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ABSTRACT

PRODUCTION SCHEDULING OF CUTTING STOCK

IN A MULTI-PERIOD, MULTI-PROCESS FACILITY

WITH SEQUENCE DEPENDENT SETUPS

BY

Michael P. D’Itri

This paper introduces an explicit formulation for

sequence dependent production scheduling where the produced

stock will be cut into finished products and a: heuristic

solution procedure that obtains good, but not necessarily

optimal, solutions to a production scheduling problem common

in the paper industry. The heuristic begins by adding

additional constraints and a few binary variables that limit

the number of decision variables likely to take fractional

values when the formulation is solved with the integrality

restrictions relaxed. Next, the heuristic proceeds to

sequence production on each. machine one period at time.

Sequencing is accomplished with an iterative procedure that

successively increases the number of transition variables

required to be binary until a complete production sequence,

for that period, is achieved. Once a production sequence is

established for a period, the heuristic defines a range of

integers describing possible production quantities for that

period. Another mixed integer program is formulated that

establishes integer values for the production in the period

just sequenced and begins the sequencing for the next period.
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CHAPTER 1: INTRODUCTION

Paper manufacturers and other companies in the process

industries are currently experiencing production pressures

similar to those that batch or repetitive manufacturing

managers have dealt with for the last two decades. Customers

now expect suppliers to operate in just-in—time (JIT)

environments with shorter delivery lead times even as they

request higher quality and broader product lines. Better

production scheduling can increase responsiveness to these new

demands. Scheduling production to minimize waste enables

management to streamline operations making them more efficient

and profitable.

Efficient production sequencing is often an essential

component of production scheduling in the process industries.

The cost of configuring a manufacturing station can be

independent of the sequence of products produced at the

station. However, there are situations where the cost of

setting up for manufacturing is sequence dependent. This is

common in process industries and in the paper industry in

particular, where residual materials from prior manufacturing

can affect the current production.

When the produced materials are cut into finished

products, the production scheduling problem becomes more

complex, a situation common in the paper and process

industries. An optimal solution to a stock cutting problem

determines the best way to cut lengths or shapes from a stock
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of raw materials. The raw materials have value, and the

objective is to minimize the amount of raw materials used

while satisfying demands for each length or shape. A wide

range of production technologies such as textiles, paper and

steel would benefit from more effective production scheduling

techniques that consider a subsequent stock cutting problem.

In many situations that require the solution of a. stock

cutting problem, the composition of the available stock is

beyond the control of the decision maker. For example, in the

lumber industry the sizes of the trees dictate the composition

and dimensions of the raw material, the stock set the cutting

priorities are based on. In contrast, manufactured products

offer the decision maker more control over the composition of

the cutting stock.

Although there are substantial bodies of literature

addressing both sequence dependent scheduling and stock

cutting problems, to date there has not been a formulation to

address these concerns simultaneously. This situation is

common in the paper industry where paper machines produce

stock of varying widths that will be cut into finished

products. The cost of changing the type of paper is dependent

on both the current and planned production.

EXAMPLE PROBLEM

The relationship between production scheduling and stock

cutting is illustrated by the following example. For the

purpose of simplicity, the example assumes all demand is for
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one roll of each type of paper in each requested width. A

scheduler plans to produce two types of paper, A and B, where

paper A is required in a roll that is 100" wide and paper B is

needed in widths of 50" and 60" rolls. The company has two

paper machines, 1 and 2, with the capability of producing

widths of 60" and 100" respectively. At the beginning of the

planning horizon both are producing paper C. Table 1-1

describes the cost, in dollars, of switching between papers on

each machine, where the rows show the paper currently under

production, and the columns describe the status of the machine

after the switch. The incidence matrix shows the cost of that

transition.

Table 1-1: Machine Dependence for Sequence Dependent

Production Scheduling

Machine 1 Machine 2

Paper A E Q A E Q

0 4 6 0 4

B 3 O 9 6 O 12

2 9 0 2 11 O

Trim loss can be assumed to be $1 per wasted linear inch.

There are several approaches to scheduling these orders.

A first approach might be to have both orders scheduled

on machine 2 leaving machine 1 free to process other orders.

This would require switching to product A and then to product

B. The transition cost would be 2 + 4 = $6. The trim loss

for paper A would be zero, and the trim loss for the first
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reel of paper B would be 50" and the second 40". Making the

total cost of producing both orders on machine 2 96 dollars.

Producing paper B on machine 1 and paper A on machine 2

generates a total cost of $21. In this situation the

transition costs would be higher, $11, while the cutting

expenses would be lower, $10.

This simple example illustrates the benefits of

considering the sequence dependent transition costs and

trimming costs simultaneously. As in ‘many ‘manufacturing

situations, production capability in the paper industry

depends on both the type of machinery available and the mix of

products demanded. Setup times for products are sequence

dependent, indicating opportunities for more efficient

operations through better production scheduling methods.

Additional complexity arises when the output will be cut into

finished products. Most paper mills have several machines

with varying capabilities, the most obvious is different

widths. Therefore, a production scheduler in a paper mill

must consider many factors simultaneously when devising

schedules for the production of cutting stock: due dates,

sequence dependent setups, inventory levels, proportion of

fiber recycled and the manufacturing and cutting capability of

each machine.

A rolling planning horizon reflects the dynamic nature of

most production planning systems where the product is demanded

at varying intervals and plans are frequently revised.
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According to Baker and Peterson (1979), a rolling schedule

results from solving a multi-period production schedule and

then implementing part of it. A rolling planning horizon

introduces an additional level of flexibility, allowing the

scheduler to build inventory levels to meet future demands or

revise a production plan as more information becomes

available.

PROBLEM STATEMENT

Baker (1974) contends that production scheduling should

take place after three fundamental managerial decisions have

been made: the product or service to be provided, the amount

of product or service and the quantity of resources to be made

available. After implementation of these fundamental

managerial decisions, the scheduling problem should be solved

by answering two questions: determining the allocation of

resources to each task and the time when the task will be

performed. This research seeks to answer these two questions

for a situation in which manufactured materials are cut into

products. The manufacturing environment is a multi-product

facility that has several production lines with sequence

dependent setups.

The objective of the research is to develop a method for

devising schedules that meet customer time constraints and

minimize the total cost of four components: production of the

raw stock, trim waste from the stock cutting procedure, lost

sales and the cost of scrapping excess product. The developed
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algorithm accomplishes this by first determining an efficient

production sequence for each machine, and then setting the

number of reels (form of the paper leaving the paper machines)

to produce. Inventory levels for each period of the planning

horizon as well as the quantity and period that unsatisfied

demand will occur are also specified by the algorithm.

Final products, rolls, are cut from the reels of paper

according to available cutting patterns. A cutting pattern

represents one possible method of dividing a reel into rolls.

For this research, only non-dominated patterns are considered.

A cutting pattern is dominant if no other pattern exists

where it is possible to cut more rolls in any one width while

producing an equal or greater number of rolls in all other

widths cut from the reel. For example, if paper is demanded

in 50" rolls and 20" rolls and the paper machine has a width

of 100" there are several combinations of useful widths that

could be cut from the 100" reel. For instance two 50" rolls

could. be cut, or one 50" roll and two 20" rolls. Both

patterns would be dominant because it is not possible to have

a pattern that will produce more rolls in one of the widths

while producing as many in the other width of interest. A

pattern where there was one 50" roll and one 20" roll cut

would be dominated by the pattern that produces one 50" roll

and two 20" rolls.
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DESCRIPTION OF THE MANUFACTURING ENVIRONMENT

Stock cutting together with production scheduling is most

commonly encountered in process industries.

Process Industries

Process industries such as paper, food and chemical

manufacturing can be defined by two important facets, what

they' produce and the nature of the material flow in the

process (Taylor, 1979). Manufacturing facilities in process

industries are characterized by large capital expenditures

that require high levels of utilization to achieve economic

viability. Furthermore, products must meet a host of quality

measures. Equipment operating under steady state conditions,

which typically occur well after a start-up or transition

period, are most likely to produce a consistent product.

Achieving this steady state frequently requires considerable

time and expense. Therefore, such facilities usually operate

twenty-four hours per day, year round, except for scheduled

and unscheduled maintenance.

Process industries share some common manufacturing

characteristics. Raw materials represent nearly 80% of the

cost of production. Capital investment is high, and profit

margins are narrow, making efficient production crucial to

achieving profitable operations (Rice & Norback, 1987).

other features also differentiate process industries from

those involved in assembly or fabrication. One is an inverted

bill of materials. Unlike repetitive manufacturing, where
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final products require many components, the process industries

produce large numbers of final products from relatively few

raw materials. Typically, products are sold at several stages

in the production process, manufacturing equipment is highly

specialized and delivery lead times are short (Nelson, 1983).

This research deals primarily with the paper industry,

which is representative of process industries. The production

scheduling procedures developed here should be applicable to

an assortment of manufacturing situations in other process

industries.

Paper Production

Paper is sold as reels, rolls, or cut sheets. Reels are

the direct result of converting pulp to paper. They are

usually the width of the paper machine. Their defining

characteristics are the type of paper, the basis weight and

quality grade. The type is often a brand name and denotes a

paper of a specific color, composition and texture. Basis

weight is a measure of the mass of the paper, the weight of

500 sheets. Quality grades can be expressed by many measures

such as defects per unit of surface area, gloss, and

discoloration. Rolls are the result of slitting the reels

width-wise immediately after the production of the reel. For

the purposes of this research the slitting procedure is

assumed to be unconstrained since it is fast compared with

other operations, and any number of rolls can be cut from one

reel of paper.
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Procedures following the slitting operation are called

conversion. Examples are placing an embossing mark on the

paper, finishing one or both sides of the paper and producing

cut sheets. Cut sheets are made by cutting the roll width-

wise as it is unrolled. The result is rectangular sheets that

are usually trimmed to precise dimensions. All cuts, whether

lengthwise or width-wise, are from edge to edge and are called

"guillotine" in the stock cutting literature.

Typically, orders are for a specified tonnage of paper of

a particular type, cut dimensions, basis weight and grade.

For this research, requests for cut sheets will be specified

in terms of the number of rolls of paper required to produce

the order. The scheduling algorithm will then determine the

quantity of reels needed and the most efficient schedule for

producing and then cutting them into rolls.

In the paper mill used as a setting for this research,

four primary raw materials, Northern and Southern hardwoods

and softwoods, are blended to form several types of paper

pulp. The facility has three paper machines, and any given

order could be produced on one or more of them. The type of

paper produced influences the production rate, and a paper

machine can produce approximately one reel every forty-five

minutes. The output of reels can be characterized by the type

of paper and other parameters such as the basis weight and

width. In addition, each kind of paper may be one of several

quality grades as well as different colors. Reels of paper
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weighing approximately 7000 pounds are usually produced to the

maximum width of the machine. Narrower reels can be produced,

but the practice represents lost production capacity and is

avoided.

After the rolls are produced, manufacturing ceases to be

continuous, and the process is more characteristic of batch

production, making it possible to schedule subsequent

operations independently. Therefore, this is an appropriate

point to segment the process for analysis. This is the method

used in all prior work on the paper trim problem known to this

researcher.

The effectiveness of a given schedule can be defined by

the total cost of producing the demanded material. Although

the effect of inadequate management on two of the primary

costs, over— and under-production, is obvious, poor management

of the transitions between papers or the creation of a large

amount of trim waste (the result of material left over after

reels are cut into rolls) can have other implications. As a

rule, the greater the similarity in the types of paper, the

shorter the time required to convert from one paper to another

of acceptable quality. Paper waste, whether from low quality

or trimmings, called "broke," is recycled. Minimizing the

amount of broke has several advantages. Most important, broke

represents lost production capacity. Second, paper pulp is

nearly 99% water, and the energy required to remove it is

substantial. Finally, excessive recycling lowers the quality
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of the paper as the fibers break down from repeated

reprocessing. Although this feature would be difficult to

capture in a formulation, it does show that better scheduling

procedures may increase product quality in some circumstances.

Paper is manufactured in both make-to-stock, an approach

where firms attempt to meet customer orders from inventory,

and.make-to-order, a strategy where production is scheduled to

meet specific customer orders. The most common types of

paper, such as the brown wrapper that becomes grocery bags,

are commodities and are usually produced using a make-to-stock

strategy. On the other hand, specialty papers such as

facsimile or computer paper are normally produced in make-to-

order planning systems because of the wide range of production

specifications.

Although some orders are shipped from inventory, it is

more common to have production assigned upon customer request.

This is also the case for much of the make-to-stock items

where an intermediary will frequently order in large volumes

and perform part of the warehousing and distribution function.

Market conditions dictate that paper will be shipped on time,

or the customer is not obligated to accept the order.

Therefore, backordering is unusual for much (u? the paper

industry.
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IMPORTANCE OF THE PROBLEM

The variety of manufacturing environments in the paper

industry offers many opportunities to demonstrate substantial

improvements in production efficiency through this research.

The high levels of production in the paper industry translate

small (1 or 2 percent) increases in efficiency into

substantial cost savings (Haessler, 1988). Paper sales in the

United States were estimated at $42 billion in 1980 and

represent nearly Al percent of the gross national product

(Noble, 1973).

other companies in the process industries must schedule

cutting production. These businesses account for nearly 50

percent of all production in the United States (Novitsky,

1983), suggesting that this research might have broad

applicability.

Representatives of the paper and steel industries have

described a distinct shift in management emphasis in recent

years. Advances in automation have made achieving the

required technical specifications for the product nearly

routine. Therefore, the focus of managerial attention has

shifted to scheduling and control issues. The paper industry

is moving toward a long term goal of a completely automated

production facility, called mill-wide control. Higher levels

of automation will make it possible to implement schedule

changes much more effectively (Routledge, 1988).
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Although this research is aimed at designing production

planning tools for the plant level, another important

application would be as a component of a larger model

describing the entire production planning process. This

larger model could be used to address business questions at

the corporate level. These questions might include when and

which machines should be shut down for maintenance or which

facility should be assigned a given job. For these purposes

the algorithm could be used in a Bax-Meal hierarchical

production planning framework (Hax & Meal, 1975).

Most paper is produced by large companies with several

manufacturing facilities. Firms currently apply a

hierarchical planning framework to allocate jobs first to

individual facilities and then to the appropriate machines.

A scheduling algorithm describing job allocations at the plant

level would play an important part in developing an effective

company-wide production planning procedure. The scheduling

algorithm also could be used to schedule maintenance or

vacations and to establish appropriate policies for responses

to changing market conditions.

DESCRIPTION OF SUBSEQUENT CHAPTERS

The following is a brief description of each of the

subsequent chapters.



14

Chapter 2: Literature Review

This chapter provides a review of previous related

research. The primary focus of the review is the two bodies

of literature that provide the foundation for this research,

the stock cutting problem and sequence dependent production

scheduling. Literature describing the process industries with

particular emphasis on production scheduling and the paper

industry is also reviewed.

Chapter 3: Conceptual Framework and Formulation

This chapter describes the manufacturing environment and

the assumptions used in the formulation. An explicit

formulation for scheduling cutting stock in a multi-period,

multi-process facility with sequence dependent setups is

presented.

Chapter 4: Heuristic Solution Procedure

Chapter 4 presents a heuristic procedure for selecting a

near—optimal production plan. The heuristic is an iterative

procedure that sequences all the machines for one period and

then specifies the number of reels of paper to produce.

Chapter 5: Model Calibration and Benchmark Procedure

In this chapter the problem generator, used to create

test problems, is described, as is the procedure used to

determine a bound on the optimal cost of each problem.

Chapter 6: Computational Results

Three groups of problems were solved. The first set of

problems was used to develop the heuristic. The second
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demonstrates the heuristic’s performance on an independent set

of problems, while the third set of problems shows that the

heuristic is practical for life size problems. Results

obtained using the heuristic are compared to bounds provided

by the benchmarking procedure. In addition, several methods

to reduce the problem size are introduced in Chapter 6.

Chapter 7: Conclusions and Future Directions

The final chapter of this document summarizes the results

and contributions of this research and outlines several

avenues for future research.



CHAPTER 2: LITERATURE REVIEW

Substantial bodies of literature describe production

scheduling with sequence dependent setups and stock cutting

problems independently. Research addressing situations in

which these problems must be considered simultaneously is

lacking. Three important characteristics should be noted.

First, less complex production scheduling procedures that do

not consider the cutting problem have been shown to be NP-Hard

(Hsu, 1983). Second, obtaining an optimal solution to a stock

cutting problem may require generating an inordinate number of

cutting schedules. Finally, due to difficulty associated with

solving these kinds of problems, both bodies of literature

rely heavily on heuristic solution procedures.

SEQUENCE DEPENDENT PRODUCTION SCHEDULING

Among the first authors to review the production

scheduling literature were Day and Hottenstein (1970) who

provided a classification of the research describing it in

terms of a three part classification scheme: the number of

parts composing a job, the production factors possessed by the

shop, and the nature of the availability of jobs for

processing. The authors go on to describe sequencing methods

such as combinatorial approaches, general mathematical

programming, heuristic procedures, and Monte Carlo sampling.

In their recent review of the literature for parallel

machine scheduling, Cheng and Sin (1990) characterized

scheduling problems using four parameters: size of the job

16
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set; number of machines; a system parameter, which gives

information about the job characteristics and the performance

criteria used to determine the better schedules. The

literature base described by Cheng and Sin does not include

investigations of parallel machines that are not identical, as

is the case for this research. Although paper production

facilities can have identical processors, similar machines

with overlapping capabilities are more common. For instance,

Machine A can produce paper with basis weights varying between

20 and 40 pounds. Machine B can produce paper of between 15

and 30 pounds. In this situation 25 pound paper could be

produced on either machine.

The detailed description of the relevant portion of the

production scheduling literature base will begin by

subdividing the research into two categories, single stage and

multi-stage production processes. Because this research deals

with single stage production processes we analyze it in

greater detail by partitioning the literature still further by

defining two subgroups, single and parallel machine scheduling

procedures.

Glassey (1968) and Mitsumori (1972) are among several

early writers who considered single stage, single product

production environments without changeover times. LaRobardier

and Filak (1972) then extended this work by including

production switch-over costs and inventory holding costs.

Driscoll and Emmons (1977) modified the formulation proposed
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by LaRobardier and Filak for production scheduling on a paper-

making machine. In this formulation inventory costs were

ignored, additional bounds were added, and a backward-time

dynamic programming approach was applied to solve the problem.

The solution procedure minimized the total changeover cost

while meeting customer demand schedules.

Lockett and Muhlemann (1972) researched the single

machine problem in which the setup time was a function of the

prior job and introduced several heuristics for solving the

problem. Barnes and Vanston (1981) addressed the scheduling

of jobs (mm a continuously available machine ix: which the

individual jobs had linear delay penalties as well as sequence

dependencies.

As pointed out by Cheng and Sin (1990), the vast majority

of research on parallel machines has assumed that the

processors are identical. There are large bodies of research

considering both sequence dependent and non-sequence dependent

scheduling on identical parallel processors.

Production scheduling on parallel processors with

independent tasks was addressed by Rothkopf (1966). The

author derived a procedure for determining optimal schedules

for a single machine and a dynamic programming approach to be

applied to an important class of scheduling problems involving

parallel processors. A branch-and-bound procedure was

developed by Elmaghraby and Park (1974) to schedule jobs on

several identical machines. This model assumed that all jobs
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are available to be processed at time zero and that there are

no a priori precedence relationships between the jobs. Barnes

and Brennan (1977) improve the Elmaghraby and Park algorithm

by proposing three refinements to the algorithm. These

refinements, a bounding procedure and two methods of

establishing natural precedence relationships, are combined in

a more efficient fathoming procedure.

Dearing and Henderson (1984) used a mixed integer linear

program to describe a scheduling problem in the weaving

industry and solved it by relaxing the integer requirements.

Frendewey and Sumichrast (1988) extended this work with a

formulation that considered setup costs, lost production and

overtime costs. Through an alternative problem structure, the

authors reduced the number of variables that are required to

take integer values, making it possible to solve problems of

a realistic size.

Oliff and Burch (1985) implement a production planning

procedure that considers sequence dependencies in the context

of hierarchical production planning. Their approach uses the

production switching rule developed by Mellichamp and Love

(1978) to determine aggregate production levels. A heuristic

is then applied to sequence production within the constraints

imposed by the aggregate production plan. In related

research, Burch, Oliff and Sumichrast (1987) propose a pair of

heuristics in a hierarchical context to derive schedules for

the production of fiberglass cloth.
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In one of the earliest articles dealing with production

sequencing in the process industries Prabhakar (1974)

described a manufacturing environment in which chemicals were

produced in reactors with subsequent processing. The author

presented a mixed integer program designed to determine

production quantities for parallel processors. The

formulation also considers sequence dependency and limitations

on the storage of intermediate products.

Geoffrion and Graves (1976) propose two versions of the

quadratic assignment method to solve the problem introduced by

Prabhakar. The first approach is the direct application of a

quadratic method, while the second involves applying a linear

program to augment the procedure. Joint application of the

quadratic assignment method in conjunction with linear

programming proved to be more effective for solving the

general formulation of this type of scheduling problem. The

works by Geoffrion, Graves and Prabhakar are complete

descriptions of production sequencing in the process

industries but do not consider a linkage with a cutting

problem.

Smith-Daniels and Smith-Daniels (1986) introduced a lot-

sizing and sequencing formulation for packaging lines in the

process industries. In this formulation the authors minimize

the sum of inventory holding, back-order, setup and tear-down

costs while considering sequence dependencies of items within

a part family. This capacity-constrained formulation assumes
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that one part family is produced on each packaging line in any

period. Later, Smith-Daniels (1988) introduced a heuristic

procedure to solve the problem.

In an important extension of the Economic Lot Scheduling

Problem, Singh and Foster (1987) considered situations with

sequence dependent setup costs for a single machine. They

proposed a heuristic procedure that breaks the problem into

three stages. Although the approach is for a single-machine

facility, an application is described where the algorithm is

embedded in a multi-machine, multi-product environment.

An alternative method of modeling dynamic production

planning problems with sequence dependent setup costs is by

redefining the sequencing variables and adding a set of

logical variables (Bruvold and Evans, 1985). This reduces the

number of 0-1 variables, increasing the likelihood that the

problem can be solved with conventional mixed integer program

solution procedures. Models incorporating this approach can

easily be extended to consider alternative objective functions

or losses due to start-up or shut-down.

THE STOCK CUTTING PROBLEM

Several characteristics can be used to describe the stock

cutting literature. These are: the dimensions of the problem,

the solution procedure (heuristic or optimizing), and whether

the cuts are guillotine (edge to edge). Dyckhoff (1990)

recently described cutting and packing problems and the

connection that exists between them.
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Although references to cutting and packing problems date

from the late 19305 and early 19405, the first research to

propose an effective algorithm for solving larger problems was

introduced by Gilmore and Gomory (1961). This linear

programming based approach describes an efficient method of

solving the stock cutting problem by limiting the number of

variables using auxiliary problems. In a companion article

Gilmore and Gomory (1963) consider three practical limitations

on the problem, the number of cutting knives, machine

balancing concerns and multiple orders for several machines.

Gilmore and Gomory (1965) also considered higher dimension

problems that can be decomposed into a series of guillotine

cuts performed in stages. More recent research on the two-

phase approach has incorporated an automatic sequential search

procedure to obtain a compromise between computational cost

and trim loss (Ferreira, Soeiro, Neves, & Fonseca e Castro,

1990).

The computational effort can be lessened at the expense

of larger trim loss by reducing the number of cutting patterns

considered. Several authors besides Gilmore and Gomory have

introduced procedures to select better cutting patterns.

Haessler (1975) developed a format for a one-dimensional trim

problem that uses a fixed charge to control the size of the

problem by limiting the number of cutting patterns considered

for the basis. This mechanism optimizes the tradeoff between

minimizing trim waste and computation effort. Pierce (1964)
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proposed the selection of dominant schedules to be considered

for the solution basis.

Stock cutting questions dealing explicitly with the paper

industry include work by Pierce, Johns (1966), and Haessler

(1977). Pierce addressed the paper trim problem for both

single and multiple machines and proposed heuristic solution

procedures. Pierce's formulation minimizes the variable

production costs while disregarding the capacity constraints

and sequence dependence of paper production. Johns suggested

heuristic procedures for solving the paper trim problem while

Haessler described the single machine roll trim problem.

Haessler (1988) proposes two heuristics to solve the roll

trim problem. The first involves relaxing the integer

requirement for the pattern usage. Then additional patterns

can be selected for entry into the basis by considering the

reduced cost of a nonbasic pattern. This procedure reduces

trim loss by increasing the number of cutting patterns

considered for the basis. The second approach proposed by

Haessler is a sequential method where new cutting patterns are

added according to a selection criterion. The two approaches

work at cross purposes; the linear programming based approach

offers more opportunities to lower trim loss by increasing the

number of patterns considered, while the sequential approach,

by contrast, minimizes the number of schedules at the expense

of increased trim loss. The author uses several examples to

illustrate where and how each approach, or a combination of



 



24

the two, would be applied in actual practice. Sweeney and

Haessler (1990) propose solution methods for one-dimensional

cutting problems with rolls of multiple quality grades.

SUMMARY AND CONCLUSIONS

The literature bases are extensive for both the stock

cutting and production scheduling problems. However, all

prior researchers have viewed the problems separately, while

in many manufacturing situations, and the paper industry in

particular, they are clearly linked. Therefore, the most

important contribution of this research is the linkage of

these two problems in the context of paper production.



 



CHAPTER 3: CONCEPTUAL FRAMEWORK AND FORMULATION

Existing formulations of the paper trim problem describe

the number of reels of paper scheduled to be produced on each

machine as well as how the reels should be cut into rolls to

meet customer demand. This research extends the existing

formulations to consider multiple products and the associated

sequence dependency of production in a time-phased

environment.

ASSUMPTIONS OF THE MODEL

The analytical model presented describes the interaction

between the production schedule and the stock cutting

decisions with the objective of optimizing the use of

production facilities and raw materials. While the current

model is designed for the paper industry, the basic concepts

can be applied to other industries as well. The decision

tools developed in this research will enable managers to

specify more precisely when and to which product a machine

should switch in order to utilize the production facilities

most efficiently while meeting customer demands.

The first important assumption is that production

scheduling on the paper machines can be modeled independently

from the preceding pulp production and subsequent conversion

processes. Based on operations at an active mill, pulp

production process can be assumed to have sufficient capacity

and flexibility to meet the needs of most production

schedules. Subsequent processing of the reels of paper, the

25
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conversion process, is effectively decoupled from the

production scheduling on the paper-making machines because its

requirements can be specified in terms of rolls of paper.

For all practical purposes, the conversion process is treated

as another customer, specifying time phased demands that are

inputs for the model. This is consistent with work done by

earlier researchers.

The formulation assumes that paper is cut immediately

after production, and that this process is not bound by

capacity. The slitting operation, conversion of reels to

rolls, is accomplished by rewinding the paper with knife

blades placed at measured intervals in the paper’s path. The

time required to perform this procedure is negligible,

compared with the time required to produce the paper. The

model further assumes that paper type is not a function of the

machine it is produced on.

There are two other features of the paper industry that

play an important part in the formulation of the model.

First, paper machines operate continuously and require that

the transition to the following paper begin when the

production goals for the current paper are completed. Second,

backordering is not an acceptable practice in the industry and

demands are required to be delivered on their requested due

dates.
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MODEL DESCRIPTION

The formulation determines the number of reels of paper

of each type to be cut according to each pattern, the order in

which the reels should be produced on each machine in the

facility, the level of inventories throughout the horizon and

the composition of lost sales. This is done in a way that

minimizes the sum of production cost, the cost of over-

production, the cost of lost sales and the transition costs

incurred as machines are switched between types of paper.

Constraints on the decision maker are: the specific

capabilities of each.machine, particularly the width; the time

available for production on each machine; and the demand

requirements. The formulation must also recognize the need to

specify a unique, uninterrupted sequence of transitions

between types of papers on each. machine over the entire

planning horizon.

MODEL FORMULATION

The objective of the formulation is to minimize the total

of the production and cutting costs, transition costs, the

cost of over-production and the cost of lost sales. This

objective is met while subject to two major classes of

constraints. The first deals with the usual requirements and

limitations of meeting demand with inventory and production

subject to capacity limitations. The second class of

constraints assure that the sequencing relationships are met.
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The following formulation is organized in three parts:

definitions, an explicit statement of the formulation, and

then a detailed explanation of the objective function and each

constraint in the formulation.

