

This is to certify that the

dissertation entitled

Phenetic Analysis of leucostoma from

Prunus and Malus

presented by

Rupa Surve-Iyer

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Botany & Plant Pathology

2

MSU is an Affirmative Action/Equal Opportunity Institution

O-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE
Web 1 3 Alg		
JAN 29999		

MSU Is An Affirmative Action/Equal Opportunity Institution

PHENETIC ANALYSIS OF LEUCOSTOMA FROM PRUNUS AND MALUS

Ву

Rupa S. Surve-Iyer

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Botany and Plant Pathology

1992

ABSTRACT

PHENETIC ANALYSIS OF LEUCOSTOMA FROM MALUS AND PRUNUS SPP.

by

Rupa S. Surve-Iyer

Isozyme patterns, morphology, virulence on peach and variation in rDNA were used to compare isolates of Leucostoma cincta and L. persoonii collected from Malus and Prunus spp. Leucostoma persoonii isolates formed three distinct phenetic groupings based on isozyme polymorphisms. The three groups were distinct from all phenetic groupings within L. cincta. Based on isozyme patterns of L. cincta, three phenetic groupings exist, a distinct group on Malus and two related groups on Prunus. Far more diversity was evident among isolates of L. cincta from different hosts than among isolates of L. persoonii from different hosts. Five of the six phenetic groups, two of L. persoonii and three of L. cincta compared for virulence 3-yr-old were on multistemmed peach seedlings. All five groups were virulent on inoculated peach including PG6, an L. cincta group found on Malus in nature. L. persoonii isolates in PG1 were most virulent while L. cincta isolates PG5 were the least virulent. In culture, isolates of

the two taxa were differentiated on the basis of their pycnidial size and color and colony margin. of all five phenetic groups grew at 270°C, but only isolates of phenetic groups PG1 and PG2 of L. persoonii showed growth at 330°C. The phenetic groups were further compared by fragment length polymorphisms based nuclear ribosomal genes. Digestion of the ITS-LrDNA with 40 restriction enzymes followed by electrophoresis revealed 9 enzymes that distinguished the isolates of L. persoonii. Several of the L. persoonii groups, defined by ITS-LrDNA phenotypes corresponded to those detected isozyme studies and others corresponded and/or geographic distributions. Less variation in ITS-LrDNA was evident in L. cincta populations in contrast to isozyme studies. Most of the RFLP variation in the ITS-LrDNA was within the internal transcribed spacer rather than in the nuclear large rDNA. PCR amplification of the nuclear small rDNA revealed an insertion in L. cincta isolates from Prunus spp. that is absent in L. cincta isolates from Malus and in L. persoonii isolates.

ACKNOWLEDGEMENTS

I gratefully acknowledge the guidance and enthusiastic support offered by my major Professor Dr. G. C. Adams. His expertise in fungal taxonomy was absolutely essential in formulating and analyzing this project.

I thank my committee Drs. A. Iezzoni, A. Jones, S. Somerville and S. Tonsor for their time and effort over my thesis.

I wish to thank C. Sneller (Horticulture), R. Hagen and S. Williams (Entomology), T. D'souza (Microbiology) and M. Case (Botany) for their help with the technical aspects of the project. I would also like to thank my colleagues in the Adams laboratory for their input during the years in his lab.

This project would not have evolved so far without the help of T. Proffer who provided me with most of the *L. cincta* isolates and Dr. J. Taylor (U. California, Berkley) for giving me the opportunity to work in his laboratory to complete the RFLP project.

I wish to thank my parents Sadanand and Smita Surve and my brother Girish for their support and encouragment. I also wish to thank my uncle Vijay Kane for his encouragement and support.

Finally, I cannot thank my husband Shridhar enough for his unfailing support, encouragement and patience, especially during the latter stages, when it seemed almost immpossible to obtain this degree.

TABLE OF CONTENTS

P	age							
LIST OF TABLES	ii							
LIST OF FIGURES	iii							
GENERAL INTRODUCTION	1							
Literature cited	18							
SECTION I								
ISOZYME DETECTION AND VARITION IN LEUCOSTOMA SPECIES FROM PRUNUS AND MALUS.								
ABSTRACT	25							
MATERIALS AND METHODS	30							
RESULTS	34							
DISCUSSION	36							
LITERATURE CITED	44							
SECTION II								
RESTRICTION FRAGMENT LENGTH POLYMORPHISIMS IN NULEAR RIBOSOMAL DNA OF LEUCOSTOMA CINCTA AND L. PERSOONII								
ABSTRACT	58							
	58 58							
	63 66							
RESULTS	67							
DISCUSSION	70							
I THEDAMIDE CIMED	76							

SECTION III

COMPARISON OF FIVE PHENETIC GROUPS OF LEUCOSTOMA USING MORPHOLOGY AND VIRULENCE ON PEACH					
ABSTRACT)				
MATERIALS AND METHODS					
Cultural characteristics and temperature					
response					
Virulence tests on 3-yr-old peach seedlings 91					
virulence cests on 3 yr old peach seedlings 91					
RESULTS					
Cultural characteristics and temperature					
response					
Virulence tests on 3-yr-old peach seedlings 95	,				
DISCUSSION	'				
LITERATURE CITED	1				
SECTION IV					
CONCLUSIONS AND FUTURE PROSPECTS	07				
ADDENDIV 1	11				

LIST OF TABLES

LIST OF FIGURES

	igure Pag	j∈
	. Phenogram based on isozyme analysis showing the groupings of isolates of <i>L. cincta</i> and <i>L. persoonii</i> . The phenogram was constructed with the NTSYS program using UPGMA from Simple Matching coefficient values. The numbers in parentheses correspond to isolate numbers (Table 1) 5	56
,	. Most parsimonious tree generated using the BOOT program of PHYLIP. The numbers on branches correspond to the confidence limit on each branch. Those on the end of the tree correspond to the isolate numbers in Table 1	57
	. Phenogram of Leucostoma persoonii isolates based on the UPGMA cluster analysis of simple matching coefficient. Similarity generated from restriction fragment length polymorphisms in the portion of the nuclear rDNA containing ITS1, ITS2, 5.8S rDNA and part of the 28S rDNA	3 2
,	. Map of a portion of rDNA repeat showing the location of oligonucleotide primer sites to amplify rDNA from Leucostoma spp	33
!	Restriction profiles of PCR product of the fragment containing the two ITS regions, 5.8S rDNA and a portion of the 28S rDNA after digestion with Hinf I. A70 & F1h are isolates of <i>L cincta</i> and NC22.2, T26,6, LCN, 11.3, Cy4, f.sp. mahaleb and LP10 are isolates of <i>L persoonii</i> . Primers used: ITS5/TW148	3 4
•	PCR products from enzymatic amplification of nuclear rDNA using primers NS21/NS22 . An insertion of about 400bp present in the isolates of <i>L. cincta</i> on <i>Prunus</i> is missing in isolates of <i>L. cincta</i> on <i>Malus</i> and <i>L. persoonii</i>	35

GENERAL INTRODUCTION AND LITERATURE REVIEW

GENERAL INTRODUCTION AND LITERATURE REVIEW

Leucostoma canker, which is also called perennial canker, Cytospora canker and Valsa canker, seriously limits peach production in the northern portions of the region favorable for production of temperate fruits (Biggs, 1986; Dhanvantari, 1978; Hildebrand, 1947 & Kern, 1955). The disease is also a problem on plum and prune (Prunus domestica L.), sweet and sour cherry (P. avium L. and P. cerasus L., respectively), apricot (P. armeniaca L.), wild black cherries (P. serotina Ehrh.), ornamental quince (Chaenomeles speciosa (sweet) Nakai), and apple (Malus domestica Borkh.) among other mainly roseaceous hosts (Helton and Moisey, 1955; Helton & Konicek 1961, Proffer & Jones, 1989).

The disease is characterized by extensive perennial cankers on the limbs and branches, which results in branch dieback, progressive weakening of the tree and eventually the infected branch is girdled and killed (Biggs, 1986; Hampson & Sinclair, 1973; Tekauz & Patrick, 1974). Infections of small twigs appear as sunken discolored areas near winter killed buds or leaf scars. Symptoms on the main trunk, branch crotches, scaffold limbs and older branches begin with gum exudation. As cankers age, the gum becomes dark brown

to black, the infected bark dries out and cracks open exposing the blackened tissue beneath elliptical cankers along the length of the stem (Biggs, 1989). The disease is especially destructive in young orchards where it causes the premature death of orchard nursery stock. Fungicides have very little effect on the incidence of new infections or on the expansion of established cankers (Helton & Rohrbach, 1967; Palmiter & Hickey, 1970). Pruning and other cultural practices have had limited success in controlling leucostoma canker (Weaver, 1963).

This disease is caused by two closely related species of fungi, Leucostoma cincta (Pers.: Fr.) Hoehn.

[anamorph = Leucocytospora cincta (Sacc.) Hoehn.] and L. persoonii (Nits.) Hoehn. [anamorph = Leucocytospora leucostoma (Pers.) Hoehn.]. Early literature in the nomenclature of the pathogen shows an obvious conflict. The two species were placed in the genus Valsa by some authors and in the genus Leucostoma by others (Von Hoehnel, 1917). In 1867, Nitschke divided the genus Valsa into five sub-genera based on the structure of the stromata and Leucostoma was included as one of these genera. In 1917, Von Hoehnel elevated the subgenus Leucostoma to an independent genus. He used the presence of a darkened conceptacle or marginal zone

delimiting the stromatic tissue as the distinguishing feature. Leucostoma and its corresponding imperfect state Leucocytospora exhibit the developed conceptacle, while Valsa and its anamorph Eucytospora do not. (Von Hoehnel, 1981; Linda Spielman, 1984)

A monographic treatment of Leucostoma was completed in 1958 by Urban in Czechoslovakia (Urban, 1958). Eight species were described, two from coniferous hosts, L. kunzei (Fr.) Munk and L. curreyi (Nit.) Defago; four with a broad host range of deciduous trees, L. nivea (Hoffm.: Fr.) Hoehn., L. massariana (DeNot.) Hoehn. L. aureswaldi (Nit.) Hoehn. and L. translucens (Ces. & DeNot.) Hoehn.; and two from Prunus species L. cincta (Fr.) Hoehn. and L. persoonii (Nit.) Hoehn. A third species on a conifer host, L. sequoiae Bonar (1928) was described in 1928. The species were differentiated primarily by the size of the stroma, number of spores per ascus, location of the pycnidium in relation to the stroma and the ascospore size.

In order to recognize the taxa in Leucostoma, a full range of criteria must be available. Those criteria pertaining to the sexual state are crucial. However, sexual states are rarely found in nature and identification of these species by plant pathologists

has been based on cultural characteristics described by Willison (1936 & 1937) and Hildebrand (1947). This has led to confusion in the identification of the two taxa due to the presence of a wide range of variation in cultural morphology (Adams, Hammer & Iezzoni, 1990).

Kern (1955) suggested that typical isolates of *L. cincta* and *L. persoonii* might represent extremes and that intermediate forms are possible. Lukezic et al (1965) reported that monoascospore isolates from a single ascus of *L. persoonii* showed a range of cultural characteristics putatively typical to both species. Optimum growth temperature was suggested for differentiating the two species (Hildebrand, 1947) but this criterion is not used by most workers today (Luepschen et al, 1975 & Luepschen, 1981).

Defago (1934) conducted an extensive investigation of the pathogenicity of three Leucostoma spp. and two Valsa spp. on Prunus. He described nine formae speciales of L. persoonii. His concept of formae speciales was based on differences in the degree of virulence on each of 10 Prunus species rather than on host specificity on a specific Prunus species. The relative virulence of isolates of L. cincta and L. persoonii identified on cultural characteristics have been reported to differ greatly. L. persoonii has been reported to be of low

virulence as compared with L. cincta on peach. (Helton & Konicek, 1961; Willison, 1937). However, in other research L. persoonii was found to be more virulent in warmer weather and L. cincta more virulent in cool weather (Hildebrand, 1947; Wensley, 1964). Proffer and Jones (1989) identified Leucostoma canker caused by L. cincta as a new disease of apples in North America, specifically in Michigan. It is likely that in previous studies of apples L. cincta was either not identified or was identified as L. persoonii (Leonian, 1921). no characteristic capable of reliably distinguishing cultures of these two species is currently available. This problem has significant consequences in current research on breeding peach trees for disease resistance. Breeding is an expensive and labor intensive process and release of new resistant germplasm faces the risk of being exposed to pre-existing races or biological species of the pathogen that might overcome such a resistance.

Although identification of a species is based on observable differences in morphology, species and populations may be genetically distinct even when they are not morphologically separable. In recent years, there has been an increasing interest in new approaches

to study genetic variation in fungi at several taxonomic levels using biochemical and molecular techniques. Electrophoretic analysis of isozymes has been extensively and successfully used for years to provide rapid and qualitative estimates of the variation within species of higher plants and animals (Gottleib, 1982; Hillis & Davis 1986). Enzymes which are coded by different alleles or separate genetic loci frequently possess different electrophoretic mobilities. differences are due to variations in the amino acid content of the molecule, which in turn is dependent on the sequence of nucleotides in the DNA. An analysis of isozyme variation by electrophoresis therefore approximates the analysis of gene variation and has been useful in the studies of population genetics. There are at least three major areas in which isozyme analysis has been useful in studies of fungi. areas include; 1. classification and delineation of fungal taxa, 2. identification of fungal cultures, and 3. fungal genetics

In classification and delineation of fungal taxa, the interpretation of isozyme banding patterns have proven to be very useful in solving taxonomic problems when few morphological characters are available or when the characters are plastic in nature. Bonde et al; (1984)

used isozyme analysis to differentiate species of Peronosclerospora causing downy mildew of maize. Isozyme patterns of ten fungal cultures representing three species of the genus Peronosclerospora from Texas, southern India, Brazil, Taiwan and the Philippines were compared to aid species identification. Based on isozyme patterns the authors concluded that P. sacchari in Taiwan was the same pathogen as P. philippines in the Philippines. P. sorghi in Thailand was genetically different from P. sorghi in India, Brazil and the United States and was probably misidentified. They suggested that delineation of species needed further re-evaluation, which could be achieved by isozyme analysis of additional isolates of Micales et al, (1987) used the Peronosclerospora. same technique to prove that Endothia eugeniae, a pathogen of clove, and Cryphonectria cubensis, a pathogen of eucalyptus, were conspecific. The two species were indistinguishable by the analysis of their soluble proteins. In addition they shared alleles at 16 presumed loci as detected by isozyme analysis. Hanson and Wells (1991) characterized three species of Tremella based on their isozyme banding patterns. species were monomorphic at twelve enzyme loci but also

retained species specific mobilities. Similar studies were performed using isozyme analysis in Colletotrichum spp. (Bonde, Peterson and Mass, 1991), Ustilago hordei (Hellman and Christ, 1991) and in the Acremonium/Epichloe complex (Leuchtman and Clay, 1990). Interpretation of isozyme bands to compare allelic ratios expressed by fungal isolates has been used to study phylogenetic relationships among organisms. et al, (1989) used isozyme polymorphism to determine phylogenetic relationship in the genus Trichoderma by cladistic analysis. They evaluated five morphological species of Trichoderma. Their study determined that morphological species were not characterized by either specific alleles at single loci or by specific patterns of alleles at multiple loci. Oudemans and Coffey (1991) used isozyme analysis to study the systematics of twelve papillate Phytophthora species. Based on their studies they proposed that two species, P. arecae and P. palmivora were synonymous. Three species, P. capsici, P. magekarya and P. citrophthora demonstrated much higher levels of variation in isozyme pattern. They found no evidence to support the existence of distinct varieties in P. parasitica. In a related study on Pythium, et al. (1991) reported the separation of seven homothallic species of Pythium on the basis of their

isozyme banding patterns.

In the identification of fungal cultures, isozyme analysis can be used to compare unknown isolates to previously identified cultures in order to determine their identity. Bonde et al. (1985) reported that 50% of the genetic loci of Tilletia indica were monomorphic. Tooley et al. (1985) detected 11 of the 24 loci tested to be monomorphic in Phytophthora infestans. It was suggested that these monomorphic loci be used when comparing a known isolate to an unknown. Burdon and Rolfs (1985) examined the effect of sexual and asexual modes of reproduction on the level of diversity of isozyme variation found within respective North American populations of Puccinia graminis f. sp. tritici. In their study they concluded that sexual populations of P. graminis were more diverse than asexual. Jeng et al, (1987) did a comparative study of electrophoretic characteristics of Eurasian and North American races of Ophiostoma ulmi. In the study they demonstrated additional differences between the two Their data also indicated that one of the isolates might be a hybrid between the two races. comparative study of isolates of Septoria on citrus from Australia and United States was performed by the study

of their isozyme banding patterns (Bonde et al, 1991). The authors concluded that the isolates from both the countries belonged to the same species. In their study of isozyme comparison among worldwide sources of three morphologically distinct sources of Phytophthora, Oudemans and Coffey (1991) detected three enzyme loci that were found to be diagnostic of the three species. Studies like the preceding ones become extremely important when some crop materials are quarantined due to danger of entry of exotic plant pathogens. In such instances, isozyme analysis can facilitate identification when only a few morphological characters are available.

In fungal genetics, isozyme analysis has been an effective technique for studying the allelic variation in populations. Kerrigan and Ross (1989) used 18 field isolates of Agaricus bisporus to study genetic variation in the wild Agaricus population. Their study revealed the presence of new alleles supporting the belief that cultivars of A. bisporus escape from commercial cultivation and can reproduce under normal circumstances. It also revealed the potential of expanding the gene pool of commercial varieties. High variability was detected in the related species Agaricus bitorquis (Roux and Labarere, 1991). This

species has a phenotype comparable to A. bisporus and it was suggested that the high genetic variability compared to that of A. bisporus could provide a greater genetic base for cultivar expansion. Genetic variation was also reported to be high in Crumenulopsis sororia (Ennos and Swales, 1991). Zambino et al (1989) studied genetic variation between varieties of Leptographium wagneri. They reported one electrophoretic type to be abundant and broadly distributed within each variety. Gene diversity within each variety was observed to be low but genetic differentiation between varieties was high.

