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ABSTRACT

STRONG CONSISTENCY AND BAHADUR TYPE EXPANSIONS OF A CLASS

OF MINIMUM DISTANCE ESTIMATORS IN LINEAR REGRESSION

by

Zhiwei Zhu

Let p Z 1 be an integer, F be a distribution function (d.f.) on the real line R

and {5;}, 1 S i S n, be independent and identically distributed (i.i.d.) F random

variables (r.v.’s). Consider the linear regression model

Kzizxgfifl'i'eia 152.3”,

where 23;,- is the ith row of the known n x p design matrix Xn, 1 _<_ i S n, and fl is

the regression parameter vector of interest of dimension p x 1.

For a nondecreasing right continuous function H from R to R, Koul 6'5 De Wet

(1983) defined a minimum distance estimator E of H as

~

fl = argminbM(b)’

where, for b E R”,

Ta») = j u fiat-{me .<. y + act-b) — F(y)} u” we).
i=1

When F is unknown but symmetric around 0, Koul (1985) defined a similar estimator

fl+ of ,3 as

3+ = argminb M+(b),

where, for b E H”,

mm = / || :zwm s y + ctr-b) — 1H,". < y — cm} II” we).

ii



In both papers, the authors discussed the asymptotic normality of these estimators.

The estimator 3 provides the right extension of the one sample minimum distance

estimation methodology of Wolfowitz (1957) to the linear regression setup.

This thesis analyzes the strong asymptotic behavior of these estimators.

In the first part (Chapter 2), some inequalities about weighted and centered em-

pirical processes are developed. In the second part (Chapter 3), strong consistency of

the above mentioned estimators is proved under difi'erent sets of conditions. Finally,

in the third part (Chapter 4), a Bahadur type expansion of 3+ is given, using the

results from the first part.
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Chapter 1

Introduction

The study of minimum distance (MD) estimation of a parameter can be traced back

to that of the least square (LS) estimation. Other examples of classical MD estima-

tion are, for instance, the least absolute deviation (LAD) and the least chi-square

(LCS) estimations. In these methods, estimators are obtained by minimizing some

types of distance functions related to the data and the parameters to be estimated.

However, it was in 1950’s that Wolfowitz first explicitly employed the concept of MD

estimation when estimating a parameter by minimizing a distance between an em-

pirical distribution function (d.f.) and the modeled parametric family of d.f.’s. As

Millar (1981) commented that Wolfowitz took Neyman’s idea on minimum chi-square

and elevated it to a general principle.

In his work, Wolfowitz (1953, 1954, 1957) demonstrated that MD method not only

could be used in a wide range of problems but also yielded strongly consistent estima-

tors even when sometimes classical methods, like the maximum likelihood method,

failed to give a consistent estimator. Wolfowitz’s work drew people’s attention to MD

estimation. Blackman (1955) and Bolthausen (1977) studied the asymptotic normal-

ity of some MD estimators. Pollard (1980) worked on testing hypothesis problems

with MD estimators. Beran (1977, 1978, 1982), Parr &: Schucany (1979), Millar (1981,

1982, 1984), and Donoho & Liu (1988a,1988b) investigated various robustness and

local asymptotic minimaxity of a large class of MD estimators. Most of these authors



worked on the one sample or the two sample location models and found that the MD

estimators corresponding to Lg-distances are generally more robust against certain

gross errors than the ones corresponding to the supremum distance. A bibliography

about the work on MD estimation up to 1980 can be found in Part (1981).

The above mentioned MD methodology was extended to estimating parameters in

linear regression models by Kou1(1979, 1980, 1985a, 1985b), Williamson (1979, 1982),

and Koul & DeWet (1983). These authors successfully established the asymptotic

distributions of a class of MD estimators which minimize some Cramer-Von Mises

type distances. Systematic presentation of the work in this field can be found in Koul

(1992).

This thesis is concerned with the strong consistency, the rates of convergence, and

the Bahadur type representations of the class of MD estimators defined by Koul &

DeWet (1983) and by Koul (1985a, 1985b). A special case of the study can be seen in

Koul & Zhu (1991). It is known that the almost sure convergence rate and Bahadur

type expansion of an estimator provide a deeper understanding of its large sample

behavior. They are also important in using the given estimator in sequential analysis.

We shall now describe the estimators studied in this thesis in more detail. Let

X”, n 2 1 be a sequence of r.v.’s and an, n 2 1, a sequence of real numbers. We

write ‘X,, = 0(an)’ if limsupnfioo IXnI/Ian| S M a.s. for some 0 < M < co and

‘Xn = 0(an)’ if limsupnfioo IXn|/ Ianl = 0 (1.3. Further, we write ‘Xn < an wpln’ if

limsupnfioo Xn/an < 1 0.3.

Let p Z 1 be an integer, F be a d.f. on the real line R, and {5.31 S i _<_ n}

be independent and identically distributed (i.i.d.) random variables (r.v.’s) with the

common d.f. F. Consider the p-dimensional linear regression model

Y“; = 23;.fl + 6;, I S 1 S n, (1.1)

where 2.3, l S i S n, is the ith row of a known real it x p design matrix X,, and fl

is the parameter p—vector to be estimated.

With respect to (1.1), define a weighted empirical process corresponding to an

2



n x p real weight matrix D“, of which d;. is the ith row, as

n

VD(y,b) = Zdi-“Ym' S y + 2,.5), y E R, b E R”, (1.2)

i=1

where I is the standard zero-one valued indicator function. Further, define a Cramer-

von Mises type distance (T(-))1/2 between VD(y,b) and the expectation of VD(y,fl)

as

T0») = j u Vn(y, b) — EVD(y,fi) "2 we)

= [II gamma..- 5 y+2tb) —F(y)} II’ we), (1.3)

where E is the expectation under (1.1), || . II is the Euclidean norm, and H is a given

nondecreasing right continuous function. When p = 1, Koul & DeWet (1983) defined

a MD estimator ii of D as a minimizer of the function T assuming F is known. Their

motivation of this definition is similar to that of the LS estimator: in the integrand of

T(-), VD(y, b) — EVD(y, fl), has mean 0 when 5 equals the true parameter E. Observe

that (1.3) actually defines a class of T functions, one corresponding to each H and

D... Therefore, a class of estimators E} of fl is obtained upon chosing different H’s

and Dn’s in (1.3).

For the one dimensional case, i.e. when p = 1, and when F is known, Koul &

DeWet (1983) studied some finite sample properties, asymptotic distribution, and

asymptotic efficiency of E. This study was later extended by Koul (1985a, b) to

multiple linear regression models in which the errors could be either i.i.d. F with

F being a known d.f., or independent with unknown d.f.’s F,-’s which are symmetric

around a common point. When F is known, the definition of [:3 is as above. In

the case when error d.f.’s E- are unknown but symmetric about a common point,

assuming that the common point of symmetry of F,-’s is 0 without loss of generality,

Koul (1985a, b) defined a MD estimator fl+ of fl as a minimizer of T+(o), where, for

b E R”,

T+(b) = / ll Edi-“(Y’s _<. y + 23.25) - I(—Y,..- < 31 — 3&5» ll2 dH(3/)- (1-4)
i=1

3



The robustness of both [3 and fi+ was also discussed in KouI’s papers.

