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ABSTRACT

THE REDUCED KNOT FLOER COMPLEX

By

David Thaddeus Krcatovich

We define a “reduced” version of the knot Floer complex CFK−(K), and show that it

behaves well under connected sums and retains enough information to compute Heegaard

Floer d-invariants of manifolds arising as surgeries on the knot K. As an application to

connected sums, we prove that if a knot in the three-sphere admits an L-space surgery, it

must be a prime knot. As an application to the computation of d-invariants, we show that

the Alexander polynomial is a concordance invariant within the class of L-space knots, and

show the four-genus bound given by the d-invariant of +1-surgery is independent of the genus

bounds given by the Ozsváth-Szabó τ invariant, the knot signature and the Rasmussen s

invariant.
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Chapter 1

Introduction

In the 1980’s, Donaldson applied gauge theory to smooth four-dimensional topology, with

remarkable results. Combining his results with those previously known in the topological

case [16], Donaldson showed in particular that many simply connected, closed, topological

four-manifolds admit no smooth structures [8]. In short, understanding the gap between

topological and smooth four-manifolds required genuinely different techniques than those

which had been useful in higher dimensions. By counting solutions to a PDE, up to gauge

equivalence, Donaldson introduced invariants which were sensitive enough to distinguish

different smooth structures on a topological four-manifold [9].

In [12], Floer defined the “instanton homology” of an integral homology three-sphere,

and showed how in certain cases, the Donaldson invariants of a compact four-manifold could

be computed from the instanton homology of a separating three-manifold. While counting

instantons is still difficult in general, Floer further showed that the instanton homology

groups of Y , Y ′ and Y ′′ fit into a “surgery exact triangle” [14], where Y ′ and Y ′′ are the

manifolds obtained by doing 0− and 1−framed surgery, respectively, on a knot in Y (this

required enlarging the class of “admissable” three-manifolds on which instanton homology

could be defined). This allows some computations to be determined algebraically, rather

than analytically.

Still, one of the primary difficulties in computing Donaldson invariants in general is the

fact that the moduli space of solutions is non-compact. A further revolution in topology us-
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ing gauge theory came with the introduction of the Seiberg-Witten equations [69]. While it is

conjectured that the smooth four-manifold invariants defined using the Seiberg-Witten equa-

tions are equivalent to the Donaldson invariants (for an appropriate class of four-manifolds;

see [11] for partial results), the moduli space of solutions was shown to be compact, making

the computation of invariants considerably simpler. It was tempting to then try to emulate

Floer’s approach, and define a homology theory of three-manifolds which could be used to

compute the Seiberg-Witten invariants of smooth four-manifolds. This was the underlying

motivation for the development of Heegaard Floer homology, which provides the context for

the rest of this thesis. 1

In [54], Ozsváth and Szabó define a collection of invariants of closed, oriented three-

manifolds, known collectively as Heegaard Floer homology, which come in the form of various

graded abelian groups. While one of the goals was to compute four-manifold invariants

from invariants of separating three-manifolds, these three-manifold invariants themselves are

defined by first considering a separating two-manifold. That is, the basic input is a Heegaard

diagram, corresponding to a Heegaard splitting of a three-manifold [24]. In contrast to

counting instantons, which involves solving PDE, enumerating the generators of the Heegaard

Floer chain complexes becomes a simple combinatorial procedure. Defining the boundary

map on this complex, however, still requires solving PDE, in the form of finding pseudo-

holomorphic disks satisfying certain boundary conditions. Nevertheless, versions of Heegaard

Floer homology have been shown in many cases to be algorithmically computable from just

the combinatorics of the Heegaard diagram [36, 39, 40, 41, 66].

As in instanton homology, the Heegaard Floer groups satisfy surgery exact triangles,

1This was also the motivation for the development of Seiberg-Witten Floer homology, which is explained in
detail in [30]. It has been shown in a series of papers [31] that the groups associated to a spinc three-manifold
by these two theories are isomorphic.
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providing algebraic means of computation in some cases. In contrast, the invariants are

defined for a manifold resulting from surgery with any rational slope. To further simplify

computations, the theory can be extended to define an invariant of a knot [52, 64], and

this knot invariant can be used to compute the three-manifold invariants of surgery along

the knot, as explained in Section 1.3. The theory also extends to give invariants of links,

four-manifolds and three-manifolds with boundary [58, 57, 28, 34, 35]. A partial summary

of results in knot theory and three- and four-dimensional topology which have been proven

using Heegaard Floer homology is given in Sections 1.1 and 1.2.

The aim of this thesis is to provide an efficient use of some of the algebraic structure

provided by the theory. We will develop a reduced form of Heegaard Floer homology applied

to knots, called the reduced knot Floer complex, whose primary objective is to simplify

computations involving connected sums of knots. We will then show how it can be used to

aid explicit computations of invariants, or to prove general results.

1.1 Heegaard Floer homology

Let Σ be a closed, connected oriented surface of genus g. Let ~α = {α1, . . . , αg} be a collection

of g mutually disjoint simple closed curves on Σ, which are linearly independent when viewed

as elements of H1(Σ), and ~β = {β1, . . . , βg} a collection with the same properties. This

specifies a closed, connected oriented three-manifold in the following way.

Take Σ× [0, 1], and attach a copy of D2× [0, 1] along each αi by identifying ∂(D2)× [0, 1]

with a neighborhood of αi × {0}. Similarly, attach a copy of D2 × [0, 1] by idenifying

∂(D2)× [0, 1] with a neighborhood of βi × {1}. Because of the linear independence of each

family of curves, each boundary component of the resulting manifold is homeomorphic to
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S2, and up to diffeomorphism there is a unique way to attach two three-balls to get a closed

manifold Y .

If z is any point in Σ \
(
~α ∪ ~β

)
, and ~α and ~β intersect transversely, then the collection(

Σ, ~α, ~β, z
)

is called a pointed Heegaard diagram for Y . In [54], given a pointed Heegaard

diagram for Y , Ozsváth and Szabó consider the symmetric product Symg(Σ), which is the

quotient of the product Σ×g by the obvious action of the symmetric group Sg. When

endowed with a symplectic form (which agrees with the product symplectic form away from

the diagonal; see [60]), this manifold contains two Lagrangian submanifolds,

Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg.

Heegaard Floer homology is then a filtered version of the Lagrangian Floer homology [13] of(
Symg(Σ),Tα,Tβ

)
.

More precisely, assuming Tα and Tβ are transverse, their intersection is a finite set,

written as G. An element in G can be thought of as a g-tuple of intersection points on Σ,

using each α and β curve exactly once. Ozsváth and Szabó define a chain complex freely

generated over F[U,U−1] by the elements of G, written as CF∞(Y ) (the original definition

was over Z[U,U−1], but in this thesis we will always take coefficients in F, the field with two

elements). The differential counts pseudo-holomorphic disks in Symg(Σ) of Maslov index

one connecting two intersection points2.

The basepoint z plays two roles in this construction. First, it partitions G into subsets

2See [33] for a reformulation of the theory which involves counting disks in Σ × [0, 1] × R rather than
Symg(Σ).
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corresponding with spinc structures on Y , so that we get a splitting

CF∞(Y ) =
⊕

t∈Spinc(Y )

CF∞(Y, t).

Second, it distinguishes a subvariety {z} × Symg−1(Σ) ⊂ Symg(Σ), and the intersection

number of a pseudo-holomorphic disk with this subvariety is what determines the exponent

of the variable U in the differential. Since transverse holomorphic submanifolds of compli-

mentary dimension can only intersect positively, the exponent of U can never be decreased

by the differential of a homogeneous element. That is to say, the basepoint provides a fil-

tration of CF∞, by the exponent of the variable U . This extra structure provided by this

filtration makes Heegaard Floer homology a powerful three-manifold invariant.

As a result, complexes CF+, CF− and ĈF can be defined by taking coefficients in

F[U,U−1]

UF[U ]
, F[U ] and

F[U ]

U
, respectively (alternatively, these are quotient-, sub- and subquo-

tient complexes of CF∞, respectively). We will denote this collection of chain complexes as

CF ◦ for brevity. The construction of these complexes depends on several choices, but it is

shown in [54, Theorem 1.1] that their filtered chain homotopy types – and in particular, the

homology groups, which are denoted HF∞, HF+, HF− and ĤF – are topological invariants

of (Y, t).

In [51], it was shown that Heegaard Floer homology detects the Thurston norm, and in

particular the Seifert genus of a knot. There is also an invariant of a contact structure on a

three-manifold [55] which vanishes on overtwisted contact structures.
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1.2 Heegaard Floer homology for knots

Suppose (Σ, ~α, ~β, z) is a pointed Heegaard diagram for S3. Placing a second basepoint w

on Σ specifies a knot K ⊂ S3 in the following way: let Kα be an oriented embedded arc

in Σ \ ~α from z to w and Kβ be an oriented embedded arc in Σ \ ~β from w to z. After

pushing the interior of Kα into Uα and the interior of Kβ into Uβ , K := Kα ∪Kβ is a knot

in S3. It was observed independently by Ozsváth-Szabó [52] and Rasmussen [64] that this

additional basepoint can be used to put a second Z-filtration on CF∞(S3), and that the

Z ⊕ Z-filtered chain homotopy type of this complex, denoted CFK∞(K), is an invariant

of K ⊂ S3. Similarly, changing the coefficient module as in Section 1.1, we get filtered

complexes CFK+, CFK− and ĈFK. Again, we may refer to this collection as CFK◦

when we do not wish to specify.

In particular, the filtration on ĈFK(K) gives a sequence of subcomplexes

· · · ⊆ F̂(K, i− 1) ⊆ F̂(K, i) ⊆ F̂(K, i+ 1) ⊆ · · · ,

with associated graded complexes

ĈFK(K, i) :=
F̂(K, i)

F̂(K, i− 1)
.

The homology groups of the associated graded object,

ĤFK(K, i) := H∗
(
ĈFK(K, i)

)

are called the knot Floer homology groups of K. These groups “categorify” the symmetrized
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Alexander polynomial of K, in the sense that

∑
i

χ
(
ĤFK(K, i)

)
· T i = ∆K(T ). (1.1)

Strictly stronger information can be obtained from knot Floer homology than from its Euler

characteristic, however. For example, the lower bound on the Seifert genus

deg ∆K(T ) ≤ g(K)

is strengthened to the result

g(K) = max{i|ĤFK(K, i) 6= 0}. (1.2)

Similarly, the fact that a fibered knot must have monic Alexander polynomial is strengthened

to the statement [45]

K is fibered if and only if ĤFK(K, g(K)) ∼= F. (1.3)

Ignoring the knot filtration on CFK−(K) gives the Heegaard Floer complex CF−(S3).

Our method in this thesis will be to ignore the other filtration, the one which measures the

exponent of the variable U , and obtain a simplified version of the knot Floer complex, called

the reduced knot Floer complex, which we will denote CFK−(K). This will be Z-filtered

chain homotopy equivalent to CFK−(K), and we will further require it to keep track of

“multiplication by U”, in a sense to be made precise in Chapter 3.