In other studies isozymes have been coupled with other markers for a comparative analysis. For example, Newton et al (1985) studied variation for isozyme and double-stranded RNA among isolates of Puccinia striiformis. These studies were aimed at using the two groups of molecules as markers for both the nucleus and the cytoplasm and thus allow the variability in each genome to be examined separately. No differences in isozyme banding patterns were observed among 29 diverse wheat-attacking isolates of P. striiformis (WYR). Isolates of the barley attacking form (BYR) of P. hordei and P. recondita showed similar uniformity. In

contrast, there were differences in the dsRNA phenotypes both among the three species and between WYR and BYR. Burdon et al. (1985) studied isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and P. recondita on wheat. They detected no correlation between isozyme and virulence diversity. In a related study on Uromyces appendiculatus Linde, et al. (1990) detected greater diversity in virulence patterns as compared to the isozyme patterns. Mills et al. (1991) used isozyme and mitochondrial DNA analyses to study intra- and interspecific variation in Phytophthora cryptogea and P. drechsleri. The majority of the isolates were subdivided into ten groups based on numerical analysis of 24 putative enzyme loci. Analysis of mitochondrial DNA restriction fragment length polymorphisms of selected isolates from each enzyme group supported their isozyme data. Vilgalys (1991) reported association between different intersterility groups of Collybia dryophilla with isozyme differences and postulated that fungal speciation evolves primarily by allopatry.

Additional techniques would be helpful both in the identification of species in the absence of sexual states well as to detect intra- and interspecific variation. Recently, restriction fragment length

polymorphisms (RFLP), which reflect variation among homologous DNA sequences have provided more precise tools for detecting and quantifying genetic variation. RFLPs have been studied in many organisms including humans (Botstein et al, 1980), plants (Helentjaris et al, 1985) and animals (Hillis and Davis, 1986). These polymorphisms can be generated by loss or gain of restriction sites resulting from point mutations, or from rearrangement of DNA sequences. McDonald and Martinez (1990) used RFLP markers to measure the amount and distribution of genetic variation in Septoria tritici. Single and multilocus analysis of their RFLP data indicated that a high level of genetic variability was distributed in the population. RFLPs have also been used to study molecular variation in Verticillium (Carder & Barbara, 1991) and in Colletotrichum gloeosporioides infecting Stylosanthes spp in Australia (Braithwaite and Manners, 1990). Specht et al. (1984) used RFLPs to study strain specific differences in the nuclear ribosomal DNA (rDNA) of the fungus Schizophyllum commune. Restriction mapping of rDNA using four strains of the fungus revealed strain specific variation with repeat lengths of 9.2-9.6Kbp. These authors were also the first to report methylation of rDNA. RFLP markers

were used by Anderson et al. (1987) to compare biological species within the taxon Armillaria mellea. They identified significant variability and most of the variability occurred between rather than within biological species.

One of the difficulties in applying RFLPs to taxonomic problems is in selecting a DNA segment that can resolve at an appropriate taxonomic level, showing neither excessive and uninterpretable variation nor homogeneity at the taxonomic rank of interest. fungi, rDNA is especially useful in taxonomic studies for the following reasons: 1) the rDNA repeat length is within a range that can be examined by RFLP analysis, 2) the rDNA repeat unit contains both slowly evolving regions (the 18S, 5.8S, and 28S rRNA genes) and more rapidly evolving regions (the transcribed and non transcribed spacers) so that information from various levels of evolutionary history can be recovered, and 4) the rDNA evolves in a concerted fashion. (Appels & Dvorak, 1982; Bruns, White & Taylor, 1991). The rDNA repeat unit has been widely used to study phylogenetic relationships and population genetics in fungi. Kohn et al. (1988) compared Sclerotinia species by the analysis of the RFLP patterns of nuclear and mitochondrial rDNA. They observed polymorphisms in the

rDNA between rather than within species. In addition extensive variation in RFLPs of mitochondrial DNA between species was also observed. Magee et al. (1987), used RFLPs in the nuclear rDNA to distinguish various isolates of Candida albicans. Six different classes were detected based on variations in the restriction pattern. Similar studies by Walsh et al. (1990) using a heterologous probe to detect RFLPs in Entomophaga rDNA sequences showed delineation of genera and species within Entompthorales but were not useful at lower taxonomic levels. William et al. (1988) compared RFLP patterns in the nuclear rDNA and mitochondrial (mt) DNA of three Agaricus species. Restriction patterns of one species (A. brunescens) were found to be identical, and the A. bitorquis and A. campestris isolates were subdivided into two. Vilgalys and Gonzalez (1990) detected variation both at the inter- and intragroup level of the 15 anastomosis groups of Rhizoctonia solani used in their study. In a related study on restriction analysis of rDNA of binucleate Rhizoctonia spp. Cubeta et al. (1991) reported the separation of 13 of 21 anastomosis groups of binucleate Rhizoctonia spp. into distinct groups. These groupings were found to be consistent with prior groupings based on hyphal

anastomosis. Egger, Danielson and Fortin (1991) analyzed the nuclear and mitochondrial ribosomal RNA genes to elucidate the species concept among the asexual E- strain mycorrhizal fungi and to examine their population structure. They found that most E- strain isolates could be assigned to the two sexual taxa Wilcoxina mikolae and W. rehmii, which have different habitat preferences. Analysis of the mitochondrial DNA revealed that within each species isolates could be differentiated based on host preference.

With the advent of enzymatic amplification, copies of selected regions of the rDNA repeat unit can be selectively amplified as non methylated copies from crude DNA preparations, greatly simplifying RFLP analysis of populations (Bruns, White & Taylor, 1991). Vilgalys and Hester (1990) used this technique for genetic identification and mapping of amplified rDNA of Cryptococcus species. Digestion and electrophoresis of the PCR products by using restriction enzymes produced restriction phenotypes that were unique for each strain or species. Hibbet & Vilgalys (1991) studied evolutionary relationships of Lentinus to the Polyporaceae by restriction analysis of enzymatically amplified rDNA. Their results suggested that Lentinus tigrinus was more closely related to the Polyporaceae

than to the Tricholomataceae

The aim of this project was to study the variability in the two closely related species of Leucostoma, L. cincta and L. persoonii. This research in particular aims at using markers that would be useful in revealing species and subspecific variation. The following three chapters describe the techniques used to achieve this goal. Chapter 1 describes the use of isozyme markers to clarify and delineate the two taxa. describes the use of restriction fragment Chapter 2 length polymorphisms to study the nuclear ribosomal DNA variation between various isolates of Leucostoma. chapter 3, pycnidium size, temperature optimum and relative virulence among some of the genetically different phenetic groups within L. cincta and L. persoonii are compared. The concluding chapter stresses the importance of the research in providing a basis for understanding the relationship between the plant pathogenic isolates of Leucostoma and makes recommendations for future research.

LITERATURE CITED

- Adams, G. C., Hammar, S. A. and Iezzoni, A. 1989. Optimum sample size for detecting virulence differences in *Leucostoma* from peach. Plant Disease 73: 754-759
- Anderson, J. B., Petsche, D. M. and Smith, M. L. 1987. Restriction fragment length polymorphism in biological species of *Armillaria mellea*. Mycologia 79:69-76.
- Apples, R. and Dvorak, J. 1982. Relative rates of divergence of spacer and gene sequences within the rDNA region of species in the *Triticae*: Implication of maintenance of homogeneity of a repeated gene family. Theoret. Appl. Genet. 63:361-365.
- Biggs, A. R. 1986. Comparative anatomy and host response of two peach cultivars inoculated with *Leucostoma cincta* and *Leucostoma persoonii*. Phytopathology 76: 905-912.
- Biggs, A. R. 1989. Integrated approach to controlling Leucostoma canker of peach in Ontario. Plant Disease 73: 869-874.
- Botstein, D., White, R. L., Skolnick, M. and Davis, R. W. 1980. Construction of a genetic map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
- Bonar, L. 1928. Studies on some California fungi. Mycologia 20:292-300
- Bonde, M. R., Peterson, G. L., Dowler, W. M. and May, B. 1984. Isozyme analysis to differentiate species of *Peronosclerospora* causing downy mildews of maize. Phytopathology 74:1278-1283.
- Bonde, M. R., Peterson, G. L., Dowler, W. M. and May, B. 1985. Comparison of *Tilletia indica* isolates from India and Mexico by isozyme analysis. Phytopathology 75:907-913.
- Bonde, M. R., Peterson, R. W., Emmett, R. W. and Menge, J. A. 1991. Isozyme comparison of *Septoria* isolates associated with citrus in Australia and the United States. Phytopathology 81:517-521.

- Bonde, M R., Peterson, G. L. and Mass, J. L. 1991. Isozyme comparison for identification of *Colletotrichum* species pathogenic to strawberry. Phytopathology 81:1523-1528.
- Braithwaite, K. S., Irwin, J. A. and Manners, J. M. 1990. Restriction fragment length polymorphisms in Colletotrichum gloeosporioides infecting Stylosanthes spp. in Australia. Mycol. Res. 94: 1129-1137.
- Bruns, T. D., White, T. J & Taylor, J. W. 1991. Fungal molecular systematics. Ann. Rev. Ecol. Sys. 22:525-564.
- Burdon, J. J. and Roelfs, A. P. 1985a. The effect of sexual and asexual reproduction on the isozyme structure and of the population of *Puccinia graminis*. Phytopathology 75:1068-1073.
- Burdon, J. J. and Roelfs, A. P. 1985b. Isozyme and virulence variation in asexually reproducing populations of *Puccinia graminis* and *P. recondita* on wheat. Phytopathology 75: 907-913.
- Carder, J. H. and Barbara, D. J. 1991. Molecular variation and restriction fragment length polymorphisms (RFLPs) within and between six species of *Verticillium*. Mycol. Res. 95:935-942.
- Chen, W., Hoy, J. W. and Schneider, R. W. 1991. Comparison of soluble proteins and isozymes for seven *Pythium* species and applications of biochemical data to *Pythium* systematics. Mycol. Res. 95: 548-555.
- Cubeta, M. A., Echandi, E. and Vilgalys, R. 1991. Characterization of anastomosis groups of binucleate *Rhizoctonia* species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81:1395-1400.
- Defago, G. 1935. (On certain Valseae von Hoehnel parasitic on dying off stone fruit trees). Bertage zur kryptogamenflora der Schweiz 8:1-109.
- Dhanvantari, B. N. 1978. Cold predisposition of dormant peach twigs to nodal cankers by *Leucostoma* spp. Phytopathology 68:1779-1783.

- Egger, K. N., Danielson, R. M. and Fortin, J. A. 1991. Taxonomy and population structure of E-strain mycorrhizal fungi inferred from ribosomal and mitochondrial DNA polymorphisms. Mycol. Res. 95. 866-872.
- Ennos, R. A. and Swales, K. W. 1991. Genetic variability and population structure in the canker pathogen *Crumenulopsis sororia*. Mycol. Res. 95: 521-527.
- Gottleib, L. D. 1982. Conservation and duplication of isozymes in plants. Science 216: 373-380.
- Hampson, M. C. and Sinclair, W. A. 1973. Xylem dysfunction in peach caused by *Cytospora leucostoma*. Phytopathology 63:676-681.
- Hanson, L. C. and Wells, K. 1991. Characterization of three *Tremella* species by isozyme analysis. Mycologia 83: 446-454.
- Helentjaris, T., King, G., Slocum, M., Siedentrang, C. and Wegmen, S. 1985.restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol. Biol. 109-118.
- Helton, A. W. and Konicek, D. E. 1961. Effect of selected *Cytospora* isolates from stone fruits on certain stone fruit varieties. Phytopathology 51:152-157.
- Helton, A. W. and Moisey, J. S. 1955. Cytospora damage in Idaho prune orchards. Plant Dis. Rep. 39:931-943.
- Helton, A. W. and Rohrbach. 1967. Chemotherapy of Cytospora canker disease in peach trees. Phytopathology 57:442-446.
- Hellman, R. and Christ, B. J. 1991. Isozyme variation in the physiologic races of *Ustilago hordei*. Phytopathology 81:1536-1540.
- Hibbet, D. S. and Vilgalys, R. 1919. Evolutionary relationships of *Lentinus* to the polyporaceae: Evidence from restriction analysis of enzymatically amplified ribosomal DNA. Mycologia 83: 425-439.

- Hildebrand, E. G. 1947. Perennial canker and three canker complex in New York, with methods of control. Cornell Univ. Agr. Sta. Mem. 276. 66pp.
- Hillis, M. D. and Davis, S. K. 1986. Evolution of ribosomal DNA: Fifty million years of recorded history in the frog genus Rana. Evolution 40: 1275-1288. Hinz, E. A., Anderson, J. B. and Horgen, P. A. 1988. Relatedness of three species of Agaricus inferred from restriction fragment polymorphism analysis of the ribosomal DNA repeat and mitochondrial DNA. Genome 32: 173-178.
- Jeng, R. S. Bernier, L. and Brasier, C. M. 1987. A comparative study of cultural and electrophoretic characteristics of the Eurasian and North American races of Ophiostoma ulmi. Can J. Bot. 66:1325-1333.
- Kerrigan, R. W. and Ross, I. K. 1989. Allozyme of wild Agaricus bisporus populations: new alleles, new genotypes. Mycologia 8:433-443.
- Kern, H. 1955. Taxonomic studies in the genus Leucostoma. Pap. Mich. Acad. Sci. Arts and letters 40:9-22.
- Kohn, L. M., Petsche. D. M., Bailey, S. R., Novak, L. A. and Anderson, J. B. 1988. Restriction fragment length polymorphisms in nuclear and mitochondrial DNA of *Sclerotinia* species. Phytopathology 78:1047-1051.
- Leonian, L. H. 1921. Studies on Valsa apple canker in New Mexico. Phytopathology 11:236-242
- Leuchtman, A. and Clay, K. 1990. Isozyme variation in the Acremonium/Epichloe fungal endophyte complex. Phytopathology 80:1133-1139.
- Leukezic, N. S., DeVay, J. E., and English, H. 1965. Comparative physiology and pathogenicity of *Leucostoma* persoonii and *Rhodosticta* quercina. Phytopathology 55:511-518.
- Linde, D. C., Groth, J. V. and Roelfs, A. P. 1990. Comparison of isozyme and virulence diversity patterns in the bean rust fungus *Uromyces appendiculatus*. Phytopathology 80:141-147.

- Luepschen, N. S., Rohrbach, K. G., Jones, A. C. and Dickens, L. E. 1975. Susceptibility of peach cultivars to Cytospora canker under Colorado orchard conditions. HortScience 10:76-77
- Luepschen. N. S. 1981. Criteria for determining peach variety susceptibility to Cytospora canker. Fruit var. J. 35:137-140
- Magee, B. B., D'Souza, T. M. and Magee, D. T. 1987. Strain and species identification by restriction fragment length polymorphisms in ribosomal DNA repeat of Candida species. J. Bacteriol. 169, 1639-1643.
- McDonald, B. A., and Martinez, J. P. 1990a. Restriction fragment length polymorphisms in *Septoria tritici* occur at high frequency. Curr. Genet. 17, 133-138.
- McDonald, B. A., and Martinez, J. P. 1990b. DNA restriction fragment length polymorphisms among Mycosphaerella graminicola (anamorph: Septoria tritici) isolates collected from single wheat field. Phytopathology 80, 1368-1373.
- Micales, J. A., Stipes, R. J. and Bonde, M. R. 1987. On the conspecificity of *Endothia eugeniae* and *Cryphonectria cubensis*. Mycologia 79:707-720.
- Mills, S. D., Forster, H. and Coffey, M. D. 1991. Taxonomic structure of *Phytophthora cryptogea* and *P. drechsleri* based on isozyme and mitochondrial DNA analysis. Mycol. Res. 95:31-48.
- Newton, A. C., Caten, C. E. and Johnson, R. 1985. Variation for isozymes and double-stranded RNA among isolates of *Puccinia striiformis* and two other cereal rusts. Plant Pathology, 34: 235-247.
- Oudemans, P. and Coffey, M. D. 1991. Isozyme comparison within and among worldwide sources of three morphologically distinct species of *Phytophthora*. Mycol. Res. 95:19-31.
- Oudemans, P. and Coffey, M. D. 1991. A revised systematics of twelve papillate *Phytophthora* species based on isozyme analysis. Mycol. Res. 95:1025-1046.

Palmiter, D. H. and Hickey, K. D. 1970. Relative resistance of 26 peach cultivars to bacterial spot and Valsa canker. Plant Dis. Rep. 54:395-399.

Proffer, T. J. and Jones, A. L. 1989. A new canker disease of apple caused by *Leucostoma cincta* and other fungi associated with cankers on apple in Michigan. Plant Disease 73: 508-514.

Roux, P. and Labarere, J. 1991. Determination of genes and subunit composition of three isozyme activities in *Agaricus bitorquis*. Mycol. Res. 95:851-860.

Specht, C. A., Novotony, C. P. and Ullrich, R. C. 1984. Strain specific differences in ribosomal DNA from the fungus Schizophyllum commune. Current Genetics 8: 219-222.

Spielman, L. J. 1985. A monograph on *Valsa* on hardwoods in North America. Can. J. Bot. 63: 1355-1378.

Stasz, T. E., Nixon, K., Harmen, G. E., Weeden, N. F. and Kuter, G. A. 1989. Evaluation of phenetic species and phylogenetic relationships in the genus *Trichoderma* by cladistic analysis of isozyme polymorphisms. Mycologia 81: 391-403.

Tekauz, A. and Patrick, Z. A. 1974. The role of twig infections on the incidence of perennial canker of peach. Phytopathology 64:683-688

Tooley, P. W., Fry, W. E. and Gonzalez, M. J. 1985. Isozyme characterization of sexual and asexual *Phytophthora infestans* populations. J. Hered. 74: 431-435.

Urban, Z. 1958. Revise Ceskoslovenskych zaspcu rodu *Valsa, Leucostoma*, a *Valsella*. Rozpr. Cesk. Akad. Ved. Rada Mat. Prir. Ved. 68: 1-101.

Von Hoehnel. 1918. Mycologische Fragmente. Ann. Myc. 16:127-144.

