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ABSTRACT

STRONGLY DEPENDENT ECONOMIC TIME SERIES:

THEORY AND APPLICATIONS

By

Margie A. Tieslau

This dissertation contains three essays which address the issues of

persistence and stationarity of macroeconomic time series, estimation of

persistent series through the procedure of generalized method of moments,

and the existence of stable long-run money demand functions and stable

real exchange rates.

The first essay investigates the Autoregressive Fractionally

Integrated Moving Average ARFIMA(p,d,q) model as a process for describing

strongly persistent time series. The essay proposes the ARFIMA(p,d,q)-

GARCH(P,Q) model. which, offers the flexibility' of' modelling strongly

dependent series that are also characterized by non-homoskedastic error.

The ARFIMA-GARCH model is applied to the inflation rate series for both

low- and high-inflation economies and the inflation rate is found to be

highly persistent but, none the less, mean reverting and thus stationary.

In addition, empirical support is found for the relatively high-inflation

economies for the Friedman hypothesis which implies a direct association

between increased levels of inflation.and increased.inf1ation variability.

The second essay presents the theoretical derivation of a

generalized method of moments (CMM) estimator for strongly dependent time

series. The GMM estimation technique may 'be preferred. to maximum

likelihood estimation methods since GMM does not rely on distributional



assumptions. The moment conditions exploited by the GMM estimator make

use of' theoretical and. estimated. autocorrelation. functions, and. the

derivation of these functions is presented here. Numerical results from

variance calculations using all available moment conditions as well as

groups of moment conditions are presented to examine the relative

efficiency of the GMM estimator.

The third essay investigates the existence of cointegrating

relationships betweenlmacroeconomic variables in Canada and.the U.S. This

essay examines the long-run equilibrium relationship between real money

balances, real income, and short—term interest rates for Canada and the

U.S., and investigates the existence of cross-country effects between

these countries. Evidence of stable long-run money demand functions is

found for both countries with estimated long run income elasticities near

1.0 and long-run interest elasticities near -0.5. The stationarity of the

nominal exchange rate and the relative price levels for Canada and the

U.S. is also investigated with some evidence found in support of this

hypothesis for the post-Bretton Woods era.
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I . INTRODUCTION



CHAPTER I

INTRODUCTION

Many economic and financial time series are characterized by strong

persistence in their mean and variance such that when expressed in levels

the series appear to be nonstationary, or contain a unit root, yet when

expressed in first differences the series appear to be overdifferenced.

The traditional nonstationary Autoregressive-Integrated Moving Average

ARIMA(p,d,q) model of Box and Jenkins (1976), where the parameter of

integration can take on only integer values, is not able to account for

the long-term persistence which is characteristic of these series. This

can be especially relevant in applied analysis since empirical

investigation of such series must be done within the framework of a model

which is able to account for the substantially high order of correlation

present in these series.

The first essay of this dissertation, Chapters II and III, considers

the long-run characteristics of the CPI inflation rate series which is one

macroeconomic variable that exhibits characteristics common to strongly

persistent time series. This variable is considered.within the context of

the Autoregressive Fractionally Integrated Moving Average ARFIMA(p,d,q)

process introduced.by Granger and Joyeux (1980) and Hosking (1981), which

allows for the order of integration of a series to be fractional, as well

as the Generalized Autoregressive Conditionally Heteroskedastic GARCH(P,Q)

process of Engle (1982) and Bollerslev (1986). In this way the model is

able to allow for simultaneous modelling of both long-term persistence and

time varying conditional variance which have been found to be present in



the inflation rate series.

The application. to the inflation rate series is particularly

appealing since this series does not appear to be well described by either

the traditional stationary 1(0) process or the non-stationary I(l)

process. In addition, this essay investigates the validity of the

hypothesis posited by Friedman in his 1977 Nobel lecture that increased

levels of inflation were likely to be associated.with increased levels of

the variance of inflation. Empirical support for such a relationship

would impLy a significant role in the economy fOr policy directed at

maximizing net benefit.

Several estimation techniques have been developed in recent years to

estimate the degree of persistence of strongly dependent time series

utilizing both ordinary least squares and maximum likelihood estimation

procedures (Janacek (1982), Geweke and Porter-Hudak (1983), Hosking

(1984), Fox and Taqqu (1986), and Sowell (1992)). The second essay,

Chapter IV, proposes a generalized method of moments (GMM) estimator to

determine the degree of fractional integration of a strongly dependent

series. The estimation technique is set within the context of the general

ARFIMA(0,d,0) process, but may be extended to include autoregressive and

moving average parameters in the model as well. The GM estimation

technique provides an attractive alternative estimation procedure for the

fractionally integrated process since it does not require the

distributional assumptions necessary under maximum likelihood estimation

techniques.

This essay also examines the asymptotic performance of the

generalized method of moments estimator and compares its efficiency

relative to that of the maximum likelihood estimator. Attention is



3

restricted, in this analysis, to that range of the parameter of fractional

integration for which the moment conditions exploited by the model exhibit

the usual JT consistency and normality.

The final essay of this dissertation, Chapter V, addresses the

issues of stable empirical money demand functions and the stationarity of

the nominal exchange rate and relative price levels for the countries of

Canada and the U.S. The investigation is set within the framework of the

monetary balance of payments theory and utilizes the methodology proposed

by Johansen (1988) and Johansen and Juselius (1989) to identify

cointegrating relationships among sets of variables. The investigation.of

long-run equilibrium relationships within and between the economies of

Canada and the U.S. is especially appropriate due to the parallel nature

of macroeconomic variables in the two countries.

The framework used in this essay allows for an investigation into

the existence of cross-country relationships between monetary and

international variables in the two countries and allows for an

investigation into the degree of similarity in the dynamics between the

two countries. Empirical evidence of cross-country effects or similarity

in dynamics between the two countries can have significant implications

for the conduct of monetary policy and international transactions within

and among the two countries.
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ASSOCIATED WITH LONG-MEMORY TIME SERIES MODELS



CHAPTER II

THE THEORETICAL CHARACTERISTICS AND ESTIMATION PROCEDURES

ASSOCIATED WITH LONG-MEMORY TIME SERIES MODELS

1. INTRODUCTION

The use of time series analysis in the field of economics is

instrumental in investigating the long-run properties of various economic

series. Often times it is the case when fitting parametric models to a

time series that the series under investigation initially requires first

differencing in order to achieve stationarity. The standard Box and

Jenkins (1976) methodology is to difference a series an integer number of

times until it appears stationary. The Autoregressive Moving Average

(ARMA) model of Box and Jenkins has been used to model the long-run

behavior of certain series by expressing today's realization of a variable

as a weighted sum of past observations of that variable and past and

present innovations. ARMA models assume that the dependence between

observations decays exponentially and therefore is relatively' weak.

However, many economic and financial time series, while being stationary,

are characterized by the property of relatively significant dependence

between observations which occur at distant intervals. Such series,

although stationary, have been termed "long memory".

Two general classes of models have arisen in modelling series which

exhibit longgmemory; The first is the fractional Brownian motion process,

which is a generalization of Brownian motion. The use of fractional

Brownian motion was motivated by the existence of long-term persistence

which was observed by hydrological engineers in streamflow data.
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Consequently, the fractional Brownian motion process has been widely

applied in the field of hydrology. The second model is the fractionally

integrated process, which is a generalization of the Autoregressive-

Integrated Moving Average (ARIMA) model of Box and.Jenkins (1976). Use of

the fractionally integrated process was motivated by the observation that

the conventional stationary models of Box and Jenkins were not able to

capture the persistent nature of long-memory time series. This class of

model, which was proposed independently by Granger and Joyeux (1980) and

Hosking (1981), offered. an .alternative to the standard..ARIMA(p,d,q)

process by not restricting the degree of differencing, the parameter d, to

be limited. to an, integer ‘value 'but rather allowing it to take on

fractional values.

Fractionally integrated processes are capable of generating extreme

persistence represented by the hyperbolic decline of the impulse response

weights and the autocorrelation functions. Hence fractionally integrated

processes allow for a much slower decay of past observations of the

series, relative to the faster exponential decline of the weights of the

traditional ARMA model.

This chapter will provide a comprehensive survey of long—memory

processes, outlining the theoretical properties of series which exhibit

strong dependence and discussing the techniques used to model these

processes. The next section will discuss both sample and population

characteristics of long-memory time series and also will discuss the

characteristics of the Autoregressive-Fractionally Integrated. Moving

Average process. Section 3 will survey the Brownian motion process and

fractional Brownian motion as a method used to model long-term behavior.

This section will examine the estimation procedures involving fractional
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Brownian motion which have been used to estimate the degree of persistence

of a series exhibiting long memory. Section 4 will survey the

fractionally integrated process as an alternative method of modelling

long-term behavior, examining various estimation techniques involving the

fractionally integrated process which have been proposed to estimate the

degree of persistence (the degree of fractional differencing) of a series

as well as any other model parameters. Section 5 provides a description

of the theoretical properties of the model which is developed in this

dissertation, the ARFIMA-GARCH process. This process offers the

flexibility' of' modelling series which. exhibit long-term. persistence

compounded with the presence of non-normal or non4homoskedastic error. In

Chapter III, this process is applied in a macroeconomic analysis of the

aggregate price level. The final section of the current chapter presents

a brief summary and conclusion.

2. THEORETICAL CHARACTERISTICS OF LONG-MEMORY TIME SERIES AND THE

ARFIMA(p,d,q) PROCESS

Consider a stationary time series, {yt}, which can be expressed in

ARIMA(p,d,q) form as

(1.) mm - L>d (yt - p>= aunt.

or alternatively as

(In) (1 - L)d (yt - u) = o<L>/¢(L) % — “t-

In this expression, L represents the lag operator, the polynomial ¢(L)
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incorporates the autoregressive parameters of the model and is expressed

as ¢(L) - 1 - ¢1L1 - ¢2L2 - . . . - dpLP, the polynomial 0(L) incorporates

the moving average parameters of the model and is expressed as 0(L) - 1 -

01L1 - 02L2 - . . . — oqu, all roots of ¢(L) and 0(L) lie outside the

unit circle, and ut is iid. In the case where d is zero the model in

(l.') simply reduces to the standard ARMA process. However, in the case

where d is assumed to be fractional,1 the model expressed in (1.) takes

on characteristics unique to long-memory time series.

From the expression in (1.), the difference operator (1 - L)d can be

expressed in terms of the difference parameter, d, as:

1 2
(2.) (1 - L)d = [1 - dL ..3

+ d(d-l)/2LL - d(d-1)(d-2)/3IL g+ . . .1

r".

Similarly, this expression can be defined by the Binomial Theorem as:

d . .

[ ]<-1>JLJ,

0 j

or as defined by the Maclaurin series:

(1 - L)d = z

j=

 

1 The range of values of d is restricted to -h < d.<:!1. Series

containing a value of d within this range are stationary and mean

reverting” The value of d may be expressed outside of this range as well,

for example a value of d equal to .80, in which case it is assumed that

the series requires first differencing in order to achieve a value of d

corresponding to the range stated above. That is, a value of d - .80 for

a non first differenced series corresponds to a value d - -.20 when the

series is appropriately first differenced, etc.



 

d _ ” P(-d+j) j

(1 ' L) jfo I F(-d)P(j+1) IL

which makes use of the standard gamma function, P(z), defined as

m 1
f 32. e-Sds, for z > 0

F(z) - o

m , for z — 0 .

Using the formulation expressed in (2.) it can beyn seen that the model

expressed in (1.) reduces to the standard stationary time series models of

Box and Jenkins (1976) for integer values of d. In this case, the

expression in (2.) has a finite number of non-zero terms indicating the

relatively short memory of the process yt. In the case where d takes on

a value of one, the operator generates first differences: (1 - L)d’yt -

[1 - (1)L1 + 0]yt - yt - yt-l' In the case where d - 2 the operator

generates second differences: (1.- L)dyt = [1 - (2)L1 + L2 - 0]yt ' A(yt

' yt-1)'

In the case where d takes on fractional values, however, the

expression for (1 - L)d has an infinite number of non:Eero terms such that

the current realization of yt is a function of a long history of

observations on y. This model exhibits a relatively slow decline of the

weights on observations farther back in time. The model with fractional

d is characterized by relatively long-term persistence and series which

exhibit this type of behavior are called fractionally integrated time

series. Formally, a series is fractionally integrated if after applying

the fractional difference operator, (1 - L)d, it follows a finite order

ARMA(p,q) process. In such case, the series is said to be integrated of
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order (1, I(d), and may be expressed as an Autoregressive-Fractiona11y

Integrated Moving Average, ARFIMA(p,d,q) process where for -B < d < 8 and

d#0 the series is sationary and mean reverting.

  
 

The theoretical characteristics of the ARFIMA process have been

studied extensively by Granger (1980), Granger and Joyeux (1980), and

Hosking (1981). In the simplest case where yt is an ARFIMA(0,d,0)

process, the model may be expressed as

d \ ./

(3.) <1 - L) yt - at. \,

or alternatively,

, -d

(3. ) yt (1 - L) ut.

Expressions for the one-sided representations that correspond to infinite

autoregressive and infinite moving average processes are given,

respectively, by

(I)

(4.) y = 2 «.y _. + u

t j=1 JtJ t

and

m

(5.) y = 2 ¢.u _.

t j=0 J t J

and are derived from the binomial expansions, (2.). In the special case

Where ut is iid (0, 02), yt is said to be fractionally integrated white

noise and (4.) and (5.) may be interpreted as being infinite

autoregressive and infinite moving average representations, respectively.

The coefficients on these representations for the fractionally integrated
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process may be expressed in terms of the gamma function as

4'}
= N

j r(-d)r<j+1)
 

11’
and ,6 M

J" r<d>F<j+1> f“ 321'

Granger and Joyeux (1980) have shown that as j + m,

ijl = Alj'd'l and Pj = Azjd'l,

where the A1 i=1,2 are constants to be determined from initial boundary

conditions and are expressed as A.l - [l/(d-l)!] and A2 -r[l/(-d-l)!].

Clearly, |1rj| and zbj will decay to zero more slowly than the decay

exhibited by the moving average coefficients of the standard stationary

and invertible ARMA model. From this property it should be apparent that

no finite-order ARMA model could adequately approximate a long-memory time

series for large lags.

Hosking (1981) derives an.expression for the autocovariance function

of the fractionally integrated process, 1 a cov[Xt,Xt_j] for t-O, i1, i2,

J

, and shows that as the lag j increases the autocovariance function

behaves as 7j - 0(j2d-l). Granger and Joyeux (1980) show that the

fractionally integrated process is covariance stationary for 0‘<<i<:8 and

has infinite variance for -H < d < 0. Additionally, an expression for

the autocorrelation function of the fractionally integrated process is

given in Granger and Joyeux (1980) and Hosking (1981) as

= _Zi_ = r<1-d>r<j+d)

pj ’ ”j r<d>r<j+d-1> '
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where -h < d < 8. Using Sheppard's formula,2 for large j the

autocorrelation function of the fractionally integrated process may be

expressed as

where A3 is a constant expressed as [-d!/(d—l)!]. In contrast, the

autocorrelation function. of the standard stationary invertible ARMA

process may be expressed for large j as

._._ j
pj A40 .

where |0| < l, which tends to zero exponentially as j n Q. As with the

impulse response weights expressed in (4.) and (5.), the rate of decline

of the autocorrelations of the stationary ARMA.process is much faster than

that of the fractionally integrated process, further indicating the

inability of the finite ARMA process to model the type of persistence

present in long-memory data.

3. A SURVEY OF LONG-TERM PERSISTENCE AND BROWNIAN MOTION

The existence of highly persistent, long-memory data can be found

not onLy in the field of hydrology in geophysical data (Hurst (1951,

1956), Mandelbrot and Wallis (1969a), and McLeod and Hipel (1978)) but

also in the areas of image processing (Kashyap and lapsa (1984)) and

meteorology (Kashyap and Eom (1988)) as well. In searching for a physical

 

‘2 Sheppard' formula indicates that for large lag, j, the expression

F(j+a)/P(j+ ) is well approximated by ja’b.
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explanation of the cause of strong persistence in data, Hosking (1985)

noted that the existence of long-term dependence in a series quite likely
 

——'

could arise in models which require solving stochastic differential,

f “NW." -

equations. These models generally give rise to the properties of self-

 

 
 

 
 

/ K

. similarity and power-law covariance, which are characteristic of long-
  

 

memory data. Models which utilize stochastic differential equations often

 

arise in hydrological and geophysical applications, as noted by Hosking

(1985), since these types of processes offer the potential to provide

physically realistic specifications of many variables which are

encountered in this field. It should not be surprising, then, that

pioneering research in the area of strongly dependent time series

originated in the field of hydrology with the work of Hurst (1951, 1956)

who noted the long-term dependence in geophysical and hydrological time

series in analyzing data on river discharge and reservoir storage

capacity.3

In analyzing series which displayed long-term dependence Hurst

developed the rescaled range statistic, R/S, which expresses the range of

Partial sums of deviations of a time series rescaled by the standard

  
 

deviation of the series. Consider the time series {xr: t-1,2,...,n}, _

Which Hurst ass ed to be_normal and independentlLdistribgted. The R/S
Elli—m an.-.”.__.,..._...._--_._W______l

statistic is calculated as

R/S - s-1{max(U1,...,Un) - min(U1,...,Un)}

\

3 An excellent survey on modelling long-term persistence in

hydrological time series can be found in Lawrance and Kottegoda (1977).



14

j _ _ _1 n
where U. = 2 (xt- x) , x - n 2 xt

J t-l t—l

n

and 32 - n-1 E (xt- x)2.

t-l

The term max(U1,...,Un) represents the maximum, over j, of the partial

sums of the first j deviations of x from the sample mean, E. This
t

quantity will always be nonnegative since the deviation of x from its

mean, summed over all observations, will be zero. Similarly, the term

min(U1,...,Un) is the minimum, over j, of the partial sums of the first j

deviations of xt from the sample mean, and this quantity will always be

nonpositive. The range is defined as the difference between these two

quantities. The variable 3 is the usual maximum likelihood standard

deviation estimator and is used to normalize, or "scale", the range.

A.notable development of Hurst's work was the finding of an.apparent

discrepancy between what was predicted by theory for the value of the R/S

statistic and what was observed in empirical analysis for many

hydrological and geophysical time series. In applied work Hurst observed

that the value of R/S could be approximated by (n/2)k, where n represents

sample size and 0.6 < k < 0.8. However, when the data were generated by

a random process which assumed.the dependence between distant observations

to be negligible, the value of the rescaled range was asymptotically

proportional to n7. It was then hypothesized that Hurst's observed

phenomenon should. not hold for relatively large samples; but this

hypothesis could not be confirmed.empiricallyu Hurst investigated.data on

water flows of several rivers, including the Nile, and various other

physical series including rainfall, temperatures, thickness of tree rings,
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thickness of stratified mud beds, and sunspot numbers. In each case the

discrepancy ‘between theoretical expectations and empirical evidence

remained” This discrepancy came to be known as the "Hurst phenomenon" and

its implication was that the geophysical records which displayed this

phenomenon must be considered to posses an infinite span of statistical

interdependence.

Subsequent research demonstrated that the presence of the Hurst

phenomenon in certain data could in fact be explained by the degree of

persistence in a series. That is to say, the Hurst phenomenon would be

present in those stationary time series which displayed long-term

dependence.“ When. applied. to long-memory' data, the rescaled. range

statistic would not behave as a function of n8 as it would.when applied to

short-memory series. These findings began to indicate the importance of

recognizing the existence of long-memory characteristics in data and

indicated the need for the specialized type of analysis that these series

require.

Since the work of Hurst in 1951, the rescaled range has been refined

by Mandelbrot (1972, 1975) and others [Mandelbrot and Taqqu (1979), and

Mandelbrot and Wallis (1968, 1969a, 1969b), for example], and Mandelbrot

has suggested the use of the rescaled range statistic as a method for

detecting long-range dependence in a series. Several researchers have

shown the benefits of using this method over the use of, for example, the

autocorrelation structure of a series or some measure of variance ratios.

Mandelbrot (1972, 1975), for example, has shown the advantage of the

rescaled range statistic by demonstrating the almost-sure convergence of

 

‘ See, for example, Mandelbrot and Wallis (1968), Klemes (1974),

McLeod and Hipel (1978) and Hosking (1984).
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this statistic for series with non-finite variance. In addition, Monte

Carlo simulations by Mandelbrot and Wallis (1969a) have indicated that the

rescaled range statistic can be used to identify long-term dependence in

time series which are non-Gaussian and are compounded by some degree of

skewness and kurtosis. The usefulness of the rescaled range statistic in

detecting long-range dependence is discussed more fully in L0 (1991).

The analysis undertaken by Hurst was extended by several researchers

in the field including Mandelbrot and Van Ness (1968) who suggested that

strong persistence and stationarity were not necessarily mutually

exclusive. Mandelbrot and Van Ness (1968) proposed the use of the

fractional Brownian motion process to model strongly dependent time series

since this process was able to characterize the long correlation

structures associated with long-memory series. The attractive feature of

fractional Brownian motion which made it useful in modelling long-term

dependence was the infinite span of interdependence between the increments

of the process. The derivation and statistical properties of the Brownian

motion are well documented in the statistical and physical science

literature (see Mandelbrot and Van Ness (1968), Hosking (1981), Mandelbrot

(1982), and.Jonas (1983), for more information and further references) and

only a brief summary is given here.

The formal notion of Brownian motion was first brought to the

attention of the scientific community in the early 18003 to describe the

diffusion processes investigated by botanist Robert Brown. The Brownian

motion, represented as B(t), is a continuous-time stochastic process. The

increments of the Brownian motion, represented as B(t+u) - B(t), are

Gaussian distributed with zero mean and variance u. A generalization of

the Brownian motion process is fractional Brownian motion, represented as
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B (t), which is a continuous time, self-similar process. The

characteristic of self-similarity is defined for a continuous-time

stochastic process, {xt}, which satisfies the condition that for some

positive constants a and h, xt and a-hx t have the same finite joint

1% aired W

That is to say, the distribution of a self-similar process

\k

distributions .

will be invariant to the scale under which the process is observed; the
V _________._. limb _ .

statistical behavior of an observed phenomenon characterizedby self-

’W _.
.... .. _

-—-. -...H." "

 

similarit should have the same probabilistic structure whether the

‘-—-.u—-—_.H‘

phenomenon is observed daily, weekly, monthly, or otherwise.

AL“...—“amt-
-. ,_.. . -..

 

sis. -.-.-
”J1 -.4

7- H)th fractional

,F‘. ,._L._...-rm"

Fractional Brownian motion, .-whichhis ”the (1':

w—--—--v.ngm.~—__..

derivative of Brownian motion, has stationary Gaussian increments, and

.. pr F. I“ I- u'M Iv-“l’ *N"‘

7-,," .-

_ma-r “an... ”n..v.1-.o-,—- - ... u-A""'

these increments are known as "fractional CaUSSi§Q»DQISQ"- The increments
_‘fi._..--~\-‘.- .

0f the fractional Brownian motion have hyperbolically decaying correlation

functions which enable the process to account for the long-term behavior

0f Strongly dependent time series. This is due to the relatively slowly

varying span of interdependence between increments of fractional Brownian

motion which vary according to power law. The autocovariance function of

fractional Gaussian noise, 7k - E[xt’xt-k] , is given as

‘

7k = C{(|kl + 1)2H - 2Ik|2H + (Ikl - 1>2”}.

 

v———-—

Where C is a positive constant and the parameter H satisfies 0 <_,_ng___1..

 

The fractional Brownian motion process may be expressed, as

i \

t .. i

(6.) BH(t;) = f (t-s)HJS dB(s), where -00 < t < 00.

NA

’

The Parameter H incorporates the long-memory element of the model, and is

 \__
‘w—v

kn
Own as the Hurst coefficient. To ensure stationarity of the process the
W
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parameter H must satisfy the conditign_0‘< H < l, and fractional Brownian

motion can be divided LLQEQ...-.§h.1:se -..Sl.i.f.f.91?§fl.t......falniliefit...§§.§.§.ntially.
f

depending on the rangaflgfggalueswgwaJ For H in the range of H < H < l,

the fractional Brownian motion process willbe meaningfulflfggwempirigal

applications in hydrology; the case where05 <5 will*nottbe usefulin

Mmrm‘ 

FHIELESEE$DS° When H - H, the fractional Brownian motionsimplyreduces
\----rvm.-eh'm- ,._..,..,.... -.r

to the Brownian motionprocess implying that observations separatedbflyma
mfimw Wmu—t—a

 

"x“.

relatively large time span are statistically independent. Since the
__‘__fl___,,_mw,_ .1

expression in (6.) above is divergent, it is only feasible to look at

 

 

stationary increments of BH(t), the fractional Gaussian noise process,

which can be expressed as

t o

(7.) BH(t) - BH(O) = f (t:-s)H'L2 dB(s) - f (-s)H'8 dB(s).

Estimation of the degree of persistence of the series, then,

involves estimation of the parameter H, the Hurst coefficient, from the

k

\_——r 4“ '—
 

 

specification given in (7.). Estimation of the Hurst coefficient has been

explored in.Hurst (1951, 1956) and in Mandelbrot and Wallis (1969a, 1969b)

who suggested constructing :pox—diagrams" as a method of estimating the

parameter H. The pox diagram plots various values of the R/S statistic of

a series along‘with their average. The scatter of points usually produces

a short, convex section and a longer, linear section which will have an

average slope equal to H. Thus, the value of H is approximated from the

shape of the curve in the pox diagram. Further research utilizing the

fractional Brownian motion to model strongly dependent series and to

estimate the degree of persistence of a series includes Mandelbrot (1972,
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1975), Mandelbrot and Taqqu (1979), and Mandelbrot and Wallis (1968),

among others.

The use of fractional Brownian motion to model strongly dependent,

time series involves some disadvantages, however, and hence may not be

ideal in modelling all series exhibiting long-term persistence. For

example, Mandelbrot and Wallis (1969b) have foundflgreatjvariability in the

estimated values of H when the R/S pox diagram technique is used, and.have

even noted that in certain cases the researcher must be content to wager

an intelligent, though imprecise, guess as to the value of H. Mandelbrot

and Wallis (1969b) note that estimation of H through the use of the pox

.... a ...-M...»- w

 

w..-“”M— ---

diagram becomes even more difficult in the presence of strong periodic

elements in a series. In addition, Wallis and Matalas (1970) have proven

that estimates of the Hurst coefficient have relatively large biases and

large sampling variances, and have indicated that not much is known about

the large sample efficiency of the estimator. An additional shortcoming

... ”......

of the model is its limited flexibility in modelling series which embody

other characteristics in addition to the long-memory element. Such series

w

would require multiple parametersinwthemodel yet fractional Brownian

motion offers onlyone parameter, H, with which to describe the behavior
~y_.,.— a»;

of a series. Consequently, this process limits the range of correlation

structures which may be represented by fractional Brownian motion. In

light of the shortcomings of fractional Brownian motion, anflalternative

class of models has been proposed which generalizes the ARIMA(p,d,q)

models of Box and Jenkins (1976) to allow for non-integer values of d.

This class of model, known as the fractionally dIfferenCedmprOCess, may

allow for more flexibility in modelling series which contain long-memory.

The next section provides a detailed survey of the fractionally
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differenced process.

4. A SURVEY OF LONG-TERM PERSISTENCE AND FRACTIONAL DIFFERENCING

It is often the case in macroeconomics and financial economics that

time series analysis of certain variables involves the problem of extreme

persistence in the mean and'variance of these variables. The existence of

 

 
 

  

such long-team dependence in economic data was first noted by Granger

(1980) who suggested that the aggregation of certain dynamic economic

-r‘... . A ._

f”

relationships produced. a class of model that exhibited long-memory

characteristics.