In [52, Theorem 7.1], it was shown that there is a tensor product formula for the knot
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Floer complexes of connected sums,

CFK∞(K1#K2) ∼= CFK∞(K1)⊗F[U,U−1]
CFK∞(K2).

A corresponding statement holds for other versions of CFK, tensoring over the appropriate

ring. These tensor product complexes become difficult to work with, however, even for simple

sums. The essence of the following theorem is that, while the reduced complex is smaller, is

still has a simple tensor product formula under connected sums.

Theorem 1.2.1. If K1 and K2 are knots in S3, then

CFK−(K1)⊗F[U ] CFK
−(K2)

is a (Z, U)-filtered chain deformation retract of CFK−(K1#K2).

Much of Chapter 2 is devoted to making precise the notion of equivalence mentioned in

Theorem 1.2.1. If we wish to connect sum a third knot, we can now reduce CFK−(K1#K2)

and iterate Theorem 1.2.1. As a result, this object can greatly simplify computations for

sums of knots, and, as we will show, still retains enough information for these computations

to be useful.

1.3 Dehn surgeries on knots

In addition to providing knot invariants, a crucial property of knot Floer complexes is their

relation to the Heegaard Floer complexes of the three-manifolds obtained by doing Dehn

surgery along K. It was observed in [52, 64] – roughly, due to the similarity between the

8



Heegaard diagrams for a knot and for manifolds obtained by integer surgery on the knot –

that the Heegaard Floer homology groups of sufficiently large surgeries are the homology of

certain subsets of CFK∞(K). This idea was used in [63] to explicitly compute HF+ for

maniolfds obtained by large surgery on two-bridge knots, and in [52] for manifolds obtained

by large surgery on a knot resulting from blowing down a component of a two-bridge link.

On the other hand, it had been shown in [53, Section 9] that, as expected in analogy with

instanton Floer homology, the Heegaard Floer homology of manifolds differing by surgeries

on the same knot fit into various surgery exact triangles. By using these exact sequences,

in [59, 48], it was shown that the Heegaard Floer homology of any integer or rational Dehn

surgery is the homology of the mapping cone of a map between two subsets of CFK∞(K).

As a result, there is a deep connection between CFK◦(K) and Dehn surgeries along K.

This connection was used in [56], for example, to place strong restrictions on which knots in

S3 admit lens space surgeries. Because a lens space admits a genus one Heegaard diagram in

which each intersection point represents a unique spinc structure, it follows that lens spaces

have the smallest possible Heegaard Floer homology; namely, if Y = L(p, q),

ĤF (Y, s) ∼= F for all s ∈ Spinc(Y ). (1.4)

Ozsváth and Szabó define an L-space as any rational homology sphere satisfying (1.4), and

so their restrictions are more generally on which knots in S3 admit L-space surgeries.

Roughly speaking, the only way to get such a simple result from the surgery formula is

to start with a knot which has a simple knot Floer complex. Ozsváth and Szabó define an

L-space knot as any knot which has a positive integral surgery which results in an L-space,

and show that a knot K ⊂ S3 is an L-space knot if and only if CFK◦(K) has a specific form,

9



described in Proposition (4.1.1). In particular, in light of (1.1), there are strong restrictions

on the Alexander polynomial of such a knot.

Examples of L-space knots include positive torus knots (or any knot with a positive lens

space surgery) and, for n > 0, the P (−2, 3, 2n + 1) pretzel knots [56], and more generally,

a family of twisted torus knots [68]. By combining work of Hedden and Hom [21, 26], the

(p, q)-cable of a knot K is an L-space knot if and only if K is an L-space knot and

q

p
≥ 2g(K)− 1,

where g is the Seifert genus. In [68], Vafaee asks if there are any other satellite operations

which can produce L-space knots. In this thesis, we give a negative answer for the simplest

satellite operation, connected sums. After describing the reduced complexes of L-space

knots, we use Theorem 1.2.1 to prove

Theorem 1.3.1. A knot in S3 which admits an L-space surgery must be a prime knot.

We should remark here that it is easy to see that the sum of two non-trivial L-space knots

is not an L-space knot; for example, by observing that the characterization of knot Floer

complexes of L-space knots given in [56, Theorem 1.2] is not preserved under tensor products.

However, our reduced complex will make this statement just as apparent for the sum of any

non-trivial knots.

1.4 Correction terms

Suppose W is a cobordism from one three-manifold Y1 to another Y2, and s a spinc structure

on W which restricts to ti on Yi. In [57], given a handle decomposition of W , Ozsváth and
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Szabó define chain maps from CF ◦(Y1, t1) to CF ◦(Y2, t2), which induce maps

F ◦W,s : HF ◦(Y1, t1)→ HF ◦(Y2, t2). (1.5)

These maps are independent of handle decomposition, and of all choices involved in con-

structing CF ◦(Yi). 3

One result of this construction is a Z-valued invariant for closed spinc four-manifolds

(X, s) with b+2 (X) > 1, which is conjecturally equal to the Seiberg-Witten invariant. This

is obtained by removing two four-balls from X and viewing the resulting manifold as a

cobordism from S3 to S3, and using a “mixed” version of the cobordism invariant.

A second result, which is of greater interest in this thesis, is that if t is a torsion spinc

structure on Y (meaning c1(t) is a torsion cohomology class), the relative Z-valued homolo-

gical grading on HF ◦(Y, t) can be lifted to an absolute Q-valued grading. Roughly, starting

with a surgery diagram for a three-manifold Y , Ozsváth and Szabó construct a Heegaard

triple diagram which specifies a four-manifold bounded by S3, #nS2×S1 and Y . They then

define the absolute grading of a class in ξ ∈ ĤF (Y, t), denoted g̃r(ξ), by considering a Whit-

ney triangle in the diagram connecting ξ to the generators of highest grading in ĤF (S3) and

ĤF (#nS2×S1) [57, Equation 12]. They then show [57, Theorem 7.1] that, for a cobordism

W from Y1 to Y2, this grading satisfies

g̃r
(
F ◦W,s(ξ)

)
− g̃r(ξ) =

c21(s)− 2χ(W )− 3σ(W )

4
(1.6)

for any homogeneous class ξ ∈ HF ◦(Y1, t1), where ti is the restriction of s to Yi.

3While the groups HF◦ are originally only defined up to isomorphism, it is shown in [29] that they can
be defined as explicit groups, and so the map (1.5) can be explicitly defined.
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The remaining applications of the reduced complex presented in this thesis will pertain

to the Heegaard Floer correction terms, or d-invariants. In [49, Definition 4.1], Ozsváth

and Szabó use the absolute grading to define the d-invariant of a spinc rational homology

three-sphere (Y, t) as

d(Y, t) = min{g̃r(x)| x ∈ Im
(
π∗ : HF∞(Y, t)→ HF+(Y, t)

)
}. (1.7)

We will work with the equivalent definition

d(Y, t) = max{g̃r(x)| x ∈ HF−(Y, t), x is not U -torsion.} (1.8)

The condition of x being non-torsion is equivalent to saying that x is not in the kernel of

the induced map HF−(Y, t)→ HF∞(Y, t).

Remark 1.4.1. Our convention which makes these definitions agree is slightly different than

that of Ozsváth and Szabó – we assume both CF+ and CF− to contain the element 1 in

F[U,U−1]. This will be convenient for computing correction terms, but has the drawback that

CF+ is not quite the quotient complex corresponding to the subcomplex CF−.

These invariants have been used to answer questions related to Dehn surgery [6, 7, 46],

the smooth knot concordance group [4, 22, 27, 38] and various notions of genera of knots

[1, 17, 47].

The property of “keeping track of multiplication by U” mentioned in Section 1.2 is

essential, since it will allow us to compute d-invariants with the reduced complex.
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1.5 Knot concordance and four-genus bounds

In [15], Fox and Milnor investigated knotted embeddings ι : S2 → R4. Of particular interest

here, they considered the intersection of ι(S2) with a generic R3-hyperplane slice of R4. A

generic intersection would be a closed embedded one-manifold in R3. In the case that this

intersection is a knotK, then becauseK is a simple closed curve on a manifold homeomorphic

to S2, it bounds a disk, which is embedded in R4. Since S2 is embedded as a submanifold, it

has a trivial normal bundle, and so the disk is in fact locally flatly embedded. This leads to

the definition of a slice knot as a knot in S3 which bounds a locally flatly, properly embedded

disk in B4.

Of course, bounding a disk is equivalent to cobounding an annulus with the unknot.

So, the notion of a slice knot being “four-dimensionally trivial” can be generalized to an

equivalence relation on knots: K and J are called concordant if there is a locally flatly

embedded annulus in S3 × [0, 1] which is bounded by K ⊂ S3 × {0} and J ⊂ S3 × {1}. If

we consider only smooth embeddings, we get notions of smoothly slice knots and smooth

concordance, which are distinct from the topological, locally flat case (see, for example,

[5, 18, 10, 22]). For the remainder of this thesis, unless explicitly stated otherwise, we will

always be working in the smooth category.

For any knot K ⊂ S3, consider the product annulus K × [0, 1] ⊂ S3 × [0, 1]. If we let

“−K” denote the mirror image of K with reversed orientation, then, for x ∈ K, removing

a neighborhood of x × [0, 1] from the annulus yields a disk bounded by K#(−K), so it is

clear that K#(−K) is a slice knot. As a result, the set of knots up to concordance forms an

abelian group under the connected sum operation, called the knot concordance group.

If a knot is not slice – that is, it does not bound a smooth disk in B4 – it is natural to ask:
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what is the minimal genus of a smoothly, properly embedded surface in B4 which is bounded

by K? This minimum is called the four-genus of K, denoted g4(K). It is evident that g4

is an invariant of the concordance class [K], and also that g4(K) ≤ g(K). Further, g4(K)

gives a lower bound on the unknotting number u(K), the minimum number of crossings

which can be changed to turn a diagram of K into a diagram of the unknot. Both g4 and

u are hard to compute in general; using their definitions directly requires considering every

possible surface bounded by K, or every possible choice of crossing changes in every possible

diagram of K. For this reason, it is useful to have computable invariants which provide lower

bounds on g4 (and therefore u). In particular, such invariants also provide obstructions to a

knot being slice.

The tools of Heegaard Floer homology can be used to define and compute several such

invariants; two of which will be considered in this thesis. If K ⊂ S3 is a knot, consider the

integral homology sphere S3
1(K), the manifold resulting from Dehn surgery along K with

slope 1. This manifold has a unique spinc structure t, so we can define an invariant

d1(K) := d(S3
1(K), t). (1.9)

This invariant was studied by Peters in [61], where he showed that it is in fact a concordance

invariant. This can be seen by surgering the annulus which provides the concordance between

K and J ; the resulting four-manifold is a homology cobordism from S3
1(K) to S3

1(J), and the

boundary components of a homology cobordism have equal d-invariants (see, for example,

[61, Corollary 1.3]).

