1,; V THE DEVELOPMENT CI'F THE METHODS FOR ANALYSIS- OF MUSICAL COMPOSITIONS AND FOR THE FORMATION or A SYMMETRIEAL TW'ELVE‘TONE' ' Row USING THE‘ELECTRONIC DIGITAL comma: This for the Degree bf Ph. D. MICHIGAN STATE UNIVERSITY Gilbert Harvey Roller 1963 11-11515 LIBRARY Michigan State University ABSTRACT THE DEVELOPMENT OF THE METHODS FOR ANALYSIS OF MUSICAL COMPOSITIONS AND FOR THE FORMATION OF A SYMMETRICAL TWELVE-TONE ROW USING THE ELECTRONIC DIGITAL COMPUTER by Gilbert Harvey Roller This research was conducted in order to develOp the methods for the analysis of musical compositions and for the formation of a symmetrical twelve-tone row, using the electronic digital computer. The analysis method used is applicable for music of all historical periods. The use of the computer affords the advantages of speed and of printed results in a clear, tabulated form. The analyses were obtained by coding the musical notes into numbers and forming a set of instructions (a program) for the electronic digital computer, which manipulated the numbers to produce the desired information. Analyses were made of musical selections of from four to twenty-two voices, and of composers from Mozart to Stravinsky. The results of the analyses contain a printed table which gives for each chord analyzed its measure number and its metrical position within the measure, presents a list of the intervals as measured from the lowest sounding note, and prints the letter name of the lowest sounding note, the octave placement of each chord tone, and the instrumentation of each chord. The analyses include a Gilbert Harvey Roller catalog of all repeated chords and repeated chord progressions. The root of each chord, as determined by the Hindemith method, is also listed. The frequency of repetition of the melodic intervals in each voice was found, along with the frequency of intervals between successive roots. These are listed, with indications as to the upward and downward movements. On file with the librarian at the Computer Center of Michigan State University are the programs for analyzing four-part music, together with accompanying card decks and instructions for the use of the programs. The analyses were preceded by a short history of musical analysis and a brief description of the electronic digital computer. A Control Data Corporation 160A Computer was used as the vehicle for solution of the problems in this study, but all the programs deve10ped herein are adaptable to the large 3600 Computer. An application of computer logic to a creative problem in music is described in the solution of a symmetrical twelve- tone row problem. Using the methods developed in the programs of this study all 55,hh0 possible symmetrical twelve-tone rows could be located. One row was processed in this research to show the develOpment of the method. In a search for the most satisfactory method of musical analysis there are two qualities which are obviously desirable: maximal speed_and universal applicability. An analysis of p. Gilbert Harvey Roller intervals with Arabic numerals may be applied to the vertical sonorities of music of all periods. Since the outstanding characteristic of the electronic, digital computer is its ability to compute Arabic numerals at a high rate of speed and with near-absolute accuracy, the major conclusion of this study is that musical analysis may be most easily, quickly and accurately done on a high-speed electronic digital computer. In addition, the electronic computer codifies the results in a readable and meaningful form. The high speed of the digital computer enables it to solve with ease problems in selection. For this reason it is to be further concluded that creative problems in music which involve many choices and rejections afford an opportunity for the use of the computer. There have been relatively few applications of the computer to music up to the present time, but eith the rapid development of simpler programming techniques and the present accessibility of these machines, there will doubtless be an increased use of computers in the music field. THE DEVELOPMENT OF THE METHODS FOR ANALYSIS OF MUSICAL COHPOSITIONS AND FOR THE FORHATION OF A SYMMETRICAL TWELVE-TONE ROW USING THE ELECTRONIC DIGITAL COMPUTER 3! Gilbert Harvey Roller A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OP PHILOSOPH! Department of Music 196} ACKNOWLEDGMENTS Appreciation is expressed to the administrators in the Department of Husio and to those of the Computer Center for their c00peration and assistance in this research. The guidance and counsel of Dr. William R. Sur, Chairman of the doctoral committee, has been invaluable. Appreciation is expressed to Dr. Robert Sidnell and Dr. Merrell Sherburn for their interest and suggestions in preparing this paper. Dr. Paul flarder provided the impetus and concern for the twelve-tone row problem. Further gratitude is expressed to Dr. Edgar Kirk, the dissertation adviser, whose warm counsel and time were given unselfishly. His encouragement and enthusiasm for the study contributed largely to its final completion. I am grateful to Dr. David L. McKenna, President of Spring Arbor (Michigan) College, for the wisdom he shared at several strategic points. Finally, this study is dedicated to Jeri, my wife, whose typing skills are commensurate with her efficiency as the mother of our four children, whose loyalty and love made times of stress and strain surmountable, and whose unswerving devotion gave me the courage to undertake and to complete the work. ii TABLE OF CONTENTS ACKNOWLEDGMENTS ......................................... ... ii LIST OF FIGURES O O O O O O 0 O O O 0 O 0 O O O O O O O O O O 0 0 O O O O O o O O O O I O O O O O O O 0 v LIST OF CHARTS. O ..... O O 0 o O O 0 O 0 O O O O O O I O O O O O O O O O O 0 O O O O O O O O O O O Vii Chapter Page I. IIVTRODUCTIONCOCOOCOOOOO......OOOOCOOOOOOOOO0.0.000... 1 II. DEVELOPMENT OF COMPUTER PROGRAMS FOR MUSICAL ANALYSISOO......COOOOCOOCCO......OOOOOOOOOOOOOOOOOO 15 Coding Music into Numbers.......................... 25 III. RESULTS OF ANALYSIS ARRIVED AT THROUGH APPLICATION OF THE PROGRAMS TO MUSIC OF VARIOUS STYLES............ 35 Beethoven: Quartet, Opus 121....................... )6 Five Frequency Tables from Program Ten Results..... #7 Hindemith: Qgintet, Opus 24, No. 2................. 48 Program Five ROBUltfl..............................o #9 Webern: Quartet, Opus 9eeeeeeeeeeeeeeeeeeeoeeeeeeee 50 Program S.Ven R08“1t8...........o...............oo. 52 Hazart: smmEhon! N00 “000.00000.0000000000000000... 52 Root Movement Analyses............................. 53 Stravinsky: Symphonygin Three Hovements............ 5“ IV. DATA PREPARATION AND USE OF THE ANALYSIS PROGRAMS.... 56 V. AN APPLICATION OF COMPUTER LOGIC TO A CREATIVE PROBLEM IN MUSICOOOOOOOI.00.0.0000...0.00.00.00.00. 69 VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS............ 73 VII. COMPUTER PROGRAMS WITH THEIR RESULTS................. 77 Beethoven--String Quartet in C# Minor, Opus 1);.... 77 Hindemith-~Kleine Hammermusic, Opus 2%! No. 2 (quintet)eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 175 Hogart'-Syflghonlhin G Minoreeeeeeeeeeeeeeeeeeeeeeee 236 iii TABLE OF CONTENTS (Continued) Chapter Page Webern--Six Bagatellen for StringkjgartetlgOpusgfi.. 295 SChumann-~P&plllon3; Opus 2..............o......... 3NZ Stravinsky--Symphony in Three Movements............ 376 symmetrical Twelve'Tone ROWeeeeeeeeeeeeeeeeeeeeeeee N40 BIBLIOGRAPHIOOOOIOOO..0...OOOOOOOOOOOOOOOOOOOOOOI...0.0.... “72 iv LIST OF FIGURES Figure 1. Block Diagram of a Modern Digital Computer............. 3. Storage of a Two-Dimensional Array..................... 3. Conversion of Notes to Numbers......................... 4. Chart for Indicating First Digit of Coded Note......... 5. Coding Example......................................... 6. Coding Table for Interval Values....................... 7. Information from Program Five.......................... 5. Hindemith's Table for Choice of Interval Value and Chord Root........................................... 9. Interval Interpretation................................ 10. Table for De-coding Numbers into Notes................. 11. Coding System for INFO................................. 12. Classification of Instruments (Quartet).............. 1}. Form for Coding INFO and Instruments................... lk. Master Plan for Data Movement.......................... 15. Classification of Instruments (Quintet)................ 16. Form for Coding INFO and Instruments................... 17. Master Plan for Data Movement.......................... 18. Classification of Instruments (Webern)................. 19. Form for Coding an Irregular INFO and Instruments...... 20. Master Plan for Data Hovement.......................... 21. Classification of Instruments (Symphony)............... Page 4 21, 2A 25 25 28 32 3a to #5 57 59 59 6O 60 61 61 62 62 63 63 LIST OF FIGURES (Continued) Figure 22. Form for Coding INFO.................................. 25. Form for Coding Instruments........................... 24. Master Plan for Data Movement......................... 25. Classification of Instruments (Stravinsky)............ 26. Form for Coding INFO....................... ..... ...... 27. Form for Coding Instruments........................... 28. Master Plan for Data Movement......................... 29. Classification of Instruments (Schumann).............. 30. Form for Coding INFO.................................. 31. Form for Coding the Piano Part........................ 32. Master Plan for Data Movement......................... 3). Order of Numbers...................................... 3“. Substitution of Numbers for Letters................... vi Page 6A 61. 61+ 65 66 66 66 67 67 68 68 71 72 LIST OF CHARTS Harmonic Intervals of Program Five................... Results Shown in Fragram Six......................... Results of Program Seven............................. Frequency of Root Occurrence......................... Comparison of Hindemith Roots, Lowest Sounding Notes, and Traditional ROOtSeeeeeeeeeeeeeeeeeeeeeeeeeeeeee Frequency of Melodic Intervals....................... Harmonic Intervals of Program Five................... Results of Program Four.............................. Results of Program OMITT............................. De-coding of Program Seven Results................... Graph Showing Root Movement.......................... Analyzed Chords from Program Five Results............ vii Page 39 41 4t. “5 1:6 1+7 #9 51 51 52 53 55 CHAPTER I INTRODUCTION Musicians have always recognized the importance of continual research in theory and analysis as a necessary basis for intelligent interpretation in performance and for the development of effective new trends in composition. The music educator is further interested in a by-product of analysis--form--for it is one of the useful tools in teaching music literature. Music analysis is a slow, laborious task, and many systems have been developed in an effort to make the methods more meaningful and less time consuming. At the beginning of the seventeenth century Peri, Caccini and Cavalieri were the earliest proponents of the use of figures as a method of indicating harmony. Jean Philippe Rameau (1683-176h), who "was both the founder of the theory of harmony in the modern sense of the term, and the most important French composer of the 18th century,"1 was another early con- tributor to harmonic analysis. He was the first to recognize the inversion of chords. "This epoch-making doctrine [the doctrine of fundamental chorng established the fact that all lOliver Strunk, Source Readin s in Music Histor (New York: W. W. Norton and Company, 1950 , p. 5 . possible harmonies can be reduced to a limited number of fundamental forms (accords fondamenteaux) called "tonic," "dominant," and "subdominant..."1 After the time of Rameau, theorists began to analyze chords with Roman numerals. Since 1600 many variations of analysis, using symbols, signs, Arabic and Roman numerals, have been developed. Other important musicians who have contributed to analysis methods are Gioseffo Zarlino, Hugo Riemann, Heinrich Schenker, Joseph Schillinger, and Paul Hindemith. The method of harmonic analysis most used today combines Roman and Arabic numerals. However, neither this method, nor any of the older systems, is adequate for the analysis of con- temporary music. It is also true that there is no universally accepted means for analysing any non-tertian harmony of the modern period. In a search for a method of analysis that would combine the advantage of universal applicability to music of all periods with the added benefit of speed, the electronic, digital computer was investigated as a possible instrument of analysis. Since the outstanding characteristic of the computer is its ability to compute Arabic numerals at a high rate of speed with near-absolute accuracy, and since an analysis of any given piece of music may be made with Arabic numerals, it would seem that the computer would, indeed, be the ideal, logical, and obvious choice of a method for musical analysis. The first problem of this study is to develop such a method of musical analysis using the electronic computer. 1Paul Henry Lang, Musi in Western Civilization (New York: I. W. Norton and Company, 19 l , p. 5 . The second problem of this research is to provide a basis for designing a symmetrical twelve-tone row using the electronic computer. This related problem, with its method of solution, is presented in Chapter V. A cursory knowledge of the computer and its peripheral machines is necessary for the understanding of both the problems discussed in this paper. A computer can do only what it is instructed to do--nothing more. To "set up a program" to be run through a computer means to provide a body of data and to devise a set of instructions for its use. The instructions must be very explicit, the logic of the problem correct, and the program entirely free from errors in its mechanics. After a given program has been developed other sets of data may be substituted and processed. In other words, the program is basic: the data, interchangeable. While it is true that modern computers exhibit a variety of different logical designs, yet they do have a common general structure, as can be seen in the following description. The operations of the individual parts of a computer are very closely intermeshed, and it is difficult to draw a clear line between them. It may nevertheless be helpful to outline a functional block diagram of a modern computer. Such a diagram is shown below. It should be understood that the diagram does not indicate the layout of actual physical building blocks....The function of the various units can then be stated as follows: External Arithmetic Unit Power Equipment Unit I Input/Output Control Unit Hemory Circuitry Control Panel Clock Figure 1. "Block diagram of a modern digital computer. The connecting lines are the main paths of information flow." Arithmetic Ugit: Execution of all machine instructions, except a few which are directly con- cerning external equipment. The unit has a few special small storage devices, called registers.... Information transferred from one place to another usually passes through the arithmetic unit. Control Unit: The control unit is the nerve center of the computer. It controls all events for proper sequence. There are special registers for the necessary logical information. Each instruction is analyzed in the control unit, and the necessary Operations are initiated accordingly. A special function of the control unit is the automatic checking of computer malfunctions and of certain coding errors. Alarm signals are given and sometimes the machine is stopped if such conditions are found. Control anel: All switches and other manual control elements necessary to operate the computer are assembled on the control panel. The registers of the arithmetic unit and of the control unit are connected to indicators on the panel, so that their contents may be visually inspected. The state of the various external devices, like ready, not ready, busy, etc., may be displayed. Certain lights serve to show alarm conditions... Clock: The clock is a device which generates a contInuous sequence of pulses as soon as the start button is depressed. It governs the basic speed of all operations... Memory: The memory is the device which can store large quantities of information. It takes over the functions of two different devices of earlier computers. First, it stores intermediate results for short periods of time....Secondly, it stores the program and the data....The memory is divided into a number of cells, or registers, each with an identifying number, called the address.... A distinction is sometimes made between internal and external memory. An external memory permits the physical removal of the storage medium from the computer, e.g., magnetic tapes. Input-Output Circuitry: The timing of the external devices is determined by mechanical properties, such as the speed of a motor or the response time of a relay. Since these factors cannot be controlled to sufficiently close tolerances, the external devices cannot be syn- chronized with the clock pulse rate of the com- puter. The input-output circuitry serves as information buffer. Power Unit: The power unit contains all the circuitry needed to generate and regulate all the voltages needed in the computer. External Equipment: One of the peripheral machines (external equipment) is the key-punch machine. It prepares the IBM cards, punching only one line of numbers, letters, symbols, or combinations of these, on each card. It has a duplicating key for the convenience of the operator. A person desiring to use the computer types his program (set of instructions) on the key-punch machine, which has a keyboard somewhat similar to that of a typewriter. A card reader prints out on paper the information read from the card in as many lines as there are cards. This machine is of great convenience for use in correcting or altering the program. Other peripheral machines are a printer, two magnetic tape units, and a plotter. 1Paul Von Handel (ed.). Electroni Com uters (Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 19 l , p. 19. In regard to the manor unit, described on pages four and five, it should be noted that programs are necessarily limited by the number of spaces in the memory unit. The l60-A, which was used for the programs in this study, has about 4,000 memory spaces. The new 5600 Computer, which has been installed at Michigan state University, has a memory storage of almost 32,000 items. The programs in this study were developed before the installation of the 3600 Computer. What has been said thus far in this study, and particularly in the pages immediately preceding, has referred to the digital computer. Another widely used type of electronic computer is called the analog computer. The difference between these two kinds of machine may best be explained by a reference to their names. The word digital refers to a system of digits (a single number-symbol), a definite quantity. Numbers such as l, 2, 3, etc., are digits. The addition of k + 2 a 6 is a digital computation. The digital computer uses numbers as definite quantities. for instance, any‘ operation that is performed on an adding machine is a digital one. The abacus is another familiar example of a digital computer. Analog (sometimes analogue) computers indicate quantities or numbers by reference to something else, inches along a scale-- such as the slide rule--angle of rotation, or some other set standard. Fahneetock uses the illustration of a gallon of gasoline. When one speaks of this, he refers to a quantity of volume equal to that of a standard gallon as maintained by the National Bureau of Standards in Washington, D. C.1 The kind of quantity identification for which quantities (or numbers) are given with reference to a known standard is called analog. The numbers are analogous to what they represent: hence, the name. The analog computer often produces its results in the form of graphs. Of the two types of automatic computers, the digital is the more widely used, and for the purposes of this paper, the more appropriate. Hany authorities have made evaluations of the computer and its abilities. James Fahnestock, in‘gggputers and How Th3; £255, expresses the consensus of these evaluations: It works at fantastic speeds, with virtually unlimited acguracy, and with almost infallible r01i‘bilitye Today's large-scale computers help to make airplanes faster and safer. They help build auto- mobiles. Guided missiles and space vehicles owe their very existence to electronic computers. Gigantic payrolls are prepared by machines, computers forecast weather, design ships, control industrial processes, run machine tools, and solve tremendously complex business psoblems for private and government organizations. Since this machine is so valuable in the world of industry, business, and government, the question naturally arises: lhat significance, if any, does it have with respect to the arts? In a June, 1961, article in Computers and Amtomation over 500 areas of computer applications were listed, 1James Pahnestock, Com uters and How The Work (New ‘York: Ziff-Davis Publishing Company, 19595. p. 2:. 2 Ibide . Pe 7e 31bid., p. 2. none of which was closely connected with the humanities except for linguistics. There were four fringe applications: two to education and two concerned with retrieval of information in libraries.1 This preponderance of use of computers in the industrial world as compared with their use in the arts is typical, at least up to the present tine; however, computers have been employed somewhat in the arts, as the remainder of this chapter will demonstrate. In the field of linguistics there is considerable research being carried on in the translation of languages. Franz L. Alt in his book, Advances in Computers, discusses two alternatives in this area. He feels that fully automatic, high quality translation (FAHQT), is not a reasonable aim. Either partly mechanized, high quality translation or fully mechanized, low quality translation is a more realistic goal.2 In the article, "Human Translation and Translation by Machine," the thinking of Glasefield, Persohke, and Samet is summarized as follows: To obtain FAHQT, machine translation Operational dictionaries would be required for every language to cover words of both single and composite meaning; but the machine still would not be able to follow the train of thought or consider implications unless there is incorporated into it all 1Reil MacDonald, ”Over 500 Areas of Application of Computers," 0 m uters and Automation, X (June, 1961), pp. 135-37. arrans L. Alt, Advances in Computers (New York: Academic Press, 1960), pp. 9421’. 9 generally known and therefore not explicitly formulated elements by means of a network of classifications.1 In spite of the difficulties involved, some groups are still pursuing FAHQT. Others are making considerable progress following the other aforementioned alternatives. Franz L. Alt concludes: An existing program at the Harvard Computation Laboratory can produce word-by-word Russian to English translations at a sustained rate of about 17 words per minute on a UNIVAC I, and about 25 words per minute on a UNIVAC II. This is four to six times more than an expert human translator can produce, but since UNIVAC II time is 100 times more expensive than a human translator's time, commercial machine granolation is out of the question at present. A computer program which is in progress in the field of literature involves counting word frequency. It is claimed that disputed authorships may be determined by this method. Braille translations have been produced by a computer. It can translate a 300-page book into Braille in an hour. This would take six days for a skilled translator. The English texts are punched out on cards. The Braille characters emerge from the computer in coded symbols on punched cards which in turn are fed into a printer that prints Braille characters and English texts. __ 13. Von Glasefield, S. Perschke, and E. Samet, "Human Translation.and Translation by Haohine," In ineer, 00111 (September, 1961), pp. ##2-443. gilt, p. 112. 10 It is edited, corrected, and the cards are then fed to an embossing machine which creates plates for the printing machine.1 It is interesting to note that B. I. Revans in his Preface to D. N. Chorafas' book, Programming Systems for Electronic Computers, makes the following comparison: When the Authorized Version of the English Bible was translated from its original texts the task took fifty-four men nearly three years. The men were among the greatest scholars of the age: one of them for example, knew fifteen different languages. A couple of years ago a computer translateg the same book into Braille in about four hours. An art work was created by Ebram Ariazi with an electronic beam as the brush, an oscilloscope as the canvas, and an elec- tronic computer as the painter. This was done at Massachusetts Institute of Technology in a course, Art for Engineers. "He [lbram Ariazi] hopes to have the computer prepare a tape to run an automatic milling machine so that the computer can make a three-dimensional shape as an impression of what he has seen."3 He also intends to produce art works in color. It is quite common for the computer to be used as a musical instrument. This involves the rendition of familiar airs in a single-note fashion. 