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ABSTRACT

LARGE DEFLECTION RESPONSE OF AN ELLIPTICAL
SECTION RING TO DISTRIBUTED AXIAL LOAD
By

Lawrence A. Nattrass

The behavior of a circular ring with an elliptical cross-
section was studied to determine its suitability as a spring. The
design parameters for a spring system to support an axial load
included an annular configuration of fixed diameter and minimum
volume. The load and deflection range were specified. Since the
spring supported a mass, the natural frequency of the system was
also a consideration. Considering the need to store a fixed
amount of energy in a minimum volume, the optimum spring appeared
to be one which had a flat or nearly flat load-deflection curve.
The Toad-deflection characteristics of the ring proved to meet
most of the system parameters. The uniqueness and originality of
the concept necessitated the development of an analytical model,
prediction of performance and failure parameters, and experimental
verification of the design.

An analytical model was developed to predict the force-
deflection and stress-deflection characteristics of a given ring.
The effects of friction were considered and the useful range of the
ring was described in terms of critical angles for self-locking.

The model agreed with the experimental results.
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CHAPTER 1
INTRODUCTION

A weapon assembly in the nuclear stockpile is expected to
function properly after many years of handling and storage under a
variety of conditions. The anticipated environment varies from
system to system but generally involves a range of operating tem-
peratures and a vibration spectrum. One such assembly designed at
Lawrence Livermore Laboratory (LLL) required maintaining the rela-
tive positions of components over a specified temperature range.
The fact that the components were of dissimilar materials resulted
in growth and contraction due to differential thermal expansion.

A decision was made to employ a spring subjected to an initial
deflection to maintain contact between components.

Springs are commonly used in mechanical design to perform
such functions as energy absorption, frequency response regula-
tion, vibration isolation, and force generation. The use of
springs to maintain contact between components or to maintain the
relative position of components in assembly is common practice.

In the application described in this work, the intent was to
preload the spring during assembly at ambient temperature. The
amount of preload was determined by the deflection required to
compensate for the maximum thermally induced contraction. The
spring was also required to deflect an additional amount equal to
the thermal expansion from ambient to the temperature extreme. In

order to allow for cyclic thermal loading, the total deflection



range had to be within the elastic range of the spring material.
Several other constraints were also imposed and are discussed in
Chapter II.
In general, any elastic medium can be used as a spring.
Springs are characterized according to the nature of the relation-
ship between the applied force and the resultant deflection. The
fundamental class of springs are elements having a linear force-
deflection curve characterized by a relationship of the form
F = kx (I-1)
where F is the applied load, x is the deflection, and k is a
constant. In actuality, the linearity of the element may exist
over only a portion of the deflection range.
Non-1linear springs are those characterized by equations of
the form
F = f(x) (1-2)
where f (x) is a particular function. Hardening springs and soft-
ening springs are two classes of non-linear springs which are fre-
quently employed in mechanical design. The terms hardening and
softening describe the deviation of the force-deflection curve
from linear. Figure 1 shows load curves for several classes of
springs. The constant force element is a particular class of
non-linear spring and is shown for later reference.
Although any elastic medium will function to some degree as
a spring, it is generally faster in design practice to select a
commonly used and adequately characterized spring form. Several
common spring types are widely used in engineering applications

and have been thoroughly investigated. Design equations giving
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Figure 1. Typical load-deflection curves for various spring types.




force, deflection, and stress for coil springs, leaf springs,
Belleville springs, and other types can be found in most
engineering handbooks. The typical design cycle for a spring for
use in a particular application might proceed as follows:

1) Select the critical design parameter

(force, deflection, or spring rate)

2) Define the geometric constraints imposed

on the spring design

3) Select a spring type which will fit the

geometric limitations

4) Design the spring using existing design

equations, charts, or graphs

5) Select a spring material which will not

fail at the calculated stress levels

In general, this is an iterative process with the number of
cycles dependent upon the experience of the engineer and the na-
ture of the constraints.

The work to design a spring system for use in an assembly
at Lawrence Livermore Laboratory was begun in September, 1977 and
completed in February 1978. During this period a large number of
spring designs, many of them unique and original, were analyzed to
determine }he degree to which each met the various performance cri-
teria. Most designs were eliminated on the basis of hand calcula-
tions using textbook equations or approximations. Several designs
were shown to be potential solutions to the problem and were ana-

lyzed in depth. In the final selection process, two designs were



fabricated and tested. The test results were then correlated to
the analytical work to establish a verified predictive capability.

The purpose of this research was to analyze the response of
a circular ring having an elliptical cross-section to a distri-
buted axial load. In particular, the goal was to develop a model
which described the large-deformation 1oad-deflection curve and
the stresses in the ring. The predictive capability was necessary
for the design of a compact non-linear spring which had program-
matic use at Lawrence Livermore Laboratory.

The elliptical section ring was invented to provide a con-
stant force element which fit the available space. The concept
evolved from a study of a circular section ring loaded by a dis-
tributed couple. A ring offered the optimum use of the available
space (see Chapter II) but a means of resolving an axial load into
a couple was required. Several studies were made of rings with
radial fingers as shown in Figure 2 and a ring with a continuous
load platform (Figure 3) was considered conceptually.

The author formulated the hypothesis that a ring having a
non-circular cross-section could be designed to respond as a con-
stant force spring. An elliptical cross-section was chosen for
this study because the curve is defined by a single equation of
relative simplicity. This reduced the complexity of the analyti-
cal work which necessarily preceded the experimental study of the
ring response.

The concept of an elliptical-section ring is shown schemati-
cally in Figure 4. Applying the load at the radial tangents of

the ellipse produces a distributed twisting couple
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Figure 4. Schematic representation of a circular ring having an elliptical cross-section.



Mt = Pe (I-3)

per unit of circumference. By analogy to a circular-section ring
as described by Timoshenko (1) and Roark (2), the ring undergoes a

rotation, ¢, which is of the form

2
o= TR _ peR? (1-4)
Elxx EI
XX
where
Ixx = Ixx’ the moment of inertia of the cross-

section about the radial mid-plane

mean ring radius
¢ = angle of twist
e = e(¢), the eccentricity of the loading.

The above relation is approximate for small ¢. The particular form
of Ixx(¢) is given by the transformation equation for the moment
of inertia tensor

Ly (0) = T cos?p + 1, , sin% | (1-5)

X yy
The deflection under the load, P, is

5 = 5(¢) (1-6)

The significance of these approximate descriptions is the clear
implication that a non-linear relationship exists between force
and deflection. The initial hypothesis of the research was that a
region exists in which the force is nearly constant regardless of
the deflection.

This report describes the research required to determine

the response of a particular ring section (elliptical) and to verify
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the accuracy of the analytical model. The constraints imposed by
the assembly for which the spring was designed were the impetus for
the invention and are described in Chapter II. Alternate designs
are presented in Chapter III as a means of assessing the unusual
nature of the problem and the effects of various constraints on

the solution. A feasibility study employing the small angle rela-
tionships is presented in Chapter IV. The various analytical
models developed for the elliptical-section ring are presented in
Chapter V.

The fabrication of a large diameter ring with a small, non-
circular cross-section presented several challenges. The techni-
ques considered are presented in Chapter VII. Chapter VIII
presents a discussion of the computer program used to predict the
response of a given ring and discusses correlation between the
model and experimental data. Chapter IX presents conclusions and

recommendations for future research.



CHAPTER II
PROBLEM DESCRIPTION

The functional requirement imposed on the spring system was
that it maintain the relative position of components over a range
of temperatures. The spring was required to compensate for differ-
ential expansion and contraction of dissimilar materials. The
spring system was subject to a variety of design constraints im-
posed by requirements external to the system. These constraints
were both geometric and physical.

The severity of these limitations eliminated ordinary
springs and forced the development of a variety of unique and orig-
inal types of springs. Limitations on time and resources mandated
that the development of a spring type procede in a logical and effi-
cient manner. The sequence was

1) Discussion of the proposed spring by members
of the engineering team to verify that the
concept met the criteria and to identify any
obvious inadequacies such as material problems
or fabrication difficulties.

2) Initial design calculations were performed using
approximations from appropriate engineering theory or
practice. If the design looked feasible and if no
insurmountable obstacles, such as stresses exceed-
ing the ultimate strength by several orders of magni-

tude, were encountered, the development continued.

1
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3) A calculational model was developed either from
existing equations or derived from theoretical
precepts. The resulting equations were programmed and
computer solutions were generated.

4) Test specimens were fabricated and tested in the labora-

tory.
This process served to optimize the use of time and resources by di-
recting the engineering effort toward the most viable solutions and
by focusing the fabrication and test efforts (which were typically
long lead-time items outside the control of the engineer) on the
best candidates.

The constraints which drove the design of the spring system
imposed a geometric envelope along with several functional require-
ments. Restrictions were also placed on the types of materials
which could be considered. The constraints on the design are illus-
trated in Figure 5 and are listed below.

1. The spring (or system of springs) had to be in an

annular configuration of fixed radius.

2. The cross-section area occupied by the spring system

was to be minimized (an area of 0.040 x 0.100 inch
was the initial goal).

3. The force exerted at -0.015 inch deflection was to be
300 pounds (deflection was defined from the initial
preloaded state).

4. The spring was required to deflect + 0.015 inch

elastically.
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p=F/2nR

Figure 5. Design envelope for a spring system (300 Ibs < F < 600 Ibs).
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5. Organic materials such as rubber or plastics were not
acceptable.

6. Materials selection parameters included formability,
machinability, high strength, and ability to withstand
elevated temperatures.

7. The spring was to be fabricated with state-of-the-art
techniques.

8. Since the system supported a mass under dynamic
conditions, the spring rate affected the resonant
frequency.

9. Stress considerations in the assembly indicated the
desirability of minimizing the maximum force by use of
a non-linear spring.

It can be seen that the most stringent constraints were the result
of geometric limitations and deflection requirements. The effects
of these limits are considered in the next chapter where various

design alternatives are explored.



CHAPTER III
EVALUATION OF ALTERNATE DESIGNS

The consideration of spring systems other than the ellipti-
cal section ring is significant because it illustrates the nature
of the problem and the evolution of the solution. As previously
mentioned, the effort to design a spring system for the specific
application discussed in Chapter II occurred over a five month
period. The level of effort devoted to the solution was neces-
sarily a fraction of full time for the members of the design
team. Perhaps as many as twenty spring concepts received other
than cursory examination and, of these, three have been selected
for discussion: coil springs, buckling columns, and flat circular
plates (which include Belleville springs).