Further, by computing d-invariants of circle bundles over surfaces with Euler number ±1,
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Peters is able to show that we get a four-genus bound,

0 ≤ −d1(K) ≤ 2g4(K).

Using the surgery formula provided by Ozsváth and Szabó, Peters then gives an algorithm

to compute d1(K) from the knot Floer complex CFK∞(K).

There is another concordance invariant which can be computed – and is in fact defined

– using the knot Floer complex; namely, the Ozsváth-Szabó τ invariant. This is defined in

[50], where it is also shown that

|τ(K)| ≤ g4(K).

In comparing the computations of these two invariants, Peters poses the question:

Question 1.5.1. What is the relation between d1 and τ? Is it necessarily true that

|d1(K)| ≤ 2|τ(K)|?

Of course, if the answer were “yes”, then d1 would be a rather ineffective four-genus

bound. At this point, however we should observe that τ defines a group homomorphism

from the concordance group to Z, while d1 does not (it is always non-positive). One could

hope to exploit this by finding a sum of knots for which τ is forced to be zero, but d1 is

not. Indeed, this will be the strategy to providing negative answers to Question 1.5.14.

In some sense, the role which the reduced complex plays is that it simplifies computations

4The first knot in a family of knots described in Chapter 4 which provides the negative answer was
actually alluded to by Peters later in his paper.
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when dealing with sums of knots, by virtue of Theorem 1.2.1. This makes computations

manageable when dealing with an invariant which is not additive under connected sum.

Using the reduced complex, we first show

Theorem 1.5.2. Suppose that K1 and K2 are two knots in S3 which admit L-space surgeries.

If

d1(K1#−K2) = d1(−K1#K2) = 0,

then

∆K1
(T ) = ∆K2

(T ).

In particular, the Alexander polynomial is a concordance invariant of L-space knots.

Following from this, we have the corollary

Corollary 1.5.3. If K1 and K2 are two L-space knots whose Alexander polynomials are

distinct but have the same degree, then

τ(K1#−K2) = τ(−K1#K2) = 0,

but either

d1(K1#−K2) 6= 0 or d1(−K1#K2) 6= 0.

In particular, d1 gives a stronger four-genus bound than τ for K1#−K2 and its mirror.

As another consequence, this yields an alternate proof of a result of Lê.

Corollary 1.5.4 (Lê). Algebraic knots are concordant if and only if they are isotopic.

In addition to τ , two other concordance invariants which have proven to give useful four-

genus bounds are the knot signature σ, defined from a bilinear form corresponding to a
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Seifert surface [44], and the Rasmussen s invariant which comes from a spectral sequence

on Khovanov homology [65]. To strengthen the result of Corollary 1.5.3, and show the

effectiveness of d1 as a smooth four-genus bound, we give examples of knots for which

τ(K) = σ(K) = s(K) = 0, but |d1(K)| is arbitrarily large. It should be noted that in

general the ω-signature, of which σ is a special case [67], gives a topological four-genus

bound for any unit complex number ω 6= 1. For the examples mentioned above, which

involve sums of torus knots, the collection of ω-signatures give a better bound than d1.

The remainder of this thesis is organized as follows. In Chapter 2, we begin by in-

troducing the algebraic framework which will be necessary. In Chapter 3, we review the

definition and properties of the knot Floer complex, and define its reduced form. Section

3.2 explains how the tensor product formula extends to the reduced complex. In Chapter 4,

we apply the theory to L-space knots, prove Theorems 1.3.1 and 1.5.2, and provide examples.
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Chapter 2

Algebraic preliminaries

2.1 Filtered complexes

Throughout this thesis, we will be working with coefficients in the field with two elements,

which we will denote F. Given a chain complex (C, ∂), and a partially ordered set S, a

(decreasing) S-filtration on C is an exhaustive collection of subcomplexes indexed by S,

C =
⋃
i∈S

Ci,

such that

Ci ⊆ Cj if i ≤ j.

A filtration is said to be bounded if Ci = C for some i ∈ S.

If (C, ∂) and (C ′, ∂′) are S-filtered complexes, then a map f : C → C ′ is a filtered map

if, for all i ∈ S,

f(Ci) ⊆ (C ′)i.

We will say that C and C ′ are filtered chain homotopy equivalent if there exist filtered chain

maps f : C → C ′ and g : C ′ → C, and filtered chain homotopies h : C → C and h′ : C ′ → C ′

such that

f ◦ g = IC′ + ∂′h′ + h′∂′ and g ◦ f = IC + ∂h+ h∂.
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We will further say that C ′ is a filtered chain deformation retract of C if the chain homotopy

h′ is trivial; i.e., if

f ◦ g = IC′ .

The complexes dealt with in this thesis will be filtered by Z or Z⊕Z, with partial ordering

(i, j) ≤ (i′, j′) iff i ≤ i′ and j ≤ j′.

In the case that (C, ∂) is Z-filtered, a convenient way to describe the filtration is as a function

F : C → Z ∪ {−∞}, where

F (x) =


min

{
i ∈ Z

∣∣x ∈ Ci} if the minimum exists,

−∞ otherwise,

(2.1)

with the convention that −∞ ≤ i for all i ∈ Z. Note that this function satisfies

F (x+ y) ≤ max{F (x), F (y)} and F (∂x) ≤ F (x)

for all x, y ∈ C. In every case which will be considered here, we will further have that

F−1(−∞) = {0}. We will call F (x) the filtration level of x, and we will abuse terminology

and sometimes refer to F as the filtration.

A Z⊕ Z-filtration, by complexes Ci,j , gives rise to two Z-filtrations, by considering

Ci :=
⋃
j

Ci,j and Cj :=
⋃
i

Ci,j .
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On the other hand, if collections {Ci} and {Cj} are two Z-filtrations of C, then the complexes

Ci,j := Ci ∩ Cj

are a Z ⊕ Z-filtration, so in fact the two notions – a Z ⊕ Z-filtration and a pair of Z-

filtrations – are equivalent. Therefore, we can describe a Z ⊕ Z-filtration as a function

F (x) = (F1(x), F2(x)), where F1 and F2 are the functions describing the two corresponding

Z-filtrations.

We present here a prototypical example of what will follow. Figure 2.1 represents a Z-

filtered complex C generated over F, where the vertical height of each generator corresponds

to its filtration level. We will denote by ∂(x, y) the coefficient of y in ∂x. If ∂(x, y) = 1, we

draw an arrow from x to y. Intuitively, we can “cancel” an arrow which is horizontal, while

preserving the filtered chain homotopy type of C. For example, canceling the arrow from b

to c gives a complex C ′ in the following way. The generators are obtained by deleting the

generators b and c, and the differential on C ′ is given by

∂′(x, y) = ∂(x, y) + ∂(x, c)∂(b, y).

In other words, if an arrow went from x to c, and another arrow went from b to y, we add

an arrow going from x to y. To put it precisely, we make the filtered change of basis c 7→ ∂b,

then take the quotient of C by the acyclic subcomplex which is generated by b and ∂b. If we

define a homomorphism h : C → C by setting h(c) = b and h(x) = 0 for all other generators

(i.e., h is the inverse of the horizontal arrow we are canceling), then C ′ is seen to be a filtered
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Figure 2.1: A filtered chain deformation retraction. Canceling the horizontal arrow
from b to c yields the filtered chain deformation retract C ′. The additional arrow from a to
e is obtained by “traveling backward” through the canceled arrow. For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic version
of this thesis.

chain deformation retract of C, via the maps

f = π ◦ (I + ∂h), g = (I + h∂) ◦ ι

and the chain homotopy h. Details are explained well in [23, Lemma 4.1] and [64, Section

5.1], and will be worked out in Chapter 3.

A vertical arrow could similarly be canceled, but the map h would not be filtered, and so

the result would be a chain homotopy equivalent, but not filtered chain homotopy equivalent,

complex. The idea of reduction, put simply, is that as long as we have horizontal arrows

(terms in the differential which preserve the filtration level), we can reduce the number of

generators of a chain complex, while maintaining its filtered chain homotopy type.
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2.2 (Z, U)-filtered complexes

Suppose C is a Z-filtered complex which comes equipped with a specified filtered chain map

U . Then we will call the pair (C,U) a (Z, U)-filtered chain complex. It will be convenient to

view such complexes as modules over F[U ], so that we will often refer to composition with the

map U as “multiplication by U”. Two (Z, U)-filtered chain complexes (C,U) and (C ′, U ′)

will be called (Z, U)-filtered chain homotopy equivalent if they are filtered chain homotopy

equivalent, and the maps f and g respect multiplication by U , in the sense that

gU ′ ∼ Ug and fU ∼ U ′f,

where ∼ signifies that the maps are filtered chain homotopic.

Remark 2.2.1. The notion of (Z, U)-filtered chain homotopy equivalence is an equivalence

relation.

Finally, we will also want to consider complexes which arise as products of other com-

plexes. If (C1, F1) and (C2, F2) are two Z-filtered chain complexes which are freely generated

over F, we can define a filtration F× on the direct product C1 × C2 in the following way.

Suppose that {xi} and {yi} are generating sets for C1 and C2, respectively, so that any

element in C1 ×C2 can be written as
∑
i,j εijxiyj , where εij ∈ F, and all but finitely many

of the εij are zero. Then,

F×
(∑

i,j

εijxiyj

)
= max{F1(xi) + F2(yj)|εij = 1}

defines a filtration on C1 × C2.

If each Ci comes with a filtered chain map Ui, they can naturally be thought of as modules
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over F[U ], so that we will refer to the maps Ui as “multiplication by U”. In this case, we

can also consider the complex

C1 ⊗F[U ] C2.

An element in C1 ⊗F[U ] C2 is an equivalence class of elements in C1 × C2, and we define

a filtration F on the tensor product by simply taking the minimum over each equivalence

class. That is, for any s ∈ C1 × C2,

F ([s]) = min
{
F×(t)

∣∣t ∈ [s]
}
. (2.2)

Actually, for the tensor products we will consider in this thesis, we can describe the product

filtration more concretely. In our case, we will consider a (Z, U)-filtered complex C1 for

which U is not necessarily homogeneous, but always decreases the filtration level by at least

1; that is,

F1(Ux) ≤ F1(x)− 1 for all x ∈ C1. (2.3)

We will then consider a second (Z, U)-filtered complex, C2, on which U is homogeneous of

degree 1, so

F2(Ux) = F2(x)− 1 for all x ∈ C2,

and further, C2 is free when viewed as an F[U ]-module. In this case, for a homogeneous

element x ∈ C1 and a generator y ∈ C2, the filtration on C1 ⊗F[U ] C2 given by (2.2) is

F (x⊗ Uny) = F1(Unx) + F2(y), (2.4)

for all n ≥ 0. In other words, to avoid ambiguity, we can think of U as always being applied
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to the first component (the module on which U is not necessarily homogeneous). In this

case, we can prove the following lemma, which we will use in Section 3.2.

