu(r))*gamma[theta,phi];
1 Um(r) cos(qr) cos(2 9) cot(¢) U[e](r) sin((p) cos(2 9)
110.61 :=§E(r) - r
Um(r)sin(2¢)cos(26)]/
+2 _ (1 +v(r))
rsrn(¢)
> tau[r,phi]:=E(r)/2/(1+nu(r))*gamma[r,phi];
l, a . . Uw(r) sin(2q>)sin(29)
tlr.¢]:=-2-E(r) 5‘11“”) srn(2¢)sm(29)- r
U[r](r) sin(tp) sin(2 6) cos(¢)]/
+2 (1 +v(r))
r
Since computer confused U[theta] and U[phi] with U(theta) and
U(phi), when it take derivative with them. We replace U[theta] and
U[phi] by U[t] and U[p].
86
> U[phi]:=U[p]:
> U[theta]:=U[t]:
> equit :=diff(sigma[rr],r)*sin(phi)+1/r*(2*sigma[rr]*sin(phi)-sigma[theta,theta]*si
n(phi)-sigma[phi,phi]*sin(phi)+tau[r,phi]*cos(phi)+diff(tau[r,theta],theta)+diff(ta
u[r,phi],phi)*sin(phi))=0:
> eqn1 :=simplify(equi1,trig):
> eqn2:=expand(eqn1/(-1/2*sin(2*theta)*sin(phi))):
> eqn3:=subs(cos(phi)"2=1-sin(phi)"2,eqn2):
> eqn4:=expand(eqn3):
> eqn5:=sort(eqn4,[sin(phi)],plex):
> eqn6:=op(1,eqn5):
> eqn7:=coeff(eqn6,sinmhi)"2):
> eqn8:=collect(eqn7,[diff(U[r](r),r,r),diff(U[r](r),r),U[r](r),diff(U[phi](r),r),U[phi](r)],
factor)=0:
> eqn9:=normal(eqn8*(1 +nufi))*(—1+2*nu(r))/2):
> eqn10:=collect(eqn9,[diff(U[r](r),r,r),diff(U[r](r),r),Ur(r),diff(U[phi](r),r),U[phi](r)],
factor):
> eqn1 1 :=normal(eqn10/(-1+2*nu(r))):
> eqn122=collect(eqn1 1 ,[diff(U[r](r),r,r),diff(U[r](r),r),U[r](r),diff(U[phi](r),r),U[phi](
r)],factor);
2
E(r) (v(r) - 1) [5; (IMO?) (( a
a 2
-1 +2v(r) arE(r)]r-2E(r) [arv(r)]v(r) r
eqn12:=-
3 a 2 2 a
+4E(r)v(r) - EEO) v(r) r-2E(r)v(r) -2 SEO) v(r)r
+ 2 [82r- E(r)]v(r)3 r + 4 E(r) [g v(r)]v(r) r - 4 E(r) v(r) + 2 E(r)]
a 2 a 3
{—U (r)]/(r (-l + 2 v(r)) (1 +v(r))) + [5 E(r) +4[— E(r))v(r) r
Br ['1 8r
8 2 a 3 2
+2[§;E(r)]v(r) r-2[EE(r)]v(r)r-1-l6 E(r) v(r) -2E(r) v(r)
a a
— 13 E(r) v(r) - 4 E(r) [5 v(r)]vm2 r - 2 E(r) [5; v(r)]r]Ul,,(r)/(
a
E —U
(-l+2v(r))2(l+v(r))r2)-3 (”(1% mm]
r(-1+2v(r))
- 3 {-7 E(r) v(r)
- 2 E(r) v(r)2 + 3 E(r) - 2 (327: E(r)]v(r) r - 2 E(r) [%v(r)]r + 8 E(r) V(7)3
87
a 3 a 2 i 2
+4[arE(r)JV(r) r-4E(r)[arv(r))v(r) r+2(arE(r)]V(r) TJUIPIU)
/((-1+ 2 v(r))2 (1 +v(r)) r2) =0
This is one of six equations from equilibrium equations. We choose
it as our governing eqn. (2.39).
> eqn13:=expand(eqn6-eqn7*sin(phi)"2):
> eqn14:=col|ect(eqn13,[diff(U[phi](r),r),diff(U[theta](r),r),U[phi](r),U[theta](r)],fac
tor)=0:
> eqn15:=normal(eqn14*(1+nu(r))*(-1+2*nu(r))/2):
> eqn16:=collect(eqn15,[diff(U[phi](r),r),diff(U[theta](r),r),U[phi](r),U[theta](r)],fac
tor);
a a
E(r) [EUIPIUJ E(r) [Eff/[‘10)] 2
eqn16z=2 - +2 -7 E(r)v(r)-2E(r) v(r)
r I“
f ax
\
+ 3 E(r) - 2 (3 E(r)]v(r) r - 2 E(r) [2 v(r) H» 8 E(r) v(r)3
Br Br )
+4-a—E 3413 -a-() 2+2313( )2U()
8r (r) v(r) r- (r) arvr v(r) r 8r r) v(r r lplr
/((1+ v(r))(-1+ 2 v(r)) r2) - {-7 E(r) v(r) - 2 E(r) v(r)2 + 3 E(r)
- 2 [_a_ E(r))vm r - 2 E(r) [9- v(r)]r + 8 E(r) v(r)3 + 4 (3 E(r))v(r)3 r
8r Br 8r
3 2 a 2
- 4 E(r)[; v(r)JV(r) H 2 [5 E(r))VU) ’]U[11(’)/((1 + v(r))
(-1+ 2 v(r)) r2) = O
This is one of six equations from equilibrium equations.
> equi2:=diff(tau[r,theta],r)*sin(phi)+1/r*(3*tau[r,theta]*sin(phi)+diff(tau[theta,phi]
,phi)*sin(phi)+diff(sigma[theta,theta],theta)+2*tau[theta,phi]*cosmhi))=0:
> eqn21:=simplify(equi2,trLg):
> eqn22:=expand(eqn21/(cos(2*theta)/2)):
> eqn23:=subs(cos(phi)"2=1-sin(phi)"2,eqn22):
> eqn24z=expargeqn23)z
> eqn25:=sort(eqn24,[sin(phi)],plex):
> eqn26:=op(1,eqn25):
> eqn27:=coeff(eqn26,sin(phi)"2):
> eqn28:=collect(eqn27,[diff(U[r](r),r),U[r](r),diff(U[theta](r),r,r),diff(U[theta](r),r),
U[theta](r),U[phi](r)],factor)=0:
88
> eqj129:=normal(eqn28*(1+nu(r))/2):
> eqn210:=co||ect(eqn29,[diff(U[r](r),r),U[r](r),diff(U[theta](r),r,r),diff(U[theta](r),r)
,U[theta](r),U[phi](r)],factor);
3
101170.10) 1 .2 1
r(-l+2v(r)) +213”) [SPUUIMJ‘LE
(
[2 E(r)]v(r) r + 2 E(r) v(r) + [3 E(r)]r + 2 E(r) - E(r) [31 v(r))r]
( Br Br Br
(EU ) ((1+v( )))-1-
(ar In” ' r ’2
eqn210 := -
(
{-a- E(r))wr) r + 2 E(r) v(r) + (3 E(r))r+ 2 E(r) - E(r) (P- v(r))r)
( Br Br Br
(4 v(r)-5)E(r) U[p](r)
Um(r)/((l+v(r))r2)-2 (-1+2v(r))r2 +Um(r)(-4E(r)
+ 4 E(r) v(r)2 + E(r) {-a- v(r)]r- 2 E(r) [2- v(r)]v(r) r + [2- E(r))v(r) r
Br Br 8r
+2 —E(r) v(r) r- —E(r) r ((l+v(r))(-1+2v(r))r2)=0
Br Br
This is one of six equations from equilibrium equations.
> eqn211 :=expand(eqn26-eqn27*sinjphi)"2)=0:
> eqn212:=factor(eqn21 1);
(0mm - 2 U,,, equi3:=diff(tau[r,phi],r)*sin(phi)+1/r*(3*tau[r,phi]*sin(phi)+diff(tau[theta,phi],the
ta)+(sigma[phi,phi]-sigma[theta,theta])*cos(phi)+diff(sigma[phi,phi],phi)*sin(ph
i))=0:
> eqn31:=simplity(equi3,trig):
> eqn32:=expand(eqn31/(sin(2*theta)*cos(phi))):
> eqn33:=subs(cos(phi)"2=1-sin(phi)"2,eqn32):
eqn212 := -8
> eqn34:=expand(eqn33):
> eqn35:=sort(eqn34,[sinmhi)],plex):
> eqn36:=op(1,eqn35):
> eqn37:=coeff(eqn36,sin(phi)"2):
> eqn38:=collect(eqn37,[diff(U[r](r),r),U[r](r),diff(U[phi](r),r,r),diff(U[phi](r),r),U[ph
i](r)],factor): -
> eqn39:=normal(eqn38*(1+nu(r))):
89
> eqn310:=collect(eqn39,[diff(U[r](r),r),U[r](r),diff(U[phi](r),r,r),diff(U[phi](r),r),U[p
hi](r)],factor)=0;
E(r) 3U (r)
(3’ M ]+U [4m )+4E( )v( )2+E( )[3v(r)]r
r(-1+2V(r)) "'(r) ' r r r r 3’
- 2 E(r) [%v(r))v(r) r+ [% E(r))v(r) r+ 2 (% 13(79)er r
a 82
- (I): E(r)]r)/((l +v(r)) (-1 + 2v(r)) r2) + E(r) [5’3 U[p](r)]+
f
(313(r))v(r) r+ 2 E(r) v(r) + (3130))” 2 E(r) - E(r) [311(0)]
Br Br Br
K
(
—aa U1 l(r))/(r(1+v(r)))—[12E(r)v(r)2-12E(r)+E(r)[—a v(r))r
K r P 8r
3a 9—12) 29-12) (12
+8r r) v(r)r- Br (r r+ 8r r Vr r
a
- 2 E(r) (;v(r))v(r) r]U[p](r)/((l +v(r)) (-1 +2 v(r)) r2) =0
eqn310 := -
This is one of six equations from equilibrium. We choose it as our
governing equation (2.38).
> eqn31 1:=expand(eqn36-eqn37*sin(ph0A2):
> eqn312:=factor(eqn31 1)=O:
> eqn313:=eqn312*rA2*(1+nu(r))/2/E(r);
eqn313 := Um(r) - 2 U[p](r) = O
This is one of six equations from equilibrium equations. We choose
it as our govemiann. (2.40).
90
APPENDIX D
This computer program generates the eqns. (2.52), (2.53), (2.55),
(2.56) and (2.57) in the shear modulus study.
