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ABSTRACT

TESTING ECONOMIC TIME SERIES

FOR STATIONARITY AND NONS'I‘ATIONARITY

By

Yongcheol Shin

It is a well-established empirical fact that standard unit root tests fail to reject

the unit root hypothesis for many economic time series. However, these results do not

indicate strong evidence against relevant trend stationarity alternatives, because it is

well-known that unit root tests are not very powerful.

Recently, various attempts, including a Bayesian approach, have been made to

reconsider the important problem of distinguishing trend stationary and unit root

processes. However, there have been very few previous attempts to test the null

hypothesis Of stationarity my. Kwiatkowski, Phillips, Schmidt, and Shin (1992,

KPSS) propose an LM test Of the null hypothesis that an observable series is

stationary around a deterministic trend, using the components representation in which

the series is decomposed into the sum of deterministic trend, random walk, and

stationary error.

This dissertation extends the KPSS test statistic for stationarity in two ways.

First, finite sample size and power of the KPSS statistic for stationarity are extensively

studied in a Monte Carlo experiment. Next the use of the KPSS statistic as a unit root

test is suggested, because the KPSS statistic is consistent and a different limning
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distribution is Obtained under the hypothesis that the series is difference stationary.

Both tests are applied to the Nelson-Flosser data, and for many of these series

it is not very clear whether they contain a unit root or are trend stationary. These

results are quite consistent with recent (inconclusive) empirical findings.

One implication of the above empirical findings is that many economic time

series may be in the region of "near stationarity." A lot of Monte Carlo studies have

shown that standard unit root tests have severe size distortions when the process is

nearly stationary. This dissertation also considers the asymptotics of standard unit root

tests in this case using generalized "nearly stationary model." It is found that the

above size distortion problem is well predicted by our asymptotics. It is also argued

that the superiority of the augmented Dickey-Fuller statistic is not established and that

more efficient estimation techniques will be needed to improve the tradeoff between

size distortions and low power.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Many economic time series are clearly nonstationary, and one important

statistical issue is the appropriate representation of this nonstationarity. For simplicity,

assume that any deterministic trend is linear, so that we can write

(1) y, = \v +5.1 + X. t = 1.°~.T.

where y, is the observed series, (\l’ + it) represents deterministic trend, and X1 is the

unobserved stochastic deviation of y, from deterministic trend. If X, is stationary, then

y, is Often said to be "trend stationary", and the long-run behavior of y, is essentially

determined by its deterministic trend component. However, if X, is 1(1), so that AX, is

stationary, y, is said to be "difference stationary", and Ayt = g + AX, so that changes in

y, contain a component that is fundamentally unpredictable even in the long run. The

trend stationary (TS) and difference stationary (DS) time series have very different

long run properties, and this has important economic and statistical implications.

There has been extensive interest in the use of the autoregressive integrated

moving average (ARIMA) process for modelling nonstationary time series. Ignoring

deterministic trend, for the moment, suppose that the time series is represented by the



E.



ARMA process

(2) y. = 13y“ + 2,, E. = n. + Outr-

If B = l, y, has a "unit root" in its AR representation, and y, is difference stationary so

long as 6 is not equal to -1. In fact y, is a random walk if B = 1 and 6 = 0. Unit root

tests typically test the hypothesis B = 1, and 9 is a nuisance parameter. However,

these roles can be reversed. If B = 1 and 9 = -1, y, is white noise. More generally,

we can test the stationarity hypothesis 6 = -1, in which case B is a nuisance parameter.

If a series is generated by a member of the linear TS class we should fail to reject the

hypothesis of a unit MA root in the ARMA model for its first difference, and if it is

generated by a member of the DS subclass we should fail to reject the hypothesis of a

unit AR root in the ARMA model for its levels.

As noted above, the difference between DS and TS series may be economically

important, since a unit AR root implies long run persistence, in the sense that at least

part of the effects of random shocks on macroeconomic variables are permanent.

Correct treatment of the stationary or nonstationary nature of the data is also necessary

for meaningful statistical inference, owing to the spurious regression phenomenon

pointed out by Granger and Newbold (1974) and Phillips (1986). Thus, it is important

to be able to distinguish a series with a unit root from a stationary series. General

surveys of the unit root literature are given by Diebold and Nerlove (1990) and

Campbell and Perron (1991).
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3

1.2 Unit Root Tests and Error Autocorrelation

Attempts to distinguish the DS series from the TS series have generally taken

the form of a test of the null hypothesis of a unit AR root against the alternative of

stationarity. Most of the existing unit roots tests are variants of the Dickey and Fuller

(DF) tests provided by Fuller (1976) and Dickey and Fuller (1979). The DF unit root

tests are based on the regressions:

(3) Yr = BYt-l + 8t

(4) Yr = (I. + BYt-l + 81

(5) Yt=a+BYI-l+6t+el

for t = 1,...,T. In each case, the unit root hypothesis is B = 1. Two types of test

statistics are used: one is the normalized coefficient test statistic T(B — 1), where B is

the OLS estimate of B; this yields the DF statistics B, 6,, and 6, from regressions (3),

(4) and (5), respectively. The other is the usual t—statistic for testing the hypothesis B

= 1, which yields the DF statistics 9, f, andf, corresponding to the same three

regressions.

The DF regressions differ in the way that they handle level and deterministic

trend. The regression (3) does not allow for non-zero level or trend under the

alternative. The equation (4) allows for linear deterministic trend under the null, but it

allows only for non-zero level under the alternative. Finally, regression (5) allows for
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non-zero level and linear and quadratic trends under the null, but implies level and

linear trend under the alternative. The a, ands, tests based on regression (5) are the

most commonly used in econometric work, because inclusion of the trend term (St) in

(5) is necessary for the tests to be consistent against TS alternatives.

Schmidt and Phillips (1991, SP) suggest an alternative set of unit root tests,

based on the parameterization:

(6) Yt=V+§i+Xn Xt=BXt-1+Ev

Note that this parameterization is also used by Bhargava (1986), and it mimics the

form of equation (1) above. The SP test statistics are based on the LM (score)

principle for the null hypothesis B = 1 in equation (6). The test statistics are derived

from the regression:

(7) Ay, = constant + ¢SH + error, t = 2,°--,T

where S'H = yH - {Bx - E(t - 1) and the restricted MLE’s of § and wx = w + Xo are

given by: E = (yT - y,)/(T - l), and {fix = y1 - E. Let 6 be the OLS estimate of 6 for

(5). The test statistics are given by:

(8) 5 = 1’43

(9) T = t-statistic for the hypothesis 4: = 0.

SP show that B and "E are monotonic transformations of each other, so the tests are

identical in the absence of corrections for error autocorrelation. Also, 5 is almost
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identical to the R2 statistic of Bhargava (1986).

The main difference between the DF and SP parameterizations is that the

meanings of the parameters or and 8 in (4) and (5) are different under the null and

under the alternative, while in the SP parameterization (6), \V and E, represent level and

linear trend respectively under both the null and the alternative. The distribution of

the SP test statistics 5 and "t", and of the DF test statistics 6, and 9,, are independent of

‘I’ and § in (6); this is the further evidence of the usefulness of equation (6) to

represent the data generating process.

Since the tabulated distributions for the DF and SP test statistics are obtained

under the assumption that the errors in the model (i.e, a, in equations (3), (4), (5), and

(6)) are iid, they are not expected to be robust to more general error structures, in

particular to the presence of autocorrelated errors. Furthermore, it is known from

Phillips (1987), Phillips and Perron (1988) and Schmidt and Phillips (1991) that error

autocorrelation affects the distributions of the test statistics even asymptotically.

Therefore, modifications of the basic DF and the SP test statistics have been developed

that allow for error autocorrelation. These modifications can be put into four groups.

First, augmented Dickey-Fuller (ADF) tests are proposed to accommodate error

autocorrelation by adding lagged differences of y, to the regressions (3) - (5). Said

and Dickey (1984, 1985) show that, if the number of lagged differences is suitably

chosen, the ADF test statistics have the same asymptotic distribution as the original

DF test statistics would have under iid errors. If the errors are AR(p), the number of

lagged differences must be at least as large as p. If the errors have an MA
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component, the number of lagged differences is allowed to increase with sample size,

though at a slower rate (e.g., at the rate T‘”). Lee (1990) proposes an analogous

augmented version of the SP tests.

Second, Phillips (1987) and Phillips and Perron (1988, PP) use semiparametric

corrections to the DF statistics to develop general tests to allow for a wide class of

weakly dependent and heterogeneous errors. The limiting distributions of the corrected

test statistics are the same as the original DF test statistics would have under iid

errors. SP provide similar semiparametric corrections for their tests.

Third, Hall (1989) has considered unit root tests based on instrumental

variables (IV) estimation of the DF regressions. He assumes MA(q) errors, with q

treated as known and y”, with k > q, is used as the instrument for y,,,. Lee and

Schmidt (1991) also propose similar IV versions of the SP test statistics, where the

instrument for SH in (7) is 5,4,, with k > q.

Finally, Choi (1990) develops tests based on GLS estimation. This requires a

parametric (ARMA) form for the autocorrelation.

A large body of simulation evidence has shown that these methods of

accommodating error autocorrelation can perform poorly in finite samples. Phillips

and Perron (1988), Schwert (1989), Kim and Schmidt (1990) and Lee (1990) have

shown that the uncorrected DF and SP tests reject the true null hypothesis too often in

the presence of negative autocorrelation and too seldom in the presence of positive

autocorrelation. These size distortions can be quite considerable. For example, with

MA(l) errors with 0 = -0.8, the size of the tests (the probability of rejecting the null
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when it is true) is almost unity, even for T as large as 500 or 1000. The Phillips-

Perron corrected DF and SP tests perform somewhat better than the uncorrected tests,

but still suffer from considerable size distortions even for surprisingly large sample

sizes. The augmented DF and SP tests also perform somewhat better than the

uncorrected tests, with the extent of the improvement depending on the number of

augmentations. With a sufficiently large number of augmentations, the size of the

augmented tests becomes more or less correct, even for cases in which the errors are

strongly autocorrelated. However, this result is less optimistic than it might first seem,

because the tests with many augmentations have almost no power.

Hall finds that his IV tests are a significant improvement over the uncorrected

DF or the PP tests, when the errors are MA(l). Lee and Schmidt (1991) also provide

fairly optimistic results for the IV versions of the SP tests, which have surprisingly

smaller size distortions and greater power than other tests of similar size. Pantula and

Hall (1991) provide some moderately optimistic results for the Hall’s IV tests when

the errors are ARMA. Similarly, Choi’s results for his OLS-based tests are fairly

good for most parameter values. However, 95; testing procedures seem to work well

in finite samples with strongly negatively correlated errors.

1.3 Unit Root Tests Under Near Stationarity

To interpret the Monte Carlo evidence summarized in the last section, we

return to the ARMA representation of y, given in equation (2). Suppose that B = 1 so
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that there is a unit AR root. As 9 —> -1, y, approaches stationarity. Correspondingly,

the process can be called "nearly stationary" when 9 is close to but not equal to minus

one; for example, when 0 = -0.8.

It is not surprising that most unit root tests perform very poorly when the

process is nearly stationary. For example, Blough (1989) argues that there is no

discontinuity between unit root and stationary processes. For a given sample size,

every stationary process can be arbitrarily well approximated by a unit root process

which is nearly stationary. Correspondingly, a true level or test of theth root null

cannot have power greater than (1 against stationary alternatives. Therefore, the tests

with small size distortions in the presence of strongly negatively correlated errors

might be expected to be essentially without power. For example, Blough’s Monte

Carlo simulations show that, for T = 100, the ADF unit root test with 12 lags has

power of only 20% against white noise. Power is even lower when the stationary

process is serially correlated. Therefore, it seems that no tests may survive in the

presence of strongly autocorrelated errors in terms of bo_th_ size and power of the tests.

The tests with correct size have poor power and the tests with high power have serious

size distortions.

The preceding discussion reflects the fact that, in the nearly stationary case, the

unit root asymptotic distributions are poor guides to the finite sample distributions of

the test statistics, even for fairly large sample sizes. Thus it may be useful to find

other types of asymptotic distributions to approximate finite sample distributions in

this case. The important step in this direction has been taken by Pantula (1991), who



9

investigates the behavior of some unit root test statistics under the null of a unit root

when the process is nearly stationary, using the local approximation for 9 = -1:

(10) 9=-1+1/I'5, 8>0.

Combining (2) and (10), y, becomes a random walk as 8 approaches zero; however,

for fixed 5, y, approaches white noise as T —> oo. Pantula shows that the asymptotic

distribution of the unit root test statistics depends on the speed with which 6

approaches minus one (i.e., the value of 5) as well as the sample size, T. Pantula uses

his asymptotic distributions to infer differences among tests in their sensitivity to near

stationarity, and, based on these differences, he suggests the use of the augmented

Dickey-Fuller (ADF) test. However, note that he does not consider the power of the

tests.

In Chapter 4, we will investigate the behavior of the DF and the SP unit root

test statistics under the null of a unit root when the process is nearly stationary by

using the more general local approximation for 9 = -1:

(11) e=-1+cn‘,C>o,5>o.

With two parameters (C and 8) instead of only one, we can hope to find more accurate

asymptotic approximations to the finite sample distributions of the test statistics.

Furthermore, our concern is somewhat different from Pantula‘s. We will make

detailed comparisons of our asymptotic approximations and the true finite sample

distributions (calculated by a Monte Carlo simulation), to see under what conditions
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these asymptotic distributions are accurate enough to be useful. This is actually a

logical prior step to Pantula’s type of analysis, since there is no point in choosing tests

based on inaccurate asymptotic approximations.

1.4 Testing the Null Hypothesis of Stationarity

Nelson and Plosser (1982) failed to reject the hypothesis that long historical

time series for the US. are difference stationary, using the DF tests. Similar results

have been Obtained using the SP tests and other types of unit root tests, which have

generally failed to reject the null hypothesis of a unit root in many macroeconomic

time series.

However, it is important to note that in this empirical work the unit root is set

up as the null hypothesis to be tested, and the way in which classical hypothesis

testing is canied out ensures that the null hypothesis is accepted unless there is strong

evidence against it. Therefore, an alternative explanation for the common failure to

reject a unit root is simply that standard unit root tests are not very powerful against

relevant alternatives. For example, see Dejong ga_l. (1989). This point is also

discussed in the recent survey paper by Campbell and Perron (1991).

Therefore, in trying to decide whether economic data are stationary or

integrated, it would be useful to have available tests of the null hypothesis of

stationarity as well as tests of the null hypothesis of a unit root. There have been

relatively few previous attempts to test the null hypothesis of stationarity. See Park
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and Choi (1988), Rudebush (1990), Dejong et a1. (1989), for examples. These are
 

reasonable first attempts to test stationarity, but they suffer from the lack of a

plausible model in which the null of stationarity is naturally framed as a parametric

restriction.

Recently, Kwiatkowski, Phillips, Schmidt, and Shin (1992, KPSS) propose a

test of stationarity based on the decomposition of the series into deterministic trend,

random walk, and stationary errors:

(u) m=¢+m+w

(13) Y. = 7H + “1

Here §t represents linear deterministic trend, 7, represents random walk (so the u, are

iid), and v, is the stationary error. This parameterization provides a plausible

representation of both stationary and nonstationary variables, and leads naturally to a

test of the hypothesis of stationarity. Note that the decomposition into stationary and

random walk components is a popular way of thinking about the properties of a time

series in macroeconomics applications. See Nelson and Plosser (1982), Watson

(1986), Clark (1987), and Cochrane (1988). KPSS derive the statistic for stationarity

as the LM test of the null hypothesis of = 0; i.e., the variance of the random walk

component of y, equals zero. Thus the null hypothesis implies that the series is trend

stationary.

We can note that the model of (12) and (13) implies
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(14) Ay, = g + ul + Av,.

Define w, = u, + Av, as the error in this expression for Ay,. If u, and v, are iid and

mutually independent, then w, has a non-zero one period autocovariance, with all other

autocovariances equal to zero, and accordingly it can be expressed as an MA(1)

process. Thus the KPSS model is equivalent to the ARIMA model

(15) Y: = BYt-l + W,, wt = 8t + eel-1’ i3 = 1’ 8! iid

This is of the same form as equation (2) above. The connection between 6 and the

variances of u and v is straightforward. Let A = (Sf/Of. Then we can get the

relationship between 0 and A as

(16) 9 = dot-+2) - [MAMHWVL or 7» = -(1 + 9)2/9.

where A. 2 0, |9| S 1. Thus 2. = 0 corresponds to 9 = -1 (stationarity) while A = 00

corresponds to 9 = 0 (a pure random walk). Equation (16) shows an interesting

connection between the KPSS tests and the usual DF tests. The DF tests test B = 1

assuming 6 = 0; 9 is a nuisance parameter. KPSS effectively test 6 = -1 assuming B =

1; now B is a nuisance parameter.

Since the reduced form of the KPSS model is ARIMA(0,1,1), a test of A = 0

corresponds to a test of 9 = -l. The model is strictly noninvertible under the null and

it follows from the results of Sargan and Bhargava (1983) that classical procedures

cannot be applied in this case. An LM test statistic can be constructed but, as noted in

Tanaka (1983), its asymptotic distribution is nonstandard. A locally best invariant
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(LED test of the hypothesis that 0,2 is zero can also be constructed and is in fact the

same as the LM test. See Nabeya and Tanaka (1988).

KPSS derive the LM statistic as a special case of the statistic developed by

Nabeya and Tanaka (1988) to test for random coefficients. Let e,, t = 1,2,...,T, be the

OLS residuals from the regression of y, on an intercept and time trend. Let 6,2 be the

usual estimate of the error variance from this regression. The LM statistic for

stationarity is derived as:

T A

(17) LM = 2183/63
t:

where S, is the partial sum process of the residuals

t

(18) S, =.21ei , t = 1,2,...,T
1:

However, the LM derivation assumes that the stationary errors v, in (12) are normal

white noise. If they are not white noise, but satisfy the regularity conditions of

Phillips (1987), the asymptotic distribution of the statistic is the same as under white

noise errors if we divide by an estimate of the "long run variance" (32 rather than the

innovation variance of. Let 02 be any consistent estimate of the long run variance.

Then KPSS define the statistic

A T A

(19) n, = T2331 S,2 / 0'2

Under the null hypothesis of = 0, they establish the asymptotic distribution

(20) 1i. —> if V.(r>dr
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where V2(r) is the second-level Brownian bridge given by

(21) V2(r) = W(r) + (2r - 313)W(1) + (-6r + 612)!)l W(r)dr

and W(r) is Standard Brownian motion.

The same statistic may also arise in other contexts. Saikkonen and Luukkonen

(1990) derive the statistic as the locally best unbiased invariant test of the hypothesis 6

= -1 in the model Ay, = e, + 68,, with the e, iid normal. Based on the discussion

above, this is not a surprising result

In Chapter 3 we will consider the finite sample properties of the KPSS

stationarity test, which uses semiparametric corrections for error autocorrelation in the

presence of the autocorrelated errors. These results will be compared with the results

for the Saikkonen and Luukkonen test, which uses parametric corrections based on an

assumed ARMA model for the stationary error. We will consider both the size and

the power of the tests.

1.5 The KPSS Test As a Unit Root Test

Many economic time series have sample autocorrelations for their first

difference that are positive and significant only at lag one or two, but are

insignificantly negative at longer lags. Conventional model selection procedures

choose a low order ARIMA model in order to parsimoniously capture the short run

dynamics. Then only the role of the random walk component is important, and
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possible trend reversion over long horizons is ignored. Variance ratio tests have been

suggested to handle this situation, but unfortunately their confidence bounds are very

wide, because there are very few independent observations on the long run behavior

for most macroeconomic time series. See Cochrane (1988) and Lo and MacKinlay

(1989). More generally, standard unit root tests, such as the DF or the SP tests,

propose the null hypothesis that a random walk component exists, whereas the tests of

the random walk hypothesis (e.g., variance ratio tests) have as their null hypothesis

that stationary components do not exist.

Stock (1990) has recently developed a "generic" class of unit root tests, based

on the fact that an 1(1) process grows at rate Tm, while an 1(0) process does not. If

we let e, be the detrended series, and let S, be the partial sum process of the e’s, as in

equation (18), then the 8, process is 0,,(T1’2) if the original series is stationary, while it

is 0,.(T’n) if the original series is 1(1). In either case, suitably normalized functions of

S, will converge to corresponding functionals of detrended Brownian motion. As a

result, rmny different functions of S, could be used to test the unit root null.

Furthermore, the same statistics (with a different asymptotic distribution) can be used

to test the null of stationarity.

A difficulty with such generic tests is that they may have low power compared

to tests derived more explicitly as unit root tests or stationarity tests. For example, the

KPSS test is derived from the LM (score) principle as a stationarity test, and can

therefore be expected to have desirable power properties near the null of stationarity.

However, it is a function of the partial sum process and can be fit into the class of
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Stock’s generic unit root tests, despite the fact that there is no reason to expect it to

have good power properties as a unit root test.

In Chapter 3, we will consider the KPSS test as a unit root test. We provide

Monte Carlo evidence that shows that it is generally less powerful than traditional unit

root tests, like the DF or the SP tests. We also use the KPSS statistic to test the

hypothesis of a unit root in the Nelson-Plosser data.

1.6 Plan of the Dissertation

The structure of the dissertation is as follows. Chapter 2 investigates the finite

sample performance of the KPSS stationarity tests in the presence of autocorrelation.

Chapter 3 considers unit root tests based on the KPSS statistics. Chapter 4 provides

asymptotic results for the DF and SP unit root tests when the process is "nearly

stationary", and shows the possible source for the size distortion problem in this case.

Chapter 5 gives our concluding remarks.



CHAPTER 2



CHAPTER 2

THE FINITE SAMPLE PERFORMANCE OF THE STATIONARITY TEST

2.1 Introduction

There has been considerable interest in the use of autoregressive processes for

modelling nonstationary time series. Nonstationarity is implied by the presence of unit

roots in the autoregressive polynomial, and therefore the unit root hypothesis has

recently attracted a lot of attention. Furthermore, the standard conclusion that is

drawn from the empirical evidence is that most aggregate economic time series contain

a unit root. See Nelson and Plosser (1982). However, it is impOrtant to note that in

this empirical work the unit root is set up as the null hypothesis to be tested, and the

way in which classical hypothesis testing is carried out ensures that the null hypothesis

is accepted unless there is strong evidence against it. Therefore, an alternative

explanation for the common failure to reject a unit root is simply that standard unit

root tests are not very powerful against relevant alternatives. For further discussion

see Dejong et al. (1989).
 

Therefore, it would be useful to have available tests of the null hypothesis of

stationarity as well as tests of the null hypothesis of a unit root. There have been

relatively few previous attempts to test the null hypothesis of stationarity. See Park

17
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and Choi (1988), Rudebush (1990), and Dejong et al. (1989). However, they all suffer

from the lack of a plausible model in which the null of stationarity is naturally framed

as a parametric restriction.

Nonstationary series can be decomposed into an integrated part and a weakly

stationary part. A well-known decomposition of time series into random walk with

drift and weak stationary components is proposed by Beveridge and Nelson (1981).

However, we note that, in the absence of some additional theory or assumption on the

data generating process, such a decomposition may not be unique. See Aoki (1990).

Recently, Kwiatkowski, Phillips, Schmidt, and Shin (1992) use a

parameterization which provides a plausible representation of both stationary and

nonstationary variables to derive a test for the null hypothesis of stationarity. They

choose an unobserved components representation in which the time series under study

is written as the sum of a deterministic trend, a random walk and a stationary error

process:

Yt=§t+7t+vt9 Yt=Yt-l+ut V

They wish to test the hypothesis 0,2 = 0, which implies that y, is stationary around a

deterministic trend (trend stationarity). Since the reduced form of the components

model is also ARIMA(0,1,1), a test for 0,2 = 0 corresponds to a test for a unit moving

average root. The model is therefore strictly noninvertible under the null and it

follows from the results of Sargan and Bhargava (1983) that the classical procedures

cannot be applied in this case.
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A univariate time series model can be regarded as a special case of a time

varying parameter regression model. Very little attention has been paid to the way in

which time variation should be introduced into the coefficients of explanatory

variables. Testing for time variation in the coefficients of the explanatory variables is

also subject to the same problems encountered in carrying out tests of of = 0. The

difficulties stem from the random walk nature of the time varying parameters. Testing

the null hypothesis 0,2 = 0 has also been considered in context of time varying

coefficients model. See Nicholls and Pagan (1985), Nyblom (1986), and Nabeya and

Tanaka (1988).

The purpose of this chapter is to examine the finite sample performance of the

KPSS stationarity test. We explain and compare various models in section 2.2. The

main results of the simulations are given in section 2.3. The results of applying the

KPSS statistics for stationarity to the Nelson-Plosser data are briefly discussed in

section 2.4. Some suggestions and concluding remarks are given in 2.5.

2.2 The KPSS Test for Stationarity

Suppose that the economic time series y, can be decomposed into a

deterministic trend, random walk, and stationary error process:

(1) yt=§t+Yt+Vt

(2) Y! = 71-] + ut
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where the u, are iid (0,0,2) and v, is stationary. KPSS derive the LM statistic for the

null hypothesis of stationarity, 6,2 = 0, under the assumption that the v, are iid

N(0,O’,,2). Their model is a special case of the model developed by Nabeya and

Tanaka (1988) to test for random regression coefficients. Nabeya and Tanaka consider

the regression

(3) Yr = xtBt + 2:7 + V,,

in which B, is a normal random walk and the errors v, are iid N(0,O,2). Therefore, the

KPSS model is the special case of (3) in which x, = 1 for all t, z, = t, and B, = 7,.

Let e,, t = 1,2,...,T, be the OLS residuals from the regression of y, on an

intercept and time trend (or intercept only for the test of level stationarity). Let 6,2 be

the usual estimate of the error variance from this regression. Then the LM statistic is

given by

T A

(4) LM = t218,2 [6,2

where S, is the partial sum process of the residuals

t

(5) S, =_21e, , t = 1,2,...,T

1:

The same statistic may arise in other contexts. Saikkonen and Luukkonen

(1990, SL) derive the locally best unbiased invariant (LBUI) test of the hypothesis 9 =

-1 in the model

(6) Ay, = w, + 9w,1
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with E(y,,) unknown and playing the role of intercept and w, iid normal. Note that y,

is stationary under the null hypothesis of 0 = -1.

Comparing both parameterizations carefully, we find that they are the same.

Consider starting with equations (1) and (2). After some algebra, we get the following

equation:

(7) y. = a + [Syn + C»

withB= l,a=§,'yo=yo, and

(8) c, = Aw, + v,) = u, + Av,

Therefore, 0,2 = 0 corresponds to c, = Av,. If we rewrite model (6) as

(9) y. = a + y... + 8..

(10) 8, = w, + 0w,l

then testing for 6,,2 = 0 in equations (1) and (2) is exactly the same as testing for 9 =

-1 in the equations (9) and (10). We can also derive the exact relationship between A

= (sf/cf in (1) and (2) and e in (9) and (10):

(1 1) 9 = -(1/2)[0~ + 2) - {m + 4)}m]

(12) A = -(1 + ewe

forkZO,|9|Sl.AsA—)0,0—>-1whileasA—)oo,6—90.
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Tanaka (1990) also analyzes testing for a moving average unit root when the

data follow a simple MA(l) process given by

(13) x. = a. - 98,,

and derives the score test statistic for 9 = 1:

 

T T

2: [(t-1)x, + (t-2)x2 +...+ x,,, - {t/(T+1)}>:(r - s + 1)x,]2

= =1(14) ST = t 1 s

T

T 2 [(x1 + 2x2 +...+ tx,)2/ {t(t + 1)}]

t=1

This test can be extended to a more general model such as (9) and (10). Using (4),

we obtain the KPSS score test statistic for the level stationarity as follow:

T T _

(15) LM = 21 SLR/T1 21 (y. -y)2
t: t:

where 8,, 1.1-{10’j - )7). Define x, = Ay, and S, =j§t1yj° Then, Tanaka’s score test

statistic (14) is the same as the statistic for level stationarity (15). See appendix A.

However, the assumption that the stationary error (v, in equation (1)) is iid is

unrealistic in time series modelling. There are two possibilities to generalize the

testing procedures to allow for stationary but not iid v,.

One possibility is a parametric correction. In the special case of a Gaussian

MA(l) model of the form of (6), SL derive the LBUI test statistic (R in their

notation), which is the same as the KPSS LM statistic for level stationarity under the
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assumption that stationary errors are iid. The general ARMA(p,q) model for w, in (6)

is given by

(16) Ay, = w, + 6w,_,, p(L)w, = a(L)t-:,

where p(L) = 1 - p,L - - ppL" and a(L) = 1 + (11L + + aqL“, and 8, are iid

normal. The roots of both the lag polynomials p(L) and Ot(L) are outside the unit

circle so that the stationarity and invertibility conditions are satisfied. They use a

parametric approach to generalize test statistic R, which is based on the appropriate

residuals of the general ARMA(p,q) null model first fitted to the original mean

corrected series. When p > 0, the idea of the test procedures is to replace the original

null model by an MA approximation. Define

(17) p(Ly‘acL) = w.) =j§o ij’

Then w, can be decomposed as

(18) w, = w, + A2,

2% ‘15- To derive modified
i=j+1

w, = W(l)£,; z, = 1t(L)e,; and n(L) 131:1} where n, = -

test statistics in the presence of ARMA errors, they approximate the rational transfer

function ty(L) by a polynomial of a finite but sufficiently large order, say m.

However, one caution is that unnecessarily large values of m have an adverse effect on

the power of the tests. Finally, the modification of test statistic R becomes

T ..
(19) Rm = (T - p)‘2 2 s3 / w2, where

t=p+1
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.. T -

(20) W = (T - P)’1 E (h‘ - h)2
t=p+1

t

(21) s,=,-2‘. (hj 43), t = p+1,---,T-1.

r=p+l

h, .=. y, - AZ, and Z, = $19,051,, where it, = -i§+1\’j\rj ands, are the residuals. Then as T

—> co, the Ru, statistic has the same asymptotic distribution as R.

The other possibility, followed by KPSS, is to use a semiparametric correction

of the type suggested by Phillips and Perron (1988). An advantage of this approach is

that no knowledge of the parametric form of autocorrelation is required. The correction

only amounts to replacing the denominator of the LM statistic by an appropriate

variance estimator. Define the long run variance as

i T

(22) 02 = lim T‘E(ST2), ST = 2v,

T—-)oo i=1

which will enter into the asymptotic distribution of the test statistic, when the v, are

stationary but not iid. In this case the appropriate denominator of the LM statistic is

an estimate of O“2 instead of of. A consistent estimator of OZ, 32(0) can be constructed

as

T l T

(23) 52(0) = T1 Zle,2 + 21"2‘. w(s,0) 2 e,e,_,

t=1 s=l t=s+1

where w(s,fl) = l - s/(l + 0) is the Bartlett window which guarantees the nonnegativity

of $202). For consistency of SW), it is necessary that the lag truncation parameter 1

-) on at an appropriate rate as T —-) 0°. The generalized KPSS LM statistics for level

stationarity and for trend stationarity are defined as follow:
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(24) (i, = TZESuz/szfl) —+ i: V(r)2dr

(25) fl, = TZZSnzlsza) —> g V2(r)2dr

SL, and ST, are the partial sum processes of the OLS residuals from the regression of y,

on [1] and on [1,t] respectively. The subscript ’p’ indicates that we have extracted

only a mean from y, and the subscript ’1’ indicates that we have extracted mean and

trend from y. W(r) is a standard Brownian motion; V(r) = W(r) - rW(1) is a standard

Brownian bridge; and V2(r) = W(r) + (2r - 3r2)W(1) + (~6r + 212); W(r)dr is the

second-level Brownian bridge.

The critical values of lV(r)2dr and of IV,(r)2dr are given in Table 2-0, which

are calculated via a direct simulation using a sample size of 2,000 with 5,0000

replications, and the random number generator GASDEV/RAN3 of Press et al. (1986).
 

2.3 Finite Sample Performance

The finite sample distribution of the test statistics 6,, and fi, will be tabulated by

simulation. The distribution of both statistics under the null hypothesis depends only

on the sample size T, while the distribution under the alternative depends on A as well

as T. Sec appendix B. The simulation results using 20,000 replications are given in

Tables 2-1 through 2—10. We consider three lag specifications in calculating the

denominator of the LM statistics, the long run variance of the residuals, 52(0) in (23):

r, = o, r, = manta/100)“), and e,, = int{12(T/100)““}.
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2.3.1 Size

1) iid errors

We can see in Table 2-1 that the tests have approximately correct size except

when T is small and l is large. For I = 00, the tests have correct size even for T =

30, so that the asymptotic validity of the tests holds even for fairly small samples.

Using 2 = 14, the tests are slightly less accurate, and the improvement as T increases

is slow. For 2 = 1,2, there are considerable size distortions for T = 30, and moderate

distortions (too few rejections) even for T = 100 or 200, though the tests are quite

accurate for T = 500. Unsurprisingly, the larger 0 is, the larger is the sample size

required for the asymptotic results to be relevant.

_2_) AR(1) errors

We next consider the size of the tests in the presence of autocorrelated errors.

In particular, we will consider AR(1) errors, of the form v, = pv,l + a, with the e, iid.

The AR(1) parameter p is a convenient parameter to consider, since it naturally

measures the distance of the null from the alternative. In particular, under the null

that 6,,2 = 0, y, approaches a random walk as p —> 1. As a result, we expect a

problem Of over-rejection for p > 0, with its severity depending on how close p is to

unity. Table 2-2 presents our simulation results giving the size of the tests for p = 0,

21:02, $0.5, and 1:08, and for T between 30 and 500. As expected, the tests reject too

often for p > 0 and too seldom for p < 0. The over-rejection problem is very severe

for l = to, which is not surprising since the test is not valid even asymptotically in

this case. However, the 0,, and 1,, versions of the tests do not improve very rapidly
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with the sample size. The tests using 14 have moderate size distortions for p = 0.5

and considerable size distortions for p = 0.8, while the test using 1,2 are fairly good

for T .>. 30 and p S 0.5, but not so good for p = 0.8. Unfortunately, p = 0.8 is a

plausible parameter value since, if we take most series to be stationary, their first-order

autocorrelations will often be in this range.