J“,

For example, consider the series x1t and x2t which are generated by

the process

(8.) xjt=ajxj,t-l+6jt ,j=1, 2 ,

and elt’ €2t are independent white noise processes with zero mean. As

noted in Granger (1980) the sum of the processes, it - x1t + x2t’ will

  

 

obey an ARMA(2,1) process where the autoregressive part of the model is

given by (l-aJL)(l-a2L). Consider such an aggregation for N independent

series each following an AR(l) process as expressed in (8.) and each with

differing values for the autoregressive parameter, a. The aggregation of

these processes will follow an ARMA(N,N-l) _nrocess, provided that no

  

cancellation of roots occurs betwggnmautoregressivewandflmovingfiaveragem

 

parameters in the model. In assuming a specific distribution from which

‘_ -..- .-.. .a-.n -' "

.-r..—-.'--- ¢ ~
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the autoregressive parameters are drawn,5 Granger (1980) derives an

approximation.of the'ktilorder autocovariance function.of the aggregated

 

process. This approximation is derived fromthe_standard Fourier series

expansion of the spectrum ofmthe“processmandmismgiyeg as 5k — A5k(1-Q)

o. A-‘nmm -‘Ulm-o-Hflv—g—I'flh "

where A5 is some constant. Recall from section 2 that the h:th order

autocovariance function.of the fractionally integrated.process is of order
\.____..___.__.

.kSEE-l). The parameter of integration in the fractionally differenced

model, d, corresponds to (l-q/2) in.this case such that the aggregation.of
w‘-

 

the N dynamic processes, it, is said to be integrated of order (l-q/2).

The model exhibiting this form of autocovariance function is

characteristic. of' the strongly' persistent, long-memory, fractionally

integrated process, as discussed in section 2.

Thus for N very large the aggregation of N individual dynamic
. .-—..-..~u’- -

processes produces series WhiCh display those characteristics
typical of

,flahmhflgywwmflw‘afl,
.

long-term dependence as represented.by the fractionally integrated medel.
~ r-..._ , Hw~nv_

‘_ .—..-

... ...... “"“‘* cvr‘

Ineconomics, such models are very likely to arise since many economic

variables are aggregates of a large number of smaller_series; relevant

examples include the aggregate price level or ‘the .inflation Irate,

aggregate consumption data,wnational income data, etc.

As noted by Kfinsch (1986), the properties of such long-memory data

cannot be explained asymptotically by stationary models characterizedwby

finite variances and weak dependence. The alternative proposed by Granger

and Joyeux (1980) and Hosking (1981) was derived by fractionally

 

5 For mathematical simplicity Granger assumes a beta distribution for

a, considered on the range (0,1). The particular choice of the

distribution assumed for a is not crucial for deriving the result of

highly persistent series through aggregation of dynamic processes.

Granger investigates further generalizations which consider alternative

distributions that produce the same result.
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differencing the random walk process. The fractionally differenced model

offers an alternative to the fractional Gaussian. noise processflflgf

Mandelbrot and Van.Ness (1968) and.Mandelbrot and Wallis (1969a), although

the two models are not completely without similarities. The fractionally

differenced process has a covariance structure similar to that of

fractional Gaussian noise and is also asymptotically self-similar. In

addition, the parameter of fractional differencing in.the model of Granger

and Joyeux (1980) and Hosking (1981) is related to the Hurst coefficient

as d - (H - H), where H is the parameter described in (6.) and (7.) (see

Granger and Joyeux (1980), Hosking (1981), and Geweke and Porter-Hudak

(1983), for a more detailed analysis).

Recently, much attention has been given to estimation of the degree

of fractional differencing of series that display forms of long-term

persistence. The earliest contributions in this area.were made by Janacek

(1982), who proposed a technique to estimate the degree of fractional

differencing of a series based on the log of the power spectrum of the

series, and.Geweke and.Porter-Hudak (1983) who proposed.a semi-parametric,

two-step estimation procedure which also utilizes the spectrum of a

series. These procedures are based in the frequency domain since long-

memory time series can be equally well represented in either the time

domain, where series can be expressed in terms of stochastic difference

equations, or in the frequency domain, where series can be expressed in

terms of the relative importance of various cycles that occur within the

series. In the context of the frequency domain a long-memory process as

expressed in (1.), which exhibits spectral density function, fy(w) -

[4sin2(w/2)]quu(w), will be characterized by an infinitely increasing
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spectral density function for frequency values, w, near zero.6

The estimation technique proposed by Janacek (1982) was designed to

determine the order of fractional integration of a series and is grounded

in the idea that the low-frequency end of the log-spectrum of a series

gives some information about the degree of persistence of the series.

Janacek (1982) considered a univariate series {yt: t = l, 2, ... ,N} which

when differenced (1 time gives rise to a stationary process, ut, with

rational spectrum fu(w) where w represents frequency. Applying the

standard procedures of linear filters, an expression for the log of the

spectrum of x is given as

log fx(w) = -d log[2(l-cos w)] = log fu(w).

Introducing a "weighting" function as W(w) = -H log[2(l-cos w)] and using

the standard results for Fourier series, an integral expression for the

weighted log of the spectrum can be given as

1l’ co 00

l/« f W(9) log fx(e) do = d X 1/R2 + 2 aK/(ZK)

0 K=l K-l

where fu(w) - a0 + alcos w + a2cos 2w + . . ., such that the aK, K-1, 2,

3, . . . , are the Fourier coefficients of the spectrwm of ut. This

allows for estimation of d without the need for model specification. The

O 2 .

minimum-mean square error of predict1on, a , is given as

 

5 This particular characteristic corresponds to hyperbolically

decaying correlation functions when the series is expressed in the time

domain.



arms.



24

2 -1’r
log a = x I log 2n f(w) dw

0

and the step mean-square error of prediction, ai is given as 02(1 + bi +

2 2 ,
b2 + . . . + bK ). The bj s can be expressed as (b1 c1), (b2 c2 +

2 .
c1 /2!), . . . , where ZCK = aK. The cK will decay exponentially for a

short-memory, stationary process where the cK are assumed to be zero for

all values of K greater than some finite number, M. For a long-memory

series, however, the cK will decay at the much slower hyperbolic rate.

Janacek (1982) proposed estimation of d based on an estimate of the cK

from the following formulation

“ -2

-<s-Zc/K>/ZK
0‘” MK M

W A

where S - 1/n f W(w) log f(w) dw .

0

Clearly, in this specification, the estimate of the degree of

persistence will depend on the value of M. Janacek proposed that for M

large enough the estimate of d will be unbiased, and suggested that M be

chosen as being equal to two standard deviations of d. Choosing M too

large, however, does necessitate a trade off in increased variance of the

estimated parameter, and.Janacek (1982) presented small scale simulations

to investigate this trade off. The results of the simulations indicate

that for M chosen as suggested above, the variance of the estimate is

within a 95% confidence interval of theoretical predictions.

Similarly, the motivation for the estimation technique proposed by
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Geweke and Porter-Hudak (1983) is like that proposed by Janacek (1982) in

that it utilizes the low-frequency end of the spectrum of a series. The

procedure proposed by Geweke and Porter-Hudak is based on the observation

that the spectral density function of a long-memory time series when

expressed in levels is unbounded at w - 0 but disappears at w - 0 when the

series is first differenced” Consequently, Geweke and Porter-Hudak (1983)

use the low-frequency component of the spectral density function to

estimate the degree of persistence of a series.

Consider the simple case of the ARFIMA(0,d,0) process as expressed

in (3.) where ut is a white noise process. Again, applying the property

of linear filters, the spectral density function of yt, fy(w), can be

expressed as

-iw|-2d

(9.) fy(w ) = II - e fu(w).

An equivalent expression may be given as

(9.') fy(w) = [4sin2(w/2)]-dfu(w)

where fu(w) represents the spectral density' function. of 11. Taking

logarithms of both sides of equation (9.') and evaluating at the harmonic

ordinates wj - 2nj/T gives

. 2

(10.) log[fy(wj)] - log[fu(0)]-dlog[451n (wj/2)] + log[fy(wj)/fu(0)].
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The motivation for this estimation procedure is based on the

similarity of (10.) to an ordinary least squares regression where the last

term on the right hand side of (10.) represents the regression error and

the slope parameter, -d, can be estimated with the usual least squares

techniques. The estimation procedure of Geweke and Porter-Hudak (1983),

hereafter referred to as GPH, requires two steps. The first step involves

obtaining an estimate of d from equation (10.) using OLS. This regression

is performed over the range of low-frequency ordinates of the spectrum,

wl, w2, .. wm, and involves replacing fy(wj) with the periodogram of the

series. In this formulation it is critical to estimate the OLS regression

using the appropriate number' of’ ordinates, m, since the estimation

technique is based on performing the regression over only the low-

frequency end of the spectrum” Use of too small a regression sample, that

is, inclusion of too few ordinates, can mean that relevant long-memory

information contained in the low-frequency end of the spectrum is not

being included in estimation. Conversely, use of too many ordinates can

lead to erroneous inclusion of medium- and high-frequency ordinates in

estimation, which will cause the estimate of d to be "contaminated".

Geweke and Porter-Hudak (1983) have suggested that the optimal number of

low-frequency ordinates to use in the OLS regression should be a function

of the sample size of the series under investigation. They suggest

choosing the number of spectral ordinates as being Ta, where a would

typically take on values such as .50, .60, and .70. Alternatively, Sowell

(1990) has suggested that the optimal number of spectral ordinates to use

in the OLS regression.should not depend on sample size but, rather, should

be a function of the annual periodicity of the data and the long-run

frequency of the series. Consequently, Sowell (1990) has suggested
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choosing the optimal number of ordinates, m, as

a number of years of the data

lowest long-run frequency of the series '

 

m

Once a consistent estimate of the parameter (1, the degree of

fractional integration, is obtained by the GPH procedure outlined above,

this value is then used in the second step of the estimation procedure to

transform, or filter, the observed series for the appropriate degree of

fractional differencing. Once the series has been properly transformed

the remaining model parameters may be estimated by standard procedures of

time series analysis performed on this transformed series. This second

step of estimation will provide estimates for the autoregressive and

moving average components of the series. The consistency of the GPH

estimator of d in the presence of weak dependency in u is proven in
t

Geweke and Porter-Hudak (1983) for -8 < d < 0, and is conjectured for 0 <

d < h. The estimator is shown to be asymptotically normal, but is not JT

consistent.

To date, there appears to be limited applied work utilizing the

estimation procedure outlined by Janacek (1982); however, the GPH

estimator has been widely applied in many areas since its introduction

(Diebold and Rudebusch (1989), Choi and. Wohar (1990), Baillie and

Pecchenino (1991), Cheung (1991), Tieslau (1991), and Agiakloglou,

Newbold, and Wohar (1992), for example). Some difficulty has been

encountered, however, in applying the GPH estimator in practice.

Agiakloglou, Newbold and Wohar (1992) , for example, have demonstrated with

simulation results that the GPH estimator can have substantial bias when

yt is generated by an autoregressive process with a substantially large

positive AR parameter, or whenyt is generated by a moving average process
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with a substantially large positive MA parameter. Agiakloglou, Newbold

and.Wohar (1992) discuss the reasons for these results noting that whenyt

exhibits a large positive value for its AR parameter, the log spectrum is

downward sloping in the low-frequency range, rather than constant. As

such, there will be significant bias in estimating the slope parameter.

Agiakloglou, Newbold and Wohar (1992) present simulation evidence

indicating that the bias of the GPH estimate decreases slowly as sample

size increases, but this comes at the expense of a trade-off of increasing

the standard error of the estimate.

Similarly, the presence of large bias in the GPH estimate when yt

exhibits a large positive moving average coefficient is due to fact that

for this type of process the spectral density of yt is close to zero in

the low-frequency range of the spectrum. Agiakloglou, Newbold and Wohar

(1992) show that for series exhibiting large positive MA parameters the

bias of the GPH estimate for the model also decreases slowly as sample

size increases.

In addition, Hosking (1985) noted the limited applicability of the

fractionally differenced ARMA process in applied work in hydrology due to

the linearity of this model. Hosking noted that many typical hydrological

time series, such as daily streamflow data, often embody non-linear

characteristics which are unlikely to be well explained by the type of

model proposed by Geweke and Porter-Hudak (1983). As a result, the GPH

estimation procedure appears to be most appropriate in modelling purely

fractionally integrated. white noise, leaving little flexibility for

practical applications.

Since the seminal work of Geweke and Porter-Hudak (1983) on

estimation of fractionally integrated series, several alternative
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estimation procedures have been proposed for the ARFIMA process described

in equation (3.). One such. procedure involves maximum likelihood

estimation (MLE) of the parameters of the model given in (3.), and three

alternative approaches which utilize maximum likelihood estimation

techniques have been proposed. Tflna first technique proposed involves

approximate MLE based in the time domain, the second involves approximate

MLE based in the frequency domain, and the third estimation technique

involves exact MLE based in the time domain. Each of these are further

discussed below.

The first alternative estimation procedure utilizing maximum

likelihood estimation techniques was proposed by Hosking (1984) who, in

dealing with many non-linear hydrological and geophysical data series,

suggested that methods based on maximizing the likelihood function of a

series were the most likely methods for producing efficient parameter

estimates for fractionally integrated time series. The method.proposed by

Hosking (1984) utilizes approximate MLE techniques in the time domain

where the log likelihood function of a series, yt, is expressed as

log £<A.u:y) = -d log IV(A)I - h<y-u1>' IV<A>1‘1 (y-ul)

where A represents the vector of model parameters, p represents the mean

of the process, V(A) is the covariance matrix of y, which is assumed to be

independent of the mean, and 1 is a vector of ones. Hosking (1984)

assumed, for convenience, that the likelihood function followed a normal

marginal distribution. Direct maximization of the likelihood above has

been.proposed in.applied.work by McLeod and.Hipel (1978) in estimating the

parameters of the fractional Gaussian noise process of (7.). However,
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Hosking (1984) noted the computational expense of this method since it

requires the inversion of a (T x T) matrix of covariances at each

iteration of the procedure which necessitates a nmnber of arithmetic

operations of order T3. The cost of repeated iterations of this process

in maximizing the likelihood function, f, can be excessive.

As an.alternative, Hosking (1984) suggested replacing the likelihood

function with an approximation, 2, which would be more easily evaluated

and then.maximizing this approximation. This approximation considers the

fractionally integrated parameters of the model separately from the ARMA

parameters. Estimation of the model parameters, then, simply involved

application of the standard algorithm of Ansley (1979) to the

approximation of the likelihood function.

The second alternative estimation procedure, proposed by Fox and

Taqqu (1986), also utilizes approximate nmximum likelihood estimation

techniques but is based in the frequency domain rather than in the time,

domain. Within this framework Fox and Taqqu (1986) assume a stationary

Gaussian series and construct an asymptotic approximation to the

likelihood function of an ARFIMA process. Their work follows the approach

suggested by Whittle (1951) which involves maximizing

- ex0 P

[ Z'AT(0)Z]

2T02

where Z - (X1 - E ., X - XT)', and X represents the sample average

T’ T

of the process X. The matrix AT(0) is a (T x T) matrix of covariances

which has j,kth element aj_k(0) as given by
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1 " i'x -1
aj(6) = 2 f e 3 [f(x,6)] dx.

(2«) -«

 

The maximum likelihood estimates, ET and ET, are defined as those values

of 0 and a that satisfy the above maximization; maximization of the above

expression is equivalent to choosing FT to minimize a$(0) - [Z'AT(9)Z]/T

and then setting '52 equal to mid-T). Fox and Taqqu (1986) derive
T

consistent and.asymptotically normal estimates of the model parameters for

the case when d is in the range 0 < d < H. Maximization.of the likelihood

function is based in the frequency domain and the procedure is invariant

to the true, but unknown, mean of the process.

The third estimation procedure, proposed by Sowell (1992), utilizes

an exact maximum likelihood estimation technique which is based in the

time domain. This estimation procedure considers the ARFIMA(p,d,q)

process as given in (1.) with ut ~ NID (0, 02) and d < 8. The probability

density function is given by Sowell to be

f<yt.2> = (210“2 IEI'l/2 exp{-HytE-1yt}

where E is the covariance matrix of the ARFIMA.process yt, and.E is of the

standard block Toeplitz form. The likelihood function of the process is

derived in the usual manner and maximization is achieved with standard

computer algorithms and use of the Choleski decomposition in evaluating

the inverse of the covariance matrix.

The inversion of the (TT><'T) matrix of autocovariances which is

required by this time domain exact MLE technique is the main disadvantage

of this procedure. Inversion of this covariance matrix is required at
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each iteration of the estimation process and this becomes particularly

cumbersome for fractionally integrated processes since even for

fractionally integrated white noise eaCh autocovariance is :1 ratio of

gamma functions. This makes arithmetic operations quite difficult.

Furthermore, for the more general ARFIMA(p,d,q) process, a typical

autocovariance is a nonlinear function of four hypergeometric functions

necessitating even. greater computational expense. Clearly, maximum

likelihood estimation isldifficult even.for an ARFIMA.process with.NID (0,

02) disturbances.

The relative efficiency of the two estimation procedures of Sowell

(1992) and Fox and Taqqu (1986) has been analyzed in a recent study by

Cheung and Diebold (1991). The exact MLE time-domain procedure proposed

by Sowell (1992) is asymptotically equivalent to the approximate MLE

frequency-domain procedure proposed by Fox and Taqqu (1986), although the

properties from estimation in finite samples will not be equivalent.

Cheung and Diebold (1991) perform a detailed simulation study which

compares both large and small sample properties of the two estimation

techniques. They analyzed the fractionally integrated white noise process

with non-zero mean, p, which may be represented as:

(1-L)d(yt-#) - at

where 6t ~ NID (0, 02).

The results of this analysis indicate that for finite sample sizes when

the mean of the process is known, an unambiguous ranking of the two

estimation procedures is evident. That is, the mean—squared error (MSE)
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of the parameter estimate of the frequency-domain approximate MLE of Fox

and Taqqu (1986) is greater than that of the time-domain exact MLE of

Sowell (1992) for the case of known mean. By this criterion the exact MLE

approach of Sowell (1992) is superior to the approximate MLE approach of

Fox and Taqqu (1986) when the true mean of the process is known.

However, in the case of unknown mean in finite sample sizes, Cheung

and Diebold (1991) show that the relative efficiency of the approximate

MLE increases significantly. This is particularly relevant since most

practical applications of these estimation procedures will arise in cases

where the true mean of the process is unknown and consequently must be

estimated. Such estimation is based on de-meaned data and Cheung and

Diebold (1991) have shown that precise estimation of the mean of a long-

memory process is often difficult. The frequency-domain estimation

procedure of Fox and Taqqu (1986) will be invariant to the true mean of

the process; the time-domain estimation procedure of Sowell (1992) will

not be. By this criterion, the estimation procedure of Fox and Taqqu

(1986) may be preferred to that of Sowell (1992).

In addition Cheung and Diebold (1991) indicate that for the case

where the mean of the process must be estimated, the efficiency of the

exact MLE time-domain approach of Sowell (1992) decreases as the value of

d increases. That is, the rate of convergence of the sample mean of the

process is a function of the parameter (1 in that as the value of (1

increases the rate of convergence decreases, which further decreases the

performance of the exact MLE time-domain approach. This is due to the

fact that while the maximum likelihood estimates of the ARMA parameters

expressed in (1.) are If consistent, the rate of convergence of the maximum

T+8-d

likelihood estimate of the population mean is (for further
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discussion, see Li and McLeod (1986)).

The maximum likelihood estimation procedures discussed above,

whether approximate or exact.MLE, are each predicated on the assumption.of

NID innovations. That is to say, the approximate MLE technique of Fox and

Taqqu (1986), for example, cannot be applied to data which exhibit forms

of time dependent heteroskedasticity, which may well be encountered in

practical applications. To date, no attempt has been made to address the

problem of obtaining maximum likelihood estimates for a process which

involves more complicated data generating processes where the presence of

fractional integration may be compounded with non-normality and non-

homoskedastic error. This can prove to be a significant factor in

assessing the usefulness of an.estimation procedure since such data series

are likely to arise in practice. The next section will present one such

estimation procedure which utilizes the estimation technique of maximum

likelihood to estimate the model parameters of a series but yet does not

restrict the distribution of the series to satisfy the assumption of

normal and independently distributed error.

5. THE THEORETICAL PROPERTIES OF THE ARFIMA—GARCH PROCESS

The model developed in this section merges the ARFIMA(p,d,q) process

of Granger and Joyeux (1980) and Hosking (1981) with the GARCH(P,Q)

process of Engle (1982) and Bollerslev (1986) to allow for simultaneous

modelling of fractionally integrated behavior and time dependent

conditional heteroskedasticity. The property of time varying conditional

variance has been investigated by Engle (1982, 1983) who proposed the

Autoregressive Conditionally Heteroskedastic, ARCH, process as a suitable

model for series exhibiting this characteristic. ihn this model, the
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conditional variance is assumed to be a linear function of past squared

errors; the conditional variance is allowed to change over time as a.

function of these past squared errors, leaving the unconditional variance

constant. The ARCH model, then, is able to characterize series which tend

to exhibit periods of extreme values followed by other periods of extreme

values, whether of the same sign or not. Engle (1982) proposed this model

for inflation realizing that the uncertainty of inflation tended to change

over time.

The Autoregressive Conditionally Heteroskedastic model of Engle

(1982) was later extended by Bollerslev (1986) who generalized the model

to allow for a much more flexible lag structure. The generalization

proposed by Bollerslev (1986) allows for an additional parameter in the

conditional variance equation; under this specification the conditional

variance is assumed to be influenced by the squared residuals of the

series as well as lagged values of the conditional variance. This model,

known as the Generalized Autoregressive Conditionally Heteroskedastic

GARCH(P,Q) model, is used to model series which exhibit non-constant

conditional variance over time.

The general model proposed in this analysis will be referred to as

the ARFIMA(p,d,q)-GARCH(P,Q) model and can be represented with equations

(11.) through (14.) below:

+ 60 + u
d .

(11.) (1-L) yt = b xlt t t

(12.) ¢(L)ut = 6(L)et

0 ~ D(0, 02)(13.) etl t_1 t
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(14.) fi(L)aE = w + a(L)e§ + y'th.

In this specification, d.E (-8, 8) such that yt is fractionally integrated

of order d, and x1t and x2t are vectors of predetermined variables. The

polynomials ¢(L), 0(L), 6(L), and a(L) are represented as ¢(L) - 1-¢1L -

HH¢EP,oao-1w L+
l 1

a2L2 +...+aQL9, and all the roots of ¢(L), 0(L), fi(L) and.a(L) are assumed

to lie outside the unit circle. The innovations of the model, 6

q P
L -...-0qL , p(L) = l-filL -...-flPL , a(L) - a

t’ are

assumed to follow a conditional density D, which may be assumed to be

either Normal or Student t. Additionally the time dependent

heteroskedasticity of 0: follows the Generalized Autoregressive

Conditionally Heteroskedastic, or GARCH(P,Q), model of Engle (1982) and

Bollerslev (1986). In the special case where 6 - 0 and b - 0, equations

(11.) and (12.) describe the ARFIMA process of' Granger and Joyeux (1980).

One useful application afforded by the ARFIMA-GARCH model is that

the specification will allow for the possibility of testing for the

presence of feedback between the standard deviation of y and lagged values

of y. In this framework, the parameter 6 is used to test for this effect

such that when 6 fl 0 volatility is allowed to influence the mean of yt.

The model specification will also allow for a test of whether lagged

predetermined variables influence the conditional variance of'yt. This is

achieved by allowing for the predetermined variable to enter into the

conditional variance equation (14.) by being included in x2t' A positive

and significant value for the parameter 7, then, would indicate the

existence of an effect of lagged predetermined variables on yt. Such

tests will prove valuable in empirical work in subsequent analysis.

The likelihood function of the full model represented by equations
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(11.) through (14.) is given by £(A,d;y) where A is the parameter vector

A' - (b'6 ¢'0'w a'fi').

Bollerslev (1987) presents an extension to the ARCH model of Engle (1982)

in which the conditional density of the process yt is assumed to be

Student t with v degrees of freedom. This specification can by

particularly useful for analyzing series which exhibit excessive tail

distribution, perhaps due to outliers in the series, since it allows for

specific modelling,of unconditional excess kurtosis in an observed series.

Following Bollerslev (1987), the log likelihood function for the Student

t distribution with T observations can be expressed as

(15.) log £(A.d;y) = T[log r<£§l> - log r<§> - % log <v-2>1 -

T

l 2 [log 02 + (u+1) log(1+e2 0-2
2 t=1 t t t

(u-2>'11.

When u-1 approaches zero, the t distribution approaches a normal

distribution; but for u-1 > O the t distribution will be quite different

from the normal distribution, exhibiting substantial leptokurtosis or fat

tail distribution. Consequently, the likelihood function expressed in

(15.) will be appropriate for those series for which the inverse of the

degrees of freedom parameter, v'l, takes on values greater than zero.

Estimation of the model represented by the system of equations (11.)

through (14.) may be achieved through standard maximum likelihood
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estimation (MLE) techniques. The process of performing exact MLE on the

entire system, however, can be rather difficult especially given the

allowance for general conditional densities, D, and the presence of time

dependent conditional variance as specified in (14.). Attention may be

restricted to D being either Normal or Student t to circumvent this

difficulty, and approximate maximum likelihood estimates of all model

parameters may be obtained via two separate methods which are described

below.

The first method which may be used to obtain approximate maximum

likelihood estimates of A is referred to as Method I and involves direct

maximization of equation (15.). This may be achieved numerically through

standard maximization of the likelihood function via use of any of the

standard computing algorithms such as the Berndt et. a1. (1974) algorithm.

This method provides approximate ML estimates of all model parameters

simultaneously'anduwill'provide appropriate asymptotic standard errors for

the parameter vector A. 'Unfortunately, this method entails the problem of

setting starting values for the process since the presence of d, the

fractional differencing parameter, has the effect of making initialization

conditions persist for a longer period than would be the case with the

standard ARMA process.

The second method which may be used to obtain approximate maximum

likelihood estimates of A is referred to as Method II and considers the

conditional likelihood with respect to the fractionally integrated

parameter, d. The likelihood function for this method is given by {*(A;y)

and is related to the full likelihood as:

£<A,d;y)-J(d)£*<x;y).
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where J(d) is the Jacobian of the transformation from (y1, y2, ... yT) to

(ul, uz, ....uT) The transformation involves the use of the moving

average filter given by equation (5.). This procedure filters the series

yt for a range of values of d which can be taken at discrete intervals of

.10, for example, resulting in the filtered series u. The filtered series

then may be used in the estimation technique of maximizing the likelihood

function. In making this transformation from y to u, however, an

adjustment of the covariance matrix is required, necessitating the

derivation of the Jacobian of the transformation. It is relatively easy

to show that J(d) is the determinant of a (T x T) lower triangular matrix

which has ones along the main diagonal and an (i,j)th element of ¢|1_JI,

where i>j. Consequently, the Jacobian of the transformation, J(d), is

unity so that

*

£ (My) = £(»\.d;y).

Once this trivial adjustment is realized, full maximum likelihood

estimates of the parameter vector A may be obtained from the standard

first-order conditions which are represented as

a£<x,d;x) a a£*<x;x> _ 0
6A 6A '

This will give the maximum likelihood estimates, A(d,y).