Lemma 2.2.2. Suppose that there is a (Z, U)-filtered chain homotopy equivalence between

C1 and C ′1, and C2 is a (Z, U)-filtered chain complex which is freely generated over F[U ].

Suppose also that the maps U on C1 and C ′1 always decrease the filtration level by at least

k, and the map U on C2 is homogeneous of degree k. Then there is a (Z, U)-filtered chain

homotopy equivalence between C1 ⊗F[U ] C2 and C ′1 ⊗F[U ] C2.

Proof. The idea is that, since C2 is freely generated, we can define a map on C1 ⊗C2, for

example, by extending a map defined on C1. Further, because the map U on C1 decreases

the filtration level by at least as much as the map U on C2, the extended map will still be

filtered.

More precisely, let f : C1 → C ′1 and g : C ′1 → C1 be the chain maps which give the

equivalence, and let h and h′ be the chain homotopies from g ◦ f to IC1
and from f ◦ g to

IC′1
, respectively. We define chain maps f : C1⊗C2 → C ′1⊗C2 and g : C ′1⊗C2 → C1⊗C2

as follows. Suppose first that y is a generator of C2 as an F[U ]-module, then we set

f(x⊗ Uny) = f(Unx)⊗ y and g(x⊗ Uny) = g(Unx)⊗ y,

and extend the maps bilinearly over F. Similarly, for y a generator of C2, we define maps

h : C1 ⊗ C2 → C1 ⊗ C2 and h′ : C ′1 ⊗ C2 → C ′1 ⊗ C2 by setting

h(x⊗ Uny) = h(Unx)⊗ y and h′(x⊗ Uny) = h′(Unx)⊗ y,

and extending bilinearly.
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Now we have

g ◦ f(x⊗ Uny) = g ◦ f(Unx)⊗ y

= (I + ∂h+ h∂)(Unx)⊗ y

= Unx⊗ y + ∂h(Unx)⊗ y + h(∂Unx)⊗ y

= Unx⊗ y + ∂h(Unx)⊗ y + h(∂Unx)⊗ y

+ [h(Unx)⊗ ∂y + h(Unx)⊗ ∂y]

= Unx⊗ y + (∂h(Unx)⊗ y + h(Unx)⊗ ∂y)

+ (h(∂Unx)⊗ y + h(Unx)⊗ ∂y)

= (I + ∂h+ h∂)(x⊗ Uny),

and, since the maps are bilinear, we see that g ◦ f is chain homotopic to IC1⊗C2
via the

chain homotopy h. By a symmetric argument, f ◦ g ∼ IC′1⊗C2
via h′.

Note also that, for example,

FC′1⊗C2
(f(x⊗ Uny)) = FC′1⊗C2

(f(Unx)⊗ y)

= FC′1
(f(Unx)) + FC2

(y)

≤ FC1
(Unx) + FC2

(y)

= FC1⊗C2
(x⊗ Uny).

In other words, because the maps f, g, h and h′ are filtered on C1 and C ′1, the maps f, g, h

and h′ are filtered on C1 ⊗ C2 and C ′1 ⊗ C2. So, the two tensor product complexes are

Z-filtered chain homotopy equivalent.
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Finally, we verify that this equivalence is in fact (Z, U)-filtered. By assumption, fU ∼ Uf

as maps from C1 to C ′1, so there exists a map φ : C1 → C ′1 such that

fU = Uf + ∂C′1
φ+ φ∂C1

.

In a similar fashion as before, we define

φ : C1 ⊗ C2 → C ′1 ⊗ C2

by setting

φ(x⊗ Uny) = φ(Unx)⊗ y

when y is a generator of C2, and extending bilinearly over F.

We then check that

f(U(x⊗ Uny)) = f(Un+1x)⊗ y

= (Uf + ∂φ+ φ∂)(Unx)⊗ y

= (Uf + ∂φ+ φ∂)(Unx)⊗ y

+ [φ(Unx)⊗ ∂y + φ(Unx)⊗ ∂y]

= (Uf + ∂φ+ φ∂)(x⊗ Uny).

That is, fU ∼ Uf , and by the same reasoning, Ug ∼ gU .

This lemma will be the key to simplifying computations for connected sums of knots, for

the complexes which we will define in Chapter 3.
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Chapter 3

Reducing the knot Floer complex

3.1 The reduced complex

We now turn to the complexes of interest in this thesis. Given a pointed Heegaard diagram

for a three-manifold Y (with k α-curves and k β-curves), Ozsváth and Szabó [54] define a

Z-filtered chain complex CF∞(Y, t) for each Spinc structure t on Y . The complex is freely

generated over F[U,U−1] by k-tuples of intersection points on the Heegaard diagram. We

will denote the set of generators by G. The filtration level of the homogeneous element Unx

is −n, for any x ∈ G and any n ∈ Z. Adding a second basepoint to the Heegaard diagram

specifies a knot K in Y . Using this additional basepoint (and fixing a Seifert surface for

K), each xi ∈ G can be assigned an integer A(xi), called the Alexander grading. If we let yi

denote a homogeneous element, then after setting

A(Unxi) = A(xi)− n, A

(∑
i

yi

)
= max

i
{A(yi)}, (3.1)

A defines an additional filtration on CF∞(Y, t), discovered in [52], and independently by

Rasmussen [64]. The Z⊕ Z-filtered chain homotopy type of this complex is an invariant of

K ⊂ Y , and in the case Y ∼= S3, this invariant is denoted CFK∞(K).
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We can write the Z⊕ Z-filtration level of the homogeneous element Unx as

F (Unx) = (−n,A(x)− n)

for any x ∈ G and n ∈ Z. It will be convenient to represent these complexes graphically in

the (i, j)-plane, where Unx will be represented by a dot with coordinates (−n,A(x)− n). If

x and y are two homogeneous elements such that ∂(x, y) = 1, then we will draw an arrow

from the dot representing x to the dot representing y. We should also point out here that

CFK∞(K) comes with a homological Z-grading M , called the Maslov grading, and that

multiplication by U decreases M by 2; i.e.,

M(Ux) = M(x)− 2. (3.2)

The difference between the Maslov gradings of two generators can be read from the Heegaard

diagram, and to fix an absolute Maslov grading, we declare that the element 1 in

H∗(CFK∞(K)) ∼= HF∞(S3) ∼= F[U,U−1]

has Maslov grading zero.

Following convention, for a subset S ⊂ Z⊕Z, we will denote by C{S} the elements of C

whose (i, j)-coordinates are contained in S, along with the arrows between these elements.

We will often consider the subcomplex C{i ≤ 0}, which is written as CFK−(K) (using the

convention described in Remark 1.4.1). Figure 3.1 shows the complex CFK−(K) in the case

where K is the right-handed trefoil.

Saying that A defines a filtration means in particular that A(∂x) ≤ A(x) for any x, and
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• x(0) 1

• • y(−1)
oo
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j = 0

• •oo
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• z(−2) −1

• •oo
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• −2

��

• −3

−3 −2 −1 i = 0

Figure 3.1: The knot Floer complex CFK−(T (2, 3)). The generators are represented by
dots in the i = 0 column with their Maslov grading in parentheses, and multiplication by U
translates an element one row down and one column to the left. The arrows represent the
nonzero terms of the differential.

we will call the part of the differential which preserves the Alexander grading the horizontal

differential, denoted ∂H . Diagramatically, ∂H simply consists of those arrows which are

horizontal. For example, in Figure 3.1, we have ∂y = Ux+ z, and ∂Hy = Ux. If we restrict

our attention to a single Alexander grading – that is, a single row – of CFK∞, we get a

filtered chain complex which has homology isomorphic to F. The “simplest” such filtered

complex would be one which has generators paired into acyclic summands, and a single

isolated generator of homology, which has no arrow going into or out of it. It was shown in [35,

Proposition 11.52] that one can always find such a basis for CFK∞(K), called a horizontally

simplified basis. In other words, we can choose a generating set G = {xi, yi, z, |1 ≤ i ≤ N},

such that

• ∂H(yi) = Urixi, for some ri > 0,

• ∂H(xi) = ∂H(z) = 0.

With respect to this basis, the homology of each subquotient complex C{j = k} (each row)
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is generated by the class U lz (where l differs from k by a constant). All other generators are

paired by horizontal arrows, and can therefore be canceled as in Chapter 2.

We refer back to Figure 3.1 to make one more observation. The basis {x, y, z} shown there

is horizontally simplified, but because we are considering the subcomplex CFK−(K), rather

than all of CFK∞(K), it is not only Ukz which generates homology: x is also homologically

nontrivial (the horizontal arrow which would cancel it has been “cut off”). Starting with

any nontrivial knot K, if we cancel horizontal arrows in CFK−(K), we are left with some

elements which are eventually canceled for high enough powers of U , but not for lower powers

of U .

We are now ready to construct the object of interest in this section, the reduced knot

Floer complex. It will be convenient to think of CFK−(K) as being (Z, U)-filtered, by the

Alexander grading A, rather than Z⊕ Z-filtered. So, when we refer to the filtration level of

an element, we will mean its j-coordinate in the diagram (although, for aesthetic reasons,

we will maintain the appearance of different i-coordinates). In this case, the map U is a

filtered chain map of degree 1; i.e., A(Ux) = A(x)− 1.

Let K be a knot in S3. To simplify notation, let us define C0 := CFK−(K). After

choosing a horizontally simplified basis

{xi, yi, z|1 ≤ i ≤ N},

we will reduce the complex by “canceling” all of the horizontal arrows, as in Chapter 2.

More precisely, let h1 be the F-linear map on C0 which inverts the horizontal differential

going from y1 to x1, and all of its U -translates, so that h1(Ur1+nx1) = Uny1 for all n ≥ 0,

and h1 is zero on all other homogeneous elements.

30



We now define a filtered chain complex C1 which is freely generated over F as follows.

The generators for C1 over F are obtained from the homogeneous elements of C0 by removing

Ur1+nx1 and Uny1 for all n ≥ 0. Define maps f1 : C0 → C1 and g1 : C1 → C0 by

f1 = π ◦ (I + ∂h1), g1 = (I + h1∂) ◦ ι,

where π and ι are the natural projection and inclusion maps. Further, we define a differential

and U map on C1:

∂1 := π ◦ (∂ + ∂h1∂) ◦ ι, U1 := π ◦ (U + ∂h1U) ◦ ι. (3.3)

The filtration A1 on C1 is induced by inclusion, A1(x) := A(ιx). Since the maps ∂, U

and h1 are all filtered, so are the maps f1, g1, ∂1, and U1 defined above. Let us consider the

map U1 in more detail. Recall that on the complex C0, U is a homogeneous map of degree

1. The map U1, however, will not be homogeneous. There are two cases to consider. For the

generator Ur1−1x1 (the highest remaining U -power which was not canceled by a horizontal

arrow),

U1(Ur1−1x1) = (π ◦ (U + ∂h1U) ◦ ι) (Ur1−1x1)

= π ◦
(
Ur1x1 + ∂h1(Ur1x1)

)
= π ◦ (Ur1x1 + ∂y1).

