

m/mmmu/um] WIWI

287

This is to certify that the

dissertation entitled

DATA PLACEMENT IN SHARED-VIRTUAL-MEMORY
MULTIPROCESSORS WITH NON-UNIFORM
MEMORY ACCESS TIMES

presented by
JAYASHREE RAMANATHAN

has been accepted towards fulfillment
of the requirements for

PhD degree in Computer Science

\J\‘m& A \\>§

Major professor

Date July 1, 1992

MSU is an Affirmative Action/Equal Opportunity Institution o-121TN"

LIBRARY
Michigan Staio
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES retumn on or before date due.

DATEDUE DATEDUE DATE DUE

MSU Is An Affirmative Action/Equal Opportunity Institution
cAckcidatedue.

pm3p1

Data Placement in Shared-Virtual-Memory
Multiprocessors with Non-Uniform Memory

Access Times

By

Jayashree Ramanathan

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1992

703- 4577

ABSTRACT

Data Placement in Shared-Virtual-Memory
Multiprocessors with Non-Uniform Memory

Access Times
By

Jayashree Ramanathan

Each processor in a multiprocessor usually has some local memory and, in addi-
tion, it may share a global memory with all the other processors. Such a memory
organization is motivated by price/performance reasons, but results in a non-uniform
memory access (NUMA) time due to the difference in the latency of the interconnects
used to access the local and the non-local memories. Many NUMA multiprocessors
allow processes of an application to interact by means of a shared virtual memory
because of the advantages of virtual memory and the ease of programming using the
shared-memory model. To achieve an acceptable performance in these multiproces-
sors, it is important to properly place the data of a parallel application in the memory
hierarchy. The primary aim of this thesis is to identify the limitations of existing data
placement techniques and to develop better methods of placing data when providing
a shared virtual memory in NUMA multiprocessors.

Existing data placement techniques include data replication and data migration,
both of which place data in terms of blocks such as pages or cache lines. Using analysis

and trace-driven simulations, we study the factors affecting page-level replication, and

show that it needs to be adaptive to page reference patterns and hardware parameters
such as the available physical memory and the time to transfer data between the local
and the non-local memories. We also demonstrate that proper layout of data in the
shared virtual memory reduces the false sharing of each page, creates simple page
reference patterns, and simplifies data placement. These results apply to other block-
level placement strategies as well. In the absence of help from the compiler or the
applications programmer however, such strategies incur runtime overhead when being
adaptive and further, are unable to optimally place blocks that are falsely-shared and
those whose reference patterns change rapidly.

The conclusions from our investigation thus motivate our study of compiler-
assisted data placement. Qur approach to assist data placement is by using compile-
time objects containing data of the same variable type and with similar reference
patterns. We demonstrate how our approach can be incorporated in a compiler. We
then develop a compile-time object-creation scheme that assists block-level placement;
we also propose solutions to several related issues. Next, we develop a scheme that
assists object-level placement which requires the applications programmer to specify
when data placement operations are needed. We derive the compile-time overhead

of applying our schemes. We also compare the performance of applications for these

h 1

al si ions. We d. trate

different types of pl t by experi
that there is significant performance improvement when the compiler assists data
placement. Further, the best performance is obtained when data placement oper-

ations are entirely specified by the compiler. In summary, compiler-directed data

pl tis a p PP

h to improve the performance of applications and

the programmability of NUMA multiprocessors.

Copyright © by
Jayashree Ramanathan
1992

ACKNOW LE

much to my
v children motivatsd u
he did not live L
pat source of IRSpIration a o I
higher education and
Lo my parents
‘oﬂumlc to have

parenis

e

< he (4%
n ,R‘,m‘m;,s - To my parents
bm thankful to our departinent |
e to come Lo the T/8 i
b School of Osteopatini Medicine, and 1)
b Cemter, for provid

atsh

sy W
‘ l and intecpersonal ski'ls | [
'. computing facilities counlioi o W
bee for ber cnormons 1l o adiminist-ats
leok with Prof. fachad Bt

. 1 also enjoved participating

o] W
thanhs s
T

ody

Matt Mutka, respeciively.

3 in 1089, My thanks xre also die bo Pail {
of the IBM T.J. Watson Reseasch Ownbe
! ‘_ m feedback on my disserission wosk
pael Ni for suggesting that | Jock a1 the
k. He also encouraged w 3o spudy

v

EMENT

wated

position not oaly provided e fnapciel msdener i also eusiched

A st g, of
5 e SEN T2

fe to the upbringing
1t is unfortunate

tinues to

r encouraged us to
lo. | gladly dedicate

Some of them

way

ntwon Sudha, Nirmala,

udship of Chitra, CS,

«istantship which

1o both Ms. Sasikala
~wlwan, the Director of
Jurig my Rest surgmer in

Losae N wewl our chairpersop

148 ¢l 1991, The

Fisnk Naethrup, out
e grwduaie soctelary

aom

 wremayiend e the broad
Ve e of She paraliel
¢ *“ﬂb\lw computing tesearch grov s o gonavd by Prof w

Kannan of the IBM T.J. Watson Resatch Crntwy S M..ﬁ

e

Fram Allen,
oo i seniing W

ACKNOWLEDGEMENTS

I owe much to my parents. My mother who devoted her life to the upbringing
of her children motivated us to be independent and well-educated. It is unfortunate
that she did not live to see me complete my Ph.D. But she was and still continues to
be a great source of inspiration and motivation for me. My father encouraged us to
pursue higher education and to excel in whatever we chose to do. I gladly dedicate
this thesis to my parents.

I am fortunate to have made several good friends along the way. Some of them
helped shape my interests and values, out of whom I must mention Sudha, Nirmala,
and Ravishankar. I also enjoyed and continue to enjoy the friendship of Chitra, CS,
John, Poonam, Rajni, and Rama Seshu.

I am thankful to our department for offering me a teaching assistantship which
enabled me to come to the U.S. to pursue a Ph.D. I owe thanks to both Ms. Sasikala
Reddy of the School of Osteopathic Medicine, and Dr. Erik Goodman, the Director of
the Case Center, for providing me research assistantships during my first summer in
the U.S. Thanks are also due to my thesis advisor Prof. Lionel Ni and our chairperson
Prof. Anthony Wojick for hiring me as a lab manager from 1988 till 1991. The
lab manager position not only provided me financial assistance, but also enriched
my technical and interpersonal skills. I enjoyed working for Frank Northrup, our
department’s computing facilities coordinator. My thanks to our graduate secretary
Lora Mae Higbee for her enormous help in administrative matters.

The courses that I took with Prof. Richard Enbody got me interested in the broad
area of my dissertation. I also enjoyed participating in the meetings of the parallel
processing and the distributed computing research groups organized by Prof. Richard
Enbody and Prof. Matt Mutka, respectively.

I thank Krish Kannan of the IBM T.J. Watson Research Center for offering me a
summer internship in 1989. My thanks are also due to Paul Carini, Fran Allen, and
Jeanne Ferrante, all of the IBM T.J. Watson Research Center for providing me with
research papers and positive feedback on my dissertation work.

I thank Prof. Lionel Ni for suggesting that I look at the Mach operating system
for my term paper work. He also encouraged me to apply to the IBM T.J. Watson

vi

Research Center for a summer internship. Both these factors eventually led to the
choice of my dissertation topic. I also thank him for his understanding when I decided
to complete my dissertation in Poughkeepsie, New York. I appreciate the hospitality
shown by him and his wife.

Finally, I owe much to my husband Ram for his love, encouragement, and support
throughout my dissertation work. He patiently bore with my long hours of work, and
took care of most of the household chores which significantly reduced the time it took
to write this thesis.

vii

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1

INTRODUCTION

IR BINEA Multiprocessor . . o o« « s s o v e s sioe o s smen s
R Bhared Virtnal Memory . oi v e ¢ o o v v v v v v i e e
B B a ety i 2o o dh e e e s a e e e e eesle e e e
1.4 Summary of Major Contributions
T TN LU T R S S U U S O P R o

FACTORS AFFECTING DATA PLACEMENT
IREOESE] WOTK " - . : . c . cooie o s oroiomts Romsbi i e St et R
IPIRRIEETIEIONE .« . o« o onsre’s ek R S BT
B R RANIAEOMENt (o) 6 55+ actestiin s o o o ie se nieie e b siease T
B CL,OCK Scheme . 7% o S SRR S Sl T T
2.3.2 Software LRU Approximation Scheme
IR RE] Seheme: & .o/ o s SUSRR B s L
R af Study. . 5 N SR AR R e e e s
IR aneo Metrica: | 208 R R S B e e
ST R P RO N L A T g A e GRS
IR aevint ental Reaulis o oo g ottt co dim®e iy o G 0t g s
R R R A N R R S R

COMPILER-ASSISTED DATA PLACEMENT

e O S e A R T B I S N R
3.2 Data Placement and the Memory Hierarchy
3.3 Reference Pattern of the Shared Virtual Memory
IR AR Campiler Lol Le e e e SEOE S
3.5 Type and Reference Pattern of Variables
R R PR

12
18
22

23
23
26
28
29
29
30
34
36
40
42
57

Ty SR R RS SU I LA CENEP IS R Sy e 86

4 COMPILER-ASSISTED BLOCK-LEVEL PLACEMENT 88
4.1 Compile-Time Object-Creation 88
4.2 Assistance in Block-Level Placement 90
4.3 Compilation of Applications 97
4.4 Internal Fragmentation 102
4.5 Code Generation for Array References 105
- GompilationOverheadcci0viieevvenn 111
4.7 Performance of Applications 114
IR, s ot i 13, 61 Ghcei s st 35, D900 e G o'l By e B R et s 115

5 COMPILER-DIRECTED OBJECT-LEVEL PLACEMENT 117
BRI ON G soc., - 1655 0, 8 Bt s Todlan s LT i e ety I L 117
5.2 Compile-Time Object-Creation 120
&3 Compilation of Applications 125
I Eampilation Overhead oo viin i v oo ool s b oy 129
B Performance of Applicationscvvi i 133
5.6 Application Execution Model 134
5.7 Results of the Application Execution Model 144
DRI 5. & & o oo v ens i e S R) e 149

6 EXPERIMENTAL COMPARISON OF DATA PLACEMENT

SCHEMES 150
BN At Assumptions:. .n.:. Einaah SRR ARG St s 150
BEEETIRPIAnce Measures «. . o s <o oo sl ol e s e e 151
BRI ABORY: o o o o o o s SO SRR S RO A 153
R aental Results . . . 0. . 2.0k L s o SR D 156
6.4.1 Application matrix multiplication. 157

6.4.2 Application parallel iterative solver 163

6.4.3 Application multi-code-segment-array 171

B RMOIBIONS .. . i S B e s Saehe fo e i o osnane o o RaRER e 188
BN i < & a6 s e m el a e e e e o e e SO SRR 190

7 CONCLUSIONS 191
IR OREEIOMIONso o o oovio o0 e e oo e e ey RN 191
RN IEORICNE - . - : - + o . o s o s s e o o s e it auarRETY 193
A Glossary 197

LIST OF TABLES

G hﬂ(c transition dhagram. LERK with tul shom

h‘h{rlnm.“. A RY with wesdivation

TLB bit accesse

© Page table hit o

| Remote page 1.1t

@ Didk cache fau
- Dbk puge fautt 2cceves

THithe to maintain con-isteny of data

Pixed parameters

X e h‘l veference pattern and OCDEFR
Pasnrieters of the application ©rernt il il
A
Qonsistency messages (multi-crdo-nomesat i ey, Sull, m
& dransfer messages (RUlti-cots ragues fEheg) m
8, transferred (in rlemenis) (soltr cades WM

jes (multi-cOde 3¢ LUORS -1 Fap. w.gg
pcts (mult:-code-Reguens - Sreny AR,

iy of experimental resulls

data placement (DORD 1o R

.
.3
3

37

]

»

S

a8

He
-
5]
L
.
-4
ol

2.1
22
23
2.4
2.5
2.6
2.7
28
29
2.10

5.1
5.2

6.1
6.2
6.3

6.4
6.5
6.6
6.7

LIST OF TABLES

Page state transition diagram: LERN with full replication. 32
Page state transition diagram: LERN with no replication. 33
BRI ACH AOCIET STADNALIEL. VIR & MIPEmTan e o, 37
T CaRs =0 TS PR O IR Ippiost s s ta s s 2 37
PRRSATIE- M Becedhds: Al C Y 1 Y O B 37
PR P R CRCCaRaEE.: . . oo sl rrrLAEN YRS 38
IPURERE MR Bctesses. . . ;. isiissiids TR 38
O gt gt e e S TR PR S SR SR SR A g 39
Time to maintain consistency of data. 39
BN DOFRmICters: o 5 0 583 i St R S S 43
Inexact reference pattern and OCDEP. 123
Parameters of the application execution model. 138

Consistency messages (multi-code-segment-array; OCRP, OCDEP). . 176
Data transfer messages (multi-code-segment-array; OCRP, OCDEP).. 178
Data transferred (in elements) (multi-code-segment-array; OCRP,

S AR R s T e 181

Total messages (multi-code-segment-array; OCRP, OCDEP). 185

Total objects (multi-code-segment-array; OCRP, OCDEP). 185

Summary of experimentalresults. 188

Compiler-directed data placement (OCRP vs. OCDEP).. 189
xi

1.1
1.2
13
14
1.5
1.6
1.7
1.8
19

2.1
2.2
2.3
2.4
2.5
2.6
29
2.8
2.9

2.10

2.11

LIST OF FIGURES

BINUMA mplbiprocessor., « me - ws- - *Nos * < of * pages * (NRINear
Mapping from virtual memory to physical memory.
Virtual-to-physical address translation using a three-level page table.
A TLB with address mappings of multiple applications.

Implementation of a shared virtual memory on networked workstations.