Vilgalys, R. and Gonzalez, D. 1990. Ribosomal DNA restriction fragment length polymorphisms in *Rhizoctonia* solani. Phytopathology 80: 151-158.

Vilgalys, R., and Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus species*. J. Bacteriol. 172:4238-4246.

Vilgalys, R. 1991. Speciation and species concepts in the *Collybia dryophilla* complex. Mycologia 83: 758-773.

Walsh, S. R., Tyrell, D., Humber, R. A. and Silver, J. C. 1990. DNA restriction fragment length polymorphisms in the rDNA repeat unit of *Entomophaga*. Expt. Mycol. 14, 381-392.

Weaver, G. M. 1963. A relationship between the rate of leaf abscission and perennial canker in peach varieties. Can. J. Plant Sci. 43:365-369.

Wensley, R. N. 1964. Occurrence of pathogenicity of Valsa species and other fungi associated with peach canker in Southern Ontario. Can. J. Bot. 42:841-857.

White, , T. J., Bruns, S., Lee, S. and Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p.315-322. In Innis, N., Gelfand, J., Sninsky and White, T. (ed), PCR protocols: a guide to methods and applications. Academic Press, Inc., New York.

Willison, R. S. 1936. Peach canker investigations II. Infection Studies. Can J. Res. 14: 27-44.

Willison, R. S. 1937. Peach canker investigations III. Further notes on incidence, contributing factors, and related phenomena. Can. J. Res. 15:324-339.

Zambino, P. J. and Harrington, T. C. 1989. Isozyme variation within and among host specialized varieties of Leptographium wagneri. Mycologia 8:122-133.

ISOZYME DETECTION AND VARIATION IN LEUCOSTOMA FROM PRUNUS AND MALUS.

ISOZYME DETECTION AND VARIATION IN LEUCOSTOMA SPECIES FROM PRUNUS AND MALUS

ABSTRACT

Isozyme analysis was used to study the relationship between two closely related taxa of Leucostoma, L. cincta and L. persoonii. Isolates were obtained from six Prunus spp. and Malus domestica Borkh. in North Monoascospore isolates collected from America. individual perithecia of L. cincta and L. persoonii, tissue isolates and isolates varying in vegetative compatibility groups of L. persoonii were examined. Thirty alleles were resolved at eight putative loci and the two species were found to be distinct at 48% similarity. In addition, this analysis separated the two species into six phenetic groups. L. cincta was separated into several closely related groups on Prunus spp. and one group on Malus. L. persoonii was separated into three distinct groups which were not correlated to hosts or geographic origins. polymorphisms were not found to be associated with vegetative compatibility groups in L. persoonii. Far more diversity was evident among isolates of L. cincta from different hosts than among isolates of L. persoonii from one perithecium from different hosts.

Identification of a fungal species is based on observable differences in morphology, but species and populations may be genetically distinct even when they are not morphologically separable. Genetic and biochemical techniques such as isozyme analysis have been useful in combination with morphology to identify genetic variability between and among fungal species (Micales, Bonde & Peterson, 1986; Micales & Stipes, 1987; Hanson & Wells, 1991; Chen, Hoy & Schneider, 1991; Stasz et al, 1989) and to delineate taxa that are morphologically similar in culture (Bonde, Peterson & Mass, 1991). An alternative method to morphology is needed for differentiating the two closely related and important plant pathogens Leucostoma cincta (Fr.: Fr.) Hoehn. and L. persoonii Hoehn. that cause Cytospora canker of fruit trees. Morphological characteristics distinguishing the two species are present only in the teleomorph and the teleomorph is generally not found in nature associated with the disease symptoms. Leucocytospora anamorphs, Leucocytospora cincta (Sacc.) Hoehn. and L. persoonii Hoehn., that are abundantly present in infected orchards are not separable morphologically.

Because the teleomorph generally is not found the practical delimitation of these two pathogens often has

been based on cultural characteristics. Current researchers have not been in agreement on the relevant cultural and physiological characteristics of the two species (Adams, Hammar & Proffer, 1990; Surve-Iyer, Adams & Iezzoni, 1992). Cultural characteristics and growth temperature responses described by Willison (1938), Hildebrand (1947) or Kastirr (1984) have been utilized as criteria for differentiating the two species in some studies (Adams, Hammer & Iezzoni, 1989, Proffer & Jones, 1989) but in others the criteria used for identification is not clear (Endert Kirkpatrick, 1986; Helton & Konicek, 1961, Regner & Johnson, 1990). Thus currently, the presence of the sexual fruiting body continues to be required for the definitive identification of these two species until a more thorough study of cultural characteristics of isolates can be correlated with specific sexual states. In this study we have begun the grouping of anamorphic isolates by comparing their similarity in cultural characteristics to those of isolates obtained from identifiable sexual states, assigning the sexual name to corresponding cultures and comparing their isozyme profiles. This approach provides the foundation of the isozyme study and it effectively clarifies our

understanding of the revealed genetic diversity. The usefulness of cultural characteristics alone, as criteria in distinguishing the species, is summarized and discussed elsewhere (Surve-Iyer, Adams & Iezzoni, 1992).

Our objective is to identify and delineate the two taxa in the absence of the sexual state and to identify genetic variation in the Leucocytospora populations by using isozyme markers. Identifying the extent of genetic diversity in the two pathogens is necessary to construct an effective screening procedure in an ongoing peach breeding program selecting for canker resistance (Chang, Iezzoni & Adams, 1991; Chang et al, 1989). Breeding is an expensive and labor intensive procedure. Release of new resistant germplasm would face risks of being exposed to pre-existing races or biological species of the pathogen that might overcome such resistance if selection for resistance was based on a limited understanding of the genetic diversity of the pathogens.

The two Leucostoma species also cause annual or perennial cankers on nectarine, sweet, sour and black cherry, plum and prune, ornamental quince, apple, chokecherry, amelancheir, and wild roseaceous hosts. The genetic variation among isolates on various hosts has not been examined thoroughly in the past. Whether host

specific isolates or races might exist within the populations of the two Leucostoma is not known but in a study in 1934 Defago concluded that some isolates represented formae speciales. His concept of forma speciales was not based on host specificity rather his formae speciales isolates were virulent on all the hosts he tested and were comparatively more virulent on one host. Some believe the relative virulence of the two species differs greatly; L. persoonii has been reported to be of low virulence compared to L. cincta on peach (Helton & Konicek, 1961; Willison, 1989). However, others believe L. persoonii is more virulent in warm weather and L. cincta more virulent in cool weather (Hildebrand, 1947; Wensley, 1964). We attempt in this study to use isozymes to analyze the extent of genetic variability in diverse populations from numerous hosts. This approach has been effective in other studies of fungi (Hellman & Christ, 1991; Zambino & Harrington, 1989; Leuchtmann & Clay, 1990; Linde, Groth & Roelfs, 1990; Yoon, Gessner & Romano, 1990). Similarly we wish to examine whether specific populations might be traceable to specific geographic origins, as others have accomplished with isozyme analysis (Bonde, Peterson, Emmett & Menge, 1991; Leung & Williams, 1986; Oudemans &

Coffey, 1991). The extent of genetic variation revealed in this study and correlation of the diversity to host and geographic origins is discussed. Isolates representative of the genetic diversity revealed herein are examined in virulence studies elsewhere (Surve-Iyer, Adams & Iezzoni, 1992).

MATERIAL AND METHODS

The host, geographic origin and source of the isolates of Leucocytospora used in this study are given in Table 1. Isolates of L. persoonii from perithecia were collected from Prunus persica (L.) Batsch. serotina Ehrh. and isolates of L. cincta from perithecia were collected on P. armeniaca L., P. domestica L., and Malus domestica Borkh. Leucocytospora isolates that corresponded in cultural characteristics to L. persoonii ascospore cultures were collected from diseased plant tissue from Michigan, North Carolina, California, and Oregon and Ontario, Canada. Similarly asexual isolates corresponding to L. cincta were collected from Michigan. Isolates of L. persoonii from 9 vegetative compatibility groups (Adams, Hammar & Proffer, 1990) were and 7 European formae speciales (Defago, 1935) were also compared in isozyme analysis.

Isolates were maintained on Leonian's media (1.2 g KH_2PO_4 , 0.6 g MgSO₄, 6.25 g maltose, 6.25 g malt extract in 1 L of distilled water) (Leonian, 1923). Five 1 cm plugs of mycelia grown on Leonian's agar medium were added to 100 ml of liquid Leonian's media in a 500 ml Erlenmeyer flask. The isolates were grown at room temperature in still cultures. Mycelial mats were collected from each flask after 10-14 days incubation by vacuum filtration onto Miracloth and blotted dry on sterile paper towels. The mats were either used immediately or stored at -70°C. Mycelium was ground in liquid nitrogen and 3 ml of extraction buffer (50 mM Tris HCl, pH 7-7.5, 10% glycerol and 0.1% beta mercaptoethanol) and sand in a cold mortar and pestle. The mixture was centrifuged in a microfuge at 12,700 g for 20 min at 4°C, and 4 ul of the supernatant was applied to thin layer cellulose acetate plates ("Titan III" [94mm 76mm], Helena Laboratories, Beaumont, Texas) and electrophoresed at 12-20 mA for 20 min at 4°C. Excess supernatant was stored at -70°C and reused till the enzyme showed signs of degradation, after which it was discarded. Each isolate was tested three times and each gel was run with two standard isolates (11.3 and ATCC 62910). Five buffer systems were used in electrophoresis (Richardson, 1987); buffer

A, 10 mM Na₂HPO₄, 2.5 mM citric acid, pH 6.4; buffer B, 11.6 mM Na₂PO₄, 8.4 mM NaH₂PO₄, pH 7.0; buffer C, 50 mM Tris, 20 mM maleic acid, pH 7.8; buffer D, 15 mM Tris, 10 mM MgCl₂, 5 mM Na₂EDTA, pH 7.8; and buffer I, 25 M Tris, 192 mM glycine, pH 8.5). Enzyme stains were from Richardson (1987) and were scaled to approximately 2 ml total volume and applied to plates as overlays mixed 1:1 with 1.5% Bacto agar in distilled water. For each enzyme assay, mobility of the enzyme reaction was noted for each isolate and similar mobilities were compared in adjacent lanes in subsequent gels. Each band was considered as an allele of a specific locus. The most anodally migrating band was designated "a" and the alleles of the same locus were assigned "b", "c", etc., according to their mobility relative to the "a" allele. The genetic basis of the allelic patterns could not be unequivocally determined because it was not possible to induce formation of sexual states. Therefore we assumed the mobility differences or electromorphs were allelic variants within a given locus. Nomenclature for designating enzymes, loci and alleles followed the convention of Hanson & Wells (1991). Enzymes were identified by a short, upper-case abbreviation, e.g., IDH (isocitrate dehydrogenase). Genetic loci were

capitalized and italicized, e.g., *IDH*. When more than one allele was present an alphabet identifier was added: *IDH-a* or *IDH-b*

The data as binary codes was analyzed using two computer assisted programs and their subprograms; SIMQUAL, SAHN, COPH & MXCOMP in the NTSYS version 1.7 (Rohlf, 1992) and BOOT program in PHYLIP (Felsenstein, 1992). The SIMQUAL program was used to calculate similarity coefficients, Simple Matching Coefficient, which emphasizes both the positive and negative matches and the Jaccard's Coefficient, which emphasizes the positive matches over the negative matches. similarity coefficients were analyzed with UPGMA (Unweighted pair group analysis using arithmetic means) and clustered using the SAHN subprogram. To estimate the accuracy of the phenograms produced, each similarity matrix was converted to a matrix of cophenetic values, using COPH in NTSYS. Matrix correlations between the original similarity coefficients and the cophenetic values were assessed by MXCOMP in NTSYS. When the cophenetic correlation was greater than 0.9, the fit of the tree to the similarity coefficient matrix was considered very a good fit. The BOOT program of PHYLIP was used to generate the most parsimonious tree by bootstraping using Wagner's assumptions with global

options. In addition genotypic diversity was calculated for each species or subgroup using the procedure of Selander et al. (1986). Isolates were assigned to electrophoretic types (ETs) each representing a group of isolates with identical phenotypes for all loci scored. The genotypic measure considers the number of distinct ETs found in a species or subgroup and does not assume random mating. Isozyme phenotypes for the ETs of each isolate are given in Table 3.

RESULTS

Table 2 lists the enzymes that were either undetected, poorly resolved (bands were either faint or did not stain for all isolates) and well resolved on cellulose acetate gels. Thirty alleles were resolved at eight putative loci among the 56 isolates that stained for the eight enzymes. All the eight enzymes stained for a single locus (Table 4). Significantly greater variability was seen among isolates of *L. cincta* than among *L. persoonii*. No variability was detected among the representative isolates of the 9 vegetative compatibility groups. The *L. persoonii formae speciales*, from Europe showed unique alleles that were different from all North American *L. persoonii* isolates tested.

Californian *L. persoonii* from nectarine also showed unique polymorphisms at two loci.

Genetic Distances and Identities

The phenogram in Fig. 1 provides a visual summary of the pattern of genetic differentiation between the two Leucostoma taxa and among several subgroups. The UPGMA phenogram constructed for the Jaccard's and the Simple Matching coefficients had identical topology however, the Jaccard's phenogram had longer branch lengths at major divisions and showed no (0%) similarity between the two Leucostoma taxa. The phenogram of the Simple Matching coefficient assigned closer relationships to the isolates than Jaccard's coefficient. The phenogram in Fig. 2 is the most parsimonious Wagner unrooted tree calculated from 1000 bootstrap replications (13 hours of 386-33 MHZ PC-computer time) and shows confidence limits calculated for each branch, represented as the percent of the bootstrap estimates. The two taxa, L cincta and L. persoonii were distinctly different at 48.4% similarity and 99.6% confidence. Isolates of L. cincta were separated into two closely related phenetic groups on Prunus species (77.4% similarity and 47.3% confidence) and one distinct phenetic group on Malus (64.5% similarity and 99.6% confidence). L. persoonii

was separated into three distinct groups each sharing 74.2% similarity, one widespread group on *Prunus* spp. (PG1) (100% confidence), a second on Michigan peach and black cherry (PG2) (100% confidence) and a third group of on nectarine in California (PG3) (42.8% confidence). Genotypic diversity in the two taxa was higher in *L. cincta* at .84%, the *L. persoonii* at 50% (Table 4). Most of the diversity in *L. cincta* was within the phenetic group occurring on *Prunus* spp (66%) for which two alleles occurred in each of the PGI, PGM, IDH, G6PD, ME, MAN, , GDH, and PGD loci (Table 2 & 3).

DISCUSSION

Isozyme analysis has proved to be an useful technique to study the relationship between the isolates of Leucostoma. Plant pathologists in the past have routinely substituted vague cultural characteristics in absence of sexual states to identify the two species. The results presented here clearly show the extent of differentiation between L. cincta and L. persoonii with respect to the electrophoretic banding patterns for eight different soluble enzymes. The eight could be used as diagnostic loci to identify the two species. The patterns of the stained enzyme loci obtained were clear, easy to interpret and readily obtained for

isolates from North America. However, several of the L. persoonii formae speciales isolates from Europe did not produce any bands when stained for a particular enzyme. These enzymes may be produced at extremely low levels or below the level of detection of the staining procedure. In addition, this technique has also demonstrated the separation of these two species into six phenetic groups.

The phenogram generated by NTSYS-pc (Rohlf, 1987) using the SIMQUAL sub-program and the UPGMA option (NTSYS) resolved the genetic distances between 56 of the isolates and separated them into six phenetic groups. Isolates of *L. persoonii* were separated into three phenetic groups (PG1, PG2 and PG3); those of *L. cincta* were subdivided into at least three phenetic groups, (PG4, PG5, PG6).

The *L. cincta* isolates from *Malus* appeared to be ecologically host specialized (although found exclusively on *Malus* this group is found to be virulent on inoculated peach seedlings). Proffer & Jones (1989) were the first to report the presence of *L. cincta* on *Malus* in North America. The reasons for the absence of these strains on *Prunus* in nature remains unknown. In addition to their distinct electrophoretic

patterns, these isolates also showed differences in cultural characteristics when compared to other L. cincta isolates. They released a reddish brown pigment in culture which was not detected in other isolates. These isolates were also slow growing compared to the rest of the isolates used in this study (Proffer & Jones, 1989). Screening of additional L. cincta isolates on Malus to study their isozyme banding patterns will be required to further elucidate the ecological host specialization of this group

Unlike the distinct phenetic group found on Malus, the other two phenetic groups consisting of ascospore progeny of L. cincta on Prunus show substantial amounts of diversity both within and between the phenetic This diversity might be due to sexual groups. outcrossing through meiotic recombination and perhaps these groups are a single diverse group found on Prunus species. In nature L. cincta teleomorphs have been more abundant than L. persoonii teleomorphs. Genetic diversity has been reported as being higher in populations of Crumenulopsis soraria (Ennos & Swales, 1991) where reproduction of this population is through sexual outcrossing than in asexual populations. Similarly high isozyme diversity has been reported in sexually outcrossing fungi such as Magnaporthe grisea

(Leung & Williams, 1986), Epichloe (Leuchtmann & Clay, 1989), and natural populations of Agaricus bitorquis (Roux & Labarere, 1991) when compared to related asexual species and populations. However it should be noted that isozyme variability might depend on the number of isolates used and the particular enzymes tested.

The first phenetic group (PG1) of L. persoonii was geographically widespread and diverse in host range in nature. PG1 consisted of ascospores, isolates representing five vegetative compatibility groups, and tissue isolates of from four Prunus spp. Isolates within this group had identical banding patterns regardless of their origins. The PG2 isolates of L. persoonii have been found only from a peach seedling planting and two canker isolations from native black cherry in Michigan. Isolates in this group were not from sexual states, and sexual fruiting bodies have not been identified with this group so far. Perhaps this group represents a native infection source and hence it's presence on seedlings rather than on imported nursery stock. Nursery stock might be often shipped infected (Wensley, 1964). The third group, PG3 occurred on nectarine from California. The PG3 isolates were not similar to isolates from California on plum (PG1), but

made about this group.

climatic factors vary greatly between the California locations of the plum and nectarine orchards.