(3.4)

Since we chose a basis which is horizontally simplified, Ur1x1 is the only term in ∂y1 which
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has filtration level equal to that of y1. That is,

A(Ur1x1 + ∂y1) < A(y1).

It follows from (3.4) then, that

A1
(
U1(Ur1−1x1)

)
< A(y1) = A1(Ur1−1x1)− 1, (3.5)

so the map U1 decreases the filtration level by more than 1. On all other generators of C1,

however, the map U1 is equal to π ◦ U ◦ ι, and therefore still decreases the filtration level

by exactly 1. Therefore, the complex C1 is of the type mentioned in Equation (2.3); it is

(Z, U)-filtered, and U is a filtered map which decreases the filtration level by at least one.

Remark 3.1.1. By its definition, the map h1 increases the Maslov grading by 1, and as a

result, the map U1 still lowers the Maslov grading by exactly 2.

Lemma 3.1.2. C1 is a (Z, U)-filtered chain deformation retract of C0.

Proof. We first verify the chain homotopy equivalence. For any homogeneous element x

for which π(x) 6= 0,

f1 ◦ g1(π(x)) = π ◦ (I + ∂h1)(I + h1∂) ◦ ι(π(x))

= π ◦ (I + ∂h1 + h1∂)(x)

= π ◦ (x+ ∂(0) + h1(∂x))

= π(x),

since the image of h1 projects to zero. So, f1 ◦ g1 = IC1
.
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Next, we consider the composition g1 ◦ f1, in three distinct cases. First, if x is any

homogeneous element for which π(x) 6= 0, then h1(x) = 0, so

g1 ◦ f1(x) = ((I + h1∂) ◦ ι) ◦ (π ◦ (I + ∂h1)) (x)

= (I + h1∂)(x)

= (I + h1∂ + ∂h1)(x).

Second, for n ≥ 0, we have

g1 ◦ f1(Ur1+nx1) = ((I + h1∂) ◦ ι) ◦ (π ◦ (I + ∂h1)) (Ur1+nx1)

= (I + h1∂) ◦ ι ◦ π ◦ (Ur1+nx1 + ∂(Uny1)).

(3.6)

Recall that multiplication by U lowers the Maslov grading by 2. Since ∂(Uny1, U
r1+nx1) =

1, it follows that ∂(Uny1, U
kx1) = 0 for any k 6= r1 + n. So, the expression (Ur1+nx1 +

∂(Uny1)) in (3.6) has no terms of the form Ukx1. Similarly, by considering Maslov gradings,

it also contains no elements of the form Uky1. Because of this, the composition ι ◦π in (3.6)

is the identity, so we again get

g1 ◦ f1(Ur1+nx1) = (I + h1∂ + ∂h1)(Ur1+nx1).

Finally, g1 ◦ f1(Uny1) = 0 for all n ≥ 0 (since f1(Uny1) = 0). Also,

(I + h1∂ + ∂h1)(Uny1) = Uny1 + Uny1 + 0 = 0.
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So, we have verified that in all cases,

g1 ◦ f1 = I + h1∂ + ∂h1,

which is to say, g1 ◦ f1 is chain homotopic to the identity.

This shows that C1 is a Z-filtered chain deformation retract of C0. It remains to check

that this equivalence respects multiplication by U . In most cases, the fact that f1 commutes

with U is immediate, because, in most cases, all maps in the definition of f1 commute with

U . In fact, this is true for every homogeneous element except Ur1−1x1, on which h1 and U

do not commute. We verify the claim directly in this case,

f1U(Ur1−1x1) = π ◦ (U + ∂h1U)(Ur1−1x1)

= π ◦ (U + ∂h1U) ◦ ι ◦ π ◦ (Ur1−1x1)

= U1 ◦ π ◦ (Ur1−1x1)

= U1 ◦ π ◦ (I + ∂h1)(Ur1−1x1)

= U1f1(Ur1−1x1).

Similarly, one can verify that g1U1 is chain homotopic to Ug1 via the (filtered) chain homo-

topy h1Ug1.

Beginning with C0, we have now reduced the number of horizontal arrows and obtained

a (Z, U)-filtered chain homotopy equivalent complex C1. The differential ∂1 is nearly just

π ◦ ∂. The exception being that, if there was an arrow going from a homogeneous element

to Ur1+nx1, the differential ∂1 adds an arrow from that element to the remaining image of

∂(Uny1) (see the discussion in Chapter 2 and Figure 2.1). Note though, that these additional
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arrows must always decrease the filtration level (in fact, by more than 1). In particular,

the basis given for C1 is still horizontally simplified, with the horizontal differential being

π ◦ ∂H . This means we can iterate the above process, at each step moving from Ci to Ci+1

by canceling the horizontal arrows Unyi → Uri+nxi, and obtaining a (Z, U)-filtered chain

homotopy equivalent complex with a filtered chain map Ui. If we begin with a basis G for

C0 consisting of 2N + 1 elements, then CN will have no horizontal arrows, and will be said

to be a “reduced” version of CFK−(K). An example of this process of reduction is shown

for the (2, 7)-torus knot in Figure 3.2.

The process described above explicitly obtains a reduced complex after a choice of an

ordered, horizontally simplified basis. More generally, we have the following definition.

Definition 3.1.3. Let K be a knot in S3, and C be a (Z, U)-filtered chain complex. If C

is (Z, U)-filtered chain homotopy equivalent to CFK−(K), and the differential on C strictly

decreases the filtration level, then C is called the reduced CFK−(K), denoted CFK−(K).

The condition that the differential strictly decreases filtration level says precisely that

there are no horizontal arrows. Of course, this complex is only well-defined up to (Z, U)-

filtered chain homotopy equivalence of complexes with no horizontal arrows.

Note that, since CFK−(K) is Z-filtered by the Alexander grading, there is naturally a

spectral sequence whose (E0, d0) page is (CFK−(K), ∂H), which converges to

H∗(CFK−(K), ∂) ∼=
⊕
i≥0

F(−2i) (3.7)

as a graded group, where, as in Figure 3.1, the subscript denotes the homological grading of

each generator (the filtration on this group depends on K). An alternative view of the above

construction, then, is that CFK−(K) is the E1 page of this spectral sequence. Further, the
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Figure 3.2: Reducing a knot Floer complex. The complex C0 = CFK−(T (2, 7)), and
the process of reducing to C3 = CFK−(T (2, 7)). At each step, the map hi provides the
chain homotopy necessary to cancel the horizontal arrows from Unyi to Un+1xi (the dots
colored red). Multiplication by U is always taken to be translation one down and one to the
left, unless otherwise shown with a dotted arrow.
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filtered endomorphism U on E0 induces a filtered endomorphism on E1, and that is precisely

the map U we have defined on CFK−(K). It is the additional information given by this

induced U map which will be useful for computing d-invariants in Chapter 4.

3.2 Sums of knots

As will be seen in this Chapter and Chapter 4, the reduced complex CFK−(K) retains

much of the information contained in CFK−(K), including, by definition, the homology

of its associated graded complex, which is denoted HFK−(K). It was shown by Ozsváth

and Szabó in [52, Theorem 7.1] that CFK− behaves simply under connected sums of knots;

namely,

CFK−(K1#K2) ∼= CFK−(K1)⊗F[U ] CFK
−(K2). (3.8)

However, these tensor product complexes are inconvenient to deal with by hand, even for

sums of knots with small knot Floer homology. Many of the applications of this thesis are

to sums of knots, and so it will be convenient to be able to reduce a complex before taking a

tensor product, in order to decrease the size of the product. The following theorem ensures

that this is possible.

Theorem 3.2.1. If K1 and K2 are knots in S3, then

CFK−(K1)⊗F[U ] CFK
−(K2) (3.9)

is a (Z, U)-filtered chain deformation retract of CFK−(K1#K2).

Proof. After noting the relationship in equation (3.8), the result will follow from Lemma

2.2.2. To verify that the lemma applies, however, we must verify the following.
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First, the complex CFK−(K2) is, by definition, freely generated over F[U ], and multi-

plication by U decreases the filtration level by 1. Second, recall that the maps Ui defined

as in equation (3.3), decrease the filtration level by at least 1. It follows that the map U on

the reduced complex CFK−(K1) also decreases the filtration level by at least 1. In other

words, we define a filtration on the tensor product by formula (2.4), and the result follows

from Lemma 2.2.2.

In order to use this effectively, we would like to further reduce the product complex (3.9),

which we will call C for brevity, to get CFK−(K1#K2). The method of reduction described

explicitly above was for complexes which are freely generated over F[U ], but we should point

out here that a complex such as C can be handled similarly. This is because for sufficiently

negative i, the subcomplex

Ai = {x ∈ C|A(x) ≤ i}

is freely generated over F[U ], and the corresponding quotient

C/Ai = {x ∈ C|A(x) > i}

is finitely generated over F. So, after canceling the finite number of horizontal arrows with

filtration level greater than i, we can use the same method as before.

Remark 3.2.2. Suppose K1 and K2 are knots in S3, and we wish to reduce CFK−(K1#K2).

Then we can first reduce CFK−(K1), tensor the reduced complex with CFK−(K2), and then

further reduce the product.

To give an idea of how this facilitates computation, we consider a simple example, the

sum of the right-handed and left-handed trefoils, T (2, 3)# − T (2, 3). Figure 3.3 shows
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the knot Floer complexes of these two knots. To obtain CFK−(T (2, 3)#−T (2, 3)), we first

compute CFK−(T (2, 3)) and then tensor it with CFK−(−T (2, 3)). To provide contrast, we

also show in Figure 3.4 the tensor product complex CFK−(T (2, 3))⊗F[U ]CFK
−(−T (2, 3)).
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Figure 3.3: A connected sum with a reduced complex. In this example, K1 is
the right-handed trefoil and K2 is the left-handed trefoil. We can first reduce to get
CFK−(K1), then tensor this complex with CFK−(K2). One more reduction gives the
complex CFK−(K1#K2).
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Chapter 4

Applications to L-space knots

4.1 Reduced complexes of L-space knots

In this chapter, we show how the reduced complex CFK−(K) can be used to elucidate some

properties of L-space knots. Recall that a rational homology 3-sphere Y is called an L-space

if – like a lens space – it has the “smallest possible” Heegaard Floer homology; i.e., for each

spinc structure t, ĤF (Y, t) ∼= F. A knot K in S3 is called an L-space knot if n-surgery on S3

along K is an L-space, for some positive integer n. It was shown in [56, Theorem 1.2 and

Corollary 1.6], and restated more conveniently for our purposes in [25, Remark 6.6], that

L-space knots have knot Floer complexes of a particular form, which we describe here.