Block-level data replication.00c0 ...
R Etency. Odels. oot hirerit Mo af orges FERIPICE © 5 2 o s s
Block-level data migration. i e
Block-level placement in a shared-virtual-memory NUMA multiproces-

The software LRU approximation scheme.
The LERN page replacement scheme.
Application parallel iterative solver..
Different methods of data layout for a 4 x 4 array partitioned into four

B 510w il AN CAE O e it Th b e R o oE 8 47y
Parameter overhead (%) vs. No. of pages (FR/R=2/near
AR AT tie iRt terTii R IREs SR B o st sr e o ta b o
Parameter overhead (%) vs. No. of pages (NR/R=2/near
EDUT /PP L O1)T SICIIFIA MR (RO I R . o s
Parameter overhead (%) vs. No. of pages (FR/R=10/near
e gl e £ o OSSR R 5
Parameter overhead (%) vs. No. of pages (NR/R=10/near
O PO e Jo T e P R . . o v o e & R
Effective memory access time vs. No. of pages (FR/near
PRI A TOL) 4 & OF SRA R . « . . S O
Effective memory access time vs. No. of pages (NR/near
R B R T OL T . o L A TR

Parameter overhead (%) vs. No. of pages (FR/R=2/near
DT e JOL) 1O IO e M TN L R

31
40

41

44

45

45

46

46

47

49

2.12 Parameter overhead (%) vs. No. of pages (NR/R=2/near
Atightior/block MBJOr) ¢ i lfohiti i v v v v v v e e e
2.13 Parameter overhead (%) vs. No. of pages (FR/R=10/near
RO ALLOCK BRIOT) . o oie o s sus o ofs ohiaip ot ig oneileias oy ¥ns
2.14 Parameter overhead (%) vs. No. of pages (NR/R=10/near
BEEREPBEIDIOCK MATOT) o o v 5. o isoiis; 455078 fo ioss, & a3 io/ ety 5t ke
2.15 Effective memory access time vs. No. of pages (FR/near
BNOY /DIOCK MAJOT) .. s o ¢ o0 e o iosrsis o a4 eriaiintia s %o § foioite
2.16 Effective memory access time vs. No. of pages (NR/near
RETERPODIDIOCK MAYOT) » + o« 0 o oo s o o o a e oo s o ieesa
2.17 Parameter overhead (%) vs. No. of pages (FR/R=2/PIC).
2.18 Parameter overhead (%) vs. No. of pages (NR/R=2/PIC).
2.19 Parameter overhead (%) vs. No. of pages (FR/R=10/PIC)
2.20 Parameter overhead (%) vs. No. of pages (NR/R=10/PIC)
2.21 Effective memory access time vs. No. of pages (FR/PIC)
2.22 Effective memory access time vs. No. of pages (NR/PIC)

3.1 An le of a tial BESWBD. . < (i o o voniun o ntREG

3.2 Performance degradation with caching and without page placement. .
3.3 Reference pattern of the shared virtual memory.
3.4 An example of a parallel application.
3.5 A model of a parallel application with placement directives.
3.6 Placement information about the shared virtual memory.
3.7 Steps in compiling an application to assist data placement.
3.8 Determination of reference pattern: Algorithm A.
3.9 Determination of reference pattern: Algorithm B.

4.1 Examples of objects for el ts of a two-di ional array.
4.2 Algorithm to update the kind of an object.
4.3 Placement information provided by OCRP.

4.4 Parallel application after applying OCRP.
4.5 Application matrix multiplication.
4.6 Objects created by OCRP for application matrix multiplication. . .
4.7 Application parallel iterative solver..
4.8 Objects created by OCRP for application parallel-iterative-solver.
4.9 Application recurrence-relation.
4.10 Application with a DOACROSS loop.
4.11 Code generation for array references when applying OCRP.

xiii

100

4.12 Traversals for an array reference with linear subscripts. 109
4.13 Algorithm used by OCRP to create objects. 112
4.14 Data structure to store objects created by OCRP for an array variable. 113

5.1 Examples of objects for elements of a two-dimensional array. 119
5.2 Application matrix multiplication. 125
5.3 Application parallel iterative solver.. 126
5.4 Objects created by OCDEP for application parallel iterative solver.127
5.5 Application with a DOACROSSloop. 128
5.6 Application multi-code-segment-array. 130
5.7 Algorithm used by OCDEP for updates before a code segment. 131
B RIRTect st JOr OCDEP. oo v o v v voovssovosos 132
5.9 Rectangular partitioning of an xn array. 135
5.10 Objects created by OCDEP_NOVLP for application parallel iterative
R R R S R N e 136
5.11 Object update time reduction due to OCDEP/BARRIER. 145
5.12 Object update time reduction due to OCDEP/WAIT_SIGNAL. 146
5.13 Object update time fraction/BARRIER. 146
5.14 Object update time fraction/WAITSIGNAL. 147
5.15 Execution time reduction due to OCDEP/BARRIER. 148
5.16 Execution time reduction due to OCDEP/WAIT SIGNAL. 149
6.1 Legend for the performance graphs. 156
6.2 Application matrix multiplication. 157
6.3 Consistency messages vs. Number of processors (matrix
multiplication for 128 x 128 square matrices). 158
6.4 Data transfer messages vs. Number of processors (matrix
multiplication for 128 x 128 square matrices). 159
6.5 Data transferred vs. Number of processors (matrix multiplication
PRI98- %18 sqaare amatrices). L S UL . L L. L i i i 160

6.6 Total messages vs. Number of processors (matrix multiplication
for 128'x'128 square matrices). 161
6.7 Physical memory requirements (% of problem size) vs. Number of
processors (matrix multiplication for 128 x 128 square matrices). 162
6.8 Virtual memory requirements (% of problem size) vs. Number of
processors (matrix multiplication for 128 x 128 square matrices). 163
6.9 Application parallel iterative solver................ 164

6.10 Consistency messages vs. Number of processors (parallel iterative
Smdeeer v . B unutes af Jpicvessors. (malli-oedes cogmentoATI A
6.11 Consistency messages vs. Number of processors (parallel iterative
EhRubr; OGRR;HOGDEP). .». Numbes . . ol . . processors
6.12 Data transfer messages vs. Number of processors (parallel
EMshtivermolues). . vx Numbes ..ol .. processors
6.13 Data transferred vs. Number of processors (parallel iterative
ERERT). uessagers o - vie o oo ..o o Numbies o o ol . . procossors
6.14 Total messages vs. Number of processors (parallel iterative
FEhedayl06RP, BODEP).: v . wiiis. | vk ol g o o § ve. JNusmbar of
6.15 Total messages vs. Number of processors (parallel iterative
ABReeal) memnory ey camests (G ol problen sze. L. Number of
6.16 Total objects vs. Number of processors (parallel iterative
BRI GCRP, OCDEP). ..:i o:cishs o einsi % iar oisria dileidy el oot OB g
6.17 Physical memory requirements (% of problem size) vs. Number of
processors (parallel iterative solver)..
6.18 Virtual memory requirements (% of problem size) vs. Number of
processors (parallel iterative solver)

6.19 Application multi-code-segment-array.

6.20 Consistency messages vs. Number of processors
(multi-code-segment-array; WF=.01).
6.21 Consistency messages vs. Number of processors
(multi-code-segment-array; WF=.01).
6.22 Consistency = messages vs. Number of processors
(multi-code-segment-array; WF=.256).
6.23 Consistency messages vs. Number of processors
(multi-code-segment-array; WF=6).
6.24 Data transfer messages vs. Number of processors
(multi-code-segment-array; WF=.01).
6.25 Data transfer messages vs.
Number of processors (multi-code-segment-array; WF=.01, .256,
B 5 % Tl R R AT S AITINET . (e ks e e e A AT
6.26 Data

transferred vs. Number of processors (multi-code-segment-array;

B e e s e e e

165

166

167

167

168

169

170

170

171
173

174

175

177

177

179

180

180

6.27 Data
transferred vs. Number of processors (multi-code-segment-array;
I 0 2005.06) o ool e e s et e e s e ety

6.28 Total messages vs. Number of processors
(multi-code-segment-array; WF=.01).
6.29 Total messages vs. Number of processors
(multi-code-segment-array; WF=.256).
6.30 Total messages vs. Number of processors

(multi-code-segment-array; WF=.6).
6.31 Physical memory requirements (% of problem size) vs. Number of
processors (multi-code-segment-array).
6.32 Virtual memory requirements (% of problem size) vs. Number of
processors (multi-code-segment-array).

182

183

184

184

186

CHAPTER 1

INTRODUCTION

The speed of a single-processor computer has increased by several orders of mag-
nitude since the first electronic digital computer was introduced in 1940, primarily
due to advances in hardware technology. However, many important problems remain
unsolved as their solution requires computational power that are far beyond the ca-
pabilities of the fastest single-processor computers currently available. For instance,
there exist problems that need computers capable of executing 10'? floating point op-
erations per second (teraflops). Since hardware technology is approaching its physical
limitations, such computational power can be realized only by introducing parallelism
in computers. An important class of parallel computers are multiprocessors, which
consist of multiple processors and memory modules connected together by one or
more interconnects.

In this thesis, we consider multiprocessors with a non-uniform memory access
(NUMA) time, i.e., the access time is not the same for all memory locations. Pro-
cessors in such a multiprocessor concurrently execute either different applications or
different processes of the same parallel application. We consider the latter case and

assume that there are enough processors so that each application is allocated as many

s as the ber of p it creates and further, each process is statically

igned to a given p . Most existing multiprocessor operating systems, such

as the BBN’s nX [1], allow such exclusive allocation of resources to a given application,

thereby allowing its performance to be maximized, independent of other appli

We also assume that the processes of an application communicate and synchronize by

using the same virtual addresses for data they share. This method of communication

is achieved by assigni dd to the application’s data and code from a set of

virtual addresses shared by all processors, referred to as the shared virtual memory
(SVM). Due to the variation in cost to access different physical memory locations in
a NUMA multiprocessor, data in the SVM needs to be placed in the NUMA physical
memory such that the time to access it is minimized for all processors. In this thesis,

1 new data pl t techni that help to achieve this

we and

goal.
In this chapter, we first present a typical architecture of a NUMA multiprocessor
and then discuss the advantages of a SVM and the implementation issues in providing

it in a NUMA multiprocessor. Next we provide an overview of existing techniques to

address the problem of data placement. We then ize the contributions of our
thesis in addressing the data placement problem. We conclude with an overview of

the remaining chapters.

1.1 A NUMA Multiprocessor

Typically, each processor in a multiprocessor has some memory placed local to it and,
in addition, it may share a global memory with all the other processors as shown in
Figure 1.1. Such a memory organization is motivated by price/performance reasons
similar to the cache and the main memory hierarchy prevalent in uniprocessors. For

s in small-scale multi s such as the Alliant’s FX/8 (2] and

the Sequent’s Symmetry [3] are connected by a single bus interconnect to a global main
memory. Each processor has a local cache, and a snoopy hardware cache protocol
keeps all the caches consistent by listening to memory accesses on the shared bus.

A single bus is limited in bandwidth for large-scale multiprocessors, and technol-
ogy limitations make it too expensive to provide hardware connectivity from each

processor to every other processor. Therefore, large-scale multiprocessors are built

with int; diat ivity using inter s such as multi-stage i

as in the BBN’s TC2000 [1] and the IBM’s RP3 [4], point-to-point interconnects as

[_Local Interconnect | [Local Interconnect |

Global Interconnect

Global
Memory

Figure 1.1. A NUMA multiprocessor.

in the Intel’s DELTA [5], and hierarchical interconnects as in the Kendall Square
Research’s KSR1 [6] and the DASH multiprocessor [7]. Since there is no longer a
single bus to snoop at, some of these multiprocessors such as the TC2000, RP3, and
DELTA do not provide hardware cache consistency. Others use a directory-based
cache consistency protocol to maintain information about cache lines in either cen-
tralized or distributed directories as in the DASH. Some others, such as the KSR1,
use a hardware protocol that traverses the interconnect hierarchically. Details of the
IEEE scalable coherent interface and related projects can be found in [8].

Main memory in large-scale multiprocessors includes modules global to all pro-
cessors just as in small-scale multiprocessors. In addition, there are modules placed

local to each processor. Note that in small-scale multiprocessors, the memory local to

each processor includes only its cache. However, in large-scale multiprocessors, each
processor has a private cache as well as a portion of the main memory, which we refer
to as the local memory. For example, processors in the TC2000, DELTA, Horizon
[9], Symult 2010 [10], and networked workstations have local memories, those in the
RP3 can be set up to have local and/or global memory, while those in the IBM’s
ACE [11] have local and global memory. Further, either all available main memory
can be directly addressed in hardware by all processors as in the RP3 and the ACE,
or each processor can address all memory except another processor’s local memory
(called remote memory) as in the DELTA and networked workstations.

The memory access time is defined as the number of processor clock cycles that
elapse between the time a processor issues a memory read request and the time the
data arrives from memory. It depends on the speed with which the memory can
deliver data and the characteristics of the interconnect(s) connecting the processor to
the memory location containing the data. Two main characteristics of an interconnect
are the latency and the peak bandwidth. The latency of an interconnect is the minimum
number of clock cycles required to transfer one word of data either from one processor
to another, or from one processor to a memory module. The peak bandwidth gives the

maximum rate at which data can be transferred across the interconnect and is usually

measured in words/cycle [12]. The variation in the latencies of the inter ts used

to access the different memory locations results in a non-uniform memory access

time, and hence the name NUMA multiprocessors. For ple, the difference in

the times to access the cache and main memory gives rise to a NUMA time in small-
scale multiprocessors. An additional NUMA time in large-scale multiprocessors is
due to the difference in the times to access local, global, and remote memory. As an
example, in TC2000, a remote memory access takes four times longer than a local

memory access.

1.2 Shared Virtual Memory

Due to cost considerations, all computer systems use physical memories of only limited
size. However, in order to allow application programmers to be not constrained
by physical memory limitations, most existing operating systems provide them a

virtual memory, which is much larger than the actual physical memory. Therefore,

ap or refé any data el t by using its virtual address in the address
field of the instruction. The maximum size of virtual memory is limited only by the
number of bits in this address field and the swap area of the disk which stores data
that cannot fit in main memory. Virtual memory systems use either paging, where
the virtual memory is divided into units of equal size called pages, or segmentation,
where the virtual memory is divided into units of unequal size called segments, or a
combination of both [13]. Since most current multiprocessors use paging, we restrict
our discussion to paging.

In any virtual memory system, a map from virtual memory to physical memory is
maintained as shown in Figure 1.2. For example, in a paged virtual memory system,
a page table stores the mappings from virtual pages to physical pages. The page
table can be an indezed page table as shown in Figure 1.3, or an inverted page
table in which case the mappings from physical to virtual pages are maintained. We

1 ol

restrict our di ion to the ly p t d page table. A large virtual

N

memory implies a large number of virtual pages and quently, a large
of mappings to be stored in the page table. Therefore, the page table might not
fit in a single physical page, in which case a multi-level page table is necessary. All
physical pages belonging to a page table are referred to as page directories. The page
table base register stores the pointer to the first page directory page. During the
virtual-to-physical address translation, the virtual address is split into various fields
that provide the index into the different physical pages of the page table (Figure 1.3).
In practice, the entire page table does not reside in physical memory. Rather, pages
belonging to the page table are brought into physical memory on demand.
Consulting a multi-level page table for each instruction containing a memory ref-

VIRTUAL MEMORY
Virtual Unit

e e

Address
Map

Physical Unit
PHYSICAL MEMORY

Figure 1.2. Mapping from virtual memory to physical memory.

erence results in performance degradation. To alleviate the above problem, virtual
memory systems usually use a fast associative memory called the translation lookaside
buffer (TLB) that has a subset of the mappings in the page table. During address
translation, the processor first consults the TLB and if the mapping corresponding

to the virtual page is not in the TLB, then it consults the page table. The TLB can

be organized to allow mappings of multiple applications as shown in Figure 1.4. If it
contains the mappings of only a single application, then there is no need for the field
containing the application’s ID. In this case, the TLB needs to be flushed every time a
processor switches from executing one application to another. Each entry in the TLB
and the page table also contains flags such as dirty, which indicates whether the page
has been updated, reference, which indicates whether the page has been referenced,

<«€—— Virtual Address ———>

page page page application
directory 0| directory 1 | directory 2 page

-

”

physical

page table page address

application
page table page
base register

Figure 1.3. Virtual-to-physical address translation using a three-level page table.

and protect, which indicates the page’s protection level. Due to cost considerations,
the TLB has a limited number of entries, and therefore, TLB replacement policies
are used to determine which TLB entry to replace in order to make room for a new
mapping.

