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ENVIRONMENTAL AND PHYSIOLOGICAL FACTORS INFLUENCING
PREMATURE CYATHIA ABSCISSION IN
EUPHORBIA PULCHERRIMA WILLD.

By

Steven H. Miller

Low irradiance levels, high temperatures, and water stress all
promoted cyathia abscission in poinsettia. Low irradiance appeared to be
the primary environmental factor promoting abscission. Compared to
plants maintained under normal daylight (ND) at 16°C night temperature
(NT) abscission was 62% greater on plants placed under 75% shade 4 weeks
after the start of short days. Increasing the NT from 16° to 21° while
simultaneously moving plants to shade only increased abscission an
additional 10%. Repeatedly water stressing plants to - 0.6 MPa usually
promoted abscission when plants were grown under ND, but not when placed
under shade. Leaf removal on plants with intact bracts promoted
abscission prior to anthesis, while Bract removal on plants with intact
leaves decreased abscission. Carbohydrate levels increased in leaves on
plants with bracts removed but carbohydrates decreased when bracts were

present.
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LITERATURE REVIEW

Anatomical Aspects of Abscission

Description of abscission zone. At the base of most plant organs is a

region called the abscission zone where the changes that preceed
abscission occurs. The abscission zone forms during ontogony (55) in
leaves, floral parts, and fruits, but may be induced by several factors
(89, 188). The leaf abscission zone is usually very conspicuous in some
herbaceous species (95, 187) as is the abscission zone for flowers (89,
200) and perianth segments (66). |

Cells in the abscission zone do not differentiate to full
maturity as do cells of adjacent tissues, which defines the zone as a
region of arrested development (8). Cells and structures in tissues
distal to the abscission zone (i.e. fibers, laticifers, resin canals)
may be absent or much less developed in the abscission zone (8).

In the zone, cells are smaller, more densly filled with
cytoplasm (23, 103, 113, 155), with fewer vacuoles and less cell-wall
deposition (8). The limited cell-wall development does not mean the zone
cells are weak. Often the zone is initially as strong as adjacenf:
tissues but only weakens prior to seperation (46, 120, 174). However,
weakness is sometimes found in the abscission zone. A well defined grove
is frequently formed at the insertion of some abscising organs which

increases the structural weakness of the zone, however the groves do not



necessarily have any relation to abscission (89). Additional weakness
can also occur in the zone by a swelling of the cell walls prior to
separation (23, 95, 139, 200).

In vascular tissues of the abscission zone, only tracheary
elements may be present (54). In the region where separation occurs,
there is a lack of sclarification in the cells of the pith with short,
broad tracheary elements (185). The concentration of vascular tissue is
in the center rather than the periphery which presumably weakens the
zone (55). In Phaseolus sp. vascular bundles fuse to form a ring (8).
This was also observed in the leaflet abscission zone of Citrus (100).

In the abscission zone, cell division usually occurs prior to
cell separation (187). However, careful study of the patterns of
separation in the abscission zones of several species led to the
conclusion that cell division was not always an essential aspect of
abscission (8). Gawadi and Avery (61) reported that leaf abscission in
poinsettia occured without cell division. Baird and Webster (15) found
that cell division did not occur in the abscission zone of mature
fruits, nor was cell division found prior to flower abscission in
several solanaceous species (89). However, in cases where cell division
occurs prior to cell separation, the purpose of cell division is for
the development of the separation and primary protective layers (8).
Cell division in the abscission zone commonly occurs in the pith,
cortex, epidermis, and living cells of the vascular tissue (188). The
result is the formation of several tiers of cells, the distal tier(s)

usually becomes the separation layer and the proximal tier(s) forms the



primary protective layer (8).

Separation layer. The separation layer is almost always restricted to a
narrow band of cells, often only a single layer thick. These cells
secrete the enzymes necessary for the cell-wall hydrolysis and
separation. Separation layers-in leaves and lateral structures are
usually parallel to the surface of the supporting stem, although
significant variations can exist. In legumes separation always takes
place in a rather abrupt transition region between the pulvinus and the
leaf stalk (26). In Sambucus separation occurs following the positional
differentiation of special "target" cells in the abscission zone that
grow and lose their adhesiveness in response to endogenous ethylene
(134).