The concentrated likelihood with respect to A is then defined as

£°<d;y> - £[A<d.y).d;y1.
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The model can be estimated numerically by maximizing the concentrated

likelihood {c with the use of any standard computer algorithm such as

Berndt et. a1. (1974). In this way, Method II will generate approximate

maximum likelihood estimates and will also give the correct value of the

maximized log likelihood” The standard.errors of the parameter estimates,

however, will be conditional on d.

6. SUMMARY AND CONCLUSION

The characteristic of long-term, but not permanent, persistence in

a series distinguishes long-memory time series from both non-stationary

time series which contain unit roots and are not mean reverting, and

stationary time series which exhibit very little or no persistence and

require IN) differencing to achieve stationarity: Clearly, long-memory

time series are not well represented as having unit roots nor as requiring

no differencing to achieve stationarity. This chapter outlines the

population and sample characteristics of long-memory time series and

distinguishes these series from those which exhibit short-memory.

Two methods of obtaining approximate maximum likelihood estimates

are proposed for ARFIMA processes which are compounded with GARCH

innovations and conditional Student t densities. These types of models

should prove to be most useful in empirical application since many time

series encountered in practice do exhibit forms of long-term persistence

and non-normality. Estimation of the model parameters of those series

exhibiting long memory is rather difficult especially for those series

which, also exhibit other non-linear characteristics; the procedures

proposedfihere, which employ conditional likelihood.functions, offer a good

approach to estimating such models.
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CHAPTER III

LONG-TERM PERSISTENCE, MEAN REVERSION, AND STATIONARITY:

A MODEL OF INFLATION AS AN ARFIMA-GARCH PROCESS

1. INTRODUCTION

As discussed previously in Chapter II, time series which exhibit

long memory are often encountered in economics. This may be attributable

to the large number of aggregations of many dynamic components in economic

data. The fractionally integrated process proposed by Granger and.Joyeux

(1980) and Hosking (1981), which has been described in some detail in

Chapter II, is very useful in applied economic analysis of persistent time

series. The use of fractional integration in modelling long-memory time

series offers many advantages not afforded by other modelling processes;

when examining the long-run characteristics of variables, which is often

the focus of macroeconomic analysis, the fractionally integrated model is

able to account for persistent behavior in the data unlike those models

which are based on relatively short correlation structures. This allows

for a more appropriate investigation of the true long-run characteristics

of variables which contain long memory. In addition, the fractionally

integrated. model offers the advantage of allowing for simultaneous

modelling of both long- and short-term persistence in a series. For these

reasons the fractionally integrated process provides an excellent

framework in which to investigate the long-run properties of many

macroeconomic data.

This chapter uses the fractionally integrated long-memory process to

examine the long-run time series properties of the Consumer Price Index
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(CPI) inflation rate for both high- and low-inflation economies. The

stationary component of the model, represented as an ARMA process,

combined with the persistent, fractionally integrated component produces

the Autoregressive-Fractiona11y Integrated Moving Average (ARFIMA) model.

An analysis of the inflation series in this context is of particular

interest due to the relative importance of the aggregate price level in

understanding the workings of the macroeconomy. The conventional

methodology thus far applied by macroeconomists in analyzing the question

of whether the inflation rate is stationary and mean reverting, or

alternatively whether it is non-stationary and contains a unit root, has

by no means produced a conclusive answer to this question. An analysis of

this issue in the context of persistent, long-memory time series can

provide valuable insight into many of the issues of the long-run behavior

of the inflation rate and subsequent implications this has for the economy

with regard to disinflationary macroeconomic policy, and can even provide

a better understanding of other economic variables which are in some way

related to the aggregate price level.

The plan of the rest of the chapter is as follows. The next section

discusses some of the key issues in macroeconomics which are relevant in

the context of long-memory time series with a specific focus given to

issues pertaining to the inflation rate. Section 3 discusses the issue of

the variability of inflation and the subsequent implications this has for

the macroeconomy. This section also provides a discussion of the Friedman

Hypothesis, which posits a direct relationship between increased levels of

inflation and increased inflation variance, and discusses the subsequent

implications for the macroeconomy. Section 4 examines the characteristics

of the CPI inflation rate for the ten countries considered in this



47

analysis and provides the motivation for considering the inflation rate in

the context of the fractionally integrated, long-memory model. The

countries examined, include the Group of Seven countries, which. are

considered to be relatively low-inflation economies, and three additional

countries, Argentina, Brazil, and Israel, which are considered to be

relatively high-inflation economies. Section 5 discusses estimation of

the ARFIMA-GARCH model for these ten countries. The final section

presents the conclusions and gives a brief summary of the results.

2. LONG MEMORY, MEAN REVERSION, AND THE PERSISTENCE OF INFLATION

The use of the fractionally integrated ARMA process proposed by

Granger and Joyeux (1980) and Hosking (1981) in modelling economic time

series has proven to be an attractive framework for dealing with variables

which exhibit nonstationarity in the form of long-term persistence. This

model is particularly appealing in this context since it does not impose

full integer orders of integration, or unit roots, on series. In the

field of economics this is especially appropriate since it is not always

the case that series which appear to be nonstationary are best described

as containing unit roots. In particular, there is some evidence that the

imposition of a unit root structure may not be reasonable for many

macroeconomic time series. This has important implications since the

existence of a unit root in a time series implies that innovations or

individual shocks to the system will not die out over time but, rather,

will persist indefinitely into the future.

Although long-memory time series exhibit some degree of persistence,

indicating that shocks to the system will tend to move the series away

from the value of its mean for some period of time, the persistence does

_
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decline over time (though slowly) so that eventually there is reversion to

the mean of the series. In the field of macroeconomics in particular, the

inflation rate appears to be one such variable which exhibits behavior

typical of long-memory, fractionally integrated time series. The

inferences made about the characteristics of inflation may hinge

critically upon the type of model assumed to underlie this variable and as

such is the motivating factor behind the importance of considering the

inflation rate in the context of the fractionally integrated model.

The nature of the true long-run characteristics of the inflation

rate has long been a concern among macroeconomists, especially given the

crucial role that this variable plays in understanding the workings of the

macroeconomy. A central issue of concern in assessing the long-run

characteristics of the inflation rate involves an understanding of how

aggregate prices respond to shocks in the economy. If the inflation rate

is viewed as being a stationary, or I(O), variable then macroeconomic

shocks will be viewed as transitory in that their effect on the rate of

inflation will die out relatively quickly. On the other hand, if the

inflation rate is thought to be a nonstationary, or I(l), variable

possessing a unit root, then shocks to the system are forever incorporated

into the rate of inflation. Klein (1976) and Nelson and Schwert (1977)

have investigated the inflation rate in this context and have found

evidence of a unit root in the series, implying nonstationarity of the

inflation rate. Alternatively, Barsky (1987) investigated the

characteristics of inflation over two unique time periods and found

evidence of a stationary inflation rate prior to 1960, with evidence of

nonstationarity’ thereafter. Subsequent research_ assessing the

characteristics of inflation includes the work of Ball and Cecchetti
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(1990) who decomposed inflation into two components, one being a

transitory component and the other being a permanent component represented

as a random walk. Their findings indicate that, in aggregate, the

inflation rate appears to be nonstationary.

The issue of whether or not the inflation rate is stationary has

significant implications which extend into many areas of the macroeconomy.

The finding, of' a 'nonstationary inflation rate, which indicates the

existence of a unit root in the series, may not seem reasonable from an

economic standpoint since this implies that transitory shocks to the

economy have a permanent effect on the inflation rate. This has a wide

range of subsequent implications for the economy especially with regard to

constructing optimal policy rules (see, for example, McCallum (1988) and

Baillie (1989)).

An examination of the true long-run characteristics of the inflation

rate can prove to be valuable in many areas of the macroeconomy since

there are several variables whose properties are closely tied to those of

the inflation rate. Such variables typically include those series which

incorporate some form of inflationary expectations or are formed as some

linear combination of the inflation rate and other variables. For

example, in studying the properties of interest rates Fama and Gibbons

(1982) and.Mankiw and Miron (1986) found evidence that the nominal rate of

interest is nonstationary, or contains a unit root; Fama (1975) found

evidence that the real rate of interest is stationary, or does not contain

a unit root. These findings imply that the inflation rate is necessarily

nonstationary, and so contains a unit root, and should therefore be

cointegrated with the nominal interest rate.

The issue of whether the inflation rate is stationary or is non-
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stationary and contains a unit root has strong implications for research

in the consumption based capital asset pricing model (CAPM) as well. Rose

(1988) investigates the properties of real interest rates and the

implications that this has for the CAPM. Rose (1988) finds evidence that

the real rate of interest is non-stationary and gives attention to the

possible implications that would arise from the possibility of ex-post

real rates being'nonstationaryu Sweeney (1987) also investigates the CAPM

and examines the effect of the characteristics of inflation and inflation

variability on the demand for real cash balances and the allocation of

asset portfolios. In this analysis evidence is found of an inverse

relationship between the variability of inflation and the attractiveness

of holding cash balances, and a direct relationship between the

variability of inflation and the proportion of assets held in equities.

These relationships led. Sweeney to conclude that there would. be a

reduction of equity's beta coefficient in the CAPM model and in the

discount rate of the firm.

3. THE VARIABILITY OF INFLATION

One further issue which has long been of interest to economists,

especially in assessing the welfare costs associated with increases in

expected or unexpected changes in inflation, is the variability of

inflation. In analyzing the apparent tradeoff between inflation and

unemployment which was implied by the Phillips curve, Okun (1971) first

posited a direct link between a high rate of inflation and a high

variability of inflation. Okun provided the origin to the notion that

stabilization policies in the economy were the driving force behind the

positive correlation between the level and the variability of inflation.

fi
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His argument, which was based on the non-linearity of the Phillips curve,

maintained that countries which concentrated on output or employment

stability would be operating at the steep end of the Phillips curve and

hence would be more likely to experience not only higher average levels of

inflation but also increased variability of inflation.

Since the early work of Okun (1971), numerous studies have been

advanced which were directed not only at uncovering empirical evidence of

the relationship between the level and variability of inflation, but also

at providing some theoretical framework within which this relationship

could be grounded [Gordon (1971), Logue and Willett (1976), Foster (1978),

Parks (1978), Cukierman auui Wachtell (1979), Fischer' (1981), Taylor

(1981), Pagan, IHall, and. Trivedi (1983), Bairam (1988), Demetriades

(1988), and Devereux (1989)]. Foster (1978) also noted the positive

correlation between the level of inflation and its variance but criticized

Okun's treatment for not concentrating on the unanticipated element of

inflation. Other studies, such as Pagan, Hall, and Trivedi (1983) and

Demetriades (1988), have built upon the intuitive explanation offered by

Okun by incorporating a Lucas (1973) - type model to provide a theoretical

explanation of the correlation between inflation and its variability.

The relationship between a high level of inflation and increased

inflation variability has also been studied at great length by Friedman

who, in his 1977 Nobel lecture, hypothesized that higher mean levels of

inflation were likely to be associated with increased levels of the

variance of inflation. Friedman emphasized the welfare costs of the

Variability of inflation and noted its effect on the macroeconomy in

general. According to Friedman, higher rates of inflation would likely

reduce forecastability' of future inflation, leading to .an increased
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element of uncertainty in individual decision making and reducing the

efficiency of the price system. This would lead to a misallocation of

resources and would likely result in decreased output stability and

increased unemployment. Increased inflation variability clearly would be

associated with increased welfare losses.

An examination into the validity of the Friedman hypothesis using

the framework of the fractionally integrated model should provide further

insight into the true characteristics of inflation and its effect on the

macroeconomy. If a link between increased levels of inflation and

increased inflation variability can be shown to exist this should offer

the possibility of making inferences into the direction of monetary (or

other) policy in maximizing net benefit.

4. INFLATION CONSIDERED AS A LONG-MEMORY PROCESS

As discussed in section 2, the notion of a nonstationary inflation

rate does not seem intuitively appealing from an economic perspective

since this implies that a one time increase in, say, the growth rate of

the money supply, would have the ability to permanently raise the mean

level of inflation forever into the future (in the absence of any counter

policy maneuvers). From a statistical standpoint, the notion of a

nonstationary inflation rate, or the imposition of a unit root structure

in the series, does not appear to be reasonable either; the inflation rate

appears to occupy the "middle ground" between series which are

nonstationary when expressed in levels, and series which are stationary

when expressed in first differences. The existence of this property in

the inflation rate is the motivation for considering this series as a

long-memory fractionally integrated process.
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To demonstrate the long-term persistence which is present in the

inflation rate series considered in this analysis, Table 1 presents the

autocorrelation functions for the CPI inflation rate series, expressed in

levels, for the Group of Seven (G-7) countries and for Argentina, Brazil,

and Israel. The data are monthly, non-seasonally adjusted, span the

approximate 40-year period from 1948 through 1990,1 and ‘have been

expressed in logarithms. Each of the inflation rate series exhibits the

clear pattern of slowrpersistent decay in their autocorrelation functions,

which is behavior associated with long memory. This pattern of persistent

decay is not typical of stationary processes. Table 2 presents the

autocorrelation functions of the first differences of the inflation rate

series for these countries. In general, these series appear to be over

differenced when full first differences are taken, as indicated by the

large negative autocorrelations at the initial lag and the relative

absence of correlation thereafter. These results certainly are not

typical of series which contain a unit root.

The results presented in Tables 1 and 2 support the hypothesis of

inflation being a fractionally integrated series which requires some

differencing to achieve stationarity yet is over differenced when first

differences are taken. Further evidence of the fractionally integrated

nature of the series represented in Tables 1 and 2 can be obtained by

"filtering", or differencing, each series and examining the

autocorrelation functions of the resulting filtered series. Thbles 3

through 12 present the autocorrelation functions of the inflation series

which. have ‘been filtered for discrete values of d, the fractional

 

1 The exact time periods spanned by each individual series are given

in the keys to Tables 3-13.
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differencing parameter. For each inflation series, the autocorrelation

functions are presented for the extremes of no filtering, d - 0.00, and

full first differencing, d - 1.00, along with filtering at various

discrete levels of d. These results generally indicate that each of the

series becomes stationary after some amount of differencing is performed

on the series and before a full first difference is imposed.

For example, Table 12 presents the autocorrelation functions for the

filtered inflation series for the U.S. Between the extremes of no

filtering, d - 0.00, and full first differencing, d = 1.00, there is a

range of values of d, .30 to .50, in which the series appears to exhibit

stationarity. This would imply for the U.S. inflation rate that the

degree or order of fractional differencing, d, should be approximately

between .30 and .50. As another example, Table 11 presents the

autocorrelation functions for the fractionally differenced.U.K. inflation

rate. This series clearly becomes stationary when differenced in the

range of .20 to .40, thereby implying an order of fractional differencing

for the U.K. somewhere in the range of .20 to .40. Similar results are

provided in Tables 3 through 10 for each of the inflation series of the

remaining eight countries of this analysis. In studying these results,

some insight may be gained into the approximate degree of fractional

differencing, or value of d, required to achieve stationarity of each of

the series studied in this analysis.

The results presented in Tables 1 through 12 strongly indicate the

ayupropriateness of considering the inflation rate series in the context of

time fractionally integrated model. To further investigate the

appropriateness of this specification, standard tests for stationarity are

Performed on each of the series. Most conventional tests for stationarity
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offer a null hypothesis of nonstationarity, implying the presence of a

unit root in the data. Due to the theoretical structure of classical

statistical hypothesis testing, it is generally the case that the null

hypothesis is only rejected.when there is particularly strong evidence to

the contrary. Recently, however, an alternative approach to testing for

stationarity has been proposed.by Kwiatkowski, Phillips, Schmidt and Shin

(1992), ‘hereafter referred. to as KPSS, who have proposed. a

parameterization which offers a null hypothesis of stationarity. Since

the conventional parameterizations of Dickey and Fuller (1979, 1981) and

Phillips and Perron (1988) generally are most appropriate for testing

series which are strongly believed to be nonstationary, the KPSS

specification is most useful to the investigator who has strong priors

against nonstationarity and so wishes to test stationarity as the null.

The approach formulated by Kwiatkowski, Phillips, Schmidt, and Shin

(1992) to test for stationarity utilizes an unobserved components

representation which assumes that the series under investigation may be

written as the sum of a deterministic trend, a random walk, and a

stationary error process as:

(1.) yt- 5t + rt+ 6t .

In this specification, rt - rt_1 + ut, ut is iid (0, oi ), the parameter

g is used to test for level stationarity, and the null hypothesis of trend

stationarity involves testing whether ai = 0. KPSS define the partial

sum process of the residuals from a regression of yt on [1,t], e as
i!
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where T represents the sample size. The score test of the null hypothesis

of stationarity, which is an upper tail test, is based on the statistic

2

n - T' ESE/s2(k>.

when the series has been regressed on an intercept and also possibly a

time trend. The estimate of the disturbance variance, 32(k), is computed

in the same manner in which its equivalent in the Phillips and Perron

(1988) test is computed; a Bartlett window adjustment based on the first

k sample autocovariances is used, as suggested by Newey and West (1987).

The test statistic ; represents the statistic when the residuals are

computed from a regression with only an intercept. The test statistic hf

represents that for' which. a time trend is included in the initial

regression. Both hp and ;T are shown to be asymptotic functions of a

Brownian bridge under the null of stationarity. The critical values,

which are produced in KPSS (1992), for 9p and ;f are .739 and .216 at the

.01 level of' significance, and. .463 and .146 at the .05 level of

significance, respectively.

For fractionally integrated series, neither the hypothesis of

nonstationarity nor that of stationarity describes the processes well.

Cormequently, the combined application of both a conventional unit root

test such as the Phillips and Perron (1988) test which has a null

Ianothesis of nonstationarity, and the KPSS (1992) test which has a null

hypothesis of stationarity, can be used to detect the presence of

frfictionally integrated series. Application of the Phillips and Perron

testl, denoted PP, and the Kwiatkowski, Phillips, Schmidt, and Shin test

Pr°<1uces four possible outcomes which are summarized as:
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Reject Ho Do Not Reject Ho

PP test: Ho: I(l) PP test: H0: I(l)

Reject Ho (i) Inflation not well (ii) Strong evidence of a

KPSS test: represented as unit root exists in

Ho: 1(0) 1(1) or I(O). the data.

POSSIBLE EVIDENCE FOR I(l)

FRACTIONAL INTEGRATION

Do Not Reject Ho (iii) Strong evidence of (iv) The data is insuf-

KPSS test: stationarity exists ficiently informa-

Ho: I(0) in the data. tive on the long

1(0) run characteristics of the series. 
Rejection of both null hypotheses for a given series, scenario (i) above,

indicates that the series is not well described by either an I(l)

nonstationary or an I(0) stationary process, and consequently may be

evidence of fractionally integrated behavior.

Table 13 presents the results of applying the above tests to the

inflation rate series for each of the ten countries represented in Table

1. Scenario (i), in which both null hypotheses are rejected, arises for

(right out of ten countries: Argentina, Brazil, Canada, France, Italy,

Israel, the U.K. and the U.S. The implication, then, is that the

thflation rate series for each of these countries are not well described

as being either stationary or nonstationary, which suggests that the

Series may be fractionally integrated.

The results for Germany and Japan, however, seem to indicate that

tflle inflation rate series for these two countries are stationary. This

result is not surprising given the extent to which officials in these

conntries have intervened, historically, in the operation of their

economies to maintain a steady and stable rate of inflation. These

results of a stationary inflation rate for Germany and Japan are further
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confirmed in subsequent estimation. That is, for Japan the estimated

value of the parameter of integration, d, is found to be of the same

magnitude as that of the moving average parameter such that cancellation

of the two result in a value of d near zero. Similarly for Germany, the

estimated value of d is found to be close to zero. These results support

the hypothesis of a stationarity inflation rate series for these two

countries.

Table 14 presents the results of applying the Geweke and Porter-

Hudak (1983) estimation technique, which is described in detail in chapter

II, to the inflation series of the ten countries: Argentina, Brazil,

Canada, France, Germany, Israel, Italy, Japan, the U.K. and the U.S. The

parameter of integration, d, has been estimated over the range of low-

frequency ordinates used in the spectral regression, as suggested by

Geweke and Porter-Hudak, for the values Ta, where a a .50, .525, .55,

.575, and .60. The results indicate the extreme sensitivity of the

parameter estimate to the number of ordinates used in the spectral

regression. The estimated value of d for each country's inflation series

varies within a substantial range, depending upon the number of ordinates

used during estimation.

Alternatively, Table 14 also provides the results of estimating the

parameter of integration, d, for each country's inflation rate using the

number of ordinates for the spectral regression as suggested by Sowell

(1990). Since each of the low-inflation economies span approximately 41

years of data, and each of the high-inflation economies span approximately

31 years of data, and assuming a low-frequency period of five years for

the inflation rate series, the values of m implied by this technique for

the low- and high-inflation economies are 6 and 8, respectively. This

.
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approach further confirms the extreme sensitivity of the GPH estimation

technique to the range over which the spectral regression is estimated.

The results presented in Table 14 of estimating d for the inflation

rate series using the Geweke and Porter-Hudak (1983) estimation technique

clearly indicate the sensitivity of this procedure to the data used in the

analysis. These results indicate the importance of considering

alternative estimation procedures when dealing with fractionally

integrated series. Consequently, the ARFIMA-GARCH model developed in

Chapter II has been applied to the inflation rate series for the G-7

countries, Argentina, Brazil, and Israel to estimate both the parameter of

fractional differencing for these series as well as all other model

parameters of the series. By applying an appropriate modelling procedure

which can account for not only the long-memory characteristics of the

series but the time varying homoskedasticity as well, it will be possible

to examine the true long-run characteristics of the inflation rate which

should aid in our understanding of the macroeconomy.

5. ESTIMATION OF THE ARFIMA-GARCH MODEL

Section 5 of Chapter 11 detailed the ARFIMA(0,d,l) - GARCH(1,1)

model as represented by equations (11.) through (14.) of that chapter and

discussed the two estimation procedures termed Method I and Method II.

These estimation procedures were applied to the CPI inflation rate series

for the G-7 countries as well as Argentina, Brazil, and Israel. The

estimation procedure for each of these countries and the results of

estimation are outlined below.

The ARFIMA(0,d,1) - GARCH(1,1) model as applied to the U.S. CPI

inflation rate can be expressed by the following equations:
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d

(2.) 100(1-L) A log CPIt - b + 6t + oet_1 + sat

2 -1

(3.) et|nt_1 ~ c(o, at, u )

(4) 02-w+a62 +1302 +1Alo CPI

' t t-l t-l g t’

In this specification, yt = 100Alog CPIt is the consumer price index

measure of inflation. The random error, 6t’ is assumed to follow a

conditional density D, assumed to be either normal or Student t, with mean

zero and variance of. The error at is conditional on the information set

at time (t-l), 0 The model parameters to be estimated include: b, the

t-l'

mean of inflation; 6, the effect of the volatility of inflation on the

mean level of inflation; 0, the moving average parameter; w, the intercept

in the conditional variance; a, the effect of lagged squared residual on

the conditional variance (the ARCH effect); 3, the effect of lagged

conditional variance on the current variance (the GARCH effect); 1, the

effect of lagged inflation on volatility; and, due to the presence of

excess kurtosis in the series, the degrees of freedom from the Student t

distribution, u, must also be estimated.

The specification of the ARFIMA-GARCH model will allow for empirical

tests of the Friedman hypothesis as well as tests for the presence of

feedback between lagged inflation and the degree of volatility of

inflation in the current period. The validity of the Friedman hypothesis

is investigated through the parameter 6; when 6 fl 0, volatility is allowed

to influence the mean of inflation in that a positive and significant

I
t
.
”
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value for this parameter indicates that higher levels of inflation are

associated with higher volatility of the series. Such a finding would

give positive empirical support to the Friedman hypothesis. The model

specification will also allow for a test of whether lagged inflation,

which is predetermined, enters the conditional variance equation (4.). A

positive and significant value for the parameter 1 will lend support to

the hypothesis that last period's inflation rate is directly correlated

with a higher value of the current period's inflation variance. The

results of estimation of 6 and 1 are presented in Table 25 and are

discussed in more detail later in this section.

In estimation of each country's inflation rate the statistics m4 and

m3, which are measures of the sample kurtosis and skewness, respectively,

are estimated numerically by the Berndt et. a1. (1974) algorithm. In the

case where the true distribution of a series is normal, m and m3 will
4

have asymptotic distributions given by N(0,24/T) and N(0,6/T),

respectively. The estimated value of m4 is used as a diagnostic to

determine whether the distribution of the model should be assumed normal

or Student t, since the presence of significant kurtosis in the residuals

indicates the inappropriateness of the assumption of normality of the

unconditional distribution of 100Alog CPIt. When evidence of significant

kurtosis is present in a series as evidenced by the estimated.value of ma,

a Student t distribution, rather than the normal, will be assumed for the

model. Use of the Student t distribution will necessitate estimation of

the degrees of freedom parameter, v. The appropriateness of the Student

t distribution can be examined by comparing the estimated value of the

sample kurtosis, m4, to the level kurtosis implied by the estimated

degrees of freedom parameter. That is, in using the Student t
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distribution, the estimated value of u implies a conditional kurtosis of

3(; - 2)/(; - 4), and this value may be directly compared to the estimated

value of ma.

The estimation procedure employed.in this analysis also produces the

standard Ljung and Box (1978) test statistic, Q(k), which tests for ktfll

order serial correlation in the estimated residuals. In addition, the

statistic Q2(k) is also calculated and this statistic is used to test for

kth order serial correlation in the squared residuals. The Q2(k)

statistic will be used in this analysis to provide an LM test of the

ARCH(k) specification where a null hypothesis of no serial correlation in

the squared residuals of the inflation series is tested against the

alternative hypothesis of kth order correlation. Under the null

hypothesis of conditional homoskedasticity, these statistics will be

asymptotically distributed as chi-squared with k degrees of freedom. In

this particular analysis k will be set equal to 10 so that the Lung-Box

statistics Q(lO) and Q2(10) are calculated in estimation of the model for

each country.

It is worth noting the problems of interpreting the Ljung-Box

statistics in the case of the model for the inflation rate, however, since

the power of these statistics can be influenced by the presence of

significant ARCH effects in the data generating process. As pointed out

by Cumby and Huizinga (1988), when testing residuals for autocorrelation,

the presence of heteroskedasticity in a series (as is the case with the

inflation rate) will tend to 'bias the Ljung-Box statistics towards

rejecting the null hypothesis.

The ARFIMA-GARCH.model described above is used to estimate all model

parameters given in equations (2.) through (4.) of this section, for the
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inflation rate series of eath of the ten countries of this analysis.

Table 15 presents the results of estimating the ARFIMA(0,d,l)-GARCH(1,1)

process for the U.S. The first column of the table presents the full

maximum likelihood estimates of the parameters of the model, obtained by

Method I which was described in some detail in Chapter II. The MLE of d

by this method is .36, which implies that the series is highly persistent

but none the less mean reverting. In this way, the inflation series for

the U.S. can be considered to be a stationary process since mean reversion

implies that shocks to the series will not persist indefinitely into the

future but, rather, will die out over time.