> gov1:= -1/r*E(r)/(-1+2*nu(r))*diff((U[r])(r),r)+(U[r])(r)*(-4*E(r)+4*E(r)*nu(r)’\2+E
(r)*diff(nu(r),r)*r-2*E(r)*diff(nu(r),r)*nu(r)*r+diff(E(r),r)*nu(r)*r+2*diff(E(r),r)*nu(r
)"2*r-difl(E(r),r)*r)/(1+nu(r))/(-1+2*nu(r))/r’\2+E(r)*diff(diff((U[phi])(r),r),r)+(diff(
E(r),r)*nu(r)*r+2*E(r)*nu(r)+diff(E(r),r)*r+2*E(r)-E(r)*diff(nu(r),r)*r)/r/(1+nu(r))‘d
iff((U[phi])(r),r)-(12*E(r)*nu(r)’\2-12*E(r)+E(r)*difl(nu(r),r)*r+diff(E(r),r)*nu(r)*r-d
iff(E(r),r)*r+2*diff(E(r),r)*nu(r)’\2*r—2*E(r)*diff(nu(r),r)*nu(r)*r)/(1+nu(r))/(-1+2*n
u(r))/r’\2*(U[phi1)(r) = 0:
:gov2:= (U[theta])(r)-2*(U[phi])(r) = 0:
> gov3:= -E(r)*(nu(r)-1)/(-1+2*nu(r))*diff(diff((U[r])(r),r),r)-1/r*(diff(E(r),r)*r-2*E(r)*
diff(nu(r),r)*nu(r)’\2*r+4*E(r)*nu(r)’\3-diff(E(r),r)*nu(r)’\2*r-2*E(r)*nu(r)A2-2*difl(
E(r),r)*nu(r)*r+2*diff(E(r),r)*nu(r)’\3*r+4*E(r)*diff(nu(r),r)*nu(r)*r-4*E(r)*nu(r)+2
*E(r))/(-1+2*nu(r))'\2/(1+nu(r))‘difl((U[r])(r),r)+(5*E(r)+4’diff(E(r),r)*nu(r)’\3*r+2
*diff(E(r),r)*nu(r)’\2*r-2'diff(E(r),r)*nu(r)*r+16*E(r)*nu(r)A3-2*E(r)*nu(r)’\2-13*E(
r)*nu(r)-4*E(r)*diff(nu(r),r)*nu(r)A2*r-2*E(r)*diff(nu(r),r)‘r)/(-1+2*nu(r))’\2/(1+nu(
r))/r’\2*(U[r])(r)-3*E(r)/r/(-1+2*nu(r))*diff((U[phi])(r),r)-3*(-7*E(r)*nu(r)-2*E(r)*nu
(r)A2+3*E(r)-2*diff(E(r),r)*nu(r)*r-2*E(r)*diff(nu(r),r)*r+8*E(r)*nu(r)’\3+4*difl(E(r
),r)*nu(r)’\3*r-4*E(r)*diff(nu(r),r)*nu(r)’\2*r+2*diff(E(r),r)*nu(r)’\2*r)/(-1+2‘nu(r))’\
2/(1+nu(r))/r’\2*(Uu3hi])(r) = 0:
> E(r):=P*(r/a)"Q:
> nu(r):=nu:
m“ :
_>_gov3:
> eqn1:=normal(gov1):
> eqn2:=normal(qov3):
> eqn3:=sort(eqn1,[diff(U[r](r),r),U[r](r),diff(U[phi](r),r,r),diff(U[phi](r),r),U[phi](r)])
a ‘1
eqn.? := - [1(5 Um(r)j - 2 Qv Um(r) - 4v Um(r) + Q Um(r) + 4 Um(r)
32 1 a?-
+r2[5;3U”](r)J-2r2V(5’3Um(r)]-4rv%l~2er%l+rQ%1
+ 2r%l + 12v U[¢](r) +2 Qv U[M(r) - 12 U[¢](r)- Q U[“(r))l’['-;--r/(r2
(-1+2v))=0
a
%1:=; U[¢](r)
91
This equation is equivalent to eqn. (2.52)
> eqn4:=sort(eqn2,[diff(U[r](r),r,r),diff(U[r](r),r),Ur(r),diff(U[phi](r),r),U[phi](r)]);
r 32 82 3
NM :=- [:TP(PV (I): Um(r))- r2 (57 Um(r))- r Q[E Um(r))
a a .2 2
+2rv EUMU) +er EUMU) -2r arUm(r) +3r arUW(r)
- 9 Umm + 6 Qv Um(r)+12v Umm - 2 Qv Um(r) +5 Um(r)
- 8 v Um(r)]/(rz (-1 + 2v)) =0
This equation is equivalent to equation (2.53)
> eqn5:=-d*U[r]+(4*nu+2*Q*nu-4-Q)*U[r]+(2*nu-1)*d*(d-1 )*U[phi]+(-Q+4*nu+2*
Q*nu-2)*d*U[phi]+(-2*Q*nu+Q+12-12'nu)'U[phi]=0:
> eqn6:=(-1+nu)*d*(d-1)*U[r]+(2*nu-2+Q*nu-Q)*d*U[r]+(-8*nu+5-2*Q*nu)*U[r]+
3*d*Ujphi]+(12*nu-9+6*Q*nu)*U[phi]=O:
> eqn7:=collect(eqn5,[U[r],U[phi]],distributed,factor);
eqn7:=(-d+4v+2 Qv-4-Q) Um
+(-d2-d+2vd2+2vd—dQ+2dQv-2QV+Q+12-12v)Um=O
This equation is equivalent to eqn. (2.55)
> eqn8:=collect(eqn6,[U[r],U[phi]].distributed,factor);
eqn8:=(vd2+vd-dZ-d+dQv-dQ-8v+5-2Qv) Um
+(3d+6Qv+12v-9)Um=0
This equation is equivalent to eqn. (2.56)
> eqn9:=eqn7*(12*nu-9+6*Q*nu+3*d):
> eqn1 0:=eqn8*(-2*Q*nu+Q+12-12*nu+2*nu*d’\2+2*nu*d-d’\2-d-d*Q+2*d*Q*nu)
> eqn11:=eqn10-eqn9:
> eqn12:=simplify(eqn11):
> eqn13:=collect(eqn12,[U[r]],distributed,factor):
> eqn14:=normal(eqn13/(2‘nu-1)/U[r]):
> eqn15:=collect(eqn14,[d]);
eqn15:=(v— l)d‘+(2Qv-2Q-2+2v)d3+(Q2v-Qv+13-Q2-13v-Q)d2
+(-17Qv+15Q-3Q2v+14-14v+Q2)d-4Qv+4Q+24v-24
- 4 Q2 v = 0
This equation is equivalent to eqn. (2.57)
> eqn16:=solve(eqn15,{d});
92
=--%2+-
4 2 Jv-1
eqn16.={d1 ILsz Q2 4Q+8Qv 29+29v+2%1}
d
{ -_%121./QZV- Q2 4Q+8Qv 29+29v+2%1}
4% JV- 1 ’
{d_ 1%2:1,[Q2v- Qz-4Q+8Qv 29+29v 2%1}
_ 47 ,
Jv- 1
_%12 _1_2-JQ2v Q2 4Q+8Qv 29+29v 2%1}
4% JV 1
d
In.
%1. = 25Q2v2- 22Q2v+Q2+100Qv -144Qv+44Q+100v2- 200v+100)
2Qv-2Q-2+2v
v-l
Four roots of eqn. (2.57).
Note: Poisson’s ratio in this appendix represents Poisson’s ratio in
interphase.
%2 :=
93
APPENDIX E
This computer program determines unknown constants of eqns
(2.58), (2.61) and (2.62) in the shear modulus study.
> U[r](r):=D[1]*r’\d[1]+D[2]*rAd[2]+D[3]*rAd[3]+D[4]*r"d[4];
d d d d
°_.- m 12) m 141
Um(r). D“ r +Dl21r +Dl3lr «+0le
1
> U[phi](r):=b[1]*r’\d[1]+b[2]*r"d[2]+b[3]*r"d[3]+b[4]*r"d[4];
d d d d
'= [U [3) [3] (4]
U[¢](r). blllr +b[2]r +bmr +bl4lr
> eqn1:=(rA2*nu*diff(diff((U[r])(r),r),r)-r’\2‘diff(difl((U[r])(r),r),r)+r*Q*nu*diff((U[r])(r
),r)+2*r*nu*diff((U[r])(r),r)-2*r*diff((U[r])(r),r)-r*Q*diff((U[r])(r),r)+3*r‘diff((U[phi])
(r).r)+6*Q*nU*(U[phi])(r)+12*nU*(U[phi])(r)-9*(U[phi])(r)-8*nU*(U[rl)(r)+5*(U[r])(
r)-2*Q*nu*(U[r])(r))=O:
> eqn2:=collect(eqn1 ,[r],distributed,factor):
> eqn3:=sort(eqn2,[r’\d[1],r’\d[2],r"d[3Lr"d[4]],plex):
> eqn4:=op(1,eqn3):
> eqn5:=coeff(eqn4,r/\d[1])=O:
> eqn6:=coeff(eqn4,r’\d[2])=0:
> eqn7:=coeff(eqn4,r"d[3])=0:
> eqn8:=coeff(eqn4,r’\d[¢fl)=0:
> b[1]:=solve(eqn5,b[1]);
2
bm"'(50111+QVD111d111'Dmdm'ZQVDm+VD111d111'Dmd111
2
+vadm -8va-QDmdm)/(6Qv+3dm-9+12v)
> b[2]:=solve(eqn6,b[2]);
2
b —-(-2Qva+5Dm+QvD -8va-D d -D d
[2] [2] [2] [2]
2
+VD121d121' QDmdm+vadm )/(6Qv-9+3dm+12v)
121‘ 121d121
> b[3]:=solve(eqn7,b[3]);
2
b ”("SVD131+5D[31+QVDmdtal'QDl3ld131+VDI31dl3l +VDl3ldl3l
2
'2QVD131'Dlald131 'D131d131)/(6QV+12V+3d131'9)
131‘
> b[4]:=solve(eqn8,b[4]):
'2 2
b141"'(5D141'D141d141 +VD141d141 +VD141d141'D141d141'8VD141
+QVD141d141'2QVDH]'QDt4ld141)/('9+6QV+3d141+12v)
When the roots of the characteristic functions are complex,
94
> d[1]:=m[1]+l*n[1];d[2]:=m[1]-l*n[1];d[3]:=m[2]+l*n[2];d[4]:=m[2]-l*n[2];
dmz=mm+lnm
d121:=m111'1"111
dmz=mm+1nm
d14lz=m121'1"121
> eqn1:=(rA2*nu*diff(diff((U[r])(r),r),r)-r’\2*diff(diff((U[r])(r),r),r)+r*Q*nu*diff((U[r])(r
),r)+2*r*nu*diff((U[r])(r),r)-2*r*diff((U[r])(r),r)-r*Q*diff((U[r])(r),r)+3*r*diff((U[phi])
(r).r)+6*0*nU*(U[Phi])(r)+12"“U*(U[p])(r)-9*(U[phil)(r)-8*nU*(U[r])(r)+5*(U[r])(r)-
2*Q*nu*(U[r])Q))=O:
> U[r](r):=D[1]*cos(n[1]*In(r))*r’\m[1]+D[2]*sin(n[1]*ln(r))*r’\m[1]+D[3]*cos(n[2]*ln
(r))*rAm[2]+D[4]*sin(n[2]*ln(r))*r’\m[2];
U[r](r) := Dm cos(nm 1n(r)) r'"m + Dm sin( 1n(r)) r'"m
"[11
+Dl3lcos(n[2]ln(r)) r I11+Dm sin(nm 1n(r))r m
> U[phi](r):=b[1]*cos(n[1]*ln(r))*r’\m[1]+b[2]*sin(n[1]*In(r))*r’\m[1]+b[3]*cos(n[2]*l
n(r))*r"m[2]+b[4]*sin(n[2]*|n(r))*r’\m[2];
U[¢](r) := billcos(nlll111(r))'m‘”+ bm sin(nm 1110.)) r'"‘”
+ bl3l cos(nm 1n(r)) r'"m + bl4l sin( ln(r)) rmm
"[21
> eqn2:=collect(eqn1,[r],distributed,factor):
> eqn3:=sort(eqn2,[r/\mj1],r’\m[2]]):
> eqn4:=op(1,eqn3):
> eqn5:=coeff(eqn4,r/\m[1])=O:
> eqn6:=subs({cos(n[1]*ln(r))=x,sin(n[1]*ln(r))=y},eqn5):
> eqn7z=colIect(eqn6,[x,y],factor):
> eqn8:=op(1,eqn7):
> eqn81:=coeff(eqn8,x)=0:
> eqn82:=coeff(eqn8,y)=0:
> eqn83:=solve({eqn81 ,eqn82},{b[1],b[21}):
> eqn9:=coeff(eqn4,r’\m[2]):
> eqn10:=subs({cos(n[2]*ln(rn=u,sin(n[2]*ln(r))=v},eqn9):
> eqn1 1 :=collect(eqn10,[u,vj,factor):
> eqn1 11:=coeff(eqn1 1,u)=0:
> eqn1 12:=coeff(eqn1 1,v)=0:
> eqn1 13:=solve({eqn1 1 1,eqn112},{b[3],b[4]}):
> assign({eqn83,eqn1 13});
> bl1li=bl1k
95
1 2 2 2
2’111"'3('4Q2v D111'Q0111m111'15D111'Q0111'2111+6D121'2111m111
2
-n”Dmmm -1-4van[l -[26VD "(Hm l-m3QvD
-7Qvamm- 11VD111m:11'2VDmm[112[216QvDu:
ll
2 3 2
'Dmnm m111+2Q0111m111+VD111m111 +822111’2'111'2222111'22111
2 3 2
+24VD111'4D111'2111'2D121'2111'D121'2111'Dlllml”
2
11 111221114"12111QVD1m111+"111VD121m111
2 3
+2Qv2 22111222111 “22212122111 +SVD12122111+16QVD111
2 2
+2Qv Dmmm-I-4Qv D
2
+van mm+3QvD
2
[2]n[121m1_2Q VD“ l“m l-nllZszDn]
2 2
+2Qv Dmnm-ZQV Dmn
1]
-Qvam[ +2sz Dmn“
[I] ll
2 2
+2Qvamm +3QD[2 1n111)/(
9+4Q2v2-6mm+n 2-1-m2 +4vam- 12Qv)
[ll [1]
> b[2]:=b[2];
b ---l-(150 D
"'3 1212222111 121"
2
[2] +7QVD121m111'22113QVD111
[111]
2
'6VD111"111"2111'3Q0121m111'2D121m111 "801212221120111'211
2
-24va+4Dmnm +oDmnmmm-4vanmz-16Qle2l
2
+3QD111'211112+SVD111"111+2VD1m1112+IIVD121m111+l6QV D121
2
2 - 3 3
+4Q V2 22121290121221” 22111221112221”2 “222111an 2222121222!”