Cell separation usually occurs after cell division and can
initiate in any tissue of the separation layer as considerable variation
exists among species (188). In Coleus leaf abscission (110) the usual
abscission pattern is for separation to begin in the abaxial side of the
petiole through the epidermal and cortical tissue, until the leaf is
supported only by the adaxial part of the cortex and xylem elements. In
leaflet abscission of Phaseolus, (186) separation may start internally
through the pith cells and proceed outward.

Separation of cells in the abscission zone occurs three ways:
mechanical breakage involving non-living cells of the vascular tissue
(185), dissolution of the middle lamella (95), and dissolution of the

middle lamella and primary wall (187). Flower abscission follows these



same general patterns (8Y, 200) but usually happens faster than leaf
abscission (156), and is frequently associated with meristematic
activity in the separation layer (66, 76, 86, 104, 105, 200).

Cell enlargement in the abscission zone often occurs prior to
and after separation (54, 188). In leaf absciss_ion differential
enlargement in the distal and proximal sides of the abscission zone
creates shear forces across the cell walls which result in the leaf
being forced off the plant by cell expansion in the proximal side (97).
The differential enlargement in leaves has been associated with
abscission in a number of species (23, 61, 112, 153). However, cell
enlargement is normally not observed before abscission of floral parts
(89, 104, 105).

Protective layer(s). A primary protective layer develops proximal to the
separation layer to protect the new surface from injury and water loss
(54). In herbaceous species, the layer usually consists of little more
than the tissues exposed by separation with suberin and lignin deposited
between the outermost cells. There may be little or no cell division
(61). However, in most species, cell division occurs well before
abscission, resulting in several tiers of cells proximal to the
separation layer which form the primary protective layer (8). Next, a
periderm develops beneath the protective layer, which usually becomes
continuous with the periderm of the stem (187). In some cases, the
outermost cells of the protective layer may collapse shortly after
exposure to the air, but still form what appears to be an effective

protective layer (8).



One or more secondary protective layers can develop beneath the
primary protective layer in several woody genera (95). In Cornus, Tilia,
and Gleditsia a separation layer can develop distal to the secondary
protective layer by abscission of the primary protective layer (8).
Secondary protective layers across leaf scars usually become continuous
with the periderm of the stem (95). The development of protective layers
often involves expansion of parenchyma tissues which can crush and close
off the functional phloem (8).

Hormonal Regulation

The involvement of hormones in abscision was first postulated by
Laibach and Maschmann in 1933 (93). Since then extensive research has
been conducted to determine the role of plant hormones in the abscission
of plant organs. Several hypothesis have been developed which associates
each of the known plant hormones with abscission.

Auxin. Auxin (IAA) was the first of the major plant hormones to be
identified. Mai (107) showed that orchid pollen (known to be a source of
auxin) delayed the abscission of debladed petioles. La Rue (94)
confirmed Mai's work with Coleus and Ricinus by applying synthetic IAA.
Other workers also concluded that auxin plays only an inhibitory role in
abscission (110, 175). However, auxin inhibits abscission only when
applied distally to the abscission zone (6). Proximal applications of
auxin accelerate abscission (33, 84, 101, 102, 167, 180). As separation

approaches, the ratio of free-extractible auxin on the proximal verses



distal sides of the abscission zone decreases in bean (158) and cotton
(29). Abscission can be accelerated if distal IAA application is delayed
(33). High concentrations of naphthalene acetip acid (NAA) inhibited
abscission while a low concentration promoted abscission in bean
explants (145). An early application regardless of concentration,
inhibited while a late application promoted abscission of bean explants
(145) and in apple leaf petioles (17). This was the basis for a two-
stage hypothesis (146). In stage I auxins tend to retard or inhibit
abscission and in stage II auxins accelerate abscission (146). Later
research with explants identified the role of auxins and ethylene in
these two stages (83). Stage I is the auxin dependent stage when the
tissue is relatively insensitive to ethylene and a period during which
normal auxin inhibition of abscission gradually diminishes and is lost
(8). The length of stage I was found to decrease with leaf age (33).
During stage II, auxin and ethylene accelerate abscission (33, 200).
The active biochemical and structural changes of separation take place
in stage II. Senescing tissue produces large amounts of ethylene which
generally promotes abscission (184).