Usually, the number of physical pages is much smaller than the number of virtual
pages. Therefore, the same physical page is allocated to different virtual pages at
various times and consequently, the mappings in the TLB and the page table also
change with time. A page fault is said to occur if a processor references a virtual
address belonging to a virtual page which is not mapped to any physical page. The

fault is resolved by mapping this virtual page to one of the free physical pages. Due

Application Virtual Physical
D Page Page Flags
X m i 01
y n I 10

Figure 1.4. A TLB with address mappings of multiple applications.

to the NUMA nature of the physical memory, the scheme used to choose this physical
page is important, and is referred to as the page placement scheme. In other words,
page placement determines where in physical memory a given virtual page is placed.
If no free pages are available, one of the already allocated physical pages is reclaimed,
and the scheme used to make this choice is called the page replacement scheme.
In other words, page replacement determines which virtual page will be replaced in
memory by the currently referenced virtual page. It follows that the page replacement
determines page placement when there are no free physical pages. Once the page fault
is resolved, the TLB and the page table are updated to reflect the resulting change
in the address map.

Specific virtual addresses are assigned to the data and code of an application ex-
€cuting on a uniprocessor that provides virtual memory. Extending this concept to a
Parallel application executing on a multiprocessor, all data and code, including those

shared among processors, are assigned the same virtual address in all processors. Such

b i allows the application to be written in the shared-variable program-

™Ming model, in which processors synchronize and communicate by means of shared

data mapped in a shared virtual memory or SVM. Therefore, the SVM offers the

benefits of virtual memory and the ease of programming in the shared-variable model
to the applications programmer. Further, placing the operating system’s code and
data in the SVM allows better memory utilization by enabling pages to be mapped to
remote or global memory instead of disk. It also facilitates easy distribution of work
among processors by means of one or more shared queues of ready-to-run processes.
SVM is one example of a process-interaction paradigm which defines the method
by which processes of a parallel application can synchronize and communicate with
each other. Other process-interaction paradigms are the remote procedure call (RPC),
object-oriented systems, and data-unit [14]. Each of these approaches have their mer-
its and demerits. The RPC mechanism can be used among heterogeneous machines
but lacks support for shared data and cannot be extended easily into the asynchronous
domain. Object-oriented systems provide application-level features, are free from
some of the problems with SVM which we discuss in a later section, but are not
appropriate for all applications. The data-unit approach is a combination of features
derived from the SVM and the object-oriented systems. A data unit is a region of
virtual memory that can be mapped into the address map of various processors. As
in object-oriented systems, application-level operations on data units are supported
which enable synchronization and communication among processes. In this thesis, we
consider the SVM process-interaction paradigm and develop methods to efficiently
provide such a paradigm in NUMA multiprocessors.

SVM implementations exist for NUMA multiprocessors in which either all proces-
sors can directly address all available memory (15, 16, 17, 18], or processors cannot
directly address remote memory [19, 20, 21, 22, 23, 24]. The implementation issues in
the two cases are different as we discuss below. When providing a SVM in a NUMA
multiprocessor with local and/or global memory, any virtual address (either in the

kernel or in the user virtual memory) can be mapped to a physical memory location
in any of these memories. Let us first consider the case when each memory location
has 5 unique physical address and all locations can be directly addressed in hardware
by an processors. Each processor obtains the physical address corresponding to the

Virtaal address in a memory reference from its TLB or page table. It directly issues a

Shared § NUMA A. Request to C. Requestto
Virtual Physical Page Owner Page Holder
Memory | Memory B. Responsefrom D. Response from
Page Owner Page Holder
Local
Memory3

Local Local
Memory1 Memory2

Figure 1.5. Implementation of a shared virtual memory on networked workstations.

memory request for this physical address for the read or write operation. In this case,
all processors can share a single operating system which resides in the kernel portion
of the shared virtual memory. The data area of this portion includes information
about each virtual page such as whether it is placed in physical memory or not, and
the processors sharing it. The code area of this portion includes various operating

SYStem services such as that provided by the page fault handler. We now illustrate

how , page fault is handled in this case.
For simplicity, let us assume that all processors share a single physical copy of the

11

kernel virtual memory. For ease of explanation, we consider a page placement scheme

which statically places any virtual page in the local memory of the processor that first

incurs a fault for the page. Consider for ple what happens when a processor P,
incurs the first page fault for virtual page V.Py. P; switches to the kernel mode
and looks up the information about V P; in the kernel data area. It determines the
placement scheme and also that V Py is not placed anywhere in physical memory.
V P, is then mapped to a physical page PP, in the local memory of P;, the TLB and
page table of Py are updated to include this new mapping, and the information about
VP, is updated in the kernel data area. Assume that processor P, now incurs a fault
for V Py, and switches to kernel mode. On looking up the information for V Py in the
kernel data area, it determines the placement scheme and also that V P, is already
mapped in physical memory. Therefore, it updates its TLB and page table to include
this mapping, and references PP, remotely.

The method described above is inapplicable if all processors cannot directly ad-
dress all available memory. We illustrate the basic idea behind the strategy used in
those situations by considering the implementation of SVM on a network of worksta-
tions (Figure 1.5). In this case, processors do not share a single operating system.
Each processor’s operating system resides in its private virtual memory and is placed
in its local memory. Again, we consider a static placement scheme and refer to the
Pprocessor in whose local memory a given virtual page is placed as the virtual page’s
page holder. Further, each virtual page is assigned a static owner processor that stores
information about the page in the data area of its operating system. In order to get
information about a given virtual page, processors contact the page’s owner. Page
ownership schemes deal with issues such as determination of a virtual page’s owner,

and efficient storage and dissemination of information about virtual pages. For ease
of explanation, we assume that the information about owners of all virtual pages is
either stored or can be easily computed by all processors.

Let us consider the actions in this case for the page fault sequence mentioned

€arlier. Assume that virtual page VP, is owned by processor P;. When P, incurs a

Page fault for V Py, it contacts P3 to get information about V P;. As in the previous

.

12

case, a physical page PP, is allocated in the local memory of P, and the TLB and
page table of P; are updated. However, the virtual page information is updated by
P, which records that P, is the page holder of VP,. When P, incurs a fault for
V P,, it contacts P3 and learns that P, is the page holder of V P;. P, sends a memory
request to Pj, which services the request and sends a response. The TLB and page
table of P, are not updated and any further references to V Py by P, are handled in a
similar fashion because P, cannot address the local memory of P; directly. Therefore,
requests to a page in remote memory are serviced using messages after obtaining the
page’s holder information from its owner.

We discussed the two methods of implementing a SVM for a static page placement
scheme. When this strategy is applied to a shared page, the references to the page
by all but one processor require non-local memory accesses, which are expensive in

a NUMA multi This problem is addressed by data placement strategies

which are covered in the next section.

1.3 Data Placement

The goal of data placement strategies is to place data in the NUMA physical memory
such that the time to access it is minimized. One well-known method to achieve this
goal is data replication, which replicates data in the local memory of the referencing

H r, with replication, it is 'y to guarantee some form of rela-

tionship bet these multiple physical copies. This relationship is referred to as the

P

consistency model and is used by the applications programmer to write applications
that execute correctly. To enforce the consistency model, when a processor issues a
Write operation, either all copies are updated, referred to as the write-update (WU)
Policy, or all other copies are removed, referred to as the write-invalidate (WI) policy.

Most NUMA multi s provide replication at the level of a block which is the

unit of data transfer at a given level of the memory hierarchy. Block-level replication
is shownin Figure 1.6, where a virtual block containing the referenced data element is

Teplicated in local memory. For ple, NUMA multip s with hardware cache

.

Shared NUMA
Virtual Physical
Memol
Y 2 NO REPLICATION
Local Local Local
Memory_1 Memory_2 Memory_N
physical
block
physical physical
data block block
element
Local Local Local
Memory_1 Memory_2 Memory_N
REPLICATION ON REFERENCE

Figure 1.6. Block-level data replication.

14

consistency replicate the virtual cache line containing the referenced data element
and keep the various physical cache lines consistent [2, 25, 3, 26, 27, 7, 17]. Others
provide software mechanisms that replicate virtual pages containing the referenced
data element and keep the corresponding physical pages consistent [28, 15, 22, 29, 18,
24].

The strictest consistency model is sequential consistency [30], which requires the
execution of the parallel program to appear as some interleaving of the execution of the
parallel processes on a sequential machine. For example, when sequential consistency
and the WU policy is provided, a write to any data element is not complete unless
all copies of the data element have been updated. There are NUMA multiprocessors
that provide sequential consistency in hardware (2, 25, 3, 26, 27, 6], and those that
provide it in software [28, 15, 22, 18]. Due to the high latency and the potential for
contention among memory requests, sequential consistency is expensive for large-scale

1ti s with intermediat tivity. Further, the strictest consistency

model provided by sequential consistency is not always necessary to guarantee correct
program execution. These factors have motivated research on weaker consistency
models.

Figure 1.7 compares sequential consistency with release consistency, a weak con-
sistency model provided in hardware by the DASH multiprocessor [31]. Release con-

sistency exploits the fact that applications typically use synchronization variables
pdated a data el t before other processors read

to ensure that a p has
it. Theref it i not on the completion of each write but

only when a release operation is executed on a synchronization variable. Release
ided in soft by the Munin [24] and the SSVM [23] operating

consist

y is p
systems. Another weak consistency model is weak coherence [17], which guarantees
that all copies of a data element are updated in the same order. Other weak consis-
tency models proposed in the literature include (32, 33]. Weak consistency models

Offer performance improvement at the cost of either additional programmer effort in
effort in automatically parallelizing

Writing a parallel application or extra pil
i h of improving performance by transferring

a g Warilication: ‘The

. PP PP

Processor 1 Processor 2

acquire(lock)

Time
write A
t1 while empty
write B
2
empty =0
® release(lock) acquire(lock)
read A
read B

release(lock)

Sequential Consistency guarantees consistency
of all copies of A at t1, all copies of B at t2.

Release Consistency guarantees consistency of
all copies of A and B at t3.

Figure 1.7. Consistency models.

16

data only during synchronization operations has also been used in Clouds [21], an
object-oriented shared-virtual-memory implementation on networked workstations.
Certain other issues need to be addressed when providing page-level replication.
The entry for a replicated virtual page in each processor’s TLB contains the physical
page allocated in the processor’s local memory. The problem of ensuring that the TLB
entries in various processors for a given virtual page are consistent is referred to as the
TLB consistency problem [34, 35, 36]. For example, with the WI policy, on a write
operation, not only should the physical pages in other processors be deallocated, the
corresponding TLB entry should be invalidated as well. Further, either all processors
can share a single page table or the page tables can be replicated [37, 38]. In the
latter case, page table entries in all processors for each virtual page need to be kept
consistent, and this problem is referred to as the page table consistency problem [15].

Other than replication, another data pl t technique used to minimize the

data access time is data migration, which does not replicate but instead migrates the
data element among the local memories of the processors that reference it. As in the
case of data replication, most NUMA multiprocessors provide block-level migration as
shown in Figure 1.8, where the virtual block containing the referenced data element
is migrated among the local memories of the referencing processors. Interestingly,
when caching and the WI policy are used, migration of a virtual cache line occurs
on a write operation; however, several physical copies of the cache line exist during
periods when it is only read and not written. Software-controlled page-level migration
is provided by some of the NUMA multiprocessors lacking hardware cache consistency
[39, 16, 19, 40, 18].

Next, we discuss certain issues in implementing the data placement schemes. The
information about each cache line which is required by hardware-controlled cache-
line-level placement strategies is maintained in either a centralized or a distributed

Mamnner in hardware. Software-controlled page-level placement strategies also need
to mmaintain information about each virtual page and make it efficiently available to
all processors. For example, to maintain consistency of a page that is replicated, it

IS maecessary to know which processors have its copy in their local memory. Similarly,

Shared NUMA
Virtual Physical
Memory Memory
BEFORE MIGRATION
Local Local Local
Memory_1 Memory_2 Memory_N
virtual
block
physical
data block
element
Local | Local
e Memory_N

Memory_1 Memory_2

AFTER MIGRATION

Figure 1.8. Block-level data migration.

18

for page migration, information about where the virtual page is currently placed
in physical memory is needed. More sophisticated page placement strategies need
additional information such as the history of read and write references to the various
pages by different processors. When all available physical memory can be directly
addressed by all processors, this information can be stored in the data area of the
single operating system which is shared by all processors. When each processor cannot
directly address remote memory, each virtual page’s information is stored in the data

area of the operating system of its owner.

1.4 Summary of Major Contributions

In this section, we summarize the major contributions of our thesis which aims to
address the limitations of existing data placement techniques. We define a data place-
ment strategy to be block-level if it places a data element in terms of the basic data
block containing it. Therefore, cache-line-level and page-level strategies discussed
earlier are all examples of block-level placement. We define the reference pattern of
a data element or a block as a temporal order of the read and the write references
originating from different processors to the data element or the block, respectively.
In order to identify the limitations of existing block-level placement strategies, we
conduct simulations to study the relationship among page-level replication, hardware
parameters, and the reference pattern of pages [41, 42]. Note that a block’s reference
pattern depends on the reference pattern of the data elements it contains. Also, the
data elements contained in each block is determined by the layout of the data in the
SVM. In our study, we vary hardware parameters related to replication, and we also
vary the data layout to create virtual pages with different reference patterns for the
same application. We conclude that the effectiveness of replicating a page depends on
its reference pattern and also on hardware parameters. In addition, we found out that
with proper data layout, the amount of sharing of the application’s pages is reduced,
and then the performance of the application with and without replication is almost

the same because the two schemes are equivalent for a non-shared page. Hence, we

19

conclude that proper data layout can simplify data placement. These results apply
to other block-level strategies as well.

In related work, Bolosky et al. [43] conclude that page-level migration strategies
need to be dependent on hardware parameters related to migration. Other studies
(surveyed in [44, 45]) emphasize the need for a block’s placement strategy to be
dependent on its reference pattern. Previous studies have also made it straightforward
to choose an appropriate block-level placement strategy once the block’s reference
pattern is known. For example, Bennett et al. [29, 46] identify different types of data
objects that occur in typical applications, and propose placement schemes for each
of these objects. However, our study is unique in that we consider the influence of
varying the layout of data in the SVM and also the relationship between replication
and hardware parameters.