1"Braille Translations," Computers and Automation, October, 1959. p. 200. 2R. W. Revans, Preface to Programming Systems for ‘Eleotronic Computers, by D. N. Chorafas (London: Butterworths, 19325 0 Fe to 3"Art for Computers," Computers and Automati n, January, 1963’ p. 8e 11 Usually producing an oboe-like sound, the output of the computer is easily identified as to the musical number it is rendering. In a similar manner computers have been programmed to generate the sounds which constitute one part of a trio, the other two parts of which are rendered by h n musicians or in some cases by the computer itself. Phyllis Higgins says the notes which the computer is capable of producing are Bo, C, D, E, PJ, 6, A, Bb, B, C‘, C#', D', E', and F'.2 Neil MacDonald suggests that orchestral instruments be given automatic control; that is, that the sounds produced by each instrument be controlled by an electronic computer. The timing of all the musical notes and rests could be governed, down to milliseconds, or perhaps even finer, if this is desirable. To offset the criticism of mechanization, he includes in the program the skill of a great conductor who can vary the meter and the relative loudness and softness of the different instruments. He believes this would be "marvelously beautiful" symphonic music.) One of the most recent experimental approaches to music has been the use of an automatic high-speed digital computer in actual composition. In contrast with electronic music and musigue concrdte, where new sound media are created, the computer composes pieces 1John A. Postley, Computers and People (New York: HcGraw- .8111 Book Company, 1960), p. 224. ZPhyllis Higgins, "Three-Part Music with a Computer as (Due Part," Computers and Automation, VII (March, 1958). p. 8. 3Neil MacDonald, "music by Automatic Computers," Computers and Automation, VII (March, 1958), p. 8. ‘ 12 that can be played on conventional instruments; a string quartet called the Illiac Suite the result of such a process, has been published. A book by Lejaren Killer, a musician, and Leonard H. Isaaoson, a mathematician, Composition with an Electronip Computer, describes the steps and experiments that led to the composing of the Illiac Suite. In Experiment 1, single line melodies, and two- and four-part writing were done by the machine and controlled through a selection of first species counterpoint rules. After a beginning note had been given, the computer selected the remaining notes according to the rules stored in its memory. All the rules for first species counterpoint were added in Experiment II, which produced four-part music of fair quality except for some monotony in rhythm. Rhythm, dynamics and chromatic writing were dealt with in Experiment III. With h/8 time as the meter and the eighth notes as the smallest rhythmic unit, all the possible rhythmic combinations were coded and used in producing music which provided more interest in this area. Entirely random chromatic melodies were composed by the computer in this experiment, to contrast with those on which the strict sixteenth century counterpoint rules were imposed. This included tone rows, 'mmich were printed with their inversion, retrograde, and retrograde inversion. A; 1Peter S. Hansen, An Introduction to Twentieth Cent fluaic (Boston: Allyn and Bacon, Inc. 1931), p. 55;. 13 In EXperiment IV the "objective was the synthesis of music from purely mathematical rules."1 The melodic intervals for this experiment were selected from a table of probabilities. The computer was programmed to select intervals between parts according to the previous interval. The sound of the music produced was similar to some of the atonal music of contemporary composers. These four experiments prepared the way for the composing of the Illiac Suite. Peter Hansen, Head of the Department of Music at Tulane University, explains how a computer can write music in the style of earlier composers: A computing machine cannot "think," but it can be instructed to make selections and rejections. In one sense, the process of composition is the making of selections and rejections, whether consciously or unconsciously. The composer chooses key, meter, timbre, and type of harmony (not necessarily in that order) and once started, chooses from many possi- bilities what should follow. The number of possi- bilities are not limitless, but are determined by the general style in which he is writing. In the Bach style, for instance, the exact probability of a tonic chord following a dominant has been determined, and HeBose can write, "In their music the composers of the 18th century use the normal progression about seventy-six percent of the time." Bach of course knew nothing about this: he simply wrote music. Nevertheless on the basis of his music the "Bach style" can be defined accurately. The same is true of any other style. Coded instructions can be given to a computer so that it will choose a "possible," i.e. not incorrect, series of musical material. It can even be instructed to reject "impossible" (in terms of a given style) progressions. Therefore, if a com- puter is fed instructions based on probabilities 1Lejaren Killer, "Computer Music," Scientific American, CCI (December, 1959). p. 119. l4 determined by a given style of music, it can turn out endless "compositions" in the form of a code which can be easily transcribed into musical nota- tion and performed. At this point human sensi- tivity enters. Through operation of the laws of chance, some of these "compositions" might be "better" than others. The critical Judgment of the trained musician can then accept some of the results and reject others, just as a composer continually accepts or rejects his own ideas when he composes. In summary, then, the applications of the computer to the areas of the fine arts have been limited, with language translation holding the most prominent place. The one appli- cation of the computer to painting is a mechanical one. To date, the most common application of the computer to music is to use the computer as a musical instrument. The only serious applications of the computer to music are those of Hiller, who uses an automatic high speed digital computer for actual compo- sition, and Hansen, who suggests how a computer can write music imitative of another composer. Within the range of this study, it is my hope to show how an automatic, digital computer can solve the problem of analyzing existing works of any period at a much-increased rate of speed and accuracy over present methods of analysis. 1Hansen, pp. 354-355- CHAPTER II DEVELOPMENT OF COMPUTER PROGRAMS FOR MUSICAL ANALYSIS The machine for which the programs included in this research were designed is a Control Data 160-A Computer. A stored-program digital computer, it uses a basic, language- type set of instructions written in the Fortran programming language. This means that a problem delineated in prose can be translated into mathematical symbols and words which the machine can understand. The-fortran language is composed of symbols, numbers, and specified words. In automatic programming the computer does a further job of translating by changing the Fortran into binary numbers (0's and 1's), and after that it makes the computations. Before the days of automatic pro- gramming the programmer himself had to furnish all data and instructions in binary numbers. It can be seen, then, that programming actually involves two steps: formulating the problem, and translating it into a Fortran language. A great advancement, which has made it possible for the computer to be used by those with a very limited know- ledge of its intricate workings, is the development of this formula-translating language, with the trade name, Fortran. The Control Data Fortran System provides for the automatic coding of programs for the 160-A computer. Portran derived from FORmula TRANslation is a language that greatly resembles the language of ordinary mathe- matics. Computers need elaborate and complex sequences 15 16 of instructions, that is, machine language programs to specify every step of their operation. By means of the Fortran system, the programmer is not required to prepare such machine language programs. Instead, he prepares a source program in the more familiar Fortran language. A compiler program then translates the source program into an object program ready to be run. Fortran permits the programmer to communicate with the computer in a language more concise and familiar than machine language. This yields a saving in the time to train a programmer and in the time taken to write programs. In addition the correcting of errors is accomplished more rapidly. Simple Fortran words, such as IF, when used in a program, are translated through a stored library of instructions, and a whole series of operations are accomplished. The other formula words used in this research are DIMENSION, FORMAT, READ, DO, GO TO, CONTINUE, PRINT, and PUNCH. A DIMENSION statement serves to allocate storage for arrays.2 The word DIMENSION is followed by directions as to how much of the memory space is to be utilized, and under what names the data is to be stored. FORMAT precedes the description of the data's position on the punched cards, or determines in what manner the alpha- numeric (letters and numbers) characters in the results are to be positioned on the printed page or punched cards. READ causes data cards to be read into the computer‘s memory in the manner and in the quantity indicated. 1Control Data Corporation, Fortran Slates (Kinneaspolis: Control Data Corporation, 1961), p. iv. 2For an explanation of arrays, see page twenty-three. 17 "A DO statement is a command to repeat a sequence of Fortran statements altering an index variable each time, until a threshold1 is reached."2 DO instructs the machine to do over and over a certain operation(s) a stated number of times. An IF statement provides for conditional branching to other parts of the program. It is a two- or three—way decision point. The program may develop in any one of two or three directions, depending upon the results obtained from this expression. 00 TO alters the normal order of the program. Control normally moves from one statement to the statement immediately following. The GO TO provides a transfer to another section of the program. CONTINUE is a $2251 word which acts as the last statement of a DO loop. It transfers control back to the beginning if the sequence is not finished, but instructs the computer to proceed with the subsequent statements if the 100p has completed the required number of sequences. PRINT and PUNCH statements call for the answers to be typewritten or punched on IBM cards. The punch statement is useful in a series of programs, for the results of one program can be used without further preparation as data in the next program. Fortran words simplify the whole programming process and save the pregrammer an enormous amount of time and effort. ‘ 1The point at which a given number is reached. zcontrol Data Corporation, p. 12. 18 For illustrative purposes, a sample program is given below. Each of the foregoing terms is explained in the context of the program. STATE- KENT NUMBER PROGRAM INSTRUCTIONS EXPLANATION ‘ Program--Illustration The title, chosen by the programmer, is for identification purposes only. The ' signifies that the statement is a comment, not an instruction. It is always on the first card in the first space of the card. Statement numbers may not be repeated, they need not be in consecutive order, and are used only when future reference is to be made to that statement. DIMENSION MUSIC (12) In this case MUSIC is the name of a location in the memory section. It will store twelve items of information. MUSIC is the name by which reference is made to this information whenever it is needed. The programmer coins a great many words to be used as vehicles 19 STATE- MENT NUMBER PROGRAM INSTRUCTIONS 1 FORMAT (12(16)) READ 1, (MUSIC (I), I = l, 12) EXPLANATION for computation, storage, shorthand, and for reference aids, such as MUSIC, INFO, KORT. The instructions, always enclosed in parentheses following FORMAT, explain in this case that there will be twelve numbers, and each will be included within six spaces (field width) on an IBM card. If the numbers used are integers (no decimal points involved), the letter "I" precedes the field width. The machine when following this instruction will record the twelve numbers given. The reference, "READ 1," tells the machine exactly how it will find the numbers arranged on the punched data card. A place was reserved in the DIMENSION statement for MUSIC. 20 no 15 I a 1, 12 IF (MUSIC (1)) 8, 10, 10 The statements following D0 are to be executed in order, (unless a GO TO calls for a transfer to another part of the program), to and including statement number 15. Repeat this process twelve times, each time taking a successive value for (I) from 1 to 12. Each of the twelve repetitions of this sequence is referred to as a loop. For the first loop I s l, and in the seventh loop I a 7. This statement calls for a decision. If the value of the quantity within the outer parenthesis is less than 0, the next statement to be executed is statement number 8. If the value of the quantity within the outer parenthesis is equal to 0, control will transfer to statement number 10, or whatever the middle number may be. If the quantity is more than 0, 21 8 GO TO 18 10 MUSIC (I) a MUSIC (I) + 1 15 CONTINUE control will transfer to the third number. All three numbers may be different, or any two may be the same. If the program has stopped here following the IF command, the next statement to be pro- cessed is number 18. Arithmetic symbols that may be used in Fortran are: + (ad- dition), - (subtraction), ’ (multiplication), and / (division). The a sign means the expression on the left side is to be replaced by the expres- sion on the right side. The statement CONTINUE indicates the return to the DO statement to begin the subsequent loop. At the last loop, the machine will not return to the DO statement from here, but will go to the next statement in line. 22 18 PRINT 20, (MUSIC (I), I a l, 12) The values of MUSIC will be printed according to the form indicated in FORMAT statement number 20. The numbers recorded in the twelve places under MUSIC will be printed. 20 FORMAT (130, 12 (16)) 130 indicates that the machine should double space before printing the answers. Then, it should proceed to print twelve answers across the page, each within six spaces. STOP END (blank card) The two words, STOP, END, and the blank card terminate the program. h07h2 409k2 h07h2 h05h2 aloha #0942 #0142 51232 #0542 h05h2 #0592 406#2 Twelve five-digit numbers, each typed within six spaces, supply the data with which the program will work. The spacing of the words and numbers on the cards is very important. Information about spacing is readily available in computer manuals. 23 The electronic computer is basically a mathematical, problem-solving instrument designed to manipulate numbers. Only, therefore, as musical problems can be expressed in mathematical terms, can these terms be organized into programs and solutions be found. This means that in preparing a piece of music for analysis by the computer, the various parts of the music must be translated into numbers. For purposes of this paper, this process is called "coding."1 The numbers thus derived are placed in a computer array, which is a memory storage unit. A one-dimensional array contains a list of numbers in either columns or rows. A two-dimensional array is composed of numbers arranged in both columns and rows. These may be referred to by the number of the column, and of the row. The array INFO will store measure numbers and indications of the position of chords within a measure. For instance, 00111 and 02822 both give three kinds of information. The first three spaces, 001 and 028, are the measure numbers: the fourth digit in each case indicates the beat within the measure, beat 1, beat 2; while the last figure in both of the numbers stands for the fraction of the beat: 1 is the first half of the beat, 2 is the second half of the beat. The cards on which this data is stored may be used for many compositions. For instance, any composition in h/h meter which calls for an analysis of the chords on each half beat could use the same INFO array. The complete first measure of a composition in b/h meter would be notated thus: 00111, 00112, 1This is not to be confused with the automatic coding of programs of the Fortran system. 24 00121, 00122, 00131, 00132, 00141, 00142. This could be broken down further into as many divisions as desired. If every N of the beat is to be analyzed, it would be shown like this: 00111, 00112, 00113, 00114, 00121, 00122, 00123, 00124, 00151, 00132, 00133, 00154, 00141, 00142, 00143, 00144. In 3/4 meter, one chord to a count, the fifteenth measure would be written: 01511, 01521, 01531. The storage of this information as a two-dimensional array could be visualized as in the following table. 0n the punched IBM data card the information for a l42nd and l43rd measure (one chord recorded for each best) would appear in a line: 1421114221142311424114311143211433114341, and in storage like this: Column 1 2 3 4 5 6 7 8 Row 1 b 142 142 142 142 143 14} 14} 14} Row 2 11 21 31 41 ll 21 31 41 Figure 2. Storage of a two-dimensional array. Since normal analysis procedures would indicate successive measures and successive beats or fractions of beats, this 4/4 meter INFO array may be used for any composition in 4/4 meter, and these cards would not have to be re-punched each time. There is no reason why a special INFO arrangement cannot be made. Contemporary music may demand it. For the music of Hindemith and Webern analyzed in this research, irregular INFO patterns were used. 25 CodinggMusic into Numbers The following table shows the conversion of the notes of the scale to numbers: C --------- 01 F# or Gb--O7 C# or Db--02 G --------- 08 D- -------- 03 G# or Ab--O9 D# or Eb--04 A --------- 10 E -------- -05 A# or Bb--11 P- -------- 06 B---------12 Figure 3. Conversion of notes to numbers. This is necessarily arbitrary. Decisions will need to be made by the programmer when the music involves double sharps and double flats or other notes not listed in the table. The range of the piano keyboard is divided into seven and one-quarter octaves. In the figure on the next page, number 1 represents the Contra octave: number 2, the Great: number 3, Small: number 4, One-line; number 5, Two-line: number 6, Three-line: and number 7, Four-line. The octave number is used as the first of the three numbers which repre- sent the note itself. A five-digit number will more completely illustrate each note of the composition, as 41043. The first three digits represent the note proper. This note is in the fourth octave, the tenth note. The fourth figure is the octave number re- peated, the fifth place represents the instrument which is sounding the note. The instruments involved in any composition 26 will have to be arbitrarily assigned before coding. Two spaces may have to be allowed for the instrument, and any composition having more than nine instruments would need to use both spaces for their representation. To illustrate, let the third horn be represented by 12 and its concert pitch note, middle C. This would be coded as 401412. 3 .9. E “HIM :] :I Figure 4. Chart for indicating first digit of coded note. One more example of coding follows: 1 2 3 -I Violin - 1 II Violin - 2 Viola - 3 Cello - 4 Figure 5. Coding example. 27 The programmer names the various arrays. Since this study will not be using fractional or decimal numbers, only words beginning with the letters I, J, K, L, M, N, may be used. The words may not exceed six letters. The four voices of the example given here have been assigned the names, MUS, NOTE, KLANG, LONG, from tap to bottom, respectively. This example is coding every half beat of the music. MUS 41041, 41041, 50151, 50151, 50151, u11u1, 41041, uoau1, 40641, 40641, 40641, 40641 NOTE 40642, 40642, 41042, 41042, 40842, 40842, 40342, 40342, 40142, 40142, 40142, 40142 KLANG 40143. 40143, 40443, 40443. 40343. 40343. 31133. 31133. 31033. 31033. 31033. 31033 LONG 30634, 30634, 30734, 30734, 30834, 30834, 30134, 30134, 30634, 30634, 30634, 30634 To review, each note of a composition will be coded into one number of five digits. The first three figures depict the exact location of the note, i.e., the particular octave, and its placement within the octave. The fourth digit is a repeat of the octave number. The last figure in the first line is one identifying all these notes as belonging to the first violin. The other lines end with 2, 3, and 4, identifying their instrument. 28 The kinds of intervals within the octave are reduced to twelve, i.e., the enharmonic notes are counted only once. The following table is the coding table which is to be consulted for interpretation of interval value. p1 m2(A1) M2(d3) m3(A2) M3(d4) 24(1)) 00 01 02 03 04 05 89 90 91 92 93 A4(d5) P5(d6) m6(A5) M6(d7) m7(A6) n7 P8 06 07 08 09 10 11 12 94 95 .96 97 98 99 100 P---perfect m---minor A---augmented M---major d---diminished Figure 6. Coding table for interval values. For example, the interval between the lowest and highest notes in the first chord of Figure 5 is found by subtracting the two: 306 from 410. This results in the number, 104. To reduce any number above 12, use the following plan: The numbers between 101-112, 201-212, 301-312, 401-412, 501-512, 601-612, 701-712 are reduced simply by retaining the last two digits of the numbers. The numbers between 89-100, 189-200, 289-300, 389-400, 489-500, 589-600, 689-700, and 789-800 are reduced by dropping the first digit and subtracting 88. Therefore, 104 is reduced by retaining the 04; in 394 the 3 is dropped and 88 is subtracted from 94, resulting in 06. ,Programs for Musical Analysis Of the various phases of a musical analysis, the following have been processed through a computer for use in this study: 29 l) Harmonic Intervals, with rhythmic, octave, and instrument locations 2) Frequency of chord repetition 3) Repeated Chord Progressions 4) Hindemith Roots 5) Melodic Intervals (also for Hindemith roots) 6) Frequency of Melodic Intervals (also for Hindemith roots) The distance between notes (intervals) is found by counting up or down. For instance, from C to E is three notes, and this interval is called a third. After coding, intervals are found by subtracting the number representing one note from the number representing the other note. For example, notes C and E are represented by the numbers, 401 and 405. The difference is 4, which in Figure 6 is shown to be a major third. The first five programs in this research are concerned with finding the harmonic intervals in chord structures, with their rhythmic, octave and instrument locations. These har- monic intervals are found by subtracting the lowest-sounding note from every other note present in the chord. Program One uses the coded notes for input and prints out on paper and punches out on IBM cards the intervals. Selected for developing this program is a string quartet. The intervals are found by subtracting the cello part from the first violin, the cello from second violin, and cello from viola. This is comparatively simple, unless one of the voices is absent, or unless a voice crosses below the cello 30 part. Program revisions are continually necessary for meeting these and other unforeseen problems. The simple, three-measure, four-part musical example in Figure 5 is used to illustrate the basic steps described in Programs One through Five. (This is not to be confused with the programming of the Beethoven String Quartet in the next chapter which also uses Programs One through Five.) The four voices, from top to bottom, were given the array names, MUS, NOTE, KLANG, and LONG. The instructions provided for LONG to be subtracted from MUS, NOTE, and KLANG. The results were: FIRST CHORD 410 406 401 291291291 Difference: 104 100 95 FOURTH CHORD 411 408 403 291299.211 Difference: 103 100 95 Difference: The Print Out lists the differences (intervals), three for each chord, thus: SECOND CHORD 501 410 404 29131291 194 103 97 FIFTH CHORD 410 403 311 291291291 109 102 10 SEVENTH CHORD 406 401 310 29129121 100 95 4 \ THIRD CHORD 501 408 403 291291291 193 100 95 SIXTH CHORD 408 403 311 2.91 291221 107 102 10 51 104, 100, 95 194, 103, 97 193, 100, 95 103. 100, 95 109, 102, 10 107. 102, 10 100, 95, 4 Since subsequent programs need to use these intervals in a different order, Program Two rearranges the numbers in the vertical columns to be read horizontally, thus: 104, 194, 193, 103, 109, 107, 100 100, 10), 100, 100, 102, 102, 95 95. 97. 95. 95. 10. 10. 9 Just as intervals are often reduced to within the range of an octave, so the intervals listed above may all be reduced to figures of 12 or below (see explanation, page twenty-eight). This reduction is made in Program Three. The table then reads: 4 6 5 3 9 7 12 12 3 12 12 2 2 7 7 9 7 7 10 10 4 Program Four illustrates that the numbers would be even more readable if‘each vertical column is rearranged in a numerically descending order: This step of arranging the intervals in numerically descending order is important to the process of comparing the chords. Otherwise, it would be difficult, if not impossible, for the machine to make the comparisons. Program Five compiles all the information resulting from Programs One through Four and prints them, after conversion, in table form: Measure No. gpythmic Position Harmonic Intervals Octave Instrument 001 11 8. 