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ABSTRACT 

Adaptive Algorithms for Independent Component Analysis:  

Formulations and Application to CDMA Communication systems with 

Electronic Implementation 

By 

Zaid Albataineh 

Blind Source Separation (BSS) is a vital unsupervised stochastic area that seeks to 

estimate the underlying source signals from their mixtures with minimal assumptions 

about the source signals and/or the mixing environment. BSS has been an active area of 

research and in recent years has been applied to numerous domains including biomedical 

engineering, image processing, wireless communications, speech enhancement, remote 

sensing, etc. Most recently, Independent Component Analysis (ICA) has become a vital 

analytical approach in BSS. In spite of active research in BSS, however, many 

foundational issues still remain in regards to convergence speed, performance quality and 

robustness in realistic or adverse environments.  Furthermore, some of the developed 

BSS methods are computationally expensive, sensitive to additive and background noise, 

and not suitable for a real-time or real world implementation. 

In this thesis, we first formulate new effective ICA-based measures and their 

corresponding robust adaptive algorithms for the BSS in dynamic “convolutive mixture” 

environments. We demonstrate their superior performance to present competing 

algorithms. Then we tailor their application within wireless (CDMA) communication 

systems and Acoustic Separation Systems. We finally explore a system realization of one 

of the developed algorithms among ASIC or FPGA platforms in terms of real time speed, 

effectiveness, cost, and economics of scale. 



 
 

 
 

Firstly, we propose a new class of divergence measures for Independent 

Component Analysis (ICA) for estimating sources from mixtures.  The Convex Cauchy-

Schwarz Divergence (CCS-DIV) is formed by integrating convex functions into the 

Cauchy-Schwarz inequality.  The new measure is symmetric and convex with respect to 

the joint probability, where the degree of convexity can be tuned by a (convexity) 

parameter. A non-parametric (ICA) algorithm generated from the proposed divergence is 

developed exploiting convexity parameters and employing the Parzen window-based 

distribution estimates. The new contrast function results in effective parametric and non-

parametric ICA-based computational algorithms. Moreover, two pairwise iterative 

schemes are proposed to tackle the high dimensionality of sources.  

Secondly, a new blind detection algorithm, based on fourth order cumulant 

matrices, is presented and applied to the multi-user symbol estimation problem in Direct 

Sequence Code Division Multiple Access (DS-CDMA) systems. In addition, we propose 

three new blind receiver schemes, which are based on the state space structures. These 

so-called blind state-space receivers (BSSR) do not require knowledge of the propagation 

parameters or spreading code sequences of the users but relies on the statistical 

independence assumption among the source signals.   

Lastly, system realization of one of the developed algorithms has been explored 

among ASIC or FPGA platforms in terms of cost, effectiveness, and economics of scale. 

Based on our findings of current stat-of-the-art electronics, programmable FPGA designs 

are deemed to be the most effective technology to be used for ICA hardware 

implementation at this time.  
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PREFACE 

In Chapter 1, we provide the background needed to understand Blind Source 

Separation Problems. We provide the definitions and theoretical background necessary to 

understand Blind Techniques. We also address our motivations, problem definitions and 

some concepts that are essential to grasp the topics covered by the different chapters of 

this dissertation; namely, Blind Techniques in Wireless Communication, State Space 

Approach and Adaptive Framework for Blind Source Separation.  

In Chapter 2, we perform a thorough review of the BSS\ICA algorithms, and then we 

give an overview of the ICA algorithms and emphasize the approaches that influenced 

our work. We also study some of the methods that have been developed to solve the ICA 

problems in the case of instantaneous and convolutive mixtures.   

In Chapter 3, we propose a new Convex Cauchy–Schwarz Divergence (CCS-DIV) 

measure for Blind Source Separation (BSS) and unsupervised learning of acoustic and 

speech signals. The CCS-DIV measure is developed by integrating convex functions into 

the Cauchy–Schwarz inequality. By including a convexity quality parameter, the measure 

has a broad control range of its convexity. With this measure, a new CCS–ICA algorithm 

is structured and a non-parametric form is developed incorporating the Parzen window-

based distribution. Moreover, the CCS–ICA algorithm has a controlled speed towards 

timed convergence. Also, A two pairwise iterative schemes are proposed to tackle the 

high dimensional problem in the blind source separation BSS. 

In Chapter 4, we present a frequency-domain method based on robust independent 

component analysis (RICA) to address the multichannel blind source separation (BSS) 
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problem of the convolutive speech mixtures in highly reverberant environments. We 

apply an algorithm to separate the source signals in adverse conditions, i.e.: high 

reverberation conditions when the short observation signals are available. Furthermore, 

we study the impact of several parameters on the performance of separation, e.g. 

overlapping ratio and window type in frequency-domain method.  We also compare 

different techniques to solve the permutation ambiguity.  

In Chapter 5, a new blind detection algorithm, based on fourth order cumulant 

matrices, is presented and applied to the multi-user symbol estimation problem in Direct 

Sequence Code Division Multiple Access (DS-CDMA) systems. The blind detection is to 

estimate multiple symbol sequences in the downlink of a DS-CDMA communication 

system using only the received wireless data and without any knowledge of the user 

spreading codes. The proposed algorithm takes advantage of higher cumulant matrix 

properties to reduce the computational load and enhance performance.  

In Chapter 6, we develop three update laws in order to enhance the performance of 

the blind detector based on the state space structures. Bit error rate (BER) simulations of 

these methods are shown for different number of users, signal to noise ratio (SNR) and 

different number of symbols per user in comparison with the Blind Multiuser Detectors 

(BMUD), Linear Minimum mean squared error (LMMSE) and other conventional 

detectors.  

In Chapter 7, we introduce a constrained blind multiuser detection in order to 

improve its performance with imposing the regularization parameter to cope the ill-

conditioning problem of the covariance matrix and to mitigate the performance 

degradation.  
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In Chapter 8, we investigate the ICA algorithms in terms of hardware 

implementation. Although software implementation is important to investigate the 

capabilities of ICA algorithms and to simulate significant aspects of applications, 

Hardware implementation provides real time solutions and an optimal parallelism method 

in terms of fast convergence. Furthermore, software implementation may suffer from 

insufficient memory problems because the large data sets of the ICAs’ applications and 

its high dimensionality. Thus, hardware implementations are a promising approach to 

implement the ICA algorithms and they are executed by Integrated Circuit (ICs). Owning 

the high speed processing and the parallel architecture features make the hardware 

implementation outperforming the software implementation in terms of sufficient 

memory and fast convergence. Finally in Chapter 9 we conclude the dissertation and 

highlight directions for future work. 
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1 Chapter 1  

Introduction  

Blind techniques have been used in studies since the 1980’s, when the first 

adaptive equalizers were designed for digital communication [1]. The problem with using 

this technique was to estimate an unknown linear single input signal output (SISO) 

stationary channel, without any knowledge about the input signal. The word “blind” 

implies that all signal processing techniques recover both the unknown mixing systems 

and unknown sources based only on the observations [1], [2].  

The Blind Source Separation (BSS) problem was found in the framework of 

neural modeling around 1982 by Bernard Ans, Jeanny Herault and Christian Jutten [1]. It 

then gained considerable attention in more diverse research areas after Comon published 

his pioneering paper in a signal processing journal on Independent Component Analysis 

(ICA) in 1994 [7]. In 1995, Bell and Senjnowski were boosting the ICA topic by 

developing the infomax algorithm [18]. Meanwhile, the well-known JADE algorithm was 

proposed by Cardoso and Soul, in 1993 [16].  Although various BSS algorithms have 

been developed with numerous contrast functions for optimization over the last decade, 

BSS is still considered one of the most important research topics in signal processing.  It 

has generated a lot of interest in the last decade [1], [3].  
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Figure 1.1: Illustration of the BSS Problem [2] 

BSS is considered to be an unsupervised stochastic method which separates the 

underlying source signals from their mixtures, without any knowledge about the source 

signals or the mixing process. Recently, Independent Component Analysis (ICA) has 

become a vital algorithm in BSS, Figure 1.1. ICA has been a very important topic in 

many research areas [1-3], [12-27], i.e.: biomedical engineering, image processing, 

wireless communication systems, speech enhancement, remote sensing, etc. ICA is 

related to Principle Component Analysis (PCA) and Factor Analysis (FA) in multivariate 

analysis. It specifically corresponds to second order methods in which the components or 
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factors are a Gaussian distribution. However, the ICA is a statistical technique that 

includes higher order statistics (HOS) where; the goal is to represent a set of random 

variables as a linear transformation of statistically independent components.  

The ICA aims to recover both the unknown source signals and mixing system or 

one of them from only observed system outputs. This important research topic includes 

several concepts of signal processing, information theory, statistics and probability, 

neural networks, etc.  The ICA has several applications in many fields such as image 

processing, wireless communications, biomedical applications and audio source 

separation. In addition, the ICA problem appears in many multi-sensor systems [1]. ICA 

methods are essentially based on parameter estimation, which requires a model of 

separating system, objective criteria and optimization methods.  

 

Figure 1.2: Block diagram of blind source separation 

The BSS can be expressed as in Figure 1.2, where S = {s1, s2, … , sn} represents 

the n source signals, and X = {x1, x2, … , xm} represents the m observed signals, A or H 

represents the mixing systems which correspond to whatever is static or dynamic. Two 

 
 
 
 

 

 
 

 

  
 



 
 

4 
 

mixture models have been considered. Firstly, linear static mixtures, which assume that 

the mixing system A is memoryless, are called linear instantaneous mixtures. Secondly, 

the linear convolutive mixtures, which assume that the mixing matrix H is a memory 

system, vary with time.  In order to solve the BSS problems, we need assumptions to 

apply; otherwise this problem is considered to be ill-posted. The common assumption in 

BSS\ICA field is the mutual statistical independence among the original sources. 

Although sometimes this assumption is problematic to establish, it is realistic and fully 

justified in several applications. Other suitable assumptions can be used successfully for 

solving BSS problems depending on the applications.  

In this dissertation, we investigate and study the two models of mixing systems: 

instantaneous mixtures model in (1.1) and convolutive mixtures model in (1.2), 

respectively.  

�(t) = A�(t) + �(t)															t = 1,2, … ,T              (1.1) 

 

Where 

• A = [aij]�x� is the memoryless mixing system. 

• �(�) = [sjt] xT is the ! original source signals to the system 

where the T is the sampled length. 

•  �(�) = [xit]�xT is the " observed signals of the system 

• �(t) = [nit] xT is the noise and usually assume to be an 

additive white Gaussian noise (AWGN) 

 

�(t) = ∑ Hd�(t− d)%
d + �(t)									∀						t = 1,2, … ,T       (1.2) 



 
 

5 
 

              Where 

• Hd(t) = [hijd(t)]�x  is the mixing matrix at dth delay 

which represents d = 1,2, … , L 

• hijt(t) is the impulse response of time instant t. 

We study these two models intuitively in next chapter. Also, In terms of 

applications, we address the problem of BSS in a cocktail party problem [3], [38] and 

[120]. In additional, we are going to address its application in wireless communication 

systems specifically using blind multiuser detections in CDMA system [89], [75], [59]. 

Furthermore, a system realization of one of the developed algorithms will be explored 

among ASIC or FPGA platforms factoring in cost, effectiveness, and economics of scale.    

1.1 Blind Techniques in Wireless Communication 

In telecommunication systems [74], [75], [89], [91], the most essential challenge 

has been to set up the system based on simultaneous multiuser access in order to get 

higher efficient wireless systems. However, several state-of-the-art approaches have been 

proposed in literature [74], [85], [94] to overcome this challenge such as the trained-

based systems. These techniques periodically enforce the user to send a known training 

sequence for the receiver in order to make the receiver able to estimate the parameter of 

the propagation channel. They are caused by the multiple reflections of the radio waves 

on the obstacles encountered, e.g. buildings, cars, and trees etc. Furthermore, according 

to [60], [74], it has been reported that 20% of the bandwidth is devoted to the training 

sequence in a GSM system and up to 40% in a UMTS system. In spite of the good 

performance of the aforementioned technique, the cost tends to be significantly large in 

terms of bandwidth. The efficiency of most communication systems is based on the 
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bandwidth and the transmitted power. However, the blind multi user techniques are a 

promising area in wireless communication systems because of its potential to ensure the 

high communication rate and spectral efficiently, thereby reducing or disposing of the 

training sets. 

 Blind techniques are considered to be an attractive field of work because the 

following reasons: 1) reduce the training sequence; 2) help the trained-based systems 

back up in fast-time varying channels and at severe multipath fading, respectively. Also, 

Blind techniques help to recover the signals in other situations such as eavesdropping, 

where using the training sequence is not possible [59], [74]. For these reasons, we are 

motivated to do additional research in this area in order to design a new multi user 

detection that performs well in a multipath propagation environment. And, It has to be 

more robust to the outlets “versus type of noise” in terms of performance.  

 

Figure 1.3:  Wireless Communication Scenario [2] 
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1.1.1 Direct-Sequence Code Division Multiple Access 

Code division multiple access (CDMA) is a multiplexing technique or a channel 

access method that allows several users to access to the same multi-point transmission 

medium “RF channel” asynchronously and simultaneously, to transmit over it and to 

share its capacity. CDMA is used by various radio communication technologies such as 

CDMAONE “the mobile phone standard”, CDMA2000 “the third generation of 

CDMAONE, WCDMA “the third generation standard used by GSM carriers”, and 

Evolved High-Speed Packet Access (HSPA+) [74]. Although, LTE (4G) is in operation 

in many cellular companies inside and outside the U.S., the networks are still not fully 

built out, and LTE coverage is still not universal. Thus, the most of the older 2G and 3G 

systems are still in charge or at least working in parallel with the 4G as in U.S. 

companies, AT&T and T-Mobile use GSM/WCDMA/HSPA while Verizon, Sprint, and 

MetroPCS use cdma2000/EV-DO. Moreover, The LTE wireless interface is incompatible 

with 2G and 3G networks, so that it must be operated on a separate wireless spectrum. 

Nevertheless, 3G is intended to be replaced by 4G technologies sooner or later, but it is 

going to take a long time before the LTE coverage is developed to be fully operated and 

universal, especially in some countries worldwide, such as India, Pakistan, Iraq … etc. 

[141,[142]. 

One of the most interesting concepts in data communication is the idea of 

allowing multiusers to share and send information simultaneously over a single 

communication channel. This means, several users share a band of frequencies called 

“Bandwidth”. Despite the fact that the CDMA is suitable for satisfying the demand for 

higher data rates and an inherent capability of CDMA is resisting interference and 
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providing a secure channel, Multiuser detection in CDMA systems usually suffers from 

the multi-access interference (MAI) and  inter-symbol interference (ISI) due to the non-

ideal cross-correlations between users’ spreading sequences. The concept of spread 

spectrum communication was proposed for military purposes and used in anti-jamming 

techniques. Later, the spread spectrum techniques were employed to civilian purposes.   

 In highly loaded systems [74], [88], conventional detectors are considered an 

unsuitable choice, since most of them suffer from the external interference sources such 

as adjacent channel interference or jamming, and treat the interference as an additional 

background noise. These drawbacks have motivated development of numerous 

interference rejection techniques [89], [91].  

In CDMA literature [74], [76], most of the conventional Multiuser detection 

methods assume the low statistical correlation between desired users and interfering ones, 

which motivated them to use the SOS properties of the received data. Thus, one relatively 

new idea is to extend the work on higher order statistics (HOS) in order to make the 

methods robust and secure against incomplete cross-correlation and a near-far problem, 

which are considered to be additional drawback factors in conventional detection 

methods. BSS based on HOS [1], [2] [8-21] are able to recover the signals from the 

mixtures without any knowledge about the waveform structure “modulation” and mixing 

coefficients. Lastly, the adaptive LMMSE detector has been proposed to overcome the 

complex matrix inversion operation, but this detector still needs the spreading codes of all 

users. Therefore, the Adaptive MMSE detector might not be realistic in the downlink 

receiver.  Therefore, one of the main emphasizes in this dissertation is to develop and 

implement the BSS/ICA algorithm to assist Multiuser detection methods in order to 
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mitigate different types of interference sources in CDMA system, especially in DS/W 

CDMA downlink systems. 

1.1.2 Why Blind 

Blind Multiuser detectors are promising because they only require the received 

signal with neither prior knowledge of any training signals nor the user spreading codes 

in order to equalize the channels and estimate the multiple symbol sequences associated 

with all users in CDMA systems. On the other side, several state-of-the-art approaches 

have been proposed in literature to overcome this challenge such as the trained-based 

systems [74], [85- 86]. These techniques periodically enforce the user to send a known 

training sequence for the receiver in order to make the receiver able to estimate the 

parameter of the propagation channel. In spite of the good performance of the 

aforementioned technique, the cost tends to be significantly large in terms of bandwidth. 

The efficiency of most communication systems is based on the bandwidth and the 

transmitted power.  Therefore, the blind techniques usually perform well and more robust 

in terms of the estimation the symbol under the ill-condition environment i.e. under 

severe multipath fading channels. One can also incorporate prior information such as 

spatial knowledge or a set of short training sequences if available, in order to construct 

the semi-blind detectors [75], [78], [89], [91], [96].  

The reasons to apply the blind multiuser detections are as follows [2]: 

1) Training examples for interference are often not available [74], [78]. 

2) In rapid time varying channels, training may not be efficient [79]. 
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3) Capacity of the system can be increased by eliminating or reducing 

training sets [60], [74]. 

4) Multi-path fading during the training period may lead to poor source or 

channel estimations. [87-89] 

5) Training in distributed systems requires synchronization and/or sending a 

training set each time a new link is to be set up. This may not be feasible 

in a multi-user scenario [90 -93]. 

1.1.3 CMDA SIGNAL MODELS 

In this section, we briefly present the signal model for a CDMA implementation 

using one layer of spreading codes only. Next, we briefly describe the DS-CDMA signal 

and WCDMA signal models in a typical synchronous CDMA system employed for 

indoor ATM and certain ad hoc wireless networks [75], [81], and [89]. 

1.1.3.1 DS-CMDA Receiver Signal Model 

 In a DS-CDMA system, several users share the medium simultaneously by using 

their own signatures. The simplest received signal model r(t)	before filtering in a symbol 

interval is given by  

r(t) = ∑ ∑ ∑ α)*b,,*s,(t − mT0 − d)T2) + n(t)456)789,76M
m71                     (1.3) 

where  

� l, k,	and	m	represent	the	path,	user	and	symbol	indices,	
respectively.	

� α)*	 is	 the	path	gain	since	 in	downlink	model;	 the	path	
gain	 does	 not	 	 differ	 among	 users	 because	 all	 users’	
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signals	 are	 sent	 together	 and	 the	 path	 gain	 α)*	 and	
propagation	delay	factor	d)	depend	only	on	the	number	
of	paths.	

� b,,*		is	symbol.	

� s,(. )	is	spreading	code	(	chip	sequence)	

� d)	is	the	propagation	delay	factor,	d) ∈ {0, 1, … , O56P }		

� C	is	the	number	of	chips	per	symbol.	
� T0, T2, t	 	 are	 time	 ,	 symbol	 and	 chip	 duration,	

respectively.	
� n(t)	 is	 an	 additive	 white	 Gaussian	 noise	 (AWGN)	

channel.	

In this dissertation, the system is assumed to be time-invariant which means that 

the channel parameters are much slower than the frequency of the transmitted 

symbol data. However, let us assume that G is the number of code sequence, K is the 

number of users, and L is the number of channels; thus, the vector form of the 

equation (1) will become: 

U = VWX + Y                                                          (1.4) 

Where U is the received vector signal, V is an (G + L − 1)	x	G matrix which 

represents the multipath propagation coefficients, W is an G	x	K block diagonal 

matrix, X is an K − d vector which represent the data symbols and Y is the 

(G + L − 1) − d channel noise vector with covariance matrix Z. This model received 

signals (2) is suitable for deriving the linear symbols detectors such as the MF, the 



 
 

12 
 

RAKE, the LMMSE and the blind Detectors based on FastICA and Robust ICA 

algorithms [89], [88] – [75] . 

 An alternative signal model is proposed in [89], [81] as a linear convolutive 

model given by: 

[\ = ]^_\ +]�_\5� + \\ = ]_̀\ + \\                 (1.5) 

where 

� [\ is the received signal vector;  

� XY = [b6(n),… , b9(n)]a is a current bits of all users; 

� V^ = [b�, … , bc] is signature matrix of the current bits of 

all users including MAI; 

de =

f
g
g
g
g
h ^

de(^)
.
.
.

de(i − je − �)k
l
l
l
l
m
                     

(1.6) 

� ]� = [d�nnnn, … , dennnn] is the signature matrix of the previous 
bits of all users including ISI;  
where  

                                                                 d̀e =

f
g
g
g
g
h de(i − je)

.

.

.
de(i +o− �)

^ k
l
l
l
l
m
   

                                                                                                       (1.7) 
� ] = [	]^; ]�] is the signature matrix of all users; 

� _\ = [p6(!),… , pq(!)]r are currents bits of all user; 

� _\5� = [p6(! − 1),… , pq(! − 1)]r are previous bits of all 

users; 

� _̀\ = [p r; 	p 56r ]r are bits of all users; 
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� \\ = [\(\i),… , \(\i + i − �)]sis independent white 

Gaussian Noise vector. 

In uplink (asynchronous) CDMA systems, one can assume that H8 and H6 are 

mutually independent. Therefore, H is a full column matrix and its rank is 2K as shown in  

[88], [89]. In downlink (synchronous) CDMA communication [75], [81], H is a matrix, 

has full-rank and less restrictions as seen in [89]. In additional, our proposed algorithms 

are working well in asynchronous CDMA system [83], [81], the main focus in this 

dissertation is the synchronous CDMA communication system. 

1.1.3.2 WCDMA Receiver Signal Model 

In a WCDMA system, the presence of scrambling codes makes the system different 

from the DS-CDMA system. The main reason behind the MAI in the WCDMA system is 

the intra-cell multiple user signals sharing the same multipath channels. However, the 

simplest received signal model r(t)	before filtering in a symbol interval is given by: 

[(�) = v vvwx�py,�zy(� −	{x|})�y(� − "|~ − {x|}) + !(�)
%

x78

q

y76

�

�76
 

(1.8) 

Where c,(t) ∈ {±1	 ± j}  are the complex cell-specific scrambling sequences, the rest 

of the variables are defined in a similar manner to the model (1.8). The received signal at 

UE/MS is passed through a chip-matched filter and sampled at chip rate. The received 

vector r in this case can be expressed as 

[ = ]��_ + \                          (1.9) 

Where C is the G x G complex diagonal scrambling matrix with  ��� = I��� and the 

rest of the variables are defined as similar in (1.9). The form of C is given by: 
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�	 = 	j���[��			��…				��	]      (1.10) 

Where  

z� ∈ {±1	 ± �}						∀		1 ≤ �	 ≤ � 

1.2 The State Space Framework 

In this dissertation, we investigate the state space framework in order to design a 

blind multiuser detection based on the state space approach. The Linear State Space 

approach is an extension of the static “instantaneous” ICA model which easily extends 

further to a flexible nonlinear model as in [2], [95].  

Despite the fact that it is one of the most powerful tools in terms of Blind Source 

Separation, there are several reasons that have made us interested in this specific model 

[2]. [95], [135]:  

1. Flexible and Universal Linear Model:  the mixing and filtering processes in the 

state space approach may have different mathematical and/or physical models, i.e. 

multichannel deconvolution models (MCD), Finite Impulse Response (FIR), 

Moving Average (MA), Autoregressive (AR) and Autoregressive Moving 

Average (ARMA), etc [2].  

2. Many canonical realizations: it provides us with many canonical realizations of 

the same dynamic system using the equivalent transformations. 

3. The Linear State Space approach is an extension of the static “instantaneous” ICA 

model and it is easy to extend it further to a flexible nonlinear model. 

4. The state space models provide us two subsystems with different update 

approaches, 1) a linear and memory less output layer 2) a non-linear or linear 

recurrent networks. 
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5. Recoverability:  the inverse of the state space representation depends on the 

invert-ability of the mixing matrix between the input and the output.  

 

1.3 Adaptive Framework for Blind Source Separation  

Generally, the BSS consists of recovering the unobserved sources, denoted in 

vector notation as	s(t) = (s1(t), s2(t),… , sn(t))T 		 ∈ R , with assuming zero mean and 

stationary with observed mixtures, x(t) = (x1(t), x2(t),… , xm(t))T 		 ∈ R�, which can be 

written: 

x(t) = Φ(s(t))          (1.11) 

 

Figure 1.4: Conceptual State-Space model which illustrates the general linear 

state-space mixing and self-adaptive demixing model for Dynamic ICA [2]. 
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Where Φ is an unknown mapping from R  in	R�, and t represents the sample 

index, which can stand for instance of time; so, we can divide the BSS problems based on 

the type of Φ mapping into two groups, one called the invertible mixtures and second 

called Underdetermined mixtures “non-invertible” [1]. 

1.3.1 Invertible Mixtures  

If the mapping Φ is invertible, which means satisfying the condition	" ≥ !, 

where " and ! are the numbers of sensors and the number of sources, respectively. In 

this case, identification of Φ or of its inverse, directly leads to source separation, i.e. 

provides estimated sources y(t) such that: 

 

y(t) = Wx(t) = W ∗ H ∗ s(t) = P ∗ D ∗ s(t)														  (1.12) 

Where  

P – is a generalized permutation matrix. 

D – is a scaling matrix which is a diagonal matrix.  

This equation shows typical indeterminacies of BSS problem. According to the 

nature mixing, BSS problem can be more or less complicated.  For example, simple 

instantaneous mixtures when Φ is restricted to a simple mixture	A, sources are estimated 

up to a permutation and a scale. Invertible mixtures can be divided into following two 

categories [1]: 

1.3.1.1 Instantaneous mixtures 

One modest approximation is to assume that the mixing system A in Figure 1.2 is 

instantaneous, assuming that A is a mixing matrix, n(t) is an additive noise, s(t) is the 
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source signals and x(t) is the observed signals, then the instantaneous model can be 

expressed as follows: 

 

x(t) = As(t) + n(t)															t = 1,2, … ,T         (1.13) 
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          (1.14) 

For notational and mathematical convenience, we will assume that we have the 

number of observed signals equal to the number of source signals, i.e.:	" = !. We also 

assume that the mixing matrix A is a full rank matrix. In addition, we assume that the 

noise in the mixtures is an additive Wight Gaussian noise.     

The BSS problem aims to retrieve the original sources from the given 

observations. In the instantaneous model, we only need to estimate un-mixing matrix W 

that equals the inverse of the mixing matrix	W = A
51 to recover the original signals s(t) 

almost directly. Estimate the unmixing matrix W ≈ A
51from a given set of 

observations	x(t) that can retrieve the original signals via a linear transform:  

y(t) = Wx(t) 		≈ s(t)				t = 1,2, … ,T          (1.15) 

In order to measure the performance of the separation algorithm, we use the 

performance matrix	G, 

G = WA ≈ I           (1.16) 

where I is an identity matrix. Ideally, the performance matrix G would be closed 

to an identity matrix for an efficient separation algorithm. Despite the fact that the 
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separated sources y(t) may not be the same order and scale as the original sources, the 

matrix G should be an identity up to scale and a permutation.  

1.3.1.2 Convolutive Mixtures  

A convolutive mixture can be considered as a natural extension of the 

instantaneous BSS problem. Assume an m-dimensional vector of received discrete time 

signals x(k) = [x1(k), x2(k), … , xm(k)]T at time k is assumed to be produced from an n-

dimensional vector of source signals	s(k) = [s1(k), s2(k),… , sm(k)]T, where	m ≥ n, by 

using a stable mixture model [2]: 

x(k) = v Hps(k − p) = Hp ∗ s(k),				
∞

p75∞

 

with	 ∑ ‖Hp‖ ≤ ∞∞5∞ 	    (1.17) 

Where ∗ represents the linear convolution operator and Hpis an (m	x	n) matrix of 

mixing coefficients at time-lag	p.  

Assume that elements hjip denote the coefficients of the Finite Impulse Response 

(FIR) filter Hp , and L is the maximum unknown channel length. Then, the noise-free 

convolutive model is written as follows: 

x(k) = ∑ Hps(k − p)		L51
p70     (1.18) 

Thus, one can find an approximate inverse channel matrix Wp in order to recover 

the source signals s(k) = [s1(k), s2(k), … , sm(k)]T such that  

y(k) = Wp ∗ x(k) = ∑ Wpx(k − p) = s�(k)	Q51
p750   (1.19) 

where Q is the length of the inverse of the channel impulse response.  However, 

there are two approaches to solve this problem and recover the source signals. In time 
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domain approaches, they have several general drawbacks such as Q should be selected at 

least equal to the unknown true channel	L. Therefore, for long mixing filter, which means 

long transfer functions, the computation will be expensive [2], [133].  Also, using the IIR 

filter instead of long FIR filter to overcome this problem really suffers from the 

instability and need to invert the non-minimum phase filters [2], [38], [133].  Moreover, 

timing approaches are sensitive to channel order mismatch – see [2], [133] for a recent 

survey. However, time domain methods are suitable and very efficient for small mixing 

filters such as in communication channel [133]. For all these limitations, we focus our 

study on frequency approaches to solve the cocktail party problem [3], [38]. Also, the 

main advantage of a frequency domain BSS approach is the ability to apply the set of any 

instantaneous ICA algorithms to solve the convolutive BSS problem. On other hand, the 

main challenge of BSS in the frequency domain is to deal with the permutation and 

scaling ambiguities - see [1], [3], [38] for a recent survey.  

 However, one can re-map the aforementioned BSS models into frequency 

domain by applying the Discrete Fourier Transform (DFT) on the observed signals x(k) 
in order to transform it to the instantaneous mixtures problem as follows 

x(k) = H ∗ s(t)		x(q,w) ≈ H(w)s(q,w)     (1.20) 

where  w is a frequency index, q is a frame index, s(q,w) = [s1(q,w),… ,
sm(q,w)]T and x(q,w) = [x1(q,w), … , xn(q,w)]T. 

 In the previous equation, it is considered to be valid only for periodic signals	s(t) 
[3]. However, it is approximately valid if the time-convolution is circular. Therefore, to 

ensure that the time convolution is circular, it requires making the Fourier Transform 

length significantly larger than the maximum length of the mixing channels L [3]. In [38], 
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they imposed the spectral smoothing approach in order to mitigate the circularity effect in 

frequency domain BSS methods. We will study these effects intuitively in next chapter. 

1.3.2 Underdetermined mixtures  

If the number of observations (sensors) " is less than the number of sources	n, 

the mixing process is referred to be underdetermined (not invertible) [1], [52], [53].  

The separation processes can be attained successfully in the frequency-domain up 

to scaling and permutation ambiguities under the assumption that the mixing matrix �(�) 
is full column rank at each frequency bin.  However, when the number of source signals 

is more than the number of sensors, the assumption on the mixing matrix �(�) becomes 

not valid. So, in this case the problem is more difficult since the mixing matrix �(�) 
becomes ill-conditioned matrix which means the mixing matrix �(�) is not left pseudo-

invertible. However, a lot of work has been done in order to perform a good separation 

process in the case of the instantaouse mixture [1]. However, there are not so many works 

that has been done on the underdetermined case in the convolutive mixture [1], [38]. In 

the literature, the well-known algorithm of such method is the DUET algorithm which is 

proposed by Rickard et al [2], [3], [38] and [117]. The DUET algorithm assumes a 

specific delayed model that only works for audio signals with small delay, e.g. hearing 

aid etc. The DUET algorithm performs the separation processes using the two sensors in 

order to compute two parameters amplitude differences and phase differences between 

the source signals. Several papers were published to develop and enhance the 

performance of the DUET algorithm in [3], but their performance in real reverberant 

environment is still limited. One of the promising approaches in this field is to convert 
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some of the underdetermine cases of the instantounous mixture into the frequency 

domain in order to tackle the underdetermined problem in the convoluvtive mixture as 

presented in the literature [1], [3], [38]. 

1.4 Dissertation Contributions 

The contributions of this thesis are summarized as follows: 

• We perform a thorough review of the BSS\ICA algorithms, and then we give 

an overview of the ICA algorithms and emphasize the approaches that 

influenced our work. We also study some of the methods that have been 

developed to solve the ICA problems in the case of instantaneous and 

convolutive mixtures. 

• Independent Component Analysis (ICA) is a crucial tool in Blind Source 

Separation (BSS). In this thesis, we present a new Convex Cauchy–Schwarz 

Divergence (CCS-DIV) measure for Blind Source Separation (BSS) and 

unsupervised learning of acoustic and speech signals. This CCS-DIV measure 

is developed by integrating convex functions into the Cauchy–Schwarz 

inequality. By including a convexity quality parameter, the measure has a 

broad control advantage of its convexity. With this measure, a new CCS–ICA 

algorithm is structured and a non-parametric form is developed incorporating 

the Parzen window-based distribution. Furthermore, the CCS–ICA algorithm 

has a controlled speed towards timed convergence. Several case-study 

scenarios were carried out on instantaneous and noisy mixtures of speech 

signals. Finally, the superiority of the proposed CCS–ICA algorithm is 

demonstrated in metric performance comparison with FAST ICA, Robust 
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ICA, convex ICA (C-ICA), and other existing algorithms based on mutual 

information and Jenson’s inequality.  

• Two pairwise iterative schemes are proposed to tackle the high dimensionality 

problem. Two pairwise schemes non-parametric independent component 

analysis ICA algorithms based on a new high-performance Convex Cauchy–

Schwarz Divergence (CCS-DIV). These two schemes enable fast and efficient 

de-mixing of sources in real-world applications where the dimensionality of 

the sources is high. Finally, the performance superiority of the proposed 

schemes is demonstrated in metric-comparison with FastICA, RobustICA, 

convex ICA (C-ICA), and other leading existing algorithms. 

• We propose a frequency-domain method based on robust independent 

component analysis (RICA) to address the multichannel Blind Source 

Separation (BSS) problem of the convolutive speech mixtures in highly 

reverberant environments. We impose regularization processes to tackle the 

ill-conditioning problem of the covariance matrix and to mitigate the 

performance degradation in frequency domain methods. We apply an 

algorithm to separate the source signals in adverse conditions, i.e. high 

reverberation conditions when short observation signals are available. 

Furthermore, we study the impact of several parameters on the performance of 

separation, e.g. overlapping ratio and window type in the frequency domain 

method.  We also compare different techniques to solve the permutation 

ambiguity. Through simulations and real-world experiments, we verify the 

superiority of the presented algorithm among other BSS algorithms, i.e. 
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recursive regularized ICA (RR-ICA), independent vector analysis (IVA) and 

others. 

• Code Division Multiple Access (CDMA) is a channel access method used by 

various radio technologies and it is based on spread-spectrum technology. In 

general, CDMA is used as an access method in many mobile standards such as 

CDMA2000, and WCDMA.  We address the problem of blind multiuser 

equalization in the wideband CDMA system, in the noisy multipath 

propagation environment. Herein, we propose three new blind receiver 

schemes, which are based on the state space structures. This so-called blind 

state-space receivers (BSSR) does not require knowledge of the propagation 

parameters or spreading code sequences of the users but relies on the 

statistical independence assumption between the source signals. Also, we 

develop and derive three update-laws in order to enhance the performance of 

the blind detector. Additionally, we upgrade three semi-blind adaptive 

detectors based on the corporation between the RAKE receiver and the 

stochastic gradient algorithms which are used in several blind adaptive signal 

processing algorithms, namely FastICA, RobustICA, and principle component 

analysis PCA. Bit error rate (BER) simulations of these methods are shown 

for different number of users, signal to noise ratio (SNR) and different number 

of symbols per user in comparison with the Blind Multiuser Detectors 

(BMUD), Linear Minimum mean squared error (LMMSE) and other 

conventional detectors. The results show that the proposed algorithm 

outperforms the other detectors in estimating the symbol signals from the 
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mixed CDMA received signals. Moreover, the new blind detectors mitigate 

the multi access interference (MAI) in CDMA. 

•  A new blind detection algorithm, based on fourth order cumulant matrices, is 

presented and applied to the multi-user symbol estimation problem in Direct 

Sequence Code Division Multiple Access (DS-CDMA) systems. The blind 

detection is to estimate multiple symbol sequences in the downlink of a DS-

CDMA communication system using only the received wireless data and 

without any knowledge of the user spreading codes. The proposed algorithm 

takes advantage of higher cumulant matrix properties to reduce the 

computational load and enhance performance. Bit error rate (BER) 

simulations of this algorithm are shown for different number of users, signal 

to noise ratios (SNR) and different number of symbols per user in comparison 

with the FAST ICA and Robust ICA algorithms. The results show that the 

proposed algorithm outperforms both ICA-based detectors in estimating the 

symbol signals from the received mixed signals. Moreover, the proposed blind 

detector is computationally fast and exhibits high convergence speed in 

extracting user symbols. 

• In direct sequence code division multiple access DS-CDMA communication 

system, the blind multiuser detection is presented for enhance the 

computational complexity and mitigate the multiple access interference (MAI) 

in the detector. The ill-condition of the covariance matrix of the received 

signals degrades the performance of the linear minimum mean-squared error 

LMMSE detector. Especially, when the Signal to noise ratio is high and small 
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data set is available for covariance matrix estimation. In this thesis, we 

introduce a constrained blind multiuser detection in order to improve its 

performance with imposing the regularization parameter to cope the ill-

conditioning problem of the covariance matrix and to mitigate the 

performance degradation. Through simulation results, we show that the 

proposed method improves the performance of the blind multiuser detection 

and outperforms the conventional multiuser detections. 

• Lastly, we investigate the ICA algorithms in terms of hardware 

implementation. Although software implementation is important to investigate 

the capabilities of ICA algorithms and to simulate significant aspects of 

applications, Hardware implementation provides real time solutions and an 

optimal parallelism method in terms of fast convergence.  
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2 Chapter 2  

Literature Review 

In this chapter, we perform a thorough review of the BSS\ICA algorithms, and 

then we will give an overview of the ICA algorithms and will emphasize the approaches 

that influenced our work. We will study some of the methods that have been developed to 

solve the ICA problems in the case of instantaneous and convolutive mixtures, 

respectively.  Finally, for a more thorough review on ICA problems, applications and 

methods, we recommend referencing one of these valuable books:  “Handbook of Blind 

Source Separation Independent Component Analysis and Applications” [1], “Independent 

Component Analysis in frequency domain” [3] and “Adaptive Blind Signal and Image 

Processing: Learning Algorithms and Applications” [2]. 