The results of estimation of the model by Method II, as described in

Chapter II, are also presented in Table 15. This involves estimation over

the transformed, or filtered, series for ten values of d, 0.00 through

0.90. That is to say, the maximum likelihood estimation procedure is

performed ten times for the inflation rate series and the resulting

parameter vector which produces the maximized log likelihood is taken to

be the true MLE. In the case of the U.S. model, in observing the values

of the maximized log likelihood function produced at each value of d, it

appears that the log likelihood is relatively flat in the range of d from

.30 to .50. The maximized value occurs when d - .40, which is consistent

with the ML estimate of d obtained by Method 1, and also with the value

predicted by observing the autocorrelation functions of the filtered U.S.

inflation series presented in Table 12. The value of the Ljung-Box

statistics at the MLE indicates that after fitting the GARCH(1,1) model to

the inflation rate series the null hypotheses of uncorrelated residuals

and uncorrelated squared residuals cannot be rejected. In addition, the

estimated value of u at the MLE implies a conditional kurtosis of 4.28

-
.
-
.
-
i
n
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which is relatively close to the estimated value of 4.42, indicating the

appropriateness of the use of the Student t distribution for the U.S.

model.

It is interesting to note that a clear trade off exists for the

maximized conditional log likelihood between the estimated moving average

parameter, 3, and the fractional differencing parameter, 3, as can be

observed in Table 15. As the value of the fractional differencing

parameter increases the estimated value of the moving average parameter

decreases. A similar trade off can be observed for the maximized

conditional log likelihood between the estimated mean parameter, b, and

the fractional differencing parameter; the MLE of S does appear to change

conditional on d.

The ARFIMA-GARCH model was applied to the inflation rate series of

the remaining nine countries: .Argentina, Brazil, Canada, France, Germany,

Israel, Italy, Japan, and the United Kingdom, and the results of

estimation are similar to that of the U.S. For each of these countries,

however, some degree of seasonality in the conditional mean of the

inflation rate series was apparent. This seasonality can be observed by

noting the pattern of decay of the autocorrelation functions of each of

the countries presented in Table 1. For each country except the U.S., the

correlation decreases steadily to zero as the lag increases, but picks up

somewhat around lag twelve and then continues to decline again after this

point.

Consequently, an ARFIMA(O , d, 13) -GARCH(1 , 1) process was estimated for

each of these countries to account for the seasonality in the data. This

model includes moving average terms of lags 1, 12, and 13 to account for

this seasonalityu The multiplicative seasonal restriction of 013 - 01012,
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however, was not imposed in estimation” The model for these countries may

be represented by the following equations:

+ 0 0 6a

‘ 13‘t-13 + c

d

2

(6.) et|0t_1 ~ N(O, at)

(7) 02-w+a62 +1302 +1Alo CPI

' t t-l t-l g t’

This model specification is very similar to that for the U.S. except that

the above specification includes the two additional parameters, 012 and

0 which account for the seasonality of the model. In addition, the
13’

above model assumes a zero mean for the inflation rate.

In the cases of France and Israel, the inflation rate series were

found to exhibit a substantial degree of excess kurtosis and so the models

for these countries were estimated using the Student t density rather than

the normal. Recall that the estimated value of the degrees of freedom

parameter estimated.under the Student t distribution implies a conditional

kurtosis of 30: - 2)/(; - 4). In the case of the French model, for

example, the estimated value of 3 implies a conditional kurtosis of 10.22

which is relatively close to the estimated sample kurtosis for France, m4

= 9.22. This will indicate the appropriateness of the use of the Student

t distribution over that of the normal in estimating the models for these

countries.

Tables 16 through 24 present the results of estimating the

ARFIMA(0,d,l3)-GARCH(1,1) process via Method II for the remaining nine

countries; results for Method I are not reported due to the excessive
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computational difficulty of applying direct maximization to the seasonal

moving average model. As with the U.S. model, the value of the Ljung-Box

statistics for the models of each of the remaining countries indicates

that at the MLE there is no case in which the null hypothesis of no serial

correlation in the squared residuals can be rejected against the

2 For Canada,alternative hypothesis of tenth-order serial correlation.

France, Germany, Italy, and the U.K., which are all considered to be

relatively low-inflation economies, the log likelihood function is

maximized at a value of d which is greater than zero but less than or

equal to 8. This implies that the inflation series for these countries,

like that for the U.S., are highly persistent but none the less mean

reverting. In this way these series may be viewed. as stationary

processes, contrary to what many researchers have found in examining the

inflation rate within the framework of models other than that of the

fractionally integrated model.

The results for the relatively high-inflation economies of

Argentina, Brazil, and Israel also indicate the highly persistent and mean

reverting behavior of the inflation series for these countries. The log

likelihood functions for these countries were maximized when the value of

d was less than one, but also greater than B. This indicates that the

\nnconditional variance of the inflation rate for these relatively high-

inflation economies is infinite. The fact that all three high-inflation

economies exhibit this characteristic should not be surprising due to the

great variability in the inflation rate experienced by these countries

2 In each case, the null hypothesis cannot be rejected at the 10%

leveal of significance and in some cases the null hypothesis also cannot be

rejeected at the 5% level of significance.
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during the time period under investigation. Perhaps somewhat more

surprising is the result that for France and Italy the MLE of d is found

to be exactly equal to 8. This implies an infinite unconditional variance

for these countries as well.

The results of applying Method 11 to the remaining countries'

inflation series appear to be quite similar to the results for the U.S.

The same trade off may be observed for the countries represented in Tables

16 through 23 as was observed for the U.S. That is, as the value of the

fractional differencing parameter increases, the value of the estimated

A

moving, average parameter, 01, decreases. In addition, all of the

estimated models with the exception of the U.K. exhibit strong persistence

in their variances as evidenced by the sum of the estimated.ARCH and.GARCH

parameters, a and 6, being close to one. Again, this confirms the highly

persistent nature of the inflation rate series for these countries.

For each of the ten countries examined in this analysis, likelihood

ratio tests were performed to investigate whether the value of d produced

by Method II was significantly different from zero or from one. That is,

a test of the null hypothesis that d =- 0.00 versus the alternative

hypothesis that d was equal to the MLE produced.by Method 11 was performed

for those inflation series for which 0 < d < 8. Similarly, a test of the

null hypothesis that d - 1.00 versus the alternative hypothesis that d =

dMLE was performed for those series for which.8 < d < 1. In each case the

\

results indicate that the null hypothesis could be strongly rejected

against the MLE value of d. The results of these tests for the U.S. are

presented in Table 15.

Table 25 presents the results of likelihood ratio tests which were

designed to test the validity of the Friedman hypothesis and also to test
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for the presence of a feedback relationship between lagged inflation and

the conditional variance of inflation in the current period. The first

row of Table 25 provides the results of testing for whether lagged

volatility Granger causes the mean of inflation. As discussed in section

4, this test allows the volatility of inflation (the standard deviation)

to influence the mean of inflation through the parameter 6 in equation

(2.) for the U.S. model and equation (5.) for the models of the remaining

countries. The results indicate that for the low-inflation economies of

Canada, France, Italy, Japan, and the U.S., there is no evidence of

volatility causing the mean of inflation. The results for the U.S. are

consistent with the findings of previous studies by Engle (1983) and

Cosimano and Jansen (1988). For the high-inflation economies, and also

surprisingly for the U.K., there is strong evidence of joint feedback

between the conditional mean and variance of inflation.

The second row of Table 25 provides the results of testing whether

lagged inflation Granger causes inflation volatility. This test allows

lagged inflation to influence the volatility of inflation through the

parameter 1 in the conditional variance equation, equation (4.) for the

U.S and equation (7.) for the remaining countries. This can be

interpreted as a direct test of the Friedman hypothesis which states that

the volatility or uncertainty of inflation increases in high inflation

regimes. The results indicate that for the low-inflation economies of

Canada, France, Germany, Italy, and.Japan, there is no support for a valid

Friedman hypothesis. These findings are consistent with those of Gordon

(1971), Logue and Willett (1976), and Fischer (1981) who failed to find

evidence of a positive correlation between the level and variability of

inflation for relatively'highly industrialized economies. The results for

I
t
:
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the high-inflation economies and the U.K., on the other hand, indicate

that there is strong evidence in support of the Friedman hypothesis. For

these countries, the parameter 1 is found to be positive and significant.

These results indicate that for the high-inflation economies, and again

also for the U.K., periods of increased inflation should be expected to be

associated with periods of increased inflation variability. This is

consistent with the findings of Logue and Willett (1976) and Fischer

(1981) who noted.that for economies experiencing relative instability, for

example in the form of hyperinflation or political unrest, there existed

a significant positive correlation between increased levels of inflation

and increased inflation variability.

The finding of empirical support for the Friedman hypothesis for

only the relatively high-inflation economies should not be surprising if

one considers that the hypothesized link between inflation and its

variance ‘was most likely directed. at ‘high inflation. economies (see

Friedman 1977). Logue and Willett (1976), who found no link between

inflation and its variance for economies experiencing relatively low

levels of inflation, suggested that there existed some "threshold" level

of inflation below which the Friedman hypothesis was not valid. That is

to say, Logue and Willett hypothesized that there was some minimum level

of inflation3 below which an increase in the level of inflation would not

lead to a subsequent increase in inflation variability; the higher the

average rate of inflation, the more likely there was to be a positive

association between the level and variability of inflation. As a result,

3 Based on calculations performed in their analysis, Logue and Willett

(19 76) propose that this threshold level of inflation should lie somewhere

between two to four percent.

I
n
:
-
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evidence of the Friedman hypothesis should be weakest for relatively low-

inflation economies, such as those of the G-7, and strongest for

relatively high inflation countries, such as Argentina, Brazil, and

Israel.

The apparent inconsistency of the results for the U.K. are somewhat

surprising, however. In one respect the inflation rate for the U.K.

behaves like the inflation rate series for the relatively low-inflation

economies of the G-7 countries, having a value of d which falls within.the

range of 0 < d < 8. This indicates the highly persistent but mean

reverting nature of the U.K. inflation series and implies a finite

variance. Yet in another respect the inflation rate for the U.K. behaves

like the inflation rate series for the relatively high-inflation economies

of Argentina, Brazil, and Israel in that empirical support is found for a

valid Friedman hypothesis and the existence of a feedback mechanism

between the mean of inflation and its variance. These results seem to

separate the U.K. inflation rate from the norm of either a relatively low-

inflation economy or a relatively high-inflation economy, indicating some

sort of atypical behavior on the part of the U.K.

6. SUMMARY AND CONCLUSION

This chapter examines the long-run characteristics of the inflation

rate series, which is clearly one of the key variables in understanding

the macroeconomy, in the context of the long-memory process. The model

applied here allows for a more precise investigation into the true long-

run characteristics of the inflation rate series since the series is

(Hnnsidered, for the first time, within the framework of the fractionally

intxegrated ARMA model, the ARFIMA process. The additional characteristic
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of the inflation.rate in the form of homoskedastic error is also accounted

for in the model by use of the ARFIMA-GARCH process.

Two methods of obtaining approximate maximum likelihood estimates

are applied to the inflation rate series for the Group of Seven countries,

which are considered to be relatively low-inflation economies, and to

Argentina, Brazil, and Israel, which are considered.to be relatively'high-

inflation economies. A distinct difference is observed in the estimated

parameters of the two types of economies, implying fundamentally different

long-run characteristics for high- and low-inflation economies.

The results of this analysis indicate that the inflation rate

series, regardless of whether they represent high-inflation regimes or

low-inflation regimes, are all highly persistent but none the less mean

reverting and stationary. The inflation rate series for Argentina,

Brazil, Israel, and the U.K., however, were found to exhibit infinite

variances, which may not be unexpected in each case other than the U.K.

due to the volatile nature of the series for these countries during the

time period under which this investigation takes place.

For each of the relatively high-inflation economies of Argentina,

lSrazil, Israel, and also for the U.K., there is strong empirical support

:Eor the Friedman hypothesis that high inflation should be expected to be

zissociated with increased inflation volatility. This relationship does

ruat appear to hold for any of the relatively low-inflation economies, with

tile exception of the U.K. which seemed to exhibit atypical behavior; This

finding should be consistent with theoretical expectations if one

Considers that the Friedman hypothesis was directed at high-inflation

r("figimes only.

One issue of interest in pursuing further the findings of this
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analysis is to consider the effect of exogenous influences on the long-run

characteristics of the inflation rate. For example, Alesina (1989) has

considered the impact of political stability on an economy's performance

and discusses the degree of autonomy in performing monetary policy of the

central banks of several countries. The extent to which a country's

central bank is divorced from the fiscal activity of the economy should

have some effect on the stability of the inflation rate for that country;

that is, central banks which are tied directly to government policy can

often increase the volatility of inflation by their monetary policy

actions. In addition, Bernake (1992) provides a useful discussion of

central bank behavior and the degree of autonomy of the central banks of

six industrialized countries. Fischer (1981) also discusses the effect of

the use of monetary policy on the part of central banks, noting that the

validity of a Friedman-type hypothesis which links the level and

variability of inflation may depend heavily on the degree of accommodation

in a country's monetary policy.

Two additional areas which might be of interest in examining the

effect of exogenous influences on the inflation rate include the degree to

which a country's wages are indexed to the inflation rate, and the degree

to which central banks engage in interest rate smoothing in maintaining

their policy objectives (see for example Gray (1976) and Goodfriend

(1987)). These analyses may provide further insight into the questions

which economists pose about the characteristics of inflation and its

variability and the subsequent implications these issues have for the

macroeconomy.
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TABLE 1

Autocorrelations of CPI Inflation Series

 

 

Country

Lag Argentina Brazil Canada France Germany Israel Italy Japan U.K. U.S

1 .758 .886 .434 .428 .362 .736 .253 .121 .267 .467

2 .561 .789 .369 .169 .275 .653 .280 .092 .232 .423

3 .368 .698 .409 .120 .210 .671 .316 .180 .197 .399

4 .272 .645 .380 .088 .011 .635 .240 .036 .203 .360

5 .373 .611 .362 -.102 .063 .658 .368 .098 .223 .316

6 .410 .588 .288 -.077 -.026 .658 .204 .082 .313 .305

7 .464 .557 .311 -.078 -.024 .602 .310 .025 .160 .312

8 .510 .531 .349 -.022 .047 .614 .326 .166 .146 .359

9 .420 .510 .317 -.025 .000 .615 .194 .112 .210 .386

10 .355 .506 .272 .057 .044 .600 .220 .021 .173 .349

11 .293 .531 .311 .155 069 .575 .194 .031 .201 .320

12 .281 .549 .419 .222 .055 .624 .370 .151 .403 .278

13 .228 .552 .286 .193 .070 .507 .229 .076 .156 .234

14 .219 .550 .216 .113 -.016 .470 .193 .135 .144 .180

15 .192 .512 .235 .140 .095 .456 .246 .083 .168 .211

16 .173 .498 .225 .102 .021 .445 .188 .019 .106 .229

17 .164 .773 .195 -.035 .184 .461 .296 .088 .138 .160

18 .163 .449 .144 -.043 -.135 .487 .199 .013 .192 .129

T 408 409 512 511 507 410 510 511 512 525

Key: The inflation series are defined as 100 Alog CPI



74

TABLE 2

Autocorrelations of First Differenced Inflation Series

 

 

Country

Lag Argentina Brazil Canada France Germany Israel Italy Japan U.K. U.S

1 -.092 “.074 -.437 -.191 -.419 -.343 .505 .467 .471 .499

2 -.009 -.024 -.094 -.214 -.017 -.191 .018 .075 .003 .112

3 -.201 -.169 .057 -.030 .063 .102 .072 .130 .024 .086

4 -.304 -.087 - 004 .150 -.082 -.114 .138 .108 .018 .032

5 -.077 -.015 .038 -.189 .069 .047 .185 .028 .033 .050

6 .072 -.019 -.075 -.100 -.025 104 .153 .038 .160 .013

7 .013 .002 -.018 -.018 -.054 ‘.130 .057 .119 .095 .024

8 .281 -.024 .068 .108 .093 .021 .087 .095 .053 .028

9 -.050 -.066 .017 -.033 -.074 .030 .098 .058 .065 .042

10 -.008 -.151 -.070 -.050 -.012 .020 .030 .069 .041 .029

11 -.104 -.094 -.072 .041 .035 - 140 .132 .105 .120 .024

12 .086 .092 .222 .163 .003 .314 .209 .226 .309 .037

13 -.091 .013 -.052 .051 .089 -.151 .070 .094 .161 .034

14 .039 .204 -.084 -.151 -.035 -.044 .052 .065 .025 .089

15 -.016 -.102 .025 .062 -.134 -.005 .067 .005 .050 .073

16 -.021 .069 .018 .082 .178 -.051 .116 .069 .056 .008

17 -.018 -.004 .008 -.110 -.127 -.019 .130 .100 .016 .084

18 -.033 -.001 -.034 ~.051 .050 .159 .064 .117 .078 .036

Key The series are defined as 100 Azlog CPIt.
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TYiBJLEZ 3

Autocorrelations of Filtered CPI Inflation Series

.
‘
3
‘
1

.1
59
->
-
-
“

Argentina

Value of d:

Lag 00 0 1o 0 20 0 30 0 40 0.50 0 60 0 70 0 80 0 9o .00

1 .758 .644 .534 .435 .346 .263 .116 .112 .041 -.026 .091

2 .561 .395 .261 .165 .099 .054 .024 .006 —.005 -.008 .007

3 .366 .147 -.018 — 127 - 191 -.225 -.240 -.241 -.234 -.221 .204

4 .272 .031 — 144 -.254 -.315 —.345 -.335 -.352 -.341 - 326 .307

5 .323 .121 -.o19 -.099 - 136 -.146 -.144 -.132 -.116 -.097 .078

6 .410 .253 .146 .087 .060 .051 .051 .056 .062 .069 .075

7 .464 .326 .229 .169 .133 .109 .089 .071 .052 .033 .014

8 .510 .404 .336 .302 .288 .264 .263 .284 .264 .283 .262

9 .420 .261 .181 .118 .078 .050 .027 .006 -.014 -.033 -.052

10 .355 .207 .104 .045 .015 .000 -.007 -.010 - 010 -.008 - 006

11 .293 .140 .035 -.026 -.059 -.077 -.087 -.094 - 099 -.103 -.107

12 .281 .150 .066 .031 .020 .024 .034 .047 .060 .074 .067

13 .228 .090 .002 - 044 - 066 - 075 -.060 -.082 —.065 -.066 -.092

14 .219 .097 .026 -.003 —.009 -.004 .004 .014 .023 .032 .039

15 .192 .068 -.004 -.034 -.041 -.036 -.032 -.026 -.021 - 017 —.015

 

Key: The inflation series is 100(l-L)d'Alog CPIt - (1-L)d'yt. The series

begins in January of 1957 and runs through December of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.



76

TABLE 4

Autocorrelations of Filtered CPI Inflation Series

Brazil

Value of d:

Lag 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1 .886 .811 .706 .591 .479 .375 .197 .190 .107 .030 “.042

2 .789 .662 .512 .368 .248 .158 .091 .042 .007 -.016 -.030

3 .698 .528 .340 .170 .040 -.049 ”.107 -.144 -.166 -.l78 -.183

4 .645 .464 .274 .114 .005 -.059 -.091 -.104 '.104 -.098 ”.088

5 .611 .429 .245 .099 .008 -.037 -.053 -.052 -.044 -.033 -.020

6 .582 .397 .216 .077 -.004 -.040 -.048 -.043 -.032 -.021 -.011

7 .557 .368 .186 .051 -.025 “.055 -.058 -.048 -.034 “.021 -.010

8 .531 .337 .152 .016 -.059 -.085 -.083 -.068 -.050 -.031 -.015

9 .510 .309 .115 -.030 ".113 '.144 “.146 -.132 ‘.113 -.093 -.073

10 .506 .305 .106 -.050 -.l46 -.191 -.206 -.204 -.196 -.184 -.172

11 .531 .359 .185 .046 -.040 -.082 -.096 -.097 -.091 -.084 -.077

12 .549 .412 .275 .168 .103 .072 .062 .063 .067 .072 .076

13 .552 .438 .320 .223 .157 .117 .093 .076 .061 .046 .031

14 .550 .456 .362 .288 .241 .217 .206 .203 .203 .203 .205

15 .512 .405 .289 .187 .108 .051 .009 -.025 -.054 “.080 '.103

 

Key: The inflation series is 100(1-1.)d Alog CPIt =- (1-L)d yt. The series

begins in January of 1957 and runs through January of 1991. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.
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TABLE 5

Autocorrelations of Filtered CPI Inflation Series

Canada

Value of d:

1 .446 .299 .172 .037 -.092 -.200 ‘.280 -.338 -.381 -.416 '.445

2 .384 .259 .162 .066 -.018 -.076 “.106 '.116 ‘.113 ”.103 *.090

3 .424 .323 .249 .176 .114 .073 .053 .047 .049 .054 .060

4 .395 .302 .230 .154 .086 .036 .006 ".009 -.016 -.020 -.022

5 .392 .308 .243 .177 .120 .081 .061 .054 .055 .059 .063

6 .320 .219 .140 .060 -.010 -.058 -.084 -.096 -.099 -.098 -.097

7 .355 .272 .205 .135 .072 .029 .004 -.007 -.011 -.011 ”.010

8 .401 .337 .280 .219 .163 .122 .099 .087 .082 .080 .078

9 .360 .293 .229 .159 .094 .047 .019 .005 -.001 -.003 “.004

10 .323 .252 .183 .105 .035 -.015 -.044 -.056 -.060 -.059 -.056

11 .349 .283 .212 .132 .059 .003 -.033 -.053 -.065 -.073 -.079

12 .461 .435 .393 .341 .291 .254 .231 .217 .209 .204 .200

13 .351 .307 .248 .176 .109 .057 .024 .004 -.007 -.015 -.021

14 .265 .216 .153 .077 .008 -.042 -.071 -.084 -.089 -.089 -.087

15 .275 .243 .193 .129 .070 .029 .007 -.002 “.004 -.003 -.001

 

Key: Each series is 100(1-L)d Alog CPIt - (l-L)d yt. The series begins

in January of 1948 and runs through August of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.



78

TABLE 6

Autocorrelations of Filtered CPI Inflation Series

France

Value of d:

Lag 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1 .428 .380 .251 .139 .042 “.042 -.116 ".181 “.239 '.290 “.335

2 .169 .227 .115 .033 ‘.025 -.063 -.087 -.101 “.106 ‘.104 -.098

3 .120 .184 .095 .037 .005 ‘.010 -.014 -.011 -.003 .007 .018

4 .088 .105 .020 -.031 -.058 -.069 -.070 -.066 -.060 -.053 -.045

5 -.102 .073 -.008 -.055 -.018 -.093 “.097 -.097 “.095 -.094 ‘.092

6 -.077 .155 .097 .068 .057 .057 .062 .070 .077 .085 .091

7 -.078 .116 .051 .014 ~.005 ‘.013 “.016 '.016 ".016 -.014 -.013

8 -.022 .092 .023 -.020 “.046 -.062 -.072 “.080 ‘.086 -.092 ‘.098

9 -.025 .197 .155 .138 .135 .140 .149 .161 .172 .185 .195

10 .057 .047 -.033 -.088 -.125 -.151 ‘.170 -.185 -.196 -.205 “.212

11 .155 .166 .115 .086 .071 .063 .059 .058 .057 .057 .057

12 .222 .215 .177 .157 .148 .143 .141 .139 .138 .136 .134

13 .193 .102 .049 .018 -.002 -.013 -.021 -.026 -.030 '.032 -.034

14 .113 .032 -.029 -.068 -.094 -.112 -.126 -.137 -.145 -.152 '.157

15 .140 .163 .136 .125 .121 .122 .124 .126 .129 .131 .133

 

Key: The inflation series is 100(1-L)d Alog CPIt- (l-L)d yt. The series

begins in January of 1948 and runs through July of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.
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TABLE 7

Autocorrelations of Filtered CPI Inflation Series

Germany

Value of d:

1 .362 .183 .076 -.015 -.092 '.158 -.216 -.266 ’.311 -.350 '.386

2 .275 .044 -.027 -.073 -.101 -.117 -.123 -.122 -.117 -.109 -.097

3 .210 .027 -.016 “.035 -.039 “.035 -.025 -.013 -.001 .011 .021

4 .011 -.022 -.056 -.067 -.066 -.058 '.048 -.038 -.029 '.021 -.015

5 .063 -.039 -.067 ”.074 “.070 -.061 ”.051 ”.041 -.032 '.025 -.019

6 -.026 -.050 -.079 -.087 -.084 -.076 -.066 -.057 -.047 -.039 -.032

7 -.024 -.004 -.036 -.050 -.056 -.058 -.059 -.060 -.061 -.064 ’.067

8 .041 .154 .139 .139 .144 .152 .160 .167 .173 .178 .182

9 .000 .010 -.034 -.062 -.081 '.094 -.105 -.114 -.122 -.129 -.135

10 .044 .063 .026 .007 -.003 -.006 “.006 -.004 .000 .004 .010

11 .069 .108 .068 .042 .024 .010 -.001 -.010 '.019 ‘.026 -.033

12 .055 .231 .206 .191 .181 .172 .164 .156 .148 .140 .133

13 .070 .148 .122 .107 .097 .090 .083 .077 .070 .065 .059

14 -.016 ".022 -.054 -.069 -.077 -.082 -.084 -.084 -.084 -.083 -.082

15 “.095 '.047 -.069 “.076 '.077 -.075 '.072 “.068 '.065 ".062 ".060

 

Key: The inflation series is 100(1-L)d'Alog CPIt - (l-L)d’yt. The series

begins in January of 1948 and runs through March of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.

