

THESIS

This is to certify that the

dissertation entitled

PYRROLES AS TERMINATORS IN CATIONIC CYCLIZATIONS.
THE PREPARATION OF 5,6,7,8-TETRAHYDRO-INDOLIZIDINES AND 6,7,8,9-TETRAHYDRO-[5H]-PYRROLO[1,2a]-AZEPINES.
STUDIES DIRECTED TOWARDS THE SYNTHESIS OF SIMPLE INDOLIZIDINE AND QUINOLIZIDINE ALKALOIDS.

presented by

Jeffrey W. Raggon

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Chemistry

Date April 21, 1986

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE
	-	

MSU is An Affirmative Action/Equal Opportunity Institution chordesedus.pm3-p.1

			1
			i
			· · · · · · · · · · · · · · · · · · ·
	·	V	ı

PART I

PYRROLES AS TERMINATORS IN CATIONIC CYCLIZATIONS.

THE PREPARATION OF 5,6,7,8-TETRAHYDRO-INDOLIZIDINES AND 6,7,8,9-TETRAHYDRO-[5H]-PYRROLO[1,2a]-AZEPINES.

PART II

STUDIES DIRECTED TOWARDS THE SYNTHESIS OF SIMPLE INDOLIZIDINE AND QUINOLIZIDINE ALKALOIDS.

Ву

Jeffrey William Raggon

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1986

ABSTRACT

PART I

PYRROLES AS TERMINATORS IN CATIONIC CYCLIZATIONS.

THE PREPARATION OF 5,6,7,8-TETRAHYDRO-INDOLIZIDINES AND 6,7,8,9-TETRAHYDRO-[5H]-PYRROLO[1,2A]-AZEPINES.

PART II

STUDIES DIRECTED TOWARDS THE SYNTHESIS OF SIMPLE INDOLIZIDINE AND QUINOLIZIDINE ALKALOIDS.

Ву

Jeffrey William Raggon

In Part I of this thesis, N-(epoxyalkyl) pyrroles 8, 9, 10, 11, 12 and 13 are readily prepared either by direct pyrrole N-alkylation with w-iodo-1,2-epoxy alkanes or via alkylation with w-iodo-1,2-alkanediol acetonides followed by conversion to the corresponding epoxides. The cyclization of these N-(epoxyalkyl) pyrroles were examined with five Lewis acids: EtAlCl2; Et2AlCl; Ti(0-iPr)3Cl; ZnI2; and BF3 OEt2, Et3N providing cyclized products 14, 16, 17, 18, 19, 20 and 21 in moderate to excellent yields. The cyclization products 14, 16 and 20 are formally the products of "anti-Markovnikov" attack on the less-substituted epoxide terminus.

In Part II, carbinol amides 21, 24, 28, 31, 35, 38, 42 and 45, derived from Mitsunobu coupling of succinimide 17 or glutarimide 18 and the appropriate furyl alcohol followed by reduction, were employed Nacyliminium ion precursors. Treatment of the precursors with a two-phase mixture of formic acid and cyclohexane resulted in facile cyclization to 5,6; 6,6; 5,7 and 6,7membered, fused-ring systems in the electronically favored 3-to-2-furyl closure and 5,6- and 5,7-membered rings only in 2-to-3-furyl closure. the Ιn similar fashion, carbinolamides 61 (n=1) and 64 (n=2) prepared by Mitsunobu coupling of succinimide 17 or glutinimide 18 and 2-(5methyl-2-furyl) ethanol 58 followed by reduction, provided, under the standard cyclization conditions (HCO2H, c-C6H2) 2 to 3 minutes, the diones 62 (n=1) and 65 respectively. The chemical manipulations of the furyl residue necessary to transform indolizidine precursor 62 and quinolizidine precursor 65 into the bioactive alkaloids elacokanine A 12 and lipinine 15 or epi-lupinine 16, respectively, are described.

TO MY LOVING PARENTS,
JOHN AND NORMA RAGGON.

ACKNOWLEDGEMENTS

The author wishes to express his sincerest gratitude to Dr. Steven "Man with hair of fire" Tanis for his patience, support, guidance, friendship, and many excellent parties throughout this project.

The author also wishes to acknowledge the members of the faculty and staff for their assistance and advice throughout this work.

Special thanks are extended to my fellow workers in the Tanis lab for their advice, companionship, and ability to withstand various personalities trapped within my body (*i.e.* Marlon Brando, Dr. Zachary Smith, Herb Alpert, etc.).

In particular, the author wishes to thank Ricky "Cleanhead" Olsen for performing mass spectrometric analysis and Mark "Schvenia" McMills for his friendship and editorial assistance in the preparation of this thesis.

Finally, the author wishes to thank Michigan State University for its support in the form of a graduate assistantship and the National Institute of Health for a grant supporting the latter part of the research performed herein.

TABLE OF CONTENTS

																												Page
LIST	of	TA	BL	.ES	; -	- 1	PA	RI	7	I.	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•
LIST	OF	PI	GU	RI	8	-	P	AF	?T	S	I	A	NI)]	ΙI	•	•	•		•	•	•	•	•	•		•	vi
LIST	of	EQ	UA	TI	O	18	_	. E	^ A	RT	8	I	A	/NI		II	•	•		•	•	•	•		•		•	vi
LIST	OF	SC	HE	ME	S	_	P	AF	2T	I	I.		•	•	•	•	•	•		•	•	•		•	•		•	viii
PART	ı .																											
			YC																					, 7	, 8	-		
			'B T																									
		T	BT	RA	H	/D	RO	- [5	H)	- I	PY	RE	101	LO	[1	, 2	a]	-,	AZ	RF	PI	NE	5.	•		•	1
INTRO	D U	CTI	ON		•	,	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	1
DESIG	n .	AND	S	YN	ITE	IB	S I	88	•	0 F	•	Y	CI	.12	ZA:	TI	ON	S	U	BS	TF	SA'	TB	S	•	•	•	3
CYCLI	ZA	rio	N	SI	U	I	B S		•	•		•	•	•	•	•	•	•		•	•	•	•	•			•	9
EXPER	IM	BNT	'AL				•	•	•	•	•			•	•	•		•		•	•	•	•	•	•		•	18
LIST	0F	RE	PE	RE	INC	B	8	•		•					•	•	•	•		•		•	•				•	50
PART	ΙΙ																											
			01	, 8	IN	1P	LE	1	N	DO	L	Z	II	H	A B	A	ND	Q	U	IN	01	LI	ZI	DΙ	NB			
			AL	KA	LC	I	D8	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	55
INTRO	DU	CTI	ON	ı .	•)	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	55
DESIG	N	AND	S	YN	ITE	IB	SI	88	3 (0 F	•	Y	CI	.12	ZA:	T I	ON	S	U	BS	TE	RA'	TB	S	•	•	•	60
FURAN	M	AMT	DII	IT. A	ጥ 1	n	N Q		_	TI	P	P	DI	P P	L D	A T	TΛ	M	Ω	P	A 1	. 1	A T.	nτ	n			
PRECU											_	_						••		-		•		•	٠.		•	66
EXPER	IM	BNT	'A L	•	•	,	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	79
LIST	0 F	RE	FE	RE	NC	E	S													•							•	107

LIST OF TABLES

			Page
PART I			
Table I	Cyclization Substrates and Possible		
	Products	•	7
Table II	Cyclization Results	•	11

LIST OF FIGURES

		Page
PART I		
Figure 1	The Synthesis of $N-(Rpoxyalkyl)-$ Pyrroles 8, 10, 12 and 13	8
PART II		
Figure 1	N-acyliminium Ion 1	55
Figure 2	N-acyliminium Ion Skeletal Types	59
Figure 3	3-Substituted-to-2-furyl and 2-substituted-to-3-furyl Terminated N-acyliminium Ion-Initiated Cyclizations Leading to Indolizidine and Quinolizidine Alkaloid Precursors	60
Figure 4	Indolizidines and Quinolizidines	62
Figure 5	Oxidation of 2,3-Disubstituted Furans	67

<u>]</u>

<u>P.</u>

(

(

(

(

(10

LIST OF BQUATIONS

		Page
PART I		
(1)	Cyclization Sequence	3
(2)	Synthetic Equivalents of N. a-dialkyl Pyrrole Products	3
(3)	Alkylation Sequence Providing N-epoxyalkyl Pyrroles 9 and 11	6
PART II	•	
(1)	The Tscherniac-Einhorn Reaction	56
(2)	Electrochemical Oxidation of Amides	57
(3)	The pH-Controlled Sodium Borohydride Reduction of Cyclic Imides	57
(4)	N-acyliminium Ion with a 3-to-2-furyl Closure	60
(5)	N-acyliminium Ion with a 2-to-3-furyl Closure	60
(6)	Preparation of Cyclized Substrates 22 and 25	63
(7)	Preparation of Cyclized Substrates 29 and 32	63
(8)	Preparation of Cyclised Substrates 36 and 39	63
(9)	Preparation of Cyclized Substrates 43 and 46	63
(10)	Ketalization of 62 (n=1) and 65 (n=2).	74

LIST OF SCHEMES

			Page
PART I	<u> </u>		
Scheme	I	Several Methods for the Generation of N-acyliminium Ions	56
Scheme	II	Desilylation of N-acyliminium Ion Precursor 57 (n=2) Upon Cyclization to 25 (n=2)	70
Scheme	III	Preparation of Diones 62 (n=1) and 65 (n=2)	71
Scheme	IV	Proposed Synthesis of Lupinine 15 or Epi-lupinine 16	74
Scheme	V	Proposed Synthesis of Blacokanine A 12	76

INTRODUCTION

PYRROLES AS TERMINATORS IN CATIONIC CYCLIZATIONS.
THE PREPARATION OF 5,6,7,8-TETRAHYDRO-INDOLIZIDINES AND 6,7,8,9-TETRAHYDRO-[5H]-PYRROLO[1,2A]-AZEPINES.

INTRODUCTION

The alkaloids present a multitude of skeletal and structural types providing a broad spectrum of potent and interesting biological activities. 1 A common skeletal arrangement displayed by a number of the bioactive alkaloids is a five-membered nitrogen-containing ring fused to a five-, six-, or seven-membered carbocycle. The N-containing heterocyclic moiety, in the pyrrole or pyrrolidine oxidation state, is an integral part of such molecules as the pyrrolizin-1-one 12, from the hairpencil secretion of the male Monarch butterfly Lycorea ceres ceres; the haepatotoxic pyrrolizidine alkaloid heliotridine 23; the Dendrobatid alkaloid pumiliotoxin B 34; the potent a-mannosidase inhibitor swainsonine 45; and the tuberostemonine 5.8

Alkaloids 1-5 exhibit an N-α attachment of the fused ring system, as opposed to an α, β-fused array which is indicative of the indole class of alkaloids. As a result of our success in preparing fused-ring systems via furanterminated cationic cyclizations⁷, we became intrigued by the possibility of preparing the fused-ring systems of compounds 1-5 by a pyrrole-terminated cationic cyclization. In principle, the pyrrole nucleus should be a more effective terminator in cationic π-cyclizations than a furan, owing to pyrrole's greater nucleophilic character. The general sequence (Eq. 1) for preparing the N-α fused system consists of cyclizing an N-alkyl substituted pyrrole 6, possessing a latent electrophilic site at a well-defined location in the alkyl chain. Compound 7 would result after activation of

th

<u>N</u>-

es

eq in

and Wor

rin

fun

pro

Desig

carbo

study

the benign electrophile, electrophilic attack at the more nucleophilic e-position, and rearomatization. The resulting N-a-dialkyl pyrrole 7, obtained from the cyclization of 6, establishes the pyrrole nucleus as the operational equivalent of the hypothetical pyrrolyl dianion illustrated in Equation 2. Variation of the distance between the active and latent electrophilic centers of the alkyl chain (Eq. 2) would provide compound 7 in which the size of the formed ring could be easily altered. In addition, the residual functionality resulting from the cyclization initiator might provide sufficient synthetic "handles" for the completion of a complex synthesis.

Design and Synthesis of the Cyclization Substrates.

Cationic π -cyclization, in the construction of carbocyclic ring systems, has been the object of intense study since 1950.7,9a-n A classic example is the biomemetic

f

f

a:

81

re

th

Po

#tu

fun

polyene cyclizations which have yielded a variety of naturally occurring steroids and other natural products with remarkable stereoselectivity at ring junctions and remote stereocenters in the polycyclic framework. 10,11

For a polyene cyclization to succeed, a suitably electrophilic cyclization initiator and a sufficiently nucleophilic terminator-functionality are imperative. During the course of previous investigations of cationic cyclizations, a wide variety of initiator and terminator functions have been examined.

Some commonly utilized nucleophilic terminators include simple olefins12, aromatic rings13, acetylenes14, allyl- and propargyl silanes15 and allenes.98 Other terminator functions that are used with less regularity are vinyl ethers16 or heteroaromatics, such as thiophene17 and furan.7 Conspicuously missing are numerous examples in which pyrrole has been used as a successful cyclizationterminator function.2,9t,18 The lack of precedent in this area is undoubtedly due to the reactivity of the N-alkyl pyrrole starting materials and the enhanced sensitivity of the derived N-c-dialkyl pyrrole products. This is expected as pyrrole and simple alkyl substituted pyrroles have been reported to react readily with oxygen and acids, providing polymeric materials. 19

The range of electrophilic-initiator functions has been studied to a much greater extent. A wide variety of functional groups have been used to "trigger" cyclisation

B

C

D

• y

reactions. Some of the common initiators are simple olefins²⁰; epoxides^{2a,k;16;21}; allylic alcohols^{7b,9a,14}; and their oxidation products, a, \(\beta\)-unsaturated ketones. \(^{12a,b}\) Additionally, Johnson has shown that acetals can be used to initiate cationic cyclizations and that chiral acetals have the ability to transfer chirality to the resulting cyclization products. \(^{22}\) Recently, attention has been directed towards the use of N-acyliminium ions as cationic cyclization initiators culminating in the syntheses of several alkaloid skeletal types. \(^{97-hh}\)

Our earlier work with furan-terminated cationic cyclisations and the excellent studies of others, k; 10; 21 has demonstrated the utility of the epoxide function as a cyclisation initiator. A wide variety of Lewis acids were examined in that study and successful cyclisation to acid labile 2,3-disubstituted furans was observed when the Brönsted acidity of the reaction medium was moderated. These relatively mild conditions, coupled with the ease of epoxide introduction, either insertion intact or as the corresponding diol acetonide, made the epoxide the initiator of choice. Another equally important aspect of this study was to assess the effectiveness of the sensitive pyrrole nucleus as a terminator function in cationic r-cyclisations.

The cyclization substrates examined were designed to permit entry into five-, six-, or seven-membered ring systems. In all of the cases examined, the substitution

read intr

r

(

pc

ints undo

nucl

the

Equat

ether Prepa

0]24,

yield.
Pyrrol

epoxy-

the e

about the oxirane was biased to favor one mode of C-O bond polarization over the alternative bond. 9b, 13, 16 Furthermore, we have examined placing the initiator function within the ring being formed (endocyclic) or outside the forming cycle (exocyclic). 23 The requisite N-epoxyalkyl pyrroles and possible reaction products are illustrated in Table I.

As previously mentioned, the propensity of pyrroles to readily react with oxidizing agents necessitates introduction of the epoxide, or its synthetic equivalent, intact. Standard olefin epoxidation methodology? would undoubtedly result in destruction of the sensitive pyrrole nucleus. Therefore, we envisioned the most direct route to the requisite epoxy pyrroles 8-13 to be that described in Equation 3. Treatment of pyrrole with KOt-Bu and 18-crown-6 ether followed by the addition of epoxy-iodide 22, which is prepared from the commercially available 3-methy-3-buten-1ol²⁴, provided N-epoxyalkyl pyrrole 9 in a very modest 40% Similarly, iodo-epoxide 2325 led to epoxyalkyl pyrrole 11 in a disappointing 34% yield. The low yields of epoxy-pyrroles 9 and 11 forced us to consider introducing the epoxide function in a protected form, as the

5

6

. 6-

6-60

7-exc

TABLE 1: Cyclization Substrates and Possible Products

Designation	Epoxyalkyl-Pyrrole	Possible Products
5-exo/6-endo	⊗ N	OH OH
5-exo/6-endo	2	IS IE
6-endo	10	OH 17
6-exo	11	IB OH
6-exo/7-endo	12	HO SO OH
7-ехо	13	2I OH

c (

<u>34</u>

18C-6 yield

in a

hydro

Provio

corresponding diol-acetonide, in order to complete the synthesis of 8, 10, 12, and 13 (See Figure 1).

Figure 1: The Synthesis of \underline{N} -(Epoxyalkyl)-Pyrroles 8, 10, 12, and 13.

As is illustrated in Figure 1, the alkylation ($KO\underline{t}$ -Bu, 18C-6, Rt_2O) of pyrrole with θ -iodo diol acetonide 24^{26} yielded the corresponding pyrrole- \underline{N} -alkyl diol acetonide 25 in a much improved 95% yield after chromatography. Careful hydrolysis with pyridinium \underline{p} -toluenesulfonate²⁷ in methanol provided diol 32 (R_4 = R_5 =H, 89%) which was converted to the

i
r
a
t)
(F
in
of

be con

COI

R5 = 1

Cycl

ring labil

sensi caref

primar

Profou

Pathway

correct

glycol monotosylate (pTsCl, pyridine) 32 (R4=p-Ts, R5=H) in 91% yield. Closure to the oxirane, with carefully chosen reaction conditions, (KOt-Bu, THF, -78°C) gave the desired N-(epoxyalkyl) pyrrole 8 (90%) in 69% overall yield from pyrrole. In similar fashion, alkylation of pyrrole with eiodo diol acetonides 2628, 2829, and 3030 provided the requisite N-(epoxyalkyl) pyrroles 10, 12 and 13 in 25%, 57% and 72% overall yields, respectively. With the exception of mono-tosylation of the highly hindered diol 33 the $(R_4=R_5=H)$, all yields were $\geq 78\%$ per step. initially disappointed with the low yield for the tosylation of diol 33 ($R_4 = R_5 = H$), the remainder of the reaction mixture consisted of unreacted starting material (55%) which could be readily recovered and resubmitted to the reaction conditions, thus providing an acceptable yield of 33 (R4=H, Rs = p - Ts).

Cyclization Studies

With the desired cyclization substrates available, the ring closing sequence was then examined. Given the acid lability of the pyrrole terminator-function and the enhanced sensitivity of the resulting product, N, a-dialkyl pyrroles, careful consideration of the reaction conditions are of primary concern. The choice of Lewis acid should have a profound effect in determining the preferred reaction pathway of the cyclization substrates. It was our hope that correct conditions could be found which would maximize the

pathway leading to fruitful cyclization and minimize the formation of unwanted side products.

In addition to the standard BF3 OEt2, which has seen considerable use in inducing cationic T-cyclizations 10, 10, four other Lewis acids were selected (See Table II) after considering two factors: (i) the ability to readily modify the potency of a group of Lewis acids with a common metal center and (ii) the possibility of moderating the Brönsted acidity of the medium through choice of Lewis acid. Extraneous protic acid might be scavenged by Lewis acids, such as the alkyl aluminum halides 1 which possess a protonolyzable carbon-metal bond, forming an alkane. Alternatively, with the proper choice of metal, the product metal-alcohol complex should be a much weaker Brönsted acid compared to a BF3-alcohol complex.

Snider has reported the successful application of alkyl as Lewis acids in aluminum halides acid-sensitive cyclizations. The alkyl aluminum halides cover a wide range of Lewis acidity31, from the very potent AlCla, to the barely acidic MeaAl. It is this range in Lewis acidity, together with their ability to scavenge protic acids, which might make these Lewis acids appropriate choices initiating epoxy-pyrrole cyclizations. Further modification aluminum-centered Lewis acids of is possible. demonstrated by Boeckman in his use of activated alumina as

TABLE II Cyclization Results

N-(Epoxyalkyl)-Pyrrole	BF ₃ ·0Et ₂ (1 eq.)	Ler EtAlCl ₂ (2 eq.)	Lewis Acid Et ₂ AlCl(2 eq.)	Ti(0iPr) ₃ Cl(3 e q.)	ZnI ₂ (3 e q.)
ç 00 0	1,8(70%)	J&(23%)	<u> </u>],(45%)	JA(33%)
مح	JE(32x)	J&(42%)	J&(44z)	!	JE(67%)
3₹	(x16)??	JZ(60z)	ነζ(61%)	<u>ال</u> ا(74x)	JZ(70%)
11	J,8(73%)	J&(81%)	<u> </u>	J&(80%)	JB(72%)
N	1,9(20%)	JL (35%) ZL (45%)	J,2(37%) Z,2(48%)	Jૂર(64x)	J2(21x) 22(30x)
₩	ટ્સ(21%)	ટ્રી (56%)	₹ <u>)</u> (56%)	ટ્રી (85%)	جاز (48x,هH)+21x iodohydrinجاز (26x,Et20)+49x iodohydrin

i

0

0(

th Py

ac;

ti

Pro

a catalyst for epoxide-initiated vinyl ether-terminated cationic cyclisations. 16

Titanium tetrachloride is a strong Lewis acid which has been observed to react with epoxides to provide \$\beta\$-chlorotitanates.\$^{32}\$ The oxophilicity of titanium and the relative acidity of the Ti-alcohol complex can be tempered by replacing chloride by alkoxy groups, such as isopropoxy. The titanium tetraalkoxides have been shown to be effective in catalyzing aldol condensations\$^{32}\$ and \$\beta\$-hydroxyl epoxide-initiated olefin-terminated cyclizations.\$^{21}\$ Furthermore, \$\text{Stork}^{33}\$ has demonstrated the use of the closely related \$\text{Zr}(0-iPr)_4\$ in promoting intramolecular Michael additions, leading to angularly methylated trans-hydrindenones.

Finally, zinc iodide³⁴ was selected to catalyze epoxyinitiated cyclizations based on the assumption that the
intermediate Zn-alcohol complex, generated in the
cyclization step, would be a weak protic acid. This
assumption is substantiated by Marshall's successful closure
of an acid-sensitive diene-aldehyde in his synthesis of
occidentaldol.^{34e}

For our particular study, we examined the ability of the following five Lewis acids to promote epoxy-initiated pyrrole-terminated cationic cyclisation: BtAlCl₂; Bt₂AlCl; Ti(O<u>i</u>-Pr)₂Cl; ZnI₂; and BF₂·OBt₂/TBA. The first four Lewis acids had provided poor to excellent yields of cyclised products during our furan-terminated cyclisation studies^{7*};

rį de 01

Lewis however. the aluminum-based acids afforded considerable quantities of allylic alcohol by-products. From our initial experiments, we discovered that standard conditions generally used to catalyze epoxy-BF2 · OBt2 initiated cyclizations had to be modified. Tempering the Lewis acidity of BF2.OBt2 was accomplished with ethereal solvents (Et20, THF) and tertiary amine bases, such as triethylamine. Having considered the requirements for the Lewis acids in this study, we began our examination with the moderated BF3 · OEt2 (R2O, EtaN) reaction conditions.

N-(epoxyalkyl) pyrrole 8 was treated with BF2·OEt2 (1 equiv.), Et2N (1 equiv.) in THF at -45°C to provide a single product 14 in 70% yield (See Table II). Examination of the spectroscopic data (IR, 1H NMR, BI/MS) obtained for product 14 revealed the nature of the product. Indolizidine precursor 14 resulted from an unanticipated 6-endocyclic ring closure. The observation of cyclication exclusively at the less-substituted terminus of the epoxide was unforeseen in light of our experiences with a similar 5-exo/6-endo furan-terminated cyclization and the prior studies of van Tamelen.35b In the analogous epoxide initiated-furan terminated cyclization, the ring-opened allylic alcohol was formed to the complete exclusion of closure to form the five-membered ring. 7 The failure to form a five-membered ring is likely the result of poor overlap between the developing cationic center at the internal carbon of the oxirane with the w-system of the pyrrole nucleus. Lack of

.

e

e d

ot

op

th

to

equ in

Wit

flexibility in the M-alkyl side chain which possesses but two sp3-carbon atoms precludes this overlap from occurring. Indeed, by analogy to the work of Stork35a, we anticipate that "Markovnikov" attack of the nucleophilic pyrrole-acarbon upon the more substituted carbon of the Lewis acid complexed epoxide would result in a severe bond angle distortion. Furthermore, van Tamelen has examined a polyene cyclization with an identical orientation of the T-system nucleophile relative to the mono-substituted epoxide and has obtained the "anti-Markovnikov" cyclization product, albeit in 2% yield.35b Our observation of exclusive "anti-Markovnikov" attack on M-epoxyalkyl pyrrole & to give 14 in 70% yield is indeed noteworthy.