Figure 1.9 shows examples of how to choose placement strategies for virtual blocks
based on their reference pattern. Here, a virtual block is denoted by b(p;, p, ...), where
bis its ID and each p; denotes a processor j that references it. Private blocks 1(1),
2(2), and 3(N) are placed statically in the local memory of processors 1, 2, and N,
respectively. Read-only block 4(1,2) is replicated in the local memory of processors 1
and 2. Block 7(2,N) is read more often than it is written, and is therefore replicated
in the local memory of processors 2 and N. Blocks 6(1,2) and 8(1,2) are actively read
and written by several processors, and are not replicated due to the high overhead
of consistency. Block 6 is placed in global memory, while block 8 is placed in the
local memory of processor 2. Therefore, the ideal placement strategy for a block
can be decided once its reference pattern is known. However, techniques need to be
developed to determine each block’s reference pattern.

Our conclusion that proper data layout can simplify data placement is related to
the problem of false sharing [47], which occurs when a virtual block contains data
elements with different reference patterns. Data placement strategies are limited in
their ability to place a falsely-shared block. For example, assume that block 7(2,N)
in Figure 1.9 contains two data elements each of which is exclusively referenced by

processors 2 and N, respectively. Replicating such a block leads to unnecessary consis-

20

Shared Shared
Private Read-Only Read-Write

(1,2)

Virtual
Block

Shared
Virtual
Memory

(1,N)

NUMA

Physical I l . l l
Memory I 5 I

. Block Local Local Local Global
Memory_1 Memory_2 Memory_ N Memory

Figure 1.9. Block-level placement in a shared-virtual-memory NUMA multiprocessor.

tency overhead, migrating it leads to a ping-pong effect, and placing it statically in a
given processor’s local memory results in non-local memory accesses for the other pro-
cessor. Since the probability of false sharing is higher for larger blocks [48, 49, 50], the
resulting performance loss is severe for NUMA multiprocessors providing page-level
placement.

It is clear that to improve the performance of block-level placement, false sharing
needs to be eliminated and the placement strategy should be tailored to the reference
pattern of blocks. One approach is to address these issues without any help from the
compiler or the applications programmer. For example, certain block-level placement

strategies [15, 16] use the runtime reference history to adapt to changing reference

.

21

patterns. Such schemes not only incur runtime overhead but are also unable to
adapt soon enough to rapidly-changing reference patterns, thereby resulting in a
non-optimal data placement. Further, they perform well only if the past reference
history is an accurate predictor of future references. Other studies [50, 51] solve
false sharing by providing block-level replication and a weak consistency model that
updates only those copies of a data element that will actually be used, based on
runtime information. However, these schemes either require additional hardware to
store this information [50] or incur additional software time and space overhead [51].

The other approach to address the problems of block-level placement is to obtain
help from the applications programmer or the compiler. Compiler optimizations [47]

to add the problem of false

P

g

and program transformations [52] have been prop
sharing of cache lines. LaRowe et al. [53] develop a parameterized page placement
scheme which can be tuned by the applications programmer in order to be adaptive
to hardware parameters and application characteristics. Both SSVM [23] and Munin
[24] use programmer-specified information to solve the false sharing problem. They
allow blocks to be falsely-shared and invoke placement operations only when they
are actually required, as determined by the programmer-specified information. In
addition, SSVM allows the programmer to place data in terms of objects rather than
blocks, which we refer to as object-level placement.

Our approach to address the problems of block-level placement isAby developing
new techniques that assist data placement which can be incorporated in a compiler.
These techniques reduce the runtime overhead and they also minimize the program-
mer effort involved in proper data placement. Our method for compiler-assisted data
placement uses compile-time objects containing data with the same variable type and
similar reference patterns. We design a compiler that uses our method, and we de-
velop algorithms to determine the type and reference pattern of data. We also develop
specific object-creation schemes for different types of data placement strategies viz.,
the block-level and object-level types of placement.

Our object-creation scheme that assists block-level placement [54] creates objects

that are not falsely-shared and that have temporal locality. We propose methods to

.,

22

implement these objects which ensure that blocks are not falsely-shared. Further,
we use these objects to provide information required for proper placement, thereby
reducing the runtime overhead of collecting this information. Our scheme that directs
object-level placement creates objects based on the data exchange pattern [55, 56]
and automatically generates all the programmer-specified information required by
SSVM. We evaluate the cost of applying our schemes by deriving their time and space
complexity.

We use experimental simulations to compare the performance of applications for
the block-level placement (with and without compiler assistance) and the compiler-
directed object-level placement strategies. We conclude that compiler-specified in-
formation about objects leads to a significantly better performance than that in the
absence of such information. Further, the best performance is achieved when place-
ment is directed rather than assisted by the compiler. Our work demonstrates that
compiler-directed data placement is a promising approach to improve the performance

of applications and the programmability of NUMA multiprocessors.

1.5 Thesis Organization

The rest of our thesis is organized as follows. In Chapter 2, we present the results of
our study on factors affecting data placement schemes. In Chapter 3, we outline our
approach for compiler-assisted data placement. In Chapter 4, we discuss our work
on compiler-assisted block-level placement. In Chapter 5, we present our work on
compiler-directed object-level placement. In Chapter 6, we outline the results of our
experimental evaluation of various types of placement schemes. Finally, in Chapter
7, we summarize the contributions of our thesis and present directions for future

research.

CHAPTER 2

FACTORS AFFECTING DATA
PLACEMENT

The primary aim of this thesis is to develop efficient data placement techniques, which
minimize the data access time, when providing a shared virtual memory in a NUMA
multiprocessor. As a first step toward achieving this aim, we conduct a study (41, 42]
to identify the limitations of existing data placement strategies, most of which provide
block-level placement. We present the results of our study in this chapter, which is
organized as follows. First, we provide a detailed overview of related work, which was
done prior to our study and which motivates the goals of our work. Next, we outline
our assumptions about the hardware features of the NUMA multiprocessor and the
manner in which the shared virtual memory (SVM) is provided. After presenting our
work on page replacement, we outline the methodology, performance metrics, and
workload of our study. Next, we discuss our experiments in detail, and present our

conclusions.

2.1 Related Work

The issues of providing a SVM have been studied for both NUMA multiprocessors in
which all processors can directly address all available memory and those in which each
processor cannot directly address another processor’s local memory. Li [28] was the

first to propose the idea of providing a SVM for a NUMA multiprocessor belonging to

..

23

24

the latter category. SVM is also provided by the Mach operating system [57], which
has been ported to a wide variety of paged uniprocessors and multiprocessors. Studies
about SVM which were done prior to our study considered block-level data placement
using either replication or migration. Further, in the case of block-level replication,
studies differed in the consistency model used and whether the write-invalidate (WI)

or the write-update (WU) scheme was used to maintain consistency.

Data Replication

First, we discuss studies that considered block-level data replication and maintained
sequential consistency using the WI scheme. IVY [28, 20] is a user-level SVM, which
is implemented for a network of Apollo workstations. It uses several page own-
ership schemes such as the single-owner, statically-determined multiple-owner, and
dynamically-determined multiple-owner schemes. The port of Mach to workstations
interconnected by a token-ring [58) accommodates multiple page sizes and heteroge-
neous architectures. It also uses the single-owner and multiple-owner page ownership
schemes, with fault tolerance being implemented for the former. Mirage [22] is a

kernel-level d-page SVM, impl ted for three VAX 11/750’s networked

by an Ethernet. It uses a lazy sequential consistency model which introduces a delay
before a write request to a segment shared by multiple readers is granted. PLATINUM
[15] is a SVM implemented for a BBN Butterfly Plus. It selectively replicates pages
depending on the number of times the WI scheme is invoked for each page. Fur-
ther, it uses a directory-based page ownership scheme, and replicates page tables and
keeps them consistent by interrupting processors that are actively using the updated
page table entry. DUnX [59, 18] is a SVM implementation for BBN’s GP-1000 [60]

and provides several page-level replication sch While these studies considered

sequential consistency, others provided a weaker consistency model instead. For ex-
ample, Bisiani et al. [61] used trace-driven simulations to study their weak coherence

model maintained using the WU sch They luded that full replication with a

large ber of p is expensive and advocated selective replication instead.
Weak coherence is provided in hardware by the PLUS multiprocessor [17] which also

25

supports various hardware synchronization operations that enable applications to be

written for this consistency model.

Data Migration

Next, we discuss studies which considered block-level data migration instead of repli-
cation. In the port of Mach on the ACE [16], a page is migrated to the local memory of
the processor that references it; after a selective number of such migrations, the page
is placed statically in global memory. Further, kernel pages are neither replicated nor
migrated and are placed in global memory. Black et al. [39] used trace-driven simu-

lations to study competitive page-level migration algorithms, which require hardware

fe ters for impl tation. Page-level migration is also provided in the
implementation of a SVM for an iPSC/2 by Li and Schaefer [19]. Mizrahi et al. [62]
used trace-driven simulations to study several block-level migration strategies that
extend the memory hierarchy into the interconnect. Scheurich and Dubois [40] study
page-level migration using page pivoting in a point-to-point mesh interconnect. DUnX
[59, 18] also provides various page-level migration schemes. Different strategies to
distribute the read-only pages of an application among the local memories of various
processors have been studied in [63].

Other problems that need to be solved when providing a SVM in a NUMA mul-
tiprocessor have also been studied in the literature. For example, the TLB and the
page table consistency problem has been studied in [34, 35, 36, 15]. Holland [37)
studied three page table management schemes using software simulation of synthetic
applications on a BBN Butterfly Plus. The study concludes that a single page ta-
ble is a software bottleneck and a fully replicated indexed page table uses a lot of
memory. Therefore, the best choice is a partially replicated indexed page table which
not only uses less memory but also performs almost as well as the fully replicated
indexed page table. In a related paper [38], the most-recently-used page replacement

h is idered, and the infl of the ber of repl t d. and

their frequency of invocation, on typical applications, is studied.

26

Motivation and Goals of Study

Most of the previous work involves actual implementation, and performance is mea-
sured in terms of speedup or execution time. Such a performance measure applies to
the hardware parameters of the specific multiprocessor in question. These studies do
not compare the performance of a given placement strategy on different multiproces-
sors. Such a comparison is one of the goals of our study, and we realize this goal by
characterizing each multiprocessor by hardware parameters that are related to the
placement strategy in question. We also study page replacement schemes which have
not been addressed in detail by previous studies. Further, some of the block-level
placement strategies proposed in previous studies are designed to be adaptive to the
block’s reference pattern. For example, PLATINUM [15] replicates pages depending on
their invalidation frequency, and the port of Mach on the ACE [16] migrates pages
only a certain number of times. Also, Bennett et al. [29, 46] propose data placement
schemes that adapt to data objects of different types. Since a block’s reference pat-
tern or a data object’s type is determined by the layout of the application’s data in
the SVM, another goal of our study is to consider the interaction between the data
layout and the data placement strategy. We realize these goals by using a combina-
tion of analytical and trace-driven simulation techniques, which allow great flexibility

in parameter variation.

2.2 Assumptions

In this section, we outline our assumptions about the hardware features of the NUMA
multiprocessor and also the manner in which the SVM is provided. We consider
NUMA multiprocessors such as the BBN TC2000 which lack hardware cache consis-
tency and in which main memory is organized as modules local to each processor.
Further, all processors can directly address all available memory. We assume that
all processors share a single operating system which is allocated in the kernel virtual
memory. The code area of the operating system is replicated in local memory on ref-

erence, but there is a single copy of the data area. For example, all processors share

21

a single copy of the data structure that stores information about the various virtual
pages. We do not replicate the operating system’s data because it is frequently up-
dated by all processors, and the overhead of enforcing consistency might nullify the
benefits of replication. Instead, we distribute this data evenly across all available
local memory modules.

The data placement strategy we consider is software-controlled, page-level replica-
tion with sequential consistency maintained using either the WU or the WI scheme.
We refer to the WU scheme alternatively as multicast, as its effect is the same as that
of a multicast communication. We define full replication (FR) as the strategy that
replicates a virtual page in the local memory of each processor that references it, and
no replication (NR) as the case when virtual pages are not replicated. Further, we re-
fer to the first physical page allocated to a given virtual page as the master, and each
physical page allocated thereafter as a replica. Note that if the master is in remote
memory relative to a processor issuing a write request, then both the master and the
local copy need to be updated. We refer to such an update of the master copy as a
remote master write. We do not use explicit page-level migration, but as discussed

in the next section, pages are migrated during specific cases of page replacement.

We use two schemes for initial page pl t: (1) fault processor pl t,
where the virtual page is placed in the faulting processor’s local memory, and (2)
modulo placement, where the virtual page is placed in the local memory of the pro-
cessor given by: (virtual page number) mod (number of processors). Page replacement
has not been given much attention in existing studies, and it is important when using
the FR scheme which needs more memory, and therefore, we study it in detail and
postpone discussion on it until the next section.

To enable fast address translation, each processor has its own TLB and we use a
single-hand clock scheme[64] for TLB replacement. Further, each processor has its
own copy of an indexed page table, the pages of which remain allocated during the
application’s lifetime. In the FR case, each processor has its local copy of any virtual
page, and the page’s entry in the processor’s TLB and page table also pertains to this
local copy, and hence, TLB and page table consistency is not an issue. On the other

28

hand, in the NR case, all processors referencing a virtual page share its only physical
page, and the page’s entry in the TLB and the page table of all these processors
pertain to this single physical page. The information in the TLB and page table
that are modified and hence related to the consistency problem are the dirty and the
reference flags. Since our page replacement scheme does not use the reference flag, we
consider only the dirty flag which is used to decide whether a page, on being chosen
to be replaced, needs to be written to the disk. We solve the consistency problem in
the NR case by updating the dirty flag as follows. When a virtual page is written, the
corresponding dirty flag is set in the TLB and the page table of only the processor
issuing the write request. When a page is chosen to be replaced, it is written to the
disk if the dirty flag is set in the TLB or the page table of any of the processors that
referenced it.

We conclude this section by defining terms to denote some of the types of memory
references that can occur during an application’s execution. During the virtual-to-
physical address translation, a processor might find the corresponding mapping in its
TLB, referred to as the TLB hit, or it does not find the mapping in its TLB, but
finds it in its page table, referred to as a page table hit, or it does not find it in both
its TLB and page table, referred to as a fault. We refer to a fault on a virtual page
which is mapped in remote memory as a remote page fault (RPF). We assume that
any physical page returned to the list of free pages is marked as a disk cache page,
and refer to a fault on such a page as a disk cache fault (DCF). Such a disk caching
scheme allows the page to be reused and prevents it from being copied unnecessarily
from the disk. We refer to a fault on a virtual page which is not mapped anywhere

in physical memory as a disk page fault (DPF).

2.3 Page Replacement

Efficient page replacement schemes are important, when providing page-level replica-
tion, because more physical pages are used. This fact is particularly true for appli-

cations with a high degree of data sharing. In this section, we discuss our work on

29

Reference Counter
31 30 29 28 0
0 0 0 1 1

Discarded Bit

Reference Bit
Figure 2.1. The software LRU approximation scheme.

page replacement.