The coil spring is perhaps the most widely employed spring
configuration in engineering design. Coil springs range in size
from a half ton coil used to cushion missile silos to a spring mea-
suring 0.032 inch outside diameter and 0.050 inch overall length
used in a miniature ball bearing assembly (3). The design of such
springs is defined in most machine design tests and mechanical
engineering handbooks (3, 4, 5). The pertinent equations are
listed below and the parameters are illustrated in Figure 6. The
equations are developed from the equilibrium condition

PD

T== (111-1)

15



Figure 6. Design parameters for a helical coil spring.
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and equality between the work done on the spring and the strain

energy in the wire

(I11-2)

where it is assumed that the force increases linearly from zero.

It can be shown that the angle of twist of a bar of circular cross-

section is given by

= 4L (I11-3)
® =&
where
= _mDn .
L cos G the total active length of the
spring wire
ﬂd4
J = 3 the polar moment of inertia of
the cross-section
G = shear modulus
Substitution in Equation (III-2) gives
Ps . _P%03 mn
"2  8GJ cos a
Solving for the deflection
5= PD3 wn
4GJ cos a
or
3 3
5 = ron . 8P (C = D/d) (111-4)

d4G coS a
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for small values of a such as those encountered in closely coiled
springs. The discrepancy between the strain energy in the helical
coil and that in a straight bar is neglected in this discussion.
The stress in the wire is due to direct shearing and to the
torsional stress. The Wahl equation (4) is an experimentally veri-
fied relation which includes the direct shear, the torsional
stress, and the effects of curvature. The maximum shear stress

in the wire is

8PD 8PC
S, F Kj“ K — (I1I-5)
s wd ﬂdz
where
_4c -1 0.615
K=2c=a*"¢

The problem specifications outlined in Chapter II require

8§ = +0.015 inch from nominal

P = 300 pounds at & = -0.015

Thus, for any linear spring, a load-deflection curve as shown in
Figure 7 is required. Although any preload could be used, the
minimum stress in the spring will result if the preload is mini-
mized. Assuming a maximum diameter of 0.040 inch and a height
at 6 = 0.015 of 0.100 inch, the number of springs, N, around the

annulus is

N = _2“_ 2“!2.252 = 353

R=
D0 0.040
where

R = radius of the annulus



Net force (lbs)

600

300

Nominal
deflection

I—-—0.01 5++0,01 5——1

| | l |

0.015 0.030 0.045 0.060
Deflection from free position (in.)

Figure 7. Load deflection curve for a system of n linear springs

0.075
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use N = 350
Black and Adams (4) give an allowable stress of 75,000 psi for a
spring in average service where the wire diameter is less than
0.085 inch. Rearranging Equation (III-4), the number of active
coils, n, can be established as
8Gd -
n= % (111-6)

Now, assume a wire diameter of 0.005 inch which implies

D=D,-d=0.040 -.005 = 0.035
C=0D/d =7
K=1.2

Then, using G = 12 x 106 psi for steel,

_ (0.045) (12 x 10%)(0.005) _

(8)(%—%)(7)3 = 113.9

114
The solid height of the spring is nd = 0.57 inch and the minimum

use n

free height is the sum of the solid height and the deflection re-

quired or 0.615 inch. Clearly this exceeds the allowable space.
Obviously, a vast number of other springs will satisfy

these conditions but will require that some constraint be vio-

lated. In addition, the problems associated with manufacturing

and installing 350 tiny coil springs were not considered insignifi-

cant. On the basis of these factors, the use of an array of coil

springs was eliminated as a possible solution.
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In previous research, the author investigated the large de-
flection buckling of columns as an energy absorption device
(6). This study showed that, in the absence of lateral con-

straints, the force required to deflect a buckled column elas-

- tically remained constant until the material failed. Materials

having high strength and Tow modulus were required to achieve
large elastic deformations. The glass fiber/epoxy systems used in
the earlier work were not acceptable in this design, therefore,
high strength titanium alloys and steel alloys were evaluated.

The governing differential equation for a buckled column

such as shown in Figure 8 is

dZ
El = -Py (6, 7) (I11-7)
dx
or 2
d—%+k2y=0.
where dx
2_ P
K=
The solution of this equation is
Y = A sin kx (I11-8)
where
2
kg = % = nm (111-9)
or
2.2
= ™ EI III-10
P="—>" ( )
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Figure 8. Buckling of a pinned-end column
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which is the Euler buckling equation for a pinned-end column. The
lowest order solution is n = 1. The amplitude of the deformed
shape, A, is indeterminate which implies that the force required
is constant with amplitude and therefore with end deflection.
This was established experimentally (6).

The end deflection of the column can be determined from the

projected length of the sinusoid

Yo 2R R 2 o
s=J' 1+ S——cos” == Jdx
A

)
2 .2
- AT L A o AR (111-11)
=9 + __;f__ + Br sin
where
A=2/n
n=1/2 1, 3/2
For
2 .2
_ _ m A
n’]’ S-l"’ 2
2 .2
Ce_.o=T_A (I11-12)
§=6-2 1
and, for § << s, s =4,
and
s TR (111-13)
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The bending stress in the column can be established from the curva-

ture of the deformed part and is given by

o = n AcE (I111-14)
(3
where
c = half of the thickness of the column
E = modulus of elasticity

One of the cases calculated for the problem was based on the fol-
lowing assumptions:

A = 0.040 (the width of the groove)

o = 150,000 psi
Substituting and solving Equation (III-13)for the free length,

2 .2
s=-“;6“—=o.351

which exceeds the maximum allowable height. Assuming that this
constraint could be relaxed, the stress equation can be solved for

the thickness

2
os
t =2 = 5
2n- AE
t = 0.0015 for titanium

and t

0.0008 for steel
If a circular section is assumed for the column, the moment of

inertia for the cross-section is

nd’

I= 62

and the force equation can be written
3 Ed4

P = ——2—"
644
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or
P=23.2x 10'4 pound for titanium and

P

4.5 x 107 for steel
The number of columns required is

7

n =80 213310 for steel

This design was clearly infeasible as were several other column
designs.
A different approach to the column problem assumed a rec-

tangular cross-section for which the Euler equation becomes

2 3
P Ebh (I11-15)
Pcr m 322
where
P = 300 pounds, the total load
m = the number of columns
3
I = bh

=17 is the momentum of inertia for
a rectangular section.

In this example, the yield strength of steel was taken to
be 5 x 104 psi which is the approximate value for some stainless
steels in the fully annealed condition. This condition would re-
sult if the columns were required to survive a furnace braze cycle.

Certain quantities are more accurately estimated then others
in a design situation. In this case, the yield strength and modu-
lus of the material are easily obtained, the required deflection is
known, and the free height can be estimated. The unknowns are the

number of columns, the width of each column, and the thickness. If
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the width is assumed to be the width of the groove, then the thick-

ness can be found from the stress equation as follows
2

4n~ AcE
0:———.
22
2 .2
5="2A — A=14g
t=2c
Substituting
- on vét E
o 23/2 (ITI1-16)
or
tz._o.gi,_z_
2 JS E

The number of columns is computed from the Euler equation as

written in Equation (III-15)

n=
nz Ebt3

The data for the problem are summarized below:

P = 300 pounds
E =28 x 109 psi
b = 0.040 inch
¢ = 0.035 inch
£ = 0.100 inch
o=5x 104 psi
then t = .00005 inch
n=6.5x 10°

Although this was a marked improvement over the first attempt, it
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was decided that buckling columns of a reasonable design would not
fall within the problem constraints.

As a final example of the alternate spring systems evalu-
ated, consider the effort to design a flat circular plate with a
central hole which would meet the functional constraints. The
plate geometry was ideally suited to the application and the ad-
vantages offered by the relative simplicity of fabrication and
assembly were such that constraints on the diameters could be
relaxed slightly to permit use of a plate. Three plate types were
considered: a flat plate of constant thickness fixed at the inner
edge as shown in Figure 9, a similar plate fixed instead at the ‘
outer edge as shown in Figure 10, and a conical disk of constant
thickness. The conical disk, or Belleville spring, is shown in
Figure 11. It is the design closest in principle to the ellipti-
cal section ring. Calculations will be presented for the plate
with the inner edge fixed and for the Belleville spring.

Plate equations are available from many references, those
used in this study were taken from Roark (2) and are typical of
the handbook type equations. The constraint and load conditions
considered in this analysis corresponded to Case 1 of the
"Formulas for flat circular plates of constant thickness". The
general and particular cases are shown in Figure 12 along with the

boundary conditions. Parameters of interest are

4/C, C
- -Wa < 279
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Figure 9. Plate with inner edge fixed.
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Figure 10. Plate with outer edge fixed.
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Figure 11. Conical disk or Belleville spring.



Yb

Figure 12. Plate parameters of use in equations from Formulas for Stress and Strain. [2]
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where

ey = {8 + 1] g (3 -]

2w o ()]

(ITI-18)

(ITI-19)

(III-20)

(IT1-21)

(I11-22)

(I11-23)

C gﬂl%l]m‘%+[1;qb_(§fn (111-24)

A trial case was assumed as shown in Figure 13. The material

chosen was a titanium alloy, B120VCA, which has the following

properties (5)

E =14.8 x 10° psi
v = 0.21

o, = 1.90 x 10° psi
o, = 2.00 x 10° psi

The constraints C2, C3, C8’ and C9 contain material data

and radii and do not require thickness. These values were found

to be
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b=2.10"

p = 42.4 Ib/in

l't= 015" J

Figure 13. Parameters for flat plate calculation.
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C, = 2.17 x 10°3
Cy = 2.04 x 107%
Cg = 0.955
Cg = 0.063

The maximum moment in the plate was

2C
- “Wa~ "9 _
M B _Cs = -6.740 (IT11-25)

5

Assuming a maximum working stress of 1.80 x 10~ psi, the thick-

ness required was

Y
t=y[7% =0.015

The deflection at maximum load was calculated to be
y = 0.007 inch
which was not adequate.