In a similar fashion, 8 was subjected to EtAlCl₂ (2 equiv., CH₂Cl₂, -78°C), Et₂AlCl (2 equiv., CH₂Cl₂, -78°C), Ti(O<u>i</u>-Pr)₃Cl (3 equiv., CH₂Cl₂, O°C-25°C) and ZnI₂ (3 equiv., PhH, 25°C) to provide 14 in 23%, 32%, 45% and 33% yields, respectively. It should be noted that these and other cyclisation yields determined in this study are for optimized reaction conditions and represent virtually all of the recovered material.

N-(epoxyalkyl) pyrrole 9, which has been further biased toward C-O bond cleavage at the internal carbon of the oxirane, was treated with BF3·OEt2 in THF containing an equivalent of TRA to yield exclusively the 6-endo product 16 in 32% yield; none of the possible by-products associated with epoxide opening were detected. The alkyl aluminum

Ľ C đ i halides; EtAlCl₂, Et₂AlCl and ZnI₂, yielded only 16 in 42%, 44% and 67% yields, respectively. Surprisingly, the generally mild Ti(O<u>i</u>-Pr)₃Cl afforded an intractable mixture of unstable products which apparently did not contain 16.

Epoxy-pyrrole 10, which was expected to yield only 6-endo product 17 by analogy to our earlier work in the furan area⁷⁻⁸, was treated with moderated BF₃ OBt₂ (TEA, THF) providing a single cyclized alcohol 17 in an excellent 91% yield as a white crystalline solid (mp = 79-81°C). Good to excellent yields were obtained (60-74%) with the remaining Lewis acids used in this study (See Table II). Similarly, N-(epoxyalkyl) pyrrole 11 led to uniformly high (72-81%) yields of the expected 6-exo product 18 after treatment with the Lewis acids shown in Table II.

The next substrate examined was the N-(epoxyalkyl) pyrrole 12 which is the precursor to the 6-exo 19 and the 7-endo cyclised alcohol 29. An analogous 5-(3-furyl)-1,2-epoxy pentane provided only the corresponding 6-exo cyclised product with a variety of Lewis acids. Therefore, we anticipated similar behavior when the furyl moiety was replaced with pyrrole as the terminator. In the event, treatment of 12 with BF2·OEt2 (TEA, THF) afforded the 6-exo product 19, albeit in only 20% yield. However, treatment of 12 with BtAlCl2 (CH2Cl2, -78°C) yielded a mixture of two compounds, the expected N-e-dialkyl pyrrole product 19 (35%) and the previously unobserved 7-endo alcohol 20 (45%). The isolation of the 7-endo product as the major cyclised

C; Pı þ €e material suggests that the more nucleophilic pyrrole terminator coupled with the relatively mild reaction conditions are conspiring to yield the product of an assisted SN² substitution at the less sterically encumbered oxirane carbon.²⁶

The final cyclization precursor 13 provided the expected 7-exo alcohol 21 (See Table II) as the only cyclized product with the five Lewis acids studied. The yield of 21 ranged from a disappointing 21% using moderated BF2 OEt2 (TEA, THF) to an excellent 85% using Ti(OiPr)2Cl (See Table II). Exposure of 13 to ZnI2 provided, is addition to cyclized product 21, the corresponding iodohydrin in a yield which was dependent upon the reaction solvent (PhH, 21%; Et2O, 49%).

These results demonstrate the pyrrole moiety to be an excellent cationic cyclization terminator in epoxideinitiated cyclizations. In general, the ring size obtained is predictable, providing mixtures only in the case of N-(epoxyalkyl) pyrrole 12. In addition, it is interesting to note that the 7-endo mode of closure can compete effectively with the expected 6-exo pathway leading to 12. It is particularly noteworthy that the exclusive products obtained from epoxy-pyrroles 8 and 9 are the "anti-Markovnikov" cyclised materials. Finally, the yields of cyclized ranged from moderate to excellent; products obtained however, closer scrutiny of Table II does not reveal any general trends which would assist in the selection of

"optimum" reaction conditions. The most favorable reaction conditions must be determined on an individual basis.

EXPERIMENTAL

PYRROLES AS TERMINATORS IN CATIONIC CYCLIZATIONS.
THE PREPARATION OF 5,6,7,8-TETRAHYDRO-INDOLIZIDINES AND 6,7,8,9-TETRAHYDRO-[5H]-PYRROLO[1,2A]-AZEPINES.

EXPERIMENTAL SECTION

General. Tetrahydrofuran (THF) and benzene were dried by distillation under argon from sodium benzophenone ketyl; methylene chloride was dried by distillation under argon from calcium hydride; triethylamine (TEA) was dried by distillation under argon from calcium hydride; t-butanol was dried by distillation under argon from sodium; pyridine was dried by distillation under argon from calcium hydride. Boron trifluoride etherate (BF3 · OEt2) Was dried distillation at reduced pressure from calcium hydride. Petroleum ether refers to 35-60°C boiling point fraction of petroleum benzin. Diethyl ether was purchased from Columbia Chemical Industries, Inc., Columbus, Wisconsin, and was used as received. Osmium tetraoxide was purchased from Aldrich Chemical Company, Milwaukee, Wisconsin and prepared as a 0.5M solution in t-butanol. Ethylaluminum dichloride and diethyl aluminum chloride were purchased as hexane solutions from Alfa Products, Danvers, Massachusetts, and used as received. All other reagents were used as received unless otherwise stated; all reactions were performed under argon with the rigid exclusion of moisture from all reagents and glassware unless otherwise mentioned.

Co

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on a Pye-Unicam SP-1000 infrared spectrometer or a Perkin-Elmer Model 167 spectrometer with polystyrene as standard. Proton magnetic resonance spectra (1H-NMR) were recorded on a Varian T-60 at 60MHz, a Varian CFT-20 at 80MHz, or a Bruker WM-250 spectrometer at 250MHz as mentioned in deuteriochloroform unless otherwise indicated. Chemical shifts are reported in parts per million (& scale) from internal standard tetramethylsilane. Data are reported as followed: chemical shifts (multiplicity: s = singlet, brs = broad singlet, dd = doublet of doublets, d = doublet, t = triplet, q = quartet, m = multiplet, coupling constant (Hz), integration). Electron impact (EI/MS, 70eV) mass spectra were recorded on a Finnigan 4000 with an INCOS 4021 data system. Exact Mass Mass Spectrometry is presently being performed at the University of Chicago under the direction of Professor David G. Lynn.

Flash column chromatography was performed according to the procedure of Still³⁷ et. al. by using the Whatman silicagel mentioned and eluted with the solvents mentioned. The column outer diameter (o.d.) is listed in millimeters.

General Procedure for the N-Alkylation of Pyrroles with w-Iodo Epoxides.

2-Methyl-5-(N-pyrrolyl)-1,2-epoxypentane 11.

To anhydrous ether (40mL) at room temperature under argon was added 18-crown-6 ether (0.53g, 2.0mmol) and potassium t-butoxide (2.58g. 23.0mmol) followed immediately by pyrrole (1.34g, 1.39mL, 20.0mmol). The resulting offwhite suspension was stirred for 15 minutes. To this mixture was added a solution of 237 a (5.20g, 23.0mmol) in ether (18mL) over 15 minutes. The mixture was stirred at room temperature for 20h, diluted with H2O (100mL) and cast into ether (100mL) and H2O (100mL). The aqueous layer was separated and washed with ether (2 x 80mL). The combined ether layers were washed with brine (200mL), dried (Na2SO4) and concentrated in vacuo to afford a yellow liquid. crude product was purified by chromatography on a column of silica gel (230-400 mesh, 200g, 60mm o.d., ether-petroleum ether 30:70, 60mL fractions) using the flash technique. Fractions 24-32 provided 1.13g, 34%, of 11 as a pale yellow, free-flowing liquid.

¹H-NMR (250MHz, C₆D₆): $\delta = 6.45$ (m, 2), 6.35 (m, 2), 3.29 (t, J=6Hz, 2), 2.10 (s, 2), 1.38 (m, 2), 1.10 (m, 2), 0.93 (s, 3); IR (neat): 3100, 3040, 2920, 1290, 1090, 720 cm⁻¹; EI-MS (70eV): 165 (M*, 73.3), 148 (37.7), 134 (38.7), 120 (60.5), 81 (53.5), 80 (base), 68 (60.7).

Anal. C, H, N.

T 0 q١ ₩;

2-Methyl-4-(N-pyrrolyl)-1.2-Bpoxybutane 9.

According to the general procedure for N-alkylation of pyrroles with w-iodoepoxides, the reaction of 0.34g (5mmol) of pyrrole with KOtBu (0.56g, 5mmol) and 18-crown-6 ether (44mg, 0.17mmol) in bensene (8mL) followed by the addition of w-iodoepoxide 227,25 gave 0.302g (40%) of 9 after purification by chromatography on a column of silica gel. 1H-NMR (60MHz): \$\delta\$ = 6.43 (t, J=1.5Hz, 2), 5.90 (brt, J=1.5Hz, 2), 3.88 (t, J=6.5Hz, 2), 2.3 (m, 2), 1.85-2.20 (m, 2), 1.22 (s, 3); IR (neat): 3100, 3020, 2930, 2870, 1500, 1450, 1380 (br), 1285, 1090, 905, 800, 730 cm-1; KI-MS (70eV): 151 (M*, 68), 120 (33), 106 (14), 95 (12.8), 80 (base).

Anal. C, H, N.

1-Benzyloxy)-4-methyl-pent-3-ene.

To a suspension of oil-free NaH (1.42g, 59mmol) in dry THF (100mL), chilled in an ice-H2O bath to 0°C, was added 4-methyl-pent-3-en-l-ol38 (5.78g, 57.8mmol) over 30 min. The mixture was warmed to 25°C, stirred for 30 min, then a catalytic amount of tetrabutylammonium iodide (214mg, 0.578mmol) was added followed by the addition of a solution of benzyl bromide (9.99g, 58.4mmol) in THF (10mL) over 40 min. The resulting suspension was stirred at 25°C for 5h, quenched by cautiously adding water (100mL) and extracted with 8t2O (3 x 100mL). The combined 8t2O layers were washed

with brine (300mL), dried (MgSO₄) and concentrated in vacuo to 11.0g, 100%, of the benzyl ether as a pale yellow liquid which was used without further purification.

1H-NMR (60MHz): $\delta = 7.38$ (s, 5), 5.10 (m, 1), 4.45 (s, 2),

3.48 (t, J=8Hz, 2), 2.50-2.0 (m, 2), 1.70 (s, 3), 1.63 (s, 3); BI-MS (70eV): 190 (M+, 1.05), 175 (1.97), 147 (1.48),

132 (8.50), 107 (26.6), 91 (base), 69 (76.7), 41 (76.0).

1-(Benzyloxy)-4-methylpentan-3,4-diol.

To a solution of benzyl ether (3.85g, 20.26mmol) and Nmethylmorpholine N-oxide hydrate³⁹ (3.56g, 26.34mmol) in (13mL) and water (5.0mL) was added at room temperature a solution of osmium tetraoxide³⁹ (2.02mL. 1.01mmol, 0.5M) in t-butanol. The resulting deep purple solution faded within minutes to a light maroon color where it remained for 15 minutes before returning to a deep purple cast. The mixture was stirred at room temperature for 24h. A major portion of the solvents were removed at reduced pressure and the aqueous residue was acidified with cold 2N aqueous HCl followed by the addition of 10% aqueous sodium bisulfite (10mL). The aqueous mixture was saturated with sodium chloride and extracted with ethyl acetate (6 x 50mL). The combined organic phases were washed with 10% aqueous sodium bisulfite (300mL), brine (300mL), dried (MgSO₄) and concentrated in vacuo to provide 4.03g of a pale yellow, liquid. The crude product was purified by viscous chromatography on a column of silica gel (60-230 mesh, 200g,

,

a a

3) 17

84

60mm o.d., ethyl acetate, 75-100mL fractions) using the flash technique to provide 3.50g, 77%, of mono-protected triol as a water-white viscous liquid which was immediately converted to the corresponding acetonide.

¹H-NMR (60MHz): $\delta = 7.30$ (s, 5), 4.50 (bs, 2), 3.70 (t, J=6Hz, 2), 3.50 (m, 1), 3.15 (s, 2), 2.0-1.56 (m, 2), 1.23 (s, 3), 1.15 (s, 3); BI-MS (70eV): 224 (M+, 0.20), 206 (0.18), 188 (0.44), 178 (0.65), 165 (1.32), 148 (0.87), 123 (8.25), 107 (15.1), 91 (base).

1-(Bensyloxy)-4-Methyl-3.4-Di-O-Isopropylidene-pentane-3.4-Diol.

To a solution of the O-Benzyldiol (3.50g, 15.62mmol) in dry acetone (50mL) was added two drops of concentrated sulfuric acid and solid sodium sulfate (4.0g). The mixture was stirred at room temperature overnight then quenched by suspending solid sodium bicarbonate in the reaction mixture for 15 min. The mixture was then filtered through a pad of celite topped with a layer of anhydrous magnesium sulfate and concentrated in vacuo to give 4.0g, 97%, of the desired acetonide as a water-white viscous liquid.

¹H-NMR (60MHz): $\delta = 7.32$ (s, 5), 4.58 (s, 2), 3.69 (m, 3), 1.80 (m, 2), 1.43 (s, 3), 1.37 (s, 3), 1.28 (s, 3), 1.10 (s, 3); EI-MS (70eV): 264 (M*, 0.85), 249 (base), 206 (18.8), 175 (4.46), 147 (25.4), 123 (38.2), 107 (13.8), 91 (73.3), 84 (16.7).

!

Ť

14

ba

18

at

0V

ext Wit

agu

(Na2

4-Methyl-3,4-Di-0-Isopropylidene-pentane-1,3,4-triol.

A solution of benzylether-acetonide (4.00g, 15.2mmol) in ethanol (60mL) was hydrogenated at 65 psi over 10% palladium on charcoal (0.98g) for 24h. The catalyst was removed by filtration and the solution was concentrated in vacuo to afford 2.54g, 98%, of the deprotected triol as a water-white viscous liquid.

¹H-NMR (60MHz): $\delta = 7.33$ (s, 5), 4.55 (s, 2), 3.64 (m, 3), 1.78 (m, 2), 1.41 (s, 3), 1.32 (s, 3), 1.25 (s, 3), 1.10 (s, 3); IR (neat): 3480, 2950, 1460, 1370, 1100, 750, 700 cm⁻¹; EI-MS (70eV): 174 (M⁺, 1.05), 159 (19.3), 117 (14.6), 99 (34.8), 85 (50.8), 71 (23.4), 59 (61.4), 43 (base).

General Procedure for the Tosylation of w-Hydroxy Acetonides. 2-Methyl-2,3-Di-0-Isopropylidene-pentane-2,3,5-triol-5-p Toluenesulfonate.

To a solution of the w-hydroxy acetonide (2.54g, 14.60mmol) in dry pyridine (8mL), chilled in an ice-water bath, was added p-toluenesulfonyl chloride (3.48g, 18.25mmol) in one portion. The reaction mixture was stirred at 0°C for 2h and then placed in a freezer (-20°C) overnight. The cooled reaction mixture was allowed to come to room temperature, cast into ice-conc. HCl (50g/50mL), and extracted with ether (100mL). The ether layer was washed with 1N aqueous HCl (100mL), water (100mL), saturated aqueous sodium bicarbonate (100mL), brine (100mL), dried (Na2SO4) and concentrated in vacuo to give 4.57g, 95%, of

the acetonide tosylate as a pale yellow, viscous liquid which was used without further purification.

General Procedure for the Iodination of Acetonide-Tosylates.

5-Iodo-2-Methyl-2,3-Di-0-Isopropylidene-pentane-2,3-Diol

(26).

To a solution of the corresponding acetonide-tosylate (8.22g, 25.06mmol) in acetone was added anhydrous sodium iodide (4.25g, 27.68mmol). The resulting yellow-brown mixture was heated under reflux for 5h, cooled to room temperature, filtered, and the filtrate taken up in ether (150mL). The organic layer was washed with 10% aqueous sodium bisulfite (2 x 150mL), water (150mL), saturated aqueous sodium bicarbonate (150mL), brine (150mL), dried (Na₂SO₄) and concentrated in vacuo to provide 6.0g (84%) of 26 as a pale yellow, free-flowing liquid. The crude product was purified by bulb-to-bulb distillation: bp_{2.0} = 89°C, to yield 5.69g, 80%, of 26 as a water-white, free-flowing liquid.

¹H-NMR (60MHz): $\delta = 3.45$ (m, 1), 3.32 (m, 2), 2.10 (m, 2), 1.50 (s, 3), 1.40 (s, 3), 1.29 (s, 3), 1.18 (s, 3); IR (neat): 2940, 1450, 1400, 1230, 1060, 830 cm⁻¹; RI-MS (70eV): 284 (M*, 2.57), 269 (70.5), 239 (5.08), 227 (30.5), 212 (20.5), 127 (4.38), 99 (34.8), 71 (23.4), 59 (61.5), 43 (base).

p.

,

7

J: 29

(7

18

5-1

34.

1,2-Di-O-Isopropylidene-butane-1,2-Diol-4-p-Toluenesulfonate

A solution of the corresponding e-hydroxy acetonide²⁶ (8.42g, 57.7mmol) in dry pyridine (30mL), cooled to 0°C in an ice-water bath, was reacted with p-toluenesulfonyl chloride (14.66g, 76.9mmol) according to the general procedure for tosylation of e-hydroxy acetonides to yield 15.0g, 87%, of the tosylate acetonide as a pale yellow, viscous liquid which was used in the next step without further purification.

4-Iodo-1,2-Di-O-Isopropylidene-butane-1,2-Diol (24).

A solution of the tosylate acetonide (15.0g, 50mmol) in acetone (dried over CaCl₂, 200mL) was reacted with anhydrous sodium iodide (8.25g, 55mmol) according to the general procedure. The crude iodo acetonide 24 was purified by bulb-to-bulb distillation, B.P.o. 7 = 52°C, to provide 10.1g, 79%, of 24 as a water-white, free-flowing liquid.

1H-NMR (60MHz, CCl₄): δ = 4.08 (m, 2), 3.60 (m, 1), 3.22 (t, J=8Hz, 2), 2.02 (m, 2), 1.38 (s, 3), 1.31 (s, 3); IR (neat): 2980, 2940, 2880, 1370, 1230, 1160, 1060, 840 cm⁻¹; EI-MS (70ev): 256 (M⁺, 0.87), 241 (base), 218 (6.79), 199 (9.66), 181 (30.9), 101 (13.7), 72 (22.0), 59 (18.7), 43 (95.3).

5-Hydroxy-1, 2-Di-O-Isopropylidene-pentane-1, 2-Diol.

To a solution of the 1,2,5-Pentanetriol²⁹ (4.13g, 34.4mmol) in acetone (50mL, dried over CaCl₂) at room

.

ŝ

1

(1

10

1.

in Was

23.

85%

Vis

5-10

in anhy

fener

Provi

temperature was added two drops of conc. HCl together with anhydrous Na₂SO₄ (6.0g). The reaction mixture was stirred for 3h at room temperature then solid NaHCO₃ was suspended in the mixture and stirring was continued for an additional 25 min. The reaction mixture was filtered and concentrated in vacuo to 4.98g, 90%, of the hydroxy acetonide as a slightly cloudy, viscous liquid which was purified by distillation: bpo.1 = 70°C.

¹H-NMR (60MHz, CD₂CN): $\delta = 4.10$ (m, 2), 3.53 (m, 3), 2.80 (brs, 1), 1.60 (m, 4), 1.4 (s, 3), 1.32 (s, 3); EI-MS (70eV): 160 (M⁺, 1.00), 145 (6.39), 117 (6.27), 99 (24.5), 101 (15.7), 83 (18.9), 59 (60.1), 43 (base).

1,2-Di-O-Isopropylidene-pentane-1,2-Diol-p-Toluenesulfonate.

A solution of the hydroxy acetonide (2.85g, 17.8mmol) in dry pyridine (10mL), chilled to 0°C in an ice-water bath, was reacted with p-toluene sulfonyl chloride (4.52g, 23.7mmol) according to the general procedure to yield 4.08, 85%, of the acetonide-tosylate as a cloudy, pale yellow viscous liquid which was used without further purification.

5-Iodo-1,2-Di-0-Isopropylidene-pentane-1,2-Diol (28).

A solution of the tosylate acetonide (4.23g, 13.43mmol) in acetone (50mL, dried over CaCl₂) was reacted with anhydrous sodium iodide (2.32g, 15.44mmol) according to the general procedure for iodination of tosylate acetonides to provide 2.94g, 76%, of 28 as a pale yellow, free-flowing

liquid. The crude product was purified by Kugelrohr distillation, B.P.O.O1 = $68-70^{\circ}$ C, to yield a colorless free-flowing liquid.

¹H-NNR (60MHz): $\delta = 4.1$ (m, 2), 3.45 (m, 1), 3.20 (t, J=6Hz, 2), 2.15 (m, 2), 1.60 (m, 2), 1.35 (s, 3), 1.30 (s, 3); IR (neat): 2960, 1370, 1230, 1180, 1080, 850 cm⁻¹; EI-MS

1,2-Di-O-Isopropylidene-hexane-6-p-Toluenesulfonate.

A solution of the hydroxy acetonide³⁰ (11.12g, 63.9mmol) in dry pyridine (33mL), chilled to 0°C in an ice-water bath, was reacted with p-toluenesulfonyl chloride (16.2g, 85mmol) according to the general procedure to give 18.95g, 90%, of the tosylate acetonide as a colorless viscous liquid which was used without further purification.

6-Iodo-1,2-Di-0-Isopropylidene-hexane-1,2-diol (30).

A solution of the tosylate acetonide (18.84g, 57.44mmol) in acetone (180mL, dried over CaCl₂) was reacted with anhydrous sodium iodide (9.48g, 63.2mmol) according to the general procedure. The crude iodo-acetonide 30 was purified by bulb-to-bulb distillation: bpo.o1 = 87°C, to give 15.17g, 93%, of 30 as a water-white liquid.

1 H-NMR (60Hz): \$\delta\$ = 4.08 (m, 2), 3.50 (m, 1), 3.20 (t, J=7Hz, 2), 1.90 (m, 2), 1.60 (m, 2), 1.42 (s, 3), 1.39 (s, 3); IR (neat): 2920, 1450, 1370, 1225, 1170, 1060, 850 cm⁻¹; RI-MS (70eV): 284 (M*, 11.9), 269 (base), 227 (8.85), 209 (22.6), 127 (4.38), 101 (13.5), 81 (76.3), 72 (37.8), 43 (89.3).

General Procedure for the N-Alkylation of Pyrroles with wIodo Acetonides.

1,2-Di-O-Isopropylidene-6-(N-pyrrolyl)hexane-1,2-diol (31).

To anhydrous ether (60mL) at room temperature under argon was added 18-crown-6 ether (0.793g, 3.0mmol) and potassium t-butoxide (3.82g, 34.0mmol), followed immediately by pyrrole (2.08mL, 30.0mmol). The resulting off-white suspension was stirred at room temperature for 15 min. A solution of 30 (9.37g, 33.0mmol) in ether (22mL) was then added over 20 min. The reaction mixture was stirred at room temperature for 24h. diluted with H2O (100mL) and cast into ether (100mL) and water (50mL). The aqueous layer was separated and washed with ether (2 x 75mL). The combined ether layers were washed with brine (200mL), dried (Na2SO4), and concentrated in vacuo to provide a yellow liquid. crude product was purified by chromatography on a column of silica gel (60-230 mesh, 120g, 50mm o.d., ether-petroleum ether 1:1, 75mL fractions) using the flash technique. Fractions 7-14 yielded 6.56g, 98%, of 31 as a pale yellow, free-flowing liquid.

¹H-NMR (250MHz, $C_{6}D_{6}$): $\delta = 6.46$ (t, J=1Hz, 2), 6.34 (t, J=1Hz, 2), 3.70 (m, 2), 3.27 (m, 1), 3.25 (t, J=8Hz, 2), 1.42 (s, 3), 1.32 (s, 3), 1.65-0.9 (m, 6); IR (neat): 2940, 1370, 1240, 1060, 720 cm⁻¹; EI-MS (70eV): 223 (M^{+} , 26.1),

208 (8.21), 165 (18.6), 148 (55.2), 81 (base), 72 (35.3), 43 (53.5).

Anal. C, H, N.

General Procedure for the Deprotection of the Pyrrole Acetonides.