Therefore, whether the genetic isolations between the groups is due to geographic origins, climatic origins or host preference is speculative. Additional sampling in PG3 will be necessary before further speculations can be

Several factors may be responsible for the low genetic diversity seen in the phenetic group 1 of L. persoonii. Lack of isozyme variability could occur because of founder effect (Ennos & Swales, 1991). Individual populations could have been established from founder isolates and it is possible that the introduced pathogen represented only part of the genetic variability that existed in the parent species, especially if the species is native to Europe or Asia. Absence of isozyme variability could be through genetic drift if the population size was dependent on transatlantic importation. Population bottlenecks also could naturally occur through seasonal environmental Though sexual states have been found in this factors. species and the fungus is reported to be heterothallic (Adams, Hammar & Proffer, 1990), lack of polymorphism could be due to the rarity of the sexual cycle or effective lack of a sexual cycle. It is also possible electrophoresis and the amount of genetic variability and genetic differentiation between groups may be underestimated (Ayala et al, 1973; Bonde, Peterson & Dowler, 1988). Low levels of isozyme variability have been reported in other plant pathogenic fungi including some species of Phytophthora (Oudemans & Coffey, 1991), Ustilago hordei (Hellman & Christ, 1991), Tremella (Hanson & Wells, 1991) and also in highly biotrophic fungi in Puccinia Styriformis (Newton, Caten & Johnson, 1985). There are no comparative studies of genetic variation in fungi having biotrophic, necrotrophic or saprotrophic nutrition to make general assumptions on their genetic variability.

These results provide considerable information on the relationship between *L. cincta* and *L. persoonii*. Based on isozyme polymorphism we have demonstrated the presence of two closely related sympatric species, *L. cincta* and *L. persoonii*. Both species and several phenetic groups are known to occur in the same orchard in our study. The amount of variation at the level of local phenetic groups was high both between the two species and within *L. cincta*. Such patterns have been documented for *Drosophila* (Ayala et al, 1973) and

Neurospora (Speith, 1975). According to Ayala (1973) the genetic distances between closely related species depends in part on the speed with which reproductive isolation mechanisms have developed and their efficacy during the speciation process. Polymorphism can occur if temporal variation is coupled with spatial heterogeneity (Gillispie and Langley, 1974). This could be the case in L. persoonii whose origin might be traced to Europe or perhaps Asia, having later being transported to the United States on susceptible hosts. Over time L. persoonii may have become three reproductively isolated groups.

The large genetic distances between *L. cincta* and *L. persoonii* suggests that reproductive isolation between the two may have been quite rapid. In his review of genetic variation in natural populations, Nevo concluded that genetic polymorphism and heterozygosity are correlated with ecological heterogeneity (Nevo, 1978). Perhaps selection pressure due to adaptation to the many host species in the wild or to nursery stocks derived from selective breeding may have contributed to the above process and to the development of ecologically host specific races, as seen in isolates of *L. cincta* from *Malus*. This could also lead to formation of localized populations where peaches have been cultivated

in the same orchard for decades. This could stabilize certain geographical populations. Perhaps this has occurred in phenetic group 2 of *L. persoonii* on black cherry, a tree which is native in mixed deciduous woodlands of Michigan. In inoculation experiments, Defago (1934) recognized forms of *L. persoonii* uniquely more virulent on one *Prunus* species than on others although all isolates had been found on *P. persica*. Though the concept of forma specialis was incorrectly used by Defago we have not detected in Michigan the type of host specialized isolates of *L. persoonii* he observed (Surve-Iyer, Adams & Iezzoni, 1992). However, the phenomenon of ecological host specialization in *L. cincta* was detected in our study.

Literature Cited

- Adams, G. C., Hammar, S. A. & Proffer, T. J. (1990). Vegetative compatibility in Leucostoma persoonii. Phytopathology 80: 287-291.
- Ayala, F. J. (1982). Genetic variations in natural populations: problem of electrophoretically cryptic alleles. Proceedings in National Academy of Sciences. U. S. A 79:50-554.
- Ayala, F. J., Tracey, M. L., Hedgecock, M. & Richmond, R. C. (1973). Genetic differentiation during speciation process in Drosophila. Evolution 28:576-592.
- Bertrand, P. F. and English, H. (1976). Effect of selected Cytospora isolates from stone fruits on certain stone fruit varieties. Phytopathology 51: 152-157
- Bonde, M. R., Peterson, G. L. & W. M. Dowler. (1988). A comparison of isozymes of *Phakospora pachyrhizi* from eastern hemisphere and the new world. Phytopathology 78:1491-1494.
- Bonde, M. R., Peterson, G. L., Emmett, R. W. & Menge, J. A. (1991). Isozyme comparisons of *Septoria* isolates associated with citrus in Australia and United States. Phytopathology 81:517-521
- Bonde, M. R., Peterson, G. L. & Mass, J. L. (1991). Isozyme comparison of *Colletotrichum* species pathogenic to strawberry. Phytopathology 81:1523-1528.
- Chang, L. S., Iezzoni, A., Adams, G. C. & Howell, G. S. (1989). Leucostoma persoonii tolerance and cold hardiness among diverse peach genotypes. Journal of American Society for Horticultural Science 114:482-485.
- Chang, L. S., Iezzoni, A. & Adams, G. C. (1991). Heritabilty of Leucostoma persoonii canker resistance among diverse peach genotypes. HortScience 26: 60-62

- Chen, W., Hoy, J. W. & Schneider, R. W. (1991). Comparisons of soluble protein and isozymes for seven *Pythium* species and applications of the biochemical data to *Pythium* systematics. Mycological Research 95:548-555.
- Defago, G. (1935). De quelques Valsees von Hoehn parasites des arbes a noyau deperissants. Betrage zur kryptogamenflora der Schweiz 8: 1-109.
- Ennos, R. A. & Swales, K. W. (1991). Genetic variability and population structure in the canker pathogen *Crumenulopsis sororia*. Mycological Research 95:521-525.
- Endert-Kirkpatrick, E. 1986. Biology and Ecology of Cytospora cincta Sacc. on peach (Prunus persica) (L.) Batsch). Ph. D Thesis. North Carolina State University, Raleigh.
- Felsenstein, J. 1992. PHYLIP: phylogenetic inference package. Version 3.4. University of Washington, Seattle.
- Gillispie, J. H. & Langley, C. H. (1974). A general model to account for enzyme variation in natural populations. Genetics 76:837-848.
- Hanson, L. C. & Wells, K. (1991). Characterization of three *Tremella* species by isozyme analysis. Mycologia 83: 446-454.
- Hellman, R. & Christ, B. J. (1991). Isozyme variation of physiologic races of *Ustilago hordei*. Phytopathology 81: 1536-1540.
- Helton, A. W. & Konicek, D. E. (1961). Effect of selected Cytospora isolates from stone fruits on certain stone fruit varieties. Phytopathology 51:152-157
- Helton, A. W. & Konicek, D. E. (1961). On Optimum environment for culturing of *Cytospora* isolates from stone fruit. Temperature. University of Idaho Agricultural Station Memorandum 20. 266 pp.
- Hildebrand, E. G. (1947). Perennial canker and the canker complex in New York, with methods of control. Cornell University Agricultural Station Memorandum 276 66p.

- Kastirr, U. & Ficke, W. (1984). Cytospora personata Freeinbedeutender Rindenbranderreger am Apfel in der DDR. Arch. Phytopathology Pflanzenschutz Berlin 20: 383-399.
- Leonian, L. H. 1921. Studies on *Valsa* apple canker in New Mexico. Phytopathology 11: 236-242.
- Leuchtmann, A. & Clay, K. (1990). Isozyme variation in the *Acremonium/Epichole* fungal endophyte complex. Phytopathology 80: 1133-1139.
- Leung, H. & Williams, P. H. (1986). Enzyme polymorphism and genetic differentiation among geographic isolates of the rice blast fungus. Phytopathology 76:778-783.
- Linde, D. C., Groth, J. V. & Roelfs, A. P. (1990). Comparison of isozyme and virulence diversity patterns in the bean rust fungus *Uromyces appendiculatus*. Phytopathology 80:141-147.
- Micales, J. A., Bonde, M. R. & Peterson, G. L. (1986). The use of isozyme analysis in fungal taxonomy and genetics. Mycotaxon 27:405-449
- Micales, J. A. & Stipes, R. J. (1987). On the conspecificity of *Endothia eugeniae* and *Cryphonectria cubensis*. Mycologia 79:707-720.
- Nevo, E. (1978). Genetic variation in natural populations: patterns and theory. Theoretical Population Biology. 13:121-177.
- Newton, A. C., Caten, C. E. & Johnson, R. (1985). Variation for isozyme and double stranded RNA among isolates of *Puccinia styriformis* and two other cereal rusts. Phytopathology. 34:235-247.
- Oudemans, P. & Coffey, M. D. (1991). Isozyme comparison within and among worldwide sources of three morphologically distinct species of Phytophthora. Mycological Research 95:19-30.
- Oudemans, P. & Coffey, M. D. (1991). A revised systematics of twelve papillate *Phytophthora* species based on isozyme analysis Mycological Research 95: 1025-1046.

- Proffer, T. J. & Jones, A. L. (1989). A new disease of apple caused by *Leucostoma cincta* and other fungi associated with cankers on apple in Michigan. Plant disease 73:508-514.
- Regner, K. M., & Johnson, D. A. 1990. Etiology of canker and dieback of sweet cherry trees in Washington State. Plant disease 74:430-433
- Richardson, B. J., Baverstock, P. R. & Adams, M. (1986). Specific enzyme methods for cellulose acetate electrophoresis. In Allozyme Electrophoresis. pp. 145-228 N.S.W. Australia: Academic Press.
- Rohlf, F. J. (1992). NTSYS-pc: numerical taxonomy system for the IBM pc microcomputer (and compatibles), version 1.40 manual. Setauket, New York, U.S.A.: Applied Biostatistics, Inc.
- Roux, P. & Labarere, J. (1991). Determination of genes and subunit composition of three isozyme activities in Agaricus bitorquis Mycological Research 95: 851-860.
- Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M. Gilmour, M. N. & Whittman, T. S. (1986). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology. 51:410-413.
- Speith, P. T. (1975). Population genetics of allozyme variation in *Neurospora intermedia*. Genetics 80: 785-805.
- Stasz, T. E., Nixon, K., Harman, G. E. & Weeden, N. F. (1989). Evaluation of phenetic species and phylogenetic relationships in the genus *Trichoderma* by cladistic analysis of isozyme polymorphisms. Mycologia 81:391-403.
- Yoon, C. S., Gessner, R. V. & Romano, M. A. (1990). Population genetics and systematics of *Morchella* esculenta. Mycological Research. 82:227-235.
- Wensley, R. N. (1964). Occurrence and pathogenicity of Valsa (Cytospora) species and other fungi associated with peach canker in Southern Ontario. Canadian Journal of Botany. 42: 841-857.

Willison, R. S. (1938). Peach canker investigations II. Infection studies. Canadian Journal of Research 14: 27-44.

Zambino, P. J. & Harrington, T. C. (1989). Isozyme variation within and among host specialized varieties of Leptographium wagneri. Mycologia 81: 122-133.

Table 1. Leucostoma isolates used in the isozyme studies

.*	Sexual or sexual				
number & s	tronel				
code *		O rigin	Host	Host	Group
L. cincta					
(1) A2	S	Michigan	M. domestica	Proffer & Jones	PG6
(2) A8	S	Michigan	M. domestica	Proffer & Jones	PG6
(3) A9	S	Michigan	M. domestica	Proffer & Jones	PG6
(4) A12	8	Michigan	M. domestica	Proffer & Jones	PG6
(5) A43	a	Michigan	M. domestica	Proffer & Jones	PG6
(6) A45	a	Michigan	M. domestica	Proffer & Jones	PG6
(7) A48	a	Michigan	M. domestica	Proffer & Jones	PG6
(8) A46	S	Michigan	M. domestica	Proffer & Jones	PG6
(9) A79	S	Michigan	M. domestica	Proffer & Jones	PG6
(10) A32	a	Michigan	M. domestica	Proffer & Jones	PG6
(11) 5P4	S	Michigan	P. domestica	Proffer & Jones	PG5
(12) 2P2	S	Michigan	P. domestica	Proffer & Jones	PG5
(13) 4P1	S	Michigan	P. domestica	Proffer & Jones	PG5
(14) 1P1	S	Michigan	P. domestica	Proffer & Jones	PG4
(15) LP62	a	Michigan	P. domestica	Proffer & Jones	PG4
(16) LP63	a	Michigan	P. domestica	Proffer & Jones	PG4
(17) LP66	a	Michigan	P. domestica	Proffer & Jones	PG4
(18) LP70	a	Michigan	P. domestica	Proffer & Jones	PG4
(19) LP73	a	Michigan	P. armeniaca	Proffer & Jones	PG5
(20) LP40	a	Michigan	P. armeniaca	Proffer & Jones	PG5
(21) LP39	a	Michigan	P. armeniaca	Proffer & Jones	PG4
(22) F1h	S	Michigan	P. armeniaca	Adams	PG4
(23) LP47	S	Michigan	P. armeniaca	Adams	PG5
(24) LP49	S	Michigan	P. armeniaca	Adams	PG4
(38) ATCC					
62910	a	Ontario	P. persica	ATCC (Biggs)	PG4
Flu	S	Michigan	P. armeniaca	Adams	
Flg	S	Michigan	P. armeniaca	Adams	
Plr	S	Michigan	P. armeniaca	Adams	
Flb	S	Michigan	P. armeniaca	Adams	
Fls	S	Michigan	P. armeniaca	Adams	
Flf	S	Michigan	P. armeniaca	Adams	

Table 1. contd.

10010 11 00.					
L. persoonii		***			
(25) 11.3	a	Michigan	P. persica	Adams	PG1
(26) VSS4	S	Ontario	P. persica	Biggs	PG1
(27) VSS5	S	Ontario	P. persica	Biggs	PG1
(28) V SS3	S	Ontario	P. persica	Biggs	PG1
(29) LP8	S	Michigan	P. serotina	Proffer	PG1
(30) LP10	S	Michigan	P. serotina	Proffer	PG1
(31) LP16	a	Michigan	P. domestica	Proffer	PG1
(32) LP34	a	Michigan	P. armeniaca	Proffer	PG1
(33) T28.1	a	Michigan	P. persica	Adams & Surve	PG2
(34) T20.3	a	Michigan	P. persica	Adams & Surve	PG2
(35) T4. 7	a	Michigan	P. persica	Adams & Surve	PG2
(36) T 7.4	a	Michigan	P. persica	Adams & Surve	PG2
(37) T8.6	a	Michigan	P. persica	Adams & Surve	PG2
(39) Cy2	a	Oregon	P. aviu∎	Spotts	PG1
(40) Cy3	a	Oregon	P. avium	Spotts	PG1
(41) Cy4	a	Oregon	P. avium	Spotts	PG1
(42) Cy5	a	Oregon	P. avium	Spotts	PG1
(43) T28.1	a	Michigan	P. persica	Adams & Surve	PG2
(44) Lp12	a	Michigan	P. cerasus	Proffer	PG2
(45) TN	a	California	P. persica	Michailides	PG3
			var. nucercisa		
(46) LCC	a	California	P. persica	Michailides	PG1
			var. nucercisa		
(47) LCN	a	California	P. persica	Michailides	PG3
			var. nucercisa		
(48) T26.3	a	Michigan	P. persica	Adams & Surve	PG2
(49) NC17	a	North Carolina	P. persica	Endert-Kirkpatrick	PG1
(50) NC49	a	North Carolina	P. persica	Endert-Kirkpatrick	PG1
(51) T16.7	a	Michigan	P. persica	Adams & Surve	PG2
(52) NC9.2	a	North Carolina	•	Endert-Kirkpatrick	PG1
(53) NC8.2	a .	North Carolina	P. persica	Endert-Kirkpatrick	PG1
(54) T18.1	a ·	Michigan	P. persica	Adams & Surve	PG2
(55) R5T10	a	California	P. domestica	Adams	PG1
(56) R3T16	a	California	P. domestica	Adams	PG1
f.sp					
mahaleb	a	Switzerland	P. persica	CBS(264.34)	
f. sp					
persica	a	Switzerland	P. persica	CBS(266.34)	
f.sp					
oeconomica	a	Switzerland	P. persica	CBS(265.34)	
f.sp					
armeniaca	a	Switzerland	P. persica	CBS(260.34)	
f.sp					
avium	a	Switzerland	P. persica	CBS(261.34)	

Table 1. contd.

f co					
f. sp cerasi	a	Switzerland	P. persica	CBS(262.34)	
R5T15	a	Michigan	P. persica	Adams	
R6T5	a	Michigan	P. persica	Adams	
R5T12	a	Michigan	P. persica	Adams	
10.14	a	Michigan	P. persica	Adams	
11.12	a	Michigan	P. persica	Adams	
58	a	Michigan	P. persica	Adams	
R1T12	a	Michigan	P. persica	Adams	
10.1	a	Michi gan	P. persica	Adams	
11.2	a	Michigan	P. persica	Adams	
R4T14	a	Michigan	P. persica	Adams	
R1T4	a	Michigan	P. persica	Adams	
R1T16	a	Michigan	P. persica	Adams	
105	a	Michigan	P. persica	Adams	
R6T14	a	Michigan	P. persica	Adams	
R5T11	a	Michigan	P. persica	Adams	

*represents the number on the phenogram in Fig. 1 ℓ "s" represents the sexual state and "a " represents asexual state

Table 2. Enzyme stains tested with Leucostoma

Enzyme (EC number)	Buffer*
Undetected enzymes	
Aconitate hydratase (EC 4.2.1.3)	A, B, C
Alcohol dehydrogenase (EC 1.1.1.1.)	B, C, D
Adenylate kinase (EC 2.7.4.3)	A, B, C
Aldehyde oxidase (EC 2.7.1.40)	I
Fructose diphosphatase (EC 3.1.3.11)	B, D
Glyceraldehyde-3-phosphate dehyrogenase	
(EC 1.2.1.12)	C, D
Glutathione reductase (EC 1.6.4.2)	C, D
B- Hydroxybutarate dehydrogenase (1.1.1.30)	B, C, D
Lactate dehydrogenase (EC 1.1.1.27)	A, C, D
Pyruvate kinase (EC 1.2.3.1)	A, B
Shikimic dehydrogenase (EC 1.1.1.25)	D, B
Acid phosphatase (EC 3.1.3.2) Alkaline phosphatase (EC 3.1.3.1) Diaphorase (EC 1.6.4.3) Glucose dehydrogenase (EC 1.1.1.47) Hexokinase (EC 2.7.1.1) Mannose- phosphate isomerase (EC 5.3.1.8)	A, C C, D A, D, B, D, I B, C, D A, B
Well-resolved enzymes	
Esterase (EC 3.1.1.1)	A, C, D
Glutamate dehydrogenase (EC 1.4.1.3)	D, B
Glucose-phosphate-dehydrogenase (EC 1.1.1.49)	D
Glucose-phosphate-isomerase (EC 5.3.1.9)	В
Isocitrate dehydrogenase(EC 1.1.1.42)	A
Valata Dahudwaranasa (EG 1 1 1 27)	B, D
Malate Dehydrogenase (EC 1.1.1.37)	В
Mannitol dehydrogenase (EC 2.4.2.1)	_
Mannitol dehydrogenase (EC 2.4.2.1) Phosphogluconate dehydrogenase (EC 2.7.5.1)	D
Mannitol dehydrogenase (EC 2.4.2.1)	D A

Table 3. Alleles scored at eight loci in Leucostoma.

