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ABSTRACT

LARGE DEFLECTION RESPONSE OF AN ELLIPTICAL

SECTION RING TO DISTRIBUTED AXIAL LOAD

By

Lawrence A. Nattrass

The behavior of a circular ring with an elliptical cross-

section was studied to determine its suitability as a spring. The

design parameters for a spring system to support an axial load

included an annular configuration of fixed diameter and minimum

volume. The load and deflection range were specified. Since the

spring supported a mass, the natural frequency of the system was

also a consideration. Considering the need to store a fixed

amount of energy in a minimum volume, the optimum spring appeared

to be one which had a flat or nearly flat load-deflection curve.

The load-deflection characteristics of the ring proved to meet

most of the system parameters. The uniqueness and originality of

the concept necessitated the development of an analytical model,

prediction of performance and failure parameters, and experimental

verification of the design.

An analytical model was developed to predict the force-

deflection and stress-deflection characteristics of a given ring.

The effects of friction were considered and the useful range of the

ring was described in terms of critical angles for self-locking.

The model agreed with the experimental results.
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CHAPTER I

INTRODUCTION
 

A weapon assembly in the nuclear stockpile is expected to

function properly after many years of handling and storage under a

variety of conditions. The anticipated environment varies from

system to system but generally involves a range of operating tem-

peratures and a vibration spectrum. One such assembly designed at

Lawrence Livermore Laboratory (LLL) required maintaining the rela-

tive positions of components over a specified temperature range.

The fact that the components were of dissimilar materials resulted

in growth and contraction due to differential thermal expansion.

A decision was made to employ a spring subjected to an initial

deflection to maintain contact between components.

Springs are commonly used in mechanical design to perform

such functions as energy absorption, frequency response regula-

tion, vibration isolation, and force generation. The use of

Springs to maintain contact between components or to maintain the

relative position of components in assembly is common practice.

In the application described in this work, the intent was to

preload the spring during assembly at ambient temperature. The

amount of preload was determined by the deflection required to

compensate for the maximum thermally induced contraction. The

spring was also required to deflect an additional amount equal to

the thermal expansion from ambient to the temperature extreme. In

order to allow for cyclic thermal loading, the total deflection



range had to be within the elastic range of the spring material.

Several other constraints were also imposed and are discussed in

Chapter II.

In general, any elastic medium can be used as a spring.

Springs are characterized according to the nature of the relation-

ship between the applied force and the resultant deflection. The

fundamental class of springs are elements having a linear force-

deflection curve characterized by a relationship of the form

F = kx (I-l)

where F is the applied load, x is the deflection, and k is a

constant. In actuality, the linearity of the element may exist

over only a portion of the deflection range.

Non-linear springs are those characterized by equations of

the form

F = f(x) . (I-2)

where f (x) is a particular function. Hardening springs and soft-

ening springs are two classes of non-linear springs which are fre-

quently employed in mechanical design. The terms hardening and

softening describe the deviation of the force-deflection curve

from linear. Figure 1 shows load curves for several classes of

springs. The constant force element is a particular class of

non-linear spring and is shown for later reference.

Although any elastic medium will function to some degree as

a spring, it is generally faster in design practice to select a

commonly used and adequately characterized spring form. Several

common spring types are widely used in engineering applications

and have been thoroughly investigated. Design equations giving
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Figure 1. Typical load-deflection curves for various spring types.

 



force, deflection, and stress for coil springs, leaf springs,

Belleville springs, and other types can be found in most

engineering handbooks. The typical design cycle for a spring for

use in a particular application might proceed as follows:

1) Select the critical design parameter

(force, deflection, or spring rate)

2) Define the geometric constraints imposed

on the Spring design

3) Select a spring type which will fit the

geometric limitations

4) Design the spring using existing design

equations, charts, or graphs

5) Select a spring material which will not

fail at the calculated stress levels

In general, this is an iterative process with the number of

cycles dependent upon the experience of the engineer and the na-

ture of the constraints.

The work to design a spring system for use in an assembly

at Lawrence Livermore Laboratory was begun in September, 1977 and

completed in February 1978. During this period a large number of

spring designs, many of them unique and original, were analyzed to

determine the degree to which each met the various performance cri-

teria. Most designs were eliminated on the basis of hand calcula-

tions using textbook equations or approximations. Several designs

were shown to be potential solutions to the problem and were ana-

lyzed in depth. In the final selection process, two designs were



fabricated and tested. The test results were then correlated to

the analytical work to establish a verified predictive capability.

