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ABSTRACT

ESTIMATION IN INTERVAL CENSORSHIP MODELS

By

Zhiming Wang

Interval-censored data arise in the analysis of survival times where there is only

periodic assessment of subjects for outcomes of interest. We address the problem of

estimating the survival distribution of the time of onset of some biologic event when its

time of occurrence is not observed directly, but is known to have taken place in some

time interval determined by the pattern of the examination times. This event time may

also be right-censored if the event has not occurred at the time of the last assessment.

We introduce a statistical model incorporating the examination times and the

event status at these times that indicates whether or not the outcome has already taken

place. Two cases are considered, one in which the number of assessments that are made

over the period of study is fixed, and in the other where this number is random.

Identifiability of the distribution of the event time is proved.

A class of estimators of the survival function is proposed in an interval censorship

model in which there is one examination time. These estimators are shown to satisfy

certain self-consistency equations and this provides a means of their computation using

the EM algorithm. The relationship between this class of estimators and the

ii



nonparametric maximum likelihood estimates is investigated. We establish the strong

consistency of our estimators and derive the weak convergence of certain functionals.

A corresponding Bayesian estimator is constructed under the assumption of a

Dirichlet process prior, and is shown that it does not necessarily converge to the

nonparametric maximum likelihood estimator.

Simulation studies are presented under parametric assumption with two

examination times. Comparisons are made between the nonparametric Tumbull estimate

of the survival function and the maximum likelihood estimate under the parametric

model.
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Chapter 1

INTRODUCTION AND SUMMARY

The past two decades have witnessed the rapid development of statistical

methodology for the analysis of survival times from censored data. These data arise in

several clinical, biomedical and epidemiological studies where outcomes of interest are

response times, for example, time to tumor appearance, time to relapse, or time to death

or failure. These endpoints, however, may not be observed in all subjects for various

reasons. Subjects in the study may be lost to follow-up due to withdrawal or to the

occurrence of an end point unrelated to the outcome of interest in the study. These data

are turned right censored. The typical situation where right censorship occurs is when

subjects enter a study at different (random) times and are followed until a specific

endpoint is observed. The time of its occurrence T, measured from entry, will be right

censored if by the time of termination of the study the event of interest has not taken

place.

The situation where the event/outcome of interest may be subject to left or right

censoring is generally referred to as double censoring. Leiderman (1973) describes a

study of infant precocity in a group of Kenyan children in which subjects entered the

study at different times and were tested periodically to ascertain whether they had

acquired certain skills. The time of onset T of the development of these skills was of

interest. We note that T is left censored if a child at the time of entry into the study has

attained the desired level of development, and right censored if, by the last available

assessment time, the child has not reached the goal.
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Interval censorship arises where continuous monitoring of outcomes of interest is

impractical, and assessments of the study subjects can be conducted only periodically.

The precise time T at which the outcome occurred is not observed, but is known to have

taken place within a specified time interval determined by the sequence of observation

times {Wk : k z 1}. What is known is that the event occurred in some time interval

(Wk, WM]. Therefore, the event time T is said to be mm. For example,

Peckham (1991) reported for the European Collaborative Study regarding the

development of AIDS in 600 children born to mothers who tested positive for the human

immune deficiency virus-1. These children were examined at birth and at 3 months

intervals until 18 months of age, and again every 6 months thereafier until 4 years of age.

Thus changes in their clinical status were not observed directly. They were seen only at

the age at which disease was first detected and the age at the previous assessment and

hence the time of onset of infection or disease is interval censored.

In each of the cases of censorship described here, a basic problem is the

estimation of the distribution of T from a sample of observations under nonparametric

circumstances. For right censored data, Kaplan & Meier (1958) introduced the product

limit (PL) estimator, which has become the cornerstone for almost all analysis of right

censored survival data. The properties of the PL estimator, its asymptotic theory and the

statistical inferential procedures based on it, have been extensively investigated by

several researchers. Turnbull (1974) introduced an algorithm for estimating survival

curves from double censored data, and Chang & Yang (1987) described a statistical

model under which identifiability of the distribution of T and the strong consistency of an

estimator of it were established. The weak convergence of the estimator was proved by

Chang (1990). Samuelson (1989) describes another approach to the problem of estimation

using a formulation based on counting processes.
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Tumbull (1976), improving on a method of Peto (1973), developed an algorithm

for computing an estimate of the survival function fi‘om interval censored observations.

His method of estimation is based on maximum likelihood considerations and yields a

system of equations (self-consistent equations) that may be solved using the EM

algorithm.

An investigation of the properties of the Turnbull estimator was made very

recently by Groeneboom and Wellner (1992), who explored a connection in the

construction of the nonparametric maximum likelihood estimator (NPMLE) and isotonic

regression. They established the strong consistency and weak convergence ofthe NPMLE

in two models of interval censorship.

The focus of this thesis is on three issues in interval censorship: Identifiability of

the distribution of T in a general model of interval censorship, Consistency of a sequence

of estimators of the distribution of T and a Bayesian approach to this estimation.

Chapter 2 introduces a general model of interval censorship that incorporates the

entire pattern of potential examination times over the duration of a study. We consider

two designs. The first permits only a fixed number of inspections of the units, while the

other allows the number of assessments made during the follow-up period to be random.

Within a nonparametric formulation and under some mild conditions, we prove the

identifiability of the distribution of the event time and describe its relationship to other

interval censorship models.

Chapter 3 studies the strong consistency and weak convergence of the estimate of

survival firnction. The estimator is defined implicitly through two equations ((3.3) and

(3.4)) and we demonstrate that their solution is equivalent to the solution of the self-
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consistency equation. Turnbull (1976) has suggested that a self-consistent estimator is a

maximum likelihood estimator (MLE). However, we have found self-consistent

estimators that depend on the initial mass assigned in the EM-algorithm and do not lead

to maximum likelihood estimators. An example is given in section 3.2 showing we have

different self-consistent estimates derived from one set of interval censored data. Strong

consistency is proved for the class of self-consistent estimators under certain conditions

which are also satisfied by the MLE. Therefore the MLE is also strongly consistent under

these conditions.

In Section 3.4, we study the weak convergence of our estimator. Let S(t) be the

survival function of T and S‘"’(t) be a self-consistent estimator of S(t). For the double

censorship model, Chang (1990) shows that JE(S(")(t)—S(t)) converges weakly to a

Gaussian process. However, in our interval censoring model, we do not achieve such a

property. Instead, we show that J5]: (S‘"’(s) -S(s))ds converges weakly to a normal

distribution.

In Chapter 4 we construct a Bayesian estimator of S(t) under the assumption of a

Dirichlet process prior. For right censored data, Susarla & van Ryzin (1976)

. demonstrated a nonparametric Bayesian solution to estimation under squared error loss.

The resulting Bayesian estimator was shown to reduce to the PL estimator in the cases

where or(R+)—>O, where a( - ) is a finite measure on R‘“ which serves as a parameter of the

Dirichlet process prior. By following the process of construction of the Bayes estimate of

S(t) for right censored data, we find that, for right censored data, the estimator satisfies

certain self-consistency equations. Several relationships between the Kaplan-Meier PL

estimator and Bayes analog are obtained and an expression for this estimate under
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interval censorship is presented in section 4.3. It turns out that this Bayes solution does

not necessarily reduce to the MLE as a(R+) —>O.

Examples simulation studies are presented in Chapter 5. The underlying survival

time T is assumed exponential and the inspection times are Gamma-distributed. We

compare the Turnbull estimate of the survival function with that of the MLE obtained

under the parametric assumption. For the former we employ our APL programs to carry

out the task of solution of the self-consistency equations. The SAS LIFEREG procedure

is used for the parametric model.



Chapter 2

IDENTIFIABILITY

2.1 Interval Censorship Model

Let T denote the time of occurrence of the event or response of interest, and let

{Wk : k 2 1} be the increasingly ordered sequence of potential observation times, with all

variables being measured from a common time origin. At the k-th examination time W,,

the event status is designated by the indicator 5k= [ T s W, ], that is 6,, = 1 if the response

has occurred by time W, and 5,: 0 otherwise. We set W0 = 0 and for each I, define

N(t)=min{k21: 8k=l,W,St}, (2.1)

if this minimum exists and set M!) = +00 otherwise. Also M(t) = max { k 2 l: W, s t } is

the last examination at or before I, which takes place at time WM (see Figure 2.1). Since

throughout this paper t is held fixed, we shall not exhibit the explicit dependence of the

variables on t.

Under the assmnption that W1 5 t almost surely, M(t) is finite, also N in (2.1)

when finite, marks the first examination at which a positive diagnosis of the event

6
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occurring at the unobserved time T is made by time t. Then L = WM1 and R = WN, define

respectively the time of the last negative assessment and the time of the first positive

assessment. In this case we have T e ( L , R]. On the other hand ifN = +00, we only have

the knowledge that T > WM, which makes T right censored. Therefore the information

available on T is that Te (WN_,,WN] when N is finite, and for N = 00, T > WM. Define

We, = WM. The problem addressed in this chapter is the identifiability of the distribution of

T on the basis of the datum (WN_,,WN,N,M). Specifically, if N' and M are defined

similarly for the nonnegative variable T ' and the positive increasing sequence {Wk': kal}

then we wish to show that {T, W, , k =1, 2, - - - } and {T', Wk' , k =1, 2, - - ~ } have the

same distribution on [0, t], when the distributions of (WN_,,WN ,N, M) and

(W,;,._,,W,;,.,N', M') are the same.

