

This is to certify that the

dissertation entitled

TYPE II HEXOKINASE:

MOLECULAR CLONING, SEQUENCE AND PROMOTER ANALYSIS

presented by

Annette P. Thelen

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Biochemistry

Major professor

John E. Wilson

Date April 7, 1992

Professor and Chair. Dept. of Biochemistry

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE

MSU is An Affirmative Action/Equal Opportunity Institution ctchdetedus.pm3-p.1

TYPE II HEXOKINASE:

MOLECULAR CLONING, SEQUENCE AND PROMOTER ANALYSIS

By

Annette P. Thelen

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirmenets
for the degree of

DOCTOR OF PHILOSOPHY

Department of Biochemistry

1992

ABSTRACT

TYPE II HEXOKINASE: MOLECULAR CLONING, SEQUENCE AND PROMOTER ANALYSIS

By

Annette P. Thelen

The 917-residue amino acid sequence of Type II hexokinase has been deduced from the overlapping nucleotide sequences of two clones, isolated from rat skeletal muscle cDNA libraries. The sequences of 197 nucleotides in the 5' untranslated region and 687 bases of the 3' untranslated region have also been determined from cloned cDNA. There is extensive similarity between the sequences of the N- and C-terminal halves of the Type II isozyme, as previously seen with the Type I isozyme; this is consistent with the view that these enzymes evolved by a process of gene duplication and fusion.

The region of overlap between the two discrete cDNA clones, was confirmed by isolation and sequencing of a genomic DNA clone that spanned the region. Within this region, the 634-nucleotide coding sequence was divided into three exons, each of 150-250 nucleotides. In addition, the predominant transcription start site was located in a region 465 nucleotides upstream from the translation initiation codon. The genomic sequence upstream from the transcription start site was found to contain several potential promoter elements. These include a TATA-like sequence, 2 CCAAT sequences, and 3 Sp1 binding sites. Alignment of genomic clones for Type

II hexokinase predict a minimum gene length of at least 35 kb. These results suggest that the gene encoding Type II hexokinase is likely to be quite complex.

A cDNA encoding the entire C-terminal half of a hexokinase from Novikoff ascites tumor cells was also isolated and found to be identical to a cDNA encoding the corresponding region of the Type II isozyme of skeletal muscle. Northern analysis indicated that a single mRNA, approximately 5200 nucleotides in length, encoded both the skeletal muscle and the tumor enzymes. These results do not support previous speculation that the hexokinase isozymes of normal tissue are distinct from those of tumor, and suggest the possibility that post-translational modifications of a single protein species might account for apparent differences between the isozymes of normal and tumor tissues.

Copyright by
ANNETTE PHYLLIS THELEN
1992

To my family

ACKNOWLEDGEMENTS

I want to thank my family, especially my husband, Bill, without whose emotional support the completion of this degree would not have been possible. My children, Greg and Sarah, have been very patient and supportive through the easy and hard times. I want to thank John Wilson, for his guidance and intellectual support throughout this project. He has taught me much by his example, allowing me to develop and mature as a scientist. When things looked the darkest, he kept me looking for the dawn. I would like to acknowledge my committee whose advice has been most appreciated. They are: Susan Conrad, Steve Triezenberg, Clarence Suelter, and Jerry Dodgson. I want to give a special thanks to Patty Voss, Joe Leykam, Marion Healy, Linda Sherwood, Marcia Kieliszewski, and Al Smith for all their help and support. Lastly, my deepest appreciation to Dr. Dave McConnell, whose encouragement and assistance led to the fulfillment of a lifelong goal.

TABLE OF CONTENTS

LIST OF TABLES	X
LIST OF FIGURES	X
LIST OF ABBREVIATIONS x	ii
CHAPTER 1	
Introduction	1
Prologue	_
	3
	5
	6
	9
Intracellular Locations of Hexokinase	2
Regulation of Hexokinase Activity	4
Tumor Hexokinase	5
Evolution of the Mammalian Hexokinases 1	7
Structure-Function Relationship in Hexokinase	0
CHAPTER 2	
Materials and Methods	5
Materials	_
Methods	_
Purification and N-Terminal Sequencing of Type II	٠
Hexokinase from Rat Skeletal Muscle 2	7
cDNA Library Synthesis and Screenings	9
Isolation of Genomic Clones Containing Type II	
Hexokinase Gene	0
Site-directed Mutagenesis of Type II Hexokinase:	
Creation of Ncol Site	3
Expression of Type II Hexokinase in COS-1 Cells 3	5
RNA Isolation and Northern Analysis 3	6

	Primer Extension	37
	S1 Nuclease Protection Assay	38
	Cell-Free in vitro Transcription Assay	
CHAPTER	3	
Resul	ts	42
	Isolation of Clones Containing cDNA for Rat Type II	-
	Hexokinase	43
	Isolation of Genomic Clones for Rat Type II Hexokinase	
	Isolation of a Partial cDNA Clone for Novikoff Tumor	
	Hexokinase	68
	Northern Blot Analysis of mRNA from Rat Skeletal	
	Muscle and Novikoff Ascites Tumor Cells	
	Identification of the Transcription Initiation Sites	
	Type II Hexokinase Promoter	
	Expression of Type II Hexokinase in COS-1 Cells	86
CHAPTER	4	
Discu	ssion	93
	Amino Acid Sequence of Type II Hexokinase	
	Structure of Type II Hexokinase mRNA	
	Type II Hexokinase Gene 1	
CHAPTER	5	
	Work	.06
CHAPTER	6	
	ences	.10
APPENDIX		
Anner	ndix A	20

LIST OF TABLES

TABLE		Page	
I.	Comparison of several parameters for the mammalian hexokinase isozymes	4	
п.	Comparison of Amino Acid Sequences of N- and C-Terminal Halves of Rat Type I and Rat Type III Hexokinases, and Glucokinase	21	
ш.	Summary of cDNA library synthesis/screening strategies and results	44	
IV.	Summary of Transfection Results	89	
V.	Comparison of Deduced Amino Acid Sequences of the N- and C-Terminal Halves of Rat Type II Hexokinase with Sequence of the Type IV Isozyme and Sequences of the N- and C-Terminal Halves of the Type I and III Isozymes	97	

LIST OF FIGURES

FI	GURE	Page
1.	Postulated evolution of mammalian hexokinases	19
2.	Alignment of clones containing genomic DNA for rat Type II hexokinase	. 32
3.	HaeIII restriction patterns of cDNA clones	46
4.	Relevant restriction sites and sequencing strategy for clones containing either cDNA or genomic DNA for rat Type II hexokinase	. 48
5.	Nucleotide and deduced amino acid sequences for rat Type II hexokinase	. 50
6.	HaeIII restriction patterns of cDNA clones for Type II hexokinase (C-terminus)	55
7.	Southern blot analyses of ten clones containing genomic DNA for Type II hexokinase	59
8.	Southern analysis of clones containing 5' and 3' genomic sequences for Type II hexokinase	61
9.	Alignment of relevant clones containing genomic DNA for rat Type II hexokinase	. 64
10	. Southern analysis of genomic clone 3G3A	67
11	. Northern blot analyses of rat Type II hexokinase mRNA	70
12	. S1 nuclease protection assay results	73

13.	Primer-extension results	75
14.	Identification of the transcription initiation region of the Type II hexokinase gene	78
15.	Identification of the transcription initiation site of the Type II hexokinase gene	80
16.	Southern analysis of genomic clone 5G3A	83
17.	Sequence of the Type II hexokinase promoter region	85
18.	Cell-free in vitro transcription assay results	88
19.	Western blot analysis of Type II hexokinase expressed in COS-1 cells	92
20.	Comparison of aligned amino acid sequences of N- and C-terminal halves of rat Types I-III hexokinases and rat glucokinase (Type IV)	96

LIST OF ABBREVIATIONS

BCA bicinchoninic acid

bp basepair

BSA bovine serum albumin DEAE diethylaminoethyl

DMEM Dulbecco's modified eagle's medium

dNTP deoxynucleoside triphosphate

DTT dithiothreitol

EDTA disodium, ethylenediamine tetraacetate

EtBr ethidium bromide
Glc-6-P glucose 6-phosphate

Glc glucose

GuHCl guanidine hydrochloride

Hepes N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid

kb kilobase kDa kilodalton

Pipes piperazine-N,N'-bis[2-ethane-sulfonic acid]

SDS sodium dodecyl sulfate
SSC saline sodium citrate
TG monothioglycerol

Tris tris[hydroxymethyl]aminomethane

CHAPTER 1

Introduction

Prologue

The phosphorylation of glucose by hexokinase yields glucose-6-phosphate. Because glucose-6-phosphate is a substrate in many metabolic pathways, hexokinase is one of the major points of regulation in the metabolism of glucose in mammals. The mammalian hexokinase family consists of several distinct isozymes, each with different biochemical properties. The major aim of this work was to determine the amino acid sequence of Type II hexokinase from rat muscle, permitting comparison with other rat isozymes and thereby contributing to our understanding of the structural differences between these isozymes that bring about their regulatory diversity. This chapter will provide background information on the localization, regulatory properties, expression, structure, and evolutionary aspects of the hexokinase isozyme family.

MAMMALIAN HEXOKINASES

The conversion of glucose to glucose-6-phosphate in mammalian tissues is catalyzed by hexokinase (ATP: D-hexose 6 phosphotransferase, EC 2.7.1.1.) using ATP as the phosphoryl donor. Since glucose-6-phosphate is the initial substrate in many metabolic pathways such as glycogen biosynthesis and glycolysis, it is not surprising that hexokinase is under complex regulation via product inhibition and mitochondrial binding. The study of the function, structure, and regulation of hexokinase is made more complex by the fact that there are at least four isozymes in mammalian tissues.

Background

The multiple isozymes, first observed in liver in 1963 by Viñuela (1) and Walker (2), can be separated from one another by either chromatographic (3) or electrophoretic (4) techniques. The isozymes are named A-D, or alternatively I-IV, based on their order of elution from a DEAE-cellulose column (3), or their order of increasing mobility during starch gel electrophoresis (5), respectively.

Although each of these isozymes has the same catalytic function, they differ significantly from one another in size, tissue distribution, and details of regulation. Several of these characteristics, discussed below, are summarized in Table I. Isozymes I-III are monomers with approximate molecular weights of 100 kDa and have low K_ms for glucose (0.02-0.13 mM). Isozyme IV (glucokinase, EC 2.7.1.2) is

Table I. Comparison of several parameters for the mammalian hexokinase isozymes^a.

HEXOKINASE ISOZYME I IV **PARAMETER** II Ш 98,000 96,000 98,000 49,000 M, approx. spleen Source brain muscle liver erythrocytes adipocytes lung pancreas K_m Glc 0.04^{b} 0.13 0.02 4.5 K_m ATP 0.07 0.49 0.42 1.29 K_i Glc-6-P 0.026 0.021 0.074 15 vs ATP

a-Table adapted from Ureta (57), and references therein.

b-All apparent kinetic constant values are expressed in mM.

c-Some examples are shown; this is not an all inclusive list.

a monomer of 50 kDa and has a much higher K_m for glucose (4.5 mM) (6-9). The apparent molecular weight of isozyme IV is similar to that of Types L1 and L2 hexokinase from wheat germ (10) and Types A and B hexokinase from yeast (23). Tissue Distribution

A large variation in the hexokinase isozyme levels within various tissues has been observed (11). Generally, there is more than one hexokinase isozyme present in most tissues. Type I hexokinase is found in virtually all tissues and can be considered the "primary" hexokinase. Since Type I hexokinase is the most prevalent member of this family, much of the biochemical information available about the hexokinase reaction has been obtained from the study of this isozyme. This isoform is the predominant hexokinase in tissues with heavy reliance on blood-borne glucose for energy, as in brain and erythrocytes. In contrast, Type II hexokinase is the major isozyme in insulin-sensitive tissues such as muscle, adipose and mammary gland. In these tissues, Glc-6-P can be directed into energy storage forms such as lipids (in adipose or mammary tissue) or glycogen (in muscle tissue). The predominance of Type II hexokinase in these tissues leads one to speculate that this isozyme plays an integral part in such energy storage pathways. The Type III isoform can be found in several tissues (e.g. spleen, kidney, and lung) but in much lower amounts than the other three isozymes. For this reason, less is known about Type III hexokinase than the other isozymes.

Early work indicated that Type IV hexokinase, or glucokinase, was present only in the liver (5). However, glucokinase has since been found in the islets of

Langerhans in the pancreas (12). More recently, a glucokinase was detected in anterior pituitary cells and pituitary cell lines (13). Both Northern and Western blot analysis, using antibodies against the pancreatic glucokinase, detected glucokinase in the pituitary cell line AtT20. No glucokinase mRNA or enzyme activity was detectable in the pituitary tissue, even though the antibodies against the pancreatic enzyme did react with a protein band of the appropriate size in the Western analysis. Hughes et al. (13) postulated that an undetectably low amount of mRNA might be sufficient for expression of glucokinase since the protein half-life is as much as 30 h. However, Liang et al. (14) reported detecting glucokinase mRNA, but no enzyme activity, in both the pituitary cell line AtT20 and pituitary tissue. These investigators felt that alteration of the open reading frame for glucokinase may explain the lack of enzyme activity in the pituitary.

Influences on Hexokinase Levels

While the relative amount of each isozyme is influenced by age, diet, and hormones as well as physical activity, isozymes II and IV appear to be most affected. Bernstein and Kipnis investigated the effects of age and diet on Types I and II hexokinase activity in rat skeletal muscle and adipose tissues (15). They found that the hexokinase in both tissues decreased with age. Similar decreases in hexokinase activity were found in muscle and adipose tissues of young rats after a 3-day fast. These investigators determined that, since the levels of Type I hexokinase in both tissues were unaffected by age and diet, changes in the Type II isozyme were responsible for the alteration in hexokinase activity in muscle and adipose tissue due

to these conditions. These results were similar to those seen by Katzen and Schimke (5).

Under diabetic conditions, the level of Type II hexokinase decreases in fat pad, heart, and skeletal muscle as well as adipose tissue and mammary gland, and upon insulin treatment is returned to normal levels (16-18). Frank and Fromm used streptozotocin to induce diabetes in rats in order to investigate the effect of insulin on the synthesis (19) and degradation (20) of Type II hexokinase. These investigators monitored the incorporation of [3H]leucine into Type II hexokinase in the skeletal muscle of diabetic and insulin treated diabetic rats. They found that the rate of synthesis of skeletal muscle Type II in normal rats was approximately 1.9 times greater than in diabetic animals. Insulin treatment of the diabetic animals brought the reduced synthesis rate of the Type II isozyme back to near normal levels (19). In a similar set of experiments (20), Frank and Fromm found that the degradation rate constant for Type II hexokinase was approximately 3 times greater in diabetic animals than in normal animals. In these experiments, the investigators did not determine if the changes in Type II hexokinase levels were related to the rate of transcription of its gene or the stability of its message. The half-life of this protein in diabetic muscle was 9 hr versus 28 hr in normal tissue. Insulin treatment of diabetic skeletal muscle restored both the rate of degradation and the half-life of the Type II isozyme to levels approximating those found in normal tissues.

The level of glucokinase in liver is influenced by several factors including insulin, diet, fasting (21) and glucagon (22). This is not the case for the glucokinase

found in the β -cells of the pancreas, which appears to be influenced by changes in blood glucose concentration, and not insulin (reviewed in ref 24). Because insulin secretion from β -cells is controlled through the glycolytic rate, the pancreatic glucokinase has been implicated in the control of insulin levels. These seemingly opposite controls can provide an effective regulation cycle for plasma glucose levels. Elevated glucose increases pancreatic glucokinase activity which in turn stimulates insulin release. This elevated insulin level stimulates hepatic glucokinase which will decrease blood glucose levels.

For a number of years, it has been known that exercise (25,26) and chronic stimulation (27,28) cause an increase in hexokinase activity in muscle. Weber and Pette, using [35]methionine and immunoprecipitation, monitored protein production in chronically stimulated rat skeletal muscle. They found that the increase in hexokinase activity in stimulated tissue was the result of increased Type II hexokinase synthesis (29). These observations were confirmed, and expanded upon, when Weber and Pette demonstrated that hexokinase activity reached a maximum peak after 14 days of chronic stimulation (30). When stimulation was withdrawn a decreased rate of synthesis and possibly an increased rate of degradation of the Type II isozyme (31) caused an immediate decline in both hexokinase activity and the levels of the Type II isozyme. These researchers also found that nearly 50% more total hexokinase activity was mitochondrially bound in stimulated muscle than in unstimulated tissue (30); the potential regulatory significance of the binding of hexokinase to mitochondria will be discussed below. The increases in both the Type II hexokinase protein levels and the

amount of mitochondrially bound hexokinase represent intracellular changes in response to the increased energy demand of chronic stimulation.

Regulation of Expression - the Glucokinase Gene

As previously discussed, several factors influence both the activity of glucokinase, and the level of the protein. Hormones, diet, age, and activity all appear to alter the amount of glucokinase, to differing degrees in different tissues (or cell types). Investigation into the regulation of glucokinase transcription became possible when the Granner laboratory isolated and characterized both the cDNA (32) and gene (33) for liver glucokinase. The gene encoding glucokinase is the only hexokinase gene studied in depth to date. The hepatic glucokinase gene was found to be 15.5 kb in length, and contained 10 exons ranging in size from 96 to 977 bp. Transcription initiation was localized over a 4 base range, with the strongest band 127 nucleotides upstream from the translation initiation codon. This translation initiation codon is located in exon 1. The message for hepatic glucokinase is 2.4 kb in length, encoding a protein of 465 residues.

Analysis of 5' flanking sequences located several promoter elements, including a TATA box and an Sp1 binding site. Also present were several elements found in other liver-specific genes. Using run-on transcription analysis, these investigators demonstrated that with insulin treatment, the rate of transcription of the hepatic glucokinase gene in diabetic rats increased approximately 20-fold in 2 hr, with a significant increase within 1 hr. Similar increases in the transcription of glucokinase mRNA in rat liver and hepatocytes have been reported by Sibrowski and Seitz (34),

and Iynedjian and coworkers (22), respectively. In both cases the half-life for glucokinase mRNA was determined to be 40-45 min.

The laboratory of Tanaka and coworkers (35) investigated the genomic region upstream from the transcription initiation site for liver glucokinase in an attempt to locate genomic regions important in the insulin regulation of this gene. Using the chloramphenical acetytransferase (CAT) assay system connected to deletion constructs of the glucokinase gene (-5.5 kb to -48), these investigators determined that the genomic region, from immediately upstream of the transcription start site (+1), to nucleotide -87, was sufficient for promoter activity in rat hepatocytes. However, using the same experimental strategy, insulin treatment of the transformed hepatocytes resulted in no change in CAT activity of the cells. They concluded that the 5.5kb sequence 5' of the transcription initiation site for glucokinase did not contain insulin responsive elements. It is possible that such sequences may be further upstream or may be downstream contained within an intron in the glucokinase gene.

Magnuson and Shelton (36), in studies on the expression of glucokinase in pancreatic β -cells, isolated and characterized the transcription unit of this isozyme from an insulinoma cell line. These investigators reported the size of the pancreatic glucokinase mRNA to be approximately 2600 nucleotides in length, about 250 longer that the message for liver glucokinase. Iynedjian and coworkers (37) reported a difference in glucokinase message size of 400 nucleotides, with the pancreatic message being longer (approx 2.8 kb). Similar message sizes have also been seen in both pituitary tissue and the AtT20 cell line (13).

Magnuson and Shelton (36) found that the promoter for this pancreatic enzyme was at least 12 kb upstream from the hepatic glucokinase promoter, making the transcription unit at least 27.5 kb. The 5' ends of the cDNAs for pancreatic and hepatic glucokinases were completely different, resulting in 15 different amino acids at their N-termini. The point at which the hepatic and pancreatic sequences diverged corresponded to a splice site between exons 1 and 2 in the hepatic transcript unit. However, all residues 3' of this splice site were identical between the hepatic and pancreatic glucokinases.

Several laboratories have detected a number of glucokinase variants in liver, pancreas, and pituitary cells and tissue. Magnuson and Shelton (36) found in pancreas a glucokinase cDNA with a 51 bp deletion which generated a 17 amino acid deletion (in frame) (14). Using PCR technology, Magnuson *et al.* (14) detected mRNAs, in both pancreas and liver, that contained the aforementioned 5' dissimilar regions and the 51 bp deletion. They also reported locating additional alternate splicing products in both pituitary tissue and the pituitary cell line, AtT20.

In recent work, Newgard and colleagues (13, 38) have identified several additional variant rat glucokinase transcripts in liver, pancreas, AtT20 cells and pituitary tissues. Expression of the pancreatic and liver variants containing a 52 bp deletion, at the 3' end of exon 2 of the glucokinase gene, resulted in no glucokinase activity (38). However, they could not detect the transcript containing the 51 bp deletion that Magnuson *et al.* had analyzed.

It is evident that there are at least two distinct promoters for the glucokinase gene that control tissue specific expression of unique rat glucokinases in the liver, pancreas, and pituitary. The significance of additional unique transcripts, resulting from several alternate splicing events, remains to be determined. As research into Types I-III hexokinase continues, similar complexity will undoubtedly be found in their gene structures. Preliminary characterization of the Type II gene, presented herein, supports this observation.

Intracellular Locations of Hexokinase

The association of hexokinase with the particulate fractions of tissue homogenates has been observed by many laboratories using a number of tissues (11). The actual subcellular structure, however, that bound the hexokinase(s) was not always determined. Several researchers have reported that the particulate hexokinase activity was associated with mitochondria, for most tissues tested. Significant portions of Type I and Type II hexokinase have been found associated with the mitochondria in tissues such as brain (11), as well as heart, diaphragm, skeletal muscle and mammary gland (39). Generally, Type III hexokinase has been found only in the soluble fraction of tissue homogenates such as lung (40) and hepatoma (41). One report of the association of Type III hexokinase with the mitochondria (42) may have incorrectly identified the Type II isozyme as Type III hexokinase (41). However, based on localization studies by Preller and Wilson (43), the Type III isozyme appears to have a weak association with nuclei of several different rat tissues. Many of the cell types exhibiting nuclear association of Type III were

endothelial or epithelial cells. One laboratory has reported the presence of glucokinase in the nuclei, as well as the cytoplasm, of parenchymal cells of rat liver (45).

The outer mitochondrial membrane protein to which Type I hexokinase binds was isolated by Felgner *et al.* (44). Subsequently, it was shown that this hexokinase binding protein was the pore-forming protein, porin (46,47). Hexokinase binding to porin, through which molecules such as ADP and ATP flow, creates a direct link between glycolysis in the cytosol and ATP production in the mitochondria. This association between hexokinase and porin gives the enzyme preferential access to mitochondrially generated ATP (48,49). Inui and Ishibashi (50) reported that the efficient utilization of mitochondrial ATP was dependent upon hexokinase being bound to the mitochondrial membrane. The bound form of the enzyme has a slightly greater affinity for ATP and is considerably less sensitive to Glc-6-P inhibition (40,51,52). These kinetic differences, coupled with preferential access to intramitochondrially generated ATP, have led to the suggestion that mitochondrial binding represents a mechanism for activation (relative to the unbound enzyme) of hexokinase.