6-(N-pyrrolyl)hexane-1,2-diol (35).

To a solution of the pyrrole-acetonide 31 (1.045g, 4.69mmol) in methanol (250mL) at 25°C was added ptoluenesulfonic acid (0.951g, 0.50mmol). The mixture was allowed to stir for 2h then quenched by suspending solid NaHCO3 for 5 min. in the reaction mixture. The mixture was filtered and concentrated in vacuo to provide a yellow viscous liquid together with some solid NaHCO3. The crude diol was purified by chromatography on a column of silica gel (60-230 mesh, 100g, 50mm o.d., EtOAc, 75mL fractions) using the flash technique. Fractions 7-15 yielded 0.775g, 90%, of 35 as a yellow viscous liquid.

¹H-NMR (250MHz, C₆D₆): $\delta = 6.51$ (t, J=2Hz, 2), 6.35 (t, J=2Hz, 2), 3.81 (brs, 1), 3.55 (m, 2), 3.41 (m, 1), 3.35 (t, J=7Hz, 2), 3.34 (t, J=7Hz, 2), 3.30 (brs, 1), 1.25 (m, 6); IR (neat): 3360 (br), 2920, 1280, 1070, 730 cm⁻¹; EI-MS (70eV): 183 (M⁺, 44.4), 166 (7.34), 152 (12.3), 134 (15.2), 81 (base), 80 (78.2), 41 (44.3).

General Procedure for the Mono-Tosylation of the Pyrrolyl-1,2-Diols.

Preparation of 6-(N-pyrrolyl)hexane-1,2-diol-1-p-Toluenesulfonate (35, R4=pTs, R5=H).

To a solution of diol 35, R4=R5=H (0.75g, 4.10mmol) in dry pyridine (18mL), chilled in an ice-water bath, was added in one portion p-toluenesulfonyl chloride (0.90g, 4.72mmol) and a crystal of 4,4-dimethylaminopyridine. The resulting deep-red colored mixture was stirred at RT for 48h. The mixture was then cast into ice-conc. HCl (100g/100mL) and extracted with ether (150mL). The ether layer was washed with 1N aqueous HCl (100mL), water (100mL), brine (100mL), dried (Na2SO4), and concentrated in vacuo to provide a green viscous liquid (1.4g). The crude tosylate was purified by chromatography on a column of silica gel (60-230 mesh, 100g, 50mm o.d., EtOAc, 40mL fractions) using the flash technique. Fractions 3-7 yielded 1.28g, 93%, of 35 as an orange viscous liquid.

¹H-NMR (60MHz, C₆D₆): $\delta = 7.70$ (d, J=8Hz, 2), 6.70 (d, J=8Hz, 2), 6.40 (m, 2), 6.27 (m, 2), 3.95 (brs, 1), 3.74 (m, 2), 3.30 (m, 3), 1.89 (s, 3), 1.08 (m, 4); IR (neat): 3500, 3100, 2920, 1600, 1360, 1180, 970, 730 cm⁻¹; KI-MS (70eV): 337 (M⁺, 0.81), 182 (1.43), 166 (5.20), 165 (19.7), 134 (10.2), 122 (16.7), 107 (20.5), 91 (46.9), 81 (base).

General Procedure for the Formation of the Pyrrolyl Bpoxides.
6-(N-pyrrolyl)-1,2-epoxyhexane (13).

To a suspension of potassium t-butoxide (0.775g, 6.91mmol) in dry THF (40mL), cooled in a dry ice-CCl4 bath to -23°C, was added dropwise over 15 min. a solution of 35 (2.025g, 6.01mmol) in dry THF (20mL). The resulting magenta-colored mixture was stirred at -23°C for 15 min., warmed to RT, diluted with water (24mL), and cast into ether (200mL) and water (100mL). The organic layer was separated, washed with brine (200mL), dried (Na2SO4), and concentrated in vacuo to yield a pale yellow, free-flowing liquid. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 100g, 50mm o.d., Et2O-petroleum ether 30:70, 50mL fractions) using the flash technique. Fractions 7-13 provided 0.87g, 88%, of 13 as a pale yellow, free-flowing liquid.

¹H-NMR (250MHz): $\delta = 6.61$ (t, J=1Hz, 2), 6.10 (t, J=1Hz, 2), 3.85 (t, J=6Hz, 2), 2.75 (m, 1), 2.69 (t, J=3Hz, 1), 2.40 (m, 1), 1.78 (m, 2), 1.45 (m, 4); IR (neat): 3100, 3050, 2920, 1500, 1290, 1100, 730 cm⁻¹; BI-MS (70eV): 165 (M⁺, 15.5), 147 (1.98), 134 (13.2), 120 (13.8), 106 (14.6), 94 (15.9), 81 (base), 80 (78.6), 53 (40.1).

Anal. C, H, N.

1,2-Di-O-Isopropylidene-4-(N-Pyrrolyl)butane-1,2-diol (25).

A mixture of pyrrole (1.38mL, 20mmol), 18-crown-6 ether (0.53g, 2.0mmol) and potassium t-butoxide (2.58g, 23mmol) in anhydrous ether (40mL) was stirred at room temperature for 30 min. To the suspension was added a solution of 24 (5.76g, 22.5mmol) in anhydrous ether (15mL) over 15 min. The reaction mixture was stirred at room temperature for 18h and worked up according to the general procedure for the preparation of pyrrole acetonides. Flash chromatography on a column of silica gel provided 3.73g, 95%, of 25 as a pale yellow liquid.

¹H-NMR (60MHz, CCl₄): $\delta = 6.41$ (t, J=2Hz, 2), 5.87 (t, J=2Hz, 2), 3.83 (m, 4), 3.28 (m, 1), 1.80 (m, 2), 1.28 (s, 3), 1.20 (s, 3); IR (neat): 3100, 2980, 294-, 2880, 1500, 1370, 1290, 1250, 1220, 1160, 1090, 1065, 860, 730 cm⁻¹; RI-MS (70eV): 196 (M+1, 2.97), 195 (M+, 24.4), 180 (1.17), 137 (10.4), 120 (43.0), 106 (4.34), 94 (30.1), 81 (base), 80 (73.9), 43 (36.0).

4-(N-Pyrrolyl) butane-1, 2-diol (32, $R_4=R_5=H$).

A solution of 25 (0.14g, 0.77mmol) in methanol (20mL) was stirred with pyridinium-p-toluenesulfonate (0.015g, 0.06mmol) at room temperature for 32h and was worked up according to the general procedure for the deprotection of pyrrole acetonides. Flash chromatography on a column of

silica gel gave 0.10g (89%) of pyrrole-diol 32 as a pale yellow, viscous liquid.

¹H-NMR (60MHz, CCl₄): $\delta = 6.38$ (t, J=2Hz, 2), 5.83 (t, J=2Hz, 2), 3.89 (t, J=7Hz, 2), 3.50 (m, 2), 3.26 (m, 3), 2.62 (m, 2); IR (CCl₄): 3400, 2930, 2870, 1500, 1280, 1240, 1090, 1060, 720 cm⁻¹; BI-MS (70eV): 156 (M+1, 4.24), 155 (M+, 38.3), 137 (1.78), 124 (4.17), 120 (5.60), 106 (2.44), 94 (6.40), 81 (base), 80 (80.0), 68 (15.1), 53 (22.2).

4-(N-Pyrroly1) butane-1, 2-diol-1-p-Toluenesulfonate (32, $R_4=pTs$, $R_5=H$).

A solution of 0.098g (0.632mmol) of 32 (R4=R5=H) in dry pyridine (4mL), chilled to 0°C in an ice-water bath, was reacted with p-toluenesulfonyl chloride (0.132g, 0.692mmol). The mixture was stirred overnight and worked up according to the general procedure for the tosylation of pyrrole diols. Flash chromatography on a column of silica gel yielded 0.177g, 91%, of the glycol mono-tosylate 32 (R4=pTs, R5=H) as a pale yellow, viscous liquid.

¹H-NMR (60MHz, CCl₄): $\delta = 7.72$ (d, J=8Hz, 2), 6.73 (d, J=8Hz, 2), 6.42 (t, J=2Hz, 2), 6.28 (t, J=2Hz, 2), 3.97 (brs, 1), 3.77 (t, J=6Hz, 2), 3.30 (m, 3), 1.87 (s, 3), 1.32 (m, 2); RI-MS (70eV): 309 (M⁺, 0.41), 172 (1.08), 155 (2.72), 137 (35.5), 120 (11.3), 106 (2.92), 94 (43.3), 81 (22.2), 80 (base), 68 (9.61), 67 (14.0), 53 (22.2).

4-(N-Pyrrolyl)-1,2-epoxybutane (8).

To a suspension of potassium t-butoxide (0.076g, 0.68mmol) in dry THF (8mL), cooled to -78°C in a dry ice-i-PrOH bath, was added a solution of 0.174g (0.567mmol) of 32 (R4=pTs, Rs=H) in THF (3mL) over 3 min. The mixture was stirred at -78°C for 10 min and worked up according to the general procedure for the formation of the epoxy-pyrroles. Flash chromatography on a column of silica gel provided 0.070g, 90%, of 8 as a pale yellow, free-flowing liquid. H-NMR (60MHz): $\delta = 6.62$ (t, J=2Hz, 2), 6.10 (t, J=2Hz, 2), 4.00 (t, J=7Hz, 2), 2.78 (m, 2), 2.37 (m, 1), 1.91 (m, 2); IR (neat): 3040, 2985, 2920, 2860, 1500, 1350, 1285, 1090, 1065, 910, 720 cm-1; EI-MS (70eV): 137 (M+, 48.4), 120 (3.71), 106 (14.0), 94 (12.7), 81 (20.3), 80 (base), 67 (13.9), 53 (29.3), 39 (26.4).

Anal. C, H, N.

2-Methyl-2,3-Di-0-Isopropylidene-5-(N-pyrrolyl)pentane-1,2-diol (27).

To anhydrous ether (20mL) at room temperature under argon was added 18-crown-6 ether (0.264g, 1.0mmol), potassium t-butoxide (1.23g, 11.0mmol), and pyrrole (0.694mL, 10mmol). The resulting suspension was stirred at room temperature for 15 min, and a solution of 26 (3.00g, 10.56mmol) in anhydrous ether (7mL) was then added over 5 min. The mixture was stirred at room temperature for 24h

and was worked up according to the general procedure for the preparation of pyrrole acetonides. Flash chromatography on a column of silica gel yielded 2.21g, 99%, of 27 as a pale yellow liquid.

¹H-NMR (80MHz): $\delta = 6.70$ (brs, 2), 6.25 (brs, 2), 4.10 (m, 2), 3.60 (m, 1), 1.90 (m, 2), 1.50 (s, 3), 1.38 (s, 3), 1.22 (s, 3), 1.12 (s, 3); IR (neat): 3100, 2980, 2930, 2860, 1500, 1450, 1370, 1280, 1220, 1120, 1000, 730 cm⁻¹; BI-MS (70eV): 224 (M+1, 4.80), 223 (M+, 17.1), 208 (6.09), 178 (5.65), 166 (14.5), 148 (16.5), 81 (base), 80 (37.8), 59 (13.5), 43 (32.4).

2-Methyl-5-(N-pyrrolyl) pentane-2, 3-diol (33, $R_4=R_5=H$).

A solution of 27 (1.10g, 4.83mmol) in methanol (250mL) was stirred with p-toluenesulfonic acid (0.0938g, 0.493mmol) at room temperature for 24h and worked up according to the general procedure for the deprotection of pyrrole acetonides. Flash chromatography on a column of silica gel yielded 0.708g, 78%, of 33 (R4=R5=H) as a yellow viscous liquid.

¹H-NMR (60MHz, CCl₄): $\delta = 6.40$ (t, J=2Hz, 2), 5.83 (t, J=2Hz, 2), 3.90 (t, J=6Hz, 2), 3.60 (t, J=7Hz, 1), 3.20 (brs, 1), 1.95-1.55 (m, 3), 1.25 (s, 3), 1.15 (s, 3); IR (neat): 3400, 2940, 2860, 1500, 1450, 1370, 1280, 1110, 1050, 720 cm⁻¹; BI-MS (70eV): 166 (M-17, 6.86), 165 (M-18, 33.8), 150 (49.8), 148 (14.6), 121 (21.8), 106 (21.6), 81 (base), 80 (52.7), 59 (36.0), 43 (28.1).

2-Methyl-5-(N-pyrrolyl)pentane-2,3-diol-3-p-Toluenesulfonate (33, R4=H, R5=pTs).

A solution of 0.708g (3.87mmol) of 33 (R4=Rs=H) in dry pyridine (17mL), chilled to 0°C in an ice-water bath, was reacted with p-toluenesulfonyl chloride (0.848g, 4.45mmol). The mixture was stirred for 1h at 0°C and overnight at room temperature, then was worked up according to the general procedure for the tosylation of pyrrole-diols. Flash chromatography on a column of silica gel gave 0.522g, 40%, of 33 (R4=H, Rs=pTs) as an orange viscous liquid. .389g, 55%, of 33 (R4=Rs=H) was recovered unreacted.

1H-NMR (60MHz, CaDa): &= 7.68 (d, J=8Hz, 2), 6.73 (d, J=8Hz, 2), 6.53 (t, J=2Hz, 2), 6.20 (t, J=2Hz, 2), 4.50 (t, J=4Hz, 1), 3.82 (t, J=6Hz, 2), 2.39 (brs, 1), 1.92 (?, 3), 1.70 (m, 2), 1.00 (s, 3), 0.98 (s, 3); EI-MS (70eV): 337 (M+, 1.12), 182 (2.95), 165 (63.8), 150 (100), 132 (9.49), 121 (44.6), 106 (40.8), 80 (34.4).

2-Methyl-5-(N-pyrrolyl)-2, 3-epoxypentane (10).

To a suspension of potassium t-butoxide (0.049g, 0.44mmol) in dry THF (4mL), cooled to $-78^{\circ}C$ in a dry ice-<u>i</u>-PrOH bath, was added a solution of 0.125g (0.371mmol) of 33 $(R_4=H, R_5=pTs)$ in THF (1mL). The mixture was stirred at $-78^{\circ}C$ for 15 min and worked up according to the general procedure for the preparation of epoxy pyrroles. Flash

chromatography on a column of silica gel provided 0.053g, 86%, of 10 as a pale yellow, free-flowing liquid.

1H-NMR (60MHz): $\delta = 6.52$ (t, J=2Hz, 2), 6.02 (t, J=2Hz, 2), 4.12 (t, J=7Hz, 2), 2.82 (t, J=7Hz, 2), 1.70 (brs, 1), 1.10 (s, 3), 0.99 (s, 3); IR (CCl₄): 3050, 2980, 2920, 2860, 1500, 1280, 1090, 910, 720 cm⁻¹; KI-MS (70eV): 166 (M+1, 4.70), 165 (M+, 36.9), 150 (47.3), 135 (5.40), 121 (25.7), 106 (63.6), 94 (21.3), 81 (50.6), 80 (88.7), 71 (32.0), 68 (45.3), 43 (base).

Anal. C, H, N.

1,2-Di-O-Isopropylidine-5-(N-pyrrolyl)pentane-1,2-diol (29).

To anhydrous ether (20mL) at room temperature was added 18-crown-6 ether (0.264g, 1.0mmol) potassium t-butoxide (1.29g, 11.5mmol) and pyrrole (0.69mL, 10mmol). The suspension was stirred at room temperature for 15 min then a solution of iodo-acetonide 28 (2.85g, 10.56mmol) in anhydrous ether (7mL) was added over 10 min. The mixture was stirred at room temperature for 19h and worked up according to the general procedure for the preparation of pyrrole-acetonides. Flash chromatography on a column of silica gel gave 1.82g, 87%, of 29 as a pale yellow, free-flowing liquid.

¹H-NMR (60MHz, CCl₄): $\delta = 6.52$ (t, J=2Hz, 2), 6.00 (t, J=2Hz, 2), 3.88 (m, 4), 3.38 (m, 1), 2.15-1.50 (m, 4), 1.32 (s, 3), 1.25 (s, 3); IR (CCl₄): 3100 2880, 2940, 2870, 1500,

1450, 1380, 1280, 1230, 1160, 1060, 850, 730 cm⁻¹; BI-MS (70eV): 210 (M+1, 3.91), 209 (M+, 26.4), 194 (2.41), 166 (0.55), 151 (24.5), 134 (53.0), 93 (36.7), 81 (base), 80 (62.4), 72 (30.2), 43 (54.4).

5-(N-Pyrrolyl) pentane-1, 2-diol (34, $R_4=R_5=H$).

A solution of 29 (1.00g, 4.78mmol) in methanol (130mL) was stirred with pyridinium-p-toluenesulfonate (0.12g, 0.478mmol) at room temperature for 32h and worked up according to the general procedure for the deprotection of pyrrole-acetonides. Flash chromatography on a column of silica gel provided 0.735g, 91%, of 34 (R4=R5=H) as a pale yellow, viscous liquid.

¹H-NMR (60MHz): $\delta = 6.67$ (t, J=2Hz, 2), 6.15 (t, J=2Hz, 2), 3.94 (t, J=7Hz, 2), 2.72 (t, J=4Hz, 2), 2.43 (m, 1), 2.12-1.20 (m, 4); IR (neat): 3360, 2920, 2860, 1500, 1450, 1280, 1090, 1060, 730 cm⁻¹; KI-MS (70eV): 170 (M+1, 8.20), 169 (M+, 85.5), 152 (10.2), 149 (12.6), 138 (10.9), 134 (11.8), 120 (54.1), 95 (25.7), 85 (45.1), 81 (99), 80 (base), 68 (64.1), 53 (27.4), 43 (45.8).

5-(N-Pyrrolyl) pentane-1,2-diol-1-p-toluenesulfonate (34, $R_4=pTs$, $R_5=H$).

A solution of 0.29g (1.74mmol) of 34 ($R_4=R_5=H$) in dry pyridine (7mL), chilled to 0°C in an ice-water bath, was reacted with p-toluenesulfonyl chloride (0.393g, 2.06mmol). The mixture was stirred for lh at 0°C and overnight at room

temperature and was worked up according to the general procedure for the tosylation of pyrrole-diols. Flash chromatography on a column of silica gel yielded 0.462g, 83%, of 34 (R₄=pTs, R₅=H) as a yellow viscous liquid. ¹H-NMR (250MHz, C₆D₆): δ = 7.75 (d, J=8Hz, 2), 6.72 (d, J=8Hz, 2), 6.43 (t, J=2Hz, 2), 6.30 (t, J=2Hz, 2), 4.02 (brs, 1), 3.81 (m, 2), 3.54 (m, 1), 3.31 (t, J=7Hz, 2), 1.84 (s, 3), 1.60 (m, 1), 1.40 (m, 1), 1.02 (m, 2); IR (neat): 3100, 3050, 2930, 2885, 1500, 1280, 1090, 1070, 730 cm⁻¹; EI-MS (70eV): 152 (M*1, 20.4), 151 (M*, 64.9), 134 (38.4), 120 (44.1), 106 (12.6), 93 (19.0), 81 (48.9), 80 (base), 68 (32.5), 53 (14.3).

Anal. C, H, N.

General Procedure for Cyclization of Pyrrole Epoxides with BF3.0Et2 and Et3N.

<u>Preparation of 8-Hydroxymethyl-8-Methyl-5,6,7,8-Tetrahydro-indolizidine (18)</u>.

To a solution of 11 (0.1g, 0.6mmol) in dry THF (15mL), cooled to -42°C in a dry ice-CH₂CN bath, was added Et₂N (0.083mL, 0.6mmol) followed by freshly distilled BF₃·OEt₂ (0.074mL, 0.6mmol). The reaction was allowed to slowly warm to room temperature overnight and then was quenched with saturated aqueous NaHCO₃ (10mL). The mixture was cast into ether (75mL) and saturated aqueous NaHCO₃ (50mL). The organic layer was separated, washed with 1N aqueous HCl (50mL), water (50mL), brine (50mL), dried (Na₂SO₄), and

concentrated in vacuo to provide a yellow viscous liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 25g, 30mm o.d., Et₂O-petroleum ether 30:70, 15mL fractions) using the flash technique. Fractions 15-20 provided 0.073g, 73%, of 18 as a pale yellow, viscous liquid which solidified upon cooling. ¹H-NMR (250MHz, CaDa): $\delta = 6.35$ (m, 1), 6.31 (t, J=2Hz, 1), 6.05 (m, 1), 3.55 (d, J=11Hz, 1), 3.42 (d, J=11Hz, 1), 3.31 (t, J=6Hz, 2), 2.62 (brs, 1), 1.75 (m, 1), 1.48 (m, 2), 1.27 (m, 1), 1.20 (s, 3); IR (neat): 3280, 2940, 1450, 1350, 1050, 720 cm⁻¹; EI-MS (70eV): 165 (M+, 12.7), 147 (6.56), 134 (base), 118 (9.97), 80 (8.30), 44 (54.4), 40 (88.2). Anal. C, H, N.

General Procedure for Cyclization of Pyrrole-Rpoxides with RtalCl2.

To a solution of 11 (0.1g, 0.606mmol) in dry CH₂Cl₂ (5 mL), chilled in a dry ice-CCl₄ bath, was added EtAlCl₂ (0.82 mL, 1.21mmol, 1.47M in hexane) over 2 min. The reaction mixture was stirred for 25 minutes at -24°C then quenched with saturated aqueous NH₄Cl (5mL). The mixture was cast into Et₂O (50mL) and 1N aqueous HCl (50mL). The organic layer was separated, washed with brine (50mL), dried (Na₂SO₄), and concentrated in vacuo to yield a pale yellow, viscous liquid. The crude product was purified by chromatography on a column of silica gel using the flash technique to provide 0.081g, 81%, of 18.

General Procedure for Cyclization of Pyrrole-Rpoxides with EtzAlCl.

Preparation of 18.

To a solution of 11 (0.104g, 0.63mmol) in dry CH₂Cl₂, cooled to -40°C in a dry ice-CH₃CN bath, was added Et₂AlCl (0.86mL, 1.26mmol, 1.47M in hexane). The mixture was stirred at -40°C for 10 min then quenched by cautiously adding 1N aqueous HCl (10mL). The mixture was cast into Et₂O (50mL) and 1N aqueous HCl (50mL). The organic layer was separated, washed with brine (50mL), dried (Na₂SO₄), and concentrated in vacuo to yield a yellow viscous liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 25g, 30mm o.d., EtOAc-petroleum ether 40:60, 15mL fractions) using the flash technique. Fractions 5-10 provided 0.084g, 81%, of 18.

General Procedure for Cyclization of Pyrrole-Bpoxides with Ti(0-iPr)3Cl.

Preparation of 18.

To a solution of 11 (0.142g, 0.861mmol) in dry CH₂Cl₂ (20mL), chilled in an ice-water bath, was added Ti(0-iPr)₃Cl⁴⁰ (3.44mL, 2.58mmol), 0.75M in CH₂Cl₂). The mixture was stirred for 15 min and then quenched with saturated aqueous NH₄Cl (15mL). The solution was cast into Et₂O (75mL) and saturated aqueous NH₄Cl (75mL). The organic layer was separated, washed with 1N aqueous HCl (75mL),

water (75mL), brine (75mL), dried (Na₂SO₄), and concentrated in vacuo to give an orange viscous liquid. The crude product was purified by chromatography on a column of silica gel using the flash technique to give 0.115g, 80%, of 18.

General Procedure for Cyclization of Pyrrole-Epoxides with ZnI2 · OEt2.

Preparation of 18.

To a solution of 11 (0.1g, 0.6mmol) in dry benzene (15mL) at room temperature was added freshly prepared $ZnI_2 \cdot OEt_2^{41}$ (0.472g, 1.2mmol) in one portion. Within 5 min, the colorless suspension became orange in color and the reaction was complete. The mixture was quenched with saturated aqueous NH₄Cl (10mL) and was cast into Et₂O (50mL) and saturated NH4C1 (50mL). The organic layer was separated, washed with 10% aqueous Na2S2O3 (50mL), water (50mL), saturated aqueous NaHCO₃ (50mL), brine (50mL), dried (Na2SO4) and concentrated in vacuo to provide a pale orange viscous liquid. The crude product was purified chromatography on a column of silica gel using the flash technique to give 0.072g, 72%, of 18.

Cyclization of 8 with Et2AlCl.