According to Koul (1985a), among the estimators obtained from choosing certain

type of weight matrices D", the one corresponding to Du = X,,(X:,X,,)'1/2 is

asymptotically most efficient. Therefore, in the sequel, we take D“ = X“(X:,Xn)'1/2

and consider the cases when F.- = F with F known and unknown. We use [3" for

either if or 3+.

According to Wolfowitz (1953, 1954, 1957), it is desirable to prove the strong

consistency of the MD estimators fl'. The first goal of this thesis is to give appropriate

conditions under which E‘ is strongly consistent. We in fact prove, under certain

conditions, that

H fl‘ "' 3 ll: 0(7fl):

where {7“} is a sequence of real numbers which depend only on the design matrices

X”’8 and converges to 0 for a wide choice of X“’3.

In 1966, Bahadur obtained linear expansions for sample quantiles as estimators

of the population quantiles. It is known that Bahadur expansion is very useful in se-

quential analysis. 0110311 (1971) and Ghosh & Suhthme (1974) weakened Bahadur’s

conditions and obtained similar expansions for sample quantiles in term of conver-

gence in probability. Haan & Taconis-Haantjes (1979) further extended Ghosh &

Sukathme’s work and also obtained Bahadur’s result under slightly weaker condi-

tions than Bahadur’s. Others also obtained results similar to Bahadur’s for other

estimators. An important example is in Babu (1989) where it is shown that the least

absolute deviation estimator of linear regression parameter has Bahadur expansion.

The second goal of this thesis is to obtain Bahadur type expansions for the MD

estimators fl’defined above. We shall prove that

{3' —fl — $314,.- = 002.).

where ¢,—’s are independent random vectors and {Rn} is a sequence of real numbers

which converge to 0 at a rate depending on the choice of X"’8. We call our expansions



‘Bahadur type expansions’ because the convergence rate R" is different from what

Bahadur obtained in the one sample problem. See Chapter 4 for the details.

To reach our goals, we first study in Chapter 2 some properties of the weighted

empiricals defined in (1.2). Some tail probability inequalities related to the sup-

and Lg-IIOI‘IIIS of these empirical processes are obtained in Section 2.2. The inequality

pertaining to the sup-norm extends an inequality of Ghosh & Sen (1972) from a simple

linear regression model to the multiple linear regression model. These inequalities

are the fundmental tools used in the proofs of strong consistency and the Bahadur

expansions of (3‘. In Chapter 3, strong consistency and convergence rates of ,6" are

discussed. According to our conclusions, many frequently used designs yield strongly

consistent MD estimators 3". Finally, in Chapter 4, we present the Bahadur type

expansions of 3" in detail.



Chapter 2

Tail Probability Inequalities

2.1 Introduction

In this chapter, we develop in Theorem 2.1 an exponential inequality for the tail

probabilities of the centered weighted empirical processes (1.2). Then some large

sample probability inequalities are obtained. Ghosh & Sen (1972) also derived a

similar inequality involving the sup-norm of certain weighted and centered empirical

processes for their study on bounded length confidence intervals. In the following,

we give a brief description of Ghosh & Sen’s inequality because we are going to show

that their result is actually covered by our Corollary 2.1.

For a sequence of real numbers c1, 02, - - -, let

c;i=(Ci—En)/Cna 132$”,

where a, = n"1 2;, c,- and 0,2, = 2?=1(c.- — En)”. Also, let {Y1, Y2, - - } be a sequence

of i.i.d. r.v.’s having uniform distribution over (0,1) and let F be a d.f. on R. For

1SiSn,0<t<1,and-oo<b<oo,define

elm-(t, b) = Fur-la) + be.) - t,

G*(t, b) = 24.110”.- 3. t + elm-(t, b» — rim-(t. b)]. (21)
5:1

Then, under the assumptions

1. maxlsasn ICE-l = 001—1”),



2. liminf,H00 n‘lCZ 2 K0 > 0,

3. F is an absolutely continuous d.f. for which the density function f and its first

derivative f’ are bounded a.e. under Lebesgue measure,

Ghosh & Sen proved that for every h > 0, there exist positive constants K1, K2 and

n" (all of which may depend on h) such that for n 2 n", k 2 1 and 0 < 6 < 1/4,

P( sup sup |G,’,(t,b) — G;(t,0)| Z Kln'6(ln n)k) 5 Km”, (2.2)

O<t<1 55.4..

where A” = {b : [b] S C(ln n)"} and C a nonnegative real number.

In the next two sections, we present two similar probability inequalities with

the r.v.’s K’s being generally i.i.d. instead of uniformly distributed. Of the two

inequalities, one is for the sEp-norm (Corollary 2.1) and the other for the Lg-norm

generated by a nondecreasing right continuous function (Theorem 2.2). Remark 2.1

shows that (2.2) is implied by our Corollary 2.1.

2.2 Results under sup-norm

The following notation is used in the sequel.

For any n X p real matrix B = {bgj}, 5;. and 5., denote the ith row and the jth

column of B, respectively, for 1 S i S n, 1 S j S p, 3’ its transpose, and

IBI == 113% ll be- H -

Similarly, for a vector t E R", define H t H to be the Euclidean norm and

Itl == {ggjltell

Now, we describe the assumptions used in this section.

(A) {am 12 2 1} and {bm n _>_ 1} are two sequences of real numbers such that bn T 00,

an 2 n"'‘0 for some 0 < [to < co, and an?)" = 0(1).



(B) The d.f. F satisfies that

811p |F(y + 5) - F(y)l S Ma I5I,
1:612

for 6 E R and some Mo < 00.

(C) {Cmn Z 1} is a sequence of n x p real matrices, with some fixed p 2 1, such

that C;C,, = Ipxp, the identity matrix, ICnI Z n'k° for some 0 < lco < co, and

ICnI b,, = 0(1) for some b7, 1’ 00.

For any y,u E R, s,t E R", and Y = (Y1, - - - ,Yn)’ whose components are i.i.d.

r.v’s with d.f. F, let

I‘(Y.~Sy) = 'Syl—Ffil),I( ,

W.(y,us) = inl‘mswuso. (2.3)

Note that the process Wt(-,us) reduces to the ordinary centered empirical process

when 8 = 0 and t = (l/n, - - - ,1/n)’. We are now ready to state our results.

Theorem 2.1 Assume that (B) holds. Given 6 > 1,111 < 00, h; < oo, 7 > 0,

P( sup suprWt(y,us) — W¢(y,0)| Z 27 + 2M0 II s I)” t H a)

  

l9l<oo 095

< 32 b (-n—)1/zexp (— 72 ) (2 4)

_ M002 ’11 2[Moh1hgb+ §h27l , .

holds for all n 2 1, all a satisfying

0 < a g b“ A (2Mohi/2)-1,

and all t E R", and s E R” satisfying

u . u” v n t "’5 hl. Isl v Itl s hz. (2.5)

The Bernstein inequality and some elementary facts about nondecreasing functions

are used in the proof of this lemma. For the sake of self containment, they are stated

in the following two lemmas, respectively.