The purpose of this research was to analyze the response of

a circular ring having an elliptical cross-section to a distri-

buted axial load. In particular, the goal was to develop a model

which described the large-deformation load-deflection curve and

the stresses in the ring. The predictive capability was necessary

for the design of a compact non-linear spring which had program-

matic use at Lawrence Livermore Laboratory.

The elliptical section ring was invented to provide a con-

stant force element which fit the available space. The concept

evolved from a study of a circular section ring loaded by a dis-

tributed couple. A ring offered the optimum use of the available

space (see Chapter II) but a means of resolving an axial load into

a couple was required. Several studies were made of rings with

radial fingers as shown in Figure 2 and a ring with a continuous

load platform (Figure 3) was considered conceptually.

The author formulated the hypothesis that a ring having a

non-circular cross-section could be designed to respond as a con-

stant force spring. An elliptical cross-section was chosen for

this study because the curve is defined by a single equation of

relative simplicity. This reduced the complexity of the analyti-

cal work which necessarily preceded the experimental study of the

ring response.

The concept of an elliptical-section ring is shown schemati-

cally in Figure 4. Applying the load at the radial tangents of

the ellipse produces a distributed twisting couple
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Mt = Pe (1-3)

per unit of circumference. By analogy to a circular-section ring

as described by Timoshenko (1) and Roark (2), the ring undergoes a

rotation, ¢, which is of the form

 

2

¢ , "T" g PeRz (1-4)
EIxx EIxx

where

Ixx = Ixx’ the moment of inertia of the cross-

section about the radial mid-plane

R mean ring radius

4 = angle of twist

e = e(¢). the eccentricity of the loading.

The above relation is approximate for small a. The particular form

of Ixx(¢) is given by the transformation equation for the moment

of inertia tensor

Ixx(¢) = Ix' . c0520 + I . . sinza . (1’5)

X y Y

The deflection under the load, P, is

a = 6(4) (1‘6)

The significance of these approximate descriptions is the clear

implication that a non-linear relationship exists between force

and deflection. The initial hypothesis of the research was that a

region exists in which the force is nearly constant regardless of

the deflection.

This report describes the research required to determine

the response of a particular ring section (elliptical) and t1: verify



TO

the accuracy of the analytical model. The constraints imposed by

the assembly for which the spring was designed were the impetus for

the invention and are described in Chapter 11. Alternate designs

are presented in Chapter III as a means of assessing the unusual

nature of the problem and the effects of various constraints on

the solution. A feasibility study employing the small angle rela-

tionships is presented in Chapter IV. The various analytical

models developed for the elliptical-section ring are presented in

Chapter V.

The fabrication of a large diameter ring with a small, non-

circular cross-section presented several challenges. The techni-

ques considered are presented in Chapter VII. Chapter VIII

presents a discussion of the computer program used to predict the

response of a given ring and discusses correlation between the

model and experimental data. Chapter IX presents conclusions and

recommendations for future research.



CHAPTER II

PROBLEM DESCRIPTION

The functional requirement imposed on the spring system was

that it maintain the relative position of components over a range

of temperatures. The spring was required to compensate for differ-

ential expansion and contraction of dissimilar materials. The

spring system was subject to a variety of design constraints im-

posed by requirements external to the system. These constraints

were both geometric and physical.

The severity of these limitations eliminated ordinary

springs and forced the development of a variety of unique and orig-

inal types of springs. Limitations on time and resources mandated

that the devel0pment of a spring type procede in a logical and effi-

cient manner. The sequence was

1) Discussion of the proposed spring by members

of the engineering team to verify that the

concept met the criteria and to identify any

obvious inadequacies such as material problems

or fabrication difficulties.

2) Initial design calculations were performed using

approximations from appr0priate engineering theory or

practice. If the design looked feasible and if no

insurmountable obstacles, such as stresses exceed-

ing the ultimate strength by several orders of magni-

tude, were encountered, the development continued.

11
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3) A calculational model was developed either from

existing equations or derived from theoretical

precepts. The resulting equations were programmed and

computer solutions were generated.

4) Test specimens were fabricated and tested in the labora-

tory.

This process served to optimize the use of time and resources by di-

recting the engineering effort toward the most viable solutions and

by focusing the fabrication and test efforts (which were typically

long lead-time items outside the control of the engineer) on the

best candidates.

The constraints which drove the design of the spring system

imposed a geometric envelope along with several functional require-

ments. Restrictions were also placed on the types of materials

which could be considered. The constraints on the design are illus-

trated in Figure 5 and are listed below.