<u>Preparation of 7-Hydroxy-5,6,7,8-Tetrahydroindolizidine (14).</u>

To a solution of 8 (0.1g, 0.73mmol) in dry CH_2Cl_2 (5mL), chilled to -23°C in a dry ice-CCl₄ bath, was added Bt_2AlCl (1.0mL, 1.47mmol, 1.47M in hexane). The mixture was

stirred at -23°C for 30 min and then quenched by cautiously adding 1N aqueous HCl (5mL). The reaction mixture was worked up according to the general procedure for the cyclization of pyrrole epoxides with Et₂AlCl. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 30g, 30mm o.d., EtOAc-petroleum ether 1:1, 20mL fractions) using the flash technique. Fractions 6-12 provided 0.032g, 32%, of 14 as a pale yellow, viscous liquid.

¹H-NMR (250MHz): $\delta = 6.54$ (brs, 1), 6.14 (m, 1), 5.84 (brs, 1), 4.15 (m, 1), 3.96 (m, 2), 3.13 (dd, J=16.6,4.2Hz, 1), 2.77 (dd, J=16.6,8.3Hz, 1), 2.03 (m, 2); IR (CCl₄): 3380, 3100, 2940, 1490, 1430, 1320, 1200, 1070, 980, 700 cm⁻¹; BI-MS (70eV): 137 (M+, 2.31), 118 (0.31), 108 (1.51), 93 (2.79), 44 (16.8), 40 (base).

Anal. C, H, N.

Cyclization of 9 with Bt2AlCl.

Preparation of 7-Hydroxy-7-methyl-5,6,7,8-Tetrahydroindol-izidine (16).

To a solution of 9 (0.085g, 0.566mmol) in dry CH₂Cl₂ (5mL), cooled to -78°C in a dry ice-<u>i</u>-PrOH bath, was added Bt₂AlCl (0.76mL, 1.13mmol, 1.47M in hexane). The mixture was stirred at -78°C for 2h and then quenched by cautiously adding lN aqueous HCl (5mL). The reaction mixture was worked up according to the general procedure for the cyclization of pyrrole-epoxides with Bt₂AlCl. The crude

product was purified by chromatography on a column of silica gel (230-400 mesh, 30g, 30mm o.d., EtOAc-petroleum ether 30:70, 15mL fractions) using the flash technique. Fractions 8-13 provided 0.038g, 44%, of 16 as a pale yellow, viscous liquid.

¹H-NMR (250MHz, C_8D_8): $\delta = 6.42$ (m, 1), 6.37 (t, J=2Hz, 1), 6.01 (brs, 1), 3.65 (m, 1), 3.32 (m, 1), 2.50 (s, 2), 1.34 (m, 3), 0.97 (s, 3); IR (neat): 3420, 2900, 1450, 1380, 1330, 1120, 700 cm⁻¹; RI-MS (70eV): 151 (M⁺, 61.9), 136 (6.72), 120 (8.70), 108 (23.2), 93 (base), 80 (52.5), 66 (18.0), 43 (31.6).

Anal. C, H, N.

Cyclization of 10 with Bt2AlCl.

Preparation of 7-Hydroxy-8,8-dimethyl-5,6,7,8-Tetrahydro-indolizidine (17).

To a solution of 10 (0.023g, 0.139mmol) in dry CH₂Cl₂ (1.0mL), cooled to -78°C in a dry ice-<u>i</u>-PrOH bath, was added Et₂AlCl (0.19mL, 0.279mmol, 1.47M in hexane). The mixture was stirred at -78°C for 20 min and then quenched by the addition of saturated aqueous NH₄Cl (3 mL). The reaction mixture was worked up according to the general procedure for the cyclization of pyrrole-epoxides with Et₂AlCl. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 15g, 20mm o.d., EtOAc-petroleum ether 30:70, 15mL fractions) using the flash technique. Fractions

7-12 provided 0.014g, 61%, of 17 as a pale yellow, viscous liquid which solidified on cooling. mp = 79-81°C;

¹H-NMR (250MHz, C₆D₆): δ = 6.34 (m, 1), 6.30 (m, 1), 6.07 (m, 1), 3.55 (m, 1), 3.30 (m, 2), 1.56 (m, 2), 1.45 (brs, 1), 1.20 (s, 3), 1.18 (s, 3); IR (CCl₄): 3460, 2920, 1450, 1370, 1190, 1180, 1080, 1050, 850, 700 cm⁻¹; EI-MS (70eV): 165 (M*, 48.9), 150 (base), 132 (9.12), 121 (47.0), 106 (38.1), 80 (13.7).

Anal. C, H, N.

Cyclization of 12 with Ti(0-iPr)₃Cl. Preparation of 8-Hydroxymethyl-5,6,7,8-Tetrahydroindoli zidine (19).

To a solution of 12 (0.050g, 0.33mmol) in dry CH₂Cl₂ (5mL), chilled in an ice-water bath, was added Ti(0-iPr)₃Cl (0.50mL, 1.0mmol, 2.0M in CH₂Cl₂. The mixture was stirred at 0°C for lh, warmed to room temperature and allowed to stir for an additional 45 min. The reaction mixture was worked up according to the general procedure for the cyclization of pyrrole-epoxides with Ti(0-iPr)₃Cl. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 20g, 200mm o.d., EtOAc-petroleum ether 30:70, 10mL fractions) using the flash technique. Fractions 10-14 provided 0.032g, 64%, of 19 as a pale yellow, viscous liquid.

Cyclization of 12 with Bt2 AlCl.

Preparation of 19 and 6-Hydroxy-6,7,8,9-Tetrahydro[5H]-pyrrolo[5H]pyrrolo[1,2a]azepine (20).

A solution of 12 (0.055g, 0.36mmol) in dry CH₂Cl₂ (?mL) was reacted with Et₂AlCl (0.49mL, 0.72mmol, 1.47M in hexane) according to the general procedure for cyclization of pyrrole-epoxides with Et₂AlCl. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 20g, 20mm o.d., EtOAc-petroleum ether 40:60, 15mL fractions) using the flash technique. Fractions 6-8 provided 0.020g, 37%, of 19, and fractions 10-13 yielded 0.026g, 48%, of 20 as a water-white liquid.

1H-NMR (250MHz, CoDe): 6 = 6.31 (brs, 1), 6.18 (t, J=1.5Hz, 1), 6.10 (brs, 1), 3.32 (brs, 1), 3.20 (t, J=6.0Hz, 2), 3.16 (m, 1), 2.69 (brd, J=15.4Hz, 1), 2.63 (dd, J=15.4,9.4Hz, 1), 1.41 (m, 2), 1.09 (m, 2); IR (CCl4): 3460, 2920, 1430, 1350, 1280, 1020, 700 cm⁻¹; EI-MS (70eV): 151 (M+, base), 150 (49.3), 134 (6.55), 122 (18.7), 106 (20.6), 94 (75.3), 80 (36.5), 53 (9.77), 41 (10.4).

Cyclization of 13 with Ti(0-iPr)3Cl.

Anal. C, H, N.

Preparation of 5-Hydroxymethyl-5,7,8,9-Tetrahydro[5H]pyrrolo[1,2a]azepine (21).

To a solution of 13 (0.104g, 0.630mmol) in dry CH_2Cl_2 (15mL), chilled in an ice-water bath, was added $Ti(0-iPr)_3Cl$ (0.945mL, 1.89mmol, 2.0M in CH_2Cl_2). The mixture was

stirred at 0°C for 1h, then warmed to room temperature and stirred for an additional 3h. The reaction mixture was worked up according to the general procedure for the cyclization of pyrrole-epoxides with Ti(0-iPr)₃Cl. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 30g, 30mm o.d., EtOAc-petroleum ether 30:70, 25mL fractions) using the flash technique. Fractions 8-13 yielded 0.088g, 85%, of 21 as a pale yellow, viscous liquid.

¹H-NMR (250MHz, CeDe): 6 = 6.35 (m, 1), 6.18 (t, J=2Hz, 1), 5.99 (brs, 1), 3.85 (dd, J=10.8,6.7Hz, 1), 3.58 (dd, J=10.8,7.5Hz, 1), 3.31 (brq, J=7.7Hz, 2), 2.61 (m, 1), 1.74 (m, 1), 1.60 (m, 1), 1.32 (m, 2), 1.15 (m, 2); IR (CCl₄): 3580, 2920, 2860, 1480, 1290, 1110, 1080, 1030, 700 cm⁻¹; EI-MS (70eV): 165 (M⁺, 19.4), 134 (base), 118 (5.85), 106 (7.02), 93 (3.00), 80 (17.8).

Anal. C. H. N.

Cyclization of 13 with ZnI2 · OBt2.

Preparation of 21 and 1-Iodo-2-hydroxy-6-(N-pyrrolyl)hexane.

A solution of 13 (0.105g, 0.636mmol) in anhydrous ether (10mL) was reacted with freshly prepared ZnI₂·ORt₂ (0.477g, 1.212mmol) for 3h at room temperature according to the general procedure for cyclization of pyrrole-epoxides with ZnI₂·ORt₂. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 30g, 30mm o.d., EtOAc-petroleum ether 30:70, 20mL fractions) using the flash

technique. Fractions 5 and 6 gave 0.09lg, 49%, of 1-iodo-2-hydroxy-6-(N-pyrrolyl)hexane as a pale yellow, viscous liquid. Fractions 9-13 provided 0.273g, 26%, of 21 as a pale yellow, viscous liquid.

¹H-NMR (250MHz, C₆D₆): $\delta = 6.46$ (t, J=1Hz, 2), 6.34 (t, J=1Hz, 2), 3.27 (t, J=6Hz, 2), 2.92 (m, 1), 2.75 (t, J=4Hz, 1), 2.64 (t, J=6Hz, 1), 1.45 (brs, 1), 1.24 (m, 2), 1.00 (m, 4); IR (neat): 3440, 2920, 1290, 1100, 730 cm⁻¹; RI-MS (70eV): 166 (M-1, 8.07), 151 (5.80), 134 (4.54), 81 (8.11), 61 (13.8), 43 (base).

1

LIST OF REFERENCES

PYRROLES AS TERMINATORS IN CATIONIC CYCLIZATIONS.

THE PREPARATION OF 5,6,7,8-TETRAHYDRO-INDOLIZIDINES AND 6,7,8,9-TETRAHYDRO-[5H]-PYRROLO[1,2A]-AZEPINES.

LIST OF REFERENCES

- For discussions and reviews of various aspects of alkaloid chemistry, see for example, the review series: "The Alkaloids", Specialist Periodical Reports; The Royal Society of Chemistry; London, Volumes 1-13, superceded by Natural Products Reports.
- 2. Meinwald, J.; Meinwald, Y.C. *J. Am. Chem. Soc.* 1966, 88, 1305.
- 3. For an elegant synthesis of (+)-heliotridine 2, see: Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105, 3653. For a recent synthesis of related (+)-Dehydroheliotridine, see: Chamberlin, A. R.; Chung, J. Y. L. J. Org. Chem. 1985, 50, 4425.
- For a synthesis of 3, see: Overman, L. E.; Bell, K. L.; Ito, F. J. Am. Chem. Soc. 1994, 106, 4192.
- For several recent syntheses of 4, see: Fleet, G. W. J.; Gough, M. J.; Smith, P. W. Tetrahedron Lett. 1994, 25, 1853. Mezher, H. A.; Hough, L.; Richardson, A. C. J. Chem. Soc. Chem. Commun. 1984, 447. Suami, T.; Tadano, K.; Iimura, Y. Chem. Lett. 1994, 513.
- 6. Götz, M; Bögri, T.; Gray, A. H. *Tetrahedron Lett.* 1961, 3, 707. Shingu, T.; Tsuda, Y.; Uyeo, S.; Yamamoto, Y.; Harada, H. *Chem. Ind.* 1962, 1191.
- 7. a) Tanis, S. P.; Herrinton, P. M. J. Org. Chem. 1983, 48, 4572.
 - b) Tanis, S. P.; Herrinton, P. M. J. Org. Chem. 1985, 50, 3988.
- 8. See A. Albert in "Heterocyclic Chem.", Athlone Press, London, 1968, Chs. 3 and 5.
- 9. a) For reviews of polyene cyclization, see: Johnson, W. S. Acc. Chem. Res. 1968, I, 1. van Tamelen, E. E. Ibid. 1975, 8, 152. Johnson, W. S. Bioorg. Chem. 1976, 5, 51. Johnson, W. S. Angew. Chem. Int. Ed. Engl. 1976, 15, 9.
 - b) van Tamelen, E. E.; Marson, S. A. J. Am. Chem. Soc. 1975, 97, 5614.

- c) Groen, M. B.; Zeelen, F. J. Recl. Trav. Chim. Pays-Bas. 1978, 97, 301.
- d) Groen, M. B.; Zeelen, F. J. J. Org. Chem. 1978, 43, 1961.
- e) Peters, J. A. M.; Posthumus, T. A. P.; van Vliet, N. P.; Zeelen, F. J.; Johnson, W. S. *Ibid.* 1980, 45, 2208.
- f) Johnson, W. S.; McCarry, B. E.; Markezich, R.; Boots, S. G. J. Am. Chem. Soc. 1980, 102, 352.
- Boots, S. G. J. Am. Chem. Soc. 1980, 102, 352.
 g) Gravestock, M. B.; Morton, D. R.; Boots, S. G.; Johnson, W. S. Ibid. 1980, 102, 800.
- h) Johnson, W. S.; McCarry, B. E.; Okorie, D. A.; Parry, R. J. *Ibid.* 1981, 103, 88.
- johnson, W. S.; Berner, D.; Dumas, D. J.; Nederlof,
 P. J. R.; Welch, J. *Ibid.* 1982, 104, 3508.
- j) Johnson, W. S.; Dumas, D. J.; Berner, D. Ibid 1982, 104, 3510.
- k) van Tamelen, E. E.; Loughhead, D. G. Ibid. 1980, 103, 869.
- 1) van Tamelen, E. E.; Zawacky, S. R.; Russell, R. K.; Carlson, J. G. *Ibid.* 1983, 105, 142.
- Carlson, J. G. *Ibid.* **1983**, *105*, 142. m) van Tamelen, R. E.; Hwu, J. R. *Ibid.* **1983**, *105*, 2490.
- n) Nishizawa, M.; Tanaka, H.; Hayashi, Y. *Ibid.* 1985, 107, 522 and references therein.

Stereoselective iminium ion cyclizations:

- o) Johansen, J. R.; Christie, B. D.; Rapoport, H. J. Org. Chem. 1981, 48, 4914.
- p) Dean, R. T.; Rapoport, H. Ibid. 1978, 43, 4183.
- q) Vlaeminck, F.; Van Binst, G. Heterocycles 1979, 12, 329.

Stereoselective N-acyliminium ion cyclizations:

- r) For a review, see: Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367.
- s) Hiemstra, H.; Sno, H. A. M.; Vijn, R. J.; Speckamp, W. N. J. Org. Chem. 1985, 50, 4014.
- t) Maryanoff, B. R.; McComsey, D. F.; Duhl-Emswiler, B. A. Ibid. 1983, 48, 5062.
- u) Hart, D. J.; Tsai, Y. N. Tetrahedron Lett. 1981, 22, 1567.
- v) Hart, D. J.; Yang, T.-K. Ibid. 1982, 23, 2761.
- w) Hart, D. J.; Kanai, K. J. Am. Chem. Soc. 1983, 105, 1255.
- x) Chamberlin, A. R.; Chung, J. Y. L. *Ibid.* 1983, 105, 3653.
- y) Chamberlin, A. R.; Chung, J. Y. L. J. Org. Chem. 1985, 50, 4425 and references therein.
- z) Hart, D. J.; Yang, T.-K. Tetrahedron Lett. 1982, 23, 2761.
- aa) Nossin, P. M. M.; Speckamp, N. W. Ibid. 1979, 20, 4411.
- bb) Nossin, P. M. M.; Hamersma, J. A. M.; Speckamp, W. N. Ibid. 1982, 23, 3207.

- cc) Wijinberg, B. P.; Speckamps, W. N. Tetrahedron 1982, 38, 209.
- dd) Veenstra, S. J.; Speckamp, W. N. J. Am. Chem. Soc. 1981, 103, 4645.
- ee) Wijinberg, B. P.; Speckamp, W. N. Tetrahedron Lett. 1981, 22, 5079.
- ff) Hart, D. J.; Kanai, K. J. Org. Chem. 1982, 47, 1555.
- gg) Hart, D. J. Ibid. 1981, 46, 3576.
- hh) Hart, D. J. Ibid. 1981, 46, 367 and references therein.
- 10. A number of steroid syntheses have been completed by Johnson's group: Johnson, W. S.; Gravestock, M. B.; McCarry, B. E. J. Amer. Chem. Soc. 1971, 93, 4332; Morton, D. R.; Johnson, W. S. Ibid. 1973, 95, 4419; Johnson, W. S.; Brinkmeyer, R. S.; Kapoor, V. M.; Voninel, M. T. Ibid. 1977, 99, 8341.
- 11. a) Volkmann, R. A.; Andrews, G. C.; Johnson, W. S. J. Amer. Chem. Soc. 1975, 97, 4777.
 - b) Crandall, G.; Lawton, R. G. Ibid. 1969, 91, 2127.
 - c) Marshall, J. A.; Cohen, N.; Huchstettler, A. R. *Ibid.* 1966, 88, 3408.
 - d) Ireland, R. E.; Welch, S. C. Ibid. 1976, 92, 7232.
 - e) Tansbury, P. T.; Haddon, V. R.; Stewart, R. C. *Ibid.* 1974, 96, 896.
 - f) van Tamelen, E. E.; Seiler, M. P.; Wierenga, W. *Ibid.* 1972, 94, 8229.
- 12. a) Snider, B. B.; Rodini, D. J.; van Struten, J. J. Am. Chem. Soc. 1980, 102, 5872.
 - b) Naegeli, P. Tetrahedron Lett. 1978, 19, 2130.
 - c) Johnson, W. S.; Harbert, C. A.; Peatcliffe, B. E.; Stipanevie, R. D. J. Am. Chem. Soc. 1976, 98, 6188.
- 13. a) Goldsmith, D. J. J. Am. Chem. Soc. 1962, 84, 3913.
 - b) Goldsmith, D. J.; Phillips, C. F. Ibid. 1969, 91, 5862.
- 14. Lansbury, P. T.; Serelis, A. K. Tetrahedron Lett. 1978, 19, 1909.
- 15. a) Schmid, R.; Huesmann, P. L.; Johnson, W. S. *J. Am. Chem. Soc.* 1980, 102, 5122.
 - b) Johnson, W. S.; Chen, Y.-Q.; Kellogg, M. S. *Ibid.* 1983, 105, 6653.
 - c) Johnson, W. S.; Elliot, J. D.; Hanson, G. J. Ibid. 1984, 106, 1138.
- Boeckman, R. K., Jr.; Bruza, K. J.; Heinrich, G. R. J. Am. Chem. Soc. 1978, 100, 7101.

- 17. For examples of thiophenes used as cyclication terminators, see: Reference 9t and:
 - a) Heathcock, C. H.; Jennings, R. A.; von Geldern, T. W. J. Org. Chem. 1983, 48, 3428.
 - b) Janssen, C. G. M.; Macco, A. A.; Buck, H. M.; Godefroi, E. F. Recl. Trav. Chim. Pays-Bas. 1979, 98, 448.
 - c) Macco, A. A.; de Brouwer, R. J.; Nossin, P. M. M.; Godefroi, E. F.; Buck, H. M. J. Org. Chem. 1978, 43, 1591.
 - d) Corvers, A.; Scheers, P. C. H.; deHaan, J. W.; Buck, H. M. Recl. Trav. Chim. Pays-Bas. 1977, 98, 279.
 - e) Gourler, J.; Cannone, P. Can. J. Chem. 1970, 48, 2587.
 - f) Hartman, G. D.; Halczentzo, W.; Phillips, B. T. J. Org. Chem. 1986, 51, 142 and references therein.
- 18. Trost, B. M.; Reiffen, M.; Climmin, M. J. Am. Chem. Soc. 1979, 101, 257.
- 19. See: Jackson, A. H. in "Comprehensive Organic Chemistry", Sammes, P. E., Ed., Pergamon Press, Oxford, 1979, Vol. 4, pp 275-320.
- 20. Nishizawa, M.; Takenaka, H.; Hayashi, Y. J. Am. Chem. Soc. 1985, 107, 522 and references therein.
- 21. Morgans, D. J., Jr.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 462.
- 22. Johnson, W. S.; Harbert, C. A.; Peatcliffe, B. R.; Stipanevic, R. D. *J. Am. Chem. Soc.* 1976, 98, 6188.
- 23. Baldwin, J. R.; Thomas, R. C.; Bruse, L. I.; Silberman, L. X. J. Org. Chem. 1977, 42, 3846.
- 24. Available from the Aldrich Chemical Company, Milwaukee, Wisconsin.
- 25. Prepared from 4-methyl-4-penten-1-ol which is available by the procedure of Mori, K.; Kobayashi, S.; Matsui, M. Agric. Biol. Chem. 1975, 39, 1889.
- 26. Iodoacetonide 24 was prepared from the corresponding (±) e-hydroxy diolacetonide which has previously been synthesized in the enantiomerically pure R-form, see: Mori, K.; Takigawa, T.; Matsui, R. Tetrahedron 1979, 35, 933.
- 27. Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. *J. Org. Chem.* 1977, 42, 3772.

- 28. Compound 26 was prepared from 5-methyl-3-penten-1-ol by Moppett, C. R.; Sutherland, J. K. J. Chem. Soc. 1968, 3040.
- 29. Compound 28 was prepared from 1,2,5-pentanetriol: Cervinka, 0.; Hub, L. Coll. Czech. Chem. Commun. 1968, 38, 2927.
- 30. Compound 30 was prepared from commercially available 1,2,6-hexane triol. The diolacetonide of 1,2,6-hexanetriol has been previously prepared; Landini, D.; Montanari, F.; Rolla, F. Synthesis 1979, 134.
- 31. a) Snider, B. B.; Rodini, D. J.; Karras, M.; van Straten, J. *Tetrahedron* 1981, 37, 3927.
 - b) Snider, B. B.; Rodini, D. J.; van Straten, J. J. Am. Chem. Soc. 1980, 102, 5872.
- 32. Feld, R.; Cowe, D. L., "The Organic Chemistry of Titanium", Butterworth, Inc., Washington, D. C., 1985 and references therein.
- 33. Stork, G.; Shiner, C. S.; Winkler, J. D. *J. Am. Chem. Soc.* 1982, 104, 310.
- 34. a) Marshall, J. A.; Wuts, P. G. M. J. Org. Chem. 1977, 42, 1794.
 - b) Reetz, M. T.; Huttenhain, S.; Hubner, F. Syn. Comm. 1981, 11, 217.
- 35. a) Stork, G.; Cohen, J. F. J. Am. Chem. Soc. 1974, 96, 5270.
 - b) van Tamelen, R. R.; Leiden, T. M. Ibid. 1982, 104, 2061.
- 36. See: Ris, M. J.; Wrobel, J. E.; Ganem, B. J. Am. Chem. Soc. 1984, 106, 3693 and references therein.
- 37. Still, W. C.; Mitra, A.; Khan, M. J. Org. Chem. 1978, 41, 2923.
- 38. Moppett, C. R.; Sutherland, J. K. J. Chem. Soc. C 1968, 3040.
- 39. Van Rheenan, V.; Kelley, R. C.; Cha, P. Y. Tetrahedron Lett. 1976, 1973.
- 40. See Reference 8a and: Feld, R; Cowe, D. L. in "The Organic Chemistry of Titanium", Butterworths, Washington, D. C., 1965.
- 41. See Reference 8a and: Marshall, J. A.; Wuts, P. G. M. J. Org. Chem. 1977, 42, 1794; Reetz, M. T.; Huttenhain, S.; Hubner, F. Synth. Commun. 1981, 11, 217.

INTRODUCTION

STUDIES DIRECTED TOWARDS THE SYNTHESIS OF SIMPLE INDOLIZIDINE AND QUINOLIZIDINE ALKALOIDS.

INTRODUCTION

N-acyliminium ions (1) have been recognized as valuable intermediates in the synthesis of alkaloids and related nitrogen-containing compounds. Many examples of intramolecular cyclizations involving 1 as a cyclization initiator reacting with an appropriately nucleophilic terminator function are known. Notable among these are the syntheses of alkaloids, such as perhydrohistrionicotoxin (H12-HTX)², vertaline³, gephyrotoxin⁴, and the necine bases. S

$$\begin{array}{c}
\mathbb{R}^2 & \bigoplus_{\mathbb{R}^3} \mathbb{R}^1 \\
\mathbb{R}^3 & \downarrow_{\mathbb{R}^3}
\end{array}$$

 R^1 , R^2 , R^3 = aryl, alkyl, or H R^4 = C or heteroatom

Figure 1

The relatively high reactivity of the N-acyliminium ions (See Figure 1) has been appreciated since the beginning of this century when the Tscherniac-Rinhorn reaction (Eq. 1) was discovered. The acid-catalyzed cleavage of N-(α -

hydroxyalkyl) amides (See Eq. 1) still remains as one of the most direct and successful routes to N-acyliminium ions.

