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ABSTRACT

A MATERIAL CHARACTERIZATION OF A SILICON CARBIDE

WHISKER-REINFORCED ALUMINUM METAL-MATRIX COMPOSITE,

WITH AN EMPHASIS ON CYCLIC-BENDING

By

Sean Michael Fleming

A material characterization of a silicon carbide whisker-reinforced aluminum

metal-matrix (MMC) is analyzed and presented with an emphasis on cyclic-

bending. Initially the tensile, flexural and shear, monotonic material properties

were measured, where all testing was performed along the axial direction and

along the transverse direction. The thrust of the research was cyclic 3-point

bending of the MMC along the axial (preferred) direction and transverse to the

axial direction. The dynamic flexural modulus was measured as a function of

(cyclic-bending) cycles to observe any general trends, e.g. microcracking or

strain-hardening, throughout the fatigue life of the cyclic-bending specimens.

The cyclic-bending study consisted of using a specially designed 3-point-bend-

fixture which had a deflection-mechanism mounted mid-span. An

extensometer was attached to the deflection-mechanism to measure

maximum deflection. The fixture was attached to an Instron load frame and

the cyclic-bending test was controlled and driven by a closed-loop, servo-



Sean Michael Fleming

hydraulic Instron materials testing machine interfaced with a digital

computer. The nature of the cyclic-bending was compression-compression,

the waveform was sinusoidal and the controlled-variable was deflection.

Three fatigue relations were used to model the cyclic-bending experiments,

stress-life, elastic strain-life and elastic deflection-life. A power-law was used

for the three models mentioned with very satisfactory results, the best being

for the elastic deflection-life models. The fundamental discoveries were that

the cyclic-bending specimens in the axial direction could withstand

considerably greater strain for the same fatigue life even though the axial

specimens were ~ 42% stiffer than the transverse specimens. The transverse

specimen’s fatigue lives were more predictable, than the axial specimens, from

one specimen to the next. It was discovered that for the cyclic-bending study

the elastic modulus was not a constant. This phenomenon has been observed

for several britttle materials.
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CHAPTER 1

INTRODUCTION

1.1 A STRUCTURAL COMPOSITE

=_il

A structural composite can be defined as a load-bearing material in which

physically distinct phases, (usually particulates or fibers), are introduced into

the matrix to achieve improved properties for the combined material (1).

A primary driving force for composite development has been to provide

materials with a specific strength and stiffness greater than conventional,

single-phase materials.

1.2 PROBLEM OUTLINE

Metal matrix composites (MMC) have become greatly diversified over the past

few years. MMC's provide the opportunity to combine ductility and relative

ease of manipulation of metals with the higher strength/stiffness and low

density of ceramic reinforcement. In aluminum MMC’s, SiC particle

reinforcement predominates (1). The composites market has grown at such a

rate that the materials research community has not had a chance to create, or

agree on, standardized testing methods for (MMC) composites. The

manufacturing companies have had to rely instead upon already existing
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techniques to test, analyze and evaluate MMC's. These test procedures were

 initially created and intended for use on monolithic, near-isotropic material.

This type of testing and evaluation can lead to invalid results. Therefore,

without appropriate and widely accepted test methods, one cannot generate

the level of data base required (1) for industrial use.

Nearly all of the MMC has been evaluated only in the preferred, or extruded

direction. The discontinuously reinforced aluminum composites have been

 

most frequently exploited (25), since they have the advantage that they can

be generated by a wide range of well established primary processing techniques

(6-9) (e.g. casting, powder processing, spray forming),with the material

subsequently being converted into product form,where necessary, by

conventional secondary processing,(such as forging, rolling, extrusion,

machining, etc.). Antithetically, production of continuously reinforced

composites is extremely labor intense and almost exclusively limited to defense

applications and the aerospace industry.

Given increasing popularity ofMMC's, it is pertinent that extensive testing be

done initially in the machine (axial) direction and transverse to the axial

direction. This testing will establish a material properties database for the two

critical (principal) directions. An MNIC material property database will give

the designer/technician a best-worst scenario of the MMC. Ultimately MMC’s

will be evaluated along several angles between the two principal directions.

This type ofMMC evaluation and subsequent database is essential to

understand the potential of an MMC per direction. This type of investigation is
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essential if the industrial community is to recognize MMC's as the wave of the

future, and more than just a substitute for a single-phase, near-isotropic

metal. A detailed database will give the MMC community a fundamental

understanding of the material characteristics and allow the designer a greater

range of application, resulting in more for the end-users money.

1.3 OBJECTIVES AND SCOPE

The main objectives in this study are:

(a) To test and evaluate the static mechanical properties of the MMC using

experimental techniques. The monotonic tensile, bending and shear properties

were to be measured. These properties were measured along both the axial

(machine) direction and transverse to the axial direction. The rationale for

testing along the above mentioned directions is to determine if the material is

isotropic, and if not, type of anisotropy.

(b) To qualitatively gain insight into the reliability of the MMC subjected to

mechanical fatigue per deflection-level. Also, to obtain a comparison of the

fatigue life in the axial (preferred) direction relative to the transverse direction.

Therefore, several deflection-controlled, cyclic-bending tests were performed on

the MMC specimens at various deflection levels for the axial and transverse

directions.

 

 



 

1.4 APPROACH TO THE PROBLEM

The mechanical properties and stress-strain response in MMC's with

discontinuous reinforcements are difficult to characterize relative to a single-

phase, isotropic metal (e.g. aluminum or structural steel). The parameters

affecting the composite material properties and reliability can be divided into

three groups:

1. Process parameters

a. primary process technique (e.g. powder, casting, spray forming)

b. secondary process technique (e.g. extrusion, rolling, forging)

c. post-processing technique (e.g. heat treating, artificial aging)

2. Material parameters

a. reinforcement form (whisker, fiber or particulate)

b. reinforcement volume fraction

0. reinforcement surface treatment

(1. reinforcement type (e.g. SiC, alumina, etc.)

e. matrix type (e.g. aluminum, titanium, etc.)

3. Machining parameters - This parameter describes basically the location or

orientation from which the test specimen is cut or machined,(with respect to

the extrudate), and ultimately evaluated. This orientation is described by the

nomenclature used in the Standard Test Method for Plain-Strain Fracture

Toughness, (ASTM E 399) (4).
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The best, or most consistent, technique for machining specimens from rolled

MMC or extruded MMC stock is along one ofthe three orthogonal axes. These

are defined in the ASTM E 399 standard as; L (longitudinal or extruded

direction), T (long transverse direction or width) and S (short transverse

direction or thickness). The specimens for this study were machined along the

axial or longitudinal axes and transverse to the longitudinal axes. Figure 1.1

clearly shows these two principal directions relative to the typical MlVIC

extrudate.

A major problem in MMC load-bearing applications is that the material

properties are a function of several parameters, unlike monolithic metals.

Although MlVIC’s look similar to single-phase metals at the surface, they

respond completely different. Some MMC producers are claiming that their

MMC’s are “as isotropic as aluminum”,(e.g. Advanced Composite Materials

Corp. Vice-President), or evaluting the MMC along only the “preferred-axis”.

This study will characterize a SiC/Al MMC in a way that the end-user can

maximize it’s physical potential relative to the two critical axes. Evaluating

the MTVIC as it rightly deserves will give rise to more accurate and suitable

applications for the MMC. Ultimately the demand for such material will rise,

reducing the final cost of the MMC to the end-user. Since ignorance has no

place in specialized materials such as MMC’s, it is essential to initially qualify

and ultimately quantify the MMC’s material properties. It is this type of

rigorous evaluation that will maximize a specific MMC’s potential, while

minimizing the dangerous underengineering which can result from invalid

properties.
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CHAPTER 2

STATIC CHARACTERIZATION OF THE MC

The material used in this investigation was a silicon carbide whisker-reinforced

(Sij) aluminum metal-matrix composite, supplied by Advanced Composite

Materials Corp. (ACM), in extrudate form. The MMC extrudate was

approximately 3'x 6"x 3/4". The ANSI standard for this material is 2009-SiC-

15W-T8. The reinforcements were 15% by volume. The average whisker

diameter was 1/2 ,umeter and an average whisker aspect ratio 3

(length/diameter) of 8-12.

2.1 INTRODUCTION

This chapter entails experimental test procedure, experimental set-up, results

and discussion of the Al/SiC IVIMC, for both transverse and axial orientations.

The static characterization tests, i.e. Chapter 2, were not mandatory since the

"material properties" for the MMC were obtained from the manufacturer,

Advanced Composite Materials Corp. (ACM). There was one problem, the

material properties communicated by ACM were nearly-isotropic. The

representative from ACM stated that, "although no material is truly isotropic,

it [the MMC] is as isotropic as aluminum." It was this type of thinking that

prompted the testing of the static material properties.
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2.2 SEM EVALUATION OF THE PRINCIPAL PLANES OF THE MIVIC

EXTRUDATE

Before testing was initiated, the 3 principal planes of the MMC extrudate were

examined with a scanning electron microscope (SEM). The two principal

planes to be investigated, the X—Z plane and the Y-Z plane are illustrated in

Figure 2.1. These two planes correspond to the axial direction and (long)

transverse direction, respectively. (See Figure 1.1 for specific axes

coordinates). Qualitatively speaking, in Figure 2.1, the SiC Whiskers resemble

a row of cylinders. IfFigure 2.1B represents a side View of the cylinders, then

Figure 2.1A represents a front or back View of the same cylinders, which

appear as circles or dots.

Figure 2.2A shows another micrograph normal to the X-Z plane, which is along

the axial direction Figure 2.2B provides a micrograph normal to the X-Y plane,

an airplane view of the axial direction. Figures 2.1 and 2.2 follow the same

“cylinder” idea, where the primary direction of the whiskers is also the flow

direction of the extrudate. Although this “idea” may sound obvious, this SEM

investigation was necessary so any discrepancies between the properties ACM

provided and the material properties measured at Michigan State could be

rationalized. The micrographs strongly suggest an anisotropic composite, or at

best an orthotropic composite. The microstructure of this MIVIC does not

remotely resemble the microstructure of a single-phase, isotropic aluminum.

 



 
Figure 2.1 The top micrograph (A) illustrates the whisker/matrix relation

along the Y-Z plane, this corresponds to the transverse direction.

The bottom micrograph (B) illustrates the whisker/matrix

relation along the X-Z plane, this corresponds to the axial

direction.



 
Figure 2.2 The top micrograph (A) illustrates the whisker/matrix relation

along the X-Z plane of the extrudate, this corresponds to the axial

direction. The bottom micrograph (B) illustrates the X-Y plane

and corresponds to a top view of the axial direction, (the Z-axis is

normal to micrograph).
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The directions of the MMC to be evaluated are parallel to the X-Z plane and the

Y-Z plane, or the axial and (long) transverse direction respectively.

2.3 MONOTONIC TENSILE TEST

2.3.1 Experimental procedure

The test procedure used to measure the tensile properties of the MMC was

ASTM designation D 3552 - 77 (11). This test method covers the ’

determination of the tensile properties of metal-matrix composites reinforced

by continuous and discontinuous high-modulus fibers. The method applies only

to specimens tested in the direction of the reinforcement and normal to the

direction of reinforcement.

The test specimens were machined on an electrical discharge machine (EDM)

and tested in an as-received condition. The reason for using the EDM was to

minimize the chance for abrading of the whiskers near the surface and creating

superficial stress raisers. The test specimens were cut in the machine, or

axial direction and transverse to this direction.

A sketch of the specimen dimensions can be seen, for the axial and transverse

orientations, in Figure 2.3.

The testing machine used was a closed-loop, servo-hydraulic Material Testing

Systems (MTS) machine. The testing machine was interfaced with a digital

computer that collected the elastic-plastic stress-strain test data.
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Dimensions are in inches unless otherwise specified.

 

 

 

         

Orientation Lt L1 Lg Wg R T Wt

Axial 1.00 1.00 1.00 0.375 1.0 0.125 0.625

Transverse 0.75 0.25 1.00 0.250 0.5 0.125 0.500

 

Figure 2.3 Flat Tension Specimen Design for Standard Test Method (ASTM

D 3552-77) for Tensile Properties of Fiber-Reinforced Metal-

Matrix Composites.
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Initially resistance strain gages (RSG) were mounted on the tensile bars to

measure (axial) strain. The RSG’s tended to pop off the test specimens before

the tensile test was completed, therefore it was decided to use an extensometer

to measure strain.

2.3.2 Results

Table 2.1 gives the fracture strength and the maximum strain for the three

specimens tested along the transverse and axial directions. The average

ultimate tensile strength (UTS) along the transverse direction was 54,242 psi

and approximately 71,987 psi for the axial direction.

Figure 2.4 clearly illustrates that the failures were brittle and the yield

strengths and UTS were nearly equal. The typical tensile specimen for the

transverse direction had a 0,561.1: 46,656 psi. The typical tensile specimen for

the axial direction had a 0,481.1: 67,500 psi. In short, the stress-strain curve
 

was primarily elastic with minimal yielding (less than 1% neckdown) at failure.

The UTS that ACM reported was 88,000 psi for the transverse direction and

95,000 psi, for the @211 direction. Therefore the UTS’s reported by ACM for

the transverse direction and the axial direction were 32% and 62% greater

than the values measured. This test was a clear indication of the importance

of testing the MMC independently, before trusting the test results of an outside

source.
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Figure 2.4 Typical Stress-Strain plots of the static tension tests for the

Transverse (top) specimen and Axial (bottom) specimen

drrectrons respectively.
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Fracture strength and maximum strain at fracture for a static,

uniaxial tensile test for the (3) specimens tested for the

transverse and axial direction respectively.

nominal cross-sectional area = 3.125 x 10-2 in.2
 

 

 

 

Specimen Number Ultimate Tensile Maximum Strain at

59912811}; UTS Fracture, em

ps1 (“8)

T1 54,640 3940

T2 54,949 4105

T3 53,136 3800
 

  UTSM=54,242    
nominal cross-sectional area = 4.688 x 10-2 in.2
 

 

 

 

Specimen Number Ultimate Tensile Maximum Strain at

Strength, UTS Fracture, em

(ps1)

(#8)

Al 71,602 4437

A2 72,571 5204

A3 71,787 4506
 

  UTS§vg=7l,987   
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The most obvious observation was that the tensile specimens transverse to

the axial direction failed in shear. The tensile specimens machined along the

longitudinal axis failed in tension, although the fracture surface was not plane-

normal to the load axis, as would be expected with single-phase aluminum. The

failure surface was jagged and random. This type of failure can be accounted

for due to the SiC whisker reinforcements arresting and resisting crack growth

after the aluminum matrix had failed.

Another general observation, for both orientations, was that the failures were

brittle and catastrophic. This behavior is not desired and gives very little

indication of calamitous failure,(e.g. no plastic yielding). Elastic failure is

normally undesired for load-bearing applications. This is especially so when the

safety factors approach 1.0, (e.g. fighterjet turbines or airframes). This

condition initially sounds malignant, although failure can usually be predicted

accurately if the mechanical properties, static and dynamic, are accurately

known. Process techniques are of cardinal importance for an MC or any

composite, since it is these steps that ultimately determine the mechanical,

electrical and chemical properties of a composite.

2.4 POISSON'S RATIO, v AND YOUNG'S MODULUS, E

2.4.1 Experimental procedure

Since material conservation was a significant factor, it was hoped that some

MMC material that had been machined could be used to determine Poisson's

ratio and Young's modulus. Thus, leaving the virgin extrudate for the primary
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research.

Rectangular bars had been machined (EDM) previous to my arrival and then

never used. Several bars had been machined along both the axial direction and

the transverse direction. The bar’s dimensions were approximately 4"x 1"x

0.25". It was decided that with slight modifications these bars could be used to

experimentally determine Poisson's ratio and Young's modulus for the two

principal directions.