Definitions

Indices:

i labels the state (type of paper currently produced)

of the machines, i = 0,1,...,N, where i = 0

indicates the communicating state that each machine

must visit at the beginning of a period and N is

the number of products produced;

j labels the state (type of paper) to which a machine

will be switched, (j = 0,1,...,N), where j = 0 is

the communicating state that each machine must

visit at the end of each period;

k indexes the widths that a paper of a given type may

be demanded by customers, k = 1, 2,..., K”

m enumerates the machines, m = 1,2,...,M, and M is

the number of machines in the facility;

q indexes the cutting patterns for machine m and

product i, q = 1,2,...,Qm;

t enumerates the planning periods, t == 1,2,...,T,

where T is the number of planning periods;

Parameters:

bmt the time available on machine m in period t;

cim the time required to produce a reel of product i on

machine m;

Cimq the sum of production cost and trim waste, for a

reel of paper of type 1 produced on machine m and

cut according to pattern q;

Dan the demand for rolls of paper of width k, type i in

period t;

am the time required to switch from paper 1 to paper j

on machine m;
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the transition cost for changing from paper i to

paper j on machine m;

a large number;

the cost of lost sales, per roll, for paper of type

1, width k in period t;

the width of paper-making machine m;

the number of rolls of width k to be cut from each

reel using pattern q on machine m when producing

product i, subject to the condition

N K1 91m

EEZWikPl-kmqsLm m=l,2,...,M (3-1)

1=1 =1 q=1

the recycling cost for a roll of paper of type i

and width k;

the initial slack (unused time) on each machine at

the beginning of the planning horizon, assumed to

be zero;

the initial conditions for each machine, where me

is a binary variable indicating a transition from

paper i to paper j;

the k“1 physical width (in inches) of paper type i;

a real number associated with state i on machine m

for period t, used to prevent sub-touring;

the total cost of the production schedule;

the inventory, in rolls, of width k, product type i

at the end of period t;

the number of rolls of width k of product i

produced in period t;

the slack (accumulated unused time) on machine m at

the end of period t;

a zero one variable showing a switch between paper

types i and j (i¢j) on machine m in period t;
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Ximqt the number of reels of type 1 produced on machine m

and then cut according to pattern q in period t;

Zikt the demand, in rolls, of width k and type i not

satisfied in each period (lost sales).

Formulation

Minimize:

T N M 9111! T N

G: 2 2 E Cimgimqt + Z:

t=1 1=1 m=1 q=1 t=1 1=1

Subject to:

M pin

2 2 Pikquimqt _ Rikt = O

m=1 q=1

N Om N N

E CimXimqt + Z 2 eijmvijmt '

q=1 1=1 1=1

1‘1

1=1

S
m(t—1) + Smt = bmt

Iik(t-1) + Rik: ‘ Iikt + Zikt = Dikt

QjmN

1=0 q=l

r
?
?
?
“

n
n

H
H
H

H
g
fi
z

n
3

n
W
K

H
H

H

n
5

L
‘
-

II
II

II

H
E
I
Z

\
-

(3’2)

(3-3)

(3-4)

(3-5)

(3-6)



V.

g
. '
1

Z

1.
. § (

'
1
'

2
V0

L
l II
p
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N N

Z Vijmt ‘ Z Vjimt = 0
1=o 1=o

dimt _ djmt

Zikt' Ximqt' Smt'

Riktl Iikt’ dimtl

Ximqt

V
ijmt
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m = 1,2,

t: = 1,2,

m = 1,2,.

t = 1,2,.

1 = 1,2,.

m = 1,2,.

t: = 1,2,.

j = 1,2,.

m = 1,2,.

t = 1,2,.

1:0,1,

1 = 9:1:

ms” £7312“
t = 1,2,

1' = 1,2,

k = 1,2,

m = 1,2,

g: ll2! '

t: = 1,2,.

integer V 1,171, g,

“
-
~

"
3
9
:
:

3

‘
~

'
9
3

2
2

s
~

i
V
Z

and t

Oor1Vi,j,m, andt

(3'7)

(3'8)

(3'9)

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)
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EXPLANATION OF THE FORMULATION

The following section is divided into two parts, a

description of the objective function and a detailed

explanation of the function of each of the constraint sets.

Objective Function

Minimize:

T N M Qim T N N M

G‘ E )3 2 Ciquimqt + 2 Eiijijmt +
t=1 1=1 m=1 q=1 t=1 1=1 1=1 m=1

1‘1 (3—2)

N Ki T N K1

IiinkT + E 11kt Zikt

H

II

p 7
?

II

H V
? II

p
.
)

[.
- II
P a
. II

p
.
»

The objective function has four major components:

production and cutting charges, setup charges, the cost of

lost sales and a recycling charge for any excess rolls

produced. The possibility of producing extra rolls results

from limiting the available cutting patterns to those that are

non-dominated. Although the formulation stipulates that the

rolls would accumulate until the final period, in actual

practice extra production would be recycled as it is produced.

Constraints

Conversion of reels to rolls in each period:

M 9m 1 = 1,2,. ,

Z: Z: Pikquimqt _ Rikt : 0 k = 1’2' ' 1K1 (3-3)

m=1q=1 t : 1,2

The first set of constraints, equation (3-3), relates the

number of reels of paper, XMm, of type i cut according to
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schedule q in period t on machine m to the number of rolls,

Rm, of width k of paper type i produced during period t, where

Kiis the number of widths paper 1 is demanded in. The number

of rolls of width k cut for product i on machine m must be

selected such that the total of the roll widths does not

exceed the width of the paper machine. Each cutting pattern

has elements PM“ (the number of rolls of width k cut from a

reel of type i produced on machine m and slit according to

pattern q). Cutting patterns are generated such that

N K1 01..

2;:wikPimqsLm m=l,2,...,M (3—1)

1=1 =lq=1

where Wik is the dimension of the km width for product i and Lm

is the width of paper machine m.

Machine capacities:

N Om N N

Z: 2 CimXimqt + eijmvijmt _

1=1 q=1 1=1 g: (3-4)

_ 1n= l 2 ... M

Sm(t—1)+Smt_bmt t=l:2:...lT
I

Equation (3-4) describes the capacity constraints for

each machine in each period. Machine capacity not required

for the current period can be reassigned through the slack

variables, Sm, to the following period. The time required to

switch from paper type i to type j on machine m is em” and the

time to produce a reel of paper type i on machine m is cm.
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The total amount of time available on machine m in period t is

bmt (usually 24 hours).

Production, inventory, and demand balance:

(3-5)1

1 .. N

Iik(t—1) + Rikt ' Iikt + Zikt = Di,“ 1; ”I;

I"'I

Equation (3-5) describes the relationship between demand,

production and inventory for each of the roll widths for each

type of paper.

Setup before paper production can begin:

N Qjm j

no r1 t

~

€
2
2

(3'6)

II
II

II

H
F
J
H ,2,...

,2,...

,2,...

The i index shows the type of paper for which a given

machine is configured. The zero state indicates a null state

used to transmit the status of the machines at the end of the

prior period to the current period. The formulation relies on

the assumption that the ending condition of each machine in

period t is identical to the beginning condition of the same

machine in the next period. To achieve this there must be a

theoretical transition to an artificial ending state (0) for

each machine in each period, (Violm = 1). In addition, each

machine must begin each period by leaving the initial state,

(me = 1). These requirements are enforced by equations (3-7)

and (3—9).
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Required transition to the ending state:

.. M' _

iOmt = l .I (3 7)‘
b
fl
z

<

..
. II

P

Equation (3-7) ensures that there is a transition to the

ending state for each machine in each period. Equation set

(3-8), included earlier for clarity, is omitted when solving

the model. It ensures a transition out of the initial state

and is made redundant by equation (3-9).

Continuity of machine state:

v30m(t—1) _ L’oimt = 0

c
h
H

II
II

II

H
+
4
H ,2,---,N

,2,...,14 (3-9)

,2,...,T

Equation (3—9) ensures that each machine begins each

period producing the same type of paper it was producing at

the end of the previous period.

Setup restrictions:

1=O i=0

N N j = 1,2,... N

Z Vijfllt - E Vjimt = O Ig:%:§: : z - [L141 (3—10)

Constraint set 3-10 requires that if there is a

transition into a state on a machine in a period, then there

must be a transition out of that same state.

Sub—tour restrictions:

— djm, + (N+1) v. (3-11)
1
jmtS‘N

~
~

r
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§
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II
II
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The Tucker (1960) constraints, equation set (3—11),

assure that each state (paper to be produced) for each machine

in each period will be assigned a unique real value, dmv

Through this requirement there will be one complete production

sequence for each machine in each period. This sequence will

begin and end with the null state, and make one visit to each

state in which there will be production.

Equations (3-12), (3-13) and (3-14) define the domains of

the variables. It is important to note that the inventory and

lost sales variables, although defined as continuous, will be

integer in any solution through additivity and the integrality

requirements of Xma-

Equation (3-15), not shown in the complete formulation,

is an auxiliary set of restrictions that can be used to limit

the number of changes on each machine at the paper mill by

requiring that a minimum number of reels, g, are produced if

there is a transition to a new paper.

91ml: i

Z: Ximqt _ 961mg,- + gViOmt Z O m

q=1 t

..,N

.,M (3-15)

' I

II
II

II

H
F
J
H

N
B
J
N

The binary indicator variables, &
um!

represent the

decision to switch to paper type i on machine m in period t.

A strict implementation of this policy is difficult because of

situations where production overlaps periods. Relaxing the

minimum production amount for the last paper produced in the
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period is a practical way to meet this type of managerial

priority with the current formulation.

SUMMARY

Chapter 3 presents the formulation for the stock cutting

problem iJ1 conjunction with sequence dependent production

scheduling within the specific context of a facility producing

specialty papers. The objective is to minimize the sum of

production, cutting, transition, lost sales and over-

production costs, subject to demand, capacity and sequencing

constraints. Paper-making machines operate continuously,

requiring that the transition to the next paper scheduled

begin immediately after production of the current paper

ceases. This is addressed through the slack variables and a

null production state. The formulation, as presented, is a

rigorous description of the production planning problem that

confronts managers in the paper industry. However, the large

number of integer and binary variables make conventional

solution procedures impractical. The following chapter

describes an effective heuristic solution procedure.



 



CHAPTER 4: HEURISTIC SOLUTION PROCEDURE

This description of the heuristic procedure used to

obtain solutions for the formulation presented in Chapter 3 is

presented in four sections. The first is an introduction

describing the operation of the heuristic in broad terms. The

next two sections describe in detail the two major steps of

the heuristic, determining the production sequence and then

specifying the number of reels to produce. The fourth section

summarizes the chapter and presents important conclusions.

INTRODUCTION

The heuristic, shown in Figure 4-1, is an iterative

procedure that produces a production plan by adding

constraints and a limited number of binary variables to the

formulation described in Chapter 3. After the additions, the

heuristic proceeds by repeatedly solving the enhanced

formulation with the binary requirements enforced on selected

transition variables and the domain restricted on a few of the

integer variables, X used. to determine the productionmm!

quantities.

Enforcement of the integrality requirements is based on

two major objectives. The first is determination of a

suitable production sequence, that the different papers will

be produced on each machine. Second, after the production

sequence is set, production quantities can be specified.
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PRODUCTION SEQUENCING

Production sequencing is accomplished by determining the

last period with an incomplete production sequence on one of

the machines and then selectively enforcing some binary

requirements for variables describing transitions on machines

in the incomplete period. Once enough of the transition

variables, V are specified as binary (or are fixed), tomm:

determine a production sequence for the period, the heuristic

then sets the production quantities. Although the procedure

for setting the production quantities is straightforward and

will be described later, it is necessary now to describe some

additional details associated with determining the production

sequence.

Figure 4-1 shows the sequence of steps used to solve

problems using the heuristic procedure. Initially the

formulation is solved with all of the integrality restrictions

relaxed. Subsequently, selected sets of the transition and

production variables are forced to take integer values

requiring the solution of a Mixed Integer Program (MIP) at the

start of each iteration.

The results from the solved. MIP are then tested to

determine the first period with an incomplete production

sequence, period I, a situation where some transition

variables in the period are not binary. Completely binary

transition variables guarantee, through the Tucker

constraints, a unique and uninterrupted production sequence
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for all machines in periods prior to period I. Transition

variables for those periods are fixed at their current values.

Transition variables for period I that are a part of completed

sequences are fixed up to but not including the transition to

the null state at the end of the period. This leaves the

possibility of adding another paper to the sequence during the

next iteration.

Three mechanisms are incorporated in the formulation to

encourage the complete sequencing of period I in the next

iteration. Specifying all variables describing the transition

from the endpoints of the completed sequences is the first and

most important mechanism. Second, all transitions to the null

state at the end of period I are required to be binary.

A final mechanism assures that period I will be correctly

sequenced. This is done by rapidly increasing the number of

transition variables in period I required to be binary. Each

time there is an attempt to sequence the same period the

counter, CNT, is incremented. This count is then raised to

the sixth power to determine the number of transition

variables, in addition to those already described, that will

be specified binary.

Transitions out of the null state in period I+1 are also

required to be binary. This assures that once period I is

sequenced, there will be continuity between the ending state

of each machine in period I and the initial states of the

machines in period I+1.
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Several mechanisms are employed to assist the formulation

in completing the production sequence in a given period. The

first is the addition of binary variables, 6mv Their purpose

is to show whether there will be production of paper j on

machine m in period t. The delta variables work with an

additional constraint set, (4-1), in two ways.

N j

2 Vijmt ‘ 5m: = 0 ’g

4%
1i]

l2l"'l

,2,...,M' (4-1)

,2,... T
I

ll
ll

||

H
F
J
H

First, if there is a transition to paper j these constraints

require that the sum of all transition variables describing

entrances to state j will equal one. This is an important

property because it forces the formulation to recognize, in

some sense, one complete setup. Second, the constraints

require that transition variables for papers that will not be

produced are set to zero.

Solving this formulation with the binary requirements of

the V variables relaxed frequently produces a valid
ijmt

production sequence, however, this is not guaranteed.

Incomplete sequences can occur when the transition variables

are allowed to take fractional values. This results in

solutions that suggest several simultaneous partial

transitions to the next paper scheduled on a machine. Figures
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4-2 and 4-3 give examples of solutions with and without

complete sequences for a single period on one machine.

V =102 V23=1

A

@®@@®@

V

mm

V1o=1

Figure 4-2: Solution With a Valid Sequence

Figure 4-2 is a complete production sequence, with a

clear ordering of the papers, beginning in the null state and

then entering state 2, proceeding to paper 3, then paper 1 and

finally returning to the null state. In the example where the

transition variables are allowed to take fractional values,
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Figure 4-3, it is not possible to establish the production

sequence .

Qi/
Vu=06

vm=os

Figure 4-3: Solution With an Invalid Sequence

When transition variables do take fractional values the

formulation must be constrained further by stipulating that

the variables describing the transitions to the null state are

binary. However, there is an additional practical

consideration that further limits the number of transition

variables that take fractional values.

As first pointed out in Chapter 3, the transition to

different types of papers can be costly and may introduce

difficulties in achieving consistent quality. For this and

other managerial reasons, many production planners would

prefer to produce at least a minimum number of reels, 9, once



 



45

production begins. This operating priority is carried out

with a set of constraints of the form:

out i

E Ximqt _ 961ml: + gViOmt 2 O m

q=1 t

1,2,...,N

1,2,...,M’ (3’15)

1,2, .,

In this research the minimum number of reels of

production for each setup was set at four. This addition to

the formulation plays an important role in the performance of

the heuristic for several reasons. First, the minimum

production size limits the number of papers produced on a

machine in a period to three or four. Second, higher

production volumes in constraint set (3-6)

N Qjm j

F0 r1 t

1,2, . ..,N

1,2,...,M (3-6)

1,2, .. T
° I

will encourage each of the transition variables associated

with paper types that are produced to take larger values.

Once the values of the V-
ljmt

variables are large enough, the

Tucker constraints, equation (3-11), become binding.
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Finally, and most important, constraint set (3-15) allows

the enumeration process to rule out sequences with small

production quantities. In some cases this can assist the
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fathoming of the branch-and-bound tree considerably with a

minimal impact on solution quality.

It is useful to note that the minimum required production

quantity, constraint set (3—15), provides enough structure to

make it practical to require that the variables describing the

decision to produce a paper on a machine in a period, 6 are
jmt r

binary for the period with the incomplete sequence. However,

this requirement and the added constraints are not sufficient

to guarantee that the production sequence will be complete

through the current period. For this reason, it is necessary

to restrict further the values of the transition variables,

anI in the incomplete period.

The most confining restriction is a requirement that

transition variables whose solution values were equal to one

in the prior iteration and are part of a complete sequence are

set at one for all subsequent iterations, fixing established

production sequences. An exception is made for variables

describing transitions to the null state. These transitions

are kept binary until the sequencing is complete on all

machines for the current period, providing the heuristic with

additional opportunities to schedule different papers on a

machine by assuring an endpoint for each production sequence

in the first incomplete period.

The next restriction stipulates that all transitions from

the endpoints of the production sequence on each machine are

binary, forcing a complete transition to the next paper or the
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null state, should the solution procedure chose to do so.

Three other sets of transition variables are also restricted

to binary status. These are the required transition to the

null state in the current period and the transitions from and

to the null state in the subsequent period. These are

important because they require continuity between periods and

they constitute class 1 specially ordered sets (Beale &

Tomlin, 1969) whose structure is exploited.

Allowing some transition variables to take real values

can generate solutions with sub-tours. Sub-touring, shown in

Figure 4-4, occurs when complete transition sequences can be

devised that do not pass through the null state.

VM=L° va=m4

A

@ooooo

Vm=LO

Figure 4-4: Sequence with Sub-Touring

Sub—touring is prevented by increasing the number of

transition variables (besides the specially ordered sets and

the required transition from the endpoints) required to take

binary values on each successive attempt to sequence a period.

For instance, the first time there is an attempt to sequence

period one, no variables beyond the previously mentioned sets

would be set binary. On subsequent attempts to sequence
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period one, the number of transition variables specified as

binary would be increased rapidly. This approach allows the

procedure to establish the production sequence and then assure

that no sub-touring has taken place. Once the sequencing,

without sub-touring, is complete for the first period, the

sequencing procedure can begin for the second and the

production quantities can be set for the first.

SPECIFYING PRODUCTION QUANTITIES

As mentioned earlier, determination of the production

quantities is straightforward. The approach is to establish

an integer set of possible production quantities around the

truncated Xm¢ values found during the sequencing step of the

heuristic. For this research the set of integers had a range

spanning from two below to three above the truncated Xmm

values.

Two sets of variables are given ranges. The first set

consists of any production variables for papers scheduled to

be produced in the period immediately preceding the period

currently being sequenced. The ranges of production

quantities provide additional flexibility for the sequencing

procedure while assuring that the integrality requirements

will be met in the earlier period. Production quantities are

fixed at their integer values for periods more than one

period before the one undergoing sequencing.
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In most situations the procedure just described would be

sufficient to guarantee production in integer quantities.

However, if more than one period happens to be sequenced in an

iteration it would be possible to have fractional production

variables in more than just the prior period. Therefore,

ranges are also applied to any of the production variables in

periods more than one period before the current period that

take fractional values.

In situations where the total demand level is low and the

bulk of the demand is required late in the horizon, the

heuristic is faced with a host of identical solutions (from a

cost perspective). Most production schedulers would prefer to

keep the machines operating in the short term in hopes that

additional work would come available later. This priority is

implemented by attaching a small profit (when compared to the

transition costs) to the slack variables, where that profit

increases in the later planning periods. This incentive

motivates the formulation to minimize slack in the earlier

periods.

At modest levels of utilization the heuristic, as just

described, solves most of the scheduling problems

expeditiously. However in situations where there is the

possibility of substantial slack early in the horizon or lost

sales late in the horizon, an additional concession can be

made to limit the number of alternative solutions and increase

the performance of the heuristic procedure.
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Large numbers of essentially equivalent solutions are

generated because each lost sale has the same cost despite

type or timing. As a practical matter, there is no indication

that the decision to reject a sale occurs at the plant level.

In situations where it is likely that a plant will be unable

to meet all of its scheduled demand, steps are taken to reduce

the demand level or change its timing. For this research,

lost sales are an important part of the planning criteria and

a mechanism that introduces minor differences in those costs

can improve the solution procedure. In this case, an

additional charge is attached to the cost of a lost sale,

where the cost varies as a function of the paper type and time

period. This provides the branch-and-bound. procedure an

additional mechanism to differentiate nodes for fathoming.

Although these enhancements were developed to increase

the solution speed of the heuristic, they also assure that

work is completed as soon as possible, making it obvious when

the machines will be out of work. There might be situations

where it would be useful to reverse the incentive structure,

forcing slack time to the beginning of the planning horizon.

Solutions generated this way would provide :3 conservative

estimate of the earliest time that capacity can be made

available for unscheduled orders.

SUMMARY AND CONCLUSIONS

Chapter 4 has described a practical heuristic solution

procedure for obtaining good solutions to the formulation



 



51

presented in Chapter 3. The two part procedure seeks to

determine a production sequence, the order of production of

paper on each machine, by adding new papers to an existing

production sequence one period at a time.

After the production sequence is established in a period,

the second step of the heuristic specifies the number of reels

of paper to produce in the periods up to and including the

period sequenced most recently.

Although this procedure will produce a production

schedule, it is not an optimizing procedure; consequently, the

quality of those schedules cannot be guaranteed. The next

chapter describes the procedure used to benchmark the

performance of this heuristic procedure.



 



CHAPTER 5: MODEL CALIBRATION AND BENCHMARK PROCEDURE

As mentioned earlier, the production scheduling of stock

that will be cut has applicability in a broad spectrum of

manufacturing environments. While limiting the discussion to

the paper industry diminishes that spectrum considerably,

there are many different market and manufacturing environments

in the paper industry alone. Within the paper industry the

simplest manufacturing, from a production scheduling

perspective, is the production of large volumes of essentially

the same product, such as newsprint. Production is

standardized, not only in terms of the type of paper produced

but also with respect to the widths. This type of application

requires machine widths of up to 300 inches, the largest

machines in the industry. At the other end of the spectrum

are plants that produce a ‘wide assortment of colors and

textures as in the production of construction paper. Plant

operations in these facilities are more consistent with batch

or semi-batch procedures where the machines are stopped

between production runs so that they can be thoroughly

cleaned before the production of the next paper begins.

A market that is experiencing considerable growth is

specialty papers, such as facsimile, most types of writing or

computer papers (uncoated freesheet), and the backings for

pull away stickers (release paper). Plants that produce for

these markets typically have smaller machines producing

several different types of paper, and each paper can be

52
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produced in several grades and/or basis weights. The problems

used for testing the performance of the heuristic were

generated based on nwnufacturing and marketing situations

consistent with this type of production. The information used

to specify distribution functions for the parameters of the

test problems was obtained through interviews with individuals

in the paper industry.

PROBLEM GENERATION

Problem generation begins by entering parameters that

characterize the size of the problem. These are the number of

periods (T), the number of machines (M), the number of

distinct papers (N), and the level of expected demand. Based

on this general description of the problem size, a complete

manufacturing scenario is generated using probability

distributions described below.

Generation of the cutting patterns for each machine

depends on the capabilities of the machines, primarily the

width, as well as the widths of paper required. For the

specialty papers on which this research is based, the machines

are toward the narrow end of the spectrum, 100 to 140 inches

in width. Further, there is considerable diversity in the

paper widths demanded; at a representative mill, the narrowest

width demanded is 20 inches while the largest of the common

widths is nearly 80 inches. Machine widths and paper widths

are uniformly distributed between the largest and smallest

width, and rounded to the nearest inch.
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Cutting patterns and the associated cutting charges are

generated by enumerating all possible patterns. While this is

tedious, it is only necessary to do it once. For the purposes

of the simulation all rolls in an order are for the same type

and width of paper. Each kind of paper could he demanded in

a maximum of four different widths over the planning horizon.

To limit the number of possible patterns to those that

are most likely to be useful, only dominant patterns (defined

in Chapter 1) are considered. Although this assumption will

tend to cause over-production, the amount is small when

compared to the total production volume, and in actual

practice the cost of storing or disposing of excess production

is quite small.

Simulated demand, measured in rolls of paper of a given

width and type, is generated for each day of the planning

horizon. The number of rolls demanded depends on two

parameters, the largest number of orders expected in a day,

and the maximum number of rolls required per order. All

parameters are drawn from the appropriate uniform

distributions.

Transition times and costs for each machine vary

considerably depending on the degree of difference between the

types of paper. Changing between basis weights is relatively

easy and requires only a few minutes, while transitions

between papers of different colors may require stopping the

machine and completely rinsing it clear, a procedure that can
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take several hours. This research assumes that several

similar kinds of paper are produced, each in an assortment of

basis weights. Based on similarities in the paper types,

anticipated transition times are assumed to be uniformly

distributed between 0.1 and 2.0 hours. The expected time

required to produce a reel of paper is drawn from a uniform

distribution over 0.5 to 1.0 hours. Similarly, the transition

costs are uniformly distributed between $40 and $800. The

production cost has three components, energy, fiber and labor.

Trim waste and the recycling costs are adjusted to reflect the

value of the fiber that can be recovered. Fiber represents

one half the total cost, while labor and energy cost each

represent one quarter (D. Rish, personal communication, August

10, 1993). Finally, the cost of a lost sale was set at a

large arbitrary number.

BENCHMARK PROCEDURE

This research is based on operating conditions at two

mills that produce a fairly wide assortment of specialty

papers that are sold in bulk form and then used as a raw

material in subsequent manufacturing operations. This type of

paper mill may have three paper-making machines and will try

to establish a production plan for the next two to four weeks.

On this horizon, the production planner may have to schedule

five distinct kinds of paper with five to seven different

basis weights. Each type, paper kind and basis weight

combination, can have as many as four different widths. Table
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5-1 shows the dimension of a small formulation describing a

production scheduling decision at the example mill.

Table 5-1: Representative Problem Size

Problem Parameter

Planning horizon 14 days

Number of product types 10

Number of machines 3

Maximum number of widths per product type 4

Variable Type

Cutting patterns, Ximql 3206'

Transition, an 4620'

Rolls of paper, Rikt 434

Inventory, Im 465

Lost sales, Zm 434

Slack, Smt 42

Sub-tour restriction, dm, 504

Total number of variables 9705

' Integer or binary

Besides the 9705 variables described in Table 5-1, this

formulation would have 6832 constraints. Although, by modern

standards, a problem of this dimension might be characterized

as a medium-sized linear program, the large number of integer

and binary variables precludes any opportunity of obtaining an

optimal solution within an acceptable amount of time.

Therefore, much of this research effort has focused on finding

an effective heuristic solution procedure.

The most appropriate mechanism for conclusively

establishing the effectiveness of a heuristic procedure would

be to compare the quality of the solution obtained using the
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heuristic to the optimal solution. However, the computational

cost of obtaining optimal solutions for relatively small

problems can be prohibitive. Various methods were considered,

most notably Lagrangean.Relaxation (Fisher, 1981), to overcome

the intractable nature of solving the formulation to

optimality. Failure to find. a relaxation that produced

subproblems with an exploitable structure dictated the use of

a more direct means to demonstrate the effectiveness of the

heuristic procedure. This procedure entailed using branch-

and-bound (Land and Doig, 1960) to solve the optimal

formulation whose objective function is given by equation (3-

1). The solution obtained from the heuristic was employed to

assist the pruning of the enumeration tree. The performance

of the branch-and-bound procedure was further enhanced by

using specially ordered sets and a specified branching order.

Additional binary variables, 6m” whose purpose and usage

are the same as in equation set (4-1), will not compromise the

integrity of the formulation and offer opportunities to

improve the fathoming of the enumeration tree. Branching on

these variables first usually decreases the time required to

find an optimal solution. In a sense, addressing these

variables early in the fathoming process is analogous to a

manager first deciding whether to produce, and then later

deciding how much to produce. As mentioned in the description

of the heuristic in Chapter 4, the entrances and exits to and

from the null state constitute a specially ordered set whose
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exploitation further improves the performance of the branch-

and-bound procedure. It is interesting to note that the

variables describing the switch to any given paper on each

machine in each. period are ordered sets also. However,

empirical trials showed that only the sets describing the

entrances and exits to and from the null state offered any

significant change in computation effort.