Divalent cations and a hydrophobic "tail" at the N-terminus of the protein facilitate the association of hexokinase with the mitochondrial membrane. Divalent cations are known to enhance this protein-membrane association in brain (52), tumor (53), and skeletal muscle (49). It is likely that this occurs by bridging the negatively charged groups on both the protein and the membrane. Critical to the association of

Type I hexokinase with the mitochondria is the N-terminus of the enzyme. Polakis and Wilson (54) used limited chymotryptic digestion to demonstrate that the loss of the 9 hydrophobic residues at the N-terminus of Type I hexokinase resulted in the loss of binding to the mitochondrial membrane. Similar results were also reported by Rose and Warms (53). Further studies into the mitochondrial binding of Type I hexokinase, by Xie and Wilson (55), demonstrated that this hydrophobic N-terminus was actually inserted into a hydrophobic core in the mitochondrial membrane.

Inspection of the N-terminal residues of the deduced amino acid sequence for Type III hexokinase (56) reveals that this region of Type III is much less hydrophobic than the N-terminus of Type I. The lack of such a hydrophobic region in Type III hexokinase is one factor that makes mitochondrial binding less likely, if not impossible.

Regulation of Hexokinase Activity

As with the regulation of the level of the hexokinases, the enzymatic activity of each hexokinase isozyme is regulated differently. Mammalian hexokinase Types I-III are sensitive to allosteric inhibition by Glc-6-P (11), whereas glucokinase shows sensitivity to this ligand only at concentrations higher than normal physiological levels (57). The inhibitory effect of Glc-6-P on the Type I isozyme is immediate which is in contrast to the delayed inhibition of Type II hexokinase by this ligand (58,59). The t_{1/2} of the response of the Type II isozyme to Glc-6-P varied from 12 sec to 130 sec, for soluble or mitochondrially bound enzyme, respectively.

Other ligands affecting hexokinase activity are inorganic phosphate (P_i), Glc 1,6-P₂, and glucose. Inorganic phosphate reverses the inhibition of the Type I

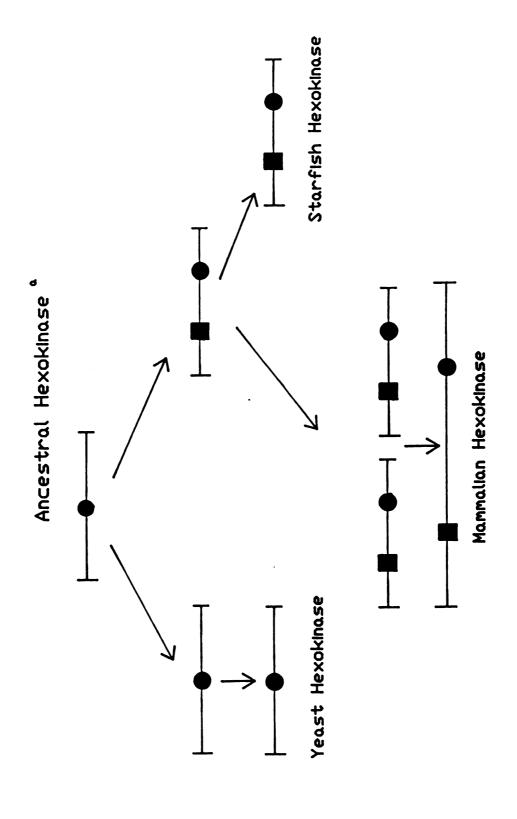
isoform by Glc-6-P (11) but has little if any effect on the Type II isozyme (59). Glucose 1,6-bisphosphate is also an inhibitor of Type I hexokinase and has been shown to have an even greater affinity for the Type II isozyme (60,61). The substrate, glucose, is itself an inhibitor of Type III hexokinase at concentrations above 0.2mM (3), suggesting that the isozyme is likely to be active only when intracellular concentrations of glucose are low.

Tumor Hexokinase

For more than 60 years, it has been known that tumor cells exhibit increased glycolytic rates (62). Several changes in cellular metabolism in tumors are directly associated with increased glycolysis. Included in these changes are the increased levels of key enzymes such as hexokinase, and a change in the degree of hexokinase associated with the mitochondria. Bustamante and Pedersen showed that the transformation of liver cells into tumor cells increases the hexokinase activity by more than 20-fold (63). Using the hepatoma cell line H-91, these investigators found that at least half the total hexokinase activity was associated with the mitochondria, and that mitochondrially generated ATP was preferentially used to phosphorylate glucose. In a similar set of experiments utilizing the Ehrlich ascites tumor line, Bustamante et al. (64) found that approximately two-thirds of the hexokinase activity was mitochondrially associated. These authors also reported that fast growing tumor cells (those reaching maximum size within 1 month) have the highest levels of hexokinase activity, again with 70% of the activity associated with the mitochondria (64).

To gain further insight into the nature of tumor hexokinase, Nakashima and co-workers (65) purified and characterized a mitochondrially bound hexokinase from the AS-30D rat hepatoma cell line. They demonstrated that this cell line, as with those mentioned above, contained increased hexokinase with a significant portion bound to the mitochondria (when compared to normal liver). Anion exchange chromatography of liver and AS-30D hexokinases showed that two tumor isozymes coeluted with Types I and II from normal liver. These authors reported that the purified AS-30D hexokinase, which coeluted with the liver Type II hexokinase, had kinetic and chromatographic properties similar to those of the Type II isoform from normal tissues. A comparison of their amino acid compositions indicated that the tumor and liver isozymes were not identical. However, these researchers did note that the amino acid compositions were obtained from different laboratories using different techniques. Nakashima et al. concluded that, in the transformation from normal liver to hepatoma, there was a significant change in hexokinase content to an isozyme form with very different properties.

The complete amino acid sequence for a tumor hexokinase was first reported by Arora and coworkers (66). They isolated cDNA for a hexokinase from c37 mouse hepatoma cell line, using a partial cDNA for rat brain Type I hexokinase (67) as the probe. The deduced sequence for this mouse tumor hexokinase was the same length (918 residues) as the rat Type I isozyme (68), and the enzymes differed at only 32 positions in their amino acid sequences. The 12-amino acid hydrophobic stretches at the N-terminus of both hexokinases were identical. The presence of this hydrophobic


"tail" in the tumor hexokinase could account, at least in part, for the high level of mitochondrial binding seen with tumor hexokinases. The authors felt that their results could not conclusively identify the mouse hepatoma hexokinase as Types I, II or III. However, it seems likely that this hepatoma hexokinase is Type I from mouse with the 32-amino acid difference (only 3.5% of the total 918 residues) due to species variation (mouse vs rat) and not a reflection of the transformation process.

Evolution of the Mammalian Hexokinases

The fact that Types I-III hexokinases are twice the size of both glucokinase and the yeast isozymes has led several investigators to postulate that the mammalian hexokinases evolved through a process of gene duplication and fusion from an ancestral hexokinase similar to the yeast enzymes (23,57,69-72). The similarities in amino acid composition (57,73) and antigenic cross reactivities (41,74) among the various isozymes give support to this theory. This is not an unprecedented postulation since gene duplication and fusion are also suggested for the evolution of rabbit phosphofructokinase (75), glycogen phosphorylase (76), and the β -crystallin protein family (77).

However, in contrast to glucokinase and the yeast hexokinases (23), several organisms have 50 kDa hexokinases that are inhibited by Glc-6-P. These organisms include silkworm (78), locust (79) and starfish (80). Recent work (84) supports the current postulation that the starfish hexokinase, not the yeast monomer, may be a direct descendent of an ancestral hexokinase that contained both glucose and Glc-6-P binding sites (Fig. 1). It is possible that duplication and fusion of such an ancestral

Figure 1. Postulated evolution of mammalian hexokinases. The catalytic site is represented by a circle, and the Glc-6-P regulatory site by a square. In this scheme, a 50 kDa ancestral hexokinase, which was not inhibited by Glc-6-P, evolved in two directions, one leading to the present day yeast hexokinase (not inhibited by Glc-6-P). In the second pathway, a Glc-6-P site evolved on the 50 kDa protein, giving a protein with properties similar to those of the present-day starfish hexokinase. Gene duplication and fusion of the ancestral gene encoding the 50 kDa Glc-6-P sensitive hexokinase would give rise to the present-day 100 kDa mammalian hexokinases (84).

Adapted from White and Wilson (84)

gene gave rise to the genes encoding the current mammalian hexokinases. The extensive sequence similarities (Table II) of the N- and C-terminal halves of Types I and III hexokinase, to one another and to glucokinase, support this gene duplication and fusion theory. The degree of similarity among the deduced amino acid sequences of Type I hexokinase from human kidney (81), Type I isozyme from rat brain (68), Type III hexokinase (56) and glucokinase from rat liver (32), and a hexokinase from a mouse hepatoma cell line (66) lend additional support to this theory.

Structure-Function Relationship in Hexokinase

Since the work by Crane and Sols (82) which led to the view of a distinct Glc-6-P regulatory site in the hexokinase molecule, much research has been conducted to define and locate the catalytic and regulatory sites of hexokinase. The first substantive information about the location of the substrate binding sites was provided by Nemat-Gorgani and Wilson (83). Using a photoactivatable ATP analog (8-Azido-ATP) and limited tryptic proteolysis, these researchers demonstrated that the substrate nucleotide binding site was in the C-terminal portion of Type I hexokinase.

The location of the glucose binding site was also placed in the C-terminal domain of isozyme I. Schirch and Wilson (85) used a radiolabelled glucose analog (N-(bromoacetyl)-D-glucosamine (GlcNBrAc)) to modify sulfhydryl groups at the glucose binding site. Analysis of tryptically digested hexokinase, treated with [14C]GlcNBrAc, showed that the C-terminal portion of the molecule had been labelled. A subsequent set of experiments (93) further defined the location of the regions that had been labelled by the glucose analog. Three tryptic fragments,

Table II. Comparison of Amino Acid Sequences of N- and C-Terminal Halves of Rat Type I and Rat Type III Hexokinases, and Glucokinase^a.

	NIII ^b	NI	CIII	CI
NI	39(16)°			
CIII	40(14)	45(15)		
CI	38(14)	46(17)	62(11)	
IV	38(15)	46(18)	49(15)	49(15)

a-Table adapted from Schwab and Wilson (56).

b-Abbreviations used: NIII, N-terminal half of rat Type III isozyme; NI, N-terminal of rat Type I isozyme; CIII, C-terminal half of rat Type III isozyme; CI, C-terminal half of rat Type I isozyme; IV, rat Type IV hexokinase (glucokinase).

c-Percent identical residues is shown without parenthesis; percent conservative substitutions is shown in parenthesis.

radiolabelled by GlcNBrAc treatment, were isolated and subjected to amino acid sequence analysis. Two of the fragments were quite similar to yeast sequences (86,87) that are located near the glucose binding site (88,89). The third peptide showed no significant similarity to other published hexokinase sequences. By comparing the two rat Type I peptides to the yeast sequences, Schirch and Wilson further localized at least a portion of the glucose binding site within a 5 kDa segment of the C-terminal half of the enzyme.

Under nondenaturing conditions, limited tryptic digestion of Type I hexokinase yields 3 specific fragments of M, 10, 40 and 50 kDa (90). However, White and Wilson (91) found that the susceptibility of the Type I isozyme to trypsinization is increased when the enzyme is denatured with 0.6 M GuHCl. Furthermore, the ligand binding domains (N- and C-terminal halves) are selectively stabilized when the ligands, or their analogs, are present during denaturation and proteolysis. Using this selective protection from proteolysis as an indication of binding of the ligand, White and Wilson (84,91) demonstrated that the allosteric binding site for Glc-6-P was in the N-terminal of Type I hexokinase. The enzyme was denatured with GuHCl in the presence of analogs of either substrate or inhibitor. When the Glc-6-P analog, 1,5anhydroglucitol-6-P, was used, the N-terminal half of Type I hexokinase was protected from digestion. Catalytic activity was lost under these conditions. In contrast, the substrate analog, N-acetylglucosamine, protected the C-terminal half from proteolysis, and catalytic function was retained. These results confirmed the previous findings that the catalytic domain was in the C-terminal portion of the

molecule, and provided direct evidence for the location of the allosteric regulatory site in the N-terminal half of the Type I isozyme.

Isolation and characterization of cDNA for the Type I isozyme from rat brain, by Schwab and Wilson (67,68), provided the first complete deduced amino acid sequence (918 residues in length) for a rat hexokinase. The sequences for yeast hexokinases A and B had previously been determined by two separate laboratories (86,87). Comparison of the rat Type I protein sequence with those of the yeast isozymes revealed extensive sequence similarities between these hexokinases, and internally between the N- and C-terminals halves of the rat isozyme. Schwab and Wilson (68) proposed a 3-D model for rat Type I hexokinase based on the yeast hexokinase x-ray structure of Steitz and coworkers (88,89,92). Each of the halves of the 100 kDa Type I isozyme were considered to be structurally similar to the yeast enzyme.

This model for mammalian hexokinase consists of two large domains, each composed of 2 lobes with a cleft between each lobe. The cleft in the C-terminal domain, shown to be responsible for catalytic function (84), contains the binding sites for the substrates glucose (85,93) and ATP-Mg²⁺ (the magnesium chelate of ATP) (83). Regulation of Type I hexokinase has been assigned to the N-terminal domain of the molecule which is not catalytically active (84) and contains the binding site for the allosteric effector, Glc-6-P (91,94). Considering the high degree of similarity between the deduced amino acid sequences for Types I and III hexokinase (56), it is

likely that this same structure-function arrangement is present in the Type III isozyme and, one may anticipate, in Type II hexokinase also.

The isolation and characterization of the Type II cDNA, as part of this project, is another step toward understanding how this protein's structure is related to its catalytic and regulatory properties. Comparison of the deduced amino acid sequences for the Types I, II and III isozymes demonstrates a high degree of similarity. Such sequence conservation clearly suggests that a structure-function arrangement similar to that found in the Type I enzyme is present in all of these isozymes. With the availability of the cDNAs for the hexokinase isozymes, it becomes possible to determine how the variation in the structures of these proteins lead to their distinctive catalytic/regulatory properties.

CHAPTER 2

Materials and Methods

MATERIALS

DNA modifying enzymes were obtained from Boehringer Mannheim Biochemicals (Indianapolis, IN), BRL (Gaithersburg, MD) or New England Biolabs (Beverly, MA). Radioisotopes were purchased from either NEN DuPont (Boston, MA) or Amersham (Arlington Heights, IL). Nitrocellulose from Schleicher and Schuell (Keene, NH) was used for library screenings and blot analyses. The primers used in cDNA synthesis and subsequent manipulations were either obtained from Boehringer Mannheim Biochemicals, Pharmacia (Piscataway, NJ), New England BioLabs, or U.S. Biochemicals (Cleveland, OH) or synthesized at the Macromolecular Structure, Sequencing, and Synthesis Facility (Michigan State University). DE-52 DEAE-cellulose marketed by Whatman (Clifton, NJ) and Affi-Gel Blue affinity chromatography gel from Bio-Rad Laboratories (Richmond, CA) were used in protein purification procedures. The BCA reagent for protein determination was obtained from Pierce Chemical Co. (Rockford, IL). Oligo (dT) cellulose and the Sequenase sequencing kit were purchased from Boehringer Mannheim Biochemicals and U.S. Biochemicals, respectively. AMV Reverse Transcriptase used in primer extension analysis was purchased from Life Sciences (St. Petersburg, FL). The Uni-ZAP cDNA synthesis kit was obtained from Stratagene (La Jolla, CA). The columns used to purify plasmid DNA for transfection were purchased from Qiagen, Inc. (Chatsworth, CA). U. S. Biochemicals was the source for T₁ RNase. All other reagents were obtained from standard commercial sources.

An amplified cDNA library, constructed in λgt10 using mRNA from adult rat soleus muscle was generously provided by Dr. F. H. Schachat, Duke University Medical Center. Two cDNA libraries, constructed in pUC 8 and pUC 9 from rat skeletal muscle mRNA, were kindly provided by Dr. D. M. Helfman, Cold Spring Harbor Laboratory. Total RNA isolated from electrically stimulated rat skeletal muscle which contains elevated levels of Type II hexokinase (29,31) was provided by Dr. D. Pette, University of Konstanz. A rat genomic library, constructed in λCharon 4A, was kindly made available by Dr. Tom Sargent, National Institutes of Health. The Novikoff ascites tumor cell line was obtained from the Fels Research Institute (Philadelphia, PA) with the assistance of Dr. Sidney Weinhouse, and propagated in female Sprague-Dawley rats obtained from Holtzman (Madison, WI).

METHODS

Standard procedures were used for library screening, DNA labeling, restriction enzyme mapping, subcloning, isolation of DNA, and Northern and Southern analyses.

Unless otherwise noted, *in vitro* DNA manipulations were performed as previously described (95).

Purification and N-Terminal Sequencing of Type II Hexokinase from Rat

Skeletal Muscle. Hexokinase activity was assayed spectrophotometrically, coupling the hexokinase reaction to NADPH formation using Glc-6-P dehydrogenase (96).

Hind limb skeletal muscle was obtained from adult Sprague-Dawley rats of either sex. The tissue was homogenized for 2 min in a Waring blender with 50 mM Tris, 1 mM EDTA, 50 mM Glc, 20 mM TG, pH 7.0 (2 ml buffer per g tissue). After

centrifugation for 30 min at 25,000 x g, the pH of the supernatant was adjusted to 7.0 with 0.1 M KOH, and extracted enzyme adsorbed batchwise onto DEAE-cellulose equilibrated with homogenization buffer; approx. one ml settled volume of DEAE cellulose per unit of enzyme was required for complete adsorption of activity. After exhaustive washing, the DEAE-cellulose was poured into a column. The column was washed with 2 column volumes of homogenization buffer, and hexokinase eluted with a linear gradient, 0-0.4 M in KCl. Fractions containing hexokinase activity eluting at 0.15 M-0.25 M KCl were combined, concentrated and dialyzed against the homogenization buffer. The enzyme was then loaded onto a 3.6 cm x 5.5 cm column of Affi-Gel Blue, equilibrated in the homogenization buffer. The column was sequentially washed with homogenization buffer of increasing pH, first 7.5 then 8.0 and finally pH 8.5; the pH 8.5 wash buffer included 20% (v/v) glycerol. In each case, washing was continued until the absorbance at 280 nm declined to a negligible value. Hexokinase was then eluted with 1.5 mM Glc-6-P in the pH 8.5 buffer, essentially as previously described for the Type I isozyme (96). At this point, the specific activity of the enzyme was about 10 units per mg protein, an approximately 50-fold increase over that in the initial extract.

SDS-gel electrophoresis on 6.5%-15% linear acrylamide gradient gels was performed as described previously (90,97). Type II hexokinase, migrating with an apparent mol. wt. of approx. 107 kDa (98), was well resolved from other components, only one of which - with apparent mol. wt. 66 kDa - was major. The Type II hexokinase band was excised from the gel, the enzyme electroeluted using a

CBS Scientific (Del Mar, CA) Model ELU-40 device, and prepared for sequencing as described by Hunkapillar *et al.* (99). Sequencing by automated Edman degradation was done by the Macromolecular Structure, Sequencing, and Synthesis Facility (Michigan State University).

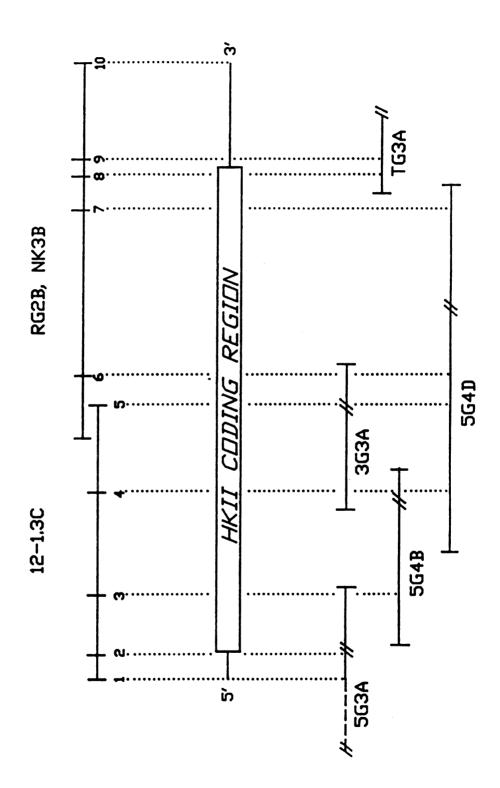
cDNA Library Synthesis and Screenings. Two cDNA libraries were synthesized using the UniZAP II cDNA kit from Strategene, following manufacturer's directions. The sources of mRNA for these libraries were rat skeletal muscle and rat epididymal fat pad. Two cDNA libraries with λ gt10 as the cloning vector were synthesized using mRNA from either normal or electrically stimulated rat skeletal muscle (29,31). The cDNAs for these libraries (one from normal tissue, the other from stimulated tissue) were synthesized using random hexanucleotide primers at a ratio of 0.5 μ g primers per μ g mRNA. Five micrograms of mRNA from normal tissue and 1 μ g mRNA from stimulated tissue were used. The subsequent synthesis procedures were as described by DeWitt and Smith (100).

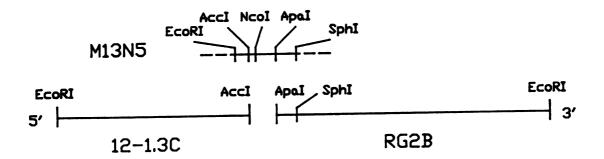
The prehybridization and hybridization solutions for all library screenings, consisted of deionized formamide (37% for medium stringency and 50% for high stringency requirements), 5x SSC, 5x Denhardt's reagent, 0.1% SDS, and 0.1 mg fragmented and denatured salmon sperm DNA per ml. Prehybridization was carried out at 42°C for at least 4 hours, and hybridization was performed at 42°C for at least 8 hours, and usually overnight. The hybridization solutions contained 10⁵ cpm of radiolabelled probe per ml. The probes were radiolabelled using random hexanucleotide primers (101), to a specific activity greater than 10⁸ cpm/ug. The

hybridized filters were washed at room temperature in 2x SSC/0.1% SDS, for two 15 minute periods. The filters were then washed either at 40°C (medium stringency) or 50°C (high stringency) in 0.1x SSC/0.1% SDS for 30 minutes, until no additional counts were removed from the filters. Positive recombinant clones were purified by multiple rescreening under the appropriate conditions.

