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GENETIC AND MOLECULAR STUDIES ON MALIGNANT TRANSFORMATION
OF HUMAN FIBROBLAST CELL STRAINS BY CARCINOGEN TREATMENT AND/OR
ONCOGENE TRANSFECTION: EVIDENCE FOR MULTISTEP CARCINOGENESIS

By

Dajun Yang

Conversion of a normal cell into a malignant cell is generally
recognized to be the result of a multistep process. To study the number
of steps and nature of changes involved in the process leading to the
malignant transformation of human fibroblasts in culture, I treated a
near-diploid infinite life-span human fibroblast strain, MSU-1.1, and a
diploid strain, MSU-1.0, with direct-acting carcinogen (+)-78,8a-
dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE). A single
exposure of MSU-1.1 cells with BPDE induced focus formation. Eight
independent foci were isolated and all grew to a higher density in medium
containing 1% serum than did the MSU-1.1 cells. Four of the eight grew
rapidly in serum-free medium without added growth factors, formed colonies
in agarose with diameters > 120 pm at high frequency, and formed benign to

malignant tumors when injected into athymic mice. Cell strains that
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formed malignant tumors and/or the tumor-derived cells also exhibited loss
of specific chromosomes and/or rearrangements. A single treatment of MSU-
1.0 cells with the same carcinogen, BPDE, also induced focus formation,
and the progeny cells of these foci grew moderately well in medium without
exogenous growth factors and formed colonies in agarose but were not
tumorigenic. Additional treatment of the progeny cells of these
transformed variants with BPDE, followed by more stringent selection
conditions, produced variant cells that exhibited more transformed
characteristics, but the cells were not malignant.

Transfection of MSU-1.1 cells with a plasmid containing a drug-
resistant marker and the v-sis oncogene which encodes a protein homolog of
platelet-derived growth factors-B, yielded many drug-resistant colonies.
Progeny cells from the six drug-resistant colonies tested expressed v-sis
gene mRNA and grew to a higher density than the MSU-1.1 cells. Three of
these cell strains expressed the gene at relatively high levels and grew
rapidly in serum-free medium without added growth factors and formed
colonies in agarose at high frequency. When injected into athymic mice,
these strains formed typical benign tumors which grew and then maintained

a static size or regressed.
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INTRODUCTION

The development of cancer is now generally recognized to result from
a multistep process. Although the nature of the changes involved in each
step is not yet fully understood, it seems clear that multiple,
independent genetic alterations are involved. Considerable evidence now
exists from in vivo and in vitro studies to support a multistep model of
carcinogenesis. For instance, epidemiological analysis of the frequency
of cancer incidence in humans with age suggests that five or six steps may
be required for the formation of a tumor (Peto, 1977). Experimental tumor
induction in animals indicates that multiple genetic events are necessary
for tumorigenesis (Balmain and Brown, 1988). Examination of clinical
samples of a various types of human tumors reveals that the multiple
genetic changes including gene mutation, chromosomal translocation, gene
amplification, loss of an allele, and tumor suppressor gene inactivation
are commonly present in a specific tumor (Bishop, 1991). In human
colorectal carcinoma, mutations in at least four or five genes are
required before a cell can form a malignant tumor, and the number of
detectable events increases as the stage of tumor become more malignant
(Fearon and Vogelstein, 1990). These observations suggest a requirement
for multiple genetic events in tumorigenesis, but cannot prove directly
that any specific genetic change was responsible for causing a specific
change characteristics of tumorigenic cells.

For this reason, model systems for in vitro transformation of
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2