The auxin gradient concept was later developed to summarize the
aspects of auxin physiology and abscission in bean leaf explants (8).
The concept involves two main fluxes of auxin in bean explants; a flow
of auxin from the leaf, and a flow of auxin down the stem. This creates
an auxin concentration gradient across the abscission zone and appears
to be the primary controlling factor in leaf abscission (8, 9, 84). This

would explain why a high concentration of auxin distal to the abscission



zone tends to delay leaf abscission and a high concentration proximal to
the zone promotes abscission. As the ratio of proximal to distal auxin
concentration increases (as auxin moves across the abscission zone) the
process of abscisssion proceeds (8).
Ethylene. Early work on ethylene grew out of observations that
illuminating gas induced leaf abscission in greenhouse crops (205).
Shull (159) first observed that ethylene induced leaf abscission in pot
roses. Addicott (6) states that ethylene is not always required for
abscission to develop (24) although it is involved with abscission in
several species.

Much of the recent information on ethylene-induced abscission
has come from working with plant explants. Jackson and Osborne (82)
reported that very little ethylene was released from explant tissues
distal to the abscission zone until immediately after abscission. Bean
explant sensitivity to ethylene depends on the explants stage of
sensitivity (83). During stage I, explants are relatively insensitive to
applied ethylene, however, during stage II, explants begin to abscise as
ethylene levels increase (8, 184). Evidence for stage I explant
insensitivity to ethylene compared to stage II show ethylene-mediated
increases in protein synthesis occured in stage II explants, but not in
stage I explants (3). Ethylene treatment during stage I increased the
effectiveness of a treatment during stage II by reducing break strength
in the explant (2). Exogenous ethylene applied in stage I explants
inhibits polar transport of auxins, increases IAA oxidase activity, and

decreases the level of diffusible auxin (71, 118, 132, 173). During



stage II, applied ethylene enhances pectinase activity (119), increases
cellulase activity (78), and decreases break strength (37).

Osborne (131) has suggested that the initial stimulus for

abscission is a hormonal imbalance due to environmental changes and
endogenocus competition; this hormonal imbalance would mediate localized
senescence of cells in the abscission zone, leading to an increase in
ethylene synthesis which would be the signal for abscission. Ethylene
only affects cells in the abscission zone by promoting synthesis of
hydrolytic enzymes or enzymes involved in growth of cells in the
proximal tissue (131).
Abscisic _acid. Okhuma et al (129) first demonstrated that abscisic
acid(ABA) was an abscission regulator in rapidly abscising cotton bolls.
The activity of ABA was equal to or slightly greater than ethylene (22).
Application of ABA has promoted abscission in leaves (35, 50, 52, 136,
147, 162), branches (152, 194), flowers (7, 111, 137, 178) and fruit
(11, 36, 51). Application of ABA accelerated leaf abscission in explants
(1, 14, 23, 37). Many studies have established or strongly indicated a
hormonal role of ABA in the promotion of abscission (50, 163, 176, 177)
as high levels of endogenous ABA have been found in abscising organs
(47).

It is now however beleived that ABA has little or no direct
effect on leaf abscission of explants or to intact plants (1ll). The
rise in ABA could be the result of waterstress, which is known to cause
a sharp increase in ABA (86, 195, 201). Applied ABA was only effective

in inducing leaf abscission when a high dosage was applied (lll).



However, it is beleived that ABA stimulates leaf abscission due to an
indirect affect of unphysiologically high concentrations of ABA
stimulating ethylene production (111). Abeles et al (2) reported that
ABA plus saturating levels of ethylene was more promotive of abscission
than ethylene alone. The abscission promoting effects of ABA occur
during stage II (37) by reducing IAA transport in explants (32) but
there is no evidence that ABA effects abscission if applied during stage
I (37, 72). Craker and Abeies (37) observed that ABA increased cellulase
activity in the abscission zone.

Gibberellins. Applications of gibberellins have caused little or no
abscission from intact plants (165, 192) even though it has been tested
on hundreds of plants (8). However, gibberellins have been shown to
accelerate leaf abscission in explants at high concentrations (19, 29,
34), but to retard abscission at low concentrations (103). In most cases
applied gibberellins stimulated fruit development and reduced
abscission of young fruits (39, 138, 182).