The objective of the benchmark procedure is to provide a

measure of the suboptimality of the solution obtained with the

heuristic. The best method is to use the objective value

obtained from the heuristic solution as an upper bound during

the fathoming of an enumeration tree for the optimal

formulation. If the enumeration tree is completely fathomed,

the solution obtained using the heuristic is shown to be

optimal; if the heuristic is suboptimal, then the actual

optimal solution will be uncovered.

The computation effort required to fathom the enumeration

tree using the heuristic’s objective value made this approach

impractical for most of the problems. The number of binary

and integer variables, as well as the availability of

alternate optima, generates enumeration trees that require

considerable amounts of memory and exorbitant amounts of

computer time to solve. Problems that have more than one

optimal solution could require the algorithm to consider a

large proportion of the enumeration tree. Further, if the

alternative optima were from disparate parts of the tree, the
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algorithm would have to consider more of the tree

simultaneously. This may be the case when there is a capacity

limitation in the last part of the planning horizon and the

procedure is indifferent to which period the sale is lost in.

Given that the purpose of the benchmark procedure is to

estimate the error associated with the heuristic solution, it

is possible to use a series of proposed incumbents to

establish a bound on the optimal solution. For the purposes

of this discussion an incumbent is a bound on the actual

objective used to dissect the search space and increase the

chances that the pruning procedure will fathom the entire tree

or encounter a feasible solution.

A binary search procedure was applied in which the first

incumbent was a value halfway between the objective obtained

from the relaxed formulation and the objective obtained from

the heuristic. If the enumeration tree was completely

fathomed without encountering a feasible solution, a lower

bound was established on the optimal solution and another

incumbent was generated halfway between this bound and the

upper limit. The initial upper limit was the objective value

of the heuristic. Upper limits were updated if one of two

circumstances occurred: a better feasible solution was

encountered, or an incumbent value was too large to prevent

the enumeration tree from outgrowing the computer’s

capabilities. This binary search procedure continued until an

incumbent was proven optimal, or the value of the largest
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incumbent capable of fathoming the entire tree was

established. From this incumbent, a maximum error was

calculated for the objective found using the heuristic.



 



CHAPTER 6: COMPUTATIONAL RESULTS

The objectives of the research were to develop a solution

procedure for problems of a practical size and demonstrate the

quality of those solutions. For this purpose three classes of

problems, Validation, Independent and Scale, were developed

and solved.

INTRODUCTION

Each of the problem classes had a distinct function in

proving the effectiveness of the heuristic procedure. The

primary use of the Validation problems was to develop and

validate the heuristic, while the Independent problems

provided an unbiased evaluation of the heuristic's

performance. Scale problems were designed to give some

insight into how the computation cost would grow as the length

of the planning horizon increases, and to ShOW’ that the

heuristic could be used to solve problems of a practical size.

The Validation and Independent problems each have three

different sizes, (T), (M) and (P), with (T) the smallest. For

each size there are three different utilization levels, low,

medium and high. Each Scale problem has three machines, four

products and is specified at the low utilization level making

it possible to consider a broader range of values when

evaluating the effect of increasing the length of the planning

horizon on computation costs.

The next three sections provide descriptions of the

Validation, Independent and Scale problems along with their

61
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accompanying results. Three tables illustrate these

descriptions. The fifth section of the chapter describes

several procedures that could reduce the problem size and/or

the computation effort. The chapter concludes with a summary

of the important results.

VALIDATION PROBLEMS

The first class of problems, shown in Tables 6-V-1

through 6-V-3, was used to develop and validate the heuristic

solution procedure. Parameters for this set of problems were

selected to ease ‘the coding’ and 'validation procedure and

provide insights into how the heuristic would perform in

diverse situations, such as large machine widths with small

paper widths, which induces a large number of possible cutting

patterns and substantial diversity in the manufacturing

environment.

Description of the Tables

Three sets of three tables, nine in all, describe the

problem sets. The first table in each set provides

information about the size of the problems. The first five

columns contain the name of the problem, the number of periods

(T), the number of distinct types of paper (N), and the number

of machines (M). Demand, the sixth column, is specified at

three levels. '

The best description of the problem size is found in the

last two columns of the first table of each set, the number of
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variables and columns necessary to describe the optimal

formulation presented in Chapter 3.

Demand levels for the Validation problems are somewhat

arbitrary, with the average demand per day for the medium case

twice as large as for the low, and for the high demand case

three times as large as for the low. Demand patterns for the

validation problems were generated with limited regard for the

machine widths. Although it is assured ‘that there is a

machine with sufficient width to produce the paper, it is

possible to have lost sales in a wide paper while a narrow

machine is idle.

All paper widths generated for the Independent and Scale

problems are less than the widths of the narrowest machines.

This requirement is consistent. with the situation at the

example mill and produces much more realistic production

schedules, where, in actual practice, large mismatches between

the market demands and the production environment would be

addressed higher in the production planning hierarchy, before

the paper mill is committed to delivering the order.

The Independent problems were generated for three

different demand levels, where the low level of demand is

designed to operate the machines at 50 percent of capacity,

the medium demand level to operate at 70 percent of capacity,

and the high level case to operate at 90 percent of capacity.

Estimated utilization was the ratio of the expected number of

reels demanded to the expected shop capacity (in reels per
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day). Calculation of the expected shop capacity is

straightforward, and is the product of the expected machine

capacity (reels per hour), the length of the production day

(twenty-four hours), the number of machines and the number of

days in the planning horizon. Expected demand is the product

of the expected number of orders per day, the expected number

of rolls per order, the number of days in the planning horizon

and the inverse of the estimated number of rolls per reel of

paper. The rolls per reel factor is estimated as the ratio

of the expected machine width (averaged across machines) to

the average expected paper width (averaged across paper

types).

Determining meaningful bounds for solutions obtained

using a heuristic is always difficult in this type of

research. The second table for each data set provides two

comparison measures for the objective obtained using the

heuristic. The first is a "Best Incumbent" category where the

best feasible solution that is obtained either with the

heuristic or optimizing procedure is recorded. The second

category used to interpret the quality of the heuristic

solution is the "Best Bound" column. This value represents

the best bound, without regard to feasibility, achieved

through the binary search procedure described in Chapter 5.

There are some important observations to be made about

the use of these tables. First, for the purposes of this

discussion, "incumbent" will refer to any feasible solution as
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good as or better than the solution obtained using the

heuristic procedure. If the solution obtained using the

heuristic procedure is proven to be optimal, the values in all

three columns of the second tables will be identical, and the

value in the "Maximum Error" column will be zero. In

situations where a feasible solution is better than the

solution obtained using the heuristic and proven to be

optimal, then values in the "Best Incumbent" and "Best Bound"

columns will be identical and the maximum error will be

calculated based on the value of the incumbent value. In

situations where it is not possible to prove that either the

incumbent or the heuristic solution value is optimal, the

maximum error is calculated using the best bound.

Tables 6-V-3, 6-I-3 and 6-S—3 contain the objective

values of each problem solved with the integrality

restrictions relaxed, and the solution time required to solve

the heuristic using an Intel 486/66 microprocessor. Solutions

for the mixed integer programs in both the optimizing and

heuristic procedures were solved using version 2.1. of the

CPLEX Mixed Integer-Optimizer (CPLEX Optimization Inc., 1993).

The objective value quoted in the "Linear Relaxation

Objective" is obtained by solving the formulation with all of

the integrality requirements relaxed in the optimal

formulation.
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Table 6-V-1: Problem Characteristics Report

Validation Problems

 

Problem

Name I _ _ Demand Variables Constraints

T-A-l 2 2 2 low 119 76

T-A-2 2 2 2 medium 104 72

T-A-3 2 2 2 high 83 68

M-A-Z 3 3 3 low 345 261

M-A-Z 3 3 3 medium 362 273

M-A-3 3 3 3 high 286 249

P-A-l 5 4 3 low 705 590

P-A-2 5 4 3 medium 655 590

P-A-3 5 4 3 high 782 610

Table 6-V-2: Performance Summary

Validation Problems

Problem Best Best Heuristic Maximum

Name Incumbent Bound Objective Error(%)

T-A-1 40,826.1 40,826.1 40,826.1 0.00

T-A~2 33,899.1 33,899.8 34,120.9 0.65

T-A-3 40,647.2 40,647.2 40,674.2 0.07

M-A-l none 171,245.2 171,597.6 0.21

M-A-2 953,024.9 950,080.1 953,401.8 0.35

M-A-3 727,453.2 727,453.2 728,265.3 0.11

P-A-l 501,052.4 501,052.4 501,052.4 0.00

P-A-2 531,733.0 531,733.0 532,423.2 0.13

P-A-3 none l,637,565.0 1,645,936.0 0.51

Tables 6-V-2 and 6-V-3 show that both the heuristic and

the optimizing procedure performed well on this type of

problem. In addition, the solution speed for the heuristic is

very good. Although these problems were not intended to give

insights into the relationship between the problem size and

the computation effort, the information in Tables 6—V—1 and 6-

V-3 make it appear that computation effort is increasing in
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nearly the same proportion as the problem size. It should be

pointed out that the heuristic reads and writes several files,

and a substantial portion of the time used to solve the

problem is spent in these activities. The question of the

relationship between computation effort and problem size will

be addressed in the section dealing with the Scale problems.

Table 6-V-3: Problem Solution Report

Validation Problems

 

Linear Heuristic

Problem Relaxation Best Bound Solution

Name Objective Usinq CPLEX Objective Time

T-A-l 40,826.1 40,826.1 40,826.1 1

T-A-2 34,120.9 33,899.8 34,120.9 1

T-A-3 40,674.2 40,647.2 40,674.2 < 1

M-A-l 171,597.6 171,245.2 171,597.6 2

M-A-Z 953,401.8 950,080.1 953,401.8 3

M-A-3 728,265.3 727,453.2 728,265.3 3

P-A-l 501,052.4 501,052.4 501,052.4 6

P—A-Z 532,423.2 531,733.0 532,423.2 5

P-A-3 1,645,936.0 1,637,565.1 1,645,936.0 21

It should be noted that problems where the benchmark

procedure demonstrated that it was not possible to obtain a

schedule without lost sales were discarded. This procedure is

consistent with current practices. The authority to reject a

sale is not held at the plant level and when a situation does

arise where it is obvious that the plant will not meet the

demand requirements, arrangements are made to lessen the

demand or reschedule it. The interesting question of

determining which order to reject or reschedule is left for

further research.
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INDEPENDENT PROBLEMS

The second set of problems, whose characteristics are

shown in Tables 6-I-1 through 6-I-3, demonstrate the

performance of the heuristic with an independent set of

problems. The number of machines in this class was kept at

three, a number quite common in practice. The parameters for

these problems were randomly generated using distribution

functions based on the operating conditions at an actual mill.

Detailed descriptions of the environment and the derivation of

the parameters used in the generation of the problems are

given in Chapter 5.

Table 6-I-1: Problem Characteristics Report

Independent Problems

Problem

Name T N M Demand Variables Constraints

T-B-l 2 low 151 104

T-B-2 2 2 3 medium 154 108

T-B-3 2 2 3 high 168 108

M-B-l 3 3 3 low 306 243

M-B-2 3 3 3 medium 351 243

M-B-3 3 3 3 high 361 267

P-B-l 5 4 3 low 751 600

P—B-2 5 4 3 medium 908 620

P-B-3 5 4 3 high 892 610
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Table 6-I-2: Performance Summary

Independent Problems

 

Problem Best Best Heuristic

Name Incumbent Bound Objective

T-B-l 137,418.3 137,418.3 138,433.3

T-B-Z 120,910.6 120,910.6 120,910.6

T-B-3 160,068.0 160,068.0 160,676.0

M-B-l 108,651.7 108,651.7 108,990.6

M-B-Z none 271,194.0 272,819.9

M-B-3 none 301,023.4 303,095.2

P-B-l none 222,791.0 223,400.4

P-B-2 none 988,326.2 996,658.8

P-B-3 none 920,083.3 923,957.4

Table 6-I-3: Problem Solution Report

Independent Problems

Linear Heuristic

Problem Relaxation Best Bound Solution

Name Objective Using CPLEX Objective

T-B-l 136,836.2 137,418.3 138,433.

T-B-2 120,532.6 120,910.6 120,910.

T-B-3 159,825.4 160,068.0 160,676.

M-B-l 107,760.2 108,651.7 108,990.

M-B-2 270,687.3 271,194.0 272,819

M-B-3 300,174.6 301,023.4 303,095.

P-B-l 221,960.3 222,791.0 223,400.

P-B-2 987,529.3 988,321.2 996,658.

P-B-3 919,253.8 920,083.3 923,957.

* Time is in minutes on a 486/66.

Maximum

Error 1 g i

0.74

0.00

0.38

0.31

0.60

0.69

0.27

0.84

0.42

3

6

0

A

h
a
H
l
a

6 2

.9 3

2 3

4 3

8 35

4 13

The tables clearly show that the heuristic produces very

good solutions on these problems.

accomplished with minimal computation effort.

As mentioned earlier,

facing the possibility of missing a sale,

reschedule the demand requirements.

steps are

Further, these results are

when the production planner is

taken to

This observation makes it
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unlikely that the demand properties for the early part of the

horizon are the same as for later in the horizon. These two

features are addressed by lowering the maximum order size by

two-thirds in the first period and one-third in the second.

SCALE PROBLEMS

To give some insight into how the heuristic procedure

would perform as the problem size is increased, a third set of

problems was developed. The Scale problems only consider the

effect of an increasing planning horizon. For these problems

the number of products is fixed at four and the number of

machines is fixed at three. The following three tables

summarize the solution results.

Table 6-S-1: Problem Characteristics Report

Scale Problems

Problem

Name 1 M Variables Constraints

S-1 2 4 3 289 232

S-2 3 4 3 600 360

S-3 4 4 3 805 512

S-4 5 4 3 797 610

S-5 6 4 3 951 720

S-6 7 4 3 950 812

S-7 8 4 3 1311 992

S-8 9 4 3 1444 1098

S-9 10 4 3 1673 1240

S-lO 11 4 3 1713 1276

S-ll 12 4 3 2208 1512

S-12 13 4 3 1565 1482

S-13 14 4 3 2134 1652
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Table 6-S-2: Performance Summary

Scale Problems

Problem Best Best Heuristic Maximum

Name Incumbent Bound Objective Error(%)

S-l 56,842.1 56,842.1 56,842.1 0.00

S-2 32,543.9 32,543.9 32,543.9 0.00

S-3 467,143.7 464,681.2 467,352.6 0.58

S-4 335,314.2 333,670.3 335,702.9 0.61

S-5 625,037.9 622,477.4 625,482.6 0.48

S-6 659,336.1 656,836.8 660,249.9 0.52

S-7 445,635.1 444,070.5 445,697.2 0.37

S-8 818,749.9 813,457.8 818,784.1 0.65

S-9 none 800,714.2 803,497.9 0.35

S-lO 1,060,281.9 1,056,315.8 1,061,013.6 0.44

s—11 1,765,124.9 1,753,409.5 1,765,925.6 0.71

s-12 none 1,620,498.7 1,622,933.l 0.15

S-13 none 1,340,279.9 1,346,557.5 0.47

The results shown in Tables 6-S-1 and 6-S-3 give insights

into how the computation burden increases as the planning

horizon is lengthened. Although computing costs are rising

much faster than the problem size it is clear that problems of

a practical size can be solved using a modest platform. Table

6-S-2 presents the most encouraging results, showing that the

solution quality remains very high even for the longest

planning horizons.
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Table 6—S-3: Problem Solution Report

Scale Problems

Linear Heuristic

Problem Relaxation Best Bound Solution

Name Objective Using CPLEX Objective Time*

S-l 56,062.7 56,842.1 56,842.1 2

s-2 32,156.7 32,543.9 32,543.9 2

S-3 463,575.8 464,681.2 467,352.6 5

s-4 332,567.0 333,670.3 335,702.9 9

S-5 621,054.4 622,477.4 625,482.6 7

S-6 655,073.4 656,836.8 660,249.9 22

S-7 442,758.3 444,070.5 445,697.2 7

S-8 812,033.2 813,457.8 818,784.1 30

S-9 800,040.1 800,714.2 803,497.9 25

s-1o 1,055,102.4 1,056,315.8 1,061,013.6 17

s-11 1,752,656.6 1,753,409.5 1,765,925.6 97

s-12 1,619,417.4 1,620,498.7 1,622,933.1 15

s-13 1,339,188.4 1,340,279.9 1,346,557.5 66

* Time is in minutes on a 486/66.

Although it is appropriate to define the problem size in

terms of the parameters presented in Table 6-V-1 and 6-I-1

(number of machines, number of days in the planning horizon

and the number of paper types), it should be pointed out that

problem size is also a function of the widths and number of

different widths of the papers demanded and the widths of the

paper-making machines. Wide machines producing a broad

assortment of narrow papers will be prone to generating a

large number of cutting patterns, increasing the problem size.

The heuristic procedure significantly reduces the number of

binary and integer variables in any one formulation. This is

done by selectively relaxing integrality requirements and/or

restricting the domain of the integer and binary variables.

However, within any one of the subproblems in the heuristic
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procedure, there are still enough binary and integer variables

that solution times would be unacceptable even (n1 a very

powerful platform. The results of this research would have

wider applicability if the size of the formulations could be

reduced even slightly.

PROBLEM SIZE REDUCTION TECHNIQUES

When considering the possibility of solving problems of

a practical size, there are at least two methods that could be

used to condense the problems. Both approaches are based on

aggregation methods.

Although single days are the preferred planning period,

it has been suggested (S. Twaroski, personal communication,

October 15, 1991) that there are situations where the planning

increment could be extended to forty-eight hours. It is clear

that in situations where this approach could be applied, the

problem size could be reduced by 50%. A less dramatic but

still useful approach would be to aggregate the weekend into

a single planning period. This is appropriate in situations

where the subsequent conversion processes are shut down over

the weekend.

The second aggregation approach is based on the similar

nature of many of the products produced. Although demand will

be for a specific kind of paper in a specific basis weight,

the most formidable transitions are those between kinds of

paper. Once a machine is producing, it is a much simpler

problem to change basis weights than it is to switch to an
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entirely different kind of paper. At the example mill, the

practice is to have a fairly definite schedule with respect to

the kind of paper produced, while the timing of the production

of the different basis weights is left open.

The production planner at the example mill prefers to

schedule on a 21-day planning horizon, giving vendors adequate

notice for required materials. Although the planner will

consider twenty or more paper kind/basis weight combinations,

there will only be approximately five distinct paper types.

At first inspection, it might seem reasonable to aggregate

demand for the basis weights. Then the production scheduling

issue might be analogous to many hierarchical production

planning situations where part-families (paper kinds) are

scheduled first and then the individual part (basis weight) is

scheduled within the time allocated for the particular part

family. The issue of the cutting patterns confounds this

approach when considering production scheduling le a paper

mill. This is because the demands are for a specific weight

and width for each kind of paper, and aggregating the basis

weights would introduce ambiguity, at best, into the meaning

of the cutting patterns. The following proposed modifications

would make it possible to reformulate the problem with

significantly fewer transition variables, the most important

consideration for the most time-consuming step of the

heuristic.
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Grouping products into part families is another method

that could be used to reduce the problem size. Paper kind,

characterized by a name brand, Kashmir Natural for instance,

will denote the name of the part family. The different basis

weights represent the individual members of the part family.

The production scheduling problem can now be reformulated,

where the sequencing variables, V represent a switchum,

between different part families rather than individual paper

types. This requires introducing an index, f, to identify the

individual members of the part families.

The production variables still describe the number of

reels of a type of paper to produce on a machine m in a period

t and then cut according to pattern q, but it must be

recognized that the i index now represents the paper family.

Production variables are now expressed with the form: Xfimv

Except for the i and j indexes and the N parameter, most

of the variables and parameters used in the following

formulation have the same meaning as when they were first

presented in Chapter 3. Only new or different indices,

parameters or variables will be described in the following

definitions.

Definitions

Indices:

f enumerates the individual paper types in each part

family, f = 1,2,...,E, where E is the number of

paper types in part family i;
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labels the state (paper family) on the machines,

i = 0,1,...,N, where i = 0 indicates the

communicating state that each machine must visit at

the beginning of a period and N is the number of

paper families produced;

labels the state (paper family) to which a machine

will be switched, (j = 0,1,...,N), where j = 0 is

the communicating state that each machine must

visit at the end of each period;

denotes the width of paper of a given type demanded

by customers, k = 1,2,...,Kfi;

enumerates the cutting patterns for machine m and

paper type f from family i, q = 1, 2,...,Qm“

Parameters:

cfin

Cfimq

the time required to produce a reel of product f

from family i on machine m;

the sum of production cost and trim waste, for a

reel of paper of type f from family i produced on

machine m and out according to pattern q;

the demand for paper of width k, type f, family i

in period t;

the time required to switch from paper family i to

paper family j on machine m;

the transition cost for changing from paper family

i to paper family j on machine m;

the cost of lost sales, per roll, for paper of type

f in family i, width k in period t;

the number of different paper families;

the number of rolls of width k to be cut from each

reel using pattern q on machine m when producing

product f from family i, subject to the condition

N F1 Kti inm

122: quwfikpfikmq
s‘z‘m m=l,2,...,

M (3'1)

f==1k1

the recycling cost for a roll of paper of type f,

family i in width k;
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Violuo the initial conditions for each of the machines,

where me is a binary variable indicating a

transition from part family i to part family j;

Wfik the k‘h physical width (in inches) of paper type f

from family i;

Variables:

db, a real number associated with state i on machine m

for period t, used to prevent sub-touring;

Ifin the inventory of roll. width ‘k, product type f,

family i at the end of period t;

Rfikt the number of rolls of width k of product f from

family 1 produced in period t;

an a zero one variable indicating a switch between

states i and j (i¢j) on machine m in period t;

Xmm the number of reels of type f from family 1

produced on machine m and then cut according to

pattern q in period t;

Z“, the demand, in rolls, of width k and type f, family

i not satisfied in each period.
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N

_ n1= 1 2 .. M _

Vbjmt ' 1 t = 1.:2: . :1‘ (3 8)
1=1

i = 1,2,. ,

ViOIMt-l) — Voimt = 0 $1: i:§:: :M (3-9)

N N = 1,2, . I, (3 10)

V = = 1 2 . M' ‘
1:0 ijmt _Z;Vjimt = 1:2:. .:

1 = 0,1, .,N

1 = Q11! - IN

dimt - djm + (N+1) V133": s N J at 1 (3-11)

n7: 1,2,. .,M

t = 1,2, ,T

1 = 1,2, .,N

z . X . s f’= 1,2, . ,F}
f1kt' f1mqt' mtI k = 1,2, . . ' lei (3_12)

n7= l 2 ..M

Rfikt' Ifikt' djmt Z 0 q = 1:2: .:Qfim

32mm: integer V f,i,m,q, and t (3-13)

Vfimt 0 or'l V i,j,m, and t (3-14)

The problem reduction technique just described has the

potential to offer substantial improvements in the usability

of the procedure by reducing the number of paper types (N) for

which the transition variables must be generated. In one

example mill this approach would reduce the number of types by

nearly 80%.

Although the formulation does ignore transition costs

between basis weights, these times are small compared with the

effort required to switch between paper kinds. In facilities
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where it is common to maintain some flexibility in the

production schedule, this time is small enough that it would

not compromise the scheduling process. This approach

addresses the most time consuming and important aspect of the

heuristic procedure, generation of the production sequence.

SUMMARY AND CONCLUSIONS

For problems where there is sufficient capacity to meet

all of the demand requirements, it has been shown that the

heuristic procedure can obtain good solutions with an

acceptable computation effort. This chapter also suggests a

problem size reduction technique that will increase the

applicability of the heuristic. This technique relies on the

part family concept, where the various basis weights represent

the members of the paper brand family.



 



CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

The heuristic developed here, together with the problem

reduction techniques discussed earlier, is an efficient method

of scheduling in environments where manufacturing is sequence

dependent and produced. materials are cut into finished

products. Many businesses operate in this manner, typically

with a large investment in both capital equipment and raw

materials. This research provides production managers with a

tool that can significantly improve profitability. While this

is a significant contribution itself, it also suggests other

areas for future research.

There are modifications that could improve the

effectiveness of the current heuristic, either by decreasing

the time it takes to obtain a good solution or, if considered

useful, by forcing the heuristic to develop schedules more

consistent with those obtained using an optimizing procedure.

The most direct approach to lowering the over-production

charge would be the selective consideration of dominated

cutting patterns. Selective inclusion of more patterns in

this application may not have a noticeable impact on solution

time given the small amount of time the heuristic now directs

to this effort and could reduce the amount of material

recycled.

The most pressing speed issue is the large increase in

computing cost as the heuristic is forced to reject some

sales. As mentioned in Chapter 4, this problem is

81
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particularly acute if demand is heavy late in the planning

period.

A. related, and 'very interesting, question is how ‘to

respond to situations where demand will not be satisfied. In

an actual production environment, the scheduler would have a

variety of options available to respond to schedule

infeasibility. These might' include negotiating" with the

customer to reschedule all or part of the order, shipping by

an alternate carrier, diverting some work to another plant or,

if it is an in-house delivery, allowing the order to be late

under the assumption that the time could be made up later. It

should be pointed out that many feasible schedules could be

improved if the right constraint could be relaxed. In these

cases, frequently, the biggest difficulty is deciding which

constraint to relax.

Among the most obvious methods of relieving production

pressure on one mill is the diversion of some work to another

facility. This could be addressed by incorporating the

current formulation into a comprehensive company—wide model

that can consider several plants in dispersed geographic

areas. This approach is appealing because it offers an

opportunity to determine production schedules for each.machine

in the organization that are optimal not just with respect to

each plant, but also with respect to the entire organization.

It will also allow the company to investigate other issues

that affect the production scheduling at the plant level, such
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as the selection and timing of a machine shutdown for

maintenance, engineering changes, or the management of excess

production capacity. Finally, a company-wide model could be

used to investigate plant expansion or modernization efforts.

Another interesting research question is the relationship

between product quality and the production schedule. To a

large extent this is implied in the changeover costs and times

already considered in the model. However, this could be

extended by incorporating the proportion of virgin materials

as an additional set of constraints. Different papers require

different ratios of virgin raw materials to recycled fiber.

This would give the production scheduler two mechanisms to

control the recycled material, the cutting patterns selected

and product composition. Production could be scheduled in a

way that best utilizes these components. This implementation

could be used. with various inventory' policies to provide

management with another tool for managing product quality.

In summary, the research meets its objective of

developing an effective method of obtaining good production

schedules for environments that face a stock cutting problem

in conjunction with sequence dependent setups, and does so

with a reasonable amount of computation effort. The results

of this research have applicability in the paper industry as

well as other, primarily process, industries at the plant

level. Given the large production volumes associated with the

process industries, the results of this research can achieve



 



substantial dollar savings through modest

 

production efficiency.
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PROBLEM (Prototype 3)

Random Number Seed: 32

The Number of Periods is: 5

The Number of Machines is: 3

Number of Types of Paper: 4

Maximum Machine Width: 300

Minimum Machine Width: 75

Maximum Paper Width: 300

Minimum Paper Width: 20

Expected Level of Utilization: high

Maximum Number of Orders/Day: 4

Minimum Number of Rolls/Order: 13

Maximum Number of Rolls/Order: 88

Variable Legend

Type of Variable Number

Cutting Patterns:

Roll variables:

Inventory Variables:

Rejected Rolls variables:

Machine Initialization Variables:

Transition Variables:

Slack Variables:

Tucker Variables:

Setups on Each Day:

Total Number of Variables

Constraint Legend

Type of Constraint

Reel to Roll Conversion

Capacity Constraints

Demand Constraints

Required Setups

Exit From the Null State

Matched Exit to Entrance

Exit from Each State Visited

Tucker Constraints

Required Trans. Before Prod.