A
.
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TABLE 8

Autocorrelations of Filtered CPI Inflation Series

Israel

Value of d:

Lag 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1 .736 .570 .374 .199 .059 -.046 -.126 -.129 “.240 -.282 -.319

2 .653 .444 .226 .050 -.070 ‘.144 -.186 -.108 -.216 -.216 -.211

3 .671 .491 .318 .190 .114 .077 .065 .068 .078 .091 .106

4 .635 .433 .238 .090 -.007 ’.063 -.094 -.111 -.119 -.124 -.127

5 .658 .486 .323 .204 .130 .090 .069 .060 .056 .055 .055

6 .658 .492 .341 .232 .167 .132 .116 .109 .108 .108 .109

7 .602 .404 .219 .080 -.009 -.062 “.093 -.110 -.120 -.127 -.131

8 .614 .431 .267 .149 .077 .037 .017 .009 .006 .007 .009

9 .615 .446 .294 .186 .119 .080 .060 .049 .043 .040 .038

10 .600 .431 .279 .169 .100 .058 .035 .021 .014 .010 .008

11 .575 .407 .252 .136 .058 .008 '.027 -.051 ‘.071 -.087 -.100

12 .624 .483 .381 .318 .287 .274 .270 .270 -.273 .275 .278

13 .507 .316 .155 .043 -.025 -.065 '.089 '.103 -.113 -.121 -.128

14 .470 .266 .106 .001 -.055 -.080 -.088 -.087 -.082 -.076 -.069

15 .456 .269 .123 .035 -.008 -.022 '.022 '.015 -.006 .003 .012

 

K_ey: The inflation series is 100(1-L)d Alog CPIt - (1.1.)d y. The series

begins in January of 1957 and runs through February of 1991. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.
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TABLE 9

Autocorrelations of Filtered CPI Inflation Series

Italy

Value of d:

Lag 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1 .253 .126 “.063 “.191 “.280 “.346 “.398 “.440 “.475 “.505 “.532

2 .280 .227 .104 .041 .012 .003 .005 .013 .023 .036 .050

3 .316 .205 .090 .033 .009 .001 .000 .002 .006 .010 .014

4 .240 .160 .042 “.014 “.039 “.048 “.050 “.049 “.047 “.044 “.042

5 .368 .183 .075 .026 .006 .001 .002 .005 .009 .014 .018

6 .204 .171 .059 .003 “.023 “.035 “.041 “.044 “.046 “.047 “.048

7 .310 .249 .153 .107 .087 .078 .073 .071 .069 .066 .064

8 .326 .212 .112 .065 .044 .035 .031 .029 .027 .026 .025

9 .194 .140 .030 “.021 “.043 “.051 “.054 “.054 “.053 “.052 “.051

10 .220 .147 .043 “.004 “.023 “.030 “.031 “.030 “.029 “.027 “.025

11 .194 .194 .101 .060 .045 .039 .038 .038 .039 .039 .040

12 .370 .172 .075 .031 .012 .004 “.001 “.003 “.005 “.006 “.008

13 .229 .165 .071 .029 .012 .005 .002 .001 .000 .000 “.001

14 .193 .162 .072 .035 .021 .018 .018 .020 .021 .023 .024

15 .246 .114 .017 “.025 “.041 “.046 “.047 “.046 “.045 “.043 “.042

 

Key: The inflation series is 100(1-L)d’Alog CPIt - (l-L)d’yt. The series

begins in January of 1948 and runs through June of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.
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TABLE 10

Autocorrelations of Filtered CPI Inflation Series

Japan

Value of d:

Lag 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

l .121 “.008 “.097 “.169 “.228 “.279 “.322 “.361 “.395 “.425 “.452

2 .092 “.048 “.090 “.111 “.118 “.117 “.110 “.100 “.086 “.071 “.055

3 .180 .010 “.011 “.017 “.014 “.008 .001 .009 .017 .024 .030

4 .036 “.035 “.058 “.066 “.065 “.061 “.055 “.048 “.041 “.034 “.027

5 .098 “.045 “.077 “.095 “.105 “.112 “.116 “.119 “.122 “.124 “.127

6 .082 .190 .177 .173 .175 .178 .183 .187 .191 .195 .198

7 .025 .035 .004 “.016 “.029 “.039 “.046 “.053 “.059 “.065 “.070

8 .166 .041 .017 .005 “.001 “.003 “.004 “.004 “.004 “.003 “.003

9 .112 .065 .050 .047 .049 .053 .058 .063 .068 .072 .075

10 “.021 “.062 “.086 “.098 “.102 “.103 “.101 “.099 “.096 “.093 “.089

11 “.031 “.019 “.049 “.069 “.084 “.095 “.106 “.115 “.124 “.133 “.140

12 .151 .328 .334 .343 .352 .359 .364 .368 .370 .370 .370

13 “.076 “.108 “.138 “.157 “.170 “.181 “.190 “.197 “.204 “.210 “.215

14 “.135 “.086 “.097 “.097 “.092 “.085 “.077 “.068 “.059 “.051 “.042

15 “.083 .013 .010 .016 .024 .033 “.041 .047 .053 .057 .061

 

Qy: The inflation series is 100(1-L)d Alog CPIt - (1-L)d yt. The series

begins in January of 1948 and runs through July of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.
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TABLE 11

Autocorrelations of Filtered CPI Inflation Series

United Kingdom

Value of d:

Lag 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1 .267 .118 “.016 “.115 “.190 “.251 “.302 “.346 “.384 “.418 “.448

2 .232 .075 “.014 “.061 “.083 “.089 “.087 “.079 “.068 “.054 “.038

3 .197 .074 .001 “.032 “.044 “.044 “.038 “.029 “.020 “.011 “.002

4 .203 .063 “.009 “.043 “.057 “.060 “.059 “.055 “.051 “.047 “.043

5 .223 .118 .051 .017 .000 “.009 “.015 “.020 “.023 “.027 “.032

6 .313 .236 .192 .175 .171 .173 .176 .179 .181 .183 .185

7 .160 .028 “.043 “.078 “.096 “.105 “.110 “.114 “.116 “.118 “.120

8 .146 .036 “.027 “.054 “.064 “.065 “.063 “.059 “.054 “.050 “.045

9 .210 .115 .064 .044 .039 .040 .044 .049 .054 .058 .061

10 .173 .085 .022 “.008 “.023 “.027 “.028 “.027 “.025 “.022 “.019

11 .201 .077 “.001 “.047 “.078 “.101 “.119 “.135 “.149 “.161 “.172

12 .403 .391 .367 .361 .362 .365 “.369 .372 .375 .378 .380

13 .156 .030 “.047 “.092 “.122 “.144 “.162 “.177 “.190 “.202 “.213

14 .144 .063 .010 “.011 “.018 “.018 “.014 “.009 “.003 .003 .009

15 .168 .068 .023 .008 .066 .009 .014 .019 .024 .028 .032

 

Key: The inflation series is 100(1-1.)Cl Alog CPIt - (1-L)d yt. The series

begins in January of 1948 and runs through August of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.
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TABLE 12

Autocorrelations of Filtered CPI Inflation Series

United States

Value of d:

Lag 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1 .467 .313 .121 “.028 “.142 “.231 “.302 “.360 “.409 “.451 “.499

2 .423 .353 .220 .137 .090 .067 .058 .058 .064 .073 .112

3 .399 .225 .084 .000 “.045 “.067 “.076 “.078 “.076 “.073 “.086

4 .360 .221 .095 .028 “.003 “.015 “.015 “.011 “.006 .001 .032

5 .316 .172 .046 “.020 “.050 “.060 “.061 “.057 “.051 “.046 “.050

6 .305 .185 .069 .009 “.016 “.024 “.024 “.020 “.014 “.009 “.013

7 .312 .207 .094 .034 .005 “.009 “.014 “.016 “.016 “.016 “.024

8 .359 .257 .154 .097 .006 .049 .039 .032 .027 .023 .028

9 .386 .275 .179 .125 .096 .079 .069 .061 .056 .052 .042

10 .349 .235 .132 .073 .038 .017 .003 “.008 “.016 “.022 “.029

11 .320 .242 .156 .101 .076 .062 .054 .049 .045 .042 .024

12 .278 .213 .122 .076 .054 .043 .037 .034 .031 .030 .037

13 .234 .135 .035 “.016 “.038 “.048 “.050 “.050 “.048 “.045 “.034

14 .180 .103 .001 “.050 “.074 “.083 “.086 “.086 “.084 “.082 “.089

15 .211 .187 .110 .076 .063 .060 .060 .061 .062 .063 .073

 

Key: The inflation series is 100(1-L)d Alog CPIt - (l-L)d'yt. The series

begins in January of 1948 and runs through August of 1990. The first 30

observations were omitted before the autocorrelations were computed for

each filtered series.
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TABLE 13

Tests for Order of Integration of Different

Countries' Inflation Series

 

HO: 1(1) H : 1(0)

Country Z(ta*) Z(ta) 3,

Argentina -4.76** -3.67* .56** 0.21*

Brazil - 3 46*"r - 2.50 .44Mr o .44“

Canada - 1o . 61** - 6 . 23” .13“ 0 .26’“k

France - 12 . 76M - 1o . 46’” . 20 0 .2”

Germany -15.11** -13.12** .24 0.14

Italy - 15 .19M - 9 . 06** .70” 0 .46“

Israel -4.51** -3.46* .16** 0.3?*

Japan -18.38** -15.76** .33 0.17

UK - 14. 35“ -8 . 76** .88** 0 .26”

us - 9 . 64** - 5 . 66** .80** 0 .36M

 

Key: Z(ta*) and 2(t5) are the Phillips Perron adjusted t statistics of

the lagged dependent variable in a regression with intercept only, and

The critical values for

2(ta*) and 2(t5) are -2.86 and -3.41 at the .05 level of significance and

-3.43 and -3.96 at the .01 level of significance.

3 and 37 are the KPS test statistics and are based on residuals
p

from regressions with an intercept,

intercept and time trend included respectively.

and intercept and time trend

and n1 are 0.463 and 0.146

respectively; the .01 critical values are 0.739 and 0.216 respectively.

respectively. The .05 critical values for up

All test statistics reported in this table are based on Newey and

West (1987) adjustments using 8 lags. Two asterisks denote calculated

test statistics which are significant at the .01 level; one asterisk

corresponds to significance at the .05 level.
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TABLE 15

Estimated ARFIMA (0, d, 1) ~ Student t-GARCH (l, 1)

Models for US CPI Inflation

100(1-L)d A log CPIt - b + (1+oL)et

 

2 -1

e 0 ~ t O a V
tl t‘l ( 3 t, )

2 2

0’ =' w + (26 + 0'

t t-l 3 t-l

Method I Method II

d .359 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

(.063)

b “.328 .171 .094 .053 .029 .015 .010 .006 .003 .002 .002

(.030) (.015) (.013) (.011) (.010) (.008) (.007) (.006) (.004) (.003) (.002)

9 .099 .174 .060 “.045 “.148 “.248 “.356 “.475 “.610 “.726 “.799

(.047) (.049) (.047) (.046) (.045) (.043) (.042) (.039) (.034) (.028) (.026)

o .0060 .0046 .0051 .0052 .0053 .0052 .0050 .0050 .0049 .0057 .0040

(.0034) (.0024) (.0027) (.0029) (.0031) (.0032) (.0029) (.0039) (.0029) (.0034) (.0032)

a .130 .121 .112 .104 .100 .101 .090 .093 .099 .112 .092

(.059) (.042) (.092) (.041) (.040) (.042) (.035) (.037) (.039) (.046) (.044)

6 .808 .831 .828 .832 .835 .837 .846 .846 .843 .823 .853

(.073) (.056) (.061) (.064) (.066) (.067) (.061) (.062) (.062) (.069) (.056)

-1 .115 .087 .089 .093 .115 .147 .123 .122 .142 .167 .112

(.000) (.004) (.003) (.000) (.024) (.016) (.000) (.000) (.013) (.006) (.001)

Q(10) 118.63 52.24 26.010 18.855 19.845 24.300 29.94 34.56 33.07 26.903

02(10) 8.39 9.80 10.570 10.408 9.454 8.382 7.69 7.74 7.48 6.539

m3 .175 .211 .214 .198 .182 .172 .176 .188 .194 .223

mg 4.660 4.512 4.441 4.415 4.414 4.411 4.401 4.436 4.573 4.821

2 “91.63 “72.77 “63.588 “60.218 “60.574 -62.180 “64.57 “66.43 “66.75 “66.53

 

Key: The statistics Q(10) and.Q2(10) are the Ljung-Box tests based on the

residuals and squared residuals, m3 and m4 are the sample skewness and

kurtosis statistics based.cn1 the standardized residuals, and {C is the

maximized value of the log likelihood. The model was estimated.with their

first 30 observations omitted so that estimation uses these values for

initialization.
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TABLE 16

Estimated ARFIMA-GARCH Model for CPI Inflation: Argentina

d. :12 113
100 1-L A 10 CPI = 1 + 0 L + 0 L + 0 L e

( ) g t ( 1 12 13 ) t

2
6 0 ~ N 0 a
tl t-l ( ' t)

2 2 2
a' =- a)-+ (16 +- a"
t t-l fl t-l

d .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

91 .401 .303 .232 .161 .081 -.o17 “.156 -.297 - 433 “.562

(.058) (.660) (.068) ( 040) (.060) (.057) ( 052) (.046) (.040) (.034)

12 .307 .230 .205 .191 .177 .167 .153 .128 .110 .103

( 040) (.038) (.036) (.036) (.035) (.032) (.030) (.030) (.030) ( 029)

13 .080 “.008 - 040 “.066 “.089 - 094 “.080 - 071 “.064 “.062

(.050) (.050) ( 047) (.045) (.045) (.043) (.039) (.038) (.038) (.037)

2.507 2.799 3.403 3.730 3.673 3.665 3.624 4.127 4.399 4.591

(.426) (.457) (.562) (.596) (.572) (.556) (.606) (.646) (.642) (.631)

a .629 .656 .714 .769 .604 .613 .622 .633 .635 .631

(.098) (.102) ( 113) (.120) (.111) (.104) (.099) (.097) (.096) (.096)

6 .399 .351 .256 .172 .158 .154 .141 .119 .101 .091

( 042) (.046) (.064) (.069) (.063) ( 060) (.063) (.064) (.060) (.057)

0(10) 48.88 35.76 25.54 16.34 15.44 15.20 17.16 20.09 23.12 25.44

02(10) 14.83 16.73 17.94 15.56 14.65 14.49 13.64 12.34 11.07 10.31

m3 0.501 0.695 0.736 0.693 0.612 0.511 0.431 0.364 0.357 0.356

m“ 4.321 4.421 4.276 4.107 4.099 4.190 4.337 4.539 4.743 4.874

E “1083.2 “1051.8 -1031 9 -1019.3 -1014.1 -1013.9 “1016.4 -1019.5 -1022.3 -1024.1

Key: All models are estimated by approximate MLE having concentrated out

d. Q(10) and 02(10) are the Ljung-Box tests based on the residuals and

squared. residuals, m3 and In
4

statistics based on the standardized residuals,

value of the log likelihood.

are the sample skewness and. kurtosis

and f is the maximized
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TABLE 17

Estimated ARFIMA-GARCH Model for CPI Inflation: Brazil

 

d 12 13
100 l-L A 10 CPI = 1 + 0 L + 9 L + 0 L e

( ) g t ( 1 12 13 ) t

2
e 0 ~ N 0 a

tl t-l ( ' t)

2 2 2
a - w + a6 + a

t t-l fl t-l

d .10 .20 .30 .40 .50 .50 .70 .80 .90 1.00

91 .457 .350 .254 .145 '.029 “.098 '.240 '.389 ‘.544 '.712

(.049) (.057) (.059) (.058) (.055) (.052) (.047) (.044) (.039) (.032)

9 2 .312 .232 .178 .145 .129 .125 .127 .130 .131 .125

1 (.041) (.045) (.047) (.045) (.044) (.043) (.042) (.041) (.039) (.039)

13 .381 .284 .219 .175 .145 .121 .091 .055 .008 -.048

(.049) (.050) (.045) (.040) (.035) (.033) (.033) (.035) (.038) (.032)

.071 .078 .085 .098 .119 .135 .144 .149 .157 .154

(.018) (.018) (.020) (.022) (.025) (.028) (.028) (.028) (.030) (.034)

.282 .257 .275 .302 .354 .401 .424 .432 .435 .445

(.055) (.055) (.059) (.051) (.058) (.072) (.070) (.058) (.059) (.081)

B .741 .745 .732 .704 .555 .518 .599 .593 .585 .570

(.035) (.041) (.045) (.047) (.050) (.051) (.048) (.045) (.045) (.057)

Q(10) 20.58 14.43 7.83 4.35 5.58 9.87 15.52 21.45 25.88 32.51

Q2(10) 8.14 5.75 7.52 9.25 10.53 10.74 10.30 10.13 10.57 12.35

m3 0.504 0.558 0.559 0.551 0.529 0.511 0.494 0.485 0.493 0.525

m“ 4.398 4.208 4.025 3.950 3.929 3.928 3.919 3.883 3.788 3.544

£ ’829.81 '781.35 '752.07 “735.90 ‘728.42 “725.45 '727.74 "730.32 '732.51 ‘732.91

 

Key: All models are estimated by approximate MLE having concentrated out

d. Q(lO) and 02(10) are the Ljung-Box tests based on the residuals and

squared. residuals, m3 and. m4 are the sample skewness and. kurtosis

statistics based on the standardized residuals, and f is the maximized

value of the log likelihood.

0
L
.
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TABLE 18

Estimated ARFIMA-GARCH Model for CPI Inflation: Canada

 

d 12 13

100 1-L A 10 CPI - 1 + 0 L + 0 L + 6 L e

< ) g t ( 1 12 13 > t

2

e (2 - bi () (7

tl t-l ( ' t)

a w + at + 602

-l t-l

d .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

91 .160 .014 -.120 —.249 “.368 - 475 “.627 -.737 “.836 “.916 ‘1

( 049) (.048) (.046) (.046) (.044) (.040) (.035) ( 029) ( 027) (.023) “"

.269 .246 .224 .208 .220 .225 .221 .220 .227 .273

12 (.046) (.047) ( 047) (.045) (.045) (.047) (.046) (.038) ( 046) ( 042)

13 .230 .146 .076 .023 -.033 “.078 -.124 -.144 “.189 “.218

(.048) (.049) ( 049) (.048) (.047) (.047) ( 046) ( 039) ( 049) ( 044)

w .0036 .0036 .0049 .0091 .0211 .0204 .0146 .0059 - 0009 .0200

(.0025) (.0026) (.0036) (.0066) (.0079) (.0056) (.0053) (.0024) (.0004) (.0017)

a .054 .046 .046 .058 .064 .094 .074 .092 .047 .078

( 019) (.018) ( 021) (.028) ( 029) ( 022) (.023) (.021) (.013) (.021)

p .916 .920 .906 .659 .723 .720 .792 .641 .956 .712

(.031) (.034) (.046) (.061) (.092) (.065) (.062) (.036) (.008) ( 013)

Q(10) 24.04 13.26 10.06 10.36 11.52 13.40 14.15 13.60 10.96 9.06

02(10) 7.97 6.62 9.70 9.43 6.37 6.14 9.77 10.06 14.26 6.34

ms 0.366 0.363 0.372 0.361 0 356 0.359 0.329 0.399 0.254 0.365

m“ 3.699 3.915 3.932 3.942 3.935 3.937 3.670 3.999 3.666 3.929

2 -197.05 -171 43 “160.17 “156.03 “153.58 “154.65 -154.12 -155 57 “158.21 -171.55

 

Key: All models are estimated by approximate MLE having concentrated out

d. Q(10) and Q2(10) are the Ljung-Box tests based on the residuals and

squared. residuals, m3 and. 1114 are the sample skewness and. kurtosis

statistics based on the standardized residuals, and f is the maximized

value of the log likelihood.
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Estimated ARFIMA-GARCH Model for CPI Inflation: France

d. :12 il3

100 l-L A 10 CPI - 1 + 0 L + 0 L + 6 L e

( ) g t ( 1 12 13 ) t

2 -1

e (2 - t: 0 0' u
tl t'l ( 3 t, )

2 2 2

a - w + a6 + 0

t t-l fl t-l

d .10 .20 .30 .40 .50 .60 .70 .60 .90 1.00

91 .338 .194 .061 “.062 -.177 “.288 - 401 -.518 “.645 “.766

(.043) (.043) (.042) (.042) (.041) (.040) (.036) (.035) (.032) (.030)

012 .247 .210 .194 .187 .182 .179 .176 .173 .167 .151

(.045) ( 037) (.037) (.037) (.038) ( 036) ( 039) ( 039) (.039) (.040)

913 .293 .194 .103 .036 -.012 - 049 “.080 - 110 - 141 -.157

(.041) (.042) (.041) (.041) ( 040) ( 040) (.040) ( 040) (.040) (.041)

w .0012 .0006 .0004 .0004 .0004 .0004 .0004 .0005 .0005 .0010

(.0010) (.0006) ( 0005) ( 0005) ( 0005) ( 0005) (.0005) (.0005) (.0006) (.0008)

.136 .071 .046 .042 .041 .042 .043 .045 .048 .078

( 038) (.023) (.016) ( 015) (.016) ( 015) ( 015) (.016) (.016) (.024)

p .663 .962 .946 .951 .951 .951 .949 .947 .945 .912

( 033) ( 022) (.015) (.014) (.014) (.014) ( 015) ( 015) (.016) ( 024)

0'1 .172 .196 .215 .211 .207 .204 .201 .198 .198 .030

( 016) (.000) (.085) (.017) ( 017) (.015) (.003) ( 001) (.019) (.000)

Q(10) 42.10 34.64 27.56 22.91 22.62 24.66 27.33 29.51 30.72 27.39

02(10) 2.15 3.35 4.62 5.43 5.96 6.53 7.13 7.76 6.39 6.16

m3 0.640 0.676 1.022 1.062 1.093 1.077 1.045 0.996 0.950 0.916

614 7.524 6.364 6.905 9.149 9.216 9.133 6.913 6.551 6.117 7.451

2 “261.35 “220.82 -202 92 “196.77 “196.20 “198.08 -200.76 -203.18 “204.46 -205.53

 

Key: All models are estimated by approximate MLE having concentrated out

d. Q(10) and Q2(10) are the Ljung-Box tests based on the residuals and

squared residuals, m3 and. 1114 are the sample skewness and ‘kurtosis

statistics based on the standardized residuals, and f is the maximized

value of the log likelihood.
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Estimated ARFIMA-GARCH Model for CPI Inflation: Germany

d. i12 113
100 1-L A 10 CPI = 1 + 0 L + 0 L + 9 L e

( ) g t ( 1 12 13 ) t

2
e 0 ~ N 0 a
tI t-l ( ' t)

2 2
= w + at + 0

t t-l 5 t-l

d .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

91 .214 .100 -.004 —.104 -.207 -.315 -.444 “.625 “.846 “.895

( 047) ( 047) ( 045) (.045) ( 045) (.044) ( 041) (.034) (.024) (.021)

12 .228 .201 .191 .190 .169 .193 .202 .215 .232 .234

(.042) (.041) ( 041) (.041) (.041) ( 041) (.041) (.040) (.036) (.040)

13 .208 .164 .134 .108 .082 .052 .014 “.058 -.176 “.186

( 046) ( 046) (.047) (.048) (.048) (.046) ( 047) (.045) (.041) (.041)

w .0004 .0003 .0002 .0002 .0002 .0002 .0003 .0002 .0003 .0040

(.0004) (.0003) ( 0003) ( 0004) (.0004) (.0004) ( 0004) (.0004) (.0004) ( 0004)

a .030 .028 .028 .028 .028 .029 .029 .026 .026 .031

( 007) (.006) (.006) (.006) (.007) (.007) ( 007) (.007) (.007) (.008)

p .963 .966 .967 .967 .966 .966 .966 .967 .967 .962

(.009) ( 006) ( 008) (.006) (.008) (.008) (.009) (.008) (.006) (.010)

Q(10) 17.22 16.95 21.95 26.52 34.44 42.34 50.93 65.47 64.09 43.99

02(10) 6.55 10.51 12.26 13.67 15.45 16.72 17.76 17.29 14.32 13.93

m3 0.553 0.567 0.564 0.567 0.545 0.521 0.494 0.450 0.344 0.269

m“ 4.675 4.764 4.653 4.547 4.446 4.351 4.266 4.199 4.196 4.165

2 -170 90 “158.07 -155.10 -157.32 “161.01 “165.22 -169 02 -171 07 -167.15 “163.34

 

Key: All models are estimated by approximate MLE having concentrated out

d. Q(10) and Q2(10) are the Ljung Box tests based on the residuals and

squared. residuals, m3 and. 1114 are the sample skewness and. kurtosis

statistics based on the standardized residuals, and f is the maximized

value of the log likelihood.

.
.
-
x
.
.
.

.
.
.
.
.
.
_
.
.
.
_
H



923

 

TYKBIJE 221

Estimated ARFIMA-GARCH Model for CPI Inflation: Israel

d. 112 113

100 l-L A 10 CPI - 1 + 0 L + 0 L + 0 L e

( ) g t ( 1 12 13 ) t

2 -1.

e C) - t: 0 a' u
tl t-l ( 9 t, )

2 2 2

a‘ .. (o -+ (26 -+ (7

t t-l fl t-l

d .10 .20 .30 .40 .50 .60 .70 .60 .90 1.00

91 .317 .177 .083 “.067 - 201 —.353 - 475 “.613 -.732 - 762

(.056) (.054) ( 056) (.052) ( 050) (.052) (.049) ( 040) (.036) ( 038)

12 .221 .226 .212 .223 .208 .235 .220 .203 .220 .167

(.039) (.040) ( 035) (.039) (.039) (.039) (.040) (.036) (.038) (.039)

13 .108 .075 .040 .001 -.033 “.076 -.115 “.136 “.176 -.143

(.039) (.042) ( 034) (.043) ( 042) (.043) (.042) (.040) ( 038) ( 041)

.161 .105 .403 .104 .133 .141 .160 .160 .153 .341

(.069) (.049) (.117) (.050) (.058) (.067) (.084) (.067) (.060) (.133)

a .306 .174 .371 .141 .138 .164 .209 .126 .176 .612

( 074) ( 049) ( 091) (.044) (.044) (.062) (.078) (.042) (.055) (.166)

B .671 .763 .490 .607 .793 .774 .772 .767 .750 .509

(.054) ( 044) ( 072) (.045) (.050) (.055) (.060) (.055) (.060) (.076)

0'1 .030 .132 .100 .136 .115 .170 .240 .126 .090 .064

(.000) (.000) (.000) (.000) (.000) ( 000) (.010) ( 000) (.000) (.000)

Q(10) 36.44 37.37 36.61 22.14 21.32 22.09 23.20 23.43 20.60 23.10

02(10) 6.22 10.43 13.66 11.49 10.26 6.95 6.04 7.27 7.10 5.97

m3 1.263 1.375 1.695 1.506 1.524 1.461 1.432 1.427 1.414 1.563

m4 7.706 7.593 6.690 6.135 6.367 9.253 6.222 6.542 6.352 9.677

2 -777.49 -759 30 -759.25 -746.15 -744 53 “740.80 -737 11 -740.51 -742.01 -745.27

 

Key: All models are estimated by approximate MLE having concentrated out

d. Q(10) and Q2(10) are the Ljung-Box tests based on the residuals and

squared. residuals, m3 and. m4 are the sample skewness and. kurtosis

statistics based on the standardized residuals, and f is the maximized

value of the log likelihood.
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TABLE 22

Estimated ARFIMA-GARCH Model for CPI Inflation: Italy

 

d l2 13

100 l-L A 10 CPI = 1 + 0 L + 0 L + 0 L E

( ) g t < 1 12 13 )t

2

e 0 ~ N 0 a

tl t-l ( ' t)

2 2 2

a - (0 +06 + 0

t t-l fl t-l

d .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

91 .156 .019 “.108 “.226 -.343 “.458 -.577 “.694 “.789 “.868

(.046) (.046) (.045) (.045) (.043) (.041) (.038) (.034) (.030) (.024)

a 2 .187 .129 .099 .092 .075 .070 .065 .057 .073 .080

1 (.047) (.047) (.047) ( 047) (.047) (.047) (.047) (.046) (.045) (.039)

13 .223 .144 .090 .057 .027 .002 “.024 “.050 “.072 “.080

(.042) (.043) (.044) (.045) (.046) (.046) (.046) (.047) (.044) (.038)

w .003 .002 .002 .002 .002 .002 .002 .002 .004 .007

(.002) (.001) (.001) (.002) (.002) (.002) (.002) (.002) (.003) (.003)

a .112 .108 .110 .117 .114 .114 .115 .115 .130 .168

(.018) (.016) (.016) (.018) (.018) (.018) (.018) (.018) (.023) (.023)

B .886 .893 .891 .882 .886 .885 .885 .884 .864 .819

(.015) (.013) (.013) (.015) (.015) (.015) (.015) (.015) (.019) (.022)

Q(10) 22.94 13.84 11.37 11.51 12.53 13.79 14.12 12.86 10.66 8.96

02(10) 7.67 8.35 8.15 7.89 6.99 6.35 5.88 5.61 6.36 9.41

ms 0.536 0.665 0.726 0.756 0.759 0.759 0.762 0.772 0.792 0.829

014 3.779 3.864 3.944 4.025 4.059 4.091 4.127 4.161 4.251 4.409

£ “426.0 “392.3 “378.9 “374.9 “374.4 “375.3 “376.2 “376.2 “376.0 “377.4

 

Key: All models are estimated by approximate MLE having concentrated out

d. Q(10) and Q2(10) are the Ljung-Box statistics based on the residuals

and squared residuals, m3 and ma are the sample skewness and kurtosis

statistics based on the standardized residuals, and f is the maximized

value of the log likelihood.
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Estimated ARFIMA-GARCH Model for CPI Inflation: Japan

d. 212 113
100 l-L A 10 CPI = l + 9 L + 0 L + 9 L e

< ) g t ( 1 12 13 ) t

2
e (2 - Pl () <7
tl t-l ( ' t)

2 2 2
0 - w + (26 + 0

t t-l p t-l

d .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

91 - 019 “.181 “.348 -.499 “.617 - 709 “.788 “.856 -.901 -.927

( 403) ( 045) (.042) (.038) ( 034) (.031) (.028) (.025) (.022) ( 021)

12 .321 .298 .284 .267 .256 .248 .215 .259 .274 .294

( 043) (.044) ( 044) ( 044) (.044) ( 045) (.045) (.045) (.044) (.043)

13 -.045 -.142 ~.225 “.278 -.301 -.305 —.301 -.291 “.287 “.289

(.455) ( 045) ( 043) (.041) ( 041) (.042) ( 044) (.044) (.044) (.043)

w .0100 .0106 .0132 .0151 .0145 .0120 .0086 .0065 .0057 .0063

(.0042) ( 0050) (.0062) (.0070) (.0069) (.0420) (.0046) ( 0036) (.0032) (.0032)

a .080 .082 .090 .099 .098 .087 .073 .062 .057 .060

( 016) ( 016) (.017) ( 017) (.016) (.014) (.013) (.012) (.013) (.013)

fl .908 .905 .893 .883 .885 .898 .914 .927 .933 .930

(.176) ( 018) (.019) (.021) (.020) (.017) (.015) ( 014) (.015) ( 015)

Q(10) 17.70 22.18 27.07 29.52 29.68 28.76 26.95 24.48 22.47 21.03

02(10) 9.41 10.88 11.77 12.94 14.24 15.33 16.01 14.76 11.25 8.61

m3 0.413 0.443 0.461 0.463 0.452 0.431 0.399 0.346 0 269 0.196

m4 3.973 4.009 4.015 4.035 4.096 4.211 4.360 4.525 4.657 4.662

2 -613.4 “610.1 -610.2 “610.4 -610 2 —609 6 -608.7 -608 0 -609.1 -614 0

Key: All models are estimated by approximate MLE having concentrated out

d. Q(10) and Q2(10) are the Ljung-Box statistics based on the residuals

and squared residuals, m3 and m4 are the sample skewness and kurtosis

statistics based on the standardized residuals, and £ is the maximized

value of the log likelihood.