Resistance strain gages (RSG's) were mounted on the bars along the long axis

and transverse to this axis. The RSG's were obtained fiom

MicroMeasurements, gage type EA—13-060LZ-120. These gages were mounted

as close to the center (w.r.t the length and width axis) as physically possible.

The significance ofmounting the gages so near the centroid (excluding depth)

was to eliminate edge effects, such as Saint Venant's effect (12), especially

near the vicinity of where the load frame fastens to the specimen. This

mounting location can be schematically seen in Figure 2.5. This mounting was

done along the top and bottom, relatively speaking, to account for, and cancel

effects due to bending. Had the specimens been very thin (e.g. 1/16") then a

single set of gages would have been sufficient. This procedure was performed

for both axial and transverse specimen directions.

The load frame used was a mechanical MicroMeasurements load frame with a

2000 pound load cell. Figure 2.7 shows the load-frame and actual specimen

load configuration.
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Figure 2.5 Schematic of strain-bar's dimensions and strain gage (RSG)

configuration.
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Side View

Figure 2.6 Schematic showing labeling configuration and

loading technique. Note the ease with which bending

can occur.
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The load cell was connected to a strain indicator calibrated to read out in

pounds. An additional strain indicator, with a switch-and-balance box, was

used to connect the four strain gages per bar. Before any strain data was

recorded, the strain gages were cycled (loaded) approximately five times. This

was to account for any gage conditioning that often occurs during the first few

loadings applied to new RSG‘s and contributes to extraneous values (pseudo-

strain) and zero-load drift.

There was one strain bar per orientation, (i.e. 1 axial and 1 transverse). Each

bar was loaded from 0 lbs. to 1400 lbs. in increments of 200 lbs. The strain

indicator was also checked and zeroed after each loading interval to re-balance

the bridge. The strain-bars were loaded twice for each of the four positioning

orientations. There were four positioning orientations, (1T,1B,2T & 2B), were

w.r.t. the top front of the load frame shown in Figure 2.6.

The reason for several collections of data was to arrive at a valid, average

value for Poisson's ratio and Young's modulus, since these material constants

are used to model and describe most materials. Accurate values were also of

cardinal importance since an MMC was being characterized; the level and type

of anisotrOPY, (e.g. orthotropy) needed to be known.

2.4.2 Sample Calculations

Poisson's ratio is a unitless elastic constant relating the lateral strain to the

axial strain by the following expression;
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Figure 2.7 MicroMeasurements Load-FYame (top) used to load the “Strain-

Bars” and the actual load configuration (bottom). Notice 4 sets of

lead wires, i.e. 2 RSGs per side.

 



21

v = -lateral strain/ axial strain [2.1]

This strain, lateral and axial, for a typical test are plotted as a function of load

for both the transverse and axial specimens in Figures 2.8 a and b

respectively. The Poisson’s ratio,v is also included for illustration.

Young's (elastic) modulus is simply the gradient of a linear elastic stress -

strain curve from the fundamental relation;  
E = 0/8 [2.2]

where,

E = Young's modulus, psi

or = tensile stress, psi

2 = tensile (axial) strain, its

load must be converted to stress from the fundamental relation;

or: P/A [2.3]

where,

0 : uniaxial stress, psi

P 2 applied load, lbs

A = cross-sectional area, in.2

Axial strain was experimentally determined from the strain gages (RSG’S) that

were mounted on the strain-bars. Figure 2.9 gives the elastic stress - strain

behavior and Young’s modulus for both the transverse and axial bars.
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(bottom) specimens with Poisson’s ratio.
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2.4.3 Results

Tables 2.3 and 2.5 list the raw load-strain data, parallel and normal to the

loading axis, for the transverse strain bar and axial strain bar, respectively.

The strain was recorded for both gages per bar side, for each of the four

specimen orientations previously mentioned in the procedure,(see Figure 2.5

for RSG schematic and Figure 2.6 for the (4) loading orientations). This loading

was performed twice per loading orientation and both strain values are included

in the tables.

Tables 2.2 and 2.4 give the applied load, applied uniaxial stress, 0 and averaged

axial strain, ea and averaged lateral strain, a]. The axial and lateral median

strains are also included, below the respective axial and lateral strains, in

brackets. Ifthe median strain (lateral and axial) is relatively close to the

corresponding averaged strain (lateral and axial) then this would lend

considerable credibility to the averaged strains. Tables 2.2 and 2.4 show this

trend to be true. Poisson’s ratio,v is given for each load plus an overall average

v for both specimen directions. Figures 2.8 a & b show the axial and lateral

strain plotted as a function of applied load, for the transverse and axial strain

bar respectively. The axial and lateral gages were assumed to be mounted

coincident to the principal directions and the loading uniaxial. The axial and

lateral strain were the maximum and minimum principal strains respectively,

(i.e. ea: £1& £1: 82).
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Figure 2.9 Elastic stress-strain graphs for the transverse (top) and axial

(bottom) specimens with Young’s modulus.



 

25

Poisson’s ratio was simply, by Eq. [2.1], the negative of the lateral strain

divided by the axial strain. Figures 2.9 a and 2.9 b illustrate the stress-strain

behavior of the strain bars. A linear regression was performed on the stress-

strain data of the transverse and axial strain-bars. From this regression an

elastic modulus was determined for the transverse and axial directions. The

linear regression yielded a correlation coefficient of 1.00 for both the axial and

transverse directions.

The experimental results were as follows:

for the axial specimen, E1 = 18.60 Msi and v12 = 0.235.

for the transverse specimen, E2 = 13.09 Msi and V21=O.323.
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Table 2.2 Average strain (lateral and axial) values and respective uniaxial

stress for the transverse strain-bar. The lateral and axial strain

values were averaged from the raw data in Table 2.3.

cross-sectional area = 2.132 x 10-1 in2
 

 

 

 

 

 

 

 

 

     

Applied Uniaxial Average Average Poisson’s

(LbS.) (Psi) Strain Strain

[median] [median]

us us

0 N 0 ~ 0 ~ 0 ~ 0

200 938.1 69.9 -26.8 0.383

[70.0] [-27.0]

400 1876.2 140.6 -47.8 .340

[140.5] {-48.5}

600 2814.3 212.1 -68.8 .324

[211.0] [-69.5]

800 3752.3 284.0 -89.4 .315

[284.0] [-86.0]

1000 4690.4 355.9 -109.1 .307

[357.0] [-105.5]

1200 5628.5 427.6 -128.1 .300

[428.5] [-123.5]

1400 6566.6 499.4 -147.1 .295

[499.0] [-143.0]

avg. v =

0.323 
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Table 2.3 Load-Strain (axial & lateral) data for the transverse strain-bar

to determine Young’s (elastic) modulus, E and Poisson’s ratio, v.

Orientation 1T

Gage #5 Gage #6 Gage #7 Gage #8

Applied

Load Axial Lateral Axial Lateral

(Lbs) Strain, pr Strain, [is Strain, in: Strain, ye

0 ~ 0 ~ 0 ~ 0 ~ 0

200 12/ 10 -3 / -12 125 / 135 -44 / —46

400 42 / 33 -12 / -18 236 / 253 -79 / -81

600 84/ 74 -36 / -29 340/ 357 -109 / -112

800 140/ 125 -53 / ~43 428 / 448 -134 / -140

1000 195 / 184 -68 / -59 512 / 537 -158 / -167

1200 245 / 241 -74 / -73 620/617 -186 / -186

1400 298 / 302 -86 / -88 708 / 698 -211 / -207

Orientation 2T

0 ~ 0 ~ 0 ~ 0 ~ 0

200 50 / 52 -24 / -24 92/ 89 -31 / -29

400 132 / 125 -51/-47 148/ 158 -46 / -50

600 217 / 199 -76 / -71 204 / 227 -61/-69

800 311 / 292 -106 / -100 257 / 276 -76 / -83

1000 381 / 373 -126 / -125 328 / 334 -96 / -98

1200 467 / 460 -153 / -151 379/ 394 -110 / -115

1400 535 / 538 -172 / -174 457 / 459 -132 / -134

Orientation 1B

0 ~ 0 ~ 0 ~ 0 ~ 0

200 56/36 -30 / -17 78/ 108 -28 / -35

400 111 / 76 -45 / -27 170/ 203 -55 / -63

600 165 / 130 -61/ -42 256 / 293 -79 / -88

800 216/ 182 -75 / -55 344 / 387 -105 / -116

1000 271 / 238 -87 / -69 433 / 477 -131 /-141

1200 335 / 290 -104 / -83 521 / 559 -155 / -165

1400 401 / 358 -118 / -100 593 / 642 -172 / -188

Orientation 28

0 ~ 0 ~ 0 ~ 0 ~ 0

200 58/59 -28 / -26 78 / 81 -26 / -25

400 146/ 135 -56 / -50 134 / 147 -40 / -44

600 224 / 205 -79 / -70 197 / 222 -55 / -64

800 300 / 276 -100 / -89 270/ 292 -74 / -82

1000 377 / 348 -121/-109 340/366 -91/-102

1200 438 / 418 -137 / -127 419/439 -112 / -120

1400 507 / 497 -154 / -149 497 / 506 -132 / -137     
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Table 2.4 Average strain (lateral and axial) values and respective uniaxial

cross-sectional area = 2.091 x 10-1 in2

stress for the axial strain-bar. The lateral and axial strain

values were averaged from the raw data in Table 2.5.

 

 

 

 

 

 

 

 

 

  

Applied Uniaxial Average Average Poisson’s

Load Stress, 0 Axial Lateral Ratio, v

(LbSJ (Psi) Strain Strain

[median] [median]

W5 in

0 ~ 0 ~ 0 ~ 0 -

200 956.5 50.6 -12.1 0.239

[49.0] [-13.0]

400 1913.0 101.0 -23.6 .234

[93.0] [-23.0]

600 2869.4 151.3 -35.4 .234

[150.0] [-33.5]

800 3825.9 202.3 -47.4 .234

[204] {-45.5}

1000 4782.4 255.8 -58.3 .228

[261.0] [-58.0]

1200 5738.9 306.2 -72.2 .236

[308.0] [-75.5]

1400 6695.4 358.8 -85.2 .237

[356.5] [-84.0]

avg. v =    0.235
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Table 2.5 Load-Strain (axial & lateral) data for the axial strain-bar to

determine Young’s (elastic) modulus, E and Poisson’s ratio, v.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Orientation 1T

Gage #5 Gage #6 Gage #7 Gage #8

Applied

Load Axial Lateral Axial Lateral

(Lbs) Strain, us Strain, pr Strain, us Strain, pr

0 ~ 0 ~ 0 ~ 0 ~ 0

200 31/30 ~4/~5 71/74 ~18/~18

400 86/ 79 ~13 / ~17 133 / 125 ~30 / ~29

600 139/ 137 ~26 / ~30 182 / 168 ~42 / ~37

800 193 / 193 ~36 / ~44 233 / 215 ~52 / ~47

1000 244 / 246 ~48 / ~55 295 / 276 ~66 / ~61

1200 284 / 289 ~58 / ~64 352 / 340 ~79 / ~75

1400 324 / 331 ~67 / ~75 J 425 / 407 ~96 / ~91

Orientation 2T

0 ~ 0 ~ 0 ~ 0 ~ 0

200 46 / 40 ~16 / ~14 52 / 53 ~11 / ~12

400 104 / 93 ~31 / ~25 90/ 93 ~18 / ~21

600 175 / 161 ~48 / ~43 117 / 124 ~24 / ~26

800 230/ 232 ~61 / ~61 153 / 148 ~31/~31

1000 293 / 295 ~76 / ~76 188/ 190 ~38 / ~38

1200 343 / 346 ~91 / ~90 233 / 236 ~49 / ~50

1400 396 / 397 ~104 / ~105 285 / 277 ~61 / ~60

Orientation IB

0 ~ 0 ~ 0 ~ 0 ~ 0

200 10 / 9 4/4 89/92 ~25 / ~25

400 46/42 ~7/~6 151 / 157 ~40 / ~41

600 98/ 91 ~20 / ~16 199 / 206 ~51 / ~52

800 158/ 146 ~36 / ~32 244 / 254 ~62 / ~63

1000 217 / 206 ~48 / ~48 289 / 294 ~71 / ~71

1200 278 / 272 ~64 / ~68 325 / 328 ~79 / ~78

1400 348 / 347 ~85 / ~86 350/ 356 ~83 / ~83

Orientation 2B

0 ~ 0 ~ 0 ~ 0 ~ 0

200 18 / 20 ~1/~7 87/87 ~23 / ~22

400 58/55 ~12/~16 151/ 153 ~36/~36

600 103 / 99 ~25 / ~28 214 / 208 ~50 / ~48

800 158/ 150 ~40 / ~42 268 / 262 ~61/ ~60

1000 222 / 218 ~53 / ~46 315 / 305 ~70 / ~68

1200 291 / 284 ~84 / ~76 356 / 342 ~76 / ~74

1400 358 / 357 ~103 / ~98 398 / 384 ~83 / ~82      
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2.5 FLEXURAL MODULUS AND BENDING STRENGTH

2.5.1 Experimental Procedure

A static 3~point test was performed on the SiC/Al MMC for both the axial and

transverse directions. The nominal specimen dimensions were 1/4”x1/4” with a

2”Span. A Servo-Hydraulic Instron (model 1320) materials testing machine

was used to conduct the test. The 3~point fixture had an extensometer

mounted to a mechanism mid-Span, (Figure 2.10), which measured maximum

deflection. The strain channel was used to control the machine, since

deflection was the controlled-variable.

The extensometer had a maximum strain range of 10%, therefore the

maximum deflection was 1 mm. The gage length was 1 cm (10mm). Each

specimen was deflected in increments of 0.02mm (5% on LED meter) and the

corresponding load was recorded. This loading was performed until the

specimen failed. From this load-deflection data, both the elastic and plastic

behavior are known. This test was performed for six specimens, three per axial

direction and three per transverse direction.

Initially, using uniaxial data, it was calculated that approximately 0.5mm

deflection, or 50% extensometer range, would create adequate stress to

fracture for both the axial and transverse specimens. While conducting the

tests, it was discovered that even 1mm deflection, or 100% , was not sufficient

to induce Specimen fracture for either the axial or transverse direction.



 

Figure 2.10 Fixture used for the static, 3~point bend test



 

   
  T’v .JV-



32

Since 1mm deflection was the maximum range of the extensometer and the

specimen didn’t fail, it was decided to do the following for each static 3~point

test: (1) load the specimen to 1mm or 100%, (2) unload the Specimen to zero

load and record the deflection reading on the LED meter, this would be the

plastic (permanent) deflection and (3) after recording the plastic deflection,

zero this channel and again perform test as stated previously until Specimen

fracture. From the second set of deflection-load data points the plastic

deflection (step 2) had to be added to the deflection recorded from the LED.

This procedure allowed the specimen to be deflected beyond 1mm, (maximum

extensometer travel), and yet yielded valid elastic-plastic data.

2.5.2 Sample Calculations

For this test, the loads and deflections were recorded right off the LED meter

on the Instron. The load was in pounds (English) and the deflection was in

millimeters (SI). The deflection was converted to inches (English) to keep the

data consistent. The English system was chosen arbitrarily.

From the elastic load-deflection data, the Flexural Modulus was computed from

the following relation,

E = ~PL3/ 48691 [2.4]

Where,

P = applied load, lbs

L = span of specimen, in.
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5,, = elastic deflection, in.

I = moment of inertia, in.4

E = flexural modulus, psi

After a few simple manipulations the previous expression reduced to the

following equation,

E = 512 Pl?)e [2.4’]

This equation is now in a form where only the measured variables load, P and

deflection, be are needed to determine flexural modulus, E.

From the load-deflection data representative flexural bending strength could be

determined from the flexural formula,

0 = MY/I [2.5]

Where,

M = bending moment, in-lbs.