2.1 Introduction 

Independent component analysis (ICA) considers a vital algorithm in Blind source 

separation (BSS). ICA algorithms based on the information theatric approach are 

attractive and have been considered a hot topic in signal processing for the last two 

decades due to its potential in areas such as biomedical, wireless communication system, 

audio separation and identification, etc. The goal of ICA is to recover the original source 

signals from the mixtures without any further knowledge about the mixing coefficients   
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and the original sources. However, ICA is a statistical technique that includes higher 

order statistics (HOS), where the goal is to represent a set of random variables as a linear 

transformation of statistically independent components [1-3]. 

The idea of BSS was first introduced by J. Herault, C. Jutten and B. Ans) who 

worked in neurophysiologies in the early 1982s [1]. They proposed a blind method to 

separate the natural impulses coming from different parts of human body. [5], [40],[41].  

Meanwhile, telecommunications related applications of ICA have been proposed even 

earlier in MIMO systems [62],[101], [117], [118]. Also, ICA has been investigated and 

implemented in several applications such as audio and biomedical signal processing and 

feature extraction. An extensive review of the history of ICA and its applications is given 

in [53], [56], [57]. BSS methods have several interesting applications. In finance, they 

use the BSS algorithms to find the independent factors in data [74]. In Image processing, 

they use the BSS algorithm to help estimate the best independent basis for compression 

or denoising [14-16]. They are also used in biomedical signals, like in an EEG [11] or an 

ECG, for analysis purposes [1-2]. In audio, they use the BSS algorithms to identify the 

sounds or separate the audio signals as in the cocktail party problem [1-3], [51]. 

However, one of the most interesting applications of the BSS is in wireless 

communication systems.  
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Figure 2.1: Classifications for BSS problem. 

There are more than four communities that have worked on the BSS, especially 

Independent component analysis (ICA), refer to [1] and [2]. However, one of the best 

examples used to illustrate the BSS problem is the cocktail party problem. While 

attending a cocktail party and using ones’ ears to listen and separate a specific sound 

source among all other sounds present in the room, for example: people talking, music, 
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etc., in order to emulate this human behavior, researchers carry out the BSS idea from the 

way our brain tackles this problem.  Much research has been done over the last two 

decades in BSS and ICA areas. 

Recently, researchers proposed several BSS methods based on the frequency-time 

analysis [3], [50] or using regularization algorithms [20], [21]. They conducted the matrix 

factorization based on frequency-time analysis in order to get inproved performance and 

speed up the convergence as in [4], [36], [47] and [49]. They also investigated the BSS 

singles channel problem extensively in [14], [19] and [42]. Additionally, they employed 

the independent vector analysis for joint BSS over multiple datasets [2] and studied the 

sparse analysis in order to estimate the demixing matrix W due to a quadratic programing 

technique and to deal with nonnegative BSS problems. However, sparse component 

analysis was proposed in [50]. Despite all of these methods, they are not considered a 

case of non-stationary conditions, the uncertainty of parameters in general ICA model 

and the effects of noise signals.  

On other hand, one can express the mixing system in various models based on the 

non-stationary mixing coefficients and source signals in real-world recording. This 

complicated circumstance may explain two scenarios. One can assume that the sources 

are moving or the sources have disappeared. However, several works have been done on 

both scenarios individually. Usually, for the scenario where the sources are moving, the 

source distributions and the number of sources is assumed to be fixed. Thus, an adaptive 

BSS algorithm has been proposed to compensate for the variations of a mixing matrix. In 

[118], they applied the Markov process to hold the variation of the sources signals. Also, 

the status of source signals was detected using the 3-D tracker, where if the sources were 
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moving, they added a beam-forming algorithm to BSS methods in [119]. Several 

researchers have characterized the time-varying of the source distributions by automatic 

relevance determination (ARD) techniques [120], [121], [122].  The switching ICA 

algorithm [123] was proposed in order to detect the absence sources or the ones present. 

S-ICA algorithm used a hidden Markov model in order to represent the status of the 

source signals and it assumed that the generative model was fixed. In [123], they studied 

the replacement of source signals. An online vibrational Bayesian (VB) learning was 

used in [120]; they proposed a new online ICA algorithm based on VB learning to 

separate the dependent source signals. In [125], they proposed the ICA algorithm based 

on the piecewise non-Gaussian stationary model in order to separate the non-Gaussian 

signals which have the varying distribution, refer to Figure 2.1 to see the root of BSS 

problems. 

2.2 Principle Component Analysis (PCA) 

Principle Component Analysis (PCA) is one of the most well-known algorithms 

in multivariate analysis and data mining. It was established by Pearson [2]. He proposed a 

general framework of the PCA algorithm in biological context. Recently, there have been 

many efficient and powerful adaptive algorithms PCA which have been proposed and 

developed for PCA [1]. 

Generally speaking, the PCA aims to derive a smaller set of variables with less 

redundancy while retaining as much of the information from the original variables as 

possible.  In other words, PCA is a mathematical tool that uses orthogonal transformation 

in order to convert a set of observations, which might be correlated variables, into a set of 

values of linearity uncorrelated variables referred to as the principle component. The 
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most important objectives of PCA are dimensionality reduction, determination of linear 

combinations of variables, feature selection (choosing the most useful variables), 

visualization of multidimensional data, identification of underlying variables, and 

identification of groups of outliers.  

Assume we have a random vector x with | elements and there are " observations 

of this vector. In order to transform a set of observations x  into a set of values of linearity 

uncorrelated variables	u, we can apply the PCA to the observed data	x as follows: 

The first step will be to remove the dc component of observed data	x as follows: 

x = x − E[x]            (2.1) 

The operator E[. ]  is the expectation value of	x. In this dissertation, we use the 

expectation operator for the theoretical analysis.  For the practical simulation of the 

algorithms, we will find that the expectation depends on the type of learning algorithms. 

For batch learning algorithms (offline) we will use the sample mean, whereas, for the 

stochastic learning algorithms we will drop the expectation and use the actual expression 

inside the expectation. Then, one can convert the PCA to the eigenvalue problem of the 

covariance matrix of	x, which is essentially equivalent to the well-known transformation 

(Karhunen-Loeve transform) which is used in signal processing, as follows: 

R�� = E[x(t)xa(t)] = VΛVa 	 ∈ ℝ*�*						∀	t = 1,2, … , T        (2.2) 

Where xais x transpose, Λ = diag{λ6, λP, … , λ*} is a diagonal matrix that contains 

" eigenvalues and V = [V6, VP, … , V*] 		 ∈ ℝ*�* is corresponding orthogonal or unitary 

matrix that consists of the unit length eigenvalues called principle eigenvectors. The 

Karhunen-Loeve-transform [2] sets up a linear transformation of an observed vector x as 

follows 
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y© = Vªax      (2.3) 

Where x = [x6(t), xP(t),… , x*(t)]a is the zero-mean observed vector (input 

vector), y© = [y6(t), yP(t),… , y�(t)]a is the output vector referred as the vector of 

principle components (PCs), and Vª = [v6, vP, … , v*]a 			 ∈ ℝ*��	 is the set of signal 

subspace eigenvectors, with the orthonormal vectors v« = [v«6, v«P, … , v«*]a, (i.e. 

(v«av¬ = δ«¬)		∀	j ≤ i,	(δ«¬) is the Kronecker delta.  The vectors (v«		∀	i = 1, 2, … , n	) are 

the eigenvectors of the covariance matrix  R®® , while the variances of the PCs y« are the 

corresponding principal eigenvalues. Therefore, we can re-formulate the equations as  

R��v« = λ«v«					∀	i = 1,2, … , n    (2.4) 

Where v« are the eigenvectors,  λ« are the corresponding eigenvalues and R�� =
E[xxa] is the covariance matrix of zero-mean signal x and E is the expectation operator. 

Also we can re-write the equation (2.4) in a matrix form VaR��V = Λ where Λ	 is the 

diagonal matrix of eigenvalues of the covariance matrix	R��. However, to compute the 

eigenvalues and corresponding eigenvectors of the covariance matrix	R��, one might use 

the Single Value Decomposing method [2], which is referred as prewhitening or 

decorrelation of input data, to transform the observations to a set of orthogonal 

(decorrelated) signals. However, The PCA algorithms carry out principle components 

where they are uncorrelated, i.e. they are orthogonal. However, PCA didn’t recover the 

sources from the observed data mixtures.   

2.3 Independent Component Analysis (ICA) 

The concept of Independent Component Analysis (ICA) is a vital algorithm for 

the BSS [1]. P. Comon [7] was the first to describe the fundamentals of this technique 
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and defined its name in 1994. ICA has been succeeding as an attractive algorithm since it 

has been applied in many diverse fields as a method that can retrieve the original sources 

from the linearly mixed independent components.   

2.3.1 The Instantaneous ICA Framework 

An instantaneous ICA mixtures model with ! source signals is defined as  

¯ = A° + ±                                             (2.5) 

Where A is an mxn mixing matrix, x represents a matrix with " observed mixed 

signal vectors as in (2.6) , °  is a matrix with ! source signals as in (2.7) and ± is an 

Additive Gaussian Noise .  

¯ = [x6, xP, … , x*]a                                           (2.6) 

° = [s6, sP, … , s�]a                      `                         (2.7) 

In general, ICA framework carries out with the following assumptions: 

1. The source signals s are assumed to be statistically independent, which means 

that: 

p(°) = p(s6, sP, … , s�) = p(s6)p(sP)…p(s�) 
2. No more one source signal has Gaussian distribution. Since, the mixing matrix A 

is not identifiable for more than one Gaussian Independent Components. [12], 

[14]. 

For simplicity, we will assume that A is square, i.e.	m = n, for the rest of analysis. 

The main idea of ICA is to recover the source signals from the observed signals without 

any knowledge about the source signal or the mixing matrix. In order to achieve this 
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purpose, the ICA algorithm computes the weighting matrix W that is equal to the inverse 

of matrix A. However, the estimated source signals ² is given as below  

³ = Wa¯                                         (2.8) 

However, it is a linear transformation so we can estimate one of the independent 

components due to	wa¯, where w is a column vector of the demixing matrix	W in (2.8). 

Generally speaking, ICA methods usually divide into two steps, preprocessing (pre-

whitening) and rotation.  Pre-whitening or preprocessing is actually half of the ICA 

process. Pre-whitening is based on second order statistics (SOS) and the rotation process 

needed to separate the mixtures, which is based on ICA methods. In the next section, we 

are going to analyze a basic approach using the pre-whitening method. 

2.3.1.1 Preprocessing 

Some of adaptive ICA algorithms require pre-whitening, also called sphering or 

normalized spatial decorrelation. The preprocessing consists of two steps. The first step 

aims to center the mixed signals ¯ by removing its mean of mixed signals as in (2.1).  

After mixed signals have centered, we express the centering matrix ¯́ as follows 

¯́ =

f
g
g
g
g
hx́6ax́Pa
.
.
.
x́�ak
l
l
l
l
m

=

f
g
g
g
g
h x́6(1)									x́6(2)				…				…								 x́6(T)	x́P(1)									x́P(2)				…				…								 x́P(T)	
…………………………………………
…………………………………………
…………………………………………
x́�(1)									x́�(2)				…				…								 x́�(T)	k

l
l
l
l
m
            (2.9) 

The Eigen-Vector Decomposition SVD [28] can be used to decompose the 

covariance matrix of  ¯́ and its corresponding operation is expressed as in (2.10)  

C� = E[¯́¯́a] = EDEa                            (2.10) 
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Where E represents the eigenvectors which are orthogonal matrix of mixed 

signals, and D expresses in (2.11) represents the diagonal Eigenvalues of matrix	C�. 

D = diag(d6, dP, … , d�)                            (2.11) 

Thus, the whitening process of ¯́ is expressed by (2.12) 

Z = D5·¸Ea¯́ = V¯́                                    (2.12) 

Where V equals D5·¸Ea and represents the whitening matrix or Mahalnobis 

transform of	¯́. Equation (2.12) shows that the centered matrix ¯́	is a linear transformed to 

a matrix Z and the covariance matrix of Z equals to identity matrix [2]. In other words, 

the means of the matrix Z is uncorrelated and have a unit variance. Figure 2.2 illustrates 

three basic transformations of observed data	x: pre-whitening, PCA and ICA, 

respectively.   

In next sections, we are going to discuss some of the basic approaches in order to 

conduct the ICA performance of instantaneous mixtures, and we assume that the additive 

weight Gaussian noise terms ¹ in (2.5) are negligible or reduced to be at negligible levels 

due to the preprocessing stated in the previous section.  

2.3.1.2 Nonlinear function choice (Activation function): 

Nonlinear function or Activation function is the source signal model	ϑ(³). 
However, it is very important to select a suitable nonlinear function depending on our 

source signals. There has been much research regarding this topic. The most suitable ones 

for super Gaussian sources and Sub Gaussian sources are proposed by Hyvarinen in [14], 

[15], as follows: 

For super Gaussian sources which are the source signals having a positive kurtosis 

sign, e.g. a Laplacian signal. 
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ϑª»¼(³) = −2 tanh(³)    (2.13) 

For sub Gaussian sources which are the source signals having a negative kurtosis 

sign, e.g. a uniform signal. 

ϑª»½(³) = tanh(³) − ³       (2.14) 

2.3.1.3  The Learning Update Rules 

The update rules divide into two categories based on learning procedure, online 

learning and offline learning [2]. 

2.3.1.3.1 Batch Learning (Offline learning): 

Batch learning is the kind of algorithms that have an update rule requiring the 

whole training sample in every step of iteration. Usually, in batch learning, the update 

rule relies on the expectation of observed data	x. In practice, the expectation of observed 

data x approximated by the mean of observed data	x. 

2.3.1.3.2 Stochastic gradient (Online learning): 

Online learning is the kind of algorithms that have an update rule that doesn’t 

require the whole training sample in every step of iteration. Mathematically speaking, 

these categories of update rules don’t rely on the expectation of observed data	x. In other 

words, one might get online learning from the batch learning by dropping the expectation 

operator from the offline update rule. 

2.3.1.4 ICA based on Maximization of non-Gaussianity 

In this section, we will study the ICA algorithm based on the non- Gaussianity 

criteria. The non-Gaussianity approach is based on the Center Limit Centre (CLT) which 

states that for independent sources their sum will become closer to Gaussian distribution 
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than each individual source. The CLT shows that for whitened data (in section 2.3.1), 

finding an independent source is equal to finding the direction of w which gives a 

component of maximum non-gaussianty [2], [12-16]. 

 For sake of illustration, one assumes that the observed data is ¯ = A° and the 

weight vector is	w. However, in order to find one of the independent components, x that 

is	y = wa¯, the vector wa should be in the row of the inverse matrix	A56.  

y = wa¯ = va°     (2.15) 

Therefore, this implies that, by maximizing the non-gaussianty of ³ in terms of	w, 

then, we will get one of the independent components present in	x. In addition, this is the 

same as we have in the whitened data before applying ICA methods. There are different 

criteria for measuring non-Gassianity. Next, we will study some of these criteria. 

2.3.1.4.1 Kurtosis Measure  

Kurtosis is a dimensionless measure and refers to a fourth order cumulant of a 

random variable. Mathematically, one can express the normalized kurtosis of zero mean 

random variable in terms of 2nd – 4th order moments as follows: 

kurt(y) = ¾[¿À]
(¾[¿¸])¸ − 3     (2.16) 

The important feature of kurtosis is that kurtosis kurt(y) is equal to zero for 

Gaussian random variables. So, kurtosis is a tool to measure the relative sharpness and 

flatness of distributions. However, kurtosis with positive sign is termed to the super 

Gaussian data and kurtosis with negative sign is termed to the sub Gaussian data.  

For sake of optimization, the kurtosis kurt(y)	expression in (2.16) can be 

expressed as follows: 

kurt(y) = E[yÂ] − 3(E[yP])P      (2.17) 
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This expression is easier to optimize, by omitting the denominator since the term 

(E[yP])P is always positive.  In this approach, usually the data has to be whitening in 

order to ensure that the source signals are uncorrelated and have unit variance, i.e. the 

source signals are orthonormal. Then apply the ICA methods to find the direction 

of	y« = wax, where kurt(y) is maximized, i.e. the direction of the most non-Gaussian 

component. After that the orthogonal projection 	y« = wax will give us the separated 

component. 

2.3.1.4.2 Gradient algorithm using kurtosis 

After pre-whitened, the observation signals can be expressed as z = Vx so that the 

estimated signals	y becomes as follows: 

y = waz = waVx        (2.18) 

In general, we are beginning from the initial random vector of		w, and then 

looking for a direction of w  at which the value of kurtosis of estimated signals	y = waz 
is increasing. In fact, we consider the Maximizing of the absolute value of kurtosis and it 

is suitable for both super Gaussian and sub Gaussian signals. However, to perform the 

gradient decent method of kurtosis under the constraint that ‖w‖P = 1 as follows:  

Ä|,ÆÇÈÉÊËÌÍ|
ÄÊ = 4sgn(kurt(waz)){E[z(waz)Ï] − 3w‖w‖P}   (2.19) 

In terms of direction, we can simplify the gradient vector by omitting the scalar 

term and the second term. Then, one can update the expression as follows: 

w = w+ γ∆w 

∆w = 	sgn(kurt(waz)){E[z(waz)Ï]}     (2.20) 

w = w ‖w‖Ò  
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2.3.1.5 Fixed point algorithm 

In [14-15], Hyvarinen proposed the ICA algorithm that takes advantage of a 

Newten-type method (Lagrange Multipliers) for maximizing the Kurtosis in order to 

increase the speed and Robustness in previous ICA algorithm. The derivation of a fixed 

point algorithm is discussed in depth in [14]. He forms the new update law of an ICA 

algorithm as follows: 

wÓ = E[z(waz)Ï] − 3w      (2.21) 

The basic scheme for one independent component estimated is as follows: 

1. Prewithening Data, i.e. Ô = Õ� 

2. An initial value for the Wight vector w that has Ö|w|Ö = 1 

3. Find the updated weighed vector  

×Ó = Ø[Ô(×rÔ)Ï] − 3× 

4. Normalize and update the weight vector 

× = ÙÚ
‖ÙÚ‖					Where ‖×‖ is the norm of	×. 

5. Go back to step 3 until the convergence. 

In order to estimate many components, one can apply the previous scheme N-

times to get all sources (components) that exist in the observed data. Notably, we should 

always keep each new estimated component orthogonal to the previous one in order to 

prevent estimating the same component each time as follows: 

1. Prewithening Data, i.e. Ô = Õ� 

2. An initial value for the Wight vector w that has Ö|w|Ö = 1 

3. Find the updated weighed vector  

wÓ = E[z(waz)Ï] − 3w 
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4. Find a projection matrix Û then Set 

wÓ = wÓ − BBawÓ 

5. Normalize and update the weight vector 

w = wÓ

‖wÓ‖ 

            Where ‖w‖ is the norm of	w. 

6. Go back to step 3 until the convergence. 

Practically, the projection matrix B contains all vectors w that calculate to find the 

previous components. However, the transformation in step 4 enables the algorithm to 

converge to a different component from the previous ones that were discovered. 

2.3.1.6 Negentropy Measure 

Let us define that J	as a negentropy of random vector y  where it represents a 

normalized version of entropy of a random vector	s. In general, negentropy is an 

information theoretic tool that is used to measure the distance of random variables from 

the Gaussian distribution at the same covariance.  Mathematically, we can express  J(y) 
as follows: 

J(y) = H(y�Þ»ªª) − H(y)     (2.22) 

However, negentropy  J is an appropriate measure of nonGassianity, statistically 

[2].  Instead of estimating the negentropy, one can use an approximation of negentroy 

that is proposed in [11] as follows: 

J(y) ≈ 6
6PEP[yÏ] +

6
Âß [kurt(y)]P    (2.23) 
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By using the higher order cumulants and taking advantage of a non-quadratic 

function	G to simplify the approximation of negentropy, one can rewrite the 

approximation of negentroy J(y)	as follows: 

J(y) = (E[G(y)] − E[G(v)])P     (2.24) 

where v represents a Gaussian variable with zero mean and unit variance. Based 

on this approximation of negentroy, FastICA algorithm is structured and analyzed in 

depth by Hyvarinen in [12]. 

The gradient algorithm can be estimated in order to produce a fixed point 

algorithm as follows (after the pre-whitening): 

∆w = μE[zg(waz)] 
w = w/||w||      (2.25) 

Where	μ = 	E[G(waz)] − E[G(v)], and	g(y) = ∂G(y)
∂yÒ .  

One of the most common choice non-quadratic functions of	g(y), amongst others, 

is as follows: 

g(y) = tanh(αy) , ∀	1 ≤ α ≤ 2     (2.26) 

Practically, the maximum of the approximation of the negentropy of waz are 

occurred at certain optima of E[G(waz)] under the constraint‖w‖P = 1. In order to find a 

certain optima, one can solve the gradient of the Lagrangian to zero (Kuhn-Tucker 

conditions) [2]. 

F(z,w) = E[zg(waz)] + λw = 0    (2.27) 

Newton’s method is used to solve this equation, we have  

Ää
ÄÊ = E[zzagå(waz)] + λI ≈ E[zza]E[gå(waz)] + λI = {E[gå(waz)] + λ}I (2.28) 
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According to the Newton’s method, the update rule becomes as follows: 

wÓ = w− æÄäÄÊç
56 F      (2.29) 

Finally, the update rule for the FastICA is  

wÓ = E{z[g(waz)]a} − E{gå(waZ)}w   (2.30) 

In general, the FastICA algorithm can be stated up as follows: 

The basic FastICA scheme for one independent component estimated is as 

follows [12-15] 

1. An initial value for the Wight vector w 

2. Find the updated weighed vector  

wÓ = E{Z[g(waZ)]a} − E{gå(waZ)}w        

Where the g is a non-quadratic function such as	g(y) = yÏ,  y = waX and gå is 

the derivative of the non-quadratic function g. 

3. Normalize and update the weight vector 

w = ÊÚ
‖ÊÚ‖                                  

Where ‖w‖ is the norm of	w. 

4. Go back to step 2 until the convergence. 

In order to estimate many components, one can apply the previous scheme N-

times to get all sources (components) that exist in the observed data. Notably, we should 

always keep each new estimated component orthogonal to the previous one in order to 

prevent estimating the same component each time as follows: 

1. Pre-whitening Data, i.e. Ô = Õ� 

2. An initial value for the Wight vector w that has Ö|w|Ö = 1 
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3. Find the updated weighed vector  

wÓ = E{Z[g(waZ)]a} − E{gå(waZ)}w 

4. Set 

wÓ = wÓ − BBawÓ 

5. Normalize and update the weight vector 

w = wÓ

‖wÓ‖ 

            Where ‖w‖ is the norm of	w. 

6. Go back to step 3 until the convergence. 

There is a method that one can use to estimate all independent components 

simultaneously instead of estimating each independent component individually. This can 

occur by using different learning rules for all estimated signals and apply the symmetric 

decorrelation to ensure the convergence in ICA method. The symmetric decorrelation is 

as follows: 

W = W(WaW)é·¸       (2.31) 

Where W = [w6, wP, … ,w�] is the matrix of the vectors	w«. 

 

2.3.1.7 ICA based on Maximum Likelihood Estimation 

In this part, we employ Maximum Likelihood (ML) as a contrast function in ICA 

algorithm.  ICA based on ML estimation carried out in [28], [29]. Assume that the un-

mixing matrix denotes	Wr ≈ A56, thus, we can recall the instantaneous mixture model in 

(2.5) as follows: 

¯ = A° 
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Then the estimated signals are 

³ = Wr¯ 

Due to a basic property of linear transformed random vectors  

p�(x) = |det	(A56)|pê(s)         (2.32) 

By the assumption of the statistical independence between the estimated source 

signals y and	pê(s) ≈ p¿(y), we can show that the probability density of observed data x 

is as follows: 

p�(x) = |det(W)|p¿(y) = |det(W)|∏ p«(y«)�«76       (2.33) 

Where y« = w«ax where w« is a column of elements in W, therefore, we can 

express p�(x) as follows: 

p�(x) = |det(W)|∏ p«(w«ax)�«76        (2.34) 

By constructing the likelihood function of	W, as a product of the densities at each 

observed signal, we get L(W)	is: 

L(W) = ∏ p«(w«ax)�«76 |det(W)|      (2.35) 

Then, by optimizing the expectation of log-likelihood function L(W) as follows: 

E[log{L(W)}] = Eìlogí∏ p«Éw«axÍ�«76 |det(W)|îï = Eì∑ logíp«Éw«axÍî�«76 ï +

log	(|det(W)|)     (2.36) 

Then, the ML contrast function of W express as follows: 

G(W) = 	Eì∑ logíp«Éw«axÍî�«76 ï + log	(|det(W)|)     (2.37) 

Now, we are going to use a gradient decent approach in order to maximize 

ML,	G(W), contrast function with respect to W. However, one can show that: 

Ä�(ð)
Äð = (Wa)56 + E[ϑ(Wx)xa]      (2.38) 
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Where ϑ(Wx) = ϑ(y) = [ϑ6(y6), ϑP(yP),… , ϑ�(y�)]a and it is a nonlinear 

function or (Activation function) that performs the source signal model. We can derive 

the nonlinear function according to following equation: 

ϑ«(y«) = Ä
Ä¿ñ log{p(y«)} =

6
©(¿ñ)

Ä©(¿ñ)
Ä¿ñ        (2.39) 

The update rule for ML estimation using the gradient decent method is expressed 

as: 

W = W+ γ∆W      (2.40) 

Where  

∆W	α	 ∂G(W)∂W =	 {(Wa)56 + E[ϑ(Wx)xa]} 

And, γ is the learning rate or the step size 

In [12], the same result has been achieved when minimized the Kullback-Leibler 

(KL) divergence between the joint and the product of the marginal distributions of 

estimated signals	y«. The vital point in Amari’s paper [2], [71] showed that the parameter 

space in this optimization problem is a Riemannian metric Structure instead of Euclidian 

Structure. However, the steepest decent should be given by the natural gradient instead of 

using the gradient decent method. In that sense, the update rule of the natural gradient is 

given as follows (by multiplying the right hand of previous update rule by	WaW): 

W = W− γ Ä�(ð)
Äð WaW      (2.41) 

Then, 	

∆W	α	 ∂G(W)∂W WaW = {I + E[ϑ(y)ya]}W	  
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Notably, Natural gradient method is based on the attempt to implement the 

Newton decent method by the approximation of hessian inverse (∇PG)56 ≈ WaW. 

2.3.1.8 ICA based on Entropy Maximization 

The differential entropy of a random vector s  with density	p(°) can be expressed 

as follows [2], [36]:  

H(°) = −óp(°) log{p(°)} . d°     (2.42) 

Let’s define J	a negentropy of random vector s  where it represents a normalized 

version of entropy of a random vector	s. In general, negentropy is information theoretic 

tool that uses to measure the distance of random variables from the Gaussian distribution 

at the same covariance.  Mathematically, we can express  J(°) as follows: 

J(°) = H(°�Þ»ªª) − H(°)      (2.43) 

In addition, mutual information can be a good method to measure the statistical 

dependence between random variables. P. Comon shows that the mutual information is a 

good metric of statistical dependence [7]. In that sense, if the random variables ° =
{s6, sP, … , s�} are statistically independent, then the mutual information I(°) is equal to 

zero. We can define the mutual information I(°) as follows: 

I(°) = ∑ H(s«) − H(°)�«76        (2.44) 

2.3.1.9 Bell-Sejnowski method 

ICA algorithm based on minimized the mutual information metric is proposed by 

Bell and Sejnowski in [18], [2]. They use the mutual information as a way to measure the 

independent between random variables. One can assume that the un-mixing matrix is W 
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and the estimated source signals are	³ = Wr¯. However, let’s express the mutual 

information as follows: 

I(³) = ∑ H(y«) − H(³)�«76 = ∑ H(y«) − H(Wr¯)�«76 	  (2.45) 

By using the fact that the differential entropy is in general not invariant under 

arbitrary invertible maps, we can express the mutual information as follows: 

I(³) = ∑ H(y«) − H(¯) − log	 |det	(W)|�«76     (2.46) 

One can state the optimization problem as follows: we can minimize the mutual 

information I(³) with respect to the un-mixing matrix W to estimate the un-mixing 

matrix W that makes the estimated signals ³ more statistically independent. Then, one 

can re-write the expression of differential entropy as follows: 

H(y«) = −E[log{p(y«)}]     (2.47) 

And, the mutual information expression becomes as follows: 

I(³) = −∑ E[log{p(y«)}] − H(¯) − log	 |det	(W)|�«76   (2.48) 

Despite the fact that the estimated source signals y are uncorrelated, because of 

the ICA assumption that the source signals s are statistically independent, one can 

simplify the mutual information cost function to become almost identical with ML cost 

function	G(W). One can show that the determent of un-mixing matrix det	(W) is 

constant as follows:  

Since we have uncorrelated estimated signals	y, then we can state that: 

E[yya] = I	 ⇒ 	WE[xxa]Wa = I	⇒ then, 				det(W) det(E[xxa]) det(Wa) = 1 

This implies that the 	det(W) must be constant.  However, H(¯) is not a function 

of	W. So, it can be omitted from the MI contrast function	I(³) as follows: 

I(³) = −∑ E[log{p(y«)}] − log	 |det	(W)|�«76    (2.49) 
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I(³) = −ì	Eì∑ logíp«Éw«a¯Íî�«76 ï + log	(|det(W)|)ï   (2.50) 

Then, recall the ML contrast function of W that is expressed as follows: 

G(W) = 	Eì∑ logíp«Éw«a¯Íî�«76 ï + log	(|det(W)|)   (2.51) 

Apart from the minus sign, both contrast functions look very similar. By 

minimizing the MI cost function with respect to  W , we will end up with the same update 

rule of the ML estimation as follows: 

∆W	α		{(Wa)56 + E[ϑ(W¯)¯a]}    (2.52) 

In conclusion, ICA algorithm based on deferent metrics of statistical independent 

(MI, ML and KL criterions) ends up with the same update algorithms.  

2.3.1.10 ICA based on Tensorial Methods 

A tensor is a multi-linear operator that is derived from the Taylor series of the 

log-characteristic function	f(w) = E[exp(jwx)], where x is a zero mean random variable.  

One can express the Taylor series of the log-characteristic function log	{f(w)} as follows: 

logf(w) = κ6(jw) + κP (jw)
P
2!Ò + ⋯+ κÇ (jw)

Ç
r!Ò + ⋯     (2.53) 

The coefficients  κ«	∀	i = 1,2, … are called Cumulants. In multivariate situations, 

one can call them cross cumulants, which are similar to cross conveniences. In BSS 

problem, Kurtosis can be expressed as a fourth-order cross-cumulant as follows: 

Kurt(y) = cum(y«, y¬, y,, y))     (2.54) 

Where	y« = ∑ w«x«« , then  

Kurt(∑ w«x«« ) = cumÉ∑ w«x«« , ∑ w¬x¬¬ , ∑ w,x,, , ∑ w)x)) Í  

= ∑ w«Â«¬,) w¬Âw,Âw)Âcum(x«, x¬, x,, x))  (2.55) 
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In general, the tensor is defined as the fourth order cumulants, and it is similar to 

the covariance matrix for second order moments. The cumulant structure is symmetry, 

however the eigenvalue decomposion is always valid as it’s shown in [1]. Let’s assume 

that we have an eigenvector matrix Vand the corresponding eigenvalues	λ, and then one 

can decompose the tensor Fas follows: 

F = λV       (2.56) 

Likewise, the pre-whitened data	Z = VAs = Was , where the matrix  W is the 

unmixing matrix, however, matrices W	,Wa will be orthogonal. One can express the 

eigenmatrix	V = w*w*a , where the vector w*is the m-th row of matrix	W, of the 

following tensor F with the corresponding eigenvalues which represents the kurtosis of 

the independent components [1], [16], [27] as follows: 

F = F«¬ =vV,)cumÉz«, z¬, z,, z)Í =vw*,w*)cum(
,),)

z«, z¬, z,, z)) = ⋯ 

= w*«w*¬kurt(s*)       (2.57) 

In other words, one can estimate the un-mixing matrix W for the independent 

sources at given eigenmatrices of the tensor. This case is valid if we have the distinct 

eigenvalues, otherwise, the problem will be difficult to solve. 

2.3.1.11 PARAllel FACtor (PARAFAC) algorithms 

Several BSS algorithms based on the Parallel factor the (PARAFAC) model have 

been proposed i.e. [11], [59], [60], [86]. PARAFAC is a multi-linear tool for tensor 

decomposing in sum of rank-1 tensors.    
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2.3.1.12 Joint Approximation Diagonalisation (JAD) 

In order to overcome the problem in the tensor, Cardoso [16] is proposed JADE 

algorithm by diagonals of the tensor of matrix	F.  Since the tensor F is a linear 

combination of terms of	w«w«a, one can express the tensor F of any matrix as the 

eigenvalue decomposition form, i.e. the matrix	Q = WFWa. This allows estimating the 

unmixing matrix W by minimizing the off-diagonal terms or maximizing the diagonal 

terms of	Q. However, the cost function of the JADE algorithm was proposed by Cardoso 

as follows: 

maxð J¬ùúû(W) = maxð 		∑ ‖diag(WF«Wa‖P«    (2.58) 

Where F« represents the tensor of the different matrix	V«, where V«might be the 

eigenmatrices of the tensor	F«. JADE algorithm is not as effective in terms of 

convergence and computational especially for the high dimension [2], [16] [17].  

2.3.2 The Convolutive ICA Mixtures  

In the previous sections, we have investigated several methods based on the 

instantaneous case in the ICA framework. All previous methods perform well in terms of 

quality of separating source signal from the linear mixed sources. However, in 

practicality, if we apply these methods on real life applications, i.e. a multipath channel in 

communication, room environment for a sound separation, we will fail to recover source 

signals. The major reason is because the instantaneous model doesn’t hold the varying in 

the mixing matrix. Figure 2.2 illustrates that a single channel convolution and a 

deconvolution process. A multi-channel deconvolution problem can be considered as a 

natural extension of the instantaneous BSS problem. With this problem, assume an m-
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dimensional vector of received discrete time signals x(k) = [x6(k), xP(k), … , x*(k)]a at 

time k is assumed to be produced from an n-dimensional vector of source signals	s(k) =

[s6(k), sP(k),… , s*(k)]a, where	m ≥ n, by using a stable mixture model [2]. 

x(k) = ∑ H©s(k − p) = H, ∗ s(k),				with	 ∑ üH©üý5ý ≤ ∞	ý©75ý      (2.59) 

Where ∗ represents the convolution operator and H©is an (m	x	n) matrix of 

mixing coefficients at time-lag	p. 

One can define that  

H(z) = ∑ H©z5©ý©75ý       (2.60) 

where z56represents the unit time-delay operator, i.e. z5©[s«(k)] = s«(k − p). 
Generally speaking, the goal of multichannel deconvolution is to recover the 

source signals, up to the possibly scaled and time delayed, from the received signals by 

using the approximate knowledge about the source signal distributions and statistics.  
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Figure 2.2: Block diagram of the Convolutive Mixtures. 

Typically, we assume every source signal s«(k) is an i.i.d (independent and 

identically distributed) sequence. One can express the convolutive mixture model as 

follows: 

 
 
 
 
 

 
 

 

a) Diagram illustrating convolution and deconvolution process of the signal channel 

 
 

b) Multichannel blind deconvolution problem (MBD) 
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Applying Short Time Fourier Transform (STFT) for this model gives us two 

advantages as follows:  

• In frequency domain, signals become more super Gaussian, which will be 

more suitable for any ICA learning algorithms. 

• In frequency domain, one can use the approximation of linear convolution 

with multiplication. 
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Let’s assume	M = N, the STFT of convolutive model becomes as follows: 
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l
l
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=
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g
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…				
…				
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l
l
l
m

f
g
g
g
hs6(f, t)sP(f, t)

…
s�(f, t)k

l
l
l
m
   (2.63) 

 

⇒ x(f, t) = A�s(f, t), ∀	f = 1,… , F      (2.64) 

Where � is the number of FFT points, and also note that we use the STFT instead 

of FT to preserve the stationary property of the signals and to divide the signal into 

shorter overlapping frames. In other words, we transform the convolutive mixture 

problem into L instantaneous problems by assuming the statistical independence among 
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the frequency bins. However, one can simply transform the convolution problem into 

multiplication by using the windowing method, i.e. the window larger than the filter 

length such as	F ≫ T. But in fact, this case is not easy to implement since the data will be 

in complex number form, which affects the stability factor of the algorithm [3], [39], 

[71]. In additional, the scale and permutation will have an effect in this approach as it will 

be explained later.  

2.3.2.1 Time-Domain Methods 

One can estimate source signals by estimating the un-mixing coefficients in time 

domain.  The convoltutive mixtures model can be expressed as follows: 

x«(n) = ∑ ∑ a«¬ús¬(n − d)				∀	i = 1, 2, … , Naú76�¬76     (2.65) 

In order to estimate the source signals from the mixtures in this model, one can 

estimate the un-mixing coefficients filter w«¬ú in FIR filter architecture (feedback 

architecture) as follows: 

y«(n) = ∑ ∑ w«¬ús¬(n − d)				∀	i = 1, 2, … , Naú76�¬76    (2.66) 

Delay-compensation problem considers a major issue in time-domain models. 

Several researchers carry out some methods to solve these problems in time domain. One 

of these methods is the use of feedback architecture which is proposed by Torkkola [2], 

[39], [133] in order to remove temporal dependencies and stabilize the cross-weights. 

Some of his research utilized the IIR structure.  Lee [36], [38] presented the following 

IIR structure to separate the source signals from the mixtures as follows: 

y«(n) = x«(n) − ∑ ∑ w¬úy¬(n − d)				∀	i = 1, 2, … , N	aú76�¬76    (2.67) 

Or  

y(n) = x(n) −W8y(n) − ∑ W,y(n − k)4,76     (2.68) 
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So, in order to estimate the un-mixing matrix	W, Lee maximizes the joint 

entropy	H(g(y)), where g(. ) is the sigmoid function which is used in the Bell-

Sejnowski’s method.  He presents a new update rule for this model in time domain as 

follows: 

∆W8 = −(I +W8)(I + E[φ(y)ya])     (2.69) 

∆W, = −(I +W,)E[φ(y)ya(n − k)]    (2.70) 

Where φ(y) = −∂logp(y) ∂yÒ .  