4 l 5. 4 2 3. 4 3 F 3 4 Figure 7. Information from Program Five. Included in the column under Harmonic Intervals is the name of the lowest sounding note, F. The point (.) designates a major or perfect interval: the dash (-) indicates a minor interval, and the addition sign (+), an augmented interval. Program Six, Frequency of Chord Repetition, uses the output from Program Four for its basis. In the music under investigation any chord structure that is repeated is printed out. The same procedure is followed for repeated chord progressions in Program.Seven. 33 The contemporary composer and theorist, Paul Hindemith, has developed a method for finding the roots of chords that is usable for even the complex chords of twentieth-century music. Since it will work for any type of chord, this method is valuable for analyzing the music of all periods. Not only the intervals from the lowest note, but all other inner intervals, are found in Program Eight. In the first chord of Figure 5, for instance, there would be six intervals rather than three. They would be: 410 406 401 410 406 410 2.9229201191291996 Difference: 104 100 95 09 05 04 These are reduced, as in Program Three, to: 4, l2, 7, 9, 5, 4. Hindemith has arranged all the intervals in what he considers the order of their importance. The results obtained above, 4, 12, 7, 9, 5, 4, are checked against a list developed by Hindemith, which is given after "A" in the table below. In the Hindemith list, the most important interval is 7 (perfect fifth); if there is a 7 in the list from the above example, it is considered the most important interval. In the intervals listed after the array, B, the lower note is the root: for those after C, the upper note is the root, and for the tritone (6), there is no root. In the above example, then, the 7 (the difference between 401 and 306), is the most important interval. Since it appears in the array marked B, the lower note is the root. Therefore, 306, an F, is the root of this chord. In case the most important interval appears more than once, the 34 lower (or lowest) note takes precedence. This process of finding the root is repeated for each chord. A 7, 5, 4, 8. 3. 9. 2, 10, 1, 11, 12, 0, 6 B 0, 3, 4, 7, 10, ll, 12 C l, 2, 5, 8, 9 Figure 8. Hindemith's table for choice of interval value and chord root. Program Nine deals with Melodic Intervals. In finding melodic intervals, the subtractions take place horizontally rather than vertically: 501 501 411 410 408 406 11929129111111.1919. Difference: +91 0 -90 -Ol -02 -02 The positive numbers indicate an upward movement, and the negative numbers a downward progression. Reduced and inter- preted, these are shown below: +03 0 -02 -01 ~02 -02 or minor third, repetition, major second, minor second, major second, and major second. This program also finds the melodic intervals between the Hindemith roots. Frequency of melodic intervals for each instrument and the Hindemith roots are tabulated in Program Ten. CHAPTER III RESULTS 0? ANALYSIS ARRIVED AT THROUGH APPLICATION OF THE PROGRAMS T0 MUSIC OF VARIOUS STYLES The Beethoven String Quartet in C# Minor,ggpus 131, First Movement, is used as the major vehicle for developing the Analytical Programs One through Ten. To further illustrate the applicability of these programs to various styles and to a varying number of parts, analyses of sections from the following compositions are also made: Hindemith's Kleine Hammermusic, Opus 24, No. 2, Webern's Six Bagatellen for Stripg Quartet, Opus 2, Schumann's Papillons,_0pus 2, Mozart's 31mphony in 0 533253 and Stravinsky's Symphony in Three Movements. In all of these sets of programs there is an insufficient amount of music coded and analyzed to make any type of conclusive analytical statement. The primary purpose of this research is to provide a methodology which may be utilized for research rather than to produce meaningful analyses. The results are indicative, though, of the kind and amount of information which can be gained from a computer analysis. All the computer results are tabulated in Chapter Seven, but for illustrative purposes several representative results are presented in this chapter. The significant results from the programs developed in this study are found in Programs Five, 35 36 Six, Seven, Eight, and Ten. Programs One through Five could have been processed as one program if the memory storage of the l60-A Computer had had enough units. As it is, the results from Program One are used as data for Program Two, the results from Program Two as the basic information for Program Three, etc., up to Program Five. Likewise, Program Nine is not in itself significant but furnishes data for Program Ten. For a clear understanding of the findings of this study, each of the ten programs is outlined. Beethoven: apartet, Opus 1311 Program One surveys the notes of each chord to be analyzed, and finds the smallest number, which represents the lowest note of the chord. The machine uses this note as the one from which all the other notes of the chord are measured, even though it may not be the bass note. This measurement results in three intervals for each chord, which are the figures listed in the three columns under the heading INTERVALS on page ninety-seven. Each horizontal row of numbers represents a chord. The figures in each row may be interpreted by referring to page twenty-eight; however, interpretation of these intervals is included in the results of Program Five. Using the process described on page fifty-eight, five multiples of eighty chords (400) were used for Program One only. This program is found on page seventy-seven and its results on page eighty-two. Program Two rearranges the numbers in the vertical columns to be read horizontally, as illustrated on page 1The music used for this analysis is found on the next page. QUARTET NO. 14, Opus 131 L. van Beethoven 38 thirty-one. The actual data is arranged in eight columns and thirty rows. The eighty chords analyzed from the Beethoven String Quartet are represented by thirty lines of the output. The output of Program Three, page 106, is in the same tabular form as Program Two, but all the numbers have been reduced to twelve or below. The notes are still in coded form. The results of Program Four, pages 109 through 111, are tabulated in three columns, each horizontal line repre- senting a chord. The numbers in each row are arranged from left to right in a numerically descending order. Program Five's findings are tabulated on pages 123 through 134. For further interpretation of these figures, the reader is referred to page thirty-two. Every vertical sonority that occurs on the metrical beats shown in the second column of Program Five is analyzed. The table obtained presents a harmonic outline of the musical composition analyzed. The harmonic intervals from the results of Program Five are given below: 0 0 0 O O 0 0 O 0 0 O O 0 0 0 5 O O 0 0 O O 0 O 0 0 0 O 0 O O O O O 0 0 0 0 0 O 0 0 0 0 0 O O 0 O 0 0 O O O 0 0 0 O 0 0 O O O 0 3- 4+ 3. 3- 5. 3- 3. 6- 0- 3- 3. 4+ 6. 5. 3- 5- C) 0 0 0 0 O 0 0 0 3. C) 0 0 0 O O O 0 O O O O O O O C) 0 O O O 0 0 O 0 0 0 O 0 O 3‘ 5e 3" 3" 50 4+ 1++ 6- 7- 5. 6- b- 7- 5e 50 7" 3- 3. 4. b. 3- 3- 3o 3- 3. 3. 3- 3- 3. 3- 5- 3. O O O O O O O O O O O O O O 5. O O O O O O O O O O 0 0+ a. 6. 6. 5. 6- 6. 6. 8. 3- 6. b. 3- 5. Q. 3- 2- 6. 4+ 5. 5. 8. 6. 6. 6. 8. 4+ 6- 8. 5. 2. 8. 7- 3- 3- 3. 8. 3. h. 3. 3- 3- 3- 3- 3- 3. 3- 3- 4- F F F+ F+ D D D C+ B D C+ B A B 0+ 0+ 2- 6. 8. 3- 5. 4. 3. 3- 6- 3. 8. 6. 6- 5. 5. 2. 6. 6+ 6. 8. 3- 6. 6. 6. 6. 6. 3- 3- 8. 7- 8. 6. 4. 3- 3. 3- 3- 3- 3. 3- 3- 8. 6. #+ #. 3. 3. 4+ 0+ E D C+ B C+ D E- E- E F+ G A- A A- F+ Chart 1. Harmonic intervals of Program Five. The section of music analyzed is a fugue. It is not until the fourth measure that a second voice enters and a harmonic interval is shown on the table. Between the second half of the second best of the fourth measure and the second half of the second beat of the eighth measure when a third voice enters, there are five minor thirds, two major thirds, one perfect fourth, two augmented fourths, three perfect fifths, two minor sixths, and one major sixth. The three-voice section which extends to the second half of the second beat of the twelfth measure contains four major chords indicated by 5.; four minor chords, 5. and 3-; three 30 3- 5- major chords in first inversion, 6-; a major-minor seventh 3- chord, 7-; a diminished chord, 4+; a second inversion diminished- }. 3" 40 minor seventh chord, 4+; and one second inversion of a major- 3. minor seventh chord, h. 3-. The remainder of the section has four voices and contains the following chords: Six major chords, four in root position, one in first inversion and one in second inversion. Ten minor chords. Of the five in root position, four are incomplete chords lacking the fifth. Four minor chords are in first inversion and one in second inversion. Three diminished triads in first inversion are present, as well as five diminished-diminished seventh chords. Four major-minor seventh chords, two in root position, one in second inversion, and one in third inversion. One augmented chord. Four non-classified chords, which are probably the result of non-harmonic tones. The results of Program Six on page 142 are given in terms of the positive and negative numbers of the following table: 1 -- no interval 5 -- perfect fifth -2 -- minor second -6 -- minor sixth 2 -- major second 6 -- major sixth -3 -- minor third -7 -- minor seventh 3 -- major third 7 -- major seventh # -- perfect fourth 8 -- perfect octave -5 -- diminished fifth Figure 9. Interval interpretation. #1 The chord is formed by reading the intervals horizontally. PROGRAM 6 FREQUENCY OF CHORD REPETITION Number of Entry Chord 1. 5 l 1 2. 5 l 1 3e ’5 l l 4. -3 1 1 Se ‘5 l 1 6. -3 l 1 7e -5 l l 5. 3 l l 9. -6 1 l 10. 5 3 l 11. 5 3 1 12. 5 3 l 13. 5 -3 1 11+. 5 '3 l 15. -6 -3 1 lbs -6 -5 1 170 '7 5 l 15. -7 5 3 190 b '5 -3 20. 6 -5 -3 21. 6 -5 -3 22. 5 3 3 23. 8 5 3 26. 8 6 -3 250 8 ’5 “'3 26. 8 -3 -3 27o 5 -3 -3 26. 6 4 -3 29. 8 6 3 Chart 2. 'Results shown in Program Six. The results of Program Six show (third to sixth entry) five minor chords, -5 l 1. Entry 13 and 14 account for two more minor chords, 5 -3 1. Also, 8 -3 -5, which appears three times beginning on the twenty-fifth line, outlines four 42 minor chords. The last entry, 8 6 3, identifies two first inversion minor chords. This is an analysis of the minor chords that appeared beginning with the two-voice texture of the fugue. If a chord is repeated one or more times, it is listed in the results of Program Six. To determine the number of times a particular chord appears, count the number of times it is listed and add one. The results of Program Six are not as complete as those of Program Five, as Program Six is not able to distinguish similar chords which have omitted chord members. For instance, these three chords are all first inversion major chords: -6 8 8 -6 -6 -6 -5 -3 -6 Two minor sixths and a minor third, or an octave, minor sixth, and minor third, or an octave and two minor sixths all basically outline a major chord in first inversion; but the machine, which is looking for an exact repetition of numbers, does not recognize these as being the same basic chord. The results of Program Seven on pages 151 through 153 list groups of chords separated by the word END. If all the chords within one group have the same intervals, for instance, 5 3 0 5 3 0 5 3 0, these chords are to be ignored. They are chords which the computer was investigating, but which were found not to be a part of a progression repetition. #3 PROGRAM CHORD PROGRESSION Number of group 1. 5 l 1 -3 l 1 END 2e -5 l l -3 1 l -3 1 1 END 3. S 1 1 -3 l 1 END 4. -3 1 1 END 5. 5 3 l 5 3 l 5 3 1 END 6. 5 3 1 5 3 1 END 70 5 -3 1 END 6. -6 -3 1 -6 -3 1 -7 3 1 END 90 '7 5 3 END 10. 6 -5 -3 6 -5 -3 END 11. 6 -5 -5 6 -5 -3 END 12. S 3 3 END 13. 8 5 3 END 16. 8 6 -3 END 15. 8 -3 -3 8 -3 -3 8 -3 -5 END 16. 6 -S -3 PROGRAM 7 Continued Number of group 170 8 ‘3 '3 8 -3 -3 END 18. 8 —3 -3 END 19. 6 h -3 END 20. 8 6 3 END Chart 3. Results of Program Seven. If the chords within any one group vary, as in the first, third, and eighth groups, a chord progression repeti- tion is indicated. To find the frequency of any progression's repetition, count the number of groups in which the particular progression occurs and add one. The chord progression, 5 O 0, followed by a3 0 0, (listed twice), appears three times, and the chord progression, -6 -3 0, followed by -7 3 0, (listed once), occurs twice. All the numbers listed in Program Seven can be interpreted by referring to Figure 9, page forty. The first entry signifies the repetition of the intervals of a perfect fifth followed by a minor third. This progression appears four times, since it is denoted twice in the table. The first real chord progression is revealed in the numbers, -6 -3 1, -6 -3 l, -7 3 l. The progression of a minor sixth, minor third (first inversion major chord) 45 followed by a major-minor seventh chord, -7 3 1, is repeated twice. There are no other chord repetitions indicated. The Hindemith roots of the chords are given in Program Eight, on page 163, but they are still in code and need to be translated. This is done by dropping the first digit (which signifies in which octave it is located) of each number and referring to the table below for the interpretation of the last two digits. C --------- 01 or 69 F# or Gb--O7 or 95 C} or Db--02 or 90 G --------- 08 or 96 D --------- 03 or 91 G# or Ab--O9 or 97 D# or Eb--O4 or 92 A --------- 10 or 98 E --------- 05 or 93 A# or Bb--ll or 99 F -------- ~06 or 94 B --------- 12 or 100 Figure 10. Table for de-coding numbers into notes. On the next page a comparison is made of the Hindemith roots from Program Eight, the lowest sounding notes, as given in Program Five, and the roots as determined by traditional analysis. The Hindemith roots are listed on the top line, the lowest sounding notes on the second line, and the traditional roots on line three in each case. The frequency of roots appeared in the following order: Hindemith roots ' Traditional roots c#, 10 on, 4 C#. 10 G#, 6 F#, 9 a, 4 rs, 10 G, 1 B, 9 E# (F)3 B: 7 E#o 6 A, 8 C, 2 A: 5 D#: 4 D, 7 D#’ 1 D0 5 A#! 2 E, 6 E, 0 r1, 1 B#, 2 Chart 4. Frequency of root occurrence. The modulations inherent in any fugual structure 46 would distort the normal root occurrence that one would expect to find in tonal writing. Measure 1 2 3 4 C# C# Measure 5 6 7 8 F(E#)‘ B F# D D D A G D 4 ' rd B or G# C .5 C95 F1; F4 D D D F 9‘ E-r“_ E} 4% E.# F; B G; 65:4 ,Measure 9 10 11 12 C(B¥)C E C} A A A E F# A E D E F# G# C¢ - - - - - - - - - - - - - - - C# G¢ G# C# C# B# B# D# E F¢ F# E D E F# G# C# deasure 13 .14 l5 16 F F# F4 D G B C# B D A B A E C# F4 ‘ F Ffl F# D D D C# B D C# B A B C# C# ‘1 E? F# F4 D G B A# B G# A B A A A B easure 17 13—' 19 20 # E B C¥ B F# B D# B C# F# G 0% A 6% 6% # E D C# B C# D D# D# E F# Gx G# A G# F# _ 4 A# B C# B F# B D# D# C# D} F C} A G# G# ‘Tritone has no root. Chart 5. Comparison of Hindemith-roots, lowest sounding notes, and traditional roots. The melodic intervals of each instrument of the String Quartet are given in Program Nine under the appropriate headings: I Violin, II Violin, Viola, and Cello. Also listed in the results of Program Nine are the melodic intervals between the Hindemith roots. negative numbers. movement, negative numbers upward melodic movement. The melodic intervals are given as either positive or The positive numbers indicate downward melodic If the 47 number lies between O-lOO, the melodic interval is within the octave; if it is between 101 and 200, the melodic interval is within two octaves; if between 201 and 300, three octaves. The melodic intervals listed as results of Program Nine are reduced and printed under appropriate headings in Program Ten. Each type of melodic interval is given with the frequency of its occurrence. Five Frequency Tables from Program Ten Results Pl m2 M2 m3 M3 P4 A4 P5 m6 M6 1117 M7 P8 I Violin 30 ll 10 3 2 O O O O l O O 0 ~30 -8 -6 -2 -l -2 O O O -l O O -1 II Violin 27 9 6 4 2 O O 1 O O O 0 0 ~27 -l3 ~6 ~4 -2 -l -l -l -l 0 O O «l Viola 44 8 10 O 2 O O O O O O l O —44 -3 -7 -2 -l O O -l O O O O -2 Cello 56 4 6 O l O O O O O O O O -56 -7 -4 -2 -l O O O O O 0 O 0 Hindemith Roots 28 2 7 2 4 3 O 4 l O 6 O O -25 -2 -3 —2 -5 -2 -l -7 -1 O 0 O -l Chart 6. Frequency of melodic intervals. Results of Program Ten begin with a listing of all the melodic intervals in the first violin, i.e., melodic intervals between coded notes. These melodic intervals are codified under 46 the headings of perfect prime, minor second, major second, minor third, etc., in the frequency table. It will be noted that there are few large skips: one octave, one major sixth, and two perfect fourths. The movement is very chromatic, as is shown by the large number of minor seconds. The last frequency table, denoting melodic intervals between the Hindemith roots, reveals two progressions upward (those indicated as negative numbers) and two downward of a minor second. Seven progressions of a major second are downward, and three are upward. Two progressions are up, and two are down a minor third. Four are up a major third and five are down. This reveals that the roots are progressing primarily in seconds and thirds, as there are twenty-seven of these as against seven progressions of a fourth or a fifth. Of the eight remaining progressions, one is up a minor sixth, one down a minor sixth, and six are up a minor seventh. The results of the other compositions (Hindemith's Kleine Kammermusic,_0pus 24, No. 2, Webern's Six Bagatellen for String Quartet, Opus 9, Mozart's Symphony in G Minor, Stravinsky's Symphony in Three Movements, and Schumann's Papillons, Opus 2) are to be interpreted similarly to the basic set just described, with the exception that Programs Two and Three are usually combined into one program, called Program Three. Hindemith Quintet, Opps 24, No. 2 A selection from the Fifth Movement of Hindemith's 49 Quintet, Opus 24, No. 2 was processed to test the analysis programs for use with a five-voice, contemporary composition. The page numbers locating the significant results are shown below: Program One, Harmonic Intervals, page 178 Program Five, Harmonic Analysis, page 195 Program Six, Repeated Chords, page 207 Program Seven, Repeated Chord Progressions, page 217 Program Eight, Roots of each Chord, page 224 Program Ten, Frequency of Melodic Intervals, page 233 Frequency of Upward and Downward Root Movements, page 235. Program Five Results The harmonic intervals as found in PrOgram Five are listed below: 8. 8. 8. 6. 3. 6. 7. 6. 4. 6. 8. 8. 6. 3. 6. 8. 8. 8. 8. 6. 3. 6. 7. 6. 4. 6. 8. 8. 6. 3. 6. 8. 3. 3. 3. 2- 6- 2- 3. 2- 6. 2- 3. 3. 2- 6- 2- 3. 6. 6. 6. 6. 6. 6. 6. 6. 7- 6. 6. 6. 6. 6. 6. 6. E E E D D D E D C+ D E E D D D E Chart 7. Harmonic intervals of Program Five. The sonorities listed in the table for Program Five show only five different chords. The first is composed of an octave, a major sixth, and a major third; it appears six times. Com- posed of a major sixth and a minor second, the second chord is repeated six times. The third chord has a major sixth, a minor sixth, and a major third and appears twice. The last two sonorities occur only once, the first being constructed of a major seventh, a major sixth and a major third; the second of a minor seventh, a major sixth and a perfect fourth. 50 Webern: Quartet, Opusgfi The Webern String Quartet had to be coded in eight voices because of the many double stops employed. If double, triple, or quadruple stOps are used in the strings, more than one array will have to be reserved for each instrument. The results are found on the pages listed below: Piogram One, Harmonic Intervals, page 298 Program Five, Harmonic Analysis, page 313 Program Six, Repeated Chords, page 324 Program Seven, Repeated Chord Progressions, page 326 Program Eight, Roots of each Chord,:page 331 Program Ten, Frequency of Melodic Intervals, page 340 Frequency of Upward and Downward Root Movements, page 341. In Program Four the numbers are reduced and arranged in numerically descending order; in Program OMITT all interval repe- titions are eliminated and the number of intervals is reduced to four. These results are given in order to show that in the reduction from seven to four intervals no significance was lost. PROGRAM FOUR 8 3 0 o o o o 11 11 9 3 2 o o 12 12 8 7 7 o o 10 9 9 4 4 o o 8 6 o o o o o 11 11 8 8 3 3 1 11 11 10 5 5 3 3 11 11 10 9 9 5 5 7 7 7 7 4 3 3 9 8 '1 1 0 0 o 51 PROGRAM FOUR (Cont.) 7 l l O O O O 10 4 2 2 O O O 11 7 3 l- l 0 0 12 10 4 O O O 0 Chart 8. Results of Program Four. PROGRAM OHITT 8 3 O O 11 9 3 2 12 8 7 0 10 9 4 0 8 6 0 0 ll 8 3 1 ll 10 5 3 11 10 9 3 7 4 3 0 9 8 l O 7 l O 0 10 4 2 0 ll 7 3 l 12 10 4 0 Chart 9. Results of Program OHITT. Schumann: PapillonsI Opus 2 This piano composition was attempted in order to demonstrate a different technique in coding. It was coded horizontally rather than vertically. This was necessary since most piano compositions do not have a clearly delineated number of voices present throughout. The specific procedure is out- lined in Chapter IV. The results are found on the pages listed below: . Program One, Harmonic Intervals, page 344 Program Five, Harmonic Analysis, page 363 Program Six, Repeated Chords, page 373 Program Seven, Repeated Chord Progressions, page 375. 52 Proggam Seven Results The numbers in the results of Program Seven must be de-ccded before they can be interpreted. The first column below shows the numbers as given in the results; the second column reduces them to musical intervals. Results Interpretation 12 7 4 8 5 3 12 8 3 8 6- 3- 12 9 5 8 6 4 END 12 7 4 8 5 3 12 8 3 8 6- 3- END 12 7 4 8 5 3 12 8 3 8 6- 3- END Chart 10., De-coding of Program Seven results. This shows that the progression of a major chord in root position, 8 5 3, first inversion, 8 6- 3-, second inversion, 8 6 4, occurs twice. The progression of a major chord root position moving to first inversion occurs four thDs Mozart: S hon No. 40 A symphonic selection from the Classical Era was analyzed. The third movement from Mozart's Fortieth Symphony contains thirteen parts. The results are shown on the pages listed below. It may be interesting to note that in Program Eight the most important interval (in deriving the Hindemith root) for each chord had to be selected from the seventy-eight intervals present within every chord. In the Stravinsky 53 selection there were 231 intervals for each chord. The high speed of the digital computer made this a relatively simple task. Program One, Harmonic Intervals, page 239 Program Five, Harmonic Analysis, page 259 Program Six, Repeated Chords, page 271 Program Seven, Repeated Chord Progressions, page 279 Program Eight, Roots of each Chord, page 285 Program Ten, Frequency of Melodic Intervals, page 293 Frequency of Upward and Downward Root Movements, page 294. Egot Movement Analyses The graph below outlines the root movement that is shown in the results of Program Ten under the headings, Hindemith Roots and Melodic Intervals: Chromatic scale Beat Chart 11. Graph showing root movement. The lines in the table represent distances up or down in half steps. 54 The root mOVements here, in contrast to the contemporary compositions, have no minor seconds. There are two movements of a major second, four of a minor third, two of a major third, one of a perfect fourth up, and one each up and down of a perIOCt fifths Stravinsky: Symphony in Three Movements A contemporary composition of large proportions is used to test the versatility of this basic analysis method. Chosen for this was a small portion of Stravinsky's Symphony in Three Movements, with twenty-one voices. The results are shown on the pages listed below: Program One, Harmonic Intervals, page 381 Program Five, Harmonic Analysis, page 409 Program Six, Repeated Chords, page 419 Program Seven, Repeated Chord Progressions, page 421 Program Eight, Roots of each Chord, page 429 \ Program Ten, Frequency of Melodic Intervals, page 439 Frequency of Upward and Downward Root Movements, page 439. A chart of the analyzed chords made from the results of Program Five is provided on the next page to show the information in another form. Three major chords are listed in the results of Program Five (8 3, 8 3, 8 6 4). Two major chords with an added major second (8 5 3 2) and two chords composed of a perfect fifth and major seventh are also evident. One chord has only a minor sixth; one a major sixth, minor third and major second; and one a perfect fourth and major second. 