The results of the hand calculation above were sufficiently
close to meeting the constraints to justify a more detailed study.
A computer program, PLATEI, was written to sweep through ranges of
thickness for various combinations of inner and outer radius. The
results of a typical run are presented in Table 1. Cases which
resulted in acceptable stresses and deflections are flagged. The
conclusion regarding the use of plates was that the inner radius
necessary to achieve the stress and deflection levels specified
was outside the acceptable range. The evaluation of plates having

fixed outer edges produced a similar conclusion.
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TABLE 1. SAMPLE PRINTOUT FROM PLATEI.

CIRCULAR PLATE WITH INNER EDGE FIXED

1.9000 OUTER RADIUS= 2.2500

E= 1.680E+07 NU= .300

INNER RADIUS=
MATERIAL DATA:

LOADING: 300.00 POUNDS TOTAL 21.2207POUNDS/ INCH
THICKNESS DEFLECTION STRESS
.0050 1.703E+00 2.040E+06
.0100 2.129E-01 5.099E+05
.0150 6.307E-02 2.266E+05
.0200 2.661E-02 1.275€E+05
.0250 1.362E-02 8.15B8E+04
.0300 7.884E-03 S5.665E+04
.0350 4.965E-03 4.l162E+04
.0400 3.326E-03 3.187E+04
.0450 2.336E-03 2.518E+04
.0500 1.703E-03 2.040E+04
.0550 1.279E-03 1 .686E +04
.06C0 9.855E-04 1.416E+04
.0650 7.751E-04 1.207E+04%
.0700 6.206E-04 1.041E+04
.0750 S.046E-04 9.065E+03
.0800 4.158E-04 7.967E+03
.0850 3.466E-04  7.057E+03
.0900 2.920E-04 6.295E+03
.0950 2.483E-C4 5.650E+03
.1000 2.129E-04 5.099E+03
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The Belleville spring is a non-linear spring which is widely used
in applications requiring a tailored load-deflection curve includ-
ing those cases in which a considerable range of deflection at
constant force is necessary (2). Roark (2) gives equations based
on the work of Almen and Lazlo (8). Roark's presentation of two
constants in tabular form necessitated the use of interpolation to

obtain values for a solution. The equations for load and stress

were
[ .
g Ej?-) wZ |79 (h ) %)t ' t3] (H1-26)
. -Es r s -27

where Cl and C2 were the tabularized constants based on the
ratio a/b. Table 2 includes several entries from Roark.

The test case was solved using a Hewlett Packard HP-67 pro-
grammable calculator and some available routines. The problem

parameters are listed below:

P = 300 pounds
§ = 0.035 inch
a=2.25 1inch
b =2.21 inch

The ratio a/b

1.02 was not a tabulated case, therefore, a linear
regression analysis of the tabular data was used to obtain a value
of M = 0.1312. It was decided to assume values for the free

height, h, and to solve for the thickness. Rearranging the
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TABLE 2: BELLEVILLE SPRING CONSTANTS FROM
FORMULAS FOR STRESS AND STRAIN [2]

a/b C1 C2

1.0 -- --
1.2 1.02 1.05
1.4 1.07 1.14
1.6 1.14 1.23
1.8 1.18 1.30
2.0 1.27 1.46
3.0 1.43 1.74
5.0 1.77 2.38
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equations resulted in a cubic function in t:

2
t3+(h_6)(h_%)t+P(]’\’)Maz=o

ES

which became, for a steel spring,

t3 4+ (h - 8) (h - %)t +(217x10°Y =0 (111-28)

This equation was solved for a series of reasonable heights
and yielded negative and complex thicknesses. The assumption was
that the spring parameters and the load requirements were incompat-
ible. Further analysis was deferred because of time constraints.

The Belleville spring was of additional interest because of
the similarities between the elliptical section ring and the coni-
cal washer. The load in both cases is applied through the tangent
points of a rotated, non-circular section resulting in a variable
moment arm. The deflection of each is a non-linear function of
rotation. Since the Belleville spring is a standard engineering
design, it is of interest to characterize its response and compare
it to that of the elliptical section ring. A modified Belleville
spring with circular ends as shown in Figure 14 was also studied.

A cross-section of a Belleville spring is showm in Figure

15. The eccentricity of load application, e, can be seen to be

e =2r sin (¢ - Ot) (I11-29)
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\)\ /- Radius

(@) =0 (b) ¢ =90°

Figure 14. Modified Belleville spring.
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(4]

(a) ¢=0

(b) ¢=90°

Figure 15. Deflection model for a Belleville spring.
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where

r =\}32 + b2 (111-30)

o, = tan *! (b/a) (111-31)
The deflection resulting from a rotation from¢ = ¢, to ¢ = 0 is

given by
§ = 2r (cos (¢ - ©,) - cos (¢ - ©)) (111-32)

Equations III-29 and III-32 may be normalized to the parameter %
in order to consider generalized response. The eccentricity be-

comes

a,2 172
£-2 (p)” +1 (sin ¢ - ©
a2
()

and the deflection becomes

t) (111-33)

1/2

a,2
...) + 1
(_____ (cos (¢ - et) - cos (¢0 - Ot)) (I11-34)

Note that these equations are based on the assumption of
neglibile distortion of the cross-section. Figure 16 illustrates
the change in load eccentricity with position for a fixed value

of ~%. At ¢ = 0, the moment arm of the applied load is equal to
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16. Belleville spring: Deflection from (,*)o =0.
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the plate thickness and the moment is negative according to the
convention established. The curve passes through zero at ¢ = et
and reaches a maximum value equivalent to the length of the
section (e = 2a) at ¢ = 90°,

The negative portion of the curve indicates that the moment
of the applied force opposes positive rotations. This condition
exists until the corner has rotated past the vertical ( ¢ = et).
Figure 16 also contains a plot of normalized displacement as a
function of rotation (Equation III-34). In this case, the
negative portion of the curve results from the fact that the
height of the section increases as the corner moves upward in the
range of rotations

In the case of the modified Belleville spring (see Figure
14), the line of action of the applied force must always pass

through the center of curvature of the radiused end. The

equations for eccentricity and deflection can be seen to be

e = 2r sin ¢ (IT1-35)
and

§ = 2r (cos ¢ cos ¢;) (I11-36)
where

r=a-b (111-37)

The general response of the modified Belleville spring may be char-

acterized by the equations when normalized to ratio
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(- 59 sin ¢ (111-38)

N
(Y]

b
= (1 - 5) (cos ¢ - cos ¢o) (I11-39)

MO,

which are plotted in Figure 17. In this case, the eccentricity of
loading is initially zero and increases to a maximum given by e =

2(a-b) at & = 90°. The deflection ranges from zero to § = 2(a-b)

at ¢ = 90°.

These general response characteristics will be discussed
relative to the characteristics of the elliptical section ring in
Chapter V.

The results of these and many other studies were negative
in the sense that no solutions were found to the design problem.
The conclusion drawn from these efforts was that a continuous
elastic medium would offer the greatest probability for success.
The flat plate calculations and a study of a ring in torsion (see
Chapter IV) led the author to postulate the response of a non-
circular section ring and to assume that stresses could be held to

reasonable levels.
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Rotation — degrees

17. Modified Belleville spring: Deflection from ¢° =0.



CHAPTER IV
PRELIMINARY CALCULATIONS OF A TWISTED RING

The analysis of alternate spring systems showed that any
system meeting the constraints of the problem would be highly
stressed. The critical element of effective design was felt to be
the development of an accurate predictive capability for deflec-
tions and stresses. In order to justify pursuing this endeavor,
some preliminary estimates of force, deflection, and stresses were
required. A review of the literature showed the most applicable
work to be that of Timoshenko describing the twisting of a circu-
lar ring of uniform section by distributed couples as shown in
Figure 18 (1). Timoshenko refers to a development by R. Grammel
(9) for the case when the angle of twist is not small, but the
author was unable to obtain a copy of this paper. Additional
relevant work was done by Rodriguez (10) discussing the three di-
mensional bending of a ring on an elastic foundation. Although
Timoshenko's derivation was based on the assumption of small angle
rotation, it was felt to be of sufficient accuracy to establish
the viability of the concept as a potential solution. The proce-
dure is similar to that employed in developing the actual model.
The free body diagram of one half of the ring is shown in Figure 19.
A summation of the moments about diameter AB may be written

dMAB = (MtR da) sin a, (IV-1)

46
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Mt (in.-Ib/in.)

S

L

~

AL,

Figure 18. Circular ring loaded by a uniformly distributed twisting moment.
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RDa

Figure 19. Free-body diagram of a circular ring loaded by a distributed couple.
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thus /2

= ZI MtR sin a da = -ZMtR. (Iv-2)
0

Mag

which results in a bending moment, M, on each cross-section equal

to half of the moment, MAB’ or
M
=-AB_ _ IV-3
M=— M,R. (Iv-3)

Symmetry conditions require that the motion results from the rota-
tion of each cross-section in its own plane.

The displacement of any point P results in a change in ra-
dius and in a corresponding change in the length of the annular
fiber passing through P. The displacement of P is

PP' = po (1V-4)
as indicated in Figure 20. In this analysis, the angle of rota-
tion, 6, is assumed to be small and the cross-section is taken to
be small relative to the diameter. The change in the radius of P
is

AR = (p6) (%)= ey (IV-5)

Since the cross-section is small relative to the radius, the ra-
dius of any fiber is approximately equal to R and the strain in a
fiber is given by

A% _ 2m (R + AR) - 2mR

€= 2 2nR
or
= AR _ 6By Iv-
€ R- R (Iv-6)

The fiber stress resulting from the strain is
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Figure 20. Displacement of a point, P, due to a rotation A0 = 01 -02.
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o=k = (1V-7)

Equilibrium conditions for the half ring may be written in the

[odA*f-E%Y'dA=° (1v-8)
A A

form

and
2
/oydA=fE—e%dA=M (1v-9)
A A

Equation (IV-8) shows that the centroid lies on the x-axis.

Equation (IV-9) may be rewritten as follows:

but A A
2.n -
/ydA:Ixx
and so A
Ei%& e=M (Iv-10)

The angle of rotation due to a distributed couple, Mt’ can be

shown to be
M, R?
XX
In order to assess the viability of the concept of a ring
under twist as a solution to the specific problem, consider the
example shown in Figure 21. The assumptions made in this calcula-

tion were
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Figure 21. Circular section ring for trial calculations.
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1) the envelope could be expanded to 0.100 inch square,
thus the radius, r, of the cross-section has a maximum
value of 0.050 inch

2) the axial load was to be applied at an eccentricity,

e = 2r.