Applied gibberellins inhibit or delay abscission because the
gibberellins intensify the ability of an organ to function as a nutrient
sink (8). Gibberellins can influence abscission by increasing the
synthesis of IAA in plant tissue promoting abscission (121). However,
this effect may be responsible for the abscission retardation at low
dosages of gibberellin (8). It is likely that gibberellin-induced
increase in auxin intensifies the activity of nutrient sinks (8).
Cytokinins. The effect of cytokinins affect on abscission is not well

documented in the literature, although two modes of action have been
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noted (8). First is the ability of cytokinins to enhance the sink
strength of organs to which it is applied. Cytokinins stimulated growth,
induced parthenocarpic development and decreased fruit abscission (38,
98). Kinetin induced an incease in soluble reducing sugars, soluble
proteins, dryweight, and chlorophyll (202, 203). Cytokinins also delayed
senescence in portions of leaves to which it was applied (96, 120).
Secondly, cytokinins can inhibit abscission (64). Cytokinin
applied directly to the abscission zone inhibited bean explant
abscission (133). However, cytokinin applied to areas distant from the

abscission zone accelerated abscission.

Biochemical Regulation

The main biochemical activities related directly to the separation
process are the production, secretion, and action of enzymés which
attack and degrade the middle lamella and cell walls (8). A second
biochemical activity which involves the deposition of cell wall
materials is occuring simultaneously with the degrading activity (8).
Molisch (114) was the first to suggest the possibility that separation
was the result of enzymatic activity. However, the knowledge of enzymes
accrued slowly and it was not until the last two decades that the
present concepts developed. An important advent was the discovery that
oxygen is an absolute requirement for physiological separation and that
the recognized enzymes of oxidative respiration were also necessary

(28).



The discovery of how DNA controls the synthesis of an enzyme led
plant physiologists to observe that changes in RNA and protein synthesis
preceded abscission. The activity of DNA and RNA are significant in the
control of abscission, since these changes lead to changes in hormone
l'evels exported to plant organs. The hormonal changes appear to be the
primary signal for abscisison from the organ to the abscission zone (8).
Principle enzymes involved in degredation of cell walls, particularly
the cellulases and pectinases have received the most attention in the
literature.

Cellulases. Increased cellulase activity has been correlated with
abcission in bean explants (78), Citrus (65, 140), and other species
(132). Lewis and Varner (99) concluded that increased cellulase activity
in bean leaflet abscission zones was due to de novo synthesis and
detected two forms of cellulase in the abscission zone. Subsequeht
investigations disclosed the existance of several isozymes of cellulase
in the abscission zone (63, 99, 141). However, only one of the isozymes
appears closely correlated with abscission (155). In contrast, other
researchers have found that cellulase activity was not associated with

abscission (73). From electron micrograph studies, cell separation was
acheived almost entirely by dissolution of the middle lamella, with
little cellulose breakdown apparent at the time of separation (8).
Cellulase appears to function in the development of the protective

layers, however its involvement in cell separation remains in question

(8).
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Pectinases. Molisch (114) was the first to point out that an enzyme
might be involved in the dissolution of the middle lamella. The
dissolution of the middle lamella and/or cell walls have been associated
with the abscission of floral parts (89, 104 155, 200).

A reduction in Pectin methlyesterase (PME) activity has been
correlated with increased abscission in Coleus (113), and in flower
abscission of Nicotiana (197). These results suggest that abscission is
facilitated in some way by a reduced ability of PME to esterify pectic
substances (8). In studies with two cultivars of Nicotiana, Yager (198)
found that the cultivar that retained flowers longer had higher levels
of PME. However, a number of workers have reported their inability to
find changes in PME correlated with abscission (2, 73, 113, 140).

Another pectic enzyme, polygalactonuronase (PGU) was found to
rapidly increase immediately prior to the abscission of bean leaflets
(119). Similarly, PGU has been identified in leaflet abscission zones of
Citrus (143) and in fruit abscission of Citrus (65). Again, other
workers have not been able to confirm PGU involvement in abscission (18,
73).