2 2 2 2
'ZQV D[2]m[1]+2Qv D[1]n[1]+2Qv D[2]n[1]+VD[lln[l]m[ll
2
111
3QvD
2
3 2
"VD121m111'mmVthlnm+2m11192VD121+QD121m
-2Q2van“ 1+QVD1211222112'4QVD 2
111""2111 12122111
-Dmn 22+4QvD mm+2sz2mDrzl1[]-2QZV2D[2]m
[ll [1] nil]
2 2 2 2
-2Qv 0121222111 )/(9+4Q2 v -6mm+nm]2 2222111 +4vam-12Qv
[ll
96
> b[3]:=b[3];
1( 2 2 2
b[31"'3 'Q0131m121 '"1210141m121 'D131'2121 m121+6D141"121m121'15D13
3 2 2
+5vanm+vanm +3Qvanm -11vamm-16Qv 0131
3 2 2
+vam +3 QDl3lm121+4VD131n121 22222213122212] -3QvD[4 n
[2] [2]
2 2
2222131222121'QD13122121+16QVD131+2QDI41MIZIQVDHm“
2
'4Q2V0131+8D131m121+24VDI312134D3222‘“ 2D14 "[21
2
-7Qvamm-6vanmmm- 121412212 '[D 3112mm +'2121‘222141222121
2 2
+VDlunlzlm1u'QVD131m121'ZQZVD124122121'2Q2VD1312"
2 2 2 2- 2
+2Qv22212D1411+2QVD13112m1+2QV 22131222121 2Qv D131"
[2]
121
2 2 W
+2QV2121221312" +2Qv2 221412212 l-1-4Qv 22141229122212]
9+4Q2v2-12Qv-6mm+n
> b[4]:=b[4];
1
2 2
22141” 3 (3 QDIBIn121+ 15 DUI-422221412212] +2vamm 26221312212] "212]
~3QDI4 Wm W-t-llvD Wm 1-2013122121224222)” 1-16Qva
3
+Dl4lml2] "D131"121m1212 +m121D141"1212+QDI41121212+V0131"121
2
+2m121Q2VDI41+QVD141m1212'VD1-11m1213+VD131221212"121
2
-2Qv2Dmm +2Q2v2Dmnm-2QZVD
2
1212+ "2121 2 4 QV "2121)
2 2
+2Qv 014122 [3122121
2 2 2
'3QVD141"121 'm121VD141"121“2m1219VD131'2121’2m12192V 0141
2
2'4le] Qv 2213122121 +QDl4lml
2
+16Qv D[:]+5vD[3ln[2]+7 QVDmmm'6VD[31"121m[21
-2Qv2Dmm
[2] [2]
2
2122+2Qv 221312212 1+4Q2v D141
2
'2221412'222121 8Dmmm+4Dmnm-3Qvanm
2 2 2
22213122121 3)/(9+4sz -12Qv-6mm+nm +2212] +4vam)
Note: Poisson’s ratio in this appendix represents Poisson’s ratio in
interphase.
[2]
97
APPENDIX F
This computer program determines the shear modulus of the
composite with a power variation Young’s modulus in the
interphase.
> for a from 10"(-6) by 0.01 to 0.9 do
> nu(p):=3/10;
> G(D)==25;
> nu(l):=3/10;
> P:=65;
> G(m):=1;
> b := (?/?)*a;(lnput thickness value of interphase.)
> c:=1;
> nu(m) :=4J10;
> O :=(In(E(m)/E(p))/(ln(b/a));
> m[1]:=?;(lnput one real component of eqn(2.59).)
> m[2]:=?;(lnput another real component of eqn(2.59).)
> n[1]:=?;(lnput one imaginary component of eqn(2.59).)
> n[2]:=?;(lnput another imaginary component of eqn(2.59).)
> C:=3/10;
> b[1] :=-1/3*(-D[1]*n[1]’\2*m[1]+8*nu(l)*D[1]*n[1]/\2-24*Q*nu(l)’\2*D[1]-15*D[1]-
D[2]*n[1]A3-D[1]*m[1}’\3+2*D[1]*m[1]A2-4*D[1]*n[1]A2+8*D[1]*m[1]-2*D[2]*n[1]
-32*nu(l)A2*D[1]+44‘nu(l)*D[1]+4*nu(I)A2*D[1]*m[1]A2+nu(l)*D[2]*n[1]’\3-Q*D[
1]"m[1]’\2+4"nu(l)’\2"D[2]"n[1]-6"nu(|)"D[1]*m[1]/\2+3"Q"D[2]"n[1]-Q"D[1]*n[1]A
2-n[1]*D[2]*m[1]A2+3*Q*D[1]*m[1]+16*Q*nu(l)*D[1]+nu(l)*D[1]*m[1]A3-4*nu(l)
A2"D[1]"’n[1]’\2+6"D[2]“'n[1]"m[1]+n[1]"’nu(l)"D[2]*m[1]/\.’2+8"nu(l)’\2"D[2]"n[1]"'
m[1]-Q*nu(l)*D[1]*m[1]A2-4’Q’\2*nu(l)’\2*D[1]+4*nu(l)’\2*D[1]*m[1]+nu(l)*D[2]*
n[1]-15*nu(l)*D[1]*m[1]+nu(l)*D[1]*n[1]A2*m[1]+6*Q*nu(|)’\2*D[1]*m[1]-2*Q’\2*
nu(l)*D[2]*n[1]-2*Q*nu(l)’\2*D[1]*n[1]A2+4*Q*nu(l)A2*D[2]*n[1]*m[1]-2*Q’\2*nu(
I)*D[1]*m[1]+2*Q"2*nu(l)’\2*D[2]*n[1]+2*Q*nu(l)/\2*D[1]*m[1]’\2+2*Q’\2*nu(I)'\2
*D[1]*m[1]-4*n[1]*Q‘nu(l)*D[2]*m[1]+6*Q*nu(l)’\2*D[2]*n[1]+3*Q*nu(l)*D[1]*n[1
]A2-11*Q*nu(l)*D[1]*m[1]-7*Q*nu(l)*D[2]*n[1]-14*nu(l)*D[2]*n[1]*m[1])/(8*nu(l)*
m[1]+16*Q*nu(l)A2+n[1]I‘2-12'Q‘nu(l)+9+16*nu(l)’\2+m[1 ]A2+4*Q*nu(l)*m[1]+
4*Q’\2*nu(l)A2-6*m[1]-24*nu(l));
> b[2] :=1/3*(Q*D[2]*m[1]A2+15‘D[2]-D[1]*n[1]A3+D[2]*m[1N-8*D[2]*m[1]-2*D[
2]*m[1]’\2-2*D[1]*n[1]+4*D[2]*n[1]A2+32*nu(I)A2*D[2]-44*nu(l)*D[2]-D[1]*n[1]*
m[1]’\2+Q*D[2]*n[1]A2+m[1]*D[2]*n[1]’\2+3*Q*D[1]*n[1]+6*D[1]*n[1]*m[1]-3*Q*
D[2]*m[1]+nu(l)*D[1]*n[1]+6*nu(l)*D[2]*m[1]A2+nu(l)*D[1]*n[1]A3-nu(l)*D[2]*m[
1]A3+4*nu(I)/‘2*D[1]*n[1]-4*nu(l)’\2*D[2]*m[1]A2-4*nu(l)'\2*D[2]*m[1]+4*Q’\2*nu
(l)’\2*D[2]+24*Q*nu(I)’\2*D[2]-8*nu(l)*D[2]*n[11A2+15*nu(l)*D[2]*m[1]-16*Q*nu(
I)*D[2]+4*nu(l)’\2*D[2]*n[1]A2+Q*nu(l)*D[2]*m[1]A2+nu(l)*D[1]*n[1]*m[1]’\2-m[1
]*nu(l)*D[2]*n[1]A2-2*Q"2*nu(l)*D[1]*n[1]-3*Q*nu(l)*D[2]*n[1]A2+4*Q*nu(l)’\2*D
[1]*n[1]*m[1]+2*Q*nu(l)’\2*D[2]*n[1]A2-4*Q*nu(l)*D[1]*n[1]*m[1]—2*Q’\2*nu(l)’\2
*D[2]*m[1]+2*Q’\2*nu(|)’\2*D[1]*n[1]-2*Q*nu(l)’\2*D[2]*m[1]A2+8*m[1]’nu(l)’\2*
98
D[1]*n[1]+2*m[1]*Q’\2*nu(l)*D[2]+6*Q*nu(l)’\2*D[1 ]*n[1]-6*Q*nu(l)/\2*D[2]*m[1]
-7'Q*nu(l)*D[1]*n[1]-14*nu(l)*D[1]*n[1]*m[11+1 1*Q'nu(l)*D[2]*m[1])/(8"’nu(l)*m
[1]+16*Q'nu(l)’\2+n[11A2-12*Q'nu(l)+9+16*nu(l)"2+m[1]A2+4*Q*nu(l)*m[1]+4*
Q"2*nu(l)A2-6*m[1]-24*nu(l));
> b[3] :=-1/3*(-D[4]*n[21AS-D[3]*m[21"3+2*D[3]*m[2]"2-2"D[4]*n[2]-4*D[3]*n[2}’\2
+8*D[3]*m[2]-32*nu(|)/\2*D[3]+44*nu(l)*D[3]-1 5*D[3]-Q*D[3]*n[2]’\2-D[3]*n[2]’\
2*m[2]-Q*D[3]*m[2}’\2-n[2]*D[4]*m[2]’\2+6*D[4]*n[2]*m[2]+3*Q*D[3]*m[2]+3*Q
*D[4]*n[2]-15*nu(|)*D[3]*m[2]+8*nu(l)*D[3]*n[2]/\2+nu(I)*D[4]*n[2]+nu(l)*D[4]*n
[2]“3+nu(l)*D[3]*m[2]’\3+4*nu(I)A2*D[4]*n[2]-6*nu(l)*D[3]*m[2]“2+4*nu(l)’\2*D[
3]*m[2]’\2-4*Q’\2*nu(l)’\2*D[3]-24*Q*nu(l)’\2*D[3]+16*Q*nu(l)*D[3]-4*nu(l)A2*D[
3]*n[2]’\2+4*nu(l)’\2*D[3]*m[2]+nu(l)*D[3]*n[2}’\2*m[2]+n[2]*nu(I)*D[4]*m[2]’\2-
Q'nu(l)*D[3]*m[2]’\2+3*Q*nu(l)*D[3]*n[2]’\2-4*n[2]*Q*nu(I)*D[4]*m[2]—2*Q"2*n
u(l)*D[4]*n[2]-2*Q*nu(I)’\2*D[3]*n[2]/\2+2*Q*nu(i)’\2*D[3]*m[2]’\2-2*Q"2*nu(l)*
D[3]*m[2]+4*Q*nu(I)A2*D[4]*n[2]*m[2]+2*Q"2*nu(l)’\2*D[3]*m[2]+2*Q’\2*nu(l)’\
2*D[4]*n[2]+6*Q*nu(|)A2*D[3]*m[2]+6*Q*nu(I)A2*D[4]"n[2]+8*nu(l)’\2*D[4]*n[2]*
m[2]-14'nu(l)*D[4]*n[2]*m[2]—1 1*Q'nu(I)*D[3]*m[2]-7’Q*nu(|)*D[4]*n[2])/(n[2]’\2