Isolation of Genomic Clones Containing Type II Hexokinase Gene. The λCharon 4A library from Dr. T. Sargent was screened with several different probes from the cDNA for the Type II isozyme, under high stringency conditions. The procedure for these screenings was the same as mentioned in the above section on cDNA library screening. Southern blot analyses of genomic clones digested with EcoRI were used to determine relative placement of these clones with respect to cDNA sequences for Type II hexokinase. Five genomic clones, containing either pertinent sequence information or the largest inserts, were aligned as shown in Fig. 2. The radiolabelled cDNA probes used to isolate and characterize these genomic clones were obtained from the following regions of the Type II cDNAs (given by restriction sites and nucleotide position in the appropriate cDNA): EcoRI-XhoI (5' end of 12-1.3C - 152), EcoRI-Bg/II (5' end of 12-1.3C - 525), Bg/II-StyI (525-1137), StyI-EcoRI (1156 - 3' end of 12-1.3C), SphI-EcoRI (307 - 3' end of RG2B), HaeIII-HaeIII (1312-1519) and HaeIII-EcoRI (1698 - 3' end of RG2B). The first 4 cDNA fragments were isolated from cDNA clone 12-1.3C. The remaining 3 restriction fragments were isolated from cDNA clone RG2B. The EcoRI sites used in the above

Figure 2. Alignment of clones containing genomic DNA for rat Type II hexokinase. In the center is the composite figure which contains the coding region for Type II hexokinase, and the 5' and 3' untranslated regions of the cDNA. Shown above the composite figure are the overlapping cDNA clones, 12-1.3C and RG2B/NK3B. Below the composite drawing are the genomic clones isolated using portions of clones 12-1.3C and RG2B as the probes. The alignment of the genomic clones relative to the composite figure are the results of Southern blots probed with restriction fragments of cDNA clones, 12-1.3C and RG2B. The restriction sites used to generate the probes for these blots are designated by number below the cDNA clones. The restriction site positions in the Type II cDNAs are: 1, EcoRI at 5' end of 12-1.3C; 2, XhoI, 152; 3, Bg/II, 525; 4, StyI, 1137/1156; 5, EcoRI at 3' end of 12-1.3C; 6, SphI, 307; 7-9 HaeIII, 1312, 1519, and 1698, respectively; and 10, EcoRI at 3' end of RG2B/NK3B. Sites 1-5 are in clone 12-1.3C; sites 6-10 are located in clones RG2B/NK3B. Slash marks (//) indicate that these clones are longer than represented, and are not drawn to scale with the composite figure for the enzyme. The dashed line at the 5' end of clone 5G3A indicates sequence upstream of the cDNA clone 12-1.3C, portions of which were used to determine the transcription initiation sites and promoter sequences.




FIGURE 2

probe isolations were from the linker regions of the cDNA cloning vectors and not part of the cDNA for Type II hexokinase.

Site-directed Mutagenesis of Type II Hexokinase; Creation of Ncol Site. The mutagenesis procedure was that of Kunkel (102,103). The 306 bp EcoRI-SphI fragment of clone RG2B (nucleotides 1-306) was directionally subcloned into M13mp19. The recombinant (designated M13N5) was grown in the ung, dut double mutant E. coli strain CJ236. This strain allows for the incorporation of some uracil residues in thymine positions. Single stranded phage DNA, containing uracil residues, was purified using PEG (20% polyethylene glycol 8000, 2 M NaCl) precipitation (95). The mutation primer, a 17-mer(5'-GGCTGCCATGGTGACGG-3') was identical to nucleotides 154-170 of clone M13N5. This corresponds to 1552-1568 of the composite cDNA for Type II (Fig. 5, Results Chapter) with a change from T to C at the underlined nucleotide 160 (nucleotide 1558, Fig. 5) generating an NcoI site. This primer was annealed to the template DNA at a ratio of 5 pm primer to 200 ng DNA in a 10 µl reaction that contained 20 mM Tris-HCl (pH 7.4), 2 mM MgCl₂, and 50 mM NaCl. The mutated strand was synthesized by the addition of 0.4 mM each dNTP, 0.75 mM ATP, 2 mM DTT, 1 unit T4 DNA ligase, and 1 unit T4 DNA polymerase. The reaction was incubated at 37°C for 1.5 hr. Approximately 30% of the reaction was used to transform E. coli. strain mv1190. This strain has a functional uracil N-glycosylase which inactivates the parental strand containing uracil residues. The non-uracil containing mutated strand remains intact. This becomes an efficient selection process as most of the recombinants will contain the desired

mutation. Several recombinants were analyzed for the desired mutation by sequencing the 306 bp fragment in M13mp19. Eighty percent of the recombinants chosen contained the NcoI site.

A full length cDNA for Type II hexokinase, containing the NcoI site, was constructed using restriction endonucleases AccI and ApaI. AccI restricts the N-terminal cDNA clone 12-1.3C at nucleotide 1442; the site for ApaI is at nucleotide 200 of the C-terminal Type II cDNA clone RG2B (nucleotide 1599, Fig. 5). The cDNA inserts were isolated from EcoRI digested λgt10 clones. The isolated cDNA fragments were subsequently restricted with the appropriate endonuclease (AccI in clone 12-1.3C, ApaI in clone RG2B). Digestion of the mutated M13 clone (M13N5) with these two restriction enzymes generated a small (157 bp) fragment containing the NcoI site. These 3 fragments (shown below, schematically) were isolated and ligated together. The resulting 3.6 kb fragment, with EcoRI ends and the internal NcoI site, was subcloned into the EcoR site of pUC18. The resultant recombinant was designated pIIN-RI.

Expression of Type II Hexokinase in COS-1 Cells. The expression vector, pSVT7, and COS-1 cells were provided by Dr. W. L. Smith of this department, with the permission of Dr. J. Sambrook (104). A 3 Kb fragment of Type II hexokinase cDNA (from clone pIIN-RI, containing an NcoI site), from the EcoRI site at the 5' end to the KpnI site at nucleotide 3082 at the 3' end, was directionally subcloned into the EcoRI-KpnI sites of pUC18. This 3 Kb fragment included the entire coding region for the Type II isozyme, along with 196 bases upstream of the start codon, and 146 nucleotides downstream of the end of the coding region. The cDNA was excised from the pUC18 recombinant using restriction enzymes EcoRI and PstI, sites within the polylinker of pUC18. This fragment was directionally subcloned into pSVT7, previously digested with the same enzymes. This aligned the coding region for Type II hexokinase properly with respect to the SV40 origin of replication and early promoter in pSVT7. The recombinant plasmid (designated pSVT7-HKII), containing Type II hexokinase as determined by restriction analysis, was grown in DH5 α cells and purified over QIAGEN columns according to manufacturer's directions. Quantities of the plasmid, pSVT7, were also purified in the same manner.

COS-1 cells were grown in Dulbecco's modified Eagle's medium (high glucose) supplemented with 8% bovine calf serum, 2% fetal calf serum, and 2 mM glutamine. Cell cultures used for transfection were 80-90% confluent. The COS-1 cells were transfected, as previously described (105), using 36 μ g DNA and 750 μ g DEAE Dextran per plate of cells. Sham (no DNA added) and pSVT7 (vector only) transfected cultures served as controls. Cells, harvested 42 hrs after transfection,

were resuspended in PBS (0.045 M potassium phosphate, 0.15 M NaCl pH7.3) containing 10 mM glucose and 10 mM TG. The resuspended cells were sonicated and centrifuged at 15,000xg for 15 min. Hexokinase activity in the supernatants was determined spectrophotometrically, as previously described (96). Protein concentration was determined with the BCA reagent using BSA as the standard.

Aliquots of the homogenates were electrophoresed on 6.5-20% SDS-polyacrylamide gels. Purified Type I hexokinase was used as a positive control for the anti-Type I antibody reactions. Also included on the gel was a sample from a crude homogenate of rat skeletal muscle. The crude sample was prepared by initially grinding 2 gm of tissue under liquid N₂, followed by homogenization in 50 mM sodium phosphate (pH 8.0), 1 mM Glc, 10 mM TG, and 1% Triton X100 (4 ml per gm of tissue). The crude homogenate was centrifuged at 30,000 rpm for 1 hr. The clear supernatant was stored at -20°C after the protein concentration was determined as above. The separated proteins were transferred to nitrocellulose in a carbonate buffer system (106). The protein blots were reacted with either pre-immune sera or anti-hexokinase I polyclonal antibodies, at a dilution of 1:500 in TTBS (50 mM Tris-HCl, 154 mM NaCl, 0.05% (v/v) Tween 20, pH7.5), as previously described (90), using 5% nonfat dry milk as the blocking reagent. The blots were developed with the tetrazolium method of Taketa *et al.* (107).

RNA Isolation and Northern Analysis. Skeletal muscle RNA was prepared from hind limb muscles of 4-7 week old Sprague-Dawley rats using the method of Chomczynski and Sacchi (108) except that, prior to homogenization, the tissue was

ground to a fine powder under liquid N₂. Novikoff ascites tumor RNA was prepared using the method of Chirgwin *et al.* (109). RNA preparations were redissolved in water to give approx 1 mg/ml. Polyadenylated mRNA was isolated from total RNA by chromatography on oligo (dT) cellulose as described by Maniatis *et al.* (95).

Northern blotting was done by standard procedures, essentially as described by Maniatis *et al.* (95). Duplicate blots containing 3 μ g of Novikoff mRNA and 20 μ g of rat skeletal muscle mRNA were air dried, and vacuum baked for 1 hr. After prehybridization in 5x SSC, 0.1% SDS, 5x Denhardt's, and 50% formamide at 42°C for at least 1 hr, the blots were hybridized overnight using cDNA probes radiolabelled with $[\alpha^{-32}P]dCTP$ by random primer synthesis (101) to a specific activity greater than 10^{4} cpm/ μ g. Two non-overlapping cDNA probes from Type II hexokinase were used, representing N-terminal (nucleotides 1-1562, Fig. 5) and C-terminal (nucleotides 1705-3082, Fig. 5) regions of the enzyme. After hybridization the blots were washed sequentially in: 2x SSC, 0.1% SDS at room temperature for 15 minutes; 2x SSC, 0.1% SDS at 60°C for 15 minutes (twice); and 2x SSC, at room temperature, 15 minutes. Hybridized bands were visualized autoradiographically. The size of the mRNA bands was estimated by extrapolation between the 28s (4.72 kb) and 18s (1.87 kb) ribosomal RNA bands.

Primer Extension. A 24-base oligonucleotide (5'-GCTTAACCACGATGGCTCACCAGC-3'), complementary to nucleotides 34-58 of Type II hexokinase mRNA, was synthesized and 5'-end-labelled with $[\gamma^{-32}P]$ ATP (6000 Ci/mm) and T4 polynucleotide kinase. The primer (1x10⁶ cpm) was annealed in a

total of 15 ul to either 3 μ g Novikoff tumor poly(A)⁺ RNA or 20 μ g rat skeletal muscle poly(A)⁺ RNA. The annealing buffer contained 0.15 M KCl, 10 mM Tris-HCl (pH 8.3), and 1 mM EDTA. After hybridization for 1.5 hr at 62°C, the elongation reagents were added to the reaction mixtures containing the RNA and annealed primer. The 40 μ l elongation reaction contained 20 mM Tris-HCl (pH 8.3), 10 mM MgCl₂, 6 mM DTT, 0.3 mM each dNTP, actinomycin D (150 ug/ml) and 5 units of AMV reverse transcriptase. The reaction was incubated at 42°C for 1 hr. and then treated with RNase A (15 μ g/ml) for 15 min. The products were fractionated on 5% or 9% polyacrylamide denaturing gels and visualized by autoradiography.

S1 Nuclease Protection Assay. Single-stranded DNA, generated from a 630 bp (SmaI-SmaI) fragment of genomic clone 5G3A that had been subcloned into M13mp19, was annealed to the same 24-base primer used in the primer-extension analysis that had been 5'-end-labelled with $[\gamma^{-32}P]ATP$ (6000 Ci/mm) to a specific activity of approximately 10^9 cpm per μ g. The primer was extended in the presence of 0.4 mM each dNTP and the Klenow fragment of DNA polymerase I. The double-stranded DNA was digested with SaII, and the strands were separated on a 3.5% polyacrylamide 7M urea gel. The isolated 649-nucleotide fragment (5 x 10^5 cpm) was hybridized to either 3 μ g Novikoff tumor poly(A)⁺ RNA or 20 μ g rat muscle poly(A)⁺ RNA in a 10 μ l reaction containing 0.4M NaCl and 10 mM Pipes (pH 6.4). The reaction was heated at 70°C for 5 min and incubated at 65°C for at least 6 hrs. After hybridization, 300 μ l of a solution containing 0.2 M NaCl, 2 mM ZnSO₄,

20 mM sodium acetate (pH 5.0), and 200 units of S1 nuclease were added and the mixture was incubated at 37°C for 1 hr. The digestion by S1 nuclease was terminated with the addition of 80 μ l of a solution containing 4M ammonium acetate, 50 mM EDTA. Following phenol/chloroform extract and ethanol precipitation, the resultant products were fractionated on 5% or 9% polyacrylamide 7M urea gels and visualized by autoradiography.

Cell-Free in vitro Transcription Assay. The "G-free cassette" plasmids, p(C₂AT)₁₉ (110) and pML-GFC2 (111), and the rat liver nuclear proteins (prepared according to Gorski et al. (112)) were generously provided by Dr. D. Jump (Physiology Dept., Michigan State University). The plasmids were used with the permission of Dr. R. G. Roeder (Rockefeller University) (110). These plasmids contain a synthetic DNA fragment subcloned into the SacI-SmaI sites of pUC13 that generate a discrete G-free RNA product when transcribed in the absence of GTP. The length of the synthetic fragment in $p(C_2AT)_{19}$ is approx. 380 nucleotides. The plasmid, pML-GFC2, contains the same synthetic fragment shortened to approx 280 nucleotides, which is under the control of the adenovirus-2 major late promoter. Inclusion of 3'-O-methyl-GTP hinders transcription of any promoter-like sequences in the vector and T₁ RNase degrades spurious transcripts containing G residues. The Type II hexokinase promoter is numbered relative to a transcription start site of +1. The plasmid p(C₂AT)-HKII contains the Type II hexokinase promoter from positions -260 to +12 upstream of the "G-free cassette" of p(C₂AT)₁₉. This section of the promoter region was isolated using endonucleases SmaI and DdeI (5'→3') and blunt

ends were generated using T4 polymerase. After the addition of EcoRI linkers, the promoter fragment was subcloned into the EcoRI site at the 5' end of the "G-free cassette" of p(C₂AT)₁₉ and grown in E. coli strain JM105. Restriction analysis was used to determine orientation of the promoter fragment in several recombinants. Recombinants with this promoter fragment in both orientations were purified using QAIGEN columns. These purified templates were used in the *in vitro* transcription assay system, essentially as described by MacDougald and Jump (111).

Using the p(C₂AT)-HKII constructs, the ability of a portion of the Type II hexokinase promoter to direct transcription was determined. The transcription reactions (40 μ l) contained 25 mM Hepes (pH 7.5), 5% glycerol, 50 mM KCl, 6 mM MgCl₂, 0.6 mM ATP and CTP, 0.03 mM UTP, 15 μ Ci [α -³²P]UTP, 0.1 mM 3'-O-methyl GTP, 15 units of T₁-RNase, and 60 μ g of rat liver nuclear proteins. Two micrograms of each p(C₂AT)-HKII construct was included in a reaction along with 50 ng of pML-GFC2. As a negative control, one transcription assay included 2 μ g of the original plasmid, p(C₂AT)₁₉ containing no promoter, along with 50 ng of pML-GFC2. The plasmid, pML-GFC2, was included in each assay as an internal positive control. The transcription reactions were incubated at 30°C for 90 min. The reactions were stopped with the addition of 380 μ l of 50 mM Tris-Cl (pH 7.5), 1% SDS and 5 mM EDTA. To aid in the precipitation of the transcription products, 40 μ g of yeast t-RNA were added. The reactions were extracted 3 times with phenol/CHCl₃ (equilibrated with 10 mM NaOAc (pH 5.0), 100 mM NaCl,

1 mM EDTA). After ethanol precipitation the transcription products were fractionated on a 6% denaturing and visualized by autoradiography.

CHAPTER 3

Results

Isolation of Clones Containing cDNA for Rat Type II Hexokinase.

Approximately 250,000 recombinants of an amplified λgt10 rat soleus muscle cDNA library (Library 1, Table III) were screened under medium stringency conditions with a partial cDNA for rat Type I hexokinase, previously described and designated HKI 12.4-4 (67), as the radiolabelled probe. Two positive recombinants, termed 12-1.3C and 15-1, were isolated. Both contained 1.6 kb inserts, and partial sequence analysis and HaeIII digestion patterns (Fig. 3, lanes 3 and 4) indicated that these inserts were identical. Thus, further analysis was restricted to clone 12-1.3C.

The restriction map and sequencing strategy for 12-1.3C are shown in Fig. 4. The nucleotide sequence for 12-1.3C represents nucleotides at positions 1-1562 of the sequence shown in Fig. 5. There is an open reading frame that extends from nucleotide 197 to the 3' end of the clone at nucleotide 1562. The deduced amino acid sequence shows extensive similarity to that of the rat Type I (68), Type III (56), and Type IV (32) isozymes, yet is clearly distinct from these.

An 8-residue segment of the deduced sequence (underlined in Fig. 5) is identical to the sequence determined by direct N-terminal sequencing of the Type II isozyme, prepared as described in Methods: Phe-Thr-Glu-Leu-Asn-Gln-Asn-Gln. The N-terminal sequence for Type II hexokinase, purified from rat skeletal muscle by a different procedure, is Glu-Leu-Asn-Gln-Asn-Gln-Val-Gln-Lys-Val-Asp-Gln-Phe-Leu-Tyr-X-Met-Arg-Val (P. Fischer, F.E.Weber, K. Beyreuther, and D. Pette, personal communication). It is evident that residues 3-8 in the sequence determined from

Table III. Summary of cDNA library synthesis/screening strategies and results.

Library No.	Vector tissue	Primer	Probe (stringency*)	Results ^b
1	λgt10 muscle	ďΤ	12-4.4 (HKI-C)(1) 12-1.3C(2) NK3B(2)	2-1.6kb clones (12-1.3, 15) 39 = 12-1.3C 6 = 12-1.3C
2	λgt10 liver	dТ	12-1.3C (2)	6=12-1.3C
3	pUC8/9 muscle	dT directional	12-1.3C (2)	3 clones, all within 12-1.3C
4	UniZAPII muscle	dT-X <i>ho</i> I	12-1.3C (2)	no +
5	UniZAPII fat pad	dT-X <i>ho</i> I	12-1.3C (2)	no +
6	UniZAPII kidney	dT-X <i>ho</i> I	12-1.3C (2)	$11 = 2.3 \text{ kb}^{\circ}$ $6 = 0.4 \text{ kb}^{\circ,d}$
7	UniZAPII spleen	dT-X <i>ho</i> I	12-1.3C (2)	4=2.3 kb ^c 1=0.4 kb ^{d,c}
8	λgt10 muscle°	random	12-1.3C(3') (2)	3 clones, largest RG2B(2.3 kb);other two contained within RG2B
9	λgt10 muscle	random	12-1.3C (3') (2)	1=RG2B
10	λgt10 tumor	dT	12-1.3C (2)	2 clones:largest 2.3 kb, NK3B=RG2B

a-Stringency determined by temperature and percent formamide: (1) medium-42°C and 37%; (2) high-42°C and 50%

b- = identical as determined by HaeIII restriction digest patterns

c-RNA from stimulated muscle tissue, a generous gift of Dr. Pette

d-Identical to sequence at 5' end of 12-1.3C

e-Each clone also contained an identical 3.4 kb EcoRI-XhoI fragment

Figure 3. HaeIII restriction patterns of cDNA clones. Shown is an EtBr-stained 5% polyacrylamide gel containing cDNA restricted with the endonuclease HaeIII.

Lane 1 contains pBR digested with HaeIII which was used as size markers. The sizes (in bp) of several bands in lane 1 are marked at the left. Lanes 2 shows the HaeIII restriction pattern of the insert of cDNA clone HKI-12.4-4. Lanes 3 and 4 contain cDNA from clones 12-1.3C and 15-1 (respectively), restricted with HaeIII. Clone HKI-12.4-4 was the cDNA probed used to isolate clones 12-1.3C and 15-1.

either cDNA or genomic DNA for rat Type II hexokinase. The composite sequence, which includes the coding region and 5' and 3' untranslated regions, is shown near the top of the figure. Depicted above it are the portions of genomic clone 3G3A that were sequenced for verification of the overlapping cDNA sequences. The solid lines in the genomic clone represent exons and the dashed lines are introns. The dotted lines from the genomic clone to the composite figure show the positions of the three exons in the composite sequence. Shown below the composite figure are the cDNA clones 12-1.3C, RG2B and NK3B (see text). Restriction sites used in sequencing and the direction of sequencing are shown for each clone. Restriction site abbreviations are: A, AvaII; B, BgIII; C, HincII; D, HindIII; E, HaeIII; H, HphI; M, SmaI; P, PstI; R, EcoKI; S, SphI; V, PvuII.

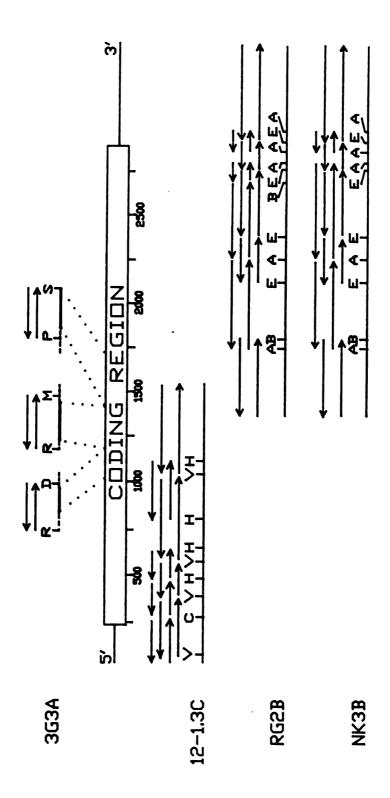


Figure 5. Nucleotide and deduced amino acid sequences for rat Type II hexokinase. The underlined region in the amino acid sequence corresponds to the sequence obtained by direct N-terminal sequencing of the enzyme (see text for further comments in this regard). The dashed line *above* the nucleotide sequence indicates the region of overlap between the cDNA clone 12-1.3C, coding for the N-terminal half of the enzyme, and clone RG2B which encoded the C-terminal half.