3) MA(1) errors

We next consider MA(l) errors, of the form

(26) vt = 8, + (181-1

These results are given in Table 2-3. In the presence of MA(l) errors, the size

distortions of the test are not as severe as in the AR(1) case. Therefore, the use of

long lags (large value of t) is not necessary for test statistics to have approximately

correct size. For example, for or = 0.8, the sizes of the fin test using to, 04, 0,2 are

.206, .057 and .033 and the sizes of the a, test using 2,, l, and e,, are .302, .061 and

.038, both of which are far less than for the AR(1) case with p = 0.8.

For positive or, the size of the tests using 0,2 is converging around the nominal

level as T increases; e.g., when T = 500, all sizes are very close to .05. However,

when T is small, the use of 9,, still gives unsatisfactory results; e.g., when T = 30 and

a = 0.8, the size offipan) is .004 but the size offi,(0,,) is .217.

We also note that when T is in the range of 70 to 120, which are plausible

sample sizes encountered in economic data, the size performance of the tests using 0,,

is slightly better than when 0 = 2,2 and better than when 0 = 00.
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For negative or, the sizes are too low for all cases, and these results are

consistent with the asymptotic results that the size —> 0 as or —> -1.

To sum up, in the presence of positively autocorrelated errors, the tests using

1,, have an over-rejection problem and the tests using 0,2 generally have the least size

distortion. The size distortions are more severe in the AR(1) case. We also note that

the tests using 24 perform better than the tests using 0,2 in some cases. On the other

hand, we have an under-rejection problem for negatively autocorrelated errors.

2.3.2 Power

Results for the power of the tests in the presence of iid errors are given in

Table 2-4. We will discuss these results before going on to power in the presence of

AR(1) or MA(l) errors. Note that both test statistics, fin and 13,, are consistent.

However, for fixed T, the power of the test approaches a limit (as A —> oo), which is

usually less than one. We can represent as the limit power the power of test for A =

co. For example, when T = 100, the limit powers of the fin test using to, 04, and 0,2

are .998, .827, and .582, and they are .999, .820, and .410 for the fi, test, as can be

seen for A. = 10,000 in Table 24. Although the limit power of the tests using I, or

0,2 is close to one in large samples, it is generally far less than the power of the tests

using to in finite samples. This is especially so for the tests using 012. Even for T =

500, the limit power is about .901 for the man) test and .911 for the fi,(t,,) test.

However, the fact that the limit power of test is not equal to one can be

explained well by the asymptotics under the alternative. The asymptotic distribution
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for the stationarity test under the alternative hypothesis of > O is given in KPSS. For

the test of level stationarity, we have the following results:

(27) am it, a {)1 [givtsmsrda / K§W<sfds

whereW(s) = W(s) -(l: W(b)db is a demeaned Wiener process, and the

constant K is defined by

(28) K = l: k(s)ds

where k(s) represents the weighting function used in calculating s(0)in equation (23);

w(s,t) = k(s/Q) in the notation above. For the Newey-West estimator, k(s) = 1 - |s|

and therefore K = 1.

The analysis for the trend stationarity case (i.e., for the statistic fl,) is only

slightly more complicated. We just need to replace the demeaned Wiener process '

W(s) above with the demeaned and detrended Wiener process W‘(s):

(29) W’(s) = W(s) + (68 - 4) (i: W(r)dr + (-12s + 6) i: rW(r)dr

defined by Park and Phillips (1988, equation (16), p.474). The rest of our analysis

then follows without further change.

Note that the asymptotic distribution (27) does not depend on the variance of

the stationary error. This is so, because, under the alternative hypothesis, the random

walk component dominates the stationary component. In that sense these asymptotics

correspond to 6,2 = 0, or A = 00, and can be used to predict the limit power of the
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stationarity test.

Percentiles of the asymptotic distribution in (27), and of the corresponding

asymptotic distribution for fi,, are calculated in Chapter 3, where we consider these

statistics as unit root test statistics. These can be converted to percentiles for fin and f1,

(under A = co) by multiplying by (TIf), and we can therefore predict the limit power

of both tests. These results are given in Table 2-5. We find that the limit power of

the stationarity test in finite samples is generally consistent with the asymptotic results.

For example, for fl, with T = 100 and 2 = 12 the actual power of .410 compares to

.417 predicted by the asymptotic distribution under the alternative.

As described in section 2.2, Tanaka (1990) tabulates the limiting power of the

ST test in equation (14) under local alternatives of the form 0 = -1 + Cfl‘ and C fixed,

and therefore we can use his table for the limiting power as a good approximations to

the power against nearly stationary alternatives in finite samples. However, the

Tanaka’s test is not most powerful at higher values of A in finite samples. For

example, when T = 100 and 9 = -0.8 (A = 0.011), the power of ST is .863, which is

less than the power of the MPI test, .954. We also note that he does not consider

cases withT> 100 and0>6>-0.4(oo>A> 1).

We compare the actual (simulation) power of the fin test with Tanaka’s limiting

power and these results are given in Table 2—6. When A < 1, the power of the 19,00)

test is close to Tanaka’s limiting power for all sample sizes, while the use of more

lags loses power in finite samples. For example, when T = 100 and A = 0.01, the

powers of the fin test using to, 04, and 1,2 are .587, .508, and .376, and Tanaka’s
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limiting power is .584. When A 2 1, the powers of the flu test are generally less than

Tanaka’s limiting power when T S 50. For example, when T = 50, the powers of the

fi, tests using to, 2,, and 0,2 are .959, .704, and .343 respectively for A = 10,000,

which is less than Tanaka’s limiting power of .991.

The above results show that the power of the fi, test for I = 0,, and for small A

is well predicted by the asymptotics of Tanaka. More generally, its power

performance is satisfactory unless both A is large and T is small. However, note that

the ileum) test is not generally powerful at all even against the pure random walk

alternative of A = oo in finite samples.

For more detailed power investigations, we choose 4 different values of A

(0.0001, 0.01, 1 and 10,000). We first analyze the case of iid errors, for which the

results are given in Table 2-4. When A = 0.0001, the powers of the tests are not much

different from nominal level in finite samples. This implies that it is almost

impossible to distinguish between the distribution under the null and under a local

alternative in finite samples. When A = 0.01, the powers of the tests using to

approach one as T increases, but in finite samples they are not very large. As

expected, both tests are not very powerful against alternatives with small values of A,

say A < 1. Note that the fi, test is generally less powerful than the fin test. This

finding is also consistent with previous studies. For A 2 1, the tests using to and 0,,

are reasonably powerful even in finite samples but the tests using 0,2 are not powerful,

as mentioned, even against the pure random walk alternative. It should be noted that

the loss in power from using a large value of 0 persists for large sample sizes. This is
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also expected from the asymptotics under the alternative; (ffl‘) enters the expression

(27) above.

We now consider the power in the presence of AR(1) errors. These results are

given in Table 2-7. In this case the power generally depends on the value of p as well

as the value of A. As p —-) 1, the test is more powerful, as expected. For p = 0.8,

even when A = 0.0001 and T = 100, the powers of the fin tests using to, 24, and 9,2

are .799, .252 and .083 and the powers of the fi, tests using to, 04, and 0,2 are .953,

.340 and .092, all of which are far greater than the powers for iid errors. This is a

reflection of the size distortion caused by AR(1) errors with positive p. On the other

hand, for negative p, power is small unless T is very large.

In the presence of AR(1) errors, the use of longer lags (a larger value of 0) is

needed for the test to avoid size distortions, while the use of shorter lags is needed for

the test to be more powerful. This implies an inevitable tradeoff between power and

size in finite samples. Therefore, we have to weigh size against power of the test in

determining the choice of the number of lags to be used. Based on the above

simulation results and considering the fact that p = 0.8 is a plausible parameter value,

the use of l = 18 may be a compromise between the large size distortions under the

null that we would expect for t S 04 and the very low power under the alternative that

we would expect for l = 1,2.

We now consider power in the presence of MA(l) errors. These results are

given in Table 2-8. In this case the power also depends on the value of or as well as

the value of A, but the influence of or is not as important as the AR(1) parameter p.
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Generally, the test using 2,, is more powerful for positive on than for negative or. For

A = 0.0001, when or = 0.8 and T = 100, the powers of the if, test using to, 94, and 0,2

are .218, .062 and .037 and the powers of the fi, test are .307, .063 and .039

respectively. On the other hand, for negative or, the powers are less than nominal

level unless T is very large. Once again these levels of power reflect the size

distortions caused by or at 0.

In the presence of MA(l) errors, size distortion is not as severe as in the AR(1)

case, so that the use of very long lags is not required for the test statistics to be more

accurate. For positive values of the moving average parameter, there is still a tradeoff

between power and size in finite samples, but the size distortions with t = l, are not

as severe as for the AR(1) case. Based on the above simulation results, the use of f =

1., may be a compromise between some size distortions under the null that we would

expect for I = 0,, and decreased power under the alternative that we would expect for

(>94.

2.3.3 Comparison to The Saikkonen and Luukkonen Test

The simulation results for the f1, and fi, tests can be compared with those for

the test of Saikkonen and Luukkonen. They suggest the use of their Rl statistic in the

presence of MA(l) errors and of their R” statistic in the presence of AR(1) errors.

These comparisons are given in Table 2-9 and 2-10. Note that for iid errors, size is

relatively correct in all cases.

With MA(l) errors, the R1 statistic can be compared with the fip(f4) statistic.
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For positive or, when T = 100, the sizes of both tests are correct and similar but R1 is

always more powerful than 13,04). For example, for 0 = -0.95 (A = .0026), the power

offi,(l,) is .201 and the power of R1 is .335 when at = 0.8. For negative or the sizes

of both tests are low but the size of the mm) test is almost zero, but interestingly,

mm) is always more powerful than R,.

With AR(1) errors, we compare the ff, test using 0,2 or 9,, with R”. For p < 0,

the sizes of13,04) or final”) are too small but the size of Ru is relatively correct. On

the other hand, for p > 0, some size distortions occur for 13,04), but R15 and man)

show almost the correct size performance. However, the power offipan) is always

less than the power of Ru except when 6 = -0.95 and p is negative. For example, for

0 = -0.90 (A = 0.0111) the power of R11‘ is .447 and the power offipan) is .219 when

p = 0.8 and T = 100. However, no general conclusion can be drawn from the

comparison of the power of R15 with the power ofmm). For example, for p = 0.5

and T = 100, the powers orfi,(l,) and R15 are .209 and .265 for e = -095, but they

are .648 and .567 for 0 = -0.8. This ordering is reversed when p = -0.5. However, it

is generally true that the power of R1, exceeds the power of13,04) except where mm)

suffers from considerable size distortions.

To sum up, it is very difficult to draw any clear conclusion from the above

comparison. The Saikkonen and Luukkonen testing procedure is more complicated

than KPSS’s, because they have to estimate a general ARMA process and then derive

the approximate MA(m) representation. There is also the problem of choice of the

appropriate number of m. However, interestingly, the size of their test is relatively
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correct in most cases with autocorrelated errors, especially when the errors are AR(1).

2.4 Applications to the Nelson-Plosser Data

In this section we briefly discuss the results of application of the stationarity

tests to actual data. KPSS apply their tests for stationarity to the data analyzed by

Nelson and Plosser in order to check whether their approach to testing stationarity

corroborates the main findings of Nelson and Plosser. They consider values of the lag

truncation parameter 0 from 0 to 8. The values of the test statistics are fairly sensitive

to the choice of Q, and in fact for every series the value of the test statistic decreases

as 2 increases. This is a reflection of large and persistent positive autocorrelations in

the series. For all series except the unemployment rate and the interest rate, they can

reject the hypothesis of level stationarity, but this is not very surprising in light of the

obvious deterministic trends present in these series.

Based on the observations that for most of the series the value of the long run

variance estimate has settled down reasonably by the time 2 = 8 is reached, they use

the results for l = 8 for the trend stationarity test. The choice of 2 = 8 is relatively

consistent with the above simulation results. Their results have very different

implications for many of series considered from Nelson and Plosser. Nelson and

Plosser can reject the null hypothesis of a unit root at the 5 % significance level for

only two series (unemployment rate and industrial production) of the 14 series

considered, while KPSS can reject the null hypothesis of trend stationarity at the 5%
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level only for five series (industrial production, consumer prices, real wages, velocity

and stock prices). Therefore, KPSS conclude that most economic time series are not

very informative about whether or not they contain a unit root.

2.5 Suggestions and Concluding Remarks

We have investigated the finite sample performance of the stationarity tests of

Kwiatkowski, Phillips, Schmidt, and Shin (1991). In the process we have shown the

close relationship between the KPSS stationarity test using a components

parameterization and a test for the moving average unit root using the traditional

ARIMA parameterization, and discussed some intrinsic testing problems involved. We

summarize the main findings as follows.

First, when the stationary errors are iid, the size of the tests using 0,, is correct.

Given positive autocorrelation, the tests using 0,, show some size distortions but the

tests using 012 show very small size distortions in most cases. The use of 0,, shows

the intermediate behavior. The size distortion problem is more severe with AR(1)

errors than with MA(l) errors. In particular, when p is large and positive, the use of

longer lags (e.g., 0,,) is required to avoid severe size distortions. On the other hand,

when the errors are negatively autocorrelated, we have a under-rejection problem.

Second, with iid errors, the tests using 0,, are most powerful. The power

performance of the tests in finite samples depends on the value of A, as expected.

Power is low when A is small and increases as A increases. Power does not usually
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approach one as A —-) 00 with T fixed, however.

Third, using 0,, or 012 instead of 0,, loses power, so that there is an inevitable

trade-off between size and power of the test. Our simulation results suggest the use of

shorter lags (e.g., 04) unless it appears that the stationary errors follow an AR(1)

process with large positive parameter.

Fourth, ii, is less powerful than 1111' This confirms that it is difficult to

distinguish between a unit root and trend stationary series in finite samples.

We have compared the finite sample performance of the KPSS stationarity test,

which uses semiparametric corrections for error autocorrelation, with that of the

Saikkonen and Luukkonen (1990) test, which uses a parametric correction instead.

Although it is difficult to draw any clear conclusion about their relative performance

in terms of size and power, it is important to mention‘the relatively good finite sample

performance of the Saikkonen and Luukkonen test when errors are the AR(1) with

large positive parameter. A possible combination of both approaches to tackle the

problem of autocorrelation is a further research topic.

It should be noted that we estimate the long run variance from residuals from a

fit of the model with the stationarity hypothesis imposed, and so if the null hypothesis

is not true we should expect s2(0) to diverge as 0 increases. This implies the need for

further research to find an estimate of the long run variance that is consistent under

the null and that increases the rate of divergence of the LM statistic under the

alternative.

We can possibly modify the stationarity test to make it into a cointegration test.
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One of advantages of this approach is that we can set up the null of cointegration

directly, instead of the null of no-cointegration which is a direct extension of the unit

root test and has been mainly used in the literature. The basic idea is simple.

Suppose that the n x 1 vector X is 1(1). Then variables in X are cointegrated if there

exists an n x 1 vector r such that r’X is 1(0). r’X is called the long run relationship.

If we know r, or estimate it efficiently, we can set y = r’X and apply the stationarity

test to y. We expect this test of cointegration to give further light on the true

relationships among important economic variables. We are currently working on this

topic. In particular, the asymptotic theory for the case that r is estimated must be

derived.
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Appendix A

We will now demonstrate that the extended version of Tanaka’s score test is

the same as the fin test. Tanaka’s simple model is given in (13) in the text and the

score test statistic for a moving average unit root is given in (14). We extend this to

the more general model

(A1) Ayt = 8t - 98st

where Ay, = x,, and y1 = x,. As shown in the text, the null hypothesis 9 = 1 in (A1)

corresponds to the null of 0,2 = 0 in equations (1) and (2) in the text.

t t

Define S, =.Zl yj and SL, =1“.1 (yj -9). Then it is straightforward to show that

.1= 1"

(A2) SLr = St ' t); = St ' (mST

T

where ST = 21y,.

t:

Lemma A1 (t - 1)xl + (t - 2)x2 + + x,_l = S,l

(proof) (t - 1)x, + (t - 2)rt2 + + x,_,

= (t - 1)yr + (t - 2)(y2 - yr) + + (yr-1 - Yr?)

= Yr[(t - 1) - (t - 2)] + y2[(t - 2) - (t - 3)]+ + yt-l

= yr + Y2 + + yet = Sta

. T

Lemma A2 21(T - s + l)x, = 22y, = Ty
s:

(Proof) 18(T-s+ 1)x,
s=l
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= Tyl + (T - 1)(y2 - Yr) + (T - 2)(ys - yr) +...+ (yr - yrr)

= y,[T - (T - 1)] + y2[(T - 1) - (T - 2)] +...+ yr

= $3]: = T);

Using Lemma A1 and A2 and (A2) we can show that

T _ T

(A3) Numerator of ( 14) = 231(8t - (y)2 = 121SL3

I: =

We now show that the denominator of(14) is the same as the denominator of the fin

test using Lemma A3. The denominator of (14) can be expressed as (see Tanaka

(1990))

T T T T

(A4) x’Q"x = [ 213x, 223 x, xT] [I - ee’fF] Dix, 52.1x, xT]’

where e is the unit column vector.

T

Lemma A3 x’Q“x = 21 (y, - y)2
t:

(proof) x’Q'1x

= [YT (YT ' Y1)“ (YT ' Yarn“ ' ce’lTHyT (YT ‘ Yr) (YT ' Yarn,

= yr2 + (yr-yo2 +--+ (yr-yrs)2 - (T+1)"[yr + (yr-yr) +"~+ (yr-yr.r)]2

T T

= 2133'? + (T+1)yr2 - 2yr(yr+yr+-°+yr) - (T+1)"[(T+1)yr - )13yr]2

r _ T _ 2

= {$332 ' Tyz = 21:0“ '3')

Here we use the fact that y, = Ex, with y0 = 0.

Therefore, the extended version of Tanaka’s score test should reduce to the

KPSS level stationarity test.
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Appendix B

We will demonstrate that the distribution of the fin and fl, tests under the null

hypothesis of stationarity ((5,,2 = 0) depends only on the sample size T, while the

distribution under the alternative depends on A (the ratio of the random walk error

variance to the stationary error variance) as well as T.

Consider the level stationarity test first. Under the null ( of = 0), y, can be

expressed as

(B1) Y1 = 70 + Vt

Then the partial sum process SL, is given by

t _ t _

(32) SLt =j-Zl (Yj 'Y) =j§l (Vj ' V)

SL, does not depend on y,, and the fin test is a function of SL, (t = 1,~-,T), so that its

distribution is invariant to y,,. The scale factor 0,, cancels out of the expression for the

fin test, therefore, the distribution of the statistic under the null is independent of

nuisance parameters (O" and 70).

Under the alternative ((5,,2 > 0), y,, e,, and SL, are expressed as

I

(BB) Y1 = 70 + 71 + Vt, Yr =j§1ui

(B4) 6, = (Yr 'Y) = (Yr '7) + (VI. '6)

1.

(BS) 8.51.3310, -9) =1; {0. p + (v, p}
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Since SL, does not depend on yo and the fi, test can be written as a function of S”, t =

1,---,T, its distribution under the alternative is still invariant to y,,. However, the

distribution for the fin test under the alternative depends on A = (Sf/6,2 as well as T.

To show this, we rescale (B3) by dividing by 0,. Accordingly, we get the following

results

(B6) y,’ = 70" + y,’ + v,‘, y,‘ 13-51“;

(B7) Ct. = (Y: '37.) = (Yr. '7.) + (v,' 47')

(Ba) 5.: 1:510; 5‘) =3 [0: 4‘) + (v; -m

Note that v,‘ (v, /O,) now follow iid N(0,1) and that the u,’ are iid N(0, A) where A =

(Sf/6,2. Then the fi, test can be written as a function of e,' and SL,', because e,' = e/o,

and S“. = 8,, /0,. Since e,° and SL,‘ depend on A but in a different way, the

distribution under the alternative clearly depends on A as well as T.

Following the same logic as for the case of level stationarity, it is

straightforward to show that the distribution for the fi, test under the null is

independent of nuisance parameters 0,, y,, and F, and that its distribution under the

alternative depends on A as well as T.



Table 2—0

43

Critical Values for Stationarity Test

30

50

80

90

100

120

200

500

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

.010

.025

.050

.100

.200

.300

.400

.500

.600

.700

.800

.900

.950

.975

.990

Table 2—1

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

.0248

.0302

.0367

.0460

.0624

.0788

.0970

.1193

.1473

.1853

.2435

.3493

.4648

.5826

.7444 O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

.0174

.0204

.0235

.0280

.0349

.0413

.0481

.0557

.0645

.0757

.0915

.1203

.1488

.1787

.2193

Size for iid Errors (A=O)

.049

.050

.049

.048

.049

.051

.051

.050

.004

.012

.029

.030

.029

.034

.041

.046

.054

.052

.049

.051

.049

.052

.052

.052

.248

.043

.032

.034

.033

.038

.040

.049
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Table 2-2 Size for AR(1) Errors (A = 0)

8

.5

2

.8

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

£0

.654

.725

.779

.796

.807

.833

.852

.321

.331

.350

.352

.359

.367

.370

.118

.118

.122

.123

.125

.128

.129

.017

.015

.014

.014

.014

.014

.013

.002

.001

.001

.001

.001

.001

.001

.000

.000

.000

.000

.000

.000

.000

.301

.264

.300

.250

.256

.271

.239

.114

.098

.108

.090

.092

.099

.090

.055

.053

.060

.054

.057

.061

.059

.025

.029

.034

.033

.036

.038

.042

.010

.015

.018

.019

.020

.021

.026

.002

.007

.008

.007

.003

.008

.010

"a

2:. £12

.007

.039

.080

.081

.091

.094

.092

.005

.021

.042

.043

.047

.053

.058

.004

.015

.033

.033

.038

.045

.049

.003

.011

.024

.026

.029

.037

.045

.002

.007

.017

.020

.023

.030

.036

.001

.002

.007

.007

.010

.015

.022

30

.769

.886

.936

.952

.960

.977

.989

.425

.486

.521

.538

.542

.559

.586

.147

.156

.157

.159

.166

.168

.170

.016

.012

.011

.010

.013

.011

.010

.001

.001

.001

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

’71

'24

.317

.319

.401

.337

.354

.396

.361

.129

.113

.124

.107

.114

.121

.110

.062

.059

.060

.057

.064

.065

.065

.027

.029

.031

.031

.035

.036

.039

.010

.016

.015

.016

.019

.020

.024

.001

.013

.008

.002

.002

.002

.008

£12

.124

.057

.084

.092

.104

.108

.111

.178

.047

.046

.047

.054

.054

.062

.227

.045

.036

.038

.042

.043

.052

.268

.039

.028

.029

.034

.036

.042

.301

.032

.021

.021

.025

.029

.036

.319

.028

.013

.009

.011

.015

.020
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Table 2—3 Size for MA(l) Errors (A = 0)

m. n.

a T £0 34 £12 £0 14 £12

0.8 30 .202 .062 .004 .287 .068 .217

50 .201 .057 .016 .295 .064 .046

80 .205 .063 .033 .299 .064 .037

100 .206 .057 .033 .302 .061 .038

120 .208 .061 .039 .305 .068 .043

200 .209 .065 .046 .306 .070 .044

500 .208 .060 .050 .316 .067 .053

0.5 30 .169 .058 .004 .236 .065 .222

50 .169 .055 .016 .242 .061 .046

80 .174 .062 .033 .244 .062 .036

100 .176 .056 .033 .251 .059 .038

120 .176 .058 .038 .025 .066 .043

200 .179 .063 .045 .254 .067 .044

500 .181 .059 .049 .263 .066 .053

0.2 30 .102 .050 .004 .129 .055 .233

50 .102 .049 .014 .133 .052 .045

80 .106 .055 .031 .131 .053 .035

100 .105 .051 .031 .132 .052 .036

120 .011 .052 .036 .138 .058 .041

200 .110 .057 .044 .139 .059 .042

500 .110 .055 .048 .141 .060 .051

-0.2 30 .015 .021 .002 .012 .024 .274

50 .012 .025 .010 .008 .025 .038

80 .011 .029 .023 .008 .026 .027

100 .011 .030 .025 .007 .027 .027

120 .011 .032 .028 .010 .031 .032

200 .010 .034 .035 .008 .032 .035

500 .009 .036 .041 .007 .035 .043

-0.5 30 .000 .003 .001 .000 .004 .360

50 .000 .004 .003 .000 .004 .028

80 .000 .000 .003 .000 .003 .013

100 .000 .006 .010 .000 .004 .010

120 .000 .006 .012 .000 .005 .013

200 .000 .006 .016 .000 .004 .017

500 .000 .007 .023 .000 .006 .021

-0.8 30 .000 .000 .000 .000 .000 .481

50 .000 .000 .000 .000 .000 .019

80 .000 .000 .000 .000 .000 .000

100 .000 .000 .000 .000 .000 .000

120 .000 .000 .000 .000 .000 .000

200 .000 .000 .000 .000 .000 .000

500 .000 .000 .000 .000 .000 .000



Table 2—4 Power for iid Errors

A T

.0001 30

50

80

100

120

200

500

.001 30

50

100

200

500

.01 30

50

80

100

120

200

500

0.1 30

50

100

200

500

1.0 30

50

80

100

120

200

500

10000 30

50

80

100

120

200

500

£0

.050

.051

.056

.063

.066

.097

.307

.058

.075

.168

.399

.788

.146

.287

.489

.587

.667

.846

.997

.514

.721

.927

.990

1.00

.806

.924

.977

.989

.994

.999

1.00

.887

.959

.988

.998

.998

1.00

1.00

A

"u

£4

.038

.041

.052

.055

.060

.092

.295

.046

.060

.147

.372

.757

.110

.232

.429

.508

.587

.776

.962

.403

.566

.762

.924

.989

.600

.683

.810

.818

.865

.943

.992

.641

.704

.822

.827

.871

.947

.992

£12

.004

.013

.032

.038

.044

.078

.275

.004

.020

.100

.314

.682

.009

.089

.288

.376

.459

.626

.865

.034

.267

.551

.713

.897

.053

.332

.532

.579

.633

.725

.901

.059

.343

.536

.582

.635

.725

.901

.053

.054

.052

.054

.059

.065

.137

.054

.060

.084

.193

.621

.080

.129

.249

.352

.444

.729

.983

.287

.547

.878

.990

1.00

.725

.914

.982

.993

.996

1.00

1.00

.888

.974

.995

.999

.999

1.00

1.00

.243

.045

.034

.036

.041

.051

.118

.244

.048

.053

.132

.503

.240

.065

.117

.172

.235

.448

.843

.200

.129

.357

.637

.903

.152

.171

.344

.411

.492

.667

.911

.141

.176

.353

.410

.496

.675

.911



47

Table 2-5

Comparison of the Limiting Power

With Predictions Based on Asymptotics

T 30 50 100 200 500

r, n, Actual .887 .959 .995 1.00 1.00

Predicted .888 .961 .995 1.00 1.00

0, Actual .888 .974 .999 1.00 1.00

Predicted .880 .971 .999 1.00 1.00

2, 0“ Actual .640 .704 .830 .947 .992

Predicted .641 .701 .826 .947 .992

n, Actual .508 .627 .820 .966 .998

Predicted .507 .623 .828 .966 .997

212 n“ Actual .059 .343 .580 .725 .901

Predicted .055 .348 .583 .728 .900

0, Actual .141 .176 .410 .675 .911

Predicted .137 .177 .417 .671 .909

1 Actual power is Obtained as the proportion of rejection Of the

null of stationarity when we apply the 95 % critical value for

the stationary test to data generated under the alternative of A

- 10,000.

2 Predicted power is calculate as the probability (for the

asymptotic distribution under the alternative) that the statistic

exceeds its 95% critical value.
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Table 2—6

Comparison of the Power Of the "a Test to

Tanaka's Limiting Power

T A 0 C £0 0, £12 Tanaka1

30 .0001 -0.990 0.299 .050 .038 .004

.001 -0.969 0.934 .058 .046 .004 .061

.01 -0.905 2.854 .146 .110 .009 .147

.1 -0.730 8.105 .514 .403 .034 .505

1 0 -0.382 18.541 .806 .600 .053 .839

100 -0.010 29.706 .883 .639 .059 .949

10000 -0.0001 29.997 .887 .641 .059 .949

50 .0001 -0.990 0.498 .051 .041 .013

.001 —0.969 1.556 .075 .060 .020 .079

.01 —0.905 4.756 .287 .232 .089 .293

.1 -0.730 13.508 .721 .566 .267 .733

1.0 —O.382 30.902 .924 .683 .332 .952

100 -0.0lO 49.510 .958 .703 .342 .990

10000 -0.0001 49.995 .959 .704 .343 .991

100 .0001 -0.990 0.995 .063 .055 '.038 .062

.001 -0.969 3.113 .168 .147 .100 .172

.01 -0.905 9.512 .587 .508 .376 .584

.1 -0.730 27.016 .927 .762 .551 .931

1.0 -0.382 61.803 .989 .818 .579 .9962

100 -0.010 99.020 .994 .826 .582

10000 -0.0001 99.990 .998

200 .0001 -0.990 1.990 .097 .092 .078 .099

.001 -0.969 6.225 .399 .372 .314 .400

.01 -0.905 19.025 .846 .776 .626 .848

.l -O.730 54.031 .990 .924 .713 .993

1.0 -0.382 123.607 .999 .943 .725 .9962

100 -0.010 198.039 1.00 .945 .726

10000 -0.0001 199.980 1.00 .947 .725

500 .0001 -0.990 4.975 .307 .295 .275 .309

.001 -0.969 15.563 .788 .757 .682 .786

.01 -0.905 47.562 .997 .962 .865 .988

.1 -0.730 135.078 1.00 .989 .897 .9962

1.0 -0.382 309.017 1.00 .992 .901

100 -0.010 495.098 1.00 .992 .901

10000 -0.0001 499.950 1.00 .992 .901

1. These powers are interpolated from Tanaka's table of the limiting

power for different C values.

2. Tanaka's results are available only up to C=60.
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Table 2—7 Power for AR(1) Errors (A = 0.0001)

0.8

0.5

0.2

-0.2

30

50

80

100

120

200

500

30
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80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

10

.653

.728

.779

.799

.809

.839

.873

.322

.334

.353

.363

.368

.397

.531

.118

.122

.129

.134

.140

.176

.373

.018

.016

.020

.021

.027

.050

.280

.002

.001

.002

.003

.004

.017

.241

.000

.000

.000

.000

.000

.005

.217

A

"u

£6 £12

.303 .007

.264 .039

.300 .081

.252 .083

.258 .091

.282 .099

.304 .137

.115 .005

.097 .021

.111 .043

.095 .045

.098 .051

.121 .067

.218 .159

.055 .004

.055 .016

.065 .035

.061 .038

.067 .045

.094 .067

.260 .229

.026 .003

.031 .012

.042 .029

.045 .035

.054 .045

.097 .089

.365 .351

.011 .002

.019 .008

.029 .025

.038 .035

.051 .049

.118 .129

.470 .467

.002 .001

.014 .004

.031 .025

.026 .041

.040 .069

.149 .222

.649 .634

£0

.769

.886

.936

.953

.960

.979

.988

.424

.487

.520

.540

.544

.565

.634

.148

.157

.158

.165

.171

.186

.267

.016

.013

.012

.011

.015

.019

.073

.001

.001

.000

.000

.001

.001

.025

.000

.000

.000

.000

.000

.000

.008

'77

it

.316

.318

.401

.340

.356

.396

.383

.130

.114

.125

.108

.116

.130

.150

.061

.059

.060

.060

.067

.079

.124

.028

.031

.032

.034

.041

.054

.151

.011

.016

.018

.020

.026

.041

.210

.001

.014

.014

.005

.005

.021

.378

112

.123

.057

.084

.092

.104

.112

.123

.178

.047

.046

.049

.055

.061

.086

.227

.045

.038

.039

.045

.055

.101

.267

.039

.030

.031

.038

.054

.149

.300

.032

.024

.026

.033

.057

.225

.318

.029

.017

.017

.022

.065

.396
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Table 2-7 (Continued)

"a

P T £0 £4 £12

0.8 30 .679 .335 .009

50 .772 .332 .066

80 .846 .434 .137

100 .881 .431 .207

120 .902 .487 .272

200 .960 .668 .431

500 .996 .891 .747

0.5 30 .389 .163 .009

50 .488 .207 .056

80 .625 .352 .189

100 .700 .400 .254

120 .755 .475 .336

200 .893 .686 .527

500 .991 .925 .818

0.2 30 .214 .118 .009

50 .341 .209 .072

80 .525 .388 .246

100 .617 .461 .328

120 .689 .540 .414

200 .864 .749 .596

500 .989 .952 .850

—O.2 30 .106 .116 .009

50 .251 .263 .108

80 .465 .477 .329

100 .568 .555 .422

120 .652 .632 .498

200 .846 .819 .652

500 .987 .973 .876

—0.5 30 .065 .131 .011

50 .215 .334 .148

80 .440 .553 .393

100 .551 .629 .478

120 .637 .699 .548

200 .837 .863 .684

500 .986 .981 .888

-O.8 30 .062 .156 .013

50 .209 .469 .205

80 .432 .666 .459

100 .547 .684 .530

120 .633 .750 .593

200 .831 .890 .706

500 .985 .987 .896

(A - 0.01)

”7

£0 24

.771 .327

.891 .345

.945 .442

.964 .411

.973 .448

.991 .612

.999 .876

.444 .140

.542 .151

.634 .214

.697 .237

.737 .295

.880 .524

.994 .901

.176 .077

.248 .108

.359 .188

.452 .245

.531 .320

.775 .590

.987 .940

.031 .047

.077 .105

.184 .229

.286 .321

.386 .421

.699 .707

.984 .973

.006 .032

.033 .126

.127 .298

.225 .405

.328 .514

.660 .792

.982 .986

.002 .023

.020 .234

.108 .471

.200 .483

.304 .599

.643 .851

.979 .994

£12

.122

.065

.105

.128

.157

.260

.630

.179

.058

.085

.116

.156

.320

.754

.223

.062

.100

.147

.199

.407

.823

.256

.067

.136

.204

.277

.507

.868

.279

.076

.177

.259

.341

.565

.889

.258

.088

.238

.322

.406

.620

.904
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0.2
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Table 2-7 (Continued) (A - 1)

m. n.