3) the deflection required was 6§ = 0.060 inch (assuming a
linear force-deflection curve).

Clearly, the small angle assumptions were violated in this
example but it was felt that the results would be indicative of
the magnitude of the force, deflection, and stress. This knowl-
edge justified the decision to continue the analysis.

The deflection resulting from a rotation through an angle,
8, 1is

8§ = 2r(sin 8y - sin 62) (Iv-12)

where 61, and 62 are the initial and final angles of the lever
arm. It was assumed for purposes of this example that 91 =

90° and thus
6 = 2r(1 - sin 92)

or

= -1 [
92 = sin (l - -27) (Iv-13)

Substitution of the example data in Equation (IV-13) gave a

final angle

_ o=l 0.060 = °
92 = sin (1 - 270.050 ) 23.6
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or

02 = 0.41 radian

The force required to maintain this rotation can be established

from Equation (IV-11)

,
L
and
. _Pe _Pr
Mt--&r_R-ﬂR (Iv-14)

as shown in Figqure 19. Note also that

4
= Ir_ IV-15
1, =3 ( )

for a circular cross-section. The net load on the spring is

(Iv-16)

p = nze Er3
4R

and substitution of the problem parameters gave

2 6 3
_ 7(0.41)(14.8 x 10°)(0.050)7 _
i ~(4)(2.25) = 835 pounds

The stress was determined from Equation (IV-7) and was found to be

5

o =1.35 x 10° psi

The material assumed in the example was titanium.
The force calculated was acceptably close to the design

range and the stress levels were acceptable for the application of
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high strength engineering materials. The conclusion of this study
was that a more rigorous analysis of the ring response was

required and justified.



CHAPTER V
DEFORMATION AND STRESS IN AN ELLIPTICAL SECTION RING

The example in Chapter IV demonstrated that twisting of a
ring represented a feasible solution to the spring design problem
as specified in Chapter II. The indication was that a ring could
be designed for large deformations in the elastic range. It was
hypothesized that a suitable choice of cross-section would result
in a load-deflection curve with a constant force region over a suf-
ficient range of deflections. The study also showed the deficien-
cies of the available models in approximating ring response. The
design of a ring of non-circular section for use as a large-defor-
mation spring definitely required a more precise calculational
model. The purpose of this chapter is to present the derivation
of equations describing the ring response to distributed axial
load.

As previously discussed, the original concept was that of a
circular ring having an arbitrary non-circular cross-section. In-
itially, it was assumed that the boundary curve of the section
could be optimized to provide the optimum load-deflection behavior
for a specific spring requirement. The enormity of that under-
taking was quickly recognized, however, and the more modest goal
of analyzing the response with a particular boundary curve was
established. An elliptical section was chosen because the shape
is easily described for fabrication and because it can be widely

varied by appropriate selection of the major and minor axes. The

56
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parameters of the elliptical section ring are shown in Figure 22
and the load application is depicted in Figure 23. Following com-
mon practice, the semi-major axis is designated as a, and the semi-
minor axis as b. The equation of the ellipse may be written as

x2

2
;.2.+L2.:] (V-1)
a

where x and y are principal axes.

The distributed load is applied and reacted through the
radial tangents as shown in Figure 23 and may be replaced by a
distributed couple.

M

¢ = pe (v-2)

distributed force (per
unit circumference)
e = moment arm

The net force carried by the spring is
F = 2rRp

As in Chapter IV, the equilibrium conditions for the half ring are

IF = 0 (V-3a)
IF = -

Fy 0 (V-3b)
EFZ =0 (v-3c)
EFZ =0 (v-3d)

which are satisfied identically as shown in the free-body diagram
(Figure 24). An element of the ring defined by dy and located
an an angle y from the x-axis is subjected to external moments

de = dM sin v (V-4)
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-

Figure 22. Ellipse parameters in body coordinates.



p

Figure 23. Load distribution on an elliptical section ring
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Figure 24. Free body diagram of an elliptical section ring.
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dMy = -dM cos ¢ (V-5)
where

dM = MR dy (V-6)
as shown in Figure 24. Equilibrium of moments about the x-axis

and y-axis for the half ring is defined by

w

zMx = zux = f MtR sin ¢ dy
0
(v-7)
Mx = MtR
and v
= = - M,R cos p dp = 0
}:My ZMy J- t (v-8)
0
=0
My

where Mx and My are the resultant bending moments due to the
distribution of stresses over the cross-section in the x-y plane.

The strain and therefore the stress at a point, P, in the
cross-section may be defined in terms of the change in length of
the circumferential fiber through P in a manner analogous to the
procedure employed in Chapter IV. Consider a point P (x, y) on an
ellipse as shown in Figure 25.

The distance 55 as a function of the angular position of P

is found from the coordinates

xp = r(8) cos @ (V-9)

Yp = r(e) sin o (v-10)

and from Equation (V-1). The length of OP is
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ab
?

r(e) = (v-11
\/;2 cos2 o+ b2 sin2 0 -11)

If, as shown in Figure 24, the ellipse is rotated about the local
z-axis, the point, P(x, y), is transformed to P'(x, y). Assum-

ing no distortion of the cross-section, the coordinates of P in

the body axes, x'-y are

x' =r(e) cos 6 (v-12)
y' = r(8) sin e (V-13)

[] ]
Note that x -y are principal axes of the inertia tensor. The

transform of P(x, y) to P'(x, y) is defined by

xl cos ¢ -sin ¢ X
= (v-14)

{J sin ¢ cos ¢ y
p

{’}p' - [o] {"}p (V-15)

It is obvious from Figure 23 that the moment arm, e, is

or

zero for ¢ = 0 and ¢ = n/2. In these positions, no torque is ex-
erted upon the ring and the only deformation will be the result of
compressive strain through the section. In order to avoid this
condition in applications, it is necessary to fabricate the ring
with the axes of the ellipse oriented at some initial angle, ¢0,

to the x-y axes. The position of P at ¢ = ¢q is

W = [alep) ] () (V-16)
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and, following a successive transform to P" at
“w = a '
{x}, [a(e) ] tn

The strain, e, in the circumferential fiber through P is defined

(v-17)

by

_ (g) i 2n(R + xp..) - 2n(R + xp.)
" z ]

P'P 2n ﬁb

€

p'P (v-18)

and, assuming the cross-section to be small relative to the radius,

Rp = R (v-19)
thus
Xn’x.
e, o = —P (v-20)
P'P R

Substituting the relationships for xp‘ and xp“ from Equations

(v-17) and (V-16), respectively,

€prpn = %-[(cos ¢ - cos ¢o)xp-(sin ¢ - sin ¢0) yp] (v-21)

As in classical beam theory, the transverse stress is assumed
negligible and the effects of shear are ignored so that the stress
at the point is given by

op.p” = Eep.p. (v-22)

The equilibrium conditions for the cross-section are

fouA -2, = 0 (v-23)
A
IUXdA = }:My =0 (v_24)

A
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A

Equation (V-23) becomes

E
‘{odA ol ‘[{(cos ¢ - cos ¢0) cos 6 -(sin ¢ - sin ¢0)

sin e} r(6) dA
=0

f oydA = ZMx = 2Mx (V-25)

from the symmetry of the cross-section. The equilibrium of mo-

ments about the y-axis (Equation (V-24)) becomes

/adi = -& fedi + % /e(-x)dA =0
A

A A
which results from the antisymmetric positions of the cross-

sections at opposite ends of a ring diameter. Finally, the

moments about the x-axis are seen from Equation (V-25) to be

/aydA =2 % f{(cos ¢ - cos ¢0)x - (sin ¢ - sin ¢0)y}ydA
A A

=2§-(cos¢-cos¢0) /xydA-Z-RE-(sin )
A

- sin ¢,) fysz
A

Recall that

P (V-26
/ydA-Ixx )
A

(v-27)
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where Ix is non-vanishing since the x-y axes are not princi-

y
pal. Therefore,

foydA =2 % [l&y(cos ¢ - cos ¢0) - Ixx(sin ¢ - sin ¢0)]
A

= ZMx = ZMx = ZMtR

from Equation (V-7). The moment-rotation relationship may be seen

to be
M, = E% [Ixy(cos ¢ - cos ¢g) - I (sin ¢ - sin ¢o)] (v-28)

The values of Ixx and Ixy are determined from the transform of

the moment of inertia tensor
[I(x.y)] = [a(¢)] 1I(X'.y')] [a(¢)} (V-29)

or

e 2 2
Ixx Ix cos“¢ + Iy sin®¢ (v-30)

Ixy = (Iy - Ix) sin ¢ cos ¢ (v-31)

and the principal moments of inertia (2)
3

X 4 '
3
b
Iy = T"a | (V-33)

Again referring to Figure 25, the load is applied through

the horizontal tangents. Designating the point of tangency as
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Q(x, y), the following observations are made

e = 2|x,| (V-34)
and

$ = ZIyQ" - yq.l (V-35)

The condition of tangency with the x-axis is

o (&)
(;&) =0-= W (V-36)
Q a® A

r(e) cos (6 + ¢) (v-37)

where

x(0)

y(8) = r(8) sin (8 + ¢) (V-38)

from Equations (V-12), (V-13), and (V-14). Differentiating with

respect to 0,

d—géﬂ = -r(8) sin (6 + ¢) + d—géﬂ cos (6 + ¢) (V-39)
dr(e) _

‘ag <: ab
de 0
4/;2 cos? 8 + bZ sin @ (v-40)

= (8 (a2 _ b2) sin 20
2D

where

2 2 2 .2
D= (a" cos6 + b” sin"®6
( ) (v-41)
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Thus
d"ee = -r(6) sin (6 + ¢) + %‘% (a® - b%) sin 26 cos (6 + ¢)
D
Qﬁéﬁl = - 5é%l (a2 cos 6 sin ¢ + b2 sin 6 cos ¢) (V-42)
Similarly

gde6 = r(6) cos (6 +¢) + Eﬁ%% (a2 - b2) sin 20 sin (8 + ¢)