mamma1ian cells in culture (mainly rodent fibroblasts), have been widely
used by investigators. One of the assumptions for cell transformation
assay in culture is that malignant transformation induced in cells by
carcinogenic agents occurs by the same mechanisms as tumor development in
vivo. As one might expect, the conversion of a normal cell into a
malignant cell in culture is itself a multistep process. For example,
exposure of primary cultures of Syrian hamster embryo fibroblasts to
carcinogen resulted in cells capable of forming tumors only after the
progeny of treated-population acquired multiple cellular changes in a
stepwise fashion by extended subculturing (Barrett and Ts’o, 1978; Koi and
Barrett, 1986). Studies on transformation of primary early passage rodent
cells and some immortalized cell lines by transfection of viral and/or
cellular oncogenes have provided additional support for the multistep
process of carcinogenesis as well as new insight into the molecular basis
of certain steps in this process. In general, transfection of one active
oncogene into a normal diploid cells cannot fully convert these cells to
tumorigenic, but can cooperate with a second oncogene which has a
different function to accomplish neoplastic transformation (Land et al.,
1983, Ruley, 1983). In contrast, an established cell 1ine is readily
converted to neoplastic cell by a single oncogene (Newbold and Overell,
1983). Other studies suggest that neoplastic transformation of diploid
rodent cells requires an additional event, such as loss of a specific
chromosome (Oshimura et al., 1988).

One of the major advances in the last ten years of cancer research
has been the development of in vitro transformation assays utilizing human

cells as target cells to identify the role of carcinogenic agents in the
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3
development of human cancers and to study the genetic mechanisms of
carcinogenesis. Several lines of evidence have proved that human cells in
culture are more difficult to transform than rodent cells, and the
malignant transformation of human cells in culture is a complex, multistep
process (Chang, 1986; McCormick and Maher, 1988). For example, earlier
attempts to reproduce the results obtained with rodent cells in culture
transformed by oncogenes or carcinogen treatment using human fibroblasts
have failed (see 1literature review). Induction of neoplastic
transformation of normal diploid human fibroblasts by transfection of a
single oncogene or one treatment of a carcinogen has never been observed.
One explanation for the inability of human cells to be neoplastically
transformed is that these cells have limited proliferative capacity and
senesce after 50-70 population doublings in culture. Normal diploid human
fibroblasts do not spontaneously give rise to an infinite 1ife-span cell
1ines (McCormick and Maher, 1988). This stabi1ity makes human fibroblasts
ideal candidates for studying the process and the mechanisms by which
malignant transformation occurs. Moreover, the frequency of
immortalization of human diploid fibroblasts by carcinogen treatment or
expression of an oncogene is much lower than that routinely obtained with
rodent cells. Very rarely, human fibroblast strain with infinite life-
span were isolated after either repeated carcinogen treatment (Namba et
al., 1986), or transfection with a v-myc oncogene (Morgan et al., 1990),
or spontaneously developed from fibroblasts of patients with Li-Fraumeni
cancer-prone syndrome (Bischoff et al., 1990). Subsequent transformation
of these various immortalized human fibroblast strains with overexpression

of ras oncogenes resulted in cells capable of producing tumors when
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4
injected into athymic mice (Namba et al., 1986, 1988; Hurlin et al., 1988;
Wilson et al., 1990; Bischoff et al., 1991). To date, neoplastic
transformation of human fibroblasts in culture by carcinogen treatment or
oncogenes encoding a growth factor have not been reported.

The objectives of the present research were (1) to investigate the
biological properties and genetic alterations involved in the malignant
transformation of a near-diploid, infinite 1ife-span human fibroblast
strain MSU-1.1 by treating these cells with a direct-acting carcinogen
BPDE; (2) to determine the biological effects of BPDE exposure in a
diploid infinite 1ife-span human fibroblast strain MSU-1.0, a strain which
has growth properties identical to the finite 1life-span diploid human
fibroblasts and is the precursor of strain MSU-1.1; (3) to define the
biological and biochemical characteristics of transformed cells obtained
by transfection of the v-sis oncogene, encoding for a protein homolog of
platelet-derived growth factor B chain (PDGF-B), into the near-diploid,
infinite 1ife-span human fibroblasts strain MSU-1.1; By comparing the in
vitro transformed characteristics and tumorigenic potential induced by the
same carcinogen in the two closely-related, but with different growth
properties and genotypic alterations, i.e., MSU-1.0 and MSU-1.1, we hoped
to learn the kind of changes and number of steps required for the
malignant transformation of human fibroblasts in culture. Additional
insights might also be obtained by comparing the carcinogen transformed
cells with MSU-1.1 cells transformed by transfection of H-ras and N-ras
oncogenes as reported by Hurlin et al., 1988 and Wilson et al., 1990.