1. The spring (or system of springs) had to be in an

annular configuration of fixed radius.

2. The cross-section area occupied by the spring system

was to be minimized (an area of 0.040 x 0.l00 inch

was the initial goal).

3. The force exerted at -0.015 inch deflection was to be

300 pounds (deflection was defined from the initial

preloaded state).

4. The spring was required to deflect : 0.015 inch

elastically.
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5. Organic materials such as rubber or plastics were not

acceptable.

6. Materials selection parameters included formability,

machinability, high strength, and ability to withstand

elevated temperatures.

7. The spring was to be fabricated with state-of-the-art

techniques.

8. Since the system supported a mass under dynamic

conditions, the spring rate affected the resonant

frequency.

9. Stress considerations in the assembly indicated the

desirability of minimizing the maximum force by use of

a non-linear spring.

It can be seen that the most stringent constraints were the result

of geometric limitations and deflection requirements. The effects

of these limits are considered in the next chapter where various

design alternatives are explored.



CHAPTER III

EVALUATION OF ALTERNATE DESIGNS
 

The consideration of spring systems other than the ellipti-

cal section ring is significant because it illustrates the nature

of the problem and the evolution of the solution. As previously

mentioned, the effort to design a spring system for the specific

application discussed in Chapter II occurred over a five month

period. The level of effort devoted to the solution was neces-

sarily a fraction of full time for the members of the design

team. Perhaps as many as twenty spring concepts received other

than cursory examination and, of these, three have been selected

for discussion: coil springs, buckling columns, and flat circular

plates (which include Belleville springs).

The coil spring is perhaps the most widely employed spring

configuration in engineering design. Coil springs range in size

from a half ton coil used to cushion missile silos to a spring mea-

suring 0.032 inch outside diameter and 0.050 inch overall length

used in a miniature ball bearing assembly (3). The design of such

springs is defined in most machine design tests and mechanical

engineering handbooks (3, 4, 5). The pertinent equations are

listed below and the parameters are illustrated in Figure 6. The

equations are developed from the equilibrium condition

PD

T =‘2‘ (III-1)

15





l7

and equality between the work done on the spring and the strain

energy in the wire

-ngle (III-2

"’ 2 ‘2 )

where it is assumed that the force increases linearly from zero.

It can be shown that the angle of twist of a bar of circular cross-

section is given by

. LL.‘ (III-3)
9 00

where

= .1011. .
L cos a the total active length of the

spring wire

1rd4
J = §§—- the polar moment of inertia of

the cross-section

G shear modulus

Substitution in Equation (III-2) gives

P6 = P203 nn

—2' BGJ cos 0

Solving for the deflection

PD3 nn

6 = 4GJ cos a

01"

3 3
6 = 8P0 n = BPC n (c : D/d) (III-4)

d4G cos a Gd
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for small values of a such as those encountered in closely coiled

springs. The discrepancy between the strain energy in the helical

coil and that in a straight bar is neglected in this discussion.

The stress in the wire is due to direct shearing and to the

torsional stress. The Nahl equation (4) is an experimentally veri-

fied relation which includes the direct shear, the torsional

stress, and the effects of curvature. The maximum shear stress

in the wire is

 

s = K = K-— III-5)

s ;d§- nd2 (

where
_AC-l 05w

K"40-4" c

The problem specifications outlined in Chapter II require

6 10.015 inch from nominal

P

Thus, for any linear spring, a load-deflection curve as shown in

300 pounds at 6 = -0.015

Figure 7 is required. Although any preload could be used, the

minimum stress in the spring will result if the preload is mini-

mized. Assuming a maximum diameter of 0.040 inch and a height

at 6 = 0.015 of 0.100 inch, the number of springs, N, around the

annulus is

N = m: ZTT‘Z.252 = 353

DO 0.040

where

R = radius of the annulus
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use N = 350

Black and Adams (4) give an allowable stress of 75,000 psi for a

spring in average service where the wire diameter is less than

0.085 inch. Rearranging Equation (III-4), the number of active

coils, n, can be established as

n 33:5; (III-6)

Now, assume a wire diameter of 0.005 inch which implies

D = 00 - d = 0.040 -.005 = 0.035

C = D/d = 7

K = 1.2

Then, using G = 12 x 106 psi for steel,

_ (0.045)(l2 x 105)(0.005) _
(8)(%g%)(7)3 -— 113.9

114

The solid height of the spring is nd = 0.57 inch and the minimum

USE ll

free height is the sum of the solid height and the deflection re-

quired or 0.615 inch. Clearly this exceeds the allowable space.