GTCTCCGATCCCAGCCGGACACCCGGGCCTGGTTTCAAAGCGGTGGAACCTGTTTTCTGGAACGCGAGGCCCTCAGCTGGTGAGCCATCGTGGTTAAGCTTCTTTGTGGGCTCCTGGA	77 196
ATG ATC GCC TCG CAT ATG ATC GCC TGC TTA TTC ACG GAG CTC AAC CAA AAC CAA GTG CAG AAG GTT GAC CAA TTT CTC TAC CAC ATG CGT Het Ile Ale Ser His Het Ile Ale Cys Leu Phe Thr Glu Leu Asn Gln Val Gln Lys Val Asp Gln Phe Leu Tyr His Het Arg	286 30
ADD TOL ALE ALE ALE ADD ADD ADD ADD ADD ADD ADD ADD ADD AD	576 60
400 111 100 DD 400 100 DD 400 100 000 100 000 100 000 100 100 100	466 90
	556 120
CCC ACT ACA ADA CAO CTO TOT ALC ALC ACC ACC ACC ACC ACC ACC ACC ACC	546 150
GET TIC ACC TIC TEG TIC CCC TGC CAC CAG ACA AMA CTG GAT GAG AGT TTT TTG GTC TGG ACT AAG GGG TTC AAG TCC AGT GGC GTG 7	736 180
*** *** *** *** *** *** *** *** *** *** *** *** *** ***	326 210
GTT GGG ACC ATG ATG ACT TGT GGC TAT GAT CAG AAC TGC GAG ATT GGT CTC ATT GTG GGC ACT GGC AAC GCC TGC TAC ATG GAG	216 240
	006 270
	96 300
	186 330
ACT GGC TCC TTC GAG ACC AAA GAT GTC TCG GAT ATT GAA GAG GAT AAG GAT GGA ATC GAG AAG GCC TAC CAA ATC CTG ATG CGC CTG GGT 12 Thr Gly Ser Phe Glu Thr Lys Asp Val Ser Asp Ile Glu Glu Asp Lys Asp Gly Ile Glu Lys Ala Tyr Gln Ile Leu Het Arg Leu Gly 3	76 60
CTG AAT CCA TTG CAG GAG GAT TGT GTG GCC ACG CAC CGA ATC TGC CAG ATT GTG TCC ACG CGC TCG GCC AGT CTG TGC GCA GCC ACC CTG 13 Leu Asn Pro Leu Gin Glu Asp Cys Val Ala Thr His Arg Ile Cys Gin Ile Val Ser Thr Arg Ser Ala Ser Leu Cys Ala Ala Thr Leu 3	666 90
GCC GCG GTG CTG TGG CGA ATC AAA GAG AAC AAG GGC GAG CGA CTT CGC TCC ACC ATC GGT GTC GAT GGC TCC GTC TAC AAG AAA CAT Ala Ala Val Leu Trp Arg Ile Lys Glu Asn Lys Gly Glu Glu Arg Leu Arg Ser Thr Ile Gly Val Asp Gly Ser Val Tyr Lys Lys His	56 20
CCC CAT TIT GCC AAG CGT CTC CAT AAG GCA GTG AGG AGG CTG GTG CCC GAC TGT GAT GTC CGC TTC CTC CGC TCT GAG GAT GGC AGC GGC TC Pro His Phe Ala Lys Arg Leu His Lys Ala Val Arg Arg Leu Val Pro Asp Cys Asp Val Arg Phe Leu Arg Ser Glu Asp Gly Ser Gly	546 50
AAG GGG GCT ATG GTG ACG GCG GTG GCT TAC CGT CTG GCT GAC CAA CAC CGG GCC CGC CAG AAG ACC CTG GAG TCT CTG AAG CTG AGC Lys Gly Ala Ala Met Val Thr Ala Val Ala Tyr Arg Leu Ala Asp Gln His Arg Ala Arg Gln Lys Thr Leu Glu Ser Leu Lys Leu Ser	36 80
CAC GAG CAG CTT CTG GAG GTT AAG AGA AGA AGG GAG GTG GAA ATG GAG CAG GGT CTG AGC GAG GAG ACG CAT GCG GTC GCC CCT GTG AAG HIS GLU GLU Leu GLU VAL Lys Arg Arg Het Lys Val Glu Het Glu Glu Gly Leu Ser Lys Glu Thr His Ala Val Ala Pro Val Lys 5	726
ATG CTG CCC ACT TAC GTG TGT GCC ACT CCA GAT GGC ACA GAG AAA GGA GAC TTC TTG GCC TTG GAT CTT GGA GGA ACA AAC TTC CGG GTC 18 Het Leu Pro Thr Tyr Val Cys Ala Thr Pro Asp Gly Thr Glu Lys Gly Asp Phe Leu Ala Leu Asp Leu Gly Gly Thr Asn Phe Arg Val 5	316 540
CTG CTG GTG CGT GTG CGT AAT GGC AAG CGG AGG GGC GTG GAG ATG CAT AAC AAG ATC TAC TCC ATC CCA CAG GAG GTT ATG CAT GGC ACT 19 Leu Leu Val Arg Val Arg Asn Gly Lys Arg Arg Gly Val Glu Het His Asn Lys Ile Tyr Ser Ile Pro Gln Glu Val Het His Gly Thr	206 370
	96 500
ACA TIC TCC TTC CCT TGC CAG CAG CAG CAG CAG CAG CAG CAG CAG C	36 30
	76 660
ACT ATG ATG ACT TGT GGC TAC GAA GAC CCT CAC TGT GAA GTT GGC CTC ATT GTT GGC ACC GGA AGC AAC GCC TGC TAC ATG GAA GAG ATG 22 Thr Met Met Thr Cys Gly Tyr Glu Asp Pro His Cys Glu Val Gly Leu Ile Vel Gly Thr Gly Ser Asn Ala Cys Tyr Met Glu Glu Met 6	266 590
CGT AAT GTG GAG CTG GTG GAC GAA GAG GAG GGA CGG ATG TGT GTC AAC ATG GAG TGG GGA GCA TTT GGG GAC AAT GGC TGC CTG GAT GAC 23 AFG ASN Val Glu Leu Val Asp Gly Glu Glu Glu Gly Arg Het Cys Val Asn Het Glu Trp Gly Ala Phe Gly Asp Asn Gly Cys Leu Asp Asp 7	556 720
TIG CGG ACC GTG TTT GAT GTT GCT GTG GAT GAG CTT TCT CTC AAC CCT GGC AAA CAG AGG TTC GAG AAG ATG ATC AGC GGC ATG TAC TTG 24 Leu Arg Thr Val Phe Asp Val Ala Val Asp Glu Leu Ser Leu Asn Pro Gly Lys Gln Arg Phe Glu Lys Het Ile Ser Gly Het Tyr Leu 7	46 50
tily blu lie was any ash lie tou lie asp phe inn tys ang Gly Lou Lou phe ang Gly ang Ile Sen Glu ang Lou Lys Thr ang Gly 7	36 780
ATC TIT GAA ACT AAG TIC CTG TCT CAG ATA GAG AGC GAC TGC CTA GCC CTG CTA CAG GTT CGT GCC ATC CTG CGC CAC CTA GGG CTG GAG 26 lie Phe Glu Thr Lys Phe Lou Ser Gin ile Glu Ser Asp Cys Lou Ala Lou Lou Gin Val Arg Ala ile Lou Arg His Lou Gly Lou Glu	526 510
AGG AGG IGC GAT GAC AGG ATC ATC GTG AAG GAG GTG IGC ACT GTG GTT GCC CGG CGC GCT GCA CAG CTC TGT GGC GCA GGC ATG GCC GCC Ser Thr Cys Asp Asp Ser Ile Ile Val Lys Glu Val Cys Thr Val Val Ala Arg Arg Ala Ala Gln Leu Cys Gly Ala Gly Het Ala Ala	716 340
GTA GTG GAC AAG ATA AGA GAG AAC CGT GGG CTG GAC AAC CTC AAA GTG ACA GTG GGC GTG GAC GGG ACT CTG TAT AAG CTT CAT CCT CAC 28 Val Asp Lys lie Arg Glu Asn Arg Gly Leu Asp Asn Leu Lys Val Thr Val Gly Val Asp Gly Thr Leu Tyr Lys Leu His Pro His 8	306 370
TIT GCC AAG GTC ATG CAT GAG ACG GTG AGA GAT CTG GCT CCG AAA TGT GAC GTG TCC TTC CTG GAA TCC GAG GAC GGC AGT GGG AAG GGA Phe Ala Lys Val Met His Glu Thr Val Arg Asp Leu Ala Pro Lys Cys Asp Val Ser Phe Leu Glu Ser Glu Asp Gly Ser Gly Lys Gly	96 900
Ala Ala Leu Ile Thr Ala Val Ala Cys Arg Ile Arg Glu Ala Gly Gln Arg End	798
TAAATTATGAGAAGATGGACCCCTTGGCAGAGAGGACCCTTGGAGACTGGGACTTTTGTCTCTGTATATTCACTGTAGAGTTTGGTACCCAATCCTTGGCCTTCCTGAGAATCTGAAGT AAGGAGTTGTTCGCAGTTGCTGGTGGTGACACTGCTTGAGATGTTGCTCTCACTGTAGATCTTTAGAGTTTGGAGGATGGGGAGAGATCTTGAGAATCTTGAGGTTTGCAGCTTGCAGCTTGCAGCTTGCAGCTTGCAGCTTGAACTAGACAATTTTGAGAATAGGAGAAGAGAGAG	17 236 555 74 -

enzyme purified in our laboratory (underlined in Fig. 5) correspond to the initial portion of the latter sequence. Furthermore, the sequence found by Fischer and colleagues matches the deduced sequence (Fig. 5) exactly, with the exception that the C-terminal Val in the sequence of Fischer *et al.* is a Leu in the deduced sequence. The obvious heterogeneity at the N-terminus of the enzyme purified in these two different laboratories, together with the finding of Fischer *et al.* (personal communication) that approx. 80% of the enzyme in their preparation lacked the first two residues (Glu-Leu), undoubtedly reflects artifactual proteolytic modification during purification of the enzyme, previously shown to occur with the Type I isozyme (54,113,114).

The above observations made it evident that clone 12-1.3C represented only the N-terminal region of the rat Type II isozyme. Exhaustive rescreening of the cDNA library (Library 1, Table III), from which 12-1.3C had been derived, failed to provide additional clones containing sequence for the C-terminal half of the enzyme. Several other libraries, No. 2-9 of Table III, were obtained from other investigators or were synthesized using RNA from tissues known to contain the Type II enzyme. Each library was screened with the Type II hexokinase cDNA clone 12-1.3C in order to identify clones containing sequence for the remaining portion of the Type II isozyme.

Extensive screening of a rat liver cDNA library (No. 2, Table III) generated six clones identical to clone 12-1.3C as determined by size, HaeIII digestion pattern, and partial sequence analysis. The plasmid libraries (No. 3, Table III) produced only 3

clones whose inserts (500-800 bases in length) were completely contained within the sequence of 12-1.3C. The muscle and epididymal fat pad libraries (No. 4-5, Table III), using UniZAPII as the cloning vector, produced no positive recombinants which placed the quality of these libraries in question. Screening of the other two libraries constructed in UniZAPII (No. 6 and 7, Table III) yielded clones containing inserts of either 3.8 kb or 5.7 kb in length. Both sets of clones contained a 3.4 kb fragment upon double digestion with restriction enzymes EcoRI and XhoI, and also either a 0.4 kb or a 2.3 kb fragment. The 0.4 kb fragment was identical to the 400 bases at the 5' end of 12-1.3C, as determined by sequence analysis. The 2.3 kb fragment was distinct (by size and HaeIII digestion pattern) from any other clones investigated to date. However, Southern blot and partial sequence analyses indicated no homology between the 3.4 kb fragment and any known rat hexokinase cDNA. Since the recombinants from both the kidney and spleen libraries appeared to contain at least some cloning artifact(s), i.e. the unidentified 3.4 kb fragment, the search for the cDNA encoding the C-terminal portion of Type II hexokinase focused on other libraries.

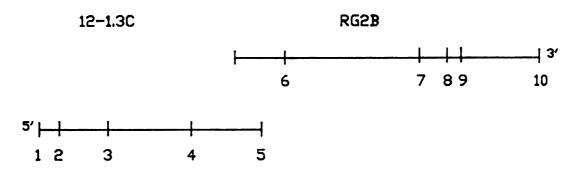
Therefore, two random-primed cDNA libraries were constructed in $\lambda gt10$, following the procedure of DeWitt and Smith (100) and using mRNA isolated from either chronically-stimulated rat skeletal muscle in which the level of Type II hexokinase is elevated more than 10-fold (29,31), or normal muscle tissue. If the level of the Type II isozyme in stimulated muscle tissue reflected transcriptional regulation, elevated levels of Type II hexokinase mRNA would also be expected.

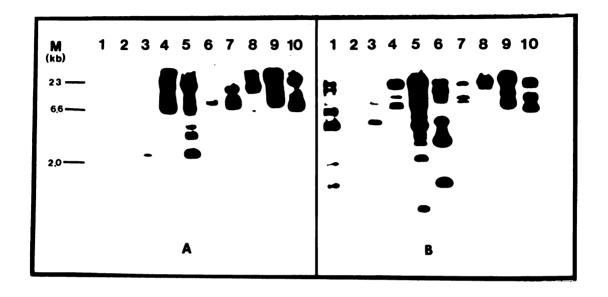
These two unamplified libraries were screened under high stringency conditions using a 407 bp fragment from the 3' end of clone 12-1.3C as probe. One recombinant (2.3 kb in length and designated RM5) was isolated from the library synthesized using mRNA from normal tissue (No. 8, Table III). Three recombinants, designated RG2A, RG2B and RG2C, were isolated from the library constructed using mRNA from stimulated tissue (No. 9, Table III). Restriction mapping indicated that clones RG2A and RG2C were contained entirely within clone RG2B. HaeIII digestion patterns (Fig. 6, lane 2 and 3) and partial sequence analysis indicated that clones RM5 and RG2B were identical. Therefore, further studies concentrated on clone RG2B.

Clone RG2B contained an insert of 2236 bp. The restriction map and sequencing strategy are indicated in Fig. 4; the sequence of RG2B corresponds to nucleotides at positions 1399 to 3634 in Fig. 5. The first 164 nucleotides at the 5' end of RG2B were identical in sequence to the 164 residues at the 3' end of clone 12-1.3C. A single open reading frame extended for 1548 nucleotides, followed by a TAG termination codon and a 3' untranslated region of 687 bases. Overlapping of the sequence from clones 12-1.3C and RG2B produced the composite nucleotide sequence shown in Fig. 5, from which the complete amino acid sequence (917 residues) of rat Type II hexokinase was deduced.

Isolation of Genomic Clones for Rat Type II Hexokinase. In order to: (1) confirm the overlap of the cDNA clones, (2) identify the 5' end of the message for Type II hexokinase, and (3) characterize its gene, a λCharon 4A rat genomic library was probed with three unique restriction fragments of the cDNA for this isozyme. A

Figure 6. HaeIII restriction patterns of cDNA clones for Type II hexokinase (Cterminus). Shown is an EtBr-stained 5% polyacrylamide gel containing cDNA restricted with the endonuclease HaeIII. Lane 1 contains pBR, digested with HaeIII, which was used as size markers. The lengths (in bp) of several fragments in lane 1 are shown to the left. Lanes 2 and 3 contain HaeIII restricted cDNA from clones RM5 and RG2B. Lane 4 shows the HaeIII restriction pattern for the cDNA from clone 12-1.3C, which was used as the probe in the isolation of clones RM5 and RG2B.


diagram of Type II cDNA clones 12-1.3C and RG2B, with relevant restriction sites indicated, is shown below. The restriction sites are: 1, 5, 10, EcoRI; 2, XhoI; 3, BgIIII; 4, StyI; 6, SphI; 7-9, HaeIII. In the following results, these restriction sites are referenced in parentheses.

When the genomic library was probed with the 407 bp 3' region Styl-EcoRI fragment (4-5) of clone 12-1.3C, two recombinants designated 3G3A and 3G5A were isolated. Further analysis was performed only on clone 3G3A, since the two clones appeared to be identical by restriction analysis. Eight recombinants, whose insert sizes ranged from 9 kb to 20 kb, were isolated when this same genomic library was probed with a 526 bp EcoRI-Bg/II (1-3) fragment from the 5' end of clone 12-1.3C. These clones were designated 5G2A, 5G3A, 5G4B, 5G4D, 5G5A, 5G5B, 5G6A, and 5G6C. Screening of the genomic library with the 3' 1928 bp SphI-EcoRI fragment (6-10) of cDNA clone RG2B as the probe resulted in one additional recombinant, designated TG3A.

Southern blots of all 10 recombinants isolated with the three cDNA probes were used to align the genomic clones within the cDNA for Type II hexokinase. The probes used in the Southern analyses were restriction fragments of cDNA clones

12-1.3C and RG2B. Autoradiographs of these Southern blots are shown in Fig. 7 and 8. Each blot in Fig. 7 contained DNA from the 10 genomic clones restricted with EcoRI, fractionated on 0.8% agarose gels and transferred to nitrocellulose. Panel A, Fig. 7, was hybridized to the 5' 526 bp EcoRI-Bg/II (1-3) fragment of cDNA clone 12-1.3C. Eight of the ten genomic clones reacted with this probe to varying degrees. Only clone TG3A, in Fig. 7B, did not react with the Bg/III-StyI (3-4) fragment of clone 12-1.3C (nucleotide 525-1137, Fig. 5). Clones 3G3A, 5G4B and 5G4D (Fig. 7C) reacted most intensely with the 3' 407 bp Styl-EcoRI fragment (4-5) of clone 12-1.3C, while clones 5G2A and 5G5A demonstrated some homology to the probe. As shown in Fig. 7D, clones TG3A and 5G4D gave the strongest signal when hybridized to the 3' 1928 bp (6-10) of cDNA clone RG2B. Genomic clone 3G3A also showed some crossreactivity to this probe. The results of additional Southern blots used to further define the results of Fig. 7 are shown in Fig. 8. As shown in panel A (Fig. 8), reacted with the 5' 153 bp EcoRI-XhoI portion of clone 12-1.3C, genomic clone 5G3A (lane 3) hybridized strongly to the probe; clone 5G4B (lane 2) gave a slight signal indicating little sequence in common with the probe. Genomic clone 5G6C (lane 1) gave no signal. Panel B (Fig. 8), containing clones TG3A, 3G3A, and 5G4D (lanes 4-6, respectively) was reacted with a 207 nucleotide HaeIII-HaeIII fragment (7-8) of clone RG2B (near the 3' end of the open reading frame in the Type II cDNA). Clone TG3A gave the strongest signal, with clone 5G4D showing some crossreactivity and clone 3G3A showing no sequence similarity. Only clone TG3A (Fig. 8, Panel C, lane 9) gave a signal when probed with the 3' 543 bp HaeIII-EcoRI fragment (9-10) Figure 7. Southern blot analyses of ten clones containing genomic DNA for Type II hexokinase. Blots A-D are identical, each containing EcoRI restricted DNA from 10 genomic clones isolated using Type II cDNA as the probe. The genomic clones, with their respective lane designations, are: 3G3A (1), TG3A (2), 5G2A (3), 5G3A (4), 5G4B (5), 5G4D (6), 5G5A (7), 5G5B (8), 5G6A (9), and 5G6C (10). The radiolabelled probes used for each high stringency hybridization were from the following regions of two cDNA clones: Blot A, 5' 526 bp EcoRI-BgIII (1-3) fragment of clone 12-1.3C; Blot B, 612 bp BgIII-StyI (3-4) fragment of clone 12-1.3C; Blot C, 3' 407 bp StyI-EcoRI (4-5) fragment of clone 12-1.3C; Blot D, 3' 1928 SphI-EcoRI (6-10) fragment of clone RG2B. The numbers in parentheses refer to restriction sites in the schematic diagram of clones 12-1.3C and RG2B shown on pg 56. Shown to the left of Blots A and C are the sizes (in kb) of several fragments of λbacteriophage digested with HindIII, used as size markers.

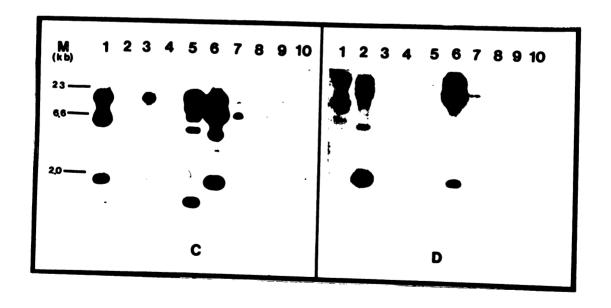
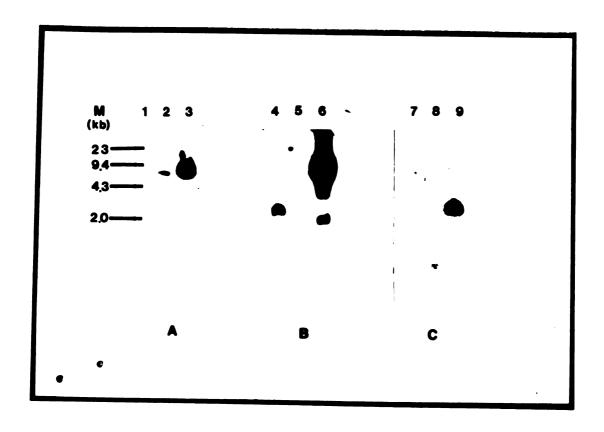
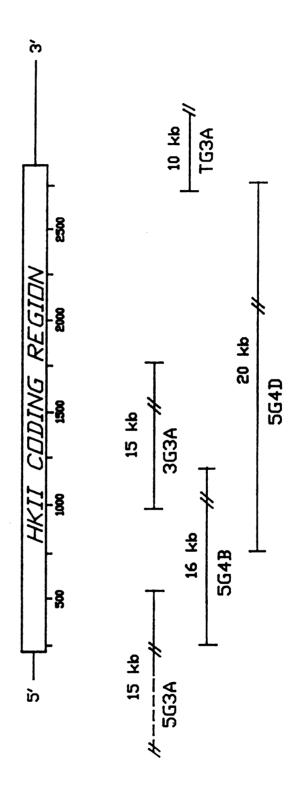


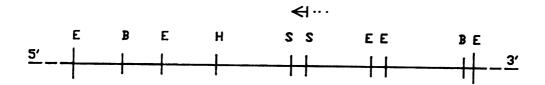
FIGURE 7

Figure 8. Southern analysis of clones containing 5' and 3' genomic sequences for Type II hexokinase. Blots A-C contain DNA from genomic clones restricted with EcoRI, electrophoresed in 0.8% agarose gels, and transferred to nitrocellulose. Each blot was probed under high stringency with radiolabelled cDNA fragments from clones 12-1.3C and RG2B. Blot A, containing DNA from clones 5G6C, 5G4B and 5G3A in lanes 1-3, respectively, was probed with the 5' 153 bp EcoRI-XhoI (1-2) fragment of clone 12-1.3C. The restricted DNA from clones TG3A, 3G3A, and 5G4D (lanes 4-6 of Blot B, respectively) were hybridized with a 207 HaeIII (7-8) fragment of clone RG2B. Restricted DNA from clones 3G3A, 5G4D, and TG3A (Blot C, lanes 7-9 respectively) were probed with the 3' 543 bp HaeIII-EcoRI (9-10) fragment of clone RG2B. The numbers in parentheses refer to restriction sites in the schematic diagram of clones 12-1.3C and RG2B shown on pg 56. Indicated to the left of Blot A are the sizes (in kb) of several fragments of λbacteriophage DNA digested with HindIII.




FIGURE 8

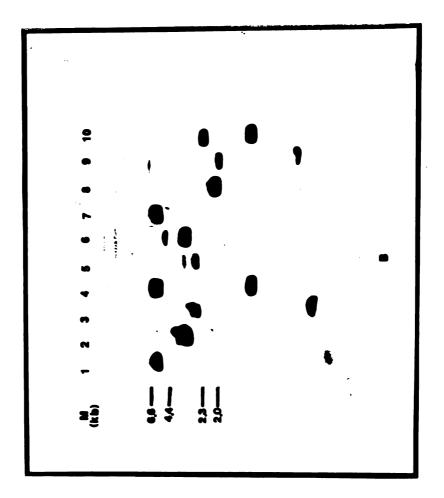
of cDNA clone RG2B. Genomic clones 3G3A and 5G4D (Panel C, lanes 7 and 8, respectively) demonstrated no sequence similarity with the probe. The signals seen in the 23 kb region of each blot in Figs. 7 and 8 are likely due to incomplete digestion of the genomic DNA, as the cloning vector Charon 4A accepts inserts totally 20 kb or less.