Minimum Production

Total Number of Constraints

Number

783

205

255

315

365

377

677

692

782

842

End

50

115

175

190

250

310

610

670

730
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PROBLEM SPECIFICATIONS

Machine Number Machine Width

1 136

2 214

3 207

Time Required to Produce a Reel of Paper (in hours)

Machine Number 1

paper(x) Production Time

1 0.8

2 0.9

3 0.9

4 0.7

Machine Number 2

paper(x) Production Time

1

D
U
N

0
0
0
0

.6

.7

.6

Machine Number 3

paper(x) Production Time

1 0.5

2 1.0

3 1.0

4 1.0

Cost of Transferring Between Papers (in Ss)

Machine Number 1

paper(x) paper(y) Transition Cost

1 0.9

48.9

401.4

63.2

112.1

150.5

265.3

202.0

352.5

370.1

391.3

419.0b
b
-
b
w
a
N
N
N
I
—
‘
H

U
M
P
-
b
N
H
b
U
H
-
b
w
w
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Machine Number 2

paper(x) paper(y) Transition Cost

1 2 2 .

1 3 362.8

1 4 550.0

2 1 94.3

2 3 181.8

2 4 369.0

3 1 356.7

3 2 262.4

3 4 187.2

4 1 279.3

4 2 185.0

4 3 366.8

Machine Number 3

paper(x) paper(y) Transition Cost

2 .

l 3 262.6

1 4 554.5

2 1 83.9

2 3 117.8

2 4 638.4

3 1 474.4

3 2 758.5

3 4 607.5

4 1 422.7

4 2 796.3

4 3 685.4

Time to Transfer Between Papers (in hours)

Machine Number 1

paper(x) paper(y) Transition Time

w
h
o
o
p
-
A
w
o
o
x
x
i
o
o
o
o
m
w

b
b
b
w
w
w
N
N
N
l
-
‘
H
H

w
M
H
-
b
M
o
-
I
h
w
l
-
I
p
w

H
H
H
H
O
H
H
H
O
I
—
I
H
O
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Machine Number 2

paper(x) paper(y) Transition Time

1 2 1.9

1 3 1.7

1 4 1.2

2 1 1.0

2 3 1.3

2 4 0.9

3 1 1.2

3 2 1.6

3 4 0.9

4 1 1.8

4 2 0.1

4 3 0.5

Machine Number 3

paper(x) paper(y) Transition Time

1 0.6

1 3 1.9

1 4 1.7

2 1 1.6

2 3 0.8

2 4 1.0

3 1 0.8

3 2 1.9

3 4 1.4

4 1 1.5

4 2 0.3

4 3 1.1

DEMAND SCHEDULE

Requirements for Day 1

Paper Type 1 is needed in the following width(s):

22 Rolls of Width 88 Inches

Paper Type 3 is needed in the following width(s):

17 Rolls of Width 41 Inches

Requirements for Day 2

Paper Type 2 is needed in the following width(s):

15 Rolls of Width 95 Inches

45 Rolls of Width 120 Inches

Paper Type 4 is needed in the following width(s):

25 Rolls of Width 129 Inches

Requirements for Day 3

Paper Type 2 is needed in the following width(s):

38 Rolls of Width 58 Inches

59 Rolls of Width 120 Inches
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Requirements for Day 4

Paper Type 1 is needed in the following width(s):

135 Rolls of Width 88 Inches

Paper Type 3 is needed in the following width(s):

74 Rolls of Width 142 Inches

Requirements for Day 5

Paper Type 2 is needed in the following width(s):

118 Rolls of Width 95 Inches

Paper Type 3 is needed in the following width(s):

41 Rolls of Width 142 Inches

Paper Type 4 is needed in the following width(s):

78 Rolls of Width 129 Inches

Widths Demanded for Each Paper

Paper 1 Widths

Paper 2 Widths

Paper 3 Widths

Paper 4 Widths

Initial Configuration

Machine 1: paper

Machine 2: paper

Machine 3: paper

88

95 58 120

41 107 142 56

129 131

2

2

4



 



CUTTING PATTERNS

Patterns for Machine

Paper Widths (in

88

1

Patterns for Machine

Paper Widths (in

95 58

O 0

0 2

1 0

Patterns for Machine

Paper Widths (in

41 107

w
i
-
‘
O
O

O
O
I
—
‘
O

Patterns for Machine

Paper Widths (in

129 131

0 1

1 0

Patterns for Machine

Paper Widths (in

88

2

Patterns for Machine

Paper Widths (in

95 58

0 1

O 3

1 2

2 O

1 and Paper

inches):

1 and Paper

inches):

120

1

0

0

1 and Paper

inches):

142

0
0
0
0

l and Paper

inches):

2 and Paper

inches):

2 and Paper

inches):

120

O
O
O
I
—
I

91

O
H
O
N

Cost($)

2219.20

Cost($)

2680.00

2622.40

2320.00

Cost($)

2564.80

2492.80

2348.80

2723.20

Cost($)

2838.40

2809.60

Cost($)

4032.40

Cost($)

4061.20

4003.60

4536.40

4234.00
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Patterns for Machine 2 and Paper 3

Paper Widths (in inches):

41 107 142 56 Cost($)

0 0 1 1 4349.20

0 2 0 0 4579.60

1 O O 3 4507.60

1 O 1 0 4133.20

1 1 0 1 4435.60

2 0 0 2 4291.60

2 1 O 0 4219.60

3 0 O 1 4075.60

5 0 0 0 4450.00

Patterns for Machine 2 and Paper 4

Paper Widths (in inches):

129 131 Cost($)

0 1 3384.40

1 0 3355.60

Patterns for Machine 3 and Paper 1

Paper Widths (in inches):

88 Cost($)

2 3983.40

Patterns for Machine 3 and Paper 2

Paper Widths (in inches):

95 58 120 Cost($)

0 1 1 4012.20

0 3 0 3954.60

1 l 0 3652.20

2 O 0 4185.00

Patterns for Machine 3 and Paper 3

Paper Widths (in inches):

41 107 142 56 Cost($)

O O 0 3 3868.20

0 O 1 1 4300.20

1 O 1 0 4084.20

1 l O 1 4386.60

2 O O 2 4242.60

2 1 O 0 4170.60

3 0 O 1 4026.60

5 0 O 0 4401.00

Patterns for Machine 3 and Paper 4

Paper Widths (in inches):

129 131 Cost($)

0 1 3335.40

1 0 3306.60



 



REEL PRODUCTION

Day 1

Machine 1

Paper

Machine 2

Paper

Paper

Machine 3

Paper

Paper

Day 2

Machine 1

Paper

Machine 2

Paper

Machine 3

Paper

Day 3

Machine 1

Paper

Machine 2

Paper

Paper

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

Type

M
N

U
N

H
J
)

5
.
.

M
N

w

Reels

24

Reels

Reels

17

Reels

Reels

Reels

35

Reels

32

Reels

51

Reels

25

Reels

Reels

Wl=

Wl=

W1=
i
-
'

W

W1=

93

95

95

N
O

129

1

H
0

88

1

W2= 107

O

O
H

W2= 131

0

W2= 107

C
O

1

W2= 107

0
0

W3= 120

1

W3= 120

l

W3= 142

l

W3= 120

W3= 142

W3= 120

l

W3= 120

W3= 142

W4=

O
H
I
I

O
i
—
‘
l
l

56

56

56



 



Machine 3

Paper Type

Paper Type

Day 4

Machine 1

Paper Type

Machine 2

Paper Type

Paper Type

Machine 3

Paper Type

Paper Type

Day 5

Machine 1

Paper Type

Machine 2

Paper Type

Paper Type

Paper Type

Machine 3

Paper Type

ROLL RECORD

Day 1

Paper Type 1

Width

88

.
.
.

(
a

h
.
.
1

w
M

(
a
)

b
N

U
.
h

M

Reels

Reels

Reels

32

Reels

l

Reels

3O

Reels

Reels

3

Reels

32

Reels

24

Wl=

Wl=

Wl=

W1:

W1=

Wl=

(in rolls)

Prod.

22

94

88

H
0

129

1

88

41

95

41

129

B.Inv.

0

W2= 107

C
O

W2= 131

0

W2= 107

O

0

W2= 107

O

W2= 131

O

0

W2= 107

0

W2= 131

0

W2= 58

E.Inv.

0

W3= 142

1

1

W3= 142

1

W3= 120

W3= 142

1

W3= 120

0

W3= 142

1

W3= 120

Dmd.

22

W4= 56

1

0

W4= 56

1

W4= 56

O

W4= 56

l

Rej.

0



 



Paper Type 2

Paper Type 3

Width

41

107

142

56

Paper Type 4

Width

129

131

Day 2

Paper Type 1

Width

88

Paper Type 2

Paper Type 3

Width

41

107

142

56

Paper Type 4

Width

129

131

Day 3

Paper Type 1

Width

88

Paper Type 2

(in

(in

(in

(in

(in

(in

(in

rolls)

rolls)

Prod.

0

0

rolls)

Prod.

102

rolls)

Prod.

0

O

0

rolls)

Prod.

2

O

34

32

rolls)

Prod.

35

0

rolls)

Prod.

32

rolls)

Prod.

0

30

55

95

B.Inv.

B.Inv.

0
0
0
0

B.Inv.

B.Inv.

0

B.Inv.

102

E.Inv.

6

49

E.Inv.

102

E.Inv.

1

E.Inv.

51

32

E.Inv.

l

E.Inv.

134

Dmd.

Dmd.

Dmd.

O

D

0
0
0
0
3

Dmd.

25

Dmd.

0

Dmd.

38

59

Rej.

Rej.

0
0
0
0

Rej.

Rej.

0

Rej.

Rej.

0
0
0
0

Rej.

Rej.

O

Rej.



 



Paper

Paper

Day 4

Paper

Paper

Paper

Paper

Day 5

Paper

Paper

Paper

Type 3

Width

41

107

142

56

Type 4

Width

129

131

Type 1

Width

88

Type 2

(in

(in

(in

(in

(in

(in

rolls)

Prod.

7

0

20

13

rolls)

Prod.

0

0

rolls)

Prod.

2

rolls)

Prod.

38

O

0

rolls)

Prod.

3

0

33

30

rolls)

Prod.

32

0

rolls)

Prod.

0

rolls)

Prod.

80

O

0

rolls)

Prod.

0

0

11

ll

96

B.Inv.

51

32

B.Inv.

B.Inv.

134

B.Inv.

10

B.Inv.

B.Inv.

17

B.Inv.

1

3O

75

E.Inv.

71

45

E.Inv.

E.Inv.

1

E.Inv.

E.Inv.

42

Dmd.

0
0
0
0

Dmd.

Dmd.

135

U Q
.

0
0
0
3

Dmd.

Dmd.

Dmd.

118

Rej.

0

Rej.

Rej.

0
0
0
0

Rej.

0

Rej.

2
7

0
0
0
0

u
.

Rej.

0
0
0
0



 



Paper Type 4 (in rolls)

Width

129

131

COST SUMMARY

SLACK INFORMATION

Day

Cost of Transitions:

Cost of Production:

Cost of Lost Sales:

Value of Recyled Inven.:

Prod.

36

0

97

B.Inv.

42

4311.34

1734893.38

0.00

-93268.80

Total Cost of the Schedule is:

1

Accumulated

Accumulated

Accumulated

2

Accumulated

Accumulated

Accumulated

3

Accumulated

Accumulated

Accumulated

4

Accumulated

Accumulated

Accumulated

5

Accumulated

Accumulated

Accumulated

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

Slack

PRODUCTION SEQUENCE

Day 1

Machine 1

Sequence is:

Machine 2

Sequence is:

Machine 3

Sequence is:

on

on

on

on

on

on

on

on

on

0 :
1

on

on

O

on

:
1

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

*
§
k
*

*
d
e
*

*
d
e
*

*
§
§
*

(
”
M
i
-
4

W
N
H

5
1
:
3
1
:
5
4

u
:
M
l
a

W
N
H

(
D
M
D
-
l

E.Inv.

0

1645936.00 Dollars

0
0
0

0
0
0

0
0
0

H
0
0

N
t
h
-
b

0
‘
0
0

(
J
O
-
b

O
l
—
‘
N

c
o
m
e

0
0

H
M
!
»

Hours

Hours

Hours

Hours

Hours

Hours

Hours

Hours

Hours

Hours

Hours

Hours

Dmd. Rej.



 



Day 2

Machine

Sequence

Machine

Sequence

Machine

Sequence

Day 3

Machine

Sequence

Machine

Sequence

Machine

Sequence

Day 4

Machine

Sequence

Machine

Sequence

Machine

Sequence

5

Machine

Sequence

Machine

Sequence

Machine

Sequence

1

is:

98



 



 
99



 



19

20

21

22

23

52

550

505
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PROGRAM Exx

REAL MAXTT,MINTT,MAXPT,MINPT

DOUBLE PRECISION Ix1

CHARACTER*12 NAMSTR

INTEGER STATUS

DIMENSION IWI(15,4)

WRITE(*,19)

FORMAT(5(/),5X,'What is the name of the problem ?’)

NAMSTR = ’TEMP'

WRITE(*,20)

FORMAT(3X,’How many periods are there? '

READ(*,*) IT

WRITE(*,Zl)

FORMAT(3X,’How many products are there?

READ(*.*) N

WRITE(*,22)

FORMAT(3X,’How many machines are there?

READ(*,*)

WRITE(*,23)

FORMAT(3X,’What is the level of demand?

’ (l = Low; 2 = Medium; 3 = High)’)

READ(*,*) IOPT3

WRITE(*,52)

FORMAT(3X,'Random Number Seed? ’)

READ(*,*) IXl

NWMAX = 4

DAYL = 24

MAXMW = 300

MINMW = 75

MAXPW = 300

MINPW = 20

AMTCST = 14.4

ALABOR = 7.0

CUTCST = 7.0

MAXTC = 2 * 400

MINTC = 0.1 * 400

CLOST = l40000.0

OPEN(88,FILE='EXX.FLE’)

WRITE(88,550)IT,N,M,IOPT3,IX1,ITOYS

FORMAT(I2,/,I2,/,I2,/,12,/,D15.8,/,I2)

CLOSE(88)

IPERIOD = 1

ITERAT = -1

OPEN(88,FILE=’INSUR.FLE')

WRITE(88,505)IPERIOD,ITERAT

FORMAT(5X,I3,5X,I3)

CLOSE(88)

MAXTT = 2.0

MINTT = 0.1

MAXPT = 1.0

MINPT = 0.5

Y = 500.0

HPR = (MAXPT+MINPT)/2.0

AVPW= (MAXPW+MINPW)/2.0

AVMW= (MAXMW+MINMW)/2.0

ROPRE = AVMW/AVPW

MINSIZ = 8

MINR = NINT((MINSIZ/HPR)*ROPRE)

IF(IOPT3.EQ.1)THEN

MAXO = 4

UTIL = 0.3

ENDIF

)

I

I

I

)

)

I
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IF(IOPT3.EQ.2)THEN

MAXO = 4

UTIL =0.6

IF(IOPT3.EQ. 3)THEN

MAXR = NINT(

x 4. 0*UTIL*(M/1. 0)*24. 0*(1/HPR)*

x (1. 0/MAXO)*ROPRE) - MI

CALL PRO(IT, N, M, IOPT3, 1x1 ,NWMAX,

x DAYL,MAXO,MINR,MAXR,MAXMW,MINMW,MAXPW,MINPW,

x MAXTC,MINTC,CUTCST,MAXTT,MINTT,

x MAXPT,MINPT,IWI,NAMSTR,ALABOR,AMTCST)

OPEN(88,FILE='DELTA.FLE’)

OPEN(90,FILE=’DELTAP.FLE’)

Do 64, J=1, IT

DO 64, J1=1, M

Do 64, J2=l, N

WRITE(88,5511)INUM

WRITE(90,5511)INUM

5511 FORMAT(5X,I1)

64 CONTINUE

CLOSE(88)

CLOSE(90)

OPEN(88,FILE='ICON.FLE')

Imm=o

WRITE(88,5511)INUM

CLOSE(88)

IOPTl — 1

LOLIM = 0

IUPLIM = 1

CALL HETEST( IWI,

x Y,CLOST,

x FACTOR,LOLIM,IUPLIM,

x AMTCST)

STOP

C LAST CARD OF Exx

END

c

SUBROUTINE HETEST( IWI,

x Y,CLOST,

x FACTOR,LOLIM,IUPLIM,

x AMTCST

DIMENSION IIW(15),IQK(15,7),OBJ(15,15,7),

x TRANS(15,15,7

x ANIT(7,15),OBJX(200,15,7),IDOT(4,200,7,15),CAP(15,7),

x IDMD(14,15,4), IV(0:15,16,7,0:14),MW(7),

x ININV(15,4),RHS(14,7)

INTEGER IWI(15,4),INV(0:14,15,4),

x ROLLPR(14,1S,4,2),

x FACTOR,FLGDAY

REAL IPROD(200,15,7,14)

CALL READIT(DAYL,IT,N,M,IIW,IQK,

1 OBJ,TRANS,ANIT,OBJX,IDOT,CAP,IDMD,MW)

D0 6, I=0,IT

6 L=1,M

6, J=o,N

DO 6, K=l,N+l

6, Kl=l,IQK(J,L)
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IF((J.GT.O).AND.(I.GT.0))

x IPROD(K1,J,L,I) = o

IV(J,K,L,I) = o

6 CONTINUE

OPEN(12,FILE=’IV.TEM’)

DO 8, I=0,IT

DO 8, Il=1,M

DO 8, 12=0,N

, I3=1,N+1

IF(I2.EQ.I3)GOTO 8

IF((12.EQ.O).AND.(I3.EQ.N+1))GOTO 8

ATEM = IV(I2,I3,I1,I)/1.0

WRITE(12,4455)ATEM

4455 FORMAT(F8.5)

8 CONTINUE

CLOSE(12)

FACTOR = 4

WRITE(*,1212)

1212 FORMAT(3X,'What is the FACTOR value 2 ')

READ(*,*) FACTOR

OPEN(88,FILE='FACTOR.FLE’)

WRITE(88,9011)FACTOR

9011 FORMAT(I3)

CLOSE(88)

FLGDAY = 1

MIPCNT = o

50 CONTINUE

MIPCNT + 1

s
-
u
-
I

U 0 m 0
1

~
f
‘
Q
H
X
I
I

r
o
o
m
s
-
0
1
.
x
:
-

c
l
i
l

II
II

II

H
I
I
V
i
-
‘
l
-
I
i
-
‘
H

C
4
0
"

~
0RHS(K,I)

ROLLPR(K,

55 CONTINUE

Do 57, 1:0, IT

DO 57, Il=1,N

DO 57, 12=l,IIW(Il)

INV(I,11,12) = 0

57 CONTINUE

INCOMP = 0

CALL IP(IV,IPROD,ININV,Y,CLOST,

FACTOR,IWI,LOLIM,IUPLIM,

AMTCST,INCOMP)

RETURN

c LAST CARD OF HETEST

END

CsINCLUDE READ_WRT.FOR

CsINCLUDE PRO.FOR

c

ii 0

I

>
<
>
<

SUBROUTINE READIT(DAYL,IT,N,M,IIW,IQK, ‘

1 OBJ,TRANS,ANIT,OBJX,IDOT,CAP,IDMD,MW)

DIMENSION IIW(15),IQK(15,7),

1 OBJ(15,15,7), TRANS(15,15,7), ANIT(7,15),OBJX(200,15,7),

2 IDOT(4,200,7,15),CAP(15,7),IDMD(14,15,4),MW(7)

OPEN(96,FILE='PROB_ST.FLE’)

READ(96,SOOO)DAYL

5000 FORMAT(F7.4)

READ(96,5001) IT,N,M

5001 FORMAT(I10

READ(96,5002) (IIW(I),I=1,N)



 



5002

5003

5004

2

5005

3

5006

5007

5008

5009

7

5010

8

5011

5000

5001

>
<

w
a
H
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FORMAT(I2)

DO 1,I=1,N

READ(96,5003) (IQK(I,J),J=1,M)

FORMAT(I2)

CONTINUE

DO 2 I=1, M

READ(96,5004) (ANIT(I,J),J=1,N)

FORMAT(F6.1)

CONTINUE

DO 3 I=1, N

READ(96,5005) (CAP(I,J),J=1,M)

FORMAT(F6.3)

CONTINUE

DO 4, I=1, N

DO 4, Il=1, M

DO 4, I2=1, IQK(I,I1)

READ(96,5006) (IDOT(J,IZ,Il,I),J=1,4)

FORMAT(12)

CONTINUE

DO 5, I=1, N

D0 5, 11:1, N

READ(96,5007) (OBJ(I,I1,J),J=1, M)

FORMAT(F8.2)

CONTINUE

DO 6, I=1, N

Do 6, Il=l, M

READ(96,5008) (OBJX(J,I,Il),J=l, IQK(I,I1))

FORMAT(F8.2)

CONTINUE

DO 7, I=1, N

DO 7, 11:1,

READ(96,5009) (TRANS(I,I1,J),J=1, M)

FORMAT(F7.1)

CONTINUE

ICNT = o

ICNT = ICN

READ(96,5010)IDMD(I,I1,12)

FORMAT(I6)

CONTINUE

READ(96,5011)(MW(I),I=1,M)

FORMAT(I5)

CLOSE(96)

RETURN

LAsT CARD OF READIT

END

SUBROUTINE WRITIT(DAYL,IT,N,M,IIW,IQK,CAP,IDOT,

OBJ,OBJX,TRANS,IDMD,ANIT,MW)

DIMENSION ANIT(7,15),OBJ(15,15,7),

TRANS(15,15,7),OBJX(200,15,7),

IDOT(4,200,7,15), CAP(15,7),IIW(15),

IQK(15,7),MW(7),

IWI(15,4),IDMD(14,15,4)

OPEN(96,FILE='PROB ST.FLE’)

WRITE(96,5000) DAYL_

FORMAT(F7.4)

WRITE(96,5001) IT,N,M

FORMAT(IlO)

WRITE(96,5002) (IIW(I),I=1,N)
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FORMAT(I2)

DO l,I=1,N

WRITE(96, 5003) (IQK(I,J),J=1,M)

FORMAT(I2)

CONTINUE

DO 2 I=1, M

WRITE(96,5004) (ANIT(I,J),J=1,N)

FORMAT(F6.1)

CONTINUE

Do 3 I=1,

WRITE(96,5005) (CAP(I,J),J=1,M)

FORMAT(F6.3)

CONTINUE

Do 4, I=1, N

Do 4, I1=1,

DO 4, 12:1, IQK(I1)

WRITE(96, 5006) (IDOT(J, 12, 11, I), J=L 4)

FORMAT(I2)

CONTINUE

DO 5, I=1, N

DO 5, 11:1, N

WRITE(96,5007) (OBJ(I,I1,J),J=1, M)

FORMAT(F8.2)

CONTINUE

Do 6, I=1, N

DO 6, 11=1, M

WRITE(96,5008) (OBJX(J,I,Il),J=l, IQK(I,I1))

FORMAT(F8.2)

CONTINUE

DO 7, I=1, N

DO 7, 11:1, N

WRITE(96,5009) (TRANS(I,I1,J),J=1, M)

FORMAT(F7.1)

CONTINUE

Do 8, I=1, IT

Do 8, 11:1, N

DO 8, I2=1, IIW(I1)

WRITE(96,5010)IDMD(I,Il,I2)

FORMAT I6

CONTINUE

WRITE(96,5011)(MW(I),I=1,M)

FORMAT 5)

CLOSE(96)I

RETURN

LAST CARD OF WRITIT

END

SUBROUTINE PRO(IT,N,M,IOPT3,IX,NWMAX,

DAYL,MAXO,MINR,MAXR,MAXMW,MINMW,MAXPW,MINPW,

MAXTC,MINTC,CUTCST,MAXTT,MINTT,

MAXPT,MINPT,IWI,NAMSTR,ALABOR,AMTCST)

REAL MAXTT,MINTT,MAXPT,MINPT

DOUBLE PRECISION Ix

CHARACTER*12 NAMSTR

DIMENSION ANIT(7,15),OBJ(15,15,7),

TRANS(15,15,7),OBJX(200,15,7),

IDOT(4,200,7,15), CAP(15,7),IIW(15),

IQK(15,7),MW(7), IWI(15,4),IDMD(14,15,4)

IXSAVE = IX

CALL MACHW(M,IX,MW,MAXMW,MINMW)

CALL PAPW(M,MW,IX,IIW,N,IWI,NWMAX,MAXPW,MINPW)

CALL INITl(ANIT,OBJ,TRANS,IQK,IIW,





20

41

48

1
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IDOT,IT,N,M,OBJX,IDMD)

CALL DEMAND(IT,IIW,MAXO,MINR,MAXR,IX,N,

NWMAX,IDMD)

CALL PATRNS(N,M,IWI,MW,IDOT,IQK)

CALL OBJF(OBJ,N,M,IX,MAXTC,MINTC)

CALL MASSAG(OBJ,N,M)

CALL OBJFX(OBJX,IDOT,MW,IQK,IWI,M,CUTCST,

ALABOR,AMTCST)

CALL TRANSF(TRANS,M,IX,MAXTT,MINTT)

CALL CAPF(CAP,N,M,MAXPT,MINPT,IX)

CALL ICOND(M,N,ANIT,IX)

SCREEN(M, MW, N, IIW, IT, IDMD, IWI,flCAL

XOBJ, TRANS, OBJX, CAP, IQK, IDOT, ANIT)

X

X

X

U
N
H

L REPORT(M, N, IIW, IT,

IQK, MAXO, MINR, MAXR, MAXMW, MINMW,MAXPW,

MINPW,IXSAVE,IOPT3,NAMSTR)

CALL WRITIT(DAYL,IT,N,M,IIW,IQK,CAP,IDOT,

OBJ,OBJX,TRANS,IDMD,ANIT,MW)

RETURN

END

SUBROUTINE INIT1(ANIT,OBJ,TRANS,IQK,IIW,

IDOT,IT,N,M,OBJX,IDMD)

DIMENSION ANIT(7,15),OBJ(15,15,7),

TRANS(15,15,7),OBJX(200,15,7),

IDOT(4,200,7,15), CAP(15,7),IIW(15),

IQK(15,7),IDMD(14,15,4)

D0 1, I=1, M

DO 1, Il=l,N

ANIT(I,I1) = 0.0

CONTINUE

Do 20, I=1, N

DO 20, Il=1, N

DO 20, I2=1, M

OBJ(I,I1,12) = 0.0

TRANS(I,Il,I2) = 0.0

CONTINUE

DO 41, I=L 4

D0 41, 11:1, 200

Do 41, 12:L 7

DO 41, I3=1, 15

IDOT(I,I1,I2,I3) = 0

OBJX(Il,I3,I2) = 0.0

CAP(I3,I2) = 0.0

IQK(I3,I2) = o

CONTINUE

DO 48, I=1, IT

DO 48, I1=1, N

Do 48, 12:1, IIW(Il)

IDMD(I,I1,I2) = 0.0

CONTINUE

TURN

LAST CARD OF INITl

END

SUBROUTINE MACHW(M,IX,MW,MAXMW,MINMW)

DOUBLE PRECISION DRAND,

DIMENSION MW(7)

DO 5,I=1,10

R = DRAND(IX)

CONTINUE

DO 10, I=1, M
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28
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30
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R = DRAND(IX)

MW(I) = (MAXMW-MINMW) * R + MINMW

CONTINUE

RETURN

LAST CARD OF MACHW

END

DOUBLE PRECISION FUNCTION DRAND(IX)

DOUBLE PRECISION A,P,IX,BlS,816,XHI,XALO,LEFTLO,FHI,K

DATA A/16807.DO/,BlS/32768.DO/,

1 Bl6/65536.D0/,P/2147483647.D0/

XHI=IX/316

XHI = XHI—DMOD(XHI,1.D0)

XALO = (IX-XHI*Bl6)*A

LEFTLO = XALo/Ble

LEFTLO = LEFTLO - DMOD(LEFTLO,1.DO)

FHI = XHI*A+LEFTLO

K=FHI/BlS

K = K-DMOD(K,1.DO)

IX = (((XALO-LEFTLO*816)-P)+(FHI-K*Bl$)*Bl6)+K

IF(IX.LT.O.D0)IX=IX+P

DRAND = IX*4.656612875D—10

RETURN

LAST CARD OF DRAND

END

SUBROUTINE PAPW(M,MW,IX,IIW,N,IWI,NWMAX,MAXPW,MINPW)