8



Lemma 2.1 (Bernstein). Let X1, - - - ,Xn be independent random variables satisfying

EX, = 0 and |X,-| S m a.e., for each i, where m < 00. Then, for our > 0 andn 2 1,

 

 

n 1.2

P X.- Z 1' S 2ex — n .

( g i ) p( 251:1 Var(X,-) + %m'r])

(See Serfling 1980, P95) D

Lemma 2.2 . Let ¢1,¢2,¢1 and 1/22 be nondecreasing functions from R to R. Let

(I) = ($1 —¢g and“? = $1 —1b2. Thenfor anyx E [a,b] C R,

|<1’(x)- ‘I’(0)l S maX(|‘I’(a) - ‘I’(0)I , I‘M?) - ‘I’(0)l) + ¢2(b) - c5201), (16)

and

|‘1’($)- ‘I’($)I S maX(|‘1>(a) - ‘1’(b)|, I‘W’) - ‘1’(a)l)

+¢2(b) + $201) - ¢2(a) — ¢2(a)- (2-7)

Cl

Proof of Theorem 2.1. For a real number a, use a+ and a" to refer to the positive

and negative part of it, respectively. Similarly, for a vector t = (t1, . - . ,tn) 6 R”, let

t+ = (t'f,- - - ,t:) and t" = (ti’,- - - ,t;). Then, t = t+ — t". According to (2.3) and

by the triangle inequality, it is enough to prove (2.4) with the 32 on the RHS replaced

by 16 for the case when t has nonnegative components.

Now, observe that

mans) - Wt(y.0)l = item—y — u(—s.-) s —K- < —y) ,

where I" is defined as in (2.3). Thus, we can and hanceforth further restrict our proof

of (2.4) with the 32 on the RHS replaced by 8 for the case that both t and s have

nonnegative components.

To simplify the notation, in this proof, we write

I(31,11)= git-HY.- S y + "35): F(y,U) = item! + us.)

i=1 i=1



W(y,U) = Wt(y,u8)-

Hence,

WW") 2 [(31,11) _ F(yau)'

First, we prove that for any y E R, 0 S u S b, and r > 0,

2

P(|W(y,u) — W(y,0)l 2 T) s 2exp(—,(Mo M u [“2 H % m 1.)), (2.8)
 

and for any yl < 312,

7.2

2(n t n: 6 + % utm)’ (2'9)

 P(IW(3/2,0) — W(y1,0)| 2 T) _<_ 2exp(_

where 6 = F(y2) —- F(y1).

Let

x.- 2 mm.- s y + u...) — NY.- 3 y)1.

Then, W(y, u) — W(y,0) = n X; and
i=1

EX;=0, IX,|St;S_ItI, ISiSn.

Further, by (B),

:Varm) S :tilfly + us.) — F(y)] _<_ M0 Isl u t “2 b.

Hence, the Bernstein bound of Lemma 2.1 gives (2.8).

Similarly, if we let

Xi E ti[I.(Yi S yz) — 1‘0”} S 311)],

then, W(y2,0) — W(y1,0) = n X,’ and
i=1

EXizoi IXiIStiSItl, 131.3",

ivaflxt‘) 5 itHFh/z) - F(y1)) = 6 II t H2 .

i=1 i=1

10



Again, the Bernstein bound of Lemma 2.1 gives (2.9).

Next, for a fixed a a, 0 < a S b'1 A (2Mohi/2)"1, construct a partition 0 = 770 <

171 < ° - - < 17,,, = b of the range of u such that

r“ S bo'l. (2.10)

The assumption (B) and (2.10) imply that, for 1 S r S r,,,

iti(F(y + smr) - F(y + Sim-1))
i=1

M02 ti3i(’7r — nr-l)

i=1

S Mollfilllltlla

lF(y:’lr) _ F(y, 77r-1)l =

  

|
/
\

M, say. (2.11)

Therefore, by the nondecreasing property of I(y, u) and F(y,u) in u and (2.6) of

Lemma 2.2, it follows from (2.11) that

sup |W(y,u) - W(y,0)| S lgngx lW(y, v7.) - W(y,0)l + M. (212)
OSqu —'—”"

Now, for a fixed 17,, define

My) = F(mm) + F(y,0), y e R.

Then, g,(-) is nondecreasing and 0 S g, S 2 22;, t,- S 2n1/2 H t H. Choose a partition

{-00 = {0 <61 < - - - < 6”,, = 00} of (—oo,oo) such that

A03”) :2 97“”) - 9r(€u-1) S M,

1/2 1/2
S 2 II t II n 5 2n .

M Mo || 8 || 0

By the nondecreasing property of F(y, 17,.) and I(y, 17,.) in y, (2.7) of Lemma 2.2, and

(2.13), when y 6 [£v_1,£,,], we obtain

”n (2.13)

IW(y) nr) — W(ya 0)|

11



S maX(IW(£u,nr) - W(£a—1,0)l , |W(€a—1,nr) - W(€a,0)l) + AU, v)

< max |W(£.-,nr) - W(£s,0)l

+ |W(£U—lt 0) — WW, 0)I + M, (2'14)

i=0—

where the last inequality follows from the triangle ineqality.

Hence,

sup IW(y,1],.) — W(y’0)|

|v|<°°

ma{|W(£mnr)- W(£..0)I}

+ max {IW(£.,,0) — mason} + M. (2.15)
lSuSun

Combining (2.12) with (2.15) obtains

sup sap |W(y,U)- W(y.0)|
|y|<oo OSqu

_<_ 115.2%); 1211325{|W(€m’lr) _ W(£m0)|}

ax{IW(£.,0)— W(£.-1.0)l}+2M- (2.16)max

lSuSun lSrSrn

Now, from (2.5) and (2.8) we obtain

P max max IW(:..m)- Wamonm)
SrSrn lSuSun

72

2(Mo Isl II t H2 b+ % |t|7))

2
7

< — . ._ 2rfl X vnexp( 2(Moh1h2b+ §h27)) (217)

 

S 2r" x unexp (—

 

Next, observe that

t2[F(£u) - F(€.,-1)] S Itl NOW)

S Moltl II t “ll 8 || 0

S Mohlhza, 1 S v S on. (2.18)

Hence, by (2.5), (2.9), and (2.18), we obtain

P max max |W(€v,0)— W({u—1,0)I 2‘7)
$1159» lSrSrn

72

. 2.19

2(Moh1h20’ + 3131127)) ( )

 

S 2r“ x vnexp (—

l2



Finally, (2.4) follows from (2.17), (2.19), the upper bounds of rn, 1),, given in (2.10)

and (2.13), and the fact that a S b“1 S b. D

In Theorem 2.1, if we properly take the values of b, a, h1, h2, and 7, we have

Corollary 2.1 . Assume that (A) and (B) hold and b,, 2 (In n)1/2. For any 0 < k <

00, there exists a constant K < 00 such that

P( sup sup IWt(y,us) — Wg(y,0)| Z Kai/2&1”) S n"c (2.20)

lvl<°° 05'6"»

holds for all n 2 1 and for all t E R”, s E R“ satisfying

|| 8 II V II t “_<_ 1, Isl V ltl S aa- (221)

Consequently, there exists a constant K < 00 such that for any sequences an, tn 6 R"

satisfying (2.21),

8119 sup IWt.(y,u8a)-Wt.(y,0)l < Kai/25?.” wpln-
M<°°°Susbn

Proof. We only need to prove (2.20). In Theorem 2.1, take h1 = 1, h; = an, b = bu,

0' = (2Mo)'l A b;1 A ailzbi/z, and 7 = Kama/212?,” with Ko to be determined. Then,

we II t nu s u a s moat/“bi".