Physiological Regulation

Respiration. Carns (28) was the first to recognize that oxygen was
an absolute requirement for physiological separation and that the
recognized enzymes of oxidative respiration were necessary for

abscission. Oxidative respiration is essential for abscission to occur
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by providing the needed energy for enzymatic processes (8). Lowering the
oxygen level to 5% inhibited abscission in Coleus explants (144).
Measurement of respiration rates in bean explants by oxygen uptake
showed that the abscised explants exhibited a "climacteric” rise in
respiration while those that did not abscise showed a slow decline in
respiration (29). The loss of carbohydrates in abscising apple flowers
was attributed to increased respiration (79).

Oxygen is also needed in the process of ethylene biosynthesis

for the conversion of the intermediate l-aminocyclopropane-l-carboxylic
acid (4, 5) to ethylene.
Carbohydrate metabolism. Abscission of leaves, flowers, and fruits are
directly related to the carbohydrate status of the plant (8). Abscission
does not occur as readily under high levels of carbohydrates (8, 10,
151). High carbohydrate levels in the plant in general will contribute
to increased vigor of fruits and leaves and will enable such organs to
synthesize hormones which apparently inhibit abscission (8). Decreased
carbohydrate levels promote abscission in fruit (31, 150, 151), leaves
(30, 70, 115, 127) and flowers (92, 166).

The effect of added sugars on organ abscission depends on the
carbohydrate reserves within the plant or explant (20, 26). When the
carbohydrate level is high, the addition of sugars helps maintain the
integrity of cell wall polysaccharides inhibiting abscission; when the
level is low, additional sugars promote abscission by providing a
substrate for this energy requiring process (10, 20). When carbohydrate

levels were high applications of sucrose strongly retarded leaf
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abscission in bean explants (20, 26), however, sucrose stimulated leaf
abscission in bean explants when carbohydrate levels were low (170).
Carbohydrate translocation. Primary sources of carbohydrates are usually
leaves (128, 135, 164). Regions that utilize sugars are sinks, such as
growing points of roots and shoots, storage organs (i.e. fruits and
seeds), and vegetative tissues both above and below ground (128).
Translocation of sugars occur down a concentration gradient, the
concentration being higher at sources than at sinks (128). Studies have
confirmed this source/sink phenomenon with radiocactively labeled 14c
applied to source leaves (154, 168). The labeled l4c tends to
translocate towards developing sinks such as the root, apex of the shoot
or unexpanded leaves (48, 117, 168).

It has been observed that the presence of developing fruits
hastened the senescence of leaves and stems in bean and that removal of
fruits and flowers delayed the onset of leaf senescence (114, 124, 154).
Molisch (114) suggested that formation of flowers and fruits exhausts
organic reserves in the plant. Developing flowers and fruits act as
competing sinks for nutrients from source leaves. Leaves abscise as the
flowers and fruits develop (8). Flowers and fruits are in some degree of
competition with other flowers and fruits on the same plant. Often
first-set fruits (150) and flowers (166) have a clear advantage over
similar later forming organs which cause them to prematurely abscise (8,
12). In Lilium (49), the youngest flower buds prematurely abscise
presumably as a result of competition for available carbohydrates, the

youngest buds being the weakest sinks (56). Some species do not produce
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flowers until there is substantial vegetative growth to support some
reproductive activity (8). Cultivars of Phaseolus that produce fewer
flowers per day have less flower abscission than heavier bearers (166).
This is also true in many fruit species (40, 176, 196).

As discussed above the development of abscission zones in the
plant can be regulated by the hormone status (8). It has been suggested
that translocation of carbohydrates is hormone-directed (8, 135, 154).
Developing parts of the shoot and root (sinks) produce their own
specific hormonal signals (148). Carbohydrate translocation was
promoted to the site of applied benzyladenine (BA) (12, 62, 157, 158),
IAA (21, 62) or gibberellin (GA) (8, 157). Applied ethylene has both
promoted (122) and inhibited (67) carbohydrate translocation. Abscisic
acid has only shown inhibitory effects (8, 122, 194). These studies tend
to support the hypothesis that carbohydrate translocation to a sink is
under some form of hormonal control directly (154) regulating growth and
abscission of organs in relation to their ability to attract
carbohydrates (8). Addicott (8) proposed that strong sinks have a high
IAA/GA/CK to moderate ABA ratio and weak sinks have a low IAA/GA/CK to
moderately low ABA ratio. However, others beleive hormones do not
directly affect carbohydrate translocation (62, 122, 142). Light has a
promoting efect on carbohydrate translocation from source leaf to sink
(168). Studies showed that light can promote vegetative (169) or
reproductive (106, 116) sinks. Greenhouse rose flowering is influenced
by the amount of carbohydrate available from photosynthesis for flower

bud development (116). Shading vegetative or reproductive sinks



16

decreased l14C translocation to the sinks (116, 151, 168). Shading
flowers and pods‘ of soybean reduced their subsequent sink strength and
promoted abscission (76). Decreased carbohydrate translocation caused
fruit abscission (151) and improper flower bud development (91, 106,
116, 171).