Several drawbacks are noticed in time-domain methods for recovering the source 

signals.  For long mixing filter, which means long transfer functions, the computation 

will be too expensive [2], [133], [71]. Also, using the IIR filter instead of long FIR filter 

to overcome this problem it suffers from instability and needs to invert the non-minimum 

phase filters [39].  However, time domain methods are suitable and very efficient for 

small mixing filters such as in communication channel [2]. In addition, Torkkola 

proposes a feedback structure to overcome the spectral whitening problem in feed 

forward structure in [2], [38], and [133].  Next, we will explain some methods in 

frequency domain to solve the convolutive mixtures problem. 

2.3.2.2 TRINICON Blind Source Separation  

The TRINICON algorithm is based on the time domain approach and proposed by 

Buchner et al. [131], [1]. The main drawback in this algorithm is its sensitivity to outlets, 

not robust, especially in a real world recording problems. See [133], [3] and [38]. 

In their work, they use the multivariate models as a cost function in order to 

consider the whole temporal structure of the original sources. Actually, they just 
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simplified the optimal formula of BSS in time domain approach by windowing the 

observed signals in terms of blocks. Let us assume L½ is the length of each block. One 

can express the separated model of each block as follows 

y(b,win) = x(b,win)W(b)     (2.71) 

where  

• b denotes the block index 

• win	 ∈ {	0, … , L½ − 1} is the time-shift index within the block 

• x(b,win) = [x6(b,win), … , x�(b,win)] is the M observed signals which 

segmented in blocks of length  L½. 

y(b,win) = [y6(b,win), … , y�(b,win)] is the estimated N source signals 

W(b) is the separation matrix for a given block and it is given by: 

W(b) =
f
g
g
hW66(b)				. . .				W6�(b)
WP6(b)				. . .				WP�(b)

W�6(b)				. . .				W��(b)k
l
l
m
    (2.72) 

So, assume L is the length of the FIR filters; however, the m-th mixture is 

modeled as  

x*(b,win) = ìx*(bL + win), … , x�É(b − 2)L + 1 + winÍï  (2.73) 

Therefore, the output signals are modeled as:  

y(b,win) = [y�(bL + win), … , y�(bL − D + 1 + win)] 
= ∑ x*(b,win)W*�(b)�*76      (2.74) 

Where D is the number of the time-lags.  

The TRINICON algorithm aims to estimate each of the demixing matrixes 

W*�(b) based on three common optimization criteria: 
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� Minimization of the cross-correlation of the output over multiple time-

lags.  

� Based on standard ICA algorithm “Non-Gaussianity. 

� Minimization of the cross-correlation of the output at different instant time 

“Non-stationary”.  

2.3.2.3 Frequency-Domain Methods: 

In this section, we will express three interesting methods of ICA convolutive 

mixture in frequency domain as follows: 

2.3.2.3.1 Lee’s approach  

Lee in [3], [38] proposed a FIR un-mixing structure. He used a method that 

moved from time domain to the frequency domain in order to separate the sources and to 

avoid the convulsion in time domain.  In additional, he developed an update rule of un-

mixing matrix W� for each bin, which is similar to natural gradient one as follows: 

∆W� = (I + EìSTFTíφÉy(n)Íîy�(f, t)ï)W�    (2.75) 

Lee’s method used time-domain and frequency domain. Time domain was used to 

take advantage of the features of the nonlinearity function	φ(y). Whereas, he employed 

the frequency domain just to make the unmixing processes.  The proposed framework of 

Lee’s method can be seen in Figure 2.3. 
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Figure 2.3: Lee’s Block diagram 

The main drawback in this method is that it requires extra computational 

complexity. It requires moving from and to the frequency domain in order to use the 

nonlinearity at each update step. According to Lee’s results his method didn’t encounter 

the permutation problem.  
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Figure 2.4: Smardagdis’s Block diagram 

2.3.2.3.2 Smardagdis approach 

Some researchers only employ the frequency domain for the convolutive problem. 

However, they perform the source modeling and un-mixing in frequency domain, in order 

to avoid the complexity in previous methods. Figure 2.4 shows the framework of 

smaragdis approach [3], [39], where the system adapted to work in frequency domain for 

each bin individually.  

Since, the source signals tend to be more superGaussian in frequency domain; one 

can take advantage of minimizing the Kullback-Leibler divergence in order to estimate 

the source signals in frequency domain. Amari derives an update rule for a complex data 

as follows: 

∆W� = γ(I + E[φ(y(f, t))y�(f, t)])W�    (2.76) 

Where γ is the learning rate, and	φ(y) = ∂logp¿(y) ∂y� .  
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Smaragdis mentioned in his paper that most problems arise in convolutive 

mixtures come from the permutations and scale ambiguities.  Also, he proposed zero-

padding method before the FFT in order to smooth the spectra. Smaragdis’s framework 

seems to be a robust and general solution for convolutive mixture problems. 

2.3.2.3.3 Independent Vector Analysis (IVA) 

 Independent vector Analysis (IVA) is developed by Intae et al. [36], [40], it 

extends the ICA model to be in the multivariate model. Furthermore, they proposed the 

decoupling frequency in the adaptive learning rule to reduce the possibility of the 

permutations. Similar to time domain method, IVA updates all the variables at the same 

time thus it might converge into local minima. Furthermore, IVA algorithm suffers a 

slow convergence from the high dimensionality of its contrast function and, in terms of 

cost it’s considered to be too expensive to be implemented in real time.  

2.3.2.3.4 Parra’s approach: 

Parra and Spence proposed a new ICA algorithm based on the non-stationary and 

SOS of signals in order to solve the convolutive mixture problems. Signals are considered 

to be non-stationary if their statistics are varying in time.  Mathematically, one can say 

that the signal  x(n)  is a non-stationary signal if	C�(n) ≠ C�(n + d), where C�(n) is the 

covariance matrix of x, it represents as  C�(n) = E[x(n)xa(n)], and d is a constant time.  

Now, assume a noisy convolutive mixture model, as follows: 

x(n) = A ∗ s(n) + e(n)     (2.77) 

And the STFT form will be  

x(f, t) = A(f)s(f, t) + e(f, t)			∀	f = 1, 2, … , F    (2.78) 

Then, the covariance of the observed data x in frequency domain is  
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C�(f, k) = E[xxa] = A�Cê(f, t)A�� + Cû(f, k)    (2.79) 

Where Cê(f, t) is the source covariance and Cû(f, t) is the noise covariance; next, 

one can assume that the estimated source covariance is Cê�(f, t) and the estimated noise 

covariance is	Cû� (f, t). However, one of appropriate error measurements will be as 

follows: 

Error[k] = C�(f, k) − A�C�¿(f, k)A�� − C�û(f, k)    (2.80) 

Where y(f, t) = W(f)x(f, t) are the estimated sources, one can write the cost 

function as follows: 

JÉA�, C�¿, C�ûÍ = ∑ ‖Error[k]‖äP,       (2.81) 

In order to estimate each of the parameters	A�, C�¿, C�û, one can find the derivative 

of J respect to each, as follows
∂J ∂AÒ , ∂J ∂C�¿� , ∂J ∂C�û� . 

Using a stable FIR un-mixing filter	W�, we can re-write the above formula as 

follows: 

C�¿(f, k) = E[yya] = W�[C�(f, t) − Cû(f, k)]W��    (2.82) 

Then, the cost function will be as follows: 

JÉW�, C�¿, C�ûÍ = ∑ ‖[C�(f, t) − Cû(f, k)]‖äP,                                  (2.83) 

According to analysis in [62], one can estimate the un-mixing matrix 	W� using 

the gradient of the above cost function in terms of		W�, 	C¿, and 	Cû. Parra proposed in his 

paper two methods to recover the source signals	y(f, t). These methods were a least 

squares and a Maximum Likelihood estimator. Wang [3] addressed a cyclostationary 

convolutive mixture and proposed a new algorithm by combining the fourth and second 

order statistics of the data to enhance the performance.  
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2.3.2.3.5 Recursive Convolutive ICA  

The RR-ICA is proposed by F. Nesta et al. [130]. It is based on frequency domain 

approach to separate the source signals from the short data sets in high reverberation. The 

RR-ICA is used to speed up the convergence and make it more robust to outlets. The 

main drawback in this algorithm is its sensitivity to outlets in the real world recording, 

refer to chapter 4. 

2.4 Ambiguities in ICA algorithms 

In general, there are some ambiguities described in all ICA methods, as follows:  

Scale ambiguity: one can’t identify the energies or the variances of the independent 

components. Since, both of mixing matrix A and source signals s are unknown, then any 

scalar multiplication on A or s will be lost in the de-mixing process. 

 

Figure 2.5: Illustration of permutation ambiguity in frequency domain. 

Permutation ambiguity: one can’t identify the order of the independent components. The 

mathematical model of the ambiguities of the ICA model can be expressed as follows: 
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x = As = (ADP)(D56P56s)                                            (2.84) 

Recall the performance matrix 

 G = WA ≈ DP,        

Where D is any non-singular diagonal matrix which illustrates the scale 

ambiguity, and P is an identity matrix with permuted rows, which illustrates the 

permutation matrix. So, in general, ICA methods recover the source signals s from only a 

given observed signals x up to arbitrary scaling and permutation. However, in the 

instantaneous ICA case, these Ambiguities are not affective and can be ignored. But in 

some of convolutive ICA models, we will see that these ambiguities should be addressed 

especially, in some applications such as when working in frequency domain. 

2.4.1 Scale ambiguity 

Generally speaking, the ICA algorithms aren’t able to determine the energies 

(variances) of the independent components. As a result, in instantaneous mixture 

problem, this ambiguity usually is ignored since one can normalized the source signals in 

order to rectify this ambiguity without any loss. However, the unmixed signals can be 

amplified or attenuated after the separation.  

In frequency domain, ICA algorithm performs L instantaneous ICA algorithms 

for each frequency bin. So, scaling ambiguity has a real effect in this domain, where any 

arbitrary scaling change of each individual update rule will cause a spectral deformation 

to our observed signals. Also, if the arbitrary scales are not uniform along the frequency, 

this might cause changing in the signal envelope after separation.  
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Researchers have worked to tackle this ambiguity. A method proposed to keep the 

un-mixing matrix normalized with unit norm was	‖	W�‖ = 1, in order to remove the scale 

of data as in Smaragdis’s paper [3], [39]. In addition, this also helps the natural gradient 

to fast convergence. This can be expressed as follows: 

	W� = 	ð�
‖	ð�‖é·�         (2.85) 

Another smart idea to solve this ambiguity is by constraining the diagonal 

elements in the un-mixing matrix to be unity, such as	W�«« = 1. This constraint ensures 

that there is no spectral deformation of the observed signals.  

Scaling Ambiguity due to Minimal Distortion Principle (MDP) 

 

For the sake of simplicity, let’s assume there is no permutation Γ(�) = 1 

ambiguity. Then, the estimated source signals �(�) as each frequency as follows: 

�(�) = (�)!(�) ≈ "(�)�(�)       (2.86) 

Thus, the estimated signals �(�) are scaled versions of the source signals �(�) by 

diagonal matrix"(�), however, after, multiplying both sides of the previous equation by  

 56(�) . It becomes as follows 

 56(�)	�(�) ≈  56(�)	"(�)�(�)     (2.87) 

Also, we have the  

 (�) = 	"(�)�56(�)	       (2.88) 

Thus,  

 56(�)	�(�) ≈ �(�)�(�)      (2.89) 
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Under the Minimal Distortion Principle definition, the nth source is scaled with 

respect to the image at the nth microphone [3], [60], [129]. Therefore, the rescaled output 

signals are given by  

�#}$x%&(�) ≈ {�'(( 56(�)	)Y(f)     (2.90) 

2.4.2 Permutation ambiguity 

In general, ICA algorithms suffer from the permutation problem [38], since it is 

unable to recover the source signals in order. Although this ambiguity usually is ignored 

in instantaneous mixtures especially in time domain, it has a place and a real effect in 

convolutive mixtures especially in frequency domain as shown in Figure 2.5. Any 

arbitrary permutation of the source signals along frequency axis will cause uncompleted 

separation among the sources. Thus, several researchers have proposed methods to 

impose some coupling between frequency bins to withstand the permutation along 

frequency.   

The main cause of the permutation ambiguity is the statistically independency 

assumption between the frequency bins. Lee applies this assumption in time domain 

especially in the source model, which is the nonlinearity in time domain, thus, he never 

reported the permutation algorithm.  

Permutation Ambiguity 

Permutation Ambiguity is one of the main challenges in frequency domain for 

BSS. Many techniques have been proposed to cope with this ambiguity in frequency 

domain, but it is still an open issue [3]. Since, in this dissertation, we are choosing to 

develop the robust ICA algorithm in frequency domain, we pay a lot of attention to 
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investigating this ambiguity and to developing a robust method to overcome this 

ambiguity.  

There are three main solution groups to solve the permutation ambiguity in 

frequency domain as follows: 

� Group based on the geometric information such as Time Direction of 

Arrivals (TDOA) and Direction of Arrivals (DOA) [3], [38], [72], [128].   

� Group based on the clustering-based techniques [57], [60], and [3]. 

In terms of performance, the first group generally performs better than the second 

group especially with a small data sample. But it is not optimal in a practical sense, since 

we don’t usually have geometric information about real environment conditions. A 

second group performed better than first group especially when we had a large sample set 

of data, because they are based on the clustering-based techniques i.e. correlation, 

distance, etc. And, they are more robust for real world scenarios. For more details, refer 

to [3], [64]. 

2.4.3 Circularity of Fast Fourier Transform (FFT)  

It has been known that the time domain signal can be transformed to frequency-

domain by Fourier Transform. We are computed by the mean of the Discrete Fourier 

Transform over sample time blocks	�. This approximation means that we enforce the 

signal to be a periodical signal with period equal to the sample frequency over the sample 

time block	| = *+, . However, in [55], [50], [72] and [63] they have reported that this 

simplification is not a realization in sense of time domain filters. Therefore, the transfer 
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function of this filters are unstable and having overshoots in his frequency response.  For 

more details refer to [38], [3].  

There are two solutions to mitigate the circularity effect of FFT; 1) by increasing 

the length of the DFT	� [72], and 2) by imposing smoothed function to modify the 

frequency response of such a filter as in [38]. 

2.5 Performance Metrics of ICA methods 

2.5.1 Instantaneous case 

2.5.1.1 Performance Matrix G 

In order to measure a performance for ICA algorithms, one can use the 

Performance matrix G [2] as follows: 

G = WA ≈ I 
Ideally, our un-mixing matrix W should equal the inverse of mixing matrix	A56. 

However, one would expect the matrix P to be closed to identity matrix. But, since ICA 

method separates the sources up to permutation and scale. Then, the performance matrix 

G should be a good indication measure of the quality of separation. Additionally, 

performance matrix G presents the relation between the permutation of the original 

sources and the estimated ones.  

2.5.1.2 SNR measure:   

In practice, one can use the signal to noise ratio (SNR) as a separation quality 

measurement [2] as follows: 

SNR = 10log æ ∑ ê¸(«)ñ
∑ (ê(«)5¿(«))¸ñ

ç      (2.91) 
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 In other words, it shows the comparison between the energies of an original 

signal and estimated signals. Notably, to use this metric, we should compare the signals 

with the same variance and polarity, since ICA method separates the sources up to a 

permutation and scale. 

2.5.2 Convolutive case  

2.5.2.1 Performance Index: 

From a statistical view, the performance index was established in [2] by 

employing the performance matrix G as follows: 

PI = ∑ -∑ Ö�ñ.Ö
*ù�/|�ñ/| − 1*¬76 0+ ∑ -∑ Ö�ñ.Ö

*ù�/|�ñ/|− 1*«76 0*¬76*«76     (2.92) 

Obviously, for an ideal performance matrix	G, this index tends to minimum (to 

zero). However, the larger performance index value PI is the worst performance for the 

algorithm.  

2.5.2.2 Mutual Information measure: 

Reiss et al [56] takes advantage of the mutual information as a measure of 

statistical independence and creates a performance index. He develops the time series 

method to estimate the mutual information in [71].  

2.5.2.3 Performance Evaluation  

From (2), the separated sources are given by 

s«(t) = ∑ W«¬ ∗ x¬(t)*¬76                                                 (2.93) 

According to [64], one can divide the power of one of the separated sources s«(t) 
into two portions; the first portion belongs to the source coming from the source	i,	p««, 
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second one belongs to the crosstalk signals s,(t), p«,. Therefore, one can define the 

output SIR as the ratio of the power of the first portion p«« to the power of the second one 

p«, as follows: 

SIR« = ©ññ
©ñ/ = 10 log ∑ êñņ̃(È)1

∑ ∑ êñ/̧(È)ñ2/1                                                   (2.94) 

In this dissertation, we will calculate the SIR for source i as follows 

SIR« = ©ññ
©ñ/ = 10 log ∑ 3∑ ðñ.∗�.ñ(È)4.5· 6¸1

∑ ∑ 3∑ ðñ.∗�./(È)4.5· 6¸ñ2/1       (2.95) 

We will deal with the convolve speech signals with premeasured real-word 

recordings or artificially generated room impulse responses (RIRs). However, we only 

have access to the observed signals x¬«(t) (microphone signals) recorded when only the 

�th source is active. We will set the input SIR as a baseline, i.e. the SIR obtained without 

any processing. Or, we will refer to the most interesting evaluation criteria in [126], [127] 

to study our algorithm performance. 

 

 

 

 

 

 

 

 

 

 



 
 

70 
 

3 Chapter 3 

Convex Cauchy–Schwarz Independent 

Component Analysis for Blind Source Separation 

Independent Component Analysis (ICA) is a powerful tool in Blind Source 

Processing (BSP). We present a new high-performance Convex Cauchy–Schwarz 

Divergence (CCS-DIV) measure for Blind Source Separation (BSS) and unsupervised 

learning of acoustic and speech signals. The CCS-DIV measure is developed by 

integrating convex functions into the Cauchy–Schwarz inequality. By including a 

convexity quality parameter, the measure has a broad control range of its convexity. With 

this measure, a new CCS–ICA algorithm is structured and a non-parametric form is 

developed incorporating the Parzen window-based distribution. Furthermore, a pairwise 

iterative scheme is employed to tackle the high dimensional problem in BSS. We present 

two schemes of pairwise non-parametric ICA algorithms based on gradient decent and 

the Jacobi Iterative method. Several case-study scenarios are carried out on noise-free 

and noisy mixtures of speech and music signals. Finally, the superiority of the proposed 

CCS–ICA algorithm is demonstrated in metric-comparison performance with FastICA, 

RobustICA, convex ICA (C-ICA), and other leading existing algorithms.  



 
 

71 
 

3.1    Introduction 

lind Signal Processing (BSP) is one of the most challenging  and emerging areas 

in signal processing. BSP has gained a solid theoretical foundation and numerous 

potential applications. BSP remains a very important and challenging area of research 

and development in many domains, e.g. biomedical engineering, image processing, 

communication system, speech enhancement, remote sensing, etc. BSP techniques do not 

assume full a priori knowledge about the mixing environment, source signals, etc. and do 

not require any training samples. BSP includes three major areas: Blind Signal Separation 

(BSS), Independent Component Analysis (ICA), and Multichannel Blind Deconvolution 

(MBD) [1], [2]. 

In the following, we provide a focused and brief overview. ICA is considered a 

key factor of BSS and unsupervised learning algorithms [1]. ICA specializes to Principal 

Component Analysis (PCA) and Factor Analysis (FA) in multivariate analysis and data 

mining, corresponding to second order methods in which the components are in the form 

of a Gaussian distribution [8 - 20], [1], [2]. However, ICA is a statistical technique that 

includes higher order statistics (HOS), where the goal is to represent a set of random 

variables as a linear transformation of statistically independent components. 

ICA techniques are based on the assumption of non-Gaussianity and 

independence of the sources. Let an M× T observation vector X = [x6, xP, … x�]a be 

obtained from M statistically independent sources S = [s6, sP, … s�]a	by X = AS, where A 

is an 	M×M invertible mixing matrix. The estimated sources can be modeled by Y = WX 

where W is a demixing matrix. The ICA goal is to determine a demixing matrix W to 

estimate the source signals. ICA uses the non-Gaussianity of sources and an 

B
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independence measure to find a demixing matrix	W. A measure could be based on the 

mutual information, Higher Order Statistic (HOS), such as the kurtosis, and Joint 

Approximate Diagonalization. In other words, the demixed matrix is obtainedby 

optimizing such a contrast function. 

Furthermore, the metrics of cumulants, likelihood function, negentropy, kurtosis, 

and mutual information have been developed to obtain a demixing matrix in different 

adaptations of ICA-based algorithms [1]. Comon [7] was the first to describe the 

fundamentals of ICA. Recently, he proposed the Robust Independent Component 

Analysis (R-ICA) in [11]. He used a truncated polynomial expansion rather than the 

output marginal probability density functions to simplify the estimation processes. In [14 

– 15], the authors have presented ICA using mutual information. They constructed a 

formulation by minimizing the difference between the joint entropy and the marginal 

entropy of different sources. 

The so-called convex ICA [20] is established by incorporating a convex function 

into a Jenson’s inequality-based divergence measure. Xu et al [21] used the 

approximation of Kullback–Leibler (KL) divergence based on the Cauchy–Schwartz 

inequality. Boscolo et al. [22] established nonparametric ICA by minimizing the mutual 

information contrast function and by using the Parzen window distribution. 

 A new contrast function based on nonparametric distribution was developed by 

Chien and Chen [23], [24] to construct the ICA algorithm. They used the cumulative 

distribution function (CDF) to obtain a uniform distribution from the observation data.   

Moreover, Matsuyama et al. [25] proposed the alpha divergence approach. Also, the f-

divergence was proposed by Csiszar et al. [4], [6], [26]. Alternate studies have presented 
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the nonnegative matrix factorization (NMF) to solve the BSS problem [4]. They took 

advantage of imposing the nonnegative constraints to minimize and measure the 

approximation errors. The Euclidean distance and KL divergence were used as the error 

functions for NMF problems in [26].  

In addition, the maximum-likelihood (ML) criterion [27] is another tool for BSS 

algorithms [27]–[29]. It is used to estimate the demixing matrix by maximizing the 

likelihood of the observed data. However, the ML estimator needs to know all the source 

distributions. Recently, in terms of divergence measure, Fujisawa et al. [28] have 

proposed a very robust similarity measure to outliers and they called it the Gamma 

divergence. In addition, the Beta divergence was proposed in [31] and investigated by 

others in [4].  

In this chapter, we develop an effective and improved measure of dependency 

among the signals, and then we construct its corresponding (parametric and non-

parametric) ICA algorithms. A novel family of dependency divergence is developed 

which we name Convex Cauchy Schwarz Divergence (CCS-DIV) -- due to its use of   the 

Cauchy Schwarz Inequality “divergence.” We develop this new measure by conjugating a 

convex function into the Cauchy–Schwarz inequality-based divergence measure. This 

new contrast function has a wide range of effective curvature since it is controlled by a 

convexity parameter. The corresponding convex Cauchy–Schwarz divergence ICA 

(CCS–ICA) employs the Parzen window density approximation to distinguish the non-

Gaussian structure of source densities. We also present two effective pairwise ICA 

algorithms: one is based on the gradient descent and the other is based on the Jacobi 

optimization. The link between CCS_DIV, ED-DIV, KL-DIV and CS-DIV is also shown. 
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The efficacy of the corresponding ICA algorithms based on the proposed CCS-DIV is 

verified by means of several ICA experiments. This CCS–ICA has succeeded effectively 

in solving the BSS of speech and music signals with and without additive (Gaussian) 

noise, and it has shown a high comparative performance outperforming other existing 

ICA-based algorithms. 

The chapter is organized as follows. Section II presents a brief description of 

several divergence measures. Section III proposes the new convex Cauchy–Schwarz 

divergence measure. Section IV presents the CCS–ICA method. The comparative 

simulation results and conclusions are given in Section V and Section VI, respectively. 

3.2    A Brief Description of Previous Divergence Measures 

Divergence or their counterparts (dis)similarity measures play an important role in 

the areas of neural computation, pattern recognition, learning, estimation, inference, and 

optimization [4]. In general, they measure a quasi-distance or directed difference between 

two probability distributions p and	q, which can also be expressed for unconstrained 

arrays and patterns. Divergence measures are commonly used to find a distance or 

difference between two !-dimensional probability distributions p	 = 	 (p6, pP, … p�) 
and	q	 = 	 (q6, qP, … q�). However, the divergence measure is a fundamental and key 

factor in measuring the dependence between observed variables and creating an ICA-

based procedure. 

In this dissertation, we are mostly interested in distance-type measures that are 

separable, thus, satisfying the condition	D(p||q) = ∑ d(p«, q«) ≥ 0�«76 ; where the 

condition equals zero if and only if	p = q. But they are not necessarily symmetric in the 
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sense that D(p||q) = D(q||p) and do not necessarily satisfy the triangular 

inequality	D(p||q) ≤ D(p||z) + D(z||q), for	another	distribution	z . 
Usually, the vector p corresponds to the observed data and the vector q is the 

estimated or expected data that are subject to constraints imposed on the assumed models. 

For the BSS (ICA and NMF) problem, p	corresponds to the observed data matrix X and q 

corresponds to the estimated matrix	Y = WX. Information divergence is a measure of 

distance between two probability curves. In other words, the distance-type measures 

under consideration are not necessarily a metric on the space P of all probability 

distributions [4]. 

 The metric is the distance between two pdfs if the following conditions 

hold: (�)	"(�||9) = ∑ {(:�, ;�) ≥ 0 �76  if and only if 	� = 9, (��)	"(�||9) = "(9||�) 
and	(���)	"(�||9) ≤ "(�||<) + "(<||9). Distances which are not a metric, are referred to 

as divergences [4]. Next, we review the most common divergence measures with one-

dimensional probability curves. 

3.2.1 Previous Divergence Measures 

Shannon theory shows the KL divergence (KL-DIV) [1], [4], which is the relative 

entropy between the joint distributions of two continuous variables x6and xP (p(x6, xP)) 
and the product of their marginal distributions (p(x6)p(xP)). KL-DIV is given by  

 

D94(x6, xP) = HÉp(x6)Í + HÉp(xP)Í − HÉp(x6, xP)Í       (3.1) 

 

D94(x6, xP) =∬ p(x6, xP)log 3 ©(�·,�¸)
©(�·)∙©(�¸)6 . dx6dxP         (3.2) 
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where D94(x6, xP) ≥ 0 with equality if and only if x6 = xP.	 This  means that they 

are independent of each other. Xu [21] developed Euclidean divergence (E-DIV) and 

Cauchy–Schwartz divergence (CS-DIV) by joining the terms of joint distributions of two 

variables and their product of marginal distributions into the Euclidean distance and the 

Cauchy– Schwartz inequality, respectively. E-DIV and CS-DIV are given respectively by 

 

D¾(x6, xP) = ∬Ép(x6, xP) − p(x6) ∙ p(xP)ÍP . dx6dxP       (3.3) 

DOª(x6, xP) = log∬©(�·,�¸)¸.ú�·ú�¸∙∬©(�·)¸∙©(�¸)¸.ú�·ú�¸
[∬©(�·,�¸)©(�·)©(�¸).ú�·ú�¸]¸      

               (3.4) 

where D¾(x6, xP) ≥ 0 and DOª(x6, xP) ≥ 0 and  the equality holds if and only if 

x6 = xP.	At equality, the variables are  independent of each other. These divergence 

measures are reasonable contrast functions to be used in the ICA method as novel 

measures of dependence. Furthermore, the alpha divergence (α-DIV) was developed by 

Amari et. al. [2], [4]. It can be used as a measure of dependence. α-DIV is given by: 

D?(x6, xP, α) =∬@65?P p(x6, xP) + 6Ó?
P p(x6) ∙ p(xP) − 																														p(x6, xP)

·éA
¸ Ép(x6) ∙

p(xP)Í
AÚ·
¸ B . dx6dxP.    (3.5) 

Matsuyama [25] introduced the alpha ICA algorithm by using α-DIV as a contrast 

function of the ICA method. In the case	α = −1, the α-DIV is equivalent to KL-DIV [4], 

[6].  Csiszár [26] introduced an interesting divergence measure that is called an f-

divergence (f-DIV) and is given by  
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D�(x6, xP) =∬ p(x6, xP)f 3 ©(�·,�¸)
©(�·)∙©(�¸)6 . dx6dxP       (3.6) 

 

where f(. ) denotes a convex function satisfying f(t) ≥ 0 for t ≥ 0, and  f(1) = 0, 

fC(1) = 0. In addition, Csiszár shows that the α-DIV is a special case of f-DIV when using 

the following convex function  

f(t) = Â
65?¸ æ65?P + 6Ó?

P t − t·ÚA¸ ç  For	t ≥ 0             (3.7) 

 

Furthermore, Zhang [31] developed a general divergence function by integrating 

the α-DIV and f-DIV functions into the following form: 

  

DD(x6, xP) = Â
65?¸ E65?P ∬ fÉp(x6, xP)Í . dx6dxP + 6Ó?

P ∬ fÉp(x6) ∙ p(xP)Í . dx6dxP −
ó f F65?P p(x6, xP) + 6Ó?

P p(x6) ∙ p(xP)G . dx6dxPH          

 (3.8) 

Lin [32] developed a Jensen–Shannon divergence (JS-DIV) by using the Shannon 

entropy H[. ] into the Jensen’s inequality; the JS_DIV is given by  

 

DIª(x6, xP) = HÉλp(x6, xP) + (1 − λ)p(x6)p(xP)Í − 				λHÉp(x6, xP)Í − (1 −

λ)HÉp(x6)p(xP)Í                  (3.9) 

where 0 ≤ λ ≤ 1 represents a weighting parameter between the joint distribution 

and the product of their corresponding marginal distributions. DIª(x6, xP) ≥ 0, and the 

equality holds if and only if	x6 = xP	. Recently, Chien [20] proposed the convex 



 
 

78 
 

divergence (C-DIV) by using the Jensen’s inequality. C-DIV is developed by combining 

the convex function f(. ) into the Jensen’s inequality. C-DIV is given by  

DO(x6, xP, α) = Â
65?¸ J∬ λ æ65?P + 6Ó?

P p(x6, xP) − p(x6, xP)
·ÚA
¸ ç . dx6dxP +

(1 − λ)∬-65?P + 6Ó?
P p(x6) ∙ p(xP) − Ép(x6) ∙ p(xP)Í·ÚA¸ 0 . dx6dxP − -65?P +

6Ó?
P Éλp(x6, xP) + (1 − λ)p(x6)p(xP)Í − Éλp(x6, xP) + (1 − λ)p(x6)p(xP)Í

·ÚA
¸ çK   

   (3.10) 

In the case	α = 1, C-DIV is equivalent to the JS-DIV. DO(x6, xP, α) ≥ 0 and the 

equality holds if and only if	x6 = xP, which means they are independent of each other. 

3.2.2 The proposed Divergence Measure 

While there exist a wide range of measures, performance especially in audio and 

speech applications still requires improvements. The quality of an improved measure 

should provide geometric properties for a contrast function in anticipation of a dynamic 

(e.g., gradient) search in a parameter space of de-mixing matrices. The motivation here is 

to introduce a simple measure and incorporate controllable convexity in order to control 

convergence to the optimal solution.  

To improve the performance of the divergence measure and speed up the 

convergence, this chapter presents a novel divergence method that is based on 

conjugating the convex function into the Cauchy–Schwartz inequality. In this context, we 

take advantage of the convexity parameter alpha to control the convexity in the 

divergence function and to speed up the convergence in the ICA and NMF algorithms. 

Incorporating the joint distribution (p(x6, xP)) and the marginal distributions 
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(p(x6)p(xP)) into the convex function f(. ) in (3.7) and conjugating them to the Cauchy–

Schwartz inequality yields  

ÖLfÉp(x6, xP)Í M, MfÉp(x6)p(xP)ÍNÖP  

≤		 LMfÉp(x6, xP)Í, fÉp(x6, xP)Í	NM ∙ 	 MLfÉp(x6)p(xP)Í, fÉp(x6)p(xP)Í MN  (3. 11) 

 

where 〈∙	,∙〉 is an inner product; Now, based on the Cauchy–Schwartz inequality a 

new symmetric divergence measure is proposed, namely:  

DOOª(x6, xP, α) = 	log∬�¸É©(�·,�¸)Í.ú�·ú�¸	∙	∬�¸É©(�·)∙©(�¸)Í.ú�·ú�¸	[∬�É©(�·,�¸)Í∙�É©(�·)©(�¸)Í.ú�·ú�¸]¸     (3.12) 

 

where DOOª(x6, xP, α) ≥ 0 and  equality holds if and only if x6 = xP.  This 

divergence function is then  used to develop the ICA and NMF algorithms. Notably, the 

joint distribution and product of the marginal densities in DOOª(x6, xP, α) is symmetric. 

This symmetrical property does not hold for KL-DIV, α-DIV, and f-DIV. Additionally, 

the CCS-DIV is tunable by the convexity parameter α. 

 In contrast to C-DIV and α-DIV , the convexity parameter α range is extendable. 

However, Based on  l’Hopital’s rule, one can derive the realization of CCS-DIV for the 

case of w = 1 and w = −1 by finding the derivatives, with respect to	w, of the numerator 

and denominator for each parts of DOOª(�6, �P, α).	 Thus, the CCS-DIV with	w = 1 and 

w = −1	are respectively given by (3.13) and (3.14). 
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3.2.3 Link to other Divergences: 

This CCS-DIV distinguishes itself from the previous divergences in the literature 

by incorporating the convex function into (not merely a function of) the Cauchy Shawarz 

inequality-- in order to guarantee convexity in the new divergence. This chapter thus 

develops a framework for generating a family of dependency measure based on 

conjugating the convex function into the Cauchy Shawarz inequality. Such convexity is 

anticipated (as is evidenced by experiments) to reduce local minimum near the optimal 

solution and enhance searching a non-linear surface of the contrast function. Also, it 

provides a flexibility of scalability to high dimensional data. The motivation behind this 

divergence is to render the CS-DIV to be convex similar to the f-DIV. For this work, we 

shall focus on one convex function	f(t) as in (3.7), and its corresponding CCS-DIVs in 

(3.13) and (3.14). It can be seen that the CCS-DIV, for the  α = 1 and α = −1	cases, is 

implicitly based on Shannon entropy (KL divergence) and Renyi’s quadratic entropy, 

respectively. Also, it is to show that the CCS_DIVs for the α = 1 and α = −1	cases are 

convex functions in contrast to the CS-DIV.  

DOOª(�6, �P, 1) = 

	log
3∬ EÉp(�6, �P) ∙ logÉp(�6, �P)Í − p(�6, �P) + 1ÍP	Hd�6d�P	6 ∙ 3∬ EÉp(�6) ∙ p(�P) ∙ logÉp(�6) ∙ p(�P)Í − p(�6) ∙ p(�

[∬íÉp(�6, �P) ∙ logÉp(�6, �P)Í − p(�6, �P) + 1Í ∙ Ép(�6) ∙ p(�P) ∙ logÉp(�6) ∙ p(�P)Í − p(�6) ∙ p(�P) + 1Í	î

DOOª(x6, xP, −1)

= log
3∬ EÉlogÉp(x6, xP)Í − p(x6 , xP) + 1ÍP	Hdx6dxP	6 ∙ 3∬EÉlogÉp(x6) ∙ p(xP)Í − p(x6) ∙ p(xP) + 1ÍPHdx6dxP	6

[∬íÉlogÉp(x6, xP)Í − p(x6, xP) + 1Í ∙ ÉlogÉp(x6) ∙ p(xP)Í − p(x6) ∙ p(xP) + 1Íîdx6dxP]P
 

(3.13)

(3.14)
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3.2.4 Geometrical Interpretation of the Proposed Divergence for � = � 
and	� = −�. 

For simplicity, let’s define the following terms:  

ÕQ =R(:(�6, �P))P{�6{�P 

Õ� =R(:(�6):(�P))P{�6{�P 

Õ} =R:(�6, �P):(�6):(�P){�6{�P 

ÕQQ =
��
�
�	RSTp(�6, �P) ∙ logÉp(�6, �P)Í−p(�6, �P) + 1 UP	Vd�6d�P	 		w = 1

	
RST logÉp(�6, �P)Í−p(�6, �P) + 1U

PVd�6d�P	 															w = −1
M 

Õ�� =

��
�
�	RSTp(�6) ∙ p(�P) ∙ logÉp(�6) ∙ p(�P)Í−p(�6) ∙ p(�P) + 1 UPV d�6d�P	 				w = 1

	
RST logÉp(�6) ∙ p(�P)Í−p(�6) ∙ p(�P) + 1U

PV d�6d�P			 																									w = −1
M 

ÕWW =

��
��
�
��
�	R

���
�	 Tp(�6, �P) ∙ logÉp(�6, �P)Í−p(�6, �P) + 1 U ∙
Tp(�6) ∙ p(�P) ∙ logÉp(�6) ∙ p(�P)Í−p(�6) ∙ p(�P) + 1 U
��

�� d�6d�P 		w = 1

	

R
���
�	 T logÉp(�6, �P)Í−p(�6, �P) + 1U ∙T logÉp(�6) ∙ p(�P)Í−p(�6) ∙ p(�P) + 1U	
��

�� d�6d�P		 																					w = −1

M 

 

With these terms, one can express the CCS-DIV and the CS-DIV as  

"WWX = logÉÕQQÍ + log(Õ��) − 2log(ÕWW)	                       (3.15) 

"WX = logÉÕQÍ + log(Õ�) − 2log(ÕW)	           (3.16) 
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In Figure 3.1, we illustrate the geometrical interpretation of the proposed 

divergence (CCS-DIV), which is equivalent to Cauchy Schwarz Divergence (CS-DIV). 

Geometrically, we can show that the angle between the Joint pdfs and Marginal pdfs in 

the CCS-DIV is given as following: 

YWWX = acos F Z[[\Z]]Z^^G ≡ YWX = acos F Z[\Z]Z^G   (3.17) 

where	'z`� denotes the cosine inverse. As a matter of fact, the convex function  � 

renders the CS-DIV a Convex contrast function for the w = 1	and w = −1	cases. 

Moreover, it provides the proposed measure an advantage over the CS-DIV in terms of 

speed and accuracy. 

3.2.5 Evaluation of Divergence Measures 

In this section, the relations among the KL-DIV, E-DIV, CS-DIV, JS-DIV, α-

DIV, C-DIV, and the proposed CCS-DIV are discussed. C-DIV, α-DIV, and the proposed 

CCS-DIV with α = 1, α = 0	and	α = −1 are evaluated. Without loss of generality, a  
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Figure 3.1: Illustration of Geometrical Interpretation of the proposed Divergence 

simple case is considered. Two binomial variables {x6, xP} in the presence of the binary 

events {A, B} are considered as in [20], and [24].  