T 12,, 2,, 12,2 2,, 2,,

30 .863 .609 .049 .864 .472

50 .949 .674 .318 .964 .592

80 .983 .802 .517 .993 .789

100 .992 .807 .569 .998 .796

120 .996 .858 .624 .999 .848

200 1.00 .942 .720 1.00 .956

500 1.00 .989 .894 1.00 .996

30 .834 .592 .050 .799 .426

50 .936 .671 .326 .937 .564

80 .979 .802 .525 .988 .777

100 .990 .810 .574 .995 .795

120 .994 .860 .628 .997 .848

200 1.00 .943 .724 1.00 .956

500 1.00 .990 .900 1.00 .998

30 .817 .598 .052 .746 .421

50 .928 .676 .334 .920 .571

80 .978 .806 .530 .984 .787

100 .989 .815 .579 .994 .803

120 .994 .863 .631 .997 .855

200 1.00 .944 .725 1.00 .959

500 1.00 .991 .901 1.00 .998

30 .802 .612 .053 .705 .441

50 .924 .684 .340 .902 .591

80 .977 .812 .534 .981 .800

100 .988 .820 .582 .993 .813

120 .994 .867 .633 .996 .862

200 .999 .946 .725 1.00 .962

500 1.00 .991 .901 1.00 .998

30 .798 .619 .053 .687 .454

50 .922 .691 .342 .895 .605

80 .976 .816 .535 .980 .807

100 .988 .822 .582 .992 .817

120 .993 .869 .634 .996 .866

200 .999 .946 .726 1.00 .963

500 1.00 .991 .902 1.00 .998

30 .800 .624 .053 .686 .458

50 .922 .698 .345 .892 .617

80 .976 .819 .535 .980 .817

100 .988 .823 .584 .992 .820

120 .993 .870 .634 .996 .868

200 .999 .946 .725 1.00 .964

500 1.00 .992 .902 1.00 .998

.135

.162

.329

.394

.475

.656

.903

.152

.163

.335

.403

.485

.663

.911

.155

.166

.341

.409

.490

.667

.913

.152

.171

.346

.413

.494

.670

.914

.147

.174

.349

.415

.494

.670

.913

.140

.174

.350

.416

.496

.670

.914



0.8

0.5

0.2

30
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200
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120
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100
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30
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100
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200
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30
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30

50

80

100
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200
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Table 2—7

£0

.889

.961

.988

.995

.997

1.00

1.00

.889

.961

.988

.994

.997

1.00

1.00

.889

.961

.988

.994

.996

1.00

1.00

.889

.961

.988

.995

.997

1.00

1.00

.889

.961

.988

.994

.997

1.00

1.00

.889

.961

.988

.994

.997

1.00

1.00

£12

.057

.348

.536

.583

.635

.726

.903

.057

.348

.536

.584

.635

.726

.903

.057

.348

.536

.584

.635

.726

.903

.057

.348

.536

.584

.635

.726

.903

.057

.348

.536

.584

.635

.726

.903

.057

.348

.536

.583

.635

.726

.903

£0

.889

.973

.996

.999

.999

1.00

1.00

.889

.973

.995

.999

.999

1.00

1.00

.889

.973

.995

.999

.999

1.00

1.00

.889

.973

.995

.999

.999

1.00

1.00

.889

.973

.995

.999

.999

1.00

1.00

.889

.973

.995

.999

.999

1.00

1.00

(Continued) (A - 10,000)

’71

£4.

.512

.627

.822

.826

.871

.965

.998

.512

.627

.822

.825

.871

.965

.998

.512

.627

.822

.826

.871

.965

.998

.512

.627

.822

.825

.871

.965

.998

.512

.627

.822

.825

.871

.965

.998

.512

.627

.822

.825

.871

.965

.998

£12

.141

.177

.353

.417

.496

.671

.914

.141

.177

.353

.417

.496

.671

.914

.141

.177

.353

.417

.496

.671

.914

.141

.177

.353

.416

.496

.671

.914

.141

.177

.354

.416

.496

._671

.914

.141

.177

.353

.416

.496

.671

.914
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Table 2—8 Power for MA(l) Errors (A - 0.0001)

0.8

0.2

-0.2

30
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30

50
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100

120
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£0

.203

.202

.213

.218

.223

.256

.426

.170

.172

.181

.187

.193

.226

.409

.103

.105

.112 '.

.117

.124

.159

.360

.015

.013

.015

.017

.021

.044

.275

.000

.000

.000

.000

.000

.007

.226

.000

.000

.000

.000

.000

.002

.204

.004

.016

.035

.037

.044

.062

.191

.004

.016

.035

.037

.045

.063

.203

.004

.015

.034

.036

.044

.068

.238

.002

.011

.028

.034

.044

.091

.360

.001

.004

.018

.028

.045

.145

.533

.000

.000

.006

.019

.049

.252

.696

£0

.287

.296

.299

.307

.309

.320

.400

.236

.244

.245

.253

.256

.271

.351

.128

.135

.133

.138

.144

.156

.237

.012

.010

.009

.008

.011

.014

.065

.000

.000

.000

.000

.000

.000

.014

.000

.000

.000

.000

.000

.000

.003

.217

.046

.037

.039

.046

.054

.089

.223

.046

.037

.040

.045

.054

.092

.234

.045

.036

.038

.044

.054

.104

.275

.039

.028

.030

.036

.053

.153

.360

.029

.015

.015

.020

.047

.271

.480

.019

.001

.002

.003

.037

.462
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0.2
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Table 2-8 (Continued) (A - 0.01)

"a "1

T 20 0, £12 £0 0,

30 .290 .114 .007 .312 .081

50 .401 .182 .060 .380 .101

80 .564 .347 .214 .471 .168

100 .648 .416 .294 .552 .215

120 .713 .496 .379 .615 .281

200 .875 .712 .567 .818 .536

500 .990 .939 .836 .989 .920

30 .262 .113 .008 .263 .078

50 .379 .189 .063 .333 .103

80 .550 .359 .224 .431 .173

100 .636 .430 .304 .513 .223

120 .703 .510 .391 .586 .292

200 .873 .724 .578 .802 .553

500 .990 .944 .840 .989 .928

30 .201 .112 .009 .158 .070

50 .328 .208 .075 .224 .103

80 .518 .390 .252 .335 .185

100 .610 .468 .335 .431 .246

120 .685 .548 .422 .512 .323

200 .863 .754 .602 .765 .597

500 .989 .955 .853 .987 .944

30 .099 .112 .009 .027 .043

50 .244 .264 .110 .070 .101

80 .461 .481 .334 .176 .228

100 .566 .560 .427 .277 .324

120 .650 .637 .504 .377 .424

200 .845 .822 .657 .692 .711

500 .987 .974 .877 .984 .975

30 .050 .113 .010 .002 .019

50 .198 .323 .158 .020 .100

80 .428 .554 .414 .108 .279

100 .543 .641 .498 .204 .408

120 .631 .713 .566 .306 .527

200 .834 .869 .694 .650 .807

500 .986 .982 .892 .980 .988

30 .033 .116 .010 .000 .008

50 .181 .369 .201 .009 .098

80 .416 .600 .461 .083 .318

100 .533 .684 .537 .176 .468

120 .624 .750 .600 .280 .590

200 .830 .891 .712 .631 .852

500 .985 .986 .899 .978 .993

.215

.058

.088

.127

.172

.363

.795

.220

.060

.092

.132

.181

.379

.805

.229

.062

.102

.150

.204

.418

.830

.262

.068

.139

.209

.284

.512

.870

.318

.078

.190

.278

.360

.586

.896

.373

.085

.234

.324

.414

.629

.909
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0.5

0.2

Table 2-8
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30
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30

50

80

100

120

200

500

£0

.825

.931

.978

.989

.994

1.00

1.00

.822

.930

.978

.989

.994

1.00

1.00

.815

.927

.977

.988

.994

1.00

1.00

.802

.924

.976

.988

.994

.999

1.00

.796

.921

.976

.988

.993

.999

1.00

.795

.920

.976

.988

.993

.999

1.00

(Continued) (A - l)

"u

£t.

.588

.671

.802

.812

.861

.944

.991

.590

.672

.803

.813

.862

.944

.991

.598

.677

.807

.815

.864

.945

.991

.612

.685

.812

.820

.867

.946

.991

.619

.691

.816

.822

.869

.946

.992

.621

.695

.818

.823

.869

.946

.992

£12

.051

.330

.528

.578

.630

.725

.901

.052

.332

.528

.578

.631

.725

.901

.052

.335

.531

.580

.631

.725

.901

.052

.341

.534

.582

.634

.726

.902

.053

.343

.534

.583

.634

.725

.902

.052

.344

.535

.584

.635

.726

.902

£0

.777

.930

.985

.994

.997

1.00

1.00

.766

.926

.985

.994

.997

1.00

1.00

.742

.918

.984

.993

.997

1.00

1.00

.704

.902

.981

.993

.996

1.00

1.00

.684

.894

.979

.992

.996

1.00

1.00

.678

.889

.979

.991

.996

1.00

1.00

'71

£4.

.408

.560

.778

.797

.851

.958

.998

.412

.564

.781

.799

.852

.959

.998

.421

.572

.788

.803

.856

.959

.998

.440

.591

.800

.813

.863

.962

.998

.453

.602

.808

.818

.866

.963

.998

.458

.606

.811

.820

.868

.964

.998

.158

.165

.338

.406

.488

.665

.914

.157

.165

.340

.408

.489

.666

.914

.156

.166

.342

.409

.490

.667

.914

.151

.172

.346

.413

.494

.670

.914

.146

.175

.350

.416

.495

.670

.914

.147

.175

.352

.415

.495

.671

.914
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Table 2-8 (Continued) (A - 10,000)

m. n.

a T 12,, 2, 2,2 12,, r,

0.8 30 .889 .643 .057 .889 .512

50 .961 .701 .348 .973 .627

80 .988 .822 .536 .995 .822

100 .995 .826 .583 .999 .825

120 .997 .870 .635 .999 .871

200 1.00 .947 .726 1.00 .965

500 1.00 .992 .903 1.00 .998

0.5 30 .889 .642 .057 .889 .512

50 .961 .701 .348 .973 .627

80 .988 .822 .536 .995 .822

100 .995 .826 .583 .999 .825

120 .997 .870 .635 .999 .871

200 1.00 .947 .726 1.00 .965

500 1.00 .992 .903 1.00 .998

0.2 30 .889 .642 .057 .889 .512

50 .961 .701 .348 .973 .627

80 .988 .822 .536 .995 .822

100 .995 .826 .583 .999 .825

120 .996 .870 .635 .999 .871

200 1.00 .947 .726 1.00 .965

500 1.00 .992 .903 1.00 .998

—0.2 30 .889 .642 .057 .889 .512

50 .961 .702 .348 .973 .627

80 .988 .822 .536 .995 .822

100 .995 .826 .583 .999 .825

120 .997 .870 .635 .999 .871

200 1.00 .947 .726 1.00 .965

500 1.00 .992 .903 1.00 .998

-0.5 30 .889 .642 .057 .889 .512

50 .961 .702 .348 .973 .627

80 .988 .822 .536 .995 .822

100 .995 .826 .583 .999 .825

120 .997 .970 .635 .999 .871

200 1.00 .947 .726 1.00 .965

500 1.00 .992 .903 1.00 .998

-0.8 30 .889 .642 .057 .889 .512

50 .961 .702 .348 .973 .627

80 .988 .822 .536 .995 .822

100 .995 .826 .583 .999 .825

120 .997 .870 .635 .999 .871

200 1.00 .947 .726 1.00 .965

500 1.00 .992 .903 1.00 .998
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Table 2-9

Size Comparison of the gu'Test to the Saikkonen and Luukkonen Test

MA(l) errors

a

T Test —O.8 -0.5 0.0 0.5 0.8

100 R1 .023 .041 .053 .056 .060

£0 .000 .000 .049 .176 .206

2, .000 .006 .043 .056 .057

212 .000 .010 .029 .033 .033

200 R1 .030 .047 .052 .057 .060

20 .000 .000 .051 .176 .209

2, .000 .006 .049 .063 .065

212 .000 .016 .041 .045 .046

AR(1) errors

p

T Test -0.8 -O.5 0.0 0.5 0.8

100 R10 .028 .051 .053 .052 .081

R15 .041 .051 .053 .052 .066

R30 .039 .051 .053 .052 .059

20 .000 .001 .049 .352 .796

2, .007 .019 .043 .090 .250

212 .007 .020 .029 .043 .081

200 R10 .027 .046 .047 .045 .074

R15 .044 .046 .047 .045 .056

R30 .041 .046 .047 .045 .050

£0 .000 .001 .051 .363 .833

2, .008 .021 .049 .099 .271

2,2 .015 .030 .041 .047 .094
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Table 2-10

Power Comparison of the 6, Test to the Saikkonen and Luukkonen Test

MA(l) errors

a

T 0 Test -0.8 -0.5 0.0 0.5 0.8

100 —0.95 R1 .122 .243 .304 .324 .335

£0 .197 .216 .301 .401 .419

2, .483 .416 .268 .209 .201

212 .439 .351 .193 .137 .130

-0.90 R1 .309 .505 .587 .616 .631

£0 .557 .568 .609 .654 .666

2, .694 .652 .525 .450 .436

212 .541 .505 .392 .319 .308

-0.80 R1 .534 .749 .831 .858 .867

20 .841 .843 .858 .874 .877

2, .785 .770 .715 .673 .665

212 .574 .564 .521 .491 .484

AR(1) errors

p

T 0 Test —0.8 —0.5 0.0 0.5 0.8

100 —0.95 R15 .273 .292 .288 .265 .266

R30 .269 .292 .288 .265 .226

£0 .218 .233 .309 .513 .827

2, .492 .401 .268 .209 .312

212 .422 .317 .193 .115 .121

-0.90 R15 .563 .581 .555 .481 .447

R30 .562 .581 .555 .480 .377

20 .573 .575 .609 .715 .885

2, .695 .643 .525 .417 .444

212 .535 .487 .392 .270 .219

-0.80 R15 .822 .812 .743 .567 .605

R30 .823 .818 .743 .534 .457

£0 .844 .845 .858 .894 .950

2, .785 .766 .715 .648 .635

212 .572 .558 .524 .461 .399

Using equation (11) or (12) in text we find that if 0 - -0.95, —0.9,

and -0.8, then A - .0026, .0111, and .05.
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CHAPTER 3

TESTING FOR A UNIT ROOT: A DUAL APPROACH

3.1 Introduction

This chapter considers using the KPSS test statistic for stationarity to test for

integration in time series data. Many of the existing tests for a unit root are motivated

by considering the problem of testing whether an autoregressive root equals one

against the alternative that it is not equal to one. In contrast, the statistics proposed in

this chapter can be derived from a very different specification, but have almost the

same implication.

The decomposition into stationary and random walk components is a popular

way of thinking about the properties of macroeconomic time series. Since a series

with a unit root is equivalent to a series that is composed of a random walk and a

stationary component, tests for a unit root are attempts to distinguish between series

that have no random walk component and series that have a random walk component.

KPSS propose a statistic (fi,, given in equation (25) of the last chapter) to test

the null hypothesis of stationarity (no random walk component) against the alternative

of a unit root (a non-zero random walk component). In this chapter we reverse this

process and consider using the KPSS statistic to test the null hypothesis of a unit root

against the alternative of stationarity. The basic idea behind this procedure has been

59
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suggested by Stock (1990). Suppose that y, is the series in question and S, =j=2t1 yJ is

the partial sum process of y,. If y, is 1(0), then y, is 0,.(1) and S, is OP(Tm); while if

y, is 1(1), then y, is 0,.(Tm) and S, is OP(T3”). Thus Stock suggests that functions of S,

can be used to test H,: y, is I(l) vs H,,: y, is 1(0), _Q1_' vice versa. The idea is that one

statistic can be used to test both hypotheses. The KPSS statistic is of this form (it

depends on S,) and KPSS use it to test lrl0 vs H,. In this chapter we consider using it

to test H1 vs Ho. The question of interest is whether a test desigr_led as a stationarity

test will perform well as a unit root test As will be shown, the answer turns out to be

no.

We will derive the asymptotic distribution of the KPSS statistic as a unit root

test and discuss its characteristics in section 3.2. This test is compared to other similar

kinds of unit root tests in section 3.3. The finite sample performance of the test is

investigated via a Monte Carlo simulation in section 3.4. We apply our unit root test

statistics to the Nelson-Plosser data in section 3.5. The concluding remarks are given

in section 3.6.

3.2 The KPSS Test As a Unit Root Test

We will use a components representation of an economic time series to derive

test statistics for the unit root hypothesis. The series of interest y,, can be decomposed

into the sum of a deterministic trend, a random walk and a stationary error:
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(1) Y1 = *4 + 71 + Vt 9 t = 1,2,...,T

(2) 71 = ‘Yt-l + ut

where u, are iid (0,0,2) and v, are stationary errors.

The null hypothesis is simply that 0,2 > 0, so that y, is an 1(1) process under

the null. Under the null (1) can be expressed as:

(3) (1 ' L)Yt = S 1' ut + AVn 01'

t

(4) Y1 = 70 + at +j=zluj + V,.

On the other hand, (1) can be expressed in the form of an 1(0) process under the

alternative of 0,2 = 0:

(5) Yt=70+§t+vt

The fundamental difference is that the deviations from trend in (5) are stationary while

in (4) they are an integrated process whose variance increases without bound as t gets

large.

Note that (3) or (4) is a generalization of the first order difference stationary

process which has been used as the counterpart of (5) in most of the unit root

literature:

(6) (1 - L)y, = § + u,, or

t

(7) Y. = To + fit +1333.
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Comparison shows that (6) or (7) is a special case of (3) or (4); (4) reduces to (7)

when 0,2 = 0. Therefore, our model of (1) and (2) is more general than the Dickey-

Fuller type model. In fact, as shown in Chapter 1 (equations (15) and (16)), our

model (3) or (4) is equivalent to a Dickey-Fuller model with MA(l) errors.

KPSS derive the asymptotic distributions of their test statistics under of > O,

which is our null hypothesis. First, we consider the statistic used by KPSS to test for

level stationarity:

T

(8) fl. = “I"318.2620)

1

where S, =21e,, ej = y1 - y, and s2(0) is the Newey-West estimate of the long run
J:

variance of v,.

T 0 T

(9) 82(9) = (1m[ 26.2 + 22 W02) 23 6.6.-.)
t=l s=1 t=s+1

where the Bartlett window, w(s,0) = l - 0/(s + l) is used for nonnegativeness of s2(0).

For consistency of s2(0) under stationarity, it is necessary that the lag truncation

parameter 0 -) oo as T —> oo. The rate 0 = o,(T1’2) will usually be satisfactory (see,

e.g., Andrews (1991)).

We now use the invariance principles (10) and (11) to derive the asymptotic

results for the unit root test statistics.

172,, 172 Rm

J:

W] W] -

(11) T‘ms,m = Ti"2 1'3in -'y) + '1‘”2 j_2‘.1(vj -v)
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[all -

= T” 13:10,, -7) + 6,,(1) —. O,J:W(s)ds

where a,b s [0,1], [aT] and [bT] are integer parts of aT and bT, and W(s) = W(s) -

0J'1W(b)db is the demeaned Wiener process. Therefore,

T T -

(12) T“ 23,2 = T1 2(T3’23,)2 —> 6,211 [fW(s)ds]2 da
t=1 {=1 0 0

From Phillips (1991) we can also show that

(13) (01)" s2(0) —+ KO,2§W(S)2ds

provided Tm0 --> 0 as T —> 00. K is defined by K = £1 k(s)ds where k(s) represents

the weighting function used in calculating s2(0). Note that if w(s,0) = 1 - 0/(s + 1) is

used, then k(s) = 1 - Isl and therefore, K = 1. However, if 0 = 0 is used, the

following holds instead of (13):

(14) T‘sz(0) —> O,2£W(s)2ds

Combining (12) with (13), it is straightforward to see that the unit root test with level,

defined as fi,(0), has the following asymptotic distribution:

(15) fire) = am fine) —» {)1 [£W(s)ds]2da / K§W(s)2ds

If 0 = 0 is used,

(16) fire) = (III) the) a; [£W(S)dS]2da /§W(s>2ds

The analysis for the unit root test statistic in the presence of trend is only
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slightly more complicated. Now e, is the residual from an OLS regression of y, on

intercept and trend. Correspondingly, we just need to replace the demeaned Wiener

process W(s) above with the demeaned and detrended Wiener process W'(s):

(17) W(s) = W(s) + (6s - 4)£1 W(r)dr + (-12s + 6)!)" rW(r)dr

Therefore, the unit root test statistic with level and trend, defined as '71,, has the

following asymptotic distribution:

(18) fi,(l) = (cm (1,0) —. {,1 [J:W’(s)ds]2da / Kg w’ts)2ds

If 0 = 0 is used,

(19) fire) = (In) 0.6)) -+ (I: [{WTsmleda lg words

The stationary errors v,, do not have any effect on the asymptotic distribution

of the test statistics under the null hypothesis 0,2 > 0. This implies that under the unit

root null the statistic has the same limiting distribution as that for a pure random walk

process. Thus, although the unit root null can be stated as A = (Sf/0,2 > 0, in fact our

null is effectively A = 00 ((5,,2 = 0). ii, and ii, are free of nuisance parameters because

the scale effect from the variance 0,2 > O in the numerator and the denominator of the

limiting distribution cancels out. It is important to note that this is so regardless of the

choice of the lag truncation parameter 0. From the point of view of the KPSS

statistics 11,, and 1‘], as unit root statistics, 0 = 0 is the obvious choice. Other choices of

0 (e.g., 0 proportional to T'") are necessary to correct for error autocorrelation in
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testing the null hypothesis of stationarity, but are not necessary for the unit root test.

In Table 3-0, the critical values of the r.h.s of equations (16) and (19) are

given, calculated via a direct simulation, using a sample size of 2,000, 50,000

replications, and the random number generator GASDEV/RAN3 of Press ELQL (1986).

Note that the unit root test is a lower tail test. Therefore, we compare fi,(0) =

(erotic) and fi.(0 = (ll/rm) [firm = (1mm) and fire) = (limp) when a =

0] to the lower 5% critical values to test the unit root null at the 5% level.

3.3 Comparison to Other Similar Tests

As mentioned above, Stock (1990) develops a unifying framework for so—called

"generic" unit root tests based on the fact that an 1(1) process is 90,,(Tm) but an I(0)

process is OP(1). Under the null hypothesis that the time series contains deterministic

trend plus an integrated process, Stock works with functionals of the detrended series

itself and shows that those converge weakly to the corresponding functionals of a

detrended Brownian motion. Our unit root tests, 171,, and fi,, also converge weakly to

functionals of a detrended Brownian motion under the null.

According to Stock’s simulation results, the modified Sargan and Bhargava

tests perform relatively well, and they are similar in form to our tests, fl, and 171,. Note

that under the null of a unit root, Stock’s specification is the same as that of Schmidt

and Phillips (1990) or Bhargava (1986):

(17) y. = 4(9) +1.;1 u,
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where d,(B) represents deterministic trend and the second term is an 1(1) process.

Therefore, (17) is basically the same as (7), though (7) assumes linear deterministic

trend. Modified Sargan-Bhargava tests are

2 T 2 Il' 2

(18) gem") = T t33107.") l82 —> oW(s)

B 2 T B 2 J’] B 2

(19) gsrtvr > = T 310. >/62 —> 0 w (s)

where y." = y. -i. y.” = y. - 'B'. - from. W“ = W(r) - (r - 1/2)W(1) - Iw<s). 13'. and B}

are the maximum likelihood estimators of B0 and B, assuming d,(B) = B0 «1» B,t. Stock

uses the detrended series itself while we use the partial sum process of detrended

series to derive the test statistics.

Furthermore, Stock estimates the long run variance of the residual as follows:

T 0 T

(20) 62 =(1/I‘)[Z 6‘3 + 2}: 2: (1,6,;

ml j=1t=j+l

where (i, is the residual from the regression of detrended (or demeaned) series on

lagged detrended (or demeaned) series, used for consistency. That is, 62 replaces T‘l

$2 (Ay,)2 in the original Sargan-Bhargava tests to make the test nuisance parameters

free. This treatment of the long run variance is different from ours. The form of the

denominator of the KPSS statistic is chosen so as to estimate the long run variance of

the stationary error in the all—8e39,; of a unit root. Under the unit root null, the limiting

distribution of the denominator of the KPSS statistic involves a functional of Brownian

motion, basically because our residual e, is 1(1), while Stock’s residual is 1(0), under

the unit root null. However, the KPSS statistic is free of nuisance parameters under
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the unit root null without the need to estimate a long run variance consistently. It is

reasonable to guess that this treatment of nuisance parameters might minimize size

distortions, but also entail some loss of power.

Blough (1989) also represents a time series as a convex combination of a

random walk and a general stationary component following the Beveridge-Nelson

(1981) decomposition:

(21) y, = 8y,, + (l — 8)y2,, 8 = [0,1]

where y,, = u + y,,_, + e,, and y,, = m, + a(L)e,,. Here m, is deterministic trend, a(0)

= 1, a(1) < co and the e,, are iid. Blough then considers the problem of testing the null

of a unit root 8 = (0.1] against the stationary alternative of 8 = 0. Note that a

sequence of processes {y,(8)} with 8 approaching zero is equivalent to a sequence of

ARIMA process with MA root approaching minus one. For any 8 > 0, the asymptotic

properties will be dominated by the random walk component {y,,}. However, for

finite samples, {y,(8)} will behave like {y,,} for small 8 and therefore the finite sample

distribution of statistics will be dominated by {y,,}. This implies that some unit root

processes behave almost like white noise for a given sample size, which raises

questions about both the possibility of and the need for generic unit root tests.

3.4 Finite Sample Behavior

The finite sample distribution of the unit root test statistics '71,, and 11, will be

tabulated by a Monte Carlo simulation. The results of these simulations (using 20,000
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replications when T S 100 and 10,000 replications when T > 100) are given in Tables

3-1 through 3-8.

We will use three different specifications of the stationary errors v,: iid, AR(1)

and MA(l) errors.

(22) v, = pv,_, + e, for AR(1) errors

(23) v, = e, + our” for MA(l) errors

where e, are iid and values of 21:02, $0.5, and :l:0.8 are used for p and or. When the

errors are iid, the size of the test statistics under the null depends on the variance ratio

A and the sample size T, whereas the power under the alternative depends only on T,

since the alternative specifies A = 0. We will consider three different choices of the

lag truncation parameter 0. These are 0,, = O, 0, = integer[4(T/100)"‘], and 0,2 =

integer[12(T/100)"‘]. As noted above, we expect 0 = 0,, to be the best choice, but this

may depend on how one weighs the tradeoff between size distortions and low power.

3.4.1 Size

For investigation of size we will choose four different values of A (0.0001,

0.01, 1 and 10,000) and seven values of T (30, 50, 80, 100, 120, 250, 500). We

expect better size performance for large A and worse size performance for small A,

because our null is effectively A = 00 as discussed above. Furthermore, because size

distortions disappear asymptotically, we expect better size performance (for any given

A) when T is large than when T is small.
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1) iid Errors

The sizes of the tests under iid errors are given in Table 3-1. The tests using

0,2 perform very poorly. They reject too seldom (except when A is very small), and

this problem persists even for rather large values of A and T, such as A = 10,000 and

T = 500.

The tests using 0,, and 0, perform very poorly when A = 0.0001. Since A =

0.0001 represents near stationarity, it is not surprising that the tests overreject

substantially. When A = 0.01 the tests still perform poorly, but there is some evidence

of improvement as T increases. The tests using 0,, and 0, perform reasonably well

underthenullforAz 1 ande 100.

The 11, test does not do as well as the fi, test. This is unfortunate, since most

economic time series appear to contain deterministic trends, and'thus the if, test is the

one needed in practice.

2) AR(1) Errors

We next consider the size of the test in the presence of AR(1) errors. Table 3-

2 presents our simulation results. It consists of four pages, corresponding to the four

values of A that we consider.

For A = 10,000, the sizes of the tests are almost independent of the AR(1)

coefficient p, and therefore almost identical to the results for p = 0, as presented

previously in Table 3-1. This is so because, with A = 10,000, the stationary error is

negligible.

When A = 1, the tests using 0,, and 0, show similar size performance for
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positive p, especially for T 2 100. For example, when p = 0.8 and T = 100, the sizes

of 13,00) and fi,(0,,) are .058, and the sizes of fi,(0,) and fi,(0,) are .056 and .047.

However, for negative p, the tests using 0,, show small size distortions when T is

small, but the sizes of the tests using 0, are relatively correct in most cases. The tests

using 0,, have low size and in fact, size is zero for fi,(0,,) when T < 200.

For A = 0.01, size distortion occurs for the tests using 0,, and 0,, but this is less

severe as p —> 1; e.g., when T = 100 and p = 0.8, sizes are .371 for fi,(0,,) and .345

for fi,(0,,), which are far less than the sizes of the tests using 0,, with iid errors. The

improvement of the tests as p —> 1 is expected, since the stationary error approaches a

random walk as p —> 1. The tests using 0, show mixed and intermediate behavior.

Comparing with the results for iid errors, for positive p there is a decrease in size

distortion for small T but an increase in size distortion for large T, while for negative

p we find a slight improvement of size performance. As in other cases, the tests using

0,, do not perform well.

For A = 0.0001, the sizes of the tests using 00 are almost one unless T is small

and p —-) 1. This is reasonable because, as A -—> 0, the series becomes stationary and

the test should reject the unit root null.

Comparing the above results with the results for iid errors, we find that size

distortions are generally less severe as p —> 1, as expected. However, this pattern is

more clear for tests using 0,, than for tests using 0, or 0,2.

3) MA(l) Errors

We now consider the size performance of the test in the presence of MA(l)
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errors, the results of which are given in Table 3-3.

For A = 10,000, the results are essentially the same as the results for iid and

AR(1) errors. As A -> co, the size performance of tests does not depend upon the

autocorrelation of the stationary errors.

For A = l, the tests using 0, perform somewhat better than the tests using 0,,

and much better than the tests using 0,2. A similar pattern occurs for A = 0.01, except

that the size distortions are larger for the tests using 0,, and 0, (especially 0,). The

tests using 0,, perform well if T is large enough (T 2 200, say).

For A = 0.0001, the sizes of the tests using 0,, approach one as T increases, and

the sizes of the tests using 0, are also quite large. Generally, the size distortion of the

tests using 0,, is slightly more severe as or —> -1. The tests using I, show less size

distortion for small T, but more size distortion for large T, when or is positive

compared to when or is negative. The tests using 0,2 also show size distortions for

large T, but their sizes are nearly zero in small

samples, especially for the 11, test.

To sum up, the main determinant of the size performance of the test in finite

samples is the relative variance ratio A. For small values of A, the tests are not

expected to be very exact in finite samples, and therefore the use of longer lags is

needed to avoid severe size distortion. However, when A is large so that random walk

components dominate stationary components, the sizes of the tests using 0,, and 0, are

relatively correct, but the sizes of the tests using 0,2 are too low unless T is very

large. Therefore, the use of longer lags (e.g., 0,2) is not necessary or desirable in this
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case. Comparing the results for MA(l) errors with the results for AR(1) errors, the

size distortions are more severe in the MA(l) case, especially when A is small and the

stationary errors are positively autocorrelated.

Generally, the location of the null (the value of A) is important for the accuracy

of inference since our null is simply A > 0. As our simulation shows, the test

distribution is close to the asymptotic null distribution in finite samples only when A is

sufficiently large.

3.4.2 Power

1) iid Errors

Results for the power performance of the tests in the presence of iid errors are

given in Table 3-4. The power of the tests using 0,, is almost 1 for both it, and fi,

when T > 50. The power of the tests using 0, is close to one in large samples, but it

is less than that of the tests using 0,, in finite samples. The power of the tests using

0,2 is very small unless T is very large, and, in particular, power is almost zero for

71,0") when T S 50 and for 11, when T < 200.

2) AR(1) Errors

We now consider power in the presence of AR(1) errors. These results are

given in Table 3-5.

For positive p, the tests using 0,, 0,, and 0,2 all suffer from low power. This

is as expected, because even under the alternative of stationarity ((3,,2 = 0), y,

approaches an 1(1) process as p —> 1. The tests using 0,2 show the poorest power
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performance. The tests using 00 show relatively good power performance when p is

away from 1. For example, when p = 0.5 and T = 100, powers are .904 and .908 for

fi,(0,,) and fi,(0,,). The tests using 0, show reasonable power unless p is close to 1,

e.g., when T = 100 and p = 0.5, powers are .700 for fi,(0,) and .551 for fi,(0,).

For negative p, the powers of the tests using 0,, are almost one in most cases,

while the tests using 0, show reasonable power unless T is too small. However, the

tests using 0,2 are not powerful unless T is large.