Y = distance from neutral axis to outer fiber, in.

I = moment of inertia, in.4

o = maximum bending stress (outer fiber), psi

After some data reduction, Eq.[2.5] reduced to the following expression for our

specimen geometry;

0 = 192(P) [25’]

From this expression, the only quantity that was experimentally required was

the flexural load P, and the flexm'al stress could then be calculated.
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2.5.3 Results

Note: The flexural strengths obtained for this test are anomalous. The test

specimens failed after an appreciable amount of plastic deflection, thus

violating the Flexural Formula, Eq.[2.5], which assumes linearly-elastic

deflection. This will be addressed in the discussion.

Table 2.6 shows the anomalous flexural strength of the 3 specimens tested per

orientation. The average anomalous flexural strength for the transverse and

axial orientation was 89,012 psi and 116,300 psi respectively. Tables 2.7 and 

2.8 list the discrete load-displacement data for two typical 3-point-static-bend

specimens, along the corresponding transverse and axial directions. Figure

2.11 demonstrates the typical flexural load-deflection behavior of the SiC/Al

MMC. The loading scheme was a load-unload-reload to fracture procedure,

therefore the test consisted of essentially 2 cycles. Eventhough the load cycles

were static, by the second cycle the material had already began to strain-

harden (i.e. the flexural modulus E increased). This stiffening, or hardening, is

clearly illustrated in Figure 2.11.

2.5.4 Discussion

The flexural strengths obtained for the axial and transverse were anomalous,

due to the violation of the flexure formula. Since the deformation was largely

plastic, the calculations for bending strength, Eq.[2.5], were much larger than

the actual fracture stress. The reason for this is that the flexure formula
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assumes linearly-elastic deformation, thus when the strength was determined

the equation assumed the deformation was elastic. It is common knowledge

that once a material begins to plasticly yield it takes much less stress to

continue to deform the respective material. The monotonic stress-strain curve

of the MMC was quasi-elastic for the tensile test, See Figure 2.4, thus it was

assumed that this behavior would also follow for the static bend test. This was

definitely not the case as can be seen in Figure 2.11. Since the plastic bending

analysis is beyond the scope of this study, the flexural strengths in this section

will simply be referred to as “anomalous”.

The static flexm~al test yielded very interesting results. Besides measuring the

flexural moduli,E and anomalous flexural strength, the test also showed the

elastic-plastic behavior of 2 static cycles to fracture, per Specimen direction.

Normally, with a monolithic aluminum, the elastic load-deflection gradient of

the second cycle would be nearly identical to that of the first cycle, therefore

performing such a test would be redundant. Although, for the SiC/Al MMC this

was not the case. The MMC exhibited very distinct behavior; the first cycle,

(for both transverse and axial specimens), resembled that of a single-phase

aluminum, where the matrix seemed to be resisting the load. The second cycle

looked very similar to that of an elastic-perfectly plastic material, especially

for the transverse specimen. Both the transverse and axial specimens flexural

modulus increased approximately 4% on the second cycle, which is respectable.

The anomalous flexural strength for the transverse specimen was 50% greater

than the respective transverse UTS and the anomalous flexural strength for



Table 2.6 Static Flexrual Bending Test results.
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Anomolous

Specimen Number Specimen Flexural Strength

Orientation psi

15AB Transverse 84,864

18AB Transverse 88,138

19AB Transverse 90,034

Average M

16TB Axial 1 17,504

20TB Axial 1 16,171

21TB Axial 1 15,224

Average 116,300   



37

 

600 *- '0

500 '-

400

Load.

300 ' —EI— load

—0-— reload

  

   
_

200

i

     

    

‘

10° ’ E: 12.0 Msi  k l J l l l l A L

0 ° v ‘

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Deflection, inches

 

 

  
—9— load

—9— reload

   

E: 14.9 Msi

 
l r l 1 l A l0 - . .

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Deflection, inches _

 

Figure 2.11 Load-Deflection plots of the static 3-point bend test for the

transverse (top) and the axial (bottom) directions, with the

flexural modulus.
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Table 2.7 Typical 3~point static-loading (load-unload-reload) data for the

transverse specimen 15AB.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Bending Load Deflection Bending Load Deflection

(Lbs.) (in x 103) (Lbs.) (in x 103)

0 0

44 1.968 320 33.464

reload-2nd cycle

91 3.937 0 19.256

132 5.905 41 21.224

166 7.874 88 23.193

192 9.842 136 25.161

211 11.811 183 27.130

227 13.779 230 29.098

241 15.748 276 31.067

253 17.716 318 33.035

264 19.685 358 35.004

276 21.653 393 36.972

283 23.622 416 38.984

290 25.590 .425 40.909

298 27.559 432 42.878

302 29.527 433 44.846

313 31.496 438 46.815    
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Table 2.7 (cont’d)

 

 

Bending Load Deflection

Lbs.) (in x 103)

439 48.783 

 
442 50.752
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Table 2.8 Typical 3~point static-loading (load-unload-reload) data for the

axial specimen 16TB.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Bending Load Deflection Bending Load Deflection

(Lbs.) (in X 103) (Lbs.) (in X 103)

0 0 56 12.926

54 1.968 113 14.895

110 3.937 172 16.863

164 5.905 229 18.832

205 7.874 284 20.800

241 9.842 340 22.769

271 11.811 393 24.737

298 13.779 443 26.706

320 15.748 488 28.674

342 17.716 529 30.643

361 19.685 559 32.611

377 21.653 575 34.580

395 23.622 585 36.548

411 25.590 596 38.517

0 10.958 603 40.485

612 42.454
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axial specimen was 64% greater than its respective axial UTS. This can most

likely be attributed to the linear-elastic violation of the flexural formula.

2.6 SHEAR MODULUS, G AND SHEAR STRENGTH, 'Cmax

2.6.1 Introduction

Currently there is an interest in devising an accurate, simple and inexpensive

test technique for measuring the shear properties of anisotropic materials,

especially those materials which are fiber-reinforced. Although there are many

Shear test methods, none of the test specimen geometries meet the criteria of

being small, easy to fabricate and capable of measuring both shear strength

and shear modulus.

A test that does meet the above three criteria is a test first suggested by

Nicolae Iosipescu of Rumania in the early 1960’s. Although Iosipescu was

primarily interested in testing isotropic metals, this test has been used quite

extensively and successfully by Walrath and Adams (14,16) at the University

ofWyoming on several anisotropic composite materials.

2.6.2 Test Fixture

The Iosipescu shear test achieves a pure state of shear loading within the test

section of the specimen by application of two counteracting moments produced

by two force couples. The force, shear and moment diagrams for this test are
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based on elementary mechanics of beams; they are illustrated in Figure 2.12.

The total applied load is measured at the testing machine load cell. The

distance “a” is measured between forces of the outermost force couple and “b”

is the distance between the innermost force couple. A state of constant Shear

loading is induced at the center section of the test specimen, as demonstrated

in Figure 2.12b. This shear force is equal, in magnitude, to the applied load P.

The induced moment at the center of the specimen is zero because the two

induced moments cancel each other out at this point; this is shown in Figure

2.12c. Therefore, the loading is pure Shear at the Specimen midlength. Also,

the shear stress distribution is shifted from parabolic to uniform, due to the 900

notches in the test Specimens; these notches are illustrated in Figure 2.12a.

Loading is achieved by restraining the ends of the specimen from rotating by

the loading fixture and at the same time undergoing shear loading as the right

half of the fixture moves relative to the left half. Figure 2.12b illustrates the

state of shear loading described above. A schematic of the test fixture used is

demonstrated in Figure 2.13.
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2.6.3 Test Specimen

The test specimens used in the fixture shown in Figure 2.14 are 2 in. (51mm)

long, 0.5 in (12.7mm) wide and of arbitrary “as received” material thickness, as

shown in Figure 2.15. Although no specimen thickness is given, it should be on

the order of 0.1in (2.5mm) or greater to avoid compressive buckling-induced

failures, for this specific study the Specimen thickness was approximately 0.25

inch. A 900 notch is cut into each edge of the specimen at the midlength to a

depth of 0.1 in (2.5mm). Iosipescu determined that by cutting 900 notches on

each edge of the test specimen, the shear stress distribution, within an

isotropic test Specimen, could be altered from the parabolic shear stress

present in beams of constant cross-section to that of a nominally uniform

shear stress distribution in the region between the notches. No tensile or

compressive stress risers are caused by these notches, at least not for

isotropic materials. Iosipescu believed that stress concentrations didn’t occur

because the normal stresses are parallel to the sides of the notches at that

point in the test specimen (16). Therefore the shear stress obtained using the

Iosipescu method is simply the applied load P, divided by the cross-sectional

area A between the notch tips.

For this study two Specimens, one per orientation, were machined on an

electronic discharge machine (EDM) at the machine shop in the Physic’s &

Astronomy building at MSU. An EDM was used to reduce the chance of any

surface defects. Using an EDM, the specimen was “burned” out of the

extrudate instead of a machine tool physically cutting the Specimen from the
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90°Notch

 

 

 

 

   

t = "as machined"

w = 7.62 mm (0.3 in)

d = 2.54 mm (0.1 in)

L = 50.8 mm (2.0 in)

h = 2d + w = 12.7 mm (0.5 in)

Figure 2.15 Iosipescu Shear Test specimen dimensions
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extrudate which would greatly reduce the useful life of the tool, due to the

abrasiveness of the SiC whiskers.

The technique for measuring the shear strain in the Iosipescu Shear test was

with strain gages (RSG’s). The strain gage was a biaxial strain gage,

Micromeasurements gage type EA—l3-062TV-350. This gage was oriented at +

450 to the longitudinal axis of the test specimen and bonded at the specimen

midlength.

2.6.4 Experimental Procedure

The specimens were inserted into the loading fixture (Figure 2.14) and centered

using an alignment bar located beneath the lower specimen notch. Steel shims

were placed in the horizontal slots between the Specimen and fixture and were

pressed against the Specimen by tightening the horizontal screws. The

Iosipescu Shear test was conducted on a servo-hydraulic MTS testing machine

(Model 880), using a 20~Kip load cell and a cross-head speed of 0.02 in/min

(0.5mm/min). The strain gages and load cell were connected to a

Micromeasurements (model 2150) data acquisition system that was interfaced

with a 386 Compuadd digital computer. The strain gage rosettes monitored

the compression and tension independently, as opposed to connecting them in a

half-bridge as is commonly done. The reason for monitoring the gages, (tension

and compression), independently was to make sure that the strain readings

were equal (in magnitude) and that this was maintained throughout the test.

The data that was recorded for each test was tensile and compressive strain,
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load and time, and this data was stored as an ASCII file.

The testing was performed at the Composite Material and Structures

Corporation (CMSC) at MSU, where Pedro Jesus Herrera Franco, a research

associate, assisted in the tests. The tests were conducted at room

temperature, 720F and 50% relative humidity.

2.6.5 Sample Calculations

Shear stress I was simply the applied load P, which is the shear force, divided

by the area A, parallel to the loading plane between the notch tips.

‘ii = PIA where i,j = 1,2,3 [2.8]

The shear strain y was calculated by adding the magnitude of the tensile strain

at and the compressive strain 8C obtained from the strain gages and finally

dividing by 2.

Yij = (Et ' 8c)/ 2 [2.9]

The shear modulus G was determined by dividing the elastic shear stress re by

the respective elastic shear strain ye.

Gij= ire/ye [2.10]

Another relationship that was analyzed was the expression for a homogeneous,

isotropic material (13) which equates shear modulus Giso ,fiom the two

independent material constants, Young's modulus E and Poisson’s ratio v.
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Giso=Eil 2(1 +v) [2.11]

2.6.6 Results

The results for this experiment were also very interesting. The shear

strength for both the transverse and fill specimen were relatively close;

24,401 psi and 28,278 psi respectively. Figure 2.16 illustrates the measured

shear stress-shear strain behavior for both specimen orientations. The

linearly-elastic portion of the Iosipescu Shear test is shown in Figure 2.17,

fiom this curve a linear regression was performed to determine the

experimental shear modulus Gem The experimental (Iosipescu) shear

modulus was compared with the theoretical (isotropic) shear modulus G130,

The G130 was calculated using Equation [2.11] listed above, which is usually

limited to homogeneous, isotropic material. Both Gexp and Gig.) were determined

for both specimen directions and are listed below, along with the material

constants from the tensile test;

Axial specimen: G9,,p = 8.04 Msi E1 = 18.60 Msi, v12: 0.235

G130 = 7.60 Msi

Transverse specimen: Gexp = 5.43 Msi

Gm = 4.96 Msi r32 = 13.09 Msi, v21: 0.323
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2.6.7 Discussion

The Iosipescu Shear Test was definitely the most intriguing of the four static

tests performed. The most captivating aspect, at least visually, was the

fracture pattern of the test specimens, especially when comparing the

transverse specimen to the axial specimen. The transverse specimen failed in

a very predictable fashion; the crack initiated at the top notch tip and

propagated in a direction nearly plumb to the bottom notch tip where the

specimen failed. On the other hand, the axial specimen failed in a veryjagged

and torturous manner. One crack initiated at the top notch tip, a second crack

initiated on the bottom side of the specimen, although this crack started

slightly below the bottom notch tip. Both of these cracks propagated in an

almost circular trend, traveling in opposite directions until the specimen

reached complete fracture, this failure is illustrated in Figure 2.18. From the

photograph, it is also apparent that both cracks propagated around the strain

gage leaving it nearly untouched. To try to explain the axial specimen crack

growth mechanisms would be extremely bold and vain at this stage. It is clear

that the radical failure of the axial Specimen is due to the SiC whiskers

remarkab? "ability to arrest crack growth.
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CHAPTER 3

3~POINT CYCLIC-BENDING

3.1 INTRODUCTION

MMC’S are rapidly becoming the material of choice for load-bearing

applications, and the area of fatigue, or reliability needs a critical and thorough

investigation. The reason this area is of such concern is that MMC’S are

becoming more and more feasible to manufacture, resulting in increasing

application for the designer and end-user. The problem is that no valid

database or testing standards have been established. This lack of literature or

control on testing techniques (e.g. ASTM standards) has produced a significant

concern among the materials community with respect to MMC’S. It was this

lack of research and literature of a potentially great material (lVIMC) that

enticed the characterizing of an MMC, with an emphasis on reliability. The

reason for the emphasis on reliability was two-fold: First, many of the MMC

applications are load-bearing and involve high stresses, where a premature

failure would prove catastrophic, possibly fatal. Secondly, many fatigue

experts knowledge is limited to single-phase metals and most MMC’s are less

than a decade old. Since MMCS are a combination of chemistry and

processing,a materials scientist is best suited for the job ofMMC processing.

Due to the youthful nature of MMCS, many materials scientists are also

involved with the evaluation of such MMCS.

54
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The material property evaluation is where the experimental mechanist is best

qualified.

The MC fatigue studies currently performed are usually evaluated only along

the “preferred” or extruded-axis. This approach is fine if loads or stresses are

always applied along this “preferred” direction. This preferred-axis testing is

choice for a continuous-fiber composite. For a discontinuous-fiber MMC,

several angles relative to the preferred-axis must be evaluated for a

comprehensive material characterization.