Proposition 4.1.1 (Ozsváth-Szabó). If K admits a positive L-space surgery, then CFK−(K)

has a basis {x−k, · · · , xk} with the following properties:

• A(xi) = ni, where n−k < n−k+1 < · · · < nk−1 < nk

• ni = −n−i

• If i ≡ k mod 2, then ∂(xi) = 0

• If i ≡ k + 1 mod 2, then ∂(xi) = xi−1 + Uni+1−nixi+1

Diagramatically, the knot Floer complex of an L-space knot has a “staircase” shape, as

shown, for example, in Figure 4.1. The basis described in Proposition 4.1.1 is, in particular,
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Figure 4.1: Reducing an L-space knot complex. At the left is the staircase-shaped knot
Floer complex for the (3,4)-torus knot, and at the right is its reduction (with an intermediate
step shown in between). Each time we cancel the horizontal arrow from x2−2i−1 to x2−2i,
we see that U takes the last remaining power of x2−2i to x2−2i−2, so, in fact, every generator

which remains in CFK−(T (3, 4)) can be written as Ukx2 for some k ≥ 0.

horizontally simplified, and so the method of reduction will proceed exactly as in Chapter

3. We include a proof of the corollary below, although the result should be more readily

evident by seeing the reduction in Figure 4.1.

Corollary 4.1.2. If K is an L-space knot, then CFK−(K) has exactly one generator of

Maslov grading −2i for each i ≥ 0, and no other generators. Further, if x is the generator

with Maslov grading −2i, and y is the generator with Maslov grading −2i− 2, then Ux = y.

Proof. We will first show that if we use a basis as in Proposition 4.1.1, and proceed with

the reduction as described in Chapter 3, then we get a representative of CFK−(K) with the

desired properties. We will then show that, in fact, any representative must be isomorphic

to this one.
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First, we consider the subquotient complex

ĈFK(K) := C{i = 0}.

This is a filtered complex which is chain homotopy equivalent to ĈF (S3), and so its homology

is generated by a single element. To fix an absolute Maslov grading, this generator of the

homology of ĈF (S3) is declared to have Maslov grading zero. It is clear from the explicit

differential given in Propostion 4.1.1 that, when K is an L-space knot, xk generates the

homology of ĈFK(K), and so M(xk) = 0.

With this as our starting point, we now consider what happens through reduction. To

simplify notation, we will define

ri := ni − ni−1

to be the difference in the Alexander gradings of xi and xi−1. We first cancel the horizontal

arrows which form the top steps of the staircases, those corresponding to

∂H(Umxk−1) = Um+rkxk

for m ≥ 0. Note that after canceling Urkxk, we have

U1(Urk−1xk) = (π ◦ (U − ∂h1U) ◦ ι) (Urk−1xk)

= π ◦ (Urkxk − ∂h1(Urkxk))

= π ◦ (Urkxk − ∂xk−1)

= xk−2
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That is, after canceling higher U -powers of xk, the map U takes the highest remaining power,

Urk−1xk, to the next generator, xk−2. The exact same argument applies to the cancellation

of the horizontal arrows

∂H(xk−3) = Urk−2xk−2,

and we see that

U2(Urk−2−1xk−2) = xk−4.

We proceed in this fashion, until finally we see that

Uk(Ur−k+2−1x−k+2) = x−k.

It follows that each of these generators of CFK−(K) can be written as

U ixk

for some i ≥ 0. Since multiplication by U lowers the Maslov grading by 2, the result follows.

Now let us call the reduced complex just constructed C, and suppose that C ′ is a (Z, U)-

filtered chain homotopy equivalent complex which also has no horizontal arrows (i.e., a

different representative of CFK−(K)). Since it is filtered chain homotopy equivalent, each

subquotient complex C ′{j = k} must have homology isomorphic to that of C{j = k}, which

is either 0 or F, depending on k. Since there are no horizontal arrows, these subquotient

complexes have trivial differential, so they either have no generators or they have exactly 1

generator, with even homological grading. Therefore, C ′ also has trivial differential, so it is

isomorphic to C as a filtered chain complex. The fact that the equivalence is (Z, U)-filtered
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implies that U also takes generator to generator for C ′ as it does for C, so in fact they are

isomorphic as (Z, U)-filtered complexes.

A concise way of stating Corollary 4.1.2 is that, for an L-space knot K1,

CFK−(K1) ∼= F[U ](0), (4.1)

where the subscript here means that the generator has Maslov grading zero. Necessarily,

this complex also has trivial differential. This means that a tensor product of the form

CFK−(K1)⊗F[U ] CFK
−(K2) (4.2)

will be isomorphic to CFK−(K2) as a chain complex, which we will make use of below. It

is important to note however, that the isomorphism (4.1) is not filtered (when K1 is not

the unknot). As a result, the tensor product (4.2) is not (Z, U)-filtered chain homotopy

equivalent to CFK−(K2).

Knowing that L-space knots must have this particularly simple reduced knot Floer com-

plex, we make use of the behavior under connected sums to record the following observation.

Theorem 4.1.3. A knot in S3 which admits an L-space surgery must be a prime knot.

The general argument, a proof by contradiction using Corollary 4.1.2, will be suggested

by considering an example, so we refer back to Figure 3.3. Consider the generator of maximal

Alexander grading in CFK−(K1), which we labeled x. We have A(x) = 1, and so

A(Ux) = 0 = A(x)− 1.
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But Ux is canceled by a horizontal arrow, so when we move to CFK−(K1), we have

A(Ux) = −1 < A(x)− 1

That is, multiplication by U “jumps” down by more than 1. When we take the tensor

product

CFK−(K1)⊗F[U ] CFK
−(K2),

this has the effect of “bending downward” the horizontal arrow from c to Ub. That is, the

arrow from x⊗ c to Ux⊗ b is not horizontal. Therefore, when we reduce this tensor product

complex, we cannot cancel these generators, and so they both remain. But, being connected

by an arrow, their Maslov gradings differ by exactly 1, so the complex CFK−(K1#K2) does

not have the form described in Corollary 4.1.2. With this example as motivation, we provide

the details.

Proof of Theorem 4.1.3. We begin by noting that if negative surgery on a knot produces

an L-space, then positive surgery on its mirror image produces an L-space, so by definition

its mirror image is an L-space knot. Since a knot is a nontrivial connected sum if and only

if its mirror image is, it will be sufficient to show that positive surgery on a connected sum

can never produce an L-space. That is, we will show that no nontrivial connected sum is an

L-space knot.

SupposeK1 andK2 are two nontrivial knots in S3. Let Ci denote the complex CFK−(Ki).

Choose a horizontally simplified basis for C1, where y1 and x1 are generators such that

∂H(y1) = Ur1x1. Likewise, choose a horizontally simplified basis for C2, where Y1 and

X1 are generators such that ∂H(Y1) = UR1X1. Without loss of generality, assume that
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r1 ≤ R1. Our goal is to show by contradiction that CFK−(K1#K2) is a complex which

cannot correspond to an L-space knot, by Corollary 4.1.2.

We will make use of Remark 3.2.2, and begin by reducing C1 to get a complex C1. We

will denote the filtration on this reduced complex by F1 and the filtration on C2 by F2.

Finally, the filtration on the tensor product C1 ⊗F[U ] C2, defined as in equation (2.4), will

be denoted F .

After reducing C1, we have

F1(Ur1−1x1) = F1(x1)− (r1 − 1),

but the map U on Ur1−1x1 lowers the filtration level by at least two, so

F1(Ur1x1) < F1(x1)− r1.

As a consequence, since R1 ≥ r1, and U always lowers the filtration level by at least 1,

F1(UR1x1) < F1(x1)−R1.

Note also that, on the freely generated complex C2, U is a homogeneous map of degree 1, so

F2(Y1) = F2(X1)−R1.
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It follows that

F (UR1x1 ⊗X1) = F1(UR1x1) + F2(X1)

< F1(x1)−R1 + F2(X1)

= F1(x1) + F2(Y1)

= F (x1 ⊗ Y1).

Because of this, every term in

∂(x1 ⊗ Y1) = ∂x1 ⊗ Y1 + x1 ⊗ ∂Y1

has filtration level strictly less than that of x1⊗ Y1. That is to say, ∂H(x1⊗ Y1) = 0. When

we reduce the tensor product complex, there is no horizontal differential to cancel x1 ⊗ Y1,

so it will project to a nonzero homogeneous element in CFK−(K1#K2). Of course, x1⊗X1

also projects to a nonzero homogeneous element in CFK−(K1#K2). But,

M(x1 ⊗ Y1) = M(x1) +M(Y1)

= M(x1) +M(UR1X1) + 1

= M(x1) +M(X1) + 1− 2R1

= M(x1 ⊗X1) + 1− 2R1,

so CFK−(K1#K2) has two elements with Maslov gradings of opposite parity. By Corollary

4.1.2, K1#K2 cannot be an L-space knot.
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4.2 Correction terms and concordance

We now turn to our second application, pertaining to the Heegaard Floer correction terms,

or d-invariants. Given a rational homology three-sphere Y and spinc structure t, we obtain a

chain complex CF∞(Y, t) which is freely generated over F[U,U−1], as described in Chapter

3, and its associated subcomplex CF−(Y, t). The homology of this subcomplex, denoted

HF−(Y, t), consists of a direct summand isomorphic to F[U ], and possibly other terms

which are U -torsion. The correction term associated to (Y, t), denoted d(Y, t), is simply the

maximal Maslov grading of any nontorsion generator in HF−(Y, t).

Given a knot K in S3, let S3
1(K) denote the integer homology sphere obtained from S3

by doing Dehn surgery along K with slope 1. We can associate to this manifold a number,

d(S3
1(K), t) (where t is the unique spinc structure on S3

1(K)), which we will abbreviate as

d1(K). This invariant was studied by Peters in [61], where it was shown to have the following

properties.

Proposition 4.2.1 (Theorem 1.5 and Proposition 2.1 of [61]). For any knot K in S3,

• d1(K) is an even integer

• d1(K) is a concordance invariant of K

• If we denote by g4(K) the smooth four-dimensional genus of K,

0 ≤ −d1(K) ≤ 2g4(K).

In addition, Peters gave an algorithm to compute d1(K) from CFK∞(K), using the

fact that CFK∞(K) contains all the information needed to compute the Heegaard Floer
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homology of manifolds arising from surgery on K. We briefly recount the idea here. For

details, see [61].

In [49, Lemma 7.11], the degrees of the maps in the integer surgery exact sequence

· · · → HF+(S3
0(K))→ HF+(S3

N (K))→ HF+(S3)→ · · ·

were computed, from which it was concluded in [61, Sec. 5] that1

d1/2(S3
0(K)) = d(S3

N (K), s0)− N − 3

4
. (4.3)

In particular, we have

d1(K) = d(S3
N (K), s0)− N − 1

4
, (4.4)

so the invariant d1(K) is determined by d(S3
N (K), s0). For N sufficiently large, this can be

computed directly from CFK∞(K).