The joint probabilities are   p�·,�¸(A, A), p�·,�¸(A, B), 

	p�·,�¸(B, A)	and	p�·,�¸(B, B), and the marginal probabilities are p�·(A), p�·(B), p�¸(A) 

and p�¸(B).  Different divergence methods are tested by fixing the marginal probabilities, 

e.g., p�·(A) = 0.7, p�·(B) = 0.3, p�¸(A) = 0.5 and	p�¸(B) = 0.5, and setting the joint 

probabilities of p�·,�¸(A, A) and p�·,�¸(B, A) free in the intervals (0, 0.7) and (0, 0.3), 

respectively. 

 Figure 3.2 shows the different divergence measures versus the joint 

probability	p�·,�¸(A, A). All the divergence measures reach the same minimum 

at	p�·,�¸(A, A) = 0.35, which means that the two random variables are independent. 

Figure 3.3 shows the CCS-DIV and α-DIV at different values of α, which controls the 

slope of curves, respectively. Among these measures, the steepest curve is obtained by 

the CCS-DIV at	α = −1. Fig. 3.4 represents the CCS-DIV with different values of α: 

positive values more than +1 and negative values less than -1.  

 


���
= −cd�((�d e���)�)� 

foo 

fgg 

f�� = hi°(e���)\fggfoo 

j(k(��)�(��)) 

j(k(��, ��)) 

e��� 



 
 

84 
 

Notably, CCS-DIV works with any value of α and it effectively increases the 

slope of the “learning” curve by decreasing α; on the contrary, C-DIV and α-DIV work 

only for	|α| ≤ 1. Furthermore, the flattest curve is obtained by CCS-DIV with increasing 

α, see Figure. 3.4. This is similar to E-DIV [6] and C-DIV [20] with	α = 1.  Moreover, as 

we have shown in Figure 3.2 and Figure 3.4, CCS-DIV with α ≥ −1 is comparatively 

sensitive to the probability model and obtains the minimum divergence effectively. 

However, CCS-DIV with α ≥ −1 should be a good choice as a contrast function for 

devising the ICA algorithm. 

It is also worthwhile to compare and study the difference between the proposed 

measure and the Cauchy-Schwarz measure. Figure 3.5 shows the different divergence 

measures versus the joint probabilities	pl·,l¸(A, A) and	pl·,l¸(B, A). According to Figure 

3.5, all the divergence measures reach the same minimum on the line	pl·,l¸(A, A) =
1.5pl·,l¸(B, A)		, which means that the two random variables become independent. One 

can observe that the CS-DIV is not a convex function of the pdfs in contrast to CCS-DIV 

from the graphs in Figure 3.5.   
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Figure 3.2: Different divergence measures versus the joint probability 

m¯�,¯�(n,n) 
 

 
Figure 3.3: CCS-DIV and α-DIV versus the joint probability m¯�,¯�(n,n) 
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Figure 3.4: CCS-DIV with various alphas versus the joint probability 

m¯�,¯�(n,n) 
 

 

Figure 3.5: The surfaces and Contours of CCS-DIV vs  CS-DIV 
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3.3    Convex Cauchy–Schwarz Divergence Independent Component Analysis 

(CCS–ICA) 

In this section, we develop the ICA algorithm by using the CCS-DIV as a contrast 

function. Let us consider a simple system that is described by the vector-matrix form   

x = Hs + v                                                (3.18) 

where x = [x6, … , x�]a	is a mixture vector, s = [s6, … , s�]a is a source signal 

vector, v = [v6, … , v�]a is an additive noise vector, and H is an unknown full rank 

M×M mixing matrix. However, to obtain a good estimate of Y = Wx of the source 

signals	s, the contrast function CCS-DIV should be minimized. Then, the components of 

Y become least dependent, that is, when this demixing matrix W becomes a rescaled 

permutation of	H56. Following the standard ICA procedure, the original data x should be 

preprocessed by removing the mean {E[x] = 0} and by a weighting matrixE	V =
Λ56 PÒ Ea}, where the matrix E	represents the eigenvectors matrix and Λ the eigenvalues 

matrix of the autocorrelation, namely,		{R�� = E[xxa]}. However, the whitening step 

obtained matrix (V) so that the MxT whitened data vector (XÈ) has covariance of identity 

matrix, {R�� = I9}, which can be obtained as EXÈ = Λ5·¸VaxH. The demixing matrix can 

be estimated by, e.g., the gradient descent algorithm [2], [13]: 

W(k + 1) = W(k) − γ Äoppq(®,ð(,))
Äð(,)                  (3.19) 

where k represents the iteration index and γ is a step size or a learning rate. 

Therefore, the updated term in the gradient descent is composed of the differentials of the 

CCS-DIV with respect to each element w*) of the M×M demixing matrix	W. 
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The differentials 
Äoppq(®,ð(,))

ÄÊ4r(,) 	 , 1 ≤ m, l ≤ M are calculated using a different 

probability model and CCS-DIV measures as in [2], [20] and [24]. The update procedure 

(14) will stop when the absolute increment of the CCS-DIV measure meets a predefined 

threshold value. During the iterations, we should make the normalization step w* =
w* ||w*||Ò  for each row of W,	 where ||. ||	denotes a norm. Furthermore, we can use the 

CCS-DIV measure in the natural gradient format to increase the efficiency of the ICA-

based algorithm, i.e.  

W(k + 1) = W(k) − γ ÄoppqÉ®,ð(,)Í
Äð(,) Wa(k)W(k)       (3.20) 

The natural gradient KL-ICA algorithm [28] suffers from the problem of 

convergence to the matrix with large scaling values, especially, if the initial demixing 

matrix and learning rate are not carefully selected by the user. This kind of problem is too 

challenging and hard to overcome specifically when a highly non-linear function is 

presented in the KL-ICA. However, many regularization algorithms have been proposed 

to stabilize the KL-ICA algorithm and improve the convergence speed as in [2], [13], and 

[28].  

In general, dealing with the indeterminacy of the scales of the demixed signals in 

the natural gradient form is, at most times, hard. Here, the ICA algorithm based on the 

CCS-DIV measure mitigates this problem by selecting an appropriate learning rate. 

 In setting up the CCS–ICA algorithm based on the proposed CCS-DIV 

measure,	DOOª(x6, xP, α), usually, the vector x6	corresponds to the observed data and the 

vector xP corresponds to the estimated or expected data. Here, the CCS–ICA algorithm is 

established as follows.  
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Assuming that the demixed signals YÈ = WXÈ with the mth component denoted as 

	y*È = w*XÈ. Then, using CCS-DIV as the contrast function with built-in convexity 

parameter α,	we get  

DOOª(YÈ, y*È, α) = 		log∬�¸(©(s1)).ú¿·ú¿¸	∙	∬�¸É∏ ©(¿41t· )Í.ú¿·ú¿¸	
[∬�(©(s1))∙�É∏ ©(¿41)t· Í.ú¿·ú¿¸]¸       (3.21) 

We use the Lebsegue measure [5] to approximate the integral with respect to the 

joint distribution of		YÈ = {y6, yP, … , y�}. The contrast function thus becomes  

DOOª(YÈ, y*È, α) = log ∑ �¸(©(ð®1))∙∑ �¸É∏ (©(Ê41®1))�· ÍË·Ë·
[∑ �(©(ð®1))∙�É∏ (©(Ê41®1))�· ÍË· ]¸    (3.22) 

The adaptive CCS–ICA algorithms are carried out by using the deferential of the 

proposed divergence u	∂DOOª(YÈ, y*È, α) ∂w*)Ò v which is derived in Appendix A. Note 

that the derivative of determinant demixing matrix (det	(W)) with respect to element 

(w*)	) equals the cofactor of entry	(m, l)		in the calculation of the determinant of		W, 

which means	3ÄúûÈ(ð)
ÄÊ4r = W*)6. And the joint distribution of the output is determined by  

p(YÈ) = ©(®1)
|úûÈ	(ð)| in Appendix A.                

For simplicity, we can write DOOª(YÈ, y*È, α) as a function of three variables. 

DOOª(YÈ, y*È, α) = log w·∙w¸(wx)¸             (3.23) 

Then,  

Äoppq(s1,¿41,?)
ÄÊ4r = w·yw¸Ów·wy̧5Pw·w¸wxyw·w¸wx           (3.24) 

where  

V6 =vfP(YÈ)	,			a

È76
V6å =v2f(YÈ)f å(YÈ)YÈåa

È76
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VP =vfP(y*È)		,				
a

È76
VPå =v2f(y*È)f å(y*È)y*Èå

a

È76
 

VÏ =vf(YÈ)a

È76
f(y*È)	,			 

VÏå =vf å(YÈ)f(y*È)YÈåa

È76
+vf(YÈ)f å(y*È)y*Èåa

È76
 

YÈ = p(WXÈ)and	yP =zp(w*XÈ)
�

�76
 

YÈå = ∂YÈ
∂w*)

= − p(XÈ)
|det(W)|P ∙ ∂ det(W)∂w*)

∙ sign(det(W),	 
Where	ÄúûÈ(ð)

ÄÊ4r = W*); 

 

y*Èå = ∂y*È
∂w*)

= @zpÉw¬XÈÍ
�

¬7*
{∂p(w�XÈ)
∂(w�XÈ) ∙ x).		 

where	x)	denotes	the	lth	entry	of	XÈ. 
In general, the estimation accuracy of a demixing matrix in the ICA algorithm is 

limited by the lack of knowledge of the accurate source probability densities.  However, 

non-parametric density is used in [1], [13], [15], [43] by applying the Parzen window 

estimation since it has a distribution shape that is data-driven and is flexibly formed 

based on the Kernel functions with a bandwidth	h. In this work, a novel non-parametric 

CCS–ICA algorithm is also presented by minimizing the CCS-DIV to generate the 

demixed signals	Y = [y6, yP, … , y�]	a.  
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The demixed signals are described by the following univariate and multivariate 

distributions [43],  

p(y*) = 6
a|∑ ϑ 3¿45¿41| 6aÈ76                         (3.25) 

p(Y) = 6
a|t∑ φ3s5s1| 6aÈ76                           (3.26) 

where the univariate Gaussian Kernel is 

ϑ(u) = (2π)56Pe5Æ¸P  

and the multivariate Gaussian Kernel is 

φ(u) = (2π)5�̧e5ÆË~̧. 
The Gaussian kernel, used in the non-parametric ICA, is a smooth function. We 

note that the performance of a learning algorithm based on the non-parametric ICA is 

better than the performance of a learning algorithm based on the parametric ICA. By 

substituting (20) and (21) with YÈ = WXÈ and y*È = w*xÈ into (17), the nonparametric 

CCS-DIV becomes  

	DOOª(YÈ, y*È, α) = 							log ∑ �¸(©(ð®1))∙∑ �¸F∏ ·
Ë�∑ �(�4É�1é�ñÍ� )Ëñ5·t· GË15·Ë15·

[∑ �É©(ð�1)Í∙�(∏ ·
Ë�∑ �F�4É�1é�ñÍ� GËñ5·t·Ë15· )]¸

                   

(3.27) 

and its derivative is  

Äoppq(s1,¿41,?)
ÄÊ4r = w·yw¸Ów·wy̧5Pw·w¸wxyw·w¸wx     (3.28) 

where  

V6 =vfP(YÈ)	,			a

È76
V6å =v2f(YÈ)f å(YÈ)YÈåa

È76
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VP =vfP(y*È)		,				
a

È76
VPå =v2f(y*È)f å(y*È)y*Èå

a

È76
 

VÏ =vf(YÈ)a

È76
f(y*È)	,			 

VÏå =vf å(YÈ)f(y*È)YÈåa

È76
+vf(YÈ)f å(y*È)y*Èåa

È76
 

YÈ = p(WXÈ) 
 

YÈå = ∂YÈ
∂w*)

= − p(XÈ)
|det(W)|P ∙ ∂ det(W)∂w*)

∙ sign(det(W),	 
 

where		ÄúûÈ(ð)
ÄÊ4r = W*); and sign(∙) is the sign function. Thus 

y*È =z 1
Thvϑ 3y* − y*«h 6a

«76

�

*76
=z 1

Thvϑ Tw*(XÈ − X«)
h Ua

«76

�

�76
 

y*Èå = ∂y*È
∂w*)

= − 1
ThvϑTw*(XÈ − X«)

h Ua

«76
∙ Tw*(XÈ − X«)

h U ∙ FXÈ) − X«)h G
∙ @z pÉw¬XÈÍ

�

¬�* {.		 
where XÈ) and X«) denote the lth entry of	X. 

Remark: This non-parametric CCS_DIV might suffer from insufficient data and 

high computation in a high dimensional space, especially when estimating the joint 

distribution. In this case, the pairwise iterative scheme which is proposed in [20], [38] 

should be used to mitigate this potential drawback. 
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Algorithm 3.1: ICA Based on the gradient descent 

Input: (�	�	|) matrix of realization�	�, Initial demixing matrix	� = �o, 

Max. number of iterations	���, Step Size � i.e.	�	 = 0.3, alpha w i.e.	w = −0.99999 
Perform Pre-Whitening  

{� = 	f ∗ � = �^(−1 ⁄ 2)	�^|		�}, 
For loop: for each I Iteration do 

For loop: for each � = 1,… , | 

Evaluate the proposed contrast function and its derivative 

u	�
���(��, ²��,�) ���cÒ v 
End For 

Update de-mixing matrix � � =� − � �
WWX(�, �)��  

Normalization of � 

Check Convergence 

‖∆"}‖ ≤ � i.e.	� = 105Â 
End For 

Output: Demixing Matrix �, estimated signals y 

 

3.4     Scenario of two or three source signals 

Generally Speaking, the non-parametric ICA algorithm suffers from insufficient 

data and high computation in a high dimensional space, especially when estimating the 

joint distribution. However, in several previous reports in the literature, e.g., [13], [16], 

the authors suggest applying the pairwise iterative schemes to tackle the high dimensional 

data problem for non-parametric ICA algorithm(s). However, there are no results 

indicating how the performance would hold up with the pairwise scheme, especially in 

terms of computational complexity and in terms of the accuracy of the non-parametric 

ICA algorithm.  In this work, we present two effective pairwise ICA algorithms: one is 

based on the gradient descent and the other is based on the Jacobi optimization [16].   
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Without loss of generality, one can represent the demixing matrixW as a series of 

rotational matrices in terms of unknown angle(s) θ«¬ ∈ [−π/4,π/4] between each two 

pair (i, j) of the observed signals. Specifically, define the pairwise rotation matrix 

�ÉY��Í = -cos Y�� 							− sinY��sinY�� 											cos Y�� 0    (3.29) 

The idea is to make each pair of the estimated (marginal) output “independent” as 

possible (minimize dependency). It was proved and pointed out by Comon in [6] that the 

mutual independence between the M whitened observed signals might be attained by 

maximize the independence between each pair of them. In this work, we present two 

algorithms to solve the high dimensional problem in the non-parametric scheme. First, we 

adopt the non-parametric algorithm based on the gradient descent into the pairwise 

iterative scheme of Algorithm 3.2. 

 

Algorithm 3.2: ICA Based on pairwise gradient decent scheme 

Input: (�	�	|) matrix of realization �, Initial demixing matrix	� = �o, 
number of iterations	���, Step Size � i.e.	�	 = 0.3, alpha  w i.e.	w = −0.99999 

For loop: for each	� = 1…� − 1 
For loop: for each � = � + 1…� 

     Initial demixing matrix �� = ��	 
While: while (true) 

Find	�� from due to Algorithm 1 for each pairs of � ; 

         End While  

            Initial rotational matrix 

                                                 � = �o, 

    Update rotational matrix 

 �([�		�], [�			�]) =�� 
Update Demixing matrix  

                                    � = � ∗� 

Update observation Matrix  

X=W * X 

End For 

End For 

Output: Demixing matrix � and demixed sources in � 
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 Second, we proposed a CCS-ICA algorithm based on Jacobi pairwise scheme in 

Algorithm 3.3. This algorithm based on finding the rotation matrix in (3.29) that attains 

the  

minima of CCS-DIV. So, in fact, we set up the range of thetas, such that	θ«¬ ∈ [	− ©«
Â : θ� ∶

©«
Â ], where 	θ� is the grid search, for instance	θ� = ©«�Â. Then for each pair (i, j)	of the 

observation data, we find the demixing matrix	WP, which attains the minimum of the 

CCS-DIV. Please refer to Algorithm 3 for more details.  

 

 

Algorithm 3.3: ICA Based on pairwise Jacobi scheme 

{� = 	f ∗ � = �^((−1) ⁄ 2)	Ø^|		�}, 

�� = -z`�	Y6 −��! Y6
��! Y6 z`� Y6 0 

� = � ∗� 

Input: (�	�	|) matrix of realization X, Initial demixing matrix	� = �o, 

number of iterations	���, Step Size � i.e.	�	 = 0.3, alpha  w i.e.	w = −0.99999 
Perform Pre-Whitening  

For loop: for each � = 1…� − 1 
For loop: for each � = � + 1…� 

   For loop: For each Y6 = − ��Â : ���Â ∶ ��Â  

 Evaluate 

           
�(�([�	�], : ),�� ∗ �([�	�], : ),�) For all	� = 1,… , |. 

   End For  
 Find �� = ��\�� 
�(�(�: �, : ),�� ∗ �, w) 
  Initial rotational matrix  

                                   � = �o, 

 Update rotational matrix 

                          �([�		�], [�			�]) =�� 
         Update Demixing matrix  

         Update observation Matrix  � =� ∗ X 

End For 

End For 

Output: Demixing matrix � and estimated Sources in	� 
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3.5 Computational Complexity 

Given | realizations of M observation signals, the computational complexity of the 

proposed algorithms rely on  | and the number of observation signals	�, and 

approximately is given by	O3�(�56)P TP6. The computational complexity has been a 

measure of merit for ICA algorithms. With the advent of Graphics Processing Units 

(GPUs) (see Nvidia.com, e.g.), and more powerful computing platforms, performance 

accuracy holds more merit. In our comparison among the ICA algorithms, we employ 

several metrics including computational load time and accuracy.  In this work, we 

employ the adaptive sampling technique that produces improved performance in terms of 

accuracy and computational load together. The presented technique samples the signal 

into small time blocks in order to evaluate the integration of the proposed divergence and 

reduce the computational complexity. Thus, we have introduced sampling factor	T	ê	to 

evaluate the proposed divergence at each 	Tê instance. Therefore, the computational 

complexity of the proposed algorithm is reduced by the square of the sample factor 	Tê to 

be less than	OF�(�56)P 3 aa�6PG. Namely, we quantize the specific area of integration of the 

proposed divergence into equal 3 aa�	6 segments to evaluate the proposed divergence. 

3.6  Simulation Results 

Several experimental results are conducted to compare the performance of 

different ICA-based algorithms. This work provides results that have a diversity of 

experimental data and conditions. 
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3.6.1 Sensitivity of CCS-DIV measure  

This experiment evaluates the proposed CCS-DIV divergence measure in relation 

to the sensitivity of the probability model of the discrete variables. Results indicate that 

the CCS-DIV with α = 1	and α = −1 successfully reaches the minimum point of the 

measure. Let us consider the case as in [20], [34], [35], where the mixed signals	X = AS, 
to investigate the sensitivity of CCS-DIV with α = 1	and	α = −1, respectively. 

Simulated experiments in [20], [35] were performed for two sources (M = 2) and with a 

demixing matrix W 

W = -cos	θ6 sin θ6
cos θP sin θP0                                (3.24) 

where W,	in this case, is a parametrized matrix that establishes a polar coordinate 

system. The row vectors in W have unit norms and provide the counterclockwise rotation 

of θ6	and	θP	, respectively. The orthogonal rows in W holds the relationship between 

θ6	and	θP	, which is	θP = θ6 ± �P. Notably, the amplitude should not affect the 

independent sources. By varying θ6	and	θP	, we get different demixing matrices. 

However, consider the simple case, i.e., mixtures of signals of two zero mean continuous 

variables; one variable is of a sub-Gaussian distribution and the other variable is of a 

super-Gaussian distribution. For the sub-Gaussian distribution, we use the uniform 

distribution 

p(s6)= � 1

2�· 													   s6 É-τ6,τ6Í    		      		   
  0            							Otherwise                 

�         (3.25) 

and for the super-Gaussian distribution, we use the Laplacian distribution 

p(sP) = 6
P�¸ exp æ− |ê¸|�¸ ç                     (3.26) 
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In this task, data samples T = 1000	are selected and randomly generated by 

using	τ6 = 3	 and	τP = 1. Kurtosis for the two signals are −1.2,	and 2.99,	respectively, 

and they are evaluated using	Kurt(s) = E[sÂ]
E[sP]� − 3.  

Without loss of generality, we take the mixing matrix as the 2 × 2 identity matrix, 

thus, x6 = s6 and xP = sP [6], [20], [25]. The normalized divergence measures of the 

demixing signals and their sensitivity to the variation of the demixing matrix is shown in 

Figure 3.6. As shown in Figure 3.6, the variations of the demixing matrix are represented 

by the polar systems θ1	and	θ2.		A wide variety of demixing matrices are considered by 

taking the interval of angles {θ6	and	θP	} from 0 to π. Furthermore, Fig. 3.6 evaluates the 

CCS-DIV along with E-DIV, KL-DIV, and C-DIV with α = 1	and	α = −1 . The 

minimum (i.e., zero) divergence is achieved at the same conditions {	θ6 = 0	 and	θP =
�
P	} as is clearly seen.   

In addition, no local minima are found. Clearly, the values of CCS-DIV with 

α = 1 are low and flat within the range of θ2	between 0.5 and 2.5. This performance is 

similar to other divergence measures as in [20], [25]. Contrarily, the values of CCS-DIV 

with α = −1 enable a relatively more convex form in the same range. Thus, the CCS-

DIV with α = −1 leads through the steepest descent to the minimum point of the CCS-

DIV measure. Observe that the CCS-DIV with α = 1	has a flat curve with respect to 

θ6	and	θP. For other	α values, the CCS-DIVas a contrast function, can produce large 

decremental steps of the demixing matrix towards convergence to the solution. And 

again, one can observe that the CS-DIV is not a convex function in contrast to CCS-DIV 

from the graphs in Figure 3.6. 
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Figure 3.6: Comparison of (a) CCS-DIV with α = 1, (b) CCS-DIV with α = -1, (c) KL-
DIV, (d) E-DIV, (e) CS-DIV (f) C-DIV with α = -1 of demixed signals as a function of 

the demixing parameters  � and	 �. 
 

 
(a) CCS-DIV with α=1        (b)  CCS-DIV with α=-1     

 
 

(c) KL-DIV     (d) E-DIV     

 
 

(e)  CS-DIV          
       (f) C-DIV with α=-1    
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3.6.2 The performance and the convergence speed of the proposed CCS-

ICA algorithms versus the existing ICA-based algorithms 

In this section, Monte Carlo Simulations are carried out. It is assumed that the 

number of sources is equal to the number of observations “sensors”. All algorithms have 

used the same whitening method. The experiments have been carried out using the 

MATLAB software on an Intel Core i5 CPU 2.4-GHz processor and 4G MB RAM. Each 

entry corresponds to the average of corresponding trial “independent Monte Carlo” runs 

in which the mixing matrix is randomly chosen.  

First, we compare the performance and convergence speed of the gradient descent 

ICA algorithms based on the CCS-DIV, CS-DIV, E-DIV, KL-DIV, and C-DIV with 

α = 1	and	α = −1. In all tasks, the standard gradient descent method is used to devise 

the parameterized and non-parameterized ICA algorithms based on CCS-DIV with γ=0.7 

and γ=0.3 for α=1  and α=-1 cases, respectively , CS-DIV with γ=0.3, E-DIV with 

γ=0.06, KL-DIV γ=0.17 as in [14], and C-DIV with γ=0.008 and γ=0.1 for α=-1  and α=1 

cases, respectively as in [13]. During the comparison, we use the bandwidth as a function 

of sample size, namely, h = 1.06Té·¢  [13-15]. To study the parametric scenario for the 

ICA algorithms, we use mixed signals that consist of two signal sources with a mixing 

matrix	A = [[0.5		0.6]a	[0.3			0.4]a], which has a determinant	det(A) = 0.02. One of the 

signal sources has a uniform distribution (sub-Gaussian) and the other has a Laplacian 

distribution with kurtosis values −1.2109 and	3.0839, respectively. T = 1000 sampled 

data are taken using a learning rate  γ = 0.3 and for 250 iterations. The gradient descent 

ICA algorithms based on the CCS-DIV, CS-DIV, E-DIV, KL-DIV, and C-DIV with 

α = 1	and	α = −1, respectively, are implemented to recover the estimated source signals. 
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The initial demixed matrix W is taken as an identity matrix. Fig. 3.7 shows the demixed 

signals resulting from the application of the various ICA-based algorithms. Clearly, the 

parameterized CCS–ICA algorithm outperforms all other ICA algorithms in this scenario 

with signal to interference ratio (SIR) of 41.9 dB and 32 dB, respectively. Additionally, 

Fig. 3.8 shows the “learning curves” of the parameterized CCS–ICA algorithm with	α =
1	and	α = −1 when compared to the other ICA algorithms, as it graphs the DIV 

measures versus the iterations (in epochs). As shown in Fig. 3.8, the speed convergence 

of the CCS–ICA algorithm is comparable to the C-ICA and KL-ICA algorithms.  

Furthermore, Table 3.1 and 3.2 summarize the performance of the proposed non-

parametric ICA algorithms with  α = −1 against other several algorithms, i.e. CS-DIV, 

E-DIV, KL-DIV, C-DIV with α = −1 and IK-DIV in terms of accuracy and 

computational complexity, respectively. CCS2 and CCS3 represent Algorithm 2 and 

Algorithm 3, respectively. We also compare it with other benchmark algorithms such as 

FastICA [8], RobustICA [7], JADE [11] and RapidICA [42]. For these methods, the 

default setting parameters are used according to their toolboxes and their publications. In 

this task, we have examined the aforementioned ICA algorithms to separate mixtures of 

two sub-Gaussians, two sup-Gaussians, and both sub and sup- Gaussian signals.  We use 

the following distributions: For the sub-Gaussian distribution, we use the uniform 

distribution  

p(s6)= � 1

2�· 		  											s6	�!	É-τ6,τ6Í		 
 0  													 Otherwise  

�                                          (3.27) 

and the Rayleigh distribution, we use the following  

p(sP) = sPexp æ− ê¸̧
P ç                                              (3.28) 

For the super-Gaussian distribution, we use the Laplacian distribution 
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p(sÏ) = 6
P�¸ exp æ− |êx|�¸ ç																 	 																								(3.29)	

and log-normal distribution, we use the following  

p(sÂ) = exp æ− ()¤� êÀ)¸
P ç                (3.30) 

Also, data samples,	T = 1000, are selected and randomly generated by 

using	τ6 = 3	 and	τP = 1. Kurtoses for all aforementioned signals are 

−1.2, 2.99, −0.7224, and	8.4559		respectively, and they are evaluated using	Kurt(s) =
E[sÂ] 	⁄ (E[sP	])P 	− 3.  

One can observe several patterns from Tables 3.1, 3.2 and 3.3. The presented 

algorithms based on the proposed measure show the best performance in terms of 

accuracy (in most cases) and stability. The proposed algorithm CCS3 exhibits the 

comparable behavior in terms of speed and stability with KL and ED.  Clearly, the 

proposed divergence improves the CS-DIV in terms of stability and performance. 

Notably, most the presented divergences struggle to separate the Rayleigh distributions 

( �,  �) (including the KL-DIV) except the proposed divergence and C-DIVs. Moreover, 

Table 3.3 verifies our point in this letter, thanks to the convexity; the stability of the 

proposed algorithm outperforms the CS-DIV and makes the divergence more robust 

against variation of parameters. 

Also, it is obvious that the non-parametric methods perform betters in terms of 

performance and stability than the non-Gaussian methods such as JADE, FastICA and 

other algorithms. Nevertheless JADE performs better than each of FastICA, RobustICA 

and Rapid ICA in terms of accuracy in some cases, but in terms of speed, we find that 

these later algorithms outperform the JADE algorithm, especially the rapid ICA and 

Robust ICA. However, Table 3.5 summarizes the performance of the aforementioned 
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algorithms in a more complex separation process. A different, randomly generated source 

signals (refer to Table 3.4) and mixing matrices are employed. As a result, Table 3.4 

summarizes the performance of each algorithm in terms of the standard error metric 

(multiplied ×100), see [1], [13]. All results have been averaged over a number of 

independent Monte Carlo runs. Table 3.4 demonstrates again that the non-parametric ICA 

based on the proposed divergence provides the best performance in terms of accuracy (in 

most cases). However, in terms of speed, RapidICA, FastICA, RobustICA and JADE 

perform better. So, these algorithms could be chosen to initialize for methods of higher 

performance in order to reduce the overall computational load. 

Since, the comparison between the ICA algorithms has relied on two criteria, 

namely, accuracy and computational load, a tradeoff between these two criteria has 

always been assessed for each targeted application. We also note that with the advent of 

Graphics Processing Units (GPUs), computational load/speed becomes less of a factor, 

and the true metric becomes accuracy. Table 3.6 summarizes the performance of CCS-

ICA (see Algorithm 3.3) based on the different values of		|#	(1,10,100,1000), and 

Table 3.7 shows their corresponding computational load in seconds. Based on these 

results, one observes that the best performance of the CCS-ICA, Algorithm 3.3 scheme, 

in terms of accuracy and speed occurs with			|# = 100. For brevity, Readers can get more 

results of non-parametric of CCS-ICA algorithm at http://www.egr.msu.edu/bsr/. 

Also, to check the robustness of the proposed algorithm, we have modified the 

initial demixed matrix W to be random. Figure 3.9 and Figure 3.10 show the results of 

the SIR of the demixed signals and the learning curve of C-ICA, E-ICA, KL-ICA, and 
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CCS–ICA with α = 1, and α = -1 in a two-source BSS task with a random initial 

demixing matrix, respectively.  

These results agree with those in the previous sections. We also report the time of 

each epoch for using different divergence measures in their implementation. Furthermore, 

Figure 3.11 shows the “learning curves” of the CCS-DIV measure with several convexity 

parameter values in a three-source BSS task. The mixed signals are a result of the mixing 

matrix  

Table 3.1: The performance of the ICA algorithm based on the proposed divergence

 and other widelyused ICA algorithms in terms of Amari error (multiplied by 100). 

Each entry averages over the  

corresponding number of trials. Observation mixtures consists of two source 

 signals that follow the same distribution as denoted in the corresponding example. 

Samples Trials FastICA JADE RobustICA Rapid 
ICA 

IK-
DIV 

CS-
DIV 

KL-
ICA 

ED-
DIV 

C-
DIV+ 

C-
DIV- 

CCS 
DIV1+ 

CCS-
DIV1- 

CCS 
DIV2+

1000 100 6.16 4.77 5.27 5.07 3.32 2.66 1.75 2.04 2.17 2.36 2.25 2.40 1.86 

1000 100 22.34 18.51 28.29 20.26 6.78 7.39 8.13 5.12 5.38 3.83 8.92 5.80 3.55 

1000 100 2.45 2.10 2.24 2.14 2.31 2.21 2.31 2.31 2.65 2.50 2.19 1.94 1.84 

1000 100 3.34 3.03 3.13 3.29 1.93 2.02 1.93 1.71 2.04 1.90 1.97 1.93 1.82 

1000 100 5.11 4.53 5.39 5.17 2.44 2.07 2.06 2.24 2.56 2.10 2.50 2.33 2.21 

 

Table 3.2: The computational load, in seconds, of the ICA algorithm based on the proposed 
divergence and other widely used ICA algorithms, each entry averages over the corresponding number of 

trials. Observation mixtures consists of two source signals that follow the same  
distribution as denoted in the corresponding example. 

Samples Trials FastICA JADE RobustICA Rapid 
ICA 

IK-
DIV 

CS-
DIV 

KL-
ICA 

ED-
DIV 

C-
DIV+ 

C-
DIV- 

CCS-
DIV2+ 

CCS-
DIV2- 

CCS
DIV3+

1000 100 0.0 0.0 0.0 0.0 20.1 22.1 19.5 20.1 24.1 24.1 22.2 22.2 19.3

1000 100 0.0 0.1 0.0 0.0 20.1 21.3 19.2 20.2 23.3 23.3 19.1 19.1 21.2

1000 100 0.0 0.0 0.0 0.0 19.1 20.7 19.1 22.1 25.1 25.1 18.1 18.1 20.2

1000 100 0.0 0.1 0.0 0.0 20.4 24.3 19 23.1 24.1 24.1 19.1 19.1 19.2

1000 100 0.0 0.0 0.0 0.0 20.2 20.1 20.1 22.1 21.4 21.4 18.1 18.1 19.2

 

Table 3.3: The corresponding variance of the performance. 

Samples Trials FastICA JADE RobustICA Rapid 
ICA 

IK-
DIV 

CS-
DIV 

KL-
ICA 

ED-
DIV 

C-
DIV+ 

C-
DIV- 

CCS-
DIV2+ 

CCS-
DIV2- 

CCS-
DIV3+

1000 100 11.02 12.07 38.05 11.74 3.76 2.58 0.81 1.15 1.39 0.98 1.53 1.91 0.72 

1000 100 102.53 211.75 332.76 95.06 16.43 37.71 8.87 8.87 6.76 3.92 28.35 10.63 6.19 

1000 100 1.11 1.80 1.71 1.27 1.63 1.54 1.66 1.66 1.60 1.35 2.39 1.93 1.17 

1000 100 18.47 15.34 17.44 14.64 1.51 1.52 0.95 0.78 1.07 1.08 1.19 1.51 0.83 

1000 100 13.91 12.88 13.90 14.16 2.14 2.75 1.63 1.72 2.25 1.16 2.04 1.92 1.37 

 



 

A = [[0. 3			0.2
and three Laplacian distributions with

respectively. The sampled data of each source has samples

kurtosis of the three sources are 3.22, 3.08, and 2.57, respect

standard gradient descent method (

algorithms based on CCS-DIV with

0.06, KL-DIV γ = 0.17 as in [25

CCS–ICA with α = −1 (as well as the C

convergence speed, see Figure

demixed signals of all the algorithms. It is obvious that the CCS

better performance when compared to all others algorithms.

 

Figure 3.7: Comparison of SIRs (dB) of demixed two speeches and music signals by 
using different ICA algorithms in parametric BSS task.
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2				0.4]a			[0.4			0.8				0.7]a		[0.5			0.6				0.3]a		] 
and three Laplacian distributions with	τ6 = 1, τP = 0. 5	, and

. The sampled data of each source has samples		T = 1000. The values of the 

kurtosis of the three sources are 3.22, 3.08, and 2.57, respectively. In this task, the 

standard gradient descent method (3.19) is used to devise the parametrized ICA 

DIV with	γ = 0.7, CS-DIV with	γ = 0.3, E-DIV with

as in [25], and C-DIV with	γ = 0.008 as in [20

(as well as the C-ICA with	α = −1) attains the same 

Figure 3.12. Moreover, Figure 3.13 depicts the SIR of the 

demixed signals of all the algorithms. It is obvious that the CCS–ICA with α
better performance when compared to all others algorithms. 

Comparison of SIRs (dB) of demixed two speeches and music signals by 
using different ICA algorithms in parametric BSS task. 
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Figure 3.8: Comparison of learning curves of C-ICA, E-ICA, KL-ICA, and 
 CCS-ICA with α=1, and α=-1 in a two-source BSS task. 
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Table 3.4: Kurtosis Values of the different 

probability density functions that used in the ICA 

experiments 
 

Signals’ Notation Kurtosis Signals’ 

Notation 

Kurtosis 

 � −1.2116  �� −0.65419 
 � 2.9324  �� −0.33421 
 � −1.3995  �¥ −1.6935 
 ¥ 136.0108  �¦ −0.86239 
 ¦ 11.6452  �§ −0.60566 
 § 4.219  �¨ −0.75488 
 ¨ −1.2065  �© −0.65645 
 © 3.1965  �ª −0.81022 
 ª 3.4302  �^ −0.7692 
 �^ −1.3049  �� −0.27737 
 �� −1.6805  �� −0.56816 

 

Table 3.5:  The performance of the ICA 

algorithm based on the proposed divergence in 

terms of Amari error (multiplied by 100). Each 

entry averages over the corresponding number of 

trials. 
 

o 

Dimensions Samples « 

Trials 

^. �« 

CCS3 

at 

^. ^�« 

CCS3 

At 

^. ^^�« 
CCS3 

At 

� 

CCS3 

At 

2 1000 1024 4.6 2.9 2.1 2 

2000 1024 3.6 2.3 1.9 1.8 

4000 1024 2.8 1.9 1.6 1.4 

8000 1024 2.2 1.6 1.1 1.2 

4 1000 250 5.8 3.8 2.4 2.5 

2000 250 5 2.9 2 1.8 

4000 250 3.5 2.5 1.6 1.6 

8000 250 2.7 2.2 1.3 1.3 

8 1000 100 5.6 3.8 .5 3.2 

2000 100 3.7 3.1 2.2 3 

4000 100 3.1 2.6 2.2 2.8 

8000 100 3.0 2.2 1.9 1.9 

16 1000 25 20.5 15.8 8.6 5.5 

2000 25 12.6 10.1 7 5.1 

4000 25 8.6 8 4.5 4.2 

8000 25 5.8 3.9 1.9 2.9 

20 1000 10 27.7 15.1 13.7 8.9 

2000 10 22.8 11.3 12 7.2 

4000 10 15.6 9 7.2 5.3 

8000 10 9.8 6.3 3 2.3 
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Table 3.6: The computational load, in seconds, of 

the ICA algorithm based on the proposed divergence and 

other widely used ICA algorithms, each entry averages 

over the corresponding number of trials. 

o 

Dimensions Samples « Trials 

^. �« 

CCS3 

at ^. ^�« CCS3 At 

^. ^^�« 

CCS3 

At 	 
CCS3 

At 	 
 � 

2 1000 1024 0.4 2.8 29.8 28 

2000 1024 0.5 4.8 44.8 96.4 

4000 1024 0.8 8 77.9 342.9 

8000 1024 1.5 10.6 137 1073 

4 1000 250 1.8 24 218.1 237.9 

2000 250 4.3 39 344.8 630.3 

4000 250 5.9 47.9 593.4 2348.6 

8000 250 10.2 83.6 1105 7737.1 

8 1000 100 19.3 128.7 1053 1174 

2000 100 31.5 201.7 1743 3347 

4000 100 46.5 266.4 3109 11705 

8000 100 74.2 241.8 5534 42115 

16 1000 25 170.6 909.5 6282 4376.2 

2000 25 242.3 1171 9320 17918.3 

4000 25 305.5 1403 14717 58894.6 

8000 25 329.9 2297 25658 10483.4 

20 1000 10 339 1195.7 9605 11355.2 

2000 10 427.4 1724.2 14708 27504.8 

4000 10 607.6 2398.3 23634 52536.6 

8000 10 900 3754.5 42538 97312.1 

 

Table 3.7: The performance of the ICA algorithm based on the proposed 

divergence and other widely used ICA algorithms in terms of Amari error (multiplied 

by 100). Each entry averages over the corresponding number of trials. 
 