Now, under (2.21), the exponent in the RHS of (2.4) is

  

72 : Kganbi

2[Moanbn + §an7l 2[Moanbn + §anKOatlII2balzl

K3 2
 

2[1,40 + §Koairflbirl2]b"°

Also, by (A) and the choice of a, we have b,, = o(a;1) = o(n"°) and (a,,b,,)"1 S

a;1 S n"°. Thus, there exists a constant 0 < M < 00 such that the coefficient part

32%(f—1)”2 on the RHS(2.4) is bounded above by an"°+1/2.

Then, (2.20) follows for K = K0 + 2M0 from the facts that anbn = 0(1), bu 2

(1n n)1/2, and

lim K3 1/2 1/2 =Ko—ooo 2(Mo + §Koan n )

 

13



Remark 2.1 The continuity of F implies that F(Y,-) are i.i.d. uniformly distributed

on (0,1). Observe that G;(t, b) — G;(t,0) defined in (2.1) equals to our Wt” (y, ban) -

th(y,0) at the y = F’1(t) when t = s = c;. Hence,

sup Ith (3” b8“) — th(y3 all

lyl<°°»|b|.<_bn

2 sup suplGMtJ) -GI.(t,0)|-
o<t<1 561;

If we further take an = n‘5 and b,, = (lnn)", where 0 < 6 < 1/2 and a 2 1/2, all

conditions in Corollary 2.1 are satisfied so that (2.20) holds. Therefore, our corollary

does imply the result of Ghosh & Sen appearing at the inequality (2.2). D

Based on Corollary 2.1, we can further take supermum over another variable to

obtain the following corollary. This allows us to use these results in multi-dimensional

regression problems. See Chapter 3 for details. To state this corollary and the next

theorem, we further define

5 = {eeR’=IIeIIS1}.

D, {d e R" : d = one, e e 8}, (2.22)

where 0,, is a n x p real matrix.

For simplicity, in the following we shall not exhibit the dependence of D" and Cu

on n, i.e. we write D and C for ’19,, and C“, respectively.

Corollary 2.2 . Assume that (B) holds and that the 0,, ’3 used to define Du satisfy

assumption (C) with bu Z (In n)1/2. Then, there exists a constant K < 00 such that

sup Ith(y,bd) — th(y.0)l < K ICI‘” bit/2, wpln, (2.23)
|v|<°°»OSbSbmd€D

for any sequence tn 6 R", [I tn “S l, Ital S ICI.
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Proof. As argued in the proof of Theorem 2.1, assume that all components of tn are

nonnegative and write W(y, bd) for Wt” (y, bd).

For each n, split ’13 into mu different parts: D1, - - - ,’D,,," such that

1. the diameter of each D1, is no larger than n'l, 1 S k S mu,

2. mn S (pn)".

(Split the cubic [—1, 1]? into equal volume small cubics, say.)

Fix a point at" in each Dk. Let 6,, = (n’l, ~ - - ,n‘1)' E R" and let

Do ={dl‘:l:6,,,k=1,---,m,,}.

Then Do contains 2m" different points.

Now, for any d E ’D, d E D), for some lc. By the fact that the ith summand in

W(y, bd) is a difference of two nondecreasing functions of bdg, l S i S n, and (2.6)

of Lemma 2.2 we obtain that for every 31 E R,

sup |W(y,bd) - W(y,0)|
deD

< ._
_ 32;: IW(y,bd) W(y,0)|

n

+ max lit (F(y + b(d’-‘ + n‘1))—- F(y + b(d’-° - 71—1»)
lSkSm

S max |W(y,bd)- W(y,0)| + 2blCI,
dEDo

where we used assumption (B) to obain the last step.

Observe that when 0 S b S bn, b |C| = o(b§;/2 |C|1/2). Thus, to complete the proof

of (2.23), it suffices to show that there exists a constant 0 < K < 00 such that

sup sup sup |W(y, bd) — W(y,0)| S K [C'lll2 bin, wpln. (2.24)

|v|<°°°SbSbn dEDO

By Corollary 2.1 applied with an = [CI and la = p + 2, there exists a constant

K < 00 such that

P( sup sup sup |W(y,bd) — W(y,0)| 2 K ICI‘“ biz/2)

lvl<oo 05555:: dE‘Do
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5 Z P 8UP sup |W(y,bd)—W(y,o)l ZK|C|1/2bf;/2)

dEDo lyl<00 OSbSbn

S 2mnn'("+2)

S 2p’n'2.

Now, (2.24) follows from the Borel- Cantelli Lemma. This also completes the proof of

(2.23). D

2.3 Results under Lg-norm

Let H be a nondecreasing right continuous real function and II ' "H the Lg-IIOI'III

induced by H. We further assume

(D) The d.f. F and the integrating measure H satisfy the following: there exist

ao>0andM1<oosuchthatas6—>0

sup (F(y + 6) — F(y))2dH(y + a) S M162.

lal<ao

(E) There exist 0' >1, A < oo, 0 < B < 00, no 2 1, and A < 00 such that for all

/\ Z A and n 2 no,

P((a,,b,,)'1|H(Y) — H_(Y - a..b..)| > A) g Aexp(—BX’),

where Y is a r.v. with d.f. F and H. is the left limit of H. Also,

/ F(l — F)dH < oo. (2.25)

The next theorem gives an analog of (2.20) for the Lg-norm || . ”H. This theorem

holds for large n only.

Theorem 2.2 . Let assumptions (A), (D), and (E) hold and b" 2 (1n n)1/2. Then,

for any I: > 0 there exist a constant K < co and No 2 1 such that

F(vsupn n W.(, us)— w.(.,0) “Hz [rd/25:”) g n-k, (2.26)

holds for all a, t E R" satistying (2.21) and for all n 2 No.
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To prove Theorem 2.2, the following lemma due to Bychkova (1986) is used.

Lemma 2.3 . Let {X1n lc _>_ 1} be a sequence of random elements taking values in

a Hilbert space such that EX)c = 0, k _>_ 1, with 0 being the 0-element of the Hilbert

space. If

P(" XI: ”1.2 x) S Aexp(—Bx‘1/(q—1)),

where 1 < q < 2, A > 0, and B > 0, then for any sequence of real numbers {vm n 2

1} satisfying

m

2 lvnla < 00

11:1

for an a E (q, 2], we have

P(u 2: tax). ".2 a) s exp(—A.a°'/<°-‘>),
k=l

where Ad > 0 is a constant depending only on a and II - ”h is the norm defined on

the Hilbert space. E]

Proof of Theorem 2.2. Similar to the proof of Theorem 2.1, it suffices to prove (2.26)

for t and 8 having nonnegative components.