96

TABLE 24

Estimated ARFIMA-GARCH Model for CPI Inflation: United Kingdom

 

d 12 13
100 1-L A 10 CPI - 1 + o L + o L + o L e

( ) g t ( 1 12 13 ) t

2
e 0 ~ N 0 0

cl c-1 ( ' c)

2 2 2
0 ‘3 Q)‘+ (16 +‘ a

c t-l 5 t-l

d .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

91 .177 .053 “.055 “.164 “.282 “.412 “.556 “.673 “.762 “.866

(.059) (.061) (.062) (.060) (.058) (.055) (.050) (.044) (.039) (.030)

2 .336 .304 .287 .278 .271 .265 .254 .239 .229 .227

1 (.037) (.037) (.037) (.037) (.037) (.037) (.037) (.037) (.038) (.037)

13 .017 “.068 “.126 “.172 “.211 “.251 “.292 “.310 “.306 “.275

(.045) (.047) (.048) (.049) (.049) (.049) (.048) (.045) (.044) (.042)

.093 .104 .118 .135 .137 .144 .142 .141 .154 .107

(.026) (.028) (.034) (.041) (.044) (.047) (.047) (.047) (.050) (.032)

a .232 .226 .207 .204 .196 .200 .189 .182 .192 .104

(.044) (.044) (.046) (.050) (.052) (.054) (.052) (.050) (.053) (.041)

6 .590 .556 .529 .486 .491 .474 .488 .494 .456 .610

(.075) (.081) (.097) (.119) (.128) (.135) (.135) (.135) (.143) (.103)

Q(10) 24.29 20.03 20.70 24.16 28.20 31.08 31.46 30.00 27.68 22.14

Q2(10) 18.79 19.93 18.76 17.15 14.51 13.33 12.37 11.87 12.16 11.14

m3 0.682 0.815 0.870 0.876 0.865 0.855 0.864 0.886 0.899 0.954

m4 4.186 4.506 4.727 4.807 4.850 4.886 5.001 5.082 5.093 5.398

£ “481.76 “466.34 “461.74 “462.21 “453.64 “465.60 “466.66 “466.62 “466.08 “465.03

 

£21: All models are estimated by approximate MLE having concentrated out

d. Q(10) and Q2(10) are the Ljung-Box tests based on the residuals and

squared. residuals, m3 and. 1114 are the sample skewness and. kurtosis

statistics based on the standardized residuals, and f is the maximized

value of the log likelihood.



97

TABLE 25

Likelihood Ratio Tests of Relationship Between

Mean and Variability of Inflation, yt

d 12

(l-L) yt = (1+61L+012 13

2 -l
etlnt-l ~ D(O, at, u )

2 2 2

at = w + aet_1 + fiat_1 + 7yt_1

LR

Tests Argentina Brazil France Germany Israel Italy

13

L +0 L )et+60t

Japan UK US

 

6=0 8.90* 4.26* 0.00 2.40 5.46* 0.72

1=0 12.92** 7.14** 1.54 0.80 10.66** 1.12

1.44 3.88* 0.40

0.44 9.12** 1.28

 

Key: yt is 100 Alog CPIt, the conditional density D is student t for

France and Israel and is Normal otherwise. Under the null hypothesis all

test statistics are distributed as asymptotic X2! random variables. Two

asterisks denotes significance at the .01 level and one asterisk denotes

significance at the .05 level.
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CHAPTER IV

A GENERALIZED METHOD OF MOMENTS ESTIMATOR

FOR LONG-MEMORY PROCESSES

1. INTRODUCTION

As discussed in Chapters II and III, there currently exist two

general types of estimation procedures which have been used to estimate

the degree of persistence of a fractionally integrated, long-memory

process. The frequency-domain based, two-step estimation procedure of

Geweke and Porter-Hudak (1983) utilizes the spectrum of the series in

estimating the parameter of fractional integration. Alternatively, the

maximum likelihood.estimation procedures of'Hosking (1984b), Fox and.Taqqu

(1986), and Sowell (1992), which have been based in both the time and

frequency domains, utilize standard first-order conditions in maximizing

the log of the likelihood function of the fractionally integrated process.

The generalized method of moments (GMM) estimation technique is an

attractive alternative framework in which to estimate the parameter of

fractional integration of a long-memory process since it does not require

the distributional assumptions necessary under maximum likelihood

estimation techniques and consequently offers the advantage of robustness

in parameter estimation. In addition, as evidenced in Chapter III,

approximate MLE can often involve numerically cumbersome techniques which

may be avoided, in some part, with the technique of generalized.methods of

moments. For the fractionally integrated process, the GMM estimation

technique exploits the set of moment conditions that equate the expected

value of the sample autocorrelations to the corresponding population

autocorrelations, evaluated at the true parameter values. In this way a
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consistent estimate of the parameters can be obtained.

This chapter provides the derivation of a generalized method of

moments estimator for the degree of persistence, d, of a long-memory time

series and examines its efficiency relative to those estimation procedures

discussed in Chapters II and III. The following section discusses the GMM

estimation technique in the context of the fractionally integrated model

and presents the motivation for the use of GMM in this context. Section

3 presents the derivation of the asymptotic distribution of the estimated

autocorrelations under specified assumptions. This section also presents

the derivation of the asymptotic variance of the GMM estimator. Section

4 provides an investigation of the estimation procedure by examining the

asymptotic efficiency of the estimator for a range of values of the

parameter d using various moment conditions as well as subsets of moment

conditions. The chapter ends with a brief summary and concluding section.

2. GMM ESTIMATION IN THE CONTEXT OF THE FRACTIONALLY INTEGRATED MODEL

The estimation technique of generalized method of moments makes use

of a set of orthogonality conditions that are implied by the model to be

estimated such that the expected value of the orthogonality condition is

equated to zero at the true parameter value. For the case of the

fractionally integrated model, consider the non-zero mean, stationary time

series {yt} expressed in ARFIMA(p,d,q) form as introduced in Chapter II as

(1.) <1 - I.)d (yt - p) = 6(L)/¢(L) ct = II.

where for -5 < d < 8, yt is said to be fractionally integrated of order d,

the polynomials 6(L) and ¢(L) are as defined in Chapter II, and ut is a
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stationary and invertible error process. Following the framework of

Hansen's (1982) GMM estimator, estimation of a (p x 1) parameter vector A

via the GM estimation technique involves the use of m orthogonality

restrictions where m is at least as great as p. Defining the (m x 1)

vector of orthogonality conditions as some function g(yt,A), the GM

estimator of A is given as that value of the parameter vector which

satisfies

(2-) min §(y.A)’ W 20$),

A

1
where §(y,A) is the standard expression for the orthogonality condition

of the GMM estimator written in the form of an average as

T

2<y,x) - 1/T Z g<yt.x).
t=l

In. this formulation” W' is an 0n >< no positive definite, symmetric

weighting matrix defined as that matrix which has the characteristic of

minimizing the sample orthogonality conditions. The minimized value of

the criterion function (2.) will be asymptotically distributed as Chi-

square with (m - p) degrees of freedom. Within the context of the GMM

estimation procedure, the expression g(y,A) should converge to zero for

 

1 In the context of the fractionally integrated process expressed in

(1.), use of an orthogonality condition of the form g(y,A) is not directly

applicable due to the difficulty in expressing the orthogonality

conditions in the form of an average. This problem arises because the

typical orthogonality condition of the fractionally integrated process is

a function of an infinite number of terms. Therefore, as an alternative,

the function g(-) is expressed in the form of a moment condition for the

fractionally integrated process, as discussed later in this section.
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the true parameter vector and not for any other element of the parameter

space. Additionally, the optimal weighting matrix, W, is given as

-l
W - [cov g(yt,A)] .

Under weak regularity conditions, Hansen (1982) shows that the GMM

estimator of the parameter vector A satisfies

‘ , -1 -1
JT (Am, - A) ~N(0.[D c D] )

1 is the optimal weighting matrix. In this representation, D iswhere C-

defined as the (m x p) matrix of partial derivatives of the moment

conditions with respect to the parameter vector; that is,

0 _ 6 8(Y§.A).

a A’

The GM estimation procedure may be applied to many standard

econometric models, each of which exploits its own unique set of moment

conditions and asymptotically optimal weighting matrix. For the case of

the fractionally integrated model, the moment conditions exploited make

use of the theoretical and estimated autocorrelation functions of the

model. Consider, for simplicity, the zero-mean ARFIMA(O,d,O) process

(3-) (1 ' L)d yt . Ut

where ut is a stationary error process, d.e (~8,8), and pj = corr(yt,yt_j)

h
is defined as the jt autocorrelation function of the process. The simple
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model expressed in (3.) is a single parameter model such that A consists

of a single element, d.2 Recall that for the model given by (3.), pj may

be expressed simply as a function of d, as given earlier in Chapter II, as

_ F(1-d)P(j+d) - a (d+i-1)

p1 F(d)F(j+d-1) iul‘zifai“

The moment condition exploited by the fractionally integrated model,

considering the first k moments, may be expressed as E[S - p(d)] - 0 where

p “ [p1, . . . .pkl’ and

p(d) - [p1(d), . . . ,pk(d)1'.

Within the context of the fractionally integrated.model, the GMM estimator

of the parameter vector A may be expressed as that value of d which

satisfies

(4.) S(d) - m3“ [2 - p(d)1' w [2 - p(d)]

and the asymptotically optimal weighting matrix, W, is given as

W - [cov($ - p<d))]‘1.

In considering the efficiency of the GM estimator, it should be the

 

2 This estimation procedure may be applied to the more general, multi-

parameter ARFIMA representation given by (1.) in which case A would be a

vector and would include the parameters of the autoregressive and moving

average polynomials.
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case that any estimator based on all available moment conditions should be

relatively more efficient than that based on only a subset of these moment

conditions. However, in the case of the fractionally integrated process

there will be some advantage to considering the GMM estimator based on a

subset of moment conditions, especially in the case where a stationary

ARMA component exists in the series. In such a model, the autocorrelation

functions for the lower-order moments of the process will be a function of

the autoregressive and moving average parameters of the model as well the

parameter d. As such, the autocorrelation functions for the lower-order

moments will be quite different from those autocorrelations that exist at

higher-order moments, which are simply a function of the parameter d. In

this sense the autocorrelation functions for the lower-order moments may

be thought of as being "contaminated" when a stationary ARMA component

exists in the series. As a result, it would be of interest in this

context to determine whether the efficiency of the GM estimator is

maintained.when using some subset of the moment conditions, say moments (r

+ 1) through {(r + 1) + k), such that the first r moments may be

discarded. Simple asymptotic variance calculations may be employed to

determine these relative efficiencies, and these operations are discussed

further in section 4.

3. ASYMPTOTIC DISTRIBUTION THEORY

In order to determine the asymptotic distribution and optimal

weighting matrix of the generalized method of moments estimator for the

fractionally integrated process, it is necessary to derive the asymptotic

distribution of the moment condition, [2 - p(d)]. Recall that agglsolves

the operation 68(d)/88 = O as given in equation (4.). This expression may
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be written in the form of its Taylor-series expansion as

 

as d 2 .68(d) ‘_ ( ) _+ 8 S(d) “1_ d),

88 ad adg

where d* lies between d and d. Equating the above expansion to zero and

solving for (d - d) gives

A 2 -1
(d _ d) = _ [a Séd)] 83(8)

6d* 6d

where 63(d)/ad = -2 D’W[B - p(d)],

628(d) 2 .
/8d - 2 D wn + op(l),

and D is as defined previously. It follows that the asymptotic

distribution of the GMM estimator of d satisfies

 

2
. _ 8 S(d) -1 aS(d)

JT (d - d) - {7;§§_1 JT ad

A -1 A

- (D'wn) D'Wfflp - p(d)].

The asymptotic distribution of'.fT[S - p(d)] for the fractionally

integrated, long-memory process is given in Hosking (1984a). Hosking

considers the fractionally integratedHARIMA(p,d,q) process as expressed in

(1.) where e is an independent and identically, but not necessarily
t

normally, distributed white noise error process with mean zero and

variance 0% 6t has a finite fourth moment, and yt has mean u. The sample

_
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autocorrelation function is defined as

T1

7. §1(Yt ' )7) (Yt+j ' S")

pj a: t — 

if“ — 7)2

where 7 = 1/Tti1yt is the sample mean of the process. For the standard,

stationary, short-memory time series process where d takes on integer

values, there are standard results for the asymptotic distribution of the

sample autocovariance function. However, in the case of the fractionally

integrated, long-memory time series process where -H <2<13< 8, Hosking

(1984a) shows that these standard results hold for d e [-8,%) but not for

d z 14. This discrepancy may be attributed to the treatment of the

estimation of the mean of the fractionally integrated process. That is,

for k s d < 8 the effect of replacing p with 7 is not negligible, even

asymptotically, and large bias (of the same order of magnitude as that of

the standard deviation) is introduced into the estimate of the

autocorrelation function. Consequently, the remaining analysis of this

chapter will restrict attention to the range of values of the parameter

vector for which d E [-k,k). Within this range3 the estimated

autocorrelation functions will be distributed asymptotically normal with

variance of order l/T.

Following Hosking (1984a), the estimated autocorrelation function,

A has covariance matrix C which has ihjth element as given by

 

3 For d - k, asymptotic normality is retained but the variance of the

estimated autocorrelation function is of order 1/T(log T). For d.e (8,8),

asymptotic normality is not retained.and.the variance is of order TfiuerL
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- 2 pips)(ps+. + p . - 2 9.178)}(5.) c- - “ 1/T {521938 + ps-i J s-J J1,]

and C - {cij}' In applying the GMM estimation procedure to the single

parameter fractionally integrated process, then, the asymptotic

distribution of [3 - p(d)] will be given by Jfi§(; - p(d)) ~ N(0,C) where

the dimension of C will be defined by the number of moments used in

estimation, and the asymptotic distribution of the GMM estimator will be

given by

(6.) JT(<1 - (1) ~ N[0,(D’C'1D)'1]."

4. ASYMPTOTIC PERFORMANCE OF THE GMM ESTIMATOR FOR THE FRACTIONALLY

INTEGRATED MODEL

The asymptotic performance of the generalized method of moments

estimator for the fractionally integrated process is examined by

calculating the large sample variance of 8 as given in (6.). To perform

this calculation it is necessary to compute [D’C'lD]-1 where D and C are

functions of the parameter (1 and the number of moments, k, used in

estimation. In the general case, the efficiency of the GMM estimator

should be greatest when calculations are performed utilizing all available

moment conditions. However, in the case of the fractionally integrated

process, which uses the estimated autocorrelations in calculation, the

possible number of available moment conditions is infinite. Relative

efficiency, then, should continue to increase as 81 greater number of

 

‘ In.this representation the optimal weightinglnatrix, defined in (2.)

as W, is given by C'l.
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moments are used in estimation such that more moments will always be

preferred. As such, the use of any subset of moments in estimation should

provide lower levels of efficiency relative to that in which a greater

number of moments are employed.

The calculation of the vector of partial derivatives, D, and the

covariance matrix of the estimated autocorrelation functions, C, is as

follows. Recall that the (k X 1) vector p(d) is given by

   

 

_ -9— -

l-d

.9. 9:1
1-d 2-d

p(d) =

d d+1 d+2 d+(k-1)

_ l-d 2-d 3-d ' ' ' k-d

It follows then that D is given by

- 1 -

(cl-1)2

-2(-l-2d+2d2)

(d-l)2 (d-2)2

 

3(4+128-982-683+3d4)

n _ (cl-1)2 (d-2)2 <d-3)2

 

(4)“1 k * f<~>

. (d-1)2(d-2)2(d-3)2 --- (d-k)2 -

   
where f(-) will be a function of di and i = (0, 1, 2, 3, . . . , 2[k-1]).

From the above expressions and the formula given by (6.), the values of D
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and C are calculated for various values of d E [-H,%) taken at discrete

intervals, that is d - -.50, -.45, -.40, . . . , .20, .24, and various

numbers of moment conditions. Relative efficiency comparisons are

provided in Tables 1 through 4 which will each be discussed in turn below.

Table 1 presents the asymptotic variance calculations of the GMM

estimator for given values of d using moments 1 through "n" in

calculation, where n - l, 2, 3, . . . , 20. In each case it appears that

as the number of moments used in estimation increases, the asymptotic

variance of the GMM estimator converges to that of the maximum likelihood

estimate, (1(2/6)'1 - .6079, as given in Li and McLeod (1986). For

positive values of d it appears quite reasonable to conclude that the

relative efficiencies of the GMM estimator and the MLE are comparable when

only 10 moments are used, although the efficiency of the GMM estimator

decreases slightly as the absolute value of d increases. For negative

values of d the convergence of the variance of the GMM estimator to that

of the MLE requires the use of additional moment conditions in

calculation, and the efficiency of the estimator also decreases over this

range as the absolute value of d increases.

As discussed in section 2, there is some interest in employing the

GMM estimation technique to the fractionally integrated model since this

procedure allows for calculation of the estimator based upon subsets of

moments so that earlier moments may be dropped from estimation. This

notion is particularly attractive within the framework of the long-memory

process since the presence of autoregressive and moving average components

in the process may contaminate the autocorrelation functions for lower-

order moments. Tables 2 through 4 allow for an examination of the

efficiency of the GMM estimator when dropping earlier moments in
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calculation, and the results of each table are discussed below.

Table 2 presents the asymptotic variance of 8 when.using only moment

"n" in calculation, where n - l, 2, 3, . . . , 10. In this way it will be

possible to examine the contribution of each individual moment condition

to the efficiency of the GMM estimator. Table 2 clearly indicates the

sacrifice in efficiency for a given value of d when using only one moment

condition in estimation, particularly when using any individual moment

after the first moment. For negative values of d, for example, the

asymptotic variance of the estimator increases dramatically when using any

moment other than the first in calculation. For example, for d - -.05,

the asymptotic variance of the GMM estimator based on the use of moment

two only is more than five times that based on moment one only. The loss

in efficiency when using only the second moment is even more dramatic as

the value of d decreases to d = -.49. In addition, Table 2 indicates

that similar losses in efficiency are evident when calculation is based.on

use of only moment three, or only moment four, and so on. The same

sacrifice in efficiency in using only one moment is evident for positive

values of d as well, although the magnitude of the increase in the

asymptotic variance is somewhat smaller. For example, for d = .05, the

asymptotic variance of the GMM estimator based on the use of only moment

two is approximately three times that of the estimator based on only

moment one; recall, as discussed above, that for = -.05 the variance is

more than five times greater.

Recall that Table l illustrated the trade off that existed between

the efficiency' of the. GMMZ estimator and. the absolute ‘value of the

parameter d. That is, the relative efficiency of the GMM estimator based

on moments I through n increases as the absolute value of d decreases.
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The same trade off is evident in Table 2. When using only a single moment

to calculate the GMM estimator, the asymptotic variance of the estimator

decreases as the absolute value of d decreases. This trade off may be

explained for the fractionally integrated process by considering the

relative contribution of successive moments to the efficiency of the

estimator, for a given value of d. As expressed in (6.), the elements of

the vector D represent the derivatives of the moment conditions with

respect to the parameter, d. In the case of the fractionally integrated

process, there is relatively little change in each element of the vector

D beyond the first element. This may be attributed to the relative

flatness of the autocorrelation functions beyond the first moment, for a

given value of d. In addition, the diagonal elements of the matrix C, as

expressed in (6.), show relatively little change beyond the first element.

It appears, then, in the case of the fractionally integrated process that,

for a given value of d, a significant amount of information is contained

in the first moment and thus there exists a sacrifice in the efficiency of

the GMM estimator when using any one moment, other than the first, in

calculation.

Table 3 presents the results of using subsets of five moment

conditions in calculating the asymptotic variance of the GMM estimator in

which the first moment used in estimation is equal to "n", and n - l, 2,

3, . . . , 10. Again, it can be seen that, for a given value of d, the

asymptotic efficiency of the GMM estimator decreases significantly when

the first moment is dropped from the calculations. For example, for d.- -

.05, the asymptotic variance using moments 2 through 6 is more than four

times that using moments 1 through 5. In addition, the results of Table

3 indicate that calculations of the estimator based on a subset of five
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moment conditions, dropping,earlier moments in.calculation, are relatively

less efficient than calculations based on more (or all available) moment

conditions. As observed in Tables 1 and 2, the same trade off exists

between the efficiency of the GMM estimator and the value of d when using

a subset of five moments; for a given subset of five moments, the

efficiency of the GMM estimator increases as the value of d approaches

zero. In addition, Table 3 clearly indicates the sacrifice in the

efficiency of the GMM estimator that results from dropping more and more

of the earlier moments from the calculations. That is, for any given

value of d, the asymptotic variance of the GMM estimator increases as more

of the earlier moments are dropped from the calculations. For any given

value of d when using a subset of five moment conditions, the relative

efficiency of the GMM estimator is the greatest when using the first five

moments.

The results of Table 3 should not be surprising given the findings

of Table 2 which indicate the relative importance of the first moment

condition in estimation. It appears that any calculations which omit the

first moment condition result in some loss of efficiency.

Finally, Table 4 presents the results of using a subset of ten

moment conditions in calculating the asymptotic variance of the GM

estimator, where the first moment used in estimation is equal to "n" and

n - 1, 2, 3, . . . , 10. The results of Table 4 are very similar to those

of Table 3 in that they indicate the relative loss in efficiency in using

subsets of moment conditions where earlier moments are dropped from

estimation. It is evident that calculations based on a subset of ten

moment conditions, especially when dropping the first moment, involve

significant losses in efficiency, with the greatest loss occurring when
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the largest number of earlier moments are dropped from the calculations.

Again, given the results of Table 2 this should not be surprising since a

great deal of information is contained in the first moment. It does

appear, however, that the efficiency of the GMM estimator is greater when

a larger subset of moment conditions are used in the calculations. That

is, for any given value of d, the asymptotic variance of the GMM estimator

based on a subset of ten moments is smaller than that based on a subset of

five moments. It is still the case, however, that the use of a greater

number of moments in calculation of the GMM estimator, as opposed to the

use of any subset of moments, dominates in terms of the asymptotic

efficiency of the estimator.

5. SUMMARY AND CONCLUSION

This chapter has examined the use of the estimation technique of

generalized. method of moments in estimating the parameters of the

fractionally integrated process. The use of this technique is

particularly appealing in this context since it does not require the

distributional assumptions encountered in using maximum likelihood

estimation. techniques, and. also 'because it .avoids the computational

difficulty often encountered in employing approximate MLE techniques. In

addition, the relative efficiencies of the two methods appear to be

comparable, asymptotically, as the variance calculations provided.inTTable

1 indicate convergence of the variance of the GMM estimator to that of the

MLE (a value of .6079). As such, the GMM estimation technique appears to

be a reasonable procedure to employ in the context of the simple

ARFIMA(0,d,O) processes.

It does appear, however, that GM applied to the fractionally
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integrated process requires the use of lower-order autocorrelations in

order to avoid large losses of efficiency. The results of Tables 1

through 4 demonstrate that the relative efficiency of the GMM estimation

technique, when. applied to the fractionally integrated ‘process, is

greatest when using a greater number of moment conditions in estimation.

Table 2 shows the significant loss in efficiency which is encountered when

the first moment is dropped from estimation. This apparently is due to

the relatively small contribution of information attributable to

successively higher moments of the long-memory process. This observation

is further confirmed in Tables 3 and 4 where there exists considerable

inefficiency in using subsets of moment conditions, particularly as a

greater number of the earlier moments are dropped in estimation.

These results are especially relevant if one allows for short-run

dynamics in the model, as in the case of the ARFIMA(p,d,q) process. For

p >>() or q > O, the lower-order autocorrelations may be substantially

different than those for the (O,d,0) part of the process. Since it

appears that these lower-order autocorrelations cannot be dropped from

estimation without sacrificing efficiency, it is reasonable to consider

GMM estimation of the ARFIMA(p,d,q) model in the context in which d is

estimated.jointly with the autoregressive and moving average parameters of

the process. This is an important topic for further research.
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CHAPTER V

EQUILIBRIUM MONEY DEMAND FUNCTIONS, REAL EXCHANGE RATES,

AND PPP: AN ANALYSIS OF COINTEGRATING RELATIONSHIPS

IN CANADA AND THE U.S.

1. INTRODUCTION

Investigation of empirical money demand functions has long been of

interest to macroeconomists seeking to identify the existence of a stable

long-run relationship between real money balances and measures of economic

activity in an economy. Empirical evidence of a stable money demand

function can have far-reaching implications for, among other things, the

conduct of monetary disinflationary policy within an economy. In

addition, estimation of long-run money demand functions can provide

researchers with measures of income and interest elasticities of the

demand for real balances which can provide insight into the behavior of

individuals in the economy.

Traditional modelling of money demand functions has been grounded in

the theory that money demand should be linked, in a predictable manner, to

the behavior of some scale variable and to some measure of the opportunity

cost of holding money. This tradition is now augmented by recent advances

in econometrics, in the form of cointegration tests, which allow for a

more rigorous analysis of long-run economic relationships. These advances

allow researchers to identify stable long-run relationships among a set of

non-stationary variables, providing for nearly an ideal framework with

which to examine the stability of money demand functions.