55 Octave Seventh Fourth Chart 12. Analyzed chords from Program Five results. CHAPTER IV DATA PREPARATION AND USE OF THE ANALYSIS PROGRAMS The programs developed in this study may be used again and again to analyze pieces of music similar to those illustrated herein. The Quartet programs and accompanying card decks will be on file, with instructions for their use, with the librarian at the Computer Center. In addition to the program it is necessary to have the data furnished from a given piece of music. The charts and tables deve10ped in this chapter are to aid in setting up the data sheet from which the Fortran Statement cards are punched. Although it is possible to punch the cards directly from the music, it may be done more easily and quickly from a data sheet. This sheet may be prepared for each instrument and for the array INFO. INFO records the metrical position of the chords to be analyzed, but is used only in Program Five. The tables in this chapter are based on the eighty-column Fortran Statement cards. This is the type of IBM card used at Michigan State University on which all data to be used in conjunction with these analysis programs is to be punched. These cards may be punched in the data preparation room of the Computer Center. The instructions of the program are terminated by a card punched with the word IND. A blank card is placed 56 57 between this card and the beginning of the data, which is also punched on IBM cards. For use in making up the data sheets there is in each unit of the tables a five- or six-digit number, depending on the program. Notes coded with six digits use the following form: lst digit 2nd digit 3rd digit 4th digit 5th digit 6th digit Octave Chromatic scale Octave Instrument number number degree number Notes coded with five digits use this form: lst digit 2nd digit 3rd digit 4th digit ,5th digit Octave Chromatic scale Octave Instrument number degree number number The array INFO also uses five digits, according to Figure 11: let digit 2nd digit 3rd digit 4th digit 5th digit Measure number requires three Position of the note digits within the measure Figure 11. Coding system for INFO. The array INFO is regular if the same number of chords are analyzed in each measure and if the chords analyzed are uniformly spaced. An irregular INFO has a varying number of chords per measure, or the analysis may be made of irregularly spaced chords, or both. In this case only the positions of the chords analyzed are recorded in INFO. Double bars in the charts indicate the end of a measure. 58 For the chamber works and the symphonic compositions each part or instrument is coded separately. Piano music, which does not use a pre-determined number of voices, requires a vertical reading of each chord. In the analysis of piano music, eight places are reserved for each chord. Even if there are more than this number of notes present in a chord, it is assumed that there are some repeated notes, and these would be omitted. Additional arrays needed for Program Eight are named MOE, JOE, NOE, and LOE. This is true for Program Eight in all the pieces of music. Beginning with column one on four Fortran Statement cards, the following numbers are to be punched. (A - indicates a blank space.) MOE (first card) --7--5--4--8—-3--9--2-10--1 JOE (second card) --0--3--4--7-10-ll-12 ROE (third card) --l--2--5--8--9 LOE (fourth card) --6 Program One was processed twice, first with a set number (eighty) of chords to be analyzed and secondly, with the possi- bility of analyzing a varying number of chords. The first program in Chapter VII is the variable one. Following it is the set program of eighty chords. To increase or decrease the amount of data in the variable program, refer to statement number 104 in the variable Program One. This statement controls the amount of data that can be used. (LRETET - 5) will allow for 400 chords. The digit five controls the multiples of eighty chords that 59 will be processed. If the five is changed to four, for instance, the program will process only 320 chords. Charts and Tables for Data Preparation Beethoven's String Quartet in C# MinorL Opus 131, First Movement (Four voices) Pages 77 to 174. Array namg§_ Instrument Instrument's numbeg MUS I violin ' 1 NOTE II violin 2 KLANG Viola 3 LONG Cello 4 Figure 12. Classification of instruments. Below is the INFO for the first eighty chords (twenty measures). Two lines of the table equal the information for one IBM card. INFO 00111 00112 00121 00122 00211 00212 00221 00222 00311 00312 00321 00322 00411 00412 00421 00422 00511 00512 00521 00522 00611 00612 00621 00622 00711 00712 00721 00722 00811 00812 00821 00822 00911 00912 00921 00922 01011 01012 01021 01022 01111 01112 01121 01122 01211 01212 01221 01222 01311 01312 01321 01322 01411 01412 01421 01422 01511 01512 01521 01522 01611 01612 01621 01622 01711 01712 01721 01722 01811 01812 01821 01822 01911 01912 01921 01922 02011 02012 02021 02022 Figure 13. Form for coding INFO and instruments. 60 PROGRAN. INPUT OUTPUT ORDER UMBER PUW' or EXE- Order of data PRINT CARDS T0: CUTION I MUS, NOTE, KLANG, LONG Yes II; Remove 1 last 5 for Va. II Output from I No III 2 III iOutput from II Yes IV and V 3 IV IOutput from III Yes VI and VII 4 Va Last 5 cards from Output I No V 2 V INFO, MUS, NOTE, KLANG Yes None 4 JOutput from Va and III ’ VI lOutput from IV ' Yes None 5 VII IOutput from IV Yes None 5 VIII ne card each from MUS, Yes IX 1 OTE, KLANG, LONG. Repeat until all cards are used. fter the first LONG in- ert MOE, JOE, KOE, and E. IX IUS, NOTE, KLANG, LONG Yes X 2 utput from VIII x Lutput from IX Yes None 3 w v Figure 14. Master plan for data movement. Hindemith's Quintet, Opus 24, No. 2, Fifth Movement (Five voices) Pages 175 to 235. Array names Instrument Instrument's number MUS Flute 1 NOTE Oboe _ 2 KLANG Clarinet 3 KORN Horn 4 LONG Bassoon 5 Figure 15. Classification of instruments. 61 Below is the INFO for sixty-four chords (sixteen measures). Two lines of the table equal the information for one IBM card. INFO 00111'0014 00211 00241 00251 00261E90311‘ 00551 0056 00411 00441 00471 00481 0 00541 00611 00651 00641 00661 00711 00761 00811 00841 00861 00911 00951 00941 00961 00971 0099 01011 01041 01111 01141 01211 01241 01251 01261 01311 01341 01391 01411 01421 01431 01441 01451 01521 01531 01541 01551 01561 01611 Figure 16. Form for coding an irregular INFO and instruments. r A PROGRAM INPUT OUTPUT ORDER NUMBER PUNCHED OF 3x3- Order of data RINT CARDS TO: CUTION I MUS, NOTE, KLANG, KORN, and Yes III; Remove 1 LONG last 4 for Va III Output from I Yes IV and V 2 IV Output from III Yes VI and VII 3 Va Last 4 cards from Output I To V 2 V INFO, MUS, NOTE, KLANG, Yes None 3 KORN Output from Va and III VI [Output from IV Yes None ‘ 4 VII [Output from IV Yes None 4 VIII One card each from MUS, Yes IX 1 NOTE, KLANG, KORN, and LONG. Repeat until all cards are used. After the first LONG, insert MOE, JOE" KOE, and LOE. Ix 03, NOTE, KLANG, roan, and Yes x 2'"1 LONG. Output from VIII X JOutput from IX Yes None 3 . 1 I Figure 17. Master plan for data movement. 62 Webern's String_2uartet, Opus 9, Third Movement (Eight voices) Eight, rather than four, parts are reserved because of the many double stOps in each instrument. Refer to pages 295 to 340. Array names Instrument Instrument's number MU I violin 1 MUS I violin 2 NO II violin 3 NOT II violin 4 KL Viola 5 KLA Viola 6 L0 Cello 7 LON Cello 8 Figure 18. Classification of instruments. Below is the INFO for thirty-three chords (eight measures). One line of the table equals the information for one IBM card. INFO 00121 00122 00213 0022 "00311 00313 00314 00321100323W00411l00412l 00421 00422 00423 00513'00514 00521 00523 00611]00613 0062 00711] 00714 00722 00723 007241130811 00812 00814 00821100822IOO824] 00911] Figure 19. Form for coding an irregular INFO and instruments. EROGRAM INPUT OUTPUT ORDER-“'1r NUMBER PUNCHED OF EXE- Order of data PRINT CARDS TO: CUTION I HMU, MUS, N0, NOT, KL, KLA, Yes 111; Remove 1 L0, and LONG last 3 cards for Va. III Output from I Yes IV 2 IV Output from III Yes OMITT 3 4 63 PROGRAM INHUT OUTPUT ORDER NUMBER PUNCHED OF EXE- Order of data PRINT CARDS TO: CUTION:; Va Last card from Output I None V 2 OMITT Output from IV No IIIa 4 111a Output from OMITT No V 5 V The information from OMITT and IIIa is processed through WI Programs, V, VI, and VII of the Hindemith Quinta . VII VIII One card each from MU, MUS Yes IX 1 NO, NOT, KL, KLA, L0, and LON. After the first LON insert MOE, JOE, KOE, and LOE. IX Any four voices may be chosen for melodic analysis I along with the Hindemith roots and processed through the String guartet programs IX and X. Figure 20. Master plan for data movement. Monart's Symphony in 6 Minor, No. 40 (Thirteen voices) Array names MU MUS MUSI MUSIC NO NOT NOTE Pages 236 to 29%. Instrument Instrument's number ..a Flute I oboe II oboe I clarinet II clarinet I bassoon II bassoon ‘I horn II horn I violin II violin Viola Bass 1) Classification of instruments. O©mfl®W¢VN KHZ" Figure 21. Two lines of the table equal the information for one IBM card. 6# Below is the INFO for twelve chords (four measures). INFO 00111 00121 00131W00211 00221|00231 00311 00321 00531 00411 00R21|00431 Figure 22. Form for coding INFO. INFO has five digits, and the instruments require six digits e I Figure 25. Form for coding instruments. PROGRAM] INPUT OUTPUT ORDER NUMBER PUNCdED OF EXE- Order of data PRINT CARDS TO: CUTION I MU, MUS, MUSI, MUSIC, NO, Yes III; Remove 1 NOT, NOTE, KL, KLA, LO, last card LON, LONG, and LONGA. for Va. All of each array togethen III Output from I Yes IV and V 2 IV Output from III Yes VI and VII 3 Va Last card from Output I None V 2 OMITT Output from IV No IIIa h IIIa Output from OMITT No V 5 V . The information from OMITT and IIIa is processed VI through Programs V, VI, and VII of the Hindemith VII Quintet. VIII MU, MUS, MUSI, MUSIC, NO, Yes IX 1 NOT, NOTE, KL, KLA, L0, LON, LONG, and LONGA. After the first LONGA insert MOE, JOE, EOE, LOB. IX Any four voices may be chosen for melodic analysis I along with the Hindemith roots and processed through the String Quartet programs IX and X. Figure 24. ’ Raster plan for data movement. 65 Stravinsky's Symphony in Three Movements (Twenty-two voices) Pages 376 to 439. Array names Instrument Instrument's number MUSA I flute l MUSB II flute 2 MUSC I oboe 3 MUSD II oboe k MUSE I clarinet 5 MUSG II clarinet 6 MUSH I bassoon 7 MUSI II bassoon 8 KORA I horn 9 KORB II horn lO KORC III horn ll KORE IV horn 12 NOTA Piano 15 NOTB Piano 14 NOTC Piano 15 NOTR Harp l6 NOTP Harp l7 LONA I Violin 18 LONB II Violin l9 LONC Viola 20 LOND Cello 21 LONE Bass 22 Figure 25. Classification of Instruments. On the next page is the INFO for sixteen chords (two measures). Two lines of the table equal the information for one IBM card. INFO 66 00111 00112 00115 00114 00121 00122 00123 00124 00211 00212 00215 00214 00221 00222 00223 00224 Figure 26. Form for coding INFO.- INFO has five digits, and the instruments require six digits followed by four spaces. ---- ==-- ---- Figure 27. Form for coding instruments. PROGRAM INPUT OUTPUT ORDER NUMBER PUNCMED OF EXE+ Order of data PRINT CARDS TO: CUTION I MUSA, MUSB, MUSC, MUSD, Yes III; Remove 1 MUSE, MUSG, MUSR, MUSI, last 2 KORA, KORE, KORC, NORE, cards for NOTA, NOTB, NOTC, NOTR, Va NOTP, LONA, LONB, LONC, LOND, and LONE. All of each array together III Output from I Yes IV and V 2 IV Output from III Yes VI and VII 3 Va Last two cards from None V 2 Output I OMITT Output from IV No IIIa 4 IIIa Output from OMITT No V 5 V The information from OMITT and IIIa is processed VI through Programs V, VI, and VII of the Hindemith VII Quintet. 5? PROGRAM INPUT OUTPUT ORBER‘OF" NUMBER PUNCHED '"” EXE- ;:grder of data PRINT CARDS TO: CUTION VIII MUSA, MUSE, MUSC, MUSD, Yes 11 l MUSE, MUSG, MUSH, MUSI, KORA, KORB, KORC, KORE, NOTA, NOTB, NOTC, NOTR, NOTP, LONA, LONB, LONC, LOND, and LONE. MOE, JOE, KOE, LOE. Ix Any four voices may be chosen for melodic analysis X along with the Hindemith roots and processed through the String Quartet programs IX and X. Figure 28. Master plan for data movement. Schumann's piano composition, Papillons, Opus 2 (Eight voices) Pages 342 to 375. Array name Instrument LUM Piano Figure 29. Classification of instruments. Below is the INFO for fifteen chords (five measures). Two lines of the table equal the information for one IBM card. INFO 00111 00121 00131 00211 00221 00231 00311 00321 [99331 00411 00421 0043 00511 00521 00531 ----- Figure 50. Fomfor coding INFO Each chord is coded by starting with the t0p note and reading down. If spaces remain in the table, fill them each with four zeros and the number of the column. For instance, if a chord contains only four notes, the line might read: 50751 41042 40345 30534 00004 00006 00007 00008. 68 Fifteen chords, five measures. the information for one Column 1 4 IBM card. One line of the table equals Figure 51. Form for coding the piano part. PROGRAM INPUT OUTPUT _‘7 ORDER NUMBER PUNCHED OF EXE- Order of data PRINT CARDS T0: CUTION I LUM Yes I; Remove 1 last card for Va. II LUM Yes V and VIII 2 and IX III Output from I Yes IV 5 IV Output from III Yes OMITT 4 Va Last card from Output I None V 4 OMITT Output from IV N0 IIIa 4 IIIa Output from OMITT No V 5 The information from OMITT and IIIa is processed I through Programs V, VI, and VII of the Hindemith II Quintet. Any four voices may be chosen for melodic analysis and processed through the String Quartet programs IX, X. Figure 32. Master plan for data movement. CHAPTER V AN APPLICATION OF COMPUTER LOGIC TO A CREATIVE PROBLEM IN MUSIC The first and longer problem of this research has been to develop a method of musical analysis using the electronic computer. The other problem is to employ the electronic computer to provide a basis for finding all the possible symmetrical twelve-tone rows through the develOpment of one particular symmetrical twelve-tone row. A symmetrical twelve-tone row is formed when the twelve different notes present in a chromatic scale are arranged so that the intervals between each of the last six notes are in reverse order to that of the intervals between each of the first six notes. The serial composer is interested in tone rows with maximum permutation possibilities. The patterned rows, such as a symmetrical twelve-tone row, seem to possess inherently this quality of permutability. The reason this is true is that twelve-tone music must be logically conceived, and an accent on patterns in the row makes the logic more perceivable to the listener. In this chapter there are four programs written to explore all the possible twelve-tone row combinations and to 69 70 process one such combination. Program 56T is designed to find all the possible sets of notes that may be present in the first six notes of a tone row. Only the rows beginning with the note C (represented by the number 1) are investigated. All other possibilities are the eleven transpositions of each of these rows. The results of Program 56T show 462 basic sets on pages 441 to 455. There is no more use for this program. None of the 462 basic sets of numbers resulting from PrOgram 56T contains exactly the same set of numbers. Even when C is kept as the first note of all the rows, there are yet 120 different combinations or arrangements of each of the 402 basic sets. This means that there are 55,440 different possible sequences for the first six notes of a tone-row. It is not possible within the scope of this research paper to investigate all 55,440 sets of notes to find how many of these have one or more symmetrical tone-row possibilities; however, the four programs of this chapter are designed for use in a research problem such as this. Program Retro-A is set up to find 120 arrangements of any of the 462 basic sets. From arrangements of the second half of the row, Program Retro-Romper discovers and prints out all the possible solutions for any one set. The printed out- put of the program is given in sets of six numbers. These six numbers are reversed and matched to the set of six notes that is being investigated to form the symmetrical tone-row. To discover if there is an arrangement of the second half of 71 a row which will, with the first half, form a symmetrical twelve-tone row, Program Retro-Kempar is used in conjunction with Retro-A. Program Retro-H prints out the remaining six numbers that complete any twelve-tone row. This program is practical only if a large quantity of rows are processed. An example will help to clarify the procedures used in developing one symmetrical twelve-tone row. The first six numbers (notes) of a row are given. For example, let the numbers be 1, 4, 6, 2, 5, and 9. The remaining numbers of the row are 3, 7, 8, 10, 11, and 12. Program Retro-A is processed six times. Each time the first figure of the second half of the row is a different member of the group 3, 7, 8, 10, 11, and 12. It is immaterial in what order the other numbers follow. The arrangement may be as follows: 3,795,10,11,12 7,8,10,11,12,3 8,10,11,12,).7 10,11,12,3,7,8 11,12,3,7,8,10 12,3,7,8,10,11. To prepare the data each time for Retro-A, three Fortran Statement cards are necessary with one particular set of numbers arranged as shown in the following table: Card 1 A B D E F Original order Card 2 B C E F1 Rearrangement C D Card 3 C D E F B C E C Rearrangement 3. Figure 3 Order of numbers. 72 In the table below the first set of numbers are for Card 1. On cards 2 and 3 substitution of numbers for letters is made by referring to the relationships established on Card 1. Card 1 A B C D E F 3 7 8 10 ll 12 Card 2 B C D E F 7 8 10 ll 12 Card 3 C D E F B C D E 8 10 ll 12 7 8 10 11 Figure 34. Substitution of numbers for letters. In punching data for Retro—A, one-digit numbers are preceded by two spaces, two-digit numbers by one Space. The combined six sets of results obtained from Retro-A comprise 720 arrange- ments of 3, 7, 8, 10, 11, and 12. In Retro-Kempar intervals between members of the row are found by subtracting successive numbers. The intervals present between 1, 4, 6, 2, 5, and 9 are 3, 2, 4, 3, and 4. In this program it is determined whether this same set of intervals is present in any one of the 720 arrangements of 3, 7, 8, 10, 11, and 12. Program Retro-Konpar is run six times, also. Each time, 120 cards from Retro-A are followed by a card punched with the desired intervals. The spacing for the intervals on a Fortran Statement card is: ---3---2---4---3---4. This card is used each of the six times following the sets of 120 cards. As in the analysis programs, a blank card is included between the END card of the instructions and the beginning data card. 72 There is only one arrangement of this particular tone row that will give the desired intervals. It is found in the fifth set of numbers; therefore, Only the fifth trial has a print-out. The results are 7, 10, 8, 12, 3, and 11. A sym- metrical twelve-tone row of l, 4, 6, 2, 5, 9, 11, 3, l2, 8, 10, and 7 is formed by reversing the order of the results of the program and attaching it to the first half of the row. Program 56T is found on pages 440 to 455, Program Retro-H on pages 456 and 457, Program Retro-A on pages 458 to 464, and Program Retro-Kompar on pages 465 to 471. There are many other interesting twelve-tone row combinations that could be investigated with the aid of the electronic computer. For instance, tone-rows in which all eleven intervals are prescribed, or in‘which each interval becomes progressively larger or smaller, could be found. It is entirely possible that a study of tone-row permutations could be made. Thus it can be seen that the computer can be of immense aid to the serial composer by providing tone- rows built to his specifications. CHAPTER VI SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS The purpose of this study has been to show how an electronic computer may be used to analyze music, and to develOp a symmetrical twelve-tone row for the use of the serial composer. To introduce the problem a very brief historical summation of the history of analysis was made. After pointing out the need for a speedier method of analysis and one that could be used for the music of any period, a method using the electronic computer was proposed. The chapter on methodology included instructions as to programming and coding and an example to show how both are done. Of the various phases of a musical analysis the following were processed through a computer: 1) Harmonic Intervals, with rhythmic, octave, and instrument locations 2) Frequency of Chord Repetition 3) Repeated Chord Progressions 4) Hindemith Roots 5) Melodic Intervals (also for Hindemith roots) 6) Frequency of Melodic Intervals (also for Hindemith roots). 7) 74 Each of these was handled in one or more Specific programs listed as Programs One, Two, Three, etc. What each program accomplishes was outlined in detail. To show the applicability of computer analysis to various styles and a varying number of voices (from four to twenty-two), several compositions from different historical periods were processed, utilizing the ten basic programs. The card decks with instructions for their use are on file with the librarian of the Computer Center at Michigan State University. Chapter Four explains the method of preparation of the music and how to use the data within the various programs. An application of computer logic to a creative problem in music was described. To provide the serial composer with a desired kind of patterned row, it was necessary to sort out the correct solution from among the many, many possi- bilities.' The electronic computer was the obvious choice for this involved, mathematical computation. Using this machine a symmetrical twelve-tone row was built: 1, 4, 6, 2, 5, 9, ll, 3, 12, 8, 10, 7. This experiment also prepares the way for building other patterned rows using the electronic computer. In a search for the most satisfactory method of analysis there are two qualities which are obviously desirable: maximal speed and universal applicability. Roman numeral analysis is not compatible with contemporary compo- sitional practices, but an analysis of intervals with Arabic 75 numerals may be applied to the vertical sonorities of music of all periods. Since the outstanding characteristic of the electronic, digital computer is its ability to compute Arabic numerals at a high rate of speed and with a high degree of accuracy, the major conclusion of this study is that musical analysis may be most easily, quickly, and accurately done on a high-speed electronic digital computer. In addition the electronic computer codifies the results in a readable and meaningful form. It is quite possible that a trained analyst could take a movement from a string quartet and write a harmonic analysis below the chords as fast as one could code the material needed for computer analysis. It would not be possible for him, however, in the same amount of time to put the material into tables showing the harmonic structure, the lowest-sounding note, the chord's location, instrumentation and octave registration, to make a listing of the roots as found by the Hindemith method, to locate all repeated chords and chord progressions, and to present the frequency of melodic intervals used in any voice as well as a record of upward and downward root movement. The high speed of the digital computer enables it to solve with ease problems in selection. For this reason it is to be concluded that creative problems in music which involve many choices and rejections afford an Opportunity for the use of the computer. 76 Many other musical experiments are possible with the aid of the electronic computer. After completion of the present study, it now seems possible that a harmonic analysis could be accomplished with would give results in traditional Roman numerals. It is also probable that an extensive program could be devised that would locate and identify non-harmonic tones in a particular style of composition. ”Both of these programs, Roman numeral analysis and an analysis of non-harmonic tones, can be built upon the foundations laid in this research. Since some work is being done in the field of literature concerning authorship identification, a similar procedure could probably be worked out in music. One of the tasks in which the computer excels because of its speed is classification of data. It would seem, there- fore, that a codification of contemporary techniques is now possible. This would be invaluable to both musicologists and composers. A comparative study of the styles of different composers is easily within the realm of possibility. On an analog computer it may be possible to show line plots of melodies for classification and comparison. It is difficult to keep pace with a field which is progressing and expanding at such a rapid rate, but the serious musician will want to be continually alert to the many possible applications of the electronic computer to music. CHAPERIVII ”MASS NITH THEIR s K t ER.HKERA 1’31 VJ. COMP .+_u~ b w¥u-.ZDJ QMF2_IOs pqzaou oom ancmvmv kmimou 00 ~.c~vmoorfis quaou m0 mowvoaox.am.234.Aomvam»2~.aom.whz~.mow.hz~..om.msozosu ..Om.m.uZmwezs I a .02 I hmea<30 I mmssoe hammnso "(UL-")0 rec-4 (00' 78 0 000000 NWdomwdmov TNdmOU NQmO dmvaucmvoadwmw m:M~O?~mqu\¢w~vmafi~¢N¢m «UanUmrNH1wammmmuum d.J-N¢NO¢UJ ?cw€006m ;ufifiu004,mmrunmmmfimmma”WNMdfimmnmaflwvmowva \O¢11-momwmmmcm0¢ Nccow NVUO¢NMO~MNMOOEN cmmucup+uw QPMUHLVUUNHUNMNOMNW~O¢NH~OOM¢OOU TOOWNU m.OM(n¢Om 1.~C¢NUNC¢O rmummrcammrmmrncOCCWLMOGrmmm. \4m00fl6fiovmcmoc NV fioqmvbow dwfioqmfioovuvoov MONO» 0 000030 ”WGOmHOQOm—mmomummcwumrawfiuhOJ~1CON—FR~ fifF Ofifimhom POU~$POU~WIOHH u~7107~WflOh «mmomhmmcwflmmom"mmuomflmwomflmuxoeujvm~d~.“uMONHK.1.OMficfl~c~amavmvmavg?"~¢a¢m00~¢600~vm~¢ «cmuvmm .ficmflnmowdmfiowfimm0$~mflom”mfiomfimwowafiwOmeVOhamqow JJOPHS LO mmomfimwomnflcom wm¢om ufinOI~LKC$HUFOu~ UGCEHQCCQHUQOUMQPOU~10~¢~¢\ow“QwOUH¢O~¢~¢O~qwqmu¢~dmm¢~0000 HGOOQ.