Scheme I depicts this method and several other techniques for the generation of N-acyliminium ions. Protonation of ene-amides, \underline{N} -acylation of imines, and \underline{N} -alkylation of acylimines have been examined but are not generally employed to prepare N-acyliminium ions in synthetic sequences.

Scheme 1

The development of two new and versatile methods for the preparation of carbinolamides and N-(e-alkoxyalkyl) amides have spurred further examination of the synthetic potential of N-acyliminium ions (Eq. 2 and 3). These two methods, the electrochemical oxidation of amides of and the pH-controlled NaBH4 reduction of cyclic imides of are depicted in Equations 2 and 3, respectively. Recently, a further improvement in the preparation of the carbinolamide precursor of cyclic N-acyliminium ions 3 has been reported by Chamberlin (NaBH4, MeOH, -4°C).

The fate of the N-acyliminium ions produced upon treatment of carbinolamides with acid depends upon the structure of the starting imide (Eq. 3) and the nature of the termination step. The N-acyliminium ion can suffer deprotonation to yield an enamide¹², be captured inter- or intramolecularly by olefinic¹³, acetylenic^{13b,e;14}, allylic-

terminators, or be quenched by a heteroaromatic nucleophile. 19 These terminator moieties are quite useful; however, the spectrum of terminator functions which have been found to be compatible with the conditions required to generate N-acyliminium ions is not as broad as those employed in cationic polyene cyclimations. 22

Other research in our laboratories has centered upon 2and 3-substituted furans as cyclization terminators in annulation sequences.20 The majority of these examples have employed epoxides^{20a,21}, allylic alcohols^{20b,22}, and enones20b,23 as cyclisation initiators, thus providing routine access only to terpenoid-type compounds. Should Nacyliminium ion precursors containing furan-terminated chains be constructed and should the furyl moiety prove to be sufficiently robust so as to survive intact during Nacyliminium ion formation and subsequent cyclizations, then a variety of biologically active alkaloids could considered potential targets for total synthesis. For this process to be general, we must be able to prepare a variety of skeletal types including linearly-fused, spirocyclic and bridged. Possible N-acyliminium ion precursors to those target structures are depicted in Figure 2.

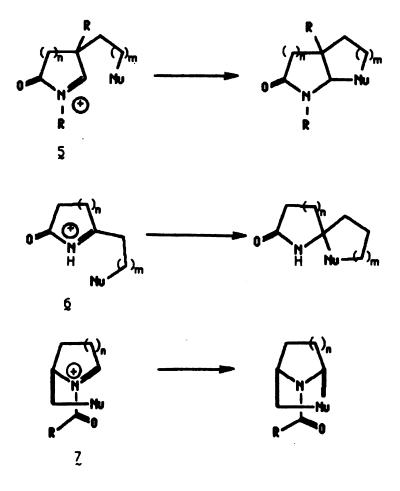


Figure 2. N-acyliminium ion skeltal types

N-acyliminium ions 4 and 5 will provide linearly-fused, bicyclic products in which the size of the rings formed can be readily varied. Their cyclization products could be converted to pyrrolizidine, indolizidine, and quinolizidine

alkaloids (from 4); or indole- and quinoline-type alkaloids (from 5). Similarly, N-acyliminium ions 6 and 7 could lead to a variety of spirocyclic- and bridged-alkaloid precursors.

Design and Synthesis of Cyclization Substrates

Our initial investigations in this area were directed toward compounds which might result from the cyclization of the readily prepared N-acyliminium ion 4. If we assume that Nu = 3- or 2-furyl (Figure 2, 4), then the resulting products should be readily converted to a variety of indolizidine and quinolizidine alkaloids (Figure 3, Eqs. 4 and 5) with the furyl moiety providing useful residual functionality after standard manipulations.

Figure 3

representative examples of the indolizidine the powerful a-mannosidase alkaloids are swainsonine 824 and the related enzyme inhibitor castanospermine 9.25 The Dedrobates alkaloids, gephyrotoxin 104 perhydrogephyrotoxin ll26 together with the Elaeokanine alkaloids $A - C (12-14)^{27}$, which have no unusual bioactivity. might also be considered members of this class of alkaloids. A few simple examples of quinolizidines include lupinine 1528 and its stereoisomer epilupinine 16.5b,29

Of the structures depicted in Figure 4, we chose the less complex Blaeckanine alkaloids 12-14 and lupinine 15, or its isomer epilupinine 16, as our initial synthetic targets. However, first we must demonstrate that the 2- and 3-furyl moieties are sufficiently nucleophilic and stable terminator functions for N-acyliminium ion-initiated cyclizations. Additionally, we hoped to show that the N-alkyl chain of these cyclization precursors can be readily modified to routinely provide access to six- and seven-membered linearly-fused carbocyclic ring systems, such as those shown in Equations 6-9.

As is illustrated in Equations 6-9, 2- and 3-furyl alcohols 19, 26, 33 and 40 will serve as the source of the furyl moieties. Coupling, utilizing the Mitsunobu protocol³⁰, so successfully employed by Hart^{3,4d,26c}, Chamberlin⁵, Speckamp^{14,15,27e}, and others, with succinimide or glutarimide, should afford imides 20, 23, 27, 30, 34, 37,

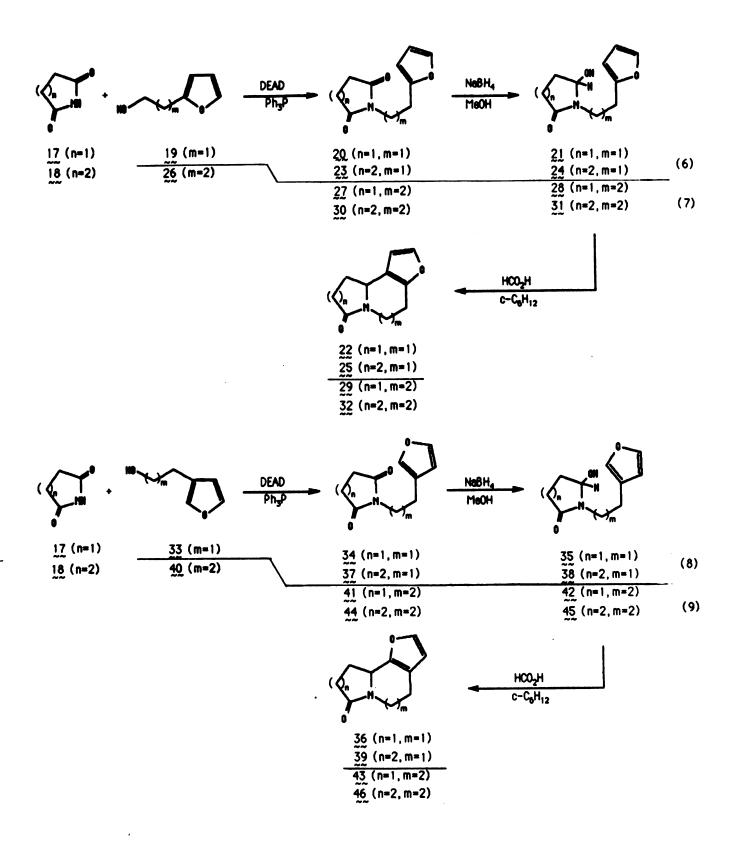



Figure 4. Indolizidines and Quinolizidines

41 and 44. Reduction to the carbinolamide and subsequent cyclization could lead to the corresponding cyclized products (See Eqs. 6-9). In the event, treatment of 2-(2furyl)ethanol 19 $(m=1)^{31}$ with either succinimide 17 (n=1) or glutarimide 18 (n=2) in the presence of azodicarboxylate (DEAD) and triphenyl phosphine (Ph₃P) provided N-substituted imides 20 (n=1, m=1) and 23 (n=2, 31% and 51% yields, respectively, chromatography. Similarly, the Mitsunobu reaction of 3-(2furyl)propanol 26 (m=2) with succinimide 17 and glutarimide 18 led to imides 27 (69%) and 30 (53%). With the complement of imides 20, 23, 27 and 30 designed to examine the effects of preformed (5 or 6) ring and forming ring (6 or 7) size upon the N-acyliminium ion-initiated furan (2-3 position) terminated cyclization in hand, we next examined the reduction-cyclization sequence. Sodium borohydride reduction of 20, 23, 27 and 30, according to the procedure of Chamberlin5b (NaBH4, MeOH, -4°C), provided the corresponding carbinolamides 21, 24, 28 and 31 in 88%, 95%, 94% and 95% yields, respectively. Carbinolamide 21 was then subjected to the cyclization conditions we had successfully employed in our sequences with allylic alcohol and enone initiators. 20b Exposure of 21 to a two-phase mixture of anhydrous HCO2H and c-C6H12 for 2-3 minutes gave the desired indolizidine alkaloid precursor 22 in 70% yield. before workup (2-3 min.) was found to be crucial as lengthening of the reaction time (5-10 min.) caused a

substantial reduction in yield and a poor mass balance. The isolation of a good yield of 22 is noteworthy in that it is but our second example of the previously unknown and disfavored 2-substituted-to-3-furyl relatively Similarly, carbinolamide cyclization.20b 24 quinolizidine precursor 25 in 71% yield after purification by chromatography. The seven-membered ring precursors 28 and 31 were examined extensively, and we were unable to prepare either the 5,7-membered ring compound 29 or the 6,7fused 32 under a variety of reaction conditions (e.g., i. HCO₂H, c-C₆H₁₂; ii. MsCl, Bt₃N; iii. HCl, aq.

Based upon our previous experience in furan-terminated cationic cyclization^{20b}, we expected not to encounter such forming-ring size problems in the electronically favored 3-to-2-closure (Eqs. 8 and 9). Therefore, we prepared the requisite imides 34 (100%), 37 (100%), 41 (56%), and 44 (84%) from glutarimide or succinimide, 2-(3-furyl)ethanol 33 (m=1)³² and 3-(3-furyl)propanol 40 (m-2) and subjected these materials to the standard reduction and cyclization conditions. The yields of product carbinolamides were uniformly high; and, to our delight, all of these substrates provided good yields (66%, 71%, 50%, 67%) of cyclized products 36, 39, 43 and 46 after brief treatment with HCO₂H/cC₆H₁₂.

Furan Manipulations - The Preparation of Alkaloid Precursors

With the desired cyclized substrates (See Eqs. 6-9) in hand, the next important transformation to be examined was the crucial oxidative cleavage of the 2,3-Disubstituted furyl moiety. Of the six possible (22, 25, 36, 39, 43 and 46) cyclized materials to be subjected to various oxidative chose as representative examples methods, we the indolizidine and quinolizidine precursors 22 25. respectively, and the seven-membered, 3- to 2-cyclized substrates 43 and 46. Successful oxidation of substrates 22, 25, 43 and 46 could afford either the corresponding butenolides (47 - 50) or cleaved products, the keto-enals (51 - 54), as a function of the conditions employed for the oxidation (See Figure 5).

FIGURE 5: Oxidation of 2,3-Disubstituted Furans

Substrates

Possible Oxidation Products

22 n - 1 25 n - 2

52 n = 2

Numerous methods for transforming a wide variety of variously substituted furans into their corresponding butenolides or keto-enals have been reported. Of these methods, we initially investigated oxidation with mCPBA in CH2Cl2 buffered with NaHCO3³³ or unbuffered^{33,34}, the chrominum VI-based reagents (PCC³⁵ and variants, such as 2-CNPCC³⁶; and the more classical Clauson-Kaas oxidation, Br2

in buffered $CH_2OH)^{37}$, followed by hydrolysis of the intermediate α, α' -dimethoxy-dihydro furan derivative. 33,37c,38

In the event, the readily available quinolizidine precursor 25 was subjected to the oxidation mentioned above. Thus, treatment of 25 with mCPBA under a variety of reaction conditions (2.2 equiv., CH2Cl2, 0°C to reflux33,34; 2.2 equiv., NaHCO3, O°C to reflux33; 2.2 equiv., NaOAc, HOAc) followed by reductive (NaBH4) workup39; and finally, 2.2 equiv., CH2Cl2, 0°C to 25°C followed by trifluoroacetic acid (TFA) quench33, led only to recovery of the starting material 25 or a number of unidentified overall poor mass-balance. Similarly products with ineffective in oxidising the furyl residue of 25 was PCC, CH2Cl2, 25°C to reflux35 and the more reactive 2-CNPCC, CH2Cl2, 25°C to reflux.36 Clauson-Kaas oxidation (Br2, Na₂CO₂, MeOH, -30° C)³⁷ of the indolized ine precursor 25 did provide the corresponding a, a'-dimethoxy-dihydro derivative in 77% yield; however, we were unable to isolate the presumably formed keto-enal upon acid hydrolysis of the crude reaction mixture using a variety of known methods (i. 1% aqueous HOAc, Δ^{38a} ; H₂O, 45°C^{38d}; ii. 1N HCl. H₂O. 45°C388; iii. 2% aqueous H2SO4, 25°C).38c

Other methods that have been successfully employed in oxidizing related substituted furan systems, but which failed to oxidatively open the furyl residue in 25, were NBS. NaOAc, dioxane-H2O, followed by NaBH4 reduction40 and

 $Ce^{iv}(NH_4)_2(NO_3)_6$, H_2O-CH_3CN , $25^{\circ}C.^{41}$ We can safely conclude after this extensive examination of chemical oxidants that furan cleavages are non-standard operations which are extremely substrate dependent.

Since standard and other esoteric methods for oxidizing the furyl moiety of substrate 25 proved fruitless, efforts were directed towards a photochemical means of achieving this necessary transformation. The use of photochemically generated singlet oxygen to oxidize variously mono- and disubstituted furans has received considerable attention over the years.⁴²

Treatment of 45 and or 46 with 102, generated by bubbling oxygen through solution of substrates in CH3OH or CH2Cl2 and either rose bengal43, hematoporphrin42, tetrahydroporphrin^{42,44} as sensitizers at 25°C using either a medium-pressure Hanovia lamp or a 500W Tungsten filiment source, failed to provide any of the desired products and, in general, resulted in poor mass-recovery. Consequently, the temperature at which the photolyses were performed was lowered to -78°C44c; and the crude photolysis mixtures were quenched with reducing agents, including NaBH4 in MeOH or i-PrOH45 and Ph₃P.43f,44b In these low-temperature photolyses, only recovered starting material was observed with no traces of oxidatively cleaved photoproducts, such as butenolides or keto-enals detected (See Figure 5). The failure of the standard chemical and 102 oxidations, thus far examined, caused us to consider the alternatives outlined below.

upon our previous experiences in oxidizing furans46 and the studies of others44c,47, we decided to increase the nucleophilicity of the furyl moiety in cyclized introducing substrate 25 bу TMS group at the unsubstituted-e'-position. Following a procedure by German workers, who successfully silylated analogous pyrrole systems using Et₃N and TMSOTf at 5°C to 25°C48, we exposed furan 25 to TMSOTf in Et₃N. After a number of attempts, failed to obtain any of the desired C-silylated furan. In fact, it appeared from a cursory examination of the KI-MS and 1H-NMR (250MHz) spectra that the lactam moiety had been silylated; a surmise which was substantiated by treating the crude silylated mixtures with K2CO3 in methanol leading to recovery of 25.

Alternatively, the silyl group could be introduced intact on the furyl piece prior to the Mitsunobu coupling reaction as is outlined in Scheme II.

Scheme II

The coupling of 2-(5-Trimethylsilyl-2-furyl) ethanol 5649 with glutarimide 18 (n=2) using the Mitsunobu procedure (DEAD, Ph₂P)³⁰ provided imide 56 in 87% yield after chromatography. Reduction (NaBH₄, MeOH, -4°C)^{5b} yielded cyclization precursor 57 in quantitative crude yield. Attempted cyclization of carbinolamide 57 using a variety of conditions (e.g., i. HCO₂H, cC₅H₁₂; ii. lN HCl, CH₂Cl₂; MsCl, Bt₂N, -23°C to 25°C) gave only desilylated cyclized material 25.

Recently, we⁵⁰ have discovered that that introduction of an alkyl group at an unsubstituted-e⁶-position of a similarly unreactive 2,3-disubstituted furyl moiety increased its reactivity towards standard oxidizing

reagents. Because of our concern for the survival of the system under the strongly basic conditions required to introduce a CH₂- onto the cyclised 25, we elected to employ the strategy depicted in Scheme III and utilize a furyl piece with the requisite group already in place.

Hence, the required imides, 60 (n=1, 55%) and 63 (n=2. 83%). were prepared from succinimide 17 (n=1) or glutarimide 18 (n=2) and 2-(5-methyl-2-furyl) ethanol 58. Reduction provided crude carbinolamides 61 and 64 in quantitative yields. Subjecting these two substrates to the standard cyclization conditions (HCO₂H, c-C₆H₁₂, 2 to 3 min.) afforded, to our delight, diones 62 (n=1) and 65 (n=2) in 35% and 64% yields, respectively. Diones 62 and 65 were obtained as a mixture of epimers. This observation is unique in that the hydrolysis of the putative intermediate is essentially unprecedented. Our experience in the parent systems and in perhydrohistrionicotoxin spiro-cyclization52 suggests that the serendipitious hydrolysis might result from the presence of an sp2-hybridized nitrogen in the forming cycle and perhaps might be related to torsional⁵³ and or allylic strain.54

With both quinolizidine 65 and indolizidine 62 precursors in hand, we next examined their conversion to the relatively simple naturally occurring alkaloids, lupinine 15 or epilupinine 16 and elaeokanine A 12. Considering first

the dione 65 (n=2), one problem that is immediately obvious is distinguishing between the two ketone functions. The ability to selectively protect one of the ketones and perform manipulations on the other unprotected ketone function is crucial to the successful completion of the synthesis.

Dione 65 was subjected to the "standard" ketalization conditions (HOCH2CH2OH, TsOH, PhH, Δ)⁵⁵ affording a disappointing ~2 to 1 mixture of "ring" ketalized material 65 to "side chain" ketalized compound 69 in 75% yield (see Eq. 10). The predominant formation of "ring" ketalized material 68 was demonstrated when the ketalized substrate, obtained from the standard ketalization technique⁵⁵, was submitted to NaBH4 reduction. The ¹H-NMR (250MHz) spectrum of the product ketal-alcohol revealed that the methyl singlet of dione 65 now appeared as a pair of doublets (~3:1 ratio) indicating that the major product under these conditions was not 69 but hydroxy ketal 68 (X=H,OH) prepared as a mixture of epimers at the carbinol center.

However, treatment of 65 under the recently reported kinetically-controlled ketalization conditions (TMSOCH2CH2OTMS, -23°C to 25°C, 10 mol% TMSOTf)56 yielded exclusively the "side chain" ketalized product 69 in 77% yield.

With the exclusive formation of the monoketal envisioned the completion of the synthesis of lupinine 15 or epi-lupinine 16 as described in Scheme IV. Formation of the tosylhydrasone derivative from mono-ketal 69 (H2NNHTS, TsOH, BtOH. Δ)57 and subsequent reductive deoxygenation (NaBH4, 0°C)57d should afford compound 70. MeOH. Deprotection (HaO+)58 followed by Baeyer-Villiger oxidation59 provide acetate 71. Finally, LAH reduction of both the acetate and amide carbonyl functions in 71 should lead cleanly to either lupinine 15 or epi-lupinene 16.

Some preliminary studies of the Baeyer-Villiger oxidation conducted on the inseparable 2:1 mixture of ketals 69 and 68 revealed that this oxidation was not as trivial as initially presumed. For example, reacting the mixture of ketals under a variety of Baeyer-Villiger conditions, such as mCPBA (2.2 equiv.), CH2Cl2, 400; 30% H2O2, NaOH, MeOH. $25^{\circ}C^{61}$: $30^{\circ}H_{2}O_{2}$. NaOH, EtOH, Δ^{62} : TFAA, $30^{\circ}H_{2}O_{2}$. CH₂Cl₂. wet TFA63, gave either recovered starting material or a variety of unidentifiable products with poor mass-recovery. However, subjecting the mixture of ketals 69 and 68 to Noyori's conditions (3 equiv. CF2CO2H, 3 equiv. NaHPO4. to 25°C)59,64 resulted in the complete CH₂Cl₂. 00 disappearance of 69 and the appearance of 1H-NMR resonances consistant with an acetate functional group.

The successful completion of the synthesis of quinolizidine alkaloids, lupinine 15 or epi-lupinine 16, appears to be assured; and all that remains to be accomplished is the removal of the ring ketone carbonyl prior to deketalization, Baeyer-Villiger cleavage and LAH reduction. These transformations are currently being examined.

In order to convert indolization precursor 67 to an elaeokanine alkaloid, selective ketalization of the dione is again paramount. Fortunately, with this particular dione system, the solution to the problem was much more straightforward than in the analogous substrate 65. To our

Scheme V

delight, standard ketalization techniques performed on 62 (n=1) gave only the "side chain" ketalized material 67 in 70% yield with no formation of the "ring-ketalized" substrate 68 observed (See Eq. 10). From the mono-ketal 67, we envisioned preparing elaeokanine A 12 as illustrated in Scheme V.

Reduction (NaBH4, MeOH, O°C) of 67 proceeded cleanly to provide the hydroxy-ketal 72 in 81% unoptimized yield.

Protection of the secondary hydroxyl function as the SEM-

ether (SEMC1, i-Pr2NEt, CH2Cl2, 40°C)** followed by ketal deprotection (H2O*) and subsequent Baeyer-Villiger oxidation (TFPA, Na2HPO4, CH2Cl2)***.** of the 2-propyl ketone side chain could yield acetate 74. Acetate hydrolysis (K2CO2/aq. NeOH)***, Swern oxidation (DNSO, (CO)2Cl2, CH2Cl2)*** of the primary hydroxyl followed by treatment of the aldehyde 75 with i-PrNgBr** and oxidation of the resulting alcohol (Swern) should give ketone 76. "Dehydration" of 76, followed by LAH reduction, could afford the allylic alcohol 77. Finally, oxidation of the allylic alcohol (MnO2)** should provide Elaeokanine A 12. Furthermore, with some minor modifications to one or more of the steps presented in Scheme V, the synthesis of the remaining Elaeokanine alkaloids could be realized.

In conclusion, we have demonstrated that 2- and 3-furyl moieties are sufficiently nucleophilic and stable terminator functions for N-acyliminium, ion-initiated cyclizations. These processes provide access to 5,6; 5,7; 6,6; and 6,7-membered, fused-ring systems with both the electronically favored 3-to-2-furyl closure (all) and the regioisomeric 2-to-3-furyl closure (5,6- and 6,6-membered rings only) being realized. In general, cyclization yields were uniformly high; additionally, the utility of these linearly-fused, bicyclic substrates was demonstrated by illustrating the chemical manipulations of the furyl residue necessary to transform 22 and 25 into precursors of the bioactive

alkaloids lupinine 15 or epi-lupinine 16 and Blaeokanine A

The ease with which the cyclization precursors can be prepared, coupled with their demonstrated structural flexibility (yielding a variety of preformed (5 or 6) and formed (6 or 7) ring systems with important residual functionality present), will undoubtedly lend itself to the preparation of other more challenging biologically active alkaloid structures.

EXPERIMENTAL

STUDIES DIRECTED TOWARDS THE SYNTHESIS OF SIMPLE INDOLIZIDINE AND QUINOLIZIDINE ALKALOIDS.

EXPERIMENTAL SECTION

General. Tetrahydrofuran (THF) and benzene were dried distillation under argon from sodium benzophenone ketyl; methylene chloride was dried by distillation under argon from calcium hydride; triethylamine (TEA) was dried by distillation under argon from calcium hydride; t-butanol was dried by distillation under argon from sodium; pyridine was dried by distillation under argon from calcium hydride. Formic acid (98%) was purchased from Fluka and was used as received. Diethyl azodicarboxylate and Ph3P were purchased from Aldrich Chemical Company, Milwaukee, Wisconsin and were used as received. Petroleum ether refers to 35-60°C boiling point fraction of petroleum benzin. Diethyl ether was purchased from Columbia Chemical Industries, Inc., Columbus, Wisconsin, and was used as received. All other reagents were used as received unless otherwise stated; all reactions were performed under argon with the rigid exclusion of moisture from all reagents and glassware unless otherwise mentioned.