In addition, the recent advances in the area of cointegration

provide a useful methodology in which to analyze the stability of the real
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exchange rate between two countries. These techniques can be used to test

for the existence of such relationships as the interest rate parity

condition or the validity of a long-run Purchasing Power Parity (PPP)

between two countries, which are intuitively appealing relationships from

an economic standpoint. The issue of stable exchange rates and valid PPP

is by no means clear cut among many nations' currencies, and insight into

this area can provide valuable information in the areas of international

policy and trade.

This chapter investigates the existence of stable money demand

functions and exchange rates for Canada and the U.S., utilizing the

technique of cointegration as developed.by Engle and Granger (1987). The

analysis is made within the context of the monetary balance of payments

theory which provides a useful method for analyzing issues of the balance

of payments and exchange rates that stress the interaction of the supply

and demand for money. This theory is grounded on several key assumptions

and the validity of these assumptions may be investigated empirically

through the cointegration methodology. The contribution of this chapter

is two-fold. First, the long-run equilibrium relationship between real

money balances, real output, and short-term interest rates in Canada and

the U.S. is examined using the cointegration techniques of Johansen (1988)

and Johansen and Juselius (1989). This approach will allow for a unique

investigation into the existence of cross-country relationships in the

monetary model for these two countries. Second, the stability of the

Canadian/U.S. exchange rate is examined, also using cointegration

techniques, and an investigation is made into the validity of long-run PPP

and interest rate parity for these two countries.

The use of the monetary' balance of payments framework is of
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particular interest in the case of Canada and the U.S. due to the

relationship that exists between these two countries with respect to their

position as trading partners and the nature of their trade operations.

The usual criteria which often cause the theory of the monetary balance of

payments to break down do not exist in this case given the unique

relationship between Canada and the U.S. or, at least, exist in rather

weak form. In this sense, the theory of the monetary balance of payments

provides a useful framework in which to examine the issues of interest in

this chapter.

The plan of the rest of the chapter is as follows. Section 2

provides a survey of the theoretical underpinnings of the monetary balance

of payments framework and the equilibrium monetary model. Section 3

reviews the Johansen and Juselius (1988) methodology for detecting the

presence of cointegration and presents the estimation of the equilibrium

money demand function for Canada. Particular attention is given, in this

section, to the apparent collapse of the money demand relationship in the

Canadian data after 1980. Section 4 examines the existence of a stable

equilibrium money demand function for the U.S. and confirms its existence

for the sample period of this analysis. Section 5 presents the joint

estimation of the Canadian and U.S. money demand functions to examine the

similarity of the dynamics in the two countries and to investigate the

existence of cross-country effects in the model. An alternative to the

double-logarithmic specification of the money demand equation for the

joint. model is also considered. in this section to investigate the

robustness of the equilibriuml money demand function to alternative

functional forms. Section 6 examines the stationarity of nominal exchange

rates and relative prices and addresses the issue of long-run purchasing
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power parity. A brief concluding section follows.

2. THE MONETARY BALANCE OF PAYMENTS THEORY

The monetary approach to the balance of payments concentrates on the

direct relationship between the money market and the balance of payments.

This analytical framework deals exclusively with long-run equilibrium

relationships which focus on the connection between prices, output,

interest rates, and the balance of payments, and is based on a few central

assumptions. Under these assumptions, the balance of payments will

reflect any disequilibrium that emerges in the money market.1

The primary assumption of the monetary approach to the balance of

payments is that the demand for money is a stable function of a given set

of 'variables. This implies that there exists a stable, long-run,

equilibrium money demand function for each country in the model. Another

assumption is that there is perfect mobility of goods and financial assets

'between countries so that there is perfect substitutability of these goods

and assets. The implication of this assumption is that the market should

ensure a single price for each commodity and a single rate of interest.

That is, changes in relative goods prices should be proportional to

Changes in the nominal exchange rate so that the law of one price holds in

the long run. In addition, the expected return on interest bearing

securities and assets which are denominated in different currencies should

 

1 The origin of this theory began in the 18th century with the work

of David Hume. Contemporary revival of the theory came about with the

work of James Meade in the early 19505 and further development is

attributed to Polak and his associates at the International Monetary Fund

in the late 19505. Interest in this area was greatly expanded with the

‘workLOf'Mundell (1971) and.Johnson (1972). An excellent survey of many of

the contributions of the theory can be found in Kreinin and Officer

(1978).
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be the same. In addition, it is assumed that output and employment tend

to full-employment levels, at least in the long run. The specific nature

of each of these assumptions will be discussed more fully below.

2.1 LONG-RUN MONEY DEMAND FUNCTIONS

The basic premise of the monetary approach to the balance of

payments is that in the long run there exists a stable demand for the

stock of money balances as a function of a given set of variables. In

particular, the demand for real money balances is posited to be a function

of real income and nominal interest rates. To derive this relationship,

consider that the demand for nominal money balances, M% is a function of

nominal income, Q, short-term interest rates, R, and the price level, P.

This relationship can be expressed as: Md - f(Q,R,P). Assuming that

individuals in the economy are not subject to money illusion, the money

demand function can be written as homogeneous of degree one in prices, and

can be re-written as the demand for real money balances: 101P - f(Q/P,R).

In this representation, the demand for real money balances, PN7P, is a

function of real income, Q/P, and interest rates, R. An increase in real

income, ceteris paribus, would be expected to increase the demand for

money balances since this increases the amount of transactions one is able

to finance. An increase in the interest rate, on the other hand, is

expected to decrease the demand for money balances since this increases

the opportunity cost of holding money.

If one assumes that the income velocity of money, k, varies with the

interest rate, and assumes further that the interest elasticity of money

demand is unity, then the above money demand relationship can be expressed

in the form of the familiar Cambridge cash balances equation as Md/P -

.
.
.
.
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k(r)Q/P. Expressed in this manner, the demand for real money balances is

homogeneous of degree one in real income.

2.2 REAL EXCHANGE RATES AND THE LAW OF ONE PRICE

As formulated in the monetary approach to the balance of payments,

real exchange rates are simply relative prices of the foreign and domestic

countries' currencies. That is, the real exchange rate is the foreign

currency price of a unit of domestic currency. The determination of this

price occurs via the equilibrium supply and demand for the stock of

foreign and domestic monies. Under this approach, exchange rates are

considered to be predominately a monetary phenomenon, but "real" factors,

operating through monetary channels, are also assumed to influence the

equilibrium exchange rate.

Given the assumption under the monetary approach to the balance of

payments of perfect substitutability across countries in both the goods

and capital markets, a natural outcome of the model is that the law of one

price should hold for all countries in the model. This implies the

existence of a single integrated market for all traded goods and capital

where the actions of the market ensure a single price for each commodity

and a unique interest rate. That is, the monetary approach to the balance

of payments is based on the assumption that interest rate parity holds.

Due to efficient arbitrage in assets with similar characteristics, the

interest rate differential between two countries will be reflected in the

forward premium of the exchange rate so that securities that share the

same characteristics will yield the same return in equilibrium.

One further implication of the framework of the monetary balance of

payments is that in the long run a unit of domestic currency is expected
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to command. the same purchasing 'power in the foreign. country, when

converted into the foreign currency, as it would command in the domestic

country. This is the so called Purchasing Power Parity (PPP) theory. The

implication of PPP is that the nominal exchange rate, 5, which is

expressed in terms of units of foreign currency per unit of domestic

currency, will be proportional to the ratio of the foreign price level,

P*, and the domestic price level, P: s = P*/P. This relationship

suggests that, adjusted for changes in exchange rates, the price levels of

the domestic and foreign countries move in step with one another. The

resulting implication, assuming that s, P, and P* are all non stationary,

is that a linear combination of the logarithms of the nominal exchange

rate and relative prices defines a stationary time series.

2.3 THE LINK BETWEEN THE CANADIAN AND U.S. ECONOMIES

The economies of Canada and the U.S. are so closely linked to one

another that fluctuations in one country's macroeconomic variables often

closely parallel fluctuations in the macroeconomic variables of the other

country. Poole (1967) investigated the strength of the relationship

between Canadian and U.S. macroeconomic variables from 1950 through 1962

and identified a strong linear relationship between. many of these

variables. In addition, Poole noted that the magnitude of movements in

the two economies were very similar. These similarities make the Canadian

and U.S. economies quite interesting from the perspective of the monetary

approach to the balance of payments. The U.S. is by far Canada's largest

trading partner with approximately eighty percent of all Canadian exports

going to the U.S. and approximately twenty-five percent of all U.S.

exports going to Canada. In fact, the trade relationship that exists
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between Canada and the U.S. is the largest of any two trading partners in

the world. In addition, the flow of foreign direct investment between

Canada and the U.S. is the largest two-way flow of foreign direct

investment anywhere in the world. (See, for example, Rugman (1990) and

Hill and Whalley (1985).)

The international trade relationship that exists between Canada and

the U.S. can no doubt be attributed partly to the close geographic

location of the two countries and partly to the large size of the U.S.

relative to Canada in the international economy. The close proximity of

the twol countries allows for relatively easy’ mobility’ of' goods and

financial assets across borders. In addition, trade relationships between

Canada and the U.S. have been steadily improving over the past decade with

the advent of actions such as the General Agreement on Tariffs and Trade

(GATT) and the Canada/U.S. Free Trade Agreement, such that tariff and.non-

tariff barriers to trade between the two countries have been substantially

lowered. With the end of the Tokyo Round of the GATT negotiations in

1987, Canadian and U.S. tariffs had been reduced to such a level that

approximateLy 80% of Canadian exports entered the U38. duty free and

approximately another 15% entered at tariff rates of less than 5%. For

Canada, approximately 65% of U.S. exports entered Canada duty free by 1987

with another 25% entering at rates of less than 5%.

2.4 THE EQUILIBRIUM MONETARY MODEL

Given the conditions set out in the monetary approach to the balance

of payments theory, the equilibrium monetary model of money demand and

exchange rates may be formalized as shown in equations (1) through (3).

‘
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(1) log(Mt/Pt) = 60+ 6llog(Qt/Pt) - 6210g(Rt) + elt

** *3? *

(2) 108(Mt/Pt) = (0 + (1108(Qt/Pt) - (2108(Rt) + ‘2:

*

(3) 108(St) - 71108(Pt) - 72108(Pt) + €3t

In this formulation, M is the U.S. nominal money stock, P is the U.S.

price variable, Q is U.S. nominal income, R is the short-term U.S.

interest rate, 3 is the Canadian dollar per U.S. dollar nominal exchange

rate. Asterisks on variables indicate the Canadian equivalents of the

variables. In addition, if 71 -= 72 = 1, then €3t represents the

Canadian/U.S. real exchange rate.

The first and second equations specify the demand for the real stock

of money in the U.S. and Canada, respectively, as outlined in the monetary

balance of payments framework. The disturbance terms about the money

demand equations, elt and €2t, are assumed to be stationary, I(O),

processes such that these two equations represent long-run equilibrium

money demand functions. When 71 - 72 = l, the third equation expresses

the formulation of the real exchange rate as the nominal exchange rate

times the ratio of the U.S. and Canadian price levels. The term €3t, the

real exchange rate if 11 = 72 = 1, is also assumed to be a stationary,

I(O), process such that equation (3) represents a stable linear

relationship between the nominal exchange rate and the relative prices of

the two countries.

3. CANADIAN EQUILIBRIUM MONEY DEMAND FUNCTIONS

The notion that the demand for money should be a stable function of

a given set of relevant macroeconomic variables is intuitively appealing,
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but empirical evidence to support this notion has been relatively weak

over the past several decades [see for example Brenton (1968), Goodhart

(1969), Shearer (1970), Clinton (1973), Foot (1977), Cameron (1979) and

Poloz (1980)]. Indeed one of the most significant issues in the field of

monetary economics centers around the notion that a stable, functional

relationship exists between some measure of money and key macroeconomic

variables in an economy. The existence of a stable money demand function

coupled with an ability on the part of monetary authorities to exert

influence over monetary aggregates presents far reaching implications for

successful implementation of monetary policy.

In the case of the Canadian economy, several researchers have

analyzed the existence of a stable money demand function but with only

limited success. Breton (1968) reports to have isolated a stable velocity

function for Canada but this work has been heavily disputed by Goodhart

(1969) and Shearer (1970). Clinton (1973) has identified a stable money

demand function for Canada for the period of 1955 to 1970 using the stock

adjustment principle, but finds that the relationship is rather tenuous

for all forms of monetary aggregates but the most narrowly defined. Foot

(1977) extends the analysis of Clinton (1973) to include the time period

form 1970 to 1975 which is characterized by Canada's return to a floating

exchange rate regime. These results are also rather tenuous for non-

narrowly defined money.

Recent theoretical developments in econometric methods concerning

estimation of long-run equilibrium relationships between economic

variables have provided a more satisfactory framework in which to analyze

the existence of a stable money demand function. The framework, as

presented in this paper, uses the notion of cointegration.between a set of
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variables to identify the existence of a stable, long-run equilibrium

relationship between these variables.

A cointegrating relationship, as developed in Engle and Granger

(1987), implies that there exists stable linear combinations of a set of

variables which themselves, independently, are non-stationary. That is,

a group of variables is said to be cointegrated if linear combination of

the levels of these variables are stationary even though the individual

series themselves are stationary only after differencing. The existence

of a cointegrating relationship between certain series seems intuitively

appealing since there is often theoretical economic support for the notion

that certain economic variables should move together over time and obey

certain equilibrium conditions, despite the fact that these series may

wander from each other in the short run. If a cointegrating relationship

does not exist between a set of variables then a long-run link between the

variables would not exist.

Analyzing the existence of a stable money demand function in the

framework of cointegration is particularly appropriate since the primary

assumption of the monetary approach is the existence of an underlying

equilibrium relationship between real money balances, real income, and

interest rates.

In investigating the existence of a stable money demand function for

Canada all data used, with the exception of the Canadian monetary

aggregate, are taken from the Main Economic Indicators Historical

Statistics Yearbooks of the OECD. The monetary aggregate for Canada is

Bank of Canada data on the narrowly defined measure, M1. The income

measure used for Canada is real GNP. The interest rate measure is the 3

month Treasury bill rate. The Canadian price variable used to adjust to
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real quantities is the Canadian consumer price index since the Canadian

equivalent of the personal consumption deflator is not currently

available. Again, the frequency of the GNP variable is quarterly and all

other data series were aggregated to quarterly from monthly through an

arithmetic average. All variables were converted to logarithms for this

analysis. The full sample period of analysis for the Canadian money

supply equation runs from 1956.1 through 1989.3.

A key assumption that must be satisfied before testing for the

presence of a cointegrating relationship between variables is that the

variables themselves be non-stationary when expressed in levels. The

results of unit root tests performed on the fundamentals of the equations

(1) through (3) for the U.S. and Canadian variables are presented in Table

1. The conventional unit root tests of Phillips and Perron (1988) are

used in this analysis. In all cases, the null hypothesis of a unit root

in the data cannot be rejected. The finding of a unit root in the

individual series of equations (1) through (3) indicates that the series

themselves are non-stationary I(l) processes, which satisfies the initial

stage of testing for cointegration among a set of variables.

The methodology used in this chapter to test for the number of

cointegrating vectors that exist in a model is the Johansen (1988) and

Johansen and Juselius (1989) full information maximum likelihood

procedure. This procedure tests for cointegration 1J1.a multivariate

setting. Statistical evidence of a single cointegrating vector implies

that a unique stationary linear combination of the variables of the model

exists. In particular, evidence of one cointegrating vector among real

money balances, real income, and interest rates implies 63 unique and

stable long-run money demand function.
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The estimation technique of Johansen and Juselius is given in detail

in Johansen and Juselius (1989), but a brief summary will be given here.

Consider a vector process, X containing p random variables, all of which
t,

are non-stationary I(1) variables. This vector process may be written in

the form of a vector autoregression of order k, VAR(k), as:

k

xta .2 niXt-i + 6t
i=1

where the Hi matrices are (p X p) dimensional coefficient matrices and 6t

is a vector white noise process. This expression can represented as:

k-l

Axt- Z PiAXt_i- n xt_k+ at.

1-1

In this representation: Pi = -I + 111 + . . . + Hi’ where i = 1, 2, . . .,

k-l, and H - I - H1 - H2 - . . . - Hk. The matrix H embodies the long-run

information of the data. If the matrix H is of full rank such that

rank(H)-p, then it follows that each element of Xt is stationary. If the

matrix H is the null matrix, then it follows that each element of Xt is

non-stationary. That is, the equation reduces to a traditional

differenced vector time series model. The intermediate case is the one in

which H is not the null matrix and is of less than full rank. In this

case, 0 < rank(H) - r, where r < p. Under this circumstance the rank of

H indicates the number of linearly independent cointegrating relationships

among the variables contained in the vector process, Xt. When this

condition holds the matrix H may be expressed as H - 023'. In this

representation, the:fl matrix is interpreted as the matrix of cointegrating

vectors and is of dimension (p x r) while the a matrix is interpreted as
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the matrix of vector error correction parameters and is also of dimension

(p x r). Derivation of the maximum likelihood estimates of a, fl, and F1

is developed in Johansen (1988). In addition, the exact number of

cointegrating relationships, r, that exist in the data can be tested using

the test developed in Johansen (1988).

With respect to the Canadian model of money demand, the vector

process, Xt, contains three random variables and may be expressed as:

* *

log (M /P )

* *

X = 108 (Q /P )

log (R*)

where (M*/P*) represents Canadian real M1 balances, (Q*/P*) represents

Canadian real GNP, and (R*) is the Canadian 3 month Treasury bill rate.

Recall from equation (2) that the expression for the Canadian money demand

function is given by:

(2) 16g(M*/P*) = g + g 16g(Q*/P*) - g 16g(R*) + e
t t 0 1 t t 2 t 2t

Given that the variables of the money demand equation have been found to

be non-stationary I(l) processes as indicated in Table 1, it is logical to

investigate whether a cointegrating relationship exists between the

variables of the money demand equation. This would be consistent with

finding a long-run equilibrium demand for real balances equation.

The Johansen test for cointegration‘was applied to Canadian real Ml,

real GNP, and the 3-month Treasury bill rate to investigate the existence

of a long-run money demand function for Canada. These tests initially

were performed over the full sample period without imposing any velocity

E
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restrictions or including any dummy variables to account for the breakdown

in the relationship between Ml, income, and interest rates. These results

are given in Table 3.

Clearly, the hypothesis that there exists one unique cointegrating

vector for the Canadian variables cannot be rejected. There is, however,

very little meaning to the estimated income and interest elasticities in

this model. The estimated income elasticity is on the order of 15.01 and

the estimated interest elasticity is on the order of -16.98. This is

consistent with finding a long run equilibrium money demand function for

Canada, but indicates some type of structural problem in estimation.

Under the hypothesis that Canadian Ml velocity has been subject to

the same conditions which lead to the apparent instability of U.S.

velocity in the early 19805, an investigation is made into the nature of

the Canadian velocity relationship. There is evidence of some type of

structural change in the Canadian velocity relationship as demonstrated by

the results of Table 3. The tests were performed over various sample

periods beginning with the period from 1956.1 to 1979.4 on up to the

period from 1956.1 to 1983.4» These results clearly indicate the

existence in Canada of the same type of "shift in the drift" of the

velocity of M1 which has been observed to be present in the U.S. and also

in the Japanese data.

The model is re-estimated with the inclusion of a dummy variable

which accounts for the break in the velocity relationship for the Canadian

M1 data. The dummy variable takes on a value of 1.0 beginning in the

third quarter of 1981, and is equal to zero in all previous quarters.

Estimation of the model with the inclusion of this dummy variable allows

for a shift in the drift parameter of the velocity of M1 in the Canadian
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model. When specified in this way, the estimated income and interest

elasticities for the Canadian money demand function are much closer to the

values of 1.0 and —0.50, respectively, which have been found to exist in

previous studies.

The magnitude of the estimated income and interest elasticities are

of central importance in this analysis. If the estimated income

elasticity is truly equal to unity, as is implied in Table 3, then it

should be possible to test this restriction with the use of a likelihood

ratio test. The next phase of estimation was to impose this velocity

restriction that the coefficient on real income is the negative of that on

real money balances in the Canadian money demand equation. These results

are presented in Table 4. The model is again estimated for various sample

periods to account for the break in the velocity of M1. In each case, the

estimated values of the likelihood ratio tests for the velocity

restriction fail to reject the maintained hypothesis of a unitary income

elasticity of demand for real balances.

The results presented in Table 4 indicate the significance of the

inclusion of the dummy variable identifying the break in Canadian

velocity. In each case, with and without the dummy variable, the

hypothesis of a unitary income elasticity of the demand for real balances

cannot be rejected. The magnitude of the interest elasticity of demand

does seem to vary with the inclusion of the dummy variable, however; With

the inclusion of the dummy variable, the estimated interest elasticity is

on the order of -0.57.

The results of this analysis indicate that it is appropriate to

interpret the estimated cointegrating vector of Table 4, for the full

sample period with velocity restrictions and the inclusion of a dummy
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variable to indicate the break in M1 velocity, as a stationary linear

combination.of money, income, and interest rates in Canada" These results

are strikingly similar to those found for the money demand equations for

not only the U.S. but also for Japanz, which experienced similar phenomena

in their M1 velocity relationship. This may suggest some similarity in

the dynamics between the U.S. and Canada with regard to the monetary

model. The next section will examine joint estimation of the U.S. and

Canadian money demand equations to address the issue of the degree of

similarity between the two countries.

4. U.S. EQUILIBRIUM MONEY DEMAND FUNCTIONS

Over the period of approximately the last decade and.a'half, studies

investigating the existence of a stable money demand function for the U.S.

have not always found satisfactory empirical evidence of an equilibrium

relationship between real money balances, some measure of wealth, and some

measure of the opportunity cost of 'holding, money. In ‘particular,

estimation of this relationship over a post 1980 sample period has

indicated an apparent structural change in the underlying relationship

among the variables, leading many to question the stability of the long-

run money demand function. (See, for example, Judd and Scadding (1982)

and Rasche (1987).)

Recent studies by Hoffman and Rasche (1991a and 1991b) and.Hafer and

Jansen (1991) examine the existence of a stable long-run money demand

 

2 Rasche (1990) investigates the equilibrium relationship between real

Japanese Ml balances, real GNP, and short-term interest rates since 1955

and finds evidence of a stable long-run equilibrium relationship. The

estimated long-run income elasticity is found to be insignificantly

different from unity and the estimated long-run interest elasticity is

found to be near -0.50.
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function for the U.S. in the context of a cointegrating relationship

between the variables involved. These analyses find strong evidence in

support of the existence of a stable equilibrium demand function for real

balances in the U.S. economy. In particular, Hoffman and Rasche (1991a)

find evidence of a stable, long-run equilibrium relationship between real

balances, real income, and interest rates in the U.S during the post World

War II period. They examine the narrowly defined monetary aggregate, M1,

as well as the monetary base measure of money, and use both long- and

short-term interest rates in their analysis. Hoffman and Rasche report

a long-run income elasticity of the demand for real balances that is not

significantly different from one, and a long-run interest elasticity on

the order of about -O.50 for this period. No significant economic

difference is found between long- and short-term interest rates in this

analysis.

One important aspect of the Hoffman and Rasche (1991a) study is that

the model is estimated over various sample periods which allows for an

examination of the apparent breakdown of the stable relationship between

M1 and measures of economic activity in the U.S. The two sample periods

of the analysis run from l953:1 to 1988:12, which encompasses the full

sample period, and from 1953:l to 1981:12, which includes only that period

associated with the existence of a stable Ml velocity relationship in the

U.S. In this way, Hoffman and Rasche are able to examine whether the

stability or instability of the M1 money demand function changes with the

stability or instability of the velocity relationship.

The stability of M1 velocity during the post-Accord period in the

U.S. is well documented. The behavior of velocity over this period is

described as a random. walk with deterministic drift. However, a
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significant change in the drift parameter is observed in post 1981 M1

velocity data. This apparent "shift in the drift" of the velocity of M1

has lead many researchers to conclude that a stable relationship between

the nominal money supply and nominal measures of economic activity no

longer exists in the U.S. Hoffman and Rasche identify this break in M1

velocity in the third quarter of 1981 and include a dummy variable, D82,

for the post 1981 period of the sample to account for this occurrence.

Hoffman and Rasche interpret the D82 variable in the error correction

model as representing the shift in the deterministic trend of the real

balance series. (For a more complete exposition on the nature of this

break in the drift of velocity after 1981, see Hoffman and Rasche

(1991b).)

Hafer and Jansen (1991) investigate the existence of a stable money

demand function using both the narrowly defined monetary aggregate, M1,

and the broader measure, M2, using both long- and short-term interest

rates over the periods of 1915 to 1988 and 1953 to 1988. They present

evidence of a unique cointegrating relationship for the broader monetary

aggregate but fail to conclusively identify such a relationship for the

narrowly defined aggregate, M1. Results of estimation on the M1 aggregate

over the 1915 to 1988 sample period produce a long-run income elasticity

on the order of 0.89 and a long-run interest elasticity of -O.36. Results

‘using the M2 aggregate produce an income elasticity that is much closer to

unity and an interest elasticity that is much smaller, in absolute value,

than that for the M1 aggregate.

There has been a long-standing debate over the issue of which

monetary aggregate measure is the most appropriate for use in measuring

money balances, whether it be the narrowly defined measure, M1, or the

pa.-
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broader measure, M2. The difficulty, in the Hafer and Jansen (1991)

analysis, of finding a long-run equilibrium money demand relationship

using the M1 measure is consistent with the findings of previous studies

examining this relationship.3 However, this analysis does not allow for

a change in the drift parameter of the M1 velocity relationship, and so no

account is taken of the apparent break in M1 velocity which occurred at

the end of 1981. This may account for the apparent inability to identify

a stable long-run money demand function using the M1 monetary aggregate.

In order to confirm the existence of a stable U.S. money demand

function, estimates of the long-run equilibrium interest and income

elasticities of the demand for real balances are reproduced in this

analysis, consistent with the findings of Hoffman and.Rasche (1991a). The

full sample period.under investigation runs from the first quarter of 1959

through the third quarter of 1990. The data used in this analysis, with

the exception of the monetary aggregate, were taken from the Citibase

macroeconomic data base. The monetary aggregate used in this analysis is

the narrow measure, M1, and was taken from OECD data. The income variable

is real GNP. The interest rate measure is the short-term.3 month Treasury

bill rate. The price measure used to adjust to real quantities is the

personal consumption deflator. The frequency of the GNP variable is

quarterly and all other series were aggregated to quarterly frequency from

monthly by using a standard arithmetic average. All variables were

converted to logarithms for the analysis.

Hoffman and Rasche (1991a) and Hafer and Jansen (1991) present

 

3 For example, Hallman, Porter, and Small (1989) prefer the use of the

M2 aggregate (per unit of potential GNP) over the use of the M1 aggregate,

as do Moore, Porter, and Small (1990), and Gavin and Dewald (1989).
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evidence on the statistical properties of the data used in their analyses,

using the unit root test of Dickey and Fuller (1979). Upon confirming the

criterion that the hypothesis of a unit root in all the individual data

series can be rejected, tests for a cointegrating relationship among the

variables of the model may be performed.

The results of estimating the U.S. money demand equation are

presented in Table 2. The results of this analysis find an estimated

long-run income elasticity of 0.76 for the narrowly defined monetary

aggregate and an estimated long run interest elasticity of -0.40 is found

for the short-term interest rate. The D82 variable was included in this

analysis to account for the presence of a structural change in the

underlying income velocity relationship. Estimation of this model over

the full sample period without accounting for the break in M1 velocity

produces unsatisfactory results in the sense that the size of the

estimated elasticities give them little economic meaning.