Turnbull (1976) described a method of maximum likelihood estimation of the

distribution of T based on data of the type T e (L , R], with R possibly infinite when T is

right censored. Groeneboom and Wellner (1992) have developed estimation methods for

two interval censoring models. In the simplest of these, called Case 1, there is a single

examination time X, and the observable aspect of the model is the pair (X , 6 ) where

8=[TSXJ. This situation is obtained by taking X= W,, for any examination time Wk. In the

second case, called Case 2, there are two examination times X and Y, with X < Y, with

the observable datum being (X, Y,y ,y '), wherey = [TSXJ and y ' = [T e( X, Y]]. In

the context of periodic assessments Case 2 is also too wide, since the times X and Y can

be obtained from the examination history in several ways. For instance, from any two

examination times W,, W]. with W, < W}, we get Case 2 by defining X= W, and Y= W}. Our

model, on the other hand, focuses on the entire examination pattern and defines the

variables that are relevant.
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For our identifiability problem, we consider two situations. In both the times of

inspection are random. In the first, a fixed number of inspections is made in each subject,

that is M is a constant. We refer to this case as 'Model I'. In the second situation, the

follow-up period t is fixed and then the number of inspections Mover the period [0, t] is a

random number. We refer to this case as 'Model 11'.

Let S, (x) = P (T > x) denote the survival distribution of T, and V, = Wk- W,,_1 , k 21.

The basic assumptions that we make to establish our results are the following:

(A1) Tis independent of{ W,; k =1, 2, - - - }.

(A2) {Vk : k 2 1} are independent and nonnegative, with the density g, of V, being

continuous and positive on (0, 00).

(A3) 0 < S,(x) < 1 for x e (0, co), and ST is continuous.

The conditions (A1) and (A3) were used by Chang and Yang (1987) to prove

identifiability in a model for double censorship. Identifiability of the distribution of T

fails when the inspection times are degenerate; that is g, = O a.s.. See Remark (2) at the

end of the proofs for an example. Therefore in this nonparametric framework we will not

have identifiability if the inspections are made at fixed times. Only the probabilities

assigned by the distribution of T to the fixed intervals (WM, Wk] can be identified.

2.2 Model 1:

Random Inspection with Fixed Number of Inspections During Follow-up

Since M is assumed here to be fixed, let M = m (21), where m is an integer. Also

N is the first integer k for which T S W, or N = 00 if no such k exists. We first define
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several sub-distributions that will be used in our proofs. All arguments x, x,, x2 6 R”r =

[0, 00)-

Let

Ql (x)=P(Wl Sx ,N=l),

Qa,(x) =P(Wm Sx , N=oo),

and forkz 2,

Q.(xl ,xz)=P(W.., Sx. , W,.Sx2 ,N=k).

From our assumptions, Wk will have a density f, which is continuous and positive on

[0, 00). In factf, = g, and f, (x) = [I'm (u)g, (x — u)du, k 2 2. Then Q,, Q, and Q, for 122

can be expressed as follows:

Q. (x) =Jo’{1-Sr(u)}f.(u)du, (2.2)

Q. (x) =Jam/mm (2.3)

on. ,x.) =1," If {5.6) — Sr(v)}f.-1 cog. (v - u)dvdu, k 2 2. (2.4)

Our first theorem shows that T is identified from the datum ( Wm , WN, N ).

Theorem 2.1

Under assumptions (A1)-(A3), ST is uniquely determined by Q,, Q00, and Q, (k =

2, . . ., m).

Proof: For the random variables T ', W,’ , k 21, we define V,’ = Wk' - WH' ( Wo' = 0 ) and

N ', M ' as in (2.1). Let S,(x) = P (T' > x) and fl, g,’ be the densities of Wk', V,‘

respectively. Assume the conditions similar to (A1) - (A3), and suppose they produce the

same sub-distributions Ql , Q”, and Q, (k = 2, - - -, m) as in (2.2) - (2.4). We get
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{1 - 510)”? (I) = {1 - 51(x)}f.'(X), (2-5)

5106)]; (x) = 5106)}? (X), (2-6)

{57051) ' Si(x2)}fk-1 (x1) gk(x2 ' x1) = {Sr(x1) ' S1(x2)}fk.r'(xr) gk'(x2 ' x1), (2-7)

where k = 2, 3, ~ - -, m. We will prove S, a S,.

If m = 1, we only have (2.5) and (2.6), and together these yield f, (x) =f,‘ (x). Hence S, =

S, sincef, is assumed positive.

For m 2 2, rewrite (2.5) - (2.7) in the form

{1 - 3700} {f1 ()6) -f1'(X)} = {5206) - 51(X)}f1'(x), (2.3)

SKX)%' (x)-f..(X)} = {5706) - S1(x)}f..'(x), (29)

{(ST -S,)(x,) ' (str)(x2)}fi.r (x1) gr(x2 ‘ x,)

= {Sr(x|) ' S1052» {fr-1.051) gr'(x2 ' x1) ’fk-r(x1)gk(x2 ' 351)}, (2-10)

where k= 2, 3, - - -, m.

Let h = ST - S,. Then if h at 0 we must have one of the following two cases:

Case ( I ): h(x) 2 O (or symmetrically h(x) S O), x eR+.

Case ( II ): There exist x,, x2 eR”, such that h(x,) > O and h(xz) < 0.

Now we prove both cases will lead to a contradiction.
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In Case ( I ), since h is continuous and h(O) = 0, there exists to eR+ such that h(x) 2 O for

xe [0, to], and h(x) < h(to) for x e [0, to). From (2.10) with k = m,

flu-1'05) gm'(t0 " x) (fin-1(x) 8.110 ' x): x E [09 to).

So. fro.) = I,“ f -.'(x)g.'(t. —- x)dx

< I: fin—I (x)gm (t0 — x)dx

=f...(to )- (2.11)

Since S,(to) - S, (to) > 0, we get from (2.9)

123(4)) >fm(to ) (2.12)

Hence (2.11) and (2.12) are contrary to each other. Symmetrically if h S 0, the proof is

the same. Therefore Case ( I ) cannot hold.

In Case ( II ), since h is continuous and h(0) = 0, there exist t0 , t, with 0 S t0 < t,, such

that h(to) = O, h(t,) = O, and h > O on ( t0 , t, ) (or h < O on (to, t,), in which case the proof

is the same). Let us assume to >0, for otherwise we would essentially have Case ( I )

again.

By (2.8) and (A3) we have

h(to) =f1'(to), f1(t.) =f1'(t.), and/'10:) >fl' (X) for 15600 , 10- (2.13)

Taking x, = to and x2 6(1‘0 , 1,) in (2.10) with k = 2, we obtain

fr'(xl) g2'(x2 - xi) <fl (x.) g2 (x2 - x1),

and in view of (2.13), also

g2'(x) < g2 (x), for xe(0, t, - 0). (2.14)

Taking x, e( to, I, )and x2 = t, in (2.10) with k = 2, and in view of (2.13), we obtain

f1'(xr) gz'(x2 - 16,) >f.(x1) g2(x2 - x1)

>f1'(x1) 82062 - x1)-

So, g2'(x) > g2 (x), for xe(0, t, - to). (2.15)

Hence (2.14) and (2.15) are contrary to each other. Therefore Case ( II ) cannot hold.
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Corollary 2.1

The identifiability above is total identifiability, that is { f, , g, , k = l, 2, - - - , m }

are also identified by Q, , Q 2 , - - . , QM, Q00.

Proof: We need to provefis f,’ , g,-=- g,', k=1, 2, - - - , m.

We have already proved S,(x) = S, (x) for x eR+. By (2.5) and (A3) we get

g, =f, =f,’ =g,’ on R+. In (2.7) with k=2, take x, = 0, x2 =x eR“, then

{1 - 510an (0) g; (I) = {1 - S,(X)}f1'(0) 82' (X),

and it follows that g2(x) = g2'(x). From f2 (x) = ff, (u)g2 (x - u)du, we obtainf2 (x)=f2' (x).

By the same arguments and inductively we can establish 1; (x) = fi'(x) and g, (x) = g,'(x)

forlSkSm.

2.3 Model II:

Random Inspection with Fixed Follow-up Period

In this case the number of inspections Mmade over the observational period [0, t]

is not fixed in advance. Then M becomes a random integer that is the total number of

inspections made in this period. Note that N takes on values 1, 2, ~ - -, Mand +00. Let

Q (x, ,x2 , n , m) = P(WN_, Sx,,W,,, S x2,N = n, M: m), (2.16)

where OSx,,x2 S t,1 S n S m andm _>. 1; and

Qw(x,m)=P(Wme,N=oo,M=m), (2.17)

where 0 S x S t and m 2 1. The following theorem shows that T is identified from the

datum (Wm, WN, N, M).
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Theorem 2.2

Under assumptions (A1) - (A3), on [0, t], S, is uniquely determined by the sub-

distributions of(2. 16) and (2.17).

Proof: Let

Q: (x)=P(W,Sx,N= 1):

= ZPU‘Vn—r SxraWN Sx,N=l,M=M),

m-l

= ZQ(x,,x,1,M),

nt=l

and

Q2 (x,,x2)=P(W, Sx, , WZSx2,N=2),

= iQ(x,,x2,2,m),

m=1

where x, x, , x2 6 [0, t].

By the same argument leading to (2.2)-(2.4), Q, and Q2 can be expressed as follows:

Q, (x)=],’{1-Sr(u)}fi(u)du. (2.18)

Q2(x1 ,x. > =1," I,” {5.6) — Sr(v)}f1(u)g2(v - u>dvdu. (2.19)

wherex,x, ,x,e[0,t].