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on a Pye-Unicam SP-1000 infrared spectrometer or a Perkin-Elmer Model 167

spectrometer with polystyrene as standard. Proton magnetic resonance spectra (1H-NMR) were recorded on a Varian T-60 at 60MHz, a Varian CFT-20 at 80MHz, or a Bruker WM-250 spectrometer at 250MHz as mentioned in deuteriochloroform unless otherwise indicated. Chemical shifts are reported in parts per million (5 scale) from internal standard tetramethylsilane. Data are reported as followed: chemical shifts (multiplicity: s = singlet, bs = broad singlet, d = doublet, t = triplet, m = multiplet, coupling constant (Hz), integration). Electron impact (EI/MS, 70eV) mass spectra were recorded on a Finnigan 4000 with an INCOS 4021 data system.

Flash column chromatography was performed according to the procedure of Still et. al. by using the Whatman silica gel mentioned and elated with the solvents mentioned. The columns outer diameter (o.d.) is listed in millimeters.

General Procedure for the Preparation of N-Substituted

Imides (20, 23, 27, 30, 34, 37, 41 and 44).

Preparation of N-(2-(2-Furyl)-ethyl)-2,5-pyrrolidinedime
(20).

To a solution of 2-furyl ethanol (2.24g, 20mmol), triphenylphosphine (5.77g, 22mmol), succinimide (1.98g, 20mmol), and THF (16.7mL), chilled in an ice-H₂O bath, was

added to a solution of diethyl azodicarboxylate (3.83g. 22mmol) in THF (8.9mL) over 20 min. The mixture was stirred at 25°C for 48h and then concentrated in vacuo to a yellow viscous liquid. Ether-petroleum ether (1:1) was added to the residue resulting in the precipitation of a white solid (Ph₃P=0) which was removed by filtration. The filtrate was concentrated in vacuo to provide 3.52g of a viscous pale yellow liquid which was purified by chromatography on a column of silica gel (60-230 mesh, 170 g, 60mm o.d., ethyl acetate-petroleum ether 35:65, 100mL fractions) using the flash technique. Fractions 12-25 provided 1.21g, 31%, of 20 as an off-white crystalline solid. mp = 65-69°C. $^{1}H-NMR$ (250MHz): $\delta = 7.27$ (m, 1), 6.22 (m, 1), 6.01 (m, 1), 3.75 (t, J=8.3Hz, 2), 2.88 (t, J=8.3Hz, 2), 2.63 (s, 4); IR (neat): 3450, 2930, 2860, 1770, 1700, 1400, 1170, 1125, 815 cm^{-1} ; RI-MS (70eV): 193 (M+, 0.31), 126 (8.15), 113 (43.14), 112 (35.5), 100 (base), 81 (86.3).

N-(2-(2-Furyl)-ethyl)-2, 6-piperidinedione (23).

According to the general procedure for the preparation of N-substituted imides, 2-furyl ethanol (2.24g, 20mmol), triphenylphosphine (5.77g, 22mmol), and glutarimide (2.26 g, 20mmol) in THF (16.7mL) was allowed to react with diethyl azodicarboxylate (3.83g, 22mmol) to provide 5.15g of crude product. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 230g, 20mm o.d., ethyl acetate-petroleum ether 35:65, 125mL fractions) using

the flash technique. Fractions 13-28 provided 2.10g, 51%, of 23 as a viscous yellow liquid.

¹H-NMR (60MHz): $\delta = 7.30$ (m, 1), 6.27 (m, 1), 6.02 (m, 1), 4.07 (t, J=8.0Hz, 2), 2.85 (t, J=8.0Hz, 2), 2.59 (t, J=6.5 Hz, 4), 1.90 (m, 2); IR (neat): 3.30, 2860, 1725, 1670, 1350, 920, 735 cm⁻¹; BI-MS (70eV): 207 (M+, 8.07), 140 (0.44), 126 (0.78), 98 (4.63), 94 (base), 81 (13.0).

N-(2-(3-Furyl)-ethyl)-2,5-pyrrolidinedione (34).

According to the general procedure for the preparation of N-substituted imides, 3-furyl ethanol (1.12g, 10mmol), triphenylphosphine (2.88g, 11mmol), and succinimide (0.99 g, 10mmol) in THF (8.3mL) were allowed to react with diethyl azodicarboxylate (1.91g, 11mmol) in THF (4.5mL) for 24h to provide 4.20g of crude product. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 120g, 50mm o.d., ethyl acetate-petroleum ether 30:70, 75mL fractions) using the flash technique. Fractions 19-27 provided 1.90g, 98%, of 34 as a viscous pale yellow liquid together with a white solid.

¹H-NMR (250MHz): $\delta = 7.32$ (m, 1), 7.23 (m, 1), 6.28 (bs, 1), 3.90 (t, J=6.7Hz, 2), 3.51 (t, J=6.7Hz, 2), 2.73 (m, 4); IR (neat): 3260, 1750, 1700, 1400, 1140, 870, 660 cm⁻¹; EI-MS (70eV): 193 (M+, 13.6), 126 (57.0), 112 (7.23), 94 (base), 84 (20.1), 81 (25.3).

N-(2-(3-Furyl)-ethyl)-2,6-piperidinedione (37).

According to the general procedure for the preparation of N-substituted imides, 3-furyl ethanol (1.12g, 10mmol), triphenylphosphine (2.88g, 11mmol), and glutarimide (1.13 g, 10mmol) in THF (8.3mL) was allowed to react with diethyl azodicarboxylate (1.92g, 11mmol) in THF (4.5mL) for 24h to provide 4.33g of crude product. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 120g, 50mm o.d., ethyl acetate-petroleum ether 1:1, 75mL fractions) using the flash technique. Fractions 7-12 yielded 2.03g, 98%, of 37 as a viscous pale yellow liquid together with a white solid.

¹H-NMR (250MHz): 8 = 7.31 (m, 1), 7.15 (bs, 1), 6.30 (bs, 1), 3.91 (t, J=7.8Hz, 2), 3.42 (t, J=7.8Hz, 2), 2.61 (m, 4), 1.90 (m, 2); IR (CHCl₃): 3420, 1730, 1670, 1350, 1125, 870 cm⁻¹; EI-MS (70eV): 208 (15.0), 207 (38.2), 177 (14.7), 176 (16.4), 140 (45.5), 126 (4.09), 98 (12.6), 94 (base), 81 (4.78).

N-(3-(2-Furyl)-propyl)-2.5-pyrrolidindione (27).

According to the general procedure for the preparation of N-substituted imides, 3-(2-furyl)propanol (4.0g, 31.75 mmol), triphenylphosphine (8.32g, 31.75 mmol) and succinimide (3.52g, 35.60 mmol) in THF (50 mL) was allowed to react with diethyl azodicarboxylate (5.52g, 31.75 mmol) in THF (8 mL) for 36 h. The crude product was purified by chromatography on a

column of silica gel (60-230 mesh, 200 g, 50mm o.d., ethyl acetate, petroleum ether 2:3, 60mL fractions) using the flash technique. Fractions 10-15 provided 4.08g, 62%, of 27 as a viscous pale yellow liquid.

¹H-NMR (250MHz): $\delta = 7.25$ (m, 1), 6.22 (m, 1), 5.98 (m, 1), 3.54 (t, J=7.3Hz, 2), 2.63 (m, 4), 2.61 (t, J=8.0Hz, 2), 1.91 (m, 2); IR (neat): 3450, 3240, 1770, 1700, 1435, 1400, 1150, 730 cm⁻¹; BI-MS (70eV): 208 (M*+1, 2.04), 207 (M*, 11.3), 113 (15.1), 108 (base), 95 (33.9), 81 (73.7), 67 (13.6), 55 (47.6).

N-(3-(2-Fury1)-propy1)-2.6-piperidinedione (30).

According to the general procedure for the preparation of N-substituted imides, 3-(2-furyl)propanol (4.0g, 31.75mmol), triphenylphosphine (8.32g, 31.75mmol), and glutarimide (4.02g, 35.60mmol) in THF (50mL) was allowed to react with diethyl azodicarboxylate (5.52g, 31.75mmol) in THF (8mL) for 36 h. The crude product was purified by preparative liquid chromatography (300mL/min) eluting with ethyl acetate-hexane, 30:70, to provide 3,69g, 53%, of 30 as a viscous pale yellow liquid.

¹H-NMR (250MHz): **5** = 7.25 (m, 1), 6.23 (m, 1), 5.99 (m, 1), 3.81 (t, J=7.3Hz, 2), 2.61 (t, J=8.3Hz, 2), 2.59 (t, J=6.7Hz, 4), 1.86 (m, 4); IR (neat): 3300, 3000, 1730, 1680, 1370, 1280, 1125, 1140, 1055, 1000, 935, 730 cm⁻¹; KI-MS (70eV): 221 (M+, 8.16), 140 (6.42), 126 (11.2), 108 (100), 98 (16.8), 81 (74.8).

N-(3-(3-Furyl)-propyl)-2,5-pyrrolidinedione (41).

According to the general procedure for the preparation of N-substituted imides, 3-(3-furyl)propanol (2.52g, 20mmol), triphenylphosphine (6.03g, 23mmol), and succinimide (1.98g, 20mmol) in THF (16.7mL) was allowed to react with diethyl azodicarboxylate (4.01g, 23mmol) in THF (8.9mL) for 24 h. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 230g, 60mm o.d., ethyl acetate-petroleum ether 30:70, 75-100 mL fractions) using the flash technique. Fractions 15-26 provided 2.31g, 56%, of 41 as a viscous pale yellow liquid.

¹H-NMR (250MHz): 8 = 7.35 (m, 1), 7.24 (bs, 1), 6.28 (bs, 1), 3.57 (t, J=8.3Hz, 2), 2.65 (m, 4), 2.45 (t, J=8.3Hz, 2), 1.86 (m, 2); IR (CHCl₃): 3400, 2965, 1720, 1690, 1480, 1400, 1210, 1150, 1050 cm⁻¹; EI-MS (70eV): 208 (M*+1, 3.46), 207 (M*, 15.03), 126 (4.22), 113 (6.64), 108 (base), 95 (35.6), 84 (12.6), 81 (20.6).

N-(3-(3-furyl)-propyl)-2,6-piperidinedione (44).

According to the general procedure for the preparation of N-substituted imides, 3-(3-furyl)propanol (2.52g, 20mmol), triphenylphosphine (6.03g, 23mmol), and glutarimide (2.26g, 20mmol) in THF (16.7mL) was allowed to react with diethyl azodicarboxylate (4.01g, 23mmol) in THF (8.9mL) for 48 h. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 250g, 60mm o.d., ethyl acetate-

petroleum ether 30:70, 100 mL fractions) using the flash technique. Fractions 18-31 provided 3.70g, 84%, of 44 as a viscous pale yellow liquid.

¹H-NMR (250MHz): 8 = 7.34 (m, 1), 7.24 (bs, 1), 6.27 (bs, 1), 3.82 (t, J=8.3Hz, 2), 2.62 (t, J=6.3Hz, 4), 2.45 (t, J=8.3Hz, 2), 1.89 (m, 2), 1.80 (m, 2); IR (neat): 3410, 2995, 1720, 1660, 1350, 1215, 1160, 1125, 1040 cm⁻¹; EI-MS (70eV): 221 (M+, 7.97), 141 (27.0), 127 (8.04), 108 (base), 98 (39.0), 95 (18.7), 81 (26.4).

General Procedure for the Reduction of N-substituted Imides (20, 23, 27, 30, 34, 37, 41 and 44).

Preparation of N-(2-(2-Furyl)-ethyl)-5-hydroxy-2-pyrrolidinone (21).

Sodium borohydride (1.52g, 40mmol) was added all at once to a solution of the N-substituted imide (20, 769mg, 3.98mmol) in methanol (40mL) and chilled to -5°C in an ice-salt bath. The mixture was stirred at -5°C for lh then cast into a rapidly stirred mixture of saturated aqueous NaHCO₃ (40mL) and CH₂Cl₂ (40mL) and chilled to 0°C in an ice-H₂O bath. The aqueous layer was separated and extracted with CH₂Cl₂ (3 x 40mL), and the combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated *in vacuo* to afford 684mg, 88%, of the crude carbinol amide 21 as a viscous water-white liquid, which was used without further purification.

¹H-NMR (250MHz): $\delta = 7.28$ (m, 1), 6.26 (m, 1), 6.05 (m, 1), 4.95 (bs, 1), 3.57 (m, 2), 3.63 (bs, 1), 2.88 (t, J=7.0Hz, 2), 2.51 (m, 1), 2.23 (m, 2), 1.85 (m, 1); IR (neat): 3320, 2920, 1690, 1660, 1450, 1285, 1170, 1070, 985, 920, 670 cm⁻¹; RI-MS (70eV): 196 (M+1, 1.32), 195 (M+, 10.0), 177 (4.30), 176 (7.55), 142 (3.94), 114 (24.8), 94 (80.9), 68 (58.9), 46 (base).

N-(2-(2-Furyl)-ethyl)-6-hydroxy-2-piperidinone (24).

According to the general procedure for the reduction of N-substituted imides sodium borohydride (1.14g, 30mmol) was added to imide 23 (62lmg, 3.0mmol) in MeOH (30mL) at -5°C and stirred for 1h to provide 620mg, 98%, of the crude carbinol amide 24 as a viscous pale yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 55g, 40mm o.d., ethyl acetate-petroleum ether 4:1, 50mL fractions) using the flash technique. Fractions 9-18 provided 480mg, 76%, of a white crystalline solid. mp = 87-90°C.

¹H-NMR (250MHz): $\delta = 7.32$ (m, 1), 6.29 (m, 1), 6.05 (m, 1), 5.85 (m, 1), 5.06 (m, 1), 3.72 (t, J=8.0Hz, 2), 2.90 (t, J=8.0Hz, 2), 2.50 (t, J=8.8Hz, 2), 2.37 (m, 2), 2.27 (m, 2); IR (CHCl₃): 3570, 3320, 2930, 1705, 1600, 1320, 1060, 970, 835 cm⁻¹; EI-MS (20eV): 210 (M++1, 1.87), 209 (M+, 9.55), 192 (3.40), 191 (18.2), 128 (8.3), 110 (24.3), 94 (61.7), 82 (31.8), 71 (29.4), 45 (base).

N-(2-(3-Fury1)-ethy1)-5-hydroxy-2-pyrrolidinone (35).

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (1.60g, 42mmol) was added to imide 34 (0.811g, 4.20mmol) in MeOH (41mL) at -3°C and stirred for 1h to yield 0.671g, 82%, of the crude carbinol amide 35 as a viscous pale yellow liquid together with a white solid.

¹H-NMR (250MHz): $\delta = 7:32$ (m, 1), 7.23 (bs, 1), 6.29 (bs, 1), 5.10 (bs, 1), 3.84-3.29 (m, 3), 2.61 (m, 2), 2.24 (m, 2), 1.86 (m, 2); IR (CHCl₂): 3430, 2960, 1770, 1690, 1480, 1350, 1080, 1030 cm⁻¹; KI-MS (70eV): 178 (M+1-H₂O, 31.3), 177 (M+-H₂O, 56.6), 176 (base), 149 (11.8), 148 (24.9), 121 (13.0), 120 (35.8), 110 (3.65), 82 (2.29), 65 (14.6).

N-(2-(3-Fury1)-ethy1)-6-hydroxy-2-piperidinone (38).

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (1.50g, 39.4mmol) was added to imide 37 (0.816g, 3.94mmol) in MeOH (38mL) at -4°C and stirred for 1h to provide 0.55g, 67%, of the crude carbinol amide 38 as a viscous pale yellow liquid.

1H-NMR (250MHz): 5 = 7.37 (m, 1), 7.25 (m, 1), 6.33 (bs, 1), 4.37 (m, 1), 3.90 (m, 1), 3.24 (m, 1), 2.73 (m, 2), 2.38 (m, 2), 1.99 (m, 2), 1.63 (m, 2); IR (CHCl₃): 3420, 2960, 1730, 1640, 1470, 1350, 1220, 1070, 1030 cm⁻¹; EI-MS (70eV): 210 (M++1, 0.74), 209 (M+, 4.49), 181 (5.26), 191 (2.23), 142 (2.50), 128 (22.0), 110 (27.9), 94 (base), 82 (48.3).

N-(3-(2-Furyl)-propyl)-5-hydroxy-2-pyrrolidinone (28).

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (1.90g, 50mmol) was added to imide 27 (2.03g, 9.8mmol) in MeOH (100mL) at -4°C and stirred for 45 min. to afford 1.93g, 94%, of the crude carbinol amide 28 as a viscous pale yellow liquid.

1H-NMR (250MHz): \$\delta = 7.30 (m, 1), 6.27 (m, 1), 6.02 (m, 1), 4.91 (dd, J=6.0,2.0Hz, 1), 3.53 (m, 2), 2.65 (t, J=8.3Hz, 2), 2.50 (m, 2), 2.29 (m, 2), 2.00 (m, 2); IR (CHCl₃): 3900, 3300, 1730, 1680, 1470, 1380, 1340, 1230, 1060, 880 cm⁻¹; BI-MS (70eV): 192 (8.5), 191 (M*-H₂O, 43.0), 108 (49.9), 97 (88.2), 81 (46.0), 68 (base).

N-(3-(2-Furyl)-propyl)-6-hydroxy-2-piperidinone (31).

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (1.90g, 50mmol) was added to imide 30 (2.21g, 10mmol) in MeOH (100mL) at -4° C and stirred for 45 min to yield 2.0g, 90%, of the crude carbinol amide 31 as a viscous pale yellow liquid which crystallized upon cooling (-20°C) to give an off-white solid. mp = $58-64^{\circ}$ C.

¹H-NMR (250MHz): $\delta = 7.29$ (m, 1), 6.27 (m, 1), 6.02 (m, 1), 4.47 (m, 1), 3.68 (m, 2), 2.64 (t, J=7.8Hz, 2), 2.58 (m, 4), 1.98 (m, 2), 1.65 (m, 2); IR (CHCl₃): 3580, 3330, 2940, 1720, 1620, 1470, 1330, 1140, 1070, 1000, 930 cm⁻¹; EI-MS (70eV): 224 (M+1, 1.78), 223 (M+, 11.5), 205 (53.9), 176

(4.28), 149 (12.5), 110 (37.9), 108 (base), 81 (42.0), 68 (26.0).

N-(3-(3-Furyl)-propyl)-5-hydroxy-2-pyrrolidinone (42).

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (3.82g, 100.5mmol) was added to imide 41 (2.18g, 10.52mmol) in MeOH (100mL) at -4°C and stirred for 1h to provide 1.85g, 84%, of the crude carbinol amide 42 as a viscous pale yellow liquid.

1H-NMR (250MHz): 6 = 7.38 (m, 1), 7.27 (m, 1), 6.30 (bs, 1), 5.22 (m, 0.5), 4.94 (m, 0.5), 3.34 (m, 2), 2.45 (t, J=8.3Hz, 2), 2.40 (m, 4), 1.85 (m, 2); IR (CHCl₃): 3400, 3290, 2940, 1720, 1675, 1460, 1210, 1050, 870 cm⁻¹; EI-MS (70eV): 210 (M*+1, 6.23), 209 (M*, 17.4), 192 (34.3), 191 (65.0), 142 (4.40), 128 (8.37), 115 (13.7), 108 (base), 81 (60.9), 68 (55.4).

N-(3-(3-Furyl)-propyl)-6-hydroxy-2-piperidinone (45).

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (5.17g, 136mmol) was added to imide 44 (3.0g, 13.57mmol) in MeOH (136mL) at -4°C and stirred for 1.25h to yield 3.02g, 99%, of the crude carbinol amide 45 as a viscous pale yellow liquid.

1H-NMR (250MHz): \$\delta = 7.34 (m, 1), 7.24 (m, 1), 6.28 (m, 1), 6.00 (m, 1), 5.14 (m, 1), 3.5 (t, J=8.3Hz, 2), 2.46 (m, 4), 2.28 (m, 2), 1.84 (m, 4); IR (neat): 3310, 2960, 1720, 1670, 1500, 1350, 1260, 1165, 1125, 870, 780 cm⁻¹; RI-MS (70eV):

206 (M++1-H₂O, 19.4), 205 (M+-H₂O, base), 177 (5.76), 149 (5.58), 135 (21.5), 108 (68.4), 98 (31.4), 82 (48.9), 68 (33.3).

General Procedure for the Cyclization of Carbinol Amides (21, 24, 35, 38, 42, 45).

Preparation of 1-Aza-4.5-(2.3b-furyl)bicyclo[4.3.0]nonan-9-one (21).

To a vigorously stirred solution of the carbinol amide 21 (0.207g, 1.06mmol) in cyclohexane (17mL) at 25°C was rapidly added anhydrous HCO₂H (4.25mL). The two-phase mixture was stirred for 3 min. then immediately cast into CH_2Cl_2 (50mL) and H_2O (75mL). The aqueous layer was separated and extracted with CH_2Cl_2 (3 x 50mL). The combined organic layers were washed with brine (150mL), dried (Na2SO₄) and concentrated in vacuo to yield 220mg of crude cyclized material 22. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 40g, 30mm o.d., ethyl acetate-petroleum ether 4:1, 30mL fractions) using the flash technique. Fractions 8-13 yielded 0.139mg, 74%, of 22 as a viscous water-white liquid. $^{1}H-NMR$ (250MHz): $\delta = 7.27$ (m, 1), 6.20 (m, 1), 4.98 (m, 2), 4.42 (m, 1), 2.78 (m, 2), 2.33 (m, 2), 1.94-1.62 (m, 2); IR $(CHCl_3)$: 3000, 2860, 1675, 1420, 1310, 1220, 1110, 900 cm⁻¹; BI-MS (70eV): 178 $(M^++1, 20.8)$, 177 $(M^+, base)$, 176 (66.2), 148 (11.1), 134 (10.5), 120 (45.5), 107 (9.88), 91 (27.0), 65 (25.0).

Cyclization of Carbinol Amide (24).

According to the general procedure for the cyclization of carbinol amides, a two-phase mixture of HCO2H (6.0mL), carbinol amide 24 (326mg, 1.56mmol), and cyclohexane (25mL) was stirred vigorously at 25°C for 3 min. to yield 0.28g of a viscous pale yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 32g, 30mm o.d., ethyl acetate-petroleum ether 4:1, 20mL fractions) using the flash technique. Fractions 13-22 provided 0.211g, 71%, of 25 as a viscous water-white liquid. $^{1}H-NMR$ (250MHz, $C_{5}D_{5}$): $\delta = 7.02$ (bs, 1), 5.84 (m, 1), 5.12 (dd, J=12.5, 5.0Hz, 1), 3.78 (m, 2), 2.55 (m, 2); IR (CHCl₃):3000, 2945, 1625, 1465, 1440, 1415, 1350, 1330, 1310, 1220, 1160, 1140, 1115 cm⁻¹; BI-MS (70eV): 192 (M*+1, 14.6), 191 $(M^+, base)$, 163 (11.8), 162 (20.5), 148 (7.75), 135 (41.9), 121 (54.5), 120 (57.7), 104 (26.1), 91 (30.3), 77 (29.3), 55 (73.1).

Cyclization of Carbinol Amide (35).

According to the general procedure for the cyclization of carbinol amides, a two-phase mixture of HCO₂H (1.0mL), carbinol amide 35 (50mg, 0.256mmol), and cyclohexane (4.0mL) was stirred vigorously at 25°C for 3 min. to yield a viscous pale yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 15g, 20mm o.d., ethyl acetate-petroleum ether 4:1, 10mL

fractions) using the flash technique. Fractions 10-22 provided 30mg, 66%, of 36 as a white crystalline solid. $mp = 84-87^{\circ}C$.

¹H-NMR (250MHz): $\delta = 7.28$ (m, 1), 6.21 (m, 1), 4.69 (m, 1), 4.35 (dd, J=19,5.8Hz, 2), 2.87 (m, 2), 2.70-2.35 (m,2), 1.89 (m, 2); IR (CHCl₃): 3000, 2860, 1680, 1420, 1310, 1220, 1110, 1040, 900 cm⁻¹; BI-MS (70eV): 177 (M++1, 64.8), 176 (M+, base), 149 (11.6), 148 (25.1), 134 (6.48), 120 (38.4), 107 (6.69), 91 (15.8), 65 (19.2), 39 (48.6).

Cyclization of Carbinol Amide (38).

According to the general procedure for the cyclisation of carbinol amides, a two-phase mixture of HCO₂H (2.4mL), carbinol amide 38 (128mg, 0.612mmol), and cyclohexane (9.5mL) was stirred vigorously at 25°C for 2 min. to afford a viscous white-water liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 30g, 30mm o.d., ethyl acetate-petroleum ether 4:1, 30mL fractions) using the flash technique. Fractions 9-15 provided 83mg, 71%, of 39 as a white crystalline solid. mp = 82-84°C.