DOUBLE PRECISION DRAND, Ix

DIMENSION MW(7), IIW(15),IWI(15,4)

DO 10,I=1,N

DO 10,J=1,NWMAx

IWI(I,J) = 0

CONTINUE

DO 23,I=1,N

R = DRAND(IX)

DO 21, K=1,NWMAX

IF((R.GT.(K—1.0)/(NWMAX+0.0))

X.AND.(R.LE.K/(NWMAX+0.0)))THEN

IIW(I) = K

GOTO 22

ENDIF

CONTINUE

CONTINUE

CONTINUE

DO 30, I=1, N

DO 30, I1=1, IIW(I)

CONTINUE

R = DRAND(IX)

IWI(I,I1) = R * (MAXPW—MINPW) + MINPW

Do 26, 12:1,11—1

IF(IWI(I,12).EQ.IWI(I,Il))GOTO 25

CONTINUE

Do 28, 12:1, M

IF(IWI(I,Il).LE.MW(12)) GOTO 29

CONTINUE

GOTO 25

CONTINUE

CONTINUE

RETURN

LAST CARD OF PAPW

END



 



107

SUBROUTINE SCREEN(M,MW,N,IIW,IT,IDMD,IWI,

X OBJ,TRANS,OBJX,CAP,IQK,IDOT,ANIT)

DIMENSION ANIT(7,15),OBJ(15,15,7),

TRANS(15,15,7),OBJX(200,15,7),

IDOT(4,200,7,15), CAP(15,7),IIW(15),

IQK(15,7),MW(7), IWI(15,4),IDMD(14,15,4)

0PEN(44,FILE=’SCREEN.FLE’)

2 FORMAT(SX)

WRITE(44,6000)

6000 FORMAT(ZOX,’ PROBLEM SPECIFICATIONS’,/)

WRITE(44,6001)

6001 FORMAT(lSX,’Machine Number Machine Width')

DO 200, I=1, M

WRITE(44,6002) I, MW(I)

6002 FORMAT(lBX,12,20X,I3)

200 CONTINUE

WRITE(44,7015)

7015 FORMAT(5X,/,

X’Time Required to Produce a Reel of Papers (in hours)’,/)

Do 210,I=1, M

WRITE(44,7016)I

7016 FORMAT(5X, 'Machine Number’,I2,/,

X12X,’paper(x)’,lOX,’Production Time’)

D0 210,I1=1,N

WRITE(44,7017)I1,CAP(I1,I)

W
N
H

7017 FORMAT(13X,I2,19X,F3.1)

210 CONTINUE

WRITE(44,7001)

7001 FORMAT(/,15X,'Cost of Transferring Between Papers (in $s)’)

DO 230,I=1, M

WRITE(44,7002)I

7002 FORMAT(5X, ’Machine Number',I2,/,

X12X,’paper(x)’,5X,'paper(y)’,5X,’Transition Cost’)

Do 229,I1=1,N

Do 229,I2=1,N

IF(Il.NE.I2)THEN

WRITE(44,7003)Il,I2,0BJ(I1,12,I)

7003 FORMAT(14X,Il,12X,I2,14X,F6.1)

ENDIF

229 CONTINUE

WRITE(44,2)

230 CONTINUE

WRITE(44,7010)

7010 FORMAT(15X,’Time to Transfer Between Papers (in hours)')

00 240,I=l, M

WRITE(44,7011)I

7011 FORMAT(5X, ’Machine Number’,I2,/,

X12X,’paper(x)’,5X,’paper(y)',5x,'Transition Time')

Do 239,Il=1,N

DO 239,I2=1,N

IF(I1.NE.I2)THEN

WRITE(44,7003)I1,12,TRANS(I1,I2,I)

ENDIF

239 CONTINUE

WRITE(44,2)

240 CONTINUE

WRITE(44,6003)

6003 FORMAT(25x,'DEMAND SCHEDULE’,/)

DO 300, J=1, IT

WRITE(44,6007)J

6007 FORMAT(5X,’Requirements for Day ’,12,/)

DO 300, I=1, N
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ITEM = 0

Do 250, I4U=1,IIW(I)

ITEM = IDMD(J,I,I4U) + ITEM

CONTINUE

IF(ITEM.EQ.0)GOTO 299

WRITE(44, 6004) I

FORMAT(10X,’Paper Type ’

’ is needed in the following width(s):')

DO 290, I1=1, IIW(I)

IF(IDMD(J,I,I1).EQ.O)GOTO 289

WRITE(44,6008)IDMD(J,I,Il),IWI(I,Il)

FORMAT(lSX,I4,’ Rolls of Width ’,I3,’ Inches’)

CONTINUE

CONTINUE

WRITE(44, 6009)

FORMAT ( 5X)

CONTINUE

CONTINUE

WRITE(44,9670)

FORMAT(/,5X,’IIW = (number of widths for each paper)',/)

Do 302,I=1,N

WRITE(44,9671)I,IIW(I)

FORMAT(lOX,’Paper type ',IZ,’ Has ',I2,’ Widths’)

CONTINUE

WRITE(44,9672)

FORMAT(/,5X,'IWI = ',/)

Do 304,I=1,N

WRITE(44,9673)I,(IWI(I,Il),I1=l,IIW(I))

FORMAT(5X,'Paper ',12,' Widths ’,4(I4,4X))

CONTINUE

WRITE(44,9674)

FORMAT(/,5X,’INITIAL CONDITIONS')

Do 306, I=1,M

WRITE(44,9675)(ANIT(I,I1),Il=1,N)

FORMAT(5X,’MACHINE ’,5(F5.2,3X))

CONTINUE

WRITE(44,8000)M,N

FORMAT(5X,'CUTTING PATTERNS: ,/,

15x, 'NUMBER OF MACHINES = M = ’,I2,/,

15x, ’NUMBER OF PRODUCTS = N = ',12,/)

WRITE(44,8011)

FORMAT(5X,’NUMBER FOR ROLLS OF THE FOLLOWING WIDTHS:’)

DO 355, I=1,M

DO 355, Il=1,N

WRITE(44,9000)I,I1,MW(I)

FORMAT(/,5X,’PATTERNS FOR MACHINE',I2,

' AND PAPER ',12,//,

15X,’Machine Width = ’,13,' inches',/,

15X,’With Paper Widths (in inches):’,

WRITE(44,8012)(IWI(Il,12),I2=l,IIW(Il))

FORMAT(9X,I3,8X,I3,

12X,I3,12X,I3)

IF(IIW(I1).EQ.4)THEN

D0 350,I3=1,IQK(Il,I)

WRITE(44,9001)(IDOT(I4,I3,I,Il),I4=1,4),OBJX(I3,I1,I)

FORMAT(9X,I2,9X,I2,13X,I2,13X,I2,7X,’COST = ’,F7.2)

CONTINUE

ENDIF

IF(IIW(Il).EQ.3)THEN

DO 351,I3=l,IQK(I1,I)

WRITE(44,9002)(IDOT(I4,I3,I,I1),I4=l,3),OBJX(I3,Il,I)

FORMAT(9X,I2,9X,12,13X,I2,13X,2X,7X,’COST = ',F7.2)
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CONTINUE

ENDIF

IF(IIW(I1).EQ.2)THEN

Do 352, 13=L IQK(IL I)

WRITE(44, 9003)(IDOT(I4, 13, I, I1), I4=1, 2), OBJX(I3, I1, I)

FORMAT(9x, 12, 9x, 12, 13x, 2x,13x, 2x, 7X,'COST = ',F72)

CONTINUE

ENDIF

IF(IIW(Il).EQ.1)THEN

DO 353,I3=1,IQK(Il,I)

WRITE(44,9004)(IDOT(I4,I3,I,I1),I4=1,l),OBJX(I3,I1,I)

FORMAT(9X,12,9X,2X,13X,2X,13X,2X,7X,'COST = ',F7.2)

CONTINUE

ENDIF

CONTINUE

CLOSE(44)

RETURN

LAST CARD OF SCREEN

END

SUBROUTINE DEMAND(IT,IIW,MAXO,MINR,

MAXR, Ix, N, NWMAx, IDMD)

DOUBLE PRECISION DRAND IX

DIMENSION IIW(15), IDMD(14, 15, 4)

IDMD(I,I1,I2) = o

CONTINUE

DO 100, I=1,IT

R = DRAND(IX)

DO 21, K=1,MAXO + 1

IF((R.GT.(K-1.0)/(MAXO+1)).AND.(R.LE.K/(MAXO+1.0)))THEN

NORDER = K-l

IF((I.EQ.1).AND.(NORDER.GT.2))NORDER = 2

IF((I.EQ.2).AND.(NORDER.GT.3))N0RDER =

GOTO 22

ENDIF

CONTINUE

CONTINUE

IF(NORDER.EQ.O)GOTO 100

Do 50, Il=1, NORDER

R = DRAND(IX)

Do 31, K= 1,

IF((R. GT. (K-l. 0)/(N)). AND. (R. LE. K/(N+O. 0)))THEN

IPICK =

GOTO 32

ENDIF

CONTINUE

CONTINUE

R = DRAND(IX)

IROLLS = NINT(((MAXR-MINR)/l.0)*R)+MINR

IF(I.EQ.1)IROLLS = NINT(IROLLS/3.0)

IF(I.EQ.2)IROLLS = NINT(IROLLS*(2.0/3.0))

R = DRAND(IX)

Do 46, K=1,IIW(IPICK)

IF((R.GT.(K-1.0)/(IIW(IPICK)))

X.AND.(R.LE.K/(IIW(IPICK))))THEN

IWIDTH — K

GOTO 47

ENDIF

CONTINUE
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47 CONTINUE

IDMD(I,IPICK,IWIDTH) = IDMD(I,IPICK,IWIDTH) + IROLLS

so CONTINUE

100 CONTINUE

RETURN

C LAST CARD OF DEMAND

END

C

SUBROUTINE OBJF(OBJ,N,M,IX,MAXTC,MINTC)

DOUBLE PRECISION DRAND,

DIMENSION OBJ(15,15,7)

Do 100, =1,M

Do 100, 11=1,N

DO 100, 12=1,N

IF(I1.N .I2)THEN

R = DRAND(1X)

OBJ(I1,I2,I) = R*(MAXTC-MINTC)+MINTC

1END F

100 CONTINUE

RETURN

C LAST CARD OF OBJF

END

C

SUBROUTINE TRANSF(TRANS,M,IX,MAXTT,MINTT)

REAL MAXTT,MINTT

DOUBLE PRECISION DRAND, 1x

DIMENSION TRANS(15,15,7)

DO 100, I=1,M

DO 100, 11=1,15

DO 100, 12=1,15

IF(Il.NE.I2)THEN

R = DRAND(IX)

TRANS(Il,I2,I) = R*(MAXTT-MINTT)+MINTT

ENDIF

100 CONTINUE

RETURN

C LAST CARD 0F TRANSF.FOR

END

SUBROUTINE OBJFX(OBJX,IDOT,MW,IQK,IWI,

x M,CUTCST,ALABOR,AMTCST)

DIMENSION OBJX(200,15,7),IDOT(4,200,7,15),

1 IQK(15,7),MW(7), 1w1(15,4)

DO 1000, 1=1, 15

DO 1000, J=1, M

DO 500, K=l, IQK(I,J)

LENGTH = 0

DO 400, L=1,4

LENGTH = LENGTH + IDOT(L,K,J,I)*IWI(I,L)

400 CONTINUE

OBJX(K,I,J) = (MW(J)-LENGTH)*CUTCST

OBJX(K,I,J) = OBJX(K,I,J) +

x (LENGTH/1.0)*(ALABOR+AMTCST)

IF(OBJX(K,I,J).LT.0.0)THEN

WRITE(*,SSSS)

5555 FORMAT(5X,’ERROR IN OBJFX.FOR',/,

X5X,'PATTERN LONGER THAN THE WIDTH OF THE MACHINE')

PAUSE

ENDIF

500 CONTINUE

1000 CONTINUE

RETURN
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LAST CARD OF OBJFX

END

SUBROUTINE ICOND(M,N,ANIT,IX)

IXDOUBLE PRECISION DRAND,

D

21

100

9674

IMENSION AN1T(7,15)

DO 100, J=1,M

R = DRAND(IX)

DO 21, x=1, N

IF((R. GT. (K—l. 0)/(N)). AND. (R. LE. (K)/(N)))THEN

ANIT(J, K) = 1.0

GOTo 22

ENDIF

CONTINUE

CONTINUE

CONTINUE

WRITE(44,9674)

FORMAT(/,5X,'INITIAL CONDITIONS’)

RETURN

LAST CARD OF ICOND.FOR

END

SUBROUTINE CAPF(CAP,N,M,MAXPT,MINPT,IX)

REAL MAXPT,MINPT

D

D

CSINCLUDE

CSINCLUDE

CSINCLUDE

C

>
<
>
<

555

1000

1001

1010

X
X

1002

>
<
>
<
>
<

OUBLE PRECISION DRAND, 1x

IMENSION CAP(15,7)

Do 100, 1=1,N

Do 100, J=1,M

R = DRAND(1X)

CAP(I,J) = R*(MAXPT-MINPT) + MINPT

CONTINUE

RETURN

LAST CARD OF CAPF.FOR

END

REPORT.FOR

PATRNS.FOR

MASSAG.FOR

SUBROUTINE REPORT(M,N,IIW,IT,

IQK,MAXO,MINR,MAXR,MAXMW,MINMW,MAXPW,

MINPw,IXSAVE,10PT3,NAMSTR)

CHARACTER*12 NAMSTR,UTIL

DIMENSION IIW(15),IQK(15,7)

WRITE(*,SSS)

FORMAT(5X,’ENTERING REPORT')

OPEN(43,FILE=’REPORT.FLE’)

WRITE(43,1000)NAMSTR

FORMAT(25X,'PROBLEM — ',A12)

WRITE(43,1001)IXSAVE

FORMAT(/,5X,’Random Number Seed = ’,I3,/)

WRITE(43,1010)IT,M,N

FORMAT(5X,’The Number of Periods is: 12, /,

5X,’The Number of Machines is: ’,Il ,/,

5X,'Number of Types of Paper: ,I2, /)

WRITE(43,1002)MAXMW,MINMW,MAXPW,MINPW

FORMAT(5X,’Maximum Machine Width = ',I4,/,

5X,'Minimum Machine Width = ’,I4,//,

5X,’Maximum Paper Width = ’,I4,/,

X,'Minimum Paper Width = ’,I4)

IF(IOPT3.EQ.1)UTIL = ’low’
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IF(IOPT3.EQ.2)UTIL = ’medium’

1E(IOPT3.EQ.3)UT1L = ’high’

WRITE(43,1003)UTIL,MAXO,MINR,MAXR

FORMAT(/,5X,'Expected Level of Utilization = ',A12,/,

5X,'Maximum Number of Orders/Day = ',I3,/,

5X,'Minimum Number of Rolls/Order = ’,I3,/,

5X,’Maximum Number of Rolls/Order = ',I3)

CALL SIZE(IT,N,M,IQK,IIW)

WRITE(43,1005)

FORMAT(/,35X,’Constraint Legend’)

IBEG = l

IEND = 0

WRITE(43,2000)

FORMAT(/,5X,'Type of Constraint’,15X,’Beginning ’,

0 ’Ending ’,/)

DO 200, I=1,IT

D0 200, I1=1,N

DO 200, 12=1,IIW(Il)

IEND = IEND+1

CONTINUE

WRITE(43,2001)IBEG,IEND

FORMAT(5X,’Reel to Roll Conversion’,1OX,I5,14X,IS)

IBEG = IEND + 1

Do 210, I=1,IT

DO 210, Il=1,M

IEND = IEND + 1

CONTINUE

WRITE(43,2002)IBEG,IEND

FORMAT(5X,'CapaCity Constraints’,13X,IS,14X,IS)

IBEG = IEND + 1

Do 230, I=1,IT

DO 230, 11=1,N

Do 230, IZ=1,IIW(Il)

IEND = IEND + 1

CONTINUE

WRITE(43,2003)IBEG,IEND

FORMAT(5X,’Demand Constraints’,15X,15,14X,IS)

IBEG = IEND + 1

D0 240, I=1,IT

Do 240, Il=1,M

Do 240, 12=1,N

IEND = IEND + 1

CONTINUE

WRITE(43,2004)IBEG,IEND

FORMAT(5X,’Required Setups',18X,I5,14X,IS)

IBEG = IEND + 1

DO 250, I=1,IT

D0 250, Il=1,M

IEND = IEND + 1

CONTINUE

WRITE(43,2005)IBEG,IEND

FORMAT(5X,’Exit From the Null State ’,8X,IS,14X,IS)

IBEG = IEND + 1

DO 260, I=1,IT

DO 260, Il=1,M

DO 260, I2=1,N

IEND = IEND + 1

CONTINUE

WRITE(43,2006)IBEG,IEND

FORMAT(5X,'MatChed Exit to Entrance’,9X,I5,14X,I5)

IBEG = IEND + 1

DO 270, I=1,IT
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DO 270, Il=1,M

CONTINUE

WRITE(43,2007)IBEG,IEND

FORMAT(5X,’Exit from Each State Visited’,5X,I5,l4X,IS)

IBEG = IEND + 1

DO 280, I=1,IT

DO 280, Il=1,M

DO 280, 12=O,N

D0 280, I3=1,N+1

IF(IZ.NE.I3)THEN

IF((12.EQ.0).AND.(I3.EQ.N+1))GOTO 280

IEND = IEND + 1

ENDIF

CONTINUE

WRITE(43,2008)IBEG,IEND

FORMAT(5X,’Bread Crumb Constraints’,1OX,15,14X,IS)

IBEG = IEND + 1

DO 285, I=1, IT

DO 285, I1=1, M

D0 285, I2=1, N

IEND = IEND + 1

CONTINUE

WRITE(43,2208)IBEG,IEND

FORMAT(5X,’Required Trans. Before Prod.’,

5x,15,14x,15)

IBEG = IEND + 1

Do 345, I=1,IT

DO 345,I1=1,M

D0 345,I2=1,N

IEND = IEND + 1

CONTINUE

WRITE(43,2209)IBEG,1END

FORMAT(5X,’Minimum Production’,15X,IS,14X,I5)

WRITE(43,2009)IEND

FORMAT(/,5X,’Total Number of Constraints’,25x,15)

CLOSE(43)

WRITE(*,556)

FORMAT(5X,’LEAVING REPORT’)

RETURN

LAST CARD OF REPORT

END

SUBROUTINE SIZE(IT,N,M,IQK,IIW)

DIMENSION IQK(15,7),IIW(15)

WRITE(43,6000)

FORMAT(/,SX,’For Integer Number of Reels’,/,

56X, ' Beg. End’,/)

ICUT = 0

Do 200, I=1,IT

DO 200, I1=1,N

DO 200,I2=1,M

ICUT = ICUT + IQK(Il,I2)

CONTINUE

IBG = 1

IED = ICUT

DO 220,I=O,IT

DO 220,11=1,N

IF(I.GT.O) IROLLS = IROLLS + IIW(Il)
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INV = INV + IIW(Il)

CONTINUE

WRITE(43,5788)ICUT,IBG,IED

FORMAT(5X,’Number of Cutting Patterns: ',17X,I4,

3X,I4,3X,I4)

IBG = IBG + ICUT

IED = IED + IROLLS

WRITE(43,6002)IROLLS,IBG,IED

FORMAT(5X,’Number of Roll variables:’,18X,16,

3x,14,3x,14)

IBG = IBG + IROLLS

D = IED + INV

WRITE(43,6003)1NV,IEG, IED

FORMAT(5X,’Number of Inventory Variables:',l3X,I6,

3x,14,3x,14)

IBG = IBG + INV

IED = IED + IROLLS

WRITE(43,6004)IROLLS,IBG, IED

FORMAT(5X,'Number of Rejected Rolls variables: ',7X,I6,

3x,14,3x,14)

IBG = IBG + IROLLS

IED = IED + N*M

WRITE(43,6005)N*M,IBG, IED

FORMAT(5X,’Number of Machine Initialization Variables: ’,IS,

3x,14,3x,14)

ITRAN = 0

Do 630, I=1,IT

DO 630, Il=1,M

D0 630, I2=O,N

DO 630, I3=1, N+1

IF(I2.E .13)GOT0 630

IF((I2.EQ.O) .AND. (I3.EQ.N+1)) GOTO 630

ITRAN = ITRAN + 1

CONTINUE

IBG = IBG + N*M

IED = IED + ITRAN

WRITE(43,6006)ITRAN,IBG,IED

FORMAT(5X,'Number of Transition Variables: ’,12X,IS,

3X,I4,3X,I4)

IBG = IBG + ITRAN

IED = IED + IT*M

ISLACK = IT*M

WRITE(43,6007) ISLACK,IBG,IED

FORMAT(5X,’Number of Slack Variables:’,l8X,I5,

3x,14,3x,14)

ITOUR = 0

DO 720, I=1, IT

D0 720, Il=1, M

DO 720, 12=0, N+1

ITOUR = ITOUR + l

CONTINUE

IBG = IBG + ISLACK

IED = IED + ITOUR

WRITE(43,6008)ITOUR,IBG,IED

FORMAT(5X,'Number of Bread Crumb Variables:’,l2X,IS,

3x,14,3x,14)

IGCONS = 0

DO 750, 1=1, IT

DO 750, Il=1, M

D0 750, I2=1, N

IGCONS = IGCONS + l

CONTINUE
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IBG = IBG + ITOUR

IED = IED + IGCONS

WRITE(43,6200)IGCONS,IBG,IED

FORMAT(5X,’Number of Setups on Each Day:’,15x,15,

3x,14,3x,14)

ITOTAL = ICUT+2*IROLLS+IGCONS+

INV + M*N+ITRAN+ISLACK+ITOUR

WRITE(43, 6009) ITOTAL

FORMAT(/, 5X,’Tota1 Number of Variables: ’,30X,I6)

LAST CARD OF SIZE

END

SUBROUTINE ELAPSE(1YEAR,IMONTH,IDAY, IHRS,IMINS,

ELHRS,ELMINS)

INTEGER*2 IYEAR,IMONTH,IDAY,IHRS, IMINS,

YEAR, MONTH, DAY, HRS, MINS,

SECS,HSECS

INTEGER ELHRS,ELMINS

CALL GETDAT(YEAR,MONTH,DAY)

CALL GETT1M( HRS, MINS, SECS, HSECS )

1F(1YEAR.EQ.YEAR)THEN

IF(IMONTH.EQ.MONTH)THEN

IF(IDAY.EQ.DAY)THEN

MINTOT= (HRs*6o.o+M1NS) — (IHRS*60.0+IMINS)

CALL MNTOHS(MINTOT,ELHRS,ELMINS)

RETURN

ELSE

MINTOT = 24.0*60.0-(IHRS*60.0+IMINS)

MINTOT = (DAY-IDAY-1)*24.0*60.0 + MINTOT

MINTOT = MINTOT+HRS*60.0+MINS

CALL MNTOHS(MINTOT,ELHRS,ELMINS)

RETURN

ENDIF

PAUSE’ELAPSE...CHANGE 1N MONTH, ELAPSED TIME INVALID'

ENDIF

PAUSE’ELAPSE...CHANGE 1N YEAR, ELAPSED TIME INVALID'

ENDIF

RETURN

LAST CARD 0F ELAPSE

END

SUBROUTINE MNTOHS(MINTOT,ELHRS,ELMINS)

INTEGER ELHRS,ELMINS

ELHRS = INT(MINTOT/60.0)

ELMINS = INT(MINTOT-ELHRS*60.0)

RETURN

LAST CARD OF MNTOHS

END

SUBROUTINE TIMING(ELHRS,ELMINS,EDHRS,EDMINS,

ETHRS,ETMINS,IYEAR,IMONTH,

IDAY,IHRS, IMINS,MIPCNT)

INTEGER*2 IHRS, IMINS, SECS, HSECS,

LHRS, LMINS,

IYEAR,IMONTH,IDAY,

LYEAR,LMONTH,LDAY

INTEGER ELHRS,ELMINS,EDHRS,EDMINS,ETHRS,ETMINS

OPEN(86,FILE=’TIME.FLE’)

WRITE(86,53)

FORMAT(//,25X,’Solution Time Summary’)

WRITE(86,54)1YEAR,1MONTH,1DAY,IHRS, IMINS

FORMAT(///,5X,’Solution Procedure began on: ’,/,
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X 5X,’Year: ',I4,/,

X 5X,’Month: ’,I2,/,

X 5X,’Day: ’,I2,’ at:',/,

X 5X,’Hour: ’,I2,/,

X 5X,'Minutes: ’,12)

WRITE(86,55)ELHRS,ELMINS

FORMAT(///,SX,’Time required to solve the LP: ',I3,

X ’ Hours and ',12,’ Minutes’)

WRITE(86,56)EDHRS,EDMINS

FORMAT(/,5X,’Time required to solve dailies: ',I3,

X ' Hours and ’,I2,’ Minutes’)

WRITE(86,57)ETHRS,ETMINS

FORMAT(//,5X,'Total time to solve the heuristic: ’,I3,

X ’ Hours and ’,I2,’ Minutes')

CALL GETDAT(LYEAR,LMONTH,LDAY)

CALL GETTIM( LHRS, LMINS, SECS, HSECS )

WRITE(86,58)LYEAR,LMONTH,LDAY,LHRS, LMINS

FORMAT(///,5X,’Solution Procedure ended on: ’,/,

X 5X,'Year: ’,I4,/,

X 5X,'Month: ’,12,/,

x 5X,’Day: ',12,' at:’,/,

x 5X,’Hour: ',12,/,

X SX,’Minutes: ’,I2)

WRITE(86,59)MIPCNT

FORMAT(//,5X,’The large LP/MIP was solved:',I3,

X ’ times')

CLOSE(86)

LAST CARD OF TIMING

END

SUBROUTINE PATRNS(N,M,Iw1,Mw,IDOT,IQK)

DIMENSION IWI(15,4),MW(7),

XIDOT(4,200,7,15),NROLLS(4),IQK(15,7)

Do 1000, 1=1,N

DO 1000, J=1,M

IQ = 0

DO 5,L4=1,4

NROLLS(L4) = 0

CONTINUE

1TER1 = 0

Do 10, L=1,4

IF(IWI(I,L).EQ.0)GOT0 10

ITER = MW(J)/(IWI(I,L) - 0.000001) + 1

IF(ITER.GT.ITER1)ITER1 = ITER

CONTINUE

ITER = 1TER1

Do 800, K1=o,1TER

Do 700, K2=0,ITER

DO 600, K3=0,1TER

DO 500, K4=O,ITER

ITOTAL = IWI(I,1)*K1+IWI(I,2)*K2+

x IWI(I,3)*K3+IWI(I,4)*K4

IF(ITOTAL.GT.MW(J))GOTO 499

NROLLS(1) = K1

NROLLS(2) = K2

NROLLS(3) = K3

NROLLS(4) = K4

CALL PATEST(NROLLS,I,J,IDOT,1Q)

CONTINUE

CONTINUE

CONTINUE

CONTINUE
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CONTINUE

CONTINUE

IQK(1,J) = IQ

CONTINUE

RETURN

LAST CARD OF PRTRNS

END

SUBROUTINE PATEST(NROLLS,I,J,IDOT,IQ)

INTEGER

DIMENSION NROLLS(4),1D0T(4,2oo,7,15)

ITEM = o

= 1, 4

ITEM = NROLLS(M1) + ITEM

UE

IQTEM = IQ

IF(ITEM.EQ.0)RETURN

CONTINUE

IQ =IQTEM

Do 200, Q=1, IQ

IF((IDOT(1,Q,J,I).GE.NROLLS(1))

AND.(IDOT(2,Q,J,1).GE.NROLLS(2))

AND.(IDOT(3,Q,J,I).GE.NROLLS(3))

AND.(IDOT(4,Q,J,I).GE.NROLLS(4)))RETURN

IF((IDOT(1,Q,J,I).LE.NROLLS(1))

.AND.(IDOT(2,Q,J,I).LE.NROLLS(2))

AN

AN

. D.(IDOT(3,Q,J,I).LE.NROLLS(3))

D.(IDOT(4,Q,J,I).LE.NROLLS(4)))THEN

Do 185,1WQ=Q,IQ—1

DO 184,L4=1,4

IDOT(L4,IWQ,J,I) = IDOT(L4,IWQ+1,J,I)