2.3.1 CLOCK Scheme

The first scheme we study is the adaptation of the CLOCK algorithm used in the 4.3
BSD UNIX [64]. The CLOCK algorithm periodically resets each page’s reference flag,
thereby making it available for replacement. We conclude that it is preferred over the
LRU algorithm [13] in the 4.3 BSD UNIX, mainly due to the hardware constraints of
the VAX architecture rather than due to its superior performance. Since the CLOCK
algorithm does not use the reference information for a page over a period of time, we

do not study it further.

2.3.2 Software LRU Approximation Scheme

The next scheme we study is the adaptation of the software LRU approximation algo-
rithm. The basic algorithm periodically shifts the reference bit of each physical page
into the most significant bit of the page’s reference counter, whose least significant
bit is discarded (Figure 2.1). The page replacement scheme chooses the page with the

least value of the reference counter. We adapt this algorithm for page replacement

30

with a NUMA physical memory as follows. We maintain separate lists for the mas-
ter and the replica pages, and for each page in these lists, we periodically update its
reference counter and reset its reference bit. We also maintain a set of reference coun-
ters, one for each virtual page, and update these counters periodically using either
the hardware reference bits or the reference counters of the corresponding master and
replica physical pages. We allow all the update and the reset intervals to be variable
design parameters. Therefore, the reference information for a virtual page is a com-
bination of its local and remote reference information. In contrast, the adaptation of
software LRU approximation in [59, 18] uses only local reference information. Soft-
ware LRU approximation has the following drawbacks: (1) it is expensive because
the reference counters need to be implemented in hardware for performance reasons,
(2) the overhead of periodically updating all the counters and bits is high, and (3) in

our experience, simulating its operation takes a lot of time.

2.3.3 LRU Scheme

Next, we study the adaptation of the LRU algorithm, which is known to perform
the best for applications that exhibit locality. In the basic LRU algorithm, when
a page is referenced, it is placed at the beginning of the list of active pages. The
page replacement scheme replaces the page at the end of the list, which is the one
least recently used. Clearly, implementing this algorithm in software is too slow to be
practical, while a hardware implementation is too costly. However, even software LRU
approximation needs a hardware implementation for performance reasons. Further,
any approximation to LRU can at best perform as good as LRU, and therefore,
LRU gives a best-case performance estimate. In our experience, it takes less time
to simulate its operation than that of the software LRU approximation. Based on
these considerations, in our study, we develop a new page replacement scheme based
on LRU called LERN, an acronym for LRU Extension for Replicated NUMA memory
management.

We now describe how LERN works in the FR and the NR cases. The state of any
physical page is defined to be free, when it is not allocated to any virtual page, and is

31

Physical Page

Y

free master_L master_L_R master_R replica

master_L master_R

replica master_R
master_L_R master_R

LRUL RL

Figure 2.2. The LERN page replacement scheme.

defined to be replica, when it is allocated for page-level replication and is used locally.
Further, when a physical page is the master copy, its state is defined to be master_L,
master_R, or master_L_R, depending on whether it is used locally, remotely, or in
both places, respectively. Each processor maintains a free list (FL) that contains free
pages, a remote list (RL) that contains master_R pages, and a LRU list (LRUL) that
contains master_L, master_L_R, and replica pages (Figure 2.2). Note that in the case
of NR, LRUL has no replica pages. Tables 2.1 and 2.2 show the state transition
diagram of a physical page when the LERN scheme is used for the FR and the NR

cases, respectively.

32

Table 2.1. Page state transition diagram: LERN with full replication.

| Current State | Event | Next State |
free Page replication replica
free DPF master_L
free DPF master R
replica Periodic replacement free
replica Write invalidation free
replica Demand replacement for page replication | replica (New)
replica Swap with master R master_L
replica Demand replacement for DPF master_L
replica Demand replacement for DPF master_ R
replica Swap with master_ R master_L_R
master_L Periodic replacement free
master_L Demand replacement for page replication | replica
master_L Demand replacement for DPF master_L (New)
master_L Demand replacement for DPF master_R
master_L Page replication on a remote node master_L_R
master R Periodic replacement free
master R No more replicas of the virtual page free
master R Demand replacement for page replication | replica
master R Demand replacement for DPF master_L
master_R Demand replacement for DPF master_R (New)
master R Page replication master_R
master R Local page fault master_L_R
master L_R No more replicas master_L
master L_R No local reference master_R
master L_R Page replication master_L_R

LERN for Full Replication

In the FR case, at the end of a reference to a virtual page by a processor, a cor-
responding physical page is found in the processor’s LRUL. Further, each processor
reorders its LRUL on every reference. When LERN is invoked, a page can be replaced
either from the LRUL or from the RL. A page is replaced from the LRUL if it contains
more than a minimum number of pages, which is equivalent to the LRU stack size.
Otherwise, a page is replaced from the RL. If it is decided to replace a page from the
LRUL, master_L_R pages are skipped as long as the number of replica and master_L

33

Table 2.2. Page state transition diagram: LERN with no replication.

[Current State | Event | Next State |
free DPF master_L
free DPF master_R
master_L Periodic replacement free
master_L Demand replacement for DPF | master_ L (New)
master_L Demand replacement for DPF | master R
master_L Remote reference master_L_R
master R Periodic replacement free
master R Demand replacement for DPF | master_L
master R Demand replacement for DPF | master_R (New)
master R Remote reference master R
master R Local page fault master_L_R
master L_R Remote reference master_ L_R
master L_R No local reference master_R

pages is above a minimum value. If a master_L_R page is chosen as the candidate
from the LRUL, it is transferred to the RL after changing its state to master_R, and
the replacement policy on the RL is invoked. Otherwise, a replica or a master_L page
is replaced from the LRUL. The RL replacement scheme replaces the page that has
the least number of replicas, and uses a first-in-first-out rule when there is a tie. The
first replica of the replaced page is made the new master, and in this case, the virtual

page is effectively migrated.

LERN for No Replication

In the case of NR, a virtual page referenced by any processor might be allocated either
in local or in remote memory. While in the former case, the corresponding physical
page is in the local LRUL, in the latter case, it is in the LRUL or the RL of another
processor. To implement exact LRU, each processor, on every reference, needs to
reorder the list (LRUL or RL) in which the page currently referenced is located. It
is obvious that this reordering is costlier in the NR case than in the FR case. The

other option is to reorder only in the case of local references and use a first-in-first-out

34

ordering for remote references. When LERN is invoked, a page can be replaced either
from the LRUL or the RL. As in the FR case, a page is replaced from the LRUL, if
it contains more than a minimum number of pages, and from the RL otherwise. In
the former case, master_L_R pages are skipped as long as the number of master_L
pages is above a minimum value. If a master_L_R page is chosen as the candidate
from the LRUL, it is transferred to the RL after changing its state to master_R, and
the RL replacement scheme is invoked. Otherwise, a master_L page is replaced from
the LRUL. The RL replacement scheme replaces the page that is used by the least
number of remote processors. The TLB and the page table entries corresponding to

the replaced page are invalidated in all these processors.

2.4 Method of Study

The technique of simulation has been used extensively to study the memory per-
formance of both uniprocessors and multiprocessors. A given run of a simulator
approximates the execution of an application for a certain data placement scheme
such as cache-line-level replication with sequential consistency maintained using the
WI scheme. One of the key advantages of simulation is the ability to study the
effect of a wide range of parameters at a cost significantly lower than actual imple-
mentation. Two well-known simulation techniques are trace-driven simulation and
execution-driven simulation [65]. In the former approach, the application is modeled
by a global execution order of all its memory references, referred to as its address
trace or just trace. Techniques for collecting such traces as accurately as possible
have been developed (e.g., [66]). A trace-driven simulator simulates the actions that
occur in response to each reference in this global execution order, one reference at a
time. It does not account for changes that can occur to this global execution order
itself due to the placement strategies that are being simulated.

In the case of an execution-driven simulator, the application is modeled not as a
global execution order, but as a set of execution orders, one per processor, each of

which contains an event for every instruction executed by the corresponding processor.

35

A time counter is maintained for each processor and is initialized to zero. A given
processor’s time counter is incremented whenever an event from its execution order
is processed. The counter is incremented by the amount of time taken for this event’s
execution, which depends on whether the event is a memory reference or not, and in
the former case, the actions taken by the placement strategy. The simulator chooses
its next event from the execution order of the processor that has the minimum value
of all the time counters. When the values in the time counters of processors coincide,
it makes an approximation by making a random choice. Such a simulation allows
a given processor’s time counter to be incremented by the time taken for actions
of the placement strategy, which are in response to an event from this processor’s
execution order. However, other processors also participate in some of these actions
such as invalidations that occur when the WI scheme is used to maintain consistency
of replicated data. In order to incorporate the time for these actions in the time
counters of the other processors, the time at which these actions took place, relative
to each of these processors is needed, and only approximate values can be assumed for
such cases. Therefore, an execution-driven simulator is only able to approximately
incorporate the changes in the global execution order due to placement strategies.

It is clear that execution-driven simulation is not only time-consuming, but also is
not an accurate simulation of an application’s execution. Further, it requires separate
execution orders for each processor, and additional parameters such as the time taken
to execute each type of instruction. The additional accuracy offered by such a simu-
lation over trace-driven simulation is at the cost of extra complexity, and is justified
only if it is necessary to measure the execution time as accurately as possible. As dis-
cussed in the next section, we measure performance not by the execution time, but by
a metric that needs only the number of memory references for each type of reference.
Due to these considerations, we use trace-driven simulations in our study. Indepen-
dently, Bolosky et al. [43] also use a trace-driven simulator to study the relationship
between page-level migration and hardware parameters when providing a SVM in a
NUMA multiprocessor. They measure performance by the mean cost per reference,

which is similar to one of our measures of performance. Further, they compare re-

36

sults obtained for simulations on traces which are generated by arbitrarily perturbing
a given global execution order. They conclude that ignoring the perturbation caused
by the placement strategies does not influence the results obtained.

Our simulator is written in Gnu C++ and its input parameters include the TLB
size, the number of processors, the number of physical pages, the page size, the
number of address bits, and the parameters related to the LERN scheme and the
various schemes for the other problems involved in providing a SVM. Its output
includes various statistical data such as the number of page replacements and the
number of memory references for each reference type, which can be measured at

various points of the simulation run.

2.5 Performance Metrics

Since the goal of data placement is to minimize the data access time, our key mea-
sure of performance is the effective memory access time (EMAT), which is the mean
memory access time for the application averaged over all its memory references. The
access time for a given memory reference depends on the type of the reference and
the placement strategy used. For example, if a reference causes a disk page fault,
then its access time includes the time to transfer the page from disk to memory. If
the reference causes a remote page fault and page-level replication is used, the access
time includes the time to allocate a page in local memory and the time to initialize
the allocated page from the master which is allocated in remote memory. The EMAT

is given by:

Data consistency time + 3 oference { No. of references x Access time}

type
2.1
Total no. of references (2.1)

As mentioned in the previous section, our simulator records the number of references
that occur in each reference type category. We derive the access times taken by

various types of references in terms of parameters that characterize the hardware

37

Table 2.3. Parameters.

dfos Disk fault kernel lookup
dmc Disk to memory copy
inval Write invalidation

lern LERN scheme

local Local memory access
multicast | Write update

ptl Page table level

remote Remote memory access
remwr Remote master write
rlc Remote to local copy
rpfos Remote page fault kernel lookup

Table 2.4. TLB hit accesses.

| Page location | Access time

Local tiocal
R'emOte trem ote

t, represents the time it takes.

and also those that represent the software overheads. These parameters are listed in
Table 2.3, and for each parameter p, n, represents the number of times it occurs and
The expressions for the access times are enumerated
in Tables 2.4 through 2.8. Table 2.9 lists the time taken to maintain consistency of
data for all the memory references, where t,,,1ticast 1S normalized to t,emote-

Our second performance measure is the parameter overhead, which is a measure of

Table 2.5. Page table hit accesses.

| Page location | Access time |

Local

Remote Nptitiocal + tremote

nptltlocal + tiocal

38

Table 2.6. Remote page fault accesses.

Replicate? | Master | Replica | LERN Access time
Locn. Locn. Replica?
Yes Remote | Local | No Nptitiocal + trpfos + tric + tiocal
Yes Remote | Local Yes nptltlocal + ,trp]os + tric + tiocal + tiern
Yes Local Local NA nplltlocal + trpfos + tiocal
No Local Local NA nptltlocal + trp]oa + tlocal
No Remote | Remote | NA Nptitiocal + trpfos + tremote

Table 2.7. Disk cache fault accesses.

Replicate? | Master | Replica | LERN Access time
Locn. Locn. Replica?
Yes Remote | Local No Nptitiocal + Ldfos + tric + tiocal
Yes Remote | Local Yes nptltlocal + tdfoa + trlc + tlocal + tlern
Yes Local Local NA Nptitiocal + tdfos + tiocal
No Local Local NA Nptitiocal + tdfos + tiocal
No Remote | Remote | NA Nptitiocal + tdfos + tremote

the influence of a particular parameter on the EMAT. By using Tables 2.4 through 2.9
in Eq. 2.1, the EMAT can be expressed as:

No. of times the parameter Time for
X all X

parameters | appears in the total access time the parameter

Total no. of references

Therefore, the overhead of a particular parameter p is given by:

No. of times p appears .
X { Time for p }
in the total access time

EMAT x Total no. of references

39

Table 2.8. Disk page fault accesses.

Repli- | Master | Replica | LERN | LERN Access time
-cate | Locn. Locn. Master | Replica?
Yes Remote | Local No No Nputiocal + tdfos + tdmet+
trlc + tlocal
Yes Remote | Local No Yes Nputiocal + tdfos + tame+
trlc + tlocal + tlern
Yes Remote | Local Yes No Nptitiocal + tdfos + tamc+
trlc + tlocal + tlern
Yes Remote | Local Yes Yes Nptitiocal + tdfos + tdmc+
tric + tiocal + 2(tiern)
Yes Local Local No NA nptltlocal + tdfoa + tame + tiocal
Yes Local Local Yes NA Nptitiocal + tdfos + tame+
tlocal + tlern
No Local Local No NA Nptitiocal + tdfos + tame + tiocal
No Local Local Yes NA Nptitiocal + tdfos + tamc+
tlocal + tlern
No Remote | Remote | No NA Nputiocal + tdfos + tame + tremote
No Remote | Remote | Yes NA Nptitiocal + tdfos + tamet+

tremote + tIern

Table 2.9. Time to maintain consistency of data.

[Consistency scheme | Replicate? | Data consistency time

WI
WI
WU
WU

Yes
No
Yes
No

tinualninual + tremote Nremwr

o s O

remotetmulticastMmulticast + tremoteMremwr

40

DOSEQ S,
Initialize A
S END DOSEQ
DOSEQ S3 K= 1 TO m
DOALL S3 I =1 TOn
DOALL S4 J =1 TOn
A(I,J) = 0.25 * (A(I-1,J) + A(I+1,J) + A(I,J-1) + A(I,J+1))
Sa END DOALL
S END DOALL
S; END DOSEQ
DOSEQ S;
Output A
Ss END DOSEQ

Figure 2.3. Application parallel iterative solver.