For xe [0, t], let (72(x) = P(V2 > x) = fg,(u)du, then

Qw(x, l )=P(W, Sx, T2 W,,M= 1),

=P(W, Sx, T2 W, , W, + V2>t),

= L’P(T>u,V, >t—u)f,(u)du,

= 10’s,(u)f,(u)c_;,(t —u)du. (2.20)

We will prove ST is uniquely determined by Q, , Q2 and Q0, .
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As in the proof oftheorem 2.1, for the random variables T ', W,’ , k 21, we define

V,'= W,‘ - W,_,'( W,'=O)andN',M'asin(2.1). LetS, (x)=P( T'>x)andf,',g,’ bethe

density of W,', V,’ respectively. Assume the conditions similar to (A1) - (A3), and

suppose they produce the same sub-distributions Q and Q, as in (2.16) and (2.17). From

(2.18)-(2.20) we get

{1 ' 51(x)}f1 (x) = {1 ' S,(x)}f,'(x), (2-21)

{51(x1) ‘ S7(x2)}f1 (x1) 32 (x2 ' x1) = {Sl(xl) ‘ Sr(x2)}fr'(xr) 32.052 " x1), (2-22)

S7001: (xx—ix t - x ) = Slam '(x)C—32'(t - x), (2.23)

where x, x, ,x, e[o, t], and (72'(x) = P(V2'> x) = fg;(u)du.

Since (72 and (72' are survival distributions, taking x = t in (2.23) yields

$10M (t)=S.(t)f.'(t)- (2.24)

Together with (2.21), this gives f, (t) = f,'(t), and since f, and f,' are positive, we also get

S,(t) = S, (t). Hence ST and S, agree at zero and t. Suppose S, :t S, on [0, t]. There exist t0

and t, with 0 S t0 < t, S t such that S,(to) = S,(t,), S,(t,) = S,(t,), and S,. > S, on (to, t,) (or

S, < S, on (to, t,)). The rest of the proof follows the same arguments as in Case ( II ) of

section 2.3 in order to obtain a contradiction. Therefore ST E S, on [0, t].

Corollary 2.2

The densities {j}, g,; k 21} are also identified by the sub-distributions Q and Q00.

Proof: The proof is the same as corollary 2.1, note we have the sub-distributions:
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Qk(xl ,x2)=P( Wit-13x19 Wkst’Nt=k)

=Q(x,,x2,k,k)+Q(x,,x2,k,k+1)+ ' ' '

=P( W,_,_<_x, , W,,Sx2, W,_,<T<W,)

=1." l.” {SM -52mm, (20g. (v - u)dvdu,

where x, , x2 6 [0, t], k 2 2.

Remark:

(1). Theorem 2.1 and 2.2 will continue to hold if the assumption of continuity of the

densities g, in (A2) is replaced by either right or left continuity of the g,

(2). If g, = 0 on some interval, then the identifiability fails. For example, in model I with

a simple inspection (m = I), suppose f, = g, = 0 on (1, 2) and S, and S, coincide outside

(1, 2), but differ on (1, 2). Then S, and S, will produce the same sub-distributions Q, and

Q0 in (2.2) and (2.3). A similar example for the two-inspection case (m = 2) is given by

Chang & Yang (1987).



Chapter 3

STRONG CONSISTENCY AND WEAK CONVERGENCE

3.1 Introduction

In this chapter, we study the Case 1 interval censorship model, which is a special

case of our Model I discussed in Section 2.2 with m=1. Let T be the failure time on R“ =

[0, 00) with survival function S(t) = P( T > t ), Y be the inspection time on R+ = [0, 00)

with survival function S,(t) = P( Y > t ), and 5=[TS Y]. We observe n independent and

identically distributed copies of (Y, 8), {(Y, ,8, ): i=1, 2, n }.

Assume the following conditions to hold:

(B1) T and Y are independent.

(BZ) S, is continuous, and S,(s) - S,(t) > O, for V O S s < t < 00.

(B3) S is continuous, and S(s) - S(t) > O, for V 0 S s < t < 00.

Define

W, (t)=P(Y >t, 6 =1),

W. (t)=P(Y», 6 =0). teIO, co),

which can be written in terms of the survival functions as

M(t)=-]i1—S<s))dsy(s), (3.1)

M(t)=-f39(s)dsy(s). (3.2)

Define the empirical survival distribution of the inspections Y,, . 1 -, Y

16
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§§"’(t)=l:[x >t],
hi

the left censoring process

Nimitz St, 8.-=1],
1'21

and the right censoring process

main: St, 6.=01.
i=1

Let WI‘"’<r)=1(NL(oo)—N.<t» and Wz‘"’(t)=1(N,<oo)—N,(t)). Ni and NR are
n n

counting processes. Note that NL(oo) and NR(oo) are finite, and NL(oo)+NL(oo)=n. We

. co no I 9- _

denote the mtegrals L1,”) by L, LCD) by L , and Jionby I0. Define 0 — 0. Let it be the

Lebesgue measure on [0, 00). A function on [0, co) is said to be a sub-survival function if

it is nonnegative non-increasing, and right continuous. It is called a survival function if

additionally its values at 0 and 00 are respectively, 1 and 0.

We construct the estimators ofS and S,., through the following two equations (3.3)

and (3.4) (see Remarks below).

n no 1_ SM) (t) n w n n

W,‘ )(’)+lr+1——_.9de( )(s)=LS§)(s-)dS( )(s) , (3.3)

WW)=-]fS‘"’<s)dS;"’(s), (3.4)

with 5"" (O) = S,(") (O) = 1, t e [0, 00).

In the next section, we will show that a solution 5"” exists and that it is a self-consistent

estimator of S.
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Remark:

(1) An obvious approach to obtaining estimators ofS and S, is to replace all functions

in (3.1) and (3.2) by their estimators, and search for a solution to the equations. For this

approach, we would solve for S1") and S,‘"’ from the equations:

W."°(t> = -],f(1- s‘"’(s))dS;"’(s> ,

W(t) = -J: S“)(new (s).

This approach can be applied to right censorship and double censorship. Chang and Yang

(1987) utilize this method in the latter case. However, in our case of interval censoring, if

we solve for S‘") and S,‘"’ from these equations, then S,.“) will be the empirical of S, and

S‘") will not be a survival function. The modification made in (3.3) leads to the

appropriate solution of8"" as a survival function.

(2) The solution S,"" from (3.3) and (3.4) is not the empirical S)”. Later in Section

3.3 we give its relationship to the empirical Sf”.

3.2 Self-Consistency

Given { (Y, ,6, ): i=1,2,---,n } = 11/", computation of the conditional expectation

F(t/\)u)[ F(t)—F(t/\u)
E(—;§[T>t] I Mn)gives H{_[x_u]+ 1—F(u)

 

[x > u]}dP,, (x,u), where

P,,(x, u) = 12m S x, Y, S u], F = l-S. A self-consistent estimator S‘") of S is a solution of

i=1

the equation (self-consistency equation)

50%): E(—3121754 I 2,),

"i=1

where the right-hand side is evaluated at S"). In this section we show the equivalence

between the self-consistent estimator and the solution to the equations (3.3) and (3 .4).
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Theorem 3.1

Given the observations { (Y, ,5, ): i=1,2,--°,n }, ifS ('0 is a self-consistent estimator

ofS , then there exists a survivalfitnction SI"), such that S 0') and SI") are the solution of

the equations (3.3) and (3.4). Conversely ifS 0" and S,(f') are the solution ofthe equations

(3.3) and (3.4), then S 0') is a self-consistent estimator ofS.

Proof: Suppose S 1") is a self-consistent estimator ofS, then

1—=s‘"’(t) ES,,{E,(t) ”1,... , 1;; 5,,---,5,,}, (3.5)

where F,,(t) = 12”; S t] is the empirical of F = 1-S(t), and EW is the expectation

n
i=1

under the assumption that T, have the survival distribution S 0" for any i. So

1" 300“)"— 12E8"" II]; St” X’si}:

1- S(")(t A 1;) + 50%: A 1;) — S(")(t)

1-50009 " SW01)

  __1_ " _
*n§{ (1 51)},

1— S‘"’ (t)

-sS‘"’()

,S(n) (S)_S(n) (I)

We)

Recall the definition of W,"° and W2”), and that NL(oo) + NR(°°) = n. We get

=—[NL()++I,""1—dNL(ss)++I dN,(s)]. (3.6)

8%) = W."”<r)+ we‘"’(r)+I”——“S(")(’)dm‘"><s)— I—Sm“)new). (3.7)
'+1— S‘")(s) 0 S(")(s)

Define the estimator ofS, by

(n) (n)
s (t)-_ 1+ I0WW (S), ta [0, oo). (3.8)

The definition of Sf,” is valid, since S (”)(t) 2 W200 (t) by (3.7) , and %= 0. Also, SI") is a

right continuous non-increasing function on [0, 00) with Sf."’(0) = 1.

Differentiating (3.8) yields
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I

S9') (s)

 dS§")(s) = dW2(")(s), or dW2(")(s) = S('0 (s)dS§")(s). (3.9)

By integration, this leads to (3.4).

Let Y,,,” > Y,,, be an arbitrary point to put on the remaining mass of 5‘") and SI"). Then

.S‘"’(00)=S§")(00) = O. This does not affect the self-consistency of 5‘"). So (3.7) becomes

an no 1- S‘"’ (t) .
(n) _ (n) (n) (n) (n) (u) (n)

S (t) — W. m—LS (ads, <s>+ Lam—”4W1 <s>-S (oIodS, (s),

with S§"’(O) = 1. Using the fact that

d(UV) = VdU + U_dV (3.10)

for discontinuous functions U and V, this becomes

1—S‘"’(t)

1-S(")(s)

which is (3.3). Hence S1") satisfies equations (3.3) and (3.4).