CONTINUE

CONTINUE

IQTEM = IQTEM - 1

GOTO 20

ENDIF

CONTINUE

IF(IQ.GT.200)PAUSE'TOO MANY CUTTING PATTERNS'

IQ = IQ + 1

D0 220, L4=1,4

IDOT(L4,IQ,J,I) = NROLLS(L4)

CONTINUE

RETURN

LAST CARD OF PATEST

END

X
>
<
X

x
>
<
x

SUBROUTINE FINISH(REELPR,IT,M,N,IIW,

IQK,IWI,IDOT,ROLLPR,OBJ,IV,

IDMD,TRANS,CAP,OBJX,IOPT1,IPROD,CLOST,

SLACK,AMTCST )

DIMENSION IIW(15),IQK(15,7),OBJ(15,15,7), TRANS(15,15,7),

OBJX(200,15,7),IDOT(4,200,7,15),CAP(15,7),

IV(0:15,16,7,0:14),RHS(14,7),IDMD(14,15,4),SLACK(14,7)

INTEGER REELPR(14,7,15,200),1w1(15,4),1NV(0=14,15,4),

N
>
<
X

X
#

x ROLLPR(14,15,4,2),SEQ(10)

REAL IPROD(200,15,7,14)

NWMAX = 4

MAXN = 4

WRITE(*,4545)

FORMAT(5X,’ENTERING FINISH’)

DO 5,I=0,IT

Do 5,Il=l,N
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D0 5,12=1,IIW(11)

INV(1,11,12) = o

CONTINUE

Do 10, I=1,IT

D0 10, Il=1,M

DO 10, 12=1,N

DO 10, I3=1,IQK(I2,I1)

REELPR(I,I1,12,I3)=REELPR(I,I1,I2,I3)+

NINT(IPROD(13,12,11,I))

CONTINUE

OPEN(44,FILE=’RESULTS.FLE')

WRITE(44,4995)

FORMAT(2OX,’ REEL PRODUCTION')

IF(IOPT1.EQ.0)THEN

WRITE(44,4994)

FORMAT(19X,’(optimizing procedure)’)

ENDIF

IF(IOPT1.EQ.1)THEN

WRITE(44,4993)

FORMAT(2OX,’(heuristic procedure)’)

ENDIF

D0 101, I=1,IT

WRITE(44,5000)1

FORMAT(/,5X,’DAY ',12)

DO 100, Il=1, M

WRITE(44,5001)11

FORMAT(10X,’MACHINE ',11)

DO 100, 12:1, N

ITEl = 1

ITEM = 0

D0 95, 15=1,1QK(12,11)

IF(REELPR(I,Il,I2,IS).GT.0)ITEM=1

CONTINUE

IF((ITEM.EQ.1).AND.(ITE1.EQ.1))THEN

WRITE(44,5002)12,(IWI(12,16),16=1,4)

FORMAT(7X,'PAPER TYPE ',12,' REELS',

’ w1= ',I3,

' W2= ’,I3,’ W3= ',I3,’ W4= ',I3)

ITEl = 0

ENDIF

DO 100, I3=1, IQK(12,11)

IF(REELPR(I,Il,IZ,I3).GT.O)THEN

WRITE(44,5003)REELPR(I,11,12,13),

(IDOT(14,13,11,12),14=1,4)

FORMAT(21X,I2,4(8X,I3))

ENDIF

CONTINUE

CONTINUE

Do 150, I=1,IT

DO 150,11=1,N

D0 150,I2=1,IIW(I1)

ROLLPR(I,11,12,1) =

ROLLPR(I,11,12,2) =

DO 150, J=1,IT

DO 150,Jl=1,M

DO 150,J2=1,N

DO 150,J3=1,IQK(J2,J1)

IF((I.EQ.J).AND.(Il.EQ.J2))THEN

ROLLPR(I,Il,IZ,l)= ROLLPR(I,I1,I2,1)+

REELPR(J,J1,J2,J3)*IDOT(I2,J3,J1,J2)

ENDIF

CONTINUE

0
0

r
"
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D0 160,I=1,IT

DO 160,I1=1,N

DO 160,I2=1,IIW(I1)

IENDIv=INV(I-1,11,12)-IDMD(I,11,12)+ROLLPR(I,II,12,1)

IF(IENDIV.GE.0)THEN

INV(1,11,12) = IENDIv

ENDIF

IF(IENDIV.LT.O)THEN

INV(1,11,12) = o

ROLLPR(I,I1,I2,2) = -IENDIv

ENDIF

CONTINUE

WRITE(44,5999)

FORMAT(/,24X,’ROLL RECORD’,/)

DO 300,I=1,IT

WRITE(44,6000)I

FORMAT(5X,'DAY ',12)

DO 300, 12=1,N

WRITE(44,6002)12

FORMAT(10X,'PAPER TYPE ',12, (in rolls)’, /, 14x,

X’Width Prod. B.Inv. E. Inv. Dmd. Rej.’)

X
D
<
N

6003

300

375

377

382

Do 300,I3=1,IIW(I2)

WRITE(44,6003)

IWI(12,13), ROLLPR(I,12,I3,I),

INV((1-1),12,I3),INV(I,12,13),IDMD(I,12,I3),

ROLLPR(I,I2,I3,2)

FORMAT(14X,I3,8X,I3,7X,I3,8X,I3,7X,I3,7X,13)

CONTINUE

=1,

RHS(I,Il)=RHS(I,Il)+TRANS(IZ,I3,I1)*IV(IZ,I3,I1,I)

CONTINUE

DO 377, I=1, IT

Do 377, 11:1, M

Do 377, 12:1, N

DO 377, I3=1, IQK(I2,I1)

RHS(I,Il)=RHS(I,Il)+CAP(12,I1)*REELPR(I,11,12,13)

CONTINUE

CTRAN = o. o

CLos =

DO 380, I=1, IT

DO 380, Il=1,M

DO 380, 12:0, N1

DO 380, 13: 1, N+

z = z + OBJ(12,1I3, Il)*IV(I2, I3, 11, 1)

CTRAN = z

CONTINUE

Do 382, I=1, IT

DO 382, Il=1, M

Do 382, 12:1,

D0 382, I3=1, IQK(I2,Il)

z = z + OBJX(13,12,11)

*REELPR(I,Il,I2,I3)

CONTINUE

CPRO = z — CTRAN

DO 384, I=1, IT
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D0 384, I2=1, N

DO 384, I3=1, IIW(I2)

z = z + CLOST * (ROLLPR(I,I2,I3,

CONTINUE

CLOS = z — CTRAN — CPRO

DO 386, I2=1, N

DO 386, I3=1, IIW(I2)

z=z-(IWI(I2,I3)*AMTCST*INV(IT,12,

CONTINUE

COV = z - CTRAN - CPRO - CLOS

WRITE(44,5555)

FORMAT(/,SX,'COST SUMMARYz',

2)/1.0)

13))/1.o

/)

WRITE(44,6969)CTRAN,CPRO,CLOS,COV

FORMAT(5X,'Cost of Transitions =

5X,’Cost of Production =

5X,’Cost of Lost Sales =

5X,'Cost of Over Prod. =

WRITE(44,7005)z

FORMAT(//,10X,'Total Cost of the

Dollars’,/)

WRITE(44,7001)

FORMAT(5X,'SlaCk Information’)

DO 400,I=1,IT

WRITE(44,6000)I

D0 400,I1=1,M

ANUM = SLACK(I,I1)

WRITE(44,7000)II,ANUM

FORMAT(SX,’Accumulated. Slack on

' is: ',F6.1,' Hours’)

CONTINUE

WRITE(44,2999

’,F14.2,/,

’,F14.2)

Schedule is: ’,F14.2,

Machine #’,IZ,

FORMAT(/,20X,’PRODUCTION SEQUENCE')

D0 500,I=1,IT

WRITE(44,3000)I

FORMAT(/,5X,’DAY ',12)

D0 soo,J=1,M

WRITE(44,3001)J

FORMAT(/,10X,’MACHINE ',12)

ICNT = o

IAM = 0

DO 450, No=1, MAXN

D0 450, N1=1, N

IF(IV(IAM,N1,J,I).EQ.1)THEN

ICNT = ICNT + 1

SEQ(ICNT) = N1

IAM = N1

ENDIF

CONTINUE

WRITE(44,3002)(SEQ(N2),N2=1,ICNT)

FORMAT(10X,’SEQUENCE IS: ',12(3x,

CONTINUE

CLOSE(44)

RETURN

LAST CARD OF FINISH

END

SUBROUTINE MASSAG(OBJ,N,M

12))

)

DIMENSION OBJ(15,15,7),TRAN(15,15)

WRITE(*,SS)

FORMAT(5X,’ENTERING MASSAG')

OBJ(7,7,1) = 0.0

SHORT = 0.0
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DO 200, I=1, M

CONTINUE

DO 130, I3=1,N

DO 130, I4=1,N

TRAN(I3,I4) = OBJ(13,I4,I)

CONTINUE

D0 150, Il=1, N

DO 150, 12=1,

IF(I1.EQ.12)GOTO 150

CALL DIJKST(TRAN,N,SHORT,11,I2)

IF(SHORT.LT.OBJ(11,12,I))THEN

OBJ(11,12,I) = SHORT

GOTO 125

ENDIF

CONTINUE

CONTINUE

RETURN

LAST CARD OF MASSAG

END

SUBROUTINE DIJKST(TRAN,N,SHORT,ISOUR,ISINK)

DIMENSION DIST(15),LABEL(15),TRAN(15,15)

N
I

DIST(I) = TRAN(ISOUR,I)

DO 10, I=1,N

LABEL(I) = o

CONTINUE

LABEL(ISOUR) = 1

DO 200, J=1,N

MARK

TDIS = 1000000.0

DO 150, J1=1,N

IF((TDIS.GT.DIST(J1))

.AND.(LABEL(J1).EQ.0))THEN

MARK = J1

TDIS = DIST(J1)

ENDIF

CONTINUE

IF(MARK.EQ.O)THEN

PAUSE'ERROR IN DIJKST...1’

ENDIF

LABEL(MARK) = LABEL(NMARK) + 1

IF(MARK.EQ.ISINK)GOTO 500

NMARK = MARK

DO 175, J3=1, N

TEM = DIST(MARK) + TRAN(MARK,J3)

IF((TEM.LT.DIST(J3)

.AND.(LABEL(J3).EQ.0)) THEN

DIST(J3) = TEM

ENDIF

CONTINUE

CONTINUE

CONTINUE

SHORT = DIST(ISINK)

RETURN

LAST CARD OF DIJKST.FOR

END

SUBROUTINE HETEST( IWI,IOPT1,

X Y,CLOST,
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EACTOR,LOLIM,IUPLIM,

AMTCST )

DIMENSION IIW(15), IQK(15, 7), OBJ(15, 15, 7),

TRANS(15,15 7),

ANIT(7, 15), OBJX(200, 15, 7), IDOT(4, 200, 7, 15), CAP(15, 7),

IDMD(14, 15,4), IV(0: 15, 16, 7,0: 14),m ),

ININV(15, 4), RHS(14, 7L SLACK(1L 7)

INTEGER REELPR(14,7,15,200),IWI(15,4),INV(O:14,15,4),

ROLLPR(14,15,4,2),

FACTOR,LOST(14,15,4,2),INCOMP

REAL IPROD(200,15,7,14)

CALL READIT(DAYL,IT,N,M,IIW,IQK,

OBJ,TRANS,ANIT,OBJX,IDOT,CAP,IDMD,MW)

D0 6, I=o,IT

DO 6, L=1,M

DO 6, J=0,N

DO 6, K=1,N+1

IV(J,K,L,I) = o

CONTINUE

INCOMP = IT+1

CONTINUE

DO 55, K=1, 14

D0 55, I=1, 15

D0 55, J=1,

D0 55, L=1,

ROLLPR(K,

CONTINUE

DO 57, I=0, IT

Do 57, 11=1,N

DO 57, I2=1,IIW(I1)

INV(I,I1,I2) = o

CONTINUE

CALL READZO(IT,N,M,

IIW,IQK,INV,IPROD,IV,IFLG,LOST,

SLACK,INCOMP )

IF(IFLG.EQ.0)THEN

CALL IP(IV,IPROD,ININV,Y,CLOST,

FACTOR,IWI,LOLIM,IUPLIM,

AMTCST,INCOMP)

STOP

ENDIF

CALL FINISH(REELPR,IT,N,N,IIW,

IQK,IWI,IDOT,ROLLPR,OBJ,IV,

IDMD,TRANS,CAP,OBJX,IOPTl,IPROD,CLOST,

SLACK,AMTCST)

RETURN

LAST CARD OF HETEST

END

ll 0

SUBROUTINE READZO(IT,N,M,

IIW,IQK,INV,IPROD,IV,IFLG,LOST,

SLACK,INCOMP

DIMENSION IIW(15), IQK(15,7),INV(O:14,15,4),

TIV(O:15,16,7,0:14),SLACK(14,7),

TIVT(O:15,16,7,0:14)

INTEGER IV(O:15,16,7,0:14),

LOST(14,15,4,2),

DELTA(14,7,15),INCOMP

CHARACTER*8 FIELD1,FIELD2,FIELDlA,FIELD2A

CHARACTER*1 L(93)
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REAL IPROD(200,15,7,14),TDELTA(14,7,15)

FIELDl = ' NUMBER'

FIELD2 = ' .....C’

WRITE(*,9090)

FORMAT(5X,'ENTERING READZO')

D0 6, I=0,IT

DO 6, L1=1,M

DO 6, K=1,N+1

TIVT(J,K,L1,I) = 0.0

CONTINUE

DO 11, 10:1, IT

DO 11, I1=1, N

D0 11, 12=1, M

DO 11, I3=1, IQK(11,12)

IPROD(I3,I1,12,IO) = 0.0

CONTINUE

FORMAT(F7.2,5X,F10.2)

OPEN(9S,FILE='KRUS.TXT’)

ICNTT = o

CONTINUE

READ(95,1010)FIELD1A,FIELD2A,L

FORMAT(A8,A8,93A1)

IF(FIELD2A.NE.FIELD2)GOTO 15

READ(95,1010)FIELD1A,FIELD2A,L

EPSILN = 1/1ooooo.o

IFLGC = 0

D0 20, I=1, IT

DO 20, I1=1, N

Do 20, 12:1, M

DO 20, 13:1, IQK(I1,I2)

CALL REDLIN(B)

ITEM = NINT(B)

ATEM = ABS(B—ITEM/1.0)

IF(ATEM.GT.EPSILN)IFLGC = 1

IPROD(I3,I1,I2,I) = B

CONTINUE

DO 40, I=1,IT

D0 40, I1=1, N

DO 40, I2=1, IIW(I1)

CALL REDLIN(B)

CONTINUE

DO 50, I=0,IT

DO 50, Il=1, N

DO 50, 12:1, IIW(I1)

CALL REDLIN(B)

INV(I,I1,I2) = NINT(B)

CONTINUE

D0 60, I=1,IT

DO 60, I1=1,N

DO 60, I2=1,IIW(I1)

CALL REDLIN(B)

LOST(I,I1,I2,1)

)

NINT(B)

LOST(I,I1,I2,2 o

CONTINUE

DO 65, I=1,M

D0 65,I1=1,N

CALL REDLIN(B)

TIVT(I1,N+1,I,0) = B

TIV(I1,N+1,I,0) = B

IV(I1,N+1,I,O) = NINT(B)

CONTINUE



 

 



IFLGT = o

4455 FORMAT(F8.5)

OPEN(12,FILE='IV.TEM’)

DO 70, I=1,IT

Do 70, Il=1,M

DO 70, 12=o, N

DO 70, I3=1, N+1

IF(I2.EQ.I3)GOTO 7o

IF((I2.EQ.O) .AND. (I3.EQ.N+1)) GOTO 70

CALL REDLIN(B)

READ(12,4455)TEMP

IF((B.GT.0.0).AND.(B.LT.1.0))IFLGT=1

TIVT(12,I3,11,I) = B

IF((B.GT.0.0).OR.(TEMP.GT.O))

x TIV(I2,I3,Il,I) = 1.0

70 CONTINUE

CLOSE(12)

OPEN(12,FILE=’IV.TEM’)

DO 71, I=1,IT

D0 71, Il=1,M

D0 71, 12:0, N

D0 71, 13:1, N+1

IF(12.EQ.I3)GOTO 71

IF((I2.EQ.0) .AND. (I3.EQ.N+1)) GOTO 71

WRITE(12,4455)TIV(I2,I3,I1,I)

71 CONTINUE

SLACK(I,Il) = B

80 CONTINUE

DO 120, I=1, IT

DO 120, Il=1, M

DO 120, 12:0, N+1

CALL REDLIN(B)

120 CONTINUE

IFGLD = o

OPEN(89,FILE=’DELTAP.FLE’)

DO 150, I=1, IT

DO 150, I1=1, M

DO 150, I2=1, N

CALL REDLIN(B)

IF((B.GT.0.0).AND.(B.LT.1.0))IFGLD = 1

IF((B.GT.0.0).AND.(B.LE.1.0))DELTA(I,I1,12)=1

TDELTA(I,11,12) = B

READ(89,5511)INUM

5511 FORMAT(5X,I1)

IF(INUM.EQ.1)DELTA(I,I1,I2)=1

150 CONTINUE

CLOSE(89)

CLOSE(95)

OPEN(89,FILE=’DELTAP.FLE')

D0 160, I=1, IT

DO 160, I1=1, M

DO 160, 12:1, N

WRITE(89,5511)DELTA(I,11,12)

160 CONTINUE

CLOSE(89)

IF(IFGLD.EQ.1)THEN

CALL FLAGS(TIV,IV,TIVT,IT,N,M,IPROD,IQK,

x TDELTA,INCOMP)
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IFLG = o

CLOSE(12)

RETURN

ENDIF

IF((IFLGC.EQ.O).AND.(IFLGT.EQ.O))THEN

DO 171, I=1,M

D0 171,I1=1,N

IV(O,I1,I,0)=NINT(TIVT(0,I1,I,O))

171 CONTINUE

Do 172, I=1,IT

DO 172, Il=1,M

DO 172, 12=o, N

DO 172, I3=1, N+1

IF(I2.NE.13)THEN

IF((I2.EQ.O) .AND. (I3.EQ.N+1)) GOTO 172

IV(12,I3,11,I)=NINT(TIVT(I2,13,II,I))

ENDIF

172 CONTINUE

OPEN(88,FILE=’BINARY.FLE')

WRITE(88,7723)

CLOSE(88)

OPEN(88,FILE='INTEGER.FLE’)

WRITE(88,7722)

7722 FORMAT(5X,’INTEGER.FLE’)

CLOSE(88)

IFLG = 1

RETURN

DIF

IF(IFLGT.EQ.O)THEN

D0 175, I=1,M

Do 175,I1=1,N

IF(TIVT(0,I1,I,0).EQ.0)IV(0,I1,I,O)=3

IF(TIVT(0,I1,I,0).EQ.1)IV(O,I1,I,O)=2

175 CONTINUE

D0 180, I=1,IT

DO 180, Il=1,M

DO 180, I2=o, N

DO 180, I3=1, N+1

IF(I2.EQ.I3)GOT0 180

IF((I2.EQ.O) .AND. (I3.EQ.N+1)) GOTO 180

IF(TIVT(I2,13,I1,I).EQ.0)IV(I2,I3,I1,I)=3

IF(TIVT(I2,I3,I1,I).EQ.1)IV(I2,I3,I1,I)=2

180 CONTINUE

OPEN(88,FILE='BINARY.FLE')

WRITE(88,7723)

7723 FORMAT(5X,’BINARY.FLE’)

CLOSE(88)

0PEN(88,FILE=’ICON.FLE')

ICON = 2

WRITE(88,5511)ICON

CLOSE(88)

IFLG = o

RETURN

ENDIF

CALL FLACS(TIv,Iv,TIVT,IT,N,M,IPROD,IQK,

x TDELTA,INCOMP)

OPEN(88,FILE=’ICON.FLE’)

ICON = 1

WRITE(88,5511)ICON

CLOSE(88)

IFLG = o

RETURN
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C LAST CARD OF READZO

END

SUBROUTINE REDLIN(B

CHARACTER*1 L(64),C(13),LDIGIT(15)

CHARACTER*8 FIELD(4)

INTEGER INTG(13),MANT(13)

DATA LDIGIT /’0’,'1',’2',’3’,’4’,’5’,'6’,’7’,

X I+I’I_I’l III.I’IEI/

READ(95,1010)FIELD,C,L

1010 FORMAT(4A8,13A1,64A1)

IF(C(10).EQ.LDIGIT(15))THEN

IF(C(11).EQ.LDIGIT(12))THEN

B = 0.0

RETURN

ENDIF

PAUSE’PROBLEM IN REDLINE - E’

STOP

ENDIF

IPOINT = 0

DO 100,I=1,13

IF(C(I).EQ.LDIGIT(14))THEN

IIPOINT =

GOTO 101

ENDIF

100 CONTINUE

101 CONTINUE

IF(IPOINT.EQ.0)THEN

DO 200,I=1,13

DO 195,11=1,10

IF(C(I).EQ.LDIGIT(I1))THEN

INTG(I) = I1—1

GOTO 200

ENDIF

195 CONTINUE

IF(C(I).EQ.LDIGIT(13))THEN

INTG(I) = o

GOTO 200

DIF

PAUSE’ERROR IN REDLINE - NON STANDARD INPUT’

200 CONTINUE

DO 3oo,I=1,13

B = B + INTG(I)*(10**(13—I))

300 CONTINUE

ENDIF

IF(IPOINT.NE.0)THEN

DO 4oo,I=1,IPOINT—1

DO 395,11=1,10

IF(C(I).EQ.LDIGIT(I1))THEN

INTG(I) = I1—1

GOTO 400

ENDIF

39s CONTINUE

IF(C(I).EQ.LDIGIT(13))THEN

INTG(I) = o

GOTO 400

ENDIF

PAUSE’ERROR IN REDLINE — NON STANDARD INPUT w'

400 CONTINUE

DO 500,I=IPOINT+1,13

DO 495,Il=1,1o
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IF(C(I).EQ.LDIGIT(11))THEN

MANT I = 11-1

GOTO 500

ENDIF

495 CONTINUE

IF(C(I).EQ.LDIGIT(13))THEN

MANT(I) = o

GOTO 500

ENDIF

PAUSE’ERROR IN REDLINE - NON STANDARD INPUT W’

500 CONTINUE

= 0.0

DO 600,I=1,IPOINT - 1

B = B + INTG(I)*(10**(IPOINT-1—I))

600 CONTINUE

DO 700,I=IPOINT+1,13

B = a + (MANT(I)*(o.1**(I-IPOINT)))/1.o

700 CONTINUE

ENDIF

RETURN

C LAST CARD OF REDLIN

END

C

CSINCLUDE FLAGS.FOR

C

SUBROUTINE FLAGS(TIV,IV,TIVT,IT,N,M,IPROD,IQK,

X TDELTA,INCOMP)

DIMENSION TIV(0:15,16,7,0:14),IV(0:15,16,7,0:14),

x TIVT(O:15,16,7,0:14),IQK(15,7)

INTEGER DELTA(14,7,15),MSTATUS(7)

REAL IPROD(200,15,7,14),TDELTA(14,7,15)

INTEGER COMPLE,STATUS,INCOMP

WRITE(*,909O

9090 FORMAT(5X,’ENTERING FLAGS')

DO 10, I=0,IT

DO 10, Il=1,M

DO 10, I2=O,N

DO 10, I3=1,N+1

MSTATUS(I1) = o

IV(12,I3,II,I) = o

10 CONTINUE

INCOMP = 0

D0 15, I=1,IT

INCOMP = INCOMP + 1

DO 15, Il=1,M

DO 15, 12=o,N

DO 15, I3=1,N+1

IF(I2.EQ.I3)GOTO 15

IF((I2.EQ.O).AND.(I3.EQ.N+1))GOTO 15

IE((TIVT(I2,I3,11,I).GT.o.0).AND.

x (TIVT(12,I3,11,I).LT.1.0))GOTO 16

15 CONTINUE

16 CONTINUE

WRITE(*,5566)INCOMP

5566 FORMAT(5X,'INCOMP = ', I3)

DO 300, Il=1,M

I = o

115 CONTINUE

I = I + 1

IBEG = o

120 CONTINUE
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D0 200, J1=1,N+1

IF(TIVT(IBEG,J1,I1,I).EQ.1.0)THEN

IF(J1.LT.N+1)THEN

IV(IBEG,J1,Il,I) = 2

IE(I.GE.INCOMP)GOTO 201

IV(IBEG,J1,I1,I) = 2

GOTO 115

ENDIF

ENDIF

200 CONTINUE

201 CONTINUE

D0 250, J1=1,N+1

IV(IBEG,J1,I1,I) = 1

250 CONTINUE

300 CONTINUE

OPEN(88,FILE=’INSUR.FLE’)

READ(88,505)IPERIOD,ITERAT

CLOSE(88)

505 FORMAT(5X,I3,5X,I3)

IF(IPERIOD.EQ.INCOMP)THEN

ITERAT = ITERAT + 1

ELSE

ITERAT = -l

IPERIOD = INCOMP

ENDIF

OPEN(88,FILE=’INSUR.FLE’)

WRITE(88,505)IPERIOD,ITERAT

CLOSE(88)

ITERAT = ITERAT ** 6

WRITE(*,7733)ITERAT

7733 FORMAT(5X,’ITERAT = ’,I4)

DO 350, I=1,INCOMP

D0 350, Il=1,M

DO 350, 12=o,N

DO 350, I3=1,N+1

IF(I2.EQ.I3)GOTO 350

IF((I2.EQ.0).AND.(I3.EQ.N+1))GOTO 350

IF(I.LT.INCOMP)THEN

IF(IV(I2,I3,11,I).EQ.0)IV(12,I3,I1,I)= 3

ENDIF

IF((I.EQ.INCOMP).AND.(ITERAT.GT.O).AND.

x (IV(I2,I3,11,I).EQ.0))THEN

ITERAT = ITERAT - 1

IV(12,I3,I1,I)= 1

ENDIF

350 CONTINUE

IF(INCOMP.LE.IT)THEN

DO 355, Il=1,M

D0 354, 12=1,N

IV(O,12,Il,INCOMP+l)=1

IV(I2,N+1,I1,INCOMP+1)=1

IV(I2,N+1,Il,INCOMP)=1

354 CONTINUE

355 CONTINUE

ENDIF

OPEN(89,FILE=’DELTA.FLE’)

DO 365, I=1, IT

D0 365, Il=1, M

DO 365, I2=1, N
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DELTA(I,I1,12) = o

IF(I.EQ.INCOMP)THEN

APROD = 0.0

DO 360, J1=1,M

D0 360, J2=1,IQK(I2,J1)

APROD = APROD + IPROD(J2,12,Il,I)

CONTINUE

IF(APROD. GT. 0. o)DELTA(I, 11, 12) = 1

ENDIF

WRITE(89, 5511) DELTA(I,11,12)

FORMAT(5X,I 1)

CONTINUE

CLOSE(89)

WRITE(*,8989)

FORMAT(5X,'LEAVING FLAGS’)

RETURN

LAST CARD OF FLAGS

END

SUBROUTINE IP(IV,IPROD,ININV,Y,CLOST,

FACTOR,IWI,LOLIM,IUPLIM,

AMTCST,INCOMP)

DIMENSION IQK(15,7),ITRAC(15,4),

OBJ(15,15,7), TRANS(15,15,7), ANIT(7,15),OBJX(200,15,7),

IDOT(4,200,7,15),CAP(15,7),IDMD(14,15,4),

IV(O:15,16,7,0:14),

MW(7),ININV(15,4),IWI(15,4)

INTEGER FACTOR,INCOMP,STATUS

REAL IPROD(200,15,7,14)

COMMON ITRAK(15,4),IIW(15)

OPEN(4, FILE=’(C)PRINTER')

0PEN(44,FILE=’KRUS.MPS’)

WRITE(*,8989)

FORMAT(5X,’ENTERING IP.FOR’)

TOL = 0.02

CALL READIT(DAYL,IT,N,K,IIW,IQK,

OBJ,TRANS,ANIT,OBJX,IDOT,CAP,IDMD,MW)