3) MA(l) Errors

We now consider the power performance of the test in the presence of MA(l)

errors. These results are given in Table 3-6.

The tests lose power as the MA(l) parameter or —) l, but the power loss is not

as large as it is in the AR(1) case. For example, when T = 100and on 5 0.8, power is

.966 for fi,(0,,) and .976 for fi,(0,,), both of which are far greater than the

corresponding powers in the presence of AR(1) errors with p = 0.8. The powers of

the tests using 0, are less than the powers of the tests using 00, but are reasonable.

The tests using 0,2 are the least powerful, and power is nearly zero for small T.

The tests are also more powerful for negative on than for positive or. The

powers of the tests using 0,, are almost one in most cases, and powers of using 0, are

above .9 when T > 50. However, the tests using 0,2 are not powerful in finite

samples.

To sum up, the tests using 0,, are most powerful unless the stationary errors

follow an AR(1) process with p close to one. The tests using 0, have reasonable
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power in most cases, but are not powerful either when p is close to one. The use of

longer lags (e.g., 0,,), especially for the 11, test, leads to a large loss of power.

3.4.3 Comparison with the Dickey-Fuller Unit Root Tests: Size

Consider the components representation (1), and A = 63/6,}. The series is

stationary if A = 0, and any A > 0 indicates the presence of a unit root. However, it is

important to note that the value of 0,,2 does not appear in the asymptotic distribution

theory for the KPSS statistic under the null hypothesis of a unit root. That is, the 1(1)

component of y, asymptotically dominates the 1(0) component, and asymptotically the

distribution is the same as if 0,,2 = 0 (i.e., A = 00). Thus, under the unit root null, we

should expect finite sample (but not asymptotic) size distortions when 0,2 > 0 (i.e., A

< co).

These size distortions can be related to the size distortions suffered by the

Dickey-Fuller tests or other similar unit root tests when the errors in the Dickey-Fuller

representation are autocorrelated. KPSS show that the model (1) is equivalent to the

ARIMA model (Dickey-Fuller regression with MA(l) errors):

(24) y, = d + By,l + w,, w, = e, + 06”, B = 1, e, iid.

Indeed, the connection between 0 and A is straightforward (see Harvey (1989), p. 68):

(25) 6 = -[(A+2) - [A(A+4)]m}/2, A = ~(1 + 0)2/0; A 2 0, I 0| S 1

Thus, for a given A in (1), it is reasonable to compare the size distortions of the KPSS
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unit root tests to the size distortions of the Dickey-Fuller tests in the presence of

MA(l) errors, with parameter 0 given by (25) so as to correspond to the given value

of A.

Table 3-7 gives some results on the sizes of the KPSS unit root test, the

Dickey-Pullers, and 11:: tests, and the augmented Dickey-Fuller tests. Other tests that

are similar to the a test, such as the Dickey-Fuller 6, test or the Schmidt and Phillips

test, give similar results. We choose A = oo (9 = O), A = 0.5 (0 = -0.5), and A = 0.05

(9 = -0.8); and we consider T = 25, 50, 100, 250 and 500. The results are based on a

simulation using 20,000 replications when T S 100, and 10,000 replications when T >

100.

We analyze first the tests that allow for level but not trend. These are the fi,

andfi, tests, and their augmented versions.

For 0 = O (A = co) most tests have relatively correct size. However, the size of

fi,(0,,) test is almost zero except when T is large. As 0 —-) -1 (A —> 0), positive size

distortions occur (except for the fi,(0,,) test) and 010,) shows the worst size

distortions. The size of the 0:10,) test is also quite considerably distorted, but the size

of fi,(0,) is relatively correct. For example, when T = 100 and 0 = -0.8, the sizes of

6,0,) and £10,) are .997 and .434, but the sizes of fi,(0,,) and fi,(0,) are .311 and .118.

Finally, the sizes of 0:10”) are relatively correct but the sizes of fi,(0,,) are too low.

The results for the tests that allow for trend are similar. When 9 = 0, most test

statistics have relatively correct size, but the sizes of fi,(0,) and fi,(0,2) are low [in

small samples. The problem is much worse for fi,(0,,) than for fi,(0,). Again f,(0,,)
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shows the worst size distortions as 0 -) -1. When 9 = -0.8 and T = 100, for example,

the sizes oft,(l,,) and 0,0,) are 1 and .568, but the sizes of fi,(0,,) and fi,(0,) are .6

and .141. On the other hand, f,(0,2) has relatively correct size but the size of fi,(0,,)

is nearly zero unless T is large.

Generally. fire.) fire.) 0.0.). to.) 0.0.). and 6.0.) are not reliable because

of poor size, when 9 is close to minus one. This result is consistent with previous

empirical findings that the Dickey-Fuller tests show considerable size distortions when

the errors are MA(l) with negative MA(l) parameter. See Schwert (1987, 1989) and

Lee and Schmidt (1991). The situation where 6 is close to minus one is called the

"nearly stationary case". The asymptotic distribution of the Dickey-Fuller tests when

the process is ’nearly stationary’ is derived in Chapter 4, and shows possible sources

for the size distortions in this situation. As will be seen in Chapter 4, the above

results are consistent with the predictions of the asymptotic theory.

One thing to note is that for A = .5 and .05, the size distortions for fi,(0,,) are

much smaller than those of the Dickey-Fullerf, test. The size distortions for fi,(0,,)

are also smaller than those of the 8,0,) test for T 2 250, but not for T S 100.

Asymptotic theory appears to be relevant for smaller values of T for the fi,(0,,) test

than for the 6, test or its augmented versions.

3.4.4 Comparison with the Dickey-Fuller Unit Root Tests: Power

We now turn to the power comparison of the test. Here the null hypothesis of

a unit root is false, so that A = 0 in (l) and B < 1 in the Dickey-Fuller model (24). In
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order to match the data generating process of the KPSS model (1) with that of the

Dickey-Fuller model, for a given value B < l, we assume that the errors in the

Dickey-Fuller regression are iid (so 9 = 0 in (24) above), and let the stationary error in

(1) be AR(1) with parameter B: v, = Bv,,, + 6,, with e, iid. Thus the data generating

process implied by both parameterizations is the same; deviations from level and/or

linear trend are AR(1) with parameter B. Table 3—8 presents results for the same tests

as in Table 3-7, for B = 0, .2, .5, .8, .9, .95 and .99.

We consider first the case of level but no trend When B = 0, the power of the

fi,(0,,) and 0:10,) tests is close to one for most cases. Generally, the KPSS unit root

test is less powerful than the Dickey-Fuller test. The difference in power is sometimes

substantial. For example, for T = 100 and B = 0.8, arguably an empirically relevant

set of parameter values, the power of£100) is .875 while the power of fi,(0,,) is .546.

The power of fi,(0,) is roughly comparable to that of £10,). It is generally the case

that the KPSS unit root test is slightly more powerful than the augmentedi; test for T

S 50 and slightly less powerful for T 2 100. The use of longer lags generally loses

power unless T is large, e.g., when T = 100, the powers of fi,(0,2) and flu”) are only

.150 and .448.

We now examine the case that allows for liner trend. When B = 0, the powers

of 11,00) and Al‘,(0,,) are almost one unless T is small. The comparison of the KPSS

unit root test to the Dickey-Fullera test is easy to summarize. Again the fi, test is

less powerful than the a test. The difference in power is also substantial. For

example, for T = 100 and B = .8, the power of 1].},(00) is .65 while the power of fi,(0,,)
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is .41. The power of fi,(0,,) is roughly comparable to that of £40,). It is generally the

case that fi,(0,,) is slightly more powerful than 840,) for T S 100 and slightly less

powerful for T 2 250.

Interestingly, comparing these results to the results above for size distortions in

the presence of autocorrelated errors in the Dickey-Fuller representation, we find

support for the general supposition that the tests that are less susceptible to positive

size distortions are also less powerful. It is noted that the use of longer lags loses a

lot of power, and this is more severe for the KPSS unit root test than for the Dickey-

Fuller tests. For example, fi,(0,2) has no power at all when T S 100.

3.5 Applications to the Nelson-Plosser Data

In this section we apply our unit root tests, ii, and ii, to the data analyzed by

Nelson and Plosser (1982). They find that the unit root hypothesis is rejected at the

5% level for only the unemployment rate series, and it is rejected at about the 10%

level for the industrial production series. These results are typically interpreted as

indicating the presence of a unit root in most of the Nelson-Plosser series.

In Table 3-9 we first present the results for the if, test which we use to test the

null hypothesis of a unit root with level. We consider values of the lag truncation

parameter 0 from 0 to 8. The values of the test statistics are sensitive to the choice of

0, and in fact for every series the value of the test statistic fu'st decreases and then

increases as 0 increases. This is different from the results for the stationarity test,
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because in this case test statistic depends on 0 in a different way. Nevertheless, the

test outcome is not in very much doubt: for all series except the unemployment rate,

and possibly the nominal wage and the interest rate, we cannot reject the hypothesis of

a unit root with level. Because the Nelson-Plosser series contain obvious deterministic

trends, and because the fi, test does not allow for deterministic trend, these results may

not be reliable. It is well-known that the DF 6,, andf, tests are inconsistent against

trend stationary alternatives. The 17],, test also suffers from this inconsistency problem.

Therefore, for data with linear deterministic trend, the '71, test should be used instead.

We therefore proceed to test the null hypothesis of a unit root with level and

trend, for which if, is the apprOpriate statistic. Once again the test statistics first

decline and then increase as 0 increases. In this case the choice of 0 is also important

to the conclusions. If we do not correct for residual autocorrelation at all, which

corresponds to picking 0 = 0, we would not reject the null hypothesis of the unit root

for any series except for the unemployment rate. Also, if we choose 0 2 4, then we

would not reject the null hypothesis of the unit root in any case, which is very

consistent with our simulation findings that the tests using longer lags are not

powerful. However, if we choose 0 = l, we find that we can reject the null of a unit

root at the 5% level for three series: the unemployment rate, GNP deflator, and

money. We cannot reject the null of a unit root at the 5% level for the remaining

series, but we can reject a unit root at 10% level for the industrial production series.

We can compare these results to the results from the augmented Dickey-Fuller

‘9, test, assuming an AR(p) model with p = l to 9. (That is, p is the number of
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augmentations of the regression leading to the test statistic). Table 3-10 shows that

the augmented Dickey-Fuller t-test cannot reject the unit root hypothesis at the 5%

level in almost all cases. The rare exceptions are the unemployment rate for the

AR(2) and AR(4) specifications and the money stock for the AR(8) specification.

These findings are quite consistent with those of Nelson and Plosser (1982), Rudebush

(1990), and others. Using the bootstrapping method, Rudebush derives the p-value

(the marginal significance level) for rejection of the unit root null hypothesis and finds

that, among all of the variables, there is only one for which the unit root hypothesis

can be rejected at the 5% level: the unemployment rate.

Combining the results of our unit root tests with the results of the KPSS

stationarity tests, the following picture emerges. Three series (unemployment rate,

GNP deflator, and money) appear to be trend stationary, since we can reject the unit

root hypothesis and cannot reject the trend stationarity hypothesis. Five series

(consumer prices, real wages, velocity, and stock prices and possibly industrial

production) appear to have unit roots, since we can reject the trend stationarity

hypothesis and cannot reject the unit root hypothesis. Three more series (real GNP,

nominal GNP, and the interest rate) probably have unit roots, though the evidence

against the trend stationarity hypothesis is only marginally significant. Employment

and real per capita GNP are probably trend stationary, which is consistent with

Cochrane (1988), though the evidence against the unit root is only marginally

significant. For the nominal wage we cannot reject either the unit root or the trend

stationarity hypothesis, and the appropriate conclusion is presumably just that the data
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are not sufficiently informative.

There are two interesting cases: industrial production and real GNP. For

industrial production we can reject the trend stationarity hypothesis at the 5% level

and the unit root hypothesis at the 10% level, while for real GNP we can reject the

trend stationarity hypothesis at the 10% level and the unit root hypothesis at about the

20% level. It seems that the data are not sufficiently informative to distinguish clearly

between these hypotheses. These results may be indicative of "near stationarity" of

the series. These results are also consistent with the Clark’s (1987) finding that the

data allocate a substantial fraction of the short run variation in real GNP and industrial

production to a persistent business cycle, with less variation allocated to a stochastic

trend that evolves smoothly over time. However, the results could also indicate the

necessity to consider other, different models, such as fractional integration.

Finally, our result indicates that stock prices seem to behave as a pure random

walk process. This is contrary to the weak evidence of a slowly mean reverting

characteristics of stock prices over a long horizon (probably, 3 - 5 years) suggested in

the finance literature. See Fama and French (1988) and Poterba and Summers (1987).

One possible reason is that we deal with yearly data only and further research is

needed for more general analysis.

3.6 Concluding Remarks

The KPSS stationary test is based on a components model in which an

economic time series is expressed as the sum of a deterministic trend, a random walk,
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and a stationary error. We have considered the use of this statistic to test the null

hypothesis of a unit root. We have derived its asymptotic distribution under the unit

root null, considered its finite sample performance by a Monte Carlo simulation, and

applied it to the Nelson-Plosser data series.

The asymptotic distribution of the test has been shown to be free of nuisance

parameters and is the same as the distribution for the pure random walk process. In

finite samples, the main determinant of the size performance of the test is the relative

variance ratio A rather than the autocorrelation of the stationary errors. Therefore,

since our null is simply A > 0, the location of the null is important for the quality of

inference in finite samples. Simulation results show that the distribution of the test

statistics in finite samples is close to the asymptotic null distribution when A and T are

sufficiently large. In this case the use of shorter lags (0) is preferred. On the other

hand, when A is small, the test is not expected to be exact. In this case, the use of

longer lags is needed to avoid size distortions. Comparing the results for AR(1) errors

with those for MA(l) errors, the size distortion is more severe in the MA(l) case,

especially when A is small and the errors are positively autocorrelated. This is not

surprising because the process with AR(1) errors approaches an 1(1) process as p -) 1.

Our results on power performance can be summarized as follows: the test using

0 = 0 is more powerful than the test using lags (0 > 0) in most cases. Especially,

fi,(0,,) does not have any power even against the white noise alternative (A = 0 and

stationary error is iid) in finite samples. The test using 0, has reasonable power in

most cases. However, when the stationary errors follow an AR(1) process with AR(1)
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parameter close to one, even the tests using 0,, and 0, are not powerful.

To sum up, the use of longer lags is preferred in terms of size performance in

the "nearly stationary case" while the use of shorter lags is preferred in terms of power

performance in the "nearly integrated case."

We have also compared the size and power performance of our test statistics

with those of the Dickey-Fuller test statistics. Our results are not very encouraging for

dual-use statistics. The KPSS statistic, designed for use as a test of stationarity, does

not make a particularly powerful unit root test. In particular, its power is noticeably

less than the power of the Dickey-Fuller 8, test (or other similar tests) against trend

stationary alternatives. This is intuitively reasonable. We would expect a similar lack

of power if standard unit root test statistics were used to test the null hypothesis of

stationarity.

We have applied our unit root tests to the data analyzed by Nelson and Plosser

(1982). Based on simulation results on their finite sample performance and based on

the sample autocorrelations of the series in first differences, we choose the lag

truncation parameter as 0 = 1 (or 0 =0) for the fi, test. Using the results for 0 = 1,

we find that we can reject the null of a unit root at the 5% level for only three series:

the unemployment rate, GNP deflator, and money.

Combining the above results with the results of the KPSS stationarity tests, the

following picture emerges. Three series (unemployment rate, GNP deflator, and

money) appear to be trend stationary. Five series (consumer prices, real wages,

velocity, stock prices, and industrial production) appear to have unit roots. Three
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more series (real GNP, nominal GNP, and the interest rate) probably have unit roots,

while two more series (employment and real per capita GNP) are probably trend

stationary. For the nominal wage we have no clear conclusion.

Our results are in broad agreement with the results of Clark (1987), Cochrane

(1988), Dejong et al. (1989), and Rudebush (1990), and with the Bayesian analyses of

DeJong and Whiteman (1991) and Phillips (1991). It suggests that for many series the

existence of a unit root is in doubt, despite the failure of the Dickey-Fuller tests (and

other unit root tests) to reject the unit root hypothesis. Presumably other alternatives,

such as fractional integration or stationarity around more general non-linear trend,

could be considered.



85

Table 3-0

Critical Values for Unit Root Tests

np(0) n.(0)

0.010 0.0053 0.0021

0.025 0.0074 0.0027

0.050 0.0099 0.0033

0.100 0.0141 0.0043

0.200 0.0213 0.0058

0.300 0.0300 0.0072

0.400 0.0405 0.0086

0.500 0.0514 0.0100

0.600 0.0615 0.0116

0.700 0.0708 0.0135

0.800 0.0793 0.0156

0.900 0.0872 0.0183

0.950 0.0915 0.0199

0.975 0.0940 0.0211

0.990 0.0959 0.0221
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Table 3-1

Size with iid Errors

£0

.854

.958

.992

.996

.998

1.00

1.00

.715

.734

.676

.647

.612

.509

.327

.097

.083

.072

.067

.057

.050

.045

.045

.045

.046

.049

.046

.046

"u

£4

.528

.610

.811

.787

.821

.921

.904

.406

.344

.374

.282

.274

.231

.141

.066

.049

.065

.052

.063

.062

.046

.041

.053

.049

.054

.060

.062

212

.000

.000

.054

.140

.222

.461

.558

.000

.000

.016

.030

.050

.059

.057

.000

.000

.004

.007

.021

.037

.000

.000

.003

.007

.013

.022

.037

£0

.814

.967

.997

.999

.999

1.00

1.00

.768

.901

.937

.930

.921

.868

.653

.131

.120

.104

.089

.068

.053

.034

.041

.042

.043

.044

.044

.044

’71

.126

.289

.754

.707

.789

.963

.994

.114

.209

.495

.372

.412

.416

.238

.016

.019

.045

.034

.059

.063

.008

.013

.037

.029

.036

.053

.061

£12

.000

.000

.000

.000

.000

.161

.684

.000

.000

.000

.000

.000

.023

.053

.000

.000

.000

.000

.004

.022

.000

.000

.000

.000

.000

.004

.022
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Table 3—2 Size with AR(1) Errors (A - 10,000)

0,. n.

P T £0 £4 £12 £0 £4 £12

0.8 30 .045 .046 .000 .034 .008 .000

50 .046 .041 .000 .041 .012 .000

80 .049 .060 .003 .043 .037 .000

100 .046 .048 .007 .043 .029 .000

120 .049 .054 .013 .044 .036 .000

200 .047 .062 .022 .044 .053 .004

500 .046 .060 .036 .042 .061 .022

0.5 30 .045 .046 .000 .034 .008 .000

50 .045 .041 .000 .041 .012 .000

80 .049 .060 .003 .043 .037 .000

100 .046 .049 .007 .043 .029 .000

120 .049 .054 .013 .044 .036 .000

200 .047 .062 .022 .044 .053 .005

500 .046 .060 .036 .043 .061 .021

0.2 30 .045 .046 .000 .034 .008 .000

50 .045 .041 .000 .041 .012 .000

80 .049 .060 .003 .043 .037 .000

100 .046 .049 .007 .043 .029 .000

120 .049 .054 .013 .044 .036 .000

200 .047 .062 .022 .044 .053 .005

500 .046 .060 .036 .043 .061 .021

-0.2 30 .045 .046 .000 .034 .008 .000

50 .045 .041 .000 .041 .012 .000

80 .049 .060 .003 .043 .037 .000

100 .046 .049 .007 .043 .029 .000

120 .049 .054 .013 .044 .036 .000

200 .047 .062 .022 .044 .053 .005

500 .046 .060 .037 .043 .061 .021

-0.5 30 .045 .046 .000 .034 .008 .000

50 .045 .041 .000 .041 .012 .000

80 .049 .060 .003 .043 .037 .000

100 .046 .049 .007 .043 .029 .000

120 .049 .054 .013 .044 .036 .000

200 .047 .062 .022 .044 .053 .005

500 .046 .060 .036 .043 .061 .021

-0.8 30 .045 .046 .000 .034 .008 .000

50 .045 .041 .000 .041 .012 .000

80 .049 .060 .003 .043 .037 .000

100 .046 .049 .007 .043 .029 .000

120 .049 .054 .013 .044 .036 .000

200 .047 .062 .022 .044 .053 .005

500 .046 .060 .036 .043 .061 .021
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£0

.060

.059

.060

.058

.059

.053

.048

.078

.073

.067

.064

.065

.057

.049

.092

.081

.072

.065

.065

.059

.049

.103

.086

.074

.068

.067

.059

.049

.107

.088

.075

.069

.067

.059

.049

.106

.087

.074

.069

.067

.059

.049

(Continued) (A - l)

52'.
2.

.060

.049

.069

.056

.062

.067

.063

.068

.054

.070

.056

.060

.066

.062

.067

.052

.067

.054

.060

.065

.061

.061

.048

.064

.051

.058

.063

.060

.057

.045

.062

.049

.056

.062

.060

.056

.043

.060

.049

.055

.062

.060

£12

.000

.000

.003

.007

.014

.022

.037

.000

.000

.004

.008

.013

.021

.036

.000

.000

.004

.007

.013

.021

.037

.000

.000

.004

.007

.013

.021

.036

.000

.000

.003

.007

.013

.021

.036

.000

.000

.004

.007

.013

.021

.036

£0

.042

.054

.058

.058

.061

.058

.050

.075

.086

.079

.077

.081

.065

.052

.112

.111

.092

.086

.081

.068

.053

.146

.127

.101

.091

.085

.070

.053

.163

.135

.103

.093

.087

.071

.053

.170

.139

.103

.092

.087

.071

.053

’71

£4

.107

.016

.049

.037

.047

.065

.066

.015

.022

.055

.039

.046

.063

.064

.016

.021

.051

.035

.045

.061

.063

.014

.017

.045

.033

.040

.059

.062

.012

.015

.042

.030

.039

.057

.061

.014

.012

.039

.031

.038

.055

.061

£12

.000

.000

.000

.000

.000

.005

.024

.000

.000

.000

.000

.000

.005

.023

.000

.000

.000

.000

.000

.004

.022

.000

.000

.000

.000

.000

.005

.022

.000

.000

.000

.000

.000

.005

.022

.000

.000

.000

.000

.000

.005

.022
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T £0

30 .162

50 .252

80 .342

100 .371

120 .387

200 .385

500 .290

30 .413

50 .540

80 .568

100 .563

120 .546

200 .472

500 .312

30 .616

50 .684

80 .651

100 .625

120 .594

200 .496

500 .317

30 .776

50 .772

80 .702

100 .662

120 .622

200 .512

500 .319

30 .841

50 .802

80 .717

100 .677

120 .632

200 .515

500 .321

30 .859

50 .807

80 .719

100 .676

120 .632

200 .513

500 .321
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(Continued) (A - 0.01)

"M

£7.

.150

. 198

.323

.304

.333

.355

.264

.307

.341

.432

.363

.367

.336

.209

.386

.360

.406

.321

.316

.270

.163

.406

.321

.335

.241

.234

.196

.117

.404

.269

.267

.188

.178

.152

.094

.415

.170

.170

.148

.137

.121

.075

£ 12

.000

.000

.027

.052

.095

.137

.139

.000

.000

.028

.053

.086

.097

.089

.000

.000

.020

.038

.062

.071

.065

.000

.000

.012

.023

.040

.049

.049

.000

.000

.007

.016

.026

.035

.043

.000

.000

.004

.011

.020

.027

.039

£0

.082

.153

.282

.352

.416

.537

.541

.297

.540

.729

.765

.785

.784

.627

.603

.810

.891

.893

.891

.845

.647

.882

.947

.957

.950

.937

.876

.659

.964

.979

.975

.964

.952

.886

.664

.986

.986

.978

.966

.953

.889

.663

.7,

£.

.018

.045

.211

.202

.290

.464

.475

.060

.143

.452

.390

.468

.547

.389

.103

.199

.506

.400

.450

.472

.289

.115

.208

.466

.334

.362

.351

.189

.139

.182

.393

.263

.282

.259

.135

.308

.061

.229

.217

.220

.187

.093

£12

.000

.000

.000

.000

.000

.049

.175

.000

.000

.000

.000

.000

.044

.101

.000

.000

.000

.000

.000

.028

.064

.000

.000

.000

.000

.000

.015

.042

.000

.000

.000

.000

.000

.010

.033

.000

.000

.000

.000

.000

.007

.026



0.8

0.5

0.2

—0.2

Table 3-2

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

£0

.178

.300

.458

.544

.612

.790

.952

.471

.695

.846

.898

.929

.982

.997

.733

.895

.966

.984

.992

.998

1.00

.930

.987

.999

1.00

1.00

1.00

1.00

.986

.999

1.00

1.00

1.00

1.00

1.00

.999

.00

.00

.00

.00

.00

.00H
t
—
‘
t
—
‘
t
—
‘
t
—
‘
H

"u

£4

.165

.238

.436

.455

.535

.743

.919

.347

.464

.693

.690

.763

.896

.953

.470

.568

.778

.758

.820

.922

.932

.577

.645

.832

.797

.844

.917

.856

.674

.697

.862

.820

.853

.898

.755

.845

.709

.854

.869

.877

.869

.578

(Continued) (A

212

.000

.000

.038

.089

.177

.382

.710

.000

.000

.056

.129

.250

.463

.687

.000

.000

.056

.138

.265

.473

.608

.000

.000

.051

.143

.269

.440

.489

.000

.000

.048

.141

.266

.390

.376

.000

.000

.036

.141

.253

.303

.235

- 0.0001)

n.

r, r,

.083 .018

.161 .049

.317 .234

.410 .242

.504 .358

.764 .683

.982 .958

.313 .064

.601 .165

.837 .563

.907 .548

.944 .682

.992 .909

1.00 .993

.638 .109

.888 .252

.981 .702

.994 .663

.996 .781

1.00 .951

1.00 .994

.925 .135

.993 .320

1.00 .795

1.00 .740

1.00 .838

1.00 .968

1.00 .991

.990 .186

1.00 .356

1.00 .851

1.00 .800

1.00 .881

1.00 .974

1.00 .979

1.00 .503

1.00 .203

1.00 .864

1.00 .923

1.00 .956

1.00 .988

1.00 .917

£12

.000

.000

.000

.000

.000

.096

.656

.000

.000

.000

.000

.000

.148

.730

.000

.000

.000

.000

.000

.158

.708

.000

.000

.000

.000

.000

.158

.643

.000

.000

.000

.000

.000

.155

.546

.000

.000

.000

.000

.000

.149

.372
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Table 3—3 Size with MA(l) Errors (A - 10,000)

0.8

0.2

-0.8

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

30

50

80

100

120

200

500

£0

.045

.045

.049

.046

.049

.047

.046

.045

.045

.049

.046

.049

.047

.046

.045

.045

.049

.046

.049

.047

.046

.045

.045

.049

.046

.049

.047

.046

.045

.045

.049

.046

.049

.047

.046

.045

.045

.049

.046

.049

.047

.046

.7,
2.

.046

.041

.059

.049

.054

.062

.060

.046

.041

.059

.049

.054

.062

.060

.046

.041

.059

.049

.054

.062

.060

.046

.041

.060

.049

.054

.062

.060

.046

.041

.060

.049

.054

.062

.060

.046

.041

.060

.049

.054

.062

.060

£12

.000

.000

.003

.007

.013

.022

.036

.000

.000

.003

.007

.013

.022

.036

.000

.000

.003

.007

.013

.022

.036

.000

.000

.003

.007

.013

.022

.036

.000

.000

.003

.007

.013

.022

.036

.000

.000

.003

.007

.013

.022

.036

£0

.034

.041

.043

.043

.044

.044

.043

.034

.041

.043

.043

.044

.044

.043

.034

.041

.043

.043

.044

.044

.043

.034

.041

.042

.043

.044

.044

.043

.034

.041

.042

.043

.044

.044

.043

.035

.041

.042

.043

.044

.044

.043

~

'71

£4

.008

.012

.037

.029

.036

.053

.061

.008

.012

.037

.029

.036

.053

.061

.008

.012

.037

.029

.036

.053

.061

.008

.012

.037

.029

.036

.053

.061

.008

.012

.037

.029

.036

.053

.061

.008

.012

.037

.029

.036

.053

.061

£12

.000

.000

.000

.000

.000

.005

.021

.000

.000

.000

.000

.000

.005

.021

.000

.000

.000

.000

.000

.005

.021

.000

.000

.000

.000

.000

.005

.021

.000

.000

.000

.000

.000

.005

.021

.000

.000

.000

.000

.000

.005

.021



0.8

0.2

Table 3-3

T 20

30 .085

50 .078

80 .070

100 .065

120 .065

200 .057

500 .049

30 .087

50 .079

80 .070

100 .065

120 .065

200 .058

500 .049

30 .081

50 .083

80 .072

100 .065

120 .065

200 .059

500 .049

30 .103

50 .086

80 .074

100 .068

120 .067

200 .059

500 .049

30 .108

50 .089

80 .075

100 .070

120 .067

200 .059

500 .050

30 .109

50 .091

80 .075

100 .069

120 .067

200 .059

500 .050

92

(Continued) (A = l)

i.
2.

.072

.055

.069

.055

.061

.066

.062

.070

.054

.068

.055

.061

.066

.062

.051

.052

.066

.054

.059

.065

.060

.061

.047

.063

.051

.057

.063

.060

.057

.046

.062

.050

.056

.062

.060

.057

.044

.061

.050

.055

.062

.060

£12

.000

.000

.004

.008

.013

.022

.036

.000

.000

.004

.008

.013

.022

.036

.000

.000

.004

.007

.013

.021

.037

.000

.000

.004

.007

.013

.021

.036

.000

.000

.004

.007

.013

.021

.036

.000

.000

.003

.007

.013

.021

.036

£0

.088

.097

.086

.082

.079

.067

.053

.097

.102

.087

.084

.080

.067

.053

.115

.112

.093

.086

.082

.068

.053

.147

.128

.102

.092

.085

.070

.053

.166

.138

.104

.093

.088

.070

.053

.174

.143

.105

.094

.088

.070

.054

.000

.000

.000

.000

.000

.004

.023

.000

.000

.000

.000

.000

.004

.023

.000

.000

.000

.000

.000

.004

.022

.000

.000

.000

.000

.000

.004

.022

.000

.000

.000

.000

.000

.004

.022

.000

.000

.000

.000

.000

.004

.022
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Table 3-3 (Continued) (A - 0.01)

27,. n.

a T £0 £4 £12 £0 £4 £12

0.8 30 .520 .391 .000 .416 .109 .000

50 .625 .385 .000 .694 .207 .000

80 .619 .442 .024 .836 .530 .000

100 .603 .359 .046 .850 .432 .000

120 .577 .353 .074 .855 .493 .000

200 .487 .309 .083 .823 .529 .035

500 .316 .185 .073 .641 .342 .077

0.5 30 .553 .393 .000 .477 .109 .000

50 .646 .379 .000 .736 .207 .000

80 .630 .431 .022 .856 .526 .000

100 .610 .348 .043 .867 .424 .000

120 .583 .341 .080 .870 .481 .000

200 .491 .296 .079 .831 .514 .032

500 .317 .178 .070 .643 .324 .072

0.2 30 .633 .398 .000 .630 .111 .000

50 .694 .364 .000 .829 .207 .000

80 .658 .405 .019 .901 .513 .000

100 .630 .316 .037 .902 .400 .000

120 .598 .310 .060 .898 .448 .000

200 .498 .264 .069 .849 .464 .026

500 .318 .159 .063 .648 .281 .062

-0.2 30 .784 .414 .000 .893 .120 .000

50 .777 .323 .000 .953 .214 .000

80 .705 .333 .012 .960 .470 .000

100 .664 .237 .022 .953 .333 .000

120 .624 .230 .038 .940 .358 .000

200 .513 .192 .048 .878 .343 .015

500 .319 .115 .048 .660 .183 .041

-0.5 30 .867 .433 .000 .983 .142 .000

50 .820 .288 .000 .988 .227 .000

80 .727 .270 .006 .981 .426 .000

100 .682 .181 .013 .971 .265 .000

120 .638 .169 .023 .958 .276 .000

200 .519 .142 .031 .890 .244 .009

500 .322 .088 .041 .668 .125 .030

-0.8 30 .902 .445 .000 .997 .175 .000

50 .836 .263 .000 .995 .242 .000

80 .738 .235 .004 .987 .402 .000

100 .688 .150 .010 .976 .225 .000

120 .643 .138 .019 .963 .226 .000

200 .522 .120 .026 .896 .189 .006

500 .324 .076 .038 .671 .100 .025



0.8

0.5

0.2

-0.2

94

Table 3-3 (Continued) (A - 0.0001)

n. n.