W.‘"’<r)+ I: dW.""(s)=-I:S;"’(s—)ds‘"’<s), (3.11)

Conversely, the entire argument above can be reversed. Suppose S "0 and SI") are

the solutions of (3.3) and (3.4) with S‘"’(O) = S§")(O) = 1 and S‘"’(oo) = SI")(oo) = 0. Then we

will get (3.8) from (3.4), and substituting it in (3.3) will lead to (3.7), which is the self-

consistency equation (3.5).

The estimators S”) and SI") defined through (3.3) and (3.4) is specified only at the

observed points {Y,z lSiSn}. We extended 5"" and SI") to R+ by making them right

continuous step functions, which jump only at Y,'s. Unlike the right censoring and double

censoring cases, even if we just concern ourselves with its values at the observed points,

the self-consistent estimator from interval censored data is not unique. Both Turnbull

(1976) and Groeneboom (1992) obtain a MLE by maximizing

H{F(I§)}5" {1—F(I§)}"5'. They show the estimator to be self-consistent and unique.

i=1
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The following example shows that there exists a self-consistent estimator which is not the

MLE.

Example 3.1

The following data, (1, 1), (2, 0), (3, 1), (4, 1), and (5, 0), n=5, with corresponding

intervals (0, 1], (2, co), (0, 3], (0, 4] and (5, 00) were analyzed using the APL program to

solve the self-consistency equations. Two different estimators shown below were

obtained (assume Y,,,,= 6 is the point to put on the remaining mass). It can be shown that

both Sf") (Figure 3.1) and S15") (Figure 3.2) are solutions to (3.3) and (3.4) and that Sf") is

the MLE. Hence there exists self-consistent estimator, namely 52‘"), which is not MLE.

S."°(t) = 1, taro, 1); S§"’(t) = 1, r em. 1);

= 1/2, t EU, 3); = 2/5, t e[1, 6);

= 1/3, t GB, 6); = O, t e[6, 00).

= O, t e[6, 00);

1/2- '

1/3 -
 

 
Figure 3.1
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2/5 _
 

 
Figure 3.2

3.3 Strong Consistency

We already defined S,S,,W, ,W2 ,S‘") ,S}"’,W,"" ,W2("’ ,and SI") . They are survival

or sub-survival functions on [0, co), and their relationships are given in (3.1) - (3.4).

A self-consistent estimator 5"" is a non-increasing right continuous step function.

Let J, = { t,: k = l, 2, - - -, m} be the collection ofjump points ofS"). Let 0 = t0 < t,<, - - ~,

<tm< oo.Then{t,,: k=1,2,~~,m}c:{Y,: i=l,2,-~,n}.Define

(n) _ (n) ”I‘SWU) (n)
V, (o-W. (’)+Ir+1—S(">(s)dW‘ (s). (3.12)

Then (3.3) becomes

We)=-I,°fS;"’(s—)ds‘"’(s). (3.13)

Since W,<"’(t) + W,<'°(t) = Em), and using (3.9), we get

Mme) = d§§"’(t) - dWZ‘Wt),

= We)- S‘"’(t)dS§"’(t),

= mm)—St’u» + (1 — S‘"’(r»dS§"’(t). (3.14)

Differentiating both sides of (3.12) and using (3.10) yields

dW,"”(s) _ 1- S(")(t)dV,(n)(t) ____ (In/‘0!) (l) _dS(")(l)fo l— S(n)(s) 1_ S(n)(t)
dW."°(t).
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= —dS(")(t)_[wl—df/(—g:;)%)-)u

= _ds<">(r)I,°° “3:2,;295:0» + ds‘"’<r>I,°°——4:: EL:8 St") (s),

= —dS‘"’ (t)I°° “5,352,; 2953(3)) + dS‘") (as?) (t—). (3.15)

Now using dV,"” (t) = s;”’(t—)ds("’(t) by (3.13), we get

ds<">(z)I°° d<§f;)£2,;f:;;(‘)) = o , t2 0. (3.16)

Since { 1,: k = 1, 2, - - -, m} are the points ofjump of S‘") , so dS‘"’(t,) at 0 and (3.16)

implies

,wd(§§"’(s)-S§"’(s)) :0 ,=, 2 ,
 

 

. (1—s<">(s)) --,m. (3.17)

Hence

mm)-S§"’(s» _ 0

1..-...) (l-S‘"’(s>> - '

Since 8"" is constant on [t,_,, t,),

 1 "(n) (n) _ . . .

,_ S(")(tk_1)[,k:[,td)(sy (S) — Sy (S)) — O , whrch implres

I,”d(-§1"’<s>—S§"’<s>) =0. (3,18)

Therefore

SI")(t,-)=S,(,")(t,—), k=1,2,..., m.
(3.19)

That is the left limits of SI") and SI") agree at every point ofjump of 5"” .

To obtain the strong consistency of a sequence of self-consistent estimators S"),

we need to assign some condition on J, which is the points ofjump of 5‘"). Define
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A,,= { a): 3N,suchthatforanyn>N,J,,(co)n(t-e,t+e)¢ E}.

Condition C: P(A, , ) = l for any t> 0 and every 8 > 0.

The above condition also means that almost surely for any I > O and a > 0, there exists

N = N(t, e) such that for any n > N, J,(co)n( t - e , t + 8 )¢ E. Namely, almost surely, in

any neighborhood of t, we can always find points ofjump of 8‘") for n large enough.

Theorem 3.2

Under Condition C, S“) uniformly converges to S almost surely. That is

P( lim 1301p) lS‘")(t)—S(t)l = 0 ) = 1.

Since {S(")(t)}and {SW (t)} are series of survival functions, by Helly's theorem,

there exists a sub-sequence {Sm (t), S?" (t)} and sub-survival functions S°(t) and

S,’ (t) , such that 5"” —> So at continuous points of 5°, and SI”) —) S3 at continuous

points of $3. With probability 1, W,W(t) —> W,(t), W,(")(t) —> W2 (t), and SIM) —> S,(t)

uniformly for t e[0, 00), since W, , W2 and S, are continuous. Hence without loss of

generality, we may assume uniform convergence on the whole space (2. Further since we

will show every sub-sequence has the same limit, we will also assume {n’} = {n}. To

prove the theorem, we need a few lemmas.

Lemma 3.1

S: (t) is continuous on [0, 00).

Proof: From (3.8), S§"’(t) = 1+ J:WMMKSLI E [0, 00)-
s

For continuity points of S3 (t) 0S s, <s2 , we have
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—1—dW2‘"’(s),
_ (n) _ (n) =_
(Sy (32) SY (51)) J. S(")(S)

(51-52]

 < -(W;"’ (s2) - W1” (s: D
_

S(n) (82)
’

5 _(W2(") (32 ) _ ”120001 D , (3'20)"/2000,”

 

where the last inequality follows from S‘"’(s2) 2 W,(")(sz) by (3.7). Letting n —> 00

”(W2 (52) - Wz(s1» .

'(Sr (SD—Sr (31)) 5 ”3(32)
 (3.21)

Hence S,0 is continuous on [0, 00) by the continuity of W,. So, SI") (t) —-> S,’ (t) uniformly

for ta [0, co).

Lemma 3.2

W,(t) = -I°° s°(s)ds;’(s). (3.22)

Proof: Let t be a continuity point ofSo, by (3.4),

We) = -If S‘"’(s)dsi"’(s),

= —I:d[s“’(s)si"’(s)1+Ifisitts-Msws) .

= S‘"’ (1)5)” (t) + f 5;") (s-)dS‘") (s) .

Lemma 3.1 implies SI") —> S,’ uniformly on [0, 00). Hence

"5‘"’<t>—"*'i+s°(t)S3(r> + I":S;’(s)ds°(s>,

= —I”s°(s)ds3(s).

Since the continuity points of S0 are dense in [0, co) and W2 is continuous, therefore

W20) = -I°° S°(s>d83(s). new, no) .
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Lemma 3.3

S3") converges to S, that is S3 2 S, .

Proof: For te[0, 00), let s, e J, such that
 
s, -t| = min{|t, —t

 
;t, 6 J,}. Then under

Condition C, s, —-) t . Remember S3")(s, -) = S3"’(s, -), so

Si") (t) " Sy(t)=[51(r") (l) ' Si") (S,. ')l + [Sim (Sn ") - Sy(S,. ‘)I + [Sr (Sn —) " Sy(t)] ,

55+5+5

,, —) 0 , by S3") —) S3 uniformly and the continuity of S3 .

1,, —-> 0 , by S3") -) S, uniformly on [0, oo)

1,, —> O , by the continuity ofS, .

So, S3")(t) —> S,(t) for te [0, so).

Hence S3 5 S, on [0, 00), since both S3 and S, are continuous.

Proof oftheorem 3.2:

By (3.2), Lemma 3.2 and Lemma 3.3, we have W,(z)=—I,°fs(s)ds,(s) and

W,(t) = —I°° S°(s)dS,(s), te[0, 00). That is I”(S°(s)—S(s))d S,(s) = o, te[0, 00). So 5"

= S as. [I]. But S ° is right continuous and S is continuous, so S 0 a S on [0, 00). That is

S‘") -—) S , the continuity ofS makes the convergence uniform. Therefore

. (n) — = :P( 11m .ZEEJS (t) S(t)| 0) 1.
"—)w

Groeneboom (1992) studied the maximum likelihood estimator (MLE) of S,

which he called the nonparametric MLE (NPMLE). He shows that the NPMLE is
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strongly consistent. We prove here that if S 0" is the NPMLE, then S") must satisfies

Condition C and therefore strongly consistent. This is stated below.