In addition, the U.S. money demand function was also estimated.with

the inclusion of the restriction that the coefficient of real balances

plus that on real income sum to zero. This is the velocity restriction

used in Hoffman and Rasche (1991a). When this restriction is imposed, the

estimated long-run interest elasticity is on the order of -O.52, which is

not statistically different from a value of -0.50. In addition, the

calculated value of the likelihood ratio test statistic of this

restriction fails to reject the hypothesis that the coefficient on real

income is unity. This corresponds to an estimated long-run income

elasticity of real income of 1.0.
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5. JOINT ESTIMATION OF THE CANADIAN AND U.S. MONEY DEMAND FUNCTIONS

This section will examine the joint estimation of the money demand

equations for Canada and the U.S. The variables used in estimation are as

defined previously and the sample period under investigation runs from the

first quarter of 1956 to the third quarter of 1989. In estimating the

Canadian and U.S. money demand functions in a combined model it will be

possible to examine whether or not the income and interest elasticities of

the demand for real balances in the two countries are the same, to

identify the magnitude of these elasticities, and to test for the presence

of any "cross-country" effects in this two-country model. Identifying of

the existence and magnitude of cross-country effects can have important

implications for monetary policy within the two countries. That is,

estimating joint Canadian and U.S. money demand functions will allow for

an examination of the influence of lagged changes in the U.S. variables on

the Canadian money demand equation as well as an examination of the

influence of lagged changes in the Canadian variables on the U.S. money

demand equation. In using the estimation techniques proposed by Johansen

(1988) and Johansen and Juselius (1989) it will be possible to examine

‘whether these cross-country effects are present in the long run or whether

they are merely a short-run phenomenon. In addition, joint estimation of

the model will allow for an analysis of the similarity of the dynamics

between the two countries.

Recall from equations (1) and (2) the expressions for the U.S. and

Canadian long-run demand for real balances equations:

(1) 10g(Mt/Pt) = 60 + 6llog(Qt/Pt) - 6210g(Rt) + elt
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* * 71’

(2) log(Mt/Pt) - :0 + gllog(Q:/P:) - §216g(Rt) + ezt

In estimating the U.S. and Canadian models, the VAR(k) equations for each

model may be expressed as:

k-l

AXust = .Z FiAXust_.- H Xust_k+ 6t

1=1

and

k-l

AXcant = i=1FiAXcant_i- H Xcant_k+ 6t.

In estimating the joint model, this produces the standard VAR(k)

expression:

k-l

A xt = iélriaxt_i- n xt_k+ ct.

In this case, the vector process of the joint model, th may be written as

 

Xus

Xt a Xcant 1

t

where

* *

log (M /P ) log (M/P)

Xcan = log (Q*/P*) and Xus = log (Q/P)

16g (R*) log (R)

The joint model, then, may be represented as:

   

The F matrices for the joint model are (6X6) dimensional matrices which
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can be represented in partitioned form as

1“111 P121

F211 F221

such that 2 Pi AXt-i is expressed as

I111 1‘121 Axust-i

F211 I‘221 Axcanc-i

The H matrix is also of dimension (6x6) and is expressed, as described in

section 3, as H-afi'. In the joint model, B and a are (6x2) dimensional

matrices. As described earlier, the 3 matrix is interpreted as the matrix

of cointegrating vectors and is discussed in more detail later in this

section.

Estimation of the joint model is of interest since the F matrix may

be used to examine the nature of short-run cross-country effects present

in the model. In this representation, F12 represents the influence of
i

lagged changes in the U.S. variables on the Canadian money demand function

in the short run. Similarly, F21i represents the influence of lagged

changes in the Canadian variables on the U.S. money demand function.

These cross-country effects are of immerest since they represent the

influence that one country's economy has on the demand for real balances

in the other country, in the short run. In addition, estimation of F111

and P22i is of interest since this will allow for an examination of

whether or not the dynamics in the two countries are similar.

Estimation of the joint model also is of interest since it allows

for an examination of cross-country effects which exist between Canada and
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the U.S. in the long run. Recall that when 0 < rank(H) = r for r < p, the

matrix H may be expressed as Haafi' where a is interpreted as the matrix of

vector error correction parameters and fl is interpreted as the matrix of

cointegrating vectors. In the joint model, B' is expressed as

513 814 515 fi16

f323 324 525 326

In this representation, the fi matrix contains information on.the effect of

the U.S. variables on the Canadian money demand function in the long run

and also the effect of the Canadian variables on the U.S. money demand

function in the long run. For example, the parameter 613 represents the

effect of (Q/P) on the U.S. money demand equation in the long run, and the

parameter 814 represents the effect of (Q*/P*) on the U.S. money demand

function in the long run. The parameters ,615 and '616 represent the

effects of R and R* on the U.S. money demand function, respectively, in

the long run. Similarly, the parameter 323 represents the effect of (Q/P)

on the Canadian money demand function in the long run and the parameter

'* *

524 represents the effect of (Q,H?) on the Canadian money demand function

in the long run, and so on. The coefficients fill and 822 represent the

coefficients on real U.S. and Canadian money balances, respectively, and

are normalized to one in this analysis.

An interesting result of estimating the joint model is that cross-

 

" Note: The ordering of the variables of the 8’ matrix are as

follows: * * * * *

M/P. M /P . Q/P Q /P . R, and R.

with the first row of the matrix representing the U.S. money demand

equation, and the second.row'of the matrix representing the Canadian money

demand equation.
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country effects between the two countries in both the long and short run

appear to be small. Estimation of the F and B nmtrices of the model

indicate that there is little influence of lagged variables in.the U.S. on

the Canadian money demand functions and relatively little influence of

lagged variables in Canada on the U.S. money demand function. For

example, in estimating the matrix of rmummlized cointegrating vectors

(normalized.fl), which represents the long-run information in the data, the

following representations of the U.S. and Canadian money demand equations

results:

log(M/P)t = 1.69 log(Q/P)t — 0.67 log(Q*/P*)t - 0.19 log(R)t

(0.34) (0 20) (0.50)

- 0.14 log(R*)t

(0.11)

and

* * * *

log(M /P )t = -0.19 log(Q/P)t + 1.13 log(Q /P )t + 0.04 log(R)t

(0.62) (0.36) (0.04)

- 0.45 log(R*)t

(0.20)

where the standard errors appear in parentheses beneath the parameter

estimates. For Canada, the long-run cross-country effects of U.S. income

and interest rates on the demand for Canadian real balances appear to be

insignificantly different from zero. For the U.S., the long-run cross-

country effect of the Canadian interest rate on the demand for U.S. real

balances also appears to be insignificant. There does appear to be a

significant relationship between Canadian real income and the demand for

real U.S. balances, however. With respect to short-run cross-country

effects, a likelihood ratio test of the null hypothesis that all short-run
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cross-country effects are equal to zero fails to reject this hypothesis.5

As such, there should be little reason to expect that events related to

the monetary model that occur in one economy would be useful in.predicting

the demand for the stock of real balances in the other economy.

Given the above findings of relatively small cross-country effects

in the combined Canadian/U.S. money demand model, the next step of

estimation was to examine the model in "stacked" form where all cross-

country effects are assumed to be zero. This is represented in the F and

8 matrices as:

F11 0 1.0 0 B13 0 815 0

0 I22

The results of estimation of the stacked model are presented in

Table 5. The results from the Johansen trace tests clearly indicate the

existence of 2 distinct cointegrating relationships which are interpreted

as a stable long-run Canadian money demand function and a stable long-run

U.S. money demand function. When no velocity restrictions are imposed in

estimation, the estimated long-run income elasticities for Canada and the

U.S. are 0.73 and 1.16, respectively; In addition, the estimated interest

elasticities are -0.36 and -0.59 for Canada and the U.S., respectively.

When velocity restrictions are imposed on the coefficients of real

income in both money demand equations, the estimated interest elasticities

for Canada and the U.S. are -0 50 and -0.45, respectively. In addition,

 

5 That is, in estimating the F matrix a likelihood ratio test is

performed where under the null hypothesis F12 - F21 = 0, and under the

alternative hypothesis none of the parameters are constrained to be zero.
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the value of the likelihood ratio test statistic for the hypothesis that

the income elasticity is unity fails to reject the null hypothesis that

the velocity restrictions are true. Consequently, estimation of the joint

Canadian/U.S. model produces income and interest elasticities that are not

significantly different from 1.0 and -0.50, respectively, for 'both

countries.

An interesting alternative specification to consider in estimating

the stacked. model for Canada and. the U.S. is the semi-logarithmic

specification of the money demand equation. There has been, for some time

now, a dialogue among macroeconomists concerning the appropriate form of

the money demand equation and which variables are most appropriate for

inclusion in this equation. Among competing alternatives of variables to

include in the equation are narrowly and broadly defined. monetary

aggregates, and long- and short-term interest rates. A competing

alternative with regard to the functional form of the money demand

function is the semi-logarithmic specification in which the interest rate

variable appears in levels rather that in logarithmic form. That is, the

money demand functions for the U.S. and Canada would be expressed,

respectively, as

(4) log(Mt/Pt) = 80 + allog(Qt/Pt> - 92(Rt) + 64t

5 1 M* P* 1 * 9* R*( > og< t/ t) — 70 + 91 05(Qt/ t> - ¢2( t> + ‘5:

Recall that estimation of the double-logarithmic specification of

the stacked model clearly produces two cointegrating vectors which may be

interpreted as stable long-run velocity functions for Canada and the U.S.
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Table 6 presents the trace test statistics and cointegrating vector from

estimation of the semi-logarithmic specification of the money demand

functions for the joint Canadian/U.S. model with velocity restrictions

imposed. These results indicate the existence of three cointegrating

vectors, implying the presence of an additional long-run equilibrium

relationship in the model.

The presence of this third cointegrating vector in the joint, semi-

1ogarithmic specification of the model may be accounted for by the

interest rate parity condition that results from profit-seeking arbitrage

activities. More specifically, consider the joint model written in terms

of the velocity restrictions as

(6) VC + 02Rt = €4t

* *

(7) Vt + ¢2Rt - 65c

*

(8) Rt - a + ¢Rt + 66 t'

In this representation, V embodies the velocity restriction imposed on the

model and equations (6) through (8) represent three unique equilibrium

relationships which correspond to those identified by the Johansen and

Juselius procedure for the semi-logarithmic specification of the joint

model. The parameters 0 and p represent the interest elasticities of the

U.S. and Canada, respectively; the parameter ¢ embodies the uncovered

interest parity condition.

According to the theory of uncovered interest parity, the difference

between the domestic and foreign interest rates of two countries shouldee
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stationary. This implies a value for ¢ in equation (8) of unity, which

corresponds to the finding of a third cointegrating vector for the model

estimated via the semi-logarithmic specification. That is, under

uncovered interest parity,

(Rt - R3) - a + €6t

should be stationary. If uncovered interest parity holds, and therefor

accounts for the presence of the third cointegrating vector identified in

estimation, then the coefficient on the foreign interest rate should be

the negative of that on the domestic interest rate.

In order to test the hypothesis that the third cointegrating vector

identified by the Johansen and Juselius procedure is indeed attributable

to the condition of uncovered interest parity, a chi-square test of the

restriction that 3 is equal to -l was performed. The calculated test

statistic indicates that the null hypothesis cannot be rejected; that is,

uncovered interest rate parity holds. As such, the third cointegrating

vector identified in the semi-logarithmic specification of the joint model

has the interpretation of being a stationary difference between the

Canadian and U.S. interest rates. This combined.with the existence of two

stable long-run velocity functions for Canada and the U.S. accounts for

three unique, long-run equilibrium relationships among these key

macroeconomic variables in the joint Canadian/U.S. model.

6. STATIONARITY OF REAL EXCHANGE RATES

Although much of the recent empirical literature on exchange rates

tends to support the notion that exchange rates behave as a random walk,
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the possibility still remains that exchange rates may belong to a larger

equilibrium system in which short-run deviations from equilibrium are

possible. Such deviations are discussed by Dornbusch (1976) who noted

that exchange rates often times were experiencing temporary overshooting.

Examination of the Canadian/U.S. exchange rate in the context of a

long-run equilibrium relationship is a natural setting in which to apply

the techniques of cointegration. Use of this methodology enables one to

investigate the possible existence a stable long-run equilibrium

relationship for the real exchange rate between any two countries. The

possible existence of such a relationship between the economies of Canada

and the U.S. is particularly interesting given the parallel nature of the

two economies.

Before proceeding with the investigation of a cointegrating

relationship for the Canadian/U.S. exchange rate it is necessary to

determine whether the nominal Canadian/U.S. exchange rate and the price

levels of the two countries are non-stationary I(l) variables. Table 1

indicates that each of the variables is indeed 1(1) and as such it is

possible to test whether a particular linear combination of these

variables, the real exchange rate, is stationary. Evidence of a single

cointegrating vector among these variables would indicate the existence of

a stable long-run relationship between the nominal exchange rate and the

relative price levels.

Recall from equation (3) the relationship between the nominal

Canadian/U.S. exchange rate and the Canadian and U.S. price levels:

71’ 71'

(3) log<st*> - 711080,) - 7210248,) + e3t

.
’
-
.
.
1

"
'
"
I
v
a
.
”

4

D



154

If it is found that 71 - 1 a 1 then equation (3) may be interpreted as
2

the real Canadian/U.S. exchange rate. Evidence of a stable long-run

relationship in this formulation may be interpreted as the existence of a

stationary real Canadian/U.S. exchange rate.

The vector process, Xt, for the analysis of the real exchange rate

may be represented as

_ log 5

X ‘ [log P/P*1

This representation uses the log of the ratio of the price levels of the

U.S. and Canada rather than the individual price levels so that the

hypothesis of long-run Purchasing Power Parity, PPP, may be examined

later.

In estimating the real Canadian/U.S. exchange rate the period

considered in this investigation corresponds to the post-Bretton Woods

period in whidh most of the Group of Seven countries abandoned their

systems of fixed exchange rates. The data run from January of 1974

through September of 1990. The rmmdnal exchange rate was taken from

International Monetary Fund data which contains end—of-month observations.

The nominal exchange rate is expressed in terms of Canadian dollars per

U.S. dollar. Results of estimation of the exchange rate model are

provided in Table 7.

The results of the Johansen trace tests for cointegration clearly

indicate the presence of one unique cointegrating relationship between the

nominal exchange rate and the ratio of the U.S. and Canadian price levels

over the period of 1974 to 1990. This is consistent with finding a

stationary real Canadian/U.S. exchange rate for this period. The results
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of this analysis indicate that the estimated parameter on the ratio of the

price levels is 1.40.

The model was also estimated over a sample containing the period in

which Canada initially abandoned their system of fixed exchange rates, the

period beginning in June of 1970, but the results over this period were

inconclusive on the long-run properties of the data. The trace test

statistics of the analysis over this sample period do not indicate a

stationary long-run real Canadian/U.S. real exchange rate for the period

beginning in 1970. This apparent tenuousness of the model indicates the

sensitivity of the stability of the Canadian/U.S. real exchange rate to

the time period.under consideration” This may not be a surprising result,

however, if one considers that the period immediately following the

collapse of the Bretton.Woods system (June of 1970) was one in which there

was still substantial adjustment occurring in many of the exchange rates

which began to float at this time.

An interesting,implication.of the 1974-1990 estimation result canfbe

made with regard to the validity of the long-run PPP relationship. If an

estimated parameter of unity is found for the ratio of real prices in the

model, this indicates that changes in relative goods prices between the

two countries will be proportional to changes in the nominal exchange

rate. This is consistent with the assumptions laid out in the monetary

approach to the balance of payments.

The existence of a valid PPP relationship may not be a reasonable

expectation for all pairs of countries in the world, but is particularly

appealing for the U.S. and Canada. These two countries seem to satisfy,

most nearly, the conditions described by the monetary approach to the

balance of payments for which PPP should be expected to hold. Canada is
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relatively small, compared to the U.S., and the two countries are the

largest trading partners of any two countries in the world. The close

proximity of the two countries allows for relatively easy mobility of

goods and capital across borders with very limited restrictions to trade

between the two countries. In addition, evidence of stable, long-run

money demand functions for both countries has been found, as indicated in

sections 3 through 5.

Given these conditions, one would expect that the nominal

Canadian/U.S. exchange rate and the relative price levels of the two

countries, although non-stationary by themselves, should not move too far

from one another in the long run and as such should have a stable linear

representation. That is, it should be reasonable to expect that the

variables comprising the Canadian/U.S. real exchange rate should move

together over time and that the relative goods prices between the two

countries, adjusted for changes in the exchange rate, should move in step

with one another.

The validity of the PPP hypothesis can be tested within the

framework of the Johansen model by imposing the restriction of a unitary

coefficient on the ratio of the price levels in the real exchange rate

equation. The results of this investigation are also presented in Table

7. The value of the likelihood ratio test statistic for the hypothesis

that the coefficient on the ratio of the price levels is the opposite of

that on the nominal exchange rate fails to reject the maintained

hypothesis at the 1% level, although the null hypothesis is rejected at

the 5% level. This may be interpreted as evidence in favor of the long-

run PPP relationship between Canada and the U 8., although this evidence

is somewhat weak. It may be appropriate, therefore, to conclude that a
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valid long-run PPP relationship exists between the U.S. and Canada,

consistent with theoretical expectations.

7. SUMMARY AND CONCLUSION

This chapter has investigated key elements of the theory of the

monetary balance of payments for the economies of Canada and the U.S.,

using the methodology proposed by Johansen (1988) and Johansen and

Juselius (1989). The primary element of the monetary balance of payments

theory, the existence of a stable long-run demand for real money balances,

is found to exist for both Canada and the U.S. for the period of the late

19505 through 1989. With respect to the monetary model, the dynamics

between the two countries are found to be very similar in that the

estimated interest elasticities of 'velocity are found. to 'be

insignificantly different from .50 for both countries. In addition, there

appear to be no long- or short-run cross-country effects between the two

countries with regard to the formulation of the demand for real money

balances. A test of the null hypothesis that all cross-country effects in

the model are zero could not be rejected, despite the finding of some

long-run influence in the U.S. money demand equation with respect to

Canadian real income. Zhn general, then, it may not be reasonable to

expect that influences from U.S. monetary conditions would be useful in

predicting the demand for the stock of real money balances in Canada, and

vice versa.

A further component of the theory of the monetary balance of

payments, the existence of a stable Canadian/U.S. real exchange rate, is

found in this analysis as well. Empirical evidence of a stable real

exchange rate is found for the period after the breakdown of the Bretton
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Woods system of fixed exchange rates, which spans the period from January

of 1974 to the present. This indicates that the Canadian/U.S. nominal

exchange rate and the relative price levels of the two countries tend to

move together in the long run, even though individually they may tend to

wander without bound.

In addition, strong support is also found for the model of Canada

and the U.S. for the validity of the law of one price, especially with

regard to the capital market. That is, uncovered interest rate parity is

found to hold for these two countries for the period from the late 19505

through 1989. With respect to the goods market, some evidence is found

for the validity of long-run purchasing power parity between Canada and

the U.S., although the sensitivity of this relationship to the time period

under investigation must be noted. The null hypothesis of a valid PPP

relationship between Canada and the U.S. is maintained at the 1% level of

significance but not at the 5% level, and the only time period for which

the relationship holds is between January of 1974 and September of 1990.

Despite the tenuousness of the long-run purchasing power parity

relationship for the Canadian and U.S. economies, it does appear that each

of the key components of the theory of the monetary balance of payments

are well-grounded for the case of Canada and the U.S.
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TABLE 1

Phillips and Perron Unit Root Tests

 

test statistic: Z(tu*) Z(t;)

lag length: 4 l2 4 12

series: P 1.46 4.78 8.92 7.42

R -2.07 -2.65 -2.18 -l.95

M/P 1.77 1.25 -3.05 -2.22

Q/P -2.32 -2.18 1.43 1.43

P* -2.80 -2.14 6.89 4.32

R* -2.22 -2.08 -1.83 -l.7l

M*/P* -2.36 -2.28 -l.67 -1.46

Q1/P' -1.90 -l.73 1.56 1.65

s -0.38 -0.69 -1.02 —1.10

Key: Z(ta*) and Z(t&) are the Phillips and Perron adjusted t statistics

used to test the parameter on the lagged dependent variable in. a

regression with an intercept, and with an intercept and a time trend,

respectively. The test statistic Z(ta*) tests the null hypothesis of a

unit root, HO: a* - 1, in the regression yt - u* + a*yt_1 + 6:. The test

statistic Z(t;) tests the null hypothesis of a unit root, HO: 5 - 1, in

the regression yt - G + fl[(t—n)/2] + Eyt_1 + Ft. The critical values for

these test statistics at the .05 level are -2.86 and -3.41, respectively,

and at the .10 level are -3.43 and -3.91, respectively.
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TABLE 2

Cointegration Tests, U.S. Data

Real M1, Real GNP, and Treasury Bill Rate

(double-logarithmic specification)

  

Johansen Trace Test Statistics NOrmalized Cointegrating

Vector

sample r50 r51 r52 M/P O/P .4;

1959.1 - 90.3 37.41 15.77 5.60 1.0 -0.76 0.40

(with dummy) (0.12) (0.07)

with velocity restriction:

Johansen Trace Test LR test of Estimated

Statistics Velocity Interest

r50 r51 Restriction Elasticity

27.84 7.51 1.34 0.52

(0.06)

Key: The standard errors are given beneath the parameter estimates in

parentheses. Critical values for trace tests an: 5% level are 31.53,

17.95, and 8.18 for r50, rsl, and.r52 cointegrating vectors, respectively.

Results are based on k=4 lag specification. The critical value for the

likelihood ratio test, x2(1), at 5% level is equal to 3.84.
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TABLE 3

Cointegration Tests, Canadian Data

Real M1, Real GNP, and Treasury Bill Rate

(double-logarithmic specification)

Johansen'Trace.Test Statistics Normalized Cointegrating

 

Vector

sample r50 r51 r52 M/P O/P 3

1956.1 - 89.3 40.41 8.04 0.71 1.0 -15.01 16.98

(81.16) (94.09)

1956.1 - 89.3 42.97 8.15 0.41 1.0 -1.06 0.59

(with dummy) (0.26) (0.27)

1956.1 - 79.4 30.89 11.74 3.83 1.0 -1.05 0.49

(0.26) (0.33)

1956.1 - 80.4 28.31 8.70 1.51 1.0 -l.01 0.46

(0.21) (0.31)

1956.1 - 81.1 31.11 7.70 0.26 1.0 —l.15 0.63

(0.31) (0.39)

1956.1 - 81.2 32.21 7.57 0.00 1.0 -1.17 0.66

(0.49) (0.41)

1956 1 - 81.3 33.49 7.56 0.05 1.0 -l.43 1.03

(0.84) (1.11)

1956.1 - 81.4 37.07 8.67 0.05 1.0 2.14 -3.65

(12.62) (16.27)

1956.1 - 82.4 37.59 7.59 0.99 1.0 3.20 -2.89

(4.33) (4.83)

1956.1 - 83.4 34.34 7.07 0.38 1.0 87.57 99.63

(137.1) (157.2)

Key: The standard errors are given beneath the parameter estimates in

parentheses. Critical values for trace tests at 5% level are 31.53,

17.95, and 8.18 for r50, r51, and r52, respectively. Results are based on

k=4 lag specification.
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TABLE 4

Cointegration Tests with Velocity Restrictions, Canadian Data

Real M1, Real GNP, and Treasury Bill Rate

(double-logarithmic specification)

 

Johansen Trace Test LR test of Estimated

Statistics Velocity Interest

sample r50 r51 Restriction Elasticity “

1956.1 - 89.3 26.57 1.03 0.06 1.02 i

(0.22) 1

1956.1 - 89.3 29.89 1.89 0.03 0.57 H‘

(with dummy) (0.12)

1956.1 - 79.4 24.02 4.89 0.39 0.43

(0.08)

1956.1 - 80.4 24.96 5.36 0.16 0.45

(0.08)

1956.1 - 81.4 26.53 1.87 1.12 0.63

(0.20)

1956.1 - 82.4 24.86 3.57 0.15 1.09

(0.87)

1956.1 - 83.4 22.54 0.86 1.12 0.72

(0.22)

Key: The standard errors are given beneath the parameter estimates in

parentheses. Critical values for trace tests at 5% level are 17.95 and

8.18 for r.<_0 and r51, respectively. Results are based on k-4 lag

specification. The critical value for the Likelihood Ratio test, x2(1)’

at 5% level of significance is 3.84.
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TABLE 5

Cointegration Tests for the Joint Model

double-logarithmic specification

Real Ml, Real GNP, and Treasury Bill Rate

Johansen Trace Test Statistics

sample r50 .rsl r52 r53 r54 r55

1956.1 - 89.3 143.12 67.25 32.47 15.01 3.60 0.29

(with dummies)

Cointegrating Vector

M/P M*/P* Q/P 0*/P* R R'

1.0 1.0 -1.16 -0.73 0.59 0.36

With Velocity Restrictions:

 

Johansen Trace Test Statistics LR test of Estimated Interest

Velocity Elasticities for

r50 r51 r52 r53 Restrictions Canada U.S.

118.61 55.30 10.12 4.12 4.05 -0.48 -0.49

(0.16) (0.19)

Key: The standard errors are given beneath the parameter estimates in

parentheses. Critical values for trace tests at 5% level are

r:Q r21 r=2 r23 r24 r25

95.18 70.60 48.28 31.53 17.95 8.18

when testing without imposing velocity restrictions, and

£29 £21 r22 :53

48.28 31.53 17.95 8.18

when imposing velocity restrictions. Results are based on k—4 lag

specification. The critical value for the Likelihood Ratio test, x2(2),

at 5% level of significance is 5.99.
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TABLE 6

Cointegration Tests for the Joint Model

Semi-Logarithmic Specification

Johansen Trace Test Statistics

sample r50 r51 r52 r53

1956.1 - 89.3 72.56 32.26 17.43 3.35

(with dummies)

Cointegrating Vector

0 0 e

.0813 .0457 -.l727

(.0017) (.0013) (.4253)

Likelihood Ratio Statistic: 1.61

Key: The standard errors are given beneath the parameter estimates in

parentheses. Critical values for trace tests at 5% and 10% levels are:

r59 r51 r52 r53

5% 48.28 31.53 17.95 8.18

10% 45.23 28.71 15.66 6.50

Results are based on k-4 lag specification. The critical value for the

Likelihood Ratio test, x2(1) at 5% level of significance is 3.85.
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TABLE 7

Cointegration Tests for Canadian/U.S. Real Exchange Rate

Johansen Trace Test

 

sample Statistics Estimated

period r50 r51 Coefficient

1970.6 - 1984.12 4.40 0.15 1.91

(0.45)

1970.6 - 1985.12 4.79 0.01 2.12

(0.51)

1970.6 - 1986.12 5.21 0.10 1.89

(0.31)

1970.6 - 1987.12 4.16 0.01 1.63

(0.26)

1970.6 - 1988.12 1.82 0.11 1.14

(0.19)

1970.6 - 1989.12 10.44 1.50 1.40

(0.17)

1974.1 - 1987.12 5.89 2.19 0.88

(0.95)

1974.1 - 1988.12 7.04 1.05 11.16

(51.00)

1974.1 - 1989.12 13.09 3.83 1.45

(0.25)

LR test of

HO: 71/72='1

1974.1 - 1990.09 18.51 5.52 5.18 1.40

(0.24)

Key: The standard errors are given in parentheses beneath the parameter

estimates. Critical vaules for the trace tests at the 5% level are 17.95

and 8.17 for r50 and r51, respectively. The critical value for the

Likelihood Ratio test, x2(1) at the 1% level of significance is 6.64; the

critical value at the 5% level of significance is 3.85.
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