2.6 Workload

The workload for our simulations consists of synthetic traces as well as address traces
of actual applications. We input synthetic traces of well-known reference patterns
to the simulator, and test the validity of the simulator by comparing its output
to the expected output. One of the actual application address traces used in our
study is collected by executing the Particle-In-Cell benchmark on an Alliant emulator
for an eight-processor configuration [67], and we refer to it as application PIC. We
also consider the class of applications which solve partial differential equations using
iterative methods [68], and develop a program to generate the address trace for the
case of a two-dimensional problem with a 5-point stencil, the typical code for which
is shown in Figure 2.3.

Here, each outermost loop iteration (corresponding to S;) uses the results of the

previous iteration and hence must be executed sequentially. However, the iterations

41

Column Major Row Major Block Major

4 8 J12 | 16 13 ({14 § 15 | 16 11 (12 | 15 | 16

Figure 2.4. Different methods of data layout for a 4 x 4 array partitioned into four
partitions.

of the two inner loops (corresponding to S3 and S4) can be executed in parallel. Since
this application involves communication only with the nearest neighbors, we refer to
it as application near neighbor.

The inputs to the program that generates the address trace for application near
neighbor include the array size, the number of processors, the virtual page size,
number of array elements per virtual page, and the layout of the array elements in
the SVM. The address trace corresponds to a rectangular partitioning of the array
elements among the various processors, each of which processes the elements allo-
cated to it in a row-wise manner. We do not include the references corresponding to
initialization, termination, and synchronization, when generating the address trace,
because for the purposes of our study, it is sufficient to record the read and the write
references corresponding to the computation. We also assume the presence of an
instruction cache and therefore ignore instructions.

We study three schemes for laying out the array A in the SVM, out of which the
row major and the column major schemes layout the array elements in row major
and column major form, respectively. We refer to the portion of the array which
is assigned to each processor as a block, and the block major scheme lays out ar-

ray elements that belong to different blocks in separate regions of the SVM. These

42

schemes are illustrated for an example in Figure 2.4, where the number assigned to
each array element is its virtual address. We refer to the three address traces gen-
erated due to these three schemes as applications near neighbor/row major, near
neighbor/column major, and near neighbor/block major, respectively. The be-
havior of the first two applications are similar, except that the latter incurs more
page faults because the array elements are processed row-wise and the layout of the
data is in the column major form. Therefore, we do not consider application near

neighbor/column major further in our study.

2.7 Experimental Results

Our objective is to study the interaction of page-level replication with hardware pa-
rameters and with page reference patterns created by various data layout schemes,
and hence, we consider the FR and the NR placement strategies. Since replication
is used to alleviate the high cost of accessing remote memory, we choose the ratio of
the times to access remote and local memories (R) as a variable hardware parame-
ter. Further, since replication needs more memory, we choose the number of pages
allocated to the application as another variable hardware parameter. The number
of pages is varied to cover both the low page range region, where there are a lot
of disk page faults and the high page range region, where increasing the number of
pages further did not lead to an improvement in performance. We use the applica-
tions PIC, near neighbor/row major, and near neighbor/block major to study
various page reference patterns.

We now outline the fixed parameters used in our experiments. We conduct detailed
experiments and conclude that for our workload, the fault processor scheme is better
than the modulo scheme for initial page placement, and also, the WU scheme is
better than the WI scheme to maintain consistency. Therefore, we choose the fault
processor scheme and the WU scheme as fixed parameters. The values for the other
fixed parameters are listed in Table 2.10. These values are typical of the TC2000

multiprocessor and are all normalized to the local memory access time t;,.,, which

43

Table 2.10. Fixed parameters.

[Parameter p | ¢, (unit tocq1) |

rpfos 100
dfos 100
rlc 560
dmc 40000
lern 500
multicast tremote

is assumed to be 0.5 us. We assume a disk access time of 20 ms and choose values
for the software overhead to process various types of references and that for the LERN
scheme based on the fact that the operating system’s data is distributed evenly across
all memory modules. The value of t,¢more for the multicast operation that enforces
the WU scheme is based on the assumption that all remote updates can take place
simultaneously, which might not be true always. As we will see, our results are in
fact strengthened when this assumption, which favors the FR case, does not hold.
We now discuss the results of simulations conducted with these fixed and variable
parameters in terms of the performance metrics (EMAT and parameter overhead)

defined earlier.

Application near neighbor/row major

Figures 2.5 through 2.8 show the parameter overhead versus the number of pages for
R = 2 and R = 10, for both the FR and the NR cases. The parameter overhead
graphs for the FR case can be divided into the low page range, the high page range,
and the transition range regions. The overhead due to the LERN scheme, which is
invoked in the low but not in the high page range region, causes the transition range
region. The insignificance of this overhead in the NR case, because of infrequent page
replacement, eliminates the transition range region in the corresponding graph. When
the number of pages and R are both low (R = 2), disk page faults constitute the major
overhead for both the FR and the NR cases. At high values of R (R = 10), remote

44

Near Neighbor/Row Major/FR/R2

DomEOSEEE
H

Figure 2.5. Parameter overhead (%) vs. No. of pages (FR/R=2/near neighbor/row
major)

accesses share the overhead with disk page faults for the NR case. However, disk page
faults still constitute the major overhead for the FR case, as replication reduces the
number of remote accesses. When the number of pages is high, disk page faults are
the minimum possible for both the FR and the NR cases. In the case of FR, local
memory accesses account for a major share of the overhead, which is desirable because
our goal is to make the EMAT as close to tjoca1 as possible. Therefore, multicast and
remote master writes constitute the major overhead and their share is more for higher
values of R (R = 10). Remote accesses constitute the major overhead in the NR case
for both high and low values of R.

The EMAT for the FR and the NR cases are shown in Figures 2.9 and 2.10,
respectively. The steep slope corresponds to the transition from the low page range
region to the high page range region. When both the number of pages and R is
low (R = 2), the FR case incurs lots of LERN invocations and remote page faults, and

therefore, its EMAT is worse than that for the NR case. When R is high, these factors

45

Near Neighbor/Row Major/NR/R2
72
n
7
69 M local
H remote
i o B e
arc
5 67 O dos
. B omc
a2 " B em
(3 B muicast
O remwr
6
(Y]
62
0 2 40 60 80 100
Percentage Overhead

Figure 2.6. Parameter overhead (%) vs. No. of pages (NR/R=2/near neighbor/row
major)

Near Neighbor/Row Major/FR/R10

No. of Pages

oEOoEOSEER
THIRTE

Figure 2.7. Parameter overhead (%) vs. No. of pages (FR/R=10/near
neighbor/row major)

46

Near Neighbor/Row Major/NR/R10
72
Al
7
69 W ocal
B remow
| 3 B
ric
5 O dos
i i
[B muticast
@ remwr
64
(]
62
° 20 © 6 80 100
Percentage Overhead

Figure 2.8. Parameter overhead (%) vs. No. of pages (NR/R=10/near
neighbor/row major)

T {
A A D A A R=2 O
pad X X X R=4 +

Effective
memory
access 8
time
(unit tiocar) o
N
4 1]
» >
62 64 66 68 70 72

No. of pages

Figure 2.9. Effective memory access time vs. No. of pages (FR/near neighbor/row
major)

47

Effective
memory

aqcess
l;lme
(umt tlocal)

No. of pages

Figure 2.10. Effective memory access time vs. No. of pages (NR/near neighbor/row
major)

are overshadowed by the remote accesses in the NR case, and hence, the EMAT for
the FR case is better than that for the NR case. When the number of pages is high,
the EMAT graph flattens after a certain number of pages, the actual number being
smaller for the NR case than for the FR case. Again, for R = 2, the reduction in the
EMAT for the FR case from that for the NR case is small, while it is significant when
R>2.

The best values of the EMAT occur in the high page range region for both the
FR and the NR cases. The dominant parameters that affect the EMAT then are
the remote accesses for the NR case and the remote master writes and the multicast
for the FR case. Right now, pages are migrated only during certain types of page
replacement, which are absent in the high page range region. Explicit page-level
migration can reduce the number of remote master writes and remote accesses, and
therefore, reduce the EMAT. Further, efficient multicast algorithms can reduce the
multicast overhead and reduce the EMAT for the FR case. These results show that the

effectiveness of replication depends on hardware parameters such as R, the available

48

physical memory, and the overhead of maintaining consistency.

Application near neighbor/block major

Figures 2.11 through 2.14 show the parameter overhead for R = 2 and R = 10, as the
number of pages is varied, for the FR and the NR cases. As in the row major case,
the overhead graphs for the FR case can be divided into the low page range, the high
page range, and the transition range regions. The overhead due to page replacements
is present when the number of pages is low and absent when it is high, and hence
the transition range region in the FR case. The infrequent page replacements in the
NR case eliminates the transition range region in the corresponding graph. When
the number of pages is low, disk page faults constitute the major overhead for both
R =2 and R = 10, for both the FR and the NR cases. When the number of pages is
high, for both the FR and the NR cases, disk page faults are at their minimum and it
is desirable for the local access overhead to be high. Therefore, multicast and remote
master write are the dominant parameters for the FR case, while remote access is the
dominant factor for the NR case, for both R = 2 and R = 10.

The EMAT for the FR and the NR cases are shown in Figures 2.15 and 2.16,
respectively. The steep slope corresponds to the transition from the low page range
region to the high page range region. In all cases, EMAT flattens in the high page
range region after a certain number of pages; this number is less for the NR case than
for the FR case. The difference between this number for the FR and the NR cases is
higher for the block major scheme than the row major scheme. Further, the EMAT
for the NR case is better than that for the FR case, for all values of R and for the
entire page range. The lower EMAT is because the block major scheme results in
fewer shared pages and consequently, when the number of pages is high, the overhead
for remote access in the NR case is less than that for multicast and remote master
write in the FR case. Again, as in the row major case, the EMAT can be improved

by explicit page-level migration and efficient multicast algorithms.

49

Near Neighbor/Block Major/FR/R2

Ne. of Pages
[al:10] Jm[>]] []

3 8 853 8 8 8 8 ¢ 8
FREL L

3

Figure 2.11. Parameter overhead (%) vs. No. of pages (FR/R=2/near
neighbor/block major)

Near Neighbor/Block Major/NR/R2

Ne. of Pages

CEnEOSEES
H

Figure 2.12. Parameter overhead (%) vs. No. of pages (NR/R=2/near
neighbor/block major)

50

Near Neighbor/Block Major/FR/R10

6
54
52
B local
so B remowe
B pios
a 44 A rc
s O dos
: W dmc
= B tem
hx B mutticast
@ remwr
20
2

Figure 2.13. Parameter overhead (%) vs. No. of pages (FR/R=10/near
neighbor/block major)

Near Neigl Block Maj 10
52
50
48
W local
4 B remote
B rplos
40 fic
- O dios
o L B dnc
K] B em
2 B muticast
@ remwr
18
12
8
0 20 40 60 80 100
Percentage Overhead

Figure 2.14. Parameter overhead (%) vs. No. of pages (NR/R=10/near
neighbor/block major)

51

12 A 1 A i IA i A 1 A 1 l 1 I
llbﬁxxﬁ A
0 EEES 7.3
9 -
Effective 8k
memory
access an
time
(unit 15cq1) 6
5 -
4 -
3 o
2 1 1 1] 1 |

5 10 15 20 25 30 35 40 45 50 55 60

No. of pages

Figure 2.15. [Effective memory access time vs. No. of pages (FR/near
neighbor/block major)

10
9 -
8 -
3 7 I~
Effective
memory 6k
access
time 5
(unit tlocal)
4 -
3 -
2 -
1 1 1 1 1 1 1 1 1 1 1

No. of pages

Figure 2.16. Effective memory access time vs. No. of pages (NR/near
neighbor/block major)

52

Layout of Data: Row Major vs. Block Major

The row major scheme creates virtual pages with a higher degree of sharing than
the block major scheme and hence, needs more memory for the FR case. Further,
in the address trace for the row major scheme, the leftmost processor references a
given row’s virtual page first. This fact combined with the fault processor scheme
leads to more pages being used by the leftmost processor. Therefore, application
near neighbor/row major needs more memory for the NR case also. On the other
hand, with the block major scheme, processors access virtual pages within their block,
except when processing the border array elements, and consequently, need fewer pages
for both the FR and the NR cases. Therefore, in both cases, the transition from the
low page range region to the high page range region occurs at fewer pages with the
block major scheme than with the row major scheme.

The best EMAT for the row major scheme occurs for the NR case when R = 2
and for the FR case when R > 2. On the other hand, for the block major scheme,
the best EMAT occurs in the NR case for all values of R. When R = 2, the remote
access overhead is lower for the block major scheme when compared to that for the
row major scheme. When R > 2, the remote access overhead for the block major
scheme is less than the remote master write and multicast overhead for the row major
scheme. Therefore, the best EMAT for application near neighbor occurs with the
block major and the NR schemes, and in addition, this combination uses the least
amount of memory. These results underscore the fact that proper layout of data in

the SVM can simplify data placement.

Application PIC

Figures 2.17 through 2.20 show the parameter overhead for R = 2 and R = 10, as
the number of pages is varied for both the FR and the NR cases. For both high and
low values of R in the FR case, disk page faults constitute the major overhead in
the low page range region, and multicast and remote master writes constitute the

major overhead in the high page range region. On the other hand, in the NR case,

53

PIC/FR/R2

§

Neo. of Pages

lern
multicast
remwr

o[] [m[S]]]]
g

Figure 2.17. Parameter overhead (%) vs. No. of pages (FR/R=2/PIC)

remote accesses constitute the major overhead for all values of R and in the entire
page range, indicating a high degree of sharing in application PIC.
The EMAT for the FR and the NR cases are shown in Figures 2.21 and 2.22,

respectively. The slope corresponds to the transition from the low page range region

to the high page range region. The EMAT graph flattens in all cases after a certain
number of pages, the number of pages being fewer in the NR case than in the FR case.
The fact that more pages are needed in the FR case concurs with the earlier statement
that there is a high degree of sharing in application PIC. While the EMAT for the
NR case is better than that for the FR case by a very small margin when R = 2,
when R > 2, EMAT for the FR case is better than that for the NR case. Therefore,
we conclude that the sharing in application PIC is mostly-read, as otherwise, the
overhead of multicast would have made the EMAT for the FR case much higher. In
summary, when R is high, FR can improve the EMAT for an application with a high
degree of mostly-read sharing.