Theorem 3.3

IfS ‘"’ is the MLE ofS, then S W satisfies Condition C.

Proof: See Appendix.

3.4 Weak Convergence

In this section, we discuss the weak convergence of self-consistent estimators.

Now assume Tand Y are defined on [0, l] (or defined on [0, M] with M> 0). Define

' ut’m = 43(We) — S(t)).

u§"’(r> = 42(SW) — S,(t».

q:"’<r> = Jim/1"”(t) - W1(t)).

q§"’(t) = JRWZWI) - W20»,

We) = J3 (§§”’(t) —S.<t».

It is easy to see that the processes q,("’(t), q§"’(t) and R("’(t) converge weakly to a

Gaussian process, since they are sum of i.i.d. random variables modified by n“”. We will

now discuss the weak convergence of u,‘"’(t) and u§"’(t). Taking the derivative of (3.2)

and (3.4), we have dW2 (t) = S(t)dS,(t) and dW,("’(t) = S‘"’(t)dS3"’ (t). Subtracting one

from the other, then

dq§"’(t) = S‘"’(t)du§"’(t) + u§"’ (t)dSy(t), or

dq§"’(t) _ uf"’(t)

S‘"’(t) S(")(t)

 dug") (t) = (18, (t). (3.25)

Assume that the largest observation is right censored to make 1 as the last jump point of

5"". Integrate both sides of (3.25) to get
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,. '- dqé'” (s) u”(S)

”3 )(t_)=.[o S(")(S) —I0LdsS(")(S) 7(

By (3.19), S,‘”’(t,—)=§§">(t,—) so u,">(1,—=) R‘")(t,—)= I:_dR("’(s).Hence

I," :1::3——:d5;,(ss)= I"' §§:)——(—(‘,)—I"dRRs‘"’() (3.26)

Applying the same technique we used to obtain (3.18) we may remove S(")(s) in the

denominator,

I;"u,<"’(s)ds,(s) = I:—[dq§"’(s) — S‘”’(s)dR(")(s)], k = 1, 2, - . -, m. (3.27)

The following lemma will be used to find the asymptotic variance.

Lemma 3.4

For any bounded measurable functions h, and h2 on [0, 1], the variance of the

following integral is

Var { I; h.(S)dql"’(S) + I modqr’tsn

= —I,; h2(s)th(s) — I; (towns) — {I31 (s)dW.(s> + Igntswwsnz, 0 s t s 1.

Proof: Since{Y,, 5,} are i.i.d., and by the definition of q,"" , qé") , W3") and W21") (t) , we have

Var { I modqt’ts) + Imeagre):

= Var {JEIJIttsWWm + «HI; mansion.

= Va, {_‘/1=:{h,(1;)[5, = 1,1; St]+h,(K)[8, = 0,11 S tl}},

"1.1

= Var {h,(I;)[5, =1,1; st]+h,(1:)[8,. =0,K Sill,

= E {h,();)[8, =1,); st]+h,(r;)[5,=0,11 St]?

- {E MODE). =L1§Stl+hz(1:)[51=0,XSII}}2,

def.

=L-A-
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The cross-product term of I, is 0 when expanding, so

I. = 80120916. = 1,1: 911+ Eihfms. =1,): s t1},

= -I,'momm—Igtétstzo).

By the same principle, 1,: {I0}, (s)dW,(s) + Io'h, (s)dW2 (s)}2.

Theorem 3.4

Let S‘") be the self-consistent estimators ofS satisfying Condition C, then

(i) ‘51-]: (Sm (s) — S(S))dS, (s) converges weakly to a normal distribution with

mean 0 and variance -I01S(s)(1— S(s))dS, (s).

Further, ifYhas positive continuous density g, then

(ii) x/hI;(S("’(s)—S(s))ds converges weakly to a normal distribution with mean 0

and variance I0] S(S)fg1(;;9(3)) ds.

Proof: (i) Taking t,=l in (3.27) yields

 

Jit-I: (S0') (s) — S(s))dS, (s) = I: [dq§") (s) — S”) (s)dR('" (s)], which converges weakly to a

normal distribution since 5"” is strongly consistent.

The variance is given by the asymptotic variance of I: [dq§") (s) — S(s)dR("’ (s)] =

—I,:S(s)dq,‘"’(s) + I010 — S(s))dq§"’ (s), which is obtained by using Lemma 3.4 as

‘ (n) ' (n)
Var {—I, S(s)dq. (s>+I, (1— S(s))dq. on

I 2 l 2 l l 2

= —I, S (s)dW.(s) — I0 (1— S(s)) dmts>+{-IOS<s)dW.(s) + I,(1- S(s))desn ,

= —I§S(s)(1—S(s))dsy(s>.
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(ii) Define the function g, on [0, 1] by g,(s) = g(t,_,) for s e [t,,, , t,) , k = 1, 2, - - ~, m. Then

almost surely —1— — -1— —-) O uniformly on [0, 1] since g is continuous. So

8,.

1 l l

m d =— I") —dS, ,Iou. (s) s l,“ mg“) (s)

 

=-l'u.‘"’(s) 1 dS,(s)+0,,(1),
0 g..(S)

= - m 31(S)I[r 1 ,uf")(s)dS,(s)
+ 010(1)’

k=l n """

 

=-z
k=l gn (S)

 

l..,ldq§"’(s)-S‘"’(S)dR‘")(S)1+or“),

= _I‘;[dq;">(s) _ S("’(s)dR(")(s)]+ 0,,(1),

° g..(s)

= ‘l ——-1dq;"’(s)- S(s>dR‘"’(s>1+ o(I)

The desired result follows since -IOg—(1—S)[—dq§")(s) S(s)dR(")(s)] converges weakly to a

normal distribution. The asymptotic variance is obtained by the same method as in (i).

Groeneboom (1992) proved the weak convergence of MLE under certain

conditions. The following theorems are proved by using Groeneboom's Lemma 5.4

(restated here as Lemma 3.5). Assume T and Y have bounded densities f and g

respectively, satisfying fit) 2 or > 0, g(t) 2 or > 0, for t e [0, 1] and g has a bounded

derivative on [0, l].
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Lemma 3.5 ( Groeneboom)

Let or, = M n'm, where M > 0 is a constant. IfS") is the MLE, then for any t0 6

[0, 1].

(i) The probability that S‘") does not have ajump in an interval oftheform [t,,-or,, to+or,]

can be made arbitrarily small.

(ii) sup Is“) (1) —S(t0)l = 0,02%).
Idle-(1,, .10 441,,

The following theorem presents the relationship among S3"), S3"), and S,.

Theorem 3.5

If15"" and S3") are solution of(3.3) and (3.4), with 5‘") being the MLE, then

(i) JE<S§"’<r)-§i"’(t»—”+o, r em. 11;

(ii) 11;") (t) = JI—I(S3n) (t) -— S, (t)) converges weakly to a normal distribution with mean

0 and variance S,(t)(1 - S,(t)).

Proof: For any t 6(0, 1), let t,>t such that S‘"’(s) = S"’(t,) for se [t, t,] and

S3") (t,) = S3")(t,). Then t,- t = 0,(n"’3) by (i) ofLemma 3.5. Define

P,(t,y) = £2.17; S t,)? S y], which is the empirical ofthe pairs (T,, Y,), and

hi

P (try) = P( TS I, Y Sy) = (1-S(t))(1-Sr0’))-

n 1 l n n 1 n l 1

Then s; 1(1) = "WWW; ’(s). W.‘ ’0) =;§1T. > 11.1: >t1= I,I,,1s>y1d12.(s,y),

..n 1 " 1 1

and Si ’(t)=;2111 >tl= I,I,,dP.(s,y>. So
i=1

1

S3" (s)

 

1 1

(n) _ (I!) _ ('0 —______s, (t,) S, (t)-I(] atW2 (s)— Swan)IOIW[s>y]dP,(s,y),and

.. ~ I

Si"’<t.) - St’tr) = —I, I, ,dR.(s,y).

Therefore
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n ”n l [S>y]

Si ’(r) -5; ’(t) = —I, 1,...{1- S,., (tn)}d1’..(s,y).

= @1753 1..., {is > y] -S""(t..)}dR.(S,y)r

=IS<»>(t,)IoIt”, {[5 > y]— S‘"’(t.. )}dP(Ssy)

1 1 ..
.»§,—,,—,(t—n)I0 Im {[s > y]—S( )(t,)}d(P,, — P)(S.y),

def.

= Iln+12n '

1

I... = “WI...,1{S(S)‘ s‘"’(t.)}dS.(s).

=S.,..(——,{S‘"’<.)I,,as.s—()IS(s)dS.(s>}

{(5330, )- S(9))(Sy (t)- S, (1.. D} (wherCGEUJ,.l).
 

=SW)

= 0,01%),

since S‘"’(t,)-S(0) =o,(n‘V3) by (ii) of Lemma 3.5, and S,(t)—S,(t,) =o,(n“%).

= o,( n“ ) by P,- P = o,( 11"” ) and t,-t = o,( n"’3 ). So

s/Ztsi"’(t) - Site»: 0.0).

(ii) follows from (i) since we know Jh(S3”(t) —S,(t)) converges weakly to a Gaussian

Under these conditions, we can use Lemma 3.5 to extend the result of Theorem

3.4 to integrals over [0, t], for any t 6(0, 1).