The results from the aforementioned Southern analyses were used to align the five clones containing pertinent sequence information or the largest unique inserts, as shown in Fig. 9. Each clone spans those portions of cDNA that gave positive results on the Southern blots. The 5' and 3' endpoints of these clones have been positioned within the regions of cDNA that hybridized to these clones. These positions are only approximate and have not been further defined by sequence analysis. The approximate insert sizes for the clones represented in Fig. 9 are: 5G3A, 15 kb; 5G4B, 16 kb; 5G4D, 20 kb; 3G3A, 15 kb, TG3A, 10 kb. From inspection of this alignment, it is likely that the gene encoding Type II hexokinase is at least 35 kb in length.

Of the 10 genomic clones isolated, Southern blots of only clone 5G3A reacted to a significant degree with the 5' EcoRI-XhoI 153 bp fragment (1-2) of cDNA clone 12-1.3C (Fig. 8A, lane 3). Thus, this clone, containing a 15 kb insert, was further analyzed for additional 5' message and promoter sequences for Type II hexokinase (discussed below). Sequence and restriction map analyses indicate that clone 5G3A contains approx 8 kb of nucleotide information upstream from the 5' end of the cDNA clone 12-1.3C. A partial restriction map of clone 5G3A is shown in the

Figure 9. Alignment of relevant clones containing genomic DNA for rat Type II hexokinase. Shown is the composite figure which contains the coding region for Type II hexokinase, and the 5' and 3' untranslated regions of the cDNA. Below this composite drawing are five genomic clones isolated and aligned using portions of clones 12-1.3C and RG2B as the probes (see Fig. 2, Material and Methods Chapter). The approximate size (in kb) is indicated above each genomic clone. The slash marks (//) indicate that the genomic clones are longer than represented, and are not drawn to scale with the composite figure for Type II hexokinase. The dashed line at the 5' end of clone 5G3A indicated sequence upstream from the 5' end of cDNA clone 12-1.3C. Portions of this region of clone 5G3A were analyzed for the transcription initiation sites and promoter sequences for Type II hexokinase.

schematic below. The restriction site abbreviations are: B, BamHI; E, EcoRI; H, HindIII; S, SmaI. The arrow above the SmaI fragment delineates the portion of this clone that was analyzed for promoter sequences. The arrow points in the direction upstream from the 5' end of the cDNA for Type II hexokinase. The dotted line indicates cDNA sequences. The dashed lines represent λCharon 4A vector arms.



Confirmation of the overlap of the cDNA clones was obtained by isolation of a genomic DNA clone (3G3A) containing segments that span the region of overlap.

After restriction with various endonucleases, Southern blots of genomic clone 3G3A were probed under high stringency conditions (as above) to identify fragments including sequences found in the 3' region of clone 12-1.3C. The results of these Southern blots are shown in Fig. 10. Panel A contains EcoRI digested DNA from clone 3G3A. Hybridization with the 407 bp fragment from the 3' end of cDNA clone 12-1.3C resulted in signals from the 1.6 kb and 6.2 kb fragments of the clone. The 6.2 kb fragment was isolated and restricted with several endonucleases. A Southern blot of these digests, probed with the 3' end of clone 12-1.3C, gave results shown Fig. 8B. The 1.6 kb EcoRI fragment of clone 3G3A and the 2 kb SphI fragment

Figure 10. Southern analysis of genomic clone 3G3A. Genomic clone 3G3A (or portions thereof) was restricted with endonucleases, electrophoresed in an 0.8% agarose gel, and transferred to nitrocellulose. Blot A, containing clone 3G3A digested with EcoRI, was probed with the 3' 407 bp StyI-EcoRI fragment of cDNA clone 12-.

1.3C. Lanes 1-10 of Blot B contain DNA from the 6.6 kb fragment of genomic clone 3G3A, restricted with various endonucleases. The restriction enzymes used to digest DNA from the 6.6 kb fragment in each lane were: 1, SacII; 2, SacI; 3, SmaI; 4, HindIII; 5, BamHI; 6, BgIII; 7, HincII; 8, SphI; 9, PvuII; and 10, PstI. Blot B was also hybridized to the 3' 407 bp fragment of 12-1.3C, mentioned above. Indicated to the left of both blots are the sizes (in kb) of several fragments of λbacteriophage digested with HindIII.

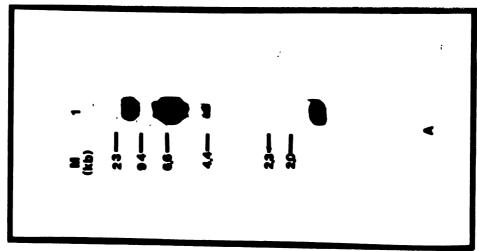


FIGURE 10

from the 6.2 EcoRI fragment of clone 3G3A (lane 8, Fig. 10B) were subcloned into M13 (mp18 and mp19). Initial sequence analysis located 3 regions (one at the 3' end of the 1.6 kb fragment, and the 5' and 3' ends of the 2 kb SphI fragment) containing sequences identical to clone 12-1.3C. Those 3 regions were sequenced as indicated in Fig. 4. These included coding regions spanning the section from nucleotides 1072 to 1705 (Fig. 5). Two introns divided this sequence into segments comprised of nucleotides 1072-1227, 1228-1461, and 1462-1705.

Isolation of a Partial cDNA Clone for Novikoff Tumor Hexokinase. An unamplified cDNA library (No. 10, Table III) was prepared in λgt10, using oligo-dT as primer and mRNA isolated from Novikoff ascites tumor cells. Screening of this library under high stringency conditions, using the 407 bp fragment representing the 3' region of clone 12-1.3C as probe, produced three positive recombinants. These were designated NK3B, having an insert of approx. 2300 bp, and NK3A and NK3C, each with inserts of approx. 500 bp. HaeIII restriction analysis and partial sequencing indicated that NK3A and NK3C were contained entirely within NK3B, which was further characterized and found to be identical to the previously isolated RG2B (Fig. 5).

Northern Blot Analysis of mRNA from Rat Skeletal Muscle and Novikoff

Ascites Tumor Cells. Polyadenylated mRNA from rat skeletal muscle and Novikoff
ascites tumor cells was examined by Northern blotting (Fig. 11). Duplicate blots
were probed with cDNA representing either the N-terminal or C-terminal half of
Type II hexokinase; these were the insert from clone 12-1.3C (nucleotides 1-1562 in

Figure 11. Northern blot analyses of rat Type II hexokinase mRNA. Blots A and B are duplicates, and each contains approx. 3 μ g of Novikoff rat hepatoma mRNA and 20 μ g of rat skeletal muscle mRNA in lanes 1 and 2, respectively. Blot A was probed with radiolabelled cDNA corresponding to nucleotides 1705-3082, while the probe for blot B was cDNA corresponding to nucleotides 1-1562 (nucleotide sequences in Fig. 3). The relative positions of the 18S and 28S bands of ribosomal RNA are indicated at the left.

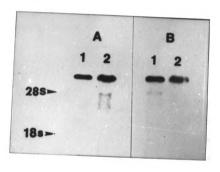


Fig. 5) and a SphI/KpnI fragment from clone RG2B (nucleotides 1705-3082, Fig. 5), respectively. Both probes hybridized to a 5.2 kb message, found in both skeletal muscle and tumor mRNA.

<u>Identification of the Transcription Initiation Sites.</u> The S1 nuclease protection assay was used to locate the transcription initiation site of the Type II hexokinase gene. The S1 probe was synthesized from a 630 bp SmaI fragment of the genomic clone 5G3A that had hybridized to the 5' 153 bp of the cDNA for Type II hexokinase in Southern blots. After hybridization of the S1 probe to poly(A)⁺ RNA from either tumor or normal muscle tissue, the products were treated with S1 nuclease and the protected fragments separated on a 9% polyacrylamide 7M urea gel. A portion of an autoradiograph from one such experiment is shown in Fig. 12. Lanes 1-7 show pBR size markers and dideoxynucleotide sequencing reactions from clone 5G3A used to define the region protected from S1 digestion. The sequencing reactions were generated from the same SmaI fragment and primer used to produce the S1 nuclease probe. Lanes 6 and 7 contain the products from tumor and skeletal muscle mRNA, respectively. There were two protected fragments in each lane, the predominant fragments having an approximate size of 315 nucleotides and the minor fragments slightly longer.

A primer-extension assay was also used to identify the transcription initiation site. A portion of an autoradiograph, from a 9% denaturing gel, obtained from one of these experiments is shown in Fig. 13. Lane 1 shows pBR size markers with the fragment lengths indicated at the left. Lanes 2-5 are dideoxynucleotide sequence

Figure 12. S1 nuclease protection assay results. Shown is a portion of an autoradiograph from an S1 nuclease protection assay, whose products were separated in a 9% denaturing polyacrylamide gel. Lane 1 contains pBR digested with MspI as size markers, with fragment lengths (bp) indicated to the left. The S1 nuclease protection experiment was performed using approx 3 μ g of poly(A)⁺ RNA from Novikoff rat hepatoma cells (lane 6) or 20 μ g of poly(A)⁺ RNA from rat skeletal muscle (lane 7). Lanes 2-5 show A, C, G, and T dideoxynucleotide sequencing reactions, respectively, used to define the relative position of the protected products.

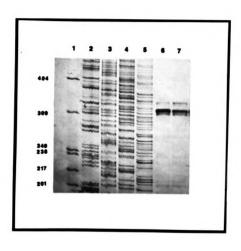


Figure 13. Primer-extension results. Shown is a portion of an autoradiograph of primer-extension products electrophoresed in a 9% denaturing gel. Lane 1 contains pBR (digested with MspI) as markers, with the fragment lengths (bp) indicated to the left. Lanes 2-5 show A, C, G, and T dideoxynucleotide sequencing reactions (respectively) that define the relative nucleotide positions of the extension products. Lanes 6 and 7 show the extension products from approx 3 μ g of Novikoff hepatoma mRNA and 20 μ g of rat skeletal muscle mRNA, respectively. Lanes 6 and 7 were exposed approx twice as long as the other lanes.

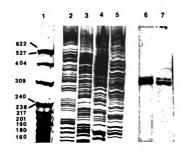


FIGURE 13

reactions synthesized from the 630 bp SmaI fragment of genomic clone 5G3A and the same primer used in the extension assays. Lanes 6 and 7 show the DNA products of an extension reaction using poly(A) * RNA from Novikoff tumor cells and normal rat skeletal muscle tissue, respectively. Again, there were two synthesized fragments in each extension lane, and the predominant bands were approximately 315 bases in length. Shown in Fig. 14 and 15 are the results of two primer-extension experiments, similar to the aforementioned work. The products of these extension experiments were electrophoresed in 5% denaturing polyacrylamide gels. In each figure, lane 1 contains pBR size markers with the 309 bp fragment indicated at the left. Lanes 2-5 are the dideoxynucleotide sequences of the SmaI fragment of genomic clone 5G3A. Lanes 6 and 7 of Fig. 14 contain extension products from muscle and tumor mRNA, respectively. Lane 6 of Fig. 15 contains the extension products from approx 1 μ g Novikoff hepatoma mRNA; indicated to the right of this lane is the nucleotide sequence surrounding the transcription initiation site, determined from lanes 2-5, Fig. 13. It is clear from Fig. 14 (lanes 6 and 7) that, in both muscle and tumor, extension products were 343-348 nucleotides long; however, the majority of the extension products were in the range of 320-328 nucleotides long. In this region, the strongest bands (as seen in Fig. 15) were 324 and 325 nucleotides in length including the primer and correspond to initiation at either an adenine or guanine residue. The adenine, the first intense base near the center of the primary region, has been designated as position +1 for numbering the nucleotides in this portion of the gene for Type II hexokinase.

Figure 14. Identification of the transcription initiation region of the Type II hexokinase gene. Shown is a portion of an autoradiograph from a primer extension experiment. The products were electrophoresed in a 5% denaturing gel, for 15 hrs. Lane 1 is MspI restricted pBR used as the size marker, with the 309 bp fragment indicated at the left. Lanes 2-5 show A, C, G, and T dideoxynucleotide sequencing reactions (respectively) used to define the nucleotide positions of the extension products. Lanes 6 and 7 contain the extension products from approx 20 μ g of rat skeletal muscle mRNA and 3 μ g of Novikoff hepatoma mRNA, respectively.

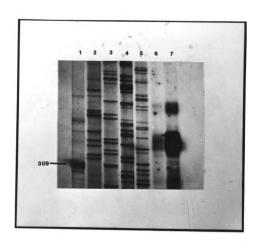
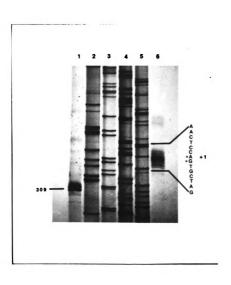



Figure 15. Identification of the transcription initiation site of the Type II hexokinase gene. A portion of an autoradiograph from a primer extension experiment is shown. The extension products were separated on a 5% denaturing gel, electrophoresed for 15 hrs. Lane 1 is MspI restricted pBR used as the size marker, with the 309 bp fragment indicated at the left. Lanes 2-5 show A, C, G, and T dideoxynucleotide sequencing reactions (respectively) used to define the nucleotide positions of the extension products. Lane 6 shows the primer extension products from approx 1 μ g Novikoff hepatoma mRNA. The nucleotides surrounding the transcription initiation site are shown to the right. An asterisk (*) marks the two nucleotides giving the strongest signal, with +1 designating the adenine residue as the first predominant site.

Type II Hexokinase Promoter. Genomic clone 5G3A was the only recombinant to demonstrate a high degree of cross-reactivity with the extreme 5' portion of the cDNA for Type II hexokinase. After restriction with several endonucleases. Southern blots of this clone were probed to locate fragments that contained the 5' sequence of the Type II isozyme. Figure 16 shows the results of this hybridization. Fragments hybridizing to the 5' 153 bp of Type II cDNA varied in length from approx 600 bp to 20 kb. A SmaI fragment of genomic clone 5G3A (near the bottom of lane 8, Fig. 16), 630 bp in length, was isolated and subcloned into M13 (mp18 and mp19) for complete sequence analysis. This sequence is shown in Fig. 17. Examination of this sequence, along with the 5' sequence from the previously isolated cDNA (Fig. 5), places the predominant transcription start site 465 nucleotides upstream from the ATG initiation codon. There is a TATA-like box centered 25 nucleotides upstream from the adenine at position +1; a CCAAT sequence starts at position -79, with an inverted CCAAT sequence starting at -135. There are also 3 Sp1 sequences starting at nucleotides -55, -123 and -212, and a potential cAMP reponse element at -64. The 260 nucleotides upstream from the transcription start site is GC rich (70% G+C) with a ratio of CpG to GpC of 0.63. The 3' end of this genomic fragment corresponds identically to the 101 nucleotides at the 5' end of Type II hexokinase cDNA clone 12-1.3C.

To verify that this genomic fragment did indeed possess promoter capability, a portion of this fragment (272 base SmaI-DdeI fragment, -260 to + 12 of Fig. 17) was subcloned into the vector $p(C_2AT)_{19}$. Recombinants containing the Type II promoter

Figure 16. Southern analysis of genomic clone 5G3A. Shown is an autoradiograph of genomic DNA from clone 5G3A probed with the 5' 153bp EcoRI-XhoI fragment of cDNA clone 12-1.3C. The genomic DNA from clone 5G3A was restricted with various endonucleases, electrophoresed in an 0.8% agarose gel and transferred to nitrocellulose. The restriction enzymes used were: 1, EcoRI; 2, EcoRI + BamHI; 3, BamHI; 4, EcoRI + HindIII; 5, HindIII; 6, EcoRI + XhoI; 7, XhoI; 8, SmaI. The blot in lane 8 was exposed approximately twice as long as the other blot. The sizes (in kb) of the λbacteriophage/HindIII fragments used as markers are indicated to the left of the blot.

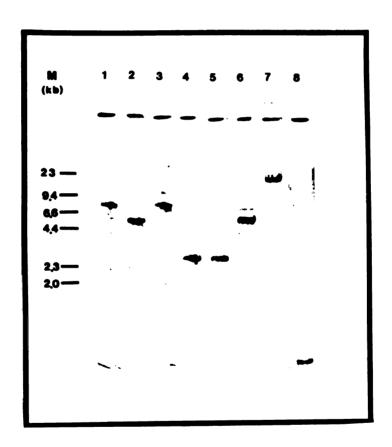


Figure 17. Sequence of the Type II hexokinase promoter region. This figure shows the sequence of the 630 nucleotide SmaI fragment of genomic clone 5G3A. It contains the 260 bases of DNA that are on the 5' side of the adenine residue designated as +1 (primary transcription initiation site) and the 369 bases to the 3' side of this initiation site. The overlined nucleotides are the 2 CCAAT sequences; a TATA-like box is marked in bold print; three potential Sp1 binding sites are underlined. A potential cAMP response element is marked by a dashed overline; the A and G residues at the transcription initiation site are marked with an asterisk (*). The primer used for the S1 nuclease protection and primer-extension assays was synthesized complementary to nucleotides +303-326, which are marked by a dashed underline. The arrow (†) delineates the 5' end of the cDNA for Type II hexokinase (Fig 3). The DdeI site, which is the 3' end of the promoter fragment in p(C₂AT)₁₉, is marked by a closed circle (•) under the nucleotide.

-240	$\tt CGTCCCAACTCTGGCGCCCGGCT\underline{CCGCCC}TAGCCTCGGGCCGGTCTCT$
192	CCCGCCGCCTGCTTGGGTGCTGGAGCAGCCGCGCCCCGCGGGCTCTGGG
144	$\tt CGCTG\overline{ATTGG}CTGTGGACTGC\underline{GGGCGG}GCAGCCGGAGAGCGCACACAC$
-96	$\tt CCTCTTCCCGCAGCCAATGAGCGCGCCCACGTCACTGTCTT\underline{GGGCGG}C$
-48	CCAAAGAGCCGGCAGCCCCTCAATAAGCCACATTGTTGCACCAACTCC
+1	ÄGTGCTAGAGTCTCAGGACACCACAGGCTACACGGAGTTATCCCGCTT
+49	AGGAGACCCGAAGGCAGGAGCATCACTCCAGTGACTCTGATAAGGTGC
+97	GATCGCCCGAGAGGAACAGAACTGTCATTTTTGCGAAGTTGAGCCTTA
+145	CGGATCCCGTGGGCGAAGTTAGCGACGGGACGCTGAGCAACTAGACCG
+193	GTCGGCAGGAGTGAGACTTAGGTGCCTTCTAGTAGTTGTGACTTAAAA
-241	AAAAAAAAAAAAGGAAAAAGGAGGAAAACCTGTTTCTGGAA
-289	ACGCGAGGCCCTCAGCTGGTGAGCCATCGTGGTTAAGCTTCTTTGTGT
+337	GGCTCCTGGAGTCTCCGATCCCAGCCGGACACCC

GGGCTCTAGCACGGAACACA

-260

region were used as the template in a cell-free *in vitro* assay system. The results of the transcription assays are shown in Fig. 18. Lanes 1-5 are the results of transcription assays which included pML-GFC2 as an internal positive control. Two transcripts, approximately 280 and 380 bases in length, are seen in lanes 1-3 which contain the constructs with the Type II hexokinase promoter in the correct orientation (designated p(C₂AT)₁₉-HKII+7, +11, and +17, respectively). The designations for the recombinants used in the assay include a (+) denoting correct promoter orientation or a (-) for the inverse orientation; the numbers are for clone identification and are not related to sequence location. There are few, if any, transcription products 380 bases in length, in lane 4 (with the Type II promoter in the wrong orientation, designated p(C₂AT)₁₉-HKII-6) and lane 5 (containing p(C₂AT)₁₉ with no promoter). These results indicate that the region of genomic DNA laying immediately upstream of the putative transcription start site for Type II hexokinase is capable of directing transcription, at least in a cell-free system.

Expression of Type II Hexokinase in COS-1 Cells. The plasmid, pSVT7-HKII, was used to transfect COS-1 cells. As controls, COS-1 cells were also transfected with either the plasmid pSVT7 (with no insert) or with no DNA (Sham). Shown in Table IV are the results from two sets of transfections. The level of hexokinase activity in the COS-1 cells transfected with pSVT7-HKII was approximately 14 times greater than that found in cells transfected with pSVT7 or in the Sham transfection.

Figure 18. Cell-free *in vitro* transcription assay results. Shown is a section of an autoradiograph of *in vitro* transcription products from Type II hexokinase promoter constructs and pML-GFC2, using rat liver nuclear proteins. The transcription products were electrophoresed in a 6% denaturing polyacrylamide gel. In lanes 1-5, 50 ng of pML-GFC2 and 2 μ g of p(C₂AT)₁₉ constructs were used as the template DNA. The constructs p(C₂AT)₁₉-HKII+7, +11, and +17 were the template DNA in lanes 1-3, respectively. The construct p(C₂AT)₁₉-HKII-6 was included in lane 4. The original plasmid, p(C₂AT)₁₉ with no promoter sequence included, was used as a negative control in lane 5. Lane 6 contains pBR digested with MspI, with the size (bp) of the fragments indicated to the right.

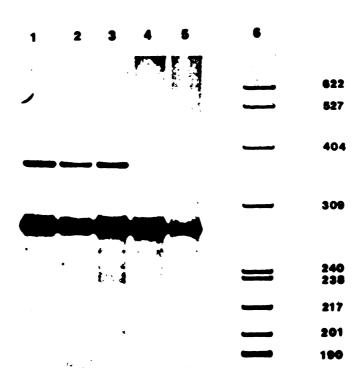


Table IV. Summary of Transfection Results

Transfection	Specific Activity (u/mg)
Sham	0.044, 0.035
pSVT7	0.047, 0.035
pSVT7-HKII	0.63, 0.52

The results of the Western blot analysis, using anti-Type I hexokinase polyclonal antibodies, are shown in Fig. 19. Lane 1 contained purified Type I hexokinase. Lanes 2 and 3 contained protein from the pSVT7-HKII and Sham transfected cells, respectively. It is readily apparent that, in the cells transfected with pSVT7-HKII (lane 2), there is a definite increase in protein that reacts with the anti-Type I hexokinase polyclonal antibodies. The band in lane 2 that reacted most intensely with these antibodies migrated slightly faster than purified Type I hexokinase. This was as expected since the reported M, for Type II hexokinase (98) is somewhat smaller than that of the Type I isozyme. This same mobility pattern has been observed when purified Types I and II hexokinases are electrophoresed in SDS polyacrylamide gels and stained for protein. Bands corresponding to hexokinase isozymes I and II were also seen at the appropriate positions in the crude muscle extract (data not shown). There is also evidence of crossreactivity between the endogenous hexokinase (lane 3) and the Type I polyclonal antibodies, which was not unexpected. The bands below the Type II band in lane 2 are also present in the Sham extract (lane 3). It has not been determined whether the peptides reacting with the anti-Type I hexokinase antibodies are proteolytic fragments of the endogenous hexokinase or unrelated proteins. The lower band seen in lane 1 is most likely a proteolytic fragment (approx 90 kDa) of Type I hexokinase (54,96).