.dde6 = ng (aZ cos 6 cos ¢ - b2 sin 6 sin o) {v-43)
Then
dy . dy ., d8 _ _ a cos 8 cos ¢ - b2 sin 8 sin ¢ (V-44)
dx dé6 dx 2 . 2 _.

a“ cos 6 sin¢ + b sin 8 cos ¢

Equating Equation (V-44) to zero gives

2 2 . .
dy =-(a cos 6, cos ¢ bs1netsm¢)=0

 q a® cos 6, sin ¢ - b sin 8, cos ¢

or

a2 cos et cos ¢ = b2 sin et sin ¢

2 (v-45)
tan 6, = %Z cot ¢
at the point of horizontal tangency. The orientation of the con-
tact point relative to the minor axis of the ellipse is shown in
Figure 26 for the case a/b = 2.0 and a/b = 4.0. The contact point
is on the major axis when ¢ = 0° and on the minor axis when ¢ = 90°.
At other positions, the contact point lies between the axes of the

ellipse. The coordinates of Q are given by

. ab (V-46)

az cos2 et + b2 sin2 6

Tt
t
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26. Location of the contact point between an ellipse and a flat plate.
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' =
Xt rt (o013 Gt

(v-47)
Yy, =r,.sine
t ¢t t (V-48)
The moment arm of the applied load is
e =2r, cos (¢ +6,) (V-49)

as seen from Equation (V-34).
The deflection under the applied load from o to ¢ is
defined as

6 = 2lyqu - yo! (V-35)
or

s =2

r(et") S"". (“’ ¥ et") - r(et') sin ("’o ¥ et')l (V-50)

where Q' and Q" are the points of tangency in the initial and de-
formed states, respectively.

Equations (V-49) and (V-50) may be normalized to the ratio
.% and the angle of rotation, ¢, in order to study the generalized
response of an elliptical section ring. The resultant relation-

ships are
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. cos (¢ +6,)
22 = : (v-51)
ﬁ/(%) cos2 et + sin2 et
and
1 " .
%.2 2sn(o#ﬁt) i zsin(o#et) (V-52)
'\/(%) cosz et.. + s‘in2 et.. \/(%) cos2 et' + sinz et'
where
a 2
tan et = (B) cot ¢ (v-45)

and the primed and double primed cases in Equation (V-52) refer to
the initial and final values of ¢, respectively.

Figure 27 is a plot of Equation (V-51) and shows the varia-
tion in the moment arm over the range 0 < ¢ < 90° for a/b = 2.0
and a/b =4.0. Since the twisting moment required to deform the spring
also varies with angle, the force will vary in a non-linear fashion
as hypothesized. The curves for deflection as a function of angle
are plotted in Figure 28 using the relationship given in Equation
(V-52) for the case ¢0 = 0.

Figures 29 and 30 show the above curves with data for the
Belleville and modified Bellevile springs discussed in Chapter III.
The negative eccentricity shown for the standard Belleville spring
occurs until the corner of the rectangular section is vertical.
Similarly, the negative deflections in Figure 29 indicate that the
point of load application moved further from the origin. Obvi-

ously, these conditions are incompatible with the actual response
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27. Load eccentricity of an elliptical section ring as a function of rotation.
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28. Change in contact point position between an elliptical section ring and a flat plate (¢° =0°).
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29. Comparison of load eccentricity for an elliptical section ring,
a Belleville spring, and a modified Belleville spring.
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30. Comparison of contact point deflection for an elliptical section ring, a Belleville spring, and a modified

Belleville spring.
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and should be disregarded. (It would be possible to reformulate

the equations to start with the corners vertical but that option
has not been pursued in this study.) The significant point of com-
parison between these three designs is that only in the case of

the elliptical section ring does the eccentricity decrease. This
allows the designer greater flexibility.

The force-deflection characteristics for a test case are
presented in Figure 31. The test case shows the calculated re-
sponse of a titanium ring (a = 0.050, b = 0.010, R = 2.23) for
9 = °, 200, 40°, and 60°. The stresses resulting from
rotation of the ring over the range 20° <S¢ < 90° are shown in
Figure 32. The expected non-linearities are evident in the data.
Considering the test case relative to the problem specifications
in Chapter II, the force level for curve B (¢0 = 20%) is lower
than required (200 1b instead of 300 1b). The usable deflection
range (0.070 inch) is marginal since some preload would be re-
quired. Stresses encountered in this design exceed the levels
attainable with common materials but are reasonable for a first
attempt. These calculations indicate that an elliptical section
ring which meets the specifications very probably exists.

Since the spring is to be designed to function in the
elastic range of the material, the value of the maximum stress in
the ring is of interest to the designer. The maximum stress will
be defined in terms of the maximum strain,

-'-Ee

0ﬂ'la)( max’®
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which in turn is defined in terms of the displacement of a point
from ¢0 to ¢:
. -
emx R (Xpn - XP) (V 53)

*max
where

e(e) = Lég)- [(cos ¢ - cos ¢0) cos 6 - (sin ¢ - sin ¢0) sin e]

Differentiating with réspect to6,

where
g%-= E% r(e) cos (8 + ¢)>
(v-42)
- 31%1 [éz cos 6 sin ¢ + b2 sin 6 cos ¢.]
D

S0

%% .- Lé%% [.2 cos 8 (s'ln ¢ - sin ¢°)+ b2 sin 6 (cos ¢ - cos ¢0)] (v-54)
where D= az cos2 e + b2 sin2 8

The location of the point of maximum strain is defined by the

angle, es , where

de _ _ r‘(es) 2 R .
®=0° _EBE- a” cos 6, (sin ¢ - sin ¢0)

2 _.
+ b" sin es cos ¢ - cos ¢0)q

or

2 r/sin ¢ - sin ¢0
tan 6_ = - a
s ;7 (}os ¢ - cos &,
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which further simplifies to
2 ¢+ ¢
_a 0 (V-55)
tan BS--;ZCOt( ; )

The coordinates of the point of maximum strain may be

determined from Equations (V-11) (V-9), (Vv-10), and (V-14). The
values of the maximum strain and maximum stress are specified by
Equations (V-21)and (V-22).

The neutral axis of the cross-section is defined as the
locus of points of zero strain and is described by equating

Equation V-21) to zero:

€ = %-[(cos ¢ - cos ¢0)xp - (sin ¢ - sin ¢0)yp] =0 (v-21)

cos ¢ - cos ¢,
Yp “\sin ¢ - sin ¢0>xp (V-56)

which reduces to

Y, - (—tan 7 (6 + ¢0)) X, (V-56a)
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The location of the neutral axis relative to the principal axes of

moment of inertia is
- tan“(—ﬂ) -3 (6 + 89 (V-57)

Note that the neutral axis is not along the x-axis as would be
expected from the simple theory of beams. Oden (11), however,
indicates that the orientation of the neutral axis is not, in
general, perpendicular to the plane of the resultant moment.

The data plotted in Figure 26 showed the position of the
contact point relative to the axes of the ellipse. The location
of the contact point relative to the radial axis of the ring is
given by

¢y = &+ 6,
which is plotted in Figure 33 along with the angular locdations of
the major and minor axes. The case shown 15'5 2.0. Superposed
on this plot are the loci of the points of maximum strain and the
neutral axis locations for various values of ¢0. Note that the
neutral axis is coincident with radial axis only at ¢ = ¢5.  Note
also that the point of maximum stress occurs at the contact point
only when ¢ = g Figure 33 illustrates that the point of maximum
stress is not necessarily on the perpendicular to the neutral axis
of the section.

It is of interest to compare the above development with that
based on the assumption of small angles of rotation (see Chapter

IV). Consider first the strain as defined by Equation (V-21)
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strain as measured from the radial axis of the ring.
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1
= (cos ¢ - cos ¢,) x + (sin ¢ - sin ¢,) y]
) “[ 0 0 (V-21)
-%ﬂn%u—o@PsM%(o+%)+yws%w+¢a]
Then, let
¢ = ¢0 + Ad (v-58)
and assume A¢ << ¢0. so that
€ =<% (84)(x sin ¢ + y cos &) (v-59)
but i
.Ypl = (X sin ¢o + y cos ¢0)
The strain at a point then becomes
e = 2B (a0) (V-592)

which agrees with Equation (V-6).

The stress-moment equilibrium, Equation (V-28), reduces to

Mt = E% [Ixy (cos ¢ - cos ¢0) - Ixx (sin ¢ - sin ¢0)] (V-28)

= _E
2 [ 1ateo) (v-60)

which is similar to Equation (IV-10)). The neutral axis for small
angle rotations is obviously the x-axis:

y=0 |
from Equation (V-59a).
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The correlation with small-anglie rotations and simple beam
theory shows that the developments are consistent with existing
knowledge.

In view of the intended application of the spring and the
small size of the elliptical section, the possibility of high bear-
ing stresses was considered. The contact stresses predicted by
Hertzian theory were developed in terms of the radius of curvature
of the ellipse at the point of contact.

The ring was assumed to behave as a cylinder loaded by a

flat plate. The stresses are given by (2)

o, = 0.798 v/ (Kp)(Cp) (V-61)

and the width of the contact zone is

we = 1.60 | [p K Co (Vv-62)

where
]
= = Ly V-6
KD 2r Z(p) (V-63)
2 2
N L Y (V-64)
E E E
1 2
where
E]v] = plate material properties
EZVZ ring material properties

The radius parameter in Equation (V-63) is defined from the equa-

tion of the ellipse and the definition of radius of curvature (12):
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P —5 (V-65
+ 9—% )
dx
At the point of contact (tangent to the ring)
dy .
dx 0
and
_2_‘ (V-65a)
p=
dy
dxz
Equation (V-1) can be rearranged to give
1/2
a (.2 2
==(b" - x
then M ( )
-1/2
dy . _ax (p2 _ 2 V-66
dx b (b X ) ( )
2
dy. b (V-67)
dx Vbz - x2
and
Jbz _ x2‘
pE—— (v-68)

In this case, x and y are in the body coordinate system and
are the local coordinates of the point of tangency as defined by

Equations (V-46), (Vv-47), and (V-48).
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In the analysis of a dynamic system, the friction between
components having relative motion can have a significant effect on
the response. Since the elliptical section ring incorporates the
change of contact point as a key feature, it is necessary to con-
sider the role of friction in the spring response. In any mechani-
cal system, friction acts so as to retard relative motion between
the elements of the friction pair (13) as shown in Figure 34 (a)
and (b). The friction force reverses direction between the load-
ing cycle and unloading cycle.