Given the lack ofWC fatigue data or literature, it was decided to design a

reliability test that was qualitative, valid and conservative with respect to

material. A 3-point cyclic-bending test was chosen. The controlled-variable

was deflection, which was measured with an extensometer mounted mid-span

to a deflection-mechanism,(Figure 3.1a). The specimens were approximately

1/4”x 1/4” (6.35mm x 6.35mm) with a 2” (50mm) span. A computer program

was written that interfaced with the testing machine and captured loads and

displacements at specified intervals. The objective of this study was to

analyze the cyclic-bending data of transverse and axial Specimens, ultimately

proposing a fatigue model for both specimen directions.
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3.2 EXPERIMENTAL PROCEDURE

The fatigue Specimens were machined as described above with an electrical

discharge machine (EDM). This machining technique was to minimize surface

effects (e.g. superficial whisker abrasions) and to eliminate machine tooling

wear-out. All tests were performed at room temperature and 50% relative

humidity. The specimens were tested in a specially designed 3~point test

fixture as described above. The 3~point test fixture was connected to a servo-

hydraulic Instron (model 1320) materials testing machine. This testing setup

is illustrated in Figure 3.1b. The fatigue specimens were cycled until fracture,

or 20 million cycles. The 3~point cyclic-bending test was compression-

compression and the waveform was sinusoidal (see Figure 3.2). The mean level

(DC offset) was dialed in on the Instron’s strain (deflection) channel, The

amplitude and cyclic frequency were input to a programmable Wavetek,

(model 175), function generator. (Note: The function generator on the Instron

was ill-functional, therefore an external function generator had to be utilized).

The maximum deflection ranged from 3.937e- 03 inches (0.10 mm) to 11.181e ~

03 inches (0.30 mm) with a 1.969e ~ 03 inch (0.05 mm) increment. The R

(deflection) ratio = 0.1, therefore maximizing the cyclic range while maintaining

a compressive load throughout the entire cycle. This procedure greatly reduced

the chance of impacting the specimen. Between 1 and 4 specimens were

tested depending on the deflection level, due to the length of test time per

specimen. The cyclic fiequency ranged from 1 hertz to 20 hertz depending on

the deflection level. Since many fatigue experts agree that fatigue tests

consisting of frequencies less than 30 or 40 hertz are usually invariant of the
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3~POINT CYCLIC-BENDING:

compression-compression

specimen position

rior to loading.  
...................... sinusoidal waveform

 

P/2 P12

Figure 3.2 Loading technique used for the cyclic-bending study.
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fatigue life, fi‘equency was not a considered parameter in this study.

3.3 Sample Calculations

As stated above, the load-deflection data was captured and stored at

designated intervals throughout each fatigue test. Approximately 100 points

were sampled at each interval and these points were stored as hexadecimal

numbers. From this form they had to first be converted to voltage and then to

respective loads and displacements. The conversion from hexadecimal

numbers to voltage is easily developed. First note that the voltage range was

from ~10volts to +10volts (i.e. 20v range) this range was equal to 0 to 4096

bits, therefore there is a linear relation between voltage and hexadecimal

numbers. The following relation converts hexadecimal numbers to voltage,

Yvolts = 4.8828e-3(Xhex) - 10 [3.1]

Next, the voltage must be converted to a useable form, the respective loads

and displacements. The following are the appropriate conversion factors,

for displacement @ 10% (strain) range, load @ 5% load range,

lvolt = 0.01mm lvolt = 100 Lbs.

= 3.937e- 4 in.

@ 20% (strain) range,

lvolt = 0.02mm

= 7.874e- 4 in.

@ 50% (strain) range,

lvolt = 0.05mm

= l9.685e~ 4 in
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To obtain the English conversion for displacement, the metric conversion was

simply divided by 25.4 to translate millimeters (mm) to inches (in.).

Since all the data was stored as an ASCII file it could easily be downloaded to a

Spreadsheet program where all data reduction could efficiently be performed.

From the load-displacement information, 2 fundamental material properties

could be determined, Young’s modulus, E and Flexural stress, or. The equations

to determine Young’s modulus and the Flexural stress were given in section

2.5.2; sample calculations for static flexural loading;

E = 512(P/6e) [2.4’]

and 0 = 192(P) [2.5’]

where Young’s modulus was determined fiom a linear regression of the load-

displacement data and the expression for stress was left in a very generic form,

because in fatigue a variety of stresses can be determined, (e.g. maximum

stress, stress amplitude, mean stress, etc.) and this stress will be specified

when necessary.

The following expressions are commonly used when discussing fatigue;

A0 = 0max ~ 0min = stress range [3.2]

0,, = (0mm, ~ omin)/ 2 = stress amplitude [3.3]

0m = (0mm, + 0min” 2 = mean stress [3.4]

R = Wan,” = deflection ratio [3.5]
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3.4 THEORY

Deflection was the controlled-variable, so the Stress-Life, Strain-Life and

Deflection-Life relations were used to create fatigue models. Some basic

fatigue background will be presented to assist in understanding the fatigue

terminology and relationships. First, the total strain range is the sum of

elastic 8e and plastic 8p strain ranges,

A8 = Ar... + A2,, [3.6]

or in terms of amplitudes,

Asl2=Asel2+Aepl2 [3.7]

using Hooke’s law, the elastic term may be replaced by Ao/E.

Ae/2=A0/2E+Aspl2 [3.8]

Basquin (17) observed that stress-life (S-N) data could be plotted linearly on

log-log scale. Using stress amplitude, the graph could be linearized by the

following expression,

A0/ 2 = Of( 2Nf)b [3.9]

where AG/ 2 = stress amplitude

2Nf= reversals to failure (1 rev = 1/2 cycle)

Of = fatigue strength coefficient

b = fatigue strength exponent (Basquin’s exponent)

Of and b are fatigue properties of the material. The elastic term can also be

written as
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Ase/ 2 = A0/ 2E [3.10]

Using Eq. [3.9] one can restate the RHS of Eq. [3.10] in terms of life to failure:

Afie/2=O’f(2Nf)b/E [3.11]

Coffin (18) and Manson (19), discovered independently, in the 1950’s, that

plastic strain-life (s-N) data could also be linearized on log- log coordinates.

This plastic strain can be related by the following power-law relation,

Asp / 2 = 8f( 2Nf)c [3.12]

where Aap/ 2 = plastic strain amplitude

2Nf= reversals to failure

(if = fatigue ductility coefficient

0 = fatigue ductility exponent

Using Eq. [3.7] the total strain can be rewritten using Eqs. [3.11] and [3.12].

As /2 = of ( 2Nf)b/E + 8f( 2Nf)c [3.13]

Equation [3.13] is the basis of the strain-life method and is termed the strain-

life relation. For this cyclic-bending study, strain was assumed to be elastic-

only, i.e. Aep/ 2 = 0 . This assumption was confirmed as valid from the linear

behavior exhibited by the load-displacement data, collected fi'om the Instron

test machine. Therefore, the strain-life relation used for this study was:

As/2=Ase/2=0f(2Nf)b/E [3.13;]

Since this cyclic-bending test had a mean-stress it was decided to create an

elastic strain-life model that accounted for mean stress effects. This model

would be compared with that of the strain-life model from Eq. [3.13%].
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Bannantine, Comer and Handrock (20) have shown that mean stresses have a

significant effect on fatigue life, especially at longer lives. Modifications have

been made to the strain-life equation [3.13] to account for the mean stress

effects. Morrow (21) suggested that the mean stress effects could be taken

into account by simply modifying the elastic part of the strain-life relation

[3.13] with the mean stress, 00.

Ace / 2 = A0] 2E = (Of- 00)( 2Nf)b I E [3.14]

The complete expression for strain-life, accounting for mean stress is simply

Eq. [3.14] plus the plastic portion of [3.13] or,

A8 / 2 = (Of- 00)( 2Nf)b IE + 8f( 2Nf)c [3.15]

Since we are assuming Aep/ 2 = 0, Eq. [3.14] will be used for this study.

Manson and Halford (22) also modified the strain-life relation, Eq. [3.13], to

account for mean stress effects. The modification Manson and Halford made

to the elastic portion of Eq.[3.13] was the same as Morrow’s modification

[3.13], thus it will not be restated. Manson and Halford had a different plastic

term modification than Morrow, although it is not included, Since the plastic

strain is assumed zero for this study.

The study was cyclic-bending, not uniaxial fatigue, and Since the controlled-

variable was actually deflection, not strain, it was decided to create a deflection-

life fatigue model for cyclic-bending. This power relation is of the same form as

Eq.[3.11]; the main difference is that the dependent variable is elastic-

deflection, not elastic-strain. The expression is of the form,

A6 /2 = D( Nf)f [3.16]
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Where A6 / 2 = elastic-deflection amplitude

D = flexural fatigue constant

Nf = cycles to failure

f= flexural fatigue exponent

3.5 RESULTS AND DISCUSSION

The results fipm the cyclic-bending study were exciting, especially after

performing data reductions fiom the load-displacement (deflection) data. The

following relations were analyzed:

(1) Applied Load versus Displacement (deflection)

(2) Stress Amplitude, Ao/Z versus Cycles to Failure, Nf

(3) Strain Amplitude, Ae/2 versus Cycles to Failure, Nf

(4) Deflection Amplitude, Afr/2 versus Cycles to Failure, Nf

3.5.1 Applied Load vs. Displacement (Deflection)

The load-deflection data analysis was three-fold; (1) For several load-

displacement intervals (section 3.2) throughout each test the ASCII data were

dumped to a spreadsheet program; lotus 1-2-3, and plotted as shown in Figure

3.3. This plot was evidence to determine if the cyclic-bending test was elastic,

as the initial assumption states. The test was elastic if the load-deflection

curve was linear, and if it intersected the X-axis near the origin at zero-load.



65

 

  

 
 

 

    

C)

-(I)

O

O

(09
\

E

E

0)

E

0)

o

(0

Va

.9

D

(\J

g

t5 :
CU

O

_] 1 l l l l O

O O O O O O O

O LO Q LO 0 L0

m (\J (\j V— ‘—

Figure 3.3 Typical load-displacement (deflection) plots reduced from the
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If the curve crossed the +X-axis,(deflection axis), at zero-load, this would imply

that there was plastic or permanent deformation, (deflection), and the

assumption that the cyclic-bending was linearly-elastic would have been

violated. The second reason for the load-deflection data analysis was to

perform a linear regression and determine the elastic modulus, E as a function

of cycles. The E-N study will be illustrated and discussed in Chapter 4.

Finally (3) the load-deflection data were reduced, in conjunction with the

number of cycles to failure, to determine the Stress-Life (S'Nf), Strain-Life (e-

Nf) and the Deflection-Life (0-Nf) data, curves and ultimately fatigue models.

These results will be discussed in sections 3.5.2-4 respectively.

3.5.2 Stress Amplitude, Ao/Z Vs. Cycles to Failure, Nf

The Stress-Life, S-N, method was the first approach used in an attempt to

understand and quantify metal fatigue (20). The S-N approach is used widely

for applications where the stresses are within the elastic limit and where the

number of cycles is high, Nf> 104 cycles. Since the cyclic-bending is assumed

elastic, the S-N relation parallels the cyclic-bending criteria quite well. The S-

N cyclic-bending data is plotted on log-log coordinates, as is illustrated for the

transverse and axial specimen’s in Figures 3.4a & b respectively. The S-N

cyclic-bending data for the transverse and axial specimens are listed in Tables

3.1 and 3.2 respectively. Using the stress amplitude, Aer/2 the plots were

linearized by a power-law of the form of Eq. [3.9]

A0/ 2 = Of( 2N1)b [3.9]
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This power-fit model was applied to the corresponding transverse and axial

specimens.

The fatigue models are as follows,

S-N model for the (12) Transverse cyclic-bending specimens,

Aotl 2 = 72,303( Nf) --110

with a correlation coefficient of 0.88.

S-N model for the (10) Axial cyclic-bending specimen,

Aoa/ 2 = 116,762( Nf) --116

with a correlation coefficient of 0.85.

The coefficients of the S-N models are the Fatigue Strength Coefficient(s) and

technically represent the magnitude of applied flexural stress,(in psi), that the

specimen could resist for Nf= 1. The exponent(s) are called the Fatigue

Strength Exponent (Basquin’s exponent) and are simply the slope of the

linearized curves. The S-N models are usable only within the experimental

cyclic life range, as is illustrated in Figures 3.4a & b. The “Endurance Limits”

are included in these plots. The endurance limit for the transverse and axial S-

N plots is, Ao/Z ~ 15,000 Psi and ~ 23,000 Psi respectively. Qualitatively

speaking, the axial specimen’s endurance limit is approximately 50% greater

than the transverse specimen’s endurance limit. Historically, the endurance

limit represented a stress amplitude below which the material would have an

“infinite”, cyclic or fatigue life. An infinite life was considered to be 1 million

cycles. The endurance limit was usually found by simply drawing a best-fit

linear line through the S-N data points until the line reached Nf= 106 cycles,
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Figure 3.4 Stress-Life (S-N) plots of the cyclic-bending speciemens for the

transverse (top) and axial (bottom) directions. Note the

corresponding “endurance limits” and power-law models.
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Table 3.1 Stress-Life (S-N) data from cyclic-bending study for the

transverse specimen. The model stress was reduced from actual

stress data.

Ao/Z

Specimen Nf AO/z M d Istr S

Number Cycles to Actual Stress 0 en :13 8

Failure Amplitude Amp “1 e

(p51) (PSI)

1AB 20 x 106* 12,528 11,377

2AB 801,330 14,981 16,208

10AB 209,080 16,999 18,790

3AB 426,070 17,211 17,374

13AB 162,040 17,755 19,324

11AB 91,020 18,187 20,590

12AB 110,000 19,080 20,165

4AB 209,820 20,851 18,782

7AB 45,000 21,885 22,249

6AB 46,790 21,989 22,153

8AB 14,200 26,542 25,258

9AB 50,000 28,832 21,992   
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Table 3.2 Stress-Life (S-N) data fi‘om cyclic-bending study for axial

specimen. The model stress data was reduced from actual stress

 

 

 

 

 

 

 

 

 

 

  

data.

S ecimen f

Number 03:32:20 Actugli/Sztress Modgloéztress

Amphtude Amplitude

1TB 20 x 106* 11,788 16,610

2TB 20 x 106* 19,752 16,610

2ATB 13.5 x 106 20,529 17,385

17TB 522,000 23,533 25,354

8TB 100,000 26,550 30,711

12TB 650,000 27,117 24,717

10TB 200,000 28,195 28,339

5TB 340,000 29,923 26,647

3TB 135,000 31,298 29,660

7TB 60,000 33,034 32,586     



71

then a horizontal line was drawn, and any point below this line was within the

“endurance limit”. The idea of the endurance limit has since been abandoned,

since everything has a finite life and many of today’s applications may

involve several 10’s, or 100’s, of millions of cycles. The endurance limit plotted

on the S-N curves, (Figures 3.4a & b), serve primarily as a correlation

between the axial and transverse S-N graphs.

3.5.3 Strain Amplitude, Ara/2 versus Cycles to Failure, Nf

The Strain-Life, (e-Nf), method is based on the observation that with many

components, the response of the material in critical locations (e.g. notches,

cracks) is strain or deformation dependent (20). The Strain-Life technique was

very important for this study since an MMC was being evaluated along both

the axial, or preferred direction and transverse to the preferred axis. The

elastic moduli for both the axial and transverse orientations had been

measured. The axial direction was found to be approximately 42% stiffer than

the transverse direction. It was also noticed that the elastic modulus varied

considerably throughout the fatigue (cyclic-bending) lives of every Specimen,

transverse or axial, (chapter 4), even though the test was elastic in nature.

This stiffness phenomenon can be seen in Tables 3.3 & 3.5, with the

appropriate stress amplitude, mean stress and maximum stress for the

transverse and axial specimens respectively. It is these data fi‘0m which the

elastic strain was reduced. Tables 3.4 & 3.6 list the cycles to failure, the

actual elastic strain, model elastic strain and the model elastic strain with
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Figure 3.5 Strain-Life (S'Nf) plots of the cyclic-bending specimens for the

transverse (top) and axial (bottom) directions. Note the models

with and without mean-stress effects.
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Table 3.3 Elastic modulus and stress data for strain-life analysis of

transverse specimen.