Dimensions Samples Trials JADE FastICA RapidICA RobustICA CS CDIV KLDIV CCS2 CCS3  

2 1000 512 5.6 7.3 6.1 7.2 2.5 2.2 2.3 2.1 2  

2000 512 5.1 5.9 5.5 6 1.9 1.9 1.9 1.9 1.8  

4000 512 3.1 4.1 3.5 4.3 1.6 1.6 1.6 1.6 1.4  

8000 512 2.4 2.6 2.5 2.6 1.4 1.4 1.4 1.4 1.1  

4 1000 200 8 9.7 9.1 9.8 3.1 3.1 3.1 3.1 2.5  

2000 200 5.4 7.3 6.5 7.2 2.9 2.9 2.9 2.9 1.8  

4000 200 4.2 4.2 4.1 4.3 1.4 1.4 1.4 1.4 1.6  

8000 200 2.1 2.7 2.5 2.7 1.5 1.5 1.5 1.5 1.2  

8 1000 75 10.5 10.3 9.6 11.2 4.6 4.6 4.6 4.6 3.2  

2000 75 8.1 8.0 7.6 8.2 3.9 3.9 3.9 3.9 3  

4000 75 5.7 4.1 4.4 3.9 2.3 2.3 2.3 2.3 2.8  

8000 75 2.7 3.1 3.0 3.2 2 2 2 2 1.9  

16 1000 15 8 9.7 9.1 9.8 8.1 8.1 8.1 8.1 5.5  

2000 15 5.4 7.3 6.5 7.2 6.9 6.9 6.9 6.9 5.1  

4000 15 4.2 4.2 4.1 4.3 5.6 5.6 5.6 5.6 4.2  

8000 15 2.1 2.7 2.5 2.7 3.6 3.6 3.6 3.6 2.9  

20 1000 5 22.3 21.1 20.1 26.2 14.1 11.1 14.1 11.1 8.9  

2000 5 15.7 15.6 15.2 16.2 9.3 13.3 10.3 8.3 7.2  

4000 5 7.8 7.2 7.1 7.2 7.5 7.6 6.4 6.7 5.3  

8000 5 4.5 4.1 3.9 4.0 4.7 5.3 4.6 4.4 2.3  



 
 

109 
 

3.6.3 Experiments on Speech and Music Signals 

Two experiments are presented in this section to evaluate the CCS–ICA 

algorithm. Both experiments are carried out involving speech and music signals under 

different conditions.  The source signals are two speech signals of different male speakers 

and a music signal. The first experiment is to separate three source signals from their 

mixtures given by X = AS where the 3 x 3 mixing matrix 

A = [[0.8			0.3			 − 0.3]a			[0.2		 − 0.8				0.7]a		[0.3			0.2				0.3]a		]. 
The three speech signals are sampled from the ICA ’99 conference BSS test sets 

at http://sound.media.mit.edu/ica-bench/ [24], [66] with an 8 kHz sampling rate. The non-

parametrized CCS–ICA algorithms (as well as the other algorithms) with α = 1	and	α =
−1 are applied to this task. The resulting waveforms are acquired and the signal to 

interference ratio (SIR) of each estimated source is calculated. We use the following to 

calculate the SIR:  

Given the source signals S = {s6, sP, … s�} and demixed signals	Y =
{y6, yP, … y�}, the SIR in decibels is calculated by  

SIR	(dB) = 10 log ∑ ‖ê1‖¸t15·
∑ ‖¿15ê1‖¸t15·                         (3.31) 

The summary results are depicted in Figure 3.14. In addition, Figure 3.14 shows 

the SIRs for the other algorithms, namely, JADE, Fast ICA, Robust ICA, KL-ICA and C-

ICA with α = 1	and	α = −1. As shown in Figure 3.14, the proposed CCS–ICA algorithm 

achieves significant improvements in terms of SIRs. As shown in the previous figures 

also, the proposed algorithm has consistency and obtains the best performance among the 

host of algorithms  
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Moreover, a second experiment is conducted to examine the comparative 

performance in the presence of additive noise. We now consider the model  x = As + v 

that contains the same source signals with additive noise and with a different mixing 

matrix 

A = [[0.8			0.3			 − 0.3]a			[0.2		 − 0.8				0.7]a		[0.3			0.2				0.3]a		] 
The noise v is an M x T vector with zero mean and σPI covariance matrix. In 

addition, it is independent from the source signals. Figure 3.15 shows the separated 

source signals in the noisy BSS model with SNR = 20 dB. In comparison, Fig. 3.16 

presents the SNRs of all the other algorithms. Clearly, the proposed algorithm has the 

best performance when compared to others even though its performance decreased in the 

noisy BSS model. Notably, the SNRs of JADE, Fast ICA and Robust ICA were very low 

as they rely on the criterion of non-Gaussianity, which is unreliable in the Gaussian-noise 

environment. In contrast,   C-ICA, KL-ICA, and the proposed algorithm, which are based 

on different mutual information measures, achieved reasonable results. We note that one 

can also conduct and use the CCS-DIV to recover the source signals from the convolutive 

mixtures in the frequency domain as in [3], [38].  



 

Figure 3.9: Comparison
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Comparison of SIRs (dB) of demixed two speeches and music signals 
by using different ICA algorithms in parametric BSS task-- random initial value.

 

Comparison of learning curves of C-ICA, E-ICA, KL
1 in a two-source BSS task with random initial value.
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Figure 3.11: Comparison of S
music signals by using different ICA algorithms in parametric BSS task.
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Comparison of SIRs (dB) of demixed two speeches and 
music signals by using different ICA algorithms in parametric BSS task.

 

Comparison of learning curves of C-ICA, E-ICA, 
ICA with α=1, and α=-1 in a three-source BSS task.
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Figure 3.13: Comparison of SIRs (dB) of demixed two speeches and 
music signals by using different ICA algorithms in instantaneous 

 

 

Figure 3.14: The original signals and de
CCS-ICA algorithm in instantaneous BSS task with additive Gaussian noise.
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Comparison of SIRs (dB) of demixed two speeches and 
music signals by using different ICA algorithms in instantaneous BSS task.

 

The original signals and de-mixed signals by using  
ICA algorithm in instantaneous BSS task with additive Gaussian noise.
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Figure 3.15: Comparison of SIRs (dB) of demixed two speeches and music 
signals by using different ICA algorithms in instantaneous BSS task with additive 
Gaussian noise. 
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demixing where the source signals are estimated by the Parzen Window density. The 

conver¬gence speed of the parameterized CCS–ICA procedure is evaluated and 

compared to other algorithms. The proposed CCS–ICA algorithms attained the highest 

SIR in separation of speech and music signals relative to other leading ICA-based 

algorithms. 
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4 Chapter 4 

A RobustICA-Based Algorithm for Blind 

Separation of Convolutive Mixtures 

1.0  We propose a frequency-domain method based on robust independent component 

analysis (RICA) to address the multichannel Blind Source Separation (BSS) problem of 

the convolutive speech mixtures in highly reverberant environments. We impose 

regularization processes to tackle the ill-conditioning problem of the covariance matrix 

and to mitigate the performance degradation in frequency domain methods. We apply an 

algorithm to separate the source signals in adverse conditions, i.e. high reverberation 

conditions when short observation signals are available. Furthermore, we study the 

impact of several parameters on the performance of separation, e.g. overlapping ratio and 

window type in the frequency domain method.  We also compare different techniques to 

solve the permutation ambiguity. Through simulations and real-world experiments, we 

verify the superiority of the presented algorithm among other BSS algorithms, i.e. 

recursive regularized ICA (RR-ICA), independent vector analysis (IVA) and others.  

4.1  Introduction  

Blind Source Separation (BSS) has a solid theoretical foundation and many 

potential applications. In fact, BSS has remained a very important topic of research and 
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development for a long time in many areas, such as biomedical engineering, image 

processing, communication systems, speech enhancement, remote sensing, etc. BSS 

techniques do not require any prior knowledge about a mixing matrix or source signals 

and do not require any training data [1], [2].  

Independent Component Analysis (ICA) is a powerful tool in BSS and 

Multichannel Blind Deconvolution (MBD). ICA is a key factor of BSS and unsupervised 

learning algorithms. ICA is related to Principle Component Analysis (PCA) and Factor 

Analysis (FA) in multivariate analysis and data mining.  This is especially the case when 

corresponding to second order methods in which the components or factors are in the 

form of a Gaussian distribution [1], [3], [6]. However, ICA is a statistical technique that 

includes higher order statistics (HOS), where the goal is to represent a set of random 

variables as a linear transformation of statistically independent components [1]. ICA 

methods usually assume certain properties on the sources or mixing system in order to 

exploit a separation criterion which imposes the same properties on their estimates.  

 In ICA of speech signals, several approaches have been proposed in a simple 

case of instantaneous linear mixtures [12-18]. However, the convolutive linear mixtures 

are considered more suitable in real-world applications [1-3]. Several convolutive ICA 

approaches have been proposed for time domain [3], [4], and frequency domain [35]-[42] 

methods. Also, refer to [3], [38] for more details of existing convolutive ICA methods.  

In speech signals, one can exploit the inherent non-stationary attribute of natural 

speech signals by using the second order statistics (SOS) method [2]. Mixing 

environments are considered to be stationary environments and even on a short period, 

one can exploit the Higher order statistics e.g. Joint Approximation Diagonalization 
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(JAD) problem as in [16], [17].  According to [42], [143], online BSS algorithms can be 

adapted in time domain under non-stationary conditions. The time domain approach 

suffers from slow convergence, lack of stability and high computational complexity.  

Alternatively, a block on-line frequency domain BSS algorithm is proposed in 

[38].  Then, one can apply the separation processes on individual blocks of the input data 

over time.    Furthermore, one can assume that the mixing environment is stationary on 

short time windows.  This means that the source signals don’t change their location 

during this interval of time. This requires choosing the right time frame to grantee that the 

separation algorithms are accurate enough with this given observed data within this 

window. For more details, refer to [133], where there is a recent ICA algorithm based on 

the time domain framework for the short mixtures.  

The recursive regularized ICA [130] algorithms   proposed allow estimating a 

large number of demixing matrix even with a short amount of data. Despite the good 

performance of the aforementioned algorithm, it is considered to be under a semi blind 

category since it is based on prior knowledge about the acoustic source signals, i.e.:  the 

acoustic propagation and the spectral characteristic of the source signals. In [37], [50], 

they studied the relationship between the number of frames of the STFT analysis and the 

BSS algorithms based on frequency framework. They carry out that the BSS algorithms 

in frequency domain are significantly affected by the number of the mixing matrices. 

Also in [37], [50], they proposed the method that applying the ICA adaptation to a group 

of frequencies in order to leave the size of the STFT large enough to achieve accurate 

separation processes. However, this method assumes that the acoustic propagation 

approximated is based on an anechoic model, i.e.: as the DRR decreases. However, there 
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are several drawbacks for separating the acoustic sources based on frequency domain 

methods [130]. First of all, when we have a high reverberation environment, this enforces 

us to increase the number of demixing matrices to ensure an efficient estimation for the 

source signals. However, this requirement is not easy to satisfy especially if we have 

short observation signals of the source signals. Therefore, inspired by the works of V. 

Zarzoso,P. Comon [11], this chapter considers several challenges for the convolutive 

mixtures in the frequency domain in order to carry out the RobustICA based algorithm in 

frequency domain. We can summarize these challenges as follows. 

• Increasing the immunity of the BSS algorithm towards the outlets, e.g. 

signals’ length, additive noise, reverberation time and source moving etc. 

• Implementing should be optimized to be suitable for the real-time 

operation [42] in order to make the real-time DSP processor handle the 

computational cost without interruptions or distortions. 

• Effectively treating the scaling and permutation problems in the frequency 

domain. 

• Reducing the computational complexity of the ICA algorithms based on 

the frequency framework. 

• Controlling the accuracy of the ICA algorithm especially when short 

mixtures are available and the demixing matrices are not constrained by 

any anechoic model. 

 

The remainder of the chapter is organized as follows: Section II, a brief 

description of convolutive mixture and problem statement. Section III reviews the 

Recursively Regularized ICA. Section IV presents the RobustICA-Based method in 
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frequency domain. In Section IV, we perform solving the ambiguities in ICA algorithm 

based on frequency domain. The comparative experiments results and conclusions are 

given in Section V and Section VI, respectively. 

4.2 Convolutive Mixtures  

2.0  A convolutive mixture can be considered as a natural extension of the 

instantaneous BSS problem. Assume an m-dimensional vector of received discrete time 

signals x(k) = [x6(k), xP(k), … , x*(k)]a at time k is to be produced from an n-

dimensional vector of source signals	s(k) = [s6(k), sP(k), … , s*(k)]a, where	m ≥ n, 

by using a stable mixture model [2]: 

3.0  x(k) = ∑ H©s(k − p) = H© ∗ s(k),				ý©75ý  

4.0  with	 ∑ ‖H©‖ ≤ ∞ý5ý 	     (4.1) 

5.0  Where ∗ represents the linear convolution operator and H©is an (m	x	n) matrix 

of mixing coefficients at time-lag	p. 

4.2.1 Problem Definition 

6.0  Assume that elements h¬«© denote the coefficients of the Finite Impulse 

Response (FIR) filter	H© , and L is the maximum unknown channel length. Then, the 

noise-free convolutive model is written as follows: 

x(k) = ∑ H©s(k − p)		456©78     (4.2) 

7.0  Thus, one can find an approximate inverse channel matrix W© in order to 

recover the source signals s(k) = [s6(k), sP(k), … , s*(k)]a such that  

y(k) = W­ ∗ x(k) = ∑ W­x(k − q) = s�(k)	®56­758    (4.3) 



 
 

121 
 

where Q is the length of the inverse of the channel impulse response.  However, there 

are two approaches to solve this problem and recover the source signals. In time 

domain approaches, they have several general drawbacks such as Q should be 

selected at least equal to the unknown true channel	L. Therefore, for a long mixing 

filter, which means long transfer functions, the computation will be too expensive [2], 

[3].  Also, using the IIR filter instead of long FIR filter to overcome this problem 

really suffers from the instability and will need to invert the non-minimum phase 

filters [2], [3], [133].  Moreover, time approaches are sensitive to channel order 

mismatch [3]. However, time domain methods are suitable and very efficient for 

small mixing filters such as in communication channel [2], [36]. With all these 

limitations, we focus our study on frequency approaches to solve the cocktail party 

problem. The main advantage of a frequency domain BSS approach is the ability to 

apply the set of any instantaneous ICA algorithms to solve the convolutive BSS 

problem. On other hand, the main challenge of BSS in the frequency domain is to 

deal with the permutation and scaling ambiguities, see [3], [38] for a recent survey. 

However, one can re-map the aforementioned BSS models into frequency domain by 

applying the Discrete Fourier Transform (DFT) on the observed signals x(k) in order 

to transform it to the instantaneous mixtures problem as follows: 

x(k) = H ∗ s(t)		x(q,w) ≈ H(w)s(q,w)        (4.3) 

where  w is a frequency index, q is a frame index, s(q,w) = [s6(q,w), … ,

s*(q,w)]a and x(q,w) = [x6(q,w), … , x�(q,w)]a. 

  In the previous equation, it is considered to be valid only for periodic signals	s(t). 
However, it is approximately valid if the time-convolution is circular. Therefore, to 
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ensure that the time convolution is circular [1], it requires making the Fourier 

Transform length significantly larger than the maximum length of the mixing 

channels L [6]. In [38], [130], they imposed the spectral smoothing approach in order 

to mitigate the circularity effect in frequency domain BSS methods. In practice, to 

avoid the convergence into local minima during the separation processes, one can 

separate the observed signal at each frequency bins. Thus, the sampled observed 

signals xê(t) are sampled at the discrete time instant	nê using the sampling 

frequencyfê. And then transforming it into time-frequency domain xê(q,w) using the 

short time frequency transform (STFT) applied to T overlapped samples of the 

observed signals. However, one can express the time-frequency of the nth sensor at t 

frame as follows  

xê(q,w) = ∑ xê(nê)win 3��5­.ê|«�È�� 6�� e5¬P�Ê¯��� 			∀	w = È
a fê	, q ∈ 	 [0, … , T − 1]	   (4.4) 

Where win(∙)denotes the windowing function, here, we usually use the Hanning 

window since it is typically for acoustic signals. The Hanning window [6] is given by  

win(nê) = 6
P F1 + cos	 3P���a 6G     (4.6) 

In a real-world scenario, we use the reverberation time	T�8	to approximately 

define the length of the impulse response, since the impulse response functions h(t) 
are theoretically being infinite.   The reverberation time 	T�8	 is the required time that 

reduces the energy of sounds into 60	dB where the sound signal becomes no longer 

active or “dies away”. Therefore, the convolutive ICA model can be approximated 

into a series of the instantaneous ICA model as follows: 

x(q,w) = H(w)s(q,w)      (4.7) 
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Where w represents the frequency bin, t denotes the time domain frame, e.g. in a 

short time frequency transform, x(q,w) is a column vector of the observed signals in 

frequency domain, s(q,w) is a column vector of the original source signals and H(w) 
is an M	x	N mixing matrix in frequency domain.  

For the sake of simplicity: let us assume that the number of source signals N 

equals to the number of the observed signals	M. Thus, by applying the ICA algorithm 

to the x(q,w) at each frequency bins, one can recover the estimated source signals as 

following  

y(q,w) = W(w)x(q,w)	     (4.8) 

Where W(w) is the demixing matrix at w frequency bin. Also, due to the well-known 

symmetry property of the Fourier Transform, one can just find demixing matrices 

(W(w)) a half of the frequency bins		w ∈ (0,… , aP), and then using the symmetry 

property to find the others. 

4.1  Recursively Regularized ICA 

The recursive regularized ICA [130] algorithms are proposed to allow estimating 

a large number of demixing matrix even with a short amount of data. Although this 

algorithm performed well, it is considered to be under a semi blind category since it is 

based on a prior knowledge about the acoustic source signals i.e. the acoustic 

propagation and the spectral characteristic of the source signals. 

Naturally, BSS assumes that the source signals are usually overlapping in time. In 

acoustic signals, one can assume that the source signals have a sparse in time-

frequency domain which means that at each time-frequency point there is one 
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dominant energy source signal. Also, acoustic source signals have usually temporal 

continuity in the frequency domain.  

First of all, let’s recall the estimated source signals °(�, ×) 
°(�, ×) = (�)�(�, ×)     (4.9) 

Thus, the update law of the mixing matrix based on the natural gradient optimization 

[2] as follows: 

°(�, ×) = [�(�)]56�(�, ×)      (4.10) 

∆�(�) ↔ �(�)(� − Ø[²(°(�, ×))°(�, ×)³])    (4.11) 

Then  

� %Ù(�) = �(�) + ´∆�(�)     (4.12) 

During the updating processes, we updated all coefficients of the mixing matrix 

H�ûÊ(t) due to the gradient based on the Kullback Laibur divergenceg =
E[φ(y(t,w))y(t,w)�].  

According to [72], [130], weighting the instantaneous gradient will improve the 

estimation technique in previous adaptation processes. Therefore, the developed 

gradient expectation is given by [130] as follows: 

∆�µ�(¶) = �µ�(¶) æ� − Øì²É°(�, ×)Í°(�, ×)³ïç 
∆�µ�(¶) = Øì�µ�(¶)(� − ²(°(�, ×))°(�, ×)³)ï 

≅ ∑ ℂ(;, ×)⨀�µ�(¶)(� − ²(°(�, ×))°(�, ×)³)º     (4.13) 

Where ⨀ is the Hadamard product (i.e., element-wise), and ℂ(;, ×) is a weight 

matrix constructed as  

ℂ(;, ×) = [»6(;, ×),»P(;, ×),… ,»¼(;, ×)]                        (4.14) 
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And the generic weighting column vector »�(;, ×) is defined as  

»�(;, ×) = }½(º,Ù)	¼¾ [1	, 1, … , 1]r     (4.15) 

Where ¿À is the number of time frames on which the gradient is averaged and 

z�(;, ×) is a weight. 

4.2 The presented method Based on RobustICA framework 

8.0  In this section, a new strategy is proposed, based on the RobustICA method of the 

kurtosis framework [11] and [38]. Here, one needs to first recall the time-frequency 

representation of the observed vector equation (2), 

x(q,w) = H(w)s(q,w)        (4.16) 

9.0  The aim of this study is to estimate the demixing matrix W(w)	from the observed 

vector x(q,w) under the assumption that the impulse response of all mixing filters is 

assumed constant during the recording. The estimated source vector is given as the 

following at each frequency bin   

°(;, ×) = (×)�(;, ×)     (4.17) 

4.4.1 Step1: Preprocessing (Data Whitening) 

In the preprocessing step, the demixing matrix W(w)	are detected up to a unitary 

matrix U(w)	using the second order statistic (SOS). This step was used to reduce the 

noise and to eliminate redundancy in the data at each frequency bin. The KxK 

covariance matrix (R) of the noise free observed signals can be expressed by 

Â(;, ×) = E[�(;, ×)�(;, ×)�]						∀	× = 0,… , rP   (4.18) 

By substituting �(;, ×) in (21), one gets  R as follows 
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R(;, ×) = �(×)E[�(;, ×)�(;, ×)�]�(×)a = �(×)�(×)a (4.19) 

By imposing the Tikhonov regularization techniques [76] to avoid the ill-posed 

problem, where it is well-known that the regularization is effective way to avoid the 

ill-conditioned matrix, the equation (4.19) becomes as follows 

R(;, ×) + cI = �(×)�(×)a    (4.20) 

Where I	is an K	x	K identity matrix, and z = m. ÉtrÉR(;, ×)Í + λ*ù�Í, it is 

regularization parameter with m is a positive constant and λ*ù� is a maximum 

eigenvalue of the estimation covariance matrix	R(;, ×). Note that the regularization 

method here just adds energy constraint to boosting the covariance matrix to be a 

well-conditioned matrix. Therefore, the R(q,w) + cI can be decomposed as 

R(q,w) + cI = V(w)Λ(w)Va(w)                                       (4.21) 

where V(w)	is a KxK matrix satisfying 

V(w)V�(w) = V�(w)V(w) = I9                                       (4.22) 

And Λ(w) is an KxK diagonal matrix. So, from (22), the KxK matrix H(w) will be 

H(w) = V(w)Λ(w)5·¸U�(w)     (4.23) 

where U(w) is a KxK full rank unitary matrix and 	UU� = I9. 

However, the whitening step obtained matrix V(w) so that the KxT whitened data 

vector Z(q,w) has covariance of identity matrix,	RDD(q,w) = I9, which can be 

obtained as follows: 

Z(q,w) = Λ5·¸Vax(q,w)                                  (4.24) 

Z(q,w) = U�(w)s(q,w)                              (4.25) 

The estimated source signals can be recovered with a linear Zero-Forcing (ZF) 

equalizer. Then the estimated KxT source vector  
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y(q,w) = U(w)Z(q,w)                                    (4.26) 

After the preprocessing step, the estimation of the source signals y(q,w)	reduces to 

determining the KxK unitary matrix U(w) (rotation matrix). 

4.4.2 Step 2: Determining the rotation matrix (unitary matrix)	�(�). 

One way of finding the rotational matrix U(w) is by maximizing the normalized 

fourth-order marginal cumulant (Kurtosis contrast) of the whitened data	Z in (4.25). 

To estimate U(w)	in (4.26), this chapter exploits the statistical independence of 

equalized source vector. More precisely, the unitary matrix U(w) will be estimated by 

utilizing the independent property of estimated source vector at each frequency bin 

(y(q,w)	)	in the normalized fourth-order marginal cumulant of whitened data Z(q,w) 
as follows: 

K(q,w) = ¾ì|¿(­,Ê)|Àï5P¾¸ì|¿(­,Ê)|¸ï5Ö¾ì¿(­,Ê)¸ïÖ¸
¾¸[|¿(­,Ê)|¸]      (4.27) 

Where E[∙] represents the expectation operator. Based on the deflation approach to 

ICA [97], one can extract the one of the estimated source signal as follows 

y«(q,w) = u«�(w)	x(q,w)    (4.28) 

Where (∙)³ represent the conjugate-transpose operator,Ã�(×)  is the ith column 

vector of the demixing matrix Ä(×) and °�(;, ×) is ith source signal at each wth 

frequency bin and qth frame time. According to [2], [3], the column vector Ã�(×) of the 

demixing matrix Ä(×) can be estimated for all users due to the batch adaptation by a 

gradient decent method as follows 

Ã�xÓ6 = Ã�x − ´∆��x      (4.29) 
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Where Å denotes the iteration index, Ã�x is the ith column vector of the demixing 

matrix Ä(×) at Å�ℎ iteration and ∆��x is the gradient of the contrast measure that updates 

the demixing vector Ã�x in the demixing matrix Ä(×). Gradient function depends on the 

cost function that ICA would maximize /minimizes in order to extract the source signal. 

Herein, this chapter refers to use the ICA techniques based on the kurtosis criterion which 

is given in (4.27) as follows: 

Ç(;, ×) = Èì|É(º,Ù)|Àï5PÈ¸ì|É(º,Ù)|¸ï5ÖÈìÉ(º,Ù)¸ïÖ¸È¸[|É(º,Ù)|¸]    (4.30) 

Owning the RobustICA’s search-method of the kurtosis criterion in (4.30) in 

order to choose the optimal step size as follows: 

μ¤©È = arg 					Ê		*ù�|KÉ°(;, ×) + μg(;, ×)Í|     (4.31) 

Where ( is the gradient of Kurtosis contrast	Ç(. ). One can easily choose the 

optimal step size  μ¤©È based on one of the algebraic methods instead of using the exact 

line search as in [8], [28] to avoid the intensive computation and other limitations as in 

[11]. Therefore, it is easy to find the global optimum step size μ¤©È for the criteria that 

can be expressed as polynomial function of  μ due to its roots, e.g. the criteria kurtosis 

[11-16], the constant modulus [13], [82] and the constant power [2]. 

 Therefore, RobustICA performs an optimal step-size of estimating ith source 

signal, based on optimization, for lth iteration, wth each frequency bin, and ;th frame as 

follows:  

• Step 1) An initial value for the Wight vector 	u(w) 
• Step 2) Compute the optimal step size polynomial coefficients; for 

Kurtosis contrast, the optimal step size polynomial is given by  
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p(u(w)) = ∑ a,μ,Â,78                               (4.32) 

where the coefficients a, can be obtained at each iteration by the observed signal 

block and the current values of w and g. Details can be found in [7], [11]. 

• Step 3) Extract the optimal step size polynomial root	μ,. The root can be 

obtained by using the Ferrari’s formula as in [134]. 

• Step 4) Select the optimal step size polynomial root μ, as follows 

μ¤©È = arg 					Ê		*ù�|K 3y«)(q,w) + μg«)	(q,w)6 |    (4.33) 

• Step 5) Find the updated weighed vector  

u«)Ó6 = u«) − μ¤©Èg«)     (4.34) 

where g«) is the ith gradient of Kurtosis contrast	K(. ) at lth 

iteration. 

• Step 6) Normalize and update the weight vector 

u«)Ó6 = ÆñrÚ·
üÆñrÚ·ü                                         (4.35) 

Where ‖u‖ is a norm of		u. 

• Step 7) Go back to step 2 until the convergence. 

To prevent locking onto a previous extracted source, or when the old and new 

vectors w are in the same direction, the learning converges and their absolute dot-product 

value reaches close to 1. Thus, owning the deflation method proposed in [97], avoids 

different vectors from converging at the same maxima. However, each vector of 	U =
{u6, uP, … , u�} needs to be orthogonalized before each iteration. Based on the Gram-

Schmidt orthogonalization, the deflation scheme estimates each independent component 
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at each iteration step. Gram-Schmidt orthogonalization of (i + 1)th component can be 

expressed as follows 

u«Ó6)Ó6 = u«Ó6) − ∑ 3u«Ó6) au¬)69¬76 u¬)                 (4.36) 

u«Ó6)Ó6 = ÆñÚ·rÚ·
üÆñÚ·rÚ·ü                                    (4.37) 

where a new weight vector u«Ó6 is obtained by subtracting the vector projected 

from the old weight vector.  

The following steps summarize the presented algorithm procedure: 

� Start 

� Perform the time-frequency representation as in (4.4). 

� For each frequency bin  × = 1,… , rP 

� Pre-processing of the observed data �(�, ×)	 and imposing the Tikhonov 

regularization parameter to avoid the ill-conditioning problem of the covariance 

matrix and to mitigate the performance degradation.  

w = ". ��(Ø[�(�, ×)�³(�, ×)])    (4.38) 

where " is a positive constant and ��(∙) represent the trace of estimation    

covariance matrix of the observation signals. 

� Initialize Ç	�	Ç matrix   equals identify matrix	�. Where K is the number of 

users. 

� For each user ¶ = 1,… ,Ç 

� Initialize ×y column vector of the  demixing matrix    

� While  

� Evaluate °(�, ×) in (4.13)  



 
 

131 
 

� Select the optimal step size polynomial root ´y in (4.14) 

� update weighed vector in (4.33) 

� Do the orthogonalization and normalization in (4.36) and (4.37), respectively 

� Find kth users in (4.10). 

°�(;, ×) = Ã�³(×)	Ô(;, ×)    (4.39) 

� Do deflation by subtracting the estimated kth source contribution to 

the	Ô(;, ×)	as follows [97]: 

Ô�Ó6(;, ×) = Ô�(;, ×) − ℎ ∗ °�(;, ×)   (4.40) 

Where	ℎ is the symbol direction estimated via least squares, is given by 

ℎ = ËÌ(º,Ù).ÉÌÍ(º,Ù)ÉÌ(º,Ù).ÉÌÍ(º,Ù)      (4.41) 

� Check the convergence point. if so, End while loop, otherwise, go back until the 

convergence. 

� Save Ãy in the Ä(×); 
� End for loop	¶. 
� Save the demixing matrix Ä(×)  
� End × loop  

4.5 Scaling and Permutation Ambiguities  

6.0  Assume Ä(×) is the unitary matrix that computed at each bin, however, the least 

square estimation of the mixing matrix �(×)  is given by  

�%X(×) = �(;, ×)°å(;, ×)(°(;, ×)°å(;, ×))Ó    (4.42) 

7.0  Where  

°(;, ×) = Ä(×)�(;, ×)    (4.43) 
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8.0  However, one can express the estimated mixing matrix �%X(×)  in term of the 

perfect mixing matrix �(×) as follows 

�%X(×) = �(×)"56(×)Γ56(×)      (4.44) 

9.0  Where	D(×) is an unknown diagonal matrix and Γ(×) is an unknown 

permutation matrix. Therefore, we have to estimate D(×) and Γ(×) matrices to solve the 

scaling and permutation ambiguities. 

4.5.1 Estimation the diagonal matrix 
(�)  

Several methods to compensate the scale ambiguity have been proposed in the 

literature. Thus, we choose to estimate the diagonal matrix D(×) using the minimal 

distortion principle [3], [38], [129]. The D(×) is given in [3] as  

D(×) = {�'([Î�%X(×)]     (4.45) 

D(×) = {�'([Î�(;, ×)°å(;, ×)(°(;, ×)°å(;, ×))Ó]  (4.46) 

Where Î	 ∈ 	ℝ 	l	� is a matrix which has all its entries are1 "Ò ; where m is the 

number of observations whereas, ! is the number of sources, and {�'([»]  returns a 

matrix  » that contains the diagonal elements of matrix » and sets the other non-diagonal 

elements of matrix » zeros. The interpretation of (4.46), in a sense of perfect separation, 

is that each estimated source averages along the sensors in the sense of all other sources 

have turned off. In other words, the Minimal Distortion Principle assumes that the nth 

source is scaled with respect to the image at the nth microphone [129].  Therefore, the 

rescaled source signals can be expressed as follows: 

°Ï%#}$x%&(;, ×) ≅ D(×)�(;, ×)    (4.47) 

°Ï%#}$x%&(;, ×) ≅ 	{�'([Î�(;, ×)°å(;, ×)(°(;, ×)°å(;, ×))Ó]�(;, ×) (4.48) 
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4.5.2 Estimation the permutation matrix �(�)	 

In this subsection, despite the fact that it estimates the permutation matrix	Γ(×)  
proposed in several current works in the literature, it is still considered a very challenging 

problem that needs to be addressed. Assume that we have  ! sources signals which are 

presented in BSS problem; then, there are ! factorial times the possible permutations at 

each bin, which yields a complex combinational problem.  

Mentioned previously, there are several techniques used to solve the permutation 

problem in the literature [3]. In this chapter, we will review and evaluate them in terms of 

computational complexity and performance.  

One can divide these methods into two main solution groups to solve the 

permutation ambiguity in frequency domain as follows: 

1. Group based on the geometric information such as Time Direction of Arrivals 

(TDOA) and Direction of Arrivals (DOA) [3], [37], [38], [50].  

2. Group based on the clustering-based techniques [64], [67], [69], [70]. 

Many of these techniques are based on the geometric information, such as 

estimation of the direction of arrival (DOA) and Time difference of Arrival (TDOA) as in 

[50].  Other techniques depend on the coherence of the un-mixing filter coefficients. In 

other words, these techniques take advantage of some prior knowledge about mixing 

filters and restrict the mixing matrix �(�)  to be continuous in frequency domain [130]. 

Furthermore, in [62], Parra imposes smoothness to the de-mixing filter values in the 

frequency domain.  

Also, a restriction is made with the frequency domain update rule to be associated 

with the limited length filter in the time domain. Such a restriction may not be considered 
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sophisticated especially in a case of reverberant environment since it is necessary to have 

a long length filter to cover all reverberations.  

Although it can be avoided by choosing a large frame size, it still causes more 

overall complexity, especially, when the short mixtures are available. In terms of the 

properties of speech, there are other categories which have been proposed in literature, to 

estimate the permutation matrix and make the spectral alignment.  

The most common is based on the inter-frequency correlation of speech envelopes 

[61], [65]. The inter-frequency correlation technique exploits the nature of speech 

production, where it’s known that all spectral components of speech signal increase as the 

talker speaks louder. In that sense, several weighted techniques and criteria have been 

proposed to impose the frequency-coupling between the adjacent frequency bins, for 

more details [60], [61], [65]. Although these techniques perform well in the simulations, 

they are not sophisticated when they are applied to a real recoding room. They suffer 

from the propagation error or delays. For example, if an error occurs at a certain 

frequency bin it may increase the possibility to occur again at the following frequency 

bins.  

Therefore, in the literature [3], [38], they avoid propagation error by estimating a 

frequency independent reference profile, which is called centroid, due to using a 

clustering based method for each separated source, and then structuring the ! frequency 

dependent profiles such that they are all matched with a different frequency independent 

reference profile at each frequency bin.      

The main steps of the clustering-based techniques are as follows: 



 
 

135 
 

1) Define the quantities that are used in the clustering, such as signal envelopes of 

the source profiles and the log-power of the source profiles etc.  

2) Choose the measure that is use to determine the matching level between the 

centroids and the profiles such as correlation and distance etc.  

3) Choose the cluster technique.  

In [69], the profile Ψ�(;, ×) of a separated signal °� is chosen to be the envelope 

of the separated source �� where   Ψ�(;, ×) = |°�(;, ×)|. In [70], they are chosen for the 

profile Ψ�(;, ×) of a separated signal °� to be a certain dominance measure. Whereas, in 

[67], the profile Ψ�(;, ×) of a separated signal °� is defined to be its centered log-power 

spectral density where the log-power profile is given as follows: 

	Ψ�(;, ×) = Å`(ì �,:(×)Âl(;, ×) �,:³(×)ï    (4.49) 

In clustering based approaches, the length of the profiles T* is also an important 

parameter in terms of accuracy; especially for short signals. Practically, we are going to 

set up the profiles for the overlapping frames over the whole signal. Once we get the 

profiles of the separated signals, then, we compute the centroids in order to perform the 

clustering.  

The clustering based techniques is essentially based on the assumption that 

profiles coming from the same source at different frequency bins still have more match 

level than those coming from other sources. 

Actually, the most common methods to associate each source profile to a centroid 

at each frequency bin are based on; 1) maximize correlation measures [69], [70]; 2) 

Minimize distance measures across the ! factorial times of the possible permutations at 

each frequency bin [67]. However, they employ the iterative techniques to update the 



 
 

136 
 

centroids and the permutation matrices. In other words, they update the centroids first, 

and then they permute the source profiles to each desired centroid and match them 

together using one of the two previous measures, i.e. distance [67] or correlation in [69] 

and [70]). 

In spite of the fact that the aforementioned iterative methods perform well, they 

tend to be significantly more expensive in terms of cost and computational complexity 

since they have the ! factorial times of the possible permutations at each frequency bin. 

To avoid this drawback in the aforementioned iterative methods in [60], Nion 

proposes a more efficient modification of the clustering strategy which is updated the 

whole permutation matrices and centroids simultaneously. In other words, the update of 

the centroids and permutation matrices are not interleaved. Thus, their modification has 

improved these iterative methods in terms of computational complexity. Their methods 

can be summarized as follows: 

Step 1. Determine the centroids and Compute them as following: 

Consider the !	�	|* matrix ℱ(×) that is structured from the ! profiles	Ψ�(×),
∀		� = 1, … , !. Furthermore, one can extend the !	�	|* matrix �(×) to the �!	�	|* matrix 

�(×) by concatenating the matrices	ℱ(×)	∀		× = 1,… ,�. In order to enforce the �! 

profile points in matrix �(×) varying smoothly with time, we have to encounter the 

computation of the profiles for overlapping frames. Hereafter, we just need to classify 

these  �! profile points into an ! clusters due to apply the k-mean algorithm on the 

�!	�	|* matrix	�(×) to carry out a frequency independent !	�	|* centroid matrix	� =

["6r , "Pr , … ," r]r. The centroid matrix is structured by summing all the points within a 

cluster, which have attained a minimum distance regarding to the centroid cluster.  
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Furthermore, the k-means algorithm also gives the list of indices that attains each 

one of !	clusters. Thus, our simulation shows that almost about � points are assigned to 

each cluster, which implies that the aforementioned property of the speech is valid. 