¢CO¢HVPCU~Qm wwVIOQAQCOQndC«¢~¢IOQ~VOO¢~GOMQHQO~¢~¢O~¢~0fl01~ umom~r~0m~U—OJ 02m 00km N—~ Nun OF 00 "an a OH 06 «+ PMHMHJ u HMFMlJ Dag ~H~.O~uo0~« AMOFMkmaJ. an 60” «on Oh 00 MO" Og OF 00 NO" fl0~ofl0~.NO~ Admlfiv h~ u+fiu1 m0 Amomu~oa~VDQO¥u .00 IUZDQ «Mo—unoa~.DflO¥. .mw FZ~HQ OO~ “0 OF 00 «+Hnu m0“ ®O~oooaomoa amt“. UN 60 Ou-~OdO¥ m0 #0 0k 00 AZVZDJia~VEDJun~VOQOX N0 N0.MO.MO «OinuyZDJv la “0 «Ru 0 m OF 00 m moOoO AOIJV an «IJHJ '79 "UOCUwUFCUwUOOU~GCCC~CCOCmocoowocco ”pccofluuuU~£00wHUMHULOOOOHUUOMMQOQUHLFOLH4Ucw ~UUCU~UUOU~U®OU”UUOUHUUQUMUUGUHUUOU. "UU :0 a. :0 ~UUOUH.U :0 "DUOUNmUOM~0.3m«;UCsfior 0 UUACUUVUCFUUFCWQWUOUUUUC UrsorUmUom 1fl00000~01¢N0Uflfld00mmuommmnonn00 armoooo NUN~¢NmNomNmUOU NUFOUmvm~¢Udo~¢quommUwOUUUNHUNUHHqucundeho Nwmom MIN~ULU00U1UPOU NQFOQNQQOQNGUOUNGKOQNQOOQNM ...OFN .) rfififlmflmuc. U.”“Unfit"ULUUOUnLucOUMUMpvuqcr.dnv CUCU Mac N€N~¢NoooomoooomvmmUNumotmu oucqmuanfiortmcommsflo \UNququrN U:OUwU~ Ummwmm NFNw0NVQCQRUUOUNUFOUNUQCUNUUOanUUOUNUUOUUNmaNJUHOU.UOOULUOfidesoquhOUwUchudhOU NUDCUNQC~¢NUN~¢NOCOCN¢UQUNUNQUNUUOUNUNCUNUa«UNUNCUN UNCLchcr«0(CQNCUOCTCOCONU000 "occouvmcoflmmuwummgnh womoouUumufiumHUH «LUHUmfiUmo UooHUUOUmdefiifiuumua maUHCW .cO~U-m ~WN~m~ON00~m~.U~UN_U~UU_U00NOO~{mO “UUOU~UQOU “UGOU HUCOU eUnC L~UUOP~0UOm0UuLUfiU-U ~UOOU~UUOU»U¢OU ~0N~thfi~U~PFOU~UnciavsovahOUfi¢\Ov cowUfiUhoqflU(OU~U_C~UMUNNU~UDOQ —¢0~¢.¢N“¢~UNOU~¢—~U~UN~¢~LOOUHUacufiu"OUHOOOUHOUO qucofifldo OfimNflU ~Ocoodoomofloooo ~OQOO~CCCC~UOOU~UO_U~GN~UHUM~U~U~H1~UNLPHUFOUNOOOO~FO~UH. meomowuooocfloficofisfloo Umhomcmoomvmc”WUMOOMUmmomUMPOMUmU OMUVUOUUMUowdfiiorUU or: omHnUmUCUUAUOmemnnmc mom UnmomcmmomcmmMcGNO—NUQNLrUUNOUUNPOM\mnmmcm OMUNMOU U100U¢.:O«Unb0.cerNUVOUNUNOOM U: «MNOM 0 000000 0 000000 0 003000 fit«OQPQ~0¢MQNOQFQROUF¢NOUMOUOUncrOUFUbOQn«Foam bommm LsOM .mm000m0,1000m.FOMMmQOflnflhom mmhomNMWOfimmmomFmNOmNNMCMVPUOMMFOOP00w000 IOMNNFOUMMQO)-UFO m:hOU UmuUMUOnUOmOOM mMQOHMMDCMPmFCMOOUOPOChommUOOUmmoa MMFOMMMOO MMMOHMMHO~MMNO~MMUNCUHUO .OU0¢«OVMUHO¢ 00000 0 000000 8O vco 4“ ¢¢¢O «....«vo ~¢1v¢0 H v¢¢0 TQQQO ~ valvo N 3330" .vvvmw0¢¢flm0mvmmomquomc0000¢fi>00¢090030000 memocmvmcvmcmOchmoUMUQCQMUFOUMvhctwccovnvmovmmoflmmmoflmmUNOUUQNOUNUNO¢H¢NOQMUNO¢ mmmummm w “mmmm ”mmvwocmvm.0vqum0¢mvmccm Swocr..dm0¢m..mm y UN.QNO¢M0003.0.VmCQmOOQOMOOOOMGhov mccccmcccoficcccmecccmccccmccccmccccmccccmccccmcCccmcoccmcGeomooconccccmcoccmcocc mecccmccccmccccmcoocmcoccmccccmOOCONU CUmUrC- mUU 0U mU LOJNUJanbaommu_rUmUJOU UHOU mmmommcbccw cmowrcwovrcoccaexocmfmcrrnrommrrormmqfiw vwoavwfififirnbOfimmudvmfioccmmoom Nun LU(chwU¢ CLnONcmuru~dNrcuUNCCCCUCCCCJCCCLNCLCCNCOCCtoccour(CONCOCC:(CCONCC o NCCCCC C(CCcc(CCNCCCCfCCCCNCCCC0CCCC0CCCC CCCCNLCCCRCCCOcUnCUNDVOFCUPCPNFVCMNUNOT Nrmommfimmcw GN“QKUVOMNBPOIOLWOUDWQOLN (C(CUPOJN.$OJWUCOI\LJCR\fFOAN -QOW NFFCWNUCOW C~m\fio~m470«U JONPnUOOJxJPOLNUOOF.ronnJumfirNuOHUm N_mNUUorN ronNUbom Nr -UOUNUvom OUFLUOUVOUNUUCUNUNOUNUMLUNCCOCNCOOOOUN~¢uUwOsN MOUNOOOON UNOUN ":0 vuoerwO N¢-¢ "coccficccouccco~CQC<~CCC<«(etc"(crc~Com «UrOJ_U¢CUNUC~U~LO~U~ OOWWLFOJ_©NOCNLnOUNJmflf—JUMUNI0~J~® owflcdocfiovoe~€¢coflccoo MONOONUNHU~UNOU”CQO¢_®UC®~cUO<~©UOU_(UOL~CUOL~wmocfi©row~iuom,000(~060(~®U0w~£boo fierce—Choowwcfie«cc"cwwccofleocoucUccmcccoaCCCCNCCCO~COCO~CCQO«occewo¢oodoccomomoo qmmOUcmmowvmmom«mmmucmmomqmowmcum"dqmoomeuoaNthONQNCONamUONQNbomcmqomcdioqvmmom QNUONQNUCN cNhONquCNcNhON «Nhoucmoomcnbo qmccmdccoocmmomvnocnommuUGNN~NVN-N¢N-N oNhCNcN—~mvnc.0QNOMucmmcmcmzomcomcoccmcmvuqoud vhcr¢N :0 ¢c€00¢dNON¢OOCOQQODcvcmoc Q6NC¢¢Q¢CQU¢0C¢QCCCC¢Macmarmcmcmccmcccccqoccc«coccvcccosoccocmdon¢N¢00¢¢vorvmcom ¢N_~N¢N_"Nvmunmcm—flN¢MQOmvrcom¢r¢Om¢mUOOQNGON¢NOONQNCON¢NOON¢MvOquvcmvmcomvmvom mrhommvm0¢0600¢m¢¢0¢mvmcaficUCUMUFOUmdQOQMdUO3a,VbocmncéovcUVUCUVM.¢Novm¢dO#mmmnmmvmoc nqmo¢mfio“mmvmocmvvocchoqmmmammq¢o¢mcmoqmmqomqucfimvmcva :r :nfigmwwbonnfibomfimfifim mnc.mmmwcmmmoommmoMmmmocmmmcomrmchmwromMMFOmmmNommmmomrrtorrmhcqmfibomnmoomwmoom GHNCMEOOCCMCOOOUMCOM.U‘mnmcfimmn..cm.flm.m00mmmm,0m.fiecom};qqoiw Q£Q€fi¢00¢méh0qxzmum00mr m gm‘mmhomn MUOCMMMFCMNCOOUMMH~mhm~HmvvmavchOUUmfl“fiaroomMflfi«To Nmmfimx0r©1~H7rrN~UMWNo mmgam NvN"GNUUOQNQO~¢NUUOU0LrCtNU~CURUxOUUUOOdNr~05U¢~qucmpcn¢fiodxcoflquFO¢A¢OCQM¢no¢ Ncoocmccwcmccuqmdrcvmmm ”MNUFCQN¢QCQ06000~U HOchn“Uncoccchciccqocccho¢0¢UO¢0¢Noc NQNC¢NVCO¢N¢®ochNcomcfloqmdcocccvoqcvH“mum““mNVNoc06NOc-fi wow wmcrHUncuHccnchog ocuufiooncfl :oofloooodmmom mmbfwmbfiom.LO~U~®QO£fi®~:0~mN sCmfiQNOQNCNOQ~BO"uawoumnmfio L~HOO:«m©Ox~JrOP«<¢O? H m H! ll ‘ . I: L, \ I flzm OtDY. (-JOtu ' uchmwmfiom.mvom“muomammo- mmmfim : muonmvaLHfiqom~m>omfimwo mfimo—mammomfiomoo “omoom0voo_omoo_omoo”wan- eqow ~0u~1301Hn.o Hrvoaflnxdfi~1-0n«Ghomflflmomafiwon «mmomannqwuoomfiJuogmrwo,ammondmbmqfixqoumxa {finuosfimfi.a~)\o.arrow«3x.mmooooaoooo cmm~m¢vmo¢vamocdqrovqcmoqvch¢¢cmoqumoqd¢\O¢:.qmNa-+dboaq¢rOQ¢vmoaawau i hmhadDO 3.23.. {cm WON MON VON OuN EON FON mom GON QON 00m 000 00m $00 com Now Don mo~ mow com men 00m 00— 00 flea 00" DON MON no“ FOu DON MON don Oo— 85 00. fin. mum}. Axum; OO— #0" «Wu «H 3 J O"? Na... 90¢ #03 00“ Na...» NO n.0— mON 90¢ 01” Om: M03 DO“. mOfl Nan; Q3" CON. mum..— hum; 0m...— mama PO" flaw PM» 0. NOV 00¢ PO? 00¢ Ou¢ QO~ MOW Nana 0m. MON FOG VON Noam 3N 00m. NON GOO GOO NOW. OON TON ¢ON VON Nam. NON NON "O? WON NON Om: hon “.04 $03. QO¢ Nnfl 0.0m. OON 0mm 00mm WON NON a «mm OOfl NON VON Nun.» N00 N00 ~00 ~00 Q0 OO~ Nth NO NO— MON #0— Cum 0%.“ NON. 00m. 000 N3— V?“ CON $0— flaw“ 00" en; fin: m0 CON ”ON GON QON vaM NMJN NWVN ~03 mawN NOW 90« FC— “.0? #0..» 30.» Na” 93¢... flWON Cum 00mm mON bOm mama. 003 FON 00m” N—fl NCO N00 «00 «00 m0— mo 00 mm. 00— O0 QO~ NO— MO~ OO— 0‘ an MNMLflflifi‘OOFOQF ~ OEDF 000 an on r-mr~ woo NON OOu 00~ MO. NA»: mm: nO~ mou FOa cou NON nGN WON "ON vo— no“ FO~ #0— Gun Fog PO" MON 00— OO— boa HON «MON ‘0— mm: OO— 3“ mod Non MON OON HON NON WON NON OON CON OON CON MON WON WON WON OON OON OON OOO Non FUN WON OON OOfl NON OON OON WON. WON FON MON QON mom mo“ mm 00 m0 OO~ O NO OOa NO“ no“ on. mammnmanOF — 0 OO— .90 F0 NON 00" cm; no. Na; mom no. no. hou co. now now mom mom «on mod be. @0— 0" a rm: #0“ new 00. mm: #0. new new con man on; man mo. NO” ”ON OON MON MON «MON NON CON COM COM OON $3M WON ....)uON muQN OON DON OON OOH NON EON mON QON OOH. QON OON DON 00m... MON FON WON 'ON mON u :u m0 0%. 00“ OD" n? Om. OOu “40¢ a“) SJ OOu flOu mm, 0% God no a 00mm 93 v0? 00.? 90.3 00m won ")OOOOO ON 60¢ mum; On; On.— 30“ mm; 0m; Tn.“ nu)” 9n; 0.»; NO— #0— mama Om; MON OON mo— Oiu nut «win NOW «on now 00¢ «Ow OON 00— Pm. MOO NON «Tm #OQ mm; 03‘ «m; .99— an?” humus amau mum." flaw“ Om.— flo— FO~ Puma Oman WON WON 00" 90" -¢ may" NOW gem «OW 30¢ ~Om OON OO~ hm... NOAH. NON Nan» NON «OM um.” Dayna. «ON «mum: «Tm... mumJn» MJM «OH «on ann.’ #ON «.1.an NOW 903 NON «MON NOV 03‘ FOO WOO. 00m. «OM NON 00m: mom QON 90a flog 00¢ OOfl 88 MOM Nom hOu 0%. Now 00a PO“ 00a #0— NON «ON MON CON «HON NON VON HON VON mON flON VON MON com mom mON «HON mO~ OON mm. VON mON «HON OON m9" mom mom. mom. «on FJN mom NON DON O u N 93mm QON OnN DON QON QQN 30M «WON 00mm 00M 30M mmvN OON MOM 00mm FON QJN «HOW OOM ham. QON ¢On MOM 00m. Num «0“ NOW NOW #0" m0 mom con ho— Don PO. mom. ~ON WON CON flON MON #ON mom VON OON fiON vON MON VON WON MON HON mcu CON mm: GON mON NON QCN man WON MON MOM «Om NON moon EON 03.x... OuN AVON QON O u N GGN «MON mwmvmw 99M QGM OOH 000 QON 30M 09M mom OOH POM QON ”OH 000 FON QON 00mm ”on 00” N «am «Ofl 89 NNOOOOOOOOOOOOOOOOO 00000000000000000 0 O ’0 NO— 00" MO— 00 mm. #0 MO 9x0 5%» 00 MO~ no. #0 OmQ 01v Nae mom #0 m0 nnn mauu non N0“ #0— 0m.— baa 6.0— mm: Fm; Fm; OON EON FON ”ON 0007 moo On C 00¢ NOOOOOOOOQOOOOCOOO h NO.» Now non no.” OOOOOOOOOOOOOOOOO N0 00 unu- OOn MO— 00. m0 #0 m0 #0 5.3 00 God no" FO On¢ ouc Nu? mom #0 HO O N. no #0 $6 P0 mum; N0 N N0 00 03 $0 03 mm; ”O" NO“ Gm; 00~ Fm; Gm: mm.— 5.0— hows OON NON hON MON 000 $00 02v 00¢ O :n OOOOOOOOOOOOOOCCOOOOO n 0 € Nov NOV 30+... 303. 0:.” 0:.” mac NOV Nov do». NOV Nan -mu Nun Noq 30¢ mod. 30¢ OOQ mow Num us». a hov 301 Ca? 00000 «4 m OOOOOOOOOOOOOOOOOOOOOO O O o-I "3 O G’ 91 quu FOu «.0— MON "MON EON flmfl 03mm HAHN .9.$N 33N O$N bx; OON 3mg #3" 03 om~ c0” hm; MO“ hm; 00" PJ— xflu 0.0" MO“ Pm; CO— P? .v MO~ OO~ 00‘ NDFOM!‘ ? 00" D 00— 6 DO“ AOCflu mom «0? OOO NOV GOO wow 0mm NOQ Cam Nov o—m new 909 HO? FOO GOG N00 90¢ N00 60¢ Nufl NOW COM Nam MOM film N~wm QON NON CON VON mmON QON NON WON MON MON. ¢ON WON HON HOV. MON flOM MON FO~ 000 900 #00. WOW. Cum. Nafl Nun NOQ N00 MOQ M00 MO— FO— mmJN OON NMJN QJN haw,” dawn 0m. ¢O~ ”Cu 00" hfiv MC— €139.9P‘DI\LDF7F 93m «0? NCQ NO? NO? NO? NO? no: DOV $0? 000 NO" ”ON m~3N OQN «Mam fifN CON ~30“ 03¢ FOu hm.— ~21..." Osman \Lfium CO” 5.0 Mn: CO" 00m #3 OOu 00" .On: ncn DO” 060 Can Cum 0:“... 900 5.0m N00 N00 Mum MOM OOH NON «40¢... £0” N33 .QON NON CON VON «MON QON NON mON MON flCN QON MON OOH. MON MOM MON MON Fm; 00m 003 FOR mom can Nun Nam” NOQ NOV MO¢ MOG 92 OOOOOOOOCOOOOOOOOOOOO n0~ 0.9 — 00a hm. a 0mm a ¢J Hm. Gm. Ow Fm. nxvnw 0m. #0 a NO“ 000070510 mm. 0 n0— GO“ N0“ can man hm. a em. — hm; hm; mm.— mm; MON 8N nmmwm. MON MON MON MON CON OON 99m ho“ ¢O~ m6» 00m m0" Nmu mm can 00 00M 03” 00 a ho“ ha.» a flow MON OOH FDN OOfl nngnggoooooooooooooooocooooooo fl. ‘0 fl0~ ecu flo— m0— Gm.“ OOu «.0— 9m: OOOOOOOQHO Q‘MSO 000‘ and N0" 60‘ mom has gm hm: b0~ Oman @0— MON 00M MON MON NON flON MON OON OON mum: NO~ #0— mod no: man NO 30 00. 00 OQN flaw Om. « hm; hm: MON MON DON EON OOH 93 0.- 1 ‘\ .‘1 0000000000 00 0.3—0 CON OON .WON NON 00m” 00m” 0mg 50 MWJ FOn... 00M. 50m. BOW MOM F0” ”0— :0 '0 :3 3.0 m '3‘ O O N ... 0000003 0 O C7 00“ 00" Go; Go” NON NON \‘ at M de HT» 003. Wad. Noam NOW. «0— COM OON QON new 00m... 00m 03 how no hon 00m #00 hon MON hon mm; 94 Oohoh ..muiDJiazviDJ. u“ JIZuJ n O» CO duoN~.N~ .JIZ— mu _!Zuz NuocoNu a0!.2.234. m— nIZuJ .io—.020J n.2vxDJ ~+ZRZ “EonvOZQth~IOoOI~. hdzflOk a~cnvm~ deQOk «AcuvmoOInu h¢l¢0k acmeafloxn ohmVEDJonomoM.OZOJoaomofl.UZawh2~ a .02 I hwhadDO I IMJJOG hameuu N“ «a 0— 00M 00 no i. 95 “meow—mqomfimmom.mmom.nnon_m>on~amonanmdn~n~on"nson.nscndn~onfinnongnfloflunuoa.nflan "whom—mmomflmmom.mmom.nnonmmmow~¢m.dqnnon_nmon~cu~¢.¢M~¢.¢~«v.¢.~a_:mo¢~¢fioc.:u.z "qwficflnuon.mwcm”anondnnon.nnonannon~nnon.nnongnvopdnvonannon.nnon~nnan_noon~n:an .mvom.mmcm~m>on«show.noon.vco¢.¢oo¢~¢noa‘v0.3.vwocucoov.¢o~¢_¢o~c.:N.¢~cu~¢.c)3¢ fivmoe_¢$o¢_¢ho¢_waow~¢~oc—vmo¢~¢o~¢_¢nov.v30¢~¢o.¢~¢o_q.30«vqnuon~nman.n.3n~n.an DZU QDPw AOQo~flZo~flo~u—.-Zo~uOZDvaoON IUZDQ 33. On 0F 00 NO~ mcnomouoflcu “ufllfiw l— ~+fi03 D) Ano—Iuvouu313¥v .09 10231 uncannoauvDZOXV 933 hZ—IQ 00‘ «3 Ch 03 ~+~fl~ DO“ OCnoOO—onO« Ami—w mu V3 Qua—wOIQK fl) ¢0 Oh DU aZuIDJIanquZDJ nZeZDJ‘nmuiDJuauucflox N3 N09M09§¢ .OlanviDdu Eu «3 rain 3 fi GP 00 3 Dom-3 “OIJV l— «IJIJ ~§uln b NXflauwiad <¥I»ZVIDJ nquDJ I4! ~Z~$3JIUX O «abomcnoonwmoumenoonwnmoncnhomvmmoncnconvncon¢nnomvnnoncan.M¢fiM0fivflflofl¢nnon¢nuofi vmwomtmmonvmm.mcmo_NQNN~N¢mmon¢nnomvNN~qumonvnnom¢mnoncfin0n¢fl~oqcnhOficnoonvflOOn vnmom 0 000030 0 000030 0 000030 n¢~OVMc~ocnemovnfiwovmcmo¢mv¢0¢mcfiocmcsocnvnocflflhonnnnonnnfionaflnonfinPOWfiflnonfiflhan nnhonmnnonnmnommnmonMflfiomnnnoaflnoonoononnnmonnfixonflflnOfin3~oantxoafi3.deficmo¢flfi13fi mnwommmaommnhonoamomOOhOflflnaoNflflo«flMflhonfiflmonflfloAmflfloaflnflo.finvu03fivmo¢fisqocfl:.ac nnmon 0 000000 3 003930 mmvomw¢aocmcmocmcmocmvu“exec“«Mmmondnaon_n.onncnqcm¢.«cucflocusmocwfim~flnn.~3Vfl~.fl Nnmanm¢wcvmcmovmcwocwmmmammounwnoonmnuunwnaunmnm~mnmmunnvfiosnenovufl_.fimdvnnxcfloc Nvoovmvcocmmodnmmoommfloanmcwuwwnuonmcuqcncmucunwonun~onmn”onuvyowVfi$0flM¢hamNneen Nvaocmvmovmmwnnmmonmmmw.nmvmocmnnoemmw~nm¢mov~¢fl0¢~cnoqncnocwvhocwcboantoocnvooc Ncmoc 000009 ~RESULTS INTERVALS QUARTET "' NU. GlLBfiRT HULLtH . Q 0000000000000 0000000000000 0000300000000 0 O 97 QOOOOOOOOOOQOODD'DQG OOOODOOOOOOOOOOCOSI. 3‘ 103 199 92: n a K 95 OFfiOflflFnd’lfl‘gflfl'; d 197 10.3 10.3 1 98 0030000!“ I .I OCOOO'." NJ 3. CA: OO~ 33¢ 30.. On: \J 00« .93 ...b. “can h)~ “DU nDJ. ”ON MON m3“. «3M: CCU )0.“ ufiuN OOH. 30‘ 30‘ 03‘ can fly...) ~11. Dog Can No“ man «wan 09a 03~ Am)“ 334 €04 30a mo. mod 09.— vfiNOWvfimoncfioafl¢fi$0fivfi93fiwfiflafiWfiDOflflfisafi cnqonvflfionvfiMOfivuvqU¢flu0fi¢fin0fl¢flnon¢fiuafl cmmcneflnoncmw~M¢Mo.uwuu_u¢fiuefi¢fifl0flvuumu cmNOMVflnomcmmOficnfionvfiscw¢fl>0fi¢n00mvfioaw ¢mmcmcomcm00homoomcnoc~encoocmccoanachafl COQCMOCC q MOGO nmcco a moamovoaoafloomomao u DG coacmccmcvcomanooo.ncewfincomeaoono¢OON~fl OONOv30fi0¢aoncvoencvoahoaGONococoocoooa¢ 00N3¢3330¢30ho¢33n3¢03~c¢oomocooo.¢oonac ooao¢oooavooomvsac~303uonOON3fioogonaaazn cm... Fm.— MOM N3 Q0» mm. um n3 a)" n? 00" 0}“ «a no“ #3. #5 mo“ CON can hm" GON mom #9» mom an. baa mom ¢ 30. wow fl men nan m} «an 93M 3 00‘ non t m. OOH 100 hZUEMOZn‘IZQUI (3006000 0 000000000 1“ V ' 0 COOC 08 G 32w. AOhw .owm.. u _ . ‘_.>Iu»2.. .N 10:31 MEX—#200 «+2»: .fiom. 913! u .Z.>1ukz. oaouufl 5 33 MEI—hzau «fz‘flz .3.u. 3131 u Azu>xwh2_ Owoaafi o 03 ".72“: Q42~h23¢ “2.". 3101 a .2. >awb2~ owouuz n 00 ..¢_.m. h<£101 .om.~u2 .nn..n_ ..Z.~. axcivvow aqua ..Cuymu hdz$om ao¢mu >aubznoaompm. sack ZO—w2m£~0 N .32 I 535.1133 .... lug! P1w345. 0000000000090 30 Nu ....m 181 000000000000OOOOOOOOOOOOOOOOOOOO OGOOOOCOOOOOOOOOS‘J Nu; mm; @0— 90¢ 00“ mm“ mm; bm‘oannh-mvm OOOCOOOOOOCOOOOOOOOCCOOOOOOOOOOOOO QOOOOOOOOOOOOOOOOO qu mum.— mm: 00‘ men mod 00; 00— ¢0~ cm; mm; Mn: OQu mum“ MO~ m0" n.0— MO" hm; fl 0.. fl 6‘ COP‘MOflMf‘MchMQ 102 @0 N9 N5. fin. Q3 hm.“ OO— MO~ NO— «mc z) wwnmmmvn 0‘ NV 00‘ HF) hm; 00“ 00 00“ Non mo" ham Fm: #0— 00¢ 00“ um; 00“ c0“ NON mmun no“ 8n has OON CON mom MON VON mON mam MON CON #0— «ON «ON MON HON mom ~0N DON 00a ~0N com 90" OO~ man: con mm. NO on: Gun v0 N0 N0 On: 000‘ 0 Fm; 00” mm. 00‘ no— me“ ha.— «.0— #0— 00- Ocn am; 00“ NON m0“ “cum; 0&— #0— COM QON MON HON QON mow MON MON CON 5:3" mom «ON fiON MDN MUN “ON CON @0— “ON CON oou 00¢ 30‘ 00— mm. b0 00— O“— W 103 0a! b Oh Oh no .~.mmpz~u.~..wox NJ hmowwomm .zlfiwtn .~.am»z~ufi ma ...au»z~ t.—I.n.-mwwzu ¢¢ m&.mo.¢o ..-wwh2_. a. ea mb¢wnobb “film. u~ cw or O» 06 ...uwznua~_ccx an hn._fi.«m .203. u" l") (‘0 .~.w»z~nfi m% ...mhz~ *..I.u.~.wbz No ma.m®.u3.-um»2_.m~ mfl ¢&.mn.dm mIf. a. ma ah Oh ow ._.H2~u...ox on bm.0$.ow .Itfi.u_ ._.hz~ufi «a “Huhzauaal.u‘~.hz~ 03 ~&.~?.0& .anvhzn. nu .fi Nn.~fl.wn .~I?. um and Omonnu fl 0W 0 m Aomouflup.~ufiflkznu om hdwi nwwcmlaoauuUkZ—u on Odwl .Onouuuonnuhzuu o" Odwa ancavflw Hqidfik H , ancuvflu PdiIOl a «Oflvhlaioaomvflovzsow-01osonvflflwb2~ogcnuufikw; oacmv-_.?~ 2A,; m9.hmwfl.m~ 0 fl 0&2 I ZO.#UDJMK I hfikddDG I auJJOZ haw£J~6 fifi fifiu m0" m©~ FD" Q0“ c D ¢ m I N Aomouum . aowouiu .owonu m F m m 0 O O O O O O O O OZU QOhm awvH$O¥~ oc IUZDQ .anu10¥w o¢ IUZDQ ~oa~v01~ o0 IUZDQ 0m OF 00 mh.®hohfi AQIE. m~ NuflZ ~+£ui UDZ~FZOU NfiuZ MIaquMFZ~H.~HPQO¥ Obomh.0h .mIZ. an ¥Inuuwhzau._.aox ¢h.m#.¢b .NIZ. km ¥I._.k2~u.~.0¥ Nb.~humh anti. kn be O» 00 ~+Ju4 or.o>.00 .cIJ. mu 0% Ch 00 mo.oo.oo .ZIfi. kn N~+¥n¥ Nu+Z I 2 Oh Oh 00 Qmowmomm «Zlfiv kn mw+¥n¥ D®+ZHZ 00 m 0 wk PF 0h mh ch Mb NF Nb OF 00 mo 00 Ev 305 v0 N0 N0 m9 #0 50 CC“ MO~ MO~ a m "0 m Q n m m N do N0 «0 m a “m m v m ¢D~ 00" «Cu hon m P O O O O O O O O O O O O O O O O O O O O 0 O O O O O O O O 0 F0" OO~ 00 OO~ HO— Ho" ho“ hag b9“ OO~ 00” «OH 00" 9 O G O~ 00" 09" N9" Goa m O 00" 0 O 0 OO~ m w 0 #0 ¢O~ M$ m G W fl0~ NO~ ¢Om m0. N0~ “0" «on b O O flog NO 0 O O O O O O O O O O 0 O 0 O o o o o mom may m3“ oo~ ~m~ com vow man now ¢ON mom mam MON 00w 50” «ON flow mom mom mom .0N com 30" “am Dom OOH 00" mo" #0" m0 #0 00" cg“ mad mam n9” oo~ 00“ mo" mm“ 90“ ¢o~ #0. m0_ mod 00. @0_ mo" REDUCTION — NO. 3 RESULTS QUARTET - GILBERT ROLLER I') (”I 11 IO 10 10 0 N N 00;) 000 106 O P) m it (:3 12 10 N 0‘ OO O O 0 "I I‘) m U? In I? 107 PdOM-ZO¥.O¥ omv IUZDQ mkfioynhflOx OM.®N.OH «MIXV mu WPKOMSQOV. FNoomohN «NIYv tn WFQO¥HO¥ mNoeNomN A—I¥u k~ Gum's. MNoNN.flN AMZIWFQO¥vk~ MN OF 00 ONNE «NoON.~N .NEIMFEOXVK~ 0N OF 00 OH~E 0~.m~oon -ZI&FUO¥VEN MEumFGOX h—.b~o0~ “Mitmhaoyvku NEnkaOX muomgocx ANZImhflokau ~2anflO¥ M~.MA.N~ A~EImPQO¥vk~ OHWFEOM final! 00 OD Auuflwhzunmi g-MFZ~nNE auekznuuz O®o~I~ on 00 nomo—l—uaueflwhznv on Oflwfl “omouflu oauuwhzuu ou dea Aomouluoanukznw on Gama gat~vmw h<$fl0m antueflv kdfiaOl aomuKMFzmoAOmVMFZ~ oaomuhzu ZO~WZWZ~O 0.02 I ozuhdom I PMFEZMhZ~ U~ZOEKIQIO«. oOZ w13w¢eoo m4¢>maezH qugamwg styHQO ngma~mm .au mmxmUzw30u1m Ion poruu hazzom he .omonw_oa0¥ ZoumZUX~o 0.02 I zouhuhmnuz 330:0 ! huhx(30 t auJJoa hamaJuo 136 OOHoVQaOOA “7 (D O N 2) D m '3 mmoowo~® Ghomhoah brochohh whofifiomh flh-NhoMb uhoOboqb 90.30.00 hOoOfloho afloflflomfl au~¥ “03—Kv k- OOH 0h 00 N§a~¥ .~U_¥~ Kn OCH 0% 00 NIH! aNlu¥v In Goa 0k 00 ntuux afliuxv in OCH 0% 00 Man! avidxu km 00“ 0h 00 ¢fl«¥ amI~¥v km 00— 0k 00 min“! nflluxu mu 00— 0h 00 ml“! .h!_¥~ l— 00« Oh 00 01"! AQOHR. kn 00H 0% 00 On“! «OIH¥V km GO~ 0F 00 blflux ACHIHX- kn OOH Oh 00 Fun! ¢Q mm um 03 0h 0b bk 0% mh ch HF NF HF 0h 00 #0 m0 #0 00 NO 137 QN—.MN~.¢N~ NNHoumuoNNH ONHomunoONq mauofiu~ofl~n omuonuH.OHH annoWH~o¢nn N—fiofl—«oN—a OunowouoouH monohoqomOH OoaonOHoOOH ¢0~oMO~o¢0~ NO~.«O~oNO~ .~!N¥~ l— Oflu 0h 00 NIN! aNlN!» Eu 00— 0h 06 fliuNX ~fl0N¥v mu 00H 0F 00 ”EN! A¢1N¥~‘&~ on" GP 00 VHNE HQ0N¥V mu on. Oh 00 miuNX HOINX. la Ofl~ 0b 00 mum! ANONX. km on" 0h 00 O3flN¥ “QINXV l. 00H 0F 00 ONNX «Oimxu la 00“ 0h 00 FiflNX HOHIMXV l- OHH Oh 00 FINX aHHIN1w in OMH 0b 00 muNx ANH8NX. l— MN“ «m— ONH Gnu Gnu bum 0m~ mnu fian flHH Nan HH~ O—~ 00m 00~ boa 00H fl0~ «OH n0~ N0~ n0~ 00— 138 omuoOV~oomH fl¢~oh¢~.@¢n ovnomVN.O¢~ VGHoHQHo¢¢~ NVmodvnonu 0¢~o®M~.OQ~ fifimohflaoflfiu .Ofluommnobmn cfluoflmuovnH I. NmnommHommH Ofluomwuoom— ”In”! Hfllm¥u In 0mg OP 00 flan! A¢lm¥u mu Gm“ 0k 00 ¢ufl¥ .filfl¥v km on“ O» 00 Miami a033¥w in Gnu 0k 00 mflflx Afilflkw km Omu 0k 00 Otflflx “0.01. km 0m~ Ch 00 0"”! aOlnxu kn Gnu 0h 00 .hlnfl! «onlfl¥u mm 00H 0F 00 hum! annlflxu in em“ 0h 00 mum! .muiflxu L" «MN! ~03N¥u kn Oflu Ch 00 NIINX Dc. ®¢~ h¢~ OQH Mad Vé. M?" HQ“ 139 ~+ 00000 30000 OOOOOOOOOOOOOOOO O O o O O 0 32m fiOhm MDZ~PZOU 3&2 n 3M2 OuaioWUQaOl Ouaiomvadox ouaxonwoaax MXoNIo av. omnofimuoomn ¢Q~.Mfiu.¢mu Nm—oHM—.Nfl~ .ma hz_qu "any .otnu. u. om. o» co nanny A.nnx. m. om, 0» cu mung .msnx. m. on. Oh no OOOOOQOOOOOOOOOI‘ 06 cm— fimu ¢mu WM— 04-: flan Cit—fl 11,0 OOOOOOOOOOOOOOOOO0.530000000000000 OOOOOOOOOOOOGOOVW‘tflfl”HQ-"3Vfi'flflirfld'f‘ MODflFflQmmflCOG‘P-flfiml‘mhfioowOFCDGOOFFO 0‘ 0" '0 11.1 nncvcmcmnmnn«sum-‘anflnmcmnvmnmccm ocehmooomenmanmmmmommm¢nmo~o~omr~r~o i OO‘PNNO‘ONNO‘NNFWNOO‘O‘NNFO’C‘OU‘NNO‘! 0N0 do. «an can no. ado-I nut-t Haul In m HHHHHHHHHMMM m 0 onhHemumm axomo ho MUXMngmM 0 .03 I EQHHHHMmmm Qmozo I awkmwmd I mmqqcm ammmAHo # 11.3 flO.NOon@ againxv l— oo. Oh Dd mun! uwoonouo .NnIaxu &~ Mfl.hm.mm AOInxv mm nmofivoflfl aOImxw kn flm'0¢omm ADI-M. u— Nm.wm.um amJInxv u— Nm.¢m.mm .NJIMXu mu mm.ow.~m .NI—u u— Nmoflm.mm angflxv mu ~J.fl~010¥nfl4 “Jon. 323% "NJ «Judv 323! and ~+JHJ ~+JuJ «Won. QIOZNHM .3.H~OZO¥QN¥ afia~uazoxumx ouz on— “I! «31 «24 “0291” p01- hqziok natuuflooru. F hhoflh.hh ObadhoMb flh.Nhonh «hoON.~b 10.no.mo no.oo.wo flOoQOoflO Aalaxe 1— OO~ Oh 00 Vila! “ulniu la 00“ Oh 00 Nu~x ANI~X~ in 00" Oh 00 nIunz AflI~¥~ 1— oo. Oh so flu“! «VIHX. t— oo“ Ob 00 can! «mlaxu k. con 0» 00 nIaux Aaluxu mu 03. 0h 03 nun! .hluxw A. can Oh Oi 0II~¥ AfiIHX. L— 00" Op 00 can! aaquv K— 03. 0h 00 bIlax AOHIHXu la 00— Oh 33 Flat 09 ND «3 03 3% 9h 5% on n5 vb 0h Nb «P 0h 30 no #0 00 $0 30 NO 11.5 MNHoHNHoVNH 0N~01-o0Ma numohnnofiaa OHHoanoDHH Vancflanocnm NHHomnuowua O—~.00~oO~H $0—ohO—owoa flouomOHoooa GOHoWDHOQOH non.«o..uo_ .NINiv l— ong 0h 09 nluux .flIMX. m— an“ Ob 30 anK awlfldv m. am. Oh 30 0““! .nIvK. l— ea“ or 00 mlumx AOINXV u“ Ofl— OF 09 run! «FINE. mm 09— Ok 3% alum! nfiINY. mu om" O» 00 cumx «QINX. u— on— Oh 00 bIaNx «OHONXV an on- GP 00 puny .«HIMKV In and 0h 00 fiumm HMHINZV m— an”! 3N~ )HH flan ha- 0“. DH~ Qua flu— Man «an 0- 00— no“ 50— 00— m0~ #0" flo- Man «On 00‘ Q3 11.6 9¢~0h¢~oD¢m O¢~ofl¢~oo¢q €¢mofi¢~ov¢n MVHoHQHoUVa 06—u3fiuo0¢a Dfl~.>nq.nnq onuonflnoOfiu cmH.flflaovm~ Mfin.mfl_.Ufl~ Ofl—onN~.Ofl~ QNaomNaovN— Ofl— 0h 30 Manx .wIflxv m— On— Ch 33 ¢ufix ~0Ifii. m~ Oh— Oh ow fiIuflK “OInxy in Ofiu Oh 00 Man! .hIfixv um Ona 3h 30 OIufiK Anifliu mu Ofi~ 3h DQ ouflx Amlfllu m— an. or 3¢ FIHW! AOHIflK. in Ofl~ 0k 00 Fifi! aualfllv in Om" Oh ow wuflx HVHIfllu i— dun! “OINX. mu Ofl~ Ch 00 NIRNK aaINM. mm on» 0h 00 Nix! FQH Ovu at. V?« fl¢~ N¢~ ~¢~ 0¢~ mfia Dfla ha. Own n3 «2 ”Wu Nfld Hfl— Ofla 0““ cv— flfla NNH HNH 147 OH 3k 30 33 Viouvfloaf gong-J. u.“ N. 363 n hzuil O 3.0.” aultv in fiuJ 0 a n ~+3fl3 IQ 33 Oh 30 00 an.>q.oq .0014. 2. sq Astoflu DIE/5301 “joquZJIaU‘ «Woaufiz31uai «U ~+_u_ «.703... On: HM 3h 33 «I4 a J H0181 Dun CM on 0% 30 H+EH2 filoflion¥ on? Hzall 09H ““01 On. 002.09..0n« .0Ifli. 1‘ an. Ofin 3h 39 ”Iufii ”an Innofinaasn. «HIHKV La Uh. Gnu 3k 05 unfit an“ Vn—oan..vna «Mini. mm on. on. 3b 30 fliflfii 33H on~.)¢n.3n~ .flsfizu 1m Ova ‘TfJ 41;} di¢i (it) 43 STOP EMU 11.8 0390002)03.393303300330003D COCOGOOOOODOOOOOOOOOODOOO 000000000300300htW'Ofl'flF")VDD 3309 0000 #1303 . 1".) 3093003301333333300¢flfl¢¢fifl¢flfiflfifl¢v GOO-flfflflflflvfitcnfl‘tfiVI‘DO€F‘D3‘J‘J‘30D‘30fl Pfififlhmfih‘o‘oQQFDDOPI‘OJ‘IFNM33‘NNJT‘JVFO fl “ 0‘. «an dd 0‘“ 150 M4.A-fl¢flaniflfi¢nnni¢u .flinnnJ’fififle’QO)J\QD~s~o I) d N093‘s NFQ‘JJ)NVJ‘NOL «no- at «an can-4 .1 l 151 b .03 5 .mo ~¢r4p1 r4r+r4 H H anmwmm mmqgom MM!“ HHH a comm mm BMMmAHu ‘2.” (-O o 152 Ml MI Mi HHH m- m- m.. M‘ Ma. 9am Gum BMW 5. wam 153 m- MI m- m. m- 000300 9.4m 9am Gun 9...” m 9mm 9mm 93m ea oom.mom.oo~ .oc.z.n.m»oz. k. or or.mom.or .o:.z.~.mbz. m. mh on.2~ch2~ bh or O» 00 AZ...UZ.hh.0b .oo.z.~.0z<4¥. l. or Mb.hh.mh “OI’Z.~.m32. L. «h ounzunh2~ Mb ch 0% oo .Z.".020J8.Z.—.WDZI.Z.—h2~ Nb Nbanbomh .OIAZ.~.wZOJa m. ah db.mb.~b .0!.Z.—Vm32v u— o~._nz m~m 00 can u u 3mz .~.~u~.._.moq. .w 34mm .n~. hazaou w .m.~n_.._.m0¥. .0 o¢ma .~n_.m. quaou o .houu..~_vm0fi. .c 04mm ..m_.h. k<210m c .muoun~.._.mozv .« adma .«n-mu. b<£aou a .0...u2..~.~u~..z.~.0204 v. .m 04mm .o—ouuZoamcunnonz...oZ09 00m 0 O N~ «a a ed M O m m N¢NO¢ ~¢00¢~¢©O¢MVPO¢~¢WO¢~QFO¢~Q®O¢~v0“Q~¢flO¢~¢OOQ~dO~Q~¢O~¢«UOH¢~ONOfi~nNOm OH“ O ~+ 3&2 n .0~o~l2..N.—I~..Z.~VOZOJ u. .N Reno—ulcamo~u~..2.~.quJxvvoN .0~.~u2..N.~u~..Z.—uwhoz u. .N AO~.~uZ..No_un..Z.~vaEvvom O- O «+ DMZ a .0~.—u2..~.~u~..2.~.0204 .u .N ~0~.~u2..N-I~.~Z._.0244!»..N .0~.«fl2.~N.—I~..Z.~VMPOZ a. .N .0~.~a2..N.¢a—.a2.~.szyuoN O o *CO mwmo 02w QOhm P 06 3wZ Odwa fldwfl 04mm qufl F 00 3M2 OdMfl CqMQ defl Odma mo~o¢ouomou .v I 3m2v l~ can Oh 00 000000 000000 nuvwoqnmfiovwnmamu«NOvMQOquvm06Nvmovm«NOQNQFOQNqoovaoov ~qoo¢~v00v_qwo¢~¢o~¢~¢hou~voovuqo~¢~¢o~v~¢w~v~¢N~¢~qmoq ¢0~ no“ No” vmhomvmaomcmoamemoomcflwom¢m>om¢mm0fl¢mqDflVfiqomofiOom¢mmon¢Nu~M¢flNOfl¢flfiOfl¢mmomwfimom mv «0.1m»; ovmv.NOQmGNOQHvwocnflwnudflvmovmvhocmiuho+1.44%OflfifinOfiMMMOMOOOOWfifibOflflnUOOnflhOfl Nm¢ommvmocwqmovw¢oo¢mca~¢N¢OdemmMOfi~maomflnaonu¢uméucaavuwanuvw0¢UfiN~fiumH“MNONHM “moomnmaomdmmom~mmomammonamfiom"maomammamanhonanbonanhonunhonHflnonno”onmmmomamnon vaom¢nNOm¢NN~N¢MO«NVNNNNQMNomcmnomvmwmN¢MNOfiVfihOflVflflOfivmnonvflbon¢fi>on¢m00m¢noom mmbommmmommmnommmmommmnOfimmmonmfioomooflomnflnoflfiflhOflflflfiOflfiqhocflvho¢fi¢Hflvncmovmmoom NMN~MN¢NO¢N¢NO¢N¢NO¢NMN“finnedmNOOOflNnNNHNM.flmwfiuqmunN~MN¢OO¢N¢NOcNfla«OMMMHOM¢MOG ”mmom~mmomflmmom~mmom~mmom~mwom~¢mgammmondflmoaavflaqfiqmfivd«a~¢~¢-¢~¢NO¢~¢no¢~vwac #mmom 0 000000 163 03m mom OHM Nov won hon Ngm NHm «Om mac bum Nam mwm Nam mum bum Sm Nam mum OHN Nam OHM mom NHW mum mav mum mam 5cm hem Gum mrm Nam oOm bum mom mum me can bu mgm can can can ~2< mom ace Hov mgm New Nam ban a oq mow wow oaq m¢< my mew a: NH: 0 90% New 0 O : O O o o o O O Q c o o O m .02 5 .mo I mmqqam Hmfiquo t 16!. AWFOOQ Ih_inZ~ Owouuz 0 OO Oqui OHZdu wbznbzou ZdfiflZdi Z AZ~JO~> aomoa «omonuZoanonflu 30m.~u20.m.~u— ~O®o~82onmo~a~ now-«n2.afl.~fl >Ifi oxmoOIaw FQUhZ~ U~QOJM$IF~¢XQ¢OI- hdiaom uuoaquh~£~ .n Odwa Aa¢_.®—v FOOflflnOflmnnOfiflflflOflnflbOMflMflonflfifiOm finsOflmflmOflmmmomflMNomfiflflOflflflfiOMflflQOflOOfiOflflmflommnNOMflflDOflflQFOQOQNO33¢Nmfifl¢fiovflflaofl WflOOflflmOOnfimfiomoomOMOOhOMflflQOfiflMOMflMflhOfififlOOflflmoammmO~flfiflomflnvNOGHQNO¢M¢~O¢fl¢~O¢ flmmOm O OGOOOO 0 000000 NMtOWN¢OO¢N¢®O¢N¢OO¢N¢Hu¢N¢OnGNmmomnmgom~m~OMN¢Nm¢Nvm~¢N¢MO¢N¢NO¢NMN~MNn-flNM-m NfiNuflNQNOVN¢N0¢N¢NOQNflN.flNMO~nNflGOMNflN~HNM~uflNflNaMNMNuMNQMQQNQNOQNMmmMNflNaflNenoc NVOO¢N¢¢OCNMOnnNflOOHNflO«flNvmqfiNmmomN¢anewcmnINWNommmnomNmuOMNVGO¢NMGOHN¢OOMNm¢Om NéuocthOGNfiNnmmflo~6~flN~HN¢NG¢NflflO¢NflN~MN«NO¢N¢MO¢NVMOGN¢MO¢N¢NOON¢POQN¢OOQNVOOQ N¢NO€ . 0 000000 umOOfl—m¢on~mmonnmmom«mmommmbOM~m00mumN~m~Whomnmh0m~MFom~mfiomumm0m~mmomumwcmummom uwflOflmmmomnmmommmmom«mnom~WNOmu¢N~V~MWOmuMNom~€Nncafimudutu~¢~Q~n¢m¢~0¢~€flocncmafi ~¢N~¢~Mu9mammom«Mflom«mnomnmmomummommmmOfiummommmfiommnvomnmmommmmcmummomwmmomnmfiom um¢0namm0fi~mhom«mbomnmoom~¢00¢~V006~¢mov~¢O«¢«¢PO¢~¢OO¢«¢O~¢~¢O~flmvmn¢ndwa¢~¢$9€ mdflOanOOCn‘FovnQMOC—QFOQuéGO€—¢0~V~GQOQM€00¢~¢O~c~¢0~¢~¢0afiaflmomamNOmamuomnmuom 168 m0.oo.oo AZlfi. ma N~+¥fl¥ m~+z a 2 mm Oh Oh 00 mm mmomm.mm AZlfi. k— ®w+¥HX wm+ZuZ kc oux b9 0% OF 06 ._~Z<¥I._.Z<¥ om hnpom.om .Zifiv mm ._VZ<¥35 ~c mm OF 00 cc ~¢.~¢.o¢ ..