Theorem 3.6

Let 5"" be the MLE ofS, then
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(i) J;I; (S("’(s)—S(s))dS, (s) converges weakly to a normal distribution with

mean 0 and variance —I:S(s)(l — S(s))dS, (s).

(ii) JZI; (S"')(s)-S(s))ds converges weakly to a normal distribution with mean 0

and variance I: S(s)(gl(-;;S’(s)) ds. 

Proof: We will show for any t e(0,1)

I. uf"’(s)dS.(s)-I,1dq§"’(s)- S(s1dR‘"’(s)1—”>o. (328)

since I: [dq§"’ (s) — S(s)dR(") (s)] converges weakly to a Gaussian process.

By (i) of Lemma 3.5, fort e(0,l), there exists a jump point t,>t, such that t,- t = 0,(n"’3).

Then by (3.27) and using the same principle as in the proof of Theorem 3.5,

I, u:"’(s)dS.(s) — I,"u.‘"’(s)dS.(s) = —~/;I(,M(S(")(s) — S(s))dS,(s) = 0,0), and

III-”41") (S) ‘ 5""@de) (S)) - I0 [dq§"’ (s) — 5‘") (s)dR""(s)] = o, (1).

(3.28) follows from the strong consistency of 5"". Hence JhI: (S(")(S)—S(s))dS',(s)

converges weakly to a normal distribution. Having proved weak convergence, the

variance and (ii) can be obtained in the same way as in Theorem 3.4.



Chapter 4

BAYESIAN ESTIMATION

4.1 Introduction

The problem of nonparametrically estimating a survival fimction from censored

data has been addressed by a number of authors. For right censored data, Susarla & Van

Ryzin (1976 ) gave a nonparametric Bayes solution to the estimator under squared error

loss using Dirichlet process prior. The resulting Bayes estimator was shown to reduce to

the PL estimator in the cases where or(R+) —) 0, where a( - ) is a finite measure on R+

which serves as a parameter of the Dirichlet process prior.

In this chapter, with right censored data, we find another expression for the Bayes

estimator, which is related to the self-consistency equation. This approach sheds more

light on the connection between the Bayes estimator and the Kaplan-Meier's PL estimator

(also the MLE). For interval censored data, we also present a Bayes estimator, but we

find that in this case the Bayes estimator may not reduce to the MLE as a(R+) —> 0.

Let (R+, d", i0 ) be the probability space, where R+ = (0, co), and flis the Borel

o-field on (0, 00). P is a random measure. We say Pe Wm) to mean P is a Dirichlet

process on ( R+, d’ ) with parameter or. See Ferguson(1973) for the definition of Dirichlet

 process. J’( P(A)) = MAR) , forAe Ki T, , - - -, T, is called a sample of size n from P, if

a

flu, eC,,~-,T, EC, | P(A,),-~,P(A,,);P(C,),-~,P(C,)} = 1‘]P(C,.), a.s.

i=1

We assume T, T, are the lifetimes with survival S(t), and further that they are a

Sarnple from P, S(t) = P( t ,oo ). Pe .fla). The Bayes estimator is always under the

34
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squared error loss L(S,S) = I: (S(u)—S(u))2dw(u), where w is a weight function and

S(u) is a estimator of S(u).

Ferguson (1973) proved:

(i) The conditional distribution ofP given T, ,-~,T, is a Dirichletprocess with

parameter

B=a+:8,
i=1

(ii) Let S(t)= P(t, 00), then, given T, ,- ",,,T the Bayes estimator ofS(t) is

Sh(t)= 3(S(t)| 71"",72).

_ 0t(t, co)

ot(R)+n +1ot(R)+nZ[’>]

 

_ a(t,oo) + n

"o(R)+n a(R)+n

 S, (t). (4.1)

whereS, (t) = 12H; > t] is the empirical ofS(t), and [T,>t] is the indicator of(T,>t) .

n 1

4.2 Right Censoring

We now consider right censored data, where T ,- « -, T, are the lifetimes and

Y,,- . -,Y, are the censoring times. We observe {(Z,, 8,) ; i= 1,-~-, n }, with Z, = T, A Y,, 8, =

{T, SY,], i= 1, - - -, n. Without loss of generality, assume8, = = 8, = l, 8,,, = = 8,= O

and that Z, ,--°,Z, are all distinct. Let

N,, (t) = Z[Z, 2 t,8, = 1] be the number of uncensored observations in [t, 00), and

i=1
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N, (t) = Z[Z, 2 t,8, = 0] be the number of censored observations in [t, oo).

(’21

Let N(t) = NU (t) + NC (t), N" (t) = N(t+), then N(t) is right continuous counting

process. Actually N(t) is the number at risk at time t.

To find the Bayes estimator under such right censored data, Susarla & Van Ryzin

use the following lemma and theorem.

Lemma 4.1

Given ( Z, ,1), - - - (Z,, 1), the conditional distribution ofP is a Dirichletprocess

k

with parameter [5, = or + 28,, .

i=l

Theorem 4.1 (Susarla & Van Ryzin)

Consider T,,, , - - -, T, as a sample ofsize n-kfi'om J45, ), which is obtained by

Lemma 4.1. Then under condition (Z,,, , 0), - - -, ( Z,, 0), the Bayes estimator ofsurvival

function S(t) is

S(t) =  
a(t,oo)+N+(t)I'-'I{ “(Ztaw)+N(Zi) (4.2)

or(R)+n ,,, or(Z,,oo)+N+(Z,)

Remark:

From (4.2) , by taking a(R+) —> O, Susarla and Van Ryzin showed that the limit of

S(t) is the Kaplan and Meier's PL estimator

[2, s:.5,=l]

(1 NZ,

S..(r>= II{1-(———N,3,”}
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The following theorem enable us to see more about the relation between the

Bayes estimator and the Kaplan & Meier's PL estimator. The proof of lemma 4.2 is in

Appendix.

Lemma 4.2

Let S(t) = o"{S(t)| (Z,,8,),---,(Z,,8,)}. Then

”{7} >1 |(Z.,5.),---,(Z..,5..)} =[Z,>tl.if8,-=1;

= S(th,)

$12,)

,if8,=0;j=1,-~,n

Theorem 4.2

Given {(Z,, 8,) ; i= 1,---, n }, S(t), the Bayes estimator ofS(t) is the solution of

thefollowing equation

S(t) =who,oo)+ N*(t)+I%d(—NNC(t))}. (4.3)

Proof: By (4.1) and Lemma 4.2,

S(t) = J’{S(t)| (Z..6.>.-~,(z,..6.)},

= fl J’(S(t)IT..---.T.)1 (Z,,5,),...,(Z,,5,)},

a(t, 00)

0‘(R)+n+a(R*)+n
g” >t]|(Zl’51)” (321.95,»

 

_ a(t, co)

a(R)+n 0t(R1)+n,,

 

2 MT. >t| (2.,6.)-- (2,6.1),

———{a(t,oo)+Z[T >r]+ Z W(T >t| (Z,,8,,-) ,(Z,,8,))},

=a(R+)+ j=-k+l
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S(th,)

=a(R1")+——{a(t,oo)+N,,U(t+)+j="2k;rl—S(Z)——},

_ 1 00 S(_(t_d)(
-——a,,.)+ {att )+N..(t+)+N.<t+)+I —N.(s>)},

0.. . S(t) _
=a,,1,)———,.{a(t )+N (t)+I'S—d( Neon}.

Remark:

SinceSPL (t) is the solution of equation

S..<t> = -‘-{N*<t) +I'5—"1’ldt—Ncmll, (4.4)
n oS,.,(s)

fiom (4.3), it is obvious that the limit of S(t) as a(R+) —) O is the Kaplan-Meier's PL

estimator, In other words, the Kaplan-Meier's PL estimator can be obtained from the self-

consistent equation S(t) = Eg {S, (t)| (Z, ,5,),---,(Z,,8, )} , and the Bayes estimator can be

obtained from the self-consistent equation S(t) = E, {S,(t)| (Z,,8,),---,(Z,,5,)}, where

a(t,oo) + n

a(R) + n a(R) + n

 S,(t) is the empirical of S(t), and s, (t) = S,(t).

4.3 Interval Censoring

For interval censoring case 1, we observe {(Y 8:) i—— 1,--- , n }. Let
i’i

(O,Y] if 8,=], ,

,-—-(Y{ be the observed intervals. We want to find the Bayes

Yoo) if 5, =0.

estimator ofS(t). S(t) = J’{S(t) «mane-.0233}.



39

Let Ya) < - - - < Yo») be the ranked Y,'s, and let 50) and Am be the 8 and A corresponding to

Y(0 . Then, under squared error loss, using the method of Lemma 1 in Susarla & Van

Ryzin (1976), the Bayes estimator is

S(t) = £(S(t)|(11,6.),~-,(x.,8,.)),

= J’(S(t)|7; eA,,---,7; e A"),

J’(P(t,°°)lll P(AU)» def. 1
:

M = “—1—.

(4.5)

Jilin/1...,» ’2

 

Now let us calculate I1 and 12.

Let 31:“), YmL 32 =( Y“) , 11(2)] ,. . ., B,=( Y,,”) , Ym], B"+1 = (Yo!) , oo) , and let a: =

l

a(B,), a2= a( B, ), - . ., an: a( 3,), an“: a( BM). Then A, =UB, if 5,. =1, and

)=1

A, =R+—UB, if 5,.=o. B, B", 3",, isa partition ofR+.