The mechanism of friction between two solids is not well
understood but the macroscopic effects can be characterized in the
simple form:

f=ufF (V-69)
where f is the friction force resulting between two bodies bearing
a normal force, F, and having a coefficient of friction, u. This
relationship is considered valid over a range of boundary condi-
tions and relative ve1ogities (5). The degree of accuracy is
highly influenced by the selection of the friction coefficient.

The friction coefficient between two materials is dependent
upon a variety of factors such as the degree of lubrication and
the relative hardness of the materials. Experimental constants
are typically given as a range of values (5) from which the de-
signer must find the most appropriate choice for a particular
system.

Neglecting the problems associated with the selection of a

coefficient of friction, the effect of a friction force on an
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Figure 34. Friction force direction during (a) loading and (b) unloading.
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elliptical section ring is to alter the moment-force relationship
at any given angle, ¢. Equation (V-2) describes the relationship
between the applied force, p, and the moment required to maintain
the deformation, M, as

M = pe
where e is the eccentricity or distance between the contact points
in the radial direction. Equation (V-2) may also be written in
terms of the contact point coordinates as

M= Zp('xt)

with the sign change necessary as a result of the convention
chosen for forces and moments. The moment required to maintain
the deformed state is independent of the applied loads which im-
plies that the presence of friction must change the forces re-
quired to exert the moment on the body. The moment required at
each value of ¢ is given by Equation (V-28). The moment-force

relationship for loading (increasing ¢) is given by

Mt = 2p ('xt = H.Yt) (V-70)
and for unloading by
Mt = 2p ('xt + Uyt) (v'71)

which can then be solved for the applied load necessary to main-
tain a deformed condition. Figure 35 shows the effect of friction
on a sample calculation.

Since the coefficient of friction is not readily available
for many friction pairs, it will be advantageous to extract an

estimate of the friction in a given system from the hysteresis in
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35. Sample calculation showing the effect of a friction coefficient, u = 0.10,

between an elliptical section ring and a flat plate.
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the force-deflection data (see Figure 35). This is accomplished
by equating Equations (V-70) and (V-71) and solving for the coeffi-

cient of friction

(pz - pu) xt

I CRE R (v-72)

U

where the subscripts £ and u denote loading and unloading,
respectively. The coordinates Xy and y, are the locations of

the tangent point, so

(p, - p,) cot (¢ +6,)
(py *+ P}

u=- (V-73)

This relationship will allow an estimate of the friction
coefficient to be made from experimental data.

A phenomenon frequently associated with friction pairs such
as brakes and clutches is the self-locking effect which occurs
when the sum of the resistance load and the frictional force
exceeds the applied load. Consider Equation (V-70),

M, = 2p(-x;) - 2u py,
Clearly, if
2p(-xy) < My + 2u py, (V-74)
no motion can occur. This implies that if the ring is twisted to
a certain point, no further deflection will be obtained by in-

creasing the normal load. A further implication of Equation (V-74)
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is apparent when the free ring (¢ = ¢0) is considered. In this
case, Mt = 0 and

2p(-x4) < 2u py, (V-75)
describes the 1imiting conditions. The inequality states that it
is possible to construct a ring which cannot be moved from its
initial position by the application of a normal force. In order
to avoid this embarrassing occurrence, define the angle, ¢c, to be
" the minimum free angle which allows the ring to deform. Equation
(V-74) reduces to

X¢ = ~Wye

or

tan (¢, +6,) = -% (V-76)

2
Recognizing that tan 8y =(%) cot 9.,

2
i) cot ¢ + tan ¢

- (3)

(V-77)

o (
-4 tan (¢c + et) =

which becomes

u tan2 ¢ - ((%)2 - 'l) tan ¢ t (%)2 =0

The solution to this quadratic is

tan ¢, * ((%)2 - ‘) : \/((%):; ‘)2 - 4 (%)2 (v-78)
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which defines the critical angle for a given ring. Equation (V-78)
is plotted in Figure 36 for a range of values of u. The space
inside the curves represent values of ¢0 for which motion is
possible.

The analysis of a particular ring proceeds as follows:

(a) The required data are R, a, b, ¢5, ¢yy, and

material properties for the ring and plate.
(b) The moments of inertia of the cross-section, (I

xx?
I and Ixy) are determined (Equations (V-30)

yy’
and (V-31)).

(c) The moment required to maintain the deformed state is
calculated from Equation (V-28).

(d) The location of the horizontal tangent is determined
using Equations (V-46), (V-47), and (V-48).

(e) The deflection from ¢5 to ¢ is calculated (Equation
(v-50)).

(f) The eccentricity of loading is determined (Equation
(v-49)).

(g) The specific'strain and strain in the cross-section
are determined from Equations (V-21), (V-55), and
(v-52).

This sequence is readily programmed for digital computer

solution, permitting the designer to study the effects of variable

changes rapidly and quantitatively.
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CHAPTER VI
SPECIMEN FABRICATION

One of the constraints imposed on the spring system was the
requirement that fabrication not require new technology. The
Material Fabrication Division at Lawrence Livermore Laboratory
provides shop support to the design groups and is equipped with an
array of equipment for precision metal working including a variety
of numerically controlled (N/C) machines, electro-chemical milling
(ECM) equipment, electrical discharge machining (EDM) facilities,
and diamond-turning machines. Facilities for welding, pressing,
and heat treatment are also available. Specialized capabilities
can be obtained from outside firms when required to complete a job.

Selection of the design parameters for the test specimens
was done as indicated in Chapter V. Fabrication of a ring with
such a small section at a relatively large diameter required
careful evaluation of the available techniques. Three methods
were considered: numerically controlled machining, electrical
discharge machining, and extrusion.

The simplest approach seemed to be the extrusion process in
which the material is forced through a die of the required cross-
section. The elliptical section wire would then be formed into a
ring and welded or brazed to achieve closure. Several problems
were inherent in this method. The basic problem was the lack of
experience among shop personnel in extruding titanium thus re-

quiring a development program. Hot extrusion would anneal the

94
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material and cause grain growth thereby reducing the strength. An
additional drawback was the requirement for a weld which meant
that, even if the other problems could be solved, a local heat-
affected zone of lower strength would be present. The use of an
age-hardening titanium alloy much as Ti-6A1-4V was considered as a
means of solving these problems by permitting a post-weld heat
treatment. A study of the available literature indicated however
that heat treatment of weld zones involves material which is at a
different initial state than the parent material and generally
results in cracking (13).

Electrical discharge machining is a process in which a
shaped electrode is used to remove material. The process can be
used to shape complex sections in materials which are difficult to
machine conventionally. The process occasionally results in micro-
scopic pitting of the surface. Since the surface of the ring is
the most highly stressed region, such pits would act as stress
concentrations and degrade the effective strength of the specimen.
The EDM and ECM processes would require fixturing similar to that
required for conventional machining and would be considerably
slower.

The optimum method for fabricating the test specimens was
conventional machining on a numerically controlled machine. In
this process, the past geometry is described in an N/C computer
language which generates a series of tool drive commands on a
tape. The tool drive commands define the cutter location from a

reference point. Shop facilities at Lawrence Livermore Laboratory
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include a Sunstrand 5- axis mill, several Excello N/C lathes, and
a Sheffield y-z gage for N/C inspection. Consultations with shop
management indicated that, despite problems with fixturing the
ring to avoid deformation and out-of-round conditions, the use of
conventional N/C techniques was the best approach.

The N/C programming language currently in use at Lawrence
Livermore Laboratory is APT4. In addition to its use in the
shops, APT4 can be programmed to treat various computer graphics
media as output devices and has found widespread application by
design draftsmen in generating pictures of complex parts and
assemblies. Figure 37 and Figure 38 show drawings generated using
the APT4 language. Figure 39 is a listing of the APT4 commands
required to generate the geometry.

Commercially pure titanium is described in the literature
as easily machined (13) and no special hazards are noted that
might be encountered under normal machining practice. Job orders
were written for the fabrication of the samples. The cost esti-
mate for the 0.020 x 0.080 x 4.435 dia. ring was 60 hours. The
second ring was larger (0.040 x 0.160 x 4.435 dia.) and did not
require new fixturing or programming. The estimate was 16 hours.
A sheet of 99.98% pure titanium measuring 24 x 48 x 0.5 inches was
purchased at a cost of $ 575.00. The material certification
provided by the vendor is shown in Figure 40.

Inspection of the ring to verify the size and orientation
of the elliptical cross-section proved to be impossible because

the elliptical portion was too small to be measured on available
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PARTNO ELLIPTICAL SECTION RING
UNITS/ INCHES

INTOL/ .0001

OUTTOL/ .000!
MACHIN/CRAPHICS,XYPLAN,-.060, .060,-.060, .060
CUTTER/0.0 '

A=0.050

B8=0.010

PHI=30.

R=2.25

PO=POINT/0.,0.
P1=POINT/R,0.
E1=ELLIPS/CENTER,P1,A,B,PHI
PENUP

GOTO/PO

GOTO/PI

INDIRV/1.,0.,0.

GO/ON,LE!

PENDWN
TLON,GOLFT/E1 ,ON, YAXIS
GOFWD/Z1 ,0N,XAXIS
GOFWD/Z1,0N, YAXIS
GOFWD/E1,0ON,XAXIS

PENUP

GOTO/PO

FINI

FIGURE 39. APT4 PROGRAM LISTING.
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Figure 40. Vendor certification of the titanium purchased for specimen fabrication.
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contour gages. The closed ring eliminated optical inspection
methods such as comparators. The only data which could be ob-
tained were the inner diameter, outer diameter, and the major and
minor axis.

The rings were fabricated and inspected. The inspection
data and the specifications are shown in Figure 37 for the small
ring and in Figure 38 for the larger specimen. The smaller ring
was later cut apart and examined under the microscope. These

results are discussed in Chapter VIII.



CHAPTER VII
EXPERIMENTAL PROGRAM

In order to determine the feasibility of the design and to
verify the accuracy of the calculational model, it was necessary
to test a ring and correlate the measured data with the predicted
values. The functional requirements of the design dictated that
the variation of force with deflection be measured. The large de-
formations and the expected magnitude of the stress in the ring
indicated the desirability of a strain measurement.