T 2, 2, 2,2 2, 2,

30 .606 .458 .000 .439 .113

50 .821 .560 .000 .773 .250

80 .928 .773 .057 .942 .691

100 .962 .756 .139 .974 .655

120 .975 .820 .267 .987 .774

200 .995 .927 .479 .999 .950

500 .999 .949 .647 1.00 .995

30 .651 .465 .000 .505 .115

50 .848 .564 .000 .817 .253

80 .944 .777 .057 .959 .698

100 .972 .758 .140 .984 .660

120 .983 .821 .267 .991 .779

200 .996 .926 .478 1.00 .951

500 .999 .946 .635 1.00 .995

30 .757 .489 .000 .668 .118

50 .909 .583 .000 .907 .265

80 .973 .789 .056 .986 .719

100 .988 .768 .140 .996 .679

120 .994 .827 .267 .998 .792

200 .999 .926 .474 1.00 .956

500 1.00 .928 .596 1.00 .995

30 .940 .597 .000 .935 .143

50 .990 .661 .000 .995 .335

80 .999 .843 .051 1.00 .812

100 1.00 .807 .144 1.00 .755

120 1.00 .850 .271 1.00 .845

200 1.00 .919 .438 1.00 .971

500 1.00 .850 .479 1.00 .991

30 .997 .777 .000 .998 .209

50 1.00 .803 .000 1.00 .505

80 1.00 .922 .045 1.00 .941

100 1.00 .876 .152 1.00 .893

120 1.00 .894 .282 1.00 .944

200 1.00 .911 .377 1.00 .989

500 1.00 .726 .320 1.00 .979

30 1.00 .955 .000 1.00 .349

50 1.00 .963 .000 1.00 .817

80 1.00 .988 .036 1.00 .999

100 1.00 .945 .183 1.00 .994

120 1.00 .941 .316 1.00 .998

200 1.00 .898 .309 1.00 .999

500 1.00 .612 .186 1.00 .957

.000

.000

.000

.000

.000

.160

.727

.000

.000

.000

000

.000

.160

.723

.000

.000

.000

.000

.000

.159

.706

.000

.000

.000

.000

.000

.159

.637

.000

.000

.000

.000

.000

.167

.501

.000

.000

.000

.000

.000

.193

.322
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Table 3-4

Power with iid Errors (A - O)

"p "1

T £0 £4 £12 £0 £4 £12

30 .854 .528 .000 .814 .126 .000

50 .960 .615 .000 .969 .291 .000

80 .994 .823 .057 .997 .757 .000

90 .996 .860 .140 .999 .825 .000

100 .998 .802 .150 1.00 .712 .000

120 .999 .862 .286 1.00 .822 .000

200 1.00 .961 .535 1.00 .971 .172

500 1.00 .998 .854 1.00 .999 .811
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Table 3-5 Power with AR(1) Errors (A — 0)

n. n.

P T £0 £4 £12 £0 £4 £12

0.8 30 .177 .165 .000 .083 .018 .000

50 .301 .239 .000 .161 .049 .000

80 .461 .436 .038 .317 .234 .000

100 .546 .455 .089 .410 .244 .000

120 .614 .538 .179 .507 .358 .000

200 .799 .756 .391 .767 .687 .097

500 .976 .951 .771 .985 .964 .682

0.5 30 .472 .349 .000 .312 .063 .000

50 .697 .465 .000 .602 .166 .000

80 .851 .698 .057 .837 .561 .000

100 .904 .700 .134 .908 .551 .000

120 .935 .773 .256 .946 .684 .000

200 .988 .916 .494 .994 .919 .153

500 1.00 .993 .835 1.00 .997 .779

0.2 30 .733 .473 .000 .639 .109 .000

50 .898 .572 .000 .889 .254 .000

80 .969 .789 .059 .981 .704 .000

100 .987 .774 .146 .994 .668 .000

120 .994 .837 .276 .997 .785 .000

200 .999 .949 .521 1.00 .960 .168

500 1.00 .997 .849 1.00 .999 .802

-0.2 30 .933 .580 .000 .924 .135 .000

50 .989 .652 .000 .994 .322 .000

80 .999 .851 .056 1.00 .801 .000

100 1.00 .828 .154 1.00 .749 .000

120 1.00 .883 .296 1.00 .852 .000

200 1.00 .971 .546 1.00 .978 .178

500 1.00 .999 .862 1.00 1.00 .822

—0.5 30 .987 .679 .000 .990 .187 .000

50 .999 .713 .000 1.00 .361 .000

80 1.00 .891 .054 1.00 .857 .000

100 1.00 .870 .161 1.00 .819 .000

120 1.00 .918 .318 1.00 .900 .000

200 1.00 .984 .572 1.00 .990 .190

500 1.00 1.00 .874 1.00 1.00 .843

-0.8 30 .999 .856 .000 1.00 .504 .000

50 1.00 .753 .000 1.00 .704 .000

80 1.00 .927 .043 1.00 .888 .000

100 1.00 .956 .203 1.00 .952 .000

120 1.00 .978 .391 1.00 .978 .000

200 1.00 .998 .642 1.00 1.00 .240

500 1.00 1.00 .908 1.00 1.00 .891
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Table 3-6 Power with MA(l) Errors (A - 0)

’7“ ”1

a T £0 £4 £12 £0 £4 £12

0.8 30 .606 .460 .000 .440 .114 .000

50 .823 .564 .000 .775 .250 .000

80 .933 .781 .059 .943 .693 .000

100 .966 .768 .146 .976 .660 .000

120 .981 .832 .275 .987 .778 .000

200 .998 .946 .519 1.00 .956 .166

500 1.00 .997 .848 1.00 .999 .799

0.5 30 .652 .468 .000 .505 .115 .000

50 .852 .569 .000 .819 .253 .000

80 .949 .786 .059 .960 .700 .000

100 .975 .771 .147 .985 .665 .000

120 .987 .835 .276 .992 .782 .000

200 .999 .948 .520 1.00 .958 .167

500 1.00 .997 .849 1.00 .999 .800

0.2 30 .757 .490 .000 .669 .119 .000

50 .912 .587 .000 .908 .265 .000

80 .976 .802 .058 .987 .723 .000

100 .990 .783 .148 .996 .684 .000

120 .996 .845 .279 .998 .798 .000

200 1.00 .954 .526 1.00 .963 .168

500 1.00 .998 .851 1.00 .999 .804

—0.2 30 .942 .599 .000 .936 .143 .000

50 .991 .667 .000 .995 .338 .000

80 1.00 .863 .055 1.00 .816 .000

100 1.00 .838 .156 1.00 .765 .000

120 1.00 .891 .301 1.00 .863 .000

200 1.00 .976 .552 1.00 .982 .179

500 1.00 .999 .865 1.00 1.00 .827

-O.5 30 .998 .783 .000 .998 .208 .000

50 1.00 .825 .000 1.00 .513 .000

80 1.00 .954 .052 1.00 .949 .000

100 1.00 .935 .188 1.00 .914 .000

120 1.00 .962 .371 1.00 .962 .000

200 1.00 .996 .627 1.00 .998 .227

500 1.00 1.00 .903 1.00 1.00 .888

-0.8 30 1.00 .964 .000 1.00 .351 .000

50 1.00 .987 .000 1.00 .836 .000

80 1.00 1.00 .063 1.00 1.00 .000

100 1.00 1.00 .385 1.00 1.00 .000

120 1.00 1.00 .688 1.00 1.00 .000

200 1.00 1.00 .903 1.00 1.00 .528

500 1.00 1.00 .996 1.00 1.00 .997
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Table 3-7

Size Comparison of the KPSS Unit Root Tests to

The Dickey-Fuller Tests Under MA(l) Errors

(a) Tests That Allow Level But Not Trend

"u 7n

T 9 £0 £4 £12 £0 £4 £12

25 -0.8 .463 .197 .000 .923 .522 .036

-0.5 .151 .070 .000 .418 .143 .038

0.0 .044 .036 .000 .050 .052 .039

50 -0.8 .418 .161 .000 .989 .471 .046

-0.5 .114 .059 .000 .523 .082 .035

0.0 .045 .041 .000 .051 .047 .036

100 -0.8 .311 .118 .012 .997 .434 .055

-0.5 .088 .057 .007 .573 .069 .039

0.0 .046 .048 .007 .053 .049 .043

250 —0.8 .193 .090 .036 .999 .371 .054

-0.5 .067 .063 .028 .604 .058 .045

0.0 .050 .060 .028 .049 .047 .044

500 -0. m .122 .077 .039 .999 .403 .058

.053 .062 .036 .610 .057 .046

0.0 .046 .060 .036 .053 .052 .046

I

O U
1

(b) Tests That Allow Trend

T 2 2. 2. 2... 2. 2. 2..

25 -0.8 .549 .203 .000 .900 .466 .033

—0.5 .195 .011 .000 .514 .166 .034

0.0 .032 .001 .000 .050 .052 .041

50 -0.8 .673 .185 .000 1.00 .518 .045

-0.5 .186 .025 .000 .709 .099 .032

0.0 .041 .012 .000 .052 .045 .034

100 —0.8 .600 .141 .000 1.00 .568 .055

-0.5 .134 .040 .000 .794 .079 .039

0.0 .043 .029 .000 .054 .044 .040

250 —0. m .381 .111 .011 1.00 .551 .055

.082 .053 .006 .841 .064 .039

0.0 .043 .048 .006 .051 .050 .040

I

O U
1

500 -0.8 .237 .095 .028 1.00 .613 .057

-0.5 .063 .064 .023 .853 .065 .046

0.0 .043 .061 .021 .052 .049 .048
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Tab1e 3—8

Power Comparison of the KPSS Unit Root Tests To The Dickey-Fuller Tests

(a) Power Comparison With Level But No Trend

T 5 30 34 £12 £0 £4 312

25 .00 .798 .414 .000 .990 .794 .064 .989

.20 .667 .364 .000 .937 .656 .068 .923

.50 .409 .257 .000 .564 .380 .068 .510

.80 .151 .115 .000 .145 .135 .075 .111

.90 .093 .076 .000 .088 .091 .073 .054

.95 .067 .055 .000 .075 .078 .073 .037

.99 .048 .041 .000 .067 .069 .070 .026

50 .00 .960 .615 .000 1.00 .955 .135 1.00

.20 .898 .572 .000 1.00 .906 .127 1.00

.50 .697 .465 .000 .983 .687 .109 .991

.80 .301 .239 .000 .348 .224 .077 .404

.90 .162 .138 .000 .127 .105 .057 .147

.95 .101 .089 .000 .079 .067. .051 .081

.99 .056 .052 .000 .063 .060 .049 .044

100 .00 .998 .802 .150 1.00 1.00 .448 1.00

.20 .987 .774 .146 1.00 .999 .425 1.00

.50 .904 .700 .134 1.00 .979 .351 1.00

.80 .546 .456 .089 .875 .605 .199 .940

.90 .289 .265 .048 .320 .243 .113 .430

.95 .151 .150 .015 .123 .108 .075 .170

.99 .066 .068 .009 .064 .060 .050 .063

250 .00 1.00 .961 .617 1.00 1.00 .980 1.00

.20 1.00 .951 .607 1.00 1.00 .972 1.00

.50 .995 .924 .581 1.00 1.00 .949 1.00

.80 .861 .791 .490 1.00 .999 .778 1.00

.90 .609 .589 .352 .972 .852 .501 .994

.95 .350 .366 .197 .452 .357 .215 .606

.99 .095 .113 .054 .066 .061 .053 .096

500 .00 1.00 .998 .855 1.00 1.00 1.00 1.00

.20 1.00 .997 .849 1.00 1.00 1.00 1.00

.50 1.00 .993 .779 1.00 1.00 1.00 1.00

.80 .976 .951 .771 1.00 1.00 .999 1.00

.90 .849 .842 .656 1.00 1.00 .958 1.00

.95 .604 .636 .473 .967 .911 .690 .993

.99 .156 .194 .126 .109 .104 .087 .176
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Table 3—8 (Continued)

(b) Power Comparison With Trend

~

"1 71 pr

T 3 30 £4 312 £0 £4 £12

25 .00 .713 .004 .000 .954 .600 .057 .956

.20 .511 .005 .000 .810 .459 .063 .797

.50 .221 .003 .000 .373 .248 .069 .343

.80 .061 .001 .000 .113 .112 .077 .080

.90 .038 .001 .000 .081 .085 .073 .055

.95 .031 .001 .000 .073 .079 .075 .042

.99 .030 .001 .000 .073 .075 .076 .040

50 .00 .969 .291 .000 1.00 .831 .072 1.00

.20 .889 .254 .000 1.00 .721 .068 1.00

.50 .602 .166 .000 .898 .447 .061 .924

.80 .161 .049 .000 .215 .136 .052 .221

.90 .075 .023 .000 .095 .075 .045 .092

.95 .052 .015 .000 .069 .060 .046 .055

.99 .042 .012 .000 .059 .052 .043 .045

100 .00 1.00 .712 .000 1.00 .996 .237 1.00

.20 .994 .668 .000 1.00 .985 .221 1.00

.50 .908 .551 .000 1.00 .896 .181 1.00

.80 .410 .244 .000 .646 .377 .106 .727

.90 .163 .103 .000 .192 .141 .068 .228

.95 .081 .052 .000 .087 .079 .051 .092

.99 .044 .030 .000 .051 .050 .042 .051

250 .00 1.00 .972 .338 1.00 1.00 .873 1.00

.20 1.00 .962 .326 1.00 1.00 .855 1.00

.50 .998 .931 .299 1.00 1.00 .790 1.00

.80 .855 .739 .206 1.00 .980 .516 1.00

.90 .497 .445 .101 .826 .607 .267 .900

.95 .208 .205 .083 .257 .206 .121 .341

.99 .052 .055 .037 .057 .053 .043 .058

500 .00 1.00 .999 .812 1.00 1.00 1.00 1.00

.20 1.00 .999 .802 1.00 1.00 1.00 1.00

.50 1.00 .997 .779 1.00 1.00 .999 1.00

.80 .985 .964 .682 1.00 1.00 .980 1.00

.90 .838 .825 .498 1.00 .997 .810 1.00

.95 .490 .528 .264 .813 .701 .424 .885

.99 .080 .110 .039 .077 .070 .058 .091
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Table 3-9

The KPSS Unit Root Tests Applied To the Nelson—Plosser Data

The 91"“ Test for a Unit Root without Trend

(5% Critical Value is .0099)

Lag Truncation Parameter (2)

Series 0 1 2 3 4 5 6 7 8

Real GNP .0961 .0493 .0671 .0771 .0839 .0892 .0936 .0975 .1011

Nominal GNP .0937 .0481 .0657 .0755 .0823 .0876 .0921 .0961 .0998

PCR GNP .0893 .0459 .0627 .0723 .0791 .0844 .0888 .0928 .0965

IP .0972 .0493 .0666 .0759 .0819 .0863 .0898 .0927 .0953

Employment .0935 .0478 .0649 .0744 .0807 .0856 .0897 .0933 .0965

Unemployment .0039 .0022 .0034 .0042 .0050 .0058 .0067 .0076 .0085

GNP deflator .0916 .0466 .0631 .0720 .0779 .0824 .0860 .0892 .0921

CPI .0712 .0363 .0492 .0562 .0609 .0644 .0672 .0696 .0717

Nominal Wage .0086 .0045 .0062 .0073 .0082 .0090 .0098 .0105 .0114

Real Wage .0980 .0500 .0677 .0773 .0837 .0885 .0924 .0958 .0989

Money Stock .0976 .0497 .0673 .0768 .0831 .0878 .0917 .0949 .0979

Velocity .0824 .0421 .0570 .0651 .0705 .0744 .0775 .0801 .0824

Bond .0110 .0060 .0085 .0101 .0113 .0123 .0133 .0141 .0149

SPSOO .0801 .0410 .0558 .0640 .0697 .0740 .0775 .0806 .0835

The 5; Test for a Unit Root with Trend

(5% Critical Value is .0033)

Lag Truncation Parameter (2)

Series 0 1 2 3 4 5 6 7 8

Real GNP .0102 .0054 .0078 .0096 .0112 .0127 .0143 .0159 .0177

Nominal GNP .0122 .0063 .0088 .0104 .0117 .0128 .0139 .0149 .0160

PCR GNP .0085 .0046 .0066 .0081 .0095 .0108 .0122 .0137 .0152

IP .0074 .0040 .0058 .0069 .0079 .0088 .0097 .0104 .0112

Employment .0065 .0034 .0049 .0059 .0067 .0075 .0083 .0091 .0100

Ilnemployment .0027 .0015 .0023 .0029 .0035 .0041 .0047 .0053 .0060

(SNP Deflator .0060 .0031 .0043 .0051 .0057 .0063 .0068 .0073 .0079

(SP1 .0167 .0085 .0115 .0133 .0145 .0154 .0162 .0170 .0177

Iqominal Wage .0946 .0484 .0657 .0752 .0816 .0864 .0904 .0940 .0972

lieal Wage .0135 .0072 .0103 .0124 .0142 .0159 .0176 .0192 .0208

lioney Stock .0054 .0028 .0038 .0045 .0051 .0056 .0061 .0067 .0073

‘Jelocity .0174 .0091 .0127 .0148 .0164 .0177 .0187 .0197 .0206

Bond .0119 .0064 .0091 .0108 .0120 .0131 .0140 .0149 .0157

SP600 .0123 .0065 .0091 .0108 .0121 .0132 .0142 .0151 .0159



Augmented

Series 0

Real GNP —2.03

Nominal GNP -1.35

PCR GNP -2.12

IP -3.08

Employment —2.17

Unemployment -3.36

GNP Deflator -1.83

CPI -0.65

Nominal Wage —1.46

Real wage -2.33

Money Stock -1.44

Velocity —1.66

Bond 1.86

SP500 -1.94
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Table 3—10

Dickey-Fuller Unit Root (;,) Tests Applied to

the Nelson—Plosser Data

(5% critical value is -3.45)

Number of the AR Order (P)

1 2 3 4 5 6 7

—2.99 —2.94 —2.69 —2.43 -2.12 —2.38 -2.68 -2

-2.32 —2.04 —l.83 —1.53 -1.79 —2.20 —2.17 —2

-3.05 -3.00 —2.80 —2.56 —2.22 -2.48 —2.84 -2

—3.13 -2.66 -3.23 -3.23 -2.57 —3.36 —3.63 -3

—3.92 —3.14 —3.55 —3.09 —2.84 —2.98 -3.33 -2

-2.52 —2.57 -2.45 -2.39 -2.47 -2.52 -2.44 -2

-1.86 -1.44 -1.97 -2.75 -2.37 -2.28 -2.38 -2

—3.05 —2.97 -2.80 -2.54 -2.56 -2.26 -2.33 —1

—3.08 -2.79 -2.93 -2.91 -3.00 -3.40 -3.68 -3

1.46 0.69 0.49 0.66 0.60 0.55 0.85 0

-2.65 -2.12 -2.12 -l.60 -1.06 -0.97 -1.06 -1

.23

.26

.39

—3.36 —3.19 —3.27 —3.08 —2.53 -2.49 —2.67 —2. 68

.60

.97

.65

.41

—2.52 -2.24 -2.24 —2.07 -2.12 -2.62 -2.92 -2. 64

.93

.46

-1.75 —l.47 -1.40 —1.08 -0.74 -0.79 -0.90 -l. 08

.76

.02
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CHAPTER 4

ASYMPTOTIC DISTRIBUTION OF UNIT ROOT TESTS

WHEN THE PROCESS IS NEARLY STATIONARY

4.1 Introduction

The unit root hypothesis has recently attracted a lot of attention in time series

econometrics. Dickey and Fuller (1979, 1981, DP) develop several tests of the unit

root hypothesis. They use a Monte Carlo simulation to tabulate the sampling

distributions of the coefficient and t statistics, assuming iid errors. These distributions

are nonstandard; they are skewed to the left and have too many large negative values

relative to a normal distribution. Furthermore, it is well-known that many economic

time series are mixed processes, in the sense that they contain not only autoregressive

but also moving average components. In this case, the DF tests are not expected to be

robust because the distribution of test statistics is derived under the assumption of the

errors being white noise.

There have been some attempts to derive alternative testing procedures to

correct for the presence of autocorrelated errors. Said and Dickey (1984, 1985) have

suggested the use of augmented Dickey-Fuller tests (ADF), based on the DF regression

augmented with lagged differences of the dependent variable, which should have the

correct size asymptotically even in the presence of autocorrelated errors, if the number
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of augmentations increases with the sample size at an appropriate rate. Phillips (1987)

and Phillips and Perron (1988, PP) allow for a wide class of weakly dependent and

heterogeneous errors and use semiparametric corrections to derive transformed

statistics which have the same limiting distributions that the DF statistics have under

iid errors.

However, the finite sample performance of most corrected unit root test

statistics is not robust when the data follow an ARIMA process. Schwert (1987,

1989) shows by extensive Monte Carlo simulations that most unit root tests have a

problem of size distortions when the errors are MA(l) with negative parameter. For

example, when the MA(l) parameter is -0.8, the size distortion of standard unit root

tests such as the DF and the PP tests is almost one.

This problem can be examined theoretically by using the "nearly stationary

model":

y.=By..1+€.. B=1.6.=U.+9u..1

6=-1+C/I"

where u, is iid, and C > 0 and 8 > 0 are fixed numbers. Note that, even under the

maintained hypothesis of a unit root ([3 = 1), yt is white noise when 9 = -1, and so yt

approaches white noise as T -—> 00. By using this model we will investigate the

asymptotic behavior of uncorrected unit root tests when the process is nearly

stationary. It will be shown that the order in probability and the asymptotic

distributions of standard unit root tests in this case may depend on the value of 5 as
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well as C. This approach is similar to the approach of Phillips(1988) and Chan and

Wei(l988) who consider the "nearly integrated process" in which the AR parameter [3

approaches unity as T —§ co, and who therefore investigate power against a sequence

of alternatives getting close to the null of a unit root.

Our model is an extension of Pantula (1991), who considers the same model,

but sets C = 1. He considers corrected versions of the unit root tests such as the ADF

and the PP tests, and he is primarily interested in finding and comparing the order in

probability of those statistics. However, our concern is different in the sense that we

study uncorrected unit root tests, and we are primarily interested in the finite sample

adequacy of the asymptotic results. The asymptotic results must be accurate in finite

samples if they are to explain the reason for the size distortions of unit root tests when

the process is nearly stationary.

The main purposes of this chapter are to derive the asymptotic distribution of

the Dickey-Fuller and the Schmidt-Phillips (1991, SP) unit root test statistics using the

local approximation of the MA(l) parameter to minus one, to tabulate the distributions

of the unit root test statistics predicted by our asymptotic theory, and then to compare

the predicted distributions with the actual sampling distributions. Based on our

findings we suggest directions for the further research.

In section 2 we discuss the model and derive the main asymptotic results. In

section 3 a Monte Carlo simulation is conducted to present the main results. In

section 4 we give some concluding remarks and discussion. The proofs and tables are

given in the appendix.
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4.2 Model and the Asymptotic Results

To derive the asymptotic distribution of the standard unit root test statistics

when the process is ’nearly stationary’ we consider the following model:

(1) y. = By.-. + 8., 6. = n. + 911.1

(2) 9=-1+C/I"

whereu,isiid(0,ou2),B=1,8>O,andC>0. AsT—)oo,9 —)-1. Infact,yt

becomes stationary when 6 = -1.

We consider two types of unit root tests. First, we use the Dickey-Fuller tests

based on the regressions:

(3) Yr = BYt-l + at

(4) y. = u + BY... + 8.

(5) y.=n+5t+Byst+6.

The 6, 6,, and 6, tests ate based on the coefficient statistic Tq’s‘ - 1), where {3, 6,, and

a, are the OLS estimators of B in (3), (4), and (5) respectively, while the f, f", andfi

tests are based on the t statistics for the hypothesis B = 1 in the same three

regressions.

Next we consider the Schmidt-Phillips test which is based on the

parameterization:
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(6) yt=W+§t+XeXt=l3Xtt+€t

The SP test of the unit root hypothesis can be derived from the results of OLS applied

to the following regression:

(7) Ay, = intercept + ¢SH + error

Here 8,, = y,, - Tyx - Eh - 1) is a residual, with E = (yT - y1)/(T - 1) and £17,, = y1 - E,

which are the restricted maximum likelihood estimators of i and ‘l’x = \y + X0. The

SP test statistics are defined as E = T$ and '1' = t statistic for the hypothesis 6 = O.

For later use, we define 8 = $ + 1.

Remark 1

The reason for including the SP test is that its parameterization can avoid the

awkward interpretation of nuisance parameters that the DF tests have. While the

meaning of intercept and coefficient of time trend under the null is different from that

under the alternative in the DF regressions (3) - (5), \l’ and 5, always represent level

and linear trend in the SP model (6). In addition, the detrending method of the SP test

is different from that of the DF test. It is well-known from the general regression

theory that the inference on B in (5) is the same when we replace (5) by

A

(5)’ Ay, = intercept + <l>SH + error

A

where SM is the residual from the OLS regression of y,_l on intercept and trend, and E

= B - 1. While the DF test uses the OLS estimators of coefficients on level and trend

A

in constructing the residual 8,,1 in (5)’, the SP test uses restricted maximum likelihood

estimators under the null of a unit root in constructing the residual S1 in (7).
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We now show main our asymptotic results. Theorems 1 through 5 show the

limiting distribution of the estimates of the coefficients of the lagged dependent

variable 6,19,, 6,, and E) under the maintained hypothesis that y, is generated by (1)

and (2). We use the mixing and moment conditions of Phillips and Perron (1988) to

derive the asymptotic results. Let us define functionals of the Brownian motion which

are used in deriving the following results: standard Brownian motion, W(r); demeaned

Brownian motion,W = W - 1W; demeaned and detrended Brownian motion,V=V = W +

(6IrW - 41W) + r(6,lW - 12IrW); and demeaned Brownian Bridge,\7 = V - 1V, where V

= W(r) - rW(1) is a Brownian Bridge. All integrals are understood to be taken over

the interval [0,1] and with respect to Lebesgue measure.

Theorem 1

For 0 < 5 < 1/2, the estimates of the coefficient [3 of the lagged dependent

variable have the following asymptotic distributions as T —> 00:

(8-1) "2“” (I? -1)_. -1/(czlw2>

A -

(8-2) T1415 as, - 1) -) -1/(C21w2)

A =

(8-3) rm «3, - 1) -+ -1/(C21W2)

(8-4) T"” (13' - 1) —) -1/(C21v2)

Theorem 2

For 8 = 1/2, the estimates of the coefficient [3 of the lagged dependent variable

have the following asymptotic distributions as T —> oo:

A

(9-1) (13 - 1) —> -1/(1 + CZIW2)

(9-2) (13‘, - 1) —> -1/(1 + czlwz)
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A

(9-3) (13, - 1) —t —1/(1 + OH?)

(9-4) ('3' - 1) —> -1/(1 + (221172)

Theorem 3

For 1/2 < 5 < 3/4, the estimates of the coefficient B of the lagged dependent

variable have the following asymptotic distributions as T —> oo:

(10-1) T2511? —> CZIW2

(IO-2) T1“ 6, -+ C2le

(103) T2'” 6 —) C21 1722

(104) T2er B —) €2le

Theorem 4

For 5 = 3/4, the estimates of the coefficient B of the lagged dependent variable

have the following asymptotic distributions as T —> oo:

(ll-1) TmB -) W(1)+C21w2

(11-2) TmB, —t W(l)+C21W2

(11-3) Tmfi, —+ W(1)+c21 v=v2

(ll-4) Tmfi —) W(1)+ C21)?2

Theorem 5

For 5 > 3/4, the estimates of the coefficient B of the lagged dependent variable

have the following asymptotic distributions as T —-) oo:

(12-1) TmB -> “((1)

(12-2) TmB, —> W(l)

(12-3) Tm 6 —) W(l)
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(12-4) TmB —> W(1)

Basically the same results are obtained for each test, with the difference being

only the functional form of Brownian motion used.

Remark 2

For 0 < 5 < 1/2, (B, - l) —9 0, but T1’2‘5(B\j - 1) converges to a random limit,

whereB; = B, B,, BL, and B. The speed of convergence is slower than in the case of

standard asymptotics (for fixed 0), where TB, - 1) —-> the limit. For 5 = 1/2, (Bj - 1)

converges to a random limit and the speed of convergence is even slower.

When 5 > 1/2, 03, - 1) —> -1 so thatBj -) 0. Therefore, we get limiting

distributions for 6, instead of 6,. - 1). For 1/2 < 5 < 3/4,T2"*1f3‘j has a limiting

distribution and the speed of convergence is between 0 and 1/2; i.e., 0 < 25 - 1 < 1/2.

For 5 = 3/4, T"2 Bj has a limiting distribution which is a mixture of a functional of

Brownian motion and a standard normal process.

Finally, for 5 > 3/4, T"2 Bj always converges to the standard normal process

W(1), as in the usual stationary case. Fuller (1976) also shows that the process can be

approximated by the standard normal process when 5 > 3/4.

Next we use the results in Theorems 1 through 5 to find what happens to

standard unit root tests when the process is nearly stationary. Corollaries 1 through 5

show that the standard unit root tests have different orders in probability, depending

mainly on the value of 5 and that their asymptotic distributions depend on the

functionals of Brownian motion and C.
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Corollary 1

For 0 < 5 < 1/2, the coefficient and the t statistics of the DF tests and of the

SP test have the following asymptotic distributions as T -) co:

(13-1) T256 —> -1/(c21w2) and T“? —+ -1/(2C21w2)"2

(13—2) T” 6, --) -1/(czlwz) and T‘fi, —> 4220216122)"2

(13-3) T215 6, --) -1/(C21W2) and T‘f, —+ -1/(2czl\1=v2)1’2

(134) T25 5 —> -1/(czlv2) and '1“ ‘i’ —> -1/(2C2I\72)"2

Coroll_a_ry 2

For 5 = 1/2, the coefficient and the t statistics of the DF tests and of the SP

test have the following asymptotic distributions as T —-> 00:

(14-1) T16 —) -1/(1 + czlwz) and TW‘ -—> -1/(1 + 2c2lw2)“2

(14.2) T1 6, —) -1/(1 + czlwz) and T"2 t, —+ -1/(1 + 201%)”

(14-3) '1“ 6, —-) -1/(1 + c2! W2) and T1226, ——> -1/(1 + 2C2! T112)“2

(144) T1 '6 —> -1/(1 + 01172) and T"2 't‘ —> -1/(1 + 291172)"2

Corolla_ry 3

For 1/2 < 5 < 3/4, the coefficient and the t statistics of the DF tests and of the

SP test have the following asymptotic distributions as T —> co:

05-0 Tm’é‘ + T) —9 alwz and T"”’*”(€ + T”) -) (:le2

(15-2) T2046” + T) _, Czfivz and Tamara + Tm) _) 01W;

(15-3) T"”’t6. + T) —> 01 \71/2 and Tmmd‘, + T”) —) c2!W2

054) TW’GS + T) —9 C2192 and remain“ + T”) —> (3le

Corolla 4
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For 5 = 3/4, the coefficient and the t statistics of the DF tests and of the SP

test have the following asymptotic distributions as T -> oo:

(16—1) quS + T) -) W(1) + czlw2 and (t‘ + T‘”) —> W(1) + CZIw2

(152) ngb‘, + T) -> W(1) + Olwz and (t; + T‘”) —) W(1) + czlwz

06-3) T‘%‘. + T) —> W(1) + czlv=v= and (2. + T“) -+ W(1) + 01%

(164) Tmtfi + 1) —> W(1) + czlvz and (t' + Tm) .. W(1) .2 C219:

Corona 5

For 5 > 3/4, the coefficient and the t statistics of the DF tests and of the SP

test have the following asymptotic distributions as T —> 00:

(17-1) Tm(6 + T) —> W(1) and (P + T”) -) W(1)

(17-2) Tmt6, + T) —) W(1) and (6}, + T‘”) —> W(1)

(17-3) Tm(6, + T) —-> W(1) and (6, + T1”) —) W(1)

(17-4) “1“”(5 + T) —> W(1) and (i + T“) -> W(1)

32mg;

For 0 .< 5 < 1/2 the coefficient and t statistics have order in probability 0,0”)

and OAT"), respectively. When 5 2 1/2, the coefficient statistic is of order 0,.(T) and

the t statistic is of order 0,,(Tm). (Note that the 5 = 1/2 and 3/4 are the discontinuity

points dividing the limiting distributions which have different behaviors.) This implies

that all the standard unit root test statistics diverge to negative infinity as T —> oo,

when the process is nearly stationary.

Our results can be directly compared to Pantula (1991), in which he studies the

performance of the various unit root test statistics when the process is nearly
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stationary. He uses the same model as (l) and (2) but restricts the value of C to 1.

However, there are some differences between Pantula’s analysis and ours.

First, Pantula analyzes only the case of random walk without drift, while we

extend it into the more general cases of random walk with drift and random walk with

drift and time trend. We also consider the SP unit root test.

Second, he divides 5 into three regions: 0 < 5 < 1/4 (nonstationary region), 1/4

< 5 < 1/2 (grey region), 1/2 < 5 (stationary region), but we unify first two regions and

consider additional cases of 5 = 1/2 and 5 = 3/4. As will be shown, the choice of 5 =

1/2 is important because the predicted distribution of standard unit root tests in this

case approximates the actual sampling distribution relatively well unless 0 is very

close to minus one.

Third, Pantula fixes C to one, but C is unrestricted inour model. In both our

model and Pantula’s, 6 —-) -1 as T —-) 00. From the point of view of using asymptotics

to approximate finite sample distributions, our model is obviously more flexible. For

example, if we pick 9 = ~0.8 and T = 100, we pick 5 = 0.35 in Pantula’s model,

whereas in our model we can have 0 = —0.8 for 5 = 1/4 and C = 0.632, or 5 = 1/2 and

C=2,or5=5/8 andC=3.557,or5=3/4andC=6.325,or5=7/8andC=

11.247. In our calculations we typically set 5 (e.g., 5 = 1/2) and let C be the value

that is chosen to yield (9,T) pair.

Finally, Pantula compares the performance of various unit root tests such as the

DF tests, ADF tests, PP tests and Hall’s (1989) IV test, based on the criteria that good

unit root tests should accept the null of unit root when the process is in the
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’nonstationary region’ (0 < 5 < 1/4) and reject the null when the process is in the

’stationary region’ (5 > 1/2). Based on limited simulations he suggest the use of the

ADF unit root test as best when the process is nearly stationary. We are rather

interested in examining the behavior of uncorrected DF and SP tests when the process

is nearly stationary in more detail to see how accurate asymptotic approximations of

this type are in finite samples.

4.3 Simulation Results

In this section we use extensive Monte Carlo simulations to study the finite

sample performance of standard unit root tests when the process is nearly stationary.