Isolate number*		<u></u>			Locu	ıs			
-	ME	PGI	PGM	IDH	G6PD	MAN	GDH	PGD	
-					Allele	:S			
1	a	a	b	b	а	b	b	a	
2	а	а	b	b	a	b	b	a	
3	а	а	b	а	a	b	b	а	
4	а	а	b	а	а	b	b	а	
5	а	а	b	а	а	b	b	a	
6	а	а	b	а	а	b	b	a	
7	а	а	b	а	а	b	b	а	
8	а	а	b	а	а	b	b	а	
9	a	а	b	а	а	b	b	a	
10	a	а	b	а	а	b	b	a	
11	b	а	а	b	b	а	а	b	
12	b	b	а	b	b	а	а	b	
13	b	а	а	b	b	а	а	b	
14	b	b	b	а	а	а	а	a	
15	b	а	а	b	b	a	а	b	
16	b	b	b	b	а	а	а	b	
17	b	а	b	b	a	а	а	b	
18	b	b	b	а	b	а	а	b	
19	b	b	b	b	b	а	а	b	
20	b	b	b	b	b	а	а	b	
21	b	b	a ·	а	а	а	а	b	
22	b	b	b	b	а	b	b	b	
23	b	b	b	b	а	b	b	b	
24	а	a	b	b	a	b	b	b	
25	C	C	C	C	C	C	C	C	
26	C	C	C	C	C	C	C	C	
27	C	C	c	c	C	C	c	C	
28	C	C	C	c	C	C	C	C	
29	C	c	c	c	C	c	C	C	
30	c	C	C	C	C	C	C	C	
31	C	c	c	c	c	c	c	c	
32	C	C	C	c	C	c	C	C	
33	ď	d	d	c	d	c	C	d	
34	d	ď	d	c	ď	C	c	d	
35	d	ď	d	c	ď	c	c	d	
36	d	d	d	C	d	C	C	d	
37	d	d	d	C	d	c	C	d	
38	b	b	b	b	b	b	b	b	
39	C	C	C	C	C	C	C	C	
40	C	C	C	C	C	C	C	C	
41	C	C		c	C	C			
41	C	C	C	C	Ü	Ċ	C	C	

Table 3. contd.

42	С	С	С	С	С	С	С	С	
43	d	đ	d	С	d	C	C	d	
44	d	d	d	C	d	C	C	d	
45	е	е	C	С	C	C	C	C	
46	C	C	C	С	C	C	C	C	
47	е	е	C	C	C	C	C	C	
48	C	C	С	C	C	C	C	C	
49	C	C	C	C	C	C	C	C	
50	C	C	C	C	С	C	C	C	
51	d	d	d	C	đ	C	C	d	
52	C	C	C	C	C	C	C	C	
53	C	C	C	С	C	C	C	C	
54	d	d	d	C	d	C	C	d	
55	С	C	C	С	C	C	C	C	
56	C	C	C	C	C	C	C	C	

^{*}Isolate number corresponds to that on the phenogram in Fig. 1

Table 4. Summary of genotypic diversities for species and subgroups in Leucostoma.

Species/ subgroup	Number of isolates	Number of loci	Number of ETS	Genotypic diversity
L. cincta	25	8	10	0.84
L. cincta on Malus	10	ω	8	0.28
L. cincta on Prunus	15	ω	ω	99.0
L. persoonii	31	80	ĸ	0.50

Genetic Similarity

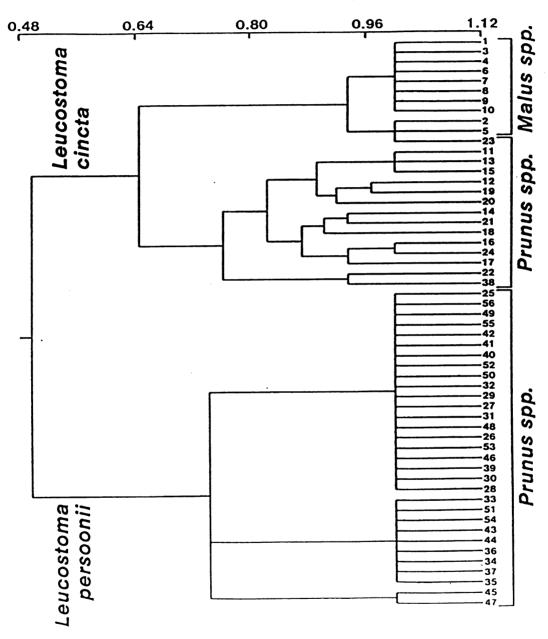


Fig. 1. Phenogram based on isozyme analysis showing the groupings of isolates of *L. cincta* and *L. persoonii*. The phenogram was constructed with the NTSYS program using the unweighted pair-group method with arithmetic averaging (UPGMA) from Simple Matching Coefficient values. The numbers in parentheses correspond to isolate numbers (Table 1).

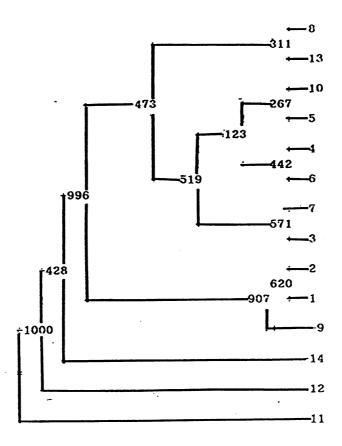


Fig. 2 Most parsimonious tree generated using the BOOT program of PHYLIP. The numbers on the branches correspond to the confidence limit on each branch. Those on the end of the tree correspond to the isolate numbers in Table 1.

RESTRICTION FRAGMENT LENGTH POLYMORPHISMS IN THE NUCLEAR RIBOSOMAL DNA OF LEUCOSTOMA CINCTA AND L. PERSOONII

RESTRICTION FRAGMENT LENGTH POLYMOPTHISMS IN THE NUCLEAR RIBOSOMAL DNA OF LEUCOSTOMA CINCTA AND L. PERSOONII. ABSTRACT

Genetic variation within and between groups of two Leucostoma species was examined by analysis of restriction fragment length polymorphisms (RFLPs) of nuclear ribosomal DNA (rDNA). The small nuclear rDNA and the internal transcribed spacers plus a portion of the adjacent large rDNA (ITS-LrDNA, 1600 base pairs) were separately amplified by polymerase chain reaction (PCR). rDNA pattern variation appeared in digests with 10 of 40 restriction enzymes. Phenetic analysis revealed seven groups among various isolates of L. persoonii. Several ITS-LrDNA groups corresponded to those previously detected in isozyme studies and others corresponded to host and/or geographic distributions. Less variation in ITS-LrDNA was evident in L. cincta groups in contrast to isozyme analysis. Most of the RFLP variation in the ITS-LrDNA was within the internal transcribed spacer rather than in the large rDNA. PCR amplification of the nuclear small rDNA revealed an insertion in L. cincta isolates from Prunus spp. that is absent both in L. cincta isolates from Malus and in L. persoonii isolates.

Leucostoma persoonii Hoehn. and Leucostoma cincta (Fr.: Fr.) Hoehn. are the pathogens that cause Cytospora canker on cultivated peach, nectarine, apricot, plum, prune, sweet and sour cherry, native black cherry, chokecherry, amelanchier and ornamental quince. most destructive diseases are those on peach, sweet cherry and plum where the canker is perennial. Taxonomy of the two closely related pathogens has been complicated by the lack of availability of species specific characteristics (Kern, 1955), particularly the frequent absence of the sexual state. Kern's (1955), criteria in literature for identifying the two taxa in the absence of the sexual state have been perceived as inadequate or create confusion judging from frequent current use of incorrect species epithets (Surve-Iyer, 1992). Misidentification and a lack of understanding of genetic diversity in the taxa present a cogent problem to breeding programs screening for canker resistance in perennial fruit trees (Adams, Hammer, Iezzoni, 1989). Although identification of a fungal taxon is based on observable differences in morphology, biological species and populations may be genetically distinct even when they are not morphologically separable. Recently Surve-Iyer (1992) used isozyme analysis to separate the two Leucostoma species at eight

polymorphic loci. In addition to the separation of these two species, isozyme polymorphisms revealed variation within the two species. Three phenetic groups were detected within *L. persoonii* and three closely related groups were found within *L. cincta*. Molecular genetic techniques such as restriction fragment length polymorphisms (RFLPs) can identify genetic variability between and within fungal species. RFLP analysis of a region of DNA sequence that evolves at a tempo roughly corresponding to species divergence could reveal whether isozyme phenetic groups correspond to populations or to biological species.

RFLPs have been useful genetic markers in organisms such as humans (Botstein et al, 1980), crop plants (Helentjaris et al), and animals (Hillis & Davis, 1986). Such polymorphisms can be generated by the loss or gain of restriction endonuclease sites by point mutations or by rearrangement of DNA sequences. In fungi, RFLPs have been used both to resolve taxonomic groups (Kohn et al, 1988; Cubeta et al, 1991) and in population genetic studies (Hulbert et al, 1985; McDonald and Martinez, 1990; Michelmore & Hulbert, 1987). The ribosomal repeat unit (rDNA) has been used extensively for restriction enzyme studies in fungi.

Polymorphisms in fungal rDNAs have been used to demonstrate both species and strain specific differences (Kohn et al, 1988; Specht, Novotony & Ullrich, 1984). In most eukaryotes, the nuclear rDNA exists as a tandemly repeated array of three rRNA genes (18S, 5.8S and 28S) separated by internal transcribed (ITS) and non transcribed spacers (IGS). The various rRNAs and their respective DNA coding regions are known for their value as evolutionary markers, since they contain regions of both high and low sequence variability (Apples & Dvorak, 1982). Among fungi, analysis of this region has been applied to numerous genera including Neurospora (Verma & Dutta, 1987), Candida (Magee, D'Souza & Magee, 1987), Schizophyllum (Spect, Novotony & Ullrich, 1984), Coprinus (Wu, Cassidy & Pukkila, 1983), Armillaria (Anderson, Petsche & Smith, 1987) and Lentinus (Hibbet & Vilgalys, 1991).

With the advent of enzymatic amplification, copies of selected regions of the rDNA repeat unit can be selectively amplified as non methylated copies from crude DNA preparations, greatly simplifying RFLP analysis of populations (Bruns, White & Taylor, 1991). This technique has been used by Vilgalys and Hester (1990) for genetic identification and mapping of Cryptococcus species and by Hibbet and Vilgalys (1991)

to study evolutionary relationship of *Lentinus* to the Polyporaceae.

In studies presented here we examined variation in portions of the nuclear rDNA repeat of isolates of L. persoonii and L. cincta by analysis of the restriction endonuclease fragment patterns. The small nuclear rDNA (18s), and the internal transcribed spacers plus a portion of the adjacent large rDNA (28S), were enzymatically amplified using polymerase chain reaction (PCR) and universal primers for fungal rDNA (White, Arnheim & Erlich, 1989; White et al, 1990). Forty restriction enzymes were used to study the rDNA variation between and within the two species. The data was analyzed by phenetic methods and the results are diagrammed in an unrooted tree. The results were compared to those obtained by isozyme analysis and the various groupings by the two methods are discussed in this paper.

MATERIALS AND METHODS

DNA preparation

The fungal isolates used in this study are listed in Table 6. Formae speciales cultures of L. persoonii obtained from Centraalbureau voor Schimmecultures,

Netherlands (CBS) were also used in this study. fungi were grown for 10-12 days in 100 ml of Leonian's medium (1.2g KH₂PO_A, 0.6g MgSo_A, 6.25g maltose, 6.25g malt extract in 1 L of distilled water). Mycelia were harvested by vacuum filtration through Miracloth (Calbiochem Corp, San Diego, U. S. A), lyophilized and stored at -20°C until the DNA was extracted. DNA was extracted by the method of Lee & Taylor, (1990). Lyophilized mycelium was ground in a mortar and pestle in 750 ul of lysis buffer and incubated at 60° C for 20 minutes. 700 ul of phenol:chloroform (1:1) was added followed by microcentrifugation for 15 minutes. 700 ul of SEVAG was added to the top aqueous phase, the mixture was centrifuged for 10-15 minutes. The aqueous phase was removed and 10ul of 3M NaoAC pH 8 and 0.54 (600 ul) volume of isopropanol was added. DNA ropes were seen precipitating at this stage. The DNA was washed with 1.5 ml of 70% ethanol and the pellet was allowed to dry in a vacuum oven at 50°C for 15 minutes. The extracted DNA was stored in TE buffer at 40°C.

Enzymatic amplification of DNA with the use of PCR

The rRNA coding regions were amplified from genomic

DNA by use of the polymerase chain reaction with

oligonucleotides complementary to 5' and 3' end of the

nuclear coding region (White et al., 1990, Fig. 4). PCR reactions were set up with Amplitaq DNA polymerase (U.S Biochemicals) in either 50- or 25-ul volumes (White et al., 1990) using buffer conditions recommended by the manufacturer. The following primer pairs were used, ITS5/ TW14 (ITS5: ggaagtaaaagtcgtaacaagg, TW14: gctatcctgagggaaacttc) Ctb6/TW13 (Ctb6: gcatatcaataagcggagg, TW13: ggtccgtgtttcaagacg), Ctb6/TW14 and Ctw13/TW14 (Ctw13: cgtcttgaaacacggacc) (Fig. 4). Restriction patterns of fragments amplified by primers ITS5/TW14 were compared while the remaining primer pairs were used to locate restriction sites or length mutations. For each amplification, one negative control (excluding the DNA template) was used and all the amplification reactions were performed with a positive displacement pipetmen in a PCR-product-free Thirty PCR cycles were performed on an automated thermocycler device (Perkin-Elmer-Cetus), with the following parameters, 94°C denaturation (1 min), 48°C annealing (1 min), 72°C extension (45 sec + 4 sec/cycle) and with a final extension at 72°C for 10 minutes. The PCR products were checked by running 3-4 ul of each reaction mixture on 3% agarose minigels. Previously, a large insert was discovered in the

Previously, a large insert was discovered in the nuclear small rDNA of L. cincta isolate LP59 located

between primers NS21/NS22 (NS21: gaataatagaataggacg, NS22: aattaagcagacaaactc) that was absent in L. persoonii isolate LP8 (Mary Berbee, personal communication). A portion of the nuclear small rDNA between the primer pair NS21/NS22 was amplified to examine the presence of an insert in the isolates of L. cincta and L. persoonii.

Restriction analysis of PCR products

After removal of the mineral oil overlay from the PCR reactions, the amplified products were directly used for restriction analysis. 5 ul of the PCR product was digested in a 20 ul volume containing 13 ul of H2O, 2 ul of the 10% buffer and 0.1 ul of the restriction enzyme under incubation conditions supplied by the manufacturer. Forty restriction enzymes (Boehringer Mannheim, U.S.A, New England Biochemicals, U.S.A & Strategene, U. S. A) were used in this study (Table 7). The products of the restriction reactions were separated by electrophoresis in 1%+2% agarose gels in TAE, pH 8.1 (1% Nuseive +2% Seakem, FMC Bioproducts, U.S.A) using 1Kb lambda and 123bp ladders as molecular weight standards (Boehringer Mannheim) and non-digested controls. After staining with ethidium bromide, the gels were photographed over an UV transilluminator.

Nine enzymes (AluI, RsaI, MboI, TaqI, BSTNI, MseI, BSTUI, HpaII, and ScaI) were further used to study the intraspecific variation within *L. persoonii*. To identify the areas of variability in the region of ITS-LrDNA, parts of the 28S rDNA were also amplified.

Data analysis

Digested rDNAs were run side by side on agarose gels and the restriction patterns were compared. Fragments which migrated the same distance during agarose gel electrophoresis as compared to the lambda ladders were considered to be fragments in common. The digested DNA fragments were compared with each other on the gels, their position and molecular weight recorded. To preclude errors in estimates of genetic divergence fragment patterns for each enzyme were coded as different allelic forms of a given locus (Bruns, White and Taylor, 1991). The data marix was entered into a computer file of the Numerical Taxonomy Multivariate System program, version 1.7 (Rohlf, 1987) and the discrete data were converted to Simple Matching coefficient using the SIMQUAL program. The coefficient emphasizes both the positive and negative matches Cluster analysis was performed using the program SAHN by unweighted pair group method using arithmetic averages

(UPGMA). For preliminary studies, one isolate from each phenetic group separated by isozyme analysis (Surve-Iyer, 1992) was used for restriction digestion. Similarities were deduced from the pairwise comparison of isolates by using their ITS-LrDNA profiles.

To detect length mutations, the following procedures were performed: 1. For each gel a standard graph was constructed by plotting the molecular weights of the lambda ladders against the distance of migration of the fragments. For every restriction pattern the molecular weight of each fragment was calculated from these standard graphs and were compared with each other. 2. 8% nondenaturing polyacrylamide gels (12 x 16 cm) were run loaded with uncut PCR amplified fragments between primer pairs ITS1/ITS4 & Ctb6/TW14 to obtain relatively precise length comparisons.