Chapter I of the thesis reviews the literature that provides the

evidence in support the hypothesis of multistep carcinogenesis model,
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5
including the epidemiological studies, animal models of tumorigenesis,
transformation of rodent cells in culture, transformation of human cells
in culture, clinical examinations of human tumors, and transgenic models
of tumorigenesis. Also discussed 1in Chapter I 1is the current
understanding regarding the genetic and molecular mechanisms of
carcinogenesis, including chromosomal aberrations, growth factors, proto-
oncogenes and suppressor genes. Chapter II consists of a manuscript
published in the Proceedings of National Academy of Science USA, 89, 2237-
2241, 1992. It describes the research I carried out which demonstrates
that a single exposure of a near-diploid infinite 1ife-span human
‘fibroblast strain MSU-1.1 with a direct-acting carcinogen BPDE induced
foci formation, and the progeny cells of 50% of the foci produce benign or
malignant tumors when injected in athymic mice. Calvert Louden, D.V.M.,
assisted in the histopathology analysis of the tumors and also performed
the immunohistochemical staining of p21"® proteins of tumor tissues which
is presented in Appendix I. David S. Reinhold, Ph.D., conducted the RT-
PCR analysis of PDGF-B mRNA and TGF-a mRNA with the RNA that I isolated.
Additional data relevant to this study that could not be included in the
published manuscript because of space considerations are shown in Appendix
I. Chapter III describes my research showing that one treatment of the
diploid infinite 1ife-span human fibroblast strain MSU-1.0A1 with the
carcinogen BPDE results in variant cells that grow moderately well in
medium lacking serum or growth factors, just 1ike MSU-1.1, and form small
colonies in 0.33% agarose but are not tumorigenic. An additional
treatment of these variant cells with BPDE followed by more stringent

selection, produces transformed variant cells that are more transformed,
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6
but no definitive tumorigenic growths have been observed. The data
suggests that neoplastic transformation of MSU-1.0 cells by carcinogen
treatment needs at least three steps. The format used for Chapter IV is
that of a manuscript to be submitted to the journal Cancer Research or
Carcinogenesis. Chapter IV consists of a manuscript written in the style
of the journal Cancer Research, which describes my research which shows
that the v-sis oncogene induces benign tumor formation when it is
transfectd into a near-diploid infinite 1ife-span human fibroblast strain
MSU-1.1. I also 1isolated one 1large agarose colony from a strain
designated MSU-1.1-sis G and characterized this agarose-derived strain
along with those v-sis transformed MSU-1.1 cells described in Chapter IV.

These results are presented in Appendix II.
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CHAPTER 1.

LITERATURE REVIEW

A. EVIDENCE IN FAVOR OF MULTISTEP CARCINOGENESIS.

1. Epidemiological Evidence.

Epidemiological analysis of the distribution of various forms of
cancer has pointed to several agents as possible causes of such cancer and
has also led to the development of various models of carcinogenesis.
Stochastic analysis of the frequency of human cancer incidence as it
varies with age indicates that five or six steps may be required for the
genesis of a tumor (Peto, 1977). The exponential rise in cancer incidence
with increasing age 1is consistent with the possibility that multiple
genetic events occur over time and the cumulative effect of these changes
results in cancer late in 1ife. According to Peto’s model, the multistage
hypothesis is that "a few distinct changes (each heritable when cells
carrying them divide) are necessary to alter a normal cell into a
malignant cell, and that human cancer usually arises from the
proliferation of a clone derived from a single cell that suffered all the
necessary changes and then started to proliferate malignantly".

A very strong correlation has been shown between tobacco smoking and
human lung cancer. The incidence of lung cancer among the regular smokers
is 14 times higher than non-smokers, and is proportional to the duration
of exposure and intensity of exposure (Dol11l, 1978). This suggests that

repeated exposure may be necessary in order to produce multiple genetic

9
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10

changes. The age-specific occurrence of adult T-cell leukemia (ATL) also
supports a multistep model carcinogenesis and the number of independent
leukemogenic events in ATL is estimated to be five (Okamoto et al., 1989).