¹H-NMR (250MHz): $\delta = 7.25$ (m, 1), 6.21 (m, 1), 4.98 (m, 2), 4.50 (m, 1), 2.65 (m, 2), 2.39 (m, 2), 1.92-1.55 (m, 4); IR (CHCl₃): 2965, 2860, 1630, 1440, 1415, 1310, 1220, 1165, 1120, 1035 cm⁻¹; EI-MS (70eV): 192 (M*+1, 13.7), 191 (M*, base), 190 (M*-1, 85.1), 163 (16.4), 162 (26.1), 148 (8.78), 135 (29.3), 121 (45.0), 120 (54.0), 91 (19.5), 55 (48.5).

Cyclization of Carbinol Amide (42).

According to the general procedure for the cyclization of carbinol amides, a two-phase mixture of HCO₂H (3.1mL), carbinol amide 42 (1.66g, 7.94mmol), and cyclohexane (124mL) was stirred vigorously at 25°C for 3 min. to yield a tan solid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 50g, 40mm o.d., ethyl acetate-petroleum ether 4:1, 50mL fractions) using the flash technique. Fractions 7-14 provided 757mg, 50%, of 43 as a viscous pale yellow liquid.

¹H-NMR (250MHz): $\delta = 7.20$ (m, 1), 6.14 (m, 1), 4.75 (m, 1), 4.30 (m, 2), 2.88 (m, 2), 2.56 (m, 2), 2.00-1.71 (m, 4); IR (neat): 3420, 2940, 2860, 1660, 1460, 1405, 1330, 1280, 1210, 920 cm⁻¹; BI-MS (70eV): 192 (M*+, 23.4), 191 (M*, base), 190 (M*-1, 98.3), 163 (35.8), 162 (37.6), 148 (12.5), 135 (33.5), 134 (46.4), 120 (28.5), 107 (39.8), 91 (34.0), 77 (38.9), 55 (44.8).

Cyclization of Carbinol Amide (45).

According to the general procedure for the cyclization of carbinol amides, a two-phase mixture of HCO₂H (3.6mL), carbinol amide 45 (2.09g, 9.0mmol), and cyclohexane (144mL) was stirred vigorously for 3 min. to yield 2.08g of a viscous yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 60g, 40mm o.d., ethyl acetate-petroleum ether 4:1, 50mL

fractions) using the flash technique. Fractions 6-17 provided 1.23g, 67%, of 46 as a white solid. mp = 72-74°C.

H-NMR (250MHz): δ = 7.23 (m, 1), 6.19 (m, 1), 4.62 (t, J=5.0Hz, 2), 4.56 (t, J=4.2Hz, 1), 2.72 (m, 2), 2.43 (m, 2), 2.09 (m, 2), 1.91 (m, 2), 1.78 (m, 2); IR (CHCl₃): 3380, 2940, 2870, 1620, 1460, 1410, 1330, 1280, 1210, 1130, 920, 880 cm⁻¹; RI-MS (70eV): 206 (M*+1, 14.6), 205 (M*, 92.3), 206 (M*-1, 18.7), 177 (18.9), 176 (12.8), 162 (16.7), 149 (22.1), 135 (base), 134 (31.6), 120 (22.5), 107 (18.9), 91 (21.1), 77 (22.8), 55 (33.8).

Clauson-Kaas Oxidation of 46.

To a solution of 46 (39mg, 0.19mmol) and Na₂CO₃ (40mg, 0.38mmol) in anhydrous methanol (0.25mL), cooled in a dry-CCl₄ ice bath to -22°C, was added a cooled (-22°C) solution of bromine in methanol (0.20mL, 0.19mmol, 1.0M) over five min. The mixture was stirred at -22°C for 90 min. then cast into CH₂Cl₂ (15mL) and brine (15mL). The aqueous layer was separated and extracted with CH₂Cl₂ (2 x 15mL). The combined organic layers were washed with 10% aqueous Na₂S₂O₃, brine (15mL each), dried (MgSO₄) and concentrated in vacuo to provide 39mg, 77%, of the a, a[†]-dimethoxy-dihydro derivative as a mixture of diastereomers.

¹H-NMR (250MHz): $\delta = 5.76$ (m, 0.5), 5.71 (m, 0.5), 5.66 (m, 0.5), 5.29 (m, 0.5), 4.63 (m, 0.5), 4.55 (m, 0.5), 3.73 (m, 0.5), 3.68 (m, 0.5), 3.49 (s, 1.5), 3.44 (s, 1.5), 3.15 (s, 1.5), 3.03 (s, 1.5), 2.66-1.60 (m, 12); IR (CCl₄): 3380,

2960, 2880, 1660, 1620, 1460, 1420, 1250, 1090, 1010, 800 cm⁻¹; BI-MS (70eV): 268 (10.0), 267 (5.41), 252 (3.06), 236 (18.5), 235 (48.0), 220 (3.78), 207 (18.53), 168 (12.4), 153 (14.3), 137 (17.5), 123 (22.6), 112 (43.0), 84 (35.0), 69 (34.3), 55 (base).

Preparation of N-(2-(5-Trimethylsilyl-2-furyl)ethyl)-2,6piperidinedione (58, n=2).

According to the general procedure for the preparation of N-substituted imides, to glutarimide (781mg, 6.90mmol), triphenylphosphine (2.07g, 7.90mmol). and 2-(5trimethylsilyl-2-furyl) ethanol 55 (1.27g, 6.9mmol) in THF (5.8mL) was added a solution of diethyl azodicarboxylate (1.38g, 7.9mmol) in THF (3.1mL) over 20 min. to yield 3.0g of a viscous orange liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 120g, 50mm o.d., ethyl acetate-petroleum ether 1:1, 50-75mL fractions) using the flash technique. Fractions 11-19 provided 1.67g, 87%, of 56 as a viscous yellow liquid. 1H-NMR (250MHz): $\delta = 6.50$ (d, J=4.2Hz, 1), 6.03 (d, J=4.2Hz, 1), 4.07 (t, J=8.3Hz, 2), 2.90 (t, J=8.3Hz, 2), 2.62 (t, J=6.3Hz, 4), 1.90 (m, 2), 0.24 (s, 9); IR (neat): 3320, 2970, 1730, 1675, 1360, 1255, 1135, 1040, 1015, 930, 850 cm⁻ 1; EI-MS (70eV): 280 (M++1, 0.94), 279 (M+, 4.31), 264 (2.44), 197 (0.50), 176 (2.04), 166 (67.4), 151 (34.4), 141 (3.44), 114 (7.56), 98 (8.73), 74 (24.6), 59 (68.1).

<u>Preparation of N-(2-(5-Trimethylsilyl-2-furyl)ethyl)-6-</u> hydroxy-2-piperidineone (57, n=2).

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (1.08g, 28.4mmol) was added all at once to imide 56 (793mg, 2.84mmol) in MeOH (28mL) at -5°C and stirred for 1h to provide 785mg, 98%, of the crude carbinol amide 57 as a viscous pale yellow liquid which was used without further purification.

1H-NMR (250MHz): \$\delta\$ = 6.50 (d, J=3.05Hz, 1), 6.02 (d, J=3.05Hz, 1), 4.66 (m, 1), 3.68 (m, 2), 2.95 (m, 2), 2.32 (m, 2), 2.07-1.54 (m, 5), 0.21 (s, 9); IR (neat): 3320, 2970, 1740, 1620, 1490, 1340, 1250, 1190, 1090, 990, 845, 760 cm⁻¹; EI-MS (70eV): 281 (M+, 0.38), 263 (M+-H2O, 1.77), 248 (0.51), 220 (1.33), 205 (0.61), 176 (5.08), 166 (28.2), 151 (12.42), 130 (4.64), 104 (19.9), 84 (29.9), 59 (44.2).

Cyclization of Carbinol Amide 57 (n=2).

According to the general procedure for the cyclization of N-w-furyl-carbinol amides, a two-phase mixture of HCO₂H (7.5mL), carbinol amide 57 (546mg, 1.94mmol) and cyclohexane (3lmL) was stirred vigorously at 25°C for 3 min. to yield 458mg of a viscous yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 32g, 30mm o.d., ethyl acetate-petroleum ether 5:1, 30-50mL fractions) using the flash technique. Fractions 9-16 provided 235mg, 63%, of desilylated cyclized material 25 as a viscous water-white liquid.

¹H-NMR (250MHz): $\delta = 7.31$ (m, 1), 6.25 (m, 1), 5.12 (m, 2), 4.47 (m, 1), 2.84 (m, 2), 2.66-2.28 (m, 4), 1.96-1.50 (m, 2); IR (CHCl₃): 2945, 1620, 1465, 1440, 1350, 1220, 1160, 1145, 1115 cm⁻¹; BI-MS (70eV): 192 (M⁺+1, 9.89), 191 (M⁺, 50.0), 174 (3.60), 162 (9.75), 148 (3.74), 135 (19.8), 120 (27.6), 110 (33.8), 98 (26.5), 77 (16.8), 55 (base).

<u>Preparation of N-(2-(5-Methyl-2-furyl)-ethyl)-2,5-</u> pyrrolidindione (60).

According to the general procedure for the preparation of N-substituted imides, to succinimide 17 (1.27g, 12.86mmol), triphenylphosphine (3.88g, 14.79mmol), and 2-(5-methyl-2-furyl) ethanol 58 (1.62g, 12.86mmol) in THF (10.8mL) was added a solution of diethyl azodicarboxylate (2.58g, 14.79mmol) in THF (5.7mL) over 20 min. to provide 4.38g of a viscous yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 130g, 50mm o.d., ethyl acetate-petroleum ether 30:70, 50-75mL fractions) using the flash technique. Fractions 15-22 yielded 1.46g, 55%, of 60 as a white solid. mp = 71-75°C.

¹H-NMR (250MHz): $\delta = 5.88$ (m, 1), 5.78 (m, 1), t, J=7.5Hz, 2), 2.83 (t, J=7.5Hz, 2), 2.64 (s, 4), 2.20 (s, 3); IR (CC1₄): 3450, 3300, 2940, 2860, 1770, 1700, 1435, 1400, 1365, 1340, 1240, 1170, 1125, 820 cm⁻¹; EI-MS (70eV): 208 (M*+1, 0.53), 207 (M*, 5.17), 176 (1.24), 164 (0.59), 149

(0.37), 138 (0.90), 108 (base), 95 (53.7), 59 (18.6), 55 (28.4).

Preparation of N-(2-(5-Methyl-2-furyl)-ethyl)-2.6piperidindione (63).

According to the general procedure for the preparation of N-substituted imides, to glutarimide (4.52g, 40mmol), triphenylphosphine (12.06g, 46mmol), and 2-(5-methyl-2-furyl) ethanol 58 in THF (33.4mL) was added a solution of diethyl azodicarboxylate (8.01g, 46mmol) in THF (17.8mL) over 30 min. to afford 1.18g of a viscous yellow liquid. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 250g, 60mm o.d., ethyl acetate-petroleum ether 30:70, 100-125mL fractions) using the flash technique. Fractions 12-22 yielded 7.32g, 83%, of 63 as a white solid. mp = 64-67°C.

Reduction of Imide 60.

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (2.07g, 54.6mmol)

was added all at once to imide 60 (1.13g, 5.46mmol) in MeOH (55mL) at -4°C and stirred for lh to provide 1.13g, 99%, of the carbinol amide 61 as a viscous pale yellow liquid which was used without further purification.

¹H-NMR (250MHz): 6 = 5.89 (m, 1), 5.81 (m, 1), 4.98 (m, 1), 3.55 (m, 2), 3.63 (bs, 1), 2.82 (t, J=7.0Hz, 2), 2.50 (m, 1), 2.25 (m, 2), 1.85 (m, 1); IR (CCl₄): 3340, 2920, 1680, 1570, 1460, 1430, 1290, 1225, 1070, 1030, 980 cm⁻¹; KI-MS (70eV): 209 (M⁺, 10.2), 191 (M⁺, -H₂O, 12.6), 176 (10.8), 131 (7.82), 127 (12.4), 114 (8.98), 108 (base), 104 (25.0), 96 (22.5), 95 (21.1), 85 (10.2), 68 (19.6).

Reduction of Imide 63.

According to the general procedure for the reduction of N-substituted imides, sodium borohydride (3.44g, 90.5mmol) was added all at once to imide 63 (2.0g, 9.05mmol) in MeOH (90mL) at -4°C and stirred for 45 min. to provide 1.98g, 98%, of the carbinol amide 64 as a viscous pale yellow liquid which was used without further purification.

1H-NMR (250MHz): \$\delta = 5.92 (m, 1), 5.85 (m, 1), 4.73 (bs, 1), 3.66 (m, 2), 3.37 (bs, 1), 2.89 (t, J=7.0Hz, 2), 2.36 (m, 2), 2.26 (s, 3), 2.13-1.6 (m, 4); IR (neat): 3280, 2940, 1720, 1615, 1560, 1480, 1330, 1215, 1075, 1015, 980, 850, 780 cm⁻¹; EI-MS (70eV): 223 (M+, 4.56), 205 (M+-H2O, 1.58), 176 (0.47), 128 (2.97), 116 (2.01), 108 (base), 99 (4.14), 95 (12.1), 82 (7.66), 55 (7.56).

Cyclization of Carbinol Amide 64.

According to the general procedure for the cyclization of carbinol amides, a two-phase mixture of HCO₂H (27.5mL), carbinol amide 64 (1.44g, 6.46mmol) and cyclohexane (110mL) was stirred vigorously at 25°C for 3 min. to yield 1.34g of a viscous yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 70g, 40mm o.d., ethyl acetate-methanol-triethylamine 20:1:0.5, 50mL fractions) using the flash technique. Fractions 9-14 provided 0.922g, 64%, of the dione 65 as a viscous pale yellow liquid.

¹H-NMR (250MHz): $\delta = 4.98$ (m, 1), 3.58 (m, 2), 2.89 (m, 3), 2.54 (m, 4), 2.24 (s, 3), 2.0-1.54 (m, 4); ¹³C-NMR (250MHz): $\delta = 207.8$, 206.3, 170.0, 58.8, 51.4, 41.1, 40.2, 39.0, 32.3, 30.0, 27.9, 18.8; IR (CCl₄): 3420, 2960, 2880, 1770, 1700, 1470, 1445, 1420, 1350, 1260, 1170, 975 cm⁻¹; EI-MS (70eV): 224 (M*+1, 2.32), 205 (6.05), 190 (0.83), 180 (18.8), 166 (base), 165 (38.6), 152 (3.88), 138 (4.64), 124 (4.19), 110 (48.2), 98 (32.1), 55 (34.4).

Cyclization of Carbinol Amide 61.

According to the general procedure to the cyclization of carbinol amides, a two-phase mixture of HCO₂H (22mL), carbinol amide 61 (1.17g, 5.6mmol) and cyclohexane (90mL) was stirred at 25°C for 2 min. to yield 1.10g of a viscous yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 60g,

40mm o.d., ethyl acetate-methanol-triethylamine 20:1:0.5, 30-50mL fractions) using the flash technique. Fractions 8-15 provided 0.406g, 35%, of the dione 65 as a viscous pale yellow liquid.

¹H-NMR (250MHz): $\delta = 4.37$ (m, 1), 3.50 (m, 2), 2.85 (m, 3), 2.44 (m, 2), 2.26 (m, 2), 2.19 (s, 3), 1.72 (m, 2); IR (CHCl₃): 3000, 2910, 1720, 1690, 1490, 1450, 1370, 1320, 1270, 1230, 1175 cm⁻¹; BI-MS (70eV): 210 (M+1, 1.59), 191 (1.84), 166 (21.3), 152 (base), 123 (17.0), 108 (30.9), 96 (71.9), 84 (55.9), 68 (34.0), 55 (83.8), 43 (90.7).

General Procedure for the Thermodynamically-Controlled Ketalization of Diones 62 and 65.

Preparation of Mono-ketals 68 and 69 (n=2).

To a solution of the dione (65) (868mg, 3.80mmol) and ethylene glycol (0.32mL, 5.7mmol) in anhydrous benzene (32mL) was added a crystal of, TsOH, and this mixture was refluxed overnight using a Dean-Stark apparatus to remove water. The mixture was cooled to 25°C then filtered through a pad layered with MgSO₄, K₂CO₃, and silica gel (230-400 mesh). The filtrate was concentrated in vacuo to afford 757mg, 75%, of a mixture of mono-ketals 68 and 69 as a viscous pale yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 80g, 40mm o.d., ethyl acetate-methanol-triethyl amine 20:1:0.5, 40mL fractions) using the flash technique. Fractions 7-12 provided 632mg, 62%, of an inseparable cs.

2:1 mixture of mono-ketals 68 and 69 as a viscous pale yellow liquid.

Ketalization of Dione 62 (n=1).

According to the general procedure for the thermodynamically controlled ketalization of diones, to dione 62 (215mg, 1.02mmol) and ethylene glycol (95mg, 1.53mmol) in anhydrous benzene (10mL) was added a crystal of TsOH H2O, and the mixture was refluxed overnight to yield 182mg, 70%, of the crude mono-ketal 67 as a viscous pale yellow liquid without any contamination of the isomeric mono-ketal 66.

1H-NMR (250MHz): $\delta = 4.00$ (m, 6), 3.42 (m, 1), 2.83 (m, 1), 2.42-1.70 (m, 6), 1.49 (m, 2), 1.34 (s, 3); IR (CCl₄): 2970, 2920, 2900, 1695, 1430, 1260, 1150, 1105, 1050, 950 cm⁻¹; EI-MS (70eV): 254 (M*+1, 2.47), 253 (M*, 0.56), 210 (25.0), 195 (27.8), 182 (1.62), 165 (9.24), 151 (2.10), 111 (15.0), 99 (88.3), 87 (base).

General Procedure for the Reduction of Mono-ketals 67 and 68.

Preparation of Alcohol 72.

To a solution of the mono-ketal 67 (130mg, 0.512mmol) in anhydrous methanol (5.0mL), chilled in an ice-H2O bath to 0°C, was added NaBH4 (97mg, 2.56mmol) all at once. The mixture was stirred for 3h at 0°C then cast into CH2Cl2 (50mL) and saturated aqueous NaHCO3 (50mL). The aqueous layer was separated and extracted with CH2Cl2 (3 x 30mL). The combined organic layers were washed with brine (100mL), dried (MgSO4) and concentrated in vacuo to yield 106mg, 81%, of alcohol 72 as a viscous water-white liquid.

1H-NMR (250MHz): \$\delta\$ = 3.96 (m, 7), 3.38 (m, 1), 2.79 (m, 1), 2.37-1.59 (m, 7), 1.44 (m, 2), 1.30 (s, 3); IR (CCl4): 3360, 2980, 2900, 1680, 1460, 1270, 1140, 1105, 1050, 950 cm-1; EI-MS (70eV): 255 (M+, 1.52), 210 (6.08), 195 (8.85), 180 (1.53), 167 (35.0), 149 (base), 99 (21.1), 69 (38.0), 57 (44.8).

Reduction of Mono-ketal 68.

According to the general procedure for the reduction of mono-ketals, to mono-ketal 58 in anhydrous methanol (2.5mL), chilled in an ice-H₂O bath to O°C, was added NaBH₄ in one portion, and the mixture stirred for 3h to provide 65mg, 95%, of the corresponding epimeric alcohols as a 3:1 mixture.

¹H-NMR (250MHz): $\delta = 4.81$ (m, 1), 4.07 (m, 6), 3.33 (m, 1), 3.00 (m, 1), 2.82-2.26 (m, 6), 1.84 (m, 2), 1.71-1.48 (m, 2), 1.21 (d, 6.3Hz, 3), 1.19 (d, 6.3Hz, 1); IR (CCl₄): 3360, 2940, 2865, 1630, 1460, 1270, 1180, 1100, 950 cm⁻¹; RI-MS (70eV): 270 (M+1, 1.11), 269 (M+, 4.94), 254 (1.38), 224 (4.30), 210 (4.91), 205 (6.88), 190 (1.28), 163 (10.1), 149 (6.49), 135 (6.81), 99 (78.7), 69 (28.4), 55 (base).

General Procedure for the Kinetically-Controlled Ketalization of Dione 65 (n=2).

Preparation of Mono-ketal 69.

To anhydrous CH2Cl2 (0.25mL) and TMSOTf (16mg, 0.0717mmol, 10mol%), cooled to -23°C in a dry ice-CCl4 bath, was added dropwise Bis-1,2-trimethylsiloxyethane (177mg, 0.8604mmol) over 3 min. followed by the addition of a solution of the dione 65 (160mg, 0.717mmol) in CH₂Cl₂ (0.75mL) over 5 min. The mixture was allowed to slowly warm to 25°C, stirred for 24 h, quenched by the addition of dry pyridine (7 drops), and the mixture cast into CH2Cl2 (10mL) and saturated aqueous NaHCO3 (15mL). The aqueous layer was separated and extracted with CH_2Cl_2 (3 x 10mL). The combined CH2Cl2 layers were washed with 5% aqueous HCl brine (50mL), dried $(Na_2SO_4-Na_2CO_3 1:1)$ (30mL). concentrated in vacuo to 180mg of 69 as a viscous yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 40g, 30mm o.d., ethyl acetate-methylene chloride-methanol 8:1:1, 20mL fractions) using the flash technique. Fractions 7-10 provided 147mg, 77%, of the mono-ketal 69 as a viscous pale yellow liquid.

¹H-NMR (250MHz): δ = 4.40 (dt, J=13.0,4.9Hz, 1), 3.92 (m, 4), 3.56 (m, 2), 3.02 (m, 1), 2.74 (m, 2), 2.48 (dd, J=13.0,8.3Hz, 2), 2.33 (t, J=6.3Hz, 2), 2.23-1.55 (m, 4), 1.52 (t, 3); IR (CC14): 2960, 2880, 1720, 1640, 1445, 1260, 1180, 1120, 960, 910 cm⁻¹; EI-MS (70eV): 268 (M*+1, 2.00), 267 (M*, 16.3), 224 (4.33), 209 (5.45), 191 (8.99), 180 (7.87), 166 (21.1), 147 (52.7), 108 (59.5), 99 (84.1), 55 (base).

LIST OF REFERENCES

STUDIES DIRECTED TOWARDS THE SYNTHESIS OF SIMPLE INDOLIZIDINE AND QUINOLIZIDINE ALKALOIDS.

LIST OF REFERENCES

- For reviews of N-acyliminium ion cyclization, see: Speckamp, W. N. Recl. Trav. Chim. Pays-Bas 1981, 100, 345. Zaugg, H. R. Synthesis 1984, 85, 181. Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367.
- 2. For several recent syntheses of perhydrohistrionicotoxin, see:
 - a) Aratani, M.; Dunkerton, L. V.; Fukuyama, T.; Kishi, Y.; Kakoi, H.; Sigiura, S.; Inoue, S. J. Org. Chem. 1975, 40, 2009.
 - b) Fukuyama, T.; Dunkerton, L. V.; Aratani, M.; Kishi, Y. *Ibid.* 1975, 40, 2011.
 - c) Corey, R. J.; Arnett, J. F.; Widiger, G. N. J. Am. Chem. Soc. 1975, 97, 430.
 - d) Corey, R. J.; Petrzilka, M.; Veda, Y. Helv. Chim. Acta 1977, 60, 2294; and references cited therein.
 - e) Evans, D. A.; Thomas, E. W.; Cherpeck, R. E. J. Am. Chem. Soc. 1982, 104, 3695.
 - f) Inubushi, Y.; Ibuka, T. Heterocycles 1982, 17, 507.
 - g) Tanner, D.; Somfai, P. Tetrahedron Lett. 1985, 26, 3883.
- 3. Hart, D. J.; Kanai, K. J. Org. Chem. 1982, 47, 1555.
- 4. For several recent syntheses of gephyrotoxin, see:
 - a) Overman, L. R.; Fukaya, C. J. J. Am. Chem. Soc. 1980, 102, 1454.
 - b) Habermehl, G. G.; Thurav, O. Naturwissenschaften 1980, 67, 193.
 - c) Fugimoto, R.; Kishi, Y.; Blount, J. F. J. Am. Chem. Soc. 1980, 102, 7154
 - d) Hart, D. J.; Kanai, K. J. Am. Chem. Soc. 1983, 105, 1255.
 - e) Overman, L. R.; Lesuisse, D.; Hashimoto, M. J. Am. Chem. Soc. 1983, 105, 5373.
- 5. a) Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105, 3653.
 - b) Chamberlin, A. R.; Nguyen, H. D.; Chung, J. Y. L. J. Org. Chem. 1984, 49, 1682.
 - c) Chamberlin, A. R.; Chung, J. Y. L. *Ibid.* 1985, 50, 4425.