 

 

 

 

 

 

 

 

 

 

 

 

      

85’33313 ElaEtic 33,3128 3.1.2:; “I?“

Modulus Amplitude Stress M3122?

(M81) (Psi) (Psi) (psi)

1AB 14.29 12,528 15,312 27,840

2AB 13.72 14,981 18,311 33,293

3AB 14.31 17,211 21,035 38,246

10AB 12.18 16,999 20,777 37,776

11AB 12.38 18,187 22,229 40,416

13AB 11.49 17,755 21,701 39,456

4AB 13.31 20,851 25,485 46,336

12AB 11.79 19,080 23,320 42,400

7AB 13.39 21,885 26,749 48,634

6AB 12.73 21,989 26,875 48,864

9AB 12.57 28,832 35,240 64,073

8AB 11.50 26,542 32,440 58,982
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Table 3.4 Strain-Life (S-Nf) data fipm cyclic-bending study for transverse

specimen. The model Strain data was reduced from the Strain-

Life Models, with and without mean stress effects.

 

 

 

 

 

 

 

 

 

 

 

 

  

Specimen Nf Actual Model Model

Number Cycles to Ao/ZE Arr/2E Ao/ZE with

Failure Strain Strain Mean

Amplitude Amplitude Stress

effects, 00

1AB 20 x 106* 0.000877 0.000787 0.000680

2AB 801,330 .001092 .001223 .001016

3AB 426,070 .001203 .001334 .001084

10AB 209,080 .001396 .001470 .001151

1 1AB 91,020 .001469 .001647 .001271

13AB 162,040 .001545 .001522 .001157

.4AB 209,820 .001567 .001469 .001112

12AB 110,000 .001618 .001605 .001202

7AB 45,000 .001634 .001814 .001353

6AB 46,790 .001727 .001804 .001320

9AB 50,000 .002294 .001788 .001151

8AB 14,200 .002308 .002124 .001363    
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Table 3.5 Elastic modulus and stress data for strain-life analysis of axial

specrmen.

$15,533:: ElaEsltiC Sill/is 13:23:11; Mgrii‘um

Modulus Amplitude Stress Stress

(M81) (Psi) (Psi) (Psi)

1TB 15.33 11,788 14,407 26,195

2TB 16.63 19,752 24,141 43,893

2ATB 14.76 20,529 25,090 45,619

17TB 14.38 23,533 28,763 52,296

8TB 14.97 26,550 32,450 58,999

12TB 14.78 27,117 33,143 60,260

10TB 14.72 28,195 34,461 62,656

5TB 14.61 29,923 36,573 66,496

3TB 14.45 31,298 38,254 69,552

7TB 14.79 33,034 40,374 73,408      
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Table 3.6 Strain-Life (e-Nf) data from cyclic-bending study for the axial

specimen. The model Strain data was reduced from the Strain-

Life Models, with and without, mean stress effects.

 

 

 

 

 

 

 

 

 

 

  

Specimen N; Actual Model Model

Number Cycles to Aer/2E Air/2E Ao/ZE with

Failure Strain Strain Mean

Amplitude Amplitude Stress

effects, 00

1TB 20 x 106* 0.000769 0.001078 0.000967

2TB 20 x 106* .001188 .001078 .000907

2ATB 13.5 x 106 .001391 .001133 .000923

17TB 522,000 .001637 .001714 .001340

8TB 100,000 .001774 .002116 .001615

12TB 650,000 .001835 .001667 .001259

10TB 200,000 .001915 .001937 .001442

5TB 340,000 .002048 .001810 .001316

3TB 135,000 .002166 .002036 .001448

7TB 60,000 .002234 .002258 .001585    
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mean stress effects. The 3~Nf data points were plotted on log-log coordinates;

it was these experimental values that were used to create the s-Nf models, as

shown in Figures 3.5a & b. The changing elastic modulus would be included

in the Elastic Strain-Life relation Eq [3.136], the modulus was not accounted

for in the S-N models. The Elastic Strain-Life power relation used was of the

form,

Ae/2 =Ase/2 =Of(2Nf)b/E [3.139]

Another reason the Strain-Life relation was used is that there is also a Strain-

Life expression that accounts for mean stress, Morrow (21), and Manson and

Halford (22),

Ace / 2 = A0] 2E = (Of- 00)( 2Nf)b IE [3.14]

The fatigue models are as follows;

The elastic E'Nf model for the (12) Transverse cyclic-bending specimens,

are, / 2 = 7.865 x 10-3( 2N1) -.137

with a correlation coefficient = 0.91

The elastic E-Nf‘ model, accounting for mean stress effects, for the (12)

Transverse cyclic-bending specimens,

Aeet / 2 = [.007865-00/ E]( 2Nf) -.137

The elastic E-Nf model for the (10) Axial cyclic-bending Specimens,

Aces, / 2 = 9.161x 103( 2Nf) «127

with a correlation coefficient = 0.87
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The elastic S-Nf model, accounting for mean stress effects, for the (10) Axial

cyclic-bending Specimens,

A2... / 2 -~ 1.009161-00/ E]( 21s,) .127

The coefficients for the elastic e-Nf models, .007865 and .009161,represent the

Fatigue Strength Coefficientpf divided by the elastic modulus,E for the

transverse and axial specimens respectively. Although, these coefficients were

determined fi‘0m a power-law relation, they are ,at best, approximations of the

variables they represent.

The exponent(s) for the elastic E'Nf models, ~.137 and ~.127, are simply the

Fatigue Strength Exponent,b or Basquin’s exponent. Since there is a slight

discrepancy in Basquin’s exponent,b between the S-N models, ~.116 and ~.110,

and the S-Nf models, -.137 and ~.127, for the transverse and axial specimens,

an explanation is in order.

To determine the power-fit from the SN data, the variables were stress

amplitude, Ao/Z as a function of the number of cycles to failure,Nf ,where

stress amplitude was Simply a function of applied bending load. This bending

load was obtained from the load-displacement data, section 3.5.1, where a

maximum and minimum load were retrieved fi'om each data interval that was

analyzed per specimen. From this data, an average minimum load and

average maximum load could be determined. Then, fiom these averages,

stress amplitude and mean stress could be calculated. A power-fit was created
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from the s-Nfdata; the variables were elastic strain amplitude,Ase/2 as a

function of the number of cycles to failure,Nf. Strain amplitude is a function of

both stress amplitude and elastic modulus, i.e. Ase/2 = Ao/2E. (This elastic

strain amplitude was also determined from the load-displacement data, where

stress amplitude was the same as that obtained from the S-N study and the

elastic modulus was reduced from a linear regression of the load-displacement

data.)

A closer look in section 2.4.2 ,Eq.[2.4’]&[2.5’], will demonstrate that after

reducing the Ase/2, it is simply a function of displacement (deflection). This

may explain our discrepancy in Basquin’s exponent, b. Since deflection was the

controlled-variable, the exponents for the E'Nf models might represent a more

refined model than the S-N exponents since they were simply a function of load

or stress.

The strain-life models have a ~ 2~3% better correlation than the respective

stress-life models. For most Single-phase metals, b varies between ~0.05 and ~

0.12 and this fatigue property, as with most, is usually determined from a fully~

reversed, uniaxial fatigue test, not a cyclic-bending test. Therefore these

results are plausible, considering that this material is an MC, not a single-

phase alloy.

Since a mean stress was present in the cyclic-bending study, an elastic strain-

life model, Eq.[3.14], that accounts for mean stress effects was created.

Morrow (21) suggests that mean stress effects are significant at low values of
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plastic strain, where elastic strain dominates. Figures 3.5a & b illustrate the e-

Nf models with and without mean stress effects. It is quite apparent that the

strain-life model(s) that account for mean stress effects are mildly

conservative for both transverse and axial models. The reason the strain-life

models which account for mean stress effects are not straight-line, as with the

strain-life models, is that the mean stress models are a function of cycles to

failure,Nf, plus mean stress,(iro and elastic modulus,E, thus creating greater

variability. Tables 3.4 & 3.6 give the cycles to failure, actual strain amplitude,

model strain amplitude and model strain amplitude w/ mean stress effects, for

the transverse and axial specimens respectively.

3.5.4 Deflection Amplitude, Afr/2 Vs. Cycles to Failure, Nf

Since the entire cyclic-bending study was deflection-controlled, as opposed to a

uniaxial, strain-controlled fatigue test, it was decided to formulate a deflection-

life, O‘Nf, fatigue model. This model is of the same form as the SN power-fit

model, Eq.[3.9]. The main difference is that the dependent-variable for the

deflection-life model Eq.[3.16] is elastic-deflection,A6/2, not stress

amplitude,A0/2,

A0 / 2 = D(Nf)f [3.16]

The deflection models are as follows;

The elastic O-Nf model for the (12) Transverse cyclic-bending specimens,
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40. / 2 = 0.730(Nf) -.170

with a correlation coefficient of 0.95.

The elastic O'Nf model for the (10) Axial cyclic-bending specimens,

A63 / 2 = 0.637(Nf) --136

with a correlation coefficient of 0.88.

The coefficients and exponents for these 0~Nf models are very Similar to those

of the SN models. The Flexural Fatigue Coefficient(s), 0.730 & 0.637, simply

represent the maximum deflection the transverse and axial cyclic-bending

specimens respectively could resist for Nf = 1. The Flexural Fatigue Exponent,

f: ~0.170 & -0.136, represents the gradient of the transverse and axial AM-Nf

graphs respectively; see Figures 3.6a & b. Tables 3.7 & 3.8 list the number of

cycles to failure, maximum deflection, actual deflection amplitude and model

deflection amplitude for the transverse and axial cyclic-bending specimens

respectively.

The correlations for the transverse and axial O'Nf models were pleasantly

acceptable, 0.95 & 0.88 respectively. The O-Nf models fit the experimental

data the best of the three models constructed. In refreshment, the O'Nf

method of modelling should have had the best fit, or correlation, since it was

deflection that was the controlled-variable. Comparing the three relationships

used to model the cyclic-bending study, the transverse specimens exhibited the

best correlations for every model;
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Figure 3.6 Deflection-Life (0-Nf) plots of the cyclic-bending specimens for the

transverse (top) and axial (bottom) directions. Note: deflection

was the controlled variable.
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Table 3.7 Deflection-life (O-Nf) data for transverse specimen orientation.

The A6 / 2 model data was reduced from a power-law model,

(6-Nf), Eq.(3.16).

, Ni amax A6 / 2 A0 /2

Specrmen Cycles 130 Maximum Actual Model

Number Failure Deflection Deflection Deflection

(inch x103) Amplitude Amplitude

[mm] (inch x103) (inch x10-3)

[mm] [mm]

1AB 20 x 106* 3.973 1.772 1.654

[0.100] [0.045] [0.042]

2AB 801,330 5.906 2.667 2.835

[.150] [.067] [.072]

3AB 426,070 5.906 2.667 3.189

[.150] [.067] [.081]

4AB 209,820 7.874 3.543 3.583

[.200] [.090] [.091]

10AB 209,080 7.874 3.543 3.583

[.200] [.090] [.091]

13AB 162,040 7.874 3.543 3.740

[.200] [.090] [.095]

6AB 46,790 9.843 4.429 4.606

[.250] [.113] [.117]

7AB 45,000 9.843 4.429 4.646

[.250] [.113] [.118]

12AB 110,000 9.843 4.429 3.976

[.250] [.113] [.101]

llAB 91,020 11.024 4.961 4.134

[.280] [.126] [.105]

8AB 14,200 11.811 5.315 5.670

[.300] [.135] [.144]

9AB 50,000 11.811 5.315 4.567

[.300] [.135] [.116]      
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Table 3.8 Deflection-life (O-Nf) data for Axial specimen orientation.

The A6 /2 model data was produced from a power-law model,

(O-Nf), Eq.(3.16).

Specimen Nf amax A0 / 2 A6 / 2

Number Cycles t0 Maximum Actual Model

Failure Deflection Deflection Deflection

(inch x10-3) Amplitude Amplitude

[mm] (inch x103) (inch x103)

[mm] [mm]

1TB 20 x 106* 3.937 1.772 2.539

[0.100] [0.045] [0.064]

2TB 20 x 106* 5.906 2.667 2.539

[.150] [.068] [.064]

2ATB 13 x 106 7.874 3.543 2.677

[.200] [.090] [.068]

3TB 135,000 9.843 4.429 5.016

[.250] [.113] [.127]

5TB 340,000 9.843 4.429 4.421

[.250] [.113] [.112]

12TB 650,000 9.843 4.429 4.047

[.250] [.113] [.103]

17TB 522,000 9.843 4.429 4.169

[.250] [.113] [.106]

10TB 200,000 11.024 4.961 4.752

[.280] [.126] [.121]

7TB 60,000 11.811 5.315 5.224

[.300] [.135] [.133]

8TB 100,000 11.811 5.315 5.602

[.300] [.135] [.142]    
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for the SN model, 0.88 & 0.85, for the s-meodel, 0.91 & 0.87, and for the O-Nf

model, 0.95 & 0.88 for the transverse and axial bend Specimens respectively.

One explanation for the more predictable behavior of the transverse specimens

is that the load transfer is primarily through the matrix only. The load transfer

for the specimens in the fiber direction is through both the matrix and fiber, in

this case discontinuous fibers. This composition makes for relatively difficult

Specimen to specimen prediction. From the material characterization, both

static and cyclic-bending, it is quite clear that the fiber or reinforcement

direction definitely has the preferred material integrity.

These results for the Cyclic-Bending tests were refieshing since there was

initially serious Speculation as to the validity of this cyclic-bending study,

considering it was a different approach to an old art with the added variable

that the material being investigated was also a new material, an MMC.



CHAPTER 4

DYNAMIC FLEXURAL MODULUS AS AFUNCTION OF CYCLES TO

NEAR FAILURE.

The idea of evaluating the Elastic Flexural Modulus as a function of cycles was

conceived midstream through the cyclic-bending study. This E-N study was

deemed necessary and feasible for the following reasons: (1) It would lend

insight to mechanisms such as strain hardening, (increasing E) or

microcracking (decreasing E) as a function of cycles and deflection level, for the

transverse and axial directions respectively. (2) It was feasible since the load~

displacement, P-f) data was recorded at several designated intervals

throughout each cyclic-bending test. The elastic flexural modulus was Simmy

the gradient of the P~0 data multiplied by a constant, Eq. [2.6’], since the cyclic-

bending tests were performed within the elastic limit. The number of cycles, N

was simply the frequency (cycles/second) multiplied by the time interval from

test initiation to when the P~0 data was captured. Since all the cyclic-bending

tests were deflection-controlled, the deflection was constant for each test, so

deflection-level was a given.

The E-N data is plotted on semi-log coordinates, the elastic flexural modulus is

normalized with respect to the elastic modulus, E measured statically in a

uniaxial state of stress, chapter 2.3, which was 13.09 msi and

86
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18.60 msi, for the transverse and axial direction respectively. This evaluation

is qualitative in nature, the prime objective was to analyze any general trends

(e.g. strain hardening, microcracking, etc) and possibly to assess the feasibility

and necessity of future, more quantitative analysis regarding elastic modulus

in a repeated loading environment.

4.1 RESULTS FOR TRANSVERSE SPECIMENS

4.1.1 Specimens with maximum deflection of0.10mm.

Specimen 1AB had a maximum deflection of 3.973 x 10-3in. (0.10mm) and was

cycled at 10hz (cycles/second) until reaching 10 million cycles, then the cyclic

rate was increased to 20hz until 20 million cycles were reached, after which the

was test terminated. Figure 4.1 shows what appears to be strain hardening, ~

13%, from ~72,000 cycles to ~5,000K cycles. The elastic flexural modulus

steadily decreases, ~15%, from ~5,000K cycles to ~20,000K cycles where the

test was terminated. Table 4.1 gives both the absolute flexural modulus and

the normalized flexural modulus for several cyclic intervals throughout the

test.