Let ’H be the Hilbert space defined by I] . "H. For 0 S u S bn, y E R, and

1 g i _<_ n, let

X,-(y) = (a.b,)-l/2{P(Y.- 5 y + us.) — my. 3 y)}. (2.27)

Then

n x.- Ilia: (abs-1U Ia < Y.- s ,, + uss)dH(y)

+ / (F(y + us.) — an)“ dH(y)

-2 / 1e < Y.- s y + usa)(F(y + as.) — F(y))dH(y)}-

Clearly, for all 1 S i S n,

/I(y < Y.- S y + as.) dH(y) = H_(Y,-) — H_(Y,- — 113;). (2.28)

17



Because 0 < u S bu and |s| S an, by (A) and (D) it follows that there exists an

1S N1 < 00 such that

(F(y+aa.-)— F(y))’dH(y) s M1(us.-)2
lSiSn

S M1(a,,b,,)2, (2.29)

foralllSiSnananNl.

Further, the Cauchy-Schwarz inequality, (2.28), and (2.29) imply that

/ I(y < Y._< y + us.-)(F(y + as.) - F(y» dH(y)

< Mlmanbb,.(H.(Y.) — H-(Y,- — us.))1/2, (2.30)

foralllSiSnananNl. Theseimplythat X,E’H,1SiSnandn2N1.

Now, by (2.29),

max (marl /(F(y + as.) — Fm)“ dH(y) ——- ow.) = 0(1).
lSiSn

and by (2.28), (2.30), and (E), there exist A < co, 0 < B < oo, o > 1, and A < 00

such that for 1 SiSn, A>A,ananNo=noVN1,

P(b(a,,,,)[)I(< Y-S y + us.) dH(y) > A2)

S AexP('—BA20):

p((..b.)-1 / I(y < Y.- s y + u..)(p(y + as.) — F(y» dH(y) > A?)

S Aexp(—Bz\2").

These inequalities imply that there exist A1 < co, and 0 < 81 < 00 such that for

1 S i _<_. n) fl 2 N03

P(ll Xe ||H> A) P(ll Xi |Ib> V)

S Alexp(—BIA2°).
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Since a > 1, there is a 1 < q < 2 such that 20 = q/(q — 1). Apply Lemma 2.3 to the

{X,-} defined in (2.27) with a = 2, v,- = t,-, 1 S i S n, v,- = 0, i > n, to obtain

P((a,.b..)-1/2 u W(-,us,,) — W(-,0) ||H> A) g exp(—A,\2),

for some A < co and n 2 No. Taking A = Kb“ gives that for 0 S u S b and n 2 No,

P(II W(-,us) — W(-,0) I|H> Kai/253,”) S exp(—AK2b?,). (2.31)

Now, take a partition on [0, bn] as in the proof of Theorem 2.1 and take the

configuration of b, hl, ’12, and 0' as in Corollary 2.1. Then, a S ai/2bfi/2. The

discussion similar to that for (2.12) in the proof of Theorem 2.1 leads to

supb || W(-,us..) - W(-,o) IIH
OSuS n

s max, u W(-,a.s.) — Wen) ua

+max n Fm.) — Fm.-.) IIH . (2.32)

By (A), (D), and the Cauchy-Schwarz inequality,

ll F(‘a’lr) — F(, 777-1) ”I!

=|| Zte(F(- + am) - F(- + sax—1)) Ht
i=1

Sll t ||2 2 II F(' + 3m.) - F(° + Sena-1) Ilia
i=1

S M1(a,1,/2b?,/2)2, n _>_ N1.

Therefore, for n 2 N1, (2.32) can be rewritten as

sup n W(-,us) - W(',0) llH
OSqun

< max n Wow) - W(-,0) ua +Mi’2ay’bi/2.
_ OSrSrn

To prove (2.26), it thus suffice to show that there exists a constant K < 00 such that

for all n _>_ No,

P max (I W(.,r,.s) — W(-,0) ||H> Kai/2123;”) g n-k. (2.33)
5'57»
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By (2.31),

LHS(2.33) s 2: P(IIW(-.nrsn)-W(-.0)IIH> Kai/253”)
OSrSrn

< r,,exp(—AK2b:), n 2 No.

Since b,, 2 (lnn)1/2 and r,, S bud-1 S (a,,b,,)"‘/2 S a;1/2 S n"°/2 by (A), we can

select K large enough so that (2.33) holds. This completes our proof. [I]

The following corollary is analogous to Corollary 2.2.

Corollary 2.3 . Define 8 and ’13,, as in (2.22). In the assumptions of Theorem

2.2, replace (A) by (C). Then there exists a constant K < 00 such that, for any

tn 6 R", II tn IIS 1, Ital S ICI,

SUP || th(':bd) —W,,,(.,0) Ila< chlllabi”, wpln- (2-34)
OSbSbnydED

E]

The proof of Corollary 2.3 is similar to that of Corollary 2.2 and hence is not

given.

20



Chapter 3

Strong Consistency

3.1 Introduction

In this chapter, we first recall the MD estimators defined in Chapter 1. Asymptotic

distributions of these estimators have been studied by Koul & DeWet (1983) and

Koul (1985a, 1985b). We will present in the next section some strong consistency

results of these estimators.

Consider the linear regression model (1.1). As in Chapter 2, we will not exhibit

the dependence of Y,,,- and X,, on n and use 23;. and 23., for the ith row and jth column

of X, respectively.

Let S = X’X and assume that 5’1 exist for all n _>_ p. Let

C = xs-l/z. (3.1)

Then the model (1.1) is equivalent to

Y,- = c,-.A + 6;, 1 S i S n, (3.2)

where c,-. is the ith row of the C and

A = 31/35. (3.3)

Observe that the design matrices C’s of (3.2) satisfies C'C = Ipxp. Our study is

conducted based on model (3.2). Any conclusions obtained can also be translated to

the forms with respect to model (1.1) according to (3.3).
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Given a nondecreasing right continuous function H from R to R, let

M) = / II web) II’ dH(y), b e RP.

where

U(y,Cb) = fauna/.- s y + ab) — F(y». (3.4)
i=1

Note that under (3.2), E U(y, CA) = 0. This motivates one to define a MD estimator

A of A, in the case F is known, as a minimizer of T(-):

A = argminb T(b)

Similarly, in the case that F is unknown but symmetric around 0, a MD estimator

A+ of A is defined as a minimizer of T+(-):

A+ = argminb T+(b),

where, for b E R”,

T+(b) = j u U+(y,Cb) "2 dH(y),

U+(y, Cb) = f: c..{1(Y.- s y + c..b) — I(—Y.- < y — c..b)}. (3.5)
i=1

Note that for B and 6+ defined in Chapter 1 with D = C, we have

,3 = 54/221, 3+ = 5-1/24+. (3.6)

See Koul & DeWet (1983) and Koul (1985a) for more motivation and other properties

of ,6 and )6+.