The testing was performed by the Materials Test Laboratory
of the Materials Engineering Division at Lawrence Livermore Labora-
tory. This group provided the necessary facilities, personnel,
and instrumentation to complete the experimental evaluation on an
accelerated schedule. The test set-up was very simple: the ring
was placed between parallel polished platens on a 20,000 1b Instron
test machine. A load cell measured the applied force and a 1.00
inch range extensometer measured the deflection. The curve of
force as a function of displacement was recorded on an x-y
plotter. The system is shown schematically in Figure 41. Figures
42 and 43 are photographs of the experimental apparatus.

The determination of the stresses in the ring was a problem
left unsolved in this research. Strain gages were considered and
rejected because the smallest known gages (approximately 1/16 inch
gage length) would have covered a substantial portion of the

surface at given location.
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Figure 41. Instrumentation schematic for ring tests
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Figure 42. Test for load- ion tests of elliptical-section rings
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Figure 43. Elliptical-section ring installed in the test machine
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Since the gage tends to indicate an average strain over the gage
area, the data obtained would have been meaningless. In addition,
the nature of the motion and the anticipated large deflection
would have resulted in crushing the gage between the platen and
the ring. Holographic and Moire' techniques were considered im-
practical because of the large deformations and optical difficul-
ties. Two possible solutions exist but were not considered because
of schedule constraints. One possibility is to fabricate a large
specimen amd strain gage the non-contacting surface. Photoelastic
techniques such as stress freezing might also provide a solution.
The only stress data gathered in this project, however, resulted
from observation of the onset of plastic behavior in the load
curve and the correlation between the calculated stress and the
vendor-supplied yield point data. This will be discussed in de-
tail in Chapter VIII.

Data plots such as those in Figures 44 and 45 were obtained
directly from the test group. This data was digitized for input
to a digital computer plotting routine, DPLOT, which generated
graphics output such as in Figure 46. Digitization was performed
using a Gerber digitizing table located at Sandia Laboratories,
Livermore.

The ultimate goal of any engineering analysis is the abil-
ity to understand and predict the response of a given system to a
particular input. In the case of the elliptical section ring, the
predictive capability developed in Chaper V was correlated to the

results of engineering tests conducted as described above. The
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Figure 44. Test data for a titanium ring (a=0.040,b=0.010,R=2.244 inch, $g = 30°).
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Figure 45. Test data for a titanium ring (a = 0.080, b = 0.020, R = 2.217 inch, ¢, = 200).
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RING WITH ELLIPTICAL SECTION UNDER VERTICAL LOAD AT TANGENTS
ELLIPSE PARAMETERS: A= .0400 B= .0100 R= 2.2500
RING ROTATED FROM 30.0

MATERIAL MODULUS: 1.680E+07

T : TEST DATA
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Deflection (in)

46. Sample of digitized test data plotted with DPLOT.
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tests in this case were basically intended to assess the suitabi-
lity of the ring design of a potential solution to the application
described in Chaper II. Verification of the model was a secondary
concern at the time.

The first specimen tested was fabricated to the

specifications shown in Figure 37 and summarized below:

Semi-Major Axis: a=1.016 mm = .040 inch
Semi-Minor Axis: b =0.250 mm = 0.010 inch
Radius (Nominal) R = 57.000 mm = 2.244 inch
Initial Angle g : 30°

The material selected was commercially pure titanium having
engineering properties as listed below:

6

E =16.8 x 10" psi

v = 0.30

Titanium was selected over steel on the basis of high strength
and Tow modulus which allows larger deformations and lower force
levels for the same stress in the material.

The material certification supplied by the vendor (see
Figure 40)showed a yield stress of 52,000 psi which was below the
range required for full deflection testing. The decision was made
to test the ring using the pure titanium as received. The bases
for the decision were the uncertainty in the availability of high
strength alloys such as B120VCA, the lack of experience at LLL in
titanium heat treatment, and the pressure of schedule constraints.

It was decided that if the ring behaved as predicted up to yield,
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the commitment to the design could be made at that point and
better alloys could be obtained and tested.

The dimensions for the first specimen were the result of an
early calculational model and a misinterpretation of the data. The
force-deflection curves for the first three cycles are shown in
Figure 44 and indicate large values of permanent set. Obviously,
the force levels of less than 60 pounds were far below the problem
requirements, and the design was considered unacceptable.

The second test specimen, was ordered immediately following
the first experiment. The analysis was not corrected at that
point, and the dimensions of the elliptical section were set at
twice the original values. This size represented the upper bound
on the envelope available and required relaxation of some con-
straints. The purpose of the second test was to establish the
upper limit of spring response in the available space. If the
test proved successful, then the final spring design could proceed
based upon the analytical model without impacting on the project
schedule.

The second specimen was fabricated to the specification

shown in Figure 38. The parameters were:

Semi-Major Axis: a=2.033mm = 0.080 inch
Semi-Minor Axis: b=0.500mm = 0.0197 inch
Radius (Nominal): R =112.643 mm = 2.217 inch
Initial Angle: b9 = 20°

The actual ring is shown in Figure 47.
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Figure 47. Photograph of an elliptical section ring (a = 0.080, b = 0.620, R = 2.217, ¢ = 20°)
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Figure 45 shows the results of the first three load cycles
on the second test part. The first cycle test shows force values
in the range required (600 pounds). The deflection of 0.010
inch at failure (onset of yield behavior) was insufficient but
clearly indicated that the design was feasible.

No further tests were conducted on the elliptical section
ring. The analytical effort proceeded and resulted in the develop-
ments detailed in Chapter V. The test program for the elliptical

ring was cancelled on the basis of non-engineering parameters.



CHAPTER VIII
COMPARISON OF CALCULATED AND EXPERIMENTAL VALUES

Although neither of the two tests described in Chapter VII
were particularly successful from the standpoint of meeting the
design objectives, both provided good data for correlation and
verification of an analytical model The equations developed in
Chapter V were incorporated into a FORTRAN-language computer pro-
gram which was used to generate tabular and graphics data describ-
ing the force-deflection and stress-deflection characteristics of
a given ring. In writing the program, the author elected to pre-
sent all of the data calculated rather than attempting to sort or
optimize the calculation. The reason for this decision was the
belief that the engineer can gain insight into the system by study-
ing the data and that pre-ordained criteria may reject data which
could be valuable.

The computer system at LLL is the Livermore Time-Sharing
System (LTSS) presently consisting of four CDC-7600 computers and
two CDC-STAR machines. These are linked by other computers to
mass storage systems, output media, and a file transport system.
The system is an interactive, time-share system which permits
large numbers of users to run programs with fast turn-around. A
variety of output media are available for text and graphics data
including hard copy, 35 mm film (including color), and microfiche.
A video disk system (TMDS) provides display capability on local

monitors.
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The analysis program, RING, was designed to calculate
force, deflection, and stress values for a ring over a range of

angle of rotation from % to ¢ The calculations were

max’*
jterated over a range of cross-section parameters.

amin sas amax
bpin $ b S bpay

. Calculation of the Hertzian contact stress at the interface was
performed at each increment. Recognizing that the initial orienta-
tion of the ring has a significant effect on response, the author
included a feature in RING which allowed for iteration of the
value of ¢, for each cross-section. The results of these itera-
tions were p[ptted as families of force-deflection curves as shown
in Figure 48. The force-deflection curves were also plotted indi-
vidually for each section with the stress curve scaled to fit and
superposed as in Figure 49. Scaling was done with a routine
written by the author which sets the full scale value of the grid
to a multiple of 1.0, 2.0, or 5.0 as in standard engineering
practice. Note that the stress curve is scaled to fit on the grid
determined by the force data. .It was decided that the force-
deflection curve required greater resolution than the stress
curve. Tabular output from RING corresponding to Figures 48 and
49 is presented in Tables 3 and 4. (The number of angle incre-
ments has been reduced in the tabular output for purposes of
illustration).

A second routine, DPLOT, was written to convert the digi-

tized data from the engineering tests to computer graphics output.
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48. Force-deflection curves — sample calculation.
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49. Force and stress curves for cbo = 20° — sample calculation.
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TABLE 3. SAMPLE CALCULATION - OUTPUT FROM RING.

RING WITH ELLIPTICAL SECTION IN TORSION
(LOAD APPLIED NORMAL TO HORIZONTAL TANGENTS)

2.230 RADIUS RING ROTATED FROM .0 DEGREES TO 90.00 DEGREES IN S.000 DEGREE INCREMENTS
ELLIPSE PARAMETER RANGE :

MAJOR AXIS : .0300 TO .0S00 AT .0050 INCREMENT

MINOR AXI[S : .0100 TO .0200 AT .005S0 INCREMENT

MATERIAL PROPERTIES :
RING MATERIAL : TITANIUM MODULUS = 1.680E+07 NU = .300
PLATE MATERIAL : STEEL MODU_US = 2.800E+07 NU = .300 (FOR CONTACT STRESSES)
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TABLE 4. SAMPLE CALCULATION - OUTPUT FROM RING.

RING WITH ELLIPTICAL SECTION UNDER VERTICAL LOAD AT TANGENTS

MATERIAL MODULUS:

ANGLE

S.
10.
15.
aa.
as.
30.
35.
40.
45.
50.
SS.
60.
65.
70.
75.
80.
85.
90.

.0
00
00
00
00
co
00
00
00
00
00
00
00
00
00
00
00
00
00

- = =MV WWNWNSE FEFLsEs s

FORCE
.0E+00

.824E+02
.773E+02
.689E+02
.573e+02
.M24E+02
.e46E+02
.039e+02
.806E+02
.549e+02
.270e+02
.973€+02
.664E+02
.348E+02
.034E+02
.T42E+02
.S513E+02
.49Y4E+02
.115€+13

A=

.0500

1 .680E+07

DEFLECTION

-3.
.458E-03

-1

-3.
-5.
-8.
.28ee-02
.723€-02
-2.
-2.
.392e-02
.035€-0¢
.708E-02
-S.
-6.
-6.
.374E-02
-7.
-8.