Figure 19. Western blot analysis of Type II hexokinase expressed in COS-1 cells. Proteins isolated from transfected COS-1 cells were electrophoresed, blotted onto nitrocellulose and reacted with antibodies, as described in Methods. Lane 1 contains 0.5 μ g of purified Type I hexokinase. Lanes 2 and 3 contain 45 μ g of protein from COS-1 cells transfected with pSVT7-HKII and no DNA (Sham), respectively. The blot was reacted with anti-hexokinase Type I polyclonal antibodies.

FIGURE 19

CHAPTER 4

Discussion

Amino Acid Sequence of Type II Hexokinase

The deduced amino acid sequence of rat Type II hexokinase is compared with previously determined sequences of the Type I (68), Type III (56), and Type IV (32) isozymes in Fig. 20. The striking similarity between sequences in the N- and C-terminal halves of the Type II hexokinase has been previously seen for the Type I (68) and III (56) isozymes. The similarities between these sequences and that of yeast hexokinase (86) confirm the view that all of the 100 kDa enzymes evolved by a mechanism of duplication and fusion of a gene encoding an ancestral 50 kDa hexokinase related to the yeast enzyme. A quantitative comparison of the sequence similarities among the rat isozymes is presented in Table V.

The 9 amino acid residues at the N-terminus of Type II hexokinase (Met-Ile-Ala-Ser-His-Met-Asn-Ile-Ala-Cys) are nearly as hydrophobic as the corresponding sequence in the Type I isozyme (Met-Ile-Ala-Ala-Gln-Leu-Leu-Ala-Tyr). Polakis and Wilson (54) have shown the necessity of this hydrophobic "tail" for binding of the Type I isozyme to mitochondria. Thus, these results are consistent with reports that the Type II isozyme also binds to mitochondria (39,41), although apparently with somewhat less affinity than does the Type I isozyme (116). The less hydrophobic nature of the N-terminus of Type III hexokinase may, at least partially, explain the lack of binding of this isozyme to mitochondria (41).

The kinetic differences that presumably underlie differences in physiological function of the various isozymes, e.g., the ability of P_i to antagonize inhibition of the Type I isozyme, but not the Type II isozyme, by Glc-6-P (11), clearly must depend

Figure 20. Comparison of aligned amino acid sequences of N- and C-terminal halves of rat Types I-III hexokinases and rat glucokinase (Type IV). Three or more aligned residues identical to the corresponding amino acid in either the N- or C-terminal region of Type II hexokinase are considered identities (blackened residues). Shaded residues are conservative substitutions when compared to identical aligned amino acids at a given position. In alignments of two sets of 3 identical amino acid residues, all residues are viewed as conservative substitutions.

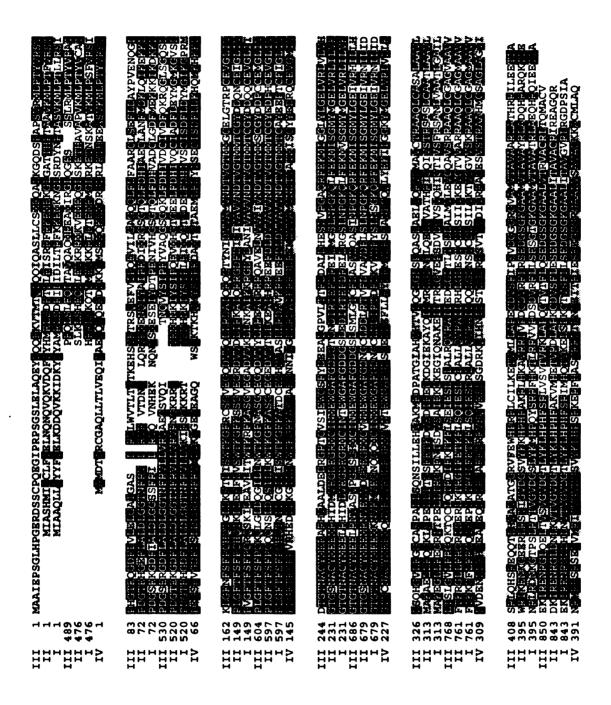


FIGURE 20

Table V. Comparison of Deduced Amino Acid Sequences of the Nand C-Terminal Halves of Rat Type II Hexokinase with Sequence of the Type IV Isozyme and Sequences of the Nand C-Terminal Halves of the Type I and III Isozymes.^a

	N-II ^b	C-II
N-II	100	55,14
N-I	68,14	49,17
C-I	54,14	76,11
N-III	44,14	41,13
С-Ш	48,15	66,9
IV	52,15	53,14

a-Based on the alignments shown in Fig. 20. The first number is the percent identity, and the second number is the percent of conservative substitutions. Thus the sum of the two numbers reflects the overall similarity of the compared sequences.

b-The abbreviations used are: N-II, C-II: N-terminal half (residues 1-475) and C-terminal half (residues 476-917), respectively, of the Type II isozyme; N-I, C-I: N-terminal half (residues 1-475) and C-terminal half (residues 476-918), respectively, of the Type I isozyme (68); N-III, C-III: N-terminal half (residues 1-488) and C-terminal half (residues 489-924), respectively, of the Type III isozyme (56); IV, Type IV isozyme (glucokinase), sequenced by Andreone et al. (32).

on structural differences resulting from changes in amino acid sequence. Since the conservation of sequence is so extensive, the sequence comparisons in Fig. 20 focus attention on relatively limited regions which might be responsible for the observed alterations in functional properties. This is facilitated by the demonstration that catalytic activity is associated with the C-terminal half of the Type I isozyme (84,85,93) while regulatory function is associated with the N-terminal half (91,94). Presumably this same functional organization is found in the other 100 kDa enzymes.

Although differences in the N-terminal halves of the molecules can obviously not be excluded, the identity - at both the nucleotide and amino acid level - between the sequences of the C-terminal halves of Type II hexokinase and the enzyme from Novikoff ascites tumor cells suggests that there is a single Type II isozyme in both normal tissue and tumors. Further support for this view is provided by the observation that these enzymes are encoded by polyadenylated mRNAs which are indistinguishable in size. This also appears to be the case with the rat Type III isozyme since the deduced amino acid sequence of this enzyme (56) includes several segments that are identical to those of tryptic peptides (115) derived from the Type III isozyme isolated from Novikoff tumor cells (41). These observations do not support speculation (65) that the tumor isozymes are distinct in amino acid composition, and hence sequence, from the isozymes of normal tissues.

However, the Type II hexokinase in the Novikoff cell line used in the present work was distinct from the Type II enzyme of normal skeletal muscle when compared by ion exchange chromatography, nondenaturing gel electrophoresis, or isoelectric

focusing (T. Ureta and J.E. Wilson, unpublished results). It seems appropriate to consider possible posttranslational modifications that might account for these differences, *and* which might lead to the apparent altered function of hexokinase in highly glycolytic tumor cell lines (63,64).

Structure of Type II Hexokinase mRNA

A message size of approx 5.2 kb was seen for both tumor and skeletal muscle Type II hexokinase (Fig. 11). An open reading frame of 2751 nucleotides was contained in two cDNA clones. Included in these clones were 197 and 687 nucleotides in the 5' and 3' untranslated regions, respectively.

The identification of the transcription start sites, through primer extension and S1 mapping, indicate that the 5' untranslated region for Type II hexokinase is approximately 467 nucleotides. Transcription initiation spans a 30 base region.

Diffuse transcription initiation has also been seen from both the hepatic and pancreatic glucokinase promoters (33,36). The lack of a single discrete transcription initiation site may be the result of a "weak" TATA sequence (discussed below). While the function of such long 5' leader sequences is not known, they have been identified in other proteins. For instance, the 5' untranslated region for HMG CoA reductase encompasses as many as 670 nucleotides (117). The 5' leader sequences for the ATPases (Na⁺K⁺) from rat and sheep kidney contain 460 and 528 nucleotides, respectively (118,119).

The 33 nucleotides immediately upstream from the 5' end of the Type II cDNA (Fig. 17) contain 28 A residues. This region is an excellent candidate for

hybridization to the oligo-dT primer used in the synthesis of several of the libraries that were screened for Type II cDNA. This observation would explain why the cDNA terminates approximately 270 downstream from the actual 5' end of the message.

The designation of the first ATG in the cDNA as the translation start site is confirmed by alignment of the N-terminal amino acid sequence of Type II with the corresponding sequence of Type I. Three nucleotides upstream from the starting "ATG" (GCAGGATGATC) is a purine (in this case an A), which is highly conserved at that position. In 97% of 699 mRNAs analyzed by M. Kozak (120), there was a purine, usually an A, at this -3 position. However, other features of the translation initiation consensus sequence (CCA/GCCATGG) (120) are not conserved.

Both tumor and skeletal muscle mRNAs were used to determine the transcription start region. The primer extension and S1 digestion results obtained from both mRNAs were identical. These results clearly indicate that the message for Type II hexokinase is the same, at least for the 5' untranslated region and the C-terminal half of the protein, in both normal and tumor tissues. These facts, in conjunction with an identical message size of 5.2 kb, make it highly unlikely that the mRNA encoding the N-terminus of this tumor hexokinase is different from the Type II message found in skeletal muscle. However, this complete message identity has yet to be verified.

The length of the message for Type II hexokinase, characterized thus far, is approximately 1300 nucleotides shorter than suggested by Northern analysis. Since

poly A⁺ RNA was used for both Northern analysis and library syntheses, it seems likely that the polyadenylation signal and the polyA⁺ region will be found in the 1300 nucleotides not yet isolated.

Although the role of the unusual stretch of 'Ts' near the 3' end of the cDNA (Fig. 5) is not known, it may function in several ways. It could serve as a signal for termination of transcription as proposed by Resnekov *et al* (121). However, if this is the purpose, the termination signal is approximately 1300 nucleotides upstream from the end of the transcript. It has also been suggested that such a stretch of 'Ts' may facilitate the release of the transcript unit from the genomic DNA template (122), due to the instability of (dA:rU) regions. Alternatively, another proposed function for such a sequence involves message stability. Wilson and Treisman (123) found that the shortening of the poly A⁺ region of c-fos mRNA was much slower when the 3' AU-rich sequences were deleted. These researchers suggested that such 3' AU-rich sequences may destabilize mRNA by causing rapid removal of the poly A⁺ region. However, until further research is conducted the function of this T-rich region remains unknown.

Inspection of the nucleotide sequences surrounding the overlapping regions of cDNA clones 12-1.3C and RG2B has given no clues as to why full length Type II cDNAs have yet to be isolated. As seen in Table III, a total of 10 libraries were prepared and screened in the search for the cDNA for the Type II isozyme. These libraries were synthesized by various methods, using mRNA isolated from several rat tissues known to contain the Type II isozyme. The libraries were screened with

portions of cDNA clones 12-1.3C or RG2B/NK3B. The *only* clones isolated from any of these libraries contained inserts identical to those described above for clones 12-1.3C and RG2B. Each library gave *only* the "12-1.3C-type" insert or the "RG2B-type" insert, or portions thereof; *no* library gave both, nor did any library yield a full length cDNA. Also curious is the fact that clones RG2B and NK3B were identical, with both lacking a 3' polyadenylated region, even though the Novikoff cDNA library yielding clone NK3B was synthesized using oligo-dT as primer while RG2B was isolated from a random primed library. There are no EcoRI restriction sites in this area that may have affected the cloning of full length cDNA, nor are there any multiple adenine residues that could serve as an additional binding site for the oligo-dT primer used in library synthesis. Clearly there is something most unusual occurring, possibly resulting from some exceptional secondary structural features in these mRNAs.

Type II Hexokinase Gene

Alignment of 5 genomic clones (Fig. 9) containing sequences complementary to Type II hexokinase cDNA indicates that the gene for this enzyme is at least 35 kb in length. Sequence analysis of portions of genomic clone 3G3A, used to verify the overlap of the two cDNA clones, generated 3 exons of length 150-250 nucleotides. Similar exon sizes have been seen in the hepatic glucokinase gene, with an average length of nine exons being 153 nucleotides (33).

Several potential regulatory sequences have been found in the promoter region, upstream from the transcription start region (Fig. 17). The sequence AATAA,

located at positions -27 to -23, may be a "TATA box," although it is not a good consensus sequence (124). Conservation of the TATA box sequence could play a critical role in the precise initiation of transcription (124,125). The lack of complete homology between the AATAA sequence in Fig. 17 and the consensus TATA sequence may explain the existence of two regions, rather than a unique site, of transcription initiation for this gene. Two CCAAT sequences, at nucleotides -79 and -135, and 3 potential Sp1 binding sites (starting at nucleotides -55, -123, and -212) have also been identified. The positions of the AATAA and CCAAT sequences are in agreement with the TATA (-25 to -30) and CCAAT box (-70 to -80) locations found in many eucaryotic genes (124). However, if the AATAA sequence is not a TATA element, transcription may be directed by an initiator (Inr) element located at or near the transcription initiation site. Even though a number of such Inr elements have been defined and investigated (reviewed in 126) no concensus sequences for these elements have been proposed. It remains to be seen whether the gene for Type II hexokinase is under the control of such Inr elements.

The 5' untranslated region (725 nucleotides) may be, at least a portion of, a CpG island as defined by Gardiner-Garden and Frommer (127). The %GC (G+C) of this genomic region is 60% with a CpG/GpC ratio of 0.77. Such CpG islands may serve an important function in either transcriptional or post-transcriptional regulation of the Type II hexokinase gene. Post-transcriptional regulation has been found for a number of genes including c-fos (128) and c-myc (129).

The nucleotides from -63 through -70 (CCACGTCA) are 75% identical to the cAMP response element (TGACGT/CC/AA/A) (130). Whether Type II hexokinase is influenced by cAMP has yet to be determined. However, it is known that transcription of glucokinase is negatively affected by cAMP (acting through glucagon (22)); the Type II isozyme may be regulated in a similar fashion.

Even though the importance of each of the aforementioned promoter elements has yet to be determined, the 260 bp genomic fragment containing these elements has the ability to direct transcription as demonstrated in a cell-free *in vitro* system. The low activity level of this promoter, relative to that of the adenovirus major late promoter (40 fold more Type II promoter was used in the transcription assays seen in Fig. 18), may indicate that elements important to promoter activity were not present in the genomic fragment used in the transcription assay. Alternatively, a negative regulatory element may be present within this 260 bp fragment. Such negative elements have been found in the S14 promoter from rat liver (111) and in the human c-fos promoter (131).

There also exists the possibility that nuclear factors in rat liver, important for the efficient transcription of the Type II isozyme, are present at higher concentrations immediately following birth and decline shortly thereafter. Ureta et al. (132) has shown that the level of Type II hexokinase in rat liver peaks during the first week after birth. The liver nuclear extracts, used for the in vitro transcription assay, were prepared from 6-7 week old rats. The nuclear factors necessary for efficient transcription may be deficient, or in low concentrations, in the liver of older rats.

Nuclear extracts, from tissues in which Type II hexokinase is the predominant isozyme (e.g., muscle, and adipose), may contain increased levels of factors necessary for efficient transcription of the isozyme.

Recently Alexander et al. proposed a 25 nucleotide sequence (AACTTTCCCGCCTCTCAGCCGAAAG) as a minimum core of a putative insulin response element (IRE) (133). No significant homology is seen between this possible insulin element and the promoter region of the Type II gene (Fig. 17). However, the IREs located by Alexander et al. were in a region from 270 to 490 residues upstream from the transcription start site. Since the promoter region for the Type II isozyme, characterized thus far, extends only 260 nucleotides upstream from the transcript site, it is possible that insulin responsive elements for this gene are in upstream regions not yet isolated. However, Tanaka et al. (35) have found no enhancer sequences in the 5' flanking region of the glucokinase gene that appear to be responsible for insulin regulation. They had investigated 5.5 kb upstream from the transcript start site. Further studies are needed to determine the existence and location of any insulin response sequences, and to confirm the role of other promoter/enhancer elements, in the Type II hexokinase gene.

CHAPTER 5

Future Work

With the availability of the cDNA (134) and promoter region for Type II hexokinase, several directions for future research have become feasible.

Determination of factors controlling the transcription of the Type II hexokinase in normal and diabetic rats, as well as tumor cells, can now be undertaken. Also, with cDNAs for all the hexokinase isozymes now available, future work can focus on elucidating the structural differences that underlie the diversity of their catalytic and regulatory properties.

Several potential regulatory elements in the promoter region for Type II hexokinase have been located upstream from the transcription initiation site for Type II hexokinase, as defined in this project. Ordered deletions of this region can be tested, in *in vitro* transcription assays with the "G-free cassette" vector $p(C_2AT)_{19}$, to identify segments important in the regulation of this gene. Nuclear extracts, prepared from various tissues (e.g., liver, muscle and mammary) from normal, diabetic and insulin-treated diabetic rats, should be used in these transcription assays. The use of such nuclear extracts, with the deleted "G-free" constructs, will define promoter regions that either enhance or suppress the rate of initiation of this gene. Through this approach, it may be possible to locate insulin response elements (IREs) in this gene. However, considering the findings of Tanaka *et al* (35), it may be necessary to include regions of the Type II hexokinase gene further downstream (than investigated herein) in the search for such IREs.

Using a similar approach with fast growing tumor cell lines (e.g., Novikoff ascites hepatoma) or stimulated muscle tissue, it may be possible to identify

cis-elements, and trans-acting factors, responsible for increased levels of Type II hexokinase seen in both tumor cells (64) and stimulated muscle (29,31). Techniques such as "gel shift" assays (135,136) and DNase I footprint analysis (95,133) can further define the location of important regulatory elements.

The availability of the Type II cDNA makes site-directed mutagenesis a very useful tool to study the importance of specific amino acid residues implicated in catalytic or regulatory functions of hexokinase. Residues in the Type I isozyme thought to be critical in the binding of glucose are Ser 603, Asp 657, Glu 708, and Glu 742 (68,92,93); Thr 661 and the sequence Gly-Ser-Gly-Lys-Gly-Ala (896-901, Fig. 20, Discussion Chapter) may be involved in the binding of ATP in Type I hexokinase (56,68). These residues are completely conserved between the Types I, II and III isozymes (Fig. 20), which may imply conservation of function as well.

Curiously, these residues are also well conserved at the corresponding positions in the N-termini of the three hexokinase isozymes, even though the N-terminal domain of Type I is not catalytically active (84,91,94). Site-directed mutagenesis of these residues, in both halves of Type II hexokinase, will help determine their function.

The 100 kDa hexokinases differ in both kinetic and regulatory properties (reviewed in ref. 11). However, because of the extensive similarities of their amino acid sequences, it is reasonable to assume that structure/function relationships found in the Type I isozyme (84) exist in the other hexokinases as well. Construction and expression of chimeric hexokinase molecules may be a very useful method to

substantiate this supposition, and to investigate the interactions between the N- and C-terminal domains of each isozyme.

The exchange of the N-terminal half of Type II hexokinase for that of the Type I isozyme will test the proposition that structural regions affecting regulatory properties (such as reversal of Glc-6-P inhibition by P_i) reside in the N-terminal domains of these isozymes. In order to facilitate this exchange, an NcoI site was created in the Type II cDNA at nucleotide 1558 (Fig. 5, Results Chapter). This new site coincides with an NcoI site at the same position in the Type I cDNA. This mutation does not alter the amino acid sequence, and expression of this cDNA in COS-1 cells produced active protein. Hence, the stage is now set for construction of chimeric hexokinases in which the N- and C-terminal domains of the Type I and Type II isozymes can be interchanged.

CHAPTER 6

References

- Viñuela, E., Salas, M., and Sols, A. (1963) J. Biol. Chem. 238, PC1175-PC1177.
- 2. Walker, D.G. (1963) Biochim. Biophys. Acta 77, 209-226.
- 3. González, C., Ureta, T., Babul, J., Rabajille, E., and Niemeyer, H.(1967)

 Biochemistry 6, 460-468.
- 4. Katzen, H.M., Soderman, D.D., and Nitowsky, H. (1965) Biochem. Biophys Res. Commun. 19, 377-382.
- Katzen, H.M. and Schimke, R.T. (1965) Proc. Natl. Acad. Sci. USA. 54, 1218-1225.
- 6. Grossbard, L. and Schimke, R.T. (1966) J. Biol. Chem. 241, 3546-3560.
- 7. Easterby, J.S. (1971) FEBS Lett. 18, 23-26.
- 8. Chou, A.C. and Wilson, J.E. (1972) Arch. Biochem. Biophys. 151, 48-55.
- 9. Neumann, S., Falkenburg, F., and Pfleiderer, G. (1974) Biochim. Biophys.

 Acta 334, 328-342.
- 10. Meunier, J.C., Buc, J., and Richard, J. (1971) FEBS Lett. 14, 25-28.
- Wilson, J.E. (1985) in Regulation of Carbohydrate Metabolism (Beitner, R.,
 Ed.), Vol. I, pp. 45-85, CRC Press, Inc., Boca Raton, FL.
- 12. Meglasson, M.D., Buch, P.T., Berner, D.K., Najafi, H., Vogin, A.P., and Matschinsky, F.M. (1983) *Proc. Natl. Acad. Sci.* USA 80, 85-89.
- Hughes, S.D., Quaade, D., Milburn, J.L., Cassidy, L., and Newgard, C.B.
 (1991) J. Biol. Chem. 266, 4521-4530.

- Liang, Y., Jeffon, T.L., Zimmerman, E.C., Najafi, H., Matschinsky, F.M.
 and Magnuson, M.A. (1991) J. Biol. Chem. 266, 6999-7007.
- 15. Bernstein, R.S. and Kipnis, D.M. (1973) Diabetes 22, 913-922.
- 16. Katzen H.M. (1967) in Advances in Enzyme Regulation (Weber, G.,Ed.) Vol. 5, pp. 335-356, Pergamon Press, New York.
- McLean, P., Brown, J., Walters, E., and Greenslade, K. (1967)
 Biochem J. 105, 1301-1305.
- 18. Walters, E. and McLean, P. (1968) Biochem J. 109, 737-741.
- Frank, S.K. and Fromm, H.J. (1986) Arch. Biochem. Biophys. 249, 61-69.
- Frank, S.K. and Fromm, H.J. (1986) Biochem. Biophys. Res.
 Commun. 138, 374-380.
- 21. Sharma, D., Manjeshwar, R., and Weinhouse, S. (1963) J. Biol. Chem. 238, 3840-3845.
- Iynedjian, P.B., Jotterand, D., Nouspikel, T., Asfari, M., and Pilot P-R.
 (1989) J. Biol. Chem. 264, 21824-21829.
- Colowick, S.P. (1973) in The Enzymes (Boyer, P.D., Ed.) 3rd Ed., Vol. 9,
 pp. 1-48, Academic Press, New York.
- 24. Magnuson, M.A. (1990) Diabetes 39, 523-527.
- 25. Peter, J.B., Jeffres, R.N., and Lamb, D.R. (1968) Science 160, 200-201.
- Green, H.J., Reichmann, H., and Pette, D. (1983) Pflügers Arch. 399, 216 222.