NMAx = 6

ICO

IC1

IC2

IC3

IRo

IR1

IR2

II
II

II
II

II
II

II
II

O
O
O
O
O
O
O
O

CALL WTRK(1, 1R3, IR2, IR1, IRO)

CALL ROWS(IIW,N,K,IT,

IR3,IR2,IR1,IR0)

CALL INIT(IT,N,K,IIw,ITRAC,IQK)

o

IC1 = 0

IC2 = 0

IC3 = O

OPEN(45,FILE=’TEMP.PRN')

CALL EXQKNT(IR3,IR2,IR1,IRO,

XIC3,IC2,IC1,ICO,IQK,IT,N,K,ITRAC,

XITRAK,IDOT,OBJX,IIW,CAP

CALL RCOEFF(IT,N,IIW,IR3,IR2,IR1,IRO,

XIC3,IC2,IC1,ICO

X

CALL INVEN(IR3,IR2,IR1,IRO,IC3,IC2,IC1,ICO,

ITRAC,ITRAK,IIW,IT,N,

m
1
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IWI,AMTCST)

ANUM = 1.0

CALL RTRC(5,IC3,IC2,IC1,IC0,ITRAC)

CALL RTRC(6,IR3,IR2,IR1,IR0,ITRAK)

Do 227, I=1,

DO 227, Il=1,

CALL INCR(IC3, IC2, ICl, ICO)

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(45,35) IC3,IC2,IC1,IC0,IR3,IR2,IR1,IR0, ANUM

FORMAT(’ ’,4(Il),’ ',4(Il),' ’,F10.1)

CONTINUE

CALL RTRC(1,IR3,IR2,IR1,IR0,ITRAK)

CALL RTRC(6,IC3,IC2,IC1,IC0,ITRAC)

DO 228, I=1,IT

DO 228, Il=1,K

DO 228, I2=O,N

DO 228, I3=1, N+1

IF(I2.NE.I3)THEN

IE((12.EQ.0) .AND. (I3.EQ.N+1)) GOTO 228

CALL INCR(IC3,IC2,IC1,ICO)

IF(12 .EQ. 0) GOTO 228

IF(I3 .EQ. N+1) GOTO 228

IF(OBJ(IZ,I3,Il) .EQ. 0.0) GOTo 228

WRITE(45,35) IC3,IC2,IC1,Ico,IR3,IR2,IR1,IRo,

OBJ(I2,I3,I1)

ENDIF

CONTINUE

CALL RTRC(2,IR3,IR2,IR1,IRO,ITRAK)

DO 229, 15:1, IT

DO 229, I6=1, K

CALL RTRC(6,IC3,IC2,IC1,ICO,ITRAC)

CALL INCR(IR3,IR2,IR1,IRO)

D0 229, I=1,IT

D0 229, Il=1,K

DO 229, 12=o,N

DO 229, 13:1, N+1

IF(12.NE.I3)THEN

IF((12.EQ.0) .AND. (I3.EQ.N+1)) GOTO 229

CALL INCR(IC3,IC2,IC1,ICO)

IF(12.EQ.O) GOTO 229

IF(I3.EQ.N+1) GOTO 229

IF(TRANS(I2,I3,I1) .EQ. 0.0) GOTO 229

IF((I5 .EQ. I) .AND. (16.EQ. Il))THEN

WRITE(45,35)

IC3,IC2,IC1,Ico,IR3,IR2,IR1,IR0,TRANS(12,I3,11)

ENDIF

ENDIF

CONTINUE

CALL RTRC(4,IR3,IR2,IR1,IR0,ITRAK)

DO 230, J=1, IT

DO 230, Jl=l, K

DO 230, J2=1,

CALL RTRC(6,IC3,IC2,IC1,IC0,ITRAC)

CALL INCR(IR3,IR2,IR1,IRO)

DO 230, I=1,IT

DO 230, I1=1,K

DO 230, I2=O,N

DO 230, I3=1, N+1

IF(IZ.NE.I3)THEN

IF((IZ.EQ.0) .AND. (I3.EQ.N+1)) GOTO 230

CALL INCR(IC3,IC2,ICl,ICO)

IF((J.EQ.I).AND.(J1.EQ.Il).AND.(I3.EQ.J2))THEN
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WRITE(45,35)

IC3,IC2,ICl,ICO,IR3,IR2,IR1,IRO,Y

ENDIF

ENDIF

CONTINUE

CALL RTRC(S,IR3,IR2,IR1,IRO,ITRAK)

ANUM = 1.0

DO 231, J=1, IT

DO 231, J1=1, K

CALL RTRC(6,IC3,IC2,IC1,ICO,ITRAC)

CALL INCR(IR3,IR2,IR1,IR0)

DO 231, I=1,IT

DO 231, 11=1,K

DO 231, 12=o,N

DO 231, I3=1, N+1

IF(12.NE.I3)TEEN

IF((I2.EQ.O) .AND. (I3.EQ.N+1)) GOTO 231

CALL INCR(IC3,IC2,IC1,ICO)

IF(I3.NE.N+1)GOTO 231

IF((J.EQ.I).AND.(J1.EQ.11).AND.(I3.EQ.N+1))THEN

WRITE(45,35)

IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

ENDIF

ENDIF

CONTINUE

CALL RTRC(6,IR3,IR2,IR1,IRO,ITRAK)

DO 232, J=1, IT

DO 232, J1=1, K

DO 232, J2=1, N

CALL RTRC(6,IC3,IC2,IC1,ICO,ITRAC)

CALL INCR(IR3,IR2,IR1,IRO)

D0 232, I=1,IT

DO 232, I1=1,K

DO 232, 12=o,N

DO 232, I3=1, N+1

IF(I2.NE.I3)THEN

IF((I2.EQ.O) .AND. (13.EQ.N+1)) GOTO 232

CALL INCR(IC3,IC2,ICl,ICO)

IE((J.EQ.I).AND.(J1.EQ.Il).AND.(J2.EQ.I3)

.AND.(12.EQ.0))THEN

ANUM = -1.0

WRITE(45,35)

IC3,IC2,IC1,IC0,IR3,IR2,IR1,IRo,ANUM

ENDIF

IF(((J-l).EQ.I).AND.(J1.EQ.I1).AND.

(J2.EQ.I2).AND.(I3.EQ.(N+1)))THEN

ANUM = 1.0

WRITE(45,35)

IC3,IC2,Ic1,ICO,IR3,IR2,IR1,IR0,ANUM

ENDIF

ENDIF

CONTINUE

CALL RTRC(7,IR3,IR2,IR1,IR0,ITRAK)

D0 233, J=1, IT

D0 233, J1=1, K

DO 233, J2=1, N

CALL RTRC(6,IC3,IC2,IC1,ICO,ITRAC)

CALL INCR(IR3,IR2,IR1,IRO)

DO 233, I=1,IT

D0 233, 11=1,K

DO 233, IZ=O,N

DO 233, I3=1, N+1
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IE(12.EQ.13)GOTO 233

IE((12.EQ.0) .AND. (I3.EQ.N+1)) GOTO 233

CALL INCR(IC3,IC2,IC1,ICO)

IF((J.EQ.I).AND.(J1.EQ.I1).AND.(I3.EQ.J2))THEN

ANUM = -1.0

WRITE(45,35)

IC3,IC2,IC1,IC0,IR3,IR2,IR1,IR0,ANUM

ENDIF

IF((J.EQ.I).AND.(J1.EQ.Il).AND.(IZ.EQ.J2))THEN

ANUM = 1.0

WRITE(45,35)

IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

ENDIF

CONTINUE

CALL RTRC(8,IR3,IR2,IR1,IR0,ITRAK)

CALL RTRC(6,IC3,IC2,IC1,IC0,ITRAC)

DO 234, J=1, IT

DO 234, J1=1, K

DO 234, J2=0, N

no 234, J3=1, N+1

IF(J2.EQ.J3)GOTO 234

IF((J2.EQ.O).AND.(J3.EQ.N+1))GOTO 234

CALL INCR(IR3,IR2,IR1,IRO)

CALL INCR(IC3,IC2,IC1,ICO)

IFLG = o

ANUM = N+1

WRITE(45,35)

IC3,IC2,IC1,IC0,IR3,IR2,IR1,IR0,ANUM

CONTINUE

ANUM = CLOST

CALL RTRC(l,IR3,IR2,IR1,IRO,ITRAK)

CALL RTRC(4,IC3,IC2,IC1,ICO,ITRAC)

DO 237, I=1, IT

DO 237, Il=1, N

DO 237, 12:1, IIW(Il)

CALL INCR(IC3,IC2,ICl,ICO)

ANUM = CLOST*(1+0.2*I)*(1+0.5*Il)

WRITE(45,35)

IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

CONTINUE

CALL RTRC(7,IC3,IC2,ICI,IC0,ITRAC)

CALL RTRC(2,IR3,IR2,IR1,IR0,ITRAK)

ANUM = 1.0

Do 265, I=1,IT

DO 265, 11=1,K

CALL INCR(IR3, IR2, IR1, IRO)

CALL INCR(IC3, IC2, IC1, ICO)

WRITE(45,35) IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

CONTINUE

CALL RTRC(7,IC3,IC2,ICI,IC0,ITRAC)

CALL RTRC(2,IR3,IR2,IR1,IRO,ITRAK)

ANUM = —1.0

DO 266, I=1,K

CALL INCR(IR3, IR2, IR1, IRO)

CONTINUE

DO 267, I=1,IT—1

DO 267, 11=1,K

CALL INCR(IR3, IR2, IR1, IRO)

CALL INCR(IC3, IC2, IC1, ICO)

WRITE(45,35) IC3,Ic2,ICl,Ico,IR3,IR2,IR1,IRo,ANUM

CONTINUE

CALL RTRC(7,IC3,IC2,IC1,ICO,ITRAC)
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CALL RTRC(1,IR3,IR2,IR1,IR0,ITRAK)

DO 270, I=1,IT

DO 270, I1=1,K

ANUM = I/2.0

CALL INCR(IC3, Icz, IC1, ICO)

WRITE(45,35) IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

CONTINUE

CALL ITBl(IR3,IR2,IR1,IRo,ITRAK,

IC3,IC2,IC1,IC0,ITRAC,IT,K,N)

ANUM = 1.0

CALL RTRC(3,IR3,IR2,IR1,IR0,ITRAK)

CALL RTRC(4,IC3,IC2,IC1,ICO,ITRAC)

DO 278, I=1, IT

DO 278, Il=1, N

DO 278, I2=1, IIW(I1)

CALL INCR(IR3,IR2,IR1,IR0)

CALL INCR(IC3,Icz,IC1,Ic0)

WRITE(45,35) IC3,Ic2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

CONTINUE

CALL RTRC(9,IR3,IR2,IR1,IR0,ITRAK)

ANUM = 1

DO 285, J=1, IT

DO 285, J1=1, K

DO 285, J2=1, N

CALL INCR(IR3,IR2,IR1,IRO)

CALL RTRC(6,IC3,Icz,IC1,Ico,ITRAC)

D0 285, I=1, IT

DO 285,I1=1, K

DO 285,12=o, N

D0 285,I3=l, N+1

IF(IZ.EQ.I3)GOT0 285

IF((I2.EQ.O).AND.(I3.EQ.N+1))GOT0 285

CALL INCR(IC3,ICZ,ICl,ICO)

IF(I2.EQ.O)GOTO 285

IF((J.EQ.I).AND.(J1.EQ.Il).AND.(J2.EQ.I3))THEN

WRITE(45,35)

IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

ENDIF

CONTINUE

CALL RTRC(9,IR3,IR2,IR1,IRO,ITRAK)

CALL RTRC(9,IC3,IC2,ICl,ICO,ITRAC)

CALL INCR(IR3,IR2,IR1,IRO)

CALL INCR(IC3,IC2,IC1,ICO)

WRITE(45,35)

IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

CONTINUE

CALL RTRC(10,IR3,IR2,IR1,IRO,ITRAK)

CALL RTRC(9,IC3,IC2,Ic1,Ico,ITRAC)

ANUM = -FACTOR/1.0

DO 300, J=1, IT

DO 300, J1=1, K

DO 300, J2=1, N

CALL INCR(IC3,IC2,IC1,ICO)

CALL INCR(IR3,IR2,IR1,IR0)

WRITE(45,35)

IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

CONTINUE

CALL RTRC(10,IR3,IR2,IR1,IR0,ITRAK)
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ANUM = 1.0

DO 305, J=1, IT

DO 305, J1=1, K

DO 305, J2=1, N

CALL INCR(IR3,IR2,IR1,IRO)

CALL RTRC(1,IC3,IC2,ICI,IC0,ITRAC)

DO 305, I=1, IT

DO 305, Il=1, N

DO 305, 12=1, K

DO 305, I3=1, IQK(I1,I2)

CALL INCR(IC3,IC2,IC1,ICO)

IF((J.EQ.I).AND.(J1.EQ.I2).AND.(J2.EQ.11))THEN

WRITE(45,35)

IC3,IC2,IC1,ICO,IR3,IR2,IR1,IR0,ANUM

ENDIF

CONTINUE

CALL RTRC(10,IR3,IR2,IR1,IR0,ITRAK)

ANUM = FACTOR/1.0

DO 310, J=1, IT

Do 310, J1=1, K

DO 310, J2=1, N

CALL INCR(IR3,IR2,IR1,IR0)

CALL RTRC(6,IC3,IC2,IC1,ICO,ITRAC)

DO 310, I=1, IT

D0 310,I1=l, K

DO 310,12=0, N

no 310,I3=1, N+1

IF(IZ.EQ.I3)GOTO 310

IF((I2.EQ.0).AND.(I3.EQ.N+1))GOT0 310

CALL INCR(IC3,IC2,ICl,ICO)

IE((J.EQ.I).AND.(J1.EQ.I1).AND.(J2.EQ.I2)

.AND.(I3.EQ.N+1))THEN

WRITE(45,35)

IC3,IC2,Ic1,Ico,IR3,IR2,IR1,IR0,ANUM

ENDIF

CONTINUE

ANUM = -1oooooo.o

WRITE(45,35) IC3,IC2,IC1,IC0,IR3,IR2,IR1,IR0, ANUM

CLOSE(45)

CALL SORT()

OPEN(88,FILE='ICON.FLE')

READ(88,5511)ICON

FORMAT(5X,Il)

CLOSE(88)

WRITE(44,500)

FORMAT('RHS')

CALL RTRC(2,IR3,IR2,IR1,IR0,ITRAK)

DO 520, I=1, IT

DO 520, I1=1, K

CALL INCR(IR3, IR2, IR1, IRO)

ANUM = DAYL

WRITE(44,600) IR3,IR2,IR1,IR0,ANUM

FORMAT(’ RHS R',4(Il),’ ’,F10.1)

CONTINUE

DO 530, I=1, IT

DO 530, Il=1, N

DO 530, 12:1, IIW(Il)

ANUM = IDMD(I,Il,I2)

CALL INCR(IR3, IR2, IR1, 1R0)

IF(ANUM .EQ. 0.0)GOTO 530

WRITE(44,600) IR3,IR2,IR1,IR0,ANUM

CONTINUE
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CALL RTRC(5,IR3,IR2,IR1,IRO,ITRAK)

ANUM = 1.0

DO 540, I=1, IT

DO 540, Il=1, K

CALL INCR(IR3, 1R2, IR1, IRO)

WRITE(44,600) IR3,IR2,IR1,IR0,ANUM

CONTINUE

CALL RTRC(8,IR3,IR2,IR1,IRO,1TRAK)

DO 550, I=1, IT

DO 550, 13:1, N+1

1F(12. EQ. I3)GOTO 550

IF((I2. E9. 0). AND. (13. EQ.N+1))GOTO 550

CALL INCR(IR3, IR2, IR1, 1R0)

IFLG = 1

ANUM = N

IF(ANUM.NE.0.0)

WRITE(44,600) IR3,IR2,IR1,IR0,ANUM

CONTINUE

WRITE(44,601)

FORMAT(’BOUNDS’)

WRITE(*,3553)INCOMP

FORMAT(5X,’INCOMP = ',13)

CALL RTRC(1,IC3,IC2,IC1,Ico,1TRAC)

DO 560, I=1, IT

DO 560, 11=1, N

IF(I. GE. INCOMP)STATUS = o

IF(I. LT. INCOMP-1)STATUS =

IF(I.EQ.INCOMP-1)THEN

DO 559, J=0,N

IF((IV(J, 11, IL 1). E9. 2). OR.

(IV(J, 11, I2, I). EQ. 3))STATUS = 1

CONTINU

ENDIF

D0 560, I3=1, IQK(11,12)

CALL INCR(IC3, IC2, IC1, ICO)

LOLIM = 2

IUPLIM = 3

IF(STATUS.EQ.1)THEN

LOWER = INT(IPROD(I3,I1,12,I)) - LOLIM

IF(LOWER.LT.0)LOWER = o

IUPPER = INT(IPROD(I3,Il,I2,I))+IUPLIM

WRITE(44,704) IC3,IC2,IC1,ICO,IUPPER

WRITE(44,703) IC3,IC2,IC1,ICO,LOWER

2

ENDIF

IF(STATUS.EQ.2)THEN

ERROR = IPROD(13,11,12,I)-INT(IPROD(I3,11,12,1))

IF(ERROR.GT.TOL)THEN

LOWER = INT(IPROD(I3,I1,I2,I)) — LOLIM

IF(LOWER.LT.O)LOWER = o

IUPPER = INT(IPROD(I3,11,12,I))+IUPLIM

WRITE(44,7O4) IC3,IC2,IC1,ICO,IUPPER

WRITE(44,703) IC3,IC2,IC1,IC0,LOWER

ELSE

ANUM = NINT(IPROD(I3,Il,I2,I))

WRITE(44,762) IC3,IC2,IC1,IC0,ANUM

ENDIF

ENDIF

CONTINUE

CALL RTRC(3,IC3,IC2,ICl,ICO,ITRAC)
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DO 622, I=1,

DO 62L J=1, 11w (I )

CALL INCR(IC3, 1C2, IC1, 1C0)

ANUM = ININV(I, J)/1.

WRITE(44,762) IC3,IC2,IC1,IC0,ANUM

CONTINUE

CALL RTRC(S,IC3,IC2,ICl,ICO,ITRAC)

D0 625, I=1, K

D0 625, J=1, N

CALL INCR(IC3,IC2,IC1,ICO)

ANUM = ANIT(I,J)

WRITE(44,762) IC3,IC2,IC1,IC0,ANUM

CONTINUE

CALL RTRC(6, ICL IC2, Ic1, Ico, ITRAC)

DO 635, I=1,

DO 635, 11:L IK

DO 635, 12=o, N

DO 635, I3=1, N+1

IF(I2.EQ.I3)GOT0 635

IF((12.EQ.O).AND.(13.EQ.(N+1)))GOTO 635

CALL INCR(IC3,IC2,IC1,ICO)

IF(IV(I2,I3,Il,I).GT.O)THEN

1E(IV(12,13,11,I).EQ.1)

WRITE(44,700)1C3,1C2,1C1,1C0

IF(IV(I2,I3,I1,I).EQ.2)

WRITE(44,705)IC3,IC2,IC1,ICO

IF(IV(I2,13,Il,I).EQ.3)

WRITE(44,702)IC3,IC2,IC1,Ico

ENDIF

CONTINUE

0PEN(88,FILE=’DELTA.FLE’)

CALL RTRC(9,IC3,ICZ,IC1,ICO,ITRAC)

D0 640, J=1, IT

DO 640, J1=1, K

DO 640, J2=1, N

READ(88,5511)IDELTA

CALL INCR(IC3,IC2,IC1,ICO)

IF(IDELTA.EQ.1) WRITE(44,700)IC3,ICZ,IC1,ICO

IF(IDELTA.EQ.2) WRITE(44,705)IC3,IC2,ICl,ICO

IE(IDELTA.EQ.3) WRITE(44,702)IC3,IC2,IC1,IC0

CONTINUE

CLOSE(88)

FORMAT(' BV BOUNDS x',4(11))

FORMAT(' UP BOUNDS x',4(11),12x,'1 o')

FORMAT(' FX BOUNDS x',4(11),12x,'o.o')

FORMAT(’ FX BOUNDS x',4(11),12x,'1 0')

FORMAT(’ LI BOUNDS x',4(11),12x,13)

FORMAT(’ UI BOUNDS x',4(11),12x,13)

FORMAT(’ FX BOUNDS X’,4(Il),1OX,F5.1)

FORMAT(’ LO BOUNDS X',4(I1),10X,F5.1)

WRITE(44,75)

FORMAT(’ENDATA’)

CALL RTRC(lO,IC3,IC2,IC1,ICO,ITRAC)

ICC = IC3*1000+IC2*100+IC1*10+ICO

CALL RTRC(13,IR3,IR2,IR1,IR0,ITRAK)

IRC = 1000*IR3+100*IR2+10*IR1+IRO

CALL SOS(IT,K,N,ITRAC)

CALL ORD(IT,K,N,ITRAC,11w,IQK)

CLOSE(44)

CLOSE(4)

WRITE(*,9090)

FORMAT(5X,'LEAVING IP.FOR’)
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RETURN

LAST CARD 0F IP.FOR

END

SUBROUTINE ROWS(11w,N,K,IT,

IR3,IR2,IR1,IR0)

DIMENSION IIW(15)

WRITE(44,5)

FORMAT(’NAME IP MODEL’,/,’ROWS’)

WRITE(44,?)

FORMAT(’ N ROOOO’)

D0 10, J4=1, IT

DO 10, 11=1, N

DO 10, I2=1,IIW(I1)

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(44,21) IR3,IR2,IR1,IR0

FORMAT(' L R',4(11))

FORMAT(' E R’,4(Il))

FORMAT(’ G R',4(11))

CONTINUE

CALL WTRK(2, 1R3, IR2, 1R1, IRO)

D0 11, I=1,IT

D0 11, 11=1,K

CALL INCR(IR3, IR2, IR1, IRO)

WRITE(44,21) IR3,IR2,IR1,IR0

CONTINUE

CALL WTRK(3, 1R3, IR2, IR1, 1R0)

DO 12, I=1, IT

DO 12, I1=1, N

DO 12, 12=1, IIW(I1)

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(44,21) IR3,IR2,IR1,IR0

CONTINUE

CALL WTRK(4, 1R3, IR2, IR1, 1R0)

Do 13, 1=1, IT

DO 13, Il=1, K

DO 13, 12=1, N

CALL INCR(IR3, IR2, IR1, IRO)

WRITE(44,22) IR3,IR2,IR1,IR0

CONTINUE

CALL WTRK(5, 1R3, IR2, IR1, IRO)

DO 14, 1=1, IT

DO 14, 11:1, K

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(44,21) IR3,IR2,IR1,IR0

CONTINUE

CALL WTRK(6, IR3, IR2, IR1, IRO)

D0 16, I=1, IT

DO 16, 11:1, K

DO 16, 12=1, N

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(44,21) IR3,IR2,IR1,IR0

CONTINUE

CALL WTRK(7, 1R3, IR2, IR1, 1R0)

DO 17, I=1, IT

DO 17, Il=1, K

DO 17, 12=1, N

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(44,21) IR3,IR2,IR1,IR0

CONTINUE

CALL WTRK(8, 1R3, IR2, 1R1, IRO)

DO 18, I=1, IT
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D0 18, 11=1, K

DO 18, 12=o, N

D0 18, 13=1, N+1

IF (12 .NE. 13) THEN

IF ((12 .EQ. 0) .AND. (I3 .EQ. N+1)) GOTO 18

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(44,20) IR3,IR2,IR1,IRO

ENDIF

CONTINUE

CALL WTRK(9, IR3, 1R2, 1R1, IRO)

DO 40, I=1, IT

DO 40, Il=1, K

DO 40, 12=1, N

CALL INCR(IR3, 1R2, IR1, 1R0)

WRITE(44,21) IR3,IR2,IR1,IRO

CONTINUE

CALL WTRK(1o, 1R3, IR2, 1R1, 1R0)

Do 45, I=1,IT

DO 45,11=1,K

DO 45,12=1,N

CALL INCR(IR3, IR2, IR1, 1R0)

WRITE(44,22) IR3,IR2,IR1,IR0

CONTINUE

CALL WTRK(11, IR3, IR2, IR1, 1R0)

RETURN

LAST CARD OF ROWS

END

SUBROUTINE EXQKNT(IR3,IR2,IR1,IRO,

XIC3,IC2,IC1,ICO,IQK,IT,N,K,ITRAC,

XITRAK,IDOT,OBJX,IIW,CAP )

DIMENSION IQK(15,7),ITRAC(15,4),ITRAK(15,4),

OBJX(200,15,7),IDOT(4,200,7,15),IIW(15),CAP(15,7)

WRITE(44,30)

FORMAT(‘COLUMNS’)

FORMAT(’ ',4(11),' ',4(11),' ’,F10.1)

CALL RTRC(1,IR3,IR2,IR1,IR0,ITRAK)

CALL RTRC(1,IC3,IC2,IC1,IC0,ITRAC)

DO 50, I=1, IT

DO 50, I1=1, N

Do 50, 12=1, K

DO 50, I3=1, IQK(Il,I2)

IF(OBJX(I3,Il,12).NE. 0.0)THEN

CALL WKIT1(IC3,IC2,IC1,ICo,IR3,IR2,IR1,IRo,

1 OBJX(I3,I1,I2))

ENDIF

IF(OBJX(I3,Il,I2).EQ. 0.0)THEN

CALL WKIT2(IC3,IC2,1C1,IC0)

ENDIF

CONTINUE

CALL RTRC(1,IC3,IC2,IC1,IC0,ITRAC)

CALL INCR(IR3,IR2,1R1,IR0)

IR3S = IR3

IRZS = IR2

IRlS = IR1

IROS = IRO

DO 52, I=1, 1T

DO 52, Il=1, N

D0 52, 12=1, K

DO 52, I3=1, IQK(11,12)

IC3s = IC3

ICZS IC2



 



51

52

55

139

1c1s =

ICOS = ICo

D0 51, J0=1,IT

DO 51, J=1, N

DO 51, 31:1, IIW(J)

IF((J.EQ.Il).AND.(JO.EQ.I))THEN

ANUM = IDOT(J1,I3,I2,J)/1.0

IF(IDOT(J1,I3,IZ,J).NE. 0.0) THEN

CALL WKIT1(IC3,ICZ,IC1,ICO,IR3,IR2,IR1,IRO,

ANUM)

IC3 = IC3S

IC2 = IC2S

IC1 = ICIS

Ico = Icos

ENDIF

ENDIF

CALL INCR(IR3,IR2,1R1,IR0)

CONTINUE

CALL WKIT2(IC3,IC2,ICI,1c0)

IR3 = IR3S

IR2 = 1st

IR1 = IRIS

1R0 = IROS

CONTINUE

CALL RTRC(2,IR3,IR2,IR1,IRO,ITRAK)

CALL RTRC(1,IC3,IC2,IC1,ICO,ITRAC)

CALL INCR(IR3,IR2,IR1,IRO)

IR3S = IR3

IRZS = IR2

IRlS = IR1

IROS = IRO

DO 55, Il=1, N

DO 55, 12=1, K

D0 55, I3=1, IQK(11,12)

IC3S = IC3

Iczs = IC2

IC1S = IC1

ICOS = 100

D0 54, J=1, 1T

DO 54, J2=1, K

IF((J.EQ.I).AND.(J2.EQ.I2))THEN

IF(CAP(11,12).NE. 0.0) THEN

CALL WKIT1(IC3,IC2,ICl,ICO,IR3,IR2,IR1,IRO,

CAP(Il,I2))

IC3 = IC3s

IC2 = 1C23

101 = IC1S

ICO = ICOS

ENDIF

ENDIF

CALL 1NCR(1R3,1R2,IR1,IRO)

CONTINUE

CALL WKIT2(Ic3,Ic2,1C1,IC0)

IR3 = IR3S

IR2 = IR2S

IR1 = IRlS

IRO = IROS

CONTINUE

CALL RTRC(4,IR3,1R2,1R1,1R0,ITRAK)

ANUM = —1.0

DO 60, J=1, IT



 



D0 60, J1=1, K

DO 60, J2=1, N

CALL INCR(IR3,IR2,1R1,IRO)