Therefore, we only need to exploit the frequency independent !	�	|* centroid matrix � to 

do the computation processes and mitigate the computational complexity.  

 

Step 2. Estimating the permutation matrices  

In previous step, we reduced the computational processes to finding the !	�	! 

permutation matrix Γ(×) subject to �(×)Γ(×) match the frequency independent !	�	|* 
centroid matrix � at each frequency bin. Therefore, one can choose to minimize the 

distance that is given in [67] as follows 

minÒ(Ù)‖� − �(×)Γ(×)‖,P 	∀	× = 1, 2, …�	   (4.50) 

Or choosing the correlation criteria that is given by [69], [70] as follows 

maxÒ(Ù)∑ Φ〈"�, [�(×)Γ(×)]:,�	〉 �76 	∀	× = 1, 2, …�			 (4.51) 

Where Φ〈∙	,∙〉 is the correlation coefficient. 

In terms of performance, the first group generally does well and better than the 

second group, especially at the small data sample available. But it is not optimal in 

practical sense, since we don’t usually have geometric information about the real 

environment conditions. In that sense, the second group performed better than first group 

especially if we have a large sample set of data, because they are based on the clustering-

based techniques i.e.: correlation, distance, etc. and they are more robust to the real world 

scenarios. For more details, refers to [3] [38]. 
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4.6 Experiments Results 

In this section, we examine the performance of the RobustICA-based algorithm 

developed in this chapter. The time-frequency representation of the observed data is 

computed as explained in section due to the Short-Time-Fourier-Transform. Then, for 

each frequency bin, we find the demixing matrix as we will present in this section. Then, 

we will solve the scale and permutation ambiguities based on the aforementioned 

techniques. 

 However, we divided this section into two subsections. Firstly, we illustrate the 

performance of the RobustICA-based algorithm with different permutation methods in 

the literature [3], [38]. Also, we study the effect of the type of the windows on the 

performance of the presented algorithm as well as the effect of overlapping parameter.  

 

 

 

 

Figure 4.1: configuration of the two experimental setups that were conducted by  
Francesco Nesta1 in [130], a) room is characterized for Test1, b) class-room is 
 characterized for Test2 
 

Secondly, we provide the performance of the presented algorithm in two real-

world scenarios that are generated in adverse conditions by, in [130], and compare it with 
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others state-of-the-arts in the [130], [36], and [62] and [67], labeled as “RR-ICA”, “IVA”, 

“Parra”, “Pham”, respectively. In this chapter, we evaluate the performance of the 

presented algorithm due to the BSS_EVAL toolbox, which is proposed in [126], [127]. 

We use time-invariant filters of 1024 taps to represent the signal to interference ratio 

(SIR) and source to distortion ratio (SDR).  

4.6.1 Section 1 

In this subsection, we study the computational complexity and the performance of 

the presented algorithm based on several following criteria to solve the scale and 

permutation ambiguities in the frequency domain BSS problem. Let’s define these 

criteria as following:  

Method1 is the RobustICA-based algorithm with clustering of envelope profiles 

with a distance measure iterative procedure [8]. 

Method2 is the RobustICA-based algorithm with clustering of log-power -profiles 

with a correlation measure iterative procedure [21]. 

Method3 is the RobustICA-based algorithm with clustering of envelope profiles 

with a distance measure kmeans procedure [8], [60]. 

Method4 is the RobustICA-based algorithm with clustering of log-power profiles 

with a correlation measure kmeans procedure [21], [60]. 

Method5 is the RobustICA-based algorithm with clustering of dominance-profiles 

with a correlation measure iterative procedure [22]. 

Method6 is the RobustICA-based algorithm with clustering of dominance-profiles 

with a correlation measure iterative kmeans procedure [22], [60]. 
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Figure 4.2: Results obtained in Test1 experiments. The SIR performance of  
the presented algorithm with various permutation solvers 
 

In this section, we have used real world recordings, resulting from the 

experiments were conducted in [130] named: Test1. We would like to thank the authors 

who provided these recordings on their website “http://bssnesta.webatu.com/testhscma.html”. 

The two sources were recorded at �# = 16	¶�Ô with two microphones spaced by 

{ = 0.02	" apart to avoid the spatial aliasing. The chosen room was characterized by a 

moderate reverberant time of 160 ms. The room had dimensions of (3.5m x 5.1m x 2.6m) 

as shown in Figure 4.1. The signal duration was fixed to be 9 sec.  
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Figure 4.3: Results obtained in Test1 experiments. The SDR performance  
of the presented algorithm with various permutation solvers 
 

In Figure 4.2 and Figure 4.3, we show the performance of RobustICA-based 

algorithm with various aforementioned techniques of permutation solvers in terms of the 

SIR and SDR, respectively.  In comparison, we notice that the dominance-profiles 

provide more robustness in terms of the signal’s length, although the envelope profiles 

are more sensitive to the signal’s length than the log-power profiles. Moreover, the 

dominance-profiles approach with the iterative procedure has the same performance as 

with the kmean procedure. Also, Figure 4.4 shows the corresponding CPU time of each 

permutation method that need to solve the permutation ambiguity.  
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Figure 4.4: Corresponding CPU time for each method. 

Based on these observations, we will use the dominance-profiles approach with 

the iterative procedure after the RobustICA-based algorithm in the rest of these 

experiments. In Figure 4.5, we illustrate the impact of the window’s types on the 

performance of the proposed algorithm in terms of SIR and SDR respectively. And, we 

test the performance of the presented algorithm versus the overlapping parameter as it 

shown in Figure 4.6.The best performance of the presented algorithm was achieved 

during the certain range of the overlapping percentage. Therefore, based on these results, 

we use the overlapping parameters to be 0.65 with Hamming window type. 
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Figure 4.5: Figure 4.5: Results obtained in Test2 experiments. The SIR performance 
 of the presented algorithm with various window types 
 

 

 

 

Figure 4.6: Results obtained in Test2 experiments. The SIR performance of the  
presented algorithm with various overlap ratios 
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4.6.2 Section 2 

In this section, we perform the separation of the two mixture observations what 

consists of two sources. We have used the two tests “Test1 and Test2” of the real world 

recordings, resulting from the experiments were conducted in [130], see fig.23. Test2 

uses the real world recordings of adverse reverberant conditions as in fig 23. The room 

is a reverberant class-room with dimensions 4.75 m Length x 5.92 m Width x 4.5 m 

Height. The reverberation time is around 700 mile second	|�8 = 700"�. The 

performance is also averaged over ten random pairs of sources. The signal duration was 

fixed to be 9 sec. After we got the demixing matrix   for each frequency bins, we used 

the Inverse Fourier Transform to obtain the mixing matrix in the time domain.  

� The independent vector analysis IVA [17] used with step size 0.1 and 

number of iterations is 1000. 

� Parra’s method [38], used with number of iterations is 1000. 

� Pham’s algorithm [12] and [20]. Used with FFT overlapping equals 75% 

and a window size equal to 5.  

� RR-ICA algorithm reported in [130]. 

Figures 4.7 & 4.8 and 4.9 & 4.10, shows the summary analysis of the presented 

algorithm versus other algorithms presented in [130] for Test1 and Test2 configurations, 

respectively. These graphs are reported the best performance of each algorithm over the 

FFT size.  Obviously, the RobustICA-based algorithm are outperforms the others 

algorithms for any signal length in terms of SIR and SDR.  

Moreover, in Figure 4.11, we illustrate the impact of the FFT length on the 

performance of the proposed algorithm in terms of SIR. Clearly, the presented algorithm 
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performs well especially during reasonable FFT length in regards to other corresponding 

algorithms as it shown in Figure 4.11. 

Based on these results, one can show that the presented algorithm is stable in 

terms of the high reverberation environment and variations of the observations’ 

parameters. Furthermore, the presented algorithm performs well in terms of stability and 

speed convergence. Owning the optimal step size, deflation and regularization techniques 

make the presented algorithm more robust and perform well even though in the adverse 

conditions. Therefore, the presented algorithm performs well for solving the convloutive 

BSS problem of the real-world recordings in adverse conditions.  

 

 

 

Figure 4.7: Results obtained in the Test1 experiments [130]. Best performance  
is reported in terms of SIR, by applying the given algorithms 
 with different signal lengths 
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Figure 4.8: Results obtained in the Test1 experiments [130]. 
 Best performance is reported in terms of SDR,  
by applying the given algorithms with different signal lengths 
 

 

 

 

Figure 4.9: Results obtained in the Test2 experiments [130].  
Best performance is reported in terms of SIR, by applying the given  
algorithms with different signal lengths 
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Figure 4.10: Results obtained in the Test2 experiments [130].  
Best performance is reported in terms of SDR, by applying the given  
algorithms with different signal lengths 

 

 

 

 

Figure 4.11: Impact of FFT length, 2-by-2 case, Results obtained in the  
Test2 experiments [130]. 
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4.7 Conclusion  

This chapter presented the RobustICA-based algorithm to solve the frequency-

domain BSS problem for convolutive acoustic mixtures in several adverse conditions. 

Through the real-world experiments, we show the superiority of the presented algorithm 

among other popular algorithms in the literature in terms of the performance and 

complexity computation. Moreover, we compared several permutation solvers in terms of 

computation complexity and performance to provide the RobustICA-based algorithm 

with an efficient frequency-dependent permutation scheme. Finally, we studied the effect 

of several parameters on the separation performance of the presented algorithm. We also 

presented the effect of the type of the window on the separation performance and we also 

showed that the performance improves at a certain range of overlapping between the 

signals.  Lastly, in this chapter, we showed the performance of a system that can work 

efficiently with around 0.5–10 seconds of input data, which is close to the real-time 

implementation. Accordingly, our proposed algorithm is optimized to be suitable for the 

real-time operation. As a result, it is suitable for a large number of applications to ensure 

the real-time implementation. 

 

 

 

 



 
 

149 
 

5 Chapter 5 

Robust Blind Multiuser Detection Algorithm 

Using Fourth Order Cumulant Matrices 

A new blind detection algorithm, based on fourth order cumulant matrices, is 

presented and applied to the multi-user symbol estimation problem in Direct Sequence 

Code Division Multiple Access (DS-CDMA) systems. The blind detection is to estimate 

multiple symbol sequences in the downlink of a DS-CDMA communication system using 

only the received wireless data and without any knowledge of the user spreading codes. 

The proposed algorithm takes advantage of higher cumulant matrix properties to reduce 

the computational load and enhance performance. Bit error rate (BER) simulations of this 

algorithm are shown for different number of users, signal to noise ratios (SNR) and 

different number of symbols per user in comparison with the FAST ICA and Robust ICA 

algorithms. The results show that the proposed algorithm outperforms both ICA-based 

detectors in estimating the symbol signals from the received mixed signals. Moreover, the 

proposed blind detector is computationally fast and exhibits high convergence speed in 

extracting user symbols. 

5.1    Introduction 

Communication systems performance hinges on speedy and reliable data/symbol 
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transfer among users. In that context, data reaches each user with as few errors as 

possible. Code Division Multiple Access (CDMA) family of systems continue to be the 

most deployed and popular multiple access scheme. This is mainly due to its soft multiple 

access characteristics, robustness against fading and its anti-interference capability. In 

schemes accepting non-orthogonal multiple-access designs, like direct sequence code 

division multiple-access (DS-CDMA), multiple-access interference (MAI) is the limiting 

feature of the scheme’s capacity. To alleviate MAI, a variety of multi-user 

detectors/receivers have been proposed; whereas, most of them need either the data of the 

preferred user’s dispersion sequence or a preparation (pilot) sequence. When neither is 

easily possible, due to computational delays or time constraints, the challenge of 

extracting the broadcast information generally belongs to the domain of blind source 

separation (BSS) [74-80]. 

The conventional or single-user detection (SUD) methods consider MAI as 

external noise. In an alternative approach, the structure of MAI is modeled as in the work 

on optimum multi user detection [76]. However, it has been shown that these detectors 

either need a complete knowledge of the MAI and training data, or involve a long 

decoding delay [74]. To overcome these limitations, classes of efficient blind detectors 

are proposed in the literature. However, the blind detection techniques in the wireless 

communication literature, e.g., in [75] utilize primarily the Second Order Statistics (SOS) 

and some Higher Order Statistics (HOS) of the received data. Independent Component 

Analysis (ICA) is a statistical technique that includes HOS, where the goal is to represent 

a set of random variables as a linear transformation of statistically independent 

components [78]. ICA based techniques are based on the assumption of non-Gaussianity 
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and independence of the sources. For example, the Fast ICA algorithm is applied for the 

detection of symbols in DS-CDMA systems in [77], while its convergence is not ensured.   

RAKE-ICA is also proposed in [75]. Recently, blind multiuser detection based on 

Tikhonov regularization has been proposed in [76], which requires the prior knowledge 

of the signature sequence and timing of the desired user. 

ICA based algorithms have been the most active in solving BSS problems during 

the last decade [1] – [2]. There are numerous targeted applications in speech, image and 

biomedical signal processing. Several approaches have been established for constructing 

the ICA algorithms [9– 20], and one such an approach is based on information theory. 

The Information Maximum (InfoMax) algorithm proposed in [18], e.g., is derived from 

HOS. It extracts the source signals from the mixed signals; however, it involves high 

computational complexity. To reduce this complexity, the Fast ICA algorithm, based on 

an approximation of Negentropy and Newton iteration, has been subsequently developed.  

A comparative study of ICA-based algorithms for the DS-CDMA detection 

problem [75], [88] shows that the Fast ICA algorithm performs comparatively well in 

extracting the unknown symbols. Whilst, it also involves high computational complexity 

and exhibits slow convergence.  

Recently, Zarzoso et al [11] have proposed an ICA-based algorithm with a new 

contrast function that can avoid permutation ambiguity and has quantitatively better 

separation quality than the so-called conventional ICA algorithm (C-ICA). Furthermore, 

Zarzoso and Comon [1] have introduced a search line into the iterative maximizing 

Kurtosis contrast function to render the Fast ICA more Robust and to increase its 

computational efficiency. By using an algebraic optimal step size, they have shown that 
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the extraction quality would be better than the Fast ICA algorithm. Therefore, the Robust 

ICA algorithm has efficient extraction primarily for smaller number of components 

(sources). Moreover, there exist some non-linear ICA-based algorithms that are used to 

separate dependent source signals [89] and can extract only one signal [90]. 

This chapter presents a Blind DS-CDMA detection technique based on fourth 

order cumulant matrices [21], [34]. This technique is very effective in multi-user CDMA 

environments where no prior information of the user’s code is required to be known at 

the receiver. This approach is considered blind because the spreading codes of all the 

users, the characteristics of the environment, as well as the transmitted symbols are 

assumed unknown. The simulation scenarios are carried out to observe variations in the 

bit error-rate as a function of (i) signal to noise ratio, (ii) number of users and/or (iii) 

number of symbols per user. Furthermore, the performance of the proposed algorithm is 

quantified and a comparison is made among the three ICA-based algorithms in terms of 

their performance and computational complexity. The remainder of the chapter is 

organized as follows. In Section II, a brief description of DS-CDMA signal model and 

multi-path fading is presented. In Section III, Robust and Fast Independent Component 

Analysis (ICA) and their signal model are discussed briefly. Section IV proposes the new 

detector based on the fourth order cumulant matrices. The comparative simulation results 

and conclusions are given in Sections V and VI, respectively. 

5.2    DS-CMDA Signal Model 

In a typical downlink (Synchronous) CDMA system, the CDMA employed in 

Evolved High-Speed Packet Access (HSPA+), in 4G systems, to keep the transmitted 

bandwidth constant regardless of the bit-rate through solving the non-symmetric user-
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bandwidth problem. The synchronous DS-CDMA system has been used in Satellite 

systems, indoor ATM, and in certain ad hoc wireless network because of its attractive 

features (namely, anti-interference capability and robustness against fading). DS-CDMA 

systems allow several users to share the medium simultaneously by using their own 

signatures (spreading codes).  The synchronous DS-CDMA system assigns shorter 

spreading codes to higher-rate users and longer spreading codes to lower-rate users, while 

keeping the chip rate constant. A typical DS-CDMA system model is given, e.g., in [75]. 

The simplest received signal model r(t)	 is 

r(t) = ∑ ∑ ∑ α)*b,,*s,(t − mT0 − d)T2) + n(t)4)789,76�*76                         (5.1) 

where  

• l, k,m are path, user and symbol indices, respectively. 

• α)* is the path gain since, in a downlink model, the path gain is the same  

because all users’ coded signals are transmitted together and the path gain 

α)* and propagation delay factor	d) depend only on the  signal paths. 

• b,,*  is the kth user m symbol. 

• s,(. ) is the kth user spreading code   

• d) is the propagation delay factor, d,) ∈ {0, 1, … , O56P } (assumed to be of 

duration of at most half the sequence C).  

• t, T0, T2  are time, symbol, and chip duration, respectively. 

• n(t) is an additive white Gaussian noise (AWGN). 

The received signal is assumed to be properly sampled and synchronized discrete 

data. However, let us assume that G is the number of code sequence, K is the number of 
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users, and L is the number of channels. Thus, the vector form of the equation (1) will 

change to be as:  

r = ASb + n                                     (5.2) 

Where r is the received vector signal, A is an (G + L − 1)	x	G matrix which 

represents the multipath propagation coefficients, S is an G	x	K block diagonal matrix, b 

is an K − d vector which represent the data symbols, n is the (G + L − 1) − d channel 

noise vector with covariance matrix Q. This model received signals (5.2) is suitable for 

deriving the linear symbols detectors such as the MF, the RAKE, the LMMSE and the 

blind Detectors based on FastICA and Robust ICA algorithms. 

5.3    Robust and Fast Independent Component Analysis (ICA) 

A simple Blind Source Separation (BSS) model with n Source Signals and n 

observations is defined as follows:  

Let the sources form the vector 

S = [s6, sP, … , s�]a                               (5.3) 

Let the observations form the vector  

X = [x6, xP, … , x�]a                                   (5.4) 

The (static) linear BSS model is  

X = AS + N                                  (5.5) 

where A is an n x n (invertible) mixing matrix,  and the vector N is an Additive 

Gaussian Noise. The ICA algorithm assumes that no more than one source signal has 

Gaussian distribution.  

The main idea of ICA is to recover the source signals from the observed signals 

without a priori knowledge of the vector source signal or the mixing matrix. To achieve 
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this, an ICA-based algorithm iteratively computes a weighting matrix W that 

incrementally approximates the inverse of the mixing matrix A. The estimated source 

signal Y is thus given as follows:  

Y = WX                                                                         (5.6) 

where  

W = ìw¬,ï, 1 ≤ j, k ≤ n                          (5.7) 

As it is a linear transformation, we can choose to estimate one of the independent 

components in the form of   wX, where w is a row vector of the matrix W in (5.7). The 

estimation can be achieved by maximizing the “non-Gaussianity” of	wX.  

Generally Speaking, It can be said that the Fast ICA algorithm entails two steps: 

one is the preprocessing step and the other is finding the rotating matrix W that 

maximizes the non-Gaussianity of	Y = WX. 

5.3.1 The Preprocessing  

This involves two computations. The first aims at centering the mixed matrix 

signal X by removing its mean as follows:   

X̀ = X − E[X]           (5.8) 

where X̀ represents the zero-mean mixed signal of		X, and E[. ] is (an estimate of) 

the expected value operator. The second whitens the mixed signals to have a unitary 

variance after centering the mixed signal.  To that end, we compute The Singular-Value 

Decomposition (SVD) [29] is applied to the covariance matrix of  X̀ to obtain  

C� = E[X̀	X̀	a] = EDEa                            (5.9) 
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where E represents the eigenvectors which are orthogonal matrices of mixed 

signals, and D is a diagonal  of the Eigenvalues 	C�,  expressed as: 

D = diag(d6, dP, … , d�)                            (5.10) 

Thus, the whitening operation of X̀ is expressed as  

Z = (D5·¸Ea)X̀ = VX̀                                   (5.11) 

where V equals D5·¸Ea and represents the pre-multiplying whitening matrix of	X̀. 

Equation (11) shows that the centered matrix X̀	is linearly transformed to the matrix Z. 

Observe now that the covariance matrix of Z equals the identity matrix (I9) [2]. In other 

words, the componenets of the vector Z are uncorrelated.  

5.3.2 The FastICA Algorithm  

The batch algorithm FastICA [25], [26] is derived by maximizing the non-

Gaussianity of a measure based on the fixed point iteration. The Center-Limit-Theorem 

(CLT) [2] infers that (a large) sum of independent sources will become closer to a 

Gaussian distribution. The CLT shows that, for whitened data, finding an independent 

source is achieved by finding the direction vector w which gives a component its 

“maximum non-gaussianity.” (Further discussions are in section II-A.)  Moreover, if just 

one of the independent components (ICs) is Gaussian, the ICA algorithm can still work 

and estimate the ICs. The authors in [25, 26] use the Fast ICA, which is a fixed point 

iteration scheme, for finding the maximum of the non-gaussianity. The basic Fast ICA 

scheme for one independent component is outlined as follows: 

• Choose an initial value for the weight vector w 

• Find the updated weight vector  
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wÓ = E{Z[g(wZ)]a} − E{gå(wZ)}w             

(5.12) 

• where g is a non-quadratic function such as	g(y) = yÏ,  y = wZ and gå is the 

derivative of the non-quadratic function g. 

• Normalize and update the weight vector, i.e.,  

wÓ = ÊÚ
‖ÊÚ‖                                    (5.13) 

where ‖. ‖ is the norm operator.  

• Go back to step 2 until the convergence. 

When the old and new vectors w are in the same direction, the update converges 

and their absolute dot-product value reaches close to 1. In the same context, the deflation 

method proposed in [1], [25] avoids different vectors from converging to the same value. 

It enforces each vector of 	W = {w6, wP, … ,w�} to be orthogonalized based on the Gram-

Schmidt orthogonalization. The deflation scheme estimates each independent component 

at each iteration step. The Gram-Schmidt orthogonalization of the	(k + 1)th component 

can be expressed as follows 

w,Ó6Ó = w,Ó6 − ∑ (w,Ó6a w¬),¬76 w¬                  (5.14) 

w,Ó6 = Ê/Ú·Ú

üÊ/Ú·Ú ü                                      (5.15) 

where a new weight vector w,Ó6 is obtained by subtracting the vector projected 

from the old weight vectors.  

 



 
 

158 
 

5.3.3 The Robust ICA algorithm 

Recently, Zarzoso and Comon [1] improved the robustness of the Fast ICA 

algorithm by using a line search direction to choose the optimal step size  

μ¤©È = arg 					Ê		*ù�|K(y + μg)| where g is the gradient of the kurtosis contrast function	K(. ). 

At each iteration, the Robust ICA algorithm performs an optimal step-size as follows 

[11]:  

� Choose an initial value for the weight vector × 

� Compute the optimal step size polynomial coefficients; for the kurtosis 

contrast function, the optimal step size polynomial is given by  

:(Ã) = ∑ 'y´yÂy78                               (5.16) 

� where the coefficients 'y can be obtained at each iteration from the 

observed signal block and the current value of × and (. Details can be 

found in [7].  

� Compute the optimal step size polynomial roots	´y. The roots can be 

obtained by using the Ferrari’s formula [36]. 

� Select the optimal step size polynomial root ´y as follows: 

´Õ�À = '�(					Ö		�$l|Ç(° + ´()|                    (5.17) 

� Find the updated weight vector. 

×Ó = × + ´Õ�À(                               (5.18) 

where ( is the gradient of the kurtosis contrast function	Ç(. ). 
� Normalize and update the weight vector 

×Ó = ÙÚ
‖ÙÚ‖                                          (5.19) 
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where ‖. ‖ is a norm operator. 

5.4    The Proposed Detection Algorithm Based On Cumulant Matrices  

In this section, a new blind detection strategy is proposed, based on the cumulant 

matrices that uses the algorithms JADE, SHIBBS and JAD [2] [16], [17], and [19]. Here, 

one needs to first recall the received matrix form (5.2), 

r = ASb + n 

The aim here is to detect the b symbol vector from the received data r under the 

following assumptions:  

• AS1) the G	x	K matrix,	H:= RA, is of full column rank. 

• AS2) the symbol signals, b, are non-Gaussian, independent and identically 

distributed (i.i.d) 

• AS3) the Additive Noise vector is white and independent of source signals 

• AS4) the power of the transmitted symbol signals, normalized to be unity. 

• AS5) in this chapter, all signals are real and the number of users K is given. 

The Method involves two steps: 

5.4.1 Step1: Preprocessing (Data Whitening) 

This is a common preprocessing step. As a consequence, the symbol signals are 

detected up to a unitary matrix using second order statistics (SOS). This step is used to 

reduce the noise and to eliminate correlations among the data components. Under the 

Assumptions AS1, AS2, AS3 and AS4, the G	x	G covariance matrix (R) of the noiseless 

transmitted signals can be expressed by  
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R = E[rra] − σPI9                                        (5.20) 

By substituting X from (5.2) into (5.20), one gets  

R = H	E[bba]	Ha = HHa                                  (5.21) 

Under AS1, R can be decomposed as 

R = VΛVa                                               (5.22) 

where V	is a G	x	G matrix of eigenvectors satisfying 

VVa = VaV = I�                                          (5.23) 

and Λ is a G	x	G diagonal matrix containing real (eigenvalues) entries. Thus, the 

G	x	K matrix H can be expressed in its singular value decomposition (SVD) as [29] 

H = VΛ5·¸Ua                                           (5.24) 

where U is a KxK full rank unitary matrix and 	UUa = I9. 

The whitening step obtained the matrix V so that the Kx1 whitened data vector Z 

has covariance equals to the identity matrix, RDD = I9.. Specifically,  

Z = Λ5·¸Var                                        (5.25) 

Z = Uab + Λ5·¸Van                                 (5.26) 

Thus, the transmitted symbols can be recovered with a linear Zero-Forcing (ZF) 

equalizer. Consequently, the estimated Kx1 symbols 

b� = UZ                                            (5.27) 

After the preprocessing step, the detection of the symbol signal b� 	reduces to 

determining the KxK unitary matrix U (a rotation matrix). 
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5.4.2  Step 2: Determining the rotation matrix (unitary matrix) U. 

 One way of finding the rotation matrix U is based on the fourth order cumulant 

matrices. To estimate U in (27), we exploit the statistical independence of the equalized 

symbols vector. More precisely, the unitary matrix U will be estimated by using the 

independent property of symbols in the fourth order cumulant matrices (say, Q), so that it 

has many of the cumulant elements equal to zero [18]. The well-known Joint 

Approximation Diagonalization of Eigen Matrices algorithm [18] is efficient and robust 

when separating a small number of sources. JADE uses both second order decorrelation 

(whitening process) and fourth order cumulant matrices (rotation process) to separate the 

source signals from the mixed signals. Hyvarinen et al [18], [19], show that JADE is not 

efficient when the sources are numerous,  because the size of the 4th order cumulant sets 

increases with the 4th power of the number of sources. This requires a large memory in 

addition to incurring a high cost for Eigen matrix calculation. From [21, 34], however, 

one can get a good sense  of  the JADE algorithm by using only a portion of the fourth 

order cumulant matrices-- up to the number of users (K), and thus avoiding the Eigen 

matrix calculation. The Fourth order cumulant matrices of the independent zero-mean 

symbols b� 	for	1 ≤ i, j, k, l ≤ K, are  

Q0µ = cum(b� «, b� ¬, b�,, b� )) 
Q0µ = Eìb� «b� ¬b�,b� )ï − Eìb� «b� ¬ïEìb�,b� )ï − Eìb� «b�,ïEìb� ¬b� )ï 

−E[b� «b� )]E[b� ¬b�,]             (28). 

Because of AS3, the symbols of vector b� 	are assumed to have unitary variance. 

Thus, the 4th order cumulant matrices become: 
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Q0µ = cumÉb� «, b� ¬, b�,, b� )Í = 	Eìb�«b� ¬b�,b� )ï − δ«¬δ,) 	− δ«,δ¬) − δ«)δ¬,    (29). 

where δ«¬	is the Kronecker delta, and equals  1				∀		i = j ; otherwise zero. Because 

of the independent property of the symbols	bµ , many of the cumulant elements are zero. 

However, one can rewrite the fourth order cumulant set Q for symbols b� 	 (28) and for the 

whitened vector Z (27) as follows, respectively: 

Q0µ = cumÉb� «, b� ¬, b�,, b� )Í        

Q0µ = E≠ 0										∀	i = j = k = l
= 0												Otherwsie							H 		∀		1 ≤ i, j, k, l ≤ K      (5.30). 

Q0µ = cumÉZ«, Z¬, Z,, Z)Í ≠ 0				∀		1 ≤ i, j, k, l ≤ K       (5.31) 

Owing to this difference between (31) and (32), the symbols could be detected 

from the received signals. Here, the objective function, which was proposed in [21], is 

used  to determine the unitary matrix U and then to estimate the symbols vector b� 	(27), 

specifically, 

U: SCÉU, b�Í = ∑ cumPÉb� «, b� ¬, b�,, b� )Í				∀	1	9«7,76 ≤ i = j, k = l ≤ K
subject	to	min	(1 − ÈÇù2û(»)

9 ) V                     
(5.32) 

Note that the iteration stop criterion of the proposed algorithm ends the iteration 

when the unitary matrix U tends to be almost the identity matrix	I. So, we can express it 

mathematically by: 

	(1 − ÈÇù2û(»)
9 ) ≤ ϵ           (5.33) 

where ϵ is a threshold value, e.g.,  ϵ = e5Ï.  

The following are the bulleted steps of the proposed algorithm, based on the  

Fourth order cumulant matrices: 
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• Pre-processing  

• Zero mean of received signal   

• Compute the covariance Matrix R 

• Compute the whiten vector Z 

• Repeat 

• Calculate Cumulant Matrices Q0µ (5.32) 

• Call Joint Diagonlization U in (33) 

• Continue until min 31 − ÈÇù2û(»)
9 6 ≤ ϵ	where ϵ is the threshold.  

• End 

5.5  Simulation Results 

5.5.1 Performance  

The simulated DS-CDMA downlink data, in the presence of AWGN, is used to 

verify the effectiveness of the proposed algorithm and to compare it to the detectors 

based on the Fast ICA and Robust ICA algorithms. We used spreading codes as short 

gold codes with length of chips to be NC=31. The maximum number of users is K =30.  

We assumed all signals for all users to be sent with the same power. Monte Carlo 

Simulations are executed to verify the validity and the effectiveness of the proposed 

algorithm in comparison to the two detectors. Fig. 34 shows the simulation results of 

BER vs. SNR of the presented detectors. The parameters are set as: Number of symbols 

M=3500, Number of users K=30, Number of paths L=1, with various values of SNR 

from -10 dB to 5dB. Figure 5.1 demonstrates that the proposed algorithm, based on the 
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fourth order cumulant matrices (SJAD), improves the performance of the CDMA system, 

producing the lowest BER consistently in comparison. It is also observed that the 

performance of the FastICA-detector and RobustICA-detector is almost identical. 

 Figure 5.2 shows the simulation results of BER vs.  SNR with various numbers 

of symbols (M) with 30 users (K=30). It is obvious that the performance of the proposed 

algorithm performs more consistently as M increases and is better than that of the 

RobustICA Detector. Furthermore, Figure 5.2.c shows that the RobustICA detector, in 

contrast to the proposed method, performs poorly as M decreases. Figure 5.3 shows the 

simulation results of BER vs. SNR with medium number of symbols, M= 3500, various 

K users. It is obvious that the proposed method performs more consistently and exhibits 

improvement in the performance as K decreases. The algorithm also mitigates the MAI, 

and has better performance than the other Detectors as shown in Figure. 5.3. Also, the 

FastICA detector performs well as K decreases in Figure. 5.3.b to the contrary of the 

RobustICA detector in Figure 5.3.c. As a result, the proposed detector performs well in 

estimating and recovering symbols in DS-CDMA system. 
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Figure 5.1: Average BER as a function of SNR for 30 users and 100 runs. 
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Figure 2.a Detector based sjad algorithm 

 

Figure 2.b Detector based FAST ICA algorithm 

 

Figure 2.c Detector based RICA algorithm 

Figure 5.2: Average BER as a function of SNR for different sample lengths  
T with 30 users and 100 runs. Black triangle right lines: M = 104.  
Black circle lines: T = 9000. Black hexagram lines: T = 8000.  
Black square lines: T = 7000. Red triangle up lines: M = 6000.  
Blue circle lines: T=5000. Blue hexagram lines: T=4000.  
Blue square lines: T=3000.  Blue triangle right lines: T=2000. 
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Figure 3.a Detector based sjad algorithm 

 

Figure 3.b Detector based FAST ICA algorithm 

 

Figure 3.c Detector based RICA algorithm 

Figure 5.3: Average BER as a function of SNR for different Users K  
with signal blocks composed of T = 3500 samples and 100 runs.  
Black triangle right lines: K = 10. Black circle lines: K = 20.  
Red triangle up lines: K = 30. Blue square lines: K=40.  
Blue hexagram lines: K=50. 
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5.5.2  Measure of Computation 

A measure of Complexity in Computation for the algorithm, in terms of iterations, 

is widely used. This kind of measure is not justifiable in the sense that an algorithm may 

require only a few iterations to converge, but each iteration may involve heavy 

computation. Also, such a measure does not take into account the fact that computation 

time depends on actual algorithmic implementation. However, for this work, the measure 

followed here is based on the number of real-valued floating point operations (flops) that 

are required to reach a solution for an algorithm. Flop count details can be found in [7], 

[11]. As a natural measure of extraction quality, the average signal of mean square error 

SMSE was employed as a contrast function of independent criteria and is defined as 

follows: 

SMSE = 6
P∑ SMSE,,)(,)9,                             (5.34) 

where 

SMSE,,) = E[|s, − α)s�)|P] 
and with 

α) =
E[s,s�)∗]
E[|s�)|P] 

However, to study the performance of the proposed detector and to compare the 

three detectors in terms of computational complexity, the SMSE performance index in 

(5.34) is used and averaged over 1000 independent realizations of the received data. The 

extracted symbols are computed directly from the observed received data. Fig. 39 

summarizes the performance and complexity variations obtained for T= 3500, with 

different values of the users K. As can be seen in Figures 5.4 and 5.5, the best and faster 
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performance is provided by the proposed algorithm based on fourth order cumulant 

matrices, especially, when K is relatively small.  Moreover, the FastICA algorithm 

performs well as the proposed algorithm when K increases. In contrast, the RobustICA 

detector performs poorly when K increases. In the same context, the performance of the 

algorithms for a varying block of sample size T is evaluated.  

 

Figure 5.4: Average extraction quality as a function of computational  
cost for different mixture sizes K with signal blocks composed of  
T = 3500 samples and 1000 mixture realizations. Solid lines: K = 5.  
Dashed lines: K = 10. Dotted lines: K = 20. 
 

 

 

 

 

 

 

 

 

10
1

10
2

10
3

10
4

10
5

-40

-35

-30

-25

-20

-15

-10

-5

0
Separation quality-cost trade-off, real case, noiseless mixtures, T = 3500 samples

complexity per source per sample (flops)

S
M
S
E
 (
d
B
)

 

 

SJAD

FastICA

RobustICA



 
 

170 
 

 

 

Figure 5.5: Average extraction quality as a function of computational  
cost for different mixture sizes K with signal blocks composed of  
T = 3500 samples and 1000 mixture realizations. Solid lines: K = 30. 
 Dashed lines: K = 40. 

 

Figure 5.6 shows the average SMSE curves for different numbers of symbols K 

with different T samples. From this figure, one can see that the proposed detector is 

considerably more efficient than the other two detectors. Overall, the best performance is 

provided by the proposed detector which achieves the given performance level with 

lower cost. 
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Figure 5.6: Average extraction quality as a function of computational cost 
 for different mixture sizes K with different signal blocks T samples and 
 1000 mixture realizations. Solid lines: K = 20. Dashed lines: K = 30.  
Dotted lines: K = 40. 
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5.6    Conclusion  

In this chapter, we have investigated three adaptive algorithms for user-detection 

in CDMA systems, the proposed one based on fourth order cumulant matrices, the Fast 

ICA and the Robust ICA algorithms. The results show that the proposed algorithm 

exhibits better performance relative to the other two user detectors.  The results also show 

that the proposed algorithm can mitigate Multiple Access Interference (MAI), thus 

improving the performance of conventional detection. Furthermore, the performance of 

the proposed detector displays the most consistent improvement as	� (the number of 

symbols) increases. Also, we assess the performance of computational complexity of the 

three user detection algorithms employing the average signal of mean square error 

SMSE, as a contrast function of independent criteria. The results show that the proposed 

detector provides a faster and more robust performance. 
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6 Chapter 6 

Adaptive Blind Multiuser Detection DS-CDMA 

Based on State Space Approach 

Code Division Multiple Access (CDMA) is a channel access method used by 

various radio technologies and it is based on spread-spectrum technology. In general, 

CDMA is used as an access method in many mobile standards such as CDMA2000, and 

WCDMA.  We address the problem of blind multiuser equalization in the wideband 

CDMA system, in the noisy multipath propagation environment. Herein, we propose 

three new blind receiver schemes, which are based on the state space structures. This so-

called blind state-space receivers (BSSR) does not require knowledge of the propagation 

parameters or spreading code sequences of the users but relies on the statistical 

independence assumption between the source signals. Also, we develop and derive three 

update-laws in order to enhance the performance of the blind detector. Additionally, we 

upgrade three semi-blind adaptive detectors based on the corporation between the RAKE 

receiver and the stochastic gradient algorithms which are used in several blind adaptive 

signal processing algorithms, namely FastICA, RobustICA, and principle component 

analysis PCA. Bit error rate (BER) simulations of these methods are shown for different 

number of users, signal to noise ratio (SNR) and different number of symbols per user in 

comparison with the Blind Multiuser Detectors (BMUD), Linear Minimum mean squared 
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error (LMMSE) and other conventional detectors. The results show that the proposed 

algorithm outperforms the other detectors in estimating the symbol signals from the 

mixed CDMA received signals. Moreover, the new blind detectors mitigate the multi 

access interference (MAI) in CDMA. 