Let A+
0 denote the quotient complex

C{i ≥ 0 or j ≥ 0}

of CFK∞(K) (recall that C{S} denotes the elements with (i, j)-coordinates in S, and the

arrows between these elements). Ozsváth and Szabó [52, Corollary 4.2] (c.f., [64]) show that,

1For three-manifolds with H1(Y ) ∼= Z, Ozsváth and Szabó define d±1/2(Y ) to be the minimal grading of

an element in HF+(Y, s0) which is in the image of Uk for all k > 0 whose grading is additionally congruent
to ±1/2 mod 2, where s0 is the unique spinc-structure for which c1(s0) = 0.
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for any sufficiently large positive integer N ,

HF+

l+
(
N−1

4

)(S3
N (K), s0) ∼= Hl(A

+
0 ). (4.5)

That is, up to a shift in grading which depends on N , the homology of this complex is the

Heegaard Floer homology of the three-manifold obtained by surgery. Combining equations

(4.4) and (4.5), we see that the grading shifts cancel nicely, and d1(K) is equal to the

minimum grading of a generator of H∗(A+
0 ) which is in the image of Uk for all k > 0.

Remark 4.2.2. It should be pointed out that, by (4.3), we could get the same information

from the invariant d(S3
N (K), s0), which is also a concordance invariant, as we get from

d1(K). The choice N = 1 is a matter of convenience, because it gives a four-genus bound

without any shift.

We will find it convenient to work with the subcomplex CFK−(K) rather than the

quotient CFK+(K). From this point of view, d1(K) is the maximum grading of a non-

torsion generator of homology of the subcomplex

C{i ≤ 0 and j ≤ 0}.

Remark 4.2.3. To justify this this point of view, we first point out that Ozsváth and Szabó

define d−(Y, t) to be the maximal grading of a non-torsion generator in HF−(Y, t), and

observe in the proof of [49, Prop. 4.2] that

d−(Y, t) = d(Y, t)− 2
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ing the maximal grading of a generator of homology of the subcomplex C{i ≤ 0 and j ≤ 0}
(below and to the left of the dashed line); or by considering the minimal grading of a gen-
erator of homology of the quotient complex C{i ≥ 0 or j ≥ 0} (above or to the right of the
dotted line). We will find it easier to work with the subcomplex through the rest of this
thesis.

(recalling that U lowers grading by 2). But our definition of CF− differs from Ozsváth and

Szabó’s by a shift by U−1 (see Remark 1.4.1). So, the maximal grading of a non-torsion

generator of our CF−(Y, t) is

d′(Y, t) = d−(Y, t) + 2 = d(Y, t),

so we will think of the d-invariant this way.

Figure 4.2 shows how d1 can be computed from the knot Floer complex in the case of

the (2,5)-torus knot.
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There is another concordance invariant which comes from the knot Floer complex, τ(K),

which was introduced by Ozsváth and Szabó in [50], where they showed that it also gives a

lower bound for the smooth four-dimensional genus of K,

|τ(K)| ≤ g4(K).

Given a knot Floer complex, this invariant is easily computed, and yet has been shown to

be a quite powerful four-genus bound. For example, its value on torus knots, shown in [50,

Corollary 1.7] to be

τ(T (p, q)) =
(p− 1)(q − 1)

2
, (4.6)

was used to provide an alternate proof of the Milnor conjecture, which says that this is in fact

the four-genus of T (p, q) (see [42]). The invariant is defined from CFK∞(K) by considering

the subquotient complex

ĈFK(K) := C{i = 0}.

If we let ιk be the inclusion map

ιk : C{i = 0, j ≤ k} → C{i = 0},

we get an induced map on homology

(ιk)∗ : H∗(C{i = 0, j ≤ k})→ H∗(C{i = 0}).

This map is clearly an isomorphism for large enough k, and the zero map for sufficiently
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negative values of k (since the complex is finitely generated). We can then define

τ(K) := min{k|(ιk)∗ is non-trivial}.

This quantity is additive under tensor products of complexes, and therefore τ defines a

homomorphism from the smooth concordance group to Z.

It follows from Proposition 4.1.1 that, for an L-space knot K,

τ(K) = A(xk) = max{j|ĤFK(K, j) 6= 0},

(which is also the Seifert genus of K). In general, it was shown in [52] that

∑
j

χ
(
ĤFK(K, j)

)
· T j = ∆K(T ), (4.7)

where ∆K(T ) is the symmetrized Alexander polynomial of K. Since, for an L-space knot,

we can choose a basis for which the rank of ĈFK(K, j) is either 0 or 1 for each j, the rank

of each subcomplex is determined by its Euler characteristic, so, by Proposition 4.1.1, the

knot Floer complex contains the same amount of information as the Alexander polynomial.

In particular, τ(K) = deg ∆K(T ). That, however, is all the information τ can give in this

case. The statement that τ(K1# −K2) = 0 for two L-space knots K1 and K2 is precisely

the statement that their Alexander polynomials have equal degree. In contrast, the next

theorem gives a sense in which the invariant d1 is more sensitive.

Theorem 4.2.4. Suppose that K1 and K2 are two knots in S3 which admit positive L-space

surgeries. If

d1(K1#−K2) = d1(−K1#K2) = 0,
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Figure 4.3: Labeling staircase complexes. The staircases for K1 and K2.

then

∆K1
(T ) = ∆K2

(T ).

In particular, the Alexander polynomial is a concordance invariant of L-space knots.

Proof. As mentioned above, in light of Proposition 4.1.1, the Alexander polynomial of Ki

gives equivalent information to the knot Floer complex of Ki, which we will represent by its

staircase shape. We can represent a staircase by listing the horizontal lengths in order from

left to right. By the symmetry of the Alexander polynomial, this list is also the list of vertical

lengths, in order from bottom to top. Suppose that K1 has staircase {α1, α2, . . . , αn}, and

K2 has staircase {β1, β2, . . . , βm}, as shown in Figure 4.3, and also that

d1(K1#−K2) = d1(−K1#K2) = 0.

The proof will proceed by showing first that the Alexander polynomials must have equal

degrees, then, one step at a time, that αi = βi for all i (and consequently, that m = n).

The complex CFK−(−K2) will take the shape of an “upside down staircase”, since

−K2 is the mirror image of an L-space knot (see Figure 4.4). In this case, τ(−K2) =

− deg ∆K2
(T ). We record here a particularly useful property of these complexes, which
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Figure 4.4: An upside-down staircase. The knot Floer complex of the L-space knot K2,
and that of its mirror image.

follows from direct inspection.

Remark 4.2.5. If K is an L-space knot, then the knot Floer complex of its mirror, CFK−(−K),

has a basis for which it satisfies the following:

• CFK−(−K) splits into a direct sum of complexes C2i, for each integer i, where C2i

consists of the homogeneous elements of Maslov gradings 2i and 2i− 1

• for i > 0, the complex C2i is acyclic

• for i ≤ 0, the complex C2i has homology isomorphic to F, generated by the sum of all

homogeneous elements of Maslov grading 2i

If K1 is an L-space knot, then, by Corollary 4.1.2, the complex CFK−(K1) is “almost”

the knot Floer complex of the unknot. More precisely, each is isomorphic to F[U ], supported

in grading zero, with the only difference being that, for the unknot, U is homogeneous

of degree one, while for K1, U is a non-homogeneous map which decreases the Alexander

grading by at least one. It follows that the tensor product complex

CFK−(K1)⊗F[U ] CFK
−(−K2),
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Figure 4.5: The difference of two L-space knots. On the left, the complex of the
mirror image knot CFK−(−T (3, 4)). On the right, the complex CFK−(T (2, 7)) ⊗F[U ]

CFK−(−T (3, 4)). Note that it retains the same “staircase” form, but some horizontal arrows
get bent downward.

which we will denote by C, is “almost” an upside down staircase; the only difference being

that some of its “stairs” have been bent. Figure 4.5 shows an example of this, the complex

CFK−(T (2, 7))⊗F[U ]CFK
−(−T (3, 4)) (recall that the reduced complex CFK−(T (2, 7)) is

shown in Figure 3.2).

Remark 4.2.6. In particular, C still has the properties in Remark 4.2.5, splitting into

summands C2i. Since the generator of homology of C0 is the sum of all homogeneous elements

with Maslov grading 0, its Alexander grading is the maximum of the Alexander gradings of

all of these elements (see Equation (3.1)). So, in this case, the d1-invariant is zero if and

only if all of the elements with Maslov grading zero have Alexander grading less than or equal
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to zero.

We will now see how the Alexander grading on the C0 summand is determined from the

shape of the staircases; i.e., from the αi’s and βi’s. Let us choose generators {x−n, . . . , xn}

for CFK−(K1) as in Proposition 4.1.1. Then the generators for CFK−(K1) are

xn−2i, Uxn−2i, . . . , U
αi+1−1xn−2i

for every 0 ≤ i ≤ n − 1, and Ukx−n, for all k ≥ 0. Further, as in the proof of Corollary

4.1.2, we have that

U(Uαi+1−1xn−2i) = xn−2(i+1) for all 0 ≤ i ≤ n− 1

We should also point out that if 0 ≤ k < αi+1,

A(Ukxn−2i) = τ(K1)− k −
∑

1≤j≤i
(αj + αn+1−j), (4.8)

and

M(Ukxn−2i) = −2k −
∑

1≤j≤i
2αj .

For CFK−(−K2), we choose a basis {y−m, . . . , ym}, so that

A(y−m+2k) = τ(−K2) +
∑

1≤j≤k
(βm+1−j + βj)

and

M(y−m+2k) =
∑

1≤j≤k
2βj .
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We now consider each generator in C0 which has Maslov grading zero, and see what

restrictions we get on the αi’s and βi’s by assuming it has Alexander grading less than or

equal to zero. The first generator we consider is xny−m, and we have that

A(xny−m) = A(xn) + A(y−m)

= τ(K1) + τ(−K2)

= τ(K1)− τ(K2).

In order for this to be less than or equal to zero, we must have τ(K1) ≤ τ(K2). On the

other hand, considering instead the knot −K1#K2, the same argument says we must also

have τ(K2) ≤ τ(K1), so τ(K1) = τ(K2), and the Alexander polynomials of K1 and K2 must

have equal degree.

The rest of the proof proceeds similarly. We next consider the generator Uβ1xny−m+2.

If α1 > β1, then

A(Uβ1xny−m+2) = τ(K1)− β1 + τ(−K2) + β1 + βm > 0,

so, in order to have d1 = 0, we must have α1 ≤ β1. Again, considering −K1#K2, we must

also have β1 ≤ α1, so α1 = β1. Since α1 = β1, Uβ1xn = xn−2, so

A(Uβ1xny−m+2) = A(xn−2y−m+2)

= τ(K1)− α1 − αn + τ(−K2) + β1 + βm

= − αn + βm.
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This means we must also have αn ≥ βm; and once again considering −K1#K2, we see that

in fact αn = βm.