4.1.2 Specimens with maximum deflection of 0.15mm.

Specimen 2AB and 3AB had a maximum deflection of 5.906 x 10-3in. (0.15mm)

and were both cycled at 10hz until specimen fracture, where Nf = 801,330

cycles for 2AB and 426,000 cycles for 3AB. Figure 4.2 shows both 2AB and
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Transverse Specimen, 1AB
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Figure 4.1 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 3.973 x 10-3 in. (0.10mm).



Table 4.1 Elastic modulus data as a function of cyclic interval for the

transverse specimen (1AB) with a maximum deflection of 3.973 x

10-3in. (0.10mm).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

13.95 13.58

72,000 [1.065] 11,207K [1.037]

14.08 13.77

144,000 [1.075] 12,001K [1.051]

14.00 13.87

288,000 [1.069] 13,533K [1.058]

14.78 13.96

498,000 [1.128] 15,051K [1.066]

15.03 13.71

1,200K [1.148] 16,522K [1.047]

15.10 13.70

1,524K [1.153] 17,026K [1.046]

14.86 14.00

3,000K [1.134] 18,160K [1.068]

14.66 13.44

3,979K [1.119] 19,024K [1.026]

15.70 13.38

5,023K [1.198] 20 x 106* [1.021]

15.36

6,175K [1.173]

14.53

7,037K [1.109]

14.83

7,795K [1.132]

13.93

8,007K [1.063]

13.78

10,011K [1.052]   
 

* This specimen (1AB) was cycled for 20 x 106 cycles, the test was then

terminated, this was passing criterion for the cyclic-bending test, due to the

time constraint.
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Transverse Specimen, 2AB & 3AB

1.14

= ,000 cycles

1.12

1.10
2ab, 2Nf =801,330

3ab, 2Nf =426,000

ENo

1.06
= 468,000 cycles

1.04

 1.02
Log N Cycles

Figure 4.2 Dynamic flexural modulus as a fimction of cycles to near failure.

Maximum deflection was 5.906 x 10-3 in. (0.15mm).
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3AB initially cyclicly-softened, ~2% and ~5.5% respectively, both within

approximately 70,000 cycles (from the first load-deflection interval). 2AB &

3AB began to both cyclic-harden at 108,000 cycles

and 144,000 cycles respectively, ~2.4% and ~8.2%, until both reached

360,000 cycles. Specimen 2AB had a slight reduction in E, < 1%, until the last

recorded cyclic interval of 468,000 cycles, although the specimen didn’t

fracture until 801,330 cycles. Specimen 3AB showed no reduction in E after

reaching a maximum at 360,000 cycles until fracture (i.e. crack initiation),

where Nf 2426,000 cycles, although at ~ 432,000 cycles a cyclic-interval was

recorded, and the flexural modulus had reduced ~ 18% in 72,000 cycles. Table

4.2 gives the absolute and normalized flexural modulus E for the respective

cyclic intervals of 2AB and 3AB.

4.1.3 Specimens with maximum deflection of 0.20mm.

Specimen 4AB, 10AB and 13AB had a maximum deflection of 7.874 x 10-3in.

(0.20mm), and all three were cycled at 10hz throughout the entire cyclic~

bending life, where Nf = 209,870, 209,080 and 162,040 cycles for 4AB, 10AB

and 13AB respectively. Figure 4.3 shows specimen 4AB with a nearly

negligible increase in modulus, ~1%, from 40 cycles to 1,000 cycles, although

E decreased by ~ 8% from 1,000 cycles to 69,000 cycles. 4AB showed minimal

strain-hardening, ~ 2.5%, fi‘0m 69,000 cycles to 177,000 cycles. Specimen

10AB exhibited strain-hardening, ~ 4.8%, fi'om 72,000 cycles to 108,000 cycles

and then strain- softened nearly the same percentage from 108,000 cycles to

144,000 cycles and remained constant until near fracture, N: 209,000 cycles,



Table 4.2 Elastic modulus data as a function of cyclic interval for the

transverse specimen with maximum deflection of 5.906 x 10-3in.

 

 

 

 

 

 

 

  

(0.15mm).

Specimen # 2AB Specimen # 3AB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

13.82 14.58

36,000 [1.055] 72,000 [1.113]

13.45 13.76

108,000 [1.027] 144,000 [1.050]

13.77 14.19

252,000 [1.052] 216,000 [1.083]

13.85 14.04

360,000 [1.057] 288,000 [1.072]

13.73 14.90

468,000 [1.048] 360,000 [1.137]

12.16"

Nf= 801,330 N/A 432,000 [0.929]    
* Specimen 3AB failed (cracked) at approximately 426,000 cycles, this

explains the reduction in the specimen’s stiffness (i.e. elastic modulus).
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Figure 4.3 Dynamic flexural modulus as a frmction of cycles to near failure.

Maximum deflection was 7.874 x 10~3 in. (0.20mm).
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,and failed at 209,080 cycles. Nothing unusual happened with specimen 13AB,

E remained relatively constant, < 0.5% change, for the few cyclic intervals

recorded from 27,000 cycles to 152,000 cycles, and Nf = 162,000 cycles. The

only unusual observation ,regarding 13AB, is that E was ~ 5% to ~15% less

than E for 4AB or 10AB. Table 4.3 gives a discrete listing of the actual and

normalized E for the respective cyclic intervals for 4AB, 10AB and 13AB.

4.1.4 Specimens with maximum deflection of 0.25mm.

Specimen 6AB, 7AB and 12AB had a maximum deflection of 9.843 x 10-3in.

(0.25mm) and all three were cycled at 5 hz. for their entire cyclic life, where Nf

=46,7.90 cycles, 45,000 cycles and 110,000 cycles for 6AB, 7AB and 12AB

respectively. Figure 4.4 illustrates a gradual, near-linear strain-hardening

from specimen 6AB, ~ 6%, from 5 cycles to 45,000 cycles, this was within

2,000 cycles of specimen fracture. Specimen 7AB also illustrated strain-

hardening, ~18.3%, from 2 cycles to 5,500 cycles, although this strain-

hardening was significantly more than that of 6AB. The flexm‘al modulus of

7AB decreased ~ 6.8% from 5,500 cycles to 41,500 cycles, which is within

3,500 cycles of specimen fracture. An interesting observation is that the

flexural moduli of both 6AB and 7AB were nearly identical, having less than

0.1% difference at near fracture. Specimen 12AB had a mild increase in E, ~

4.3%,. fi‘0m 9,000 cycles to 27,000 cycles, then an increase in E, ~ 6.1%, from

27,000 cycles to 45,000 cycles, and finally a near-linear increase in E, ~10.5%,

from 45,000 cycles to 108,000 cycles, only 2,000 cycles short of the specimen’s

cyclic life. One notable characteristic is that the flexural modulus for 12AB is
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Table 4.3 Elastic modulus data as a function of cyclic interval for the

transverse specimen’s 4AB, 10AB & 13AB with maximum

deflection of 7.874 x 1031a (0.20mm).

 

 

 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

Specimen # 4AB Specimen # 10AB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

13.52 12.07

40 [1.032] 72,000 [0.921]

13.66 12.65

100 [1.043] 108,000 ' [0.966]

13.63 12.07

400 [1.040] 144,000 [0.921]

13.58 12.11

520 [1.037] 180,000 [0.924]

13.62 11.99

1,000 [1.040] 209,000 [0.915]

12.56

69,000 [0.959] Nf = 209,080 N/A

12.90

105,000 [0.985]

12.99

177,000 [0.992]

Nf = 209,820 N/A

Specimen # 13AB

Number of Cycles Elastic Modulus, E

(Msi)

[normalized]

11.52

27,000 [0.879]

11.52

45,000 [0.879]

11.48

98,000 [0.876]

11.46

152,000 [0.875]

Nf = 162,040 N/A 
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Transverse Specimen, 6AB, 7AB & 12AB
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Figure 4.4 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 9.843 x 10-3 in. (0.25mm).



Table 4.4 Elastic modulus data as a function of cyclic interval for the

transverse Specimen’s 6AB, 7AB & 12AB with maximum

deflection of 9.843 x 10-3in. (0.25mm).

 

 

 

 

 

 

 

 

 

 

 

  

Specimen # 6AB Specimen # 7AB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

12.34 11.84

5 [0.942] 2 [0.904]

12.44 13.00

125 [0.950] 120 [0.992]

12.65 13.44

485 [0.966] 240 [1.026]

12.77 13.67

905 [0.975] 480 [1.044]

12.87 13.74

5,700 [0.982] 1,000 [1.049]

12.97 14.01

10,000 [0.990] 5,500 [1.069]

13.08 13.85

45,000 [0.998] 10,000 [1.057]

13.89

Nf = 46,790 N/A 23,500 [1.060]

13.06

41,500 [0.997]

Nf = 45,000 N/A   
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Table 4.4 (cont’d)

Specimen # 12AB

Number of Cycles Elastic Modulus, E

(Msi)

[normalized]

11.39

9,000 [0.869]

1 1.88

27,000 [0.907]

11.16

45,000 [0.852]

11.88

72,000 [0.907]

12.12

90,000 [0.925]

12.33

108,000 [0.941]

Nf = 110,000 N/A 
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considerably less than that of 6AB and 7AB, at one point, 18% less for the

same number of cycles. Table 4.4 gives a discrete listing of the actual and

normalized E for the respective cyclic intervals for 6AB, 7AB and 12AB.

4.1.5 Specimens with maximum deflection of 0.28mm.

Specimen 11AB had a maximum deflection of 11.024 x 10-3in. (0.28mm) and

was cycled at 5 hz throughout the entire cyclic life of the specimen, where Nf =

91,020 cycles. The flexural modulus for specimen 11AB decreased , ~ 3.8%,

from 8,000 cycles to 26,000 cycles and is then increased, ~ 6.2%, from 26,000

cycles to 53,000 cycles and then stabilized until reaching 80,000 cycles. At

89,000 cycles, E had decreased ~ 9%, only 2,020 cycles shy of cyclic life

termination, see Fig. 4.5. Table 4.5 gives a discrete listing of the actual and

normalized E for the respective cyclic intervals for 11AB.

4.1.6 Specimens with maximum deflection of 0.30mm.

Specimens 8AB and 9AB had a maximum deflection of 11.811 x 10-3in.

(0.30mm) and were cycled at 2 hz throughout their cyclic life, where Nf =

14,200 cycles and 49,000 cycles respectively. Figure 4.6 illustrates that

specimen 8AB has virtually no increase in E from 5 cycles to 125 cycles and

then gradually increases, ~2.8%, from 125 cycles to 14,000 cycles, this was

only 200 cycles Short of the cyclic life termination. The flexural modulus

increased gradually, ~1.6%, from 5 cycles to 7,000 cycles, and then decreased

minimally, less than 0.4%, from 7,000 cycles to 49,000 cycles, approximately
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Figure 4.5 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 11.024 x 10-3 in. (0.28mm).
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Table 4.5 Elastic modulus data as a function of cyclic interval for the

transverse specimen 11AB, with maximum deflection of 11.024 x

10-3in. (0.28mm).

Specimen # 11AB
 

 

 

 

 

 

 

  

Number of Cycles Elastic Modulus, E

(Msi)

[normalized]

12.46

8,000 [0.951]

1 1.99

26,000 [0.915]

12.73

53,000 [0.972]

12.75

71,000 [0.973]

12.73

80,000 [0.972]

1 1.59

89,000 [0.885]

Nf = 91,020 N/A 
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Figure 4.6 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 11.811 x 10-3 in. (0.30mm).
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Table 4.6 Elastic modulus data as a firnction of cyclic interval for the

transverse specimens 8AB & 9AB, with a maximum deflection of

11.811 x 10-3in. (0.30mm).

 

 

 

 

 

 

 

 

 

  

Specimen # 8AB Specimen # 9AB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

1 1.44 12.43

5 [0.873] 5 [0.949]

1 1.41 12.55

125 [0.871] 125 [0.958]

1 1.46 12.60

505 [0.875] 485 [0.962]

1 1.48 12.59

985 [0.876] 1,000 [0.961]

1 1.73 12.63

14,000 [0.895] 7,000 [0.964]

12.58

Nf = 14,200 N/A 25,000 [0.960]

12.58

49,000 [0.960]

Nf = 50,000 N/A     
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1,000 cycles before cyclic life termination. Table 4.6 gives a discrete listing of

the actual and normalized E for the respective cyclic intervals for 8AB and

9AB.

4.2 RESULTS FOR AXIAL SPECIMENS

4.2.1 Specimens with a maximum deflection of 0.10mm.

Specimen 1TB had a maximum deflection of 3.973 x 10-3 in. (0.10) and was

cycled at 10 hz until ~1.7million cycles; then the cyclic rate was increased to

20 hz until 20 million cycles were reached, and the test was terminated. Figure

4.7 shows several patterns of flexural modulus increasing and decreasing.

although the modulus is gradually increasing throughout the test, ~ 11%, fi‘om

35,000 cycles to 5,048K cycles. Flexural modulus decreases Slightly, ~ 3%,

from 5,048K cycles to 20,000K cycles, where the test was terminated. This

test is quite interesting in that there are several stages, approximately 6

stages or cycles, where the flexural modulus is increasing and decreasing. At

the initiation of the third stage, where N~ 1,000K cycles, E takes an increase

of nearly 8.5%, and the flexural modulus seems to somewhat stabilize at about

1,350K cycles and remain at approximately 98% of that modulus until test

termination. Table 4.7 gives a discrete listing of the actual and normalized E

for the respective cyclic intervals for specimen 1TB.
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Figure 4.7 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 3.973 x 10~3 in. (0.10mm).



Table 4.7 Elastic modulus data as a function of cyclic interval for the axial

Specimen 1TB, with a maximum deflection of 3.973 x 10-3in.

(0.10mm).

Specimen # 1TB
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

14.44 15.32

35,000 [0.772] 1,134K [0.819]

15.00 15.31

72,000 [0.802] 1,170K [0.819]

14.99 15.29

108,000 [0.802] 1,206K [0.818]

14.67 15.07

144,000 [0.784] 1,242K [0.806]

14.71 15.11

180,000 [0.787] 1,278K [0.808]

15.62 15.21

216,000 [0.835] 1,314K [0.813]

15.61 15.88

252,000 [0.835] 1,350K [0.849]

15.61 15.60

288,000 [0.835] 2,046K [0.834]

15.26 15.51

324,000 [0.816] 3,054K [0.829]

15.37 16.04

350,000 [0.822] 4,256K [0.858]

14.67 16.00

882,000 [0.785] 5,048K [0.856]

14.95 15.28

918,000 [0.799] 6,069K [0.817]

15.29 15.81

954,000 [0.818] 8,038K [0.845]

15.48 15.57

990,000 [0.828] 15,022K [0.832]

15.28 15.73

1,026K [0.817] 16,560K [0.841]

15.39 15.49

1,062K [0.823] 17,954K [0.829]

15.18 15.60

1,098K [0.812] 20,000K* [0.834]    
* The test was terminated at 20 x 106 cycles, since failure had not been

induced, this was the passing criterion for the cyclic-bending study.
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Figure 4.8 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 5.906 x 10-3 in. (0.15mm).
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4.2.2 Specimens with maximum deflection of 0.15mm.

Specimen 2TB had a maximum deflection of 5.906 x 10-3 in. (0.15) and was

cycled at 10 hz until reaching 2.9 million cycles where the cyclic frequency was

increased to 20 hz until the test was terminated at 20 million cycles. Figure

4.8 illustrates a nearly constant flexural modulus from 36,000 cycles to

180,000 cycles, then E decreases, ~2.6%, fi‘0m 180,000 cycles to 504,000

cycles. The flexural modulus steadily increases, ~ 10.6%, from 504,000 cycles

to 7,550K cycles, (with a small drop at 4,930K cycles). Flexural modulus

increases and decreases sporadically between 4,018K cycles to 16,485K

cycles, and a steep, marginal drop in E, ~ 14.1%, from 16,485K cycles to

19,100K cycles and finally the test was terminated at 20 million cycles. Table

4.8 gives a discrete listing of the actual and normalized E for the respective

cyclic intervals for specimen 2TB.