+m[2}’\2+16*nu(|)’\2+4*Q*nu(I)*m[2]-24*nu(l)—6*m[2]-12*Q‘nu(l)+8*nu(l)*m[2]+
9+4*Q’\2*nu(l)’\2+1 6*Q*nu(l)"2);
> b[4] :=1/3*(3*Q*D[3]"n[2]-D[3]*n[2]’\3+D[4]*m[2]“3-8*D[4]*m[2]-2*D[4]*m[2]"2~
2*D[3]*n[2]+4*D[4]*n[2]/\2-44‘nu(i)*D[4]+32*nu(l)’\2* D[4]+1 5* D[4]+Q*D[4]*m[2
1A2-D[3]*n[2]*m[2]’\2+m[2]*D[4]*n[2]"2+Q*D[4]*n[2]’\2-3*Q*D[4]*m[2]+6*D[3]*n
[2]*m[2]-16'Q*nu(l)*D[4]-4*nu(I)’\2*D[4]*m[21"2+nu(l)*D[3]*n[2]-nu(|)*D[4]*m[2]
"3+nu(I)*D[3]*n[2]’\3-8*nu(I)*D[4]*n[2]’\2+6*nu(I)*D[4]*m[21"2+4*Q’\2*nu(l)’\2*
D[4]+24*Q*nu(l)’\2*D[4]-4*nu(I)’\2’D[4]*m[2]+4*nu(I)A2*D[4]*n[2]’\2+4'nu(|)’\2*
D[3]*n[2]+1 5*nu(l)*D[4]*m[2]+nu(l)*D[3]*n[2]*m[21"2+Q*nu(l)*D[4]*m[2]’\2-m[2
]*nu(I)*D[4]*n[2]’\2+6*Q*nu(l)’\2*D[3]*n[2]-6*Q*nu(I)A2*D[4]*m[2]-2*Q*nu(l)’\2*
D[4]*m[2}'\2-2*Q"2*nu(l)*D[3]*n[2]+2*Q’\2*nu(I)’\2*D[3]*n[2]-3*Q*nu(|)*D[4]*n[
2P2+2*Q*nu(l)A2*D[4]*n[2]"2-4*m[2]*Q*nu(|)*D[3]*n[2]+2'm[2]*Q’\2*nu(l)*D[4]
+4*m[2]*Q‘nu(l)’\2*D[3]*n[2]-2*m[2]*Q"2*nu(I)A2*D[4]+8*m[2]*nu(I)’\2*D[3]*n[2
]-7*Q*nu(l)*D[3]*n[2]+1 1 *Q'nu(l)*D[4]*m[2]-14*nu(l)*D[3]*n[2]*m[2])/(n[2]’\2+m
[21"2+1 6*nu(I)A2+4*Q*nu(l)*m[2]-24*nu(l)-6*m[2]-12*Q'nu(l)+8*nu(l)*m[2]+9+
4*Q"2*nu(l)’\2+1 6*Q*nu(l)’\2);
> eqn1 :=D[p1]*a-6'nu(p)*D[p2]*aA3/(1-2*nu(p)) = D[l1]*cos(n[1]*|n(a))*a"m[1]+
D[I2]*sin(n[1]*ln(a))*a/\m[1]+D[l3]*cos(n[2]*ln(a))*a’\m[2]+D[l4]*sin(n[2]*ln(a))*
aAml2];
> eqn2 :=1/2*D[p1]*a-(7-4‘nu(p))*D[p2]*a’\3/(2-4*nu(p)) = b1*cos(n[1]"'ln(a))"aA
m[1]+b2*sin(n[1]*In(a))*a’\m[1]+b3‘cos(n[2]*ln(a))*a’\m[2]+b4*sin(n[2]*ln(a))*a
"mIZJ;
> eqn3:=2*G(p)*D[p1]-6*nu(p)*D[p2]*aA2*G(p)/(-1+2*nu(p)) = -P*aAm[1]*(-nu(l)*
cos(n[1]*ln(a))"m[1]+cos(n[1]*ln(a))*m[1]+nu(l)*sin(n[1]*ln(a))*n[1]-sin(n[1]*ln(
a))*n[1]+2‘nu(l)*cos(n[1]*ln(a)))/(1+nu(l))/(-1+2*nu(l))/a*D[l1]+P‘a"m[1]*(nu(l)*
sin(n[1]*ln(a))*m[1]-2*nu(l)*sin(n[1]*In(a))-cos(n[1]*ln(a))*n[1]+nu(l)*cos(n[1]*l
n(a))*n[1]-sin(n[1]*ln(a))*m[1])/(1+nu(l))/(-1+2*nu(l))/a*D[I2]-P*a’\m[2]*(cos(n[2
]*In(a))*m[2]-nu(I)*cos(n[2]*ln(a))*m[2]+nu(l)*sin(n[2]*ln(a))*n[2]-sin(n[2]*ln(a))
*n[2]+2*nu(l)*cos(n[2]*ln(a)))/(1+nu(l))/(-1+2*nu(l))/a*D[|3]+P*a’\m[2]*(nu(l)*sin
99
(n[2]*ln(a))*m[2]+nu(l)*cos(n[2]*ln(a))*n[2]-sin(n[2]*ln(a))*m[2]-2*nu(l)*sin(n[2]
*ln(a))-cos(n[2]*In(a))*n[2])/(1+nu(l))/(-1+2*nu(|))/a*D[l4]+6*nu(l)*(b1*cos(n[1]*
ln(a))*a’\m[1]+b2‘sin(n[1]*ln(a))*a’\m[1]+b3‘cos(n[2]*ln(a))*a’\m[2]+b4*sin(n[2]
‘ln(a)[aAm[2])*P/(1+nu(l))/(-1+2*nu(l))/a;
> eqn4:=2*G(p)*D[p1]+2*G(p)*a"2*(2*nu(p)+7)/(-1+2*nu(p))*D[p2] = P/(1+nu(l))
/a*D[l1]*cos(n[1]*ln(a))*a’\m[1]+P/(1+nu(l))/a*D[|2]*sin(n[1]*In(a))*a’\m[1]+P/(1
+nu(|))/a*D[l3]*cos(n[2]*|n(a))*a’\m [2]+P/(1 +nu(l))/a*D[l4]*sin (n[2]*ln(a))*a/\m [2
]+P*(-b2*sin(n[1]*ln(a))*a'\m[1]-b4*sin(n[2]*ln(a))*a’\m[2]+b2*cos(n[1]*ln(a))*n[
1]*a/\m[1]+b2*sin(n[1]*ln(a))*a’\m[1]*m[1]-b1*sin(n[1]*ln(a))*n[1]*a’\m[1]+b1*c
os(n[1]*ln(a))*a/\m[1 ]*m[1]+b4*cos(n[2]*in(a))*n[2]*a’\m[2]-b1*cos(n[1]*ln(a))*a
Am[1]-b3"sin(n[2]"|n(a))"’n[2]"a’\m[2]+b3"cos(n[2]"ln(a))"a’\m[2]"’m[2]+b4"sin(n[
2]*ln(a))*a’\m[2]*m[2]-b3*cos(n[2]*ln(a))*a’\m[2])/(1 +nu(l))la;
> eqns :=D[l1]*cos(n[1]*ln(b))*b’\m[1]+D[l2]*sin(n[1]*ln(b))*b’\m[1]+D[l3]*cos(n[2
]*ln(b))*b’\m[2]+D[l4]*sin(n[2]*ln(b))*W[2] = D[m1]*b-6‘nu(m)*D[m2]*b’\3/(1-
2*nu(m))+3* D[m31/b’\4+(5-4*nu(m))*D[m 4]/(1 -2*nu(m))/b"2;
> ean :=b1*cos(n[1]*ln(b))*b’\m[1]+b2'sin(n[1]*ln(b))*b’\m[1]+b3‘cos(n[2]*ln(b))
*b’\m[2]+b4*sin(n[2]*ln(b))*b’\m[2] = 1/2*D[m1]*b-1/2"(7-4*nu(m))*D[m2]*b’\3/(
1-2*nu@))-D[m3]/b"4+D[m 4]/b’\2;
> eqn7 :=-P*b’\Q*b’\m[1]*(2'nu(l)*cos(n[1]*In(b))+nu(l)*sin(n[1]*ln(b))*n[1]+cos(n
[1]*ln(b))*m[1]-nu(l)*cos(n[1]*ln(b))*m[1]-sin(n[1]*ln(b))*n[1])/(a"Q)/(1+nu(l))/(-
1+2*nu(l))/b*D[I1]+P*b’\Q*b’\m[1]*(-cos(n[1]*ln(b))*n[1]+nu(l)*cos(n[1]*In(b))*n
[1]-sin(n[1]*ln(b))*m[1]+nu(l)*sin(n[1]*ln(b))*m[1]-2*nu(l)*sin(n[1]*ln(b)))/(a"Q)/
(1+nu(l))/(-1+2*nu(l))/b*D[l2]-P*b"Q*b’\m[2]*(2*nu(I)*cos(n[2]*in(b))+nu(l)*sin(
n[2]*ln(b))*n[2]-nu(l)*cos(n[2]*ln(b))*m[2]+cos(n[2]*ln(b))*m[2]-sin(n[2]*ln(b))*n
[2])/(a"Q)/(1+nu(l))/(-1+2*nu(l))/b*D[l3]+P*b"Q*b’\m[2]*(-sin(n[2]*ln(b))*m[2]+n
u(l)*sin(n[2]*ln(b))*m[2]-cos(n[2]*ln(b))*n[2]+nu(l)*cos(n[2]*ln(b))*n[2]-2*nu(l)*s
in(n[2]*ln(b)))/(a"Q)/(1+nu(l))/(-1+2*nu(l))/b*D[I4]+6*nu(l)*(b1*cos(n[1]*ln(b))*b
“m[1]+b2‘sin(n[1]*In(b))*b"m[1]+b3'cos(n[2]*In(b))*b’\m[2]+b4*sin(n[2]*ln(b))*
b’\m[2])*P*b"Q/(1+nu(l))/(-1+2*nu(l))/(a’\Q)/b = 2*G(m)*D[m1]-6*nu(m)*b"2*G
(m)/(-1+2*nu(m))*D[m2]-24*G(m)*D[m3]/b"5-4/b’\3*(nu(m)-5)*G(m)/(-1+2‘nu(
m))*D[m4]:
> ean :=P*b"O/(a"Q)/(1 +nu(l))/b*D[l1]*cos(n[1]*ln(b))*b'\m[1]+P*b"Q/(a"Q)/(1+
nu(l))/b*D[|2]*sin(n[1]*ln(b))*b’\m[1]+P’b"Q/(a"Q)/(1+nu(I))/b*D[l3]*cos(n[2]*ln
(b))*b’\m[2]+P*b"Q/(a’\Q)/(1+nu(|))/b*D[I4]*sin(n[2]*ln(b))*b’\m[2]-P*b’\Q*(b2*s
in(n[1]*ln(b))*b’\m[1]+b4’sin(n[2]*ln(b))*b’\m[2]-b2*cos(n[1]*In(b))*n[1]*b’\m[1]-
b2‘sin(n[1]*ln(b))*b’\m[1]*m[1]+b1*sin(n[1]*In(b))*n[1]*b’\m[1]-b1*cos(n[1]*|n(b
))*b’\m[1]*m[1]-b4*cos(n[2]*ln(b))*n[2]*b’\m[2]+b1*cos(n[1]*ln(b))*b’\m[1]+b3*s
in(n[2]*in(b))*n[2]*b’\m[2]-b3*cos(n[2]*In(b))*b’\m[2]*m[2]-b4*sin(n[2]*ln(b))*b’\
m[2]*m[2]+b3*cos(n[2]*ln(b))*b’\m[2])/(a’\Q)/(1+nu(l))lb = 2*G(m)*D[m1]+2*G(
m)*b’\2*(2*nu(m)+7)/(-1+2*nu(m))*D[m2]+16*G(m)*D[m3]/b"5-4*G(m)*(1+nu(
m))/b’\3/(-1+2*nu(m))*D[m4];
> eqn9 :=D[m1]*c+6*nu(m)*c’\3/(-1 +2*nu(m))*D[m2]+3*D[m3VcM+(-5+4*nu(m))