~.Z<¥. u. “M «a... bOZ.OZ am ON 00 an an h— 00 om a #02 ~ fl oz N~uZ «a: um" bz~aa .wkoox Ih~zwfiz~rrm~oOInv FQXQOK m- .OJwaIm.OI~. hdiaOk cm” nIm.OI- htEaOk flan .ZuJO~> nulaoOI—u h<£¢0u Nun n2~JO_> ~Im.01~v h<£fl0k “an .mJ<>ame~ U~OOJNZIh~ooxaa h<£¢0m boa anuoxmon~.xvo.mnoxnvm.m~o~x~.mnvm.xmoaxmon~v¢ox~.or~v b3CDO «I ”Q 0 0 hi h N N a N O 0 hi h 302—: ‘U“I~'“OIO O O 1$2~i all 3 n vl « 0 O OCDO I OI-FICIO «I! 0x « O u 0 adz«fi nu c4 «I O «I NI MI «I NI OI «I o h flI 0 Q 0 O O O O 0 O Gazui fiQ #4 n flI O NI «I NI « « a 3 QI O c o N u n O thme3 0 Ci Débfl‘O‘IG NE fl 332—! «I u NI MI N n fix n fiOE~E 0 HI OIDCDO"U WJQ>1MFZ— U~OOJM§ (JO«> OI 0«I hNI m 0 FN N: N zflz«i «a bI «I MI «I o o n «I nI « N u N « o G o a C o WJd>QUFZn U~OOJMZ ZnJOu) «a flI QI Ofll On «g cm Na N QOZ«X «Q flI a MI «I a O «I O O O «I «I N~I O O NI NI «I O O de>Uwhzu U—OQJwI 2«JO«> « I huh1¢30 I OdoOZ I QuJJOfi Fawfldmw * o «I o «I h NI NI 0« m hI nI 0« hI o o c n ¢I o «I n NI b o o « m m hI o o c m o o qI o o o o o o m4<>am»z« U«ooqwz whooa I»«zwoz«r o o o o o o «I NI «I hI omI o o o o o « o o v on ma p: h zoz«z as o maz«t na «4 «a n: n 132«z u: N aoz«2 «& m « «I «I «I MI «I o «I «I NI m « m mI o 0 MI NI N m « MI N « o o c o «I o - cl 0 o o o a o o o o N” a o o a; m4<>3mhz« u«004mz OJJmu NI 0 o o c «I o o «I NI bI mI ceI o « o o o o o o _N o 0« m cc ma h: h moz«z oz 0 3Q2«z ma c¢ cu m: m aaz«: m: N moz«1 «& . o « o o m « m o N«I NI NI m M « «I o NI NI «I « N « nI m M « «« o c NI ~«I o o wI NI N m « nI N « o o c o «I 0 0I o o o o o o o o o 174 O O h 102—E O O 02 0 «I « Q02—I On N Q n& m- On «I O 04 m FI NI fiI fl fl 6Q M! h NI HI N N I N m. ~52. « E N O« n.. «I. b N NE N 102—i NT. 3 «.I «I m... mNI MN «Q 1'75 ~+ZIZ «Ev—«DIIJI I«I.IJJ «+Zul «tououhDZ I«Z«SDJ «+202 «Io««n3£ I«Z~£DJ «a— «n2 «+£u2 3« «I3 OI! «hoononZoafl.«u«o«z.««azaJwvoOVDQuhZ~ I huh2~33 I IUJJSI b1fl3J~3 176 MO«.n0«oMO« «malfiw t— n+5ifi «¢o«I«a«««DIO¥« .flo IUZDQ «¢o«u«o«««013x« .n0«h2«aa «0 Oh 06 «+«l— 00«.OO«.mO« « ¢I««k« Olnuvoaax ¢m Ob 30 «I«EDJu«£o«« 9234 «Z.EDJI«««E3JU«««313¢ u).fl).0} «3I«««£DJ« 1« «u— fla Oh DO Dom.) «OIJ« k— «IJuJ «+«u— uKu«««IDJ (KIAZ«IDJ na-ZDJ I1! «Z«£)Juuz 0.5.h «««vt3JI«z«tDJ« La nohan ~«««!3J« 1— JIZIJ 3 3h 30 «aovaouu «JIZ« l« «It»! N«¢¢.V« «OlazuiDJv Kn ¢IZIJ «Io—«$ZQJ l.2~!3J «+212 «toavZIdi I«Z«!DJ 30 00« mo~ Q0 MG fin Mn «a f)! 177 nuwumnflflnflflnflafl MNoummmo«NmNO«NmNN«NMNN«NmNN«Nmn«03mn«00mm«onnnnonnmnoflflnflOflnflDOflnflnOflflflflOflnNflov mwnovmwnomnmmommNnonNnowanounNnoannownunoununovnunovnvnounvnovnunavnfiu«flnfio«n mnnonmnboflnnmommn0«nmnM«nn¢«oenenovntwocnfim«vnfi0«nnnzoflnflo«fiOfiV«fln:N0tntfio¢n¢fiac n‘I I IICNEfiFcowflflcnIIJItIcun I..CV€V\C\£\4ov¢¢10¢zcmo¢s¢)o¢3:sGettno¢3t>30¢9330v0303 coooovoooocoooococoacoocococoococoocooaovoaaocacaotooaavaococaaoatooacc9$oacaaaa c0~o¢¢fl~«fitfiN«ncnm«nceuo¢¢¢vov¢nv«fl¢fl~«ncnw«n¢¢uoctflu«flcflv«ntflV«fi¢:N3¢¢¢VOtccma¢ fl¢h3¢flv$ovnooao flCFOQfl¢OO¢flO°OOfl€hOCfl¢3OVfiOOOonchovflfiiocflOOOOWcfio¢fl¢30¢fi0033fit~O'flt’btflOGOOfltfiat fl¢m0¢n¢ho¢fi¢¢0¢fl¢¢o¢fl¢~O¢fl¢fi0€fi¢5o¢fl¢va¢fi¢hovfivnOVWVFO¢fl¢¢O¢fi##OIQQOOCQOROQflCnOV n¢¢o¢n¢~o¢fl¢¢ocfi¢00¢fitxo¢fl¢mo¢fli««Qfl¢)3¢fl¢~ovflcoavflttOVO¢OOCWI>O¢fi€Io¢fl¢a«000‘«t flnmonnctovfln««fiflttotfiflIOWQfiJOflfittocflfl««flflctoefifihawoecatflfl««fifitwatfifiaaflflflnonfinmon Mnnonmnflonnnhon Nmflomumflonmnhonvnhonufl«n 74 quII:IIII:HII«.onun«onvnhnIIII:II I I In 4H.v N¢0«¢~¢N«¢~d°«¢~(o«€VIV«¢V¢O«¢V¢V«¢V¢3«tucv«tVI:«tH¢V«tUto«:UIO«OV3¢«tunflonvonan NahonNnnonVflhonuflnonMflfionun«onvnfianflnnanunxonvnfionv00«nvnranu1~onu1nonmflfioalflfloa NvaQNvN~¢NOFOOM¢NnCNtnO¢N¢nO¢NvV«VV¢sOVHQM4vutnOVUIV49V$~DIVIu«tv1nO#HtflO¢V¢n0t «:ODO«:DOO«OOOQ «oooo«0000«oooo«OOQO«O$30«OO¢O«OOG§«3930«3033«3333«3933«3333«3303«0000«9000«0~«fl «thnunN«m«nfl0m«mmom«nM«n«nh0m«mfl«n«nnon«n~«n«flh0n«nM«D«flnan«Ononaflm0m~0h¢flnm¢°0 «n0«n«nm«m«mo«n«nmom«nkon«nmon«thn«nmon«no«n«DV«n«0M00«nN«n«nO«n«nlon«nhom«nhon «mmom«m~«n«when«mfl«m«nnon«nnon«nu«n«nson«nN«nIneon«nM«nenhon«nV«a«nbbfl~nmonaomon GIN Abba to. «BO-alloafloulno«2¢-«JIOJ—w oOON 20231 ”On On OF 03 NO— 178 thDflUI I «.32 I nJ<)IU«Z« I huhZ«)3 O<3C>OOIDCIO¢3C>OID b3“ )0« $0“ 30¢ b3~ ha" DO” 0“ $0“ 53‘ )3“ )3. $34 N3u hla Nln 0% n$ DJ mm 00 90 03 n} h D D ¢O« «ON DO« «ON ¢O« ¢O« «ON )0« «ON 00« «OM 03¢ 43“ 90a to. 63a 30« na « «m; 03 03 no « mo « 03 «cm 31.. « am: we 03 03 can mow. com mom com com oom now mom son you 0am 13M can «SN 9?..« I IUJJD! blunJufi NON 33‘ “3‘ C34 ¢0~ F0“ mom NON ”@N MON 334 53¢ 004 ¢3~ 33“ )3“ QOW 30W 00W COW 30W 993 30‘ 33V )3“ 30‘ ’3” 33% 33” 33° # 179 flMMOMDVfiONDUfiOVnNWDVDUAIOMDVQOUDHnONHMDDV O OOOOOOOOOOOOOOOOO oau 09v. can now you can con. 03“ us» no». con oou Mow mom NON 0000 hm: hm; o hm.— m5— 0 ma. #0. o 00 a mo— 0 @0— on: 0 VO— 30 a a com MON 10M. mm; 23 vom new {on 2...; can new tom 9)“ mm: an; 0.0 mm 00 mo «3N .mN nGN mom nan. how now mom 00m. FON FON com ¢0N com MON OON com 0 $0M how men. new mom 10w. pom 13M nON ION NON SON now new mom «an gm an: wow 0 33000000000000000 3‘ C) 3') won. «Jan can. 33..» JOfl ¢onl )0.» 03m. 1.3.... can. $03 $39. 003 may was NON mom. 180 mwmuwmmmumnmwnm nnoumflflonnnmouwnwuuMnuwaunnmuwflflnonnfiaan nfi~OQDflflOflflflflaflnflflOflflqn¢flnfifloflfififlOQflNflOM nflnoMnflflownflnonnunaMfiflflOVflVfiDMflMflGNflflfloM nnfloVflVflOMnMnonnMnoannovnunOMnflvnnnfloafl nflnaflnflNOflflflnoflnficufiflflfl~flfi€~0¢fl#flocntvow nfluaflnflaafinflIOWnfio.flnfluufintflatnfflOQntflac anOVflVflounVSOVnVfloUnvnovnVflDVflVfiONnuvav 181 V~+KIK N~+Z I 2 Oh Oh 0h 09 na 30.0n.nn .zlfiu l- 80+!!! 3.92.14 bow out 03 03 Db Do -VDI3¢ n nh~.Ch131 an niomu.). ~Zifie mu nd 03 Oh 33 «uvazal I .n~.fl»13¥ ha n¢.fi~ohm “25%. m— O~ Dfionaoou «#12. la ha 0) 0h 03 ~_.333£ a «h—vwhaax ed ncovaocu .293. mu flu 00 Oh 00 .uv3x3£ I .h—.«h191 N4 n¢.u~.na .213. m. .. n«.fl«.- “Nit. t. nqvaldlflfi «I... w .bzot a u 30 30 m new I b! u a b— Null aux ~.¢~.O~o0t~v hdtiom N anoflaql_o.~.3191~ .fl 34mm nan .~¢-¢. h¢liom . A~¢~voaw hdtiam ~h0.¢h¢3¥.abouflhxoxo.hovuh13¥..haw~h!3£..DOV. 3231 ZO~w2u2«3 20~b030wa ! huhzuDG I szJDI PlunJua utfl 182 .ho.~luo.~.eh101. .ho..uuo.~.fl»xox. .ho.~u~.._~mhxox. .bo.~u.....~wzoxv .fiOoalmoauufihiaiv abnonu~.._.flbzoxv nhooulnoanuwpISIV .ho..u~..~.-xax. OO~.00~.$) 32m QObn on 10231 om IUZDQ on IUZDQ on £0231 .N h2—1n .N b2—1Q .N hZ_Il .N bZ—IQ n 0» 3a .mtt. mm Nguz ~+h¥uh¥ n+3»! nu hm JDZuhZDU ~+k~ u hm Null MI fiuuaaox u ~k—.¢hflO¥ 00 OF 00 XI .quGO¥ I ahnvnPaOK ®$oflho¢h n¢i£u m— ¥I auvaflfli i aha~NPQO¥ 03 Oh 00 Ml auaflx3¢ I abuuublax fihthonh 05.95.00 nooooooo .ml:. kg ht Oh ow ~+Ju4 aciJu m~ Oh 0» ca .Zlfl. m. 33" )) D$ 00 0h ch flP Nb uh Oh no no so 183 Alain... O . mom 3). won 1). 0 n1 0 n) o a) 0 n3 0 am 0 nm 0 n) o n o n o h 0 nm 0 01. o n) o 01 o n; o s o n o n so“ con 30. now mo. no. mo. flow 5)“ to. h). vs“ )3. «on Ouu 3n: 30. ‘0» #1. co“ 00. now no. mo— oo~ «on ha~ ¢o~ 53¢ «on hm: ¢O~ 30V. DON a); 0%; )0— «CM 1.1; na- nag 00" On: ”Ca n3— )3— «ON 13~ ni- flOn 00a 00— DON 1.0M ¢ON 1.0M OOH. DON )ON RON ION SON JON cow $ON OON DON CON OOn. 03“.. 93- DJ q v.0“ 30“. NOV. mum; 09" ¢O a 00" FO~ £3 a NON fi)u. MOM. DJ— #0“ @0— 6n: OOfl loan can. 30“- 39“» 390 13»: no“. 30“.. 33V 30“.- GOfl 00” DO“ 00“.. 00?. 184 OODQ'DODDOODQOOGOOOO ON 00M vow won can now. 00% MOM DON can. OOH fir"; b3— #1; 11...; 01; #0. 00¢ «an: we. on: no. #0— Gem MON com 1‘: 11a; #9.». NON tom 03— CON MON com on on on can 09... )2. v3. 1?... son man can. as“. ’V’IOOOOOOQOOODDOOOOOO 185 NQoMMoUV afiiiflhZOIe mu flN Oh O¢ OHM! ~N.ON.«M .N! t mpaaxo Ln flN Oh 30 On“! )~.D~.)~ «a: 8 fihIJKV mu #2» whabx avo~¢.o¢ .3E I aha)!» mu fit I flhlfil >~.hn.0~ AflS! AFIQI. mm H! I nhlox nu.fl~.¢~ ~V£Inhzaia la at n thOz n~.n~.N~ .~£ 0 aka?!» la 0 I mhIOX c.~u¥ on 00 ...3»Z— I c! nuvuhza I fit anvnhzu a VI n~u4h2~ u .! Obvufln OH 03 ~t0.~amoauefip2_. on Oifli «tooanuca~vJ»Z_v a4 O0 0" HI a!“ O“ D? Cc 3M PM ON ”N {N MN ”3 NV MN 187 02w QOPW «Ommouawoau.>flwkzue o~ IUZDQ Q OF 00 m+~u~ boFoO .Nutuo mu m32_hzou ~+3n5 “Zo—VQZO¥I.7~>QUPZ~ ON.~HZ m 00 «an «I? .0No~fl2on0~o~u—.A2o~. QKOXvw 0N defl nacuufluv h<£flOl «AC—acaw FZEPZ~onomaonv DQO¥ ZO~WZMZ~C U024QK<‘M~Q I. ¢H- HNFZ~DG .I KMJJOH PfiWQJ—G m 188 up wmmoomm euwxmmu mm: 02.3 no ZQHBODQMM a» .02 Shana 189 “\OuuoflnnoomINoX—Gu PdifiOk now n\0-ofl--+¢Imoxnce P(ZQOK CON ~\O~—ofi~—oo¢IN.X~¢u b<2¢0l 0mm a\0-ofl-¢¢fl1NoX-Qv hdxdck me «\Oumonu—oiMINoX«Qw h¢PUOImo de>RMhZ~ U~ZOSGIRIO~o 002 MQDmdeIflaoOI-u hdzack Ne 0mm hzafla .owzm2034 Wu §I¢~ox¢~ \HOZ—E mu iIOuoX¢\PUMkde 10 1334! fig oI~N.X¢\MQOUI¢oOI~e hdzzom own ~\\O«~ofi—uo atmoxacu hdzaOu QNM n\\0-.m-o imINoX~¢~ hdiflck mNfl ~\\O-¢fln—o (IN.X~¢V hdxaom QNM .\\O-.fl-o '42N‘Xuvw #4130k mNn ~\\O~qu«~o GIN.Xn€w h42fl0l NNfl «\Banoflnuo ....uINquu; ...(ZQOK awn g\\0-on~uo EINbX4¢~ hdadOL ONfl .\\o:on:. MINJAZI hng& «in ~\\Onuofl-o ONINuXueu h..‘..‘,me DHWMHE m .....N,_.H,«..m_ru; Q». “prim .2,“ ‘31 mafia... O: ..V E \ x94... 3 .. madam.“ an. m..§.......... mg .. mane ,.~%?dc.., . ....» 9......2; - m .8. .. S x , t 94 E6 HNMQ“ Hume“ «andn HNMQh HNMQ“ “QNMN meQMN 3“!“{N MQQMN “QMMN 197 HNMfilfi HNFN‘ttn HNMN?“ HNMQM HNMN‘IM mfiQMN “QMVN “QMQN “\fflNN MVMMN 3. 6.. 6. D col. 0000 000. .... - \OONQQ nanometre mwmom \O\ON\OQ M HNMV‘A IAQfiMN 198 HNMfi‘In “\QMQN 199 moocoomc .O~I~¥. u— OC~ Ch 00 bu~¥ moomo.m® -~I~¥~ m_ 00" Oh 00 mug! ~0.0®.~O .N_I~¥. m. m¢.0¢omv .OIQXV u~ m¢.©m.m¢ «Olmxv k— mq.nmom¢ «OINM. m~ mcomflomq .0I—X. m. ”moomo~m alecxv u— ~noflmomm .mJIm¥. m~ ~m.¢m.—m .NJINYv u— O¢ Oh ow "mowfl.mm a—JIHXV m_ :2. QvOZCvfiql. .£.mv030¥um4 .£.N.OQO¥uNJ .I.~.Oa0¥u~4 h@.§u2 0: 0C n+1u§ aZ.¢.OKO¥u¢¥ .ZoMVOdOXHNM .Z.N.OKOXHN¥ “Zoquodounnx F©.~HZ Ca 00 nufl .hOofluZ.~¢onu~onZ...OQOX»v a— qua ..¢_.q. kaxaom sh©.v. 010! ZO—WZME—O 0.02 I ZO~P~hwth 01010 I hMPZ—DO I QUJJOZ FQUflme m0 NC «0 06 M? 0m mm #0 0m mm #0 mm «m ~¢ 200 GogonoOO~ mflomflonn «moon.afl abowb.0h hfioofiohh whovhcmh MNoNhonfi uhochoub 00.00.00 hcoOOoFO m0.¢0-m0 «an! AOI~¥~ Kn 00¢ OF 00 MIN"! anluxv k— OOn OF 00 Nlmx «NIukv km 00— 0F 00 ”In“! aflI~¥~ km 00‘ Ch 00 ”nu! avluxw k— 00« OF 00 {flux amlu¥v k— OO~ OF 00 quax afliuyv kn Don OF 00 min! Athyv k— 00« OF 00 0Il~¥ galaxy km 00" Oh 06 Ola! AGIuXv kn OO~ OF 00 FICA! «07.3: n: 00¢ 0F 06 Flu! dw nw Mm um om 0F 0# PF Ob mh 6h Mb «b or 00 #0 no 201 QNnoflN—qu— NN~¢~NgoNN~ ON~oO-oON~ mn—ohamomam anoflqqooud Qquoflumovun Nuuoumucwdu O~mo©0~¢0- wo~ohouom0~ CO~oWO~.OOu €0~ofl0uo¢o~ N0~o~0~o~0~ ._IN¥. u~ on. 0h 00 Nam! .mtmx. u. on" Oh oo nIuNX .nINX. t— on. Ch 00 numx «cvmx. n— on“ Oh 0o Vnmx .nlmxw mm on. 0» on muumx AOINX. m~ on. 0h 00 mnmx .htmx. m— on. Oh 00 clam! .mlwx. mm on— O» 00 cum! .OImx. mm om~ or 00 hlumx .O—|N¥~ kw on. Oh 00 Fumx auaIN¥~ t. Oflm CF CG mum! aNuINMu kn «N~ ON~ an. wna IN“— on“ man can fl~n Na— «~— on“ 00‘ £0— hon can mo~ ¢O~ no“ NO— "On 00— 202 Oflu00¢uoomq QQ—oFQ—on€~ O¢~om€~o0¢~ vvmoflvno¢6~ N¢mo~¢uofl¢~ O¢~¢©fluoO¢~ mn—ohmnowfln om—omm~.0nm Qflnoflflao¢mq Nflnoafluomma omnommnoomu fiIIfl! ANIflMu km on“ Oh 36 ”I3! atln¥w la Dam Ch 03 cl”! Aflln¥e l— $Wn OF 00 mINflK Afllfliv R“ 00“ OF 00 Min! ahIfltv l— $fln 0? CG OIlfiM AQIfl¥v km Ofln OF 06 OIflX A$Inxw la 0mg OP OQ filth! nO—IflXv l— Ofim OF 00 hflflx «anIHXV kn 0m~ OF 09 @fiflx .N~Ifl¥v Lu «um! nOIN¥v Eu on“ 0P 0w NIINX 0¢~ fiv— hfn O¢~ DV~ ¢¢~ NV“ Nfiu avg CV“ 3fl~ flflm hm. 0mm mm— Qnu flfl~ Man an" Oflm mm“ ¢N~ NN~ bb~o05~o~>q flh~o¢h~onha fix~.thofihn «NaoONuoqh— )Dmonnuaobnvq h0~o©0~o>0~ n0~o¢0~oflfln 203 fiOuoNOnofion ~O~ooonpaofl omnomfi~.0$~ endofinuo¢n_ unuouflnovnq A¢I¢Ku l— 03— Oh 06 ¢I¢¥ «GIVE. 1~ n3“ 3h 03 nInvx .OICK. in DD. Ch 30 flflovl ahlvtu In nfl~ 3b 39 OI!!! anlvl. mm flmu Ch 00 Ou¢¥ ~9I¢K. m— nnu 0h 33 hIn¢¥ aO«I¢¥~ mm hfln OF 30 h"?! ~u~l¢¥~ la flag 0» 00 fine! aN—IQXu &_ «In! ~0Ifl¥a k. and Oh 00 MIN”! anIflxv l— Ofln Ob 30 Mu”! «Mlfl¥v la on» 3h 39 flha vhu ”bu th «h. a: an: no. boa 00“ mon fifln ”Om M0— «On 00” Ohm mmn an mm“ Nflu ufln Ohm 20% ¢¢¢~QHQ~m 0 O - O w O Na Nu Na GCPO‘O €Cfi0‘0lfl 02m 02w QOhm wDZ_hZOU Onaz.¢vocox ouaE.MwOGO¥ ouaiomvoaoy ouazon.oaox VXoMMomtoux o~¢ hzafla m@~.vfluom@— flfimowwmoflmn «anoom—o~m~ Obnomh~o3bu and! ~0l¢¥v k~ mm» GP 00 NIHVM «~I¢¥~ k— mmw OF 06 NHQX ANIQMV m— mmn Ch 00 MINQM AWIQXv k— mwn OF 00 Hu¢¥ NNNOO‘ONO‘O u-O—Oo-II 0Q mm" wad mm. Nm— ~3— Ow— Org ®h~ FF” 0h— 9 12 12 12 12 Q 12 12 12 12 00000 GQC'II‘NH CDCOFI‘CDL'} 10 11 205 0000000 mhm¢U\¢365<3 208 nnohflonm ~0I¢¥~ m. flfloflofin nOIfiiu l— nn.hconn «DIN!» l— nn.o¢.flfl .OI~!. mu Nflouuvn QCJIOK. m— Nfioflfioflfl .flJlfiK. km Nnotfl.Ufl .MJIVK. &~ )fioouohn -I¢. %n Mfl¢flfloVfl .flJIaK. mu anca 3331 aid «Jofl.313¥ufiJ “JoN. DID! IMJ .J.~. 339! Ind ~+JuJ “+404 .fiocv 3331 ac! afioflu QIOXRH! .Vuflvnzoxuflx afloquaxfifluax an! on~ «Iv. «Hi ulJ «azurfl cargo hIn .XfloOImv kCEQOk h~ .Z—JO~> NIfioXfloOqu hQMhZ~ U—QOJJXIh—oXMoOInu PQEEOE M~ 0¢0o~u~oanurk~29 0” Odwa «#QoauzoafloauquZo-OZOJve oN 0(wl acconuZoam.~u~o~2o~v02<41~uom Oocfiemovmvda¢n¢90¢ncho¢n¢oo¢n¢¢o¢ncoocfi¢hocnvoovmv~acncq~¢ nnoonnweoéfinn.fln¢vo¢nnaonnmmonm¢¢owmnu“anaaoamflmonchovnmaunfiv¢0cnnaonnnaommmoon ammommmnonum>onmmhomwfl»omumcommanonumaonunhonumhonunhonmnnonmnmonunmonmoooowvmflc N¢0~¢N¢N~¢N¢o~¢N¢0~¢N¢M~¢M¢o~wuéum¢~coa¢M¢N~vu¢o~vvv-vuco4¢Mvouvucoficmnnommanom thonmnmomwmhomNanonwnnonumaonuaflonmnnOfivmbonNn3onunoanunmonunhonunmonunnomwnnom Nvmocwcmucwvnocwcm«cwémov~¢noqmqu«wmvsocvcmdewvnocuvuacmvhowwvu‘wuemo¢m¢¢oc~cnoc «Deccaoooodoooc.ooooucooo.oooo.oooogooao.coco—ooooqoooogoooo.oOoouoooonooooqmwum 229 mmomnomn .293. kuA ®®+¥n¥ ®w+2uz he on! hm Oh Oh ow A~VZ<¥IA-Z<¥ 0m hfioomoom .Zlfiu Eu ._.Z<¥ufi «c Nm Oh ow Dc «¢.«¢.o¢ ..~.Z<¥~ mu um and hOZ.OZ an GN 00 an «I h~ an conhOZ a I 02 Nauz “”2 an. bZ—aa .mbOOQ Ibuimaznrlmnooruw P<$mom m.“ .OJJMUImoOI~. h42¢0k cum ~InoOIno h nutooornu bdxdcu N- ~Z~J0~> «Imporuv hdzack an. QWJ¢>auhZu U~OOJw£IhuoOI~u hdtaom ho— .fluaxmofl—.x¢o~fi~.xnuflofino.xgon—.m.xm..xnom~.¢axnoorna hdiflom OO~ ~61 Idob! Icoh 302~£ I$.Oi I¢.0 302“! Iooma Ivot< Iva .va Icofli 20.0 QQZ~I IO.NE I¢.N 102—I Iao~a revaluu h<2d0m mod «ONfl.nl~o.~.Z<¥. oon QO .DAJOCDR-CJOO O O)! 3 hzumsoxwmruca fiiuifi ml- «It as! «I! M «ca-non l flfiJM'flgTUF)OO “(DCDO nfUCDCDDIUCDO ‘ N O O O N O O O M O O O N D O O O O O O O 3 O D O O 0 0 O3 3 O O M O O N3 0 m N8 «I M M O NONI D)! O O O D D 0 MI 0 ”J M N N3 N! O 33! bl Q 0 O O 0 O 0! O N n N «I NI 0 NI NI 0 0 0 32M 32M 33h” «Va “Nu Ob 09 Oua an 0% 00 flNn mug bznal ONu 233 E100 [\NNOO {TNmoo g 00 mhqunm 0 HI 0 o o o o 0 mm b MGZHE ca 0 mozhm o N 0 o o o NI N NI 0 o m N N H HI 0 5 mu m o O 0 AI 0 o o H ha 6 momHm m2 @ mUZHm o O o o o o m... m bI o o N H N N NI 0 b m... m I Hmflmm>om Room Qwfl mq¢>maka UHQOAMN N- N- b' m IIHFO a *. 3' OO FWNOO 3 OO WHNOO N- m... 0' «a N- m- o o MAI MI UNI o o NH m ON mm m mow? as m 02 m. E HI 0 o NI 0 NI N NI N NI HI NI NI NI N o CHI b an m m b.. o o 0 mad $5.53 UHQOAMV...“ zHgpo HH 0 o bI NI MNI o o b N MN 9 m 5,.wa mg m on E O o o o o mI m NI b mI NI NI HI NI N 0 ma b m... m m 5.. o o o mqa>mmemm oHQoqu ZHAOHb H I OH .03 I ymazHDa o o o o o o o o o o as 0 mm- o o o o o o o o o o o o mm mm E 5 mafia g o 533 mm 3 «a Q... m moan,“ N2 m m ‘2me .B o o o o o o o o o o o o o o o o o o m... o m o c w... m o o NI 0 o o o o o o o o o o o o o o o o o o o 0 ma o o w o m: o o m .0... o o m o o o mflSmnEH 033mm 38.3 o o o o o m. o m... o m: on N: S... o o o o o m o n o . m ma m 3 mm E b momma a. 0 mafia E «4 a mm m mafia m2 w gag E o m o o m o o m o o m o o m o o «I m m... o m w... m m... m N. w T o o n N. .7 mu m H m m m m... NI H... NI m H N N o m... b mI m p. o b m- m b. N. m; m b. o o o Bfimmfifi an 8.55 «Apo 235 o o E b ~5sz OHOON o 0 0101000 0 o a o mama...“ O O N N! HI. 0 o 94000.!0‘ 0 ms OOOOH o o m mom Hg" was .7 mm: ma v mm g N moszm Hm NI HI N N! O O N N. o o OOOHO BMIPMAHRH OHQOAHE maoom mammafim 236 ~+an .£.~.U~03i n.Z.EDJ ~+Zu2 a»)... v nag; u . 7. v .131. «....ZHZ .£.~.n3£ u.Z.EDJ ~+an .3.~.U£ uAZ.FDJ ~u~ «HZ “+2“: 0“ «av on: AdugoguZoamodunoazo:M.EDJ ..mq.HVQGJOJ.AN~onwazoJ.AN«.vaOJm ..Nd.nv34..ud.n.2531£>n I I IJJJDZ b1n34_o 23'? fl" Oh 00 fium.0 .OIJ. l~ «IJMJ ~+_u~ uzuauvZDJ dluaszDJ AuVZDJ l4! «ZVEDJumx ooh.h ..~.E)JI.ZVEDJV mu 0.5.0 .«uuZDJ. k— JIZuJ n O» 00 -.N~.N~ .412. km «IZIZ Mfi.¢.m .OIAZVEDJ. u" MHIZ a J ~£._.ovaqoacjvq~¢nq-3fl300c3339¢ 43‘~v4v~_q<¢moqacwoquma¢<¢oouquocqqo~¢U~uN>m«0fi>nfi3fi~nnonnfioaflbnn«whflaofi QwoomondHmonnOIDDJODJQDOODU~amen~3nonnofi0finowownonOfi~.mofloon no“afiflnacflnmnunooouoooooonnoofinnfionnOn39n9fl0033~“Qaqaoqnqoov andA03030330033ooaboooococaaonvnxon:0fi00¢0noo¢td~¢¢¢na¢¢¢aoc an“anflnoonnmnanoo33003ODofinuonflflJonwovonfiofioafiv~«vncnuvfiqUOV Mam~DUOQOOUfiDQflOODDDDQOQUUJODJUHNUJUGdOOUJfiODu?_~¢M¢ODQM¢ODV «Onooamddnan «nfipcos~wfiomanaou~mwondmoMJfinflHmfinndnmfiuomdnoon DZ ...u flabw cod ¢o~ OF 00 no“ 0“ OF 00 NO~ floacflououom Mflifiu km ~+wuw n$ «u_.«u_..~.313yv .no qusa .u..~u_.._.3xou. .nm pz~za no” aw oh so ~+~H~ DO" oo~.oo«.no~ .M_I_. m. a) ou._voaox n9 #0 0k 00 sziDJI._.EDJu.~.QaO¥ Ni N$.fim.no .OI.~.EDJ. u~ ~® _u_ o 239 ham F$N 00“ WON 00“ MON 0: NOW 30— $3. 00‘ OO~ Dan 0,0. I v H C on omnommmgmmogomooocoinnoom M 0'. I uo\Z I fi0~ 9 Sou mON NOW ”ON no“ G Goa CON DON DON DO— 0 Dan CON CON CON NO¢ O O O O DOG mac n... O O O moc Pm“ cm can ham ham FON 00a 0 CO“ CON hON OON 30“ N 00a N03 NOM NOW on” N OQ~ NOM NOW NOW wen m mod 30‘ $0“ $0" 00“ fl 00¢ 00“ 00" DO“ 00¢ O 00» 00¢ Dom God >ZOIQE>6 O M$N fl mom 0 MON 0 mom 0 mom 0 ham 0 OON N 90M N OmN m mow n CON 0 OONO 21.0 auvflaox I Ah~v0kQ0¥ ¢N m¢o¢NoQN AZIfiv in MN 00 OF 00 a~u0Q0¥ I AhuvaQO¥ NN onNN.NN ~2I3~ u~ ~N mNomN.—N AOIZ. k~ ON 00 OF 00 A~VDQO¥ u ah~v¢k30¥ 0— m¢.©~o0« AZIfiu k~ mg 00 OF 00 “~VOQOX fl Ah-nkcox F" mcoha.fin «Zlfiu um 0~ ONom«.0~ AQIZ. kn m" 00 OH 00 anvflflor a .h—VNPHOX ca m¢o¢~oVN .ZIfiv t~ mm 00 Oh 0w A~VQQO¥ I ah—uukaox N“ mcomnomn .ZIfiv m~ —_ m~0M~o- ANIEV k~ A~VDQO¥ufi «NJ N~.F¥.Zu~ 00 00 m mmauh¥ «I #— N—uZ «Ii “avnvfloOIuv kZOIQI>W I QUJJOQ kflmmJ~U 241 ov.oroco «OIJV k~ Oh OF 00 m0.oo.oo .ZIWV mm N~+¥u¥ N~+Z a Z Oh Oh 00 m.mm.mm “Zlfi. u~ ®w+¥u¥ QB+ZuZ On! 00 OF 00 .~.OKO¥ I .k—.N~PQO¥ m¢.mm.0m AZIflv k~ 00 OF 00 .~.Om0¥ u .k—.-bfl0¥ m¢.hm.fim .Zlfi. mm mwomfioom mmfitiv u_ 00 OF 00 ...OKOX u ~h~vcahaox m¢.¢m.¢m .Zlfiv &~ 00 Oh 00 auvaaox I “huvmhflox mvommomm «Zlfiv u~ mm.mm.~n goalzv mm 00 0k 00 ...aaoy u .h~.mbaox m¢.©N.0N “205. m~ 00 Oh ow A~v0q0¥ a ahmvhkaoy maohmohm AZIfi. mm omommoom .mlx. m~ 00 or 00 MDzmeOU ~+P~ u km N~HZ 00 OF 06 ¥In-0fl0knah~vm~FaO¥ 00 OF 00 ¥I-~QQO¥MAF~H-FGO¥ 00.Ffio®m aN—Iiv u~ 00 OF 00 MIAHVQKO¥uAPuVO~h30¥ 00 OH 00 nmvflflox H .huvmkaox mmocmomm nowIEv k~ 00 OF 00 nuvgflox u akuvmhflox 00 OF 00 anvflflox a “Pavbhan mmonmoOE AQIEV u— 00 Oh Ow Auvoaox u AhmvohfiOX 00 Ch 06 a~v0301 u ahuumFGOM Dhomfiohfi AOIZV mm 00 OF 00 nuvaflox a ah-¢ba0¥ 00 OF 00 A..Q&ox u .»~.0hqox abomh.¢h .QIEV mu fluvoaou a a»..mhaox 00 or 06 -.oaox a .h..~»aox m~.w>.~b .moz. u" pc 0% oo “+Ju4 00 hm 0w MG qm mm mm um 0m 9% 35 Nb 0% m5 vb HP NF «B ON 00 21.3 02w QOhm .N~.~u~.h_vmflhlox. .u IQZDQ .m~.~u~.a~.~.kmox. .m IUZDQ .NH.~I~.._.ofihaox. .H IUZDQ .N~.~n~..~.©»dox. ." quaa .N~.~u~.n~.mbaoxv .« IUZDC .md..a~.~m.b»acy. .m IUZDQ .N~.~u_..~.®haoyv .~ IUZDQ AN~.mu—.~_.mkaoxu .M IUZDQ ~N_.~n_.a_.¢haox. .u IUZDQ .m_.~a~.._vm»aoy. ._ IUZDQ .N~.~u~..~.mkqox. .~ quau .m~.~u~..~v~kzox. .fl IQZDQ AN~.~3~.A~.N~FQOX. .N kzmaa .u~.~I—.-.H~kfloz. .m kzuaa .N~.«u_.._.o~»qoxv .m hzmua ~N~.~I~.hmv0buoxv .N FZHQQ .mfiouau.._.mkfloxv .N hzwfia nm~.nu~.fl_.bh&ox. .m hzmma ~N«.~u~.a_.0h101. IN hzxaa ~N~.~I~..~.mhqox. .m kzfian AN~o~n_.~_.¢k10¥. .N kzmau AN«.~u~.._~mh&O¥. .N kzmaa .N~.~u_..~.mkzoxv .m hzmaa .N~.~u~..~.~kaoyv .N hzuaa m 0k 00 oo~.oo~.om.m_Iz. k— NHIZ ~+bxuhx _+2uz mu h. 0 OMMOLCU‘INNNNCNOOJOOOOOU‘NOOM O O 9" 0'4 ma: mom no” ohm mo“ com #0000 (3‘. pug I '73 N O (\3 {7‘ RI) '0 I“ O C) N O O C: O C '4 P") In- P”) M (U on (\J mom Qua NOW m0" mo~ 00“ CCN 00“ 00“ O Q C; NflNflNH J O 5‘: 060000673 0 0 Gt 0 245 fi~ofi~oN~ Adi I fiPIDEv L~ On WFEOV“ Mao—NM 00 00 anuZHZ~ u ZS A m . .5..th n... 3.3. a~vJPZ~ H JE n—vihzm H Xi AHVWPZA u «in; ._.Ibzu u :2 -v9b2~ N 0.2 Auvwhzm u ME «avg-Cdm u 3i ...QkZ— u DE Auvflk2_ u WE Amvzoza£>n I IUJJQZ hzu24~w p,A flvomcofl¢afli ~voovo~QRUE men 9 m3.” 0 3M; 0.». hm.on.>n.4z fifl.flflovfl HM.OM.NM “moamoon ®No$uomw buohnoflN nu.nu.¢u fim.fiNoNN ~N.«N.ON $~.O~.Q~ bmohnooa nmunnovn a Z 5 a ii a J3 .12 A32 .1: «DE AME .02 .0: .32 um, I fl ‘0 -V m 23 I w #6.. I w J? I w v. a I m 12 I m I .1 I n OE I m ME I m OK I m 03 I 3 DS I w a: Racy. l~ mm or 00 OIUI #331. mm afl Oh 00 o a GE hxbxv m~ $m Oh 00 on 42 blflfiv m— u nkxox hxozw m" a $930! #301. in n MHWOM kuox. m— u nhloz HGDVS n: u whzox FGOX. mm a mhmox hqo¥u 1. a mhIOz hacx. L_ n mhfinx bio!" mu n mhfiox #301. mm a mkaox hack. m— » wkmox Fiat. in u Whig! EN hfl 03 3“ ¢fi fifl J (I. m“ on mm 30 bu on nu cu WM MN HM ON @— fl~ hm ©~ fin «a flu Va 21.7 32w flawm JDZ~kzou .Mfl.~uz..rvzozv .$¢~ quaa uDz~pzou nbxax u «MVIOX Ouzz $noflfloiflaZZ I fiblle lu $3 3h 30 O N ....“E hfi.03.bm.ii I mpaoxv mm 99 OF 00 O u .I—vd flflo¢noflnnJE i flbaoxv mu $3 Oh 00 O n ME fin.un.fin.zi I nHIDX. m” )0 Oh 00 ONWE ~fl.OD.«UA3€ I abdovu mm mm OF 00 CnIZ }c.nq.$¢.IE I mhloxv mu 0% OF 00 OM63 N¢.O¢osva&£ I mhloxu 1_ 30 Oh 39 Oflnz n¢.¢¢.D¢AUE I mblaiu L. an O» 30 OUDZ h-D’) J) I) bf) fl~0 J1 .0 av F? 06 10 10 8 12 8 :7) 12 12 1“; 12 12 l . 12: {U 12 12 m 9 12 It; 1:; (.3 :11 (3' '9 1'4: 12: O 04 n I.) O :3 ifl {‘3 (3 (.5 248 (Q .4 12 N J) ;“) O? C) 1C 10 92 10 '5') 10 O (J O ,- L-I I O (L) l ..9 ’3 ‘v‘ 332”»23 cleavawwh «own. m 0Q n+fiufi 3.03.5 “VI-fitw km 0 Ch 06 azuafiiuxuafiunWwa méfifla. w 6» CG nfvflafixn.fiuflmm¥ n+finfi buoud.m “VIE. mu n~ufifla¥nafivammx «+3»? v Ch 06 M+Zul a_omomfl A._VGHQ¢I«J.3$QX. 1. fl G» 30 .zvnflfi#xunfivnfifiwx «+3uw ou.e~.c~ .KIZ. a. m+.u~ “wow-c .....CQQJQIA _ .Qfiodx. I: Mn»: MHZ un— oufi ~¢¢~.aa_o._.fizomv .~ Oflwhzuv on kzuafl Q Ch 00 7.; u m hoboo AN—Iuv mu tzuhZOU «+5Hfi. azo~vflxoxuaflu>amk2~ Naong m 00 qua uufi .NuouIZonmw.~fl~o02o-030¥uv cu defl ngvnanu k<£GOl a¢¢~v>awkZ—0amnoNquQO¥ ZGumZWX—O Mafi>m IQQUOQQ middlma u£>m l KMJJOQ Fdmeno Na Na N— Na N. N— Nu Nu 352 lb fidmoomm Hmymmbd mm: 0294 ho EOHHoQOm I «b .02 Mac mmfiwm '753 .\o—_.m__.IOIM.X~¢. kdzzom man “\o~_.m‘_..@:u.x_c. quaou .9M .\o-.n-.+¢tu.x_¢. p<£13m can .\O-.n:.o¢Iu.X~vv “45:10.1. 93w .\o-.fl~_..nrm.x~a. kqilom nnu ~\o~_.M-.InIM.X~v. 53.30““ haw .\o-.n~_..ntwox~c. pqilom can “\o_~.flq_.IM£d.xav. 53.39.» 003 .\o-.m-. otu.x~¢. pqiaam an .\o_..n~_.oorw.xw~.nd_.h~.OI~. #4219; ~0u .\o_~.n~_..bru.xm~.n-.b~.or~. p4213¢ onu A\o-.n_..Ihru.xn~.m~_.b~.0tg. h<$m3¢ mfiw A\o~..nau..cru.xm~.m-.h~.OI~. F_.0I~. #4313; 0>M .\0«~.n~_. o:u.xa~.n-.h~.orav Pnv szJoa kdamch * NN 54 az.nvm3£..2.N.ADE..Z.V.O¢Z~..Z.~wouz~ .Ohm kzuca OON NOM.~ON.OON AMI.1.OQO¥. &_ w Pam Oh 00 .Z.fl.fl3$..2.Nym3£.az.u.amzno.Z.«.Ou2~oom kz_flu ¢.m.v Aolnwvaqox. m. m¢~lfiu1 "uz cmfiuy “Nani ¢¢~uw we pzmza «q . hzuznapnz~zw~. m>2¢p3~ U~ZDEKIZIo~. .02 m13n_N o» 00 AZ.m.nDS..z.u.nD§..Z.U.J¢Z_..Z.~va¢z~ .nbm kznzl mum c~u.fi~M.MHN .0~I.7.Q&O¥v m~ nun ham 0k 00 .Z.fl.mfii..Z.MvfiDE.AZoNVDLZ_.~Z.Hvomza .hhw hz~da O~N rt. NICN Oh 30 Ag .Z.n.m35..Z.uvflni..z.u.3¢z~..z.d.sz~ .OFM PZHIQ hon «duocuwoocu .DInfivflaoxv m~ Dow ham 0» 00 «ZofivaZ..Z.M.flDE.Az.flvomzu..Z.~.Q¢Z_ .nfim PZ_11 NON bflm Op 0w .Z.n.mfiz..2.N.$D£..Z.M.sz~.az.avcmz. .qnu hz_za cow ®ON.FON.®OM .QIAWVQJQMV m~ mow flaw Q». 00 “Zomvmbi.AZ.M.nDE..Z.V.3mZ~..Z.~.Q¢zu .ONN kzaxu ¢OM‘ hdm or 39 Azonvwnioaz.mvn Z..Z.M.O¢Z~..Z.~.Omzu .MNN PZ~IQ mON . 30M.¢OM.NON .¢I.fivuxaz. m. MON haw or 3@ 52.niji..Z.M.nDE..Z.u.DmZ~.~Z.~.Omz_ .ahm kz_Ta “ON haw ah Ofl O Oi‘ 256 ~+Zfli 3 O» 00 N~+ZMZ nu.wnm.n .EIZ. la U~+1ufi ‘Z.fl.uhoz..z.u.wkoz .omu ~Z_zl nnw O» 00 .Z.flvu»oz..z.m.m»32 .nmm bzuw, mmu.¢fimoflmm .MfiInfivfldozv km 3mm 0» 00 .z.m.whoz..z.m.mhoz .qam hz_xa nflN OH 30 .2.n.u»0:..z.uvm»oz .fimm FZ_1; Mflu.aflm.onm .odI.3.n10¥. nu flflm 0» Do .Z.nvu»n2..z.u.upaz .Hmm kzmmi nfim 0k 30 “2.0vgh32..2.uvupnz ..$N PZ_11 www.mwm.hnw .nl.fi.fixow. 1~ mfim 0h 00 .z.n.uk02..z.uuuhnz .o9m pz—la flfiN OF 03 .Z.fivukoz..z.n.uhoz_.xflw hz~za 3Ufl.flNM.QNN .Olafi.fll){. m~ fiflN Oh 30 .77fi.d.r32...,.on:u._37.. .DflN ...Z—Zn. . nnm a» so Az.fl.quE.AZoUVUHJZ obflfl hZuIQ nMV.NNM.~Mw Accafiuazoi. &~ nfim Oh so Az.n~m»oz.az.n.wksz .Jnm hzuza _ flflm OH 00 «ZofivdHOZo.ZoMVUFQZ oflfiw 52—1Q .v) OHM fiMU 257 ¢~.¢«.n~ AmuIzv an .Z.n.0504..z.m. 0204 .oum Fz_x& Mom 0k 0& .Z.n.0204..z.mv OZJJ .num bzuza defl.0wfi.~wm Aden?.~.QHOJ. u~ mom OP :0 .Z.n.ozoJ..z.u.DzoJ .avm »Z_xa mom 9» 00 .Z.m.0204..z.w.0234 .mwm F2~xa ©0N.£QN.F®M “CHI .Z.fi.OZDJ. a. Nom 0% 00 .Z.fi.DZOJ.AZ.M.OZDJ .uum Fluid Nan OF 06 .z.fivo204..z.v.w73J .Mwn kzwxa 00d.nom.¢om Ans Az.~. oZOJv m~ mom 0» 00 flz.fi.0?fi4..z.uVJZUJ .owm szmu won 0» 00 .Z.n.ox34..:.m.0234 .afim FZ_1& n.0_..n..mun¢u.dmufl Tu! Stavozazs n; Mom OH 00 .z.n.6234..z.w.0234 .wgn pzmyu Mom Oh 00 3..,..m..vmxr..3-7 3..~.MJ03.JJ .Nflm P2711 oowwmnu.nnw “cl .2.~.0234. m~ Man Oh 90 Az.fi.OZDJ.AZ.uU0?DJ .oflfi Fluru mom a» 00 3,251.3...3..3550er .nmn :ZYQ >nq.0nm.cnw .ms.:.avozko m~ mom 0k 60 AZ.MV$ZCJ.AI.NVOZDJ .MN hzwwa o~.m~.od .oI .Z.MVOZOJ. u~ MIZnZ “Add 10M flow 258 o o o o o o o N M n o 0 o m D o 0 O O N M 9 fi 0 o n o o o N o N N n n 0 fl m fl 0 O N N N M m n 3 fl m n o o v o N M n M. NH n n h o o 0 o u N m M_ NH d m M“ o o a o M M w M" Na fl N" M” o O a o N N m N" NH n n“ M“ o o a o m on a M“ N“ > Nd u“ n n O o a o“ D Mu Na N M“ a" n m a b m o" n UH N” u“ u_ Md 0 n a Va u~ u“ D I" M. fiAaDI3fi~fi~“6)«G?OD)~CQDOfi.OOOCUHJM~01‘fi«307~fi)00fi«fi433fiMWDOOfiufidd0fl~30)3 maflfifinmfir7CfluH¢fic¢4Hcc 04fi033c4fi1fi31 atfiotlfidva¢\dtwoqdqfiIOfiMNfiaofiufifiqan -mm0n-¢-¢Hflvdd¢-¢261_~dnoq-flqxoqflflqmoafi~¢o~¢-¢-¢-v-¢d~¢mo¢-¢noq o~¢_~¢0~¢-¢odrao qo_cflovo dqfisvofivoovom¢ fiqodvnfivoa¢~H70~¢H~q1~13030«¢33¢ momwcmocmmCPGOflworcfcc;om($000h0fiflocmcn~ fin03~o~z «~Cfi\0? unmon.ofi$o 0.0m ®O¢EQ¢£0¢QOanoqxovmooooon.OLJDC:¢H0¢ .Ocdoqfloqaonflcqfiovzoqaovvc<flo¢mocnoc hofinonhondHHNQVDQMNsoaouksaboc~oufi.u\GwaOWNon70fi>owfi0fi>0fi33flnofi~«fihOflDon 30fi00300fl-033fi30100330 OGCJODJUJMAJJOIq fiJOfi)O))Ofi3) fiJOOOOfiOOfi-flOOfiOOfi nowflfifirafioafinc “HMQQJOQfiDJDOQwowaowfiowhOWW QIOJWOJfi30101-¢WOTOO¢n c303 .on~Nnccnnonqonnonqcoocoaooosoqoanoaqos>onyooaoo¢oawooqo¢fl~v¢o¢uaava:ngq flow“aInanafififiovconflJCOJOfloouoofiQIOOfifigfijgfiQJJfiOCfiODfiDDfiO¢aHqflncoatfiavoav vowfifliJrfijo UJ330qussjanJDOOOJJWJOfiJQI\owdoofiosuoofioodov~H¢UO¢OO¢VOQUDV «osfiuononfifiwdawfia “OFJGQNOflWOW«OWOOI~OI\0n~033~7H01-1AOI~qA«owdovdbvfljn flauflcug4~ “oudofiofiflouanflsmgd‘cwooaouaochaofiowgwo venooflomv o flDCQCu geogoac omONOOJo 30d“thaUOUOMOoooavooOQO,JQMJnJo~37D flowcouodco~0vfi0fiomcoaumoq”CficomOUTONDMao~>mocwodvomcfico~auto 32m 02m flObw nu OF 00 Na Oh 00 ~+ZNZ Md {fan «Ir-I 259 .... HNM\?U\\DP~®O‘O M .... HN HH mw<~t~1mm~2m¢~smm mm z_.