4.2.3 Specimens with maximum deflection of 0.20mm.

Specimen 2ATB had a maximum deflection of 7.874 x 10-3 in. (0.20) and was

cycled at 10 hz. until 13.5 million cycles where the Specimen fractured and the

test was terminated. Figure 4.9 shows a nearly constant flexural modulus

from 5 cycles to 4,017K cycles. The flexural modulus begins to Show rapid

decrement, ~ 35.6%, from 12,180K cycles to 13,089K cycles, and the

Specimen fractured at 13,500K cycles. Table 4.9 gives a discrete listing of the

actual and normalized E for the respective cyclic intervals for specimen 2ATB.



Table 4.8 Elastic modulus data as a function of cyclic interval for the axial

specimen 2TB, with a maximum deflection of 5.906 x 10-3in.

 

 

 

 

 

 

 

 

 

 

 

  

(0.15mm).

Specimen # 2TB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

16.38 17.65

36,000 [0.876] 9,114K [0.944]

16.40 16.45

180,000 [0.877] 9,870K [0.879]

16.22 16.62

254,000 [0.867] 10,982K [0.889]

15.98 16.45

504,000 [0.855] 12,589K [0.880]

16.29 16.67

1,026K [0.871] 13,021K [0.891]

16.38 17.52

1,998K [0.876] 14,565K [0.937]

16.98 16.90

3,010K [0.908] 15,069K [0.904]

17.33 17.61

4,018K [0.927] 16,485K [0.942]

16.92 16.37

4,930K [0.905] 17,981K [0.875]

17.65 15.13

6,046K [0.932] 19,100K [0.809]

17.68 15.51

7,550K [0.946] 20,036K“ [0.830]    
* The test was terminated at 20 x 106 cycles, since failure had not been

induced. This was the passing criterion for the cyclic-bending study,due to the

time constraint.
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Figure 4.9 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 7.874 x 10-3111. (0.20mm).



Table 4.9 Elastic modulus data as a function of cyclic interval for the axial

specimen 2ATB, with a maximum deflection of 7.874 x 10-3in.

 

 

 

 

 

 

 

 

 

 

  

(0.20mm).

Specimen # 2ATB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

15.12 14.96

5 [0.809] 3,018K [0.800]

14.86 14.99

125 [0.795] 4,017K [0.802]

14.84 14.65

245 [0.794] 5,005K [0.783]

14.86 14.56

485 [0.795] 6,010K [0.779]

14.77 14.75

1,025 [0.790] 6,992K [0.789]

14.55 14.47

38,000 [0.778] 7,928K [0.774]

14.88 14.71

254,000 [0.796] 9,030K [0.786]

14.75 14.60

506,000 [0.789] 11,028K [0.781]

15.02 14.04

1,020K [0.803] 12,180K [0.751]

15.02 9.04

2,010K [0.803] 13,089K“ [0.483]   
 

* The specimen 2ATB didn’t noticeably fail or crack until approximately

13,500K cycles, although there was significant decrement in the elastic

modulus at about 12,180K cycles.
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4.2.4 Specimens with a maximum deflection of 0.25mm.

Specimens 3TB, 5TB, 12TB & 17TB had a maximum deflection of 9.843 x 10-3

in. (0.25) and were cycled at 5 hz until Specimen fracture, where the test was

terminated. The specimens will be discussed in ascending order of cyclic life.

Specimen 3TB shows a monotonic increase in modulus, ~ 5.3%, from 5 cycles

to 111,100 cycles and then a Slight decrease in E, ~ 2.0%, fi'om 111,100 cycles

to 133,600 cycles, as shown in Figure 4.10. Specimen 3TB failed at 135,000

cycles. Specimen 5TB had a slight increase in modulus, ~ 1.5%, from 5 cycles

to 197,000 cycles and an almost negligible decrease in E, less than 0.4%, from

197,000 cycles to 242,000 cycles, see Figure 4.10. Specimen 5TB failed at

340,000 cycles. Specimen 17TB exhibits an appreciable increase in modulus,

~ 8.1%, from 10,000 cycles to 100,000 cycles; the modulus then decreased until

reaching 298,000 cycles and then E returned to the approximate modulus

reached at 100,000 cycles, ( just before decrease in E). The modulus dropped

slightly, ~ 3.0%, from 390,000 cycles to 520,000 cycles and failed 2,000 cycles

later,(i.e. Nf = 522,000 cycles). Finally, Specimen 12TB showed an increase in

modulus, ~ 5.6%, from 20,000 cycles to 201,000 cycles. The modulus

decreased equally as much from 201,000 cycles to 600,000 cycles and

ultimately failed at 650,000 cycles. Table 4.10 gives a discrete listing of the

actual and normalized values of E for specimens 3TB, 5TB, 12TB & 17TB and

their respective cyclic intervals.
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Figure 4.10 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 9.843 x 10-3 in. (0.25mm).



Table 4.10 Elastic modulus data as a function of cyclic interval for the axial

specimen’s 3TB, 5TB, 12TB & 17TB, with a maximum deflection

of 9.843 x 10-3in. (0.25mm).

 

 

 

 

 

 

 

 

 

 

 

 

   

Specimen # 3TB Specimen # 5TB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

13.90 14.49

5 [0.743] 5 [0.775]

14.28 14.58

125 [0.764] 305 [0.780]

14.48 14.49

485 [0.774] 605 [0.775]

14.49 14.69

1,000 [0.775] 10,000 [0.786]

14.58 14.60

7,600 [0.780] 54,000 [0.781]

14.57 14.60

25,600 [0.779] 98,000 [0.781]

14.63 14.70

52,600 [0.782] 152,000 [0.786]

14.61 14.71

102,100 [0.781] 197,000 [0.787]

14.64 14.66

1 1 1,100 [0.783] 242,000 [0.784]

14.33

133,600 [0.766] Nf = 340,000 N/A

Nf = 135,000 N/A  
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115

 

Specimen # 12TB Specimen # 17TB

 

 

 

 

 

 

 

 

 

   

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) ' (Msi)

[normalized] [normalized]

14.42 13.53

20,000 [0.771] 10,000 [0.724]

14.98 14.46

56,000 [0.801] 28,000 [0.773]

15.21 14.55

101,000 [0.813] 55,000 [0.778]

15.23 14.63

201,000 [0.814] 100,000 [0.782]

14.60 14.47

295,000 [0.781] 154,000 [0.774]

14.62 14.37

403,000 [0.782] 298,000 [0.768]

14.40 14.73

600,000 [0.770] 390,000 [0.788]

14.28

Nf = 650,000 N/A 520,000 [0.763]

Nf =522,000 N/A  
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Axial Specimen, 10TB
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Figure 4.11 Dynamic flexural modulus as a function of cycles to near failure.

Maxrmum deflection was 11.024 x 10-3 in. (0.28mm).





117

Table 4.11 Elastic modulus data as a function of cyclic interval for the axial

specimen 10TB, with a maximum deflection of 11.024 x 10-3in.

 

 

 

 

 

 

 

  

(0.28mm).

Specimen # 10TB

Number of Cycles Elastic Modulus, E

(Msi)

[normalized]

14.78

9,000 [0.790]

14.83

27,000 [0.793]

14.76

54,000 [0.789]

14.81

99,000 [0.792]

14.74

153,000 [0.788]

14.43

190,000 [0.772]

Nf = 200,000 N/A   
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4.2.5 Specimens with maximum deflection of 0.28mm.

Specimen 10TB had a maximum deflection of 11.024 x 10-3 in. (0.28) and was

cycled at 5 hz until specimen fiacture, at which time the test was terminated.

Fig. 4.11 shows a slight increase in modulus, less than 0.5%, from 9,000 cycles

to 27,000 cycles with a nearly equal decrease in modulus from 27,000 cycles to

153,000 cycles. The flexural modulus decreased ~ 2.0% from 153,000 cycles to

190,000 cycles. Specimen 10TB ultimately failed at 200,000 cycles. Table

4.11 gives a discrete listing of the actual and normalized values ofE for

specimen 10TB and its respective cyclic intervals to near failure.

4.2.6 Specimens with a maximum deflection of 0.30mm.

Specimens 7TB & 8TB had a maximum deflection of 11.811 x 10-3 in. (0.30)

and were cycled at 2 hz until specimen fracture, at which time the test was

terminated. For specimen 7TB, Figure 4.12 shows a constant, near-linear

increase in flexural modulus, ~ 1.4%, from 10 cycles to 21,500 cycles and a

slight decrease in modulus at 57,500 cycles and specimen failure occurred at

60,000 cycles. The flexural modulus was nearly constant fiom 5 cycles to 125

cycles and then increased, ~ 2.6%, until reaching 10,200 cycles. From 10,200

cycles to 73,200 cycles the modulus decreased approximately 2.6%, ( this was

approximately the same modulus as at 10 cycles), and the specimen

ultimately failed at 100,000 cycles. Table 4.12 gives a discrete listing of the

actual and normalized values ofE for specimens 7TB & 8TB and their

respective cyclic intervals to near failure.
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Axial Specimen, 7TB & 8TB
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Figure 4.12 Dynamic flexural modulus as a function of cycles to near failure.

Maximum deflection was 11.811 x 10-3 in. (0.30mm).



Table 4.12 Elastic modulus data as a function of cyclic interval for the axial

specimen’s 7TB & 8TB, with a maximum deflection of 11.811 x

10-3in. (0.30mm).

 

 

 

 

 

 

 

 

 

  

Specimen # 7TB Specimen # 8TB

Number of Elastic Number of Elastic

Cycles Modulus, E Cycles Modulus, E

(Msi) (Msi)

[normalized] [normalized]

14.67 14.87

10 [0.784] 5 [0.795]

14.77 14.85

130 [0.790] 125 [0.794]

14.77 14.96

490 [0.790] 485 [0.800]

14.82 14.95

970 [0.793] 1,000 [0.799]

14.87 15.23

21,500 [0.795] 10,200 [0.814]

14.82 15.05

57,500 [0.793] 55,200 [0.805]

14.89

Nf = 60,000 N/A 73,200 [0.796]

Nf = 100,000 N/A     
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4.3 DISCUSSION OF THE E-N RESULTS

Looking over the plots and results of the E-N study at first there seems to be

no common trends from specimen to specimen. The only common thread for

all the cyclic-bend specimens is that the elastic modulus varies with cycles.

This variation in elastic modulus, with bending cycles, is hard to accept since

the cycles are elastic, thus the elastic modulus should remain constant. Then

the next question, is the deformation actually elastic? From our first course in

mechanics we are taught that, if there is no plastic deformation, cyclic or

static, the elastic constants remain constant. For this cyclic-bend study the

specimens had to remain elastic, otherwise they would have failed due to

impact damage.

The technique for measuring the load-displacement data for this survey was

with a load-cell and an extensometer. This is at best a qualitative approach,

had a similar variation in modulus with cycles not been observed by other

researchers (23,24,25), it probably would have been discarded as bad data.

With the advent of exotic materials, such as ceramic-matrix composites,

metal-matrix composites and polymer-matrix composites, several atypical

observations have been evaluated. For example, ceramic (32), ceramic-matrix

(27,28) and brittle polymer-matrix (26) materials under thermal and

mechanical fatigue have encountered a elastic modulus decrement until

reaching a saturation-level where they would ultimately fail. Using sonic

resonance (3336), this modulus decrement with, thermal and mechanical,
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cycles has been quantified. An empirical expression (23) has been derived

which models this characteristic with srnprisingly good precision. The same

materials under equivalent static, thermal or mechanical, conditions would see

virtually no reduction in the elastic modulus. Therefore, there are clearly

mechanisms under cyclic loading that are not present for static conditions (39).

These fatigue conditions are addressed in more detail in Chapter 5.

The objective of this discussion was to point out that, although the results in

Chapter 4 may have no quantifiable use, they have opened our eyes to the fact

that the modulus fluctuated for what was assumed to be elastic mechanical

cycles. Refreshingly, Similar elastic modulus decrement(39) has been observed

in other materials that were also assumed to be elastically cycled. Thus, this

observation gives rise to the validity of a rigorous investigation, to quantify the

elastic modulus variation as a function of mechanical cycles.

Currently, several researchers have purposed that for brittle materials under

cyclic-loading, a plastic zone is created from such mechanisms as, crack face

asperties, fracture debris from fiber or grain pullout and crack bridging.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

A material characterization was conducted for a Sij / Aluminum metal

matrix composite (MMC). The purpose of the study was two-fold: (1) to

perform a static evaluation of the MMC to determine the tensile, shear and

flexural monotonic properties; and (2) to perform a deflection-controlled cyclic-

bending survey of the MMC. Test specimen orientations were, (1) along the

preferred or axial direction, and (2) transverse to the axial direction. These two

Specimen orientations were used for both of the aforementioned phases of

study. The two Specimen directions were chosen for two reasons, (1) to verify if

the MMC was isotropic, as the manufacturer claimed and (2) to serve as a

comparison tool for the two Specimen directions.

Initially, the microstructure of the MMC was observed under a scanning

electron microscope (SEM). Three phases of the MMC were analyzed, two of

which were to be evaluated. Assume the axial direction is parallel to the x-axis

and the y-axis is along the transverse specimen direction, see Fig. 1.1. The

planes of observation were the y~z plane, x-z plane, and x-y plane. In the y~z

plane, Fig. 2.1, the whiskers resembled “dots”, with relatively few whiskers

lying in the y~z plane. Both,the x-z plane and x-y plane, Fig.2.2, have a

majority of whiskers lying in the respective planes. This finding was the first

indication that the MMC was not isotropic.
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Static Test Conclusions:

For the tensile tests, the axial specimens averaged 30-35% greater strength

(~72 ksi) than the transverse specimens (~ 54 ksi). It is interesting to note

that a 2024~T4 monolithic aluminum has a tensile strength of 48 ksi (37),

approaching the strength of the transverse Specimens. The MMC had a T~8

heat treatment, this would account for the greater tensile strength and the

reduction in ductility as seen in Fig. 2.4.

Poisson’s ratio for the axial and transverse directions was v = 0.235 and v =

0.323 respectively. Poisson’s ratio for most aluminum alloys (37) ranges fi‘om

v = 0.330 to 0.334. Again, the transverse Specimens compare closely with that

of most single-phase aluminum alloys. The Poisson’s ratio for the axial

direction (v=0.235) resembles that of a very brittle material, such as cast iron

(v: 0.21 1- 0.290).

Young’s moduli, E was 18.60 msi and 13.09 msi for the corresponding axial and

transverse specimens. The modulus for the axial direction is approximately

42% greater than that for the transverse direction. The elastic modulus for

most aluminum alloys is between 9.9 msi and 10.3 msi (38).

An extensometer was used to measure the maximum deflection for the flexure

test. The maximum deflection of the extensometer was 1mm. After reaching

1mm, the specimens for both transverse and axial directions had yielded
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although didn’t fracture. A second cycle was conducted, where the plastic

deformation fi‘om the first cycle was just added to the deflection of the second

cycle. Calculating the flexural modulus for the MMC yielded an atypical result.

The modulus, for both specimen directions, was ~ 4% greater on the second

cycle than the first cycle, see Fig. 2.11. The flexural moduli for the transverse

direction was 11.5 msi and 12.0 msi for the first and second cycles,

respectively. The bending moduli for the axial direction was 14.3 msi and 14.9

msi for the corresponding first and second cycles. This type of strain-hardening

often occurs under repeated mechanical cycling, although not typically for 2

 

quasi-static mechanical cycles. The nominal bending strength for the

respective axial and transverse directions was 89,072 psi and 116,300 psi.