/(-1 +2*nu(m))/c’\2*D[m 4] = D[e1 ]*c+3*D[e3]/c’\4+(-5+4*nu(e))/(-1+2*nu(e))/c"
2*D[e4];
> eqn10 := 1/2*D[m1]*c-1/2*(-7+4*nu(m))‘c’\3/(-1+2*nu(m))*D[m2]-D[m3]/c’\4+
100
D[m4]/c’\2 = 1/2*D[e1]*c-D[eS]/c’\4+D[e4]/c"2;
> eqn11 := G(m)*D[m1]-3*nu(m)*c’\2*G(m)/(-1+2*nu(m))*D[m2]-12*G(m)/c’\5*D[
m3]-2/c’\3*(nu(m)-5)*G(m)/(-1+2*nu(m))'D[m4] = G(e)*D[e1]-12*G(e)*D[93]/c
A5-2/c"3*(nu(e)-5)*G (e)/(-1 +2*nu(e))*D[e4];
> eqn12 :=2*G(m)*D[m1]+2*G(m)*c’\2*(2*nu(m)+7)/(-1+2*nu(m))*D[m2]+16*G(
m)/c"5*D[m3]-4*G(m)/c’\3*(1+nu(m))/(-1+2*nu(m))*D[m4] = 2*G(e)*D[e1]+16*
G(e)*D[eB]/c’\5-4*G(e)/c"3*(1 +nu(e))/(-1 +2*nu(e))*D[e4];
> x:=solve({eqn1,eqn2,eqn3,eqn4,eqn5,eqn6,eqn7,eqn8,eqn9,eqn10,eqn1 1,eq
n12},{D[p1],D['p2],D[I1],D[l2],D[l3],D[l4],D[m1],D[m2],D[m3],D[m4],D[e3],D[e4]
D'
> assign(x);
> G1 :=D[e4];
> G2:=G1=O;
> n:=solve(GZ,G(e));
> print(n);
> readlib(unassign):
> unassign(’D[p1],D[p2],D[l1].D[l2],D[l3].D[I4],D[m1].D[m2],D[m3].D[m4],D[63].
D[e4l');
> 0d:
> end
101
APPENDIX G
This computer program generates the eqns. (2.75), (2.78) and
(2.79) in thermal expansion coefficient study.
> u[r](r,theta,phi):=u[r](r):
> u[theta](r,theta,phi):=0:
> u[phi](r,theta,phi):=0:
> epsilon[rr1:=difl(u[r](r,theta,phi),r):
> epsilonltheta,theta]:=1/(r*sin(phi))*diff(u[theta](r,theta,phi),theta)+u[r](r,theta,p
hi)/r+(cot(phi)/r)*u[phi](r,theta,phi):
> epsilon[phi,phi]:=diff(u[phi](r,theta.phi),th/r+u[r](r,theta,phi)/r:
> gamma[r, theta]:=1/(r*sin(phi))*dift(u[r](r,theta,phi),theta)+diff(u[theta](r,theta,
phi),r)-u[theta](r,theta,phi)/r:
> gamma[theta,phi]:=diff(u[theta](r,theta,phi),phi)/r-cot(phi)*u[theta](r,theta,phi)/
r+1/(r’sin(phi))*diff(u[phi](r,theta,phi),theta):
> gamma[r,phi]:=ditf(u[phi](r,theta,phi),r)-u[phi](r,theta,phi)/r+diif(u[r](r,theta,phi)
,phi)/r:
> e:=epsilon[rr]+epsiIon[theta,theta]+epsilon[phi,phi]:
> sigma[rr]:=E(r)/(1 +nu(r))*(epsiIon[rr]-alpha(r)*T-1-(nu(r)/(1 -2*nu(r)))*(e-3*alpha(
0’0):
> sigma[theta,theta]:=E(r)/(1+nu(r))*(epsiIon[theta,theta]-alpha(r)*T+(nu(r)/(1 -2*
nu(r)))*(e-3*alpha(r)*T)):
> sigma[phi,phi]:=E(r)/(1+nu(r))*(epsilon[phi,phi]-a|pha(r)*T+(nu(r)/(1-2*nu(r)))*(
e-3*alpha(r)*T)):
> tau[r,theta]:=E(r)/2/(1+nu(Q)*gamma[r,theta]:
> tau[theta,phi]:=E(Q/2/(1 +nu(r))‘1amma[theta,phi]:
> tau[r,phi]:=E(r)/2/(1 +nu(r))‘gamma[r, phi]:
> equi1 :=diff(sigma[rr],r)*sin(phi)+1/r*(2'sigma[rr]*sin(phi)-sigma[theta,theta]*si
n(phi)-sigma[phi,phi]*sin(phi)+tau[r.phi]*cos(phi)+diff(tau[r,theta],theta)+diff(ta
u[r,phi],phi)*sin(phi))=0:
> eqn1:=collect(equi1 ,[diff(u[r](r),r,r),diff(u[rj(r),r),u[r](r)],factor):
> eqn2:=normal(eqn1j—1+2*nu(r))/sin(phi)):
> eqn3:=collect(eqn2,[diff(u[r](r),r,r),diff(u[r](r),r),u[r](r)],factor);
2
1-1 +v(r))E1r1[5;u[,,(r)] a a
1+v(r) +[[5;E(r)]r-2[57E(r)]rv(r)
- —E(r) rv(r) +2 —E(r) rv(r) +4E(r) -v(r) rv(r)
Br Br
eqn.? :=
3r
- 2 E(r) [%v(r))rv(r)2 - 4E(r) v(r) - 2 E(r) v(r)2 +4 E(r)v(r)3 + 2 E(r))
102
a ( 2) a
a—umU) r(-1+2v(r))(1+v(r)) -2 - EEO.) rv(r)
1’ i 2 1’ i ’ 1’ J 2
+ —E(r) rv(r) +2 —E(r) rv(r) -2E(r) —v(r) rv(r)
Br Br Br
-2E(r)v(r)-E(r)v(r)2+2E(r)v(r)3-E(r)(%v(r)]r+E(r)]um(r)/(
(-1+2v(r))(1+v(r))2r2)+[2 [Bar E(r)]a(r)v(r)+2E(r)v(r)[aar 010)]
-[%E(r)]a(r)-2E(r) 01(r) [gr-v(r))— E(r)[aar a(r))]T/(- l+2v(r))=
O
This equation is equivalent to eqn. (2.75), and Poisson’s ratio in this
equation represents Poisson’s ratio in interphase.
> E(r):=P*(r/a)AQ:
> alpha(r):=M*(r/a)’\N:
> nu(r):=nu:
> eqn4:=eqn3:
> eqn5:=collect(eqn4,[diff(u[r](r),r,r),diff(u[r](r),r),u[r](r)],factor):
> eqn6:=normal(eqn5/(P*(r/a)"Q)):
> eqn7:=colIect(eqn64difl(u[r1(r),r,r),diff(u[r](r),r),u[r](r)1,factor):
> eqn8:=normal(eqn7*(1+nu)*r’\2/(-1+nu)):
> eqn9:=collect(eqn8.[diff(u[r](r),r,r),diff(u[r](r),r),u[r](r)],factor);
a2 a (QV+V-l)u[,](r)
eqn9:= [_11 (r)]r2+(Q+2)r[—u[r ](r)]-2
8F "'11 -1+v
TM(L]~r(Q+N)(1+v)
+ a =0
-1+v
This equation is equivalent to eqn. (2.78)
> x:=dsolve(egn9,u[r](r)):
> assign(x);
> Ur1:=u[r](r):
> u[r](r):=collect(Ur1,LC1,_02],factor);
I!” jl—+;Q I-1+v +951
u (r) — -4
.1” ](sz- 3N- Q-Qv-QN+QNv+3vN-NZ)
m[1+vQ+/1+v+%1]
_CI/(%3 %2)-4 Jl+v
103
(NZv-3N-Q-Qv-QN+QNv+3vN-NZ)_Cz/(%3 %2)
TMH”+‘)a('”)(Q+N)(1 +v)
%3%2
+4
%1:=JQ2v+10Qv+9v-9-2Q-Q2
%2:= /-1+VQ+3 l-l+v+%1+2N -1+v
%3:=-/-1+v Q-3 /-1+v +%1-2N -1+v
This equation is equivalent to eqn. (2.79), and Poisson’s ratio in this
equation represents Poisson’s ratio in interphase.
> xi:=coeff(u[r](r),_C1);
m-mQ-me]
§:=-4 J-l+v (sz-3N-Q-Qv-QN+QNv+3vN-AP)/(
(-1-1+vQ-3/-1+v+%1-2N -1+v)
(-l+vQ+3/-1+v+%l+2N -1+v))
%1:=jQ2v+lOQv+9v-9-2Q-Q2
> beta:=coeff(u[r](r),_02):
r[_mj:1_:Q+j:-fi_v+%1]
e:=-4 J~1+v (sz-sN-Q-Qv-QN+QNv+3vN-Nl)/(
(-/-l+v Q-3./-1+v+%1-2N -1+v)
U-l+v Q+3 /-1+v+%1+2N -l+v))
%1:=JQ2v+10Qv+9v-9-2Q-Q2
> eta:=u[r](r)-alpha*_C1-beta*_02;
n :=4 TMr<~+l>a<-~>(Q +111) (1 +v)/(
(-/-1+v Q-3./-l+v+fQ2v+10Qv+9v-9-2Q-Q2-2N./-1+v)
(/-1+v Q+3 /-1+v+JQ2v+10Qv+9v-9-2Q-QZ+2N1-1+v))
104
APPENDIX H
This computer program evaluates the thermal expansion
coefficient of the composite with power variation Young’s
modulus and thermal expansion coeflicient in interphase.
> P:=65:
> Q:=(ln(E(rm/E(p))/(ln(b/a)):
> N:=:(In(alpha(m)/alpha(p))/(ln(b/a)):
> alpha(p):=5*10"(-6):
> E(p):=65: 2’
> nu(p):=3/10:
> nu(l):=3/10:
> E(m):=28/10:
> nu(m):=4/10:
> alpha(mpeenw-e): :22
> M:=5*10"(—6): '2
> b:=(?/?)*a:(lnput thickness value of interphase.)