PIC/NR/R2

5387431

Ne. of Pages

2
i

(8101 fmiN]]])

Figure 2.18. Parameter overhead (%) vs. No. of pages (NR/R=2/PIC)

PIC/FR/R10

3 ® B 8 8 &8 2
&

No. of Pages
§38tgit

DanEOSEER

t

Figure 2.19. Parameter overhead (%) vs. No. of pages (FR/R=10/PIC)

55

PIC/NR/R10

Ne. of Pages

HE R A 1

N;IIDEIII
i

Figure 2.20. Parameter overhead (%) vs. No. of pages (NR/R=10/PIC)

45 T T T T T T
L R=2 O |
2ol . R=4 +
35 R=6 O
R=8 Z
4 0 = -
Effective R=10
memory 2
access
time 20 [
it ¢
(unit tocar) 5L
10
5+
0
10

No. of pages

Figure 2.21. Effective memory access time vs. No. of pages (FR/PIC)

56

1 1 T 1 1
R=2 O |
R=4 +
R=6 O 4
...... A R=8 2 A
Effective . R=10
memory S VO S U &
access
time = .
(unit tocal) = !
| 1 _1
& o B
1 1 | 1 1l

18 20 22 24 26 28

No. of pages

Figure 2.22. Effective memory access time vs. No. of pages (NR/PIC)

Conclusions

Our experiments show that whether to use page-level replication or not must be de-
termined based on hardware parameters related to replication. While full replication
does not provide a substantial performance improvement over no replication when
remote memory accesses are relatively inexpensive, it improves performance when
they are expensive. Further, since full replication needs more physical memory, when
it is used for an application with a lot of shared data, insufficient physical memory
can lead to performance loss due to disk page faults. When data is fully replicated
and sufficient physical memory is available, the performance is limited by the time
taken to keep data consistent. In essence, the choice of the data replication strategy
should be adaptive to hardware parameters such as the remote memory access time,
available physical memory, and the time it takes to make data consistent.

Our experiments also show that a page’s reference pattern determines whether it
should be replicated or not. When the sharing of virtual pages is low (application near

neighbor/block major), performance is the same with and without replication. On

37

the other hand, when the sharing is high (applications PIC and near neighbor/row
major), the best performance is achieved when pages are fully replicated. Further,
the amount of sharing determines the physical memory needed to ensure that there
are no disk page faults. In the presence of sufficient physical memory, performance of
replication is determined by the overhead of maintaining consistency, which is directly
related to the amount of sharing of a page.

Further, we find that the layout of data in the SVM influences which placement
strategy provides a better performance. A data layout strategy that reduces the
sharing of pages can eliminate the need for complex placement strategies. With
proper layout of data, our experiments show that the performance of an application
with and without replication is the same. We therefore conclude that proper data
layout can simplify data placement.

In related work, Bolosky et al. [43] have concluded that page-level migration
schemes need to be adaptive to hardware parameters that are related to migration.
Also, LaRowe et al. [53] have developed a parameterized page placement scheme which
can be adapted to hardware parameters and application reference characteristics by

varying parameters.

2.8 Summary

In this chapter, we presented the results of our study which aims at identifying the
limitations of existing block-level placement strategies. We establish that for perfor-
mance reasons, page-level replication strategies must be adaptive to certain hardware
parameters of the NUMA multiprocessor and also to the page’s reference pattern.
These results apply to other block-level placement strategies as well. It is tedious
for the applications programmer to obtain by trial and error the placement scheme
that performs the best for a given application and a specific NUMA multiprocessor.
Further, in the absence of help from the compiler or the applications programmer,
the runtime overhead of adaptive placement schemes is high. Also, the results of our

study demonstrated how the compiler can play a role in simplifying data placement by

58

proper data layout in the SVM. These factors motivate our work on compiler-assisted

data placement which is covered in detail in the following chapters.

CHAPTER 3

COMPILER-ASSISTED DATA
PLACEMENT

In this chapter, we present our approach to compiler-assisted data placement when
providing a shared virtual memory (SVM) in a NUMA multiprocessor. First, we
motivate the need for the compiler to assist in placing data in memory, and then
demonstrate that such help is necessary at all levels of the memory hierarchy. In
order to assist data placement, the compiler needs information about the reference
pattern of the SVM, and therefore, we next identify the various factors that determine
this reference pattern. Then, we present our design of a compiler that assists data
placement by using information about these factors. Next, we present our algorithms

to determine this information, and finally we conclude by discussing related work.

3.1 Motivation

Proper data placement is important to reduce the performance degradation due to
non-local memory accesses when providing a SVM in a NUMA multiprocessor. Data
placement can be either static or adaptive depending on whether a fixed strategy
is adopted or not. For example, a static page-level placement strategy replicates
any referenced page while an adaptive strategy might replicate a page depending
on the number of processors sharing it. Studies on block-level placement schemes

have concluded that in order to achieve a high performance, such schemes must be

59

60

adaptive to related hardware parameters [43, 41, 42, 53] and also to the reference
pattern of the block in question [29, 46, 41, 42, 53|. Previous studies have made it
straightforward to choose an adaptive block-level placement strategy once the block’s
reference pattern is known. For example, Bennett et al. [29, 46] identify different types
of data objects that occur in typical applications, and propose adaptive placement
schemes for these objects. A read-only object is only read and never written, a mostly-
read object is read more often than it is written, and a migratory object is shared by
various processors in a round-robin fashion. Read-only and mostly-read objects can
be replicated while migratory objects can be migrated.

Such adaptive placement schemes can be implemented only if the reference pat-
tern is known, and this information can be gathered either at compile-time or during
runtime. Examples of the latter case are page-level placement schemes reported in
(15, 16] which maintain each page’s reference history. In addition to space overhead,
such schemes also incur time overhead because they frequently re-evaluate their de-
cisions in order to ensure proper placement of pages whose reference patterns change
rapidly. Such frequent re-evaluations, however, cause unnecessary overhead for pages
whose reference pattern remains unchanged or changes infrequently. Further, these
schemes can make proper placement decisions only if the past reference history is an
accurate predictor of future references. LaRowe et al. [69] demonstrate that these
schemes can benefit from hints in an application about changes in page reference pat-
terns. Further, our study [41, 42] shows that simple reference patterns can simplify
placement schemes. It is difficult for the applications programmer either to ensure
that the reference patterns are simple or to provide hints about the reference pattern.
It is therefore important to develop techniques that enable the compiler to achieve
these objectives, when possible.

Another problem that limits the performance of block-level placement strategies is
false sharing of blocks. We shall illustrate the problem by considering the application
shown in Figure 3.1, which we use for illustration throughout this chapter. Assume
that p processors are allocated to the application and that loop 5; is parallelized by

allocating consecutive sets of iterations to these processors. Further, the elements of

61

Initialization

DOS; I=1TOn
A(I) = B(I) + C(I)
S, END DO

DO S; I=1T0Om
A(I) = D(I) + E(I)
S, END DO

DO S;I=1T0q
F(K(I)) = G(I) + H(I)
S; END DO

Termination

Figure 3.1. An example of a sequential application.

the array variables are laid out consecutively in the SVM. Then, for certain values
of the block size s, it is possible for data elements which are exclusively accessed by
different processors to reside in the same block (cache line or page), thus making it
falsely-shared. For example, false sharing of certain blocks occurs when n = 1000,
p = 10, s = 32 bytes, and each data element occupies four bytes, because each
processor exclusively accesses 100 consecutive elements and a block contains eight
elements.

Block-level placement strategies consider every processor that references at least
one of the elements of a given block as one that shares the entire block. Hence, they
consider all data elements of a falsely-shared block to be actually shared by proces-
sors referencing any of these data elements. Consider the situation when such a block
is replicated and sequential consistency is maintained using the write-update (WU)

scheme. On a write operation to a given data element, all copies of the block contain-

62

ing this data element are updated, even though some of the processors owning these
copies will never reference this element. Though weaker consistency models such as
release consistency reduce the frequency of updates, they also incur the performance
loss due to unnecessary updates of falsely-shared blocks on a release operation. A
write-invalidate (WI) scheme on the other hand causes unnecessary invalidations and
subsequent misses. Alternatively, if this block is migrated among the local memories
of interested processors, there is a ping-pong effect due to repeated invalidations and
transfers. Instead, if the block is placed statically in a given processor’s local memory,
every other processor referencing any of its data elements incurs the cost of accessing
it remotely.

Studies on caching in multiprocessors [48, 49, 50] have found that as the size of
the cache line is increased, the number of cache misses decreases up to a certain line
size, after which it increases. The initial reduction in cache misses is credited to
prefetching facilitated by a larger block, while the subsequent increase is attributed
to the higher degree of false sharing in a larger block. Since a page is much larger
than a cache line, the potential of it being falsely-shared is correspondingly higher.
Therefore, when NUMA multiprocessors lacking hardware cache consistency provide
page-level placement schemes, it is important to eliminate the false sharing of pages,
as rightly emphasized in [43, 69]. Our study [41, 42] also shows that proper layout
of the data in the SVM reduces false sharing of pages and therefore simplies their
placement.

One can argue that the performance loss due to false sharing can be minimized
by reducing the granularity of placement operations. For example, in the KSR1 [6],
each page is divided into several sub-pages, and the hardware provides replication
with sequential consistency at a sub-page-level. The granularity of placement oper-
ations can also be reduced for software placement schemes. This reduction can be
achieved either using hardware features for locking sub-pages such as that provided
by the IBM’s RISC System/6000 [70] or by maintaining software flags for each sub-
page. However, the reduced block size in such an approach diminishes the benefits of

prefetching. The reason large blocks provide the benefits of prefetching and do not

63

suffer false sharing in uniprocessors is because they contain data elements which are
all referenced by a single processor. Similar results can be achieved in the case of
multiprocessors if it is ensured that the blocks are not falsely-shared, irrespective of
their size. Our study [41, 42] shows that false sharing of blocks can be reduced or
eliminated by proper layout of data in the SVM, but it cannot be easily done by the
applications programmer. Hence, it is important to develop techniques that enable
the compiler to do it.

Another approach to solving the false sharing problem is to allow blocks to be
falsely-shared, but invoke placement operations only when they are actually required.
For example, consider one of the blocks belonging to array A when the loop S; of
Figure 3.1 is parallelized as mentioned earlier. The data elements of this block are
each exclusively written by a single processor. When such a block is replicated, it is
sufficient to maintain consistency at the end of the loop, not for every write operation
within the loop. In the case where data elements of a block are shared by different
sets of processors, it is sufficient to maintain consistency of data elements which are
actually shared, not the entire block. SSVM [23] and Munin [24] solve the false sharing
problem in this manner, but they require the applications programmer to specify
information about the reference behavior of data objects. It would be better if this
information is provided by the compiler instead.

These factors motivate our work on compiler-assisted data placement when pro-
viding a SVM in a NUMA multiprocessor. There is some additional compile-time
overhead when applying our techniques that assist data placement. This overhead,
however, is not as critical as the runtime overhead of adaptive placement schemes
which have no help from the compiler or the applications programmer. In addition,
the overhead can be amortized over several runs of the application. It is also com-
pensated by the ease of programming for the applications programmer who neither
needs to layout the data properly nor provide information about the reference pat-
tern. Finally, since the compiler can provide reasonably accurate information about
the reference pattern in most situations, there is a high potential of improvement in

runtime performance.

64

3.2 Data Placement and the Memory Hierarchy

The problem of data placement in NUMA multiprocessors has been addressed both
by hardware cache-line-level protocols and software page-level placement strategies,
which are provided at the cache and main memory levels of the memory hierarchy,
respectively. In this section, we show that even when data is cached and hardware
cache consistency is provided, proper page-level placement in the main memory is
important, because it reduces remote page accesses that occur during cache line re-
placements, cache misses, and certain consistency operations. Therefore, techniques
for compiler-assisted data placement should provide assistance to place data at all
levels of the memory hierarchy.

We now derive an expression for the performance degradation in the absence
of page placement, when data is cached. For simplicity, we ignore main memory
accesses for cache consistency operations and cache line replacements, and measure
performance by the EMAT, which we defined in Chapter 2. We ignore the time
taken to service TLB hits and misses, and further, assume that there are no disk
page faults. Therefore, a memory reference can result in a cache miss or a cache hit,
and in the former case, the cache line is fetched either from remote or local memory,
depending on where the corresponding page is located. We assume that the cache line
is one word long and we also do not consider the times involved in page replication
or migration when the page is absent in local memory.

Let tcaches tiocal, and tremote be the times to access a single word in the cache, local,
and remote memory, respectively, and let L = t;,ca1/tcache and R = tremote/tcache-
Let h. and h; be the cache and the local memory hit ratios, respectively, and p
be the number of processors allocated to the application. We measure the EMAT,
normalized to t.,ch.. In the presence of page placement, a cache miss is serviced from

local memory with a probability of k;, and therefore, the EMAT is given by:

EMATwith_page_placemcnt = hc + (1 - hc)(L X hl + R(l - hl)) (31)

In the absence of page placement, a cache miss has equal probability of being serviced

65

L T I 26 = 1918] +
e - C — . + -
P= he = .96 ~—
100 L:4 h. = .94 »— _
= he=.92 »—
he = .90 &
80 |- —
(%) 60 ¢ ~ 3
P @
40 A N . ” -+
20 = x % = .
04 } ! + {
.90 .92 94 .96 .98 1.0

hy

Figure 3.2. Performance degradation with caching and without page placement.

from the local memory of any of the processors. Therefore, the EMAT is given by:

EMATwithout_pagc-placemcnt = hc + (1 - hc)(L/p + R(p - 1)/p)) (32)

The performance degradation in the absence of page placement A(h,, h;) is given by:

EMATwithout.page_placement - EMATwith_page_placemcnt

A (he, b)) = 3.3

(I) EMATwith_page-placement ()
Substituting Equations 3.1 and 3.2 in Equation 3.3, we get

A (hm hl) _ (1 - hc)(hl - l/p)(R — L) (34)

" he+ (1 =h)(L x ki + R(1 — hy))

Equation 3.3 provides us information about the relationship of the performance
degradation A(h., h;) with various parameters. For example, when there are no cache
misses (h, = 1) or when the main memory access time is uniform (R = L), or when
the local memory hit ratio equals the random placement hit ratio (k; = 1/p), there

is no performance degradation in the absence of page placement. Equation 3.3 gives

2\

1

66

a value of zero for A(h,, hi) for each of these cases. For a given value of h;, A(k,, ki)
increases as h, decreases. For a given value of h., A(h, h;) increases as h; increases.
As the number of processors increases, the choice made by the random placement
scheme becomes worse, and A(h,, h;) increases. The larger the values of L and R,
the higher the performance degradation. Figure 3.2 shows how A(h,, h;) varies as h,
and h; are varied, fo; fixed parameters of L = 4, R = 16, and p = 10. It is seen that
even for high cache hit ratios (.90-.98), the performance degradation in the absence
of page placement is quite high (20-80%).

Our analysis does not include the additional memory access involved in case a
cache line needs to be replaced to service a cache miss. Such replacements occur
for a fully utilized cache in the steady-state condition, and the benefits of proper
page placement will be even higher under such conditions. We conclude that proper
page placement is important even when data is cached and therefore, techniques for
compiler-assisted data placement should be designed to help place data at all levels

of the memory hierarchy.