The basic data generating process we use is the ARIMA(0,1,1) process:

(18) Yr = Yt-l + en E! = “t + 9“H

where u,’s are serially uncorrelated standard normal random

variables. The data are generated by choosing the initial value of 11, after discarding

the first 20 observations. The standard normal random numbers are selected using the

Fortran subroutine GASDEV/RAN3 of Press et_al. (1986). The actual sampling

distributions are tabulated by applying the standard DF and SP tests directly to data

generated according to the basic DGP (18), using 50,000 replications. Values of 6 = -

0.5, -0.8, -0.9, -0.95, -O.99, -1.0 and values of T = 25, 50, 100, 250, 500, 1000 are

used The results for the 5 % and 95 % fractiles are given in Table 4-1.
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Since the unit root test is a lower tail test, we are mainly interested in the

behavior of the lower 5 % fractiles. The 5 % critical values of the coefficient

statistics are diverging around -T, as 0 —> -1. This is expected, because if 6 = -1 then

y, reduces to the iid process and therefore B -) 0. In this case TlB - 1) almost acts

like -T; t statistics almost act like -T‘”. The speed of divergence depends on the

sample size. These critical values are far less than those of the original DF statistics.

This implies that standard unit root (coefficient) tests are expected to reject almost

always the null hypothesis of the unit root when 6 S -O.8 and T is large.

It is well-known that the more regressors such as constant and time trend we

include, the more negative critical values we get. When we use the 6, test, the speed

of divergence of the 5 % critical value to -T is very fast in finite samples. For

example, when 9 = -0.8 and T = 100, the 5 % critical value or6, is -101.9. This

indicates that there is a very strong bias of B toward 0 when the process is nearly

stationary with trend. Even though we increase the sample size to 1,000, this bias is

still quite large. Therefore, the direct application of uncorrected DF and SP tests to a

nearly stationary process is dangerous way as is well known.

We obtain basically the same results for the t statistics. The 5% critical values

of the t statistic become more negative as 9 —> -1, given sample size, and these critical

values are still far less than those of the DF and SP t statistics.

To tabulate the predicted distributions of the unit root test statistics 6, 6, 6,,

fl, 6,, 9,, f5, ‘5) when the process is nearly stationary, a sample size of T = 2,000 is

used to find the limiting fractiles of standard Brownian motion, demeaned Brownian
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motion, demeaned and detrended Brownian motion, and demeaned Brownian bridge.

Each experiment is replicated 50,000 times. We then use the formulas given in

Corollaries 1 - 5 to convert these fractiles into predicted fractiles for the unit root test

statistics. We use values of 5 = 1/4, 1/2, 5/8, 3/4, and 7/8, and the same values of T

and 0 as above. For given values of 6 and T, we use the following formula for C:

(19) C = (1 + an“

The results for the 5 % and 95 % critical values are given in Tables 4-2 through 4-6.

We now compare the predicted distributions with the actual sampling

distribution to see how closely they are. The results are based on the comparison of

Table 4-1 to Tables 4-2 through 4-6.

1) O<5<1/2(5=1/4)

Table 4-2 shows that the predicted critical values of the unit root tests for 5 =

1/4 are independent of the sample size, given a value of 6. This is so, because (19)

implies that C is proportional to T1”, in which case T cancels from the expression in

Corollary 1 above. These critical values are generally far more negative than the

actual sampling values. Furthermore, the discrepancy is wider as 0 is closer to -1.

Even though we increase the sample size to 1,000, the actual sampling fractiles never

catch up with the predicted critical values. Therefore, the predicted distributions of

the unit root test statistics in this case are not a good approximation of the actual ones.

2) 5 = 1/2

The results for 5 = 1/2 are given in Table 4-3. The predicted distributions of
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the test statistics in this case approximate the actual ones relatively well, especially

when 0 is in the range of -0.8 to -0.9. For example, for 0 = -0.8 and T = 100, the

actual 5 % critical values oi6 is -81.7 and the predicted value is -81.1. The

discrepancies between actual and predicted critical values is larger but not very great

for the other test statistics and for other values of T and 0. The actual critical values

change more rapidly than the predicted ones as 9 —> -1; that is, the speed of

divergence of the actual distribution is relatively faster than that expected from the

predicted distribution for 5 = 1/2 as 6 —-> -1.

3) 1/2 < 5 < 3/4 (5 = 5/8)

These results are given in Table 4—4. The predicted distributions for 5 = 5/8

show quite different behavior from the previous ones. The right tail critical values are

explosively positive except when 0 = -0.99, while the left tail critical values are

dependent upon the sample size and the value of 6 chosen. When 6 is -0.5 or -0.8,

the left tail predicted critical values are getting positive as the sample size increases.

This behavior is not present in the actual sampling distribution. More generally, the

quality of the approximations is fairly good in the left tail for 9 = -0.9 and -O.95, but

not usually as good as it is with 5 = 1/2.

4) 5 = 3/4

The predicted critical values for 5 = 3/4 given in Table 4-5 show the

intermediate behavior between those for 5 = 5/8 and for 5 = 7/8. When 9 2 -O.9, the

predicted critical values are close to those for 5 = 5/8, and therefore they have the

same problem of explosive positive right tail fractiles as before. However, when 0 =
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-0.95 or -0.99, the predicted distributions are close to those for 5 = 7/8, whose

behavior will be explained below.

5) 5 > 3/4 (5 =7/8)

For 5 > 3/4, Corollary 5 indicates that all of the statistics (appropriately

normalized) converge to a standard normal distribution. Thus the predicted

distribution is the same for all test statistics and all values of 0.

We conclude that, as a general statement, 5 = 1/2 is the choice that leads to the

best match between predicted and actual sampling distributions. Pantula does not

consider this value, and thus this is an important and novel result. We proceed to

compare the predicted distribution for 5 = 1/2 with the actual sampling distribution in

more detail than above. For simplicity we do so only for the 6 and 6 statistics; similar

results are obtained for the other statistics.

For convenience we use AD to represent the actual distribution and PD to

represent the predicted distribution. We also denote AC as the actual critical value and

PC as the predicted critical value. We consider critical values of .01, .025, .05, .95,

.975, and .99. These results are given in Table 4-7. Note that Table 4—7 contains

results also for 5 = 1/4, 5/8, 3/4, and 7/8, but our discussion applies only to the results

for 5 = 1/2. Also, while Table 47 contains results for theB andf statistics, we will

only discuss the results for the 6 test.

1) = -0.5

When T S 50, AD and PD have similar dispersion with PD a little more

concentrated, and for lower tail critical values AC is more negative than PC. However,
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when T 2 100, PD becomes more negatively skewed than AD. Therefore, Pc is more

negative than AC and the difference becomes larger as T increases.

2) 6 = -O.8

When T S 100, PD is more concentrated than AD. AC is more negative than PC

in the left tail, while AC is less negative than PC in the right tail. When T = 250, PD is

similar in dispersion to AD, but PD begins to skew negatively. When T 2 500, PC

becomes more negative than AC.

3) 9 = -0.9

When T S 100, PD is more concentrated than AD. The smaller T is, the more

concentrated PD will be. AC is more negative than PC in the left tail, while PC is more

negative than AC in the right tail. When T = 250, P1) is similar in dispersion to AD,

but Ac is still more negative than PC in the left tail. When T = 500, PD becomes less

concentrated and negatively skewed, but still similar in dispersion to AD. When T =

1,000, PD becomes more negatively skewed than AD, and PC is more negative than AC.

4) = -0.95

When T S 500, PD is more concentrated than AD. AC is more negative than PC

in the left tail, while PC is more negative than AC in the right tail. However, when T

is small, the predicted distribution is too narrowly clustering around -T. For example,

when T = 25, PD ranges only from -24.95 to -21.33, while AD ranges from -34.12 to -

10.69. When T = 1,000, PD is finally similar in dispersion to AD, but AC is more

negative than PC in the left tail.

5) = -0.99
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For all sample sizes, PD is more concentrated than AD. Therefore, A,3 is more

negative than PC in the left tail, and PC is more negative than AC in the right tail.

Except when T = 1,000, the problem of converging around the negative sample size

exists. Especially when T s 100, all the critical values of the predicted distribution

are almost the same as -T. For example, when T = 100, PD ranges from -99.97 to -

97.32, but AD ranges from -120.76 to -73.68.

4.4 Discussions and Concluding Remarks

We have examined the asymptotic and finite sample behavior of the standard

Dickey-Fuller and Schmidt-Phillips unit root tests when the process is nearly

stationary, using a local approximation of the MA(l) parameter around minus one.

Pantula (1991) has studied the same problem. However, some implications of these

studies are different, mainly due to the different treatment of the parameter C in the

local approximation of the MA(l) parameter around minus one and our inclusion of 5

= 1/2. The main findings we have obtained are as follow:

First, when 6 —> -1 as T —) co, the coefficient statistics 6, 6,, 6,, B and the t

statistics 4‘, 9,, ‘9, 7f diverge to negative infinity, but have different orders in probability

depending on the value of 5.

Second, we find by Monte Carlo simulations that the choice of 5 = 1/2 is

generally best, in the sense that its predicted distributions are closer than for other

choices of 5 to the actual sampling distribution, at least unless 9 is very close to -l.
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When 0 < 5 < 1/2, the predicted distributions of the unit root test statistics are the

same for all the statistics we consider and for all T, which is clearly unsatisfactory.

When 1/2 < 5 S 3/4, the predicted distributions have a problem of critical values being

explosively positive, which again is not consistent with the actual sampling

distribution.

To sum up, the tendency of most unit root tests such as the Dickey-Fuller test

and the Phillips-Perron test and their modifications, to have considerable size

distortions in finite samples when the process is nearly stationary is not surprising, and

is well predicted by our asymptotics. It reflects the fact that a nearly stationary

process can be expected to behave approximately as a stationary process in finite

samples. This point has been made before by others, including Wichem (1973) and

Blough (1989). For example, Wichem shows that information about the sample

autocorrelations does not differentiate appreciably between stationary and

nonstationary ARIMA(0,1,1) processes, and argues that, in practice, it is not possible

to prove that the series is stationary or nonstationary in finite samples. Furthermore,

he argues that the use of either model will lead to very similar results in testing and

other applications for reasonable sample sizes.

Schwert (1989) concludes from his Monte Carlo evidence that the augmented

Dickey-Fuller statistic provides the most accurate unit root test in the presence of

strongly autocorrelated errors. Pantula (1991) also recommends the augmented

Dickey-Fuller tests, based on his asymptotics. We do not consider asymptotics for the

augmented Dickey-Fuller test in this chapter. However, we note that in our view we
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cannot take granted for the superiority of the augmented Dickey-Fuller statistic over

any other unit root test statistic, as Pantula and Schwert have suggested. The

augmented Dickey-Fuller test requires a very large number of augmentations to have

correct size in finite samples when the process is nearly stationary, because otherwise

the OLS estimator of B is seriously biased toward zero when 0 is close to -1. It is

well-known that there should be a finite sample trade-off between size and power of

the test when the null is close to the alternative. That is, the cost of the good size

performance of the augmented Dickey-Fuller test should be very poor power in finite

samples. This has also been argued by Blough (1989), and the Monte Carlo evidence

to this effect is given by a number of authors, including Lee and Schmidt (1991).

One of the possible ways to overcome the above problems is the use of the IV

unit root test suggested by Hall (1989). He uses an instrumental variable approach to

handle the size distortion problem caused by moving average errors. The instrument

for y,,1 is y,,, , where k > q for MA(q). Hall applies the IV method to the Dickey-

Fuller regression and shows a significant improvement. lee and Schmidt (1991) also

derive the IV versions of the Schmidt-Phillips test and show much more improvement.

Although the IV unit root tests still have some size distortions when the process is

nearly stationary and it is difficult to know the exact order of q, more research in this

direction would probably give further insights.

Another possibility is the construction of a unit root test by using a more

efficient estimator of B, which can also possibly reduce the bias in the estimation of B

when the process is nearly stationary. Basically, this would involve estimation of the
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Dickey-Fuller or Schmidt-Phillips regression by GLS, given an assumption on the

order of the ARMA process of the errors. Choi (1990) considers a partial GLS

estimator, in which the AR portion of the process is handled by data transformation

while the MA portion is handled by IV estimation, and he gives some optimistic

results on the finite sample properties of the resulting test. How this compares to a

full GLS treatment is not clear. Again, future research is needed.



124

Apmndix

In this appendix we prove the main asymptotic results given in section 4.2.

The data generating process is given in equations (1) and (2) in the main text. First,

set u,, = y,, = 0 without loss of generality. Then equation (1) is solved for y,:

(A1) y, = u, + (1 + EDS,1

t

where S, =21u, is a partial sum process. Substituting for (1 + 9) from

J:

(2) into (A1) we get

(A2) y. = u. + (CNS.-.

Note that this is the solution for the nearly stationary process using our local

approximation for the MA(l) parameter to minus one. That is, as T —-> oo, y, —> u,.

This transformation will be intensively used in the proof. Using (A2) we will derive

the asymptotic results for the statistics:

A

(A3) 6, = T( B, - 1)

(A4) 4} = (3, - 1)/(sz-XX,,")”2

A

Bj is the estimate of the coefficient of the lagged dependent variable in (3), (4), (5),

A A A ... T

and (6) so that Bj = B, B”, and B ; s2 = (1/1‘).2‘i€j2, where 6, are the appropriate residuals;

- J=

_ A A _

and XX1i = 2y,,2, 2(y,, -y_,)", 26,, -S,,)2, and Z(S,, - 3,)”, respectively for regressions

A

(3), (4), (5)’ and (7). S,, and S,, are defined in text. As shown in Theorems 1



throug

functi

Philli;

(A5)

(A6)

  

 



125

through 5 in the main text, the asymptotic results depend mainly on C, 5 and

functionals of the Brownian motion. Note that we use the basic preliminaries of

Phillips and Perron (1988) (given on p. 377) extensively in the proofs.

[1] 6 and‘f‘tests

It is useful to write

A 2 l A 2 1

(A5) B = (ZYt-l ) zyt-IYt 01' (B " 1) = (235.1 ) ZYt-lel

A

(A6) 82 = (VIEW. - BYt-l)2

Case 1: 0 < 5 <1/2

Lemma 1.1 (1m2°)zy,2 —+ e,,ZCZIW2

Lemma 1.2 (1/1)2:y,,c, —) -o,2 for all 8 > o.

(proof)

(ImZYt-let

= (Immarut + (WISH/023.211. + (9/1")(1/1‘)23t.rur + (ti/1324.12

—> 43,2 since first three terms —) 0 and 6 —> -1 as T —) oo. Cl

Theorem 1.3 T“”(B — l) —> -1/(c21w2)

Lemma 1.4 s2 —> 20,2

(PTOOD A A

82 = (VDXEE + (I3 - 1)2(1/1")4‘3yt.r2 - 2(13 - 1)(1fl‘)2yt-r€r

—-) 20,,2 Cl

Corolla 1.5 T5 t —9 .1/(2C21w2)"2
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Case 2: 5 = 1/2

Lemma 1.6 (1/T)2y,2 —) o,2(1 + czlw2)

Theorem 1.7 ['3 1 —> -1/(1 + GIwz)

Lemma 1.8 s2 —+ o,2{2 - Na + 01W»

(proof) A A

s2 = (ll'mio.2 + (B - l)2(1/I)2y..r2 - 263 - 1)(1/1)Zy..r8.

(1) (3‘ - 120/02»? —> 0.2/(1 + 01W)

(2) at? - Hummus. —) ~2o.2/(1 + czlwr)

Using (1), (2), and (1/'I‘)2‘.t»:,2 -) 20,2, we get the result. [:1

Corollary 1.9 T"2 t) —> -1/(1 + 201an2

Case 3: 1/2 < 5 <3/4

Lemma 1.10 (lfI‘)£y,2 -> 6,,2

(proof)

T‘zy,2= leu,2 + (CZ/T”)T“}ZS,,2 + (2crl‘)les,,u,

40,2 D

A

Lemma 1.11 B -1-—) -1.

A

Since the above lemma implies that B —9 0 when 5 > 1/2, we derive

A A

asymptotics for B instead of (B — 1).

Leme 1.1; (rm-”)zy,,y, —> o,,2c2lw2

(proof) 28

Off” )Zytnyt

= (lm'zsfilumut + (0153.24 + (C/I‘sfilrrsur + (szl‘wfiursuzl

—> 0,201W2
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since T228,S,, —) T228,2 -) (5,,21W2 and the remaining terms —) 0. Cl

A

Theorem 1.13 T2M B —> €le2

Lemma 1.14 s2 —> 0,2 for 5 > 1/2

(proof) a a

82 = T5383 + <13 - 1)2(1/I)>3y..r2 - 2(13 - 1)(1/F)Zy..r€r

—> 20,2 + 0,2 - 20,2 = 0,2 El

Corollag 1.15 6+ Tm —> €le2

Case 4: 5 = 3/4

Lemma 1.16 TmZy,,y, —-) 0,2[W(1) + czlwz}

(proof) I

T ”Zysry.

= Tmlzu,,u, + (C/r3")S..ru. + (CH”‘)S..ru..r + (C2/F’”)S..rS.r)

-) 0,2W(1) + e,,zczlw2 III

A

Theorem 1.17 TmB —> W(1) + 01w

Coroll 1.18 e + T"2 -) W(1) + czlwz

Case 5: 5> 3/4

Lemma 1.19 TmZy,,y, -—> 0,2W(1)

(proof)

Tmzyt-lyt

= T‘”2{u,,u, + (CH6)S,,2U, + (m6)ut-lsl-l + (CZ/T28)Sl-lSt-2}

-—) 0,2W(1) [1

A

Theorem 1.20 TmB —-> W(1)
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CoroLarv 1.21 6+ T”2 —> W(1)

[2] B, andfi, tests

In this case it is useful to write

A

(A7) 13,. =

A

Bu ' 1 = £(yt-l ”37.1)51 I 204-1 ‘9-02

Kym -y'.r)yt / fly... - 9-1)2 or

(A8) s2 = (lmzuy. -y) - 3.6... -y'.r)12

Case 1:0 < 5 <1/2

Lemma 2.1 Tm“)? —> CO’JW for all 5 > 0.

Lemma 2.2 (1rr2-2")I>;(y,,2 y,,): —> o,2c21w2

(proof)

(1m'”)r2y... -y'..)2 = (mi-”>22 - (PM 9..)2

Using Lemma 1.1 and 2.1 we get the result. C]

Lemma 2.3 (1/T)2(y,, -y7,,)e, —> ~03 for all 5.

(proof)

(ImEYt-let = (lmzlut-l + (1 + e)St-2}(ut + 9111-1)

= (Human. + (W)(1fl)$t-zm + (9m)(1/1')23t-rut + (WHY-Hut2

Since first 3 terms —) 0 and 0 —) -1 as T -> 00, we get the result. C]

A -

Theorem 2.4 T245113, - l) —> -1/(:21w2

Lemma 2.5 $2 —) 26,,2

(P1000 A _ A -

82 = T1263 + (I3 - 1)2T12(yt.r -)'.t)2 - 203 - 1)le(yt-l “>208.

Since T1263 —9 202 and the last two terms —-> O, we get the result. [:1
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Corollag 2.6 T“ 6, -> -1/(2czlw2)”2

Case 2: 5 = 1/2

Lemma 2.7 T“}:.(y,l -)7.,)2 -> 0.3(1 + C2171”)

Theorem 2.8 B, - l —> -l/(1 + CZNW)

Lemma 2.9 s2 -) o,2{2 - 1/(1 + 01W?»

Coro11a_ry 2.10 T"2 6, ... -1/(1 , zczj'wz)lr2

Case 3: 1/2 < 5 <3/4

14.9mm Tlmyt-l "9.1)2 '2 Caz

Theorem 2.12 3, -1-) -1

mar; (Wave... -y'..)<y. ~9) —> 0.201622
(proof)

(lnwmen -y'..)(y. -y)

= (lffwfilytry. -y'.ry. - ytri +y'.ry)

(1) (1W”)Ey.-ryr-> oszczlw2

(2) (-1/I””))7.r2y. —» -(CoJW)2

(3) (-1/I"”‘)2)7y..r —> -(Con

(4) (1m“)zyz,y -) (CoJW)2

Using (1), (2), (3), and (4) we get the result. E]

A -

Theorem 2.14 T616 —) czlwz.

Lemma 2.15 82 —) 0,2 for 5 > 1/2
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Corollary 2.16 6, + T"2 -> C21W2

Case 4: 5 = 3/4

___Lcmma2.17 1“” 22y... -y‘..)<y. -y) -> c.2{w<1) + Cilia)

(proof) _ _ _

Tm 20st -)7.r)(yr -y) = Tm‘llyny. -y.ry. -y..ry +y-ry)

<1) 1“” 2m. —> dawn) + 01W)

(2) -Tmti..>:y. —> -<C<s.IW)2

(3) 4“” 29y... —> «€0sz

(4) T‘” 2M —) (CoJW)2

Using (1), (2), (3), and 4), we get the result. El

A -

Theorem 2.18 T1613, —) W(1) + c2lw2

Corolla_ry 2.19 6, + T"2 —) W(1) + €2le

Case 5: 5 > 3/4

___Lomma2-20 Tm 20st ->7.r)(y. -y) -2 0.2W(1)

(proof)

Tmflyrr -y.r)(y. - y) = T‘”Zly.y..r - yy..r - y.y-r +yy-r}

Since T‘”2y,y,, -> 0,,2W(1) and the remaining terms —) 0 we get the result.

A

Theorem 2.21 TmB, —-) W(1)

Corollag 2.22 6}, + T"2 —> W(1)
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[3] 6, andf, tests

The derivation is simpler when we use the transformation of regression

equation (5):

(A9) Ay. = a + 5t + (B - 1)y..r + 8r

A

First, consider the regression of y,, on X = [1,t] to get the residuals S,, and

define the matrix D and Q as follow:

(A10) l)=|'T"2 0]

L0 Tml

(All) D’X’XD—) r 1 1/21=Q

L1/21/31

(A12) Q" =r 4 -61
L6 12)

It is straightforward to obtain the asymptotic results for the

OLS estimator of the coefficients of level and trend as follow:

(A13) |' it (Off) ZYt-t]

I I = (1N1)(D’X’XD)D'X'Y —> Q"|

L161 Lamas/.11

—+ Q“ |'Co,1W'| —> Co, r4lw - 6lrw 1

LCoJrWJ L-61W + 121rWJ

Using (A13) we get the asymptotics for the residual from the regression of y, on [1, t]:

A A A

A =

= um, + (CNT)S,,,, - a - r(Tb) —+ u,,, + Co,w
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where W(r) = W(r) - 41W + 61rW + 6r1W - 12r1rW is a detrended Brownian motion as

defined in the main text.

A

Next consider the regression of Ay,, on [1, S,,] to draw an inference on the

coefficient 4) = B - 1.

(A15) Ay, = intercept + o’s‘,, + error

which is the same as (5)’ in the text. We use (A15) to derive the asymptotics for the

6‘, andf, statistics. Note that we use the same symbol a, as the error in (A15) without

A

loss of generality. Therefore, the 6, statistic is defined as T5,, where

A A A K

(A16) 6. = 2(8... -s..)Ay. / 2(8... -s..)2

A A A K

= 2(81-1 'S-1)£t I 2(81-1 'S-1)2

Accordingly, s2 is defined as

2 , A A K 2

(A17) 5 = (ImZKAYt ' Ay) '¢r(St-l '84)}

Case 1: O < 5 <1/2

Lemma 3.1 Tmrat —) Co, |’ 41w - 61rw 1

LIB] L-61W + 121rWJ

This is true for all 5 > 0.

Using Lemma 3.1 we get the following result:

(1/I‘"”)S,.,,, = (1/I“’2")u,,,, + (chinsrm - (mm-5m - (r/F‘MYIB

—) C0,, W(r)
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Lemma 3.2 (1W”)r§,2 —) 06,31va

Lemmg 3.3 (1/I‘m'°)§ —> 0

Lemma 3.4 (lm-”)2(’s‘,, -8,)2 —+ 6,201 (in

Lemma 3.5 T1 26,, -§_,)e, —) .6,2 for all 5.

(proof)

(1) TIZYI-lel ‘9 ‘Guz

(2) T! 52% = (TUMfiXTl”45215: —’ 0

(3) (1m 3222. = (T"’+*‘)(t6)(1rrm*°)£te. —+ 0

Using (1), (2), and (3) we get (1m2§,,e, -+ of.

A A

Since T‘l S_,2£, = (TI’M) S,,(l/I‘1”“)28, -> O, the result comes. D

A =

Theorem 3.6 T"”(B, - 1) —> -1/c21w2

Lemma 3.7 s2 -> 26,,2

Corollary 3.8 T‘f, —-) -1/(2C21\l=\12)”2

Case 2: 5 = 1/2

Lemma 3.9 8,, —) Co,(lw - 41w + 6Irw + 31w - 6IrW) = 0

Lemma 3.10 Tl 268,, -8,)2 —) 6,2(1 + c2152)

Theorem 3.11 6‘, = (13‘, - 1) —> -1/(1+ c21v=v2)

Lemma 3.12 s2 —) 6,2{2 - 1/(1 + 01W?”

Corolla_ry 3.13 T106, —) -1/(1 + 201171241”
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Case 3: 1/2 < 5 <3/4

A

Lemma 3.14 Sm, —> um,

(WOOD A A

SIT!) = 11”,] + (CH6)S[T1.] " a " I'Tb

= “rm + (cnelnflqnsrm _ Ton/2061725) _ T5tm('[6mrTQ)

—-) “rm C]

A

Lemma 3.15 T‘z(§,, -s_,)2 —> 6,2

A A

Lemma 3.16 (I), = (B, - 1) —-9 -1

A

Since the above lemma implies that B -) 0 when 5 > 1/2, we use (A18) to

A

derive the asymptotics for B,.

A A A A K

(A18) B: = 2(St-1 'S-1)Yt/ I:‘(Sl-l 'S-1)2

Lemma 3.17 (1/I”‘”)2(§,, -S,,)y, —> o,2c21v=v2

(”000 A A A

zst-IYt = Z{YI-l ' a ' b(t ' 1)}Yl = zyt-IYt ' 523’: ' b2(t'1)Yl

(1) (1m2{Sp-"52.0% ‘9 OuZCZIW’

(2) (~1/r2'”)iZy,, -> -026,2(4lw - 61rW) 1w

(3) (-1n“) 626-1», -) -026,2(-6lw + lzlrW) Irw

Using (1), (2), and (3) we show that (l/Tm)2 §,,,y, —> C26,}! 17122

A

Since (lfl’z’w) S,,2y, —) 0, we get the result. Cl

A =

Theorem 3.18 T616, —) c21w2

Lemma; 3.19 s2 —> 0,2 for 5 > 1/2
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Corolla 3.20 f, + T”2 —-) 01W?

Case 4: 5 = 3/4

WT‘”2(§... -§-.)y. —+ c.2{W(1) + 02W)

(proof)

(1) Tmzy,,y, = T‘m2y,,y, —+ 6,2{W(l) + c21w2)

(2) -Tmi‘12y, -4 -C20’,,2(4IW - 61rW)lw

(3) -T"‘52(t - 1)y, —> -CZo,2(-6lw + 121rW)lrw

Using (1), (2), and (3) we can show that T‘”2S,,y, —) 6,2{W(1) + C21 W2}. Since

A

-T‘"’S,,2y, —> O the results comes. 1:]

A =

Theorem 3.22 T"2 13, -) W(1) + C2! W2

Corollfl 3,23 6, + T"2 —+ W(1) + C2! TV?

Case 5: 6 > 3/4

A A

Lemma 3.24 Tm2(S,, -s_,)y, —> o,ZW(1)

A

Theorem 3.25 T"2 B, —> W(1)

Corollary 3.26 6, + T"2 —+ W(1)

[4] 5 and 75 tests

Regression equation (7) can be transformed into:

(A19) Ay.=(13 - 1)y..r + W(1 - B) + £0 + B - tB) + 8r

= intercept + 53,, + error
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where S,,= y,, - fix - at - 1), t 2 2, with w,, = w + x,,. As before, we use the same

symbol a, as the error in (A19) without loss of generality. Using the DGP of (1) and

(2) we get

(A20) x, = x,, + u, + (1 + 9)S.-r

(A21) y, = w,, + it + (1 + 6)S,-,.

The restricted MLE’s of if! and E are derived under the null as follow:

(A22) 3 = mean Ay = (yr - yr)/(T - 1)

(A23) Tvx = yr - E

Substituting y, from (A21) into (A22) and (A23) we get

(A22)’ E =§+(1+e)u+o,(1)

(A23), {itx = Wx " (1 + 0)fi + 111

By using the above results we show that

(A24) 5.. = y... - ii. - Ea - 1)

= (1 + 0]):21201, - fl) + (u,, - u,)

8”,, = (1 + 6)S,~,,, - [Tr](l + e)(l/r)s,. + u,,, - u,

= (CHUSm) - “MUST + um) ' ut

We use (A19) to derive the asymptotics for the B and 76 statistics. Note that 5 statistic

is defined as T5, where
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(A25) E = B ‘ 1 = 2X3” '§-1)AYt I z(St-1 '§-1)2

= 261-1 -§-l)€l I 2“(St-1 '§-1)2

Now, s2 is defined as

(A26) s2 = (1m2{(Ay.- Ay) - $6... 3.)):

Case 1: O < 5 <1/2

Lemmfll (1/1“‘)2(S,, -§,,)2 —) 6,2C21i72

(proof) (1/I"*”)2(S,, -§,,)2 = (1/r2'2")}:S,,2 - (TM 8,}2

Using (A22)’ we can show that

Tim‘s”, = (CNT)S - r(CNT)S, + o,(1)

-2 o..W(r) - rouwfl) = o.V(r)

i = y". - )7. - {(1:1)

=u'.1 - u, + (Cfl‘)(1/I')ZS..2 + (C/I")Ii - (C/I“)Sr(1/I)(t31)

Therefore,

TW’S —+ (Cfl°’2)i;s,_2 - (CNT)S,. (1/2) + o,(1)

4 Con - (1/2)Co,W(1)

Combining the above results we get

r‘m‘dm 43) —> Co.{W(r) + (1/2 - r)W(1) - M) = Cod/(r)

Therefore, the result follows. Cl

Lemma 4.2 T‘1 2(S,, - S,,)e, —> —o,,2 for all 5.
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(proof)

T1 z(gt-1 ‘§-1)€1

= Tl£{(Cm)S,l - r(C/fi)sr + ut-l ‘ ll, " (Cfl‘5)T‘2S,2

+ (1,2) (W)ST} ‘(ut + 9111-1)

—> (1/’I')(32u,,2 ——> 45,2 Cl

Theorem 4.3 T"”(B - 1) —> -l/C2l V2

Lemma 4.4 s2 —) 26,,2

Coronary 4.5 T5; —) .1/(2c21i72r'2

Case 2: 5 = 1/2

W 'I‘1 26,, -S,,)2 -9 030 «1» C21 V2)

Theorem 4.7 B - 1 —-> -1/(1 + (321V?)

Lemm_L“ 82 -+ 0.212 - W + alt/2))

Corollgry 4.9 T"2 't‘ —) -1/(1 + 201172)"2

Case 3: 1/2 < 5 <3/4

14cmma 4.10 SIT?) —) 11”,] ' 11,

Lemma 4.11 T1 26,, -s,,)2 -) 6,2

(proof)

Using Lemma 4.10 and the following result

3 = 11‘s - 11. +(C/T’)(1/I)ES..2 + (emu - (1/2) (c2198. —+ -u..

then we can show that Sm, - S —) “mp Therefore,

T26.-. -§-.)2 =(1rr)2u...2 —> 6.2 D
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Since $ _) -1 (B _) 0) when 5 > 1/2, we use (A27) to derive the relevant

asymptotics.

(A27) B = 26... 3-03. / 25... 33-02

= 2G“ '§-1)(§t 'é) I 26” '§-1)2

where we use the facts that S, = y, - E and 2(S,, -S,,)§ = 0.

Lemma 4.12 (1rrm)2(s,, -§,,)(S, 38) -—> 6,201 172

(proof) - -

(St-1 3.06. 3)

= (1 + t))2(s,2 3.3.) + (1 + 9)2 u2(t - t) - 2(1 + ())2u'(s,2 -S)(t - t‘)

+ (1 + ())(S,2 -S)(u, -u) - (1 + 9) 130 - 0(11. - 11) + (1 + 9)(S,2 -S)(u,, -u' )

r (1 + 9) 1.10 ' 00161 ' 1.1) + (“t-l ' l.JXUt ' 1.1) + (“at -u)(1 + e)ut-1

+ (1 + (1)2(8,2 -S)u,, - (1 + e)2ti(t - t')u,_1

Therefore,

animus... -§-.)(S. -§)

—-) C2/I’2(S,_, - s? + (Imam/ram - t‘ )2

- (2C'z/xlr)s—.(1rr‘”)>:(S..2 - §)(t - f )

-> €26,21v2 1:)

Theorem 4.13 TIME —+ C21 in

Lemma 4.14 82 —-) 0,2 for 5 > 1/2.

Corolla 4.15 't' + T"2 -+ C21 in
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Case 4: 5 = 3/4

Lemma 4.16 1“” 2(3... -§-.)(S. -8) —> 0,2{W(l) + czlvzt

Theorem 4.17 TmB -) W(1) + C2192

Coroll_a_ry 4.18 'i' + T"2 —-) W(1) + C2le

Case 5: 3/4 < 5 <1

Lemmg 4.19 T“2 26,, -§_,)(S, -8) —> o,ZW(1)

Theorem 4.20 TmB -—> W(1)

Corollary 4;; ‘t' + T"2 —t W(1)
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Table 4—1 (a)

5 % Fractiles of the Actual Sampling Distribution

~18.

~25.

~31.

.10

~40.

~41.

~38

~27.

~47.

~81.

~150.

~210.

~264.

~29

~54.

~100.

~220.

~382.

~606.

~30.

~57.