> c:=1:
> eqn1 :=C[pt1]*a = 4*a"(-1/2*((-1+nu(l))’\(1/2)+(-1+nu(l))A(1/2)*Q-(10*Q‘nu(l)+
9*nu(l)+Q’\2*nu(l)-Q’\2-2*Q-9)’\(1/2))/(-1+nu(l))’\(1/2))*(-3*N+3*nu(l)*N-Q*N+Q
*N'nu(I)-NA2+N’\2*nu(l)-Q*nu(l)-Q)/(3*(-1+nu(l))A(1/2)+(-1+nu(l))“(1/2)*Q-(1O’
Q*nu(l)+9*nu(|)+Q"2*nu(I)-Q"2-2*Q-9)’\(1/2)+2*N*(-1+nu(l))’\(1/2))/(3*(-1+nu(l
))’\(1/2)+(-1+nu(l))’\(1/2)*Q+(10‘Q’nu(l)+9*nu(l)+Q’\2*nu(l)-Q"2-2*Q-9)"(1/2)+
2*N*(—1+nu(l))’\(1/2))*C[lt1]+4'aA(-1/2*((-1+nu(l))A(1/2)+(-1+nu(l))’\(1/2)*Q+(1O
*Q‘nu(l)+9*nu(I)+QA2*nu(l)-Q’\2-2*Q-9)’\(1/2))/(-1+nu(l))’\(1/2))*(-3*N+3*nu(l)*
N-Q*N+Q*N*nu(I)-N’\2+NI\2‘nu(l)-Q*nu(I)-Q)/(3*(-1+nu(l))A(1/2)+(-1+nu(l))A(1/
2)*Q-(10*Q*nu(l)+9*nu(I)+Q’\2*nu(l)-Q"2-2*Q-9)A(1/2)+2*N*(-1+nu(l))’\(1/2))/(
3*(-1+nu(l))’\(1/2)+(-1+nu(l))’\(1/2)*Q+(10'Q’nu(l)+9*nu(I)+Q’\2*nu(l)-Q’\2-2*Q
-9)’\(1/2)+2*N*(-1+nu(l))A(1/2))*C[It2]-4*T*M*a’\(N+1)*a'\(-N)*(1+nu(l))*(Q+N)/(
3*(-1+nu(l))’\(1/2)+(-1+nu(l))A(1/2)*Q-(10*Q*nu(|)+9*nu(l)+Q"2*nu(l)-Q"2-2*Q—
9)’\(1/2)+2*N*(-1+nu(l))’\(1/2))/(3*(-1+nu(l))“(1/2)+(-1+nu(l))A(1/2)*Q+(1O*Q*n
u(l)+9*nu(l)+Q"2*nu(l)-Q’\2-2*Q-9)’\(1/2)+2*N*(—1 +nu(l))’\(1/2)):
> eqn2 := -E(p)/(-1+2‘nu(p))*C[pt1]+T*aipha(p)*E(p)/(-1+2*nu(p)) = -2*P*a"(—1/
2*((-1+nu(l))A(1/2)+(-1+nu(l))A(1/2)*Q-(10*Q*nu(l)+9*nu(l)+Q’\2*nu(l)-Q’\2-2*Q
-9)’\(1/2))/(-1+nu(l))A(1/2))*(-3*N+3*nu(l)*N-Q*N+Q*N*nu(l)-NA2+NA2*nu(|)-Q"
nu(l)-Q)"(-(-1+nu(l))A(1/2)+5*(-1+nu(l))’\(1/2)*nu(l)-(-1+nu(l))A(1/2)*Q+(-1+nu(l)
)’\(1/2)*Q*nu(l)+(10*Q'nu(l)+9*nu(l)+Q’\2*nu(l)-Q’\2-2*Q-9)’\(1/2)-(10*Q*nu(l)+
9*nu(|)+Q"2*nu(l)-Q"2-2*Q-9)’\(1/2)*nu(l))/(1+nu(l))/(-1+2*nu(l))/(-1+nu(l))’\(1/
2)/a/(3*(-1+nu(l))A(1/2)+(-1+nu(l))’\(1/2)*Q-(10*Q*nu(l)+9*nu(|)+Q"2*nu(I)-Q"2
-2*Q-9)"(1/2)+2*N*(-1+nu(l))A(1/2))/(3*(-1+nu(l))A(1/2)+(-1+nu(l))“(1/2)*Q+( 1O
*Q*nu(l)+9*nu(l)+Q"2*nu(l)-Q"2-2*Q-9)’\(1/2)+2*N*(-1+nu(l))A(1/2))*C[lt1]-2*P
’a"(—1/2*((-1+nu(l))’\(1/2)+(-1+nu(l))A(1/2)*Q+(10*Q*nu(l)+9*nu(l)+Q"2*nu(|)-Q
105
A2-2'Q--9)"(1/2))/(-1~1-nu(l))’\(1/2))"(-:33"N+3*nu(|)*N-Q"N+Q"N"nu(l)-N’\2+N’\2"n
u(l)-Q*nu(I)-Q)*(5*(-1+nu(l))A(1/2)*nu(l)+(-1+nu(l)W1/2)*Q*nu(l)+(10*Q*nu(l)+
9*nu(I)+Q’\2*nu(I)-Q"2-2*Q-9)A(1/2)*nu(I)-(-1+nu(l))“(1/2)-(-1+nu(l))A(1/2)*Q-(
10‘Q’nu(l)+9*nu(l)+Q’\2*nu(l)-Q"2-2*Q-9)’\(1/2))/(1+nu(l))/(-1+2*nu(l))/(-1+nu(
l))’\(1/2)/a/(3*(-1+nu(l))A(1/2)+(-1+nu(l))“(1/2)*Q-(10*Q'nu(l)+9*nu(l)+Q"2*nu(|
)-Q"2-2*Q-9)"(1/2)+2*N*(-1 +nu(l))A(1/2))/(3*(-1+nu(l))“(1/2)+(-1+nu(l))“(1/2)‘
Q+(10*Q'nu(l)+9*nu(|)+Q/\2*nu(l)-Q’\2-2*Q-9)A(1/2)+2*N*(-1+nu(l))“(1/2))*C[lt
2]+4*(-3*a*N+aA(N+1 )*a’\(-N)*Q-a*Q+a’\(N+1 )*a’\(-N)*N’\2+a’\(N+1)*a"(—N)*N
+a’\(N+1)*a’\(-N)*Q*N-a/\(N+1)*aA(-N)*Q*N*nu(l)-a/‘(N+1)*aA(-N)*NA2*nu(I)+a
A(N+1)*a’\(-N)*Q*nu(l)+a’\(N+1)‘aA(-N)*nu(l)*N-a*Q*nu(l)+3*a*N*nu(l)-a*Q*N+
a'Q’N’nu(I)-a*N"2+a‘N’\2*nu(I))*1“M*P/(-1+2'nu(l))/(3*(-1+nu(l))“(1/2)+(-1+n
u(|))’\(1/2)*Q-(10’Q’nu(l)+9*nu(l)+Q’\2*nu(l)-Q"2-2*Q-9)"(1/2)+2*N*(-1+nu(l))“
(1/2))/(3*(-1+nu(l))’\(1/2)+(-1+nu(l))“(1/2)*Q+(10*Q*nu(l)+9*nu(l)+Q"2*nu(l)-Q
A2-2"Q-9)’\(1/2)+2"N"(-1 +nu(l))“(1/2))/a:
> eqns :=4*b’\(-1/2*((-1+nu(l))/\(1/2)+(-1+nu(l))“(1/2)*Q-(10'Q'nu(l)+9*nu(l)+Q"
2*nu(I)-Q"2-2*Q-9)’\(1/2))/(—1+nu(l))/\(1/2))*(-3*N+3*nu(l)*N-Q*N+Q*N*nu(I)-N
A2-1-N’\2"'nu(I)-Q"nu(l)-Q)/(3"’(-1+nu(l))/\(1/2)+(-1 +nu(l))A(1/2)*Q-(1O'Q‘nu(l)+9*
nu(I)+Q’\2*nu(l)-Q"2-2*Q-9)A(1/2)+2*N*(-1+nu(l))A(1/2))/(3*(-1+nu(l))“(1/2)+(-
1+nu(l))’\(1/2)*Q+(10*Q‘nu(i)+9*nu(l)+Q’\2*nu(l)-Q"2-2*Q-9)’\(1/2)+2*N*(-1+n
u(l))’\(1/2))*C[It1]+4*b"(-1/2*((-1+nu(l))"(1/2)+(-1+nu(l))“(1/2)*Q+(10*Q‘nu(l)+
9*nu(l)+Q"2*nu(I)—Q"2-2*Q-9)A(1/2))/(-1+nu(l))/\(1/2))*(-3*N+3*nu(l)*N-Q*N+Q
*N'nu(l)-N/\2+N’\2*nu(l)-Q*nu(I)-Q)/(3*(-1+nu(l))A(1/2)+(-1 +nu(l))/\(1/2)*Q-(10*
Q'nu(|)+9*nu(l)+Q’\2*nu(l)-Q’\2-2*Q-9)"(1l2)+2*N*(-1+nu(l))/\(1/2))/(3*(-1+nu(l
))’\(1/2)+(-1+nu(l))“(1/2)*Q+(10’Q‘nu(l)+9*nu(I)+Q’\2*nu(l)-Q’\2-2*Q-9)’\(1/2)+
2*N*(—1+nu(l))A(1/2))*C[lt2]-4*T"M*b’\(N+1)*a'\(-N)*(1+nu(l))*(Q+N)/(3*(-1+nu(l
))"(1/2)+(-1+nu(l))/\(1/2)*Q-(10*Q*nu(l)+9*nu(l)+Q’\2*nu(l)-Q’\2-2*Q-9)’\(1/2)+2
*N*(-1+nu(l))A(1/2))/(3*(-1+nu(l))A(1/2)+(-1+nu(l))“(1/2)*Q+(10*Q‘nu(l)+9*nu(l)
+Q’\2*nu(l)-Q"2-2*Q-9)’\(1/2)+2‘N*(-1 +nu(l))A(1/2)) = C[mt11*b+C[mt2]/b’\2:
> eqn4 :=-2*P*(b/a)"Q*b’\(-1/2*((-1+nu(l))’\(1/2)+(-1+nu(l))“(1/2)*Q-(10*Q‘nu(l)+
9*nu(l)+Q’\2*nu(I)-Q’\2-2*Q-9)"(1/2))/(-1+nu(l))/\(1/2))*(-3*N+3'nu(l)’N-Q*N+Q
*N’nu(l)-N’\2+N’\2*nu(l)-Q*nu(l)-Q)*(-(-1+nu(l))/\(1/2)+5*(-1+nu(l)W1/2)*nu(l)-(
-1+nu(l))A(1/2)*Q+(-1+nu(l))/‘(1/2)*Q*nu(l)+(1O’Q'nu(I)+9*nu(|)+Q’\2*nu(l)-Q’\2
-2*Q-9)’\(1/2)-(1 O‘Q’nu(l)+9*nu(l)+Q"2*nu(I)-Q"2-2*Q-9)’\(1/2)*nu(l))/(1+nu(l))
/(-1+2*nu(l))/(-1+nu(l))“(1/2)/b/(3*(-1+nu(l))A(1/2)+(-1+nu(l))A(1/2)*Q-(1O*Q*nu
(I)+9*nu(l)+Q’\2*nu(l)-Q"2-2*Q-9)"(1/2)+2*N*(-1+nu(l))’\(1/2))/(3"(-1+nu(l))’\(1/
2)+(-1+nu(l))A(1/2)*Q+(1O’Q'nu(l)+9*nu(l)+Q’\2*nu(I)-Q"2-2*Q-9)"(1/2)+2*N*(
-1+nu(l))A(1/2))*C[lt1]-2*P*(b/a)’\Q*b’\(-1/2*((-1 +nu(l))“(1/2)+(-1+nu(l))“(1/2)*Q
+(10*Q’nu(l)+9*nu(|)+QA2*nu(l)-Q"2-2*Q-9)’\(1/2))/(-1+nu(l))/\(1/2))*(-3*N+3*n
u(|)*N-Q*N+Q*N*nu(l)-N’\2+N’\2*nu(|)-Q*nu(l)-Q)*(5*(-1+nu(l))/\(1/2)*nu(l)+(-1
+nu(l))“(1/2)*Q*nu(l)+(10*Q’nu(|)+9*nu(i)+Q’\2*nu(l)-Q’\2-2*Q-9)"(1l2)*nu(l)-(-
1+nu(l))/\(1/2)-(-1+nu(l))A(1/2)*Q-(10*Q*nu(l)+9*nu(l)+Q"2*nu(I)-Q’\2-2*Q-9)"(
1/2))/(1+nu(l))/(-1+2‘nu(|))/(-1+nu(l))A(1/2)/b/(3*(-1+nu(l))A(1/2)+(-1+nu(l))/\(1/
2)*Q-(10*Q*nu(l)+9*nu(I)+Q/‘2*nu(I)-Q’\2-2*Q-9)"(1/2)+2‘N*(-1 +nu(l))“(1/2))/(
3*(-1+nu(l))’\(1/2)+(-1+nu(l))“(1/2)*Q+(10*Q*nu(l)+9*nu(l)+Q"2*nu(l)-Q"2-2*Q
-9)’\(1/2)+2*N*(-1+nu(l))/\(1/2))*C[lt2]+4*(-3*(b/a)’\N*b*N+b’\(N+1)*a’\(-N)*Q-(b
/a)"N*b*Q+b’\(N+1)*a’\(-N)*N’\2+b’\(N+1)‘aN-N)*N+b’\(N+1)*a’\(-N)*Q*N-b’\(N
106
+1 )*a"(-N)*Q*N*nu(l)-b"(N+1)*a"(-N)*N"2*nu(l)+b"(N+1 )*a"(-N)*Q*nu(l)+b"(N