In this chapter, we give the strong consistency results for R and ,3+ along with

rates. To this effect, besides the assumptions (B)—(E) in Chapter 1, we shall also use

the following assumptions.

(F) The d.f. F satisfies (2.25) of (E) and has a density f which satisfies

0 <|| f llir< 00. (3.7)

(1919] de > o. (3.8)
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(G) There exist a > 1, A < 00, B > 0, and A < 00 such that for all A _>_ A,

P(HueI) — H-(- Isl) > a) s Aepr—Br),

where 6 has distribution F.

(H) There exists 0 < a < 2 such that

Z ICIza < co and |C|° = o((ln n)‘1).

n=1

(I) The function F and H are such that

// F(x)(1 — F(y)) dH(x) dH(y) < oo.
xSy

The following lemma demonstrates some facts related to assumptions (F) and (1).

Lemma 3.1 . Let F be a distribution function and H be a nondecreasing right

continuous real function. Then, the following hold.

(1) fF(l — F)dH < 00 if and only iffH_.dF < oo.

(2) fHZdF < 00 if and only if

U... F(a)(1 — F(y))dH(x)dH(y) < oo.

Proof. By the thini Theorem,

/ F(l — F)dH = ///Sz<tdF(s)dF(t)dH(x)

= //<t[H-(t) — H.(s)]dF(s)dF(t)

= % /|H_(t)—H_(s)|dF(s)dF(t).

Now, (1) follows from the fact that for two independent r.v.’s X and Y, E IX — Yl <

ooifandonlyifEIXI<ooandE|Y|<oo.
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To prove (2), by the Fubini Theorem,

ff“, F(a>(1 — F(y))dH(a)dH(y)

z- [ll/535K:dF(s)dF(t)dH(x)dH(y)

s ; [faint—(t) — H—(s)l’dF(s)dF(t).

and

ll... F(a)(1 — F(y))dH(a)dH<y)

2 % [fl/SM“dF(s)dF(t)dH(x)dH(y)

= i l[H.(t)—H_(s)]2dF(s)dF(t).

Hence (2) follows from a fact similar to the one used in the proof of (1), i.e., for two

independent r.v.’s X and Y, E'(X — Y)2 < 00 if and only if EX2 < co and E'Y2 < 00.

C]

3.2 Main results and proofs

Throughout the rest of the thesis, the C” and bn in the assumption (C) are taken

to be C of (3.1) and (In n)1/2, respectively. Also because the estimators A and 4+

are translation invariant (Koul (1985b, 1992)), throughout the following, the true

parameter A will be assumed to be 0. For simplifying our notation, we also assume

that H is continuous.

We first present the strong consistency of ,3+ under assumptions (B), (C), (F),

(G), and the symmetry of F around 0. Then the strong consistency of 3 under (B),

(F), (H), and (I) is given.

Theorem 3.1 In addition to (B), (C), (F), and (G), assume that F is symmetric

around 0. Then, there exists a constant K1 < 00 such that

M 4+ II<(K11nn)%, wpln,
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and (recalling that [3+ = 5—1/24+);

“ 3+ ||< (K1 II 5-1/2 II2 kitty/2, wpln.

Remark 3.1 . This theorem implies that if the design matrix X is such that

H 5'1” “2: 0((11fl '0“),

the Koul estimators fl+ are strongly consistent for B in (1.1) This condition is

 

satisfied by a large class of designs. Examples include the one sample location model

where X = (1,---,1)’, so that 5’”2 = 12‘”2 and |C| = n'l/Z; and the first order

polynomial through the origin where X = (1,2,-~,n)’, so that 5"”2 S n’:"/2 and

IC I S n’1/2. El

Here is our next theorem.

Theorem 3.2 Under the assumptions (B), (F), (H), and (I), there exists a constants

K < 00 such that

H 2‘ ||< (K |C|'°)i, wpln.

and

II it ||< (K II 5"” ll2 |C|’°)‘/2. wpln.

C]

Now, we proceed to prove these two theorems. Theorem 3.1 is a consequence of

the following three Lemmas.

Lemma 3.2 . Under assumptions (B), (C), (F), and (C), there exists a constant

K0 > 0 such that

T+(0) < Kolnn wpln. (3.9)
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Proof. By the definition,

Tue) = / II v+(y,o) II” dH(y)

= :1/{iq,(1(x s y) — I(—Y.- < y))}2dH(y)
i=1

:= fry-(0) (3-10)

i=1

with

13(0) = [{i a..(I(Y.- _<_ y) — I(—Y.- < y))}’dH(y), 1 s) s p.
i=1

Since p is fixed, it thus suffices to show that (3.9) holds for each T,-(0),

lSan

Let

X.~(y) = I(K-Sy)—I(—K-<y), 0SiSn, yER,

’H = {9: II 9 llb< 00}-

Observe that

II X. I}. = [[104 Sy)-I(—Y1 <y)]’dH(y)

= Hum-Hem).

From (1) of Lemma’3.1, (2.25) of (E), and the symmetry of F, it follows that {X,-} is

a sequence of i.i.d. 'H-valued random elements satisfying E X,- = 0, i Z 1. Condition

(C) implies that when A Z A

P(ll X1 IIHZ A) = P(Il X1 II2> )2)

P(H(|Y1|) - H(-IY1|) > )2)

S Aexp(—BA2").

Since 20 > 2, there is q, 1 < q < 2, such that 20 = q/(q -1).
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NowforeachfixedlSjSp,takea=2anda,-=c,-jwhenOSiS n, ag=0

when i > n. Then

00

Elm-I2 =1 < oo.

i=1

By Lemma 2.3,

P(ll Zea-X.- ||H> A)
i=1

exp(—A,~A2)

< exp(—AA2),

P(T,(0) 2 )2)

|
/
\

where A,- > 0, 1 S j S p, are constants independent of c.,- and A = min1555,(A,-).

Now, take A = (K Inn)”2 with the K such that AK > 1 in the above inequality.

Then the Borel-Cantelli Lemma and (3.10) imply that (3.9) holds with Ko = pK. U

Lemma 3.3 . If H is a nondecreasing right continuous real function, then there

exists a nonnegative real function 9 such that

(a) 0 < g S 1.

(b) fgdH < 00.

Proof. We just construct such a function g. Let

_ 1 IHIa)I 5.1,
9($)-{ xi?) (11(2)) >1.

This g satisfies (a). To prove (b), we only need to prove f[H>l] gdH < 00. By Fatou

Lemma,

" 1

dH = 1' dH < 1' .— .

It»)? .22. “.2539 — 32.2.2 < °°
t:

This completes the proof. D
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Lemma 3.4 . Assume that (B), (C) and (F) hold. Then there exists a constant

0 < K1 < 00, such that

T+ b > K In ’ 1 , 3.11

||b||2(i(11nn)1/
2 () 0 n

wp n
( )

with Ko as in Lemma 3.2.