¢~«.nhq Antcx. 1” mm. or 00 mincx nhw.msu.nh~ Aal¢xv a” mm“ o» 00 maax .hn.o>‘..>. A>t¢xv L“ mm. ch ow wtuvx oo~.no~.mo~ .mtvxv x" mm" 0» cu 0u¢x -on.oo~.>o~ .aacxv mm mm. o» ow hanx mo..¢o~.no~ .o~t¢z. a“ mm“ or ow bu¢g no~.mo~.woa .aflnvx. m~ mm“ 0% so . mu¢x .o~.oo~._o~ .m~avu. a“ .unx on~.nnu.on_ .otflx. m— an. o» ow . msnnx ¢m~.mm~.vn« .u‘nx. u. I Gan-.0... OW mafia mm...m_.~m. .manxv a. on" 0» cu On: m0~ GO“ no" 270 C30O‘DC>O O()O(UOJOCUC>OCWC>H MfWUIOChh-¢€DMI‘F)F 02w 02m QOhW N3Z~PZOU Ou.2.¢.0¢0¥ ounfiunvcaox Ounzomvoaox ouuiouuoaox 61o0¥¢Nxon¥ .«c bzuaa auvx mmmowfluaflmu «O‘cle k~ flwuoNfl—oflwu ”QuoOm—ommu mh~omhnp0hu m®u Ch 00 NINQK -l¢¥v m~ mwu Oh 00 Nufi! «Nl¢¥~ Eu mm" Oh 0w fillvx aflltfle km man Ch 00 ”a?! Na Na Na Na Nu N— N— NH Ofi mmu ¢m~ mm— Nm~ ~m~ am“ Oh» qu FF" Ohm '271 maqmmfim onaHemcwd 93:0 0 .92 Mzomnmmmm I. 272 nnohflgnn “ole!“ l— nnoflofln AOIfiK. m~ nnuhccnm notmxv k~ fifloflvonm «Oluku l— NfioNoUM a¢41¢iu l— Nfipflfl.flfl .fiJImzv a. Nfi.¢fl.un «NJtmxu m. )floouohfl .aluv in unoflfl.flfl anluvv mm .Jov. clot qu «Jom.OIO¥HflJ .JoN. 313! nMJ .J.~. 310x 3‘4 ~+JIJ «+JuJ .1.¢. 330! new .fion. azfigung Afi¢Neoxsxnu£ nfi.~_Qxasu«£ HE Ou~ «uni mufi auJ .32313 .02.. hqzxam nae—~0o01~. hdzdjm ~N~o~u2o.¢.nu—..Zo~w 3101.. o~ 94M: .‘cuaeukdzxfil . . c p2_2& AID—mAUIaDIA DIDEUIW~9K¢oazqu h4£$31 avuoww DIG! zauwzufiufl Firm I<£$Oil 13 Um Z~En b INJJOG hmflfith # n .5. 9. m an 3.. mu“. Mfi 3M 0a 2'73 nflomnoflfl unoODoqfl JFoDNoIK hho05ohh flhovhoflfi fihoNhofih ~hoOhoufi $Oo$0o00 bflfioccfifl flOo¢OonO fiOoNOofiO .nque 1‘ 00. 0» Ga Nu~¥ .Nfiaz. mu 00‘ Ch 33 fltuax .n!~1. m. Dog 0» DO muax aciqxo mm 09“ Ch 06 ¢u~¥ .mlaxv m. con a» D@ filuax “Otaiv 1— oo~ Oh 00 final .5!«K. mu Don Oh 09 00“"! .ntux. &~ 00‘ 0» Ga oaux galax. &_ oo“ 0» 00 Plus! «Oaiaxv mm 00. OF 06 .huai «natal. km OOu O» 00 Qua! ~0.00.~0 .Nu3uxw km ‘3 on @fi 8h FF 0F nh ¢P Mb MN «5 an an no 3 00 £0 ¢0 MO MO «0 00 am 274 ou~.m~«.omm D.~.>~aon- o-.m~.ro- ¢_~.n._.¢~m -~.a~..m- o"..ao..ofl. mo~.ho..mo~ oo~.no..oc~ vo~.no..¢o~ Ncaauanofloq OOAQGflchu OH" D» 06 M'nmx .MQNI. k- om~ Ob O¢ flaw! ntfflxv Eu om- O» 09 cam! ~m0m1. k- omu Oh ow fitumx .OONX. k. can Ob Ow mum! «fitmxo mm on“ Oh 0w Offlfi! nfllwfiv l. on“ OH 09 Oumx amimua l¢ on” 0» 0w h0uN¥ ~O~0qu in On“ Ch 00 FHNK -~$Nkv la on“ Oh 06 flaw! nNu’VKw in «wax actare &— oo. 0h 00 Minux 9- baa ha. 0“ Man fin“ flan Man «an on— 30‘ 30“ hon 00a flea ¢O~ no. Nos «on 00‘ 03 MB MD 275 Dc..h¢—.D¢~ .VOflxv t— Ofi. Ch 09 tuflu O¢~.m¢~90¢~ gain!» Km 0mm O» 06 niunx c¢_on¢~.wcfl “Otfix. &. 0n. Ob 3w mufix M¢«.~¢..V¢a .blfli. an Oh. Oh 00 .O'uflv. O¢~oiflqoo¢~ Anifii. mu 0&— 3» 06 oufix £fl~.~n_onfi~ .alflxu u. Dflu Sb 0% POI”! flfldonnncofin .Oalmxv m. 0%“ 9h 03 hi”! ¢flnoflm~ocm~ aualflxv 1a can Gk 33 man! Mfinaumrofl. .Muiflxe kn «MM! om~.mN~oOfl~ ActNx. l. on. 0h 00 NtuNX cunonN—.¢N~ animxu i— on“ Ch 30 Nuvx NV—..M~.UM~ .M3qu ma #3. nwa '0. 3?" N3“ «3‘ OVq @fiu Dfl~ 5”“ flfin fimu Qfln flfln Nfi~ an. Oflm 0N“ GN— flNu MN" «Ma OM“ nb..m>~.n~. ~h_.o-.~>~ ao~.nu~.mo. ho~.oo«.501 mo~.uon.no. fianMO~ofiflm 276 ~O~¢00~.«0« 0m_oWM~oOD~ cmuonmaavmu Nmnoflmuowflu Onuo$¢~oon~ an“ Oh 0Q fllfl¢¥ «006!» la flmu Oh ow fl”?! ~FI¢EV la flfln Oh GO 0!“?! .D|¢1w mu flfia Oh Cw 0h?! .30?!» l— fifl— Ch 00 Fiat! ~O~lfl¥v m— finu Ob 00 but! .~—‘¢Ko in mw‘ Oh so ‘ was; aflniélu km unflx Aoifi¥v la 00— OF 00 Ninn! -!fl¥. in 03— OF 09 NuflK nfllflxe kn 03m Oh O$ Minn! nfllflxu mu Ofin 3h 09 finflx NF. uh. Oh— Joa no“ hnq cog no. v0— flea NO. ~O~ OD~ find On. ¢n~ 69“ NW" «mg on“ 9¢n D¢u h¢~ 277 on Oh 9@ mm 3Moiflcflfl sMule in FW «10'. OIOKIQK n36fl~013¥flflk ~floN~OI§¥IM¥ ufioauOIGXMNK «M —+uu~ "#365 on “N 0» ca «IJHJ mtflnfi Ouu 6N ON a» 06 ~+ili viofliaflioax ouc bZ~$1 flD~ gawk {flu Dfluocnaoflnn Aol¢zw ta ”3‘ nan ch 09 Mint! N3. mflaoNnuoflflu aniéx. k“ «nu mm" Ch 0% Nut! 09‘ ~D~.O®~.~D. ANlex. in )hu flag 0% SQ 5‘s?! QB“ fihuonhmofifin «fliéxu mu hha 3%» Oh 0% ”it! 0N4 Dhaoohaobha Acfltxv kn flfi. mm" Ob 06 GHQ! Qba Dhuoth—onhn afil'KV in wha 278 OOOOONOOOOOO OOONNQNOOWIOM flflmOG‘FQOflf‘fl!‘ 02w QZM Qahm Me 0% 00 Cu O» 00 N¢.M¢.O€ ANuth mm On: m hz_1& Ooooh .nls. k~ fiuJ On. ~+fiufl Na Na Na Na Nu N" N— Nn MG MW OQ 9“ 2'79 mEADmmm ZOHmwamuomm awamo b .02 ea m- m m 8% H m- m BE H mu w 5.55. am * 280 «uz .ufi N—oanz Nam 00 ._o~u—0A-MOJ~ om~0W 2410311 ( IMJJDI hufimflh * 2'81- bo~o0~ ..«VDZDIV 1~ “2.534 I .uszJ a—VORDV. n.fi.n ....EDJ. u. ¢.n.¢ ..z.ZDJv 1_ The _ vdflzDJ .£o_.3234 AX._VEOJ AioquJ AI. ”V4.17. «Eo~uJ¥ .E.HVMkOZ Afio~vh02 AE.~.OZ aiovauflDfa .Yo—._fi35 .T._.nDE .Io_vDE {onum F 00 v.2.234 ~+ZHZ «AZVEDJ ~+ZHZ I A Z v 53]. ~+Zuz "AZVEDJ _+ZuZ flazv734 ~+ZHZ "AZVEDJ ~+ZHZ RAZ~EDJ ~+ZNZ unzvvR<4 ~+an uaZVEDJ ~+ZMZ "AZVZDJ ~+Zuz "AZVEDJ «+202 u.Z.ZDJ ~+ZHZ ..u A Z y .23... x~ux "um I} uu h~ Nunx nuuz "nuan and wbzuhZOU N—nz X‘s—VQEOxflauwbflax no“ or 00 ~+JHJ Ob—.0h~ow©fi .014. m~ Oh” Oh ow hQ~.00~.00~ .Zlfiv u. Nu+¥fl¥ N~+an Oh“ OF 00 mouov®~o¢®~ “Zlfiv l“ flm+¥u¥ $®+ZNZ on! mm“ OF 00 ...anxugnvhaoz cmoomoow “Zifl. mu ..uozozufi wh.au~ mm— 00 Nauz m or 0w ~l2n2 «#29! 0.0.0 .NUZ. mu m32~bZOU Ola—uoaox h or 00 Amvon¥*utl._~o&O¥ Om— Emu an Oh“ ®®~ F0" ®®~ mefi ¢©~ mom 0w 00 O— 283 CID mfiaw QOPW wDZ_FZOU “aavthmiv o~ hZ~JQ ©D~ O» 00 ~+JHJ 30.fi9.$0 AmulJ. m~ uDZ _ Eou ~l3m4u3w4 BuJI»_uF_ "IZu; 3UJ+¥H¥ 00 OF 00 ~+»_nhm @0.MN.~N .¥t_. u~ £0 0» 00 ou.~.:bmi O¢~.mm.o¢~ 5.“.9043h00x3. m~ wDZ~hZOU me Oh 00 .h..$34 u .fiv Ih_z qm.mm.¢m AAfiVmOXIFOOGfiV i— mouufi cm 00 MDzuhZOU mo 0k Ow .Z.EDJN a_.IP_Z mmo~m.mn ..3umOfiihooafi. k. h.~afl mm 03 ...hmozuhooafi Oq_.om.c¢~ ..vaszl...hmogv k— m ._u~ 00 03 30 $6 50 0C 8% "z I. e o N ~ N“ g“ o" h c m o 0 o N— «a _ O“ N 0 m z ¢ m b ommomcmu~mcrwcmcccoocooccc-.mcm_cmommcmonromcmmcmom~umcmwom cm~_mcmmcmcvmccccoccooocccqmcqc¢moqoqmc¢c¢moccrrcmcmwomoma~m ormom0¢-ch_.cocwcqovmoqcecoq0¢hococoH¢0¢~.¢o¢-qo¢movo¢mo¢ oc-¢oq~_vowscvoqmoqovmovocsoqocboqoqo”qoqfl_¢oq-¢oqnoqov®oc OfiwcmomwomamwomocOOOOOOCO@m~omom“OWSW~0m0fl~0m0fi$0m3mnomomnom m¢£ovwcmoq3vaovoooooooooonvdcamq.o¢£¢Mov3¢~ovwvwovmvnovmcnov hflQOflNM.«mhnnomoooooooooo$wu"me.omhmmonnnmonhanMhmm_m>mnom onmcmomm"memmomooocoooocooma~m®m~omomnonommononmcmcmwgmonmom mm.mmmmwommmwcmoooocooocoomnommmhonm®moomomoomc_.wmanoqmvnoc cm“~mqmacmcmoomcooocoooooq&momq9>om30mocaomoccc..qcvacqcmcc mm“_mmmacmmeCWCOOOQOOOOOMmQ fifimwommomoonOfiOOmvn"qmqéovmvaow mm"ummm$ommwcomoooooooooommcommmho&NCmoomomoomq..vmcmoqmvmoq «@mooflmfiflmmmd.m~mmom.mmom~anomfimhomumodmflmfi_n~m-m_mnom~maom .3 m 285 mom a mom m3 .3 Sn mom mom mom Sm won gqnmmm I @509“ :BHWMBHm I w .02 I Eommmhm 286 OuZda Guidm ..Sz 3.13 n 23; "23...... Z<1Iz<~u.zvz<¥ «N 2 Oh no z<fi u 242 ou.Z.Zd¥ 0N ~w.om.~m .243. m_ on on.ow.3m A2q_. ¢~ AZo—VW3?N_4W ZIn .xn.ozav hqwiom hfi .z_JO_> MID.Xn.OI~. kqfiqam O“ ..c_vo~.0t~. k4310u ma .ZnJ0_> .t0.xn.01«. hqfiflom ca AfiJ<>Iuhz~ U_QJJJEI>~.XQ.OI~. bdvfiol ma AM~.~H_.A~.£h~£~ .n fidua ..¢_.M_. Fqfiqom Au~.~u:.An.«u~.az.~.ozkov .u fizJa Awfl.quz.am.~u_.azo_.OZquvv.M fiquu .u~.~sz..m.~n_.az..VMFQZV. .w 04w: Au~.~uz.~n.~u_..z._.332.“ .v fiqw. ..d..._.fi~.m~v hquou N .M~Vzhui..mavz~1..N~.Zu(..wdvzuz..mduzom~ o.M~vidi..uq.fi.o&JJ..Mfi.fivoqu1..M~.fl.0th.AmuomvaZ £Q~WZME~Q ®£>m Edwooaa 10 u. 2.2N Am>n. XMJJOJ hfiwoah * n 287 «a OH 00 ZqfiuZ<£ Du: 7:231 FNoOwohN A247. l~ Nfl.o0N.fim: A7 ~uI$oOI~v thIOm Nag A2_JO_> “Incormv #1210m “A“ .nJ<>xuh£~ UuaonEIhaoOIag hdflfim ho. afi~.XM.fi~.Kv.afla.xfivfi.flnoaxa.n~vfl.Xfi.AKfi.fl~.3oxaoordv bfirle 004 .3Q tiohi Ivoh Ifizni t3.92 {4.0 ZDZ~E Cmonfl I¢.¢< {Va .61 I¢.fi£ Ivofl IDE~£ Iwowi t¢.u IDZ~Z I$.«Q I¢.DI~. hdfrfim 30H .Oo.~u~o.~.z<¥v oOfi dad: navmvwav #4210; on .om.OJgi..30vZ<1 23.02flz.e 3~Z>m EZNFZ~ U—OOJMZ OJJNU O 0 GI O O m NE N HOZ—E «Q ”I O O WJ<)QMPZ_ U~OOJUI (JOu) O «I Fl 0 O F N! N lOZuI «Q {I MI 0 0 WJ<>QNPZ~ U~QOJG£ ZuJOu> ~— 0 ul ¢I O a 6 NE N 302—2 «Q 0 MI 0 o WJ<>QNhZ~ U—OOJME Z~JG~> n WPJDmmZ I h2w2w>03 POOQ 02¢ de>flth~ UuoOJwi I O~oOZ >ZOIQ£>m 294 C 31 KIT. 0 C h .1. ~32. _ i h ”(3)3: mi 0 «c , t... O ~I O C a I O n O a H 0 23”.... ~ «...... 31 Q4 no; ...»... .5. ma, 6 \II \ VI ...w ~ 0 o o a I O J I"! n I A H j .1". C. 2'! QC 4‘ o-An ’7 "'3 NI 0 C NI N V: C ..N 33;... m p..._ N5... ma Y3? H .1 a L m 3 ,I .. r O m n. O 9Jfl>muxwhzu U—GOJME: flPCJNW “I... _ 5...”...32 _ I nI o "I >I O O O N. .132 _ I... ”.3... N ~51 ~ 3 fl 1 .w o O k 295 «+282 .E.~.OJ 0.2.234 ~+ZIZ .I._Uaukzu I Zawnmr I QMJJOQ PQMMJ~Q GIN QOhw anflouaZoaflonI—o.Zo—~20Juu «N IUZ3Q On GP 06 fiO~oflanNOu atfiIfia k— «+fifi3 “b.~u—..uvoaoxu .mo IUZDQ .huuuu.~_voa0¥. .moqhzuan .0 O» 00 ~+~I~ oanowou.moa .quv km OI.~uoaO¥ 00 0h 06 .2v834]~t.~.204 .2?IDJI.—leJi.~.omox allnflvnfi .Oluuvth. h— 4.. 0a Oh ow mooofi «OIJ. kn «IJIJ I u+~ln NUl.—~ZDJ (31.1.134 ..vtfiJ I<¥ aiuIDJiwv. ooh.h nanv1341~l~134~ h. m.b.n ognvlfid. t— JIIIJ , a 0b 00 «nomnumu .412. u: «I!!! N~.¢.N. .OI.Z.!DJ. tn FIZIJ .2...ZOJ nazwbe '0. ”0n Nan 00“ mod 00 NG «0 na Nu «— 29‘7 Doooon¢-¢3v~avnooooncnncnoooonvu«cnocooneancnOOoonquw ~0000hv-¢~¢-choooo~cnavh0000>c~"chaooohv_.csooooh¢..¢ QOOOomOooOwneomnmoomnmoomnnoommmaonnumovanu«unnanmnvnov hOOOOboooo>n¢cmhnoomhmoonbmoomhmmonbwmowhmn"Nbflnumhvmoc moooomchovmchc¢$¢NO¢D¢hoVflcho«newovmvho¢wvho¢moooomoooo h0000hwhoch¢>ov~who¢hVFO¢bcho¢h#hocthOVB€ho¢h0000hoooo om00moooaococooomoomoooooocmocoooooano«nooococvflowocnoc nMOOflmoooonoooODHCOflflOOOoncmowfloooomno«Hmoooomafio¢n¢~o¢ cc~ovo¢.flno»Feweshooowsooonhoo0oooaoaooooooooooooooooao ncfiovm¢~mnmbhoannhoonwhoonhhaonooaonaooonoooonoooonoooo ovno¢0¢no¢©¢$0floagofio¢nan0¢£onooooocoooooooooonmo30¢no¢ m¢novflvmo«memOflnvmonncnomnvwonnoooonaooonoooomnuomn«now c¢uo¢¢¢mo¢¢¢uo¢¢¢mo«cocoovwmocqocoocc~o¢¢oooo¢¢mo¢¢co«a «can«emuomconoowaneovowoovomoovonoowoaoo¢oooo¢®¢oovonoo cmmomvcu~¢vvq.vcnnonvn~oa¢¢co¢coooo¢noonwacomvfloamzoooo nflnomnmnommmmonammonnoooomn~cmnoocomnmommoooomm.omncoav ado“cflmaomMOHOOflONOOflOnOOMQMOQfionoonOMOOMOOOOMOQOOHOflQO mmwomncwuvmeuq«ammoann.omfiwvovmooconnoonnnoonmnoamneooo N¢ouch0—¢N¢0~¢M¢o~«moocomvoo«moooouvhovuoooomvaovwcnoc Menovwvoo¢whno-530#Mhn0hu>no~wsnonu~nosmonoownoonuooao NvaocmoooomfluuflN¢~OVNfla~NMfl~uflflc~o¢fl¢~o¢wfl~nnmnflonflnnon «muunqmaannfl—nnan.unaoooonncongcoco—noonaoooo-nvonmnflon «mnomunnonahnOhaunohusnoh_hno~«NEON«530h~0hoounoanqooao «vuocnoooonn-n~¢.oc~nd“mafia~n_¢no¢~¢~ocdn~«anodooaoaoo 298 thDmuai «.02 I flJ<>duhzu DJ 0 O 00 fl? 0 O N 33 0 0 ac" CON 0 0 N3 i v 0 O n O 00 0 0 N 00 0 0 m0 Q 0 0 ha 0 0 0 0 0 v 0 0 0 00 ”On flOfl 00 OQN 00 00m 00 90V 0 0 Efi— 0 00a 0 0 0 0 0 Zfldnuz l fiDfl ~30 OJ“ CON 3“ NTUC>O‘DC!O m0“ .0" $0" 00¢ to" 0 O 0 MI. 0 Q3 3 00. no now hfifi mam D3N 00m nmm 0 flow NON «On «0“ ho" h9u 50“ 00 0 FQN flON 9m” 0 13m F0— 33 fi)~ 0?. to“ no m$N EON MON WON 03‘ MON uON NON «on «0. #0“ has no“ 00 O bfiN OON Own 0 h0~ 00m «0* D3“ NO“ 00a Nod 00— IHJJDZ FIMDJ~3 NON WON 00¢ Pin 03‘ Mon 50‘ $3 00¢ Nov 00¢ 00? ~03 33” 00M ho“ 0 0 00” 09. «ON @0— Nam 00“ 00M 0&— 299 mooonmvu~flw¢vom3000flnc.nqnonovnca«vnoaouncnuwnodnmn¢~oc booonh¢00¢h¢30fihooonhwtomromonbcsowhoo~fih¢h0¢h0fi0¢scuoc nofiocno.qflnfiQOWfiDEOflnQDOflDnnOWQnaOtnumovfiua~MDfi~‘fln¢nac o o n) ca hon vo— mom 0 o «a 00 Man 00‘ 00x 300 n¢o¢MIVV “230» mu ”M 00 O» 00 nauazal I .b—vnhzax MN nQoNfloNM .Zlfl- km «N nfioflflonfl .032. mu ON 00 Oh Ow aavaflai I .h—ochmax o“ n¢.3~.0~ .213. in mg 00 Oh 96 .—.DQO¢ I Ahuvnhdbx h— ncohaoha .115. Kg 0— ovonaon— ‘00:. l. n~ 69 Oh 03 A‘.3151 I .b_vvb191 cm ntovaova Azlflc u. n~ 00 Ch 39 ._.3a01 I .h-.h10¥ Nu ncom~omu «Zlfl. l~ — naofinoau .N!!. k- .nvOIQEIfi «I4 hohxotu~ ”a 00 a D-N I h! «I h. N—IZ «I! ..cuehoorau h¢xflcm N nvmmonuuonuuamoxv on 04%“ ancu-ho h<2fl0u — .nmwmhaoxonnnahhan..mnuo»19uoannvmhzaun .ammwvhaox..mm.MhaO¥u.flfl~NhaO¥o.mnq~h80¥..¢0~.033¥ ZO—mzwzua noOZ I ZouhUDOmz t Zawflmr t auddoa hawmduw 301 f 00 3h 00 ...3131 I .hnvnhzal $honhohh .0110 in 0% 0h 00 0—03301 I ah~0¢h10¥ 00 OF 00 .—.3&0K I .h—wflhflox chomFIVP “VIE. km “—0010! I .hnumhaox 00 0h 00 .uwaaox I «huunhaox Whomhoqb «NIX. h— ht 0h 00 ~+JIJ OhoOhoflc «OtJv km Oh Ch 00 00.00.00 .Ztfiv kn N.+¥I! N~+Z I 2 Oh Oh 00 )n.Dnonn .Zlfiu la Dfl+¥8¥ Dn+ZIZ OI! 00 Oh 09 «.03301 I Ah~vbb10¥ nvohflohu “Zlfi. I. n$.n>.om .91!» I. 93 0h 00 .~.3!01 I ~b~.0h20¥ FF Oh nh (F ”F NF «F or 00 90 00 am an F? n¢ FM ON flN GM 302 .Mn..o_....~nuouao. :02): ”In.~n.....flpuad..a 2023a .Mfl..n_..~.n»101... zozaa .nfl.~u.....vpza£a.. rozaa .Mfi.~u_o...npma¢..~ tuzaa .mn..un....npzai.o. £0231 .Mfl..u...~..pzaxg.. tuzaa .1fl.«n.....~pxam. ow wz.ma .mnl..7.335§ on SEQ $3.7...3npzox. on #251 .Nn..u.....cbzou. .u hz_m1 .Nm..u~....nhxou. .u pzuaa .Nn..u...~.~»zou. .N wzumn awn... uI—o‘ a .7951. IN Flag m 0» 3 Ava—canog unite n: Nah! ~§h¥lh¥ 7?“! «I ha nit-F700 «Oh: I h— Null 3 O» 8 v..- .uoag I .h—vhhg 00905.8 «03.3 In 8 Oh 00 v.1. «u»; I “huvfihgx I. 3:5 2833 30!. n: I nhIJK 3n an..n.on .5: I nhxai. 1. q: #5 I flhlfil 3V ~voqcoov .Ii I nhlbiv m. h. fit I flhlal 0. b~.h~.o~ .flil whlax. L— nu Mi u fihlox cm n—.n~.¢« AUSI nhloz. mu fl— .2 I mhzox Na fl—oflnoN~ .«E I nhlbiu l— o I whlbx Noun! on 33 ...!p2. I #2 ._.0h2~ I o: .auuhz_ I a: ..vahzm I I: .uwuhz_ I I: ...nhZ~ I Mi an. (hzu I «E ENouIn on 30 .nv.~u. . ...1»:.. .0 34M: .DM.«u_ . .~.9»z.. .. aqua .nu.~u. . ...upz.. .. 34»: .n&..». . ...apz_. .4 aauz .ou.~u. . ...Jpz~. ._ aqux .ou.~u_ . ._.3hz_. .u oO<3Q'O4$C)9flwhzmv .« IUZDR a. 0k 00 u+~um bohoflammInv h: wDZ~PZOU “+3”? “7... a vflflo‘xnnfltyflm.rzm 00.731. W 00 «In ~nfi aflMo—flZo.>o~I~onZo~.Ow0v3u 0N Odwfl unfinvhw hlth~oAnMobuQQOK ZO—m..7.w2~0 JQZ.o> .nl~y. an vb oo. o» 00 nu.x on >#.ow.hh Act.¥. u. mn oo— OF 00 ¢u~x ch ab.c>.nh .aa.x. an n» 00. 0h 00 man~x uh mn.m>.m> .0101. m. "I oo_ 0b 00 many on .h.o>.~> .rs_x. I. oo oo~ 0h 00 eta“! mo oo.mo.oo .mt_x. m. he 00. 0h ow ou_x no he.oo.ho .ol.¥. u~ no oo. 0» cu hsuax «o mo.co.mo .o~t.x. u~ no 319 omnommuoOfiu kuommnovwg NN~oumuoNN~ 0N—.$-oON~ ®«~.h«~ofl- 0-ofl~uo€- cauonmuo¢afi N-o-~oN- 0-.@O~.O~— mouohouomon wouomouooon voaomonoGOH AOIN¥~ km 00— 0h 00 NIIN! .mimxv km 00~ 0h 00 NIN¥ awlmxa l— Ofla 0b 00 flIIN! AMINXV la on" 0h 00 MIN! AGINXV mu 00m 0k 00 ¢IN¥ amIN¥v k— omn 0h 00 quNM «OINXV k— om~ 0h 00 MIN! ARINXv u— OMn 0h 00 QIINM «QINXV k— OM— 0h 00 GIN! AGINMv k— omn 0h 00 FINN! nouIN¥~ km on“ 0h 00 bIN! -~IN¥V km «Na ”Na NNH ~N~ 0N" O—~ ®«~ ham 0d” M~q can ngq Nan um” 0a— 00" won hog 00m $0~ €0— NO" NO" 320 Qmuoflmaovflm ND—ogm—owma omuofivgoOOa Evaohv~o$¢~ ©6~ofld~o0¢~ ¢¢~oM¢~.¢¢~ Nd~om¢~omvd O¢_.3nuoo¢~ manahflNomflfi anommuofiflfi ¢m_omm~.¢fi~ Nfluoumdonu AuIM¥v k— omu 0k 00 MIN! ANIMMv &— Omn 0k 00 NIH”! AMIM¥V m— omu 0h 00 MIN! AQIMMV la 0m“ Ch 00 €flfl¥ afiImxw m~ Qma 0h 00 mlum! AOIMX. mu om~ OF 00 mufix ahlflxu m~ om" 0h 00 OIHMM A0I0¥u in 00" OF 00 Cum! “Olfizu l— ow“ OF 00 bIflmx ~0~I0¥v mm Om“ 0F 00 Funk n—uIfl¥v l— 0m~ 0h 00 wnflx AN~IMXV km «IN! fl¢~ Q¢~ M¢n N¢~ «Va 0?" Ema mm“ #0" OH“ «fin on“ mNa 321 Fhuoflfiuohhm a¢I¢¥~ in mm» 0» 00 QIQM fifi~o¢fi~.flh~ “WIC¥. kn mm" 0% 00 mlfl¢¥ fih_ombmoflhu AOIVX. mm flwa 0k 00 mu¢¥ ~h~.0hno~b~ .hldxv km mmn 0h 00 OII¢¥ 0€~.m0~.30_ AQIQMV m~ mm" 0k 00 flaw! F®~ooomob0~ A0I€¥~ k— mmu 0h 00 FIIQX flouovouom0~ .0~I¢¥~ m~ mmm OF 00 FIG! MO~INO~oflO~ .-I¢¥v Lu mm” 0h 00 0&0! ~©~00®~o~0~ .N«I¢¥w k— unm¥ omuomm—oflmu AGIN¥~ &_ ©m~ 0b 00 NINfl! ND~ .0— 00‘ OM“ mm~ cm“ MD~ 3 £000 ONOOO'IH . 0 m ¢ 6 o” m 0" M m o o v o F m m 0 c n Ovfim 02m norm wDZ_kZOU ou.z.¢.oaox ou.z.mvomoy o«.z.mvozox Onaro~00fi0¥ cz.mx.mxoqx ..c kzmzu mmaocfiuommm mmfl.mm~.nm~ ~m~o0$~o_®~ 0h~omfi~o0ha «He! .0Iv¥v l— mm— Ob 00 NIHG! .«IGMV k~ 93— OF 00 NHQX «mquv kn mwa OF 00 MII€¥ AMIQYV k— mwm 0h 00 NI¢¥ P‘O - ~— - 0. Nu a" CV I] 10 12 3 I1 2‘.) 324 meqammm aoHBHHmmmm Qmomo QOHHHBmmmm 02 m .02 mmmfig * 325 HH> waddamm BmBszd mmm uonmmmuoma amomo p 3” zmammk ..VO 3 A I ......4 I P‘ nil“ 1 .. E, v‘ ..1 v u.‘ 4,. I L .35 a“, ‘n ..d,p ....r‘. fl; .. 9 ~ 327 ~+an .E.-DZ uazgzad Fax «an .uZ nufi -¢~ui NMN OD ...«au.._.wOJ. omncawa «flu. hdxaom mu amonu~....w0¥. .O_D Nrnoxnpatau h .IDoxnoOIme htilam .WJ<>IU»Z— U-DSJuEIhqoxnoOIav hitlal .flfloulmo.~«Ih—Ze ofl 3200 z<1324£ 21$!Z(~I~zvzux a" o» 09 Ma m...“ 9N QM «d FM 335 o 0 «Random «as. pgaowfinaocdom o o «unconaonfinsesvaaooaoe o o «RSnSmapoeHSastS §§o§o§§§§3 <3383on§8§8§83n3§8§§3n8 «mgmgggmnomgaongg33nfi3afiofiaooo nunRnnmonnmnomannonnoooonnaomnoooonnnomnoooonnuom n33 ngnafinfioflfiofifisnflsmfisnflofigfiaflaoo n§m§m§mm~§§8§nm§§mnm§n§ ggunfinmficfimnanwnflnngggmgwmgn anaflnamanznmnmagagdmwggnmom H«3anmcnggbsggwgggagdnqanogo gofigdngofinfinngnggagugas 336 DD+KRK DD+ZuZ h: ouxrhn Oh Oh on .—~Z(¥I.-Zd¥ on 59.0noon AZtfiu u— A~VZIn.OI.. #4833; flag .Z~JD~> “arboorqv #1510m Man 62—Ja~> .tn.at~. pIu»z. v.334uzrha.oz~. b4513L.ho~ .fl_.xv.fi..x¢..fi~.Xfl.fl.fl_o.Kaofl~.fl.xfloAXflofl..¢.K~ootfi. h # 33'? «PDZoDZu—oanu241u K Ofloma‘ 0 DD 900‘ hZ—IQ hog hzufll mbzuhZOu Nuuz I+-~Z€il-~2<¥ OnoO—oflu flqofiuowu “gown-NH n-Z¢K flnofiflo¢fl i A—eZ(1 OhoOboOO 30.00.00 3Doflflomn Du GP 36 A+JHJ AOtJv m— 0“ Oh 30 ~Z+fia mu Nu+¥M¥ Nd+2u2 On 0» ow .Z+§. L— 33+¥u¥ D£+ZBZ on! ha 3» 09 a .*~Z<¥ ~Z+fi. u. .~.2<¥u3 0N Ch 00 Nnuz U .uwZQM #0 OH 03 ~+JuJ «OtJv m— Oh Oh Ow .Z‘fi. kq V~+¥flx M~+z a 2 Oh 0h 30 All?“ ma 9” h« Dd flu 0« fl. Nu .— O“ 63 ND 0F 0% 00 90 00 $8 33 ’7‘ 338 mmn 0h 00 was hzmaa ongooma.0- gmiiv mu . mmn Oh 0w flnn hZ—RQ mfln Ch 00 Na“ FZ~HQ muuohaaoouu anti. k" n+2u2 Nunz Nm+h02uh02 Nn+OZuOZ Oauonuowa Amity mu aonovquuuauvaJutu .00” b2~31 Afl~.—a~.-~3JUEu .Oo~ hZ~aa no“ k2~1l 00‘ O» 30 ~+ h. a pa fin.sn.ou .hDZ ibuv m. HDzanOU 7.7ka fl #3! a t ...OJUE I .~.OJME nmoin.nm .hOI + ab~.2O 340 ml hi ~' hi 0 hi F IOZ~Z O O h IOZ«£ O F IOZ~E WPJDWUQ I 03 o aoz~z ma «4 ca n: m aoz~£ o o 0 M! o n N o «c «I NI «I o v1 0| 0 o 0 O O O O «! «I « O O O O O 02 0 QOZ«E ma #4 61 mi N 132—5 0 O O O «I O « N O O O O O O 0 N MI 0 N O «I O O O O O t O O O O « 62 0 QOZ«£ 0Q #4 v& Hi 0 302—3 0 O O O «I O N m 0 C O O C O 0 N MI 0 N 0 FZMZU>OE #001 324 mJ<>IuPZ« U«DOJME N flOZ~E « O O O O O 0 v 0 O Q N OCDOii WJ<>QNFZ« U~OOJME <40~> N! o 0N! fl « mm NE N EOZ«E «a o O O O O 0 ml ««| NI 0 O O WJ<>awkZ« U«OOJMZ Z—JO«> «« NI NI NNO v 0 MN NE W EOZ«Z «Q 0 O O O 0 O «3 0| N! N O O m4<>2UhZ« U«OOJMZ Z—JO«> « O«oOZ I ZINUUB 31.1 0 O o O “I “I e a... m- o o o a o o o n 34; P3 h 132*: aux 9 30......“ ~um «HQ .( as“ ”v... M0 vabvau m4 Vi. .r“ ~83 u I Q NuI N WI 0 Nu OmI O« N?! u..« 0?... O« N«I N NI 0 M; 3.7.. O« NTI m: C«I O... u..«I m... NI. 0 N« 07- A: M«I N. O mdd)1m»2« U—GGJVJE flkgflwfi Ibuamagur O. O 0 «I O n. O A» «I G «I «...I NM! 0 G O O u u « « «. 0 MN m1 b2 P1931 Om. QQDE«E has 34. dam. MK «avg—S Mr. NIQZ~1 «am .0 0 G ..u 0 O 0 Q mm 0 an N 0 .0 O O «I «I ...wI «I H. GI $1. 0 O 0 v 0 O WJQ>BNFZ« U—QOJHI QJJUU O O .U «I O C, 0 .0 «I «I «I MI NNI O O O O « O « « « 0 NM (0 Oh 00 «ZomvleuafioNvtfix «Zo«w!DJ§.1o«~ID¥ «Z.«.8341.«.«.lDJI.«.omou Noonu.flo «OI««.«.IDJ~ tn « n « M« 0» 00 woaoo «CIA» k« «IJIJ «+«fl« w¥n««-«~IDJ 4¥I«2o««t34 ««o«~£34u¢¥ «Zo«~£DJlN¥ , O.hoh .««.«.£DJI«Z.«.IDJ~ k« mobom «««¢««XDJ~ u« 11.234 n Oh Om ««.N«.N« «JIZ. m3 «I232 ~«.Q.N« «OIAZ¢««IDJ~ km bitin- an. 032 4:3 «3o«ut.«N.«u«¢BIo«wthuqu OKUR nnmuofiuvmu h(tflbk «afl«on«uhw hdlflbk a«¢««hu PCIRDL «acmvfioat«w httuou . «ON«oNe!D!6—O«wQKDXOAfloNoIDJ“ZOnflZWlnfl ZZZMFZ— I « .0! I xflJJOI PQMSJQG No «0 N« N« «« O« N ON ho GJ« 343 soooapctln-- » ‘¢I»I«auny. 1: -.naouoo 90696»cocoooooonuwowtnuonnna.nmowooaomen oaoaorooooooooamao.«two—unanoofionoouoono mooaahoooooooocnwmcwvnmonn«astute«c"mmom nooooheooeooooommoo~¢naonnqmocave.cummon moooahoeooooooOMNo.manonnndoocmcomcflnuom waouahooaoooooam--cnmanncmo¢~¢ooc~mmom moooOhoooooooaonooeacamonnvuacmeo.«.mmom woooohoooooaoocmoocoqnmonncnovwvo.canhom wococfiooooooooomoooo«nmvnncmocmvo_¢~mmom aoooonooooooooamooco«Mmonnvmocmvo.«.mmon moccasooooooooommonuvno«nonwonuwnon—moan mcooo>omcn~« : c‘cuo...> I »"m.o~oo moooonoaoooooqommmomvnmommmo“nuance“omen meanesooooooooomuoarc~o_wncaoomonoo.oo.o 61“ aka (A: «v«u«uZ-«No«l«¢«2t««§¥«v ’ON 3023.; 3« 0« Oh 00 «£o«n1oawo«l«o«1¢««gdvuom 201 NO« n0«ofl0«oN0« «07.91. Km «.23.... 00 «Pf—Innu—vgv: .80 g «Fo«.«o«««0¢0¥v 00.0” .53: 8a «0 0h 8 «6.qu 9°» 00«o0°«om0u «hIwo ‘- a Oluug «n0 flhJDflwl I ZZdiDIUW DJ<>IMhZ« —()C>O(DC)OCJOCDO(DC>O(DO OCDOCDOCDOCDOCDOCDOCDO .02 IIOCDOC3C(?CCICC)CCDCCIO CO« CC« 00« CO« 00« OC« 03« C O C (.3 00« OO« 00« OO« OOH mom NNVV {ON O@« @G« ”On 00« 00« OC— COm N$N OOH mom M3? 90m DOG 90¢ WON «ON OON >¢« 30« F0« @0« @0n wGN m0” 00¢ D$¢ UJJOI h3m3J«0 53m mQG 000 FQN HQN NOM «0N HON QON HON MON 00W fi9m 00¢ 000 345 m¢.¢movm .Ztfi» t— 09 O» 06 .mvoaou I ahuumhaox mc.NNoNN «Zlfi. ma mN.MN._N «0!!» kn 0m Or 06 .mvaaOE u .b_vcha0¥ ncuma.9~ .215. &~ 00 O» 00 auvoaox I “hmvnhflox mvub—ofia “Itfiv k— omomuoou .612. k— 00 0k 00 anvamox a Ahflvmhan mcov~.¢_ Azlfiv u— 03 Oh 00 nuvaaou I ahugmbaox mcomqum. .213. k. n~omuona «Nti. um “geomomufi ou h.h¥.Zu_ mo 00 $0 a h! .u #— N~IZ an! .«¢—.hooxnv h m N“ N“ N~ 3 N” O Na b a u N“ I h m w b m N” n N” m m € fi c m n m~ G 3 02m 02m QOPW wbzubzou ObloonbQOK.mhloxoqkaoxohdbzo&O¥oox coch2~al mhflOxaflhaox on.flflo0fl .hixgmn mkmOXIUbQQX Neofloohfl «OOXv la mHSOHHQhGOZ NWFQQNNOOOOOOO INC-i m0 #0 00 m0 #0 351 wDZ_kZOU Ola—uflwux vofinn O 00 ".11"? 0.0oh A¢lfiu m. 0 OF 00 Azuozoxuafiuaudx ~+finfi m CH 00 “ZOOIOXIAfivammx «+1Hfi h~.h~.m .¥!Z. mm nuvoaQXIAfiuamflx ~+finfi Q or 00 N+ZHZ N~.fl.N~ ..nvfilDXCAZOOflOMO mg m OH O@ nzvoaoxuafivauux ~+fiufi #«ovflooa .Xlzu La N+~I~ O.N.o “AZOQKOIIanuazoxg m~ fin! NIZ an. OIW .n0~.~u_.g~.3&31- on 0431 ..anvca hxm»z~ n.._ua A. no m32_»zou ~+ZIZ .w.o.ozoxn.z.>awh2_ m...uw o. oo w:z.»zou ~+ZnZ .VoEVOZOx I .Zv>&mkzw m~.~un a co m32_»zou ~+ZIZ .n.¢.ozoyu.z.>QMPz~ m~.~nw m on w32_»zou _+zuz .n.nvozaxu.z~>xm»z_ n~._ufi h 03 wazwhzou ~+zuz .n.m.oaoyu~z.>am»z~ m~._uw o oo “+2uz maznwzou .2...OZO¥M.Z~>GEFZ~ ma..uz n so ..c..m_. kqxasu .m_."nz..>._u_..z.~.omou.. .~ aqux ..c..~. h¢2aom aomua>lubzuo~n~vnuflxcx ZO—mZmE~O UOZQXIduZ i ”.02 I ZZdEDIJW I IUJJSZ h1u24_0 on m afiO—o—uu OOOOOOCOOOOOOOO O O OO~ 00mm 90m. 0 O CO" EON 00¢ O O 00" Main DOV O O 00 00” n0" 0 O OO— 0m; ~ON O O OO— flown CON 0 O CO" fl3— \ 9— O O 0 Com we“ 0 O O OO— #0“ O O O CO~ @0— O O O OOH Q0" 0 O OO— NON MON 0 O OO— OCM mom. 0 O CO" $0M. 00¢ O 0 0C" Now 30¢ DZU lbkfl a~v>~uwh2~u 0N IUZDQ £32....ZOU ~+ZHZ AfloDwQIOXIAZv>QMFZ~ mug—cu“... Na 00 N n my“: fiOQ 000. NDU. flmvn NMJM "TN HON 60m. MON MON OOH Faun fl0¢ GOD MEX—#200 u“ 355 OC~ CC— OOM COM mom 60¢ EON mOQ WPJDWUQI ecu CO CO— NOG 00» OO~ WOQ mflm ~ON Dom hfiN flfim u0241fl4u1 OO— com 0 O 0 mo“ m0“ CO“ 00. CO“ OON hflm no" how m0" NON “ON MON QON NOW I n.32 l ZZqzbrum O O O O O O O O O O CO“ CO. CO— OO~ NON 00m 30m $0" mom mom 00¢ new con how new IUJJDI thano 356 1’ aqmuomm huhmmma ”mm 020A ho zomhuanmm lb .oz azafismum UU 0140 On n\G«.ofl-olOIN.X~vw h(8&0k NON ~\O-ofl-oImINoXn¢o b<£¢0k «ON u\0-ofl~—0§QINoXuC~ hChUOIQo NONo—ONoOON oOFN kzual «NigfluOCoxw t— FnN OF 09 «Zonwmbloaz.mwmiioAZoNvoquonzcquKZ—ION qufln (choc n01»fi~0¢0¥e l» .02 waamdwzzfluoOqu a\\Ou~ofl—uu .\\O-¢n~.. n\\0~m.fl-o n\\O-on~uo .\\Oa—onn~o a\\0u~om—~o .\\O-ufluuo «\\O-on~—. a\\O~—ufl-o .\\O~uofl-. a\\0a~.M—~¢ a\\0u~ofln~o a\\O-¢fl——o quNoXO\NOOUI¢oOI~u o\O~—pfl-.u@1NoX—Q» n\du~oh-ookINoX~¢e “\OuuoflnmolhINoX~0w ~\O-ona—9001Noxu¢u ~IZ nclfilfi Omoulu won on cflIfi Nc h2~ad m4¢>awh2~ UuZOtfldtromd h<2fl0m 0mm hzmaa aowhzwzwDfl mu +I¢aux¢~ bttflOk mIN.X.¢u h<£d0m lflIN.X—¢. Pdtaou fiINoKuCu P4E¢Ok Imm§fi 0H 2 mm .50 $335 M33 ~3thQO ofimxphmm H H .02 mmam‘qmm amazm.,..c3 mm \ MJZHm mH aoummam mo «OHS». a n .2“ zmwfimbzom mace I‘ HNMQx’f HNM‘st‘? HNMQ‘? HNNNY’Q HNMQ‘A OOOOffi 0000M OOOOM 0000M OOOON dééoE fiééo} 6fi£oa 6$A03 ddéAm Hmmqm OOOON HNMV‘O OOOON (‘1 6- 1... 2- A- dmmqn Hmmfim OOOON 00004“. .0. 00' moqom conned: Hmmqm OOOCN 366 HNMxtO HNMVO 00000 00000 (0.6400 OODOO 367 aflomooflo nuaim¥v mu OOq Oh 00 Qua! «0.00onc AM~I~¥w mu m¢.0¢omv .O3¢M~ mu n¢o0flvm¢ aOSMKO l— Ovowflomv “OIMZ. mu m¢omflom¢ .Oluiv mu «noOMoufl AfiJIQXO mm «Moflfl.~fl afiJ!M¥w kn ~fl.vm.~m “NJINMO mu Ow Oh 00 ~fl.NM.~fl .«Jinxu mu I.Eo¢.0d0¥u€J “ZomOOQOMIOJ AZoNOOEOKNNJ ~Xo-OZOMI~J muofiflz O¢ 00 "+1”? «ZoQVOEOXNV¥ «Zomvoaoxuflx AZoNOOEOMHNK .Zo—OQQOxuax muo—NZ 00 00 «HO ~n_.~uZo.¢o~fl~.«Z.uOOIOXOO ca Qdud «AcquV kO¢3C)flO ¢tfifi1¢ffi93€ffifii¢anfl1¢’flkn P‘QCfih‘wZOh-QCIP~QCIP~®t) 02w BOPW MazukZOU OuaioVOOflOM Dani-nuoaox OI.2.N.O&OM OuaioquEOK Q¥om¥oN¥o~¥ m®~.¢£~.flfln 0®~9N3~oflmu ~®~903~o~3~ 0h~oflh~ofifin .nv kzuflfl «I?! AOl¢¥~ k— mm— OF 00 Mint! -3¢¥~ h— mm— OF 09 NIQ! «NIOXV k. mmu OF 00 flifl¢¥ nfll¢¥~ k— mmu OF 09 ”I?! N— Na Na Na N— Na Mn N— Na Na Na N— Na N~ N— 00 mm" ¢®~ Own qu um" 0mm OF“ Ohm an Oh. 373 H m m H m- o- H H. o . H m. e... H m m wrung I ZOHBHHMABM 95:0 .0 0 .Or. I thfimom cococoucoo 3'74 .,w...,....Hmm§uH,m.H $30 . .. ....V. ......H on. myrfiwwmnw hum. 9;: ma; H. a zéLEow 375 C? C;- C.) O C: \fmm (\fu [\tOO\ a NH NH V‘ l\ .. ZED») EC uu azqu mm on: .oH.an..m.Hn...z...mzoav. .u aqua .oH.Huz..m.Ha...z._.onJ.H .m aqua .oH.Huz..m.HnH.Hz.H.u204.H .m 0zw~2~ I,>zmzH>OZ .IonuwaOX .iouuuaow .Iouvflmox Hz..