Obviously, a vast number of other springs will satisfy

these conditions but will require that some constraint be vio-

lated. In addition, the problems associated with manufacturing

and installing 350 tiny coil springs were not considered insignifi-

cant. 0n the basis of these factors, the use of an array of coil

springs was eliminated as a possible solution.
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In previous research, the author investigated the large de-

flection buckling of columns as an energy absorption device

(6). This study showed that, in the absence of lateral con-

straints, the force required to deflect a buckled column elas-

- tically remained constant until the material failed. Materials

having high strength and low modulus were required to achieve

large elastic deformations. The glass fiber/epoxy systems used in

the earlier work were not acceptable in this design, therefore,

high strength titanium alloys and steel alloys were evaluated.

The governing differential equation for a buckled column

such as shown in Figure B is

d2

EI = -Py (6, 7) (III-7)

dx

or 2

d—%+kzy=0.

where dx

2 _ P

" ‘rr

The solution of this equation is

y = A sin kx (III-8)

where

2

k£ = Eéf’ = nn (III-9)

or

2 2
g n n E! III-10

P ——2— ( )
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which is the Euler buckling equation for a pinned-end column. The

lowest order solution is n = 1. The amplitude of the deformed

shape, A, is indeterminate which implies that the force required

is constant with amplitude and therefore with end deflection.

This was established experimentally (6).

The end deflection of the column can be determined from the

projected length of the sinusoid

l 2 2 A2 2 2nx
5;! 1+J—-§—cosde

A

 

 

0

2 2

- it All J: - .419; (111—11)
- g + ——;2——-+ 8n Sln X

where

A = z/n

n = l/Z, l, 3/2

For

2 2
_ _ n A

“-1, S-2+ R9

2 2

_ _ = n A (111-12)
6 - S 1 2

and, for 5 << 5, S 3 1.

and

5.12.5.2. (III-13)
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The bending stress in the column can be established from the curva-

ture of the deformed part and is given by

where

a = "2 AGE (III—14)

s

c = half of the thickness of the column

E = modulus of elasticity

One of the cases calculated for the problem was based on the fol-

lowing assumptions:

A 0.040 (the width of the groove)

0 150,000 psi

Substituting and solving Equation (III-13)for the free length,

2 2

s=-"—'-§A—=0.35l

which exceeds the maximum allowable height. Assuming that this

constraint could be relaxed, the stress equation can be solved for

the thickness

2
as

t = 2c = -—§--

2n AE

t = 0.0015 for titanium

and t 0.0008 for steel

If a circular section is assumed for the column, the moment of

inertia for the cross-section is

14.“.
I = 64

and the force equation can be written

P = n3 Ed4

6422
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O?“

P 4
3.2 x 10' pound for titanium and

5
P 4.5 x l0“ for steel

The number of columns required is

7
- 500 8 1,33 x lo for steel

"'15-

This design was clearly infeasible as were several other column

designs.

A different approach to the column problem assumed a rec-

tangular cross-section for which the Euler equation becomes

2 3

32.: 1' Ebh (111-15)

Pcr m 2 ~
32

where

P = 300 pounds, the total load

m = the number of columns

3
I- bh

--—T§ is the momentum of inertia for

a rectangular section.

In this example, the yield strength of steel was taken to

be S x 104 psi which is the approximate value for some stainless

steels in the fully annealed condition. This condition would re-

sult if the columns were required to survive a furnace braze cycle.

Certain quantities are more accurately estimated then others

in a design situation. In this case, the yield strength and modu-

lus of the material are easily obtained, the required deflection is

known, and the free height can be estimated. The unknowns are the

number of columns, the width of each column, and the thickness. If
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the width is assumed to be the width of the groove, then the thick-

ness can be found from the stress equation as follows

 

 

_ 4n2 AcE
0 --———§———

2

2 2

a='"£A ——-> A=J-’\/62.
11'

t = 2c

Substituting

=‘2‘" JGt E
a £3/2 (III-16)

or

t=.__o_£_3_/.2_—

2n V/E E

The number of columns is computed from the Euler equation as

written in Equation (III-15)

n Ebt ‘

The data for the problem are summarized below:

P = 300 pounds

E = 28 x 106 psi

b = 0.040 inch

6 = 0.035 inch

I = 0.100 inch

0 = 5 x 104 psi

then t = .00005 inch

n = 5.5 x 105

Although this was a marked improvement over the first attempt, it
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was decided that buckling columns of a reasonable design would not

fall within the problem constraints.