+1 )‘a‘(—N)*nu(I)*N-(b/a)"N*b*Q*nu(l)+3*(b/a)"N*b*N*nu(I)-(b/a)"N*b*Q*N+(b/
a)"N*b*Q*N*nu(l)-(b/a)"N*b*N"2+(b/a)"N*b*N"2*nu(l))*T*M*P*(b/a)"Q/(-1 +2"
nu(l))/(3*(-1+nu(l))“(1/2)+(-1+nu(l))“(1/2)*Q-(10*Q*nu(l)+9*nu(l)+Q"2*nu(l)-Q"
2-2*Q-9)"(1/2)+2*N*(-1+nu(l))‘(1/2))/(3*(-1+nu(l))“(1/2)+(-1 +nu(l))"(1 /2)*Q+(1
0*Q’nu(I)+9*nu(l)+Q"2*nu(l)-Q"2-2*Q—9)"(1/2)+2*N*(-1+nu(l))‘(1/2))/b = -E(m
)/(-1+2*nu(m))*C[mt1]-2*E(m)/(1+nu(m))/b"3*C[mt2]+T*alpha(m)*E(m)/(-1+2*
nu(m)):
> eqn5 := -E(m)/(-1+2*nu(m))*m1-2*E(m)/(1+nu(m))/c"3*m2+T*
alpha(m)’EQn)/(—1+2*nu(m)) = 0:
> x:=solve({eqn1,eqn2,eqn3,eqn4,eqn5},{p1 ,l1,l2,m1 ,m2}):
> assign(x);
> alpha:=(m1+m2/c"3)/T:
> eq1:=evalf(alpha):
> eq2:=normal(eq1):
> eq3:=subs(a=f"(1/3),eq2):
107
APPENDIX I
This computer program proves that the relationship between
thermal expansion coefficient and bulk modulus for two phases
composite is valid in the CSA model for particle reinfored
composite.
For no interphase case:
> K[c]:=-(-4*K[m]*G[m]-3*K[p]*K[m]+4*f*G[m]*K[m]-4*f*G[m]*K[p])/(3'K[m]*f+4*
Glml-3*f*K[Pl+3*K[p]);
K ,=_ '4Km101m1’ 3 Kilelml +4wa Kw ' 4fGiml K1131
[Cl -
3 Kimlf+ 4 GM] 3me + 3 Kip]
(1.1)
> alpha[c]:= (3*f*E[p]*alpha[p]-3*f*E[p]*a|pha[p]*nu[m]-2*alpha[m]*f*E[m]+4*alp
ha[m]*t*E[m]*nu[p]+alpha[m]*E[p]+alpha[m]*E[p]*nu[m]+2*a|pha[m]*E[m]-4*al
pha[m]*E[m]"nu[p]-f*E[p]*alpha[m]-f*E[p]*alpha[m]*nu[m])/(2*f*E[p]-4*f*E[p]*n
u[m]-2*f*E[m]+4*f*E[m]*nu[p]+E[p]+E[p]*nu[m]+2*E[m]-4*E[m]*nu[pl);
o‘th:=(3fl'31110‘1131' 3"”511210‘1131"1»:1' 2 “1m1fE1 + 4 almlelml "1131 + “th Em
+ “133:1 Eipl vim] + 2 a1m1E1m1' 4 aimlElmlvlpi 'fE1p1a1m1'fE1p1 o‘1»:1"1ml)
/(2fE1p1' 4fElpl vim] ' 2fE1m1+ 4fElml v1131 + E1131+ Etp1v1m1+ 2 Elm
at]
l
'4Erm1V1p1)
(1.2)
From Christensen (1979), we have
> alpha[c]:=a|pha[m]+(alpha[p]-a|pha[m])/(1/K[p]-1/K[m])*(1/K[c]-1/K[m]);
111-111;; 1
(I I=CX +
(1.3)
Subbstite K[c][eqn. (1.1)] into above eqn. (1.3), we have
> alpha[c] := alpha[m]+(alpha[p]-alpha[m])/(1/K[p]-1/K[m])*(-1/(-4*K[m]*G[m]-3*
K[p]*K[m]+4*f*G[m]*K[m]-4*f*G[m]*K[p])*(3*K[m]*f+4*G[m]-3*f*K[p]+3*K[p])-1/
Kiml);
are] ;= O‘1»:1” (“1121' am)
108
[ 3K1111]linjr"""(;11'3fK11314'3K1m1 ]/[
’4K1m161ml 3K11: 1K1m1+4f01m1K1ml '1“me 1p] Kim]
1 1 J
Kip] Kim]
> a1 :=simplify(a|pha[c]);
a] 2w=-(-3a Kip 1K 3fK ‘1 Klm '4K fa”) [NIH-301 Ianf [P]
11 11 [pl [121 ml
+40‘1m1 KtmlfG1m1'4awK1nM011)/(
“(we +3KIP1KM 4fG +4fGllem)
[Ml [melll
(1.4)
Note, we have following relations
> nu:=1/2*(3*K-2*G)/(3*K+G); E:=9*G*K/(3*K+G);
1 3 K - 2 G
v:=—
23K+G
GK
3K+G
(1.5)
Substitue eqn. (1.5) into eqn. (1.2)
> nulplz=1/2*(3*Kipl-2*G[pl)/(3*Klpl+G[12]): Elpl:=9*G[p]*Kip1/(3*Kipl+G[pl):nui
m]:=1/2*(3*K[m]-2*G[m])/(3*K[m]+G[m]); E[m]:=9*G[m]*K[m]/(3*K[m]+G[m]);
v _13K1p1'261p1
[121'—
2 3Klpl+GlPl
E ._ 01p] K1131
1 1"
P 3 K1121 + Gm
13K1ml'201m]
v :=
[In]
2 3K! ml+Glml
Glleim}
E1m1 := K
3 1m 1+ Glml
> alpha[c]:= (3*f*E[p]*alpha[p]-3*f*E[p]*alpha[p]*nu[m]-2*alpha[m]*f*E[m]+4*a|p
ha[m]*f*E[m]*nu[p]+alpha[m]*E[p]+alpha[m]*E[p]*nu[m]+2*alpha[m]*E[m]-4*al
pha[m]*E[m]*nu[p]-f*E[p]*alpha[m]-f*E[p]*aIpha[m]*nu[m])/(2*i*E[p]-4*f*E[p]*n
u[m]-2*f*E[m]+4*i*E[m]*nu[p]+E[p]+E[p]*nu[m]+2*E[m]-4*E[m]*nu[pl):
109
> al1:=simplify(alpha[c]);
all := (3me 01m Kw + 4fK or
1131 [pl Glml ' 4 almlfGIm] K1m
+ 4 am G K
1m11m1'3fK or K )/(
[pl 1m1 1m1
4lepl Glml ' 4fG1m1K1ml + 3 Klpl K1m1 4' 4 Gim] Kiml)
(1.6)
eqn. (1.2) can be rearranged as eqn. (1.6)
Comparing eqn. (1.6) and eqn. (1.4)
> a1 := -(-3*alpha[m]*K[p]*K[m]-3*t*K[p]*alpha[p]*K[m]-4*K[p]*f*alpha[p]*G[m]+
3*alpha[m]*K[m]*f*K[p]+4*alpha[m]*K[m]*f*G[m]-4*alpha[m]*K[m]*G[m])/(4*K[
m]*G[m]+3*K[er[m]-4*1*G[m]*K[m]+4*f*G[m]*K[p]):
> a|1 := (3*i*K[p]*alpha[p]*K[m]+4*f*K[p]*alpha[p]*G[m]-4*aipha[m]*f*G[m]*K[m]
+3*alpha[m]*K[p]*K[m]+4*alpha[m]*G[m]*K[m]-3*t*K[p]*a|pha[m]*Klm])/(4*i*K[
p]*G[m]-4*f*G[m1*K[m]+3*K[p]*K[m]+4*G[m]*K[m]):
> eqn1:=a1-al1:
> eqn2:=simplify(eqn1);
eqn2 := 0
That implies eqn. (1.4) and eqn. (1.6) are identical. So, we prove the
relationship btween bulk modulus and thermal expansion coefficient
is valid in CCA model.
1+ 3 allellelm
]
BIBLIOGRAPHY
Adams, R.D., 1991,”Compositional Effect of Fiber Reinforced Composites on the Coeffi-
cient of Thermal expansion”AS TM special Technical Publication. PA, USA. pp. 150-160.
Achenbach, J. D. and Zhu, H., 1989, “Effect of Interfacial Zone on Mechanical Behavior
and Failure of Fiber-reinforced Composites,” Journal of the Mechanics and Physics of
Solids, vol. 37, pp. 381-393.
Benveniste, Y and Dvorak, G. J, 1990 “On a Correspondence between Mechanical and
Thermal Effects in Two-phase Composites” in Toshio Mura Anniversary Volume Micro-
mechanics and Inhomogeneity. Editor: Weng, G.J., Taya, M., and Abe, H. Springer Verlag.
pp. 65-81.
Benveniste, Y., Dvorak, G. J., and Chen, T., 1989, “Stress Fields in Composites with
Coated Inclusion,” Mechanics of Materials, Vol. 7, pp. 305-317.
Bogan, S. D., and Hinders, M. K., 1993, “Dynamic Stress Concentration in Fiber-rein-
forced Composite with Interface Layers”, Journal of Composite Materials, Vol. 27, pp.
1272-1311.
Bostrein, A., Olsson, P. and Datta, SK, 1992, “Effective Plane Wave Propagation
Through a Medium with Spherical Inclusions Surrounded by Thin Interface layers”,
Mechanics of Materials, Vol. 14, pp. 56-66.
Broutman, L. 1., and Agarwal, B. D., 1974, “A Theoretical Study of the Effect of an Inter-
facial Layer on the Properties of Composites,” Polymer Engineering Science, Vol. 14 pp.
581-588.
Carman, G.P., Averill, R.C., Reifsnider, KL, and Reddy, J.N., 1993, “Optimization of
Fiber Coating to Minimize Stress Concentration in Composite Materials”, Journal of
Composite Materials, Vol. 27, pp. 589-612.