6.1   Introduction 

Code Division Multiple Access (CDMA) is a channel access method used by 

various radio technologies and it is based on spread-spectrum technology such as in third-

generation (3G) cellular telephony, terrestrial and satellite communications systems, and 

indoor wireless networks [1-2], [9]. Although, LTE (4G) is in operation in many cellular 

companies inside and outside the U.S., the networks are still not fully built out, and LTE 

coverage is still not universal. Thus, the most of the older 2G and 3G systems are still in 

charge or at least working in parallel with the 4G as in U.S. companies, AT&T and T-

Mobile use GSM/WCDMA/HSPA while Verizon, Sprint, and MetroPCS use 

cdma2000/EV-DO. Moreover, The LTE wireless interface is incompatible with 2G and 

3G networks, so that it must be operated on a separate wireless spectrum. Nevertheless, 

3G is intended to be replaced by 4G technologies sooner or later, but it is going to take a 

long time before the LTE coverage is developed to be fully operated and universal, 

especially in some countries worldwide, such as India, Iraq … etc. [141-142]. 

As any radio communication systems, CDMA systems consider as interference  

limited and it suffers from deferent types of interference, namely an internal multiple 

access interference (MAI) due to the non-ideal cross-correlations between users’ 

spreading sequences, narrow-band interference, inter-symbol interference (ISI) and noise 

at the receiver. These drawbacks, in general, affect the performance of a CDMA system.  
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In highly loaded systems, conventional detectors are considered unsuitable choice, since 

most of them suffer from the external interference sources such as adjacent channel 

interference or jamming, and treat the interference as an additional background noise. In 

practical, the primary source of interference is MAI in the CDMA system. This has 

motivated to the development of numerous interference rejection techniques to overcome 

the MAI and the near-far problem in the conventional receiver. Several state-of-art 

approaches are proposed in literature to overcome this challenge such as the trained-

based systems. Also, the most conventional detection for the CDMA signals are based on 

the second order statistics among user codes. 

In CDMA system, Multiuser detection has been presented in several works in 

order to enhance channel capacity and mitigate multiple access interference (MAI). 

Multiuser detection was firstly established to obtain an optimum multiuser detector for 

multi-Gaussian channel in [1]. In additional, several suboptimum detectors have been 

proposed in [6-8], because of the computational complexity in the optimal detector which 

make it unrealistic. In [1] and [32-36], the training sequence techniques were used to 

present suboptimal detectors, i.e. adaptive linear detector and zero-forcing detector. In 

[6], they proposed suboptimal detector based on the Liner minimum mean square error 

(LMMSE) method. In [8], X. Wang and H. Poor proposed the blind MMSE and the blind 

de-correlating detectors. In [31-36], adaptive blind detectors were proposed based on the 

minimum output energy incorporating with constrained optimization methods. Several 

subspace approaches were proposed in in the literature, i.e. [20], [20], [36]. In [10], 

several types of group-blind linear detectors were proposed in order to enhance the 

performance for uplink and downlink channels. The key idea of these detectors was to 
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take advantage of the cross-correlation matrix which constructed by exploiting the 

correlation between the successive received signals.  These detectors suffer from the 

computational complexity in order to be implemented. Also, they require information of 

timing and spreading waveform of the desired user. 

 The aforementioned techniques periodically enforce the user to send a training 

sequence that has to be known for the receiver in order to make the receiver able to 

estimate the parameter of the propagation channel which are caused by the multiple 

reflections of the radio waves on the obstacles encountered, i.e. buildings, cars, and trees 

etc. Furthermore, according to [42], it has been reported that 20% of the bandwidth is 

devoted to the training sequence in GSM and up to 40% in UMTS. In spite of the good 

performance of the aforementioned techniques, the cost tends to be significantly large in 

terms of bandwidth. However, adaptive signal processing techniques seemed to be more 

sufficient methods to CDMA systems in the presence of the high dynamic conditions due 

to the mobility of the mobile terminal, the short code case and the fortuitous of the 

channel access. In particular, blind adaptive techniques tend to be a hot topic for last 

decade in order to ensure the high communication rate due to its potential to eliminate/ 

reduce the training sets. Moreover, blind techniques are considered an attractive field so 

as to work besides the trained-based systems to 1) reduce the training sequence, 2) to help 

the trained-based systems to back up especially in fast-time varying channels and at 

severe  multipath fading. Also, Blind techniques help to recover the signals in some other 

situations such as 1) eavesdropping, where using the training sequence is not possible or 

not available, 2) when the receiver fails to keep on tracks the desired user. However, the 

underlying user symbol sequences are usually mutually independent. Therefore, this is 
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the key assumption that makes the CDMA system a suitable environment to take 

advantage of the blinds techniques, such as information maximization [1] and minimum 

mutual information [6]. Moreover, the adaptive LMMSE detector has been proposed to 

overcome the complex matrix inversion operation, but this detector still needs the 

spreading codes of all users. Therefore, the MMSE detector might not be realistic in the 

downlink receiver. Also, it might be insecure in the downlink case. However, it seems 

more suitable to work in the uplink case. Therefore, this chapter aims to recover the 

source symbol sequences from the linear convolutive received mixture without any 

knowledge of the user spreading codes and in the absence of channel identification. 

Simply put, this chapter proposes blind adaptive detections, based on state space 

structures using natural gradient method for multipath channels in CDMA systems. Three 

update-laws are derived based on the state space structures, and then, three blind state-

space receivers (BSSR) are developed for MAI, ISI suppression and symbol estimations. 

The second contribution of this chapter is three semi-blind adaptive algorithms based on 

the corporation between the RAKE receiver and the stochastic gradient algorithms which 

are used in several blind adaptive signal processing algorithms, namely FastICA, 

RobustICA, and principle component analysis PCA. Nevertheless, this chapter explores a 

higher order statistics (HOS) in order to make the methods robust and secure against 

incomplete cross-correlation and a near-far problem which consider other drawback 

factors in conventional detection methods. The simulations are carried out to study and 

verify the effectiveness of the proposed methods for solving the symbols estimations. 

Moreover, we observe variations in the bit error-rate as a function of signal to noise ratio, 

number of users and number of symbols per user. Finally, a comparison is attempted 
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between the proposed algorithms and conventional ones in terms of performance and 

their computational complexity. 

Through this chapter, lower case letters denote scalars, bold lower case letters 

denote vectors, and bold upper case letters denote matrices. The following symbols are 

used to present our work: 

� (∙)r refers to transpose operator; 

� (∙)³ refers to Hermitian transpose operator; 

� ��'zØ(∙) refers to the trace operator.  

� � = √−1 refers to the imaginary unite.  

� {�'((∙) refers to diagonal matrix; 

� �(!(∙) refers to sign operator; 

� Ø[∙] refers to statistical expectation. 

The remainder of the chapter is organized as follows. In Section II, a brief 

description and derivation of synchronous CDMA signal models in multi-path fading are 

presented. Section III proposes the new detection scheme based on State space approach. 

The comparative simulations results and conclusion are given in Section IV and Section 

V, respectively. 
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Figure 6.1: Signal generation model for a typical QPSK DS-CDMA system 

 

6.2   DS-CMDA Signal Model 

In this section, we briefly present the signal model for a DS-CDMA 

implementation using one layer of spreading codes only. In a typical synchronous DS-

CDMA system employed for indoor ATM and certain ad hoc wireless networks [74], 

[75]. In a DS-CDMA system, several users share the medium simultaneously by using 

their own signatures. The simplest received signal model r(t)	before filtering in a symbol 

interval, as in Figure 6.1, is given by [75]  

r(t) = ∑ ∑ ∑ α)*b,,*s,(t − mT0 − d)T2) + n(t)4)789,76�*76                      

(6.1) 

where  

• l, k,m are path, user and symbol indices, respectively. 

• α)* is the path gain since in downlink model; the path gain does not  differ 

among users because all users’ signals are sent together and the path gain 

α)* and propagation delay factor	d) depend only on the number of paths. 

• b,,*  is symbol. 
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• s,(. ) is spreading code ( chip sequence) 

• d) is the propagation delay factor, d,) ∈ {0, 1, … , O56P }  

• C is the number of chips per symbol. 

• T0, T2, t  are time , symbol and chip duration, respectively. 

• n(t) is an additive white Gaussian noise (AWGN) channel. 

In this chapter, the system is assumed to be time-invariant which means that the 

channel parameters are much slower than the frequency of transmitted symbol data. 

However, let us assume that G is the number of code sequence, K is the number of users, 

and L is the number of channels. Thus, the vector form of the equation (6.1) will change 

to be as: 

r = HSb + n                                     (6.2) 

Where r is the received vector signal, H is an (G + L − 1)	x	G matrix which 

represents the multipath propagation coefficients, S is an G	x	K block diagonal matrix, b 

is an K − d vector which represent the data symbols, n is the (G + L − 1) − d channel 

noise vector with covariance matrix Q. This model received signals (6.2) is suitable for 

deriving the linear symbols detectors such as the MF, the RAKE, the LMMSE and the 

blind Detectors based on FastICA and Robust ICA algorithms [2], [11], [15]. In 

additional, an alternative signal model is proposed in [80], [81] as a linear convolutive 

model is given by: 

r� = H8b� + H6b�56 + n� = Hbn� + n�               (6.3) 

where 

• r� is the received signal vector;  

• b� = [b6(n),… , b9(n)]a is a current bits of all users; 
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• H8 = [h6, … , h,] is signature matrix of the current bits of all users 

including MAI; 

h, =

f
g
g
g
g
h 0

h,(0)
.
.
.

h,(N − d, − 1)k
l
l
l
l
m
 

• H6 = [h6nnn, … , h,nnn] is the signature matrix of the previous bits of all users 

including ISI; 

where  

hn, =

f
g
g
g
g
h h,(N − d,)

.

.

.
h,(N +M − 1)

0 k
l
l
l
l
m
      

• H = [	H8; H6] is the signature matrix of all users; 

• b� = [b6(n),… , b9(n)]a are currents bits of all user; 

• b�56 = [b6(n − 1),… , b9(n − 1)]a are previous bits of all users; 

• bn� = [b�a; 	b�56a ]a are bits of all users; 

• n� = [n(nN),… , n(nN + N − 1)]ais independent white Gaussian Noise 

vector.  

In uplink (asynchronous) CDMA systems, one can assume that H8 and H6 are 

mutually independent, therefore H is a full column matrix and its rank is 2K as it’s shown 

in [87], [89]. Whereas for downlink (synchronous) CDMA communication, H is a matrix 

and its rank is full-rank with hardly restricted as in [91]. The main focus in this chapter is 
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on the synchronous CDMA communication system although our proposed algorithms are 

working well in asynchronous CDMA system [92], [88]. 

6.3   Conventional Blind Linear Multiuser Detectors  

In this section, we briefly describe the conventional linear multiuser detectors 

such as the Match Filter (MF), the Rake receiver and the LMMSE detector in multipath 

environment. In additional, we briefly describe the Blind-Group detectors in [g] which 

include the blind decorrelation detector and Blind linear hybrid detector. For more details 

on these linear detectors, see [74], [86-95].  

6.3.1 Single user detection (SUD) Detector 

The SUD is a standard MF detector which exploits the user’s signatures to make 

the best estimation of the user’s sequences from the data received at MS. This detector is 

completely ignoring the MAI due to other users sharing the resources [74]. One can 

express the MF Detector for ith user in DS-CDMA system as follows: 

p�,�,Ú = ��³�       (6.4) 

where �� = {�'((�̅�, �̅�, … , �̅�) , �̅� = [0	0…	�� …0]. �� is the ith user’s signature 

code, � is received data, and p�,�,Ú  is the estimated DS-CDMA symbol vector, see [74].  

6.3.2 Rake Detector  

 

Perhaps, the most special case of linear multiuser detection is the Rake Detector 

which consists of multiple chip-delayed SUD fingers in parallel. In this chapter, we 
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implement the Rake receiver with the knowledge of both channel delays and channel 

coefficients. However, one can express the RAKE for DS-CDMA system mathematically 

as follows: 

p�,ÜÝqÈÚ = ��³�̀³�      (6.5) 

 Where � is the estimated channel matrix, and p�,ÜÝqÈÚ  is the estimated ith user’s 

symbol;  

6.3.3 LMMSE Detector 

Despite the fact that the conventional linear detectors based on the Least Square 

(LS), Zero-Force (ZF) and BLUE algorithms perform poor  especially in colored noise 

presence, the LMMSE detector is considered as one of the best linear detector for DS-

CDMA system [74], [75]. However, one can express the LMMSE as follows: 

p�,%��XÈÚ = ��³�̀³(ÞP�̀�̀³ + ßn)56�    (6.6) 

Where (ÞP�̀�̀³ + ßn) = Â = Ø[��³] is the auto-correlation of the received data 

at the MS, and ÞP is the average power of the transmitted power. There are several 

drawbacks in implementation the LMMSE receiver; however, the main drawback is that 

the computation of the auto-correlation	Â is very expensive. One can use the eigen-

decomposition instead of inverting the auto-correlation matrix Â as follows [5], [74]: 

p�,%��XÈà = ��³�̀³(Õ#"#56Õ#³)�     (6.7) 

Where Õ# is the estimated Eigen-vectors of the auto-correlation matrix	Â, and "# 
is the corresponding eigen-valuse of the auto-correlation matrix	Â. Additionally, one can 

use adaptive algorithms to estimate the LMMSE user’s symbols as in [135].  
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6.4   The Proposed Detection Schemes Based On state space framework  

In this section, a new blind detection strategy is proposed, based on the state space 

framework [75]. We proposed the three blind multiuser detectors based on feed-forward 

structure, feedback structure I, and feedback structure II, respectively. 

Here, one needs to first recall the received signal model (3) 

r� = H8b� + H6b�56 + n� 

The aim of this chapter is to detect the b symbol vector from the received data r 
under the following assumptions:  

• AS1) the GxK matrices,H8, H6	is of full column rank. 

• AS2) the symbol signals, b, are white, independent and identically 

distributed (i.i.d)  

• AS3) the Additive Noise vector is white and independent of source signals 

• AS4) the power of the transmitted symbol signals, normalized to be unity. 

• AS5) the maximum lag in the entire multipath channels Émax(τ))Í is 

smaller than the spreading gain of the CDMA	G. 

• AS6) the CDMA system is not over-saturated, which means the number of 

users (K) is less the the number of the spreading gain	(G).  

• AS7) the channel is assumed to be a slowly fading wide sense stationary. 

Each method involves two steps: First, a preprocessing stage. Second, the rotation 

stage based on the state space structures. In the next subsection, we will explain the 

preprocessing stage (whitening processes), and then we will derive the three methods 

based on each state space structure in individual subsections.   
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6.4.1 Step1: Preprocessing (Data Whitening) 

In the preprocessing step, the symbol signals are detected up to a unitary matrix 

using the second order statistic (SOS). This step was used to reduce the noise and to 

eliminate redundancy in the data. Under the Assumptions AS1, AS2, AS3 and AS4, the 

GxG covariance matrix (C) of the noiseless transmitted signals can be expressed by  

C = E[rr�] − σPI��                                        (6.8) 

Without loss of generality, we consider a simpler two tap models then we will 

generalize them using induction techniques.  Therefore, substituting r in (6.8), under our 

assumptions AS1-AS7, one can expressed the covariance matrix C as follows 

C = H8E[bb�]H8� + H6E[bb�]H6� = H8H8� + H6H6�                            (6.9) 

Under AS1, the H8H8�and H6H6� can be decomposed, respectively as 

C8 = V8Λ8V8�                                  (6.10) 

C6 = V6Λ6V6�               (6.11) 

where V8 and V6 are an KxK matrix satisfying 

V8V8� = V8�V8 = I9                                (6.12) 

V6V6� = V6�V6 = I9     (6.13) 

and  Λ8 and Λ6 are an KxK diagonal matrix containing significant eigenvalue 

entries. So, from aforementioned equation (6.3), the GxG H8 and H6 matrices will be 

represented respectively as  

H8 = V8Λ85
·
¸U8�                                   (6.14) 

H6 = V6Λ65
·
¸U6�       (6.15) 
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where U8 is a KxK full rank unitary matrix and 	U8U8a = I9 and U6 is a KxK full 

rank unitary matrix and 	U6U6a = I9. However, the whitening step obtained matrix V8 

and V6so that the Kx1 whitened data vector r�Ê has a covariance of the identity matrix, 

C = I9, which can be obtained as follows: 

r�Ê = Λ85
·
¸V8�r� + Λ65

·
¸V6�r�                                (6.16) 

Therefore,           

   r�Ê = U8�b� + U6�b�56 + 3Λ85·¸V8� + Λ65·¸V6�6n�                             

(6.17) 

The transmitted symbols can be recovered based on the state space structures. 

However, after the preprocessing step, the detection of the symbol signal b� 	�reduces to 

determining the KxK unitary matrices U, (rotation matrices). Next, the derivations for the 

three proposed algorithms, based on feedforward structure, feedback structure I and 

feedback structure II, respectively, are presented. 

6.4.2 Step 2a: Determining the rotation matrix (unitary matrix) U based on 

the feedforward structure. 

The output from the feedforward structure is given in [75] as follows: 

y� = U8r�Ê + ∑ U,r�5,Ê9,76       (6.18) 

 

Again, we consider a simpler two tap models, thus the two tapes of the 

FeedForword model represents as  

y� = U8r�Ê + U6r�56Ê         (6.19) 
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However, one can re-write the previous convolutive filter in the following 

augmented form 

æ y�r�56Ê ç = æU8								U60													I ç - r�Êr�56Ê 0        (6.20) 

Let’s define that  

Yá = æ y�r�56Ê ç 

 

Uá = -U8									0	U6										I0 
 

Rá = - r�Êr�56Ê 0 
 

So, the expression in (15) becomes as 

Yá = UáaRá       (6.21) 

Based on ICA algorithm [2], [13], [14], the update law for the weight column of 

de-mixing matrix	Uá , we have 

uÓ = u − μE æRá 3GÉuaRáÍ6ç      (6.22) 

Where u is the column vector of	Uá , μ is the step size and G is the score function. 

However,  

u = -U8U60      (6.23) 

Then  

-u8Óu6Ó0 = æu8u6ç − μ	 - r�Êr�56Ê 0G(y�)      (6.24) 
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Where u8 , u6 are the column vector of U8 and U6, respectively. Therefore, the 

update laws for the individual columns are  

u8Ó = u8 − μr�ÊG(y�)     (6.25) 

u6Ó = u6 − μr�56Ê G(y�)    (6.26) 

By induction, the update law for the kth lag element u,is  

u,Ó = u, − μr�5,Ê G(y�)       (6.27) 
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Figure 6.2: Feedback Demixing Structure I 

6.4.3 Step 2b: Determining the rotation matrix (unitary matrix) U based on 

the feedback structure I. 

The output of the feedback structure I is given in Figure 6.2 as follows: 

y� = U856Ér�Ê + ∑ U,y�5,9,76 Í      (6.28) 

Consider two tapes of the Feedback Configuration I model  

y� = U856(r�Ê + U6y�56)      (6.29) 

However, one can re-write the previous convolutive filter in the following 

augmented form 
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- r�Êy�560 = æU8								U60													I ç æ
y�
y�56ç      (6.30) 

Or  

æ y�y�56ç = æU8								U60													I ç
56 - r�Êy�560 

 

æ y�y�56ç =
6

úûÈ	(»â) - I						 − U60													U80 - r�Êy�560    (6.31) 

 

Let’s define that  

Yá = æ y�y�56ç 

Wá = - I											0
−U6								U80 

Rá = - r�Êy�560 
 

So, the previous augmented  expression becomes  

Yá = UáaRá      (6.32) 

Based on ICA algorithm [2], the update law for the weight column of de-mixing 

matrix	Uá , we have 

uÓ = u − μE æRá 3GÉuaRáÍ6ç     (6.33) 

Where u is the column vector of	Uá , μ is the step size and G is the score function. 

However,  

u8 = - I8
−U680      (6.34) 

The update law is  
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- iÓu6Ó0 = - iu60− 	μ - r�Êy�560G(r�Ê − u6y�56)     (6.35) 

And  

 

u6 = - 06U860       (6.36) 

Then  

- 0Óu8Ó0 = - 0u80− μ	 - r�Êy�560G(u8y�56)      (6.37) 

The update laws for the individual columns are  

u8Ó = u8 − μy�56G(u8y�56)      (6.38) 

And  

u6Ó = u6 − μy�56G(r�Ê − u6y�56)      (6.39) 

By induction, the update law for the kth lag element u,is  

u,Ó = u, − μy�5,G(r�Ê − u,y�5,)      (6.40) 
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Figure 6.3: Feedback Demixing Structure II 
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6.4.4 Step 2c: Determining the rotation matrix (unitary matrix) U based on 

the feedback structure II. 

The output of the feedback structure II is given in Figure 6.3 as follows: 

y� = U8r�Ê + ∑ U,y�5,9,76      (6.41) 

Again, consider two tapes of the Feedback structure II model  

y� = U8r�Ê − U6y�56      (6.42) 

However, one can re-write the previous convolutive filter in the following 

augmented form 

æ y�y�56ç = æU8								−U60													I ç - r�Êy�560     (6.43) 

Let’s define that  

Yá = æ y�y�56ç 

Wá = -	U8								0−U6							I0 
Rá = - r�Êy�560 

So, the previous expression becomes  

Yá = UáaRá     (6.44) 

Based on ICA algorithm [2], the natural gradient update laws for the weight 

column of de-mixing matrix	Uá , we have 

uÓ = u − μE æRá 3GÉuaRáÍ6ç      (6.45) 

Where u is the column vector of	Uá , μ is the step size and G is the score function. 

However,  

u = æ u8−u6ç       (6.46) 
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Then  

-u8Óu6Ó0 = æu8u6ç − μ	 - r�Êy�560G(y�)     (6.47) 

The update laws for the individual columns are  

u8Ó = u8 − μr�ÊG(y�)     (6.48) 

And           

  

u6Ó = u6 − μy�56G(y�)     (6.49) 

By induction, the update law for the kth lag element u,is  

u,Ó = u, − μy�5,G(y�)     (6.50) 

 

 

 

Algorithm 6.1:  RAKE based FastICA method 

{[ = 	f ∗ [ = �^((−1) ⁄ 2)	Ø^|		[}, 
� =�]][(: , �) � = �{[�(��)]s} − �{�å(��)}�			 

_�,ãWÝÚ (: , �) = ��³ä]̀³[ 

Input: (�	�	|) matrix of realization r, Initial demixing matrix	� = �å, 
number of iterations	���, Step Size � i.e.	�	 = 0.3,  H is the estimated channel matrix, 

�(²) = ²Ï 
Perform Pre-Whitening  

For loop: for each � = 1…¿ 

 

W=W/norm(W) 

 

End For 

Output: the estimated Symbols	_ãWÝÚ  
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6.4.5 The proposed adaptive detectors 

 In this section, we develop three adaptive detectors based the independent 

component Analysis (ICA), Robust ICA and Principle Component Analysis (PCA). 

Having the RAKE receiver structure in (10), one can express the adaptive weight RAKE 

for DS-CDMA system mathematically as follows: 

_�,ÜÝqÈÚ = ��³ä]³[      (53) 

Where ] is the estimated channel matrix, _�,ÜÝqÈÚ  is the estimated ith user’s symbol; 

and � is an �	�	� weighting matrix. However, we present Algorithms 6.1, 6.2 and 6.3 to 

estimate the matrix	� adaptively based on the FastICA, Robust ICA and PCA 

algorithms, respectively. 

6.5   Simulation Results 

In this section, a series of simulations are carried out in order to verify the 

proposed algorithms in downlink DS-CDMA system in the presence of AWGN. We 

Algorithm 6.2:  RAKE based RICA method 

{[ = 	f ∗ [ = �^((−1) ⁄ 2)	�^|		[}, 
� =�]][(: , �) 

∆� = (�å − � ∗ �])� ´Õ�À = '�(					Ö		�$l|Ç(° + ´()| 
_�,ÜãWÝÚ (: , �) = ��]ä]̀³� 

Input: (�	�	|) matrix of realization r, Initial demixing matrix	� = �å, 
number of iterations	���, Step Size � i.e.	�	 = 0.3,  H is the estimated channel matrix, 
here g is the gradient of the Kurtosis contrast K(.) 

Perform Pre-Whitening  

For loop: for each � = 1…¿ 

� =�+		´Õ�À	∆� 

W=W/norm(W) 

End For 

Output: the estimated Symbols	_ÜãWÝÚ  
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assume a constant spreading gain, which is NG = 63 for Gold Code. The received 

CDMA signal is taken in five multipath channels L = 5 with delays of {0, 1, 2, 3	, 4} 
chips, respectively. Also, we use the complex attenuation coefficients to represent the 

multipath channels, which are	h8 = 0.25+ j0.18,h6 = 0.21 + j0.14,hP = 0.18 + j0.11, 

hÏ = 0.14 + j0.11, and hÂ = 0.11 + j0.07, respectively. We use the following model 

function for sub Gaussian sources which the source signals are having a negative kurtosis 

sign. 

Gª»½Éb�Í = b� − ÉtanhÉReíb�îÍ + jtanhÉImíb�îÍÍ 
Monte Carlo Simulation was run to verify the validity of the algorithm 

simulations. Also, we use the signal to noise ratio (SNR) as a figure of merit which 

merely represents the ratio of the energy per bit and the power spectral density (PSD) of 

the noise. Moreover, all the user symbols are assumed to be transmitted with the same 

power.  

Figure 6.4 (a) and (b) sow the simulation results of SNR vs. BER for three 

proposed detectors regarding to other ones for number of users Ç = 30 and Ç = 50, 

respectively. The other parameters were set as:  Number of symbols M=1000, Number of 

paths æ = 5, with various values of SNR -10 dB to 30dB. Rake based on RobustICA 

algorithtm is used with these parameters: the source Kurtosis signs is considered to be 

maximize absolute normalized kurtosis for all sources, 1Ø − 3 is used to be the threshold 

for statistically-significant termination test, the maximum number of iterations per 

extracted source is 1000, prewhitening (via SVD of the observed data matrix); 

orthogonalization deflation type is used and the extracting vectors initialization is an 

identity matrix of suitable dimensions.  
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(a) 

 

(b) 

Figure 6.4: Average BER as a function of SNR for DS-CDMA downlink. Using 
Gold codes G=63. (a) Using 30 users (b) Using 50 users 

 

In Figure 6.4, the proposed algorithms improve the performance of the CDMA 

system; blind multiuser detection based on the second feedback structure has given the 

lowest BER regards to the others, and outperforms the performance of the other 

detectors. We also observe that the proposed algorithms work in the high SNR ratio, 
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which most likely cause ill-

sample set T is fairly small. Moreover, the performance of the blind multiuser detection

degrades as the number of the 

Also, to complete our discussion, 

proposed blind multiuser equalizers in terms of computational complexity.  

average of the corresponding C

pay for the enhancement in the BER performance is represented by the computational 

complexity in terms of CPU times.
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-posed problem for LMMSE receiver especially when the 

sample set T is fairly small. Moreover, the performance of the blind multiuser detection

umber of the user increases as shown in Fig. 6.4 (b). 

Also, to complete our discussion, Figure. 6.5 shows the performance of all the 

proposed blind multiuser equalizers in terms of computational complexity.  

average of the corresponding CPU time of each proposed method. However, the price to 

pay for the enhancement in the BER performance is represented by the computational 

complexity in terms of CPU times. We also study the effect of OVSF codes in Fig. 

shows that using the OVSF codes enhances the performance of the 

 

Corresponding CPU time for each method. 
 

ICA PCA FF FB1 FB2 RICA BMUD

CPU Time

posed problem for LMMSE receiver especially when the 

sample set T is fairly small. Moreover, the performance of the blind multiuser detection 

shows the performance of all the 

proposed blind multiuser equalizers in terms of computational complexity.  It shows the 

. However, the price to 

pay for the enhancement in the BER performance is represented by the computational 

We also study the effect of OVSF codes in Fig. 6.6. 

sing the OVSF codes enhances the performance of the 
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(a) 

 

(b) 

Figure 6.6: Average BER as a function of SNR for DS-CDMA downlink. Using 
OVSF codes G=64. (a) Using 30 users (b) Using 50 users 

 

 

In the WCDMA System, we assume that the channel coefficients are	h8 = 0.25+
j0.18,h6 = 0.21 + j0.14,hP = 0.18+ j0.11, hÏ = 0.14 + j0.11, and hÂ = 0.11 + j0.07, 
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respectively, the bandwidth of channel is 1.25 mega chips per second (MCPs), all user-

specific codes use two types of spreading codes, namely, Gold codes with a spreading 

gain G=63, and OVSF or (Walsh-Hadamard) codes with spreading gain G=64. The long 

scrambling code has a frame-length of 10 ms. In Figure 6.7, we demonstrate the 

performance of the various methods in terms of BER for the WCDMA downlink 

scenario.  

 We observe that the LMMSE is slightly better some presented detectors under the 

good SNR conditions. But the proposed algorithm based on the second feedback structure 

outperforms all detectors again at all SNR and has given the lowest BER regards to the 

others.  
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(a) 

 

(b) 

Figure 6.7: Average BER as a function of SNR for WS-CDMA downlink.  
Using Gold codes G=63. (a) Using 30 users (b) Using 50 users 
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(a) 

 

(b) 

Figure 6.8: Average BER as a function of SNR for WS-CDMA downlink. 
Using OVSF codes G=64. (a) Using 30 users (b) Using 50 users 

 

 

It is also worthwhile to compare the presented algorithms with a large data sample 

set. Thus, Figure 6.8, Figure 6.9 and Figure 6.10 are the performance of the various 

detectors with fairly long sample M=3000 in the DS_CDMA and WCDMA systems, 

respectively.  A plausible notice, the LMMSE detector gets better than other detectors 
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under good SNR conditions. But, still the proposed algorithm based on the feed backward 

second configuration has exceeded the LMMSE detector at all SNRs less than 22dB.  

 

(a) 

 

(b) 

Figure 6.9: Average BER as a function of SNR for DS-CDMA downlink.  
For 30 users (a) Using Gold codes G=63. (b) Using OVSF codes G=64. 
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(a) 

 

(b) 

Figure 6.10: Average BER as a function of SNR for WCDMA downlink.  
For 30 users (a) Using Gold codes G=63. (b) Using OVSF codes G=64 
 

Finally, we study the effect of the size of the sample set and the number of users 

on the performance of the proposed method in Figure 6.11 and Figure 6.12, respectively. 

In Figure 6.11, the simulation results show the BER vs. SNR with various K users at 500 

symbols for each user for blind multiuser detection based on the second feedback 
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structure detector. It shows that the proposed detector perform less improvement of the 

performance as K increases. Thus, Figure 6.12 shows the simulation results of BER vs. 

SNR with 30 users (K=30) for various data samples (M). Although the proposed 

algorithm seems robust for sample sets and performs well, it is obvious that the proposed 

algorithm also improves more consistently in the performance as M increases and 

mitigates the MIA. Overall, the proposed algorithm outperforms other algorithms in most 

cases and performs better to solve the symbol estimation problem in DS/WCDMA 

downlink system, especially when the size of the sample set is relatively small. 

 

 

 

 

Figure 6.11: Average BER as a function of SNR for various number of users  K 
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Figure 6.12: Average BER as a function of SNR for various sample sets M 
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6.6  Conclusion  

This chapter carried out both simulation and theoretical demonstrations of the 

blind multiuser detector based on the space state structures in the CDMA system. Also, 

we develop the three blind multiuser detectors based on the three adaptive algorithms; 

namely ICA, RICA and PCA. The results appear to show that the proposed algorithm 

perform well in the symbol estimation problem in DS/CDMA systems and outperform 

the other conventional detectors and the Adaptive MMSE. Our results also show that the 

Multiple Access Interference (MAI) can be mitigated by the proposed algorithm, thus 

improving the performance of blind multiuser detection. Although the proposed method 

improves as the size of the sample set increases, the results show the proposed detector 

performs well even though the sample sets are small, unlike the LMMSE detector. 

Moreover, unlike the complexity of the LMMSE detector, the complexity of the proposed 

methods, being a constant, didn’t increase exponentially. Finally, the proposed method, 

unlike the adaptive LMMSE detector, has no restriction about the spreading codes since 

they do not require the spreading codes of the interfering users. Therefore, it is a more 

suitable choice in the downlink case and it does work in the uplink case as well. 
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7 Chapter 7 

Constrained Blind Multiuser Detection for DS-

CDMA System 

In direct sequence code division multiple accesses DS-CDMA communication 

system, the blind multiuser detection is presented for enhance the computational 

complexity and mitigate the multiple access interference (MAI) in the detector. The ill-

condition of the covariance matrix of the received signals degrades the performance of 

the linear minimum mean-squared error LMMSE detector. Especially, when the Signal to 

noise ratio is high and small data set is available for covariance matrix estimation. In this 

chapter, we introduce a constrained blind multiuser detection in order to improve its 

performance with imposing the regularization parameter to cope the ill-conditioning 

problem of the covariance matrix and to mitigate the performance degradation. Through 

simulation results, we show that the proposed method improves the performance of the 

blind multiuser detection and outperforms the conventional multiuser detections. 

7.1    Introduction 

Multiuser Detection has been one of the significant topics in communication 

system for past decades because of its potentials to suppress the multiple access 

interference (MAI) efficiently in CDMA systems. Recently, significant attention has been 
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given on multiuser detection in blind manner, which only requires a prior knowledge 

about of the signature sequence and timing of desired user [74-79]. 

In CDMA system, Multiuser detection has been presented in several works in 

order to enhance channel capacity and to mitigate multiple access interference (MAI). 

Multiuser detection was firstly established to obtain an optimum multiuser detector for 

multi-Gaussian channel in [76]. In additional, several suboptimum detectors have been 

proposed in [76] and [77], because of the computational complexity in the optimal 

detector which make it unrealistic. In [76], [81] and [82], the training sequence 

techniques were used to present suboptimal detectors, i.e. adaptive linear detector and 

zero-forcing detector. In [75], they proposed suboptimal detector based on the Liner 

minimum mean square error (LMMSE) method. 

In general, the ill-posed linear equation problem has been arisen in blind 

multiuser detection through the ill- covariance matrix which degrades the performance of 

the LMMSE detectors [76], [81]. This problem affects the MUD when small observed 

numbers of symbol users are considered, especially, in high signal to noise ratio 

environment. For example, when a small data set transmits over slowly time varying 

channels, we use a small data blocks within the channel coherence time. Therefore, 

several works have suggested to use regularization techniques, i.e. [76], [80] to deal with 

the ill-posed problem in order to gives a stable solution of the blind multiuser detection. 

This chapter develops a Blind linear DS-CDMA detection technique, based on 

minimum of energy output. The key idea of the proposed detector is to improve the 

conventional blind detector by imposing a new constraint on the cost function and add a 

regularization parameter to the covariance matrix to avoid the singularity especially in the 



 
 

208 
 

presence of high SNR environment [74].  The main focus of this chapter is to study the 

effect of the new constraint and regularization parameter in the presence of the high 

additive Gaussian noise AWGN for long and small data sets. Furthermore, we study the 

robustness of the proposed detector due to see the effect of the mismatch between the 

original code sequences and estimated ones on the performance of the proposed detector, 

which most likely happens in multipath channels. The simulations are carried out to 

observe variations in the bit error-rate as a function of signal to noise ratio, number of 

users and number of symbols per user. Furthermore, the performance of the proposed 

algorithm was studied and a comparison attempted between the proposed algorithm and 

subspace blind multiuser detection [87] in terms of their performance. The remainder of 

the chapter is organized as follows. In Section II, a brief description and derivation of 

synchronous CDMA signal models are presented. Section III presents the conventional 

detectors. Section IV proposes the proposed detection scheme. The comparative 

simulations results and conclusion are given in Section VI and Section VII, respectively. 

7.2   DS-CMDA Signal Model 

Assume we have a downlink (synchronous baseband) DS-CDMA system with K 

users. At the receiver, the sampled received signal during the ith symbol through the 

match filter with chip rate T2 is given in vector form by [75] 

[(�) = ∑ Îypy[�]�y + !(�)							∀	� = 0, 1, 2, … , æ − 1qy76     

 (7.1) 

where 

r(i) = [r6(i), rP(i),… , r�(i)]a, where N denotes the number of processing gain.  

• A, is the received amplitude 
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• b,[i] ∈ {±1}  are the ith transmitted signal and are assumed to be 

independent  

• s, is the normalized signature waveform of the kth user.  

• n[i] is the additive white Gaussian noise (AWGN) and assumed to have 

zero mean and covariance matrix equals σPI�, where I� is an N identity 

matrix.  

• L is the number of user symbol 

Without loss of generality, we assume that the signature waveforms s, are 

linearly independent and the noise n[i] is independent of user data. However, the 

covariance matrix of received signal {C = E[rra]} is given by:  

C = E[rra] = ∑ A,Ps,s,a + σPI�9,76       (7.2) 

 

According to [74] the decision output of the linear detector for ith transmitted 

symbol of the user one can be described as a weight vector	m6 ∈ R�, however, it is given 

by 

b�6(i) = sgn 3m6ar(i)6 = sgn(ra(i)m6)     (7.3) 

Let’s denote that R = [r(0), r(1),… , r(L − 1)] and	b4 = [b6(0), b6(1),… , b6(L −
1)], so equation (3) becomes in vector form as  

� ∙ �� = _¡        (7.4) 

7.3  Conventional Blind Multiuser Detection  

Despite the fact that the conventional linear detectors based on the Least Square 

(LS), Zero-Force (ZF) and BLUE algorithms perform poor especially in colored noise 
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presence, the LMMSE detector is considered as one of the best linear detector for DS-

CDMA system [74] –[85]. However, one can express the LMMSE as follows: 

m¤©È = argmin{E[‖b, −m�r‖P]}              (7.5) 

So, the MOE detector is given by [1], [7] as  follow:    

   

m6 = (s6aC56s6)56C56s6          (7.6) 

Subject to m�s, = 1     

  

According to literature [74], the ideal bit error rate (BER) of Minimum of Energy 

detector (MOE) under the constraint  m�s, = 1 is given by following the approximation  

Pû ≈ Qç Þ·Tèé*·Ë*·Uê = Q 3 Þ·è‖*·‖¸6      (7.7) 

where  

Q(x) = 3 6√P�6ó expu−xP 2Ò v . dxý
�           (7.8) 

However, in practice, the covariance matrix is computed using the observation 

value as follows: 

C ≈ Cë = ∑ r[i]ra[i]4«76       (7.9) 

As it has been reported in literature, the detector suffers from the ill-conditioned 

problem, especially, when the SNR is high and the data sample set is small, which cause 

degrading the performance of the detector.  