I"

P e do), the density of (P(Bl),~-,P(B,,)) is

 

1 . n 11,—]" _ n aMI-l

0(a‘,...,an+l) “x, (1 2x1) ’
igl Isl

F(a,)---F(an,1)

I‘(a,+---+an+,)’

 where D(otl ,---,a,,+,) = on, +---+ocn,,= oc(R+).

Suppose t = Y“), then

12.D(ap. . .’an+l)

= J‘ fifim,...,xi,5(i)).f1xfr‘.(1_:x,)°‘~+i“dxnmdx,, (4.6)

xl +"'+an' '3' i'l (=1

and
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11'D(av' ' 'aam)

=J Hf(x1’°'' xi’6(i))(1__zlxj )' 1:135?.(1_:xi)“m"dxn...dxb

x,+---+x 5] '=1 i=1

’ 1'

2x1 iff’m =1;
'=l

where f,(x,,---,x,.,8(,.))=< ’ ,.

t 1=' 

Hence we have the following theorem.

Theorem 4.3

Given (11,8, ),-",(X, ,5"), the Bayes estimator ofS(t) is

so): J’(S(t)|(}';,5,),...’(y 5”fig

where I1 and 12 are decided by (4.7) and (4.6).

The calculation of II and I2 is done by using

IOCxY‘I(C_x)fl-ldx=CY+fl-IB(y,n) forOSCS 1 and Y, 11> 0 ’

where B(y, n)-—M,and F(a+1)= aF(a) for a > O.

  

(4.7)

IW11)

Even in the simplest cases, the expression for I1 and 12 can be quite complicated. For

example, if all 8's are 0, then

I"(CLOTH r‘(Ot1+1)1"(a,.)”1"(0tn+1+"‘a2 +n)F(ai)

2 _r(a1)”r(an+l) r(an+1+an+1) l-‘(ari1~1"""'+’a'l4'")

I"(0L(R+))
 

= r(a(R+)+n)a((n),°0)(<1(}f,._1),°°)+1)“(0“(1)’°°)+"_1)’
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_ P(a(R*))

1“(a(R*)+n)

 

0(Xn,a°°)(a(}fn_n ,oo) + N+ (Kn—1))) ' ' (“(111),”) + N+ (Yb) )) -

If there exists at least one 8 equal to 1, then I2 is a summation of the forms above. Such

as, suppose 8,“) = 1, then

= P(a(R*))

2 r(a(R+)+n—1)

 

a(Kn)’w)(a(Kn-2) 9°°) + N+()(n—2)) "1) ”'(aaimw) + N+(Y(1))"1)

_ l“(OIUVD

I“(a(R*) +n)

 

“(Kn)a°°)(a(Kn—1) ,oo) + N+(}(n—l))) ' ”((1021) ’00) + N+(Y(1)))°

In each case, I, will have a similarly complicated expression.

Theorem 4.3 tells us a way to calculate the Bayes estimator S(t), but it is too

tedious to find an explicit expression. The following example show that given a Dirichlet

process prior (1, with nonnull probability, there exist Bayes estimator S(t), which does

not converge to the MLE as a(R+) —) 0.

Example 4.1

Let y,, y,, y3 and y4 be fixed real numbers with O < y, < y2 < y3 < y,. Consider a

Dirichlet prior such that

oc[0, y,) = a[y,, y2) = (lb/2, y3) = only,” y4) =aDI4, co) = x. a(R+) = 5x, where O S x S 00.

Let Y be a discrete random variable taking values on y,, y,, y3 and y,,. Let T be the lifetime

with Dirichlet prior or. Suppose the intervals observed are (y,, 00), (y,, 00), (0, y,,], and

(y,, 00), n = 4. The probability of getting such observations is P( Yl = y,, T, > Y,; Y2 = y,,

T2 > Y2; Y3 = y,, T3 S y,; Y4 = y,, T4 > Y,, ), which is positive. Then the Bayes estimator S,

when t = y,, is

Sg(t): 5? S(t) IXIEO’v 0°): X2605, ‘30), X3€(0,y3], X46041, ‘30)},
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£(P(t,oo)P(0,y3]l'I P(ynw) w. 1
= iat3 _

i<P(o,y3]1’[ Ponce» ' 12'
i323

 

Rewrite I, and 12,

I. = J’(P<y3,oo>1'IP(y,-,oo»- f<P<yeoo>H P(ypoo», and
#3 i

12= J’(1‘[P(y.,oo))- J’(1’[P(y.,oo)).

Then, each terms in I, and I2 can be calculated by integration as in Susarla & Van Ryzin

( 1976). Denote a = a(R+).

= Na) _ Na)
1, P(a+4)x(2x+l)(3x+2)(4x+3) ma”) x(2x+1)(2x+2)(3x+3)(4x+4),

= Na) _ Na)
2 F(a + 3) x(3x+1)(4x+2) F(a + 4)x(2.x+l)(3x+2)(4x+3), 

I = (x +1)(3x + 2)(4x + 3)(5x + 4) — (x + 1)(2x + 2)(3x + 3)(4x + 4)

S°’ 5") = I (3x+1)(4x+2>(5x+3)(5x+4)—(2x+1)(3x+2)<4x+3><5x+4>’

 

lingSU) = 13/22.

On the other hand, the MLE is S"’(y,) = S"’( y,) = 1, Smog) = S")(y,) = 1/2. As x —) 0, so

that a( R+ ) —-) O, S(t) does not converge to 1/2. Hence, S does not converge to the MLE

asa(R+)—>O.



Chapter 5

SIMULATIONS

In this chapter, we investigate the performance of our estimation procedures

through simulation studies from known distributions.

a. Parametric assumptions

We just consider the 2-inspection interval censorship model described in Chapter

2. The two inspection times are W,, W2 ( W, < W2 ) are generated through independent

exponential rv's V,, V2 with mean 1; That is, W,=V,, W,=V,+V2. The survival time T of

interest is also assumed exponential (mean 1/9) and independent of (V,, V2 ).

The stopping number N(t) = min{ k >0: TSW,_<J )(N(t)= +00, if there is no such k)

of (2.1), has values 1, 2, and +00. Its distribution is obtained from (2.2) - (2.4):

P[N(t)= 1]: —9——e"(1— 1
e-Ol)’

(9+1) (9+1)

1 - , , 9 _ . , 1 -. _ + 1
PW!) = 2]= (7971){'em+(—9T1)‘(1'em)}‘6(e -e ‘° " ),

P[N(t) = 00] = 1- P[N(t) s 2] .

Allowing t —-) 00, leads to consideration of an unrestricted follow up period. This is the

case (Case2) considered by Groeneboom and Wellner (1992), With t infinite in (2.1) the

random variable N (5 N(oo)), has three values 1, 2 and +00 corresponding to (1) Te (0, W,],

or (2) T e(W,, W,], or (3) T>W,. The distribution ofN is then

P[N=1] = 29—3—1, P[N=2] = (Ti—:11?" P[N= 00] = (9:1), 

43
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Thus 69—1 is the proportion of left censoring, 799—; the proportion of interval
+ +1)

censoring and (Tl? the proportion of right censoring. The objective of our simulations
+

is to compare the nonparametric estimator ofthe survival distribution S(t) = e“, t >0 of T,

based on the Turnbull scheme, with that obtained through maximum likelihood

estimation of the parameter 6. The data are generated from n independent triples ( V, ,., V2,,

T,),lSiSn.

b. Maximum likelihood estimation of 9

The information on T may be written in the form T e (L, R], where L=O, R=V,

when N=1; and L=V,, R=V, +V2 when N=2; and L=V, +V2, R= +00 when N= 00; The SAS

LIFEREG procedure is used to estimate 9 form the data { T, e(L,,., R,): ISiSn}.

c. Turnbull method for estimation of S(t)

From the data { T, e(L,, R,]: ISiSn}, Tumle (1976) provided an algorithm for

the (nonparametric) estimation of S(t). He constructed a set of disjoint intervals {(q,, p,]:

ISjSm}, where qj's and pj's lie in the sets {L,.: ISiSn} and {R,: 1_<_iSn}. The likelihood is

proportional to

Lm= flown-Sm»). (5.1)

Define the vector of probability 3 = (s,, - - ., s”) by s, = S(qj) - S(pj) . The problem of

maximizing (5.1) reduces to one ofmaximizing

£6) = N(Zaysj), (5.2)

i=1 j=1

where a”. = 1 if (qj, pj] g (L,, R,], 0 otherwise.
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For ISiSn, 15j.<_m, let 1,, = 1 if T,e(q,, p,] and 0 otherwise. Because of the

censoring the value of 1,, may not be known, however its expectation is given by

1511.1 = a. s,-/ 2,1,5, = 11., (s). (5.3)
k=1

If we treated (5.3) as observed rather than expected frequencies, the proportion of

observations in intervals is (:u,(s))/ n = 11,. We say that the vector of probability s is

i=1

self-consistent if

s, = 1t,(S,, . . ., s") (ISjSm). (5.4)

A self-consistent estimator of s is defined to be any solution of the simultaneous

equations (5.4). The form of (5.4) immediately suggests a iterative procedure for finding

the solution.

(i) Obtain initial estimates s3 (13me). This can be any set of positive numbers summing

to unit.

(ii) Evaluated 11,, ( s°) for lSj_<_m.

(iii) Obtain improved estimates s} by setting

s}. = n,( s°) for IgSm.

(iv) Return to step (ii) with s1 replacing s°, etc.