These strengths are anomalous as stated in 2.5.4, since the assumption of

linearly-elastic behavior is violated. It was initially assumed that the bending

behavior would be similar to the tensile test, in which the linear-elastic

expressions for bending stress, Eq. [2.5], would have been valid.

The shear properties for the composite were determined using the Iosipescu

Shear Test Method. This method is becoming the technique of choice for

polymer-matrix and metal-matrix composites (22) due to the small coupon

size, Fig. 2.15. The shear strengths were similar for both Specimen directions.

The corresponding transverse and axial shear strengths were 24,400 psi and

28,278 psi. A 2014-T4 aluminum has a shear strength of z 38,000 psi. The

experimental (Iosipescu) shear moduli for the transverse and axial directions

was 5.43 msi and 8.04 msi, respectively. Since Poisson’s ratio, v and Young’s

moduli, E had been determined for both specimen directions, it was decided to
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use the relationship for isotropic material , Eq. (2.11), to determine the shear

moduli, G for both directions. It was suprising to note that the “isotropic”

relationship yielded a Shear modulus only ~ 5% less than the experimental

(Iosipescu) shear modulus. This was true for both specimen directions. The

Shear moduli for most aluminum alloys is between 3.7msi and 3.9 msi.

Cyclic-Bending Conclusions;

The cyclic-bending phase of investigation yielded some very interesting

 

findings. This study was simply applying an old science to a new material. The

cyclic-bending testing was deflection-controlled, thus invariant of specimen

stiffness or direction. This condition made for a fair comparison between the

axial test specimens and transverse test specimens. The test was

compression-compression, with R=0.1, to reduce the chance for impacting the

specimen and resulting in premature specimen fiacture. The test'criterion

also assumed elastic strain (deflection). Several load-displacement data sets

were captured and stored on computer for each cyclic-bend test. Each data set

was analyzed to verify if the load-displacement was linearly, elastic. The

second method to verify if the cyclic-bend test was elastic was nearly infallible.

If the specimen did plasticity deform, and didn’t follow the machine actuator, it

would be destroyed within only a few cycles due to impact. The cyclic-bend

test was conducted at six deflection levels for both specimen directions. From

the reliability results three fatigue models were constructed per transverse and

axial direction. The fatigue models all consist ofpower-law equations linearized

on log-log plots.
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The first model used was Stress-Life (S-N), Eq.[3.9], where the endurance-

limits for the axial direction was approximately 50% greater than that for the

transverse direction, see Fig. 3.4. The endurance limit for the axial direction

was, Ao/Z = 23,000 psi and for the transverse direction, Ao/Z = 15,000 psi. The

endurance limit for 20xx~T4 aluminum is ~ Ao/Z = 18,000 psi (38). The S-N

fatigue test is acceptable when the deformation is primarily elastic, since the S-

N model doesn’t account for plastic deformation. The S-N test method was

 

devised over 100 years ago and was the first approach (20) used in an attempt

to understand and quantify metal fatigue.

The Strain-Life (E-Nf) method was the second technique used to evaluate the

cyclic-bend data. The strain-life model is based on the idea that, with several

components, e.g. cracks and notches, the response of the material is strain

dependent. In this study, two strain models were used; the first model,

Eq.[3.13e], did not account for mean stress and the second model, Eq.[3.14], did

account for mean stress effects. The cyclic-bend test had a mean stress, thus

it was hoped that Eq.[3.14] would closely parallel the test results.

The strain-life model w/o mean stress effects resembled that of the S-N

models, the correlations for the strain-life models were Slightly better than the

S-N models for both directions. The strain-life model with mean stress effects

are not only a function of strain, but also elastic modulus and mean stress.

The nominal elastic modulus and nominal mean stress was measured for each
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specimen. The elastic modulus varied from specimen to specimen, even from

data interval to data interval, this helps explain why the strain-life models

which account for mean stress effects are not straight, see Fig. 3.5. The strain-

life models with mean stress effects were slightly conservative for both

specimen directions.

The deflection-life (O-Nf) model was created specifically for this study, since the

controlled-variable was deflection, not stress or strain. Not surprising, the

 

correlations for this model were the best of the three fatigue models, for both

directions. The correlation coefficients for the corresponding axial and

transverse deflection-life models were 0.88 and 0.95 respectively.

It was decided midstream in the cyclic-bend study to analyze Young’s modulus

as a function of cycles to near failure. Since the load-displacement data was

already captured at several intervals throughout each test, I had all the

information needed to perform the E-N perusal. The dynamic flexural modulus

was normalized against the static flexural modulus.

A first glance, Figs. 4.1-4.12, it may appear as though no obvious trends are

apparent, although one trait that is very distinct is that the moduli are not

constant throughout the cyclic-bend tests. This behavior doesn't make sense

at the macroscopic-level, the elastic moduli should remain unchanged ifno

plastic deformation is present. one explanation might be, at the microscopic-

level a plastic-strain zone is induced due to such mechanisms as asperities,

crack face rubbing, etc. Regardless of the reason for the variation in E with
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elastic bending cycles, this situation is not one to be overlooked. Since this

mechanical phenomenon has been observed, a rigorous investigation is in

order, using more quantitative methods.

This cyclic-bending study has prompted several avenues of additional research.

These areas of recommended additional study are stated below with

appropriate justification. ’

Recommended Additional Research:

 

Using the Sij / Al MMC extrudate evaluated in this thesis, perform a study of

strain-controlled, uniaxial fatigue loadings. The specimens to be analyzed will

be along the extrudate axis and several off-axis angles until reaching the

transverse axis. This survey would allow for the creation of Strain-Life (E-Nf)

models that would include both the elastic and plastic strain components,

Eq.[3.13]. The elastic component of the uniaxial Strain-Life (c-Nf) models,

along the axial direction and transverse direction, can be compared with the

cyclic-bending Strain-Life (s-Nf) models.

Continue the deflection-controlled cyclic-bending of the Sij / Al MMC, with a

few amendments fi‘0m the technique used in Chapter 4. The purpose of this

study would be to quantify the elastic modulus decrement with mechanical

cycles. The test specimens would be cut along the axial or extrudate axis, and

several off-axis angles until reaching the transverse axis. The elastic modulus
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would be measured using sonic resonance at the pre-determined cycles of

interest.

Similar thermal fatigue work has been executed for brittle polymer composites

(24,25) and ceramics and ceramic composites (23,31). Recently, Case et al.

(23) has observed and evaluated this thermal fatigue via sonic resonance.

Case has derived an empirical relation to describe the thermal fatigue damage

of the elastic modulus with thermal cycles to near failure. This equation

basically states that as the number of thermal shocks (cycles) increases, the

elastic modulus decreases linearly until the thermal shock damage reaches a

steady-state, or saturation level. Case et a1. (33-36) has compared damage

satruation behavior on a number of brittle materials, including his own

ceramics and ceramic-matrix composites (23,31), along with that of other

researchers’ work on brittle polymer-matrix composites (24,25). Using the

aforementioned empirical expression (23), the modulus decrement and

saturation-levels with thermal cycles were modeled with surprisingly

acceptable precision.

An interesting finding was that a damage saturation Similar to that observed

for the thermal fatigue has also been observed for cyclic mechanical loading for

brittle materials such as, ceramics (32), ceramic composites (27,25) and fiber-

reinforced epoxies (26). These cyclic mechanical loading studies in brittle

materials Show damage saturation for a variety of loading modes (29,30).

Some of the proposed mechanisms for this saturation of fatigue damage

include friction processes such as, crack deflection, asperity rubbing and crack
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face bridging.

On a slightly different note, Reece et al. (39) discovered that for an alumina

COD Specimen subjected to repeated mechanical loading resulted in crack

pr0pagation. For an equivalent static load applied for the same amount of

time, or static fatigue, there was no additional crack propagation. some of the

proposed mechanisms for this crack propagation are, asperities on the crack

faces and/or fiacture debris produced by grain crushing. Although the

mechanisms in brittle materials are not well understood, it is just apparent

that there is crack growth for cyclic loading. Cyclic fatigue of brittle materials

has be largely overlooked in the past. The reason is probably due to the

perception that since brittle materials have limited crack tip plasticity, they

will not degrade significantly when cyclically loaded.

The previous two paragraphs help give credibility to the variation in the elastic

modulus with “elastic” mechanical cycles. The literature review in no way

describes the mechanical phenomenon, itjust acknowledges that this condition

exists. The MMC evaluated behaves Similar to a brittle material under

uniaxial tension to failure, see Fig. 2.4. The MC is more ductile for 3~point

bending, although it exhibits the elastic modulus decrement with “elastic”

cyclic-bending cycles. Thus, it is thoughtjustifiable to re-evaluate the MMC

similar to that of the brittle materials mentioned above to see if they exhibit

trends similar to that of the corresponding rigid materials. This type of sm'vey

has never been conducted for MMC’S, only for ceramics, ceramic-matrix

composites and rigid polymer-matrix composites.
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APPENDIXA

QUICKBASIC CODE TO CAPTURE THE LOAD-DISPLACENIENT DATA,

FOR THE CYCLIC-BENDING SURVEY, AT DESIGNATED TIIVIE

INTERVALS.
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DECLARE SUB Readadint (Ch0%, Ch1%)

‘ DECLARE SUB Readadint (Ch0%,

Chl%)

DEFINT A-Z

DEFLNG N, S

DIM Adl(10), Adh(10)

ScanNumber = 0

Formats = "I ### l\ ?I \ \I \
\ll

DIM Xdata(252), Ydata(252)

’ GOSUB ClockSet

I

’ Get initial information

CLS

LOCATE 5, 10: PRINT "Enter the number of minutes

between scans...: ";

INPUT "", Intervals

Interval = VAL(Interval$)

IF Interval < 1 THEN Interval = 1

IF Interval > 181 THEN Interval = 181

SecInterval = Interval * 60

LOCATE 7, 10: PRINT "Using an interval of";

Interval; "minute(s)"

LOCATE 8, 10: PRINT " or";

SecInterval; "seconds"

LOCATE 11, 10: PRINT "Enter a 4 letter prefix for

data files...: ";

INPUT "", Prefix$

IF Prefix$ = "" THEN Prefix$ = "NONE"

Prefix$ = UCASE$(LEFT$(Prefix$, 4))

LOCATE 13, 10: PRINT "Data files will be saved as ";

Prefix$; "####.DAT"

LOCATE 20, 10: PRINT "Press X to exit or any other

key to start"

50 A$ = INKEY$= IF AS = "" THEN GOTO 50

IF UCASE$(A$) = "X" THEN GOTO Done

I

' Set up screen to display incoming scan information

CLS

PRINT TAB(10); "Test started on "; DATE$; " at ";
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TIME$ - '

PRINT TAB(10); "Using a time interval of"; Interval;

"minute(s)" . . _

COLOR 18: LOCATE 2, 65: PRINT "< Waiting > ": COLOR

 

 

 

7

PRINT

PRINT ", , , ," +

STRING$(45, "=") + "a"

PRINT "| Scan | Time | |

" + SPACE$(34) + "|"

PRINT "I Number I Taken | Saved as | Comments

" + SPACE$(34) + "I"

PRINT "} l '" +

STRINGS (45 ’ u_ll) + "q! n

I

' The main testing loop

100 StartTime = TIMER

NextTime = TIMER + SecInterval

150 IF TIMER > NextTime THEN

GOSUB ItsTimeToScan

GOTO 100

END IF

IF INKEYS <> "" THEN GOTO Done

GOTO 150

I

ItsTimeToScan:

VIEW PRINT: COLOR 19

LOCATE 2, 65: PRINT "< Scanning >": COLOR 7

ScanNumber = ScanNumber + 1

Filename$ = Prefix$ + LTRIM$(STR$(ScanNumber)) +

n . DAT II ~

OPEN Filename$ FOR OUTPUT AS #2

ScanTimeS = TIMES

FOR NumOfPOints = 1 TO 100

CALL Readadint(Ch0%, Ch1%)

Xdata(NumOfPOints) = Ch0%

Ydata(NumOfPoints) = Ch1%

NEXT NumOfPoints

FOR N = 1 TO 100
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PRINT #2, Xdata(N), CHR$(44), Ydata(N)

NEXT N

CLOSE #2

VIEW PRINT 8 TO 25

IF ScanNumber > 16 THEN

LOCATE 24, 1

PRINT USING Formats; ScanNumber; ScanTime$;

Filenames; " "

PRINT

ELSE

LOCATE (ScanNumber + 7), 1

PRINT USING Formats; ScanNumber; ScanTimeS;

Filenames; " "

END IF

VIEW PRINT

COLOR 18: LOCATE 2, 65: PRINT "< Waiting > ": COLOR

7

RETURN

I

Done:

VIEW PRINT: CLS : CLOSE : END

I

' List Of important variables

' ScanNumber : Keeps track Of the number of

scans completed

' SecInterval : The time between scans, in

seconds

’ Interval : The time between scans, in

minutes

' Prefix : The four letter prefix for saved

data files

’ Formats : Format for the printed line of

scan information

' FileName$ : The current name of the saved

data file

' Ch0%, Ch1% : Returned values of AD conversion

for channels 1 & 2 '

’ StartTimes : The time that the current scan

was started

’ NumOfPoints : Dummy loop variable to read in a

number of points

' PauseLOOp : Dummy loop variable for a pause

between reads



140

ClockSet:

RETURN

WAIT (&HZEC + 1), &H2, &H2

WAIT (&HZEC + 1), &H4

OUT (&HZEC + 1), &H3

WAIT (&HZEC + 1), &H2, &H2

OUT (&HZEC), 208

.WAIT (&HZEC + 1), &H2, &H2

OUT (&HZEC), 7

DEFSNG A-Z

SUB Readadint (Ch0%, Chl%)

DIM Adl(10), Adh(10)

Stop and clear the dt2818

OUT (&H2EC + 1), &HF

Temp = INP(&H2EC)

WAIT (&HZEC + 1), &H2, &H2

WAIT (&HZEC + 1), &H4

OUT (&HZEC + 1), &H1

set up a/d.

WAIT (&HZEC + 1), 8H2, &H2

WAIT (&HZEC + 1), &H4

OUT (&HZEC + 1), &HD

Write A/D gain byte. (gain is always zero)

WAIT (&HZEC + 1), &H2, &H2

OUT (&HZEC), 0

Write A/D start channel byte.

. WAIT (&HZEC + 1), &H2, &H2

OUT (&HZEC), 0

Write A/D end channel byte.

WAIT (&HzEC + 1), &H2, &H2

OUT (&HZEC), 1

Write high and low bytes of NCONVERSIONS#.

WAIT (&HZEC + 1), &H2, &H2

OUT (&H2EC), 3

WAIT (&HZEC + 1), &H2, &H2

OUT (&HZEC), o



END SUB
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Write READ A/D command.

WAIT (&HZEC + 1), &H2, &H2

WAIT (&HZEC + 1), &H4

OUT (&HZEC + 1), &HE

FOR LP = 0 TO 3: WAIT (&HZEC + 1), &HS

Adl(LP) = INP((&H2EC))

WAIT (&HZEC + 1), &HS

Adh(LP) = INP((&H2EC))

NEXT LP

Chooo# = Adh(0) * 2551 + Adl(O)

IF Ch000# > 32767 THEN Chooo# = Ch000# - 65536!

cno% = Chooo#

cn111# = Adh(1) * 256! + Adl(l)

IF Ch111# > 32767 THEN Ch111# = Ch111# - 65536!

Ch1% = Ch111#

Check for ERROR.

WAIT (&HZEC + 1), &H2, &H2

WAIT (&HZEC + 1), &H4:

Status = INP((&H2EC + 1))

IF (Status AND &H80) THEN

PRINT "error on A/D operation"

STOP

END IF
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