CALL RTRC(1,IC3,IC2,IC1,ICO,ITRAC)

DO 60, I=1, 1T

DO 60, I1=1, N

D0 60, I2=1, K

DO 60, I3=1, IQK(11,12)

IF((J.EQ.I).AND.(J1.EQ.12).AND.(J2.EQ.11))THEN

CALL WKIT1(IC3,IC2,ICl,ICO,IR3,IR2,IR1,IRO,

1 ANUM

ELSE

CALL WKIT2(IC3,IC2,1C1,IC0)

ENDIF

60 CONTINUE

RETURN

C LAST CARD OF EXQKNT

END

SUBROUTINE RCOEFF(IT,N,IIW,IR3,IR2,IR1,IRO,

XIC3,IC2,ICl,ICO )

DIMENSION IIW(15)

IDMD1 = 0

DO 201, I=1,N

IDMD1 = IDMD1 + IIW(I)

201 CONTINUE

ANUM = -1.0

IFLG = 0

DO 220, I=1, IT

DO 220, I1=1, N

DO 220, 12=1, IIW(I1)

CALL INCR(IC3, IC2, IC1, ICO)

IHJl = o

ANUM = -1.0

IFLG = 0

CALL RTRK(I, IR3, IR2, 1R1, 1R0)

DO 202, J =1, IT

DO 202, J1=1, N

DO 202, J2=1, IIW(J1)

CALL INCR(IR3, IR2, IR1, 1R0)

IF((Il.EQ.J1).AND.(I2.EQ.J2).AND.(J.EQ.I))THEN

WRITE(45,35) IC3,IC2,IC1,Ico,IR3,IR2,IR1,IRo, ANUM

35 FORMAT(' ',4(11),' ',4(11),' ’,F10.l)

IFLG = 1

ENDIF

IF(IFLG .EQ. 1) GOTO 203

202 CONTINUE

203 CONTINUE

IHJl = IHJl + 1

ANUM = 1.0

IFLG = 0

CALL RTRK(3, IR3, IR2, IR1, 1R0)

DO 204, IH1=1, (IHJ1-1)*IDMD1

CALL INCR(IR3, IR2, IR1, 1R0)

204 CONTINUE

DO 205, J2=1, IT

DO 205, J3=1, N

DO 205, J4=1, IIW(J3)

CALL INCR(IR3, IR2, IR1, 1R0)

IF((I.EQ.J2).AND.(Il.EQ.J3).AND.(I2.EQ.J4))THEN

WRITE(45,35) IC3,IC2,ICl,ICO,IR3,IR2,IRl,IRO, ANUM

IFLG = 1
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ENDIF

IF(IFLG .EQ. 1) GOTO 206

CONTINUE

CONTINUE

CONTINUE

RETURN

LAST CARD OF RCOEFF

END

SUBROUTINE INVEN(IR3,IR2,IR1,IR0,IC3,Icz,ICI,Ico,

ITRAC,ITRAK,IIw,IT,N,

Iw1,AMTCST)

DIMENSION IIW(15),ITRAC(15,4),1TRAK(15,4)

INTEGER 1w1(15,4)

FORMAT(’ ',4(11),' ',4(11),' ’,F10.1)

CALL RTRC(1,IR3,IR2,IR1,IR0,ITRAK)

CALL RTRC(3,1C3,IC2,Ic1,Ic0,ITRAC)

DO 136, I=o,

Do 136, 11=1, N

DO 136, 12=1, IIW(Il)

CALL INCR(IC3,Icz, 1C1,Ic0)

IF(I.EQ.IT)THEN

ANUM = -(IWI(Il,I2)/1.0)*(AMTCST)

WRITE(45,35) 103,1C2,1C1,IC0,1R3,IR2,IR1,IRo,ANUM

ENDIF

CONTINUE

ANUM = 1.0

CALL RTRC(3,1R3,IR2,IR1,1R0,ITRAK)

CALL RTRC(3,1C3,IC2,IC1,IC0,ITRAC)

IR = 3

CALL SUB2(IC3,IC2,ICl,ICO,IT,N,ANUM,IR)

ANUM = -1.0

CALL RTRC(3,1C3,IC2,IC1,IC0,ITRAC)

D0 226, I=1,N

DO 226, Il=1,IIW(I)

CALL INCR(IC3,IC2,IC1,ICO)

CONTINUE

CALL SUB2(IC3,IC2,IC1,ICO,IT,N,ANUM,IR)

RETURN

END

SUBROUTINE WKIT1(I3,I2,Il,IO,N3,N2,N1,NO,TEMP)

CALL INCR(I3, 12, 11, IO)

WRITE(45,35) 13,12,11,Io,N3,N2,N1,N0, TEMP

FORMAT(’ ',4(11),' ',4(11),' ’,F10.l)

RETURN

END

SUBROUTINE WKIT2(IC3,IC2,IC1,ICO)

CALL INCR(IC3,IC2,IC1,ICO)

RETURN

END

SUBROUTINE SORT()

DIMENSION IR1(50000),1R2(50000),RA(50000)

OPEN(45,FILE=’TEMP.PRN')

N = 0

Do 10, I=1, 450000

READ(45,27) IA,IB,C

FORMAT(3X,I6,3X,I6,3X,Fll.l)

IF(C.GT.-999999.0)THEN
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N = N + 1

IF(N.EQ.50000)PAUSE’CONV....TOO MANY COEFFS.’

IR1(I) 1A

IR2(I) IB

RA(I) C

CONTINUE

CONTINUE

CLOSE(45)

CALL SUSS(N,IR1,IR2,RA)

Do 13o,11=1,N

CALL CONV(IR1(Il),IC3,IC2,IC1,ICO)

CALL CONV(IR2(I1),I83,IBZ,IBl,IBO)

WRITE(44,36) IC3,IC2,IC1,ICO,IB3,IBZ,IBl,IBO,RA(I1)

CONTINUE

FORMAT(’ x',4(11),' R',4(Il),’ ’,F10.1)

RETURN

END

SUBROUTINE CONV(IR,IC3,IC2,1C1,IC0)

IF(IR.GT.9999)THEN

PAUSE’CONV....NUMBER >=10,000'

ENDIF

IC3= IR/1ooo

IC2: (IR-IC3*1000)/100

ICl= (IR-IC3*lOOO—ICZ*100)/1O

ICO= (IR-IC3*1000—IC2*100-IC1*10)

IRT = IC3*1000+IC2*100+IC1*10+ICO

IF(IR.NE.IRT)PAUSE’CONV....IR <> IRT’

RETURN

END

SUBROUTINE SUSS(N,IR1,IR2,RA)

DIMENSION IR1(50000),IR2(50000),RA(50000)

L = N/2+1

IR = N

CONTINUE

IF(L.GT.1)THEN

L=L—1

IRR1=IR1(L)

IRR2=IR2(L)

RRA=RA(L)

ELSE

IRR1=IR1(IR)

IRR2=IR2(IR)

RRA=RA(IR)

IR1(IR)=IR1(1)

IR2(IR)=IR2(1)

RA(IR)= RA(I)

IR=IR-1

IF(IR.EQ.1)THEN

IR1(1)=IRR1

IR2(1)=IRR2

RA(1)= RRA

RETURN

ENDIF

ENDIF

I=L

J=L+L

IF(J.LE.1R)THEN
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IF(J. LT. IR)Tn

IF(IR1(J). LTNIR1(J+1))J=J+1

ENDIF

IF(IRR1.LT.IR1(J))THEN

IR1(I)=IR1(J)

IR2(I)=IR2(J)

RA(I)= RA(J)

ENDIF

IR1(I)=IRR1

IR2(I)=IRR2

SUBROUTINE RTRC(IR,IC3,IC2,IC1,ICO,ITRAC)

DIMENSION ITRAC(15,4)

IC3 = ITRAC(1R,1)

IC2 = ITRAC(1R,2)

101 = ITRAC(1R,3)

ICO = ITRAC(1R,4)

RETURN

END

SUBROUTINE PNT(ITRAC)

DIMENSION ITRAC(15,4)

D0 10, I=1,12

WRITE(*,*) (ITRAC(I,J),J=1,4)

CONTINUE

RETURN

LAST CARD OF PNT

D

SUBROUTINE INIT(IT,N,K,IIw,ITRAC,IQK)

DIMENSION IIW(15), ITRAC(15,4),IQK(15,7),IC(4)

DO 10, I=1,4

IC(I) = o

CONTINUE

IR = 1

CALL QUICK(IR,IC,1TRAC)

DO 20, I=1,

DO 20, Il=1, N

Do 20, 12=1, K

DO 20, I3=1, IQK(11,12)

CALL INCR(IC(4),IC(3),IC(2),IC(1))

CONTINUE

IR=2

CALL QUICK(IR,1C,ITRAC)

DO 40, I=1,IT

DO 40, Il=1, N

D0 40, 12=1, IIW(I1)

CALL INCR(IC(4),IC(3),IC(2),IC(1))

CONTINUE

IR = 3

CALL QUICK(IR,IC,ITRAC)
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Do 60, I=o, IT

Do 60, 11:1,

DO 60, 12=1, NIIW(II )

CALL INCR(IC(4), IC(3), IC(2), IC(1))

CONTINUE

IR = 4

CALL QUICK(IR,IC,ITRAC)

Do 80, I=1,

DO 80, Il=1, N

DO 80, I2=1, IIW(Il)

CALL INCR(IC(4),IC(3),IC(2),IC(1))

CONTINUE

IR = 5

CALL QUICK(IR,IC,ITRAC)

DO 90, 11=1,K

D0 90, I2=1,N

CALL INCR(IC(4),IC(3),IC(2),IC(1))

CONTINUE

CALL QUICK(IR,IC,ITRAC)

DO 100, I=1,IT

DO 100, I1=1,K

DO 100, I2=O,N

DO 100, 13:1, N+1

IF(I2.NE.I3)THEN

IF((IZ.EQ.O) .AND. (I3.EQ.N+1)) GOTO 100

CALL INCR(IC(4),IC(3),IC(2),IC(1))

ENDIF

CONTINUE

IR= 7

CALL QUICK(IR,IC,ITRAC)

DO 110, I=1, IT

DO 110, I1=1, K

CALL INCR(IC(4),IC(3),IC(2),IC(1))

CONTINUE

IR = 8

CALL QUICK(IR,IC,ITRAC)

DO 120, I=1,

Do 120, Il=1, K

D0 120, 12:0, N+1

CALL INCR(IC(4),IC(3),IC(2),IC(1))

CONTINUE

IR = 9

CALL QUICK(IR,IC,ITRAC)

D0 150, I=1,

CALL INCR(IC(4),IC(3),IC(2),IC(1))

CONTINUE

IR = 10

CALL QUICK(IR,IC,ITRAC)

RETURN

LAST CARD 0F INIT

END

SUBROUTINE QUICK(IR,IC,ITRAC)

DIMENSION ITRAC(15,4),IC(4)

ITRAC(1R,1) = IC(4)

ITRAC(1R,2) = IC(3)

ITRAC(1R,3) = IC(2)

ITRAC(1R,4) = IC(l)

CONTINUE
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RETURN

END

SUBROUTINE SUBZ(IC3,IC2,ICl,ICO,IT,N,ANUM,IR)

COMMON ITRAK(15,4),IIW(15)

CALL RTRK(IR, IR3, IR2, IR1, IRO)

Do 225, I=1, IT

Do 225, Il=1, N

DO 225, 12=1, IIW(Il)

CALL INCR(IC3, IC2, IC1, ICO)

CALL INCR(IR3, IR2, IR1, IRO)

WRITE(45,35) IC3,IC2,ICl,ICO,IR3,IR2,IRl,IRO, ANUM

FORMAT(' ’,4(Il),’ ’,4(Il),’ ’,F10.1)

CONTINUE

RETURN

END

SUBROUTINE RTRK(I, IR3, IR2, IR1, IRO)

COMMON ITRAK(15,4),IIW(15)

IR3 - ITRAK(I,1)

IR2 = ITRAK(I,2)

IR1 = ITRAK(I,3)

IRO = ITRAK(I,4)

RETURN

END

SUBROUTINE WTRK(I, IR3, IR2, IR1, IRO)

COMMON ITRAK(15,4),IIW(15)

ITRAK(I,1) = IR3

ITRAK(I,2) = IR2

ITRAK(I,3) = IR1

ITRAK(I,4) = IRo

RETURN

END

SUBROUTINE INCR(IR3, IR2, IR1, IRO)

IRo = IRO + 1

IF(IRO .EQ. 10) THEN

IRo = o

IR1 = IR1 + 1

IF(IR1 .EQ. 10) THEN

IR1 = o

IR2 = IR2 + 1

IF(IR2 .EQ. 10) THEN

IR2 o

IR3 = IR3 + 1

SUBROUTINE ITBl(IR3,IR2,IR1,IRO,ITRAK,

IC3,IC2,IC1,ICO,ITRAC,IT,K,N)

DIMENSION ITRAK(15,4),ITRAC(15,4)

FORMAT(' ’,4(Il ,' ’,4(Il),’ ’,F10.l)

CALL RTRC(B,IR3,IR2,IR1,IRO,ITRAK)

DO 276, J=1, IT

DO 276, J1=1, K

DO 276, J2=O, N

DO 276, J3=1, N+1

IF((J2.EQ.O).AND.(J3.EQ.N+1)) GOTO 276

IF(J2.EQ.J3) GOTO 276

CALL RTRC(8,IC3,IC2,ICI,IC0,ITRAC)
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CALL INCR(IR3,IR2,IR1,IR0)

Do 275, I=1, IT

Do 275, I1=1, K

Do 275, 12=o, N+1

CALL INCR(IC3,IC2,IC1,ICO)

IF((J.EQ.I).AND.(J1.EQ.I1).AND.(J2.EQ.I2))THEN

ANUM = 1.0

WRITE(45,35)

IC3,Icz,IC1,1C0,IR3,IR2,IR1,IR0,ANUM

ENDIF

IF((J.EQ.I).AND.(J1.EQ.I1).AND.(J3.EQ.12))THEN

ANUM = - .0

WRITE(45,35)

IC3,IC2,IC1,IC0,IR3,IR2,IR1,IRo,ANUM

ENDIF

CONTINUE

CONTINUE

RETURN

END

CSINCLUDE SOS.FOR

CSINCLUDE ORD.FOR

C

19

20

50

60

SUBROUTINE ORD(IT,M,N,ITRAC,IIw,IQK)

INTEGER ITRAC(15,4),FLAG(15,15,14,7)

DIMENSION IIW(15),IQK(15,7)

DO 5,I=1,IT

DO 5,Il=l,M

DO 5, 12= 1, N

DO 5, I3 1,N

ELAG(12,I3,I,11) = o

CONTINUE

OPEN(78,FILE= ’KRUS.ORD’)

WRITE(*,19)

FORMAT(5X,’ENTERING ORD.FOR’)

WRITE(78,20)

FORMAT(’NAME’

FORMAT(lX,’UP x',411,17x,15)

CALL RTRC(lo,IC3,IC2,IC1,ICO,ITRAC)

INUM = IC3*1000+IC2*100+ICl*10+ICO + 1

CALL RTRC(9,IC3,IC2,IC1,IC0,ITRAC)

Do 50, I=1, IT

DO 50, I1=1, M

DO 50, 12=1, N

INUM = INUM — 1

CALL INCR(IC3,I02,Ic1,IC0)

WRITE(78,21)IC3,IC2,IC1,ICO,INUM

CONTINUE

CALL RTRC(1,IC3,IC2,IC1,IC0,ITRAC)

D0 60, I=1, IT

DO 60, Il=1, N

DO 60, 12=1, M

DO 60, 13:1, IQK(I1,12)

INUM = INUM - 1

CALL INCR(IC3, IC2, IC1, ICO)

WRITE(78,21)IC3,IC2,IC1,ICO,INUM

CONTINUE

CALL RTRC(4,IC3,IC2,IC1,IC0,ITRAC)

DO 100, I=1,IT

INUM = INUM — 1

DO 100,I1=1,N

Do 100,I2=1,IIW(I1)
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CALL INCR(IC3, IC2, IC1, ICO)

WRITE(78,21)IC3,Icz,IC1,ICo,INUM

CONTINUE

WRITE(78,835)

FORMAT('ENDATA')

CLOSE(78)

WRITE(*,18)

FORMAT(5X,'LEAVING 0RD.FOR’)

LAST CARD OF ORD.FOR

RETURN

END

SUBROUTINE SOS(IT,M,N,ITRAC)

INTEGER ITRAC(15,4),ELAG(15,15,14,7)

DO 5,I=1,IT

D0 5,II=1,M

DO 5,I2=1,N

Do 5,I3=1,N

FLAG(12,I3,I,11) = 0

CONTINUE

OPEN(78,FILE='KRUS.SOS')

WRITE(*,19)

FORMAT(5X,’ENTERING SOS.FOR’)

WRITE(78,20)

FORMAT('NAME')

FORMAT(lX,'Sl’,2lX,I12)

FORMAT(1X,’S2’,21X,I12)

FORMAT(lX,'83',21X,I12)

FORMAT(4X,’X’,4I1,15X,I12)

CALL RTRC(6,IC3,IC2,IC1,ICO,ITRAC)

DO 100, I=1,IT

IWGHT = lO*N*M*(IT—I+1)

DO 100, Il=1,M

WRITE(78,21)IWGHT

Do 100, I2=O,N

Do 100, 13:1, N+1

IF(I2.EQ.I3)GOTO 100

IF((I2.EQ.0) .AND. (I3.EQ.N+1)) GOTO 100

CALL INCR(IC3, IC2, IC1, ICO)

IF((12.EQ.0).AND.(I3.NE.N+1))

WRITE(78,31) IC3,IC2,IC1,ICO

CONTINUE

CALL RTRC(6,IC3,IC2,IC1,ICO,ITRAC)

DO 200, I=1,IT

IWGHT = lO*N*M*(IT-I+l)

DO 200, Il=1,M

WRITE(78,21)IWGHT

DO 200, 12=o,N

DO 200, I3=1, N+1

IF(I2.EQ.I3)GOTO 200

IF((I2.EQ.O) .AND. (I3.EQ.N+1)) GOTO 200

CALL INCR(IC3, IC2, IC1, ICO

IF((I2.NE.O).AND.(I3.EQ.N+1))

WRITE(78,31) IC3,IC2,IC1,IC0

CONTINUE

WRITE(78,835)

FORMAT('ENDATA')

CLOSE(78)

WRITE(*,18)

FORMAT(5X,’LEAVING SOS.FOR’)



 



 



 



 

REFERENCES



 



149

REFERENCES

Baker, K. R. (1974). Introduction to Segpencing and

Scheduling. New York: John Wiley & Sons.

Baker, K. R., & Peterson, D. W. (1979). An Analytic

Framework for Evaluating Rolling Schedules. Management

Science, 2;, 341-351.

Barnes, J. W., & Brennan, J. J. (1977). An Improved

Algorithm for Scheduling Jobs on Identical Machines.

AIIE Transactions, 2, 25-31.

Barnes, J. W., & Vanston, L. K. (1981). Scheduling Jobs

with Linear Delay Penalties and Sequence Dependent

Setup Costs. Operations Research, 29, 146-160.

Beale, E., & Tomlin, J. (1969). Special Facilities in a

General Mathematical Program System for Non-Convex

Problems Using Ordered Sets of Variables. In J.

Lawrence (Ed.), Proceedings of the 5th International

Conference on Operations Research. Tavistock, London.

Bruvold, N. T., & Evans, J. R. (1985). Flexible Mixed-

Integer Programming Formulations for Production

Scheduling Problems. IIE Transactions, 11, 2-7.

Burch, E. E., Oliff, M. D., & Sumichrast, R. T. (1987).

Linking Level Requirements in Production Planning and

Scheduling. Production and Inventory Management, gg,

123-131.

CPLEX Mixed Integer Optimizer (1993). Incline Village, NV:

CPLEX Optimization, Inc.

Cheng, T. C. E., & Sin, C. C. S. (1990). A State-of-the-Art

Review of Parallel-Machine Scheduling Research.

European Journal of Operational Research, 31, 271-292.

Day, J., & Hottenstein, M. (1970, March). Review of

Sequencing Research. Naval Research Logistics

Quarterly, 118-146.



 



150

Dearing, P. M., & Henderson, R. A. (1984). Assigning Looms

in a Textile Weaving Operation with Changeover

Limitations. Production and Inventory Management, g5,

23-31.

Driscoll, W. C., & Emmons, H. (1977). Scheduling Production

on One Machine with Changeover Costs. AIIE

Transactions, 9(4), 388-395.

Dyckhoff, H. (1990). A Typology of Cutting and Packing

Problems. European Journal of Operational Research,

53, 145-159.

Elmaghraby, S. E., & Park, S. H. (1974). Scheduling Jobs on

a Number of Identical Machines. AIIE Transactions, p,

1-13.

Frendewey, J. 0., & Sumichrast, R. T. (1988). Scheduling

Parallel Processors with Setup Cost and Resource

Limitations. Decision Sciences, 12, 138-146.

Ferreira, S. J., Neves, A. M., & Fonseca e Castro, P.

(1990). A Two-Phase Roll Cutting Problem. European

Journal of Operational Research, 33, 185-196.

Fisher, M. L. (1981). The Lagrangean Relaxation Method for

Solving Integer Programming Problems. Management

Science, 21, 1-18.

Geoffrion, A. M., & Graves, G., W. (1976). Scheduling

Parallel Production Lines with Changeover Costs:

Practical Application of a Quadratic Assignment/LP

Approach. Operations Research, 23, 595-610.

Gilmore, P. C., & Gomory, R. E. (1961). A Linear

Programming Approach to the Cutting Stock Problem.

Operations Research, 2, 848-859.

Gilmore, P. C., & Gomory, R. E. (1963). A Linear

Programming Approach to the Cutting Stock Problem, Part

II. Operations Research, 1;, 863-888.

Gilmore, P. C., & Gomory, R. E. (1965). Multistage Cutting

Stock Problems of Two and More Dimensions. Operations

Research, 1;, 94-120.

Glassey, C. R. (1968). Minimum Changeover Scheduling of

Several Products on One Machine. 0 erations Research,

19(2), 342-352.





151

Haessler, R. W. (1975). Controlling Cutting Pattern Changes

in One-Dimensional Trim Problems. Operations Research,

2;, 483-493.

Haessler, R. W. (1977). Single-Machine Roll Trim Problems

and Solution Procedures. Technical Association of the

Pulp and Paper Industry (TAPPI), 52, 145-149.

Haessler, R. W. (1988). Selection and Design of Heuristic

Procedures for Solving Roll Trim Problems. Management

Science, 34, 245-257.

Hax, A. C., & Meal, H. C. (1975). Hierarchical Integration

of Production Planning and Scheduling. In M. Geisler

(Ed.), North HollanleIMS, Studies in Management

Sciences, Vol. 1, Logistics (53-69). New York: North

Holland/American Elsevier.

Hsu, W. L. (1983). On the General Feasibility Test of

Scheduling Lot Sizes for Several Products on One

Machine. Management Science, 2;, 93-105.

Johns, E. C. (1966). Heuristic Procedures for Solving the

Paper Trim Problem. Chapter 20 in J. F. Pierce (Ed.),

Operations Research and the Design of Management

Information Systems, TAPPI STAP Series No. 4.

Land, A., & Doig A., (1960). An Automatic Method of Solving

Discrete Programming Problems. Econometrica, 2g, 497—

520.

LaRobardier, L. M., & Filak, R. J., (1972, October).

Dynamic Allocation of Manufacturing Inventory and Time.

APICS International Conference Proceedings, 254-272.

Lockett, A. G., & Muhlemann, A. P., (1972). A Scheduling

Problem Involving Sequence Dependent Changeover Times.

Operations Research, 29, 895-902.

Mellichamp, J. M. & Love, R. M., (1978). Production

Switching Heuristics for Aggregate Production Planning

Problem. Management Science, 1242-1251.

Mitsumori, S., (1972, September). Optimal Production

Scheduling of Multicommodity in Flow Line. IEEE

Transactions on Systems. Man, and Cybernetics, SMC-2.

 

Nelson, N. S., (1983). MRP and Inventory and Production

Control in Process Industries. Production and

Inventory Management, Fourth Quarter, 15-22.





152

Noble, P., (1973). Marketing Guide to the Paper and Pulp

Industry. Charles H. Kline & Co., Inc.

Novitsky, M. P., (1983) Process Industry - Survey Results,

Process Industry - Where are You? Production and

Inventory Management, First Quarter, 118-120.

Oliff, M. D., & Burch, E. E., (1985). Multi-Product

Production Scheduling at Owens-Corning Fiberglass.

Interfaces, 15, 25-34.

Prabhakar, T., (1974). A Production Scheduling Problem with

Sequencing Considerations. Management Science, 2;, 34-

42.

Pierce, J. F., (1964). Some Large-Scale Production

Scheduling Problems in the Paper Industrv. Englewood

Cliffs, N.J.: Prentice-Hall, Inc.

Rice, J. W., & Norback, J. P., (1987). Process Industries

Planning Using Matrix Data Structures. Production and

Inventory Management, Second Quarter, 15-23.

Rothkopf, M. H., (1966). Scheduling Independent Tasks on

Parallel Processors. Management Science, 1;, 437-446.

Routledge, T. C., (1988, October). Mill Management’s Role

in Millwide Automation. Paper Industry Management

Association.

Singh, H., & Foster, B. J., (1987, March). Production

Scheduling with Sequence Dependent Setup Costs. II

Transactions, 43-49.

Smith—Daniels, V. L., & Smith-Daniels, D. E., (1986,

September). A Mixed Integer Programming Model for Lot

Sizing and Sequencing Packaging Lines in the Process

Industries. IIE Transactions, 278-285.

Smith-Daniels, V. L., (1988, September). A Heuristic

Procedure for Scheduling Packaging Lines in the Process

Industries. IIE Transactions, 2Q, 295-305.

Sweeney, P. E., & Haessler, R. W., (1990). One-Dimensional

Cutting Stock Decisions for Rolls with Multiple Quality

Grades. European Journal of Operational Research, 43,

224-231.

Taylor, S., (1979). Production and Inventory Management in

the Process Industries: A State of the Art Survey.

Production and Inventory Management, First Quarter, 1-

6.



 



153

Tucker, A., (1960). On Directed Graphs and Integer

Programs. IBM Mathematical Research Project Technical

Report, Princeton University.

 





 



 



 



 

 

MICHIGAN STATE UN”

[WW/11HH!“
H 1]

HI1'MI"

 
  

 

l )

.. 4*“-H.

....n ~ "'4‘“
".73 m "'-‘“
.

.‘1\"'
m‘.|.'

I

"-x‘."

an '-1-.'

1v1:wi’"lv‘ ‘

 

  

1‘1‘1';1:,:

 

”, x. .
(’12,
..yr

Iv!“~. y-I‘vgv '\

H

I”

bum”,
‘

."
. . ...“

“VINTJ ...!..1‘.
. 1’_ . V'- 1 ””1“...qumI-I

...:'."‘.’."v\

I.
”BUN:

_

W
w

. .‘v'iy

v

1 ‘
1
‘

. ‘n 11'
4 n... v" >
... r”. ,—..~r:' II .~ .- 15;.

-
\r

v' ‘ awn-w
V

'9.wath
'1 '13, (‘1;

4.... ru-
. r-r »,

’
1

'

.

Itu -
fl

1
1

r,
,2 .. .

I.-
~ ’

v vr'” V 1”.. r r ‘"
1

I

I

.
.

-
~!:»‘ E

Y
I'

1 '

‘

‘
..rhl‘

"
'

I

rpm. .le ‘ ‘3 I ' 1:.
y H

r!
V

1TH!“ V “-

_I,.,!.‘.y .

I

r
v
LN7 .,N-.11' x-‘v .m=1.”‘’1‘.' !

 
, ,

am¢w¢”‘. , .u-,.3~~>~H ”H-
, L

-.’l

T .i'v'w:"‘
w~_r_.:..~r----"'"

fix.
my

I

“'9 y

'\ v',’
1." AI-“ll 1' ‘I'r ‘

6?.~:‘1'1‘'1‘‘1 H
”1.1;" A

r.-
"1 .-

_ ‘ ”53;... “V"
Into-~--'r*r..."'r::T"1::'1‘.":u . rzn’lZ 