As a final example of the alternate spring systems evalu-

ated, consider the effort to design a flat circular plate with a

central hole which would meet the functional constraints. The

plate geometry was ideally suited to the application and the ad-

vantages offered by the relative simplicity of fabrication and

assembly were such that constraints on the diameters could be

relaxed slightly to permit use of a plate. Three plate types were

considered: a flat plate of constant thickness fixed at the inner

edge as shown in Figure 9, a similar plate fixed instead at the ‘

outer edge as shown in Figure 10, and a conical disk of constant

thickness. The conical disk, or Belleville spring, is shown in

Figure 11. It is the design closest in principle to the ellipti-

cal section ring. Calculations will be presented for the plate

with the inner edge fixed and for the Belleville spring.

Plate equations are available from many references, those

used in this study were taken from Roark (2) and are typical of

the handbook type equations. The constraint and load conditions

considered in this analysis corresponded to Case 1 of the

"Formulas for flat circular plates of constant thickness". The

general and particular cases are shown in Figure 12 along with the

boundary conditions. Parameters of interest are

4( c c
_ -wa 2 9 _

ya - bD -—-c8 C3) (III-17)
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Figure 10. Plate with outer edge fixed.
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Figure 11. Conical disk or Belleville spring.
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Figure 12. Plate parameters of use in equations from Formulas for Stress and Strain. [21



where

A trial case was assumed as shown in Figure 13.
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(III-18)

(III-19)

(III-20)

The material

chosen was a titanium alloy, BIZOVCA, which has the following

properties (5)

E

V

0

U

The constraints

and radii and do not require thickness.

to be

14.8 x 106 psi

0.21

1.90 x 105 psi

5
2.00 x 10 psi

C2, C3, C8, and C9 contain material data

These values were found
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b=200’

 
p=4l4mfin

[I = .015"

 

Figure 13. Parameters for flat plate calculation.
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c2 = 2.17 x 10’3

c3 = 2.04 x 10’4

c8 = 0.955

09 = 0.063

The maximum moment in the plate was

C2

M = Z!§—- -5.740 (III-25)

o
é
’
h
o

5
Assuming a maximum working stress of 1.80 x 10 psi, the thick-

ness required was

-, ($11 =t - a 0.015

The deflection at maximum load was calculated to be

y = 0.007 inch

which was not adequate.

The results of the hand calculation above were sufficiently

close to meeting the constraints to justify a more detailed study.

A computer program, PLATEI, was written to sweep through ranges of

thickness for various combinations of inner and outer radius. The

results of a typical run are presented in Table 1. Cases which

resulted in acceptable stresses and deflections are flagged. The

conclusion regarding the use of plates was that the inner radius

necessary to achieve the stress and deflection levels specified

was outside the acceptable range. The evaluation of plates having

fixed outer edges produced a similar conclusion.
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TABLE I. SAMPLE PRINTOUT FROM PLATEI.

CIRCULAR PLATE NITH INNER EDGE FIXED

l.9000 OUTER RADIUS= 2.8500

E= l.680E+07 NU= .300

INNER RADIUS=

MATERIAL DATA:

LOADING: 300.00 POUNDS TOTAL 21.8807POUNDS/INCH

THICKNESS DEFLECTION STRESS

.0050 l.703E+00 8.090E+06

.OIOO 8.129E-01 5.099E+05

.0150 6.307E-02 2.266E+05

.0300 2.661E-02 l.275E+05

.0250 1.362E-02 8.l58E+OH

.0300 7.889E-03 5.665E+OH

.0350 9.965E-03 H.168E+OH

.0900 3.326E-03 3.187E+OH

.0950 2.336E-03 2.518E+OH

.0500 1.703E-O3 8.0HOE+OH

.0550 l.279E-03 1.686E+OH

.0600 9.855E-OH 1.916E+OH

.0650 7.751E’09 l.207E+OH

.0700 6.206E-OH l.OHlE+OH

.0750 5.096E-OH 9.065E+O3

.0800 H.158E-OH 7.967E+03

.0850 3.966E-09 7.057E+03

.0900 2.920E-09 6.295E+03

.0950 2.983E-OH 5.650E+03

.lOOO 2.129E-OH 5.099E+03
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The Belleville spring is a non-linear spring which is widely used

in applications requiring a tailored load-deflection curve includ-

ing those cases in which a considerable range of deflection at

constant force is necessary (2). Roark (2) gives equations based

on the work of Almen and Lazlo (8). Roark's presentation of two

constants in tabular form necessitated the use of interpolation to

obtain values for a solution. The equations for load and stress

were

 

‘

l
l [1.-.,(.-

«
n
o
.