.43~108

~250.

~471.

.40~872

~31.

~59.

~114.

~271.

~525.

37

50

78

05

91

36

83

10

44

61

55

.81

70

40

12

37

31

94

68

96

70

67

81

12

30

61

~1025.2

~23.

~33

~45.

~57

~62.

~65.

~30

~55

~92.

~180

~270.

~362

~32.

~58

~107

~238

~425.

~718

~32.

~59

~113.

~262.

~494

~925.

~32.

~60.

~116

~275.

~533.

87

.72

10

.30

20

30

.76

.07

80

.71

20

.10

14

.47

.60

.50

00

.50

60

.82

50

11

.00

00

76

88

.04

20

60

~1040.0

~25.

.87

~59.

~80.

~92.

.10

~42

~98

~32.

~58.

~101.

~206.

~328.

.40~473

~33.

~61.

.43

.06

.80

~112

~252

~457

~806.

~33.

~61.

.85

~269.

~510.

.40

~115

~965

~33.

~62.

~117.

~276.

~536.

87

73

60

20

76

00

90

04

80

48

04

10

64

04

05

10

68

16

21

70

30

~1048.0

b
l

~25.

.79

~53.

~70.

~79.

.90

~38

44

~30.

~54.

~95.

~19l.

~301.

~425.

~31.

~57.

~106.

~239.

~435.

~755.

~31

~58

~31.

~58.

.46

.64

.70

~111

~268

~519

85

05

60

30

53

37

60

13

20

70

31

58

65

63

10

00

.49

.44

~110.

~258.

~491.

-928.

19

91

10

50

52

71

~1020.0

I

u
:

L
L
L
L

~5.

~6.

~8.

~10.

~11.

~11.

~6.

.88

~10.

~14.

~17.

~21.

~6.

~8.

.96

~15.

~21.

~27.

~10

~6.

.78

~11.

~17.

.70

~32.

~23

‘
i
>

.86

.12

.32

.50

.60

.70

67

84

28

37

60

60

31

10

04

60

10

63

39

91

20

90

86

62

30

50

~6

~9.

~11.

~13.

~14.

~6

~10.

~15.

~19.

~23.

~8.

~11

~16.

~22.

~29

-7

~11.

~17.

~24.

~33

‘
1
)

.83

.14

.40

.70

.80

.90

.44

.68

31

90

60

90

.87

.52

80

10

30

70

.01

83

.47

61

10

.40

.05

.94

80

58

00

.00

‘
1
)

...6.

~10.

~13.

~15.

~17.

.64

.07

.49

.00

.20

.20

86

.26

10

21

70

60

.10

.82

.30

.91

.60

.00

.15

.98

.71

.04

.80

.60

.17

.04

.86

.64

.10

.20

~
4
1

.07

.54

.97

.39

.55

.69

.27

.65

.51

.45

.66

.36

.38

.16

.65

.15

.59

.62

.45

.35

.00

.33

.95

.47

.46

.40

.17

.79

.21

.23
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Table 4—1 (b)

95 % Fractiles of the Actual Sampling Distribution

r p. ,, z . ., .

~0.5

25 ~0.08 ~3.7l ~9.03 ~7.28 ~0.05 ~1.28 ~2.15

50 ~0.20 ~4.36 ~12.07 ~9.57 ~0.12 ~1.43 ~2.50

100 ~0.29 ~4.77 ~14.10 ~11.30 ~0.17 ~1.48 ~2.69

250 ~0.33 ~5.00 ~15.60 ~12.50 ~0.30 ~1.50 ~2.80

500 ~0.37 ~5.20 ~16.10 ~13.00 ~0.30 ~1.60 ~2.90

1000 ~0.40 ~5.20 ~16.40 ~13.10 ~0.30 ~1.60 ~2.90

~0.8

25 ~4.90 ~12.61 ~16.34 ~12.27 ~1.54 ~2.82 -3.30

50 ~7.10 ~21.19 ~31.89 ~23.50 ~1.85 ~3.62 ~4.73

100 ~8.83 ~29.34 ~54.61 ~40.30 ~2.05 ~4.12 ~6.07

250 ~10.33 ~37.44 ~87.75 ~66.70 ~2.20 ~4.49 ~7.27

500 ~11.09 ~40.40 ~107.60 ~83.90 —2.30 ~4.60 -7.80

1000 ~11.20 ~42.40 ~121.80 ~95.20 ~2.30 ~4.70 ~8.10

~0.9

25 ~10.43 ~16.04 ~17.76 ~13.19 ~2.53 ~3.35 ~3.53

50 ~19.13 ~33.56 ~37.73 ~27.40 ~3.39 ~4.98 ~5.40

100 ~29.05 ~61.62 ~76.58 ~53.66 ~4.08 ~6.65 ~7.82

250 ~40.79 ~108.13 ~17l.20 ~120.80 ~4.67 ~8.30 ~ll.38

500 ~45.96 ~139.50 ~27l.70 ~198.20 ~4.90 ~9.00 ~13.54

1000 ~49.56 ~163.00 ~378.80 ~285.70 ~5.10 ~9.50 ~15.30

~0.95

25 ~13.92 —16.93 ~18.10 ~13.39 ~3.09 ~3.50 ~3.59

50 ~30.24 ~37.51 ~39.24 ~28.46 ~4.65 ~5.44 ~5.57

100 ~57.27 ~78.39 ~82.82 ~57.46 ~6.32 ~8.01 ~8.34

250 ~107.86 ~185.25 ~212.07 ~143.41 ~8.28 ~12.12 ~13.64

500 ~145.26 ~306.70 ~406.50 ~272.30 ~9.20 ~14.90 ~18.50

1000 ~179.04 ~449.40 ~711.90 ~494.00 ~9.95 ~17.10 ~23.60

~0.99

25 ~15.94 ~17.20 ~18.23 ~13.45 ~3.42 ~3.55 ~3.60

50 ~37.00 ~38.70 ~39.68 ~28.75 ~5.44 ~5.58 ~5.62

100 ~80.77 ~83.53 ~84.64 ~58.68 ~8.26 ~8.46 ~8.51

250 ~215.30 ~222.90 ~224.70 ~149.60 ~13.80 ~14.28 ~14.30

500 ~433.05 ~458.80 ~462.70 ~301.00 ~19.60 ~20.60 -20.80

1000 ~821.89 ~923.80 ~940.80 ~606.10 ~26.50 ~29.30 ~29.80

‘
i
l

~2.

-5.

-3.

~11.

~12

~2

-9.

~13

~18.

-2 .

—4

~10.

~14.

~20.

.98

.25

.43

.52

.57

.59

.76

.84

.00

.19

.75

.08

90

.25

04

89

13

.88

.91

.35

.33

96

.71

09

91

.40

.40

31

64

95
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4

b
l

fl
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‘
9
)

t

‘
1
‘
)

4
.

~71.

~111.

~173.

~148.

43

11

91

15

.98

.45

.33

.61

.42

.73

.21

.51

.10

.09

.69

.28
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Table 4-2

5 % fractile

~0.8

~446.43

~694.44

~1087.00

~925.93

~14.94

~18.63

~23.31

~21.52

95

~15.14

~170.07

~134.41

~2.75

~5.22

~9.22

~8.20

~0.9

~1785.0

~2777.8

~4347.8

~3703.7

~29.88

~37.27

~46.63

~43.03

fractile

~0.9

—60.57

~2l8.34

~680.27

~537.63

~5.50

~10.45

~18.44

—16.40

~0.95

~7143.0

~11111.0

~17391.0

~14815.0

~59.76

~74.54

~93.25

~86.07

~0.95

~242.28

~873.36

~2721.10

~2150.50

~11.01

~20.90

~36.89

~32.79

the Predicted Distribution for 6 - 1/4

~0.99

~178571

~277778

~434783

~37037l

-298.81

~372.68

~466.25

~430.33

~0.99

~6056.9

~21834.0

~68027.0

~53764.0

—55.03

~92.69

~184.43

~163.96
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~0.5

25 ~18.

50 ~29

100 ~41.

250 ~55.

500 ~62.

1000 ~66.

~0.8

25 ~23.

50 ~44.

100 ~81.

250 ~160.

500 ~235.

1000 ~308.

~0.9

25 ~24.

50 ~48.

100 ~94

250 ~219.

500 ~390.

1000 ~641

~0.95

25 ~24.

50 ~49

100 ~98.

250 ~24l.

500 ~467.

1000 ~877.

~0.99

25 ~25

50 ~49.

100 ~99.

250 ~249.

500 ~498.

1000 ~994
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Table 4~3 (a)

5 % Fractiles of the Predicted Distribution for 6 - 1/2

p

52

.41

67

56

50

67

67

96

69

26

85

64

65

64

.70

30

60

.00

91

.65

62

55

29

19

.00

99

94

65

60

.40

~20

~34

~52.

~76.

~90.

~100.

~24.

~46.

~87

~183.

~290.

~409.

~24.

~49.

~96

~229.

~423.

~735.

~24.

~49.

~99

~244.

~478

~917

~25.

~49.

~99.

~249.

~499

~996

A

Pu

.41

.48

63

92

91

00

13

64

.41

82

70

84

78

12

.53

36

73

30

94

78

.11

50

.47

.43

00

99

96

78

.10

.41

~21.

~38.

.49

~102.

.03

~148.

~63

~129

~24.

~47.

~91.

~203.

.47

~520.

~342

~24.

.43

~97.

~49

~236

~448

~813

~24.

~49.

.43

~246.

.03

~945.

~99

~486

~25

~49.

~99.

~249.

.43

.71

~499

~997

86

83

56

15

44

80

58

25

83

86

75

.41

.43

.01

96

86

46

63

.00

99

98

86

h
i

~21.

~37.

~59.

~93

~24.

.44

~90.

~196.

~324.

~480.

~47

~24.

~49.

~97.

~234.

~440.

~787

~24.

~49.

~99.

~245.

~483.

~936.

~25

~49.

~99.

~249.

~499.

.31~997

39

38

70

.02

~114.

~129.

29

03

34

25

85

68

77

83

33

37

19

53

.40

96

83

33

85

68

77

.00

99

97

83

33

A

1'

.83

.56

.13

.59

.77

.87

-4.

~6.

.31

~10.

.42

~13.

~12

~4.

~6.

.48

~13.

~17.

~21.

-9

-4.

~7.

~9.

~15.

~20.

~27.

74

39

86

51

93

88

98

90

72

98

02

86

26

80

20

.00

.07

.99

.79

.30

.45

~4.

~6.

.81

.06~12

~14.

~16.

-4.

-5.

~9.

~14.

~19.

—24

~7

~15

~21

~29

~5.

.07

~10.

~15.

~22.

~31.

~7

.15

.13

.98

.74

.07

.26

83

61

32

05

96

95

67

56

17

.11

.99

.04

~9. 91

.47

.42

.11

00

00

80

32

51

~13

-4.

.05

~9.

~15.

~21.

~29.

~7

~5

~10

.41

.63

.82

.03

.61

.94

.89

~6.

.19

.09

~16.

~18.

77

14

77

.97

.99

~9.

~14.

~20.

~26.

78

97

16

17

99

94

59

74

95

.00

~7.

.00

~15.

~22.

~31.

07

80

34

55

*
1

~6.

~7.

~8.

~6

~9.

~12.

~15.

~17.

~9.

~14.

~19.

~25

~5.

~7.

~10.

~15.

~22.

~31.

.32

.46

52

56

.03

31

.87

.72

07

74

50

79

.97

.98

74

84

84

.48

.99

.05

.93

.55

.64

.68

00

07

00

80

33

54



95 % Fractiles of

T

~0.5

25 ~2.

50 -2

100 ~2.

250 ~2

500 ~2

1000 ~2

~0.8

25 ~9

50 ~11.

100 ~13.

250 ~14.

500 ~14.

1000 ~14.

~0.9

25 ~17.

50 ~27.

100 ~37.

250 ~48.

500 ~54.

1000 ~57.

~0.95

25 ~22.

50 ~41.

100 ~70.

250 ~123.

500 ~163.

1000 ~l95

~0.99

25 ~24.

50 ~49.

100 ~98.

250 ~240.

500 ~461.

1000 ~858.

21

.31

37

.40

.41

.42

.43

62

15

28

70

92

70

39

72

76

03

11

66

45

78

04

20

.03

90

59

38

09

87

30

~6

~8.

~8.

~8

~17.

~26.

~35

~44.

~49.

~51.

~22

~40.

~68.

~1l6.

~151.

~179.

~24.

~47.

~89.

~194.

~317

~466.

-24

~49.

~99.

~247

~488.

~956.

pu

.47

.43

03

44

.58

.66

15

10

.31

80

21

76

.43

68

59

55

98

21

30

29

73

36

.97

20

.97

89

54

.17

81

21
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Table 4~3 (b)

the Predicted Distribution for 6 - 1/2

3. 3 f r“. 6, ‘r'

~13.03 ~11.56 ~l.07 ~1.93 ~2.97 ~2

~17.62 ~15.04 ~1.09 ~2.00 ~3.27 ~2

~2l.39 ~17.70 ~l.09 ~2.05 ~3.46 ~3

~24.54 ~19.80 ~1.10 ~2.07 ~3.59 ~3

~25.81 ~20.62 ~1.10 ~2.08 ~3.64 ~3

~26.49 ~21.05 ~1.10 ~2.09 ~3.66 ~3

~21.80 ~21.08 ~2.41 ~3.61 ~4.40 ~4

~38.64 ~36.44 ~2.56 ~4.20 ~5.61 ~5

~62.97 ~57.34 ~2.65 ~4.63 ~6.78 ~6

~101.22 ~87.41 ~2.71 ~4.96 ~7.97 ~7

~126.90 ~105.93 ~2.73 ~5.09 ~8.53 ~7

~145.35 ~118.48 ~2.74 ~5.15 ~8.85 ~7

~24.11 ~23.89 ~3.70 ~4.51 ~4.83 ~4

~46.58 ~45.75 ~4.34 ~5.86 ~6.60 ~6

~87.18 ~84.32 ~4.82 ~7.22 ~8.79 ~8

~182.82 ~170.65 ~5.20 ~8.72 ~12.00 ~11

~288.18 ~259.07 ~5.34 ~9.47 ~14.23 ~13

~404.86 ~349.65 ~5.42 ~9.92 ~15.93 ~14

~24.77 ~24.71 ~4.55 ~4.86 ~4.95 ~4

~49.10 ~48.86 ~5.95 ~6.70 ~6.94 ~6

~96.46 ~95.56 ~7.40 ~9.02 ~9.65 ~9.

~228.96 ~223.96 ~9.03 ~12.61 ~14.53 ~14.

~422.39 ~405.68 ~9.88 ~15.27 ~19.12 ~18

~731.26 ~682.59 ~10.40 ~17.43 ~24.01 ~22.

~24.99 ~24.99 ~4.98 ~4.99 ~5.00 ~5

~49.96 ~49.95 ~7.01 ~7.05 ~7.07 ~7

~99.85 ~99.81 ~9.84 ~9.95 ~9.99 ~9

~249.09 ~248.84 ~15.20 ~15.63 ~15.75 ~15

~496.35 ~495.39 ~20.72 ~21.85 ~22.20 ~22

~985.51 ~981.74 ~27.42 ~30.17 ~31.17 ~31

.74

.97

.12

.21

.24

.26

.27

.35

.34

.28

.70

.94

.78

.49

.54

.38

.22

.56

.94

.91

57

24

.47

76

.00

.07

.98

.74

.15

.03



~160.

~140.

5 % Fractiles of

Pu

~19.38

~27.50

~10.00

312.5

1750.0

8000.0

~24.10

~46.40

~85.60

00

00

440.00

~24.78

~49.10

~96.40

~192.

~270.

146

Table 4~4 (a)

the Predicted Distribution for 6 - 5/8

~21.41

~35.63

~42.50

109.4

937.5

4750.0

~24.

~47.

~90.

43

70

80

50

00

~80.00

~24.86

—49.43

~97.70

~182.

~230.

~20.78

~33.13

~32.50

171.9

1187.5

5750.0

~24.

~47.

~89.

33

30

20

50

00

80.00

~24.

~49.

~97.

83

33

30

T p

~0.5

25 ~16.25

50 ~15.00

100 40

250 625

500 3000

1000 13000

~0.8

25 —23.60

50 ~44.40

100 ~77.60

250 ~110.00

500 60

1000 1240

~0.9

25 ~24.65

50 ~48.6O

100 ~94.4O

250 ~215.00

500 -360.00

1000 ~440.00

~0.95

25 ~24.9l

50 -49.65

100 ~98.60

250 ~241.25

500 ~465.00

1000 ~860.00

~0.99

25 ~25.00

50 ~49.99

100 —99.94

250 ~249.65

500 ~498.60

1000 ~994.40

~227.

~410.

~640.

~24.

~49.

~99.

~244.

~477.

~910.

~25

~49.

~99.

~249.

~499.

~996

50

00

00

94

78

10

38

50

00

.00

99

96

78

10

.40

~235

~24.

~49.

.43

.41

~485.

~942.

~99

~246

~25

~499

.63

~442.

~770.

50

00

96

86

63

50

.00

~49.

~99.

~249.

.43

~997.

99

98

86

70

~233.

~432.

~730.

~24.

~49.

~99.

~245

~25

~49

~249

13

50

00

96

83

33

.78

~483.

~932.

13

50

.00

.99

~99.

.83

~499.

~997.

97

33

30

3
>

~3.

.12

.00

.53

134.

411.

39

-4

~9

-4.

.02

~9.

~15.

~20.

.20~27

~5

~22

25

16

10

.72

.28

~7.

~6.

.68

39.

76

96

21

.93

.87

.44

~13.

~16.

~13.

60

10

91

98

86

26

80

.00

.07

-9_

~15.

99

79

.30

~31. 45

*
>

~3

~1.

19.

78.

252.

-4.

.04

~9.

~15

~28

—5

~7

~10

.88

.89

00

76

26

98

.82

.56

~8.

~10.

~6.

13.

56

12

26

91

.96

.94

.64

.39

.34

.24

99

91

.46

~21. 35

.77

.00

.07

.00

~15.

~22.

~31.

80

32

51

~5

~9

~12

*
>

.28

.04

-4.

.92

41.

150.

25

93

21

.89

.75

.08

~12.

.08

~2.

18

53

.97

.99

.77

.90

.79

.35

.99

.05

.94

.58

.72

.80

.00

.07

.00

.80

.34

.55

*
1

~21

~29

.16

.68

~3.

10.

53.

181.

25

87

11

83

.86

~6.

-3.

~11.

~10.

.53

69

92

54

29

.97

~6.

.73

~14.

~19.

~23.

98

74

34

09

.99

~7.

.93

~15.

.61

.49

05

55

.00

.07

.00

.80

.33

.54
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Table 4-4 (b)

95 % Fractiles of the Predicted Distribution for 6 - 5/8

T S

~0.5

25 233

50 982

100 4028

250 25547

500 102687

1000 411750

~0.8

25 16.3

50 115.1

100 560.4

250 3877.5

500 16010.0

1000 65034.0

~0.9

25 ~14.7

50 ~8.7

100 65.1

250 781.9

500 3627.5

1000 15510.0

~0.95

25 ~22.42

50 ~39.68

100 ~58.73

250 8.0

500 531.9

1000 3127.5

~0.99

25 ~24.90

50 ~49.59

100 ~98.35

250 ~239.68

500 ~458.73

1000 ~834.90

A

p”

47

236

~13.

895.

1045

6906

28125

113500

—4.

83.

~21.

~35.

~41.

117.

3

26

111

455

~20.

~31.

~25.

215.

4080.

17320.

~2

~3

~54.

3

64

3580.

~24.

~47.

~88.

~178

~213.

145.

~24.

~49.

~99.

~247.

~488.

~954.

O
O
O
N
N
O
‘

2.

8.

6.

5.

C
O
W
N
O
‘
H

28

14

55

.44

75

00

97

89

54

14

55

20

970.

4880.

~24.

~46.

~85.

~158.

~132.

470.

~24.

~49.

~96.

~227.

~408.

~632.

~24.

~49.

~99.

~249.

~496.

~985.

C
O
U
N
U
O
L
A
J

08

33

30

13

50

00

77

08

33

03

13

50

99

96

85

08

33

30

1360.

6440.

~23.

~45.

~81

~133.

~35.

860.

~24.

~48.

~95.

~220.

~387

~535.

~24.

~49.

~99.

~248.

~495.

~981

*
>

33

105

437

1258

3590

-2.

56

;

7 47

66 139

65 403

56 1616

25 4592

00 13021

4 3.3

4 16.3

6 56.0

0 245.2

0 716.0

0 2056.8

84 ~2.94

35 -1.23

.42 6.5

75 49.5

00 162.2

00 490.5

71 —4.48

84 —5.61

30 ~5.87

94 0.50

.75 23.79

00 98.90

99 ~4.98

95 -7.01

81 —9.84

84 —15.16

35 —2o.52

.40 —26.40

182

547

113.

-4.

~6.

~8.

~11.

\
l
U
'
I
O
‘
w
O
‘
N

.43

.45

.42

.29

.85

21

86

67

86

29

.56

.59

.99

.05

.95

.63

.85

.17

5
>

e
.

~0.

26.

129.

388.

1130.

.4.

~6.

_9_

~14.

~18.

~20

U
T
U
T
U
‘
Q
‘
O
p

.27

.99

.12

.43

.38

.48

.82

.55

.53

.00

.93

.86

95

94

63

36

25

.00

.00

.07

.99

.75

.20

.16

‘
H

36.

168.

497.

1438.

.07

.44

~2.56

13.60

60.

203.

~6.

~9.

~13

~17.

~16.

~5.

~7.

~15.

~22.

~31.

82

65

.77

.41

.14

.46

.57

.20

.94

91

54

.97

16

92

00

06

.98

74

15

03



50

64

00

48

48

96

O
P
V
O
U
D
U
)

.00

29

00

22

13

95

.40

03

00

.09

.46

86

50

07

70

23

28

T

~0.5

25 ~16.

50 ~14.

100 42.

250 ~25.

500 ~182.

1000 ~550.

~0.8

25 ~23.

50 ~44.

100 ~78.

250 ~107.

500 72.

1000 1280.

~0.9

25 ~27

50 ~49.

100 ~95.

250 ~215.

500 ~359.

1000 ~433.

~0.95

25 ~29

50 ~54.

100 ~100.

250 ~242

500 ~466

1000 ~860.

~0.99

25 ~29.

50 ~57.

100 ~109.

250 ~264.

500 ~511.

1000 ~996. 84—1015.

~19.

~27.

~9.

305.

1555.

13205.

~26.

.17

~86.

~158.

~128.

483.

~47

~29.

~53.

~97.

~227.

~408.

~630.

~30.

~56.

.00

~246.

~477.

~908.

~107

~30.

.07

~109.

~265.

.01

~57

~519

O
O
O
O
J
-
‘
U
I

00

00

29

81

11

50

54

00

86

32

01

00

29

84

64

29

00

90

02

~24.

~37.

~42.

116.

971.

4888.
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Table 4~5 (a)

N
M
Q
C
W
U
‘
I

‘
b
l

~23.0

~34.4

~32.0

1259.8 136

~3.

~2.

4.

180.1 40.

.44

6045.6 417.

~29.

~53.

.00

.08

~95

~l93

~265.

~57.

~30

~242

~446.

~765.

~29.

~56.

~110.

.07

~500.

.40

~261

~949

~30.

~57.

~110.

~265.

~521.

81-1028.

50

54

21

64

.00

~56.

~107.

.09

36

00

33

99

95

86

00

00

00

07

00

65

69

~29.

~52.

~93.

~183.

~224.

106.

~30

~56.

~106

~238.

~435.

~728.

~30.

~56.

~109

~259

~493.

~939.

~30.

~57.

~110.

~265.

~522.

46—1025.

00

83

00

59

96

80

.00

36

.00

93

15

04

00

86

.00

.49

29

92

00

07

00

81

36

30

-4.

~6.

~7.

~6.

.14

.4740

~5

~27

~5.

-3.

~10.

~16.

~22.

.49~31

‘
\
>

30

07

20

29

58

70

27

80

81

.40

~6.

~9.

~13.

~16.

~13.

97

50

61

06

72

.88

~7.

~10.

~15.

~20.

.22

64

00

31

86

90

07

97

66

82

~3.

~3.

~0.

19.

69.

417.

~5.

~6.

~8.

~10.

~5.

15.

~5

~6.

~8.

~10.

~16.

~23.

~32.

‘
1
)

90

87

90

29

54

58

20

67

60

01

76

28

.90

~7.

~9.

~14.

~18.

~19.

57

70

41

26

92

.00

~7.

~10.

~15.

~21.

~28.

96

70

61

36

72

00

07

99

76

21

12

43

~5.

~7.

~9.

~12.

~11.

.82

~6.

~7.

~10.

~15.

~19.

~24.

~8.

~11.

~16

~22.

~30.

~6.

~8.

~11.

~16.

~23.

~32.

‘
3
)

§

.90

_5_

.20

.39

.44

154.

27

58

90

57

50

21

86

00

97

70

31

96

22

.99

04

00

.51

36

02

00

07

00

80

33

52

5 % Fractiles of the Predicted Distribution for 6 - 3/4

~4.

.87

.20

11.

56.

191.

~5.

.47~7

-9.

~11

~6.

~7.

~10.

~15.

.46

~23.

~19

~6.

~8.

~11.

~16.

~23.

~32.

~
1
1

60

39

34

18

80

30

.61

~10.

.38

06

00

97

60

11

02

.99

.04

.90

.41

.06

.72

00

07

00

81

36

52
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Table 4—5 (b)

95 % Fractiles of the Predicted Distribution for 6 - 3/4

T 3 36 p, 3 7 :6 71 ;

-0.5

25 233 47 -1 5 47 9 -0.2 0.9

50 982 236 42 67 139 33 6.0 9.4

100 3998 1043 269 366 400 104 26.9 36.6

250 23388 6984 2055 2662 1479 410 130.0 168.4

500 107635 22307 8723 11047 4636 997 390.0 494.0

1000 414130 112370 35907 45195 13063 3324 1135.5 1429.2

-0.8

25 16.5 -11.0 -18.0 -17.0 3.3 -2.2 -3.60 -3.40

50 113.3 -2.6 -32.3 -28.8 16.0 —0.4 -4.57 “4.07

100 555.0 84.0 -40.0 -25.0 55.8 8.4 -4.00 -2.50

250 3840.4 897.9 120.0 216.4 243.4 56.8 7.59 13.69

500 15885.9 4090.7 973.6 1358.2 711.3 182.9 43.54 60.74

1000 64020.0 17385.5 4885.0 6431.4 2111.3 549.8 154.48 203.38

-0.9

25 -12.5 -18.0 -19.50 -19.50 -2.5 -3.60 —3.90 -3.90

50 -7.6 -34.4 -40.81 -40.10 -1.1 -4.87 -5.77 -5.67

100 65.0 —51.0 -80.00 -77.00 6.5 -5.10 -8.00 ~7.70

250 780.9 37.8 -155.13 -133.00 49.4 2.39 -9.81 -8.41

500 3625.6 647.1 -128.81 -32.66 162.1 28.94 -5.76 -1.46

1000 15506.0 3588.5 473.62 865.74 490.3 113.48 14.98 27.38

-0.95

25 -18.2 -19.58 -19.90 -19.85 -3.63 -3.89 -3.98 -3.97

50 -35.4 -40.74 -42.43 -42.22 -5.00 -5.76 ~6.00 -5.97

100 -57.0 -82.00 -88.00 —88.00 -5.70 -8.20 -8.80 -8.80

250 7.7 -174.11 -218.38 -213.63 0.49 -11.01 -13.81 -13.51

500 533.1 ~211.55 -403.85 -381.49 23.84 -9.46 -18.06 -17.06

1000 3126.8 151.07 -630.01 -531.98 98.88 4.78 -l9.92 -16.82

-0.99

25 -19.50 -20.00 -20.00 -20.00 -3.90 -4.00 -4.00 -4.00

50 -42.93 -42.93 -42.93 -42.93 -6.07 -6.07 -6.07 -6.07

100 -89.00 -89.70 -90.00 -89.90 -8.88 -8.97 -9.00 -8.99

250 -227.86 '231.98 -233.71 -234.19 -14.33 -14.67 -14.78 -14.81

500 -448.57 -468.92 -475.40 -475.40 -19.98 -20.97 -21.26 —21.26

1000 -829.24 -932.96 -959.52 -958.89 -26.21 -29.50 -30.34 -30.32



Fractiles of the Predicted Distribution

T

p tests

1’ tests

5%

95%

5%

95%

25

-33.15

—16.80

-6.63

-3.36

50

—61.53

—38.40

-8.70

—5.43

150

Table 4-6

100

-116.30

-83.60

-11.63

—8.36

250

-275.77

-224.07

-17.44

-14.17

for 6 - 7/8

500

-536.45

-463.33

-23.99

-20.72

1000

—1051.55

-948.14

-33.25

-29.98



25

50

100

250

500

1000

151

Table 4-7 (a)

Comparison of the Predicted Distribution with

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

The Actual Sampling Distribution (0 Test)

Actual

—23.

-20.

-18.

-O.

O.

0.

—34.

—29.

-25.

-O.

O.

O.

-46.

—38.

-31.

.29

0.

O.

-O

—58.

—46.

-37.

—O.

0.

.400

—65.

-50.

-40.

-0.

O.

O.

-67.

—53.

-41.

.40

O.

0.

—O

96

84

37

08

29

68

9O

85

50

20

18

55

17

O4

78

10

47

13

6O

51

33

O7

16

62

05

37

02

37

39

70

91

00

32

6-1/4

—117

—1

-117

-90.

.43

.42

.88

.45

-71

-2

-l

-117

—117.

.91

.43

.42

.88

.45

.65

-90.

—71.

.42

-1.

.45

91

43

88

.65

91

.65

.91

.43

.42

.88

.45

.65

.91

.43

.42

.88

.45

65

.65

.91

.43

.42

.88

.45

0 - —0.5

6-1/2

—20.

-l9.

—18

-35

-32.

—29

-54.

—47.

—41.

-2.

-l.

—l.

—80.

—66.

-55.

.40

-1.

-1.

-2

—95.

—76.

-62.

.41-2

-1.

-l.

-105.

-83.

.67

.42

.88

.45

—66

62

61

.52

-2.

—l.

-1.

21

75

37

.09

26

.41

-2.

-l.

-1.

31

82

41

05

62

67

37

85

43

00

67

56

87

44

24

92

50

88

45

26

33

6=S/8 6—3

-19.69 -20.

-18.12 -18.

-16.25 —16.

232.97 233.

306.72 308.

405.16 409.

—28 75 -28.

-22.50 -22.

-15.00 -14.

981.88 982.

1276.88 1227.

1670.63 1623.

—15 00 -13.

10.00 11.

40.00 42.

4027.50 3998.

5207.50 5106.

6782.50 6555.

281.25 293.

437.50 452.

625.00 637.

25546.87 23388.

32921.87 32368.

42765.62 44123.

1625.0 1680.

2250.0 2283.

3000.0 3050.

102687 5 107635.

132187.5 139912.

171562 5 183725.

7500 7721.

10000 10137.

13000 13204.

411750 414130.

529750 536124.

687250 696323.

/4 6-7/8

-36.

-34.

-33.

-16

-66.

—63.

-61.

-38.

-36.

-33.

-123.

-119.

-116.

.60

-80.

-76.

—83

—286.

-280.

-275.

~224.

—219.

.16-213

-551.

—543.

.45

-463.

.40

.90

-536

-456

—447

-lO73.

-1061.

-1051.

-948.

-938.

—926.

55

80

15

.80

-15.

-13.

25

35

33

86

53

40

21

52

10

6O

30

50

70

52

99

77

07

17

65

83

33

05

98

55

14

34

32



25

50

100

250

500

1000

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

Actual

-31.

—29.

-27.

-4.

-3.

-2.

-54.

-50.

-47.

-7.

.45-5

-3.

—93.

.42-87

—81.

-8.

-6.

—4

-183.

-l66

—368.

-312

37

19

36

90

69

61

66

96

83

10

88

88

12

83

71

.95

01

.15

-150.

—10.

.00

.88

44

33

.29

.72

.68

.09

.39

.16

93

.54

-264.

—11.

-8.

—6.

55

20

36

24

6=1/4

-735.

-568.

.43

-15.

~11.

.08

-446

-9

-735.

—568.

.43

-15.

-11.

.08

—446

—735.

—568.

-446

-9

-735.

-568.

.43-446

-15.

—11.

-9.

—735.

—568.

.43

—15.

-11.

.08

-446

-735.

-568.

.43

-15.

—ll.

.08

-446

29

18

14

78

29

l8

14

78

29

18

.43

—15.

—11.

14

78

.08

29

18

14

78

08

29

18

14

78

29

18

14

78

152

o - -0.8

6-1/2 6-5

—24.18 —24.

-23.95 -23.

-23 67 -23.

-9 43 16.

-8.01 28.

-6.66 43.

—46.82 -46.

—45.96 —45.

-44.96 -44.

-11.62 115.

-9.53 162.

-7.69 225.

—88.03 —86.

—85 03 -82.

-81.70 -77.

-13.15 560.

-10.54 749.

- 8.33 1001.

—186.57 —165.

—173.61 -140.

-160 26 -110.

—14.28 3877.

—11.25 5057.

-8.76 6632.

—297.62 -160.

-265.96 -60.

-235.85 60.

—14 70 16010.

-11.51 20730.

-8.92 27030.

-423.73 360.

-362.32 760.

-308.64 1240.

—14.92 65040.

—11.64 83920.

-9.00 109120.

Table 4-7 (a) (Continued)

/8 6-3/4

-24.

-24.

-23.

16.

29.

44.

-47.

-45.

-44.

113.

162.

225.

-87.

-82.

-77.

560.

753.

1009.

-163.

-l39.