Differences in light quality (particularly red and far red light
acting through the phytochrome system) are known to regulate plant
development (59, 160). Curtis (41) and Decoteau and Cracker (45) have
implicated phytochrome as a light sensing mechanism active in inhibition
of dark-induced leaf abscission in mung bean. Abscission could be
inhibited by red light and the inhibition reversible with far red light.
Red light prevented or delayed flower and fruit abscission in apple (25,
87) and soybeans (75). Red light promoted l4C-sucrose uptake in pea
epicotyles (183) and rose shoots (117) but far red light inhibited
uptake. Adding far red to red further enhanced uptake in rose shoots
over red light alone (117). Far red light inhibited axillary shoot
growth in rose (117), tobacco (88), and tomato (172), thereby promoting
apical dom»inance, whereas red light promoted axillary shoots in rose
(117). Mor and Halevy (117) believe far red light promoted greater sink
activity in the apical shoot of the rose, thereby inhibiting axillary
bud growth. Light may effect the unloading process at the sink by

influencing membrane transport (85).
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Environmental Regulation

Irradiance. The irradiance intercepted by the plant directly affects
photosynthesis and subsequent carbohydrate supply (8). Irradiance levels
high enough to promote accumulation of carbohydrates increases the vigor
of leaves and fruits enabling such organs to synthesize hormones which
inhibit abscission (8). High irradiance levels increase the amount of
carbohydrate in source leaves to be translocated to developing
vegetative (169) or reproductive sinks (116, 117). Supplemental lighting
in the lower canopy of soybeans increased pod set, seeds per pod, and
seed yield and decreased flower and pod abscission (76). Addit_ional
irradiance decreased flower bud abscission in Lilium (48).

Low irradiance levels provide low to moderate carbohydrate
levels in the plant which tend to promote abscission (8). Low irradiance
levels are commonly found in tree canopies where leaves are competing
for carbohydrates causing less competative leaves to abscise (110, 149).
Flower bud abscission in Iris (58), Gladiolus (69), Rosa (204), and
tomato (90) increased due to poor irradiance conditions in greenhouses
in the winter. In Lilium (49) flower bud abscission coincided with peak
ethylene production. As photoperiod decreased, ethylene production
increased (175). Shading decreased the amount of l4c translocated to
shaded areas (76, 116, 151, 168) and reduced the subsequent sink
strength of flowers and pods in soybean promoting abscission (76).

A shortened photoperiod was found to be an important trigger

for autumnal defoliation of many trees (60). However, increasing the
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daylength prevented defoliation in Acer (130) and Plumaria (123). The
correlation of leaf abscission sensitivity to photoperiod suggests that
leaf abscission in the autumn in some species may be under the control
of phytochrome (8). Curtis (41) and Decoteau and Cracker (45) found that
red light inhibited dark-induced leaf abscission in mung bean; red light
inhibition could be reversed by a brief exposure to far red light.
Temperature. Early workers had difficulty in distinguishing whether
temperature imposed stresses that served as initiating factors of
abscission or if temperature determined the rate of the abscission
process (8). In extensive work with petal abscission, Fitting (57)
recorded increasing rate of abscission as the temperature increased, as
was more recently observed in petal abscission in the seed geranium
(15). High temperatures also eliminated the effect of Ag* (a known
inhibitor of ethylene action (18)) in inhibiting petal abscission in the
seed geranium (112). As temperature increases, ethylene production
increases. The ethylene production response to temperature behaves
consistant to an enzyme activated system (27). More recent work defined
temperature response curves which have been determined for explants of
bean (199), cotton (108), and for petal abscission in Linum lewisii
(190). The characteristic maxima for each species occured at 259C, 309,
and 350 respectively. A Q-10 of ca. 2 was found for most temperature
response curves, characteristic of most chemical reactions (8).