(v) Stop when the required accuracy has been achieved.

d. Results

1. Our first simulation study involves 10 replications of size n = 100 from each of the

exponential distributions with 9= .5, 1, 2, 3. The distribution of N is denoted by p =

e 9 1

9+1’ (9+1)2’ (9+1)

 

( 2 ) and [3 denotes the observed proportion of left, interval, and

right censorship, averaged over the 10 replications. Table 5.1 summarizes these results
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for the four distribution that we generated. Even though the number of replication is

small, the degree of closeness ofp to fl is very satisfactory.

2. For each distribution, maximum likelihood estimate 6 is obtained from the SAS

LIFEREG procedure for each replication. In Table 5.2 we input the average of these

estimates over the 10 replications.

3. For the nonparametric maximum likelihood estimation of S(t) we use the Turnbull self-

consistency algorithm. APL program were written to efficiently carry out the task of

solving the self-consistency equations.

For each replication, the Turnbull estimator S(t) is close to a step function, with

gaps, in the sense that it is undefined on some intervals. We extended the definition of S

to these intervals by extending consecutively the steps from the lefi of the curve to the

next jump in S. These step functions were then averaged over the 10 replications to

obtain an estimator of S(t).

The figures illustrate the Turnbull estimator based on a single replication, and that

obtained by averaging across the 10 replications. The true survival curve is S(t) = e'z’; t>0.

 

 

 

 

 

        

0:0.5 0=1 0: =3

Censoring p i5 p i5 p 16 p 13

Left(N=1) .333 .317 .500 .510 .667 .655 .750 .744

Interval (N=2) .222 .220 .250 .230 .222 .224 .188 .191

Right (N=oo) .444 .463 .250 .260 .111 .121 .062 .065  
Table 5.1
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9 (3

.5 .4969

1 .9978

2 1.9678

3 2.9299

Table 5.2

TURNBULL ESTIMATION

Based on one sample of size 100
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° True
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Figure 5.3
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TURNBULL ESTIMATION

Based on 10 samples of size 100

 

 
 

 

  

1.0-

.8--

.6"

.4"

.20 __

° Turnbull

0.0“- W ' ' ' '

° True

- , , , 1 , Survival

5 0.0 5 1.0 1.5 2.0 2.5 3.0

Figure 5.4



APPENDIX

Proof of theorem 3.3:

Let F”) = 1 - S"), then F") is the MLE of F. Let Y,,) < - - . < Y,,, be the ranked Y,'s,

and let 8,,,be the 8 corresponding to Y,,). Groeneboom (1992) showed that the value of F")

at Y,,, is the lefi derivative of H“ at i, where H“ is the convex minorant of the points

0,280,) on [0, n]. Call apointte{ Y, : i= 1, 2, - - -, n } avertex ofthe convex minorant

jSi

if it is a point such that F"’(t) < F‘"’(Y,) for any Y, > t, that is H“ changes its slope at k if

r = Y,,).

We know F") -) F0 on the continuous points of F’. If we could show F 0 is strictly

increasing, then Condition C will be satisfied. Suppose F0 is not strictly increasing, there

exist 3, and s,, s, < s,, such that 1306,) = F°(s2). For our convenience, assume F0 is

continuous at s, and s2, F°(s)< F°(s,) for any 8 < s,, and F°(s) > F°(s,) for any 3 > S,. If P”

is not continuous at s, and/or s,, we will consider ,S,+8 and/or S2-8 for small a, and the

proofis similar. Lets,,,=max { 15s, :1 isavertex ofF‘") } ands2n=min { r 282:1isa

vertex of F“), then s,,, —> s, and s,,, —) s2 , since 1“") —-) F0. Therefore, since H" is

convex minorant, we have

the number of 8,'s being 1 in (SM’SZ"]

F0081) S
'the number of 8,'s 1n (Slnisznl

s F<">(s,). (3.23) 

As it —>00, 1“") (3,) —) F0 (S1), F"’(s2) -—) F0 (S) = F” (3,). The numerator of (3.23) becomes

—l—(the number of 8,'s being 1 in (s,,,s2,]) = “1'2”; 3 KY e(s,,,,s,,]],

n n
i=1

= I: 61W") U).

n—no ‘1

———> I, F(y)dFy(y),

49
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since WI") —) W, and W, (t) = fFKQdF} (s) by (3.1). The denominator of (3.23) becomes

1(the number of6.'s in cams...» = 121): 60.88.11,
n

i=1

 

$4I: dF,(y).

So, as n —900, we have

I: F(y)dFy(y) 0
1 32 = F (30°

(3.24)

I; dFY 0’)

By Mean Value Theorem of integral, there exists 0 e (s, , 32) such that F(0) = F0 (s, ).

But H" is convex minorant, so

the number of 8,'s being 1 in (s,,, ,0)

. 2 F(n)(sl)-

the number of 8,'s 1n (SING)

 

Following the same argument as obtaining (3,24) as n —->00,

I6 F(y)dFy (y)

I: dFy (y)

By the Mean Value Theorem of integral again, there exists 0, e (s,, 0) such that F(0,) _>_

 2 F°(s,) = 17(0).

P(s,) = F(0), which is contrary to the fact that F is strictly increasing. Therefore F0 has

to be strictly increasing.

Proof of Lemma 4.2:

The lemma is trivially true when 8,. =1. We now assume all 8's are 0, otherwise we

could apply lemma 4.1 so that the new prior would become a Dirichlet process with

parameter [3,. We want to prove
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S(thj)
MT,->t|(ZnO)a""(Z"’O))= 8(2) ’

or equivalently

o"(P(th,-.°°)H P(Z..°o)) 6”(P(th,,oo)H P(Z,,00))

J’(P(Z,,00)HP(Z,,00)) ’ £(P(z,,oe)n P(Z,,00))

iatj

(4.0)

Denote the LHS of (4.0) by 1’}, denote the RHS of (4.0) by %.

 

k+l

lall a2, 0, 1 bl rsz ak+2 aln “n+1

I
t

0 Z 22 HZ]. Z, ,,, Z"

Figure4.1

Without loss of generality, we assume Z, < . - - < Z,, . (4.0) is obviously true if t 5 Z,, so let

I e (Z, , Z,,,], and let B, = (0, Z, ], B, = (Z, , Z, ] ,- ~ -, Bn= (Z,,, Z,,], BM= (Z,, , 00), and 01,

= 01( B, ), 01, = 01( B, ), - - ., 01,, = 01( B"), 01",, = a(B,,,,).

Let b, = 01( Z,, t] and b, = 010, Z,,, ] , then b, + b, =01,” (see Figure 4.1). Use

‘I’Jfl'I (c—x)""'dx = CWHBWm) for 0 S c $1 and 7,11 >0,

where B(y,n) =W,and F(a+ 1) = 01F(a) for 01 > 0. Then, we have

Y 11

= mam»

r(a(R+) +n)

 

aml( am] T art-+1). ' ' ( “MT ' ' ' + ak+2+ "+1'(k+2))

(a,.1+ - - - + 01m+ b,+n+1-(k+2)+1 ) ( 01M+ . - - + (1141+ n+1-(k+1)+1 )...

(01",,+ - - - + a,,,+n+1-(i+2)+1)(01,,,,+---+ 011+ n+1-j)-- -(01,,,,+- - -+ 01,+n-1),
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= 1"(Ot(R*))

I‘(01(R+ ) +n+ l)

 

an+l( (1",, + 01,,+1) ' ° ' (am1+ ' ' ' + 0942+ n+1'(k+2))

(01",,+ - - - + 01,,,+ b, +n+1-(k+2)+1 )( 01",,+ - - - + am+ b, +n+1-(k+1)+1 ). . .

(01",,+ . - - + afi,+n+l-(i+2)+l )( 61M+ - - - + 0941+ n+1-(,'+1) +1)

(amr+'°'+0lj+rrt1-j+l) ---(01n+,+o--+ or,+n),

z 1"(<1(R*))

r(a(R+) +n)

 

an+l( “n+1 + anTI) ' ' ' (am1+ ' ' ' + ak+l+ n+1'(k+1) ) ' ‘ ’

(“n+1+ ' ° ' + aj+2+n+l-(i+2) ) ( am1+ ° ' ° + aj+l+ ”TI'UTI))

(am1+"'+aj+”+1'j) '°'(an+|+"'+ “24774):

and

= P(a(R*))

F(01(R*) + n + 1)

 01",,( 01",, + an+1) . -- (01",,+ - . - + 0101+ n+1-(k+1) ) . ..

(a...+ - - - + a,..+n+1-o'+2) ) ( a...+ - ~ - + a...+ n+1-<i+1) +1)

( an+1+ ' ° ' + (1,-+n+ n+1'(i+1))(an+l+ ' ° ' + (11+ "+1"j+1 ) ’ ’ ' (am1+ ° ' ° + (12+n).

So,

£.I‘(01(R+)+n+l)

C 1"(01(R+)+n)

 

_ (01",,+---+a,+n+1—j)---(an,,+~-+01,+n—1)

(01",, +-~-+oc,+, +n+1—(j+1)+1)(01,,, +~~+01, +n+1—j+l)---(a,,, +---+01, +n)’

 

1T<9<an>+1v+<za>
 

0

J

[1(a(zi ,oo) + N(Zr))

1:1

and

B. F(a(R+)+n+1)

D l"(a(R+)+n)
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(01",,+---+01, +n+l—j)---(01,,,, +---+01, +n—1)

_(a 

+---+01,,, +n+1—(j+1)+1)(01 +---+01, +n+1—j+1)---(01,,, +---+a, +n)’
n+1 n+1

fi<a(Z.,w)+N*(Z.))
 

l—I(G(Z.-a°°) + N(2.))

i=1

Hence, we get A = 2, that isfi = —C— .

C D B D
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