Whilst the covariance matrix Cë  sometimes in practice becomes in the ill-

conditioned matrix, as a result, the inversion of the ill-conditioned matrix will lead to ill-
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posed problem, which degrades the robustness of the detector. Several methods have 

been proposed to avoid this ill-posed problem in literature, the most two important 

methods are subspace decomposition algorithm and Regularization method, which have 

already been proposed in [76] and [79], respectively. Here, we impose a new constraint to 

speed up the convergence and improve the performance; also, we use a new regulation 

rule to avoid the ill-posed problem. The detector based on the subspace decomposition 

algorithm (SBMUD) is given by [74]-[79] 

mª½�»o = ìs,�[UêDê56Uê�]56s,ï56[UêDê56Uê�]56s,      (7.10) 

 SBMUD can solve the ill-posed problem by dividing the ill-conditioned matrix 

into two subspaces, which are the signal subspace and the noise subspace. The main 

problem in this method is the performance of the detector totally depends on the 

estimation covariance, which increases the chance to degrade the performance of the 

detector if the estimation covariance matrix presents a large deviation from the ideal 

covariance.  

Li Hu, in [76], applies Tikhonov regularization [80] to mitigate the ill-posed 

algorithm. It is well-known that the regularization is effective way to avoid the ill-

conditioned matrix. The detector based on Tikhonov is given by  

mÇû�Æ)ùÇ = æs,�ìCë + αIï56s,ç56 ìCë + αIï56s,     (7.11) 

Where α is the regularization parameter, note that the regularization method just 

adds energy constraint to boosting the covariance matrix to be well-conditioned matrix. 

In [76], they use two rule for α based on Tikhonov [80] which are a)  α = m. trÉCëÍ where 

m is a positive constant and tr(∙) represent the trace of estimation covariance matrix Cë  
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and b) α = c. λ*ù� where c is a positive constant and the λ*ù� is a maximum eigenvalue 

of estimation covariance matrix Cë . 
7.4  The Proposed Detection Scheme 

In this section, a new blind detection strategy is proposed, based on the minimum 

of energy of the output [74]. Here, one needs to first recall the received signal model (3) 

r = Hb + n                                 (7.12) 

Without loss of generality, we assume that the first user to be the desired user.  

However, one can estimate the desired user as a weight vector	w ∈ R�. Therefore, the 

output is given by: 

y = w�r      (7.13) 

The output power E[yP] can be expressed as follows 

E[yP] = w�Rw       (7.14) 

where R = E[rr�] is the covariance matrix, and E[. ] is expectation operator. In 

order to avoid the ill-conditioning of the covariance matrix R of the received signal, we 

are going to impose the regularization parameter into the energy functions under the 

following two constraints  

		� w�s6 = 1	
∑ w�s,9,7P = 0

M       (7.15) 

However, the proposed blind linear detector can be expressed as the following 

constrained optimization problem: 

w¤©È = argminÊ{E[‖b6 −w�r‖P] + c‖w‖P}    (7.16) 

Subject to		� w�s6 = 1	
∑ w�s,9,7P = 0

M        
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Therefore, one can solve the above constraint problem using the augmented 

Lagrangian method, so the cost (energy) function is given by 

J = w�Rw + c‖w‖P + γ6(w�s6 − 1) + γPÉ∑ w�s,9,7P Í     (7.17) 

where = m. (tr(C) + λ*ù�) , it is regularization parameter with m is a positive 

constant.   γ6	and	γP are the Lagrangian multipliers. Therefore, the gradient of J 
expression is  

g = 2Rw + 2cw − γ6s6 + γP∑ s,9,7P        (7.18) 

Let’s define that  

sP =vs,
9

,7P
 

Therefore, the gradient g in (4.18) becomes 

g = 2Rw + 2cw + γ6s6 + γPsP     (7.19) 

Then  

w¤©È = 6
P [R + cI]56[γ6s6 + γPsP]        (7.20) 

Where I	is an N	x	N identity matrix. Under the first constraint, we have  

w�s6 = 1       (7.21) 

However,  

æì·P [R + cI]56s6 + ì¸P [R + cI]56sPç
� s6 = 1   (7.21) 

Therefore,  

γ6 = [s6�[R + cI]56s6]56 æ2 − γP[sP�[R + cI]56s6]ç   (7.23) 

Now, under second constraint, we have  

∑ w�s,9,7P = 0      (7.24) 
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Then  

væγ62 [R + cI]
56s6 +

γP
2 [R + cI]

56sPç
�
s,

9

,7P
= 0 

However,  

γ6
2 s6

�[R + cI]56vs,
9

,7P
+ γP2 vs,�	

9

,7P
[R + cI]56vs,

9

,7P
= 0 

γ6
2 s6

�[R + cI]56sP +
γP
2 vs,�	

9

,7P
[R + cI]56sP = 0 

Let’s define that  

s66 = s6�[R + cI]56s6 

sP6 =vs,�	
9

,7P
[R + cI]56s6 

s6P = s6�[R + cI]56sP 

sPP =vs,�	
9

,7P
[R + cI]56sP 

Therefore,  

γ6 = s6656[2 − γPsP6]     (7.25) 

 

Then 

s6656[2 − γPsP6]s6P +
γP
2 sPP = 0 

[2s6656s6P − γPs6656sP6s6P] +
γP
2 sPP = 0 

γP = 2 æs6656sP6s6P − 6
P sPPç

56 s6656s6P    (7. 26)  
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7.5  Simulation Results 

In this section, the simulated DS-CDMA downlink data in the presence of AWGN 

is carried out to verify the proposed method and compare it to the Subspace Blind 

Multiuser Detector (SBMUD). We used spreading codes with short gold for the length of 

chips to be C=31. Thus, the maximum number of users K =30 and assumed all signals for 

all users are sent at the same power. Monte Carlo Simulation was run to verify the 

validity of the algorithm simulations. Figure 7.1. shows the simulation results of SNR vs. 

BER for all detectors. The parameters were set as:  Number of symbols L=500 and 1000 

respectively, Number of users K=15, with various values of SNR 0 dB to 12dB. In Figure 

7.1, we can see that the proposed algorithm improves the performance of the system, 

given the lowest BER regards to the SBMUD, and outperforms the performance of the 

SBMUB. Furthermore, we can also observe that the performance of the proposed 

algorithm slightly outperforms the performance of the regularized algorithm [76] at small 

sample sets, i.e. L=2N and 3 N, in Figure 7.2. 

 

Figure 7.1: Average BER as a function of SNR for 15 users 
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Figure 7.2: Average BER as a function of SNR for 15 users with L=2N, L=3N. 

Fig. 7.3 show the simulation results of BER vs. Regularization parameter with 15 

users and 1000 sample sets for various SNR  at	SIR, = −20	dB and	SIR, = 0	dB. It is 

obvious that the BER performance at 	SIR, = −20	dB is worse than that at	SIR, = 0	dB. 

Furthermore, the BER performance performs well and outperforms the direct matrix 

inversion (DMI), which occurs at		g = 0, under all SNR values. Moreover, the 

regularization parameter can be chosen as	g = 0.025. In order to study the effect of the 

signature waveform mismatch on the BER performance as in [3].  
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Fig.3a: L = 1000 and SIR =0 dB 

 

Fig.3b: L = 1000 and SIR =-20 dB 

 

Fig.3c: L = 500 and and SIR =-20 dB 

 

Fig.3d: L = 500 and and SIR =-20 dB 

Figure 7.3: Average BER as a function of SNR for 15 users For various  
L sample sets 
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Figure 7.4 represents the BER performance corresponding to channel 

coefficients	H6 = [0.7, 0.2, 0.1]	with	ís6|sî6ï = 0.7032, and 	HP = [0.65, 0.15, 0.3] 
and	ís6|sî6ï = 0.6597, respectively; where sî6 represent the effective signature waveform 

vector. And for L=1000 and K= 15 users. Herein, it is obvious that the proposed detector 

has almost the same performance in the mismatch case and without mismatch. 

Furthermore, it is clear that the performance degrades as mismatch increases as shown in 

Figure 7.4. Despite the performance degrades with mismatch increases, the proposed 

algorithm still performs well and gives a reasonable performance close to the match one. 

Overall, the proposed detector performs better for solving symbol estimation problem in 

DS-CDMA system and avoids the ill-condition in inversion matrix.  

 

 

Figure 7.4: Average BER as a function of SNR for 15 users with L=1000. 
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7.6  Conclusion 

In this study, we have developed the constraint blind multiuser detection based on 

minimum of energy.  Furthermore, we use the regularization method to avoid the 

singularity in covariance matrix and ill-posed problem. The results appear to show that 

the proposed method performs well in the symbol estimation problem in DS-CDMA 

systems and outperforms the other detectors. Our results also show that the Multiple 

Access Interference (MAI) can be mitigated by the proposed method, thus improving the 

performance of conventional Detection. Furthermore, the results show the proposed 

detector displays most robustness in the performance as mismatch between the original 

sequence and estimated one increases. 
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8 Chapter 8 

Hardware Implementation 

In this chapter, we investigate the ICA algorithms in terms of hardware 

implementation. Although software implementation is important to investigate the 

capabilities of ICA algorithms and to simulate significant aspects of applications, 

Hardware implementation provides real time solutions and an optimal parallelism method 

in terms of fast convergence. Furthermore, software implementation may suffer from 

insufficient memory problems because the large data sets of the ICAs’ applications and 

its high dimensionality. Thus, hardware implementations are a promising approach to 

implement the ICA algorithms and they are executed by Integrated Circuit (ICs). Owning 

the high speed processing and the parallel architecture features make the hardware 

implementation outperforming the software implementation in terms of sufficient 

memory and fast convergence [105]. 
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8.1 Introduction  

During the last decade, several works have been presented to implement some of 

ICA algorithms on fully analog CMOS circuits, mixed (analog and digital) signal 

integrated circuit, application-specific integrated circuit (ASICs) and field programmable 

gate arrays (FPGAs).    

In both analog and mixed CMOS integrated circuits, designers can integrate and 

create a fully customized design based on analog CMOS technologies or Mixed 

technologies. Although these aforementioned methods use the silicon in a more efficient 

way, the costs of these methods are significantly high, especially in terms of design 

expense and process. Therefore, the digital ASICs and FPGAs are considered to be an 

efficient ways to implement the ICA algorithms in general. Furthermore, one can 

consider the FPGAs based on the reconfigurable technology are the most promising 

technique to implement the ICA algorithm in terms of cost, since it allows the end user to 

modify and re-configure their designs multiple times.  

One can refer to the survey in [99], where they studied and investigated the 

implementation of ICA algorithm based on very large scale integration (VLSI) 

approaches. Also, as we aforementioned, several designers implemented some of ICA 

algorithms based on the analog and mixed integrated technologies i.e. [100], [104] and 

[106].  

8.2 Comparative Study of Existing Solutions to implement ICA Algorithms 

In the last decade, VLSI technologies have been presented with several 

advantages which make it great choice to implement the ICA algorithms. 
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8.1.1 Analog CMOS Integration Circuit 

Implementation of ICA algorithms based on an analog integrated circuit is usually 

the first choice in terms of low circuit delay and power consumption. Analog circuit 

design allows the end users to work at transistor level and necessary interconnections. 

Therefore, it emphasizes that the application based on analog integrated circuit has the 

minimum amount of transistors and the shortest interconnections to achieve the high 

circuit density and then low circuit delay and power consumption.  

In implementation process, the implementation of ICA algorithms can be utilized 

by dividing the design process into several groups based on the functions. However, one 

can design a simple module structure such as 2 x 2 input-output structures in order to 

extend it to any size readily. Also, this method has the ability to control the design area 

based on the application and it can be connected to external peripherals due to Analog-

Digital Converter / Digital-Analog Converter on or off the chip.    

In [101], Cohen and Andreou proposed two chips to implement the H-J ICA 

algorithm of speech signals. Fabrication was based on a 2-um, n-well CMOS process. 

Also, Gharbi and Salem in [136], proposed a chip design for the H-J algorithm using the 

2 um CMOS technology. Lately, Cho and Lee in [100] presented an analog CMOS chip 

to implement the InfoMax ICA algorithm using a 0.6 um, p-well, AMS CMOS process. 

Their design consisted of a multiplier circuit, weight update circuits and quadrature 

function circuit.   

The analog integrated circuit design has several drawbacks such as high expense 

of the workstation-based development system and slow turnaround time (approximately 

eight weeks). Thus, one can consider it an insufficient method to fast implementation of 
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most ICA designs [99]. Moreover, the analog CMOS circuits sometimes suffer from the 

transistor mismatch which affects the performance of the CMOS circuit. Transistor 

mismatch occurs due to edge effects, striation effects and random variations, for more 

details refer to [137].  

In spite of all the aforementioned drawbacks, the analog integrated circuit is still 

very efficient in terms of design. Also, one can solve the transistor mismatch problem 

through increasing the current due to increasing the length or the width of the transistors 

and using the concentric structure to ensure the matched transistors by sharing the same 

surrounding structures.  

8.1.2 Mixed Signal Techniques (Analog and Digital Circuit) 

Mixed Signal Techniques provide an alternative approach to the analog integrated 

circuit. Actually, it combines the analog and digital circuit to take advantage of digital 

circuit in terms of fast switch and easy implement for certain application i.e.: Digital to 

Analog circuit. Although, mixed signal circuit outperforms some of ICA implantation 

based on analog integrated circuit, it still suffers from the expensive cost in terms of the 

workstation-based and the long time of the prototype turnaround period.  

In [102], they simplified the H-J and infomax ICA algorithms and proposed a new 

chip design based on the mixed signal design. Also in [105], they used the parallel VLSI 

architecture to implement the feed-forward network. The chip was fabricated by 0.5 um 

two poly three metal CMOS technology. 

According to aforementioned reasons, one can say that the analog CMOS and 

Mixed signal techniques provides the end user with an efficient full-custom solutions to 
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ICA algorithms. But it still requires having sufficient knowledge about the transistor level 

design and the physical problem. Also, it considers costing expensive in sense of time 

and cost of the work-station.  

8.1.3 ASIC Solutions  

Application Specific Integrated Circuit (ASIC) is considered to be one of the 

digital VLSI technologies which also include FPGAs. ASICs typically contain about ten 

million gates.   They allow the end user to take advantage of the large number of libraries 

that are provided by IC vendors. Thus, one can call ASICs semi-custom solutions. 

Actually, although ASICs somehow increase the design risk and the cost in the sense of a 

nonprogrammable feature; it provides solutions for the very complex ICA algorithms 

with a good compact circuit design and low power consumption.  

Table 8.1 compares the Implementation of ICA algorithms based on analog IC 

and mixed IC and ASIC solutions. Clearly, compact circuit design (ASIC) achieve the 

best performance in terms of low power circuit as a result of small chip design.  

8.1.4 FPGA Solutions 

 

Field programmable gate arrays (FPGAs) are products that are fabricated with 

specific standards and general-purposed by hardware companies. They allow the end user 

to implement a specific task or design on them. Also, the end users can modify their 

designs several times and program the interconnections in a few hours instead of waiting 

several weeks for the final fabrications. Therefore, FPGAs have outperformed the other 
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VLSI technologies in terms of the turnaround period and the development expense. 

Typically, FPGAs contains more than 2000 gates and up to 2 million.  

In the literature [103-115], many works have been proposed to implement the 

ICA algorithm based on the FPGA technologies [103], [104] and [106]. Also, according 

to [138], the current growth of the FPGA/ASIC technologies has reached far beyond the 

Moore’s Law. Table 8.2 and Table 8.3 presents the recent FPGA solutions to implement 

the ICA algorithms. Although FPGAs outperforms the other VLSI technologies by 

having reconfigurable and reusable features, they usually suffer from the higher circuit 

delay which restricts their capacities. For more details refer to [99].   
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Table 8.1: Comparison of Analog, Mixed signal and ASIC Solutions 

Research 
Group 

ICA algorithm VLSI Category 

Cohen and 
Andreou [101] 

Herault -Jutten Analog 

Gharbi and 
Salam [136] 

Herault-jutten Analog 

Cho and lee 
[100] 

Infomax ICA Analog 

Celik et al. 
[102] 

H-J, infomax ICA Mixed 

Du et al. 
[104] 

Parallel ICA ASIC 

 

Research 
Group 

Fabrication Technology  Chip Size 

Cohen and 
Andreou [101] 

2 um n-well 2M2P CMOS N/A 

Gharbi and 
Salam [136] 

2um CMOS 2.22 x 2.25 

Cho and lee 
[100] 

0.6 um p-well 3M2P 
CMOS 

2.8 x 2.8 

Celik et al. 
[102] 

0.5 um 3M2P CMOS 3 x 3 

Du et al. 
[104] 

0.18 um 6 M1P CMOS 1.191 x 1.191 

 

Research 
Group 

Input X Output Voltage (V) 

Cohen and 
Andreou [101] 

2 x 2 -2.5 – 2.5 

Gharbi and 
Salam [136] 

2 x 2 N/A 

Cho and lee 
[100] 

4 x 4  -2.5 – 2.5 

Celik et al. 
[102] 

3 x 3 N/A 

Du et al. 
[104] 

1 x 1 sequential  -1.8 – 1.8 
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Table 8.2: Comparison of FPGA Solutions 

Research Group ICA algorithm FPGA 

Lim et al. [99] MI and DO ICNNs Xilinx Virtex 
XCV 812E 

Nordin et al. [109] Pipelined InfoMax N/A 

Satter and Charay. 
[113] 

Infomax ICA Xilinx Virtex E 

Wei and Charo.  
[111] 

Infomax ICA Xilinx Virtex E 

Kim et al. [103] InfoMax ICA Altera 
EP20K600E 

Du and Qi [104] Parallel ICA Xilinx Virtex 
V1000E 

 

Research Group Frequency  Samples 

Lim et al. [99] 155K Hz MI, 3.62 KHz 
(DO) 

1500 

Nordin et al. [109] N/A N/A 

Satter and Charay. 
[113] 

60M Hz 2500 

Wei and Charo.  
[111] 

12.288 M Hz N/A 

Kim et al. [103] N/A N/A 

Du and Qi [104] 20.161 MHz 60000 

 

Research Group Capacity (Million Gates) Design Utilization 

Lim et al. [99] 25 0.7 % MI, 0.5% 
DO 

Nordin et al. [109] N/A N/A 

Satter and Charay. 
[113] 

0.6  6% 

Wei and Charo.  
[111] 

0.6 15% 

Kim et al. [103] 0.6  N/A 

Du and Qi [104] 1.0 92 % 
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Table 8.3: Comparison Results Among Various ICA Implementations 

 [101]  [103]  [102] [103] [104] [112] 

Application Speech Image Image Speech EEG EEG 

Algorithm ICA pICA pICA FastICA InfoMax FastICA 

Number of 
Channels / 

Weight Vectors 

2 20 (WVs) 4 (WVs) 2 4      8 

Speed  
(M Hz) 

12.288 35.92 20.161 50 68 100 

Power 
Dissipation  

(mW) 

98.8 N/A N/A N/A N/A 16.35 

Gates 
(Million) 

0.0114 N/A 0.2295 N/A 0.315 0.272 

Computation 
Time (Sec) 

 

60 1129.5 N/A 0.003 N/A 0.29 

Implementatio
n  

Approach 

ASIC FPGA ASIC FPGA FPGA FPGA 
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8.3  Multiplier Design 

In this section, we design a down-conversion mixer (multiplier). So, the proposed 

mixer is shown in Figure 8.1. The structure is a modified variation of the Gilbert cell 

double balance mixer which has benefits of good port-to-port isolation and low even-

order distortion.  

The circuit consists of RF stage(M�6,M�P), LO Switching Circuit(M�Ï −M��), 
Current Injection Circuit(M¼6 −M¼Ï), Boosting Inductor(L6, LP), a load resistance 

stage(R6, RP), and an output driver stage(M�6,M�P). The trans-conductance stage “RF 

stage” amplifies the input differential RF signals. This stage is composed of the stacked 

NMOS-PMOS transistors. We mixed differential signals from RF and LO input ports 

through operating LO signals as an ideal switch function. We added Current Injection 

Circuit(M¼6 −M¼Ï) to improve the conversion gain and linearity. Output driver 

transistors(M�6,M�P) are common-source stages to match the output characteristic 

impedance of 50.  The parasitic capacitance at the source node of LO Switching 

Circuit(M�Ï −M��) affects the mixer performance significantly.  

 



 

Figure 8.1: The proposed Mixer (Multiplier) schematic.

So, we used boosting inductor

order to improve the performance and specifically to improve the linearity. Transistors 

(M�Ï −M��) form bias circuit to provide bias current to other stages in the circuit.

We used the current injection technique

of the mixer and to reduce the switching stage flicker noise since less noise is generated 

at the output with less current flowing through the switching stage. The drawback from 

current injection is the parasitic

this capacitance becomes larger. So, the two inductors are placed between the RF input 

stage and the switching stage. Furthermore, the series resonated inductors provide high 

impedance so as to improve the conversion gain with good gain flatness and linearity.
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The proposed Mixer (Multiplier) schematic. 

So, we used boosting inductor(L6, LP) to resonate with the parasitic capacitance in 

order to improve the performance and specifically to improve the linearity. Transistors 

form bias circuit to provide bias current to other stages in the circuit.

We used the current injection technique to maintain the total current of the mixer 

of the mixer and to reduce the switching stage flicker noise since less noise is generated 

at the output with less current flowing through the switching stage. The drawback from 

current injection is the parasitic capacitance at the source of the switching stage where 

this capacitance becomes larger. So, the two inductors are placed between the RF input 

stage and the switching stage. Furthermore, the series resonated inductors provide high 

e the conversion gain with good gain flatness and linearity.

to resonate with the parasitic capacitance in 

order to improve the performance and specifically to improve the linearity. Transistors 

form bias circuit to provide bias current to other stages in the circuit. 

to maintain the total current of the mixer 

of the mixer and to reduce the switching stage flicker noise since less noise is generated 

at the output with less current flowing through the switching stage. The drawback from 

capacitance at the source of the switching stage where 

this capacitance becomes larger. So, the two inductors are placed between the RF input 

stage and the switching stage. Furthermore, the series resonated inductors provide high 

e the conversion gain with good gain flatness and linearity. 
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The NF is defined by amount of noise contributed by the circuit. The mixer 

carries out both the RF and the image signals to the same IF.  

So for a noiseless mixer the output SNR is half the input SNR then NFSSB of a 

noiseless mixer is 3 dB. So, the NF is  

¿� = 10 log -�¿ÂÜ,�¿Âã, 0					[{Û] 
 ¿�XXð = 3	{Û +¿�ÚXð 

To measure mixer's performance depends on power consumption, conversion 

gain, linearity, and noise figure. A Figure of Merit (FoM) is a quantity used to 

characterize the performance of a device that attempts to combine all the important 

parameter values that describe the performance of a circuit.  

This value could be used to measure the performance of the mixer circuit so, FoM 

is:  

FoM = Gain(abs). IIP3(mW)
NF(abs). Vúú. Power(mw) 

Where IIP3 is input third-order intercept point, Vdd is the power supply; NF is 

Noise Figure of the circuit. And power is the power consumption. 

8.4 Simulation Results 

In this section, we present simulation results for the Mixer circuits. The presented 

mixer is designed by TSMC The circuit is 0.18	μm CMOS RF process and is simulated 

using the Cadence tool.  

The proposed Mixer design described in previous section is operated around 1.9 

GHz. biased at 1.2V supply voltage.  As shown in Figure 8.2, with an RF power of -

30dBm and an LO power of 5dBm, IF frequency of 250MHz, the conversion gain 



 

is15.9	 ± 0.4dB. The results show good gain flatness within the IF band. 

shows the DSB-NF of our design as a function of t

DSB noise figure is less than 7.2 dB. So, the SSB Noise figure would be less than 10 dB. 

Figure 8.4 presents the conversion gain versus the power supply, it is clear that 

the mixer can work very well with low 

gain conversion versus the power of LO, it is so obvious the stability of our design and 

the higher gains over the wide band LO frequency. For the IIP3 point, we use the two 

tones test to measure it. As shown in Fi

And the 1-dB compression point of 

results reported in the literature

Figure 8.2: Voltage Conversion Gain 
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. The results show good gain flatness within the IF band. 

NF of our design as a function of the IF frequency. It is clear that the 

DSB noise figure is less than 7.2 dB. So, the SSB Noise figure would be less than 10 dB. 

presents the conversion gain versus the power supply, it is clear that 

the mixer can work very well with low voltage supply. Furthermore, Figure 8.4

gain conversion versus the power of LO, it is so obvious the stability of our design and 

the higher gains over the wide band LO frequency. For the IIP3 point, we use the two 

tones test to measure it. As shown in Figure 8.5, we get a suitable IIP3 of 10.25 dBm. 

dB compression point of -0.8 dBm. Then FoM is 0.194, which outperforms 

literature.  

 

Voltage Conversion Gain versus IF 
 

. The results show good gain flatness within the IF band. Figure 8.3 

he IF frequency. It is clear that the 

DSB noise figure is less than 7.2 dB. So, the SSB Noise figure would be less than 10 dB.  

presents the conversion gain versus the power supply, it is clear that 

8.4 shows the 

gain conversion versus the power of LO, it is so obvious the stability of our design and 

the higher gains over the wide band LO frequency. For the IIP3 point, we use the two 

, we get a suitable IIP3 of 10.25 dBm. 

0.8 dBm. Then FoM is 0.194, which outperforms 



 

 

Figure 8.3: Voltage Conversion Gain versus IF

8.5 Conclusion  

In this chapter, we used the TSMC 0.18um CMOS to simulate the mixer design. The 

mixer demonstrates high linearity and high gain performance. Furthermore, we achieved 

a good noise figure. On the other side, we achieved a mixer that has a 15.9 dB conversion 

gain and 10 dBm IIP3 linearity with 7.2 dB DSB

injection current with boosting inductor achieve a high performance for the

(multiplier) at low voltage supply.
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Voltage Conversion Gain versus IF 

, we used the TSMC 0.18um CMOS to simulate the mixer design. The 

mixer demonstrates high linearity and high gain performance. Furthermore, we achieved 

a good noise figure. On the other side, we achieved a mixer that has a 15.9 dB conversion 

IIP3 linearity with 7.2 dB DSB-noise figure. In this 

injection current with boosting inductor achieve a high performance for the

at low voltage supply. 

, we used the TSMC 0.18um CMOS to simulate the mixer design. The 

mixer demonstrates high linearity and high gain performance. Furthermore, we achieved 

a good noise figure. On the other side, we achieved a mixer that has a 15.9 dB conversion 

noise figure. In this chapter, the 

injection current with boosting inductor achieve a high performance for the mixer 



 

Figure 8.4: Voltage Conversion Gain versus IF

Figure 8.5: Voltage Conversion Gain versus IF
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Conversion Gain versus IF 

 

Voltage Conversion Gain versus IF 



 

 

Figure 8.6: The proposed Mixer (Multiplier) Layout.

 

 

 

 

235 
 

The proposed Mixer (Multiplier) Layout. 
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9 Chapter 9 

Conclusion and Future Work 

In this chapter we conclude the dissertation and highlight directions for future work. 

9.1 Conclusion 

In this dissertation, Chapter 1 provided the background needed for the discussion 

of blind source separation problem. The benefits of blind techniques were discussed 

along with its applications in wireless communications, and speech enhancement. 

Chapter 2 performs a thorough review of the BSS\ICA algorithms, and then it 

gives an overview of the ICA algorithms and emphasizes the approaches that influenced 

our work. It also studies some of the methods that have been developed to solve the ICA 

problems in the case of instantaneous and convolutive mixtures. 

In Chapter 3, a novel divergence measure class is presented based on integrating 

convex functions into the Cauchy–Schwarz inequality. This divergence measure is used 

as a contrast function to develop new ICA algorithms to solve the Blind Source 

Separation (BSS) problem. The CCS-DIV derived algorithms can be controlled to attain 

the steepest descent towards the minimum value. Also, a pairwise iterative scheme is 

employed to address the high dimensional problem in BSS. Two schemes of pairwise 

non-parametric ICA algorithms are developed based on the proposed divergence. Several 
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examples and experiments are carried out to show the improved performance of the 

proposed divergence.  Furthermore, this chapter compares the metric performance with a 

host of leading ICA algorithms. We have developed also nonparametric CCS–ICA 

approaches to demixing where the source signals are estimated by the Parzen Window 

density. The convergence speed of the parameterized CCS–ICA procedure is evaluated 

and compared to other algorithms. The proposed CCS–ICA algorithms attained the 

highest SIR in separation of speech and music signals relative to other leading ICA-based 

algorithms. 

In chapter 4, we presented the RobustICA-based algorithm to solve the 

frequency-domain BSS problem for convolutive acoustic mixtures in several adverse 

conditions. Through the real-world experiments, we show the superiority of the presented 

algorithm among other popular algorithms in the literature in terms of the performance 

and complexity computation. Moreover, we compared several permutation solvers in 

terms of computation complexity and performance to provide the RobustICA-based 

algorithm with an efficient frequency-dependent permutation scheme. Finally, we studied 

the effect of several parameters on the separation performance of the presented algorithm. 

We also presented the effect of the type of the window on the separation performance and 

we also showed that the performance improves at a certain range of overlapping between 

the signals.  Lastly, in this chapter, we showed the performance of a system that can work 

efficiently with around 0.5–10 seconds of input data, which is close to the real-time 

implementation. Accordingly, our proposed algorithm is optimized to be suitable for the 

real-time operation. As a result, it is suitable for a large number of applications to ensure 

the real-time implementation. 
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Chapter 5 has investigated three adaptive algorithms for user-detection in CDMA 

systems, the proposed one based on fourth order cumulant matrices, the Fast ICA and the 

Robust ICA algorithms. The results show that the proposed algorithm exhibits better 

performance relative to the other two user detectors.  The results also show that the 

proposed algorithm can mitigate Multiple Access Interference (MAI), thus improving the 

performance of conventional detection. Furthermore, the performance of the proposed 

detector displays the most consistent improvement as M (the number of symbols) 

increases. Also, we assess the performance of computational complexity of the three user 

detection algorithms employing the average signal of mean square error SMSE, as a 

contrast function of independent criteria. The results show that the proposed detector 

provides a faster and more robust performance. 

Chapter 6 carried out both simulation and theoretical demonstrations of the blind 

multiuser detector based on the space state structures in the CDMA system. Also, we 

develop the three blind multiuser detectors based on the three algorithms ICA, RICA and 

PCA. The results appear to show that the proposed algorithms perform well in the symbol 

estimation problem in DS/CDMA systems and outperform the other conventional 

detectors and the Adaptive MMSE. Our results also show that Multiple Access 

Interference (MAI) can be mitigated by the proposed algorithms, thus improving the 

performance of blind multiuser detection. Although the proposed method improves as the 

size of the sample set increases, the results show the proposed detector performs well 

even though the sample sets are small, unlike the LMMSE detector. Moreover, unlike the 

complexity of the LMMSE detector, the complexity of the proposed methods, being 

constant, didn’t increase exponentially. Finally, the proposed algorithms, unlike the 
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adaptive LMMSE detector, have no restriction regarding the spreading codes since they 

do not require the spreading codes of the interfering users. Therefore, it is a more suitable 

choice in the downlink case and it does work in the uplink case as well. Moreover, In 

Chapter 7, we introduce a constrained blind multiuser detection in order to improve its 

performance with imposing the regularization parameter to cope the ill-conditioning 

problem of the covariance matrix and to mitigate the performance degradation.  

In Chapter 8, we investigate the ICA algorithms in terms of hardware 

implementation. Although software implementation is important to investigate the 

capabilities of ICA algorithms and to simulate significant aspects of applications, 

Hardware implementation provides real time solutions and an optimal parallelism method 

in terms of fast convergence. Furthermore, software implementation may suffer from 

insufficient memory problems because the large data sets of the ICAs’ applications and 

its high dimensionality. Thus, hardware implementations are a promising approach to 

implement the ICA algorithms and they are executed by Integrated Circuit (ICs). Owning 

the high speed processing and the parallel architecture features make the hardware 

implementation outperforming the software implementation in terms of sufficient 

memory and fast convergence. 

9.2 Future Work 

This section provides directions of future work for the area of Blind Source 

Separation and its implementation. Specifically, we itemize the research activities in the 

following: 

Optimization: We presented a new Convex Cauchy–Schwarz Divergence (CCS-DIV) 

measure for Blind Source Separation (BSS) and unsupervised learning of acoustic and 
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speech signals. The CCS-DIV measure is developed by integrating convex functions into 

the Cauchy–Schwarz inequality. By including a convexity quality parameter, the measure 

has a broad control range of its convexity. With this new measurement technique, a new 

CCS–ICA algorithm is structured and a non-parametric form is developed incorporating 

the Parzen window-based distribution. Moreover, the CCS–ICA algorithm has a 

controlled speed towards timed convergence. Several case-study scenarios were carried 

out on instantaneous and noisy mixtures of speech signals. Finally, the superiority of the 

proposed CCS–ICA algorithm is demonstrated in metric-comparison performance with 

FAST ICA, Robust ICA, convex ICA (C-ICA), and other leading existing algorithms. 

The gradient-type algorithms can be considered to be robust optimization techniques; but 

they usually suffer from several drawbacks in terms of convergence and stability. Also, 

the convergence of the gradient-type algorithms is relatively slow and their stability relies 

on the choice of the learning rate. Therefore, one can upgrade the optimization method 

that is faster and more robust algorithms such as decoupled and fast relative newton 

optimization as in [8] and [9] respectively. 

Online implementation: one of the most challenging questions about any proposed 

algorithm is that if it can work on-line or not. Real-time implementation is very important 

to measure the efficiency of the proposed algorithm. Therefore, our new algorithms will 

be extended to online implementation. An interesting approach to implement the 

algorithm is to work in a mixed block-based and real time methods such as a block LMS-

type structure [2], [42], [48], [71]. In this approach, some data is stored in a series of 

buffers in order to be processed sequentially and the results are the sequential blocks. In 

this case, the challenge is to find the optimal length of this local buffer in order to 
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perform the separation process with acceptable performance. Moreover, the real-time 

DSP processor can handle the computational cost without interruptions or distortions. 

The challenge here is to determine the length of this interval which needs to be selected 

based on two parameters: 

� It should be short enough for the mixing environment to be considered 
non-stationary 

� It should be long enough to perform a separation processes successfully 
with an excellent. 

This is the same idea as non-stationary mixing case in [1], [98], [111], [114], and 

[120].Therefore, finding an optimal length of the block of data “interval” might solve 

both problems at the same time. 

Underdetermined mixtures  

If the number of observations (sensors) " is less than the number of sources	n, the 

mixing process is referred to be underdetermined (not invertible) [1], [52], [53]. The 

separation processes can be attained successfully in the frequency-domain up to scaling 

and permutation ambiguities under the assumption that the mixing matrix �(�) is full 

column rank at each frequency bin.  However, when the number of source signals is more 

than the number of sensors, the assumption on the mixing matrix �(�) becomes not 

valid. So, in this case the problem is more difficult since the mixing matrix �(�) 
becomes ill-conditioned matrix which means the mixing matrix �(�) is not left pseudo-

invertible. However, a lot of work has been done in order to perform a good separation 

process in the case of the instantaouse mixture [1]. However, there are not so many works 

that has been done on the underdetermined case in the convolutive mixture [1], [38]. In 

the literature, the well-known algorithm of such method is the DUET algorithm which is 

proposed by Rickard et al [2], [3], [38] and [117]. The DUET algorithm assumes a 
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specific delayed model that only works for audio signals with small delay, e.g. hearing 

aid etc. The DUET algorithm performs the separation processes using the two sensors in 

order to compute two parameters amplitude differences and phase differences between 

the source signals. Several papers were published to develop and enhance the 

performance of the DUET algorithm in [3], but their performance in real reverberant 

environment is still limited. One of the promising approaches in this field is to convert 

some of the underdetermine cases of the instantounous mixture into the frequency 

domain in order to tackle the underdetermined problem in the convoluvtive mixture as 

presented in the literature [1], [3], [38]. 
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Convex Cauchy–Schwarz Divergence and its 

Derivative 

Assume the demixed signals YÈ = WXÈ where the mth component	y*È = w*XÈ. 
Now express the CCS-DIV as a contrast function with a convexity parameter α	as 

follows:  

DOOª(YÈ, y*È, α) = log∬ fP(p(YÈ))dy6dyP 	 ∙ 	∬ fP(∏ p(y*È�6 ))dy6dyP	
[∬ f(p(YÈ)) ∙ f(∏ p(y*È)�6 ) dy6dyP]P  

By using the Lebsegue measure [5] to approximate the integral with respect to the 

joint distribution of		YÈ = {y6, yP, … , y�}, the contrast function becomes  

 

DOOª(YÈ, y*È, α) = log∑ fP(p(WXÈ)) ∙ ∑ fP(∏ (p(w*ÈXÈ))�6 )a6a6
[∑ f(p(WXÈ)) ∙ f(∏ (p(w*ÈXÈ))�6 )a6 ]P  

For simplicity, let us assume  

V6 =vfP(YÈ)	,			a

È76
V6å =v2f(YÈ)f å(YÈ)YÈåa

È76
 

VP =vfP(y*È)		,				
a

È76
VPå =v2f(y*È)f å(y*È)y*Èå

a

È76
 

VÏ =vf(YÈ)a

È76
f(y*È)	,			 

VÏå =vf å(YÈ)f(y*È)YÈåa

È76
+vf(YÈ)f å(y*È)y*Èåa

È76
 

and the convex function is  
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f(t) = 4
1 − αP -1 − α2 + 1 + α2 t − t6Ó?P 0 
f å(t) = 2

1 − α æ1 − t
?56 PÒ ç 

then,  

YÈ = p(WXÈ)and	y*È =z p(w*XÈ)
�

*76
 

YÈå = ∂YÈ
∂w*)

= − p(XÈ)
|det(W)|P ∙ ∂ det(W)∂w*)

∙ sign(det(W),	 
 

where		ÄúûÈ(ð)
ÄÊ4r = W*); 

y*Èå = ∂y*È
∂w*)

= @zpÉw¬XÈÍ
�

¬7*
{∂p(w�XÈ)
∂(w�XÈ) ∙ x).		 

where	x)	denotes	the	lÈ|	entry	of	XÈ. 
 

Thus, we re-write the CCS-DIV as  

DOOª(YÈ, y*È, α) = log V6 ∙ VP[VÏ]P  

and its derivative  becomes 

∂DOOª(YÈ, y*È, α)
∂w*)

= VÏP
V6 ∙ VP ∙ V6

åVPVÏ + V6VPåVÏ − 2V6VPVÏVÏå
VÏÂ  

 

∂DOOª(YÈ, y*È, α)
∂w*)

= V6åVP + V6VPå − 2V6VPVÏå
V6VPVÏ  
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