Leaf abscission is a common response to cold temperatures.
Severe cold will kill the cells in the abscission zone thus,

physiological separation is not possible (8). Light frosts that do not
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injure the abscission zone can cause considerable leaf abscission in
Citrus and Gossypium (8). Depending on species, varying degrees of cold
are sufficient to induce abscission, and in some cases cold is the
primary factor initiating autumnal defoliation of deciducus trees (8).

Excessively high temperatures also contributes to abscission,
however, some of the high temperature effects may be the result of water
stress rather than temperature itself (8). Weisner (189) observed that
well-watered trees showed little or no leaf abscission at high
temperatures. Leaf abscission that occured was on the lower and
innermost leaves, not the leaves that received the most direct rays
(189), which supports water stress rather than high temperatures that
induced abscission (8). Flower buds, flowers, and young fruits abscise
in response to high temperatures in crops such as snap beans (193).
Water stress. Leaf, flower, or fruit abscission often is in direct
proportion to the severity of a water stress (181). Leaf abscission
varies considerably among species and with leaf age (125, 16l1). Water
stress induces chemical and biochemical changes that tend to promote
abscission by affecting hormone levels (8). Water stress increased the
activity of IAA-oxidase (42), decreased diffusible auxin (74), and
decreased auxin transport (43). Itai (80), and Itai and Vaadia (81)
reported a decrease in cytokinin activity in response to water stress.
Water stress also increases endogenous ethylene levels (44, 67). Rapid
increases in ABA levels were found in response to water stress (68, 86,
195, 201).
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Conclusions

The abscission of organs from the plant body occurs in a region
at the base of the organ called the abscission zone. Cells in the
abscission zone are smaller and more densly filled with cytoplasm. Prior
to abscission, the cells undergo considerable meristmatic activity
forming a separation layer, protective layer(s), or both. Cells in the
separation layer secrete the hydrolytic enzymes (cellulases and
pectinases) necessary for cell-wall hydrolysis, separation, and
protectve layer formation. Cells can separate three ways; dissolution of
the middle lamella, dissolution of the middle lamella and primary wall,
or mechanical breakage involving non-living cells of the vascular
tissue. A primary protective layer consisting of periderm usually forms
proximally to the separation layer to protect the newly exposed surface
from injury or water loss. In some woody species a secondary protective
layer may form. Cell enlargement often occurs prior to and after
separation. Differential cell enlargement in the distal and proximal
sides of the abscission zone creates shearing forces across the cell
walls which results in abscission.

The initial stimulus for abscission appears to be a hormonal
imbalance due to environmental changes and endogenous competition. This
hormonal imbalance mediates localized senescence of cells in the
abscission zone, leading to an increase in ethylene synthesis, which

could be the signal for abscission. Ethylene enhances pectinase and
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cellulase activity. For abscission to occur, all hormones probably
modify the organs sensitivity to ethylene or promote ethylene synthesis.
Auxin both inhibits and promotes abscission depending on the stage of
sensitivity of the organ to ethylene and in the auxin concentration
gradient across the abscission zone. Abscisic acid has been shown to
promote abscission as ABA levels increase during water stress which
enhances ethylene production. Gibberellins and cytokinins usually
inhibit abscission by intensifying the plant organs ability to function
as a carbohydrate sink, however, if levels of either hormone are low,
ethylene is able to circumvent their inhibitory effect.

Oxidative respiration is essential for abscission to occur by
breaking down energy-rich carbohydrates for the numerous enzymatic
reactions involved.

Hormones play either a direct or indirect effect on controlling
carbohydrate translocation from source to sink, therefore the level of
carbohydrate at the abscission zone will determine whether the organ
abscises or not.

Low irradiance levels or short photoperiods in long day plants
decreases the sink strength of organs, promoting ethylene synthesis and
abscission. Irradiance levels sufficiently high to accumulate
carbohydrate increase the vigor of the organ enabling the organ to
synthesize hormones that inhibit abscission. Leaf abscission in some
species appears to be under the control of phytochrome.

High temperatures or water stress appear to induce abscission by

increasing the rate of ethylene synthesis.
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