~Ith~ GOO O 000 0 COM O OCH O 00” O I >1WZ~><flhw ! inJOm CON 0 OON 0 00a O 00“ O OOH FUN EON MON MON flwfl mfim mu? .n... £9” GOO GOO COM COM NON EON NON FON com com GOO OON $9” DON NON MON CON COW CON DON OON W$m CON Qmm film CON 0%” 00m CON 90m QGfl DON QOM QOW CON #0” #0” 00¢ 00” 000 00- COM 0.0” OON MOM OON EON #0” #00 O FON O MON hon NO” 0 O O OON O OON MON OOH OOH OON 90M mom MO“ mON OON $30 99m mom OON man 090 93a OON OON 90m OOM 00m 0 O O CON QON OON OOH flan OCH 0 O o DON QON OON OOH 60m COM O O O NON QON NON EON QOH NON O O O NON ¢ON NON EON CON EON CON ‘0” tom 00a OON 00‘ can con OON DON OOH «on 90‘ OON 00“ con OOO OON bflmmJ~0 man DO“ FON hon OOH 003 GO“ @ON Gmfl OOa GUN GOO OOH OON 00m OOH 00m OON OOH OON Gan GO» VON COM 00“ OON can 00‘ OON Don MN 0 an oommu¢oowu~¢¢oummqooummvoommm¢mommmvmou mwvooNumwoowmuqflouuwwnommmwcoumm¢¢omumc.ommmvHon O O O O O O O O O O O O O O O O O O NON O OON N0” 0 O NON O 00" GO" OON NOW 0 O OON NON OON NON NON Non OD" NON O OOH NON NON O NON O OO~ OON DON NON OON NON OON NOW CON «0” «CG ~0v OO~ FOO Don NOW «30 «ON ~06 «ON non CO“ OON ~Om #00 #00 «0Q ham «0' OON O O O 00¢ NON OON NON Non NON O NON O O O OON NON mON MOO NOM NON QON O O 0 00¢ flON CON WON mmfl O WOW 0 MON 333 00 OF 00 .~.oaox a H»_.~»aox c. m¢.¢H.vH .ZIfi. n. nH on or 00 H~voaO¥ I .huunbmox Na mc.-.NH .Zlfl. tn «— mHofl.... .mtzv tn .—~QflO¥ufi HIJ H~.hg.za_ mm 00 «mm n by H: ». mHuz an h H o» oo H+x.fin2~1 q h.h.¢ .NHIZ~1. m. H+$um H:.JaH..~.oaou. .0 Gama ¢+Jaz H+Ja4 HJ.¥uH.H_voaox. .n o¢wa mq+¥uJ H ... x; an .H¢~.m. paox mc.wn.~n .213. mH mm.nn.Hn HoHlx. uH 03 0» oo .H.oaox a H»..mkaox m¢.o~.o~ .211. u. on o» ow 2:53. a .....hhaox mc.h~.h~ .zrfi. an on.m~.om Hmsx. m. cm 0» 0m. .3330! a 3.30th mv.¢w.cm .211. m. 00 0» on ...oaox a H»~.mpmox m¢.~m.mm azsfi. &_ mm.n~.Hm .092. u. co 0» ow .~.oaou u Hh_.¢»aox m¢.oH.oH .293. m. 00 0h ow ._.oan u Hp~.m»aou m¢.~H.h~ HZtfi. u. om.m..oH .cu:. m. 0m. Om FM on mm Gm NM NM an ON ON ON FN ON ON QN MN NW «N ON On O— b— On m“ 385 .ueflfloxflahuuuNhQOK mtoNflmoNflq Azlflu k— mmoQOounu QNNIIw k— 00 Oh 00 «~u030¥fl~h~vONhEO¥ fl¢o®N~o0N~ alifiu l— 00 OP 0% n~O310¥lah~.0«kQO¥ fl¢ohN~ohN~ «215. k— OmaommuuflNa «GNU!» k— 00 Oh 00 ..vflfloxuahuvwahan m¢o¢N~ocNm..Z!fiv k. 00 OF 00 A—OOKOMflnbuuhukflOE flvoNN~.NN~ AZ‘OO l— mNHoON~o~N~ amutiv k~ 00 Oh 0O nquQflxflahnvfluhaOM mfiomg~o0- .Zlfiv m— 00 Ch 00 Haucflaxuah—OWAhQOX ficobmaobuu «Zlfiv kn ONuom-90- “Oulzv km 00 CF CG «avoaOXIahnncthOX mv-buuofinu «2339 km 80kg flquIOXHAhnuflathX mVoNugoNun .Zlflu kn m—~.m~«o«~n a¢~!£v in 00 Ch 00 Nfl~ ~fl~ on. Gun ON~ Fwd ON~ mN~ 386 (I (I! f ‘f aflotnoflfl gout!» k— fl’ Oh 33 «nuoafil I .h—vnhlbx _ 06 Oh 00 “menial I uhnwhhlfiu MfloaOoOfl “filiv mm 03 Oh 0O .HOOIDK H ahuvfihmal 0* OF 00 «~O3131 a ‘h—uflhiox Jhonh-hb ‘0‘!» km 0) Oh DO «~OOIDK a .b-vvhflax to OP 0% «nubibi a .h—Onhdox Ohofihtvh a¢i£. km ...3331 u ahquhIOZ 03 Oh 30 «~ODIOK I ahuvahZOK flhouh.~h “NIX. ma #6. 0h 36 ~+JuJ OhoOhoOO .OlJv l. Oh Oh 00 nD-OOoOO AZISO mu N4+Ki¥ N~+Z a 2 Oh 3h 00 mn.nnofln a23fiw Eu nm+1u¥ DO+ZRZ On! 03 3h DO ND «9 98 3b Oh hh Oh flh VF MN Ms 1| «h Ob 00 £0 30 On F? n? 387 ~+hm u bn Nauz u! «avalbt I ahuwaNhaOX 03o0$ofin .Nwite 1m n3 Oh DO (I .mealJllabmwOthox a3 Oh GO if aquIDXlahuo¢ahmOK flflo¢noflfl “ONIIO In 90 Oh DO {I ...Olbmnahuummkabx 03 0» 0O 2! HOVOIOKlAb—vhahdfl¥ Vfloanoom Analtw &~ 00 0% DO (I. .uv313¥flahuvflab33¥ 09 Oh DO {I .«ODIJIIAhOOnHFIOK c9.fl1.m1 HOH#£. mg 00 0k DO #1 a_.013¥uahmv¢~b131 00 Oh 39 II .m-Oibllahmvfiuhafix «3.03.03 avultw L— OO O» 09 XianuOIQMIahqu~PQO¥ O0 Oh OO Kinqv313¥lahnvuahi0¥ nflohDoON «Nuitv in 60 Oh DO KlauwfirfixlahvambflOK fl? Oh OO ¥l auunzbi I AhuuahIDX 00 on an en ”an Mn 3 On... a.) N} H) «I O} $3 03 FE nun VD MD 388 nflnoquh—oah-uuflhIOiv .Na.~lhuo.b—~0Nhlfilv «Nun—ibuoah~v®uh108w .quuflhuonhuuflahlfixw .Muoth-oahuubuhxflxu aflupnlh—o~k-0~h101v “Na.~IP—¢nh—vfluhloxu avaoalh—vakuvvnhiaxw «NatuflhuOAhauflahifil. «Vaoulhqubuuuahlfiiv “Mnonlb—oahuonmhlfilv .Ma.ulh~o«kuuouhlblv aNnonlhquhuvfihIOxv nflaonlh-onP—vnhioxu .MnoanfiuoahmthISZ» aflnonlh—oahnthlfigw «Maoaflh—oahauflhIOXO aflaouuhquh—vVhIOKO awnoulhuonbmwflhzalv .Ndoalhuoahmeflhlaiv .qualh-oahnv~hloflv 32m DO~¢OO~003 aNNIXv in 32m QDhm .N hZ—Za .N bz~31 .N bzmda .N hZ—IQ ¢N hzuaa om brain oN kznza oN h2.1& .N plaza .N h2~1¢ .N hzuaa .N bzn11 om h2.1& «N b2~11 .N HZ.I& .N hZ~IQ .N hzula .N hznml .N hzmaa «N hZ_Xi .N hzual m 0h 0% want «+hluhx uOInt «I #— OO« O} UDZ-PZOU £9 00 N NON NON OON Oman OON FON m9” OON CON OOH CON «.4an 93m. OON GOO EON CON OOH 00mm OON OOH DON OON VON CON OON QON «On 00— GOO GOO 00" #0»... COO NON mON 3N EON flmvfl OON MON 003 an gm GGN m0~ gnu OON OOH OON OON NON bON NON FON OON OOm COM OON 00¢ GOO GOO NON Non 03M FOO ”a.” OON OOH OON Om.” Oman ., OON mama OON OOO OON 00m. NON NON NON hON QON cog OON GOO OO~ CON OO~ NON OO « gN 3m... 00 ~ NON FOO OO~ OOH 00‘ $3M 09%.. 00 « OON OOH OO— DON 00m On: DON OO— ¢ON con 00— OON com com OON 00m 00. DON 00.3 ))H Oman: O)“: 303 @Ofl Don 00m... DON OOH 00“...‘ 03V Dig fi’a DON DOV 00V. COM 03“ 00“ NO“. DOV n58 )1“. C3. hhu 2:. max min. n2. an)” a)“ 00“: 00.1. con. 00$ ~-OU. FOR how how 33m. CON SO“: OOH. ODN V35 V33 ODN flfino ODN h)..~ him. 39m. 03m. 93m 030 min. 0)“: 03M 11%. 92". 03V. 01m com 9n“; 0).". saw #3». can com can com. on" can can can can NON NON IJN Farm” «.33.. DON DOM hm?” OOH \imnu 11¢: OON 13m” CON DON OON DOM. now ~ ow NON bON GOO OO— DON €00 OOu 33a VOW 33— Om.“ an)“: 00 a #3.“ h)? Os: DOW. On: )iv 31%. OS“ 13% I)“, CO d 0%.“ 0a.». 00 d bin 01%.. 09. van. can. 90 q GOV «on 03 a OOH. 330 00 ~ OOV O3“; 390 «we (bznunz Naonu— ON 00 annwfluoamv>kZ- cu OhZ—m .aflu.DPZ~..©-#PZ~.nfi~vmb2~onflu~ahZ—.~0~thZ~oaflnuakzquO-OkZ~N oaflavZanoaouvihZOoaou«JPZno~O-¥k2~oaomvfikzuoafluu—P2~oa®~.IhZ~a oaouawhznououvwh2~o~®~thZ—onoqthZ~o~O~wth~baouvfl¥Z~ ZO~m2w2_D emhw 2~.c~ .MEI whaox. k_ m: u mkaox m..m~.c~ “Nil whaoxw m. ~5 u mkaox m~.m_.m~ .nz I mpzoyv m_ on mbaox "Noun! on 00 ._v>bz_a~mz ...Dpz_aomz .uuhkz~u®_z ...mhz_n@~£ :vahz_nb_£ ._.c»z~uo—z .~.ka~um.z .~.0kz~uc~£ ...z»z.um~£ .~.z»z.um~z AanhZ~u22 ._.¥»z~no~z ... shzuuwz 5.. .hzuumz .~. Ibz_uhi .m. ubznuoz ... w»z_um2 ._. o»z_n¢z ~_. th~um2 .~. mhz~umz \' v0 2m cm. s.» cc Nu n; ma Q" Mn N— 392 ©~oQ~o0~ .«E I «Ni bOoFOoQO “~NE I m0.mwo¢® OOoOOoWO ”Go—OoOO Omoomomw Ffiofimoew wwommoflfl flmpfimomw «moaw.C$ OboOhomh bhohhoflfi Ebomhoch ONE ACNE I 9‘3 .0“: I flax .m~5 I ha: ahfli I o~z .QAE I on: Am“: I ¢~i avfii l m_z .mmz I Ngi ANNE I «"2 .finz I 0~2 .0": I 02 whoMFoNb «OK I 32 whoqhoOh Ami I #2 mmomm.dm obi I ouni whack» u~ a whaox mhfloxw an a whaox mhanO u_ a mhflcx whaoxv um I whaox whaoxu L" I mkflox mhflox. u~ n mkaox mPaC¥w m~ n mkaoy whaoy. m— " mkaox whaoz. m— “ WHGO¥ mkaoxu k— " mhaox WPQOXO L— n whaox mFQOXO m— » mkzox mkaoxu mm a mbaox mbaoxv mu I meOM mkmoxu um I whaox whaoyv mu 0F 393 -~oO~aoqm~ amai OO—om0~000~ «Na: FO~.©O—oh0~ auai m0~o¢0~om0~ aoni mO—umcuomou ~02 OOno~O~oCO_ ACX FN~9~Q.FN-FX 00.00.00 n03 mmohm.mm «DE Omom¢o®m .QE wha0¥v k— MN OF 00 OIN~Z mkloye m. ON Oh ow oaqui mbaoxo m— mm or 00 OuO~S Whaox. u— mm Ch 00 Onoz WHECXO l— ON Ch 06 OHQE whaoxv kn MN OF 00 our: WEED!» m~ mm Ob 00 one: mbuox. k— MN 0» 00 Cum: mhuoz. mu mm OF 00 Ouaz Whaoxu mu nm Oh 0O Oumz NvoNNoN¢ aszmhaO¥v A— NN Oh 00 OHNE «Noomodw .mi I wha0¥v mu 0N Ch 00 00" @0— 50¢ 00— mom #0" mom NO~ 00“ «On bN~ mo 00 NN ~N ON O~ 394 mNovmomm n—lxw v¢.mm.¢q .MIM. m_ on Oh 00 WhEO¥ fl GO! hNoQNoPN anxw k— flmoflmnoflm nnwz mN~o¢NN.MW~ mN~oNNquN~ “Naocmuoawu 0-o®_~o®- hfldoflmaobnn m—aocnnom—u mmdoN—_ofl—~ ACNE “OHS AQ~E abfli aflmi amui nvui om Oh 00 wha0¥uox k— Cunmx Whaoxv l~ mm Oh 00 ouomi mhflO¥u m. mm Oh 00 Quad: Whaoyu k— MN Oh 0w onOuE whaoxv m~ mm Oh 06 cu h~2 whaox. in MN Oh 0O ONO“: whaoxw u. ON Oh OO cum“! mhfloxv um MN Ch 06 Data! whaoxv in mm Ch 00 Gum": QN 0m— mmn Gm“ MN" NN~ «Na ON" on“ maa bu“ cu— m.— €- mm" N- nu— on“ 395 00 thOX I mqmomvuomvn amulxv OM WhflO! N nfimoOv—o~vu «Nul¥v cm Whflox I OfiaofimaoOma A-IMO ON whaox fl hfinoemnohmm “oquu cm thOY u mmmodmnommu “lev Om Whaox u mmaommaommw AGIXV om mhflox a ~M—oOflmoaflu «lev CM Oh 0U MFQOM up Oh 00 WPQO v. in Oh 00 ~FQO¥ in Oh 00 IhQO¥ u— Oh CO whflox k— Oh GO whfiOX km Oh 00 QhGOX &— Oh 00 whacyuUPQOX no.co.ho .ocx. m~ on o» oo thCMHChaoy moovaomo amev u— . on o» co mth¥u¢:3I’OIV u M~ Na Na Va Mn Va 0 O O N N C N h h h Ma Mn 9 O 0 N V V b h h h Mm U. C ¢ V V Ma ”Nu m Na M. Ma Ma Ma M— e t a v n; M. a N— Na Na Mn N” Nq 32m Old QOPW V OF 00 on? «N+¥ux NQKHZ —+¥n~ ONoONoO— “NWNIKv m~ ~¢oun~oauufiuu¥~ om" hZ—IQ wDZ~kZOU Ofla-flmw¥ 6.3”" m 00 ~+Wu1 moGoF “€13“ l~ fl Ch 00 AZuQQO¥3.5—Qun¥ «+557 fl 0% 00 AzwDflOMIa7.QUJM ”+3“? finch—ow a¥12~ 1» ON 11h N~ ha 1a 12 1d 1d 12 12 1d 1d 12 12 1d 11 11 11 11 11 11 11 11 11 12 11 1d 12 11 11 11 11 11 11 11 11 11 12 11 12 12 12 12 12 12 12 12 N 9 18 12 12 a 1d 12 11 11 11 12 1d 1d 1d 400 401 o o o o o o o. ov o o a o o m m o A» _nu o n w w n o o b an o b "a o o m o o m N e h m .s b o o q o c 4 _nm gym «ohm “3.8452315 J 5:: b «Baa aanm e u1p.efiom-wvan ammuummu. m fixnnn an.nvamouunnvpmmnwa 01H»: m 8 e Min .3» “on.fluu.Ae.«u~.mn.nv amofivV .a.namm , .nqnvq. u¢wxou “you qqpmmwma .Amn .qv axon noummmen, ‘uuunm u4¢ooum «HHHam a mmgasm ammmqno fifififififififififififi°°°° 402 j» m4moomm smam_.oz~. Hazaom onm .xou..m...c>rm.xm~.m.fl.b_.oxfl. pqzaom ohm .\o~..n._..orm.xm~.m~..n..oz~. p_.oz~. b 1 404 Qo¢ov AQUA3.QZO£V l— .n?. nsswufi ®~.~u~ N03 08 veuw N? Flull . PZJEDman~IN~. u>4huarx. mJ<>xu»3_ umzviwdztomn . 7.5 _ ._ ~09; U” v.21» {1.1.20— . .37. ”Hausa (1 2.1.4:». a . or: . drink can FLL_EJ .2u»:~393< fl~ +1¢~.xca \toa~€ m~ ‘10—.XV\hquxux :3 fiofiqa a. .1~N.xw\uzau:¢.arfl. quzou .\\c-.fifl_. @Iu.x~¢. hzxnom .\\O-oflfl—. lmlw.x_¢. h<€501 .\\O~_.fi__. «LN.X~¢. F4?m0u .\\o~_.n~_. a515 EH 0H .1...“ Q» i «m mpg: mum.“ 0000‘? 0000‘. OOOO~t 0000* coo-0“ no... «MANN wmmmm C ”(WOOD ”M000 “be 94ng N H H H m .02 @383 mu x mom 0H ... Sign. mo 52» fi .. $8 I Emfibdfiwm ... 4.10 HNMfl‘N HNMQCV‘ HNMQQ HNMVN HNM‘YN N N N N 0000\1' 0000‘? 00004 0000s? 0000\‘2 0 0‘5 0 o 0 411' HNMQN HNMVI’N HNMVIN HNMVN 1"le m m m m “8‘: OOOOQ 0000\1’ 00008: 00004‘ 0000»: .06 .00 .00 coxoqoc (Oi‘nOFa. mxtNCDh 0000515 0000b. 4R Hmmqm HNMQg N 00004 0000‘? 0000“. 00000 oo— Oh Ow Flu! No flO.NO.nO ~u~!~¥. w— an 00“ 0» 9w auux so ~0.ooono .Naialu m. MG flcoGVoflw note»..- ku In. ncoifigflv «Dial. mm fin flvoflfioNG Aoluuv: u: hm: ”toga“; going: ...: On «n.0flo«m .Cchlu m- an _n.nn.~fl .MJlnxw mu en "flown-‘n .NJINX. mu MM 00 Oh ow un ~n.un.~m .qugxu mu “Sutuogfiact. .2.fl.310¥uflJ .8.N.OIO¥«NJ atouuaia¥n~4 V~.1at Ct 03 ~+1Ifl Azoevadoznvx .Zoflvalaiflflx .Z.M.DIO¥uN¥ azngvaxoxuax N..~u2 0: 0c uufi .N~.~nZ..¢.~n—..Z.uwaxatww o~ Q¢Ma “avuwiw high. « ..tnuvv b(!IOL ac .Nuovualax ZQ—wzmtua ozhm £41001Q Q3 U~Znt n U3 ImJJDm hamieh ¢ All, OOuocmocoa fifloNflofifl «woonoafl $homboah hhoOb-hh fih.¢bomh mF.Nhofib «hoOFo~F ®®om©o00 No.00obfl no.¢o.mo uumx notu¥~ kn 00¢ OF 00 Nina! “~!H¥~ la OO- OF 00 Nun! AN!«¥. la 00“ OF 00 fling! «Mia!» um 00" 0F 0Q flumx Aclnxv mm 00“ OF 00 Qua! Amid!» l— OO~ OF 00 Mind! “Qinxu mm 00“ Oh 00 man! nhO«¥. mu OO~ Oh 0w @fiuux Amt~¥u kn CO— 0k 06 on"! .Oiulv k— OOu Ob 00 Flag! .Ouiuxv k— OO~ Oh 0U had! 60 mm Nfl «3 09 3h Eb FF Oh mfi QF NF Nb uh 0F 00 #0 00 m0 #0 m0 N0 {.15 vwnomN~.VNu NN—.~N~oNN~ ONmoonuoONN D-.h-om- O—«ofl-.fl- Qm~.fl-.¢- N—~.«~—omu~ Gnu-Oouoonu $0«oh0~om0« OOuomonoood CO—ofi0~o¢0_ Nego—O~.NO~ ..tmx. &— om. O» 00 MEN! ANINK. k. on‘ or 00 n0uN¥ .mlmx. k— on~ OF 00 muNx .QONKV mm on" OH 06 #«NX .msmx. m“ on“ 0k 06 Mlumz «aim!» mu onn Oh ow Mam! «FIN!» mm on” Ch 00 Oiumx .mtmx. m— om— or 06 mum! salwxw k~ emu Ch 00 htlm! «Calm!» k— Ofla OF 05 hum! AnafiNEv tn on“ 0» Ga mum! awatmxw u— «Nu omd Onn wad b—a on“ man Gua nun Nu“ «mu On“ 00~ mod #0. 00. mo" 90‘ ”0» NO» «on 00¢ 416 onuomvmoomm mcaohvuoflvn 0¢~om¢~oflvfi ¢¢~oflv~oGV« M¢~o~¢~ofld~ Q¢no0flno0¢~ mflquM~o3fia Oflaommnoflmu *flaoflflnovflu NMuoammowmu onaommuooma Miuflx .mimx. m. 03“ 0» co nah! .¢in¥. kw ©m~ 0h ow qua! .ntmx. mm mam 0h on acnnx Aalnxu &. can 0» 0o nNfl¥ .hlflzu mm 09— Oh 39 Olufix .mlnx. l_ on“ o» 09 many .mtmz. Lu ca" Ob ow blafix neaiflxu mu 0m" 0% 90 hflflx anulfiin Ln aha OF 00 Qnflx .lemxu mu «NM! notmxu lu Ofln Oh 00 NIHN! 06a NV~ P3“ 06‘ 96— #6" Nd“ N¢~ uvn Ova fifiu nflu hflu Gnu mm“ «fin flfla Nfi~ «flu on" mm. ¢N~ bx,“ 00‘: a .55. « flh~o¢\_oflhn fih—oflhuofl%« abnoOhnomba afluo$0~o90~ FOHoODaofiflu 41? flonoNO-fi0« «ouooomoqou Ofluonnuoonu cm..nn..¢n~ Mano—Dquflm .ctcxu Lu n3. 0» ow cu?! “ntcxv mu nn— 3% 36 wine! AOQVM. ma nnu 0k 30 mu¢¥ «bier. la mm“ 0» CG Oiuex .QIQX~ mm mm“ 0» 00 one! amthw 1“ an“ or ow Flaw! no".¢c..nou .ou3cm. mu flflu OF 03 h"?! a-IQ¥u L. mm. or om muvx ~N~1¢¥~ km «any Asifix. mu on" O» 06 Minn! «ulnxv &~ on“ Oh 36 man! .Nlnx. t~ can Ob ow nhu ¢hu 3h“ NF» «fin Ohm 30“ 30“ how 06“ no“ ¢0~ W0“ Mon «0" Don on” fifia Qflu “flu ND— «nu Gnu 4.18 OCDNJUCBOi3C>N 3(30 t. onwnnhm CHI" 0 fi'QP“P'3 Ddfl~')éfifiifl 3<3¢'¢ QZM 02“ 3.0in flDZuhZDU Olai¢¢v3131 Oflaioflwfldal Ouatovuolfll Ouafioav3131 exofltomzonl oac thIQ nD—ovflaoflnn finquUuoflfla ufiaoOfiaoflbn )h—oflha.)hn «nan .ot¢z. mm 03. 0h ow Nl87£ .~I¢I~ k— 03. on 39 MIGX .Mlvt. 1" n3. 0h 0a flta¢1 antex. mu am. 0b 00 mavx N“ N— M« M— Ma W. Ma Na Ma Ma Na Na O¢ OD— Qflu fifla MDn «Ba ODa 35‘ nbm Nb» 419 mafia. mam 20H mamoomm 9530 0 .0: HNflI—l m h a on m m H m Hmmaaém conccono 420 NH? méuomw $40.9th.? Mm: 20H agm ammo b .03 mezm>§hm maqmmmm monmmmwomm nmaxo v .03 Monmmmmoomm oz 0 Mmmxubdmwm ..n..nu. hazaan .u .0...nz..m.~n...z._.w204.v .m o.moom c.0000 o.mmom NN0000 NN¢00¢ .N0000 .Nv006 0M0000 0N0000 0.0000 0.0000 0.0000 0.0000 #.M0Ofl #.fl0cfl 0.0000 0.m00m NN¢00¢ NN¢OOQ .NQO0G .N¢00@ 0N¢00¢ 0N0000 0.0000 0.0000 0.m000 0.0000 #.0000 #.0000 0.0000 0.0.00 NN¢¢0¢ mmcmov .vaoc .N¢mov ommmom omoooo 9.0000 0.0000 0.0000 0.0000 h.flvom #.nmon 0.0.00 0.0.00 0 0 N. wwvooc NM¢¢0¢ .Nvooc .mccos omocoo omoooo 0.0000 0.0000 0.0000 0.0000 #.0000 b.n¢om o.¢no¢ 0.3300 .. . N. 0. N NN¢00¢ NN¢¢0¢ .N¢00§ .N¢¢0¢ 0N0000 ONOOOO 0.0000 0.0000 0.0000 0.0000 #.fl000 h.flvom 0.0.00 0.000m .. 0 0 0. m Im oXMoOImo h4200k bu «ZuJO*> NIfioXfl.CI~_ FQZQOK 0« «ac uuQ—oOIqe PdEEOE mu aZ.JO—> ~I®oXWoCI~v hdzaOl ¢~ ~WJ4>QMFZ~ U~QOJNZIhqufloOI~v hdeOh fl— ~0~o~luo «mark—i. om 04mm a0~o~IZo~Nounmo~2c-0204~u 0N 04mm a0uo~IZoaNo~n~anou.OZImo01~u PdlflOl flu— aZ~J5_> -IOoOIn~ h<2¢0u Nan aZ~JDu> mIDoOI—u FiEflOk un— aWJ¢>zdh2— UmOOJmitbuooruu h1210k ho" aflnoXNofl—oXC..M—oxnwfion~oaX—onnunexnonxn-n—vtoxgoOInv h<210l OO— aQQ Iv.h£ IQoh 802—! 19.08 IQoO Hozul IOomQ I€o¢< Iv" eta 10.”! IV.” QOZ_I IOoNS I'oN 102~£ IOo~Q I€oOI- h<120k mo“ .OfloufluonnuZ<¥_ oom Odwa aavuvoav kflwkZ~ U—DOJME OJJMU o 0 ml 0 ,o w NE N moan: «a o o o 0 .0 O O WJ<>Ewb2_ U—OOJUZ <40_> o 0 ml u o w NZ N 102“: .a o o m 0 N O O mJ<>Quhzu U—DOJMI Z—JOn) ~— 00 Q [s Ni N dozui «Q 0 m 0 O W4¢>QNFZ~ U~QOJME ZnJcn) n thmed I thwim)03 P003 QZQ m4<>1whzu UuQOJNZ I OnoOZ I >¥WZ~>quhz~ u~204uz. whocq.xk_zuoz_1 N3 o bl a o h N2 N mozuz «1 o o m 0 N O O 1.40 0—FEFI4 ECFFWE IZUGH fiOEZDfi a05~nvv 20”“— UC U ~ H mom ZONu~ Fu_+— 00 m Ln Foo ZOuuL XuL+~ 00 m Xflxouo ZCbNE Zu3+_ CO m __n2o- ZCfiu—~ LLN-+» CO m XX fl LLopm ZCOnKX CTN—Z... ~o 2C—oZONaZCUoZCbizCUoZCO UCZOI —. ZO».ZON.ZOU¢ZCho2CUoZCO 0024~ZCW WdOU WZC RLSULTS 56T - , . .\ .9": GILEERT ROLLER II -~ 10 11 N 10 ll OJ (“I :' 41.1 N 10 11 N OJ N N 10 ll 12 10 11 I} 9 IO 12 11 F“, in I0 I! 12 V} ' N 10 N 10 II 12 :n 10- 10 H 12 10 11 II 18 10 10 f“: . 9 IO 11 IO 11 123 10 ll 6 .j‘ N 1:3 11 10 10 11 F} N 10 11 N {*1 11 IO N N 12 IO 11 11 N 9 4.43 'n 11 10 10 11 122‘ OJ A 'n ‘ J \ 12 11 10 (’5 Q n l .‘J a") 10 11 .fl '9 10 ll .0 N [I "\ . \ L0 N Q. 10 11 b N N 10 ll 13 ll 9 £1 10 67' N N (U (\3 N 33 10 11 12 10 11 N " 10 11 U" 6 a} 12 ll 12 _12 10 IO 11 (\J' 7:3 10 ll 12 ‘3 10 H N 12 H 10 N 10 I! N 11 10 ll 12 12 12 10 10 ll 9 N 41.5 a; 10 11 {D 10 11 an: (‘3 10 11 N 10 11 LO L0 11 N 1'0 11 '6 12 10 11 9 m N «‘14 x 11 10 10 11 12 12 IO 11 ‘i a") (‘J 37 N 10 8 4'7 12 11 ll 10 10 ll 11 {‘d 18 12 12 if) N 9 10 Ln 0 N‘ 11 10 11 TJ O\ 12 11 10 10 11 12 12 10 11 N (7* N ‘4) 10 11 N (‘J 11 10 11 10 10 11 E) 8 N 11 10 10 11 N 12 11 12 10 10 :7" 447 9 11 12 10 ll 10 11 11 10 12 9 9 10 10 ’11” N N 11 N 6 31') 10 ll 0 I) 1!": 10 11 u’) .n 10 11 ES 12 10 11 :5 9 if! D . 12 11 10 £1~ 12 11 7 ‘9 10 11 41.8 12 ’5‘ 10 11 12 10 11 12 11 10 10 12 12 11 10 11 10 11 9 12 11 10 12 10 11 11 9 11 10 10 12 11 10 10 12 9' 12 11 10 449 9 10 11 6 6 12 7 9 10 11 :11 L") 12 10 11 £1 12 11 10 'u") 12 11 t3 10 11 m 12 8 10 11 10 N 11 10 11 12 11 10 11 9 1O 10 £5 8 N 450 N 11 10 9 10 11 1“). 10 11 12 11 a as 9 ‘1) 10 10 11 9 LJ ("1. 11 10 11 10 10 11 N 9 9 10 N , 11 10 11 9, 9 11 10 12 11 11 10 10 451 12 11 11 10 10 10 N ’ 12 11 10 10 11 Q m 10 11 :9 L11 L9 :3 10 11 LO LO 10 11 9 2) L0 12 11 £51 10 10 11 {D ,a a: 12 in 11 m "‘ \1 3'1 :7) 10 11 g": 12 11 12 1O 10 .57 La”) 10 11 9 «452 N 11 10 en 18 11 11 10 10 11 9 9 10 12.” 1 '0' 9 G. 11 10 11 (:1 12. 10 11 "a OM Ma ad Ca 0 N N” Na NH «a N« N” N“ «a N~ m.“ - Na nu O~ Na Mg M; «a Na Na d“ Mg nu O“ Na Na - «a «a an O“ OM «a ma Ca Ca mu Cu O— 3 \. ~a .d on Ca «a ON A: 9 - n: n: sax/mas FNNDD‘QQDQhmmOiDQIJSDID 4,13C0i3C00‘x00‘00‘00 ‘0000000000'OOOf‘F-l‘hfir‘hhb-b 'n '51 n ~ Fifi QQQQQ¢¢¢¢¢¢OJ uJJ O¥.OJu¥ «h 00 ~+oyuox ~+OJuOJ Afi~>0¥ n¥¥ m.~u1 «b 00 mnox ouOJ oufifi Amonu~.~_u>04. o¢¢ 94mm aan~uomv hazaom .m..u_.._~>0¥. .nc aqua ..M~.m. hdxaom .0.~I—..~.Mhozv omc Odma n.0~.0. hOJ..m~>ox o.0.m»oz Zoumzwzuo .4. 03km: I RMJJOH hammJ_0 0m 1.59 mow OF 00 33 I “XvWDZ N0~o~0~o00~ «NIX. mu Couui mo" 00 Nuzunuu MUZ~uZZ «OZ—NEE Oh Oh ow MUZ—a- HUZ~uZZ Nuznuii Ofiowaohfl AOIJ. km Oh OF 00 ”DZ—flu— NUZnflZZ MUZ~HZZ 0* OF 00 NUZ—uuu "DZ—fizz mUZ~nIE OOomOovo “€14. k— Ob OF 00 «OZ—nun MUZ~HZZ NUZ~IZE Oh OF 00 HUZ—u~— NUZ~RZZ «Uznnii floomoomo .mlJu kn mDZ~FZOU «+232 anemPOZufluzm Goa DO #0 00 m0 ¢0 M0 N0 go 00 0m 1.60 m m v H «a 3 nu m m - m m Q 02m QOhm MDZ~FZOU 0m OF 00 ~+JIJ «hoahofiofi ~01Ju mu a0o~I~o-vaEe o0? IUZDQ na¢~.0a hdiflou ”Coma—oa*UWDEv omc h2—QQ nae—.0 .01“ v P 0h 00 h~.%~.o~ newblfiu u~ Q+5ufl max—blow ~+JuJ CunJuQQFMXJ Onaxuadfiflox c.—nx mg 03 ON Oh 00 0+Jud ~0.~nm.~z.ndafimzw.m kzmmu wbzuhzau ~+3fl5 a .1 v 01% man . v. . fidu‘XOv. o.~u! m" 00 ¢~ or 00 .+£nx «e.~:.0d .mlzu an cu o» 00 N+Iu$ an Oh Do M+XN2 N~.®N.mw .mIZ. a. ¢— 0k 00 ¢+£u$ v. 0» ow m+znx swoflwo .u12u kn m V an hm @— on (ll flu N 0 d‘¢ 11 11 11 11 in 11 11 11 11 ~27 (,0 In} 9’ 11 15" 11 11 ‘1) 11 5 11 G) if} ‘. C" 1!“: 11 11 ... c3) 11 11 11 ii! '5‘ ‘1 1‘? 09‘ 11 1'1 11 11 LH 11 11 11 L0 11 11 11 11 11 9 {1'1 9‘ 11 11 468 11 151 11 £5 11 11 ’9 9 :n 11 11 11 £1 at? 11 11 “'4" 11 C13 111 11 11 <5 11 11 13 11 11 ‘5‘) 4'1 11 11 11 11 11 11 11 11 11 11 11 11 6'1 11 11 11 5 11 1,69 11 11 11 If: 11 11 11 1:": 11 11 {$1 11 5 11 11 11 11 11 m 9 11 11 L0 11'} 11 11 :fl 9 10 11 11 11 '{x 11 '9 Ln 1 11 11‘. 11 11 1'3 11 a 11 11 470 f-Di 11 11 “' if? 11 11 3"} (1': 11 (7‘. 11 11 sfl~ 11 11 9 9 11 11 A71 meqnmum . m3; ... ”.5 ..m m ... 1.3m. 5w Ha fiMAAQm emmmd Ho BIBLIOGRAPHY 9.0252 Alt, Franz L. (ed.). Advances in Computers. Vol. I. New York: Academic Press, 1960. Alt, Franz L. and Rubinoff, M. Advances in Computers. Vol. III. New York: Academic Press, 1962. Andersen, A. 0. Lessons in Harmony, Bookpfi. Boston: C. C. Birchard and Company, 1938. ‘ Apel, Willi (ed.). Harvard Dictionary of Music. Cambridge: Harvard University Press, 1956. Arnold, F. T. The Art of Accompaniment from a Thoroughbass. London: Oxford University Press, 1931. Berkeley, Edmund C. Giant Brains or Machines that Think. New York: John hiley & Sons, Inc., 1939. Berkeley, Edmund C. and Wainwright, Lawrence. Computers, Their Operation and Applications. New York: Reinhold Pub- lishing Corporation, 1956. Blom, Eric (ed.). Grove's Dictionary of Music and Musicians. new xork: St. Martin's Press, Inc., 1955. Booth, A. D. and K. H. V. Automatic Digital Calculators. New York: Academic Press, 1956. Bukofzer, Manfred F. Music in the Baroque Era. New York: W. W. Norton and Company, l9h7. Bullis, Carleton. Harmonic Forms. Cleveland: Clifton Press, 1933. Burrowes, J. F. Thorough-Bass Primer. Boston: Oliver Ditson and Company, 1674. Carpenter, Nan Cooke. Music in the Medieval and Renaissance University. Norman: University of Oklahoma Press, 1958. #72 473 Chailley, Jacques and Leduc, Alphonse. Traits Historigue d' Analyse Musicale. Paris, l9k7. Charlier, Henri. Jean-Philippe Rameau. Lyon, 1955. Chorafas, D. N. Programming Systems for Electronic Computers. London: Butterworths, 1962. Colman, H. L. Smalluood, C., and Brown, G. W. Computer Language. New York: McGraw-Hill Book Company, 1962. Combarieu, Jules. Music, Its Laws and Evolution. New York: D. Appleton and Company, 1910. Control Data Corporation. Fortran System. Minneapolis: Control Data Corporation, 1961. Cutter, Benjamin. Harmonic Analysis. Philadelphia: Oliver Ditson Company, 1930. Einstein, Alfred. A Short History of Music. New York: Alfred A. Knopff, 1953. Fahnestock, James D. Computers and How They Work. New York: Ziff—Davis Publishing Company, 1959. Foote, Arthur and Spalding, Walter. Modern Harmony. New York: Arthur P. Schmidt Company, 1926. Girdleston, Cuthbert. Jean-Philippe Rameau. London: Cassell and Company, Ltd., 1957. Goodrich, A. J. Analytical Harmony. New York: John Church Company, 1895. Grimm, Carl W. Modern Harmony. Cincinnati: George B. Jennings Company, 1900. Hansen, Peter S. An Introduction to Twentieth Centugprusic. Boston: Allyn and Bacon, Inc., 1961. Helmholtz, Hermann. On the Sensations of Tone. New York: Longmans, Green and Company, 1895. Hiller, Lejaren A. and Isaacson, Leonard M. Experimental Music. New York: McGraw-Hill Book Company, 1959. Hindemith, Paul. Traditional Harmony. New York: Associated Music Publishers, 194%. Inall, T. E. (ed.). Electronic Computers. London: Iliffe and Sons, Ltd., 1956. 1.74 Jonas, Oswald (ed.). Heinrich Schenker: Harmony. Chicago: University of Chicago Press, 195%. Lang, Paul Henry. Music in Western Civilization. New York: 1%. W. Norton and Company, 1941. Ledley, Robert Steven. Programming and Utilizing_Digital Computers. New York: McGraw-Hill Book Company, 1962. Lehmann, F. J. Harmonic Analysis. Oberlin, Ohio: A. G. Comings and Son, 1910. MacFarren, G. A. Treatise on Harmony. London: Harrison & Sons, 1585. Machlis, Joseph. Introduction to Contemporapy Music. New York: W. W. Norton and Company, 1961. McCoy, William J. Cumulative Harmony. New York: Ginn and Company, 1916. McHose, Allen Irvine. The Contrapuntal Harmonic Technique of the Eighteenth Century. New York: Appleton-Century- Crofts, Inc., 1997. Mulder, Ernest W. Harmonie. New York: W. De Haan, 1997. Piston, Walter. Principles of Harmonic Analysis. Boston: E. C. Schirmer Company, 1933. Postley, John A. Computers and People. New York: McGraw-Hill Book Company, 1960. Rameau, Jean-Philippe. A Treatise on Music. London: Fielding and Walker, 1737. Riemann, Hugo. Handbuch Der Harmonielehre. Leipzig: Breitkopf und Hartel, 1912. . Harmonielehre. Leipzig: BreitkOpf und Hartel, 1880. Salazar, Adolfo. Music in Our Time. New York: W. W. Norton and Company, l9h6. Schillinger, Joseph. Schillinger System of Musical Composition. New York: Carl Fischer, Inc., 1936. Shepherd, F. H. Harmony Simplified. New York: G. Schirmer Company, 1896. Siegel, Paul. Understanding_Digital Computers. New York: ' John Wiley and Sons, 1961. 475 Slominsky, Nicholas (ed.). Baker's Biographical Dictionary of Musicians. New York: G. Schirmer Company, 1958. Strunk, Oliver. Source Readings in Music Histopy. New York: W. W. Norton and Company, 1950. Tiersch, Otto. Harmonielehre. Leipzig: Breitkopf und Hartel, 1868. Von Handel, Paul (ed.). Electronic Computers. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1961. Woodward, William H. Studies in Education Duringpthe Age of the Renaissance. London: Cambridge University Press, 1906: Articles and Periodicals Berkeley, Edmund. "Braille Translations," Computers and AutomatiOn, VIII (October, 1959), 12, . "Computer Art," Computers and Automation, XII (January, 1963), 8. Cone, Edward T. "Analysis Today," Musical Quarterly, XLVI (April, Eckert, Wallace J. "Calculating Machines," Encyclopedia Americana, V (1957), l6l-l62d. Higgins, Phyllis. "Three-Part Music with a Computer as One Part," Computers and Automation, VII (March, 1958), 8. Hiller, Lejaren A. "Computer Music," Scientific American, CCI, No. 6 (December, 1959), 109-120. Hindemith, Paul. "Methods of Music Theory," Musical Quarterly, XXX (January, l9#4), 22-23. Katz, Adele T. "Heinrich Schenker's Method of Analysis," Musical Quarterly, XXI, No. 3 (July, 1935), 311-329. MacDonald, Neil. "Music by Automatic Computers," Computers and Automation, VII (March, 1958), 8. . "Over 500 Areas of Application of Computers," Computers and Automation, X (June, 1961), 133-137. Papworth, D. C. "Computers and Change Ringing," Computer Journal, III (April, 1960), #7. Slominsky, Nicholas. Book Review of the Schillinger System of Musical Composition, Musical Quarterly, XXXII (July, 1956), 969-970. Q76 Von Glasefield, E., Perschke, 8., and Samet, E. "Human Translation and Translation by Machine," Engineer, CCXII (September, 1961), QQZ-AAS. Unpublished Material McLean, Barton. "Evolution of Music Theory from 850 to 1960." Paper prepared for a class in Theory #22-h23 (at Eastman School of Music, Rochester, New York, July, 1962. ROOM USE cm i P- , ‘ «‘91; d p (.7 1B. ’1’... k 31“"? “I”? . .y V W 1 } a. «,1 . I, fit at! W C. MICHIGAN STATE UNIV. LIBRARIES WWI H1 ["1 ”I W WI WIN W W“ WI “H WI WI 31293010590101