RESULTS

PCR amplification of the nuclear small rDNA between NS21/NS22 revealed the presence of the insert in all of the 16 isolates of *L. cincta* from *Prunus* spp. (Fig. 6) (isolate LP66, 65P3, LP49, LP59, LP62, LP47, 2P3, BS5, ATCC72910, F1h, T33.6, 5p4, 4p1, LP40, BS1, 1P1). The insert was absent in all of the 13 isolates of *L. cincta* from *Malus* (isolate A15, A32, A9, A70, A8, A52, A48, A2,

A77, A45, LP39, BS3, BS2) and did not occur in any isolate of *L. persoonii* (Fig. 6). The nuclear small rDNA of *L. cincta* from *Malus* and *L. persoonii* were similar in size.

Among the 40 restriction enzymes used, 19 recognized sites in the ITS-LrDNA and 10 enzymes showed polymorphisms. The restriction profile of only one enzyme, Hinf I differentiated the isolates of L. cincta and L. persoonii in ITS-LrDNA region. A 268bp band which was detected in all the isolates of L. persoonii was absent in the isolates of L. cincta (Fig. 5). Low variability was seen between the two taxa, but a high level of variability was detected among the isolates of L. persoonii in the region of ITS-LrDNA. Restriction length polymorphism was detected with nine restriction enzymes (AluI, RsaI, MboI, TaqI, BSTNI, MseI, BSTUI, HpaII, and ScaI). For each of these restriction enzymes, two or three patterns of restriction profiles were observed. These patterns were also shared by isolates of L. cincta from both Malus and Prunus and the formae speciales cultures of L. persoonii from CBS.

The phenogram generated by the SIMQUAL program using Simple Matching coefficient (Fig. 3) summarizes the relationship between the isolates of *L. persoonii*. *L*.

persoonii was separated into seven clusters. The first cluster consisted of two isolates (LP6 and 11.3) from peach. Isolates on cherry formed a second cluster, three of these (LP8, LP9, and LP10) were on black cherry, one (LP13) was on sour cherry (all the four isolates were from Michigan) and one (CHR) from Oregon near the Hood river. Five isolates on peach (T18.1, T26.1, T4.7, T16.1, T7.4) collected from a single orchard in Michigan and one isolate (LCN) on nectarine from California clustered together. Two isolates, from Michigan (LP21) and one from North Carolina (NC9.7) were clustered together. The fifth cluster consisted of two isolates, one on prune (LP2) and the other on peach (NC9.7). Two North Carolina isolates on peach (NC14.1 and NC8.2) formed a sixth cluster. Two California isolates (R3T16 and R5T10) from plum were grouped together to form the seventh cluster.

Length mutations appeared to be evident when the restriction patterns were compared by standard graphs. However, comparison of the restriction profiles of ITS-LrDNA and portions of the 28SrDNA did not reveal difference in size prior to digestion. Comparison of restriction profiles between ITS4/ITS5 and Ctb6/Tw14 showed maximum variability in the region between primers ITS5 and ITS4 (Fig. 4)

DISCUSSION

Analysis of the restriction patterns of two separate regions of the rDNA revealed information on the relationship between the isolates of *Leucostoma*. We were able to detect enzymes that showed restriction length polymorphisms by using 40 restriction enzymes with four to eight base recognition sequences.

Based on RFLPs, the isolates of L. persoonii appear to be composed of several genetically heterogeneous groups. Seven clusters were observed, four clusters were separated on the basis of host adaptation, one cluster consisted of isolates from a single orchard in Michigan and isolates from cherry and nectarine. The remaining two clusters were separated by geographical location. Previous studies (Surve-Iyer, 1992) using isozyme analysis have shown the separation of L. persoonii into These three groups did not reveal three groups. significant variation within themselves. One of these groups was widespread, a second group consisted of specimens isolated from one peach orchard in Michigan and one canker isolation on black cherry, and a third group consisted of two specimens on nectarine from California.

RFLPs have revealed greater intraspecific genetic variation than isozyme analysis, perhaps this may be due to due to genetic divergence among L. persoonii caused by geographhical isolation. Intraspecific variation as seen here in the groups of L. persoonii has also been observed using Drosophila (Williams et al, 1987). However in similar studies of rDNA variation in fungi less intraspecific variability was detected (Anderson, Petsche & Smith, 1987; Kohn et al., 1988; Braithwaite, Iwrin & Manners, 1990; Egger, Danielson & Fortin, 1991). Sequence analyis of the nuclear encoded rDNA has also shown higher interspecific than intraspecific variability in Laccaria (Gardes et al., 1990) and Gibberella spp. (Peterson and Logrieco, 1991). Recently, there has been one report by Vilgalys & Gonzalez (1991) in which high variability was detected in the nuclear encoded rDNA repeat unit of Rhizoctonia solani both among and within the different anastomosis groups. McDonald and Martinez (1990) have reported a high level of genetic variation in the local population of Septoria tritici using restriction analysis of the nuclear DNA. This form of variation within the species may provide an important method of investigating the identification, origin and spread of certain isolates.

Isozyme analysis (Surve-Iyer, 1992) has proven to be more informative with respect to the separation of the two taxa of Leucostoma than RFLP analysis. Isozyme analysis separated the two species L. cincta and L. persoonii at each and every loci tested. RFLPs of the rDNA did not show distinct separation of L. cincta on Malus (PG6) from the isolates of L. persoonii. L. cincta on Malus is likely to represent a genetically isolated biological species in the L. cincta species complex. It differs in isozyme loci and morphological markers and the lack the insertion in the nuclear small rDNA (Surve-Iyer, 1992; Proffer & Jones, 1989). PG6 was virulent on 3-yr-old inoculated peach seedlings (Surve-Iyer, 1992), however, in nature PG6 is absent on Prunus spp. This ecological host specialization of PG6 may have led to the genetic isolation of L. cincta on Malus and L. cincta on Prunus spp.

This study revealed that an insert in the 18S region of the rDNA was present in all specimens of *L. cincta* from *Prunus* but absent in *L. cincta* on *Malus* and *L. persoonii*. Inserts in the nuclear small rDNA have not been detected in plants or animals, however, such inserts have been noted in lichens (De Priest and A. Gargas, personal communications) and Chytrids (B. Bowman, personal communication). Furthermore, the PCR

amplification of isolates of *L. cincta* containing this insert often showed two amplified products rather than one. This phenomenon apparently occurs commonly during amplification of DNA containing large inserts (Bruns, personal communication). The collections of *L. cincta* are limited (inserts have been detected in 16 isolates and absent in 13 isolates) and examination of more widespread collections are needed to confirm that the insert is unique and indicative of *L. cincta* on *Prunus*.

Calculations of the molecular weights of digest fragments indicated that length mutations were present in the ITS-LrDNA regions. However comparing smaller uncut PCR amplified products separately for the ITS (ITS5/ITS4) and the LrDNA (Ctb6/Tw14) did not reveal length mutations. Quantitative analysis of RFLP pattern comparison can be prone to error if length mutations are This can cause overestimations of divergence when multiple enzymes are used. We believe that the variation we have detected in the ITS-LrDNA regions is due to site changes rather than length mutations. Further support for our argument is that of the forty restriction enzymes used, we detected differences with ten enzymes, but nine other enzymes that cut the ITS-LrDNA (ClaI, AvaI, DdeI, HaeI, NciI, SstI, MnI, EcoRI

and Fnu4H) did not reveal variation among diverse isolates. However there is still a possibility that we may have not detected minor length mutations due to comigration of nonhomologous fragments of identical molecular weights.

This study has been useful in identifying variation within L. persoonii. In a study on Rana (Hillis and Davis, 1986), allozyme data provided extensive information on the relationship between closely related groups in a species complex. However their RFLP analysis identified several unresolved or poorly resolved portions of the phylogeny at the intergroup level much like our studies of Leucostoma. early to assign evolutionary relationship in Leucostoma based solely on RFLP banding patterns, however this study might be phylogenetically informative when the molecular basis of the variation is known. Detailed sequence data would be useful in understanding the variation in this region. If the variability detected in the groups of L. persoonii precisely reflects the genetic variability present in this species, than this variation should be taken into consideration when screening for resistant peach cultivars. Comparison of levels of variation from isozyme marker and RFLP markers to levels of variation in the mitochondrial DNA

and the rDNA intergenic spacer region combined with anastomosis grouping might provide a basis for detailed population genetic and epidemiological studies of the two taxa that would benefit in selecting resistance to perennial canker in peach varieties.

LITERATURE CITED

- Adams, G. C., Hammer, S. A. & Iezzoni, A. (1989). Optimum sample size for detecting virulence difference in *Leucostoma* isolates from peach. Plant Disease 73:754-759
- Anderson, J. B., Petsche, D. M. & Smith, M. L. (1987). Restriction fragment length polymorphism in biological species of *Armillaria mellea*. Mycologia 79: 69-76.
- Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. (1980). Construction of a genetic map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32:314-331.
- Braithwaite, K. S., Irwin, J. A. & Manners, J. M. (1990). Restriction fragment length polymorphisms in Colletotrichum gloeosporioides infecting Stylosanthes spp. in Australia. Mycological Research 94:1129-1137.
- Bruns, T. D., Fogel, R. & Taylor, J. W. (1990). Amplification and sequencing of DNA from fungal herbarium specimens. Mycologia 82:75-184.
- Bruns, T. D., White, T. J. & Taylor, J. W. (1991). Fungal molecular systematics. Annual Review of Ecology and Systematics 22: 525-564.
- Carder, J. H. and Barbara, D. J. (1991). Molecular variation and restriction fragment length polymorphisms (RFLPs) within and between six species of *Verticillium*. Mycological Research 95:935-942.
- Cubeta, M. A., Echandi, E., Abernethy, T. & Vilgalys, R. (1991). Characterization of anastomosis groups of binucleate *Rhizoctonia* species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81:1395-1400.
- Chambers, C., Dutta, S. K. & Crouch, R. J. (1986). Neurospora crassa ribosomal DNA: Sequence of internal transcribed spacer and comparison with N. intermedia and N. sitophila. Gene 44: 159-164.

- Egger, K. N. Danielson, R. M. & Fortin, J. A. (1991). Taxonomy and population structure of E-strain mycorrhizal fungi inferred from ribosomal and mitochondrial DNA polymorphisms. Mycological Research 95:866-872.
- Felsenstein, J. 1992. PHYLIP: phylogenetic inference package. Version 3.4. University of Washington, Seattle.
- Gardes, M., White, T. J., Fortin, A. J., Bruns, T. D. & Taylor, J. W. (1990). Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Canadian Journal of Botany 69: 180-190.
- Guadet. J., Jacqueline, J., Lafay, J. F. & Brygoo, Y. (1989). Phylogeny of some *Fusarium* species, as determined by large-subunit rRNA sequence comparison. Molecular Biology and Evolution. 6:227-242.
- Helentjaris, T., King, G., Slocum, M., Siedentrang, C. & Wegmen, S.(1984). Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Molecular Biology 15:109-118.
- Hibbet, D. S. & Vilgalys, R. (1991). Evolutionary relationships in *Lentinus* to the polyporaceae: evidence from restriction analysis of enzymatically amplified ribosomal DNA. Mycologia 83: 425-439.
- Hildebrand, E. G. (1947). Perennial canker and the canker complex in New York, with methods of control. Cornell University Agricultural Station Memorandum 276. 66pp.
- Hillis, M. D. & Davis, S. K. (1986). Evolution of ribosomal DNA: Fifty million years of recorded history in the frog genus Rana. Evolution 40: 1275-1288.
- Hulbert, S. H., Ilott, T. W., Legg, E. J., Lincoln, E. E., Lander, E. S. & Michelmore, R. W. (1989). Genetic analysis of the fungus *Bremia lactucae* using restriction fragment length polymorphism. Genetics 120: 947-958.
- Kern, H. (1955). Taxonomic studies in the genus Leucostoma. Paper of the Michigan Academy Science, Arts and Letters 40: 9-22.

- Kohn, L. M, Petsche, D. M. Bailey, S. R., Novak, L. A. & Anderson, J. B. (1988). Restriction fragment length polymorphism in nuclear and mitochondrial DNA of *Sclerotinia* species. Phytopathology 78: 1047-1051.
- Lee, S. B. & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores, p 282-287. In N. Innis, D. Gelfand, J. Sninsky, and T. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, Inc., New York.
- Magee, B. B., D'Souza, T. M. & Magee, D. T. (1987). Strain and species identification by restriction fragment length polymorphisms in ribosomal DNA repeat of Candida species. Journal of Bacteriol 169: 1639-1643.
- McDonald, B. A., & Martinez, J. P. (1990). Restriction fragment length polymorphisms in *Septoria tritici* occur at a high frequency. Current Genetics 17: 133-138.
- McDonald, B. A. & Martinez, J. P. (1990). DNA restriction fragment length polymorphisms among Mycosphaerella graminicola (anamorph: Septoria tritici) isolates collected from a single wheat field. Phytopathology 80:1368-1373.
- Michelmore, R. W. & Hulbert, S. H. (1987). Molecular markers for genetic analysis of phytopathological fungi. Annual Review of Phytopathology 25:383-404.
- Peterson, S. W. & Logrieco. A. (1991). Ribosomal RNA sequence variation among infertile strains of some *Gibberella* species. Mycologia 83:397-402.
- Proffer, T. J. and Jone, A. L. 1989. A new canker disease of apple caused by *Leucostoma cincta* and other fungi associated with cankers on apple in Michigan. Plant Disease 73: 508-514
- Rohlf, F. J., (1987). NTSYS-pc: numerical taxonomy system for the IBM microcomputer (and compatibles), version 1.30 manual. Sauket, NY, U.S.A.: Applied Biostatistics, Inc.

- Specht, C. A., Novotony, C. P. & Ullrich, R. C. (1984). Strain specific differences in the ribosomal DNA from the fungus Schizophyllum commune. Current Genetics 8: 219-222.
- Surve-Iyer, R. S. 1992. Phenetic analysis of *Leucostoma* from *Prunus* and *Malus*.Ph.D Thesis. Michigan State University, East Lansing.
- Vilgalys, R. & Gonzalez, D. (1990). Ribosomal DNA restriction fragment length polymorphisms in Rhizoctonia solani. Phytopathology 80:151-158.
- Vilgalys, R. & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* spp. Journal of Bacteriology 172:4238-4246.
- Walsh, S. R., Tyrell, D., Humber, R. A. & Silver, J. C. (1990). DNA restriction fragment length polymorphism in the rDNA repeat unit of *Entomophaga*. Experimental Mycology 14:381-392.
- White, T. J., Arnheim, N. & Erlich, H. A. (1989). The polymerase chain reaction. Trends In Genetics 5: 185-189.
- White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal genes for phylogenetics, p 315-322. In N. Innis, D. Gelfand, J. Sninsky, and T. White (ed.), PCR protocols: a guide to methods and applications. Academic press, Inc., New York.
- Williams, S. M., Furnier, G., Fuog, E. & Strobeck, C. (1987). Evolution of ribosomal DNA spacers of Drosophila melanogaster: Different patterns of variation on X and Y chromosomes. Genetics 116: 225-232.
- Willison, R. S. (1938). Peach canker investigations II. Infection studies. Canadian Journal of Research 14: 27-44.
- Wu, M.M., Cassidy, J.R. & Pukkila, P. J. (1983). Polymorphisms in DNA of Coprinus cinerus. Current Genetics 7:385-392.

Table 5. Leucostoma isolates used in the RFLP studies.

		- 	
Species &	~	77 A-	
Isolate	Origin	Host	
L. persoonii			
LP6	Michigan	Prunus persica	
11.3	Michigan	Prunus persica	
LP10	Michigan	Prunus serotina	
LP9	Micigan	Prunus serotina	
LP13	Michigan	Prunus serotina	
LP8	Michigan	Prunus serotina	
CHR	Oregon	Prunus avium	
Cy5	Oregon	Prunus avium	
T18.1	Michigan	Prunus persica	
T26.1	Michigan	Prunus persica	
T4.7	Michigan	Prunus persica	
LCN	California	Prunus persica	
		var. nucercisa	
T7.4	Michigan	Prunus persica	
T16.1	Michigan	Prunus persic a	
LP21	Michigan	Prunus domestica	
NC9.7	North Carolina	Prunus persica	
LP2	Michigan	Prunus domestica	
NC17	North Carolina	Prunus persica	
NC14.1	North Carolina	Prunus persica	
NC8.2	North Carolina	Prunus persica	
R3T16	California	Prunus domestica	
R3T10	California	Prunus domestica	
f.sp			
mahaleb	Switzerland	Prunus persica	
L. cincta			
LP66 ATCC	Michigan	Prunus domestica	
62910	Ontario	Prunus persica	
5P4	Michigan	Prunus domestica	
A48	Michigan	Malus domestica	
A48 A45	Michigan Michigan	Malus domestica	
A45 A9	_	Malus domestica Malus domestica	
Ay	Michigan	rialus domestica	

Table 6. Restriction enzymes used in the digestion of PCR products of the ITS-LrDNA* fragment in *L. cincta* and *L. persoonii*

	<u> </u>		D. TT	
AluI	ClaI	HinfI	PvuII	
AvaI	EaeI	HpaII	RmaI	
AvaII	DdeI	${ t HpaII}$	RsaI	
BamHI	ECONI	KpnI	SalI	
BclI	ECORI	MboI	ScaI	
BglII	ECORV	MnI	SstI	
BglIII	Fnu4H	MluI	StuI	
BstEII	HaeIII	MseI	TaqI	
BstNI	HhaI	NruI	XbaI	
BstUI	HindIII	PstI	XhoI	

^{*}ITS-LrDNA= ITS1, ITS2, 5.8SrDNA and portion of the 28SrDNA

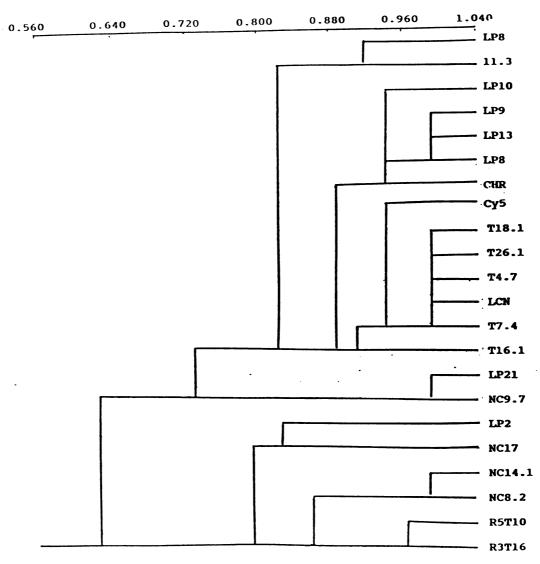
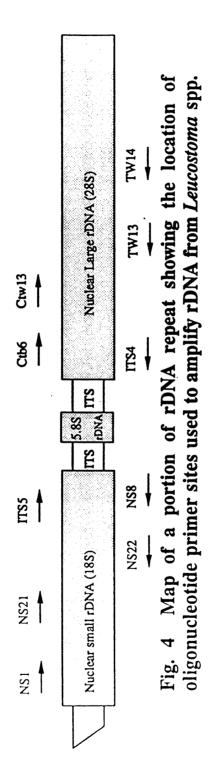



Fig. 3 Phenogram of *Leucostoma persoonii* isolates based on the UPGMA cluster analysis of simple matching coefficient. Similarity generated from restriction fragment length polymorphisms in the portion of the nuclear rDNA containing ITS1, ITS2, 5.8S rDNA and part of the 28S rDNA.