3.3 Reference Pattern of the Shared Virtual
Memory

Data placement strategies require information about the reference pattern of the var-
ious portions of the SVM. As a first step toward compiler-assisted data placement,
we identify the various factors that determine this reference pattern. The applica-
tion’s code and data are allocated virtual space in the SVM. The portion of the SVM
that contains the application’s code is only read and never written. The area con-
taining the application’s data can be allocated statically or dynamically. It is not
possible to determine at compile-time the reference pattern of the area which is al-
located dynamically, and hence, we do not discuss it further. The area allocated for
statically-declared variables can contain array, scalar, and synchronization variables.
The reference pattern of a synchronization variable depends on the method of syn-

chronization. The various factors that determine the reference pattern of scalar and

67

Control
Partitioning

Data References in Code

Layout of Data
in Shared
Virtual Memo

Runtime Factors

Data Reference Pattern

Reference Pattern of

Figure 3.3. Reference pattern of the shared virtual memory.

array variables are shown in Figure 3.3.

Here, control partitioning refers to the distribution of the work of a parallel appli-
cation among the various allocated processors. For example, loop S; in Figure 3.1 can
be control-partitioned by assigning to each processor a distinct set of the values taken
by the loop index I. A data reference refers to any reference to a data element in the
program. A data reference can be a scalar or an array reference and an example of the
latter is A(I) which appears in loop S). In this array reference, the value of I deter-
mines which element of array A is referenced, and since A(I) appears on the left hand
side of the program statement, the corresponding element is written. On the other
hand, array reference B(I) in the same loop appears on the right hand side and hence
the element referenced by it is read. When the iterations of loop S, are partitioned
as mentioned above, each processor executes instances of the array references A(I),
B(I), and C([I) corresponding to its assigned values of I. The data reference pattern
of array variables are influenced by these factors and a similar discussion applies to

scalar variables as well. Hence, control partitioning and the nature of data references

68

in the code together determine each data element’s reference pattern and hence, that
of its virtual address.

The layout of data determines which data elements reside in a given block of the
SVM such as a page or a cache line. Therefore, the reference pattern of each block
is influenced by that of the data elements it contains. In addition, it is influenced by
various runtime factors which include replacement and placement schemes, the syn-
chronization needs of the application, and contention for hardware resources such as
the interconnect, memory module, and the memory port. These factors do not change
the number of read and write references in the user state by the various processors
to each block in the SVM, but change only the order in which these references occur.
It is difficult at compile-time to accurately predict and incorporate the perturbation
to the reference pattern due to these runtime factors. Also, we do not think that
this perturbation is significant enough to warrant a change to the placement strategy
of a block chosen based on its reference pattern in the absence of this perturbation.
Hence, we ignore these runtime factors when developing techniques that assist data
placement.

In general, the nature of references to data elements is different in various parts
of the program. Further, control partitioning is different for various loops of the
application. Hence, the data reference pattern changes with time during the execution
of a parallel application and so does the reference pattern of the SVM. For example,
the reference pattern of the elements of array A can be different in loops S; and S;
in Figure 3.1, for some combination of the values for n and m and certain methods

of control-partitioning the iterations of these loops.

3.4 Design of the Compiler

In this section, we outline our design of a compiler that assists data placement. We
present our design by considering the various factors that influence the reference

pattern of the SVM (Figure 3.3), and also other factors.

69

DOSEQ
Initialization
END DOSEQ

DOALL S; I =1 TO n
A(I) = B(I) + C(I)
S, END DOALL

DOALL S; I = 1 TO m
A(I) = D(I) + E(I)
S, END DOALL

DOSEQ S3 I =1 TO q
F(K(I)) = G(I) + H(I)
Ss END DOSEQ

DOSEQ
Termination
END DOSEQ

Figure 3.4. An example of a parallel application.

Application Programmer Interface

The applications programmer writes the application‘ either in a sequential language
or in a parallel language. In the former case, the application is converted into a
parallel application as done by parallelizing compilers [71, 72, 73, 74, 75]. In both
cases, the parallel application consists of several code segments. We define a code
segment to be sequential if it is executed by a single processor, and parallel if it is
executed by more than one processor. A parallel code segment contains DOALL loops

[73] in which all iterations are independent and can be executed in parallel and in

70

any order without any synchronization, or DOACROSS loops [73] in which there are
dependencies among different loop iterations. Barrier synchronization operations are
inserted after each parallel code segment. For example, the sequential application in
Figure 3.1 can be converted into a parallel application shown in Figure 3.4, where

DOSEQ refers to a sequential code segment.

Control-Partitioning

As shown in Figure 3.3, in order to determine the reference pattern of the SVM
and assist data placement, the control-partitioning information needs to be available
at compile-time. In general, loop iterations can be partitioned either at compile-
time (static scheduling) or during runtime (dynamic scheduling). Though dynamic
scheduling policies such as self-scheduling [76], guided self-scheduling [77], trapezoidal
self-scheduling [78], and factoring [79] may reduce processing time, they do not allow
the data reference pattern to be determined at compile-time. With processors getting
faster relative to memory, the time spent on memory accesses constitute the major
fraction of the execution time and must be reduced for good performance, particularly
for NUMA multiprocessors. Also, Abraham and Hudak [80] control-partition iterative
parallel loops at compile-time in order to reduce interprocessor communication, and
show that the performance is better than guided self-scheduling. It is precisely for
the same reason that compile-time data partitioning techniques e.g., [81, 82], have
been studied for message-passing NUMA multiprocessors. Therefore, we consider
compile-time partitioning of the loop iterations.

In our compiler that assists data placement, for the general case, the applications
programmer specifies the control-partitioning of iterations for each parallel code seg-
ment. This requirement is similar to the need for the applications programmer to spec-
ify the data partitioning in languages such as FORTRAN-D [83] for message-passing
NUMA multiprocessors. For specific cases, our compiler uses heuristics, which are
derived from studies in the area of either parallel algorithms [84, 68] or compile-time

control-partitioning of iterations [80].

71

Data References

In order to assist data placement, the compiler should also be able to resolve data
references. We develop new algorithms as well as extend existing dependence analysis
techniques (surveyed in [85, 86]) to resolve data references, as discussed in detail in the
next section. It is not possible, however, to resolve data references that are functions
of values which are unknown at compile-time. For example, the data references in the
loops in Figure 3.1 cannot be resolved when the loop upper bounds n, m, and ¢ are
unknown at compile-time. Even if the loop upper bound ¢ is known at compile-time,
it is not possible to resolve the array reference F(K(I)) in loop S3. Another condition
under which the data reference pattern cannot be determined at compile-time is when
processors execute code conditionally and the condition depends on the input data.
An example is the QR factorization application in which processors choose a column of
an array that has the maximum sum of the square of its elements. Note however that
the applications programmer also cannot resolve these references which are dependent
on values known only during runtime. We propose that the compiler try to resolve
such references using profiling as in IMPACT [87]. If profiling does not help either, then
the corresponding data reference pattern cannot be determined and consequently, the

compiler cannot assist in placing data for related portions of the SVM.

Temporal Variation of Reference Pattern

We represent the reference pattern of a data element in a given code segment by the
processors that read and those that write the data element in this code segment. We
take care of the temporal variation of the reference pattern by using this representa-

tion individually for each code segment.

Assistance in Data Placement

The algorithms we discuss in the next section can be used to determine the type and
the reference pattern of the data in each code segment. We use this information to

assist data placement by means of compile-time objects which contain data of the

72

program — {code segment}*

code segment — sequential code segment | parallel code segment
sequential code segment — sequential code | placement directives
parallel code segment — Nested DOALL | Nested DOACROSS

Figure 3.5. A model of a parallel application with placement directives.

same variable type and similar reference patterns. These objects assist data place-
ment at all levels of the memory hierarchy, and the manner in which they are created
depends on the type of placement. In our thesis, we consider block-level placement
and also object-level placement which is similar to that provided by SSVM [23]. Be-
tween each pair of consecutive code segments, our object-creation schemes insert a
set of placement directives which assist data placement and which are to be executed
sequentially. The parallel application is thus transformed as shown in Figure 3.5.
In the next two chapters, we discuss the object-creation schemes, their compile-time
complexity, the runtime performance they offer, and other implementation issues, for
the block-level and object-level types of placement, respectively.

If the compiler is unable to resolve some data references, it cannot determine the
reference pattern of corresponding data elements. In this case, it specifies that it
cannot assist in placing data for related portions of the SVM. The influence of these
unresolved references depends on the type of data placement, and we discuss it in the
context of the block-level and object-level types of placement in the next two chapters.
The data elements which cannot be placed by the compiler need to be placed using
the runtime reference history. The runtime overhead is still less than that in the
absence of any form of compiler assistance. Therefore, as shown in Figure 3.6, our
approach is for the compiler to assist data placement whenever possible, and leave
the rest of the cases for the runtime mechanisms. The compilation process in our

compiler that assists data placement is shown in Figure 3.7.

73

Shared Virtual Memory

A

Dynamic

w x| N
Synchronization -

Program Variables

Y

. Compiler provides placement information

D Compiler provides no placement information

Figure 3.6. Placement information about the shared virtual memory.

3.5 Type and Reference Pattern of Variables

Our object-creation schemes which assist the block-level and object-level types of
placement need the type and the reference pattern of data elements. It is easy to
determine by inspection whether a variable is of the array or the scalar type. The
type of each synchronization variable is specified by the applications programmer
for applications written in a parallel language. It is provided by the compiler if the
parallel application is derived from a sequential version using parallelizing techniques.

We consider the barrier, wait/signal and the lock types of synchronization. We

determine the reference pattern of synchronization variables as follows. In general,

74

Sequential Application

Applications Control-Partitioning
Programmer Heuristics

Parallelizing
Techniques

Parallel Application Control-Partitioning

I Determination of Variable Type and Reference Pattern l

v

l Object-Creation I

v

Parallel Application with Placement Directives

Figure 3.7. Steps in compiling an application to assist data placement.

barrier synchronization is used to ensure that the execution of the code before the
barrier is completed before the start of the execution of the code after the barrier.
For example, it is can be used at the end of a parallel code segment, in which case
the corresponding synchronization variable is referenced equally by all processors.
Wait/signal synchronization is used either to wait for an event to occur or to signal
that an event has occurred. For example, it can be used to enforce dependencies
inm a DOACROSS loop, in which case the corresponding synchronization variable
is referenced by the processors involved in the dependency in question. The lock
synchronization variable is used to ensure mutual exclusion in accessing shared data,
and is referenced by the processors that share the data elements it protects. Its

reference pattern is the same as that of these data elements.

75

We now present our algorithms to determine the reference pattern of statically-
declared array and scalar variables in a given code segment. Recall that the reference
pattern of a data element is represented by the processors which read and those that
write it. We record the information about the read references for each data element
either by a flag or by a counter per processor. The information about write refer-
ences is recorded in a similar fashion. A flag records whether there is a reference or
not while a counter records the actual number of references. It is straightforward
to determine the reference pattern for scalar variables and that for array variables
with constant subscripts. When such references occur within the scope of the in-
duction variable whose iterations are control-partitioned among the processors, the
corresponding element is referenced by all processors. Further, the element is read
or written depending on whether the reference appears on the right or the left hand
side of the program statement. We now present algorithms to determine the reference

pattern for other types of references.

Algorithm A

The first algorithm, which we refer to as Algorithm A, is shown in Figure 3.8. For our
purposes, a scalar variable is a single-element array variable. Algorithm A computes
the data reference pattern by determining the elements referenced for each point in
the iteration space for each array reference. Though we present the algorithm for
a perfectly nested loop, it can be easily generalized to loops that are not perfectly
nested. Since it scans the entire iteration space, Algorithm A provides the reference
pattern of each data element in terms of the actual number of read and write references
to it by each processor.

We now illustrate how Algorithm A determines the data reference pattern of a
given parallel code segment. We consider the loop S; shown in Figure 3.4. Assume
that n = 20 and that four consecutive iterations of the loop index I are each allocated
to five processors. Each point in the iteration space corresponds to a given value of
I. For the array references in loop S;, each such point writes an element of A, and

reads an element of both B and C. The processor that executes this point of the

76

FOR each array reference
FOR each loop induction variable
FOR all iterations

/* The element referenced is determined by the subscripts and the
current values of the loop induction variables. The processor that
references the element is the one that executes the iteration
corresponding to the current values of the loop induction variables.
The reference is a read (write) if the array reference appears on the
right (left) hand side. */

update reference pattern of appropriate element
END FOR
END FOR
END FOR

Figure 3.8. Determination of reference pattern: Algorithm A.

iteration space is also the one that executes these write and read operations. Using
these facts, Algorithm A determines that the read counters for elements 0-3 of arrays
A,B,and Care (00000),(10000), and (1 00 0 0), respectively. Similarly, the
write counters for elements 0-3 of arrays A, B, and C are (1000 0), (000 0 0), (0
0 0 0 0), respectively. It determines the counters for the other elements in a similar
manner.

We now derive the time and the space complexity of Algorithm A. Let ! be the
depth of the loop, ¢ be the maximum out of the number of iterations for each loop
induction variable, r be the number of data references, d be the maximum out of the
number of dimensions for each array variable, and p be the number of processors al-
located to the application. We ignore the time spent in parsing, and assume that the
data references have already been obtained. Therefore, the worst-case time complex-

ity to determine the reference pattern of all data elements referenced in a given code

7

segment is O(I x ¢ x r x d). The space complexity for each data element is (2 x p) units,
where the unit is a bit if we only need to store whether a processor reads or writes a
data element or not. If we need to store the actual number of reads and writes, the
unit is the storage space required for an integer. It is possible to reduce the space
requirements by allocating space for only one variable and processing variables one

at a time.

Algorithm B

Since the loop depth and the number of loop iterations appear in the time complexity
of Algorithm A, it is computationally intensive for large values of these parameters.
Our next algorithm, referred to as Algorithm B, has a lower time complexity than
Algorithm A, and is motivated by the work done by Jeremiassen and Eggers [86].
In this work, they propose an algorithm to determine the per-process side effect
information, which represents the variables read and those written by each process,
and is equivalent to our representation of the data reference pattern for each code
segment. Their algorithm uses existing dependence analysis techniques [71, 72, 73,
74, 75] that are used to extract the control and data dependences of a sequential
application, which is then parallelized such that these dependenées are satisfied.

We now provide the traditional definition of data dependence [73]. Consider two
statements S; and S; in the control flow graph (CFG) of a sequential application. A
data dependence exists between statements S; and S,, with respect to a variable X

if and only if

1. There exists a path in the CFG from S; to S; with no intervening write to X,

and
2. at least one of the following is true:
(a) flow, X is written by S;, and later read by S, or

(b) anti, X is read by Sy, and later written by S, or

(c) output, X is written by S;, and later written by Sy, or

78

(d) input, X is read by S;, and later read by S,.

In general, in order to determine the data dependences in a sequential applica-
tion, dependence analysis techniques compute the side-effect information for each
statement S;, which is represented by the USE(S;) and the MOD(S;) sets, that con-
tain the variables it uses and those that it modifies, respectively. Input dependences
represent reads to the same variable and can be performed in any order. Therefore,
they can be safely ignored for automatic parallelization. The depend<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>