- 6. a) Tscherniac, J. Ger. Pat 134979, 1984; Chem. Zentr. 1902, II, 1084.
 - b) Binhorn, A. Liebigs Ann. Chem. 1905, 343, 207.
- 7. a) Krow, G. R.; Pyun, C.; Leitz, C.; Marakowski, J.; Ramey, K. J. Org. Chem. 1974, 39, 2449.
 - b) Lasne, M.-C.; Ripoll, J.-L.; Thuillia, A. J. Chem. Res. (S) 1982, 214.
 - c) Würthwein, R.-U.; Kupfer, R.; Kaliba, C. Angew. Chem. Suppl. 1983, 264
- 8. a) Böhme, H.; Hartke, K. Chem. Ber. 1963, 96, 600.
 - b) Cohen, T.; Lipowitz, J. J. Am. Chem. Soc. 1984, 86, 2514.
 - c) Bose, A. K.; Spiegelman, G.; Manhas, M. S. Tetrabedron Lett. 1971, 13, 3167.
- 9. a) Brossi, A.; Dolan, L. A.; Teitel, S. Org. Synth. 1977, 56, 3.
 - b) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. *J. Am. Chem. Soc.* 1982, 104, 6697.
 - c) Tamura, Y.; Maeda, H.; Akai, S.; Ishibashi, H. Tetrahedron Lett. 1982, 23, 2209.
 - d) Lenz, G. R.; Woo, C.-M.; Hawkins, B. L. *J. Org. Chem.* 1982, 47, 3049.
 - e) Meth-Cohn, O.; Westwood, K. T. J. Chem. Soc. Perkin Trans. I 1984, 1173.
- 10. a) For a thorough review, see: Shono, T. Tetrahedron 1984, 40, 811.
 - b) Ross, S. D.; Finkelstein, M.; Peterson, R. C. J. Org. Chem. 1966, 31, 128.
 - c) Nyberg, K.; Servin, R. Acta Chem. Scand. Ser. B 1976, 30, 640.
 - d) Shono, T.; Hamaguchi, H.; Matsumura, T. J. Am. Chem. Soc. 1975, 97, 4264.
 - e) Mitzlaff, M.; Warning, K.; Jensen, H. Justus Liebigs Ann. Chem. 1978, 1713.
 - f) Palasz, P. D.; Utley, J. H. P.; Handstone, J. D. J. Chem. Soc. Perkin Trans. II 1984, 807.
- Hubat, J. C.; Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron 1975, 31, 1437.
- 12. For a review on the synthesis of enamides, see: Lenz, G. R. Synthesis 1978, 489. For an elegant use of a vinylogous variant of the enamide formation reaction, see: Magnus, P.; Gallagher, T.; Brown, P.; Pappalardo, P. Acc. Chem. Res. 1984, 17, 35. Exon, C.; Gallagher, T.; Magnus, P. J. Am. Chem. Soc. 1983, 105, 4739.

- 13. Schoemaker, H. B.; Dijkink, J.; Speckamp, W. N. a) Tetrahedron 1978, 34, 163.
 - Wijnberg, B. P.; Speckamp, W. N.; Oostveen, A. R. **b**) Tetrahedron 1982, 38, 209.
 - Oostveen, A. R. C.; deBoer, J. J.; Speckamp, W. c) N. Heterocycles 1977, 7, 171.
 - Schoemaker, H. E.; Speckamp, W. N. Tetrabedron d) Lett. 1978, 19, 1515.
 - Hamersma, J. A. M.; Speckamp, W. N. Tetrahedron e) 1982, 38, 3255; and references cited therein.
- 14. Nossin, P. M. M.; Speckamp, W. N. Tetrahedron a) Lett. 1979, 20, 4411.
 - Schoemaker, H. R.; Boer-Terpstra, T. J.; Dijkink, **b**) J.; Speckamp, W. N. Tetrahedron 1980, 36, 143.
 - Wijnberg, B. P.; Speckamp, W. N. Tetrahedron Lett. c) **1980**, *21*, 1987.
- 15. Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. 1983, 24, 1407. Hiemstra, H.; Sno, M. H. A. M.; Vijn, R. J.; Speckamp, W. N. J. Org. Chem. 1985, 50, 4014.
- Hart, D. J.: Tsai, Y. N. Tetrahedron Lett. 1981, 16. 22, 1567.
 - **b**) Kraus, G. A.; Neuenschwander, K. J. Chem. Soc. Chem. Commun. 1982, 134.
 - Aratani, M.; Sawada, K.; Hashimoto, M. Tetrabedron Lett. 1982, 23, 3921.
- 17. Nossin, P. M. M.; Speckamp, W. N. Tetrahedron a) Lett. 1981, 22, 3289.
 - Hamersma, J. A. M., Ph.D. Dissertation, University **b**) of Amsterdam (1983).
- 18. Erythrina-Type Cyclizations:
 - Belleau, B. J. Am. Chem. Soc. 1963, 75, 5765. a)
 - Mondon, A. Angew. Chem. 1956, 68, 578. b)
 - Mondon, A.; Aumann, G.; Oelrich, E. Chem. Ber. c) 1972, 105, 2025; and references cited therein.
 - Sasaki, T.; Eguchi, S.; Okano, T.; Nakamura, N. d) Chem. Soc. Perkin Trans. I 1984, 1863.
 - Maryanoff, B. E.; McComsey, D. F.; Duhl-Emswiler, e) B. A. J. Org. Chem. 1983, 48, 5062.

Indole-Type Cyclizations:

- van Tamelen, E. E.; Shamma, M.; Burgsthaler, A. W.; Wolinsky, J.; Tamm, R.; Aldrich, P. B. J. Am. Chem. Soc. **1969**, *91*, 7315.
- van Tamelen, R. E.; Dolby, L. J.; Lawton, R. G. g) Tetrahedron Lett. 1960, 19, 30.
- h)
- Kuehne, M. E. J. Am. Chem. Soc. 1964, 86, 2946. Harley-Mason, J.; Kaplan, M. J. Chem. Soc. Chem. i) Commun. 1967, 915.
- Rahman, A. U.; Beisler, J. A.; Harley-Mason, J. j) Tetrahedron 1980, 36, 1063.

- k) Kutney, J. P. Lloydia 1977, 40, 107.
- 1) Büchi, G.; Matsumoto, K. E.; Nishimura, H. J. Am. Chem. Soc. 1971, 93, 3299.
- m) Ando, M.; Büchi, G.; Ohnuma, T. Ibid. 1975, 97, 6880.
- n) Laronze, J.-Y.; Laronze-Fontaine, J.; Levy, J.; LeMen, J.; Tetrahedron Lett. 1974, 491.
- o) Benz, G.; Riesner, H.; Winterfeldt, E. Ches. Ber. 1975, 108, 248.
- p) Klatte, F.; Rosentreter, U.; Winterfeldt, R. Angew. Chem. 1977, 89, 916.
- q) Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Am. Chem. Soc. 1079, 101, 6414.
- r) Takano, S.; Takahashi, M.; Ogasawara, K. Ibida 1980, 102, 4282.
- s) Kaluns, G.; Győri, P.; Kajtár-Peredy, M.; Radics, L.; Szabő, L.; Szántay, C. Chem. Ber. 1981, 114, 1476.
- t) Takano, S.; Chiba, K.; Yonaga, M.; Ogasawara, K. J. Chem. Soc. Chem. Commun. 1980, 616.
- u) Takano, S.; Yonaga, M.; Ogasawara, K. *Ibid.* 1981, 1153.
- v) Kametani, T.; Suzuki, T.; Sato, E.; Nishimura, M.; Unno, K. *Ibid.* 1982, 1201.
- 19. a) Castagnoli, N., Jr. J. Org. Chem. 1989, 34, 3187.
 - b) Cushman, M.; Castagnoli, N., Jr. *Ibid.* 1971, 36, 3404.
 - c) Cushman, M.; Gentry, J.; Dekow, F. W. Ibid. 1977, 42, 1111.
 - d) Cushman, M.; Abbaspour, A.; Gupta, Y. P. J. Am. Chem. Soc. 1983, 105, 2873.
 - e) Cushman, M.; Wong, W. C. J. Org. Chem. 1984, 49, 1278.
- 20. a) Tanis, S. P.; Herrinton, P. M. J. Org. Chem. 1983, 48, 4572.
 - b) Tanis, S. P.; Herrinton, P. M. J. Org. Chem. 1985, 50, 3988.
- 21. a) Goldsmith, D. J. J. Am. Chem. Soc. 1962, 84, 3913.
 - b) Goldsmith, D. J.; Phillips, C. F. Ibid. 1969, 91, 5862.
 - c) van Tamelen, R. B. Acc. Chem. Res. 1978, 8, 152.
 - d) van Tamelen, E. E.; Marson, S. A. J. Am. Chem. Soc. 1975, 97, 5614.
 - e) van Tamelen, R. R.; Laughhead, D. G. J. Am. Chem. Soc. 1980, 102, 869.
 - f) Boeckman, R. K., Jr.; Bruza, K. J.; Heinrich, G. R. *Ibid.* 1978, 100, 7101.
 - g) Morgans, D. J., Jr.; Sharpless, K. B. Ibid. 1981, 103, 462.

- a) For reviews of polyene cyclization, see: Johnson, W. S. Acc. Chem. Res. 1968, I, 1. van Tamelen, E. E. Ibid. 1975, 8, 152. Johnson, W. S. Biorg, Chem. 1976, 5, 51. Johnson, W. S. Angew. Chem. Int. Ed. Engl. 1976, 15, 9.
 - b) Groen, M. B.; Zeelen, F. J. Recl. Trav. Chim. Pay-Bas 1978, 97, 301.
 - c) Groen, M. B.; Zeelen, F. J. J. Org. Chem. 1978, 43, 1961.
 - d) Peters, J. A. M.; Posthumus, T. A. P.; van Vliet, N. P.; Zeelen, F. J.; Johnson, W. S. *Ibid.* 1980, 45, 2208.
 - e) Johnson, W. S.; McCarry, B. R.; Markezich, R.; Boots, S. G. J. Am. Chem. Soc. 1980, 102, 352.
 - f) Gravestock, M. B.; Morton, D. R.; Boots, S. G.; Johnson, W. S. *Ibid.* 1980, 102, 800.
 - g) Johnson, W. S.; McCarry, B. E.; Okorie, D. A.; Parry, R. J. *Ibid.* 1981, 103, 88.
 - h) Johnson, W. S.; Dumas, D. J.; Berner, D. *Ibid.* 1982, 104, 3510.
 - i) For some other recent examples of allylic alcoholinitiated, cationic cyclizations, see: Brunke, R.-J.; Hammerschmidt, J.-J.; Struwe, H. *Tetrahedron* 1981, 37, 1033; and references cited therein.
- 23. a) Stork, G.; Burgstahler, A. J. Am. Chem. Soc. 1951, 73, 3544.
 - b) Ziegler, F. E.; Kloek, J. A. Tetrahedron 1971, 33, 373.
 - c) Andersen, N. H.; Uh, H. Tetrahedron Lett. 1973, 2079.
 - d) Dastur, K. P. J. Am. Chem. Soc. 1974, 96, 2605.
 - e) Marshall, J. A.; Wuts, P. G. M. *J. Org. Chem.* 1977, 42, 1794.
 - f) Cooper, J. L.; Harding, K. E. Tetrahedron Lett. 1977, 3321.
 - g) Naegeli, P. Ibid. 1978, 2127.
 - h) Andersen, N. H.; Ladner, D. W.; Moore, A. L. Synth. Commun. 1978, 8, 437.
 - i) Harding, K. R.; Cooper, J. L.; Puckett, P. M.; Ryan, J. D. J. Org. Chem. 1978, 43, 4363.
 - j) Matsumoto, T.; Ohmura, T.; Usui, S. Bull. Chem. Soc. Jpn. 1979, 52, 1957.
 - k) Snider, B. B.; Rodini, D. J.; van Straten, J. J. Am. Chem. Soc. 1980, 102, 5872.
 - 1) Sutherland, J. K. J. Chem. Soc. Rev. 1980, 9, 265.
 - m) Amupitan, J. A.; Huq, E.; Mellor, M.; Scovell, E. G.; Sutherland, J. K. J. Chem. Soc. Perkin Trans. I 1983, 751.
 - n) Amupitan, J. A.; Scovell, R. G.; Sutherland, J. K. *Ibid.* 1983, 755.
 - o) Amupitan, J. A.; Beddoes, R. L.; Mills, O. S.; Sutherland, J. K. *Ibid.* 1983, 759.

- 24. For several recent syntheses of 8, see:
 - a) Fleet, G. W. J.; Gough, M. J.; Smith, P. W. Tetrahedron Lett. 1984, 25, 1853.
 - b) Mezher, H. A.; Hough, L.; Richardson, A. C. J. Chem. Soc. Chem. Commun. 1984, 447.
 - c) Suami, T.; Tadano, K.; Iimura, Y. Chem. Lett. 1984, 513.
- 25. Bernotas, R. C.; Ganem, B. Tetrahedron Lett. 1984, 25, 165.
- 26. For syntheses of 11, see:
 - a) Overman, L. E.; Fukaya, C. J. Am. Chem. Soc. 1980, 102, 1454.
 - b) Overman, L. E.; Freerks, R. L. J. Org. Chem. 1981, 46, 2833.
 - c) Hart, D. J. J. Org. Chem. 1981, 46, 367.
 - d) Ibuka, T.; Chu, G.-N.; Yoneda, F. J. Chem. Soc. Chem. Commun. 1994, 597.
- 27. For a review of Blaeocarpus alkaloids, see:
 - a) Hart, N. K.; Johns, S. R.; Lamberton, J. A. Aust. J. Chem. 1972, 25, 817.
 - For syntheses of Blaeocarpus alkaloids, see:
 - b) Overman, L. R.; Malone, T. C.; Meier, G. P. J. Am. Chem. Soc. 1983, 105, 6993.
 - c) Otomasu, H.; Takastu, N.; Honda, T.; Kametani, T. Heterocycles 1982, 19, 511.
 - d) Khatri, N. A.; Schmitthenner, H. F.; Shringapure, J.; Weinreb, S. M. J. Am. Chem. Soc. 1981, 103, 6387.
 - e) Wijnberg, B. P.; Speckamp, W. N. Tetrahedron Lett. 1981, 22, 5097.
 - f) Watanabe, T.; Nakashita, Y.; Katamaya, S.; Yamaguchi, M. *Beterocycles* 1981, 16, 39.
 - g) Tufariello, J. J.; Ali, S. A. Tetrahedron Lett. 1979, 4445; and references cited therein.
 - h) Shono, T.; Matsumura, Y.; Uchida, K.; Tsubata, K.; Makino, A. J. Org. Chem. 1984, 49, 300.
- 28. For a synthesis of 15, see:
 - a) Tufariello, J. J.; Tegeler, J. J. Tetrahedron Lett. 1976, 17, 4037; and references cited therein.
- 29. For a recent synthesis of 16, see:
 - a) Bremmer, M. L.; Weinreb, S. M. *Tetrahedron Lett.* 1983, 24, 261. Also see References 5b and 28.
- 30. Mitsunobu, O. Synthesis 1981, 1.

- 31. See: Sargent, M. V.; Crisp, T. M. in "Comprehensive Organic Chemistry", Sammes, P. G., Ed., Pergamon Press, Oxford, 1979. Compound 19 was prepared by reacting ethylene oxide with 2-lithiofuran: Ramanathan, V.; Levine, R. J. Org. Chem. 1962, 27, 1216.
- 32. See Reference 31. Compound 26 was prepared by reacting ethylene oxide with 3-lithiofuran.
- 33. Williams, P. D., Ph.D. Dissertation, Michigan State University (1982).
- 34. a) Williams, P. D.; LeGoff, E. J. Org. Chem. 1981, 46, 4143.
 - b) Gingerich, S. B.; Campbell, W. H.; Bricca, C. E.; Jennings, P. W. J. Org. Chem. 1981, 46, 2589.
- 35. For a recent review of CrVI-mediated oxidations, see:
 - a) Cainelli, G.; Cardillo, G., Eds., "Chromium Oxidations in Organic Chemistry", Springer Verlag, 1984.
 - b) Piancatelli, G.; Scettri, A.; D'Auria, M. Tetrahedron 1980, 36, 661; and references cited therein.

For a convenient synthesis of PCC, see:

- c) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 16, 2647.
- 36. Corey, B. J.; Mehrotra, M. M. Tetrahedron Lett. 1985, 26, 2411.
- 37. a) Levisalles, J. Bull. Soc. Chim. France 1957, 997.
 - b) Elming, N. Adv. Org. Cham. 1980, 67-115.
 - c) Lee, T.-J. Tetrahedron Lett. 1979, 20, 2297.
- 38. a) Hirsch, J. H.; Szui, A. J. J. Heterocycl. Chem. 1972, 9, 523.
 - b) Floyd, M. B. J. Org. Chem. 1978, 43, 1641.
 - c) MacLeod, J. K.; Bott, G.; Cable, J. Aust. J. Chem. 1977, 30, 2561.
 - d) Gunn, B. P. Tetrahedron Lett. 1985, 26, 2869.
- 39. a) Wiesner, K.; Tsai, T. Y. R.; Kumai, R.; Sivaramakrichnan, H. *Helv. Chim. Acta.* 1984, 67, 1128.
 - b) Wiesner, K.; Tsai, T. Y. R.; Jin, H. Helv. Chim. Acta. 1985, 68, 300.
- 40. Wiesner, K.; Tsai, T. Y. R.; Sen, A.; Kumar, R.; Tsubuki, M. *Belv. Chim. Acta.* 1983, 66, 2632.
- 41. Lepage, L.; Lepage, Y. Synthesis 1983, 1018.

- 42. Schaap, A. P., Ed., "Single Nolecular Oxygen", Dowden, Hutchinson, and Ross, Stroudesburg, Pennsylvania (1976). Wasserman, H. H.; Murray, R. W., Eds., "Singlet Oxygen", Academic Press, New York (1979). For reviews on the application of singlet oxygen in synthesis, see: Ohloff, G. Pure Appl. Chem. 1975, 43, 481. Matsumoto, M.; Kondo, K. J. Syn. Org. Chem. Jap. 1977, 35, 188. Wasserman, H. H.; Ives, J. L. Tetrahedron 1990, 37, 1825.
- 43. a) Wasserman, H. H.; Liberles, A. J. Am. Chem. Soc. 1980, 82, 2086.
 - b) Foote, C. S.; Wexler, S. J. Am. Chem. Soc. 1984, 86, 3879.
 - c) Foote, C. S.; Wexler, S. Ibid. 1964, 86, 3880.
 - d) McKeown, R.; Waters, W. A. J. Chem. Soc. 1986, 8, 1040.
 - e) Foote, C. S.; Wexler, S.; Ando, W.; Higgins, R. J. Am. Chem. Soc. 1988, 90, 975.
 - f) Foote, C. S.; Wuesthoff, M. T.; Wexler, S.; Burstain, I. G.; Denny, R. Tetrahedron 1967, 23, 2583.
 - g) Naya, K.; Matsuura, T.; Makiyama, M.; Tsumura, M. Heterocycles 1978, 10, 177.
 - h) Fukuda, H.; Takeda, M.; Sato, Y.; Mitsunobu, O. Synthesis 1978, 368.
- 44. a) Foote, C. S.; Peterson, E. R.; Lee, K.-W. J. Am. Chem. Soc. 1972, 94, 1032.
 - b) Gollnick, K.; Griesbeck, A. Angew. Chem. Int. Ed. Engl. 1983, 22, 726.
 - c) Katsumura, S.; Hori, K.; Fujiwara, S.; Isoe, S. Tetrabedron Lett. 1985, 26, 4625.
 - d) Gollnick, K.; Schnatterer, A. Tetrahedron Lett. 1985, 26, 5029.
- 45. Corey, E. J.; Mehrota, M. M. J. Am. Chem. Soc. 1994, 106, 3384.
- 46. Tanis, S. P.; Head, D. B. Tetrahedron Lett. 1984, 25, 4451.
- 47. a) Kuwajima, I.; Urabe, H. *Tetrahedron Lett.* 1981, 22, 5191.
 - b) Adam, W.; Rodriguez, A. Tetrahedron Lett. 1981, 22, 3503.
 - c) deGroot, A.; Jansen, B. J. M. J. Org. Chem. 1984, 49, 2034.
 - d) Takano, Y.; Yasuda, A.; Urabe, H.; Kuwajima, I. Tetrahedron Lett. 1965, 26, 6225.
- 48. Frick, U.; Simchen, G. Synthesis 1984, 929.

- 49. Compound 55 was prepared by treating the corresponding 2-(2-Furyl) ethanol³¹ with n-BuLi (2 equiv.), TMSCl (2 equiv.), followed by NaOMe-MeOH cleavage of the siloxy group.
- 50. Tanis, S. P.; Chuang, Y.-H.; Head, D. B. *Tetrahedron Lett.* 1985, 26, 6147.
- 51. Compound 58 was prepared by reacting ethylene oxide with 5-methyl-2-lithiofuran: Masamune, T.; Ono, M.; Matsue, H. Bull. Chem. Soc. JAP. 1975, 48, 491. Büchi, G.; Wüest, H. J. Org. Chem. 1966, 31, 977.
- 52. Tanis, S. P.; Herrinton, P. M.; Dixon, L. A. *Tetrahedron Lett.* 1985, 26, 5347.
- 53. For a discussion, see: Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, "Conformational Analysis", Wiley-Interscience, New York, 1965, pp 5-12. For applications of the concept of tortional angle to conformational descriptions, see: Bucourt, R. Top. Stereochem. 1974, 8, 159.
- 54. Johnson, F. Chem. Rev. 1968, 68, 375.
- 55. Cole, J. R.; Johnson, W. S.; Robins, P. A.; Walker, J. J. Chem. Soc. 1967, 244.
- 56. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357.
- 57. a) Kolonko, K. J.; Shapiro, R. H. *J. Org. Chem.* 1978, 43, 1404.
 - b) Grieco, P. A.; Nishizawa, M. J. Org. Chem. 1977, 42, 1717.
 - c) Vinczer, P.; Novak, L.; Czantay, C. Syn. Comm. 1984, 14, 281.
 - d) Baker, R.; Sims, R. J. Tetrahedron Lett. 1981, 22, 161.
- 58. Tanis, S. P.; Nakanishi, K. J. Am. Chem. Soc. 1979, 101, 4398.
- 59. a) Netter, H. Helv. Chim. Acta 1981, 64, 761.
 - b) Emmons, W. D.; Lucas, G. B. J. Am. Chem. Soc. 1965, 77, 2287; and references cited therein.
- 60. a) Mubarik, S. A.; Roberts, S. M. J. Chem. Soc. Perkin I 1976, 1934.
 - b) Hudrlik, P. F.; Hudrlik, A. M.; Nagendrappa, G.; Yimenu, T.; Zellers, E. T.; Chin, E. J. Am. Chem. Soc. 1980, 102, 6894.

- c) Shiozaki, M.; Ishida, N.; Hiraoka, T.; Yanagisawa, H. Tetrahedron Lett. 1981, 22, 5205.
- 61. Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc. 1973, 95, 5321.
- 62. Trost, B. M.; Buhlmayer, P.; Mao, M. Tetrahedron Lett. 1982, 23, 1443.
- 63. Siddall, J. B.; Fung, S. J. Am. Chem. Soc. 1980, 102, 6580.
- 64. a) Noyori, R.; Sato, T.; Kobayashi, H. *Tetrahedron Lett.* 1980, 21, 2569.
 - b) Noyori, R.; Sato, T.; Kobayashi, H. *Ibid.* 1980, 21, 2573.
- 65. Lipshutz, B. H.; Pegram, J. J. Tetrahedron Lett. 1980, 21, 3343.
- 66. Plattner, J. J.; Gless, R. D.; Rapoport, H. J. Am. Chem. Soc. 1972, 94, 8613.
- 67. a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
 b) Mancuso, A. J.; Brownfain, D. S.; Swern, D. J. Org. Chem. 1979, 44, 4148.
- 68. Watanabe, T.; Nakashita, Y.; Katayama, S.; Yamauchi, M. Heterocycles 1980, 14, 1433.
- Lee, D. G. in "Oxidation", Vol. 1, Augustine, R. L.,
 Ed., Marcel Dekker, New York, NY, 1969, pp 66-70.
 Goldman, T. M. J. Org. Chem. 1969, 34, 1979.