Proof. Let h,, = (Kllnn)1/2 with K1 < co to be determined and 8 and D be as in

(2.22) with Cu equal to C of (3.1). Let g be as in Lemma 3.3 and define

)u(x) = [3 gdH. x E R. (3.12)

Then )1 is a bounded nondecreasing function and so is H g ”H. We assume that

H g "H: 1, without loss of generality, and denote p0 = f gdH.

For any b E R”, b at 0, there is unique 8 E 8 such that

b=||b||e=be,

where b z” b H. Therefore (3.11) is equivalent to

- +
bleyEgE£T (be) > Kolnn, wpln. (3.13)

By the Cauchy-Schwarz inequality,

T+(b) = T+(be)

/ II e II’ II U+(y.bc:e) Il’ dH(y)

/ [e'U+(y, 5.1)] ’ dH(y)

[/ U;(1.bd)da(y)]’. (314)

I
V

ll
I
V

where d = (d1,d2, - - - ,dn)’ = Ce and

U;(y,bd) == e’U+(yabd)

= 2.2.-(10’.- s y + bd.) — I(—Y.- < y — 5‘10}-
i=1
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Observe that for any fixed (1 E D and y E R, U;(y, b d) is a nondecreasing function

of b. Therefore, when b 2 hn,

Ui(y.bd) Z U501. had). 31 E R. d E 73-

Hence, to prove (3.13), it suffices to show that

3,2; / U511). 1.3) My) > (3.1...)1/2, wpln.

01‘

mp — / 03(1). h.d) dam) < —(K.1nn)1/2. wpln.
de‘D

Now, divide D into mu pieces, say, D1,- - - .17"... such that

1. The diameter of D)‘ is no larger than "—2, I: = 1, - - . ,mn.

2. m" S (pn2)’.

By the Fatou lemma and (3.8) of (F),

11:35.1] %[F(x + 6) — Fund). 2 / fa). 2 f1- de > o.
1_<_H51]

Therefore, we can select a 0 < r7 < 00 such that

LHS(3.16) > 1).

(3.15)

(3.16)

(3.17)

Let K1 be such that rh/Kl — 2m > 0. We first prove that there exists an

1SN<oosuchthat

P(—/U;).
(y, hndk) dp(y) Z —2(Kolnn)

1/2)

5 ”tin/k7- 2717621112},

for every dk E D)c and n 2 N.
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From (C) and (3.17) it follows that, there exists 1 S N < 00 such that, for all

n 2 N,

E [U543], bndk) dH(y)

= / idf(F(y + hndf) — F(y — had?» aMy)
i=1

n 1
= / zdfhndf h d, (F(y + 1)..le) — F(y - had?» dMy)

i=1

2 17(K11nn)1/2. (3.19)

 

Now observe that f U5. (y, bnd") dp(y) is the sum of n independent bounded r.v.’s

X.- = elf/(10'.- s y + an.) — I(—Y.- < y — diva») duo)

with the bounds given as

—-|df|gX.- 5 |d§|, 1SiSn.

By the exponential inequality of Hoeffding (Theorem 2, 1963) and (3.19), for n 2 N,

P(— / U1.(y,b.d*)da(y) .>. —2(Ka In at”)

S P(- / U543], bndk) du(y) + E [U111 (yr bndk) dH(y)

Z ('7 K1 - 2 Ko)(lnn)1/2)

Sexp(—-;-( K1—2 K0 2Inn).

This proves (3.18).

Note that the RHS in (3.18) does not depend on 11:. Hence,

P( max {‘ / U;.(y,h..d")d,)(y)} 2 —2(Ko1nn)1/2)
lSksmn

Smnexp{—%(n K1—2 K0 2Inn}

S prn-%(m/RI-2JKE)’+22, n 2 N. (3.20)
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Clearly, there exists a positive constant K1 such that the RHS of (3.20) is summable

in n. Then, the Borel-Cantelli lemma gives

max {—/U3u(y,hndk) dp(y)} < —2(Kolnn)1/2, wpln. (3.21)
lSksmn

Next, for any (1 E D, d E D), for some la, and

[f [U;(y, had) — U;.(y. h.d")] d#(y)l

= l) [U;(y,h..d) — UJ~(1I. 11.00] d11(3)

+ / [111.11, M) — 113(1). had")] My)

 

  

 

s (sup 201? - d.)[I(Y.- s y + hnde) — I(-Y.- < y - hndilll
lyl<°° i=1

+ sup 2.115 (10/, g y + hndf) — I(Y. S y + huddll

lVl<°° i=1

+ sIup de[I(—Y.- < y — lad?) — II—K- < y — h.d.-)] )m
I” <00 i=1

:= (I1 + I; + I3)po, say. (3.22)

We have

II = Isup EM:c - d,)[I(Y.- S y + hndi) — “‘16 < y ‘ hndi)]|

Vl<°° i=1

S H dk-dll "”2

: 0(71-3/2). (3.23)

Recall the definition of Wt from (2.3). By Corollary 2.2, assumption (B), and the

fact that |C| h,, = 0(1),

[2 = sup

lv|<°°  

23d? [I(Y. s y + 11.4?) - 10/. s y + h.d.-)]‘
i=1

S Iii? {IW6~(1/. hndk) - Wa~(y.0)| + IWd~(y. had) - Wa~(y. 0)|

+

 
£3de + ad?) — F(y + 6.3)) I}

= 0(ICI1/’(1nn)3/4)

= o((lnn)1/2). (3.24)
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Similarly,

I3 = o((ln n)1/2). (3.25)

Combining (3.22) — (3.25),

mp |/ [01(1), 6.4) - 111.11), 1.41)] d#(y)| = own are). (3.26)
(161)

Finally, by (3.21) and (3.26),

811p - / U101. hnd) dMy)
deD

= 3‘25“ / U;.(y, 3.x) dp(y) + / [113(1), ad") — U16, 1.3)] da(y))

< max {- / UJ~(1/.had")dfl(y)} +.((1...)1/2)
_ lSkSmn

< —(Ko ln n)1/2, wpln,

thereby proving (3.15) and also the lemma. D

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By the definition of 4+,

T+(A+) s T+(0).

On the other hand, by Lemmas 3.2 and 3.4,

inf T+(b) > K0 lnn > T+(0), wpln.

llb||2(K11nn)‘/’

Therefore,

|| A+ ||< (K1 lnn)l/2, wpln

This completes the proof of Theorem 3.1. C]

Next, to prove Theorem 3.2, we prove the following three lemmas.

Lemma 3.5 Let

11(0) = ]{it-(KY: s y) — F(y))}’dH(y).
1:1

32



Then, under the assumption (1), for every t e R",

E1310) 5 6 II t H“ [[39 F160 — F(y» dH(a)dH(y) < ea. (327)

Proof. Observe that by the 11161.21 Theorem,

ET3(0) = E[/{::lt.-(I(Ye S v) - 15110)}2 6111(3)]2

= E{[/{Zt(I(Y.- g .) _ F(.))}’1H(.)] .