- Pette, D., Smith, M.E., Staudte, H.W., and Vrbová, G. (1973) Pflügers Arch.
 338, 257-272.
- 28. Simoneau, J.-A. and Pette, D. (1988) Pflügers Arch. 412 86-92.
- 29. Weber, F.E. and Pette D. (1988) FEBS Lett. 238, 71-73.
- 30. Weber, F.E. and Pette, D. (1990) Eur. J. Biochem. 191, 85-90.
- 31. Weber, F.E. and Pette, D. (1990) FEBS Lett. 261, 291-293.
- Andreone, T.L., Printz, R.L., Pilkis, S.J., Magnuson, M.A., and Granner,
 D.K. (1989) J. Biol. Chem. 264, 363-369.
- Magnuson, M.A., Andreone, T.L., Printz, R.L., Koch, S., and Granner,
 D.K. (1989) Proc. Natl. Acad. Sci. USA 86, 4838-4842.
- 34. Sibrowski, W. and Seitz, H.J. (1984) J. Biol. Chem. 259, 343-346.
- 35. Noguchi, T., Takenaka, M., Yamada, K., Matsuda, T., Hashimoto, M., and Tanaka, T. (1989) Biochem. Biophys. Res. Comm. 164, 1247-1252.
- 36. Magnuson, M.A. and Shelton, K.D. (1989) J. Biol. Chem. 264, 15936-15942.
- Iynedjian, P.B., Pilot, P-B., Nouspikel, T., Milburn, J.L., Quaade, C.,
 Hughes, S., Ucla, C., and Newgard, C.B. (1989) Proc. Natl. Acad. Sci. USA
 86, 7838-7842.
- 38. Quaade, D., Hughes, S.D., Coats, W.S., Sestabk, A.L., Iynedjian, P.B., and Newgard, C.B. (1991) FEBS Lett. 280, 47-52.
- 39. Bartley, J.C., Barber, S., and Abraham, S. (1975) Cancer Res. 35, 1649-1653.
- 40. Salotra, P.T. and Singh, V.N. (1982) Arch. Biochem. Biophys. 216, 758-764.

- 41. Radojković, J. and Ureta, T. (1987) Biochem. J. 242, 895-903.
- 42. Parry, D.M. and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912.
- 43. Preller, A. and Wilson, J. (1992) Arch. Biochem. Biophys. (in press)
- 44. Felgner, P.L., Messer, J.L., and Wilson, J.E. (1979) J. Biol. Chem. 254, 4946-4949.
- 45. Miwa, I., Mitsuyama, S., Toyoda, Y., Nonogaki, T., Aoki, S., and Okuda, J. (1990) *Biochem. Int.* 22, 759-767.
- 46. Linden, M., Gellerfors, P., and Nelson, B.D. (1982) FEBS Lett. 141, 189-192.
- Fiek, C., Benz, R., Roos, N., and Brdiczka, D (1982) Biochim. Biophys. Acta
 688, 429-440.
- 48. BeltrandelRio, H. and Wilson, J.E. (1991) Arch. Biochem. Biophys. 286, 183-194.
- Viitanen, P.V., Geiger, P.J., Erickson-Viitanen, S., and Bessman, S.P. (1984)
 J. Biol. Chem. 259, 9679-9686.
- 50. Inui, M. and Ishibashi, S. (1979) J. Biochem. 85, 1151-1156.
- 51. Kosow, D.P. and Rose, I.A. (1968) J. Biol. Chem. 243, 3623-3630.
- 52. Wilson, J.E. (1968) J. Biol. Chem. 243, 3640-3647.
- 53. Rose, I.A. and Warms, J.V.B. (1967) J. Biol. Chem. 242, 1635-1645.
- 54. Polakis, P.G. and Wilson, J.E. (1985) Arch. Biochem. Biophys. 236, 328-337.
- 55. Xie, G. and Wilson, J. (1988) Arch. Biochem. Biophys. 267, 803-810.

- 56. Schwab, D.A. and Wilson, J.E. (1991) Arch. Biochem. Biophys. 285, 365-370.
- 57. Ureta, T. (1982) Comp. Biochem. Physiol. 71B, 549-555.
- 58. Kosow, D.P. and Rose, I.A. (1972) *Biochem. Biophys. Res. Commun.* 48, 376-383.
- Kosow, D.P., Oski, F.A., Warms, J.V.B., and Rose, I.A. (1973) Arch.
 Biochem. Biophys. 157, 114-124.
- 60. Beitner, R., Haberman, S., and Livni, L. (1975) *Biochim. Biophys. Acta* 397, 355-369.
- 61. Rose, I.A. and Warms J.V.B. (1975) Arch. Biochem. Biophys. 171, 678-681.
- 62. Warburg, O., Posener, K., and Negelein, F. (1924) *Biochem. Z.* 152, 309-344.
- 63. Bustamante, E. and Pedersen, P.L. (1977) *Proc. Natl Acad. Sci.* USA 74, 3735-3739.
- 64. Bustamante, E., Morris, H.P., and Pedersen, P.L. (1981) J. Biol. Chem. 256, 8699-8704.
- 65. Nakashima, R.A., Paggi, M.G., Scott, L.J., and Pedersen, P.L. (1988)

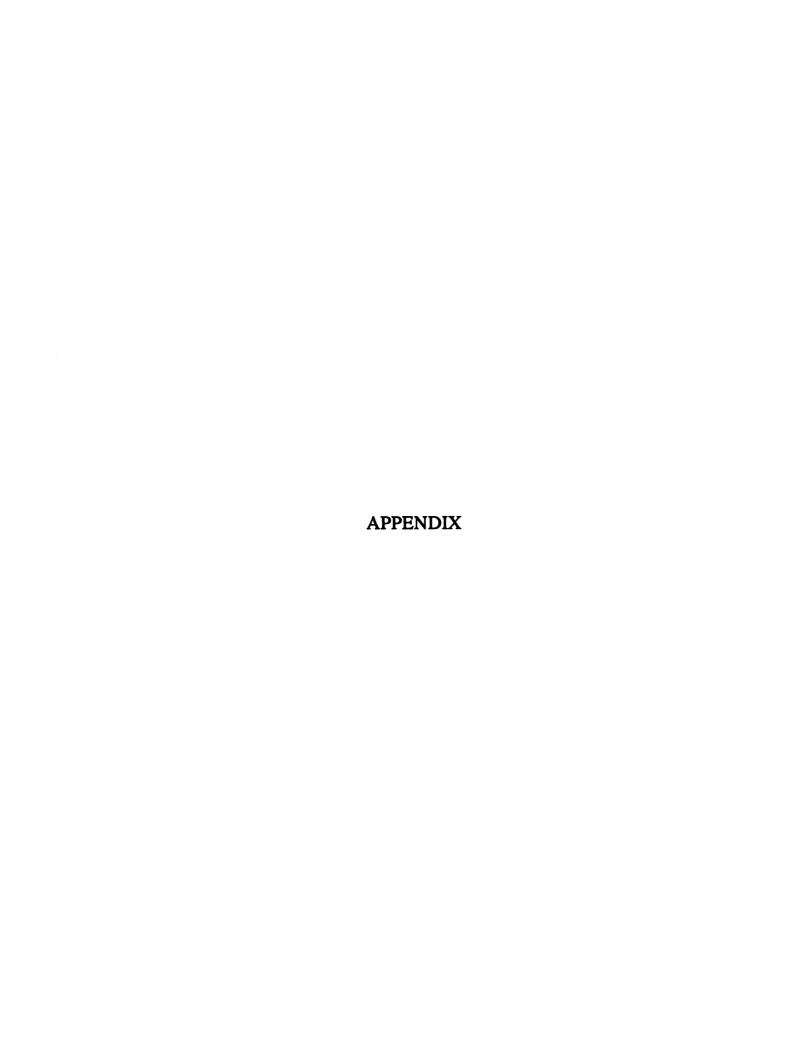
 Cancer Res. 48, 913-919.
- Arora, K.K., Fanciulli, M., and Pedersen, P.L. (1990) J. Biol. Chem. 265,
 6481-6488.
- 67. Schwab, D.A. and Wilson, J.E. (1988) J. Biol. Chem. 263, 3220-3224.

- 68. Schwab, D.A. and Wilson, J.E. (1989) *Proc. Natl. Acad. Sci.* USA **86**, 2563-2567.
- 69. Easterby, J.S. and O'Brien, M.J. (1973) Eur. J. Biochem. 38, 201-211.
- 70. Rose, I.A., Warms, J.V.B., and Kosow, D.P. (1974) Arch. Biochem.

 Biophys. 164, 729-735.
- 71. Holroyde, M.J., Trayer, I.P., and Cornish-Bowden, A. (1976) FEBS Lett. 62, 213-219.
- 72. Gregoriou, J., Trayer, I.P., and Cornish-Bowden, A. (1983) Eur. J. Biochem. 134, 283-288.
- 73. Trayer, I.P. and Darby, M.K. (1981) Biochem. Soc. Trans. 9, 62.
- 74. Lawrence, G.M. and Trayer, I.P. (1984) Comp. Biochem. Physiol. 79B, 233-238.
- 75. Poorman, R.A., Randolph, A., Kemp., R.G., and Heinrikson, R.L. (1984)

 Nature 309, 467-469.
- 76. Palm, D., Goerl, R., and Burger, K.J. (1985) Nature 313, 500-502.
- 77. Wistow, G. (1990) J. Mol. Evol. 30, 140-145.
- 78. Yanagawa, H.A. (1978) Insect Biochem. 8, 293-305.
- 79. Storey, K.B. (1980) Insect Biochem. 10, 637-645.
- 80. Mochizuki, Y. and Hori, S.H. (1977) J. Biochem. 81, 1849-1855.
- 81. Nishi, S., Seino, S., and Bell, G.I. (1988) *Biochem. Biophys. Res. Commun.*157, 937-943.
- 82. Crane, R.K. and Sols, A. (1954) J. Biol. Chem. 210, 597-606.

- 83. Nemat-Gorgani, M. and Wilson, J.E. (1986) Arch. Biochem. Biophys. 251, 97-103.
- 84. White, T.K. and Wilson, J.E. (1989) Arch. Biochem. Biophys. 274, 375-393.
- 85. Schirch, D.M. and Wilson, J.E. (1987) Arch. Biochem. Biophys. 254, 385-396.
- 86. Stachelek, C., Stachelek, J., Swan, J., Botstein, D., and Konigsberg, S. (1986) Nuc. Acids Res. 14, 945-963.
- 87. Kopetzki, E., Entian K-D., and Mecke, D. (1985) Gene (Amst.) 39, 95-102.
- 88. Anderson, C.M., Stenkamp, R.E., McDonald, R.C., and Steitz, T.A. (1978)


 J. Mol. Biol. 123, 15-33.
- 89. Anderson, C.M., Stenkamp, R.E., McDonald, R.C., and Steitz, T.A. (1978)

 J. Mol. Biol. 123, 207-219.
- 90. Polakis, P.G. and Wilson, J.E. (1984) Arch. Biochem. Biophys. 234, 341-352.
- 91. White, T.K. and Wilson, J.E. (1987) Arch. Biochem. Biophys. 259, 402-411.
- 92. Bennett, W.S. Jr. and Steitz, T.A. (1980) J. Mol. Biol. 140, 211-230.
- 93. Schirch, D.M. and Wilson, J.E. (1987) Arch. Biochem. Biophys. 257, 1-12.
- 94. White, T.K. and Wilson, J.E. (1990) Arch. Biochem. Biophys. 277, 26-34.
- 95. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) *Molecular Cloning. A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- 96. Wilson, J.E. (1989) Prep. Biochem. 19, 13-21.
- 97. Laemmli, U.K. (1970) Nature 227, 680-685.

- 98. Qadri, S.S., and Easterby, J.S. (1980) Anal. Biochem. 105, 299-303.
- 99. Hunkapillar, M.W., Lujan, E., Ostrander, F., and Hood, L.E. (1983) in Methods in Enzymology (Hirs, C.H.W., and Timasheff, S.N., Eds.), Vol. 91, pp. 227-236, Academic Press, New York.
- 100. DeWitt, D.L. and Smith, W.L. (1988) *Proc. Natl. Acad. Sci.* USA **85**, 1412-1416.
- 101. Feinberg, A.P. and Vogelstein, B. (1983) Anal. Biochem. 132, 6-13.
- 102. Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA 82, 488-492.
- 103. Kunkel, T.A., Roberts, J.D. and Zabour, R.A. in Methods in Enzymology (Wu, R. and Grossman, L., Eds.), Vol 154, pp. 367-382, Academic Press, New York.
- 104. Bird, P., Gething, M.-J., and Sambrook, J. (1987) J. Cell Biol. 105, 2905-2914.
- 105. Gluzman, Y. (1981) Cell 23, 175-182.
- 106. Dunn, S.D. (1986) Anal. Biochem. 157, 144-153.
- 107. Taketa, K., Ichikawa, E., and Hanada, T. (1986) J. Immunol. Meth. 95, 71-77.
- 108. Chomczynski, P., and Sacchi, N. (1987) Anal. Biochem. 162, 156-159.
- Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979)
 Biochem. 18, 5294-5299.
- Sawadogo, M. and Roeder, R.G. (1985) Proc. Natl. Acad. Sci. USA 82,
 4394-4398.

- 111. MacDougald, O.A. and Jump, D.B. (1991) Biochem. J. 280, 761-767.
- 112. Gorski, K., Carneiro, M. and Schibler, U. (1986) Cell 47, 767-776.
- 113. Felgner, P.L., and Wilson, J.E. (1976) *Biochem. Biophys. Res. Commun.* 68, 592-597.
- 114. Polakis, P.G., and Wilson, J.E. (1982) *Biochem. Biophys. Res. Commun.* 107, 937-943.
- 115. Marcus, F. and Ureta, T. (1986) *Biochem. Biophys. Res. Commun.* 139, 714-719.
- Imai, J., Akimoto, H., Oda, M., Okazaki, H., Ishibashi, S., and Kurokawa,M. (1988) Mol. Cell. Biochem. 81, 37-41.
- Reynolds, G.A., Basu, S.K., Osborne, T.F., Chin, D.J., Gil, G., Brown,
 M.S., Goldstein, J.L., and Luskey, K.L. (1984) Cell 38, 275-285.
- 118. Young, R.M., Shull, G.E., and Lingrel J.B. (1987) J. Biol. Chem. 262, 4905-4910.
- 119. Shull, G.E., Lane, L.K., and Kingrel, J.B. (1986) Nature 321, 429-431.
- 120. Kozak, M. (1987) Nuc. Acids Res. 15, 8125-8148.
- 121. Resnekov. L., Ben-Asher, E., Bengal, E., Choder, M., Hay, N., Kessler, M., Ragimov, N., Seiberg, M., Skolnik-David, H., and Aloni, Y. (1988) Gene (Amst) 72, 91-104.
- 122. Martin, F.H. and Tinoco, I. (1980) Nuc. Acids Res. 8, 2295-2299.
- 123. Wilson, T. and Treisman, R. (1988) Nature 336, 396-399.

- 124. Breathnach, R. and Chambon, P. (1981) in Annual Review of Biochemistry (Snell, E.E., Boyer, P.D., Meister, A., and Richardson, C.C., Eds.), Vol. 50, pp. 349-383, Annual Reviews, Inc., Palo Alto, CA.
- 125. Myers, R.M., Tilly, K., and Maniatis, T. (1986) Science 232, 613-618.
- 126. O'Shea-Greenfield, A. and Smale, S.T. (1992) J. Biol. Chem. 267, 1391-1402.
- 127. Gardiner-Garden, M. and Frommer, M. (1987) J. Mol. Biol. 196, 261-282.
- 128. Treisman, R. (1985) Cell 42, 889-902.
- Knight, E., Jr., Anton, E.D., Fahey, D., Friedland, B.K., and Jonak, G.J.
 (1985) Proc. Natl. Acad. Sci. USA 82, 151-154.
- 130. Faisst, S. and Meyer, S. (1992) Nuc. Acids Res. 20, 3-26.
- 131. Hipskind, R.A. Nordheim, A. (1991) J. Biol. Chem. 266, 19583-19592.
- Ureta, T., Radojković, J., Lagos, R., Guixé, V., and Nuñez, L. (1979) Arch.
 Biol. Med. Exper. 12, 587-604.
- Nasrin, N., Ercolani, L., Denaro, M., Kong, X.F., Kang, I., and Alexander,
 M. (1990) Proc. Natl. Acad. Sci. USA 87, 5273-5277.
- 134. Thelen, A.P. and Wilson, J.E. (1991) Arch. Biochem. Biophys. 286, 645-651.
- 135. Garner, M.M. and Revzin, A.R. (1981) Nuc. Acids Res. 5, 3157-3170.
- 136. Ceglarek, J.A. and Revzin, A.R. (1989) *Electrophoresis* 10, 360-365.

APPENDIX A

LIST OF RESTRICTION SITES IN HEXOKINASE TYPE II cDNA (Composite, includes engineered Ncol Site at 1557)

		#	SITES	FRAGMENTS		FRAGMENT END	
AAT 2 (GACG	TC)	2	3330 3445	189	(91.6) (5.2) (3.2)	1 3445 3330	3330 3634 3445
ACC 1 (GTVW	AC)	1	1442		(60.3) (39.7)	1442 1	363 4 1442
ACY 1 (GPCG	QC)	2	3330 3445		(91.6) (5.2) (3.2)	1 3445 3330	3330 3634 3445
AFL 3 (ACPQ	GT)	2	17 4 0 2856		(47.9) (30.7) (21.4)	1 1740 2856	1740 2856 3634
AHA 2 (GPCG	QC)	2	3330 3445	3330 189 115	(91.6) (5.2) (3.2)	1 3445 3330	3330 3634 3445
AHA 3 (TTTA	AA)	2	2997 3601	2997 604 33	(82.5) (16.6) (0.9)	1 2997 3601	2997 3601 3634
ALU 1 (AGCT	~	24	33 55 234 352 373 570 615 636 1068 1107 1146 1629 1644	483 432 363 303 275 270 201 197 179 132 118 111	(13.3) (11.9) (10.0) (8.3) (7.6) (7.4) (5.5) (5.4) (4.9) (3.6) (3.2) (3.1) (2.9)	1146 636 1914 2388 2952 1644 3234 373 55 3502 234 2277 2793	1629 1068 2277 2691 3227 1914 3435 570 234 3634 352 2388 2899

	#	SITES	FRAG	MENTS	FRAGMEN	T ENDS
		1914 2277 2388 2691 2793 2899 2952	102 67 53 45 39 39	(2.8) (1.8) (1.5) (1.2) (1.1) (1.1) (0.9)	2691 3435 2899 570 1107 1068	2793 3502 2952 615 1146 1107 33
		3227 3234 3435 3502	22 21 21 15 7	(0.6) (0.6) (0.6) (0.4) (0.2)	33 615 352 1629 3227	55 636 373 1644 3234
APA 1 (GGGCCC)	1	1599	2035 1599	(56.0) (44.0)	1599 1	3634 1599
APA L1 (GTGCAC)	1	2662	2662 972	(73.3) (26.7)	1 2662	2662 3634
AVA 1 (CQCGPG)	2	99 152	3482 99 53	(95.8) (2.7) (1.5)	152 1 99	3634 99 152
AVA 2 (GGRCC)	9	754 831 1813 2361 2959 3015 3032 3158 3610	598 548 452 126 77 56 24	(27.0) (20.7) (16.5) (15.1) (12.4) (3.5) (2.1) (1.5) (0.7) (0.5)		
AVA 3 (ATGCAT)	3	1859 1895 2819	92 4 815	(51.2) (25.4) (22.4) (1.0)	1 1895 2819 1859	3634
AVR 2 (CCTAGG)	1	2614		(71.9) (28.1)	1 2614	2614 3634

	#	SITES	FRAGMENTS	FRAGMENT ENDS
BAL 1 (TGGCCA)	3	597 1134 1302	2332 (64.2 597 (16.4 537 (14.8 168 (4.6) 1 597) 597 1134
BAN 1 (GGQPCC)	3	1498 2231 3082	1498 (41.2 851 (23.4 733 (20.2 552 (15.2) 2231 3082) 1498 2231
BAN 2 (GPGCQC)	4	233 1045 1599 1913	1721 (47.4 812 (22.3 554 (15.2 314 (8.6 233 (6.4) 233 1045) 1045 1599) 1599 1913
BBV 1 (GCTGC)	14	189 371 894 1066 1355 1539 1553 1642 1729 2076 2343 2491 2684 2897	737 (20.3 523 (14.4 347 (9.5 289 (8.0 267 (7.3 213 (5.9 193 (5.3 189 (5.2 184 (5.1 182 (5.0 172 (4.7 148 (4.1 89 (2.4 87 (2.4 14 (0.4) 371 894) 1729 2076) 1066 1355) 2076 2343) 2684 2897) 2491 2684) 1 189) 1355 1539) 189 371) 894 1066) 2343 2491) 1553 1642) 1642 1729
BCL 1 (TGATCA)	2	856 2427	1571 (43.2 1207 (33.2 856 (23.6) 2427 3634
BGL 1 (GCCNNNNNGGC)	1	1358	2276 (62.6 1358 (37.4	
BGL 2 (AGATCT)	3	525 1869 2836	1344 (37.0 967 (26.6 798 (22.0 525 (14.4) 1869 2836) 2836 3634

		SITES	FRAG	MENTS	FRAGMEI	T ENDS
BIN 1 (GGATC)	4	84 445 760 1789	1845 1029 361 315 84	(50.8) (28.3) (9.9) (8.7) (2.3)	1789 760 84 445 1	3634 1789 445 760 84
BSM 1 (GAATGC)	1	590	30 44 590	(83.8) (16.2)	590 1	363 4 590
BSP 1286 (G2GC3C)	9	233 470 886 1045 1499 1599 1913 2626 2662	972 713 454 416 314 237 233 159 100 36	(26.7) (19.6) (12.5) (11.4) (8.6) (6.5) (6.4) (4.4) (2.8) (1.0)	2662 1913 1045 470 1599 233 1 886 1499 2626	3634 2626 1499 886 1913 470 233 1045 1599 2662
BSP M1 (ACCTGC)	1	3607	3607 27	(99.3) (0.7)	1 3607	3607 3634
BSP M2 (TCCGGA)	3	324 409 762	2872 353 324 85	(79.0) (9.7) (8.9) (2.3)	762 409 1 324	3634 762 324 409
BSS H2 (GCGCGC)	1	2680	2680 95 4	(73.7) (26.3)	1 2680	2680 363 4
BST E2 (GGTNACC)	2	2095 31 4 2	2095 1047 492	(57.6) (28.8) (13.5)	1 2095 31 4 2	2095 3142 3634
BST N1 (CCRGG)	16	72 105 436 595 1058 1123	464 463 336 331 284 260	(12.8) (12.7) (9.2) (9.1) (7.8) (7.2)	2402 595 1615 105 2866 3150	2866 1058 1951 436 3150 3410