-107.

3840.

5007.

6574.

—151.

-55.

72.

15885.

20523.

26795.

372.

777.

1280.

64020.

84110.

110821.

6-7/8

-36.

-34.

~33

-66.

-63

-38

-123.

-119.

-116.

—83.

—80

-286.

-280.

—275.

-224.

—219

—213

—551.

-543.

-536

—463

—456

-1073.

~1061.

—1051.

—948.

-938.

-926

55

80

.15

-16.

-15.

-l3.

80

25

35

33

.86

-61. 53

.40

-36.

-33.

21

52

10

60

30

60

.50

-76. 70

52

99

77

07

.17

.16

65

83

.45

.33

.40

—447. 90

05

98

55

14

34

.32



25

50

100

250

500

1000

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

Actual

~33.

~31.

~29.

.43

~8.

~7.

~10

~60.

~57.

.70

~19.

~16.

~12.

~54

~109

~104

~100

~240.

~230.

~220.

~40.

.47~32

~25.

~431.

.41

~382.

~45.

~36.

~26.

~407

~727

~39

~30.

28

44

81

71

04

17

28

13

06

74

.41

.42

.43

~29.

~23.

~18.

05

73

97

37

28

12

79

80

02

37

96

07

90

.44

~667.

~606.

~49.

21

31

56

.42

86

6-1/4

~2941.

~2272.

~1785.

~60.

~47.

~36.

~294l.

~2272.

~1785.

~60.

~47.

~36.

~2941.

~2272.

~1785.

~60.

~47.

~36.

~2941.

~2272.

~1785.

~60.

~47.

~36.

—2941.

~2272.

~1785.

~60.

~47.

~36.

~2941.

~2272.

~1785.

~60.

~47.

~36.

O
D
D
-
'
O
‘
V
V
N

W
H
O
‘
V
N
N

W
H
O
\
\
J
\
J
N

w
v
-
‘
o
‘
u
w
m

W
H
O
‘
V
V
N

W
H
C
h
V
V
N

153

0 - ~0.9

6~1/2

~24.

~24.

~24.

.70

~16.

~14.

~17

~49.

~48.

~48.

~27.

~24.

~21.

~96.

~95.

~94.

~37

~32

~230

~225.

~219.

~48.

~39.

~31.

~427.

~409.

~390.

.03

.05

~54

~43

~33.

~746

~64l

79

73

65

33

81

16

92

64

39

25

04

71

79

70

.72

.02

~26. 65

.42

23

30

76

64

72

35

84

63

86

.27

~694.

.03

~57.

~44.

~35.

44

11

98

05

6=5

~24.

~24.

~24.

~14.

~11.

-7.

~49.

~48.

~48.

18.

~96.

~95.

~94.

65.

112.

175.

~228.

~222.

~215.

781.

1076.

1470.

~415.

~390.

~360.

3627.

4807.

6382.

~660.

~560.

~440.

15510

20230

26530

Table 4~7 (a) (Continued)

/8 5=3/4

79 -29 00

73 -28.00

65 —27.00

68 —12.50

73 —8.00

80 -2.00

15 -51.41

90 —49.29

60 —49.29

.72 —7.57

.08 5.86

80 22.83

60 -97.00

60 -96.00

40. —95.00

10 65.00

30 114.00

30 179.00

75 -229.45

50 —223.12

00 -215.22

88 780.90

88 1081.32

63 1481.35

0 —412.79

0 -390.43

0 —359.13

5 3625.55

5 4812.90

5 6407.21

0 -652 15

0 -557.28

0 —433.95

.0 15506.00

.0 20360.72

.0 26642.80

6-7/8

~36.

~34.

~33.

~16.

~15.

~13.

~66

~38

~36.

~33.

~123.

~119.

~ll6.

~83.

~80.

~76.

~286.

~280.

~275.

~224.

~219.

~213.

~551.

~543.

.45

.33

.40

~447.

~536

~463

~456

~1073.

~1061.

~1051.

~948.

~938.

~926.

55

80

15

80

25

35

.33

~63.

~61.

.40

86

53

21

52

10

60

30

60

50

70

52

99

77

07

l7

16

65

83

90

05

98

55

14

34

32



25

50

100

250

500

1000

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

Actual

~34.

~32

~62

~60

~57.

~30.

.26

~23.

~27

~116.

~111.

.43

~57.

.99

~43.

~108

~50

~265.

~257

~250.

.86

.43

~107

~ 92

~ 77.

~497.

.06

~471.

~145.

~121.

~ 98.

~484

~932.

~903.

.40

.04

~145.

~110.

~872

~179

12

.42

~30.

~13.

~12.

~10.

94

92

35

69

.53

.06

68

24

64

12

93

27

91

13

.74

96

91

73

70

26

22

83

60

10

15

93

154

Table 4~7 (a) (Continued)

0 - -0.95

6-1/4 5-1/2

—11764.0 -24.95

—9090.9 —24.93

-7142.8 —24 91

-242.2 -22.66

-188.4 -22.07

-145.3 —21.33

—11764.0 -49.79

-9090.9 -49.73

-7142.8 —49.65

-242.2 —41.45

-188.4 -39.51

-145.3 -37 20

~11764.0 -99.13

-9090.9 -98.91

-7142.9 ~98.62

—242.2 —70.78

-188.4 -65.33

-145.3 -59.23

-11764.0 —244.80

-9090.9 -243.31

-7142.9 -241.55

—242.2 —123.04

-188.4 -107 44

-145.3 - 91.89

-11764 0 -479.62

—9090.9 -473.94

-7142.9 —467.29

-242.3 —163.20

—188.4 -136 85

-145.3 —112.58

-11764.0 —921.66

—9090.9 -900.90

-7142.9 —877.19

-242.3 —195.03

-188 4 -158.54

-145.3 -126 86

6-5/8

~24.

~24.

~24.

-22

—20

-49

—49

—49

~36

~32

~99.

~98.

~98.

~58.

~46.

~31

~244.

~243.

~241

~478.

~472.

~465.

531.

826.

1220.

~915

95

93

91

.42

~21. 68

.70

.79

.73

.65

~39.

.73

.80

68

15

90

60

73

93

.18

69

13

.25

.97

81.

180.

72

16

75

50

00

88

88

63

.00

~890.

~860.

3127.

4307.

5882.

00

00

50

50

50

6~3/4

~32

~29

~55.

~55.

~54.

~35.

~30.

~22.

~104

~101.

~100.

.00

.00

-57

—42

~24.

~245.

.68

~242.

.73

83.

186.

~243

~479.

~473.

~466.

533.

.46

.42

830

1237

~914.

~889.

~860.

3126.

4213.

5912.

.45

~29. 75

.40

~18.

~16.

~11.

15

50

75

87

16

03

36

06

71

.40

00

00

00

26

09

62

39

88

17

46

06

62

32

86

77

63

74

6~7/8

~36.

~34.

~33.

~16.

~15.

~13.

~66.

~63.

~61.

.40

~36.

~33.

~38

~123

~116

~286.

~280.

~275.

~224.

~219

~551.

.83

.45

~543

~536

~463.

~456

~447

~1073

~1061.

~1051.

~948.

~938

55

80

15

80

25

35

33

86

53

21

52

.10

~119.

.30

~83.

~80.

~76.

60

60

50

70

52

99

77

07

.17

~213. 16

65

33

.40

.90

.05

98

55

14

.34

~926. 32



25

50

100

250

500

1000

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

Actual

~34.

~33.

~31

~15

~14.

~13

~64.

~61.

~59.

~37

~34.

~32

~120.

~117.

~114.

~80.

~77.

~73.

~281.

~276.

~271.

~215.

~209.

~201.

~542.

~534.

~526.

~432.

~419.

~401.

—1049.

~1036.

~1025.

~821

~785

~733

75

17

.67

.94

57

.04

37

83

81

.00

88

.46

76

24

12

3

1

2

.9

5

9

155

Table 4~7 (a) (Continued)

6-1/4

~294118

~227273

~178571

~6057

~4710

~3632

~294118

~227273

~178571

~6057

~4710

~3632

~294118

~227273

~178571

~6057

~4710

~3632

~294118

~227273

~178571

~6057

~4710

~3632

~294118

~227273

~178571

~6057

~4710

~3632

~294118

~227273

~178571

~6057

~4710

~3632

0 - ~0.99

6-1/2

~25.

.00

.00

~24.

~24.

~24.

~25

~25

~49.

~49.

~49.

~49.

~49

~99

~249.

~249

~499.

~498.

~498.

~461.

.02

~439.

~452

~996

00

90

87

83

99

99

99

59

.47

~49. 32

.97

~99.

~99.

~98.

~97.

~97.

96

94

38

92

32

79

.73

~249.

~240.

~237.

~233.

65

09

40

90

15

90

60

87

50

.61

~995.

~994.

~858.

~824.

~784.

62

43

30

88

13

6-5/8

~25

~25

~25

~24.

~24.

~24.

~49.

~49.

~49.

~49.

~49

~49.

~99.

~99.

~99

~98.

~97.

~97.

~249.

~249.

~249.

~239

~236.

~232.

~499.

~498

~498.

~458

~446.

~431.

~996

~995

~994.

~834.

~787.

~724.

.00

.00

.00

90

87

80

99

99

99

59

.47

30

97

96

.94

35

88

25

79

73

65

.68

73

79

15

.90

60

.73

93

18

.60

.60

40

90

70

70

6-3/4

~35.

~30.

~29.

.50

.00

.00

~19

~19

~15

~64.

.07

.07

~42.

~42.

~35.

~57

~57

~119

~110.

.70

.00

.00

.00

~109

~89

~88

~78

~272.

~265.

.23

~227.

~221.

~205.

~264

~517.

~515.

~511.

~448.

~428.

~403.

~1009

~1000.

~996.

~829.

~775.

~705.

00

00

50

14

93

93

86

.00

00

14

81

86

54

73

89

65

18

57

45

85

.49

00

84

24

48

91

6-7/8

~36.

~34.

~33.

~16.

~15.

~13.

~66.

.86

~61.

.40

~36.

~33.

~63

~38

~123.

~119.

~116.

~83.

~80.

~76.

~286.

~280.

~275.

~224

~551.

~543.

~536

~456

~447.

~1073

~106l.

~1051.

~948

55

80

15

80

25

35

33

53

21

52

10

60

30

60

50

70

52

99

77

.07

~219.

~213.

17

16

65

83

.45

~463.

.40

33

90

.05

98

55

.14

~938.

~926.

34

32
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Table 4~7 (b)

Comparison of the Predicted Distribution with

The Actual Sampling Distribution (; Test)

a - -0.5

T Actual 6-1/4 5-1/2 6-5/8 6~3/4 6-7/8

25 .010 ~4.81 ~7.67 —4.19 -3.94 -4.00 -7.31

.025 -4.23 -6.74 —4.02 -3.63 —3.70 -6 96

.050 -3.78 -5.98 ~3.83 -3.25 -3 30 -6.63

.950 -0.03 -1.10 —1 07 46.59 46.60 -3.36

.975 0.21 -0.97 -0 95 61.34 61.60 -3.05

.990 0.50 ~0.85 ~0.84 81.03 81.80 -2.67

50 .010 —5.19 -7.67 —5.20 —4.07 —4.07 -9.38

.025 -4.61 —6.74 -4.88 —3.18 —3.17 -9.03

.050 —4.12 ~5.98 —4.56 -2.12 -2 07 -8 70

.950 —0.12 -1.10 -1.09 138.86 138.93 -5.43

.975 0.11 -0.97 —0.96 180.58 180.73 -5.12

.990 0.36 ~0.85 -0.85 236.26 229.53 -4.74

100 .010 -5.47 ~7.67 ~6.09 -1.50 —1.30 -12.31

.025 -4.82 -6.74 -5.59 1.00 1.10 -11.96

.050 ~4.32 -5.98 —5.13 4.00 4.20 —11.63

.950 -0.17 —1.10 -1 09 402.75 399.80 -8.36

.975 0.03 —0 97 -0 97 520.75 510.60 -8.05

.990 0.29 -o 85 -o.85 678.25 655.50 ~7.67

250 .010 -5.68 ~7.67 ~6.90 17.79 18.59 ~18.12

.025 ~5.02 ~6.74 ~6.20 27.67 28.59 ~17.77

.050 ~4.46 ~5.98 ~5.59 39.53 40.29 ~17.44

.950 ~0.19 ~1.10 ~1.10 1615.73 1479.19 ~14.17

.975 0.04 ~0.97 ~0.97 2082.16 2106.29 ~13.86

.990 0.28 ~0.85 ~0.85 2704.74 2784.59 ~13.48

500 .010 ~5.88 ~7.67 ~7.25 72.67 75.14 ~24.67

.025 -5.11 ~6.74 ~6.45 100.62 102.14 ~24.32

.050 ~4.52 ~5.98 ~5.77 134.16 136.44 ~23.99

.950 ~0.21 ~1.10 ~1.10 4592.33 4636.14 ~20.72

.975 0.01 ~0.97 ~0.97 5911.60 5981.84 ~20.41

.990 0.25 ~0.85 ~0.85 7672.51 7767.94 ~20.03

1000 .010 ~5.88 ~7.67 ~7.45 237.17 244.18 ~33.93

.025 ~5.21 ~6.74 ~6.59 316.23 320.58 ~33.58

.050 ~4.58 ~5.98 ~5.87 411.10 417.58 ~33.25

.950 ~0.23 ~1.10 ~1.10 13020.68 13662.98 -29.98

.975 0.00 ~0.97 ~0.97 16752.17 16883.98 ~29.67

.990 0.22 ~0.85 ~0.85 21732.75 22741.18 ~29.29
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Table 4~7 (b) (Continued)

0 - -0.8

T Actual 6~1/4 6-1/2 6-5/8 6~3/4 6-7/8

25 .010 -6.77 -19 17 -4 84 ~4.83 -4.90 -7 31

.025 -6.15 -16 85 -4.79 —4.78 —4 80 -6 96

.050 -5.67 -14.94 -4.74 -4.72 —4.70 ~6.63

.950 -1.54 -2.75 —2.41 3.25 3.30 -3.36

.975 ~1.28 -2.43 -2.18 5.61 5.80 —3.05

.990 -1.00 -2.13 ~1.96 8.76 8.80 —2.67

50 .010 -8.62 -19.17 —6.63 —6.59 —6.67 —9.38

.025 —8.12 —16.85 —6 52 —6.45 —6.47 —9.03

.050 —7.68 —14.94 -6.39 -6.28 -6 27 —8.70

.950 -3 62 -2.75 —2 56 16.28 16.03 —5.43

.975 -3.29 -2.43 -2 30 22.95 22.93 -5 12

.990 —2 93 —2.13 -2.04 31.86 31.83 —4.74

100 .010 —9 45 -19.17 —8 87 -8.64 -8 70 -12.31

.025 —8.85 —16.85 ~8.60 -8.24 -8.30 -11.96

.050 -8 28 —14.94 -8.31 ~7.76 -7 80 -11.63

.950 —2.05 -2.75 —2 65 56.04 55.80 -8.36

.975 -1.75 -2.43 -2.36 74.92 72.90 -8.05

.990 —1.45 —2.13 —2.08 100.12 96.80 -7.67

250 .010 -12.04 -19 17 -12.20 -10.44 —10 41 -18.12

.025 ~11.16 -16.85 -11.53 —8.85 -8.81 -17 77

.050 -10.37 -14.94 —10.86 —6.96 —6.81 -17.44

.950 —2.20 —2.75 -2.71 245.24 243.39 -14.17

.975 -1 88 -2.43 -2 40 319.86 313.79 -13 86

.990 -1.59 -2.13 —2.11 419.48 369.19 -13.48

500 .010 -13.77 -19 17 —14.56 -7.16 ~7.61 —24.67

.025 —12.62 ~16.85 —13.46 —2.68 —2.56 -24.32

.050 -11.53 -14.94 —12.42 2.68 3.14 -23.99

.950 -2.27 -2 75 -2.73 715.99 711.34 —20 72

.975 -1.94 -2.43 -2.41 927.07 862.64 —20.41

.990 -1.63 —2.13 —2.12 1208.82 1210.14 -20.03

1000 .010 ~15.03 ~19.17 ~16.40 11.38 11.78 ~33.93

.025 ~13.58 ~16.85 ~14.87 24.03 24.58 ~33.58

.050 ~12.33 ~14.94 ~13.51 39.21 40.47 ~33.25

.950 ~2.26 ~2.75 ~2.74 2056.75 2111.28 ~29.98

.975 ~1.93 ~2.43 ~2.42 2653.78 2667.48 ~29.67

.990 ~1.64 ~2.13 ~2.13 3450.68 3542.58 ~29.29



25

50

100

250

500

1000

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

Actual

—7

~6

.43

.79

~6.

-2.

-2.

~1.

31

53

24

93

.84

.32

.88

.39

.03

.63

.02

.49

.03

.08

.63

.18

.25

.64

.04

.67

.11

.63

.46

.54

.63

.86

.27

.66

.91

.37

.85

.00

.43

.89
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Table 4~7 (b) (Continued)

6-1/4

~38.

~33.

~29.

~5.

~4.

-4.

~38

~33

~29.

~5.

~4.

—4

~38.

~33.

~29.

~5.

~4.

-4.

~38.

~33.

~29.

-5.

-4.

-4.

~38.

~33.

~29.

~5.

~4.

-4.

~38.

~33

~29.

-5

-4

—4

35

71

88

50

85

26

.35

.71

88

50

85

.26

35

71

88

50

85

26

35

71

88

50

85

26

35

71

88

50

85

26

35

.71

88

.50

.85

.26

0 ~ ~0.9

6—1/2

~14.

~14.

~13.

_5_

-4.

~19.

~18.

~17

_5_

-4.

-24

~23.

-21

-5

-4

-4

.96

.95

.93

.70

.48

.24

.95

.92

.88

.34

.00

.65

.68

.59

.48

.82

.37

.92

62

32

98

20

.64

12

32

64

.90

34

74

.19

.40

06

.72

.42

.80

.22

6-5/8

-14

49

~18.

.44~17

~16.

.23

.00

.43

162

215

285

~20.

~17

490

.96

.95

.93

.94

.35

.56

.95

.92

.87

.23

.43

.66

.66

.56

.44

.51

.23

.53

.47

~14.

~13.

.45

68.

93.

07

60

11

01

56

10

87

.71

~13. 91

.47

639.

838.

73

95

6-3/4

-9.

.60

-9.

.50

.40

.90

—9

11

17

~14.

~14.

.61

49.

68.

.69

~13

93

~18

~17

~16

286

~20.

.62

.72

~17

~13

490.

650.

.72877

.80

.60

.40

.50

.60

.40

.27

.97

.97

.07

.83

.23

70

50

51

ll

39

39

.46

.46

.06

162.

215.

.54

14

24

62

30

72

6-7/8

~12.

~11.

~11.

-3.

~8

~7

~18.

~17.

~17.

.17

~13.

.48

~14

~13

~24.

~24.

~23.

~20.

~20

~20.

~33.

~33.

~33.

~29.

.67

.29

~29

~29

.31

.96

.63

.36

.05

.67

.38

.03

.70

.43

.12

.74

31

96

63

36

.05

.67

12

77

44

86

67

32

99

72

.41

03

93

58

25

98



25

50

100

250

500

1000

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

Actual

_7_

~7.

~6.

~3.

~2.

~2.

-9.

-3.

~8.

-4_

-4.

_3_

~11.

~11.

~10.

~6.

~5.

~5.

~16.

~16.

~15.

~8.

~7.

-5.

~22.

~21.

~21.

-9.

.27

~7.

~8

~29.

~28.

~27.

-9.

_3_

~7.

71

10

63

09

84

55

32

83

39

65

32

90

85

35

96

32

84

28

84

35

91

28

51

77

27

66

13

19

37

56

70

81

90

75

63
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Table 4—7 (b) (Continued)

6-1/4

~76.

~67

~59.

~11.

-9.

~8

~76.

~67

~59.

~11.

~9.

~8.

~76.

~67

~59.

~ll

_9.

-8.

~76.

~67

~59.

~11.

-9.

-3.

~76.

~67

~59.

~11.

~9

~8.

~76.

~67

~59.

~11

~9

~8

70

.42

76

01

71

.52

70

.42

76

01

71

52

70

.42

76

.01

71

52

70

.42

76

01

71

52

70

.42

76

01

.71

52

70

.42

76

.01

.71

.52

0 - ~0.95

6-1/2

~29

~28.

~27.

~10

~9

~8

.99

.99

.98

.55

.44

.31

.04

.03

.02

.95

.72

.44

.92

.89

.86

.40

.97

.49

.49

.39

.29

.03

.27

.50

.47

.22

.94

.88

.90

.96

.24

63

95

.40

.28

.23

6=5/8

£
L
L
L
L
£

~7.

~7.

~7.

-5.

.19

.64

-9.

.89

-9.

-5.

.69

~3.

~15

~15.

.26

.50

.17

11.

~15

~21

~28.

~28.

~27.

98.

136.

.02186

.99

.99

.98

.48

.34

.14

04

03

02

61

92

86

87

12

.48

38

39

.41

~21.

~20.

23.

36.

54.

13

80

79

98

59

94

14

20

90

22

6-3/4

~6

~5

~5

~3

~7.

.80

.64

-5.

-4.

~3.

-7

~10

~10.

~10.

-5.

.20

.40

~15.

.41~15

~15.

.49

.29

11.

~21

~21.

~20.

23.

37.

.3455

~28.

~28.

~27.

98.

136.

186.

.49

.95

.88

.63

-3.

-2.

30

35

90

00

25

21

.40

10

00

70

51

31

79

.46

16

86

84

14

92

12

22

88

38

98

6-7/8

~7.

.96

-5.

-3.

-3.

-2_

-9.

.03

~8.

.43

-5.

.74

~9

~12.

~11.

~11.

~8.

-3.

.67

~18.

~17.

.44

~14.

~13.

.48

~17

~13

~24.

~24.

~23.

~20.

~20.

~20.

~33.

~33.

~33.

~29.

~29.

~29.

31

63

36

05

67

38

70

12

31

96

63

36

05

12

77

17

86

67

32

99

72

41

03

93

58

25

98

67

29



25

50

100

250

500

1000

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

.010

.025

.050

.950

.975

.990

Actua

~17.

~17.

~17.

~13.

~13

~12.

~24.

~24.

~23.

~19.

~19

~18.

~33.

~32.

~32

~26

~25

~24.

1

.92

.35

.86

.42

.18

.92

.69

.18

.78

.44

.18

.90

.43

.93

.56

.23

.96

.68

98

58

21

74

.40

95

33

90

55

54

.03

38

24

80

.43

.40

.43

06

160

Table 4~7 (b) (Continued)

6-1/4

~383

~337.

~298.

~55.

~48.

.62~42

~383.

~337.

~298.

~55.

~48.

~42.

~383

~337.

~298.

~55.

~48.

~42.

~383

~337

~298.

~55.

~48.

~42.

~383

~337.

~298.

.03

~48.

~42.

~55

~383

.48

10

81

03

53

48

10

81

03

53

62

.48

10

81

03

53

62

.48

.10

81

03

53

62

.48

10

81

53

62

.48

~337.

~298.

~55.

~48.

~42.

10

81

03

53

62

~0. 99

6-1/2

~15.

~15.

~15.

~15.

~15.

~14.

~22.

~22.

~22.

.72

~20.

~19.

~20

~31.

~31

~31

~27

~26

~25

.00

.00

.00

.98

.97

.97

.07

.07

.07

.01

.00

.98

.00

.00

.99

.84

.79

.74

80

79

79

20

03

82

32

31

30

31

80

52

.49

.45

.42

.49

.40

6-5/8

~10

~15.

~15.

~15.

~15.

~14.

—14

~22.

~22.

~22.

~20.

~19.

~19.

~31.

.48

.45

.40

~24.

~22.

~31

~31

~26

.00

.00

.00

.98

.97

.97

.07

.07

.07

.01

.00

.97

.00

~10.

~9.

~9.

00

99

84

.79

~9. 73

80

79

79

16

97

.72

32

31

29

52

99

28

52

91

92

6-3/4

~17.

~16.

~16.

~14.

~13.

~12.

~23.

.01

.82

~23

~22

~19.

~19.

.92~17

~31.

~31.
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CHAPTER 5

CONCLUSION

This dissertation has developed two main topics. The first topic is the question

of testing the univariate properties of economic time series; that is, testing whether

they have a unit root or are trend stationary. Economically, the distinction between a

trend stationary process and a unit root process is important, because the latter implies

long run persistence (current shocks have permanent effects), while the former implies

trend reversion (current shocks have temporary effects). This distinction is also

important statistically, due to the ’spurious regression phenomena’ described by

Granger and Newbold (1974) and Phillips (1986). In other words, if there are

variables that are 1(1) processes and no cointegrating relationship exists among the

variables, standard regression inferences, based on the assumption that all variables are

(trend) stationary, are not valid any longer. For a further discussion see Park and

Phillips (1988, 1989).

There have been a lot of attempts to test the unit root hypothesis, including the

Dickey-Fuller (1979, 1981), the Phillips-Perron (1988), and the Schmidt-Phillips

(1991) unit root tests. Furthermore, the null hypothesis of a unit root has not been

rejected for many economic time series. Since the seminal paper by Nelson and

Plosser (1982), in which the null of a unit root is rejected for only two out of fourteen
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series, many applied economists have tended to take views that most economic time

series are 1(1) processes.

However, it is well-known from a large body of Monte Carlo studies that

standard unit root tests are not very powerful against plausible trend stationarity

alternatives. Therefore, it is sensible to check (from the different direction) whether or

not the data are trend stationary in order to have a complete view of the properties of

economic time series. In Chapter 2 we derive an LM test for the null of trend

stationarity under very general assumptions about the stationary errors; that is, the

mixing and moment conditions of Phillips and Perron (1988). We use a components

model in which the series of interest is decomposed into the sum of the deterministic

trend, the random walk, and the stationary error. This test has a nonstandard limiting

distribution, which depends on a functional of a Brownian bridge. By a Monte Carlo

simulation we derive the critical values for the LM statistic for both level stationarity

and trend stationarity, and we consider finite sample (size and power) performance of

the test statistic in the presence of autocorrelated errors. We consider both AR(1) and

MA(l) errors. Generally, we find that there is a finite sample trade-off between size

and power of the stationarity test statistic, and that the choice of lags used in

calculating the long run variance has a major impact on the outcome of the test for all

reasonable sample sizes. We find that the use of shorter lags (e.g., l = 4 when T

=100) is suggested unless it appears that the stationary errors follow an AR(1) process

with a large positive parameter. Empirically, however, p 2 0.8 is very plausible since,

if we take most series to be trend stationary (which is the null), their first order
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autocorrelations will often be in this range. According to our simulation results, the

use of longer lags (e.g., l = 12 when T =100) is needed for the test to avoid severe

size distortions in this case. This substantially reduces the power of the test. In our

empirical work, we attempt to compromise between the possible size distortions from

using 2 = 4 and the power loss from using 2 = 12 by picking ! = 8. We find that the

null of trend stationarity is rejected only for five series (industrial production,

consumer prices, real wages, velocity, and stock prices) of the 14 series considered by

Nelson and Plosser.

Next we consider the consistency of the stationarity test under the unit root

alternative. In doing so, we derive the different limiting distribution of the test

statistic under the alternative of a unit root (the random walk component has positive

variance), which depends on detrended (or demeaned) Brownian motion. Therefore, in

Chapter 3 we consider the use of the KPSS statistic as a unit root test statistic.

Simulation results show that the main determinant of the finite sample size

performance of our unit root tests is the relative variance ratio 1 (variance of the

stationary error divided by variance of the random walk innovation) rather than the

autocorrelation of the stationary errors. Since the null is simply A. > O, the exact

location of the null is important for the quality of inference. Generally, the use of

longer lags is preferred in terms of correct size when the process is nearly stationary,

but the use of no lags is preferred in terms of good power when the process is nearly

integrated, which again confirms the finite sample trade-off of the unit root test. We

have compared the finite sample performance of the KPSS unit root test with that of
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the Dickey-Fuller test and found that the Dickey-Fuller test is more powerful, but also

has more size distortion. Since our main interest lies in the search for a more

powerful unit root test, we conclude that dual-use statistics are not very promising.

Finally, since the values of the long run variance under the null of a unit root

(normalized by UT) are almost constant at all lags, we use the results for 2 = 0 (or E

= 1) for the unit root test in empirical applications. The main finding is that a unit

root is strongly rejected only for the unemployment series, which is almost the same

as Nelson and Plosser’s results.

Combining the empirical results for the Nelson-Plosser data from both

stationarity and unit root tests, we reach the following conclusions. Three series

(unemployment rate, GNP deflator, and money) appear to be trend stationary. Four

series (consumer prices, real wages, velocity, and stock prices) appear to have a unit

root. Two series (nominal GNP and bond yield) probably have unit roots, while two

more series (employment and real per capita GNP) are probably trend stationary. For

the nominal wage we cannot reject either the unit root or the trend stationarity

hypothesis. There are two interesting cases: industrial production and real GNP series.

For industrial production we can reject the trend stationarity hypothesi at the 5 % level

and the unit root hypothesis at the 10 % level. For real GNP we can reject the trend

stationarity hypothesis at the 10 % level and the unit root hypothesis at the 20 %

level. It seems that for many economic time series it is not very clear whether they

have a unit root or are trend stationary. Probably other alternatives such as fractional

integration or a nonlinear trend model are needed in further research.
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The above empirical results may indicate that many economic time series could

be in the region of ’near stationarity’, in which the series have combinations of a

random walk component and a stationary component. Schwert (1989) also gives some

empirical evidence of near stationarity. The second t0pic of my thesis (Chapter 4) is

the study of the asymptotic and finite sample behavior of standard unit root tests such

as the Dickey-Fuller and the Schmidt-Phillips tests when the process is nearly

stationary. A lot of Monte Carlo studies including Schwert (1987, 1989) show that the [

size distortion of the Dickey-Fuller and the Phillips-Perron tests is almost one when

the process is nearly stationary. By using a local approximation of the MA(l)

parameter to minus one, we derive the asymptotic distribution of the Dickey-Fuller and

the Schmidt-Phillips unit root tests. We then examine their finite sample performance

when the process is nearly stationary by a Monte Carlo simulation. We find that

standard unit root tests have considerable size distortions when the process is nearly

stationary, because OLS estimation strongly biases the coefficient of the dependent

variable towards zero when the MA(l) parameter is near minus one. Our simulation

results show that this bias could be more severe in small samples, but also

considerable even for large sample sizes. Furthermore, our asymptotic results predict

the extent of the finite sample size distortions quite accurately.

Recently, various attempts have been made to reconsider the important problem

of distinguishing trend stationary and unit root processes. In particular, Perron (1989)

has suggested that a time series structure with very infrequent changes in slope or

intercept can be a useful approximation in empirical applications and argued that the
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conclusion of Nelson and Plosser can be reversed if one time structural break is

allowed within the Dickey-Fuller test framework. On the other hand, Amsler and Lee

(1991) apply the same logic to the Schmidt-Phillips test and find that a suitably

modified Schmidt-Phillips test allowing for a structural change reverses the results of

Perron (1989). However, the implicit assumption in these studies is that there is only

one such "big shock", which is given exogenously. BanerjeeM (1990) and Zivot

and Andrews (1990) criticize this assumption and develop a framework that

endogenizes the structural change. Even more general models can be entertained if we

adopt nonlinear structural models suggested by Hamilton (1989) and Lam (1990).

However, if we want to test for a more general type of trend specification, the testing

procedure for trend stationarity (proposed in this dissertation) is also relevant, and the

extension of the analyses of Banerjee m; and Zivot and Andrews to the stationarity

test is an interesting path for future research.

Bayesian methods can also be used to distinguish trend stationary and unit root

processes. Dejong and Whiteman (1991) use a Monte Carlo based Bayesian

methodology and study the posterior distributions of dominant roots corresponding to

an AR(3) representation of the time series using flat (uninformative) priors. They find

that eleven of fourteen Nelson-Plosser series support trend stationarity over integration.

Similar results are obtained by Sims and Uhlig (1991). Phillips (1991) criticizes this

inference, claiming that the results are sensitive to the model and prior distribution.

Generally, he challenges the assertions (made by Bayesian econometricians such as

Sims (1988) and Sims and Uhlig (1991)) about the impropriety of classical methods
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and the superiority of flat prior Bayesian methods. He employs ignorance (objective)

priors rather than flat priors, because under flat priors the bias towards the trend

stationary model is shown to be substantial, and especially in models with a fitted

deterministic trend. He finds under ignorance priors that Bayesian inference accords

more closely with the results of classical methods and that seven of the 14 Nelson-

Plosser series show evidence of stochastic trends.

Generally, the conclusion that many economic time series are not very

informative about stationarity is quite consistent with the above (inconclusive)

findings. Therefore, this leaves a lot of rooms for the further research.

First, it is interesting to see what happens to the empirical results of the

stationarity test if allowance is made for the presence of structural change. A simple

extension is straightforward, but adjusting for endogeneity of the structural break,

considering Hamilton’s nonlinear trend function, or combining our analysis with

Bayesian methods is more complicated.

Another second promising extension of this thesis is to a test of cointegration.

This would involve extending the test of stationarity to the error in a cointegrating

regression, instead of an observed series. This would be one of the first attempts of a

direc__t test of cointegration rather than a test of the hypothesis of no cointegration

(which is a direct extension of the unit root test). See Engle and Granger ( 1987),

Phillips and Ouliaris (1990), Stock and Watson (1988), and Johansen (1991). We

expect such a test of cointegration to give further light on the true relationships among

important economic relationship such as the consumption function, purchasing power
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parity, the term structure of interest rates, the quantity theory of money, and so forth.

The asymptotic theory for the case that the generalized cointegrating vector is

efficiently estimated must be derived and we are currently working on this topic.
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