Neither definition of the specific genetic changes nor information on
the mechanisms by which these changes occur can be obtained by
epidemiological investigation. In addition, some types of cancer, such as
childhood leukemia or retinoblastoma, a tumor of the eye that appears in
children, do not appear to conform to the multistep model proposed to
explain adult tumors. Presumably, these childhood cancers have a
different etiology than adult cancers. Since tumors occurring early in
1ife have had only a short time to accumulate genetic alterations, one or
several mutations may be inherited, or fewer mutational events may be
needed to initiate cancers in specific cells or tissue types. In 1971,
Knudson examined the epidemiological evidence for a possible role of
inherited alterations and mutational events that result in the origin of
retinoblastoma. He hypothesized that retinoblastoma was caused by two
mutational events. In the dominantly inherited form of the disease, one
mutation is inherited via the germinal cells and the second occurs in
somatic cells. In the non-hereditary form, both mutations occur in
somatic cells. Although Knudson could not pinpoint the identity of the
genes nor the kinds of mutations that were involved, his discovery
ultimately led to the identification and isolation of the retinoblastoma
(Rb) gene, which plays an important role in the development of several

types of cancers (see below).

2. Experimental Animal Studies
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Animals are afflicted by tumors similar to ones seen in humans, and
therefore can provide model systems in which tumorigenesis can be analyzed
systematically. A variety of model systems have been used to study tumor
formation in animals and have revealed a multistep process. Here, I will
describe those systems that have been studied in detail and in which
mutationally activated oncogenes and other mechanisms have been
identified.
2.1 Moyse Skin Carcinogenesis

Since the skin 1is easily accessible and various lesions can be
easily monitored, the mouse skin model system has served as the pioneer
experimental tissue for animal carcinogenesis studies. The multistage
model for carcinogenesis of mouse skin originated in the 1940s from
studies by Rous, Mottram, and Berenblum, who observed that various
treatments are synergistic in inducing skin tumors in rabbits or mice
(reviewed 1in Boutwell, 1974). Basically, application of a 1low
concentration of a polycyclic hydrocarbon carcinogen to mouse skin
resulted in few tumors, but when this treatment was followed by repeated
exposure to croton oil, a non-carcinogenic plant extract, the mice rapidly
developed a large number of skin tumors. The hydrocarbon treatment was
defined as the initiating event for carcinogenesis while the croton oil
was said to act as a tumor promoter. The identification of the active
component of croton oil, 12-0-tetradecanoylphorbol 13-acetate (TPA)
(Hecker, 1968) provided an important tool for experimental study of tumor
promotion in mouse skin carcinogenesis.

The kinetics of the appearance of benign papillomas and malignant

carcinomas in mouse skin differ depending on the protocol used. In the
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typical initiation-promotion protocol, a carcinogen such as 7, 12-
dimethylbenzan-thracene (DMBA) is applied once to the skin of a mouse, and
then multiple treatment with a tumor promoter, such as TPA, is given over
a period of many weeks (Boutwell, 1974; Verma et al, 1980). This regimen
primarily induces benign papillomas. After approximately 30 weeks of
promoter treatment, squamous cell carcinomas also develop, but at a much
lower frequency than papillomas. More than 90% of these carcinomas are
located in areas where papillomas are growing. In the "complete
carcinogenesis” protocol, mice are treated repetitively with DMBA alone.
With this regimen, papillomas arise later and in lower yield than in DMBA-
initiated mice treated with TPA, but carcinomas begin to appear at 16
weeks with a much greater incidence (Verma et al, 1982). However, only a
fraction of these carcinomas arise in areas that contain papillomas. A
rapid, high incidence of carcinoma resulted when the usual initiation-
promotion format was subsequently followed by application of a carcinogen,
such as N-methy1-N’-nitro-N-nitrosoguanidine (MNNG) or 4-nitroquinoline-N-
oxide (4-NQO), as the second genetic insult (Hennings et al., 1983). The
tumor promoter TPA was far less effective in the production of carcinomas.
The increased efficiency for the induction of malignant lesions by the
"complete carcinogenesis” or initiation-promotion-initiation, as compared
to two-stage carcinogenesis, is consistent with a requirement for two or
more mutational events in the acquisition of malignant phenotypes, with
one of them being involved in papilloma formation.

The reproducible induction of specific types of tumors in animals by
particular carcinogens provides an ideal system to investigate the
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