I/{z .,. (ms- 5 ,, - F(.))}’am.)I}

2 (syéttEKHY. s y) — F(y))’(I(Y.~ s a) — F(a))’]

+22...t?t}E[(I(Y_< y)— F(y))2(I(Y,- < x)— F(x))2]

+222xtft§E[(I(Y-_< x) — 11(2)) (I(Y,_< y) — F(y))

(I(Y < y)— Fm) (I(Y. < a)— F(a))]}dH(a) dH(y)

I
A

= Z/AK,{§t?A+ 22%tftiB

+2: 2,513.30} dH(a) dH(y). (328)

where

A = E[(1(Y.- s y) — F(y))’(1(y,. s .) — 11(3)”),

B = E(I(Y. S y) - F(v))2E(I(Y3 S 3) — F(x))2,

and

D=E[(I(Y.Sw)—F(z))(I(Y' 5-3!) F(yl)

(mg- _<_y)- no) (11 s a)— 3(3)].

Further, when x S y,

A s E I(I(Y.- s a) — F(a))(I(Y.- s y) — F(y))|

F(x)(l — F(y)) [1 + 2(F(y) — F(x))]
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s 3F(x)(1 — F(y)) (3.29)

B = F($)(1- F($))F(3I)(1— F(y»

S F($)(1 - F(21)) (330)

D = 1"'2(='=)(1 - F(y»2

S F($)(1- F(y» (331)

Then (3.27) follows from (3.29) - (3.31). C]

Lemma 3.6 . Assume (H) and (I) hold. Then

T(O) = /U2(y,0)dH(y) < ICI’“ wpln (3.32)

Proof. Apply Lemma 3.5 p times, the jth time to t = c.,~, 1 S j S p and use the fact

that I] c.,- H: 1 together with the Cauchy-Schwatz inequality to obtain

Ema) = 131/ II U(y.0) Il’ dH(y)]?

E(Zp: [{f: a..(z(Y. s ,) — F(y))}’ dH(y)]2

(§{E[/{;Qj(l(fi s y) — F(y))}’da<y)1’}"’)”

_<_ m” [[39 F1611 — F(y))dH(a)dH(y)

<00.

|
/
\

Now, (3.32) follows from the Markov inequality, (H), and Borel-Cantelli Lemma.

Cl

Lemma 3.7 . Assume that (B), (C), and (F) hold for bu = |C|_°/2. Then there

exists a constant 0 < K < 00, such that

inf T(b) > |C|-°' wpln. (3.33)

IIbII2K|C|‘°”
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Proof. This proof is similar to that of Lemma. 3.4.

Proof of Theorem 3.2. Similar to that of Theorem 3.1.
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Chapter 4

Bahadur Expansion

4.1 Main result and proof

In this chapter, we further give a Bahadur type expansion for A+ so that a similar

expansion can also be obtained for 6+.

We need further assume that

(J) F has density function f whose derivative satisfies

“233’"[1m + 3))2 dH(y) < 0..

To describe the theorem, define

3+ = - / U+(y.0)f(y) 4H(11).

Mb) = / II U+(y.0) +2bf(y) Il’ dH(y).

and

A

A+ = argminb T+(b).

Remark 4.1 . Observe that 2 I] f H}, 21+ = B+ ifO (M f ||H< 00. Because of this

fact and (3.9),

II 21“ ||< mama)“. wpln,

where K; = {-K. n f "g”. a
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Theorem 4.1 In addition to the linear model (3.2) with true A = 0 and the sym-

metry ofF around 0, assume (B) — (C) and (J) hold. Then

IIfIIH(A+) =—-/f:[c.{I(K<y)—I(—K-)(y<y}Ify)dH()+Rm (4.1)
i=1

where

11.. = 0(|Cl"‘ (In .328).

Proof. By the facts II a II2 — II b “2: (a— b)(a+b), and

2 II f Hi. 2) = — / U*(y,0)f(y) dH(y),

we obtain

r+(A+) — T+(A+)

= / (II mac) +WW II” - II U+(y.0) + 211M" II”) dH(y)

= 2 /(4+ — 21*)'(2U+(y.0) + 2f(y)(A+ + 4+))f(y) dH(y)

=4 II f II}. II 4+ —21* II“. (4.2)

Observe that the first term of the RHS of (4.1) is M f II}, A+. To prove (4.1), it thus

suffices to estimate the convergence rate of the LHS of (4.2).

From Theorem 3.1 and Remark 4.1, we have

II A+ II< h,, and II A+ II< hn, wpln,

where h, = (K Inn)”2 with K being the maximum of the K1 from Theorem 3.1 and

K,» from Remark 4.1. Hence,

  

T+(A+)—T+(A+) g I2T+(A+)- T+(A+)I+IT+(A —T+(A)I

S sup IT+(b)—T+(b)l,wp1n. (4.3)

2IIbIIShu

For a fixed b E R”, we have

|T+Ib) - T+(b)| = I/ (ll U+Iy.0b) II“ — II Unto) + 211.)!» ll’) dH(y)|

s fllhll’dH+/I|Iall’dH

+2 ) II;(11 + 13)) dH + 2 / |I;I3| dH (4.4)
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where

I1 = W+(y,Cb) _ w+(y,0),

I2 = U+(y, 0) + 2f(y) b,

13 = EU“(1I.Cb) — 2f(y)b,

with WWI/.23) = U+(1I.x) - E04062:)-

By (J), with some I9,-I S Ic,-.b| and IQI S Ic,-.b|,

1/2

II 1.1.. s [i/{ia.(r(y+c.b)—F(y)—c.-.bf(y))}”dH(y)]
1:1 i=1

'1):[{2 015(F(y " 65b) — F(y) _ Cab f(y))}2d1!1(y
)I1/2

= I:[{2 c..(c..b)’f’(y + a.)}’dH(,,)I 1”

+ I: jig; ca(c.~.b)’f’(y + (‘1')}2€lI{(y)]1/2

2 0G;(,2: ICI'J'I ' (61.6)”)2] 1’2)

= “[25: || ca II2 ICI || b||2)2I1’2)

= 0(IC'I II 5 II”)-

Therefore

SUP II I3 “11: 0(ICI hi) = 000mm).
(4.5)

IIbIIsh.

BY Lemma 3.2,

” U+(.’0) “H: 0((111 "ll/2), wpln.

Hence

SUP II 12 Ila: 0((ln n)1/2), mph,
(4.6)

"buy...

Moreover,

llhllu = {i/(WJny’Cb)‘Wf(y,0))2
dH(y)}l/2

1:1

38



1/2

3 {2: [(Waly, C b) - Wj(y, 0))2dH(31)}

+{it /(W.(—y,0b) — m<—y.0))’dH(y)}"2,
1:1

with W?" and WJ- being the jth component of W+ and W, respectively, and W(y, Cb) =

U(y, Cb) — EU(y, Cb) for U(y, Cb) as in (3.4). By Corollary 2.3,

SUP || 11 "IF 0(|C|1/2(1nn)3/4)- (4.7)

"bush.

Combining (4.5), (4.6), and (4.7), we have

sup |T+(b) —:r“+(b)l
"bush.

= 000]”2 (In n)5/4 +|o|(1nn)3/2 + (|C'| mm?)

= 000W” (1n n)5/4). (4.8)

Finally, the theorem follows from (4.2), (4.3), and (4.8). CI
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