-1
-1

-3
-4
-4

-7

.0E+00
653E-04

269E-03
782E-03
976€-03

232e-02
789e-02

40ce-02
097€e-02
770E-02

825€-02
000E-02

WWWWWWWWNNUDUN = —=—=00W

B= .0100 R=

STRESS SPEC

.0E+00
.283E+04
.538E +04
.739E+0%
.286E+05
.587E+05
.875E+05
. 148E+05
.402E+05
.636€E+05
.B48E+0S
.036E+05
.197E+05
.332E+05
.437€+05
.S512E+05
.555E+05
.567E+05
.S4B6E+05

— e e e e e = UV VD NVMVWWWWWW

FORCE
.0E+00

L443E+01
.407E+0!
.347€+01
.263E+01
.158E+01
.030E+0!
.883E+01
.716E+01
.533e+0!
.334E+01
.122E+0!
.901E+0!
.676E+01
.4S2E+01
.G44E+0!
.080E+01
.066E+01
.508E+12

2.2300

MOMENT ARM

S.
-8.
.666E-02
-2.
-3.
.040E-02
.768E-02
-S.
-6.
-6.

-4
-4

-7

-7

-7

390E-16
366E-03

481E-02
275€e-02

453e-02
086E-02
656E-02

. 1S4E-02
-7.
-7.

S61E-02
856€-02

.996E-02
-7.

906E-02

.431E-02
-6.
-3.
-8.

252e-02
833e-02
790E-1Y4

1
3
S
7
9
1
1
1
1
1
1.
1
1
=4
e
e
e
2

STRAIN
.0E+00
.954€£-03
.892€-03
.797€-03
.654E-03
.448E-03
.116E-02
.e78t-02
.430E-02
.568E-02
.695€-02
807€-02
.903E-02
.983e-02
.Qu6E-02
.090E-02
.116E-02
.123e-02
.111E-02

CONTACT S

QOO W

.0E+00

.639€+03
.363E+03
. 74SE+0S
. T4SE+05S
.74SE+05
. T4SE+05S
. T4SE+05
.T4SE+0S
. T4SE+0S
. T45€E+05
. T4SE+05
. T4SE+0S
. T45E+05S
.TULE+0S
. T4SE+0S
. T4SE+0S
-T4EE+0S
.265E+08
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This program along with available graphics editing routines allow
the superposition of test data and calculations and output via
standard LLL graphics output devices. DPLOT includes the scaling
from x-y data in inches (or millimeters) as generated by the
Gerber digitizer to force-deflection data according to the scale
factors used when the data was recorded.

The optional input of range limits for the axes allows the
user to plot to the same scale as the analysis code. This
combined with the capability to plot a curve without axes or
labels permitted superposition of the experimental and calculated
curves.

As discussed previously, the dimensions for the test
specimens resulted from an early calculational model which was
found to be in error. The specimens provided data to verify the
calculational model which was invaluable when the experimental

program was cancelled. The nominal dimensions of the first ring

were:
a = 0.040 inch
b = 0.010 inch
R = 2.244 inches
_ 00
¢0 = 30

Figure 50 shows the expected curve family for 0° < ¢0 <
60° and the specified curve for ¢0 = 30° is shown in Figure
51. If a material yield of 50 ksi is assumed, the onset of yield
will occur at approximately 0.010 inch deflection. The test data

for this test specimen are shown in Figure 44 as recorded by the
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50. Force curves for Test Specimen No. 1 (nominal dimensions).
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51. Force and stress for Test Specimen No. 1 (nominal dimensions).
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operators. The data for the first cycle were digitized and
plotted with the DPLOT program (see Figure 52). The initial
portion of the curve indicates a non-uniform response which was
felt to be the flattening of ring warpage. A warped ring could
result from residual stresses induced by machining. Figure 53
shows the test data when corrected for this effect.

The major and minor axes of the ring were inspected prior

to the test and were found to be

a =0.0418 (0.040 nominal)

b

0.0095 (0.010 nominal)

The initial angle could not be checked. Figure 54 shows the pre-
dicted curve for the actual ring cross-section with the test data
superposed. The shape of the curve agrees with the expected
results but the force levels are low. The calculated stress at
the apparent yield (8§ = 0.015 inch) is approximately 72 ksi which
exceeds the material strength by a considerable margin.

The discrepancies between the experimental and predicted
responses could be the result of several factors such as a non-
elliptical cross-section resulting from machining errors or a
change in initial angle from the 30° specified value. After the
tests, the first specimen was sectioned and examined under a micro-
scope. Figure 55 shows a photomicrograph of the cross-section at
52.9X magnification. Figure 56 shows a similar section etched to
indicate the titanium grain structure. The cross section photo-
micrograph was digitized and plotted to compare it with the speci-

fied ellipse (see Figure 57). The contour appears elliptical in
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RING WITH ELLIPTICAL SECTION UNDER VERTICAL LOAD AT TANGENTS
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52. Test data for Specimen 1.
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63. Specimen 1 test data corrected for zero shift.
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54. Force and stress for measured cross section of Specimen 1 (¢° = 30°).
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Figure 55. Photomicrograph of the cross section of Specimen No.1 (post-test).
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Figure 56. P icrog of the ion of test il No. 1
(the section has been etched to indicate grain size)
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Figure 57. Plot of digitized cross section of Specimen No. 1 compared with a true ellipse.
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form but could be significantly different in section properties.
The initial orientation of the ellipse was lost when the section
was removed from the ring.

Figure 58 shows a family of curves for the measured cross-
section of the first ring over the range 30° < g < 45% with
the test data superposed. It is obvious that the test data are
similar to the response curve corresponding to ¢0 = 40° The
change in the height of the ring (between tangents) is 0.008 inch
from 30° to 40° or approximately ten percent. This exceeds
the tolerance band for the part but is not unlikely given the size
of the part and the small cross-section. The specific curve for
¢0 = 40° s shown in Figure 59, again with the test data super-
posed. It is.interesting to note that the calculated stress at
apparent yield is approximately 55 ksi which agrees well with the
material certification (Figure 40).

The first test specimen did not provide adequate verifi-
cation of the model. Several probable sources of error could
account for the discrepancies but none of these can be shown to
have existed at the time of the test.

The nominal dimensions of the second test ring were:

a = 0.0800 inch
b = 0.0197 inch
R = 2.217 inches
¢g = 20°

The predicted curves are shown in Figures 60 and 61. The expected

force levels are higher than the first test, reaching approximately
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58. Force curves for measure cross section of Specimen No. 1.
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ELLIPSE PARAMETERS: A= .0418 B= .0095 R= 2.2300
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69. Force and stress for measured cross section of Specimen No. 1 (¢° = 40°).
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60. Force curves for Test Specimen No. 2 (nominal dimensions)
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61. Force and stress for Test Specimen No. 2 (nominal dimensions)
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500 1bs at the yield point (52 ksi). The predicted deflection at
yield is 0.005 - 0.006 inch. The digitized test data for the
second test specimen are plotted in Figure 62. Figure 63 shows
the same data corrected for zero shift.

The actual dimensions of the second specimen were

a = 0.0815 inch
b = 0.205 inch
R = 2.2185 inches

which resulted in the curves shown in Figures 64 and 65. The test
data has been superposed and agrees well with the calculated re-
sponse. The calculated stress at apparent yield is approximately
60 ksi. The force peaked at about 600 1bs and the deflection at
the onset of yield was 0.0055 inch.

The actual force curve is higher than the predicted curve.
This could be due to friction between the ring and the load
platens. Rabinowicz (14) reports a coefficient of friction of
0.09 for titanium riding on a steel surface with light lubrica-
tion. This was felt to be appropriate since the platens were
hardened steel and were lightly oiled. Figure 66 shows the
predicted curve for u = 0.10 with the test data superposed. The
results suggest that friction between the elements is increasing
the force as expected.

The second test correlates well with the calculated
response and confirms the model. The presence of friction is
suggested and can be accounted for in the calculated response.

Since the ring was stressed into the plastic region and did not
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62. Test data for Specimen No. 2.
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63. Specimen 2 test data corrected for zero shift.
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64. Force curves for measured cross section of Specimen No. 2.
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65. Force and stress for measured cross section of Specimen No. 2.
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66. Effect of friction (1 = 0.10) on the calculated response for Specimen No. 2.
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return to the original value of ¢0, it is not possible to calcu-
late the coefficient of friction using the hysteresis loop as
proposed in Chapter V. An estimate of the friction coefficient
may be obtained from Run No. 2 shown in Figure 45. The permanent
set from the first test is approximately 0.008 inch which
corresponds to a value of ¢0 = 27.5% from Run No. 2. Table 5
shows the values for Equation (V-73) for § = 0.0035 inch and § =
0.0050 inch in Run No. 2. The values are determined for the
friction constant, u = 0.13 and y = 0.15, agree well with each
other and with the value expected from Run No. 1. The constants

are within the range reported in (14).
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TABLE 5. ESTIMATE OF THE COEFFICIENT
OF FRICTION FROM THE HYSTERESIS LOOP. (Data
from Run No. 2, Figure 45.)

Deflection
Parameter 8 = 0.0035 § = 0.0050
§/a 0.0429 0.0613
¢0 27.5° 27.5°
30.25° 31.35°
Py 130. 190.
Py 80. 110.

u 0.13 0.15




CHAPTER IX
CONCLUSIONS AND RECOMMENDATIONS

The investigation of the response of an elliptical-section
circular ring to a distributed axial load resulted in a mathe-
matical model which can be used to predict the force-deflection
characteristics of a given ring as well as the stress levels in
the material. The effects of friction between the ring and the
loading element can be predicted and the limits of operation can
be specified based on the critical angles for self-locking. The
project was terminated without testing a ring which satisfied the
constraints of the original problem. This could be accomplished
quickly should the need arise.

The following recommendations for future study are proposed:

1. Larger specimens of high-strength materials should be
tested. Inspection prior to testing should determine
the ellipse parameters (a, b, ¢0) and the section
properties (Ixx’ Iyy). Testing should include
strain gaging to monitor the strain levels in the part.

2. Hypteresis studies should be conducted to further
verify the effects of friction on ring response.

3. Uniaxial arrays of fibrous composites such as Kevlar/
epoxy and Thormel/epoxy should be considered as ring
materials. These composites have high strengths and
low moduli in the fiber direction and should be well

suited to this application.
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