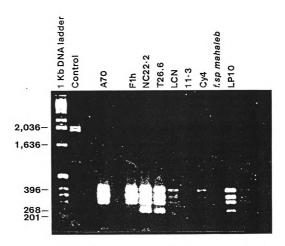


Fig. 5 Restriction profiles of PCR product of the fragment containing the two ITS regions, 5.85 rDNA and a portion of 285 rDNA after digestion with Hinf I. A70 & Fih are isolates of *L. cincta* and NC22.2, T26.6 LCN, 11.3, Cy4, *f. sp. mahaleb* and LP10 are isolates of *L. persoonii*. Primers used: ITS5/TW14.

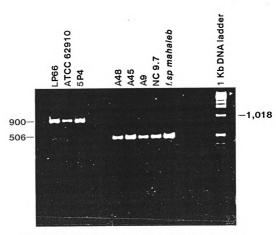


Fig. 6 PCR products from enzymatic amplification of nuclear small rDNA using primers NS21/NS22. An insertion of about 400bp present in the isolates of *L. cincta* on *Prunus* (LP66, ATCC 62910, & 5P4) is missing in isolates of *L. cincta* on *Malus* (A48,A45,A9) & *L. persoonii* (NC9.7, f.sp. mahaleb)

COMPARISON OF FIVE PHENETIC GROUPS OF LEUCOSTOMA USING MORPHOLOGY AND VIRULENCE ON PEACH

Comparison of Five Phenetic Groups of Leucostoma Using Morphology and Virulence on Peach.

ABSTRACT

Phenetic groups separated by isozyme analysis, two groups of Leucostoma persoonii (PG1 and PG2) and three of L. cincta (PG4, PG5 and PG6) were compared using pycnidium size, color, relative growth at 27 C and 33 C, and virulence markers. Five representative isolates from each group were used and each group was assigned a standard isolate. Each group was inoculated on 3-yr-old multistemmed peach (Prunus persica) seedling trees with replications on eight trees for a total of 25 isolates on 40 trees. All five groups were virulent on inoculated peach including PG6, a L. cincta group found on Malus in Isolates of L. persoonii in PG1 were the Michigan. most virulent while isolates of L. cincta in PG6 were the least virulent. L. cincta isolates in PG3 and PG4 were more virulent than L. persoonii isolates in PG2. The color of L. persoonii isolates in culture ranged from black and dark olivaceous to dark mouse grey whereas those of L. cincta ranged from vinaceous buff to honey. Phenetic group five L. cincta was unique by it's reddish brown color in culture. Isolates of PG1 had restricted colony growth and lobate colony margins which clearly distinguished this group from others. Pycnidia of *L. cincta* were larger in size than those of *L. persoonii*, regardless of the phenetic grouping.

Isolates of all five phenetic groups showed growth at 27 C, but only isolates of phenetic groups PG1 and PG2 of *L. persoonii* showed growth at 33 C.

Perennial or Cytospora canker is a major limiting factor in peach production in the northern range of it's cultivation (Biggs, 1986; Dhanvantari, 1978; Hildebrand, 1947). Cytospora canker also affects plum and prune (P. domestica L.), sweet and sour cherry (P. avium L. and P. cerasus L., respectively), apricot (P. armeniaca L.), black cherry (P. serotina Ehrh.) and apple (Malus domestica Borkh.) among other mainly roseaceous hosts (Helton & Moisey, 1955; Hildebrand, 1947;). The disease is characterized by extensive perennial cankers on trunks, scaffold limbs and branches (Hampson & Sinclar, 1973; Tekauz & Patrick, 1984). Common infection sites include pruning wounds, leaf scars, and winter injury (Biggs, 1989). Willison, 1937 reported that approximately one third of all new infections were associated with pruning wounds. Winter injury which results in dead and dying tissue predisposes the tree to Leucostoma invasion (Bertrand & English). Leucostoma

infected trees are commonly observed to be more susceptible to winter injury than healthy trees (Dhanvantari, 1978; Helton & Konicek, 1961). disease is caused by two closely related fungi, Leucostoma cincta (Pers. : Fr.) Hoehn. [anamorph = Leucocytospora cincta (Sacc.) Hoehn.] and L. persoonii (Nits.) Hoehn. [anamorph = L. leucostoma (Pers.) Hoehn.]. The morphological differences between the two species as they occur in nature are often small, indistinct or overlap greatly (Kern, 1955). Because of this the two species generally have been separated by plant pathologists on the basis of cultural characters following the criteria defined by Willison, 1937. According to Willison (1937) and Kastirr (1984) the two species can be separated on the basis of color, pycnidial size and colony margin in culture. Hildebrand (1947) reported that the two species had different tolerance to growth at high temperature, for L. cincta growth maxima was 33 C and for L. persoonii, 37 C . Due to significant variation seen in cultural characters of the two taxa, the validity of using these to distinguish the two is questioned by many authors (Adams, Hammar & Proffer, 1989; Kern, 1955). Lukezic et al (1981), reported that monoascospore isolates from a single ascus

of *L. persoonii* showed a range of cultural characteristics putatively typical to both species. Currently, plant pathologists in the United States appear to be incorrectly assigning the name *L. cincta* to most virulent *Cytospora* isolates from stone fruit trees (Endert- Kirkpatrick, 1987; Regner & Johnson, 1990 & Spotts et al., 1990).

The relative virulence of isolates of L. cincta and L. persoonii have been reported to differ greatly. L. persoonii has been reported to be of low virulence as compared to L. cincta on peach (Helton & Moisey, 1955; Willison, 1937). However in other research L. persoonii was found to be more virulent in warmer weather and L. cincta more virulent in cooler weather (Hildebrand, 1947; Leonian, 1921; Wensley, 1964). Several researchers have evaluated the virulence of isolates on peach trees, generally inoculating few trees but several branches per tree with an isolate (Bertrand & English, 1976; Helton & Konicek, 1926; Lukezic, 1981; Wensley, 1964). In efforts to improve statistical comparisons of virulence of isolates, Adams et al (1989) reported that increasing the number of branches inoculated with an isolate per tree had an insignificant effect on reducing the sample variance, while increasing the number of trees inoculated up to six (one branch per tree)

greatly reduced the sample variance. Precise comparisons of the virulence of isolates can have significant consequences in current research on breeding peach trees for disease resistance (Chang et al., 1989; Chang et al, 1991). Breeding is an expensive and labor intensive procedure. Without thorough knowledge of the genetic variability in the virulence of the pathogen the release of new resistant germplasm would face the threat of exposure to pre-existing races or biological species of the pathogen that might overcome such a resistance.

Recently, using isozyme analysis, Surve-Iyer (1992) separated isolates of the two Leucostoma species into six phenetic groups (PG). PG1 isolates of L. persoonii were widespread and occurred on a wide range of Prunus spp. PG2 consisted of isolates of L. persoonii from Michigan on P. persica and P. serotina. PG4 and PG5 consisted of isolates of L. cincta on species of Prunus and PG6 consisted of isolates of L. cincta on Malus. The sixth phenetic group was of L. persoonii isolates from nectarine in California and could not be used in this study in Michigan for inoculations in the field. The aim of this research was to compare cultures of different phenetic groups using morphological markers

such as pycnidium size and color as well as in the biological characteristics of high temperature tolerance and relative virulence on peach. The genetic diversity in virulence among the 25 strains was compared for selection of isolates for screening peach germplasm in an ongoing program on breeding for canker resistance.

MATERIAL AND METHODS

Cultural characteristics and temperature response.

Colonies for each isolate were initiated by inverting a
4-mm-diameter mycelial plug onto a petri plate
containing Leonian's medium (1921). After 2 weeks of
incubation at room temperature under cool-white
fluorescent light, the cultural characteristics were
compared. Characteristics that were examined included
(i) whether the colony margin was lobate with a
restricted growth, or uniformly radial, (ii) whether
pycnidia were small (< 1 mm) or large (1-3 mm) (Adams,
Hammer & Iezzoni, 1988), (iii) the colony color using
Rayner's colour chart (Rayner, 1970), and (iv) the
ability to grow at 33 C. The experiment was replicated
three times.

Virulence tests on 3-yr-old peach seedlings. Twenty five isolates were used in this study, 15 of *L. cincta* and 10 of *L. persoonii*. The host of origin, the isozyme

phenetic group, high temperature tolerance, pycnidial size, colony color, colony margin and mean canker length are listed in Table 8. One isolate from each of the five isozyme phenetic groups was chosen as a standard for the group. Isolates were grown on Leonian's agar for 5 days at 25 C prior to use in inoculation experiments. 3-yr-old peach multistemmed seedling trees (P. persica 'Loring' X 'Harrow Beauty' & 'Loring' X 'Polly') were inoculated with isolates from one group along with five standard isolates and a control, one inoculation per branch (stem). was used as a gauge for choosing portions of branches with uniform diameter of 17 mm and 2-yr-old wood for The inoculation site was cleaned with a inoculation. gauze soaked in 95% ethanol, wounded with an empty hand held stapling gun, and then frozen with a 5-second from a can of aerosol cryogen (100% dichlorofluoromethane, Chemtronics, Inc., Hauppage, NY) (Scorza & Pusey, 1984) at a distance of approximately 15 cm. A 5-mm-diameter mycelial plug was placed on the wounded bark and wrapped with parafilm. A stem on each tree was wounded in an identical manner except a plug of sterile Leonian's agar was substituted for the mycelial plug.

Inoculations were carried out in mid-October of 1989 and on a second set of trees in mid-March of 1990. Branches were removed, bark was shaved off with a potato peeler and canker length was measured on the wood (length of necrotic area distal to inoculation point) in mid-May of 1990. Statistical analysis of data using the computer program MSTAT C (Michigan State University, 1988) included analysis of variance (ANOVA) for the randomized block design with trees as blocks (replicates). Isolates were ranked according to average canker length using LSD at P = 0.05 level. Because no tree could contain all 25 isolates, the experiment was analyzed in the following manner. Firstly, to determine the relative virulence of specific isolates within one phenetic group, the entire experiment was analyzed as five separate sub-experiments. Each sub-experiment consisted of eight replicate trees inoculated with five isolates of one phenetic group, the five standards and a control (10 isolates/tree). Secondly, to determine the relative virulence of the five standards and the control, the entire experiment was analyzed as one experiment of 40 trees inoculated with five isolates (5 isolates plus control per tree). Thirdly, the error terms from the two preceding analyses were used to determine the relative virulence of the standard

isolates and the rest of the isolates of each phenetic group.

RESULTS

Cultural characteristics and temperature response. Colony color of the L. persoonii isolates varied from dark mouse grey to dark olivaceous and black. Only colonies of isolates belonging to PG1 of L. persoonii exhibited lobate margins. The color of L. cincta isolates ranged from hazel to vinaceous buff (Table 8). Isolates of L. cincta from apple, PG6 were unique in producing reddish brown hyphae in the culture medium not seen in other Leucostoma isolates. Pycnidial size ranged from 1-2 mm for isolates of L. cincta and 0.5 -1 mm for isolates of L. persoonii. The pycnidia of PG2 were smaller than the pycnidia of PG1. Isolates of L. persoonii PG1 and PG2 but not of L. cincta PG4, PG5 and PG6 were able to grow at 33 C, The growth of isolates of L. persoonii PG1 and PG2 was slower at 33 C than at 27 Isolates of all phenetic groups showed good growth at 27 C also shared the cultural and temperature characteristics of the phenetic groups reported here. Isolates used elsewhere in isozyme studies (Surve-Iyer, 1992). However, occasionally isolates of PG1 will not

have a lobate colony margin and occasionally isolates of PG2 will not have small pycnidia.

Virulence on 3-yr-old peach seedlings. Inoculations of trees in mid-October resulted in cankers formation except the control. Cankers were evident as extensive discoloration occurring in patterns of apparently diurnal lines under the bark. The mean canker length varied from 4.9-11.5 cm (Table 8). All the isolates used in this study were virulent on the peach seedlings including isolates of L. cincta that originated from Significant difference in tree susceptibility was observed when the five standard isolates were analyzed as one experiment of 40 trees and in the eight tree test of isolates of PG2. Analysis of variance (ANOVA) tests with each of the five phenetic groups showed a significant difference in virulence among and within these five phenetic groups (Table 9-10). particular the two phenetic groups of L. persoonii differed in mean virulence. Isolates of PG1 from various species of Prunus were significantly more virulent than PG2 strains which were isolated from peach. Within L. cincta, PG4 and PG5 from Prunus spp. were moderate in virulence and relatively similar in virulence but PG6 from apple was the least virulent among the five phenetic groups. Within each phenetic

group the isolates showed significant difference in virulence. In the entire experiment the most virulent isolate was T18.1 (PG2) and least virulent A43 (PG6). The species of *L. cincta* and *L. persoonii* and *L. cincta* were not more or less virulent than one another. *L. persoonii* PG1 and *L. cincta* PG4 were almost similar in virulence, likewise *L. persoonii* PG2 and *L. cincta* PG5. Significant differences in tree susceptibility were evident in some but not all of the replicated experiments. The presence of cankers was sporadic in the trees inoculated in mid-March so this data could not be analyzed.

DISCUSSION

Significant differences in morphology and virulence among the phenetic groups of the two closely related taxa of Leucostoma were evident. Comparison of L. cincta and L. persoonii for color, agreed with previous studies by Willison (1937). Also, L. cincta PG6 was readily distinguished by the reddish brown colorin culture previously described by Proffer and Jones (1989). The lack of high temperature tolerance for L. cincta isolates was also similar to previous reports by Hildebrand (1947) and Togashi (1930) but not to that of

Helton & Konicek (1961). The lobate margin reported to be characteristic of L. persoonii isolates (Kastirr & Ehrig, 1984; Willison 1937) was observed only in PG1 of L. persoonii, but colony color and high temperature clearly distinguished other L. persoonii from L. cincta. Phenetic groups PG1, PG4, PG5 and PG6 include many isolates originating from identifiable sexual states and these isolates in culture were readily identified to species using the cultural characteristics described by Willison (1937) and Hildebrand (1947). Many isolates belonging to L. persoonii PG1 or PG2 were previously identified as L. cincta (Adams et al, 1990; Endert-Kirkpatrick, 1986; Regner & Johnson 1990; Spotts et al. This has been a problem particularly in studies when the two culturally distinct L. persoonii (PG1 and PG2) occurred in an orchard. We believe that with practice one can readily recognize the two taxa in culture using the cultural characteristics discussed here. Many isolates of PG1 can be distinguished readily from other L. persoonii, and all PG6 from other L. cincta, however PG2 and PG3 are not visually distinguishable nor are PG4 and PG5.

Although little variation was evident in isozyme banding patterns within each phenetic group (Surve-Iyer, 1992), significant variation in virulence was present.

A similar phenomenon has been documented in Uromyces appendiculatus (Linde et al, 1990) and in asexually reproducing populations of Puccinia graminis, P. recondita on wheat and Magnaporthe grisea (Burdon & Roelfs, 1985; Leung & Williams, 1986). If the high degree of variation in virulence is an indication of the diversity present in Leucostoma populations in Michigan then this population may have the potential to change rapidly and overcome resistance in newly introduced cultivars. High levels in virulence diversity might have come about through the selection pressure placed on the pathogen by the continuous introduction of new peach cultivars. Such selection pressure may have been responsible for the development of new virulent phenotypes. Alternatively, perhaps the less virulent phenotypes on peach are better adapted to parasitizing other native or domesticated trees.

Presence of *L. cincta* on apple in Michigan was first reported in 1989 by Proffer and Jones (1990) these isolates, our PG6, were virulent on peach seedlings in this study, and on a peach cultivar in an earlier study (Proffer & Jones, 1989). This pathogenicity was surprising since we have not found PG6 on *Prunus*, however PG6 was the least virulent group. Perhaps

bark chemistry might play a significant role in the exclusion of this group from Prunus (Rohrbach & Luepschen, 1968) in nature. The asci and ascospores of L. cincta on Malus mature at different times of a year than asci and ascospores of L. cincta on Prunus (Proffer & Jones, 1989), the former being fully mature in March and April, whereas the latter are immature at that time. Perhaps the relative susceptibilities of the tissues of Malus and Prunus differ in early spring. We also found it surprising that L. persoonii PG2 was less virulent on peach seedlings than PG1, PG5 and PG6. PG2 has been most prevalent naturally occurring phenetic group causing cankers in a similar nearby seedling planting even though PG1 and PG4 occurred at very low frequencies in the planting. We speculate at this time from our observations that perhaps PG2 preferentially infects spurs that have senesced from shading while PG1 preferentially infects cold injured bark.