Chawla, K. K., 1987, Composite Materials, Springer-Verlag.
Chen, T., Dvorak, G. J. and Benveniste, Y., 1990, “Stress Fields in Composites Reinforced
by Coated Cylindrically Orthotropic Fibers,” Mechanics of Materials, Vol. 9, pp. 17-32.
Christensen, R. M., 1979, Mechanics of Composite Materials, Wiley, New York.
Christensen, R. M., and Lo, K. H., 1979, “Solutions for Effective Shear Properties in
Three Phase Sphere and Cylinder Models,” Journal of the Mechanics and Physics of Sol-
ids, Vol. 27, pp. 315-330.
Dasgupta, A and Bhandarkar, S. M. 1992, “A Generalized Self-consistent Mori-Tanaka
Scheme for Fiber-Composite with Multiple Interphase,” Mechanics of Materials, Vol. 14,
110
111
pp. 67-82.
Date, H., Sato, Y., and Naka, 1993, “Interfacial Microstructure of Shock-welded Alumin-
ium-steel Joint”, Journal of Materials Science Letters, Vol. 12, pp. 626-628.
Drzal, L. T., 1983, “Composite Interphase Characterization,” SAMPE J., September/Octo-
ber, pp. 7-13.
Eshelby, J. D., 1956, “The Continuum Theory of Lattice Defects,” in Progress in Solid
State Physics, Vol. 3, F. Seitz and D. 'l‘urnbull, Eds, Academic, New York, pp. 79-144.
Frederick, D. and Chang, T. S., 1972, Continuum Mechanics, Scientific Publisher. Inc,
Boston, 1972.
Geiger, A. L., Hasselman D. P. H., and Donaldson K. Y., 1993, “Effect of reinforcement
particle size on the thermal conductivity of particulate silicon carbide-reinforced alumin-
ium-matrix Composite”, Journal of Materials Science Letters, Vol. 12, pp. 420-423.
Hashin, Z., 1962, “The Elastic Moduli of Heterogeneous Materials,” Journal of Applied
Mechanics, Vol. 29, pp. 143-150.
Hine, P.J., Duckett, R.A. and Ward, I.M., 1993, “Modeling The Elastic Properties of Fiber-
Reinforced Composites: 11. Theoretical Predictions”, Composite Science and Technology,
Vol. 49, pp.13-21.
Hughes, 1. D. H., 1991, “The Carbon Fiber/Epoxy Interface - A Review”, Composite Sci-
ence and Technology, Vol. 41, pp. 13-45.
Hull, D., 1980, An Introduction to Composite Materials, Cambridge University Press.
Jasiuk, I. and Kouider, M. W., 1993, “The Effect of an Inhomogeneous Interphase on the
Elastic Constants of Transversely Isotropic Composites,” Mechanics of Materials, Vol. 15,
pp. 53-63.
Jasiuk, 1., and Mura, T., and Tsuchida, E., 1988, “Thermal Stresses and Thermal Expan-
sion Coefficients of Short Fiber Composites with Sliding Interfaces,” Journal of Engineer-
ing Materials and Technology, Vol. 110, pp. 96-100.
Jasiuk, I. and Ostoja-Starzewski, M., 1993, “The Interface Problem: Random Microstruc-
ture and Meso-Continuum Model,” in Control of Interfaces in Metal and Ceramic Com-
posites (ed. R.Y. Lin and 8.6. Fishman), pp. 317-325, The Minerals, Metals & Materials
Society, PA.
Jasiuk, I., and Tong, Y., 1989, “The Effect of Interface on the Elastic Stiffness of Compos-
ites,” in Mechanics of Composite Materials and Structures, eds. J. N. Reddy and J. L.
Teply, ASME, New York, pp. 49-54.
112
Jayaraman, K., and Reifsnider, K. L., 1992a, “Residual Stresses in a Composite with Con-
tinuously Varying Young’s Modulus in the Fiber/Matrix Interphase,”Joumal of Compos-
ite Materials, Vol. 26, pp. 770-791.
Jayaraman, K., and Reifsnider, K. L., 1992b, “Local Stress Fields in a Unidirectional
Fiber-reinforced Composite with Non-homogeneous Interphase Region: Formulation,”
Advanced Composites Letters, Vol. 1, pp. 54-57.
Jayaraman, K., Gao, Z., and Reifsnider, K.L., 1991, “Stress Field in Continuous Fiber
Composites with Interphasial Property Gradients,” in Proceeding of Sixth Technical Con-
ference of the American Society for Composites, Lancaster, pp. 759-768.
Jayaraman, K., Reifsnider, K. L., and Swain, R. E., 1993, “Elastic and Thermal Effects in
the Interphase: Part 1. Comments on Characterization Method,” Journal of Composites
Technology & Research, Vol. 15, pp. 3-13.
Johnson, D. E. and Johnson, J. R., 1982, “Mathematical Method In Engineering And
Physics,” Prentice-Hall, inc., Englewood Cliffs, NJ.
Kerans, R. J., Hay, R. S., Pagano, N. J., and Parthasarathy, T.A., 1989, “The Role of the
Fiber-Matrix Interface in Ceramic Composites,” Ceramic Bulletin., Vol. 68, pp. 429-442.
Kouider, M. W., and Jasiuk, I., 1993, “The thermal expansion coefficients of composites
with sliding interfaces,” in preparation.
Lee, Y. S., Gungor, M. N., Batt, T.J and Liaw, P.K., 1991, “Semi-empirical Investigation
of Thermal Expansion Behavior of Composites in a Two-phase Particle-reinforced Metal
Matrix Composite,” Materials Science and Engineering. Vol. A145, pp. 37-46.
Levin, V. M., 1967, “On The Coefficient of Thermal Expansion of Heterogeneous Materi-
als,” Mechanics of Solids. Vol. 2, 1967. pp. 58-61.
Li, J .X., Matsuo, Y and Kimura, S, 1992, “Role of Fiber Coating on SiC Fiber-reinforced
Alumina Composite,” Journal of Ceramic Society of Japan. Vol. 100, pp. 499-503.
Lutz, M. P., and Ferrari, M., 1993, “Compression of a Sphere with Radially Varying Elas-
tic Moduli,” Composites Engineering. Vol. 3, pp. 873-884.
Maple V Release 2. Waterloo Maple Software, Copyright (c) 1981-1992 by the University
of Waterloo.
Mase, GE. and Mase, G.T., 1992, Continuum Mechanics for Engineers, CRC Press, Inc
Maurer, F. H. J ., 1990, “An Interlayer Model to Describe the Physical Properties of Partic-
ulate Composites,” in Controlled Interphases in Composite Materials, ed. H. Ishida,
113
Esevier, pp. 491-504.
Mikata, Y. and Taya, M., 1986, “Thermal Stress in a Coated Short Fibre Composite,”
Journal of Applied Mechanics, Vol. 53, pp. 681-689.
Nassehi, V., Kinsella, M. and Massia, L. 1993, “Finite Element Modelling of Stress Distri-
bution in Polymer Composites with Coated Fibre Interlayer,” Journal of Composite Mate-
rials, Vol.27. pp. 195-214
Ostoja-Starzewski, M., Jasiuk, I., 1992, “On Random Field Modelling of an Interphase,”
presented at the Fourth International. Conference on Composite Interfaces, Cleveland.
Ostoja-Starzewski, M., Jasiuk, 1., Wang, W., and Alzebdeh, K., 1994, “Composites with
Functionally Graded Interphases: Meso-Continuum Concept and Effective Properties,” J.
Mech. Physics Solids, submitted.
Pagano, N. J., 1988, “Elastic Response of a Multi-Directional Coated-Fiber Composite,”
Composites Science and Technology. Vol. 31, pp.273-293.
Pagano, N. J. and Tandon, G. P., 1990, “Modeling of Imperfect Bonding in Fiber Rein-
forced Brittle Matrix Composites,” Mechanics of Materials, Vol. 9, pp. 49-64.
Papanicolaou, G. C., Messinis, S. S. and Karakatsanidis, 1989, “The Effect of Interfacial
Conditions on the Elastic-longitudinal Modulus of Fibre Reinforced Composites,” Journal
of Materials Science, Vol. 24, pp. 395-401.
Qiu, Y. P. and Weng, G. J ., 1991, “Elastic Moduli of Thickly Coated Particle and Fiber-
reinforced Composites,” Journal of Applied Mechanics, Vol. 58, pp.388-398.
Rosen, B. W., and Hashin, Z., 1970, “Effective Thermal Expansion Coefficients And Spe-
cific Heats of Composite Material,” International Journal of Engineering Science, Vol. 8.
pp. 157-173.
Siboni, G. and Benveniste, Y., 1991, “Micromechanics Model for the Effective Therrno-
mechanical Behavior of Multiphase Composite Media,” Mechanics of Materials. Vol.11.
pp.107-122.
Sideridis, E., 1988, “The In-plane Shear Modulus of Fibre Reinforced Composites as
Defined by the Concept of Interphase”, Composites Science and Technology, Vol, pp. 35-
53.
Sottos, N. R., McCullough R. L. and Guceri, S. I., 1989, “Thermal Stress Due To Property
Gradients at the Fiber/Matrix Interface,” in Mechanics of Composite Materials and Struc-
tures, eds. J. N. Reddy and J. L. Teply, ASME, New York, pp. 11-20.
Sullivan, B. J., and Hashin, Z., 1990, “Determination Of Mechanical Properties of Interfa-
114
cial Region between Fiber and Matrix in Organic Matrix Composites,” in: H. Ishia, ed.,
Controlled Interphases in Composite Materials, Elsevier, New Youk, pp. 521-537.
Sutcu, M. 1992, “Recursive Concentric Cylinder Model for Composites Containing
Coated Fibers,” International Journal of Solid and Structures. Vol.29. pp. 197-213.
Takao, Y. and Taya, M. 1985. “Thermal Stresses in An Aligned Short Fiber Composite
with Application to A Short Carbon Fiber/aluminium” Journal of Applied Mechanics, Vol.
52. pp. 806-810.
Theocaris, P. S., 1986, “The Concept and Properties of Mesophase in Composites,” in
Composite Interfaces, eds. H. Ishida and J. L. Konig, North-Holland, pp. 329-349.
Theocaris, P. S., 1987, The Concept of Mesophase in Composites, Springer Verlag, Berlin.
Theocaris, P. S., and Demakes, C. B. “The Influence of the Elastic Properties and Dimen-
sion of Coatings on the Stiffness of Encapsulated Fiber Composites,” Composites Science
and Technology, Vol. 45, pp. 295- 305.
Theocaris, P. S., Sideridis, E. P., and Papanicolaou, G. C., 1985, “The Elastic Longitudinal
Modulus and Poisson’s Ratio of Fiber Composites”, Journal of Reinforced Plastics and
Composites, Vol. 4, pp. 396-418.
Tong, T., and Jasiuk, I., 1990 “Thermal Stresses and Thermal Expansion Coefficients of
Composites Reinforced with Coated Spherical Particles,” in Controlled Interphase in
Composite Materials, H. Ishida, ed., Elsevier, New York. pp. 539-548.
Turner. S. P., Taylor. R., Gordon. F. H. and Clyne. T. W., 1993 “Thermal Conductivities of
Tr-Sic and Tr-TiB2 Particulate Composites, Journal of Materials Science Vol. 28, pp.
3969-3976.
Wright, W. W., 1990, “The Carbon Fiber/epoxy Resin Interphase - A Review - Part II,”
Campos. Polym., Vol. 3, pp. 360-401.
Wyie, C. R., and Barret, L. C., 1982, Advanced Engineering Mathematics Copyright by
McGraw-Hill, Inc, New York.
HICH
Ian STATE UNIV. LIBRARIES
IlmlllllllllllllllIlllllllllllllllulmllllllHl
1293010517864
3