We have to this point shown that the first elements of the lists representing these two

staircases agree, and also that the last elements agree. Taking this as our base case, we will

now work our way inductively toward the middle.

To that end, assume that αi = βi and αn+1−i = βm+1−i, for all 1 ≤ i ≤ k. Then

consider the generator

Uβ1+β2+···+βk+1xny−m+2k+2 = Uβk+1xn−2ky−m+2k+2.

If αk+1 > βk+1, then

A(Uβk+1xn−2ky−m+2k+2) = A(Uβk+1xn−2k) + A(y−m+2k+2)

= τ(K1)− βk+1 −
∑

1≤j≤k
(αj + αn+1−j)

− τ(K2) +
∑

1≤j≤k+1

(βj + βm+1−j)

= βm−k

> 0,

so it must be that αk+1 ≤ βk+1; considering −K1#K2 gives αk+1 = βk+1.

Since αk+1 = βk+1, Uβk+1xn−2k = xn−2k−2, so

61



A(Uβk+1xn−2ky−m+2k+2) = A(xn−2k−2y−m+2k+2)

= τ(K1)−
∑

1≤j≤k+1

(αj + αn+1−j)

− τ(K2) +
∑

1≤j≤k+1

(βj + βm+1−j)

= − αn−k + βm−k

This means αn−k ≥ βm−k, and as before, we see that αn−k = βm−k, which completes

the inductive step. A priori, n may not be equal to m, but this induction can be continued

for all i until either αi or βi does not exist. That is, until we exceed the minimum of n

and m. Assume, without loss of generality, that it is n. Upon reaching that point, we have

αi = βi, for 1 ≤ i ≤ n. But since the Alexander polynomials have equal degree,

∑
1≤i≤n

αi =
∑

1≤i≤m
βi,

so n and m must be equal.

Figure 4.5 shows the example of the sum T (2, 7)#−T (3, 4). In Figure 4.6, it is exhibited

that

d1(T (2, 7)#− T (3, 4)) = −2,

although

τ(T (2, 7)#− T (3, 4)) = 0.

This is an instance of a general fact which follows from Theorem 4.2.4.
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Figure 4.6: Computing d1 of the difference of two L-space knots. The complex
CFK−(T (2, 7)) ⊗F[U ] CFK

−(−T (3, 4)). Multiplication by U takes staircase to staircase,

but we suppress the dotted arrows to avoid obscuring the picture. Although τ
(
T (2, 7)# −

T (3, 4)
)

= 0, the summand C0 (shaded red) has its generator of homology with Alexander
grading 1 (above the dashed line), so d1

(
T (2, 7)#− T (3, 4)

)
6= 0 (in fact, d1 = −2).
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Corollary 4.2.7. If K1 and K2 are two L-space knots whose Alexander polynomials are

distinct but have the same degree, then

τ(K1#−K2) = τ(−K1#K2) = 0,

but either

d1(K1#−K2) 6= 0 or d1(−K1#K2) 6= 0.

In particular, d1 gives a stronger four-genus bound than τ for K1#−K2 and its mirror.

For a particular class of L-space knots, Theorem 4.2.4 can be strengthened. Let f :

C2 → C be an irreducible polynomial such that f(0) = 0. Let Z be the curve in C2 through

the origin which is the zero set of f , and let B be a small ball containing the origin in C2.

Then K = Z ∩ ∂B is called an algebraic knot. Algebraic knots are torus knots or, more

generally, iterated cables with cabling parameters (pk, qk) satisfying qk > pkpk−1qk−1 [32].

It was shown by Lê [32] that algebraic knots are determined up to isotopy by their Alexander

polynomial. With this result, we can provide an altenate proof of a corollary proved by Lê.

Corollary 4.2.8 (Lê). Algebraic knots are concordant if and only if they are isotopic.

Proof. It was shown by Moser [43] that torus knots are lens space knots, and more generally

it follows from work of Hedden [21] that the iterated cables specified by Lê are L-space knots.

By Theorem 4.2.4, if two L-space knots are concordant, they have equal Alexander poly-

nomials. Lê showed that the Alexander polynomial determines the knot type for algebraic

knots.
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4.3 Examples

Example 1. The example illustrated in Figure 4.6 can be generalized to the knots

Kp := T (2, p(p− 1) + 1) #− T (p, p+ 1).

By examining the Alexander polynomials of torus knots, it can be seen that the lengths of

the staircase for T (p, p + 1) are {1, 2, · · · , p − 1}, whereas the staircase for T (2, q) has q−1
2

steps, all of length 1.

From this it can be seen (see Figure 4.7 for an example) that the generator of homology

of the complex C0 has Alexander grading

A = max
k

k∑
i=1

(p− i)− i

=

bp2c∑
i=1

p− 2i

=
⌊p

2

⌋(
p−

⌊p
2

⌋
− 1
)
.

(4.9)

In general, showing that the Alexander grading of this generator is positive only shows that

d1 ≤ 0, but in this case we can get an explicit value with relative ease. Roughly speaking,

this is because the map U on CFK−(T (2, p(p− 1) + 1)) decreases the Alexander grading by

2 (at least on elements with high enough Maslov grading), and of course also decreases the
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Figure 4.7: Complexes for the knot Kp. A portion of the complex CFK−(T (2, 31))⊗F[U ]

CFK−(−T (6, 7)). The upper summand shown is C0, and its generator of homology has
Alexander grading 6. The generators of homology for C−2 and C−4 (not shown) are also
above the dashed line. The generator of homology of the summand C−6, the lower summand
shown, has the maximal Maslov grading of any generator below the dashed line, so d1(K6) =
−6.

Maslov grading by 2. So, in fact, the grading in (4.9) is exactly −d1. That is, for any p > 1,

τ(Kp) = 0, but d1(Kp) =



−p
2−2p

4 p even,

−
(
p−1

2

)2
p ≡ 1 mod 4,

−
(
p−1

2

)2
− 1 p ≡ 3 mod 4.

(4.10)

It should be pointed out that while d1 has more to say than τ for these knots, the knot

signature σ gives an even better topological four-genus bound (at least for p > 5).

Example 2. Even among sums of torus knots, however, we can find examples for which τ ,

σ and Rasmussen’s s invariant defined using Khovanov homology [65] are all equal to zero,
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and |d1| is arbitrarily large (for all knots discussed in this thesis, s = 2τ). Define

J+
p := T (2, 8p+ 1)#T (4p, 4p+ 1),

and then let

Jp := J+
p #− T (4p+ 1, 4p+ 2).

A direct computation using (4.6) and, for example, [19, Theorem 5.2] shows that

τ(Jp) = σ(Jp) = 0 for all p > 0.

The staircases of the individual torus knot summands here have the type described in

Example 1. The sum of two L-space knots, as we have seen, is not an L-space knot. However,

its reduced complex has an acyclic subcomplex which is U -torsion, and the corresponding

quotient complex is isomorphic to F[U ]. Since U -torsion elements are not relevant to the

computation of d-invariants, this means we can treat the sum of staircases as a staircase, if

it is only the d-invariants we are interested in (see [2, Section 5] and [3, Section 2.4], where

Borodzik and Livingston discuss the gap functions of connected sums of algebraic knots, for

an alternate point of view). That is to say, this quotient complex is filtered isomorphic to

the reduced complex corresponding to some staircase, which we may call the “representative

staircase”.

If one of the summands is T (2, n), the resulting representative staircase can be obtained

relatively simply. In the case at hand, the representative staircase for J+
p is given by

{
2p2+5p︷ ︸︸ ︷

1, · · · , 1, 3,
2p−2︷ ︸︸ ︷

1, · · · , 1, 5,
2p−3︷ ︸︸ ︷

1, · · · , 1, · · · , 4p− 5, 1, 1, 4p− 3, 1, 4p− 1}.
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Figure 4.8: A representative staircase. On the left is the staircase for the torus knot
T (8, 9) (the horizontal lengths range from 1 to 7, in order). On the right is the represent-
ative staircase corresponding to the knot T (2, 17)#T (8, 9), which we have called J+

2 . This
representative staircase contains all of the generators which are relevant for computing d-
invariants. Here, every point where two line segments meet is assumed to be a generator (a
“dot”), and every line segment is assumed to be an arrow pointing down or to the left.

An example of this staircase is shown in Figure 4.8, for the case p = 2. Recall that, by

the symmetry of the Alexander polynomials of the summands of J+
p , this is also the list of

vertical lengths, from bottom to top. With this, and also knowing the upside-down staircase

shape of CFK−(−T (4p + 1, 4p + 2)), we can compute the Alexander gradings as we did

above. This allows us to see that, for all p > 0,

d1(Jp) = −2p. (4.11)

We suppress the explicit computations here, but instead show the p = 2 case in Figure 4.9.

There is, more generally, a family of knots whose knot Floer complexes are the direct sum

of a staircase and an acyclic complex. In addition to L-space knots, Petkova [62, Lemma

68



4

3

2

1

×

0

−1

−2

Figure 4.9: Complexes for the knot Jp. The portion of the complex CFK−(Jp) which is
relevant for computing d1(Jp), in the case where p = 2. The line segments are interpreted as
in Figure 4.8. The uppermost summand is C0. From right to left, its generators start with
an Alexander grading of 0, and increase by 1 until reaching an Alexander grading of 2p (the
generator marked with an ×). Multiplying by U takes staircase to staircase, and notice that
the Alexander grading of the × generator decreases by 2 each time. This is the basic idea
behind showing that d1(Jp) = −2p.
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7] showed that “Floer homologically thin” knots – which include alternating and quasi-

alternating knots, as well as a family of hyperbolic knots found in [20] – are in this family

(the staircase for a Floer homologically thin knot is the same as that of some (2, n)-torus

knot). Since d-invariants are defined in terms of non-torsion generators of homology, the

acyclic summands have no effect on d1; it is determined solely by the staircase summand.

Therefore, if K1 and K2 are knots in this family, then d1(K1# −K2) can be computed as

it was in the above examples for torus knots. In particular, if the staircases of K1 and K2

have different shapes, these knots are not concordant.

As an interesting further application of these ideas, one could investigate the linear

independence of a family of knots in the smooth concordance group. As an example, if we

let T (r, s)p,q denote the (p, q)-cable of T (r, s), the knots

K1 = T (2, 3)2,3#T (2, 5) and K2 = T (2, 3)2,5#T (2, 3)

can be shown to be linearly independent using d1, although ∆K1
(T ) = ∆K2

(T ) (showing

that Corollary 4.2.7 does not extend to sums of L-space knots). In contrast, the knots

T (2, 3)2,13#T (2, 15) and T (2, 3)2,15#T (2, 13)

cannot be distinguished in the concordance group using d1 (that is, d1 cannot obstruct the

sliceness of the “Livingston-Melvin” knot [37]). So, while Theorem 4.2.4 settles the question

of when two L-space knots are concordant, it would be interesting to understand which

families of L-space knots can be shown to be independent using the d1 invariant.
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