We found that 3-yr-old peach seedlings were ideal for testing the virulence of a large number of Leucostoma isolates, because at this age the seedlings have multiple stems of uniform diameter and wood age permitting a large number of isolates to be tested concurrently on the same tree. In addition, few naturally occurring Leucostoma cankers are present after

3 years. Generally trees from grafted nursery stock are severely infected with cankers by the time they have sufficient branches for extensive inoculation tests, in Michigan. Surprisingly, the greater genetic variability in susceptibility to the inoculations that would be expected among outcrossed seedlings was not evident in these trials. In previous inoculation trials at the same location on grafted orchard stock, greater tree to tree variability was measured. We were not able to analyze the data of our replication in mid-March 1990, despite a seven day period following inoculation with minimum temperatures above freezing (ca. 5 C) and maximum daily temperatures averaging 13 C. Perhaps the defense mechanisms in the tree could have been initiated at this time, because a significant number of the inoculations succeeded and showed minute cankers. Prior to this trial, it was hypothesized that tree defenses were mobilized on resumption of active growth, because spring and early summer inoculations caused only minute resinous cankers Scorza & Pusey, 1984).

It would be interesting to determine the frequency of each PG in a particular orchard or location. Such experiments will be useful in epidemiological studies in Leucostoma.

LITERATURE CITED

- Adams, G. C., Hammar, S. A., and Iezzoni, A. 1989. Optimum sample size for detecting virulence differences in *Leucostoma* from peach. Plant Dis. 73:754-759.
- Adams, G. C., Hammer, S. A., and Proffer, T. 1990. Vegetative compatibility in *Leucostoma persoonii*. Phytopathology 80:287-291.
- Bertrand, P. F., and English, H. 1976. Virulence and seasonal activity of *Cytospora leucostoma* and *C. cincta* in French prune trees in California. Plant Dis. Rep. 60:106-110.
- Biggs, A. R. 1986. Comparative anatomy and host response of two peach cultivars inoculated with *Leucostoma cincta* and *Leucostoma persoonii*. Phytopathology 76:905-912.
- Biggs, A. R. 1989. Integrated approach to controlling Leucostoma canker of peach in Ontario. Plant Dis. 73:869-874.
- Burdon, J. J., and Roelfs, A. P. 1985. Isozyme and virulence variation in asexually reproducing population of *Puccinia graminis* and *P. recondita* on wheat. Phytopathology 75:907-913.
- Chang, L. S., Iezzoni, A., Adams, G. C., and Howell, G. S. 1989. Leucostoma persoonii tolerance and cold hardiness among diverse peach genotypes. J. Am. Soc. Hortic. Sci. 114:482-485.
- Chang, L. S., Iezzoni, A., and Adams, G. C. 1991. Heritability of *Leucostoma persoonii* canker resistance among diverse peach genotypes. HortScience. 26:60-82.
- Endert-Kirkpatrick , E. 1986. Biology and ecology of Cytospora cincta Sacc. on peach (Prunus persica) (L.) Batsch). Ph. D. Thesis. North Carolina State University, Raleigh.
- Dhanvantari, B. N. 1978. Cold predisposition of dormant peach twigs to nodal cankers by *Leucostoma* spp. Phytopathology 68:1779-1783.

- Hampson, M. C., and Sinclair, W. A. 1973. Xylem dysfunction in peach caused by *Cytospora leucostoma*. Phytopathology 63:676-681.
- Helton, A. W., and Konicek, D. E. 1961. Effect of selected *Cytospora* isolates from stone fruits on certain stone fruit varieties. Phytopathology 51:152-157.
- Helton , A. W., and Konicek, D. E 1961. On optimum environment for culturing of *Cytospora* isolates from stone fruit. I. Temperature. Univ. of Idaho Agric. Exp. Station. Mem 20. 26 pp.
- Helton, A. W., and Moisey, D. E. 1955. Cytospora damage in Idaho prune orchards. Plant Dis. Rep. 39:931-943.
- Hildebrand, E. G. 1947. Perennial canker and the canker complex in New York, with methods of control. Cornell Univ. Agric. Station. Mem. 276. 66pp.
- Kastirr, U. and Ehrig, F. 1984. Morphologische differenzierung von *Cytospora*-Arten an Apfelgeholzen. Arch. Phtopathol. U. Pflanzenschutz, Berlin 20 6:453-467.
- Kern, H. 1955. Taxonomic studies in the genus Leucostoma. Pap. Mich. Acad. Sci. Arts and letters 40:9-22.
- Leonian, L. H. 1923. The physiology of perithecial and pycnidial formation in *Valsa leucostoma*. Phytopathology 13:130-136.
- Leung, H., and Williams, P. H. 1986. Enzyme polymorphisms and genetic differentiation among geographic isolates of the rice blast fungus. Phytopathology 76:778-783.
- Linde, D. C., Groth, J. V., and Roelfs, A. P. 1990. Comparison of isozyme and virulence diversity patterns in the bean rust fungus *Uromyces appendiculatus*. Phytopathology 80:141-147.
- Lukezic, N. S., DeVay, J. E., and English, H. 1965. Comparative physiology and pathogenicity of *Leucostoma* persoonii and *Rhodosticta* quercina. Phytopathology 55:511-518.

Proffer, T. J., and Jones, A. L. 1989. A new canker disease of apple caused by *Leucostoma cincta* and other fungi associated with cankers on apple in Michigan. Plant Dis. 73:508-514.

Rayner. R. W. 1970. A mycological colour chart. Commonwealth Mycol. Institute. Kew, Surrey, England. 34 p.

Rohrbach, K. G., and Luepschen, N. S. 1968. Seasonal changes in sugar alcohols and sugars in peach bark: A possible relationship to Cytospora canker susceptibility. Am. J. Hort. Sc. 93: 137-141.

Scorza, R. and Pusey, P. L. 1984. A wound freezing inoculation technique for evaluating resistance to Cytospora leucostoma in young peach trees. Phytopathology 74:569-572.

Surve-Iyer, R. S. 1992. Phenetic analysis of *Leucostoma* from *Prunus* and *Malus*. Ph. D Thesis. Michigan State University, East Lansing.

Tekauz, J. A., and Patrick, Z. A. 1984. The role of twig infections on the incidence of perennial canker on peach. Phytopathology 64:683-688.

Togashi, K., 1930. Comparative studies on the physiology of Leucostoma leucostoma and Valsa japonica. Bull. Imp. Coll. Agric. nad Forestry. Morioka, Japan. No. 15. 50 p.

Wensley, R. N. 1964. Occurrence and pathogenicity of *Valsa (Cytospora)* species and other fungi associated with peach canker in Southern Ontario. Can. J. Bot. 42:841--857.

Willison, R. S. 1937. Peach canker investigations II. Infection studies. Can. J. Res. 14:27-44.

Table 7. High temparature growth tolerance, culture color, pycnidial size and mean canker length of Michigan isolates of Leucostomat.

Isolate	Host of Origin	Species	Phenetic group	Colony Margin	High temparature tolerance 33 C	Pycnidial size	Color a	Mean canker length (cm)
ä	peach	L. persoonii	PGI	lobate	+	s	Dark mouse grey	8.9 ab
1988.8292.1	peach	L. persoonii	15 1	lobate	-	s,	Dark mouse grey	9.6 a
1985.827.7	peach	L. persoonii	8	lobate	-+-	S	Dark nouse grey	8.3 abc
7883	peach	L. persoonii	8	lobate	+	S	Dark mouse grey	8.8 ab
. .	peach	L. persoonii	3 2	lobate	-+-	တ	Dark mouse grey	6.7 bc
123.1	peach	L. persoonii	PG2	entire	-	S	Black	6.5 cd
716.7	peach	L. persoonii	PG2	entire	+	လ	Dark mouse grey	5.6 d
	peach	L. persoonii	PG2	entire	+	S	Dark mouse grey	11.5 a
は	peach	L. persoonii	PG2	entire	+	တ	Black	7.2 bcd
7	peach	L. persoonii	PG2	entire	+	S	Black	10.9 ab
: ::	apricot	L. cincta	PG4	entire	•	ы	Vinaceous buff	7.2 bc
<u></u>	apricot	L. cincta	PG4	entire	•	u	Vinaceous buff	7.9 ab
33 63 63	apricot	L. cincta	PG4	entire	•	u	Vinaceous buff	7.2 abc
(· · · · · · · · · · · · · · · · · · ·	apricot	L. cincta	PG4	entire	•	⊢ 3	Vinaceous buff	7.6 ab
3. 3.	apricot	L. cincta	PG4	entire	•	⊷	Hazel	4.8 c
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	97770	L. cincta	PG5	entire	•	u	Vinaceous buff	oq 6.9
7957	prune	L. cincta	PG5	entire	•	L1	Vinaceous buff	9.4 a
;;;	ound.	L. cincta	PGS	entire	•	.	Vinaceous buff	9.5 a
0.63	brune	L. cincta	PGS	entire	•	H	Hazel	7.2 ab
Ω; Ω;	brune	L. cincta	PGS	entire	•	L1	Hazel	8.2 ab
33	apple	L. cincta	PG6	entire	•	H	puff	5.9 d
(*) (*)	apple	L. cincta	PG6	entire	•	ų	Honey	4.9 d
977	apple	L. cincta	PG6	entire	•	H	Honey	5.0 d
(O)	apple	L. cincta	PG6	entire	•	₽	Roney	5.9 d
-1:	apple	L. cincta	35	entire	•		Buff	6.5 cd

*growth after 14 days of incubation on Leonian's agar medium. ^a L=large (1- 2mm) and S=small (0.5-1.0 mm)

Color key used: Rayner's colour chart(23) **Length of the canker distal to inoculation point. Means followed
by the same letter are not significantly different by the least significant difference test, LSD, P = 0.05.

Table 8. Sunmary of analysis of variance of virulence on peach of the five phenetic groups in Leudostons.

		PG1		PG2		PG4		PG5		PG6	
Source of variation	đf	Nean square	DE-4	Mean square	Ce.	Nean square	CE-,	K ean square	Ce.,	Nean Square	Dz.,
0 0 14 0 0 14 0 0 14 0 0 14 0 0 14	C :- 0 C :0 C :0	24.089 53.021 6.003	4.01	63.949 · 4.23* 74.473 4.92* 15.129	4.23*	4.391 49.321 12.310	0.35 3.95* 4	3.927 47.936 7.881	0.50	3.927 0.50 7.667 47.936 6.08* 27.728 7.881 4.842	1.58

*= significant at P = 0.05 level

TABLE 9. Virulence of standard isolates of the five phenetic groups of *Leucostoma* on 3-yr-old peach multistemmed seedlings ranked in order of decreasing canker length.

Standard isolates (cm)	Leucostoma species	Phenetic group	Mea len	n canker gth
11.3	L. persoonii	PG1	8.9	<u>а</u>
LP59	L. cincta	PG5	8.2	ab
F1h	L. cincta	PG4	7.2	bc
T28.1	L. persoonii	PG2	6.5	cd
A 3	L. cincta	PG6	5.9	đ

^a Length of the canker distal to inoculation point. Means of forty replicates followed by the same letter are not significantly different by the least significant difference test, LSD, P = 0.05.

CONCLUSIONS AND PROSPECTIVES FOR FUTURE STUDY

CONCLUSIONS AND PROSPECTIVES FOR FUTURE STUDY

This research has provided the foundation of understanding of the variation in two closely related taxa of Leucostoma, L. cincta and L. persoonii. analysis has been very useful in separating the two species. Isozymes can be used as a diagnostic tool to identify the two taxonomic species. In addition, isozyme analysis has identified six distinct phenetic groups in Leucostoma, three of which were found within L. persoonii, PG1, PG2 and PG3, and three within L.cincta, PG4, PG5 and PG6. A higher level of genetic diversity was detected in the populations of L. cincta than L. persoonii, which may indicate that the primary mode of reproduction in L. cincta is sexual In contrast the low level of diversity outcrossing. in the populations of L. persoonii may indicate that the primary mode of it's reproduction is asexual or that this population may have arrived in North America as a founder population.

Virulence experiments on three year old peach seedlings were also indicative of the diversity present in *Leucostoma*. The virulence experiments showed that *L. cincta* isolates from *Malus* could also be virulent on peach. The two species, *L. cincta* and *L. persoonii*

could not be distinguished on the basis of virulence Cultural morphology peach. differentiated the phenetic groups of the two species. culture L. cincta and L. persoonii could Tn differentiated by their color and pycnidial size. In phenetic group 2 of L. addition, persoonii was differentiated from phenetic group 1 on the basis of it's color in culture and the absence of the distinct lobate margin typical of PG1 cultures. Phenetic group 6 of L. cincta was readily differentiated from PG4 and PG5 by formation of a reddish pigmentation in culture. Studies on restriction fragment length polymorphisms revealed populations within isolates of L. persoonii. Seven populations were revealed, several corresponded to detected in isozyme studies those and corresponded to hosts and or geographic distributions. RFLPs also revealed two populations within L. cincta. The L_{\bullet} cincta isolates on Prunus spp. were differentiated from L. cincta isolates on Malus and L. persoonii by the presence of an insert in the 18S region of the nuclear rDNA.

The new information from this research has opened the way to future approaches to the study of speciation, population biology and molecular evolution in

Leucostoma. Several directions in research, rich in prospectives are listed and described here.

- 1. Anastomosis studies can be used to separate the two taxa in terms of their anastomosis groups and correlate these groupings with isozyme analysis.
- 2. Sequencing of the ITS region will provide information on the type of variation seen in the rDNA, whether it is due to site changes or length mutation.
- 3. Additional isolates of *L. cincta* on *Prunus* should be screened to verify that the insert in the 18S rDNA region is unique to this group. Sequencing will then aid in the identification of the insert and perhaps reveal information on it's role in evolution of *Leucostoma*.
- 4. Fungal mtDNA has been estimated to evolve approximately 5-8X faster than nuclear DNA. Variation in the mtDNA could be used to study maternal inheritance among individuals in local populations or geographically distinct groups within the two species.
- 5. Collection of single ascospores from perithecia of L. cincta isolates from various orchards and studying their isozyme patterns will reveal information on the genetic diversity in the population of L. cincta.

Such future experimental possibilities will provide

valuable information on the population genetics and phylogenetic studies in Leucostoma.

APPENDIX

Table 11. Alleles scored in Leucostoma study.

							_			
				Lo	cus					
Isolate	ME	PGI	PGM	IDH	G6PD	MPI	EST	DIA	MDH	EST
1501466				Allel	.es					
NC 9.2	С	С	C	С	C		a	_	ab	_
NC10.2	C	C	C	C	С	-	а	-	ab	-
NC22.2	C	C	C	C	C	-	а	-	ab	-
NC4A	C	C	C	C	C	-	а	-	ab	_
11.1	C	C	C	C	C	_	а	-	ab	-
NC23	C	C	C	C	C	_	а	-	ab	-
NC8.2	C	С	С	C	С	-	а	-	ab	_
NC17	C	C	C	C	C	-	а	-	ab	_
NC49	C	C	C	C	С	_	а	-	ab	-
T36.1	d	d	d	d	-	C	-	-	-	-
T9.3	d	d	d	d	-	C	-	-	-	_
T4.1	d	d	d	d	-	C	-	-	-	-
T32.2	d	d	d	d	-	C	-	-	-	-
T28.1	d	d	d	d	-	C	-	-	-	-
T10.6	d	d	d	d	-	C·	-	-	-	_
T26.6	d	d	d	d	-	C	-	-	-	-
T18.1	d	đ	d	d	-	C	_	-	_	_
T16.7	đ	đ	d	d	-	C	-	-	-	_
T3.6	d	d	d	d	-	C	-	-	-	-
R5T15	C	C	С	C	С	-	ac	С	ac	_
10.14	C	C	С	C	С	-	ac	C	ac	C
11.2	C	С	C	C	С	_	ac	С	ac	C
58	С	С	С	С	С	_	ac	С	ac	С
R1T12	С	С	С	C	С	-	ac	С	ac	С
10.1	C	С	С	С	С	-	ac	C	ac	С
11.12	С	С	С	C	С	-	ac	C	ac	C
R4T14	C	С	С	С	С	-	ac	C	ac	С
R1T4	С	С	С	С	С	_	ac	С	ac	С
RT16	С	С	С	С	С	-	ac	С	ac	С
105	С	С	С	С	С	_	ac	С	ac	С
R6T14	С	С	С	С	С	-	ac	С	ac	С
R4T11	С	С	С	С	С	-	ac	С	ac	С

Table 12. Restriction fragment patterns of Leucostoma persoonii

Isolate	Restriction enzyme									
	AluI	MboI	MseI	BstUI	TaqI	BstEII	HpaII	Scal	RsaI	
11.3	100	010	0100	001	1 0	1 0	100	0 1	0 1	
LP8	010	010	0100	001	10	10	001	0 1	0 1	
LP10	010	010	0100	001	10	1 0	001	0 1	0 1	
LP9	010	010	0001	001	01	10	100	10	10	
LP13	010	010	0100	001	10	10	001	0 1	10	
T4.7	010	100	0100	001	10	0 1	001	0 1	0 1	
T7.4	010	100	0100	001	10	0 1	001	0 1	0 1	
CHR	010	010	0100	001	10	10	001	0 1	10	
Cy5	010	010	0100	001	10	10	001	0 1	1 0	
T18.1	010	100	0100	001	10	0 1	001	01	0 1	
LCN	010	100	0100	001	10	0 1	001	0 1	0 1	
LP21	010	100	0100	001	10	0 1	100	10	1 0	
T26.1	010	100	0100	001	10	0 1	001	0 1	0 1	
NC9.7	010	100	0100	001	01	0 1	100	10	0 1	
LP2	100	100	0010	001	10	10	100	10	0 1	
NC17	100	100	0100	100	10	10	100	10	10	
NC14.1	100	001	1000	010	0 1	1 0	100	10	0 1	
NC8.2	100	001	1000	010	0 1	0 1	100	0 1	1 0	
R5T10	100	100	1000	100	10	1 0	100	10	0 1	
T16.1	010	100	0100	001	10	0 1	001	0 1	0 1	
LP8	0 1 0	0 1 0	0100	001	10	1 0	001	0 1	0 1	
R3T16	100	100	1000	100	10	1 0	100	10	0 1	