	#	SITES	FRAG	MENTS	FRAGME	T ENDS
		1270 1363 1615 1951 2140 2347 2402 2866 3150 3410	252 224 207 189 159 147 93 72 65 55	(6.9) (6.2) (5.7) (5.2) (4.4) (4.0) (2.6) (2.0) (1.8) (1.5) (0.9)	1363 3410 2140 1951 436 1123 1270 1 1058 2347 72	1615 3634 2347 2140 595 1270 1363 72 1123 2402 105
BST X1 (CCANNNNNTGG)	2					
	-	600 726	2908 600 126	(80.0) (16.5) (3.5)	726 1 600	363 4 600 726
CFR 1 (QGGCCP)	7					
	•	597 807 1134 1302 1341 1365 2709	1344 925 597 327 210 168 39 24	(37.0) (25.5) (16.4) (9.0) (5.8) (4.6) (1.1) (0.7)	1365 2709 1 807 597 1134 1302	2709 3634 597 1134 807 1302 1341 1365
CLA 1 (ATCGAT)	1					
	•	2471	2471 1163	(68.0) (32.0)	1 2 4 71	2471 3634
DDE 1 (CTNAG)	14					
		30 289 540 711 1166 1530 1631 1691 2512 2547 2559 3103 3224 3596	821 544 455 372 364 259 251 171 121 101 60 38 35 30 12	(22.6) (15.0) (12.5) (10.2) (10.0) (7.1) (6.9) (4.7) (3.3) (2.8) (1.7) (1.0) (1.0) (0.8) (0.3)	1691 2559 711 3224 1166 30 289 540 3103 1530 1631 3596 2512 1	2512 3103 1166 3596 1530 289 540 711 3224 1631 1691 3634 2547 30 2559
EAE 1 (QGGCCP)	7					
		597 807 1134 1302 1341	1344 925 597 327 210	(37.0) (25.5) (16.4) (9.0) (5.8)	1365 2709 1 807 597	2709 3634 597 1134 807

	#	SITES	FRAG	ments	FRAGMENT ENDS		
		1365 2709	168 39 24	(4.6) (1.1) (0.7)	1134 1302 1341	1302 1341 1365	
ECO 0109 (PGGNCCQ)	4						
	*	25 1812 3031 3609	1787 1219 578 25 25	(49.2) (33.5) (15.9) (0.7) (0.7)	25 1812 3031 3609 1	1812 3031 3609 3634 25	
FNU 4H1 (GCNGC)	21						
	21	186 189 371 894 1066 1355 1367 1539 1542 1729 2076 2343 2433 2491 2505 2684 2711 2897 2922	712 523 347 289 267 186 186 182 179 172 172 90 89 87 58 27 25 14 12 11 3	(19.6) (14.4) (9.5) (8.0) (7.3) (5.1) (5.1) (5.0) (4.7) (4.7) (4.7) (2.4) (1.6) (0.7) (0.4) (0.3) (0.3) (0.1)	2922 371 1729 1066 2076 2711 189 2505 1367 894 2343 1553 1642 2433 2684 2897 2491 1355 1542 1539 186	3634 894 2076 1355 2343 2897 186 371 2684 1539 1066 2433 1642 1729 2491 2711 2922 2505 1367 1553 1542 189	
FNU D2 (CGCG)							
	4	21 1335 1369 2681	1314 1312 953 34 21	(36.2) (36.1) (26.2) (0.9) (0.6)	21 1369 2681 1335	1335 2681 3634 1369 21	
FOK 1 (GGATG)	23						
	23	195 412 535 685 1012 1092 1120 1234 1454 1534 1879 2038	345 327 300 228 220 219 217 196 195 159 158	(9.5) (9.0) (8.3) (6.3) (6.1) (6.0) (6.0) (5.4) (5.4) (4.4) (4.3) (4.1)	1534 685 3194 2926 1234 2383 195 2602 1 1879 2143 535	1879 1012 3494 3154 1454 2602 412 2798 195 2038 2301 685	

	#	SITES	FRAG	MENTS	FRAGMEN	T ENDS
		2089 2143 2301 2350 2383 2602 2798 2926 3154 3194 3494	140 128 123 114 80 80 54 51 49 40 33 28	(3.9) (3.5) (3.4) (3.1) (2.2) (2.2) (1.5) (1.4) (1.3) (1.1) (0.9) (0.8)	3494 2798 412 1120 1454 1012 2089 2038 2301 3154 2350 1092	3634 2926 535 1234 1534 1092 2143 2089 2350 3194 2383 1120
GDI 2 (QGGCCG)	4					
	4	807 1341 1365 2709	1344 925 807 534 24	(37.0) (25.5) (22.2) (14.7) (0.7)	1365 2709 1 807 1341	2709 3634 807 1341 1365
HAE 1 (RGGCCR)	9					
		496 597 1134 1248 1302 1782 2218 2916 3095	698 539 537 496 480 436 179 114 101	(19.2) (14.8) (14.8) (13.6) (13.2) (12.0) (4.9) (3.1) (2.8) (1.5)	2218 3095 597 1 1302 1782 2916 1134 496 1248	2916 3634 1134 496 1782 2218 3095 1248 597 1302
HAE 2 (PGCGCQ)	2					
	2	148 2517	2369 1117 148	(65.2) (30.7) (4.1)	148 2517 1	2517 3634 148
HAE 3 (GGCC)	17					
		26 103 497 598 808 1135 1249 1303 1342 1366 1600 1783 2219 2504 2710	538 436 394 327 285 234 210 207 206 183 179 114 101 77 54	(14.8) (12.0) (10.8) (9.0) (7.8) (6.4) (5.8) (5.7) (5.7) (5.7) (5.0) (4.9) (3.1) (2.8) (2.1) (1.5)	3096 1783 103 808 2219 1366 598 2710 2504 1600 2917 1135 497 26	3634 2219 497 1135 2504 1600 808 2917 2710 1783 3096 1249 598 103 1303

	#	SITES	FRAG	ments	FRAGMENT ENDS	
		2917 3096		(1.1) (0.7) (0.7)	1	26
HGA 1 (GACGC)						
	4	283 922 1471 1702	639 5 49	(15.1) (7.8)	1702 283 922 1 1471	922 1 4 71 283
HGI A1 (GRGCRC)	5					
		233 470		(39.7) (26.7)	470 2662	1913 3634
		1913 2626 2662	237 233	(19.6) (6.5) (6.4) (1.0)	1913 233 1 2626	470 233
HGI C1 (GGQPCC)	3					
		1498 2231 3082	851 733	(41.2) (23.4) (20.2) (15.2)	1 2231 1498 3082	3082
HGI J2 (GPGCQC)	4					
	4	233 10 4 5 1599 1913	812	(47.4) (22.3) (15.2) (8.6) (6.4)	1913 233 1045 1599	1045 1599 1913
HHA 1 (GCGC)	10					
	12	149 778 955 1267 1336 1353 2458 2518 2608 2680 2682 2700	1105 934 629 312 177 149 90 72 69 60 18 17	(30.4) (25.7) (17.3) (8.6) (4.9) (4.1) (2.5) (2.0) (1.9) (1.7) (0.5) (0.5) (0.1)	1353 2700 149 955 778 1 2518 2608 1267 2458 2682 1336 2680	2458 3634 778 1267 955 149 2608 2680 1336 2518 2700 1353 2682

HINC 2 (GTQPAC)	#	SITES	FRAG	MENTS	FRAGME	T ENDS
	3	260 403 2309	1906 1325 260 143	(52.4) (36.5) (7.2) (3.9)	403 2309 1 260	2309 3634 260 403
HIND 3 (AAGCTT)	3	54 2792 2951	2738 683 159	(75.3) (18.8) (4.4)	54 2951 2792	2792 3634 2951
HINF 1 (GANTC)			54	(1.5)	1	54
	14	76 181 1239 1279 1314 1383 1619 2061 2116 2535 2782 2870 3107 3422	1058 442 419 315 247 237 236 212 105 88 76 69 55 40 35	(29.1) (12.2) (11.5) (8.7) (6.8) (6.5) (6.5) (5.8) (2.9) (2.4) (2.1) (1.9) (1.5) (1.1)	181 1619 2116 3107 2535 2870 1383 3422 76 2782 1 1314 2061 1239 1279	1239 2061 2535 3422 2782 3107 1619 3634 181 2870 76 1383 2116 1279 1314
HPA 2 (CCGG)	13	92 100 143 325 410 763 1597 1810 2122 2235 2677 2929 3388	834 459 442 353 312 252 246 213 182 113 92 85 43 8	(22.9) (12.6) (12.2) (9.7) (8.6) (6.9) (6.8) (5.9) (5.0) (3.1) (2.5) (2.3) (1.2) (0.2)	763 2929 2235 410 1810 2677 3388 1597 143 2122 1 325 100 92	1597 3388 2677 763 2122 2929 3634 1810 325 2235 92 410 143 100
HPH 1 (GGTGA)	13	37 484 651 814 1126 1561 2084 2097	672 523 447 435 314 312 254 236	(18.5) (14.4) (12.3) (12.0) (8.6) (8.6) (7.0) (6.5)	2158 1561 37 1126 2830 814 3380 3144	2830 2084 484 1561 3144 1126 3634 3380

	#	SITES	FRAGMENTS		FRAGMENT ENDS	
		2119	167	(4.6)	484	651
		2158	163	(4.5)	651	814
		2830	39	(1.1)	2119	2158
		3144		(1.1)		
			37		1	37
		3380	22 13	(0.6)	2097	2119
			13	(0.4)	2084	2097
KPN 1 (GGTACC)						
, , , , , , , , , , , , , , , , , , , ,	1					
		3082	3082	(84.8)	1	3082
		0002	552	(15.2)	3082	3634
				(,	0002	
MBO 2 (GAAGA)						
	17					
		631	631	(17.4)	1	631
		1078	513	(14.1)	2496	3009
		1129	447	(12.3)	631	1078
		1223	386	(10.6)	1223	1609
		1609	349	(9.6)	3009	3358
		1662	281	(7.7)	1917	2198
		1723	187	(5.1)	1723	1910
		1910	182	(5.0)	3452	3634
		1917	164	(4.5)	2258	2422
		2198	94	(2.6)	1129	1223
		2258	91	(2.5)	3358	3449
		2422	74	(2.0)	2422	2496
		2496	61	(1.7)	1662	1723
		3009	60	(1.7)	2198	2258
		3358	53	(1.5)	1609	1662
		3449	51	(1.4)	1078	1129
		3452	7	(0.2)	1910	1917
		3132	3	(0.1)	3449	3452
			_	, ,		
MNL 1 (CCTC)						
	54					
		24	276	(7.6)	950	1226
		29	196	(5.4)	204	400
		158	152	(4.2)	1889	2041
		204	145	(4.0)	1652	1797
		400	142	(3.9)	641	783
		453	139	(3.8)	3474	3613
		499	136	(3.7)	2521	2657
		542	131	(3.6)	783	914
		641	129	(3.5)	29	158
		783	120	(3.3)	1532	1652
		914	119	(3.3)	2294	2413
		941	117	(3.2)	3030	3147
		950	111	(3.1)	1292	1403
		1226	99	(2.7)	542	641
		1292	98	(2.7)	2657	2755
		1403	89	(2.4)	2413	2502
		1489	86	(2.4)	1403	1489
		1492	75	(2.1)	2801	2876
		1522	75	(2.1)	2129	2204
		1532	70	(1.9)	3223	3293
		1652	70	(1.9)	2221	2291
		1797	66	(1.8)	1226	1292
		1846	63	(1.7)	3356	3419
		1889	62	(1.7)	3161	3223
			~ =	/		

	#	SITES	FRAGME	NTS	FRAGMENT	ENDS
		2041 2044 2081 2087	57 55 53 50	(1.6) (1.5) (1.5) (1.4)	2876 3419 400 2933	2933 3474 453 2983
		2129 2204 2221 2291	49 47 46 46	(1.3) (1.3) (1.3) (1.3) (1.3)	1797 2983 2755 453	1846 3030 2801 499
		2294 2413 2502 2521 2657	46 43 43 42 38	(1.3) (1.2) (1.2) (1.2) (1.0)	158 1846 499 2087 3318	204 1889 542 2129 3356
		2755 2801 2876 2933	37 30 27 24	(1.0) (0.8) (0.7) (0.7)	2044 1492 914	2081 1522 941 24
		2983 3030 3147 3161 3223 3293	21 19 18 17 14	(0.6) (0.5) (0.5) (0.5) (0.4) (0.3)	3613 2502 3293 2204 3147 1522	3634 2521 3311 2221 3161 1532
		3311 3315 3318 3356 3419	9 6 5 4	(0.2) (0.2) (0.1) (0.1) (0.1)	941 2081 24 3311 3315	950 2087 29 3315 3318
		3474 3613	3 3 3 3	(0.1) (0.1) (0.1)	2291 2041 1489	2294 2044 1492
MST 1 (TGCGCA)	2	1352	1352	(37.2)	1	1352
		2457	1177 1105	(32.4) (30.4)	2457 1352	3634 2457
MST 2 (CCTNAGG)	1	539	3095 539	(85.2) (14.8)	539 1	3634 539
NCI 1 (CCSGG)	6	99	1497	(41.2)	100	1597
		100 1597 1810 2676 2929		(23.8) (19.4) (7.0) (5.9) (2.7) (0.0)	1810 2929 2676 1597 1	2676 3634 2929 1810 99 100
(NCO 1, CCATGG)	1	1557	2077 1557	(57.2) (42.8)	1558 1	3634 1557

	#	SITES	FRAG	MENTS	FRAGMEN	T ENDS
NDE 1 (CATATG)						
	1	200	2425	(04.2)	200	2624
		209	3425 209	(9 4 .2) (5.8)	209 1	363 4 209
NT 2 2 (G2FG)						
NLA 3 (CATG)	22					
		280	657	(18.1)	2822	3479
		425	607	(16.7)	1099	1706
		550 607	288 280	(7.9) (7.7)	196 6 1	225 4 280
		835	270	(7.4)	2437	2707
		910	228	(6.3)	607	835
		93 4 958	192 155	(5.3) (4.3)	1706 3 4 79	1898 3634
		970	145	(4.0)	280	425
		1042	125	(3.4)	425	550
		1099	123	(3.4) (3.1)	2314	2437
		1706 1898	111 75	(3.1) (2.1)	2707 835	2818 910
		1960	72	(2.0)	970	1042
		1966	62	(1.7)	1898	1960
		225 4 231 4	60 57	(1.7) (1.6)	225 4 1042	231 4 1099
		2437	57	(1.6)	550	607
		2707	24	(0.7)	934	958
		2818	24	(0.7)	910	934
		2822 3479	12 6	(0.3) (0.2)	958 1960	970 1966
		3473	4	(0.1)	2818	2822
NLA 4 (GGNNCC)						
1.21 1 (0011100)	17					
		68	611	(16.8)	2231	2842
		321 4 55	552 419	(15.2) (11.5)	3082 1812	363 4 2231
		563	267	(7.3)	563	830
		830	253	(7.0)	68	321
		980 1190	246 213	(6.8)	1190	1436
		1436	213	(5.9) (5.8)	1599 980	1812 1190
		1498	150	(4.1)	830	980
		1599	134	(3.7)	321	455
		1812 2231	116 108	(3.2) (3.0)	2842 455	2958 563
		2842	101	(2.8)	1498	1599
		2958	68	(1.9)	1	68
		3015	62 57	(1.7)	1436	1498
		3032 3082	57 50	(1.6) (1.4)	2958 3032	3015 3082
		3002	17	(0.5)	3015	3032
NSI 1 (ATGCAT)						
	3					
		1859	1859	(51.2)	1	1859
		1895 2819	92 4 815	(25.4) (22.4)	1895 2819	2819 3634
		~ U L J	36	(1.0)	1859	1895
				•	•	

	#	SITES	FRAG	MENTS	FRAGMEN	T ENDS
NSP B2 (CVGCWG)	7	32 372 569 1067 1368 1540 2431	1203 891 498 340 301 197 172 32	(33.1) (24.5) (13.7) (9.4) (8.3) (5.4) (4.7) (0.9)	2431 1540 569 32 1067 372 1368	3634 2431 1067 372 1368 569 1540
NSP C1 (PCATGQ)	4	279 957 1705 2436	1198 748 731 678 279	(33.0) (20.6) (20.1) (18.7) (7.7)	2436 957 1705 279	3634 1705 2436 957 279
PFL M1 (CCANNNNTGG)	2	502 3087	2585 547 502	(71.1) (15.1) (13.8)	502 3087 1	3087 3634 502
PPU M1 (PGGRCCQ)	3	1812 3031 3609	1812 1219 578 25	(49.9) (33.5) (15.9) (0.7)	1 1812 3031 3609	1812 3031 3609 3634
PVU 2 (CAGCTG)	4	32 372 569 1067	2567 498 340 197 32	(70.6) (13.7) (9.4) (5.4) (0.9)	1067 569 32 372	3634 1067 372 569 32
RSA 1 (GTAC)	6	999 1096 1957 2440 3083 3181	999 861 643 483 453 98	(27.5) (23.7) (17.7) (13.3) (12.5) (2.7) (2.7)	1 1096 2440 1957 3181 3083 999	999 1957 3083 2440 3634 3181 1096
RSR 2 (CGGRCCG)	1	2360	2360 1274	(64.9) (35.1)	1 2360	2360 363 4

	#	SITES	FRAG	MENTS	FRAGME	NT ENDS
SAC 1 (GAGCTC)	2	233 1913		(47.4) (46.2) (6.4)	1913 233 1	3634 1913 233
SAC 2 (CCGCGG)	1	1368		(62.4) (37.6)	1368 1	363 4 1368
SAU 1 (CCTNAGG)	1	539		(85.2) (14.8)	539 1	363 4 539
SAU 3A (GATC)	12	84 199 214 446 526 760 857 1036 1790 1870 2428 2837	754 558 409	(21.9) (20.7) (15.4) (11.3) (6.4) (6.4) (4.9) (3.2) (2.7) (2.3) (2.2) (2.2) (2.2)	2837 1036 1870 2428 526 214 857 84 760 1 1790 446 199	3634 1790 2428 2837 760 446 1036 199 857 84 1870 526 214
SAU 96 (GGNCC)	13	26 102 754 831 1599 1600 1813 2361 2959 3015 3032 3158 3610	652 598 548 452 213 126	(21.1) (17.9) (16.5) (15.1) (12.4) (5.9) (3.5) (2.1) (2.1) (1.5) (0.7) (0.7) (0.5) (0.0)	831 102 2361 1813 3158 1600 3032 754 26 2959 1 3610 3015 1599	1599 754 2959 2361 3610 1813 3158 831 102 3015 26 3634 3032 1600
SCR F1 (CCNGG)	22	72 99 100 105 436 595 1058 1123	274 260 234 224	(12.7) (9.1) (7.5) (7.2) (6.4) (6.2) (6.1) (5.7)	595 105 2402 3150 1363 3410 2929 2140	1058 436 2676 3410 1597 3634 3150 2347

	#	SITES	FRAG	MENTS	FRAGMEI	T ENDS
		1270 1363 1597 1615 1810 1951 2140 2347 2402 2676 2866 2929 3150 3410	195 190 189 159 147 141 93 72 65 63 55 27 18	(5.4) (5.2) (5.2) (4.4) (4.0) (3.9) (2.6) (2.0) (1.8) (1.7) (1.5) (0.7) (0.5) (0.1) (0.0)	1615 2676 1951 436 1123 1810 1270 1 1058 2866 2347 72 1597 100 99	1810 2866 2140 595 1270 1951 1363 72 1123 2929 2402 99 1615 105
SDU 1 (G2GC3C)	9					
	9	233 470 886 1045 1499 1599 1913 2626 2662	972 713 454 416 314 237 233 159 100 36	(26.7) (19.6) (12.5) (11.4) (8.6) (6.5) (6.4) (4.4) (2.8) (1.0)	2662 1913 1045 470 1599 233 1 886 1499 2626	3634 2626 1499 886 1913 470 233 1045 1599 2662
SFA N1 (GATGC)	12					
	12	963 1264 1726 1858 2037 2069 2263 2508 2643 2925 3277 3377	963 462 352 301 282 257 245 194 179 135 132 100 32	(26.5) (12.7) (9.7) (8.3) (7.8) (7.1) (6.7) (5.3) (4.9) (3.7) (3.6) (2.8) (0.9)	1 1264 2925 963 2643 3377 2263 2069 1858 2508 1726 3277 2037	963 1726 3277 1264 2925 3634 2508 2263 2037 2643 1858 3377 2069
SMA 1 (CCCGGG)	1	99	3535 99	(97.3) (2.7)	99 1	3634 99
SPH 1 (GCATGC)	1	1705	1929 1705	(53.1) (46.9)	1705 1	3634 1705
STU 1 (AGGCCT)	1	1248	2386		1248	3634
		1440	1248	(34.3)	1	1248

	#	SITES	FRAG	MENTS	FRAGME	NT ENDS
STY 1 (CCRRGG)	8	1137 1156 1785 2614 2811 3020 3092 3511	1137 829 629 419 209 197 123 72	(31.3) (22.8) (17.3) (11.5) (5.8) (5.4) (3.4) (2.0) (0.5)	1 1785 1156 3092 2811 2614 3511 3020 1137	1137 2614 1785 3511 3020 2811 3634 3092 1156
TAQ 1 (TCGA)						
	11	121 153 173 1038 1197 1242 1431 1920 2418 2472 3275	865 803 498 489 359 189 159 121 54 45 32	(23.8) (22.1) (13.7) (13.5) (9.9) (5.2) (4.4) (3.3) (1.5) (1.2) (0.9) (0.6)	173 2472 1920 1431 3275 1242 1038 1 2418 1197 121 153	1038 3275 2418 1920 3634 1431 1197 121 2472 1242 153 173
TTH111 2 (CCAPCA)	6					
	•	1591 1818 2014 2227 3138 3301	1591 911 333 227 213 196 163	(43.8) (25.1) (9.2) (6.2) (5.9) (5.4) (4.5)	1 2227 3301 1591 2014 1818 3138	1591 3138 3634 1818 2227 2014 3301
XHO 1 (CTCGAG)	1					
	•	152	3482 152	(95.8) (4.2)	152 1	3634 152
XHO 2 (PGATCQ)	5					
	-	445 525 1789 1869 2836	1264 967 798 445 80	(34.8) (26.6) (22.0) (12.2) (2.2) (2.2)	525 1869 2836 1 1789 445	1789 2836 3634 445 1869 525
XMN 1 (GAANNNTTC)	1	2111	2111 1523	(58.1) (41.9)	1 2111	2111 3634

The following do not appear:

AFL 2	ASU 2	BAM H1	DRA 3
ECO R1	ECO R5	HPA 1	MLU 1
NAE 1	NAR 1	NCO 1	NHE 1
NOT 1	NRU 1	PST 1	PVU 1
RRU 1	SAL 1	SCA 1	SFI 1
SNA 1	SNA B1	SPE 1	SSP 1
TTH111 1	XBA 1	XMA 3	

MICHIGAN STATE UNIV. LIBRARIES
31293010551806