3 III-26(1-E32)Ma2 )t+t] ( 1

-E6 [ ( a) I _
c h--+ct (11127)

_ 02) Ma2 1 2 2

 

Q

ll

(1

where C1 and C2 were the tabularized constants based on the

ratio a/b. Table 2 includes several entries from Roark.

The test case was solved using a Hewlett Packard HP-67 pro-

grammable calculator and some available routines. The problem

parameters are listed below:

P = 300 pounds

6 = 0.035 inch

a = 2.25 inch

b = 2.21 inch

The ratio a/b 1.02 was not a tabulated case, therefore, a linear

regression analysis of the tabular data was used to obtain a value

of M= 0.1312. It was decided to assume values for the free

height, h, and to solve for the thickness. Rearranging the
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TABLE 2: BELLEVILLE SPRING CONSTANTS FROM

FORMULAS FOR STRESS AND STRAIN [2]
 

a/b C1 C
2

1.0 -— -—

1 2 1.02 1 05

1.4 1.07 1.14

1.6 1.14 1.23

1.8 1.18 1.30

2.0 1.27 1.46

3.0 1.43 1.74

5.0 1 77 2.38
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equations resulted in a cubic function in t:

2 2

t3+(h-6)(h-%)t+P(1'E§iMa =0

which became, for a steel spring,

t3 +11. - a) (h - %)t + (2.17 x 10") = 0 (III-28)

This equation was solved for a series of reasonable heights

and yielded negative and complex thicknesses. The assumption was

that the spring parameters and the load requirements were incompat-

ible. Further analysis was deferred because of time constraints.

The Belleville spring was of additional interest because of

the similarities between the elliptical section ring and the coni-

cal washer. The load in both cases is applied through the tangent

points of a rotated, non-circular section resulting in a variable

moment arm. The deflection of each is a non-linear function of

rotation. Since the Belleville spring is a standard engineering

design, it is of interest to characterize its response and compare

it to that of the elliptical section ring. A modified Belleville

Spring with circular ends as shown in Figure 14 was also studied.

A cross-section of a Belleville spring is showm in Figure

15. The eccentricity of load application, e, can be seen to be

e = 2r Sin (¢ - 0t) (III-29)
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Figure 14. Modified Belleville spring.
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Figure 15. Deflection model for a Belleville spring.
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where

 

r ,Jaz , b2 (111-30)

0t = tan '1 (b/a) (111-31)

The deflection resulting from a rotation from 4 = 00 to o = 0 is

given by

5 = 2r (cos (a - at) - cos (0o - thl (III-32)

Equations 111-29 and III-32 may be normalized to the parameter %

in order to consider generalized response. The eccentricity be-

comes

a 2 1/2

§-= 2 (51 + 1 (sin ¢ - at) (III-33)

(g)2

and the deflection becomes

6 - 2 (€12 + l 1,2
'5’ ’ —— (cos (4 - 0t) - cos (co - 99) (111-34)

(9—)?
b

Note that these equations are based on the assumption of

neglibile distortion of the cross-section. Figure 16 illustrates

the change in load eccentricity with position for a fixed value

of %. At 0 = 0, the moment arm of the applied load is equal to
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16. Belleville spring: Deflection from do = 0.
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the plate thickness and the moment is negative according to the

convention established. The curve passes through zero at a = 6t

and reaches a maximum value equivalent to the length of the

section (e = 2a) at 6 = 90°.

The negative portion of the curve indicates that the moment

of the applied force opposes positive rotations. This condition

exists until the corner has rotated past the vertical ( ¢ = 6t).

Figure 16 also contains a plot of normalized displacement as a

function of rotation (Equation III-34). In this case, the

negative portion of the curve results from the fact that the

height of the section increases as the corner moves upward in the

range of rotations

In the case of the modified Belleville spring (see Figure

14), the line of action of the applied force must always pass

through the center of curvature of the radiused end. The

equations for eccentricity and deflection can be seen to be

e = 2r sin 6 (111-35)

and

6 = 2r (cos ¢ cos 60) (111-35)

where

r = a - b (III-37)

The general response of the modified Belleville spring may be char-

acterized by the equations when normalized to ratio
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9.. = - 9 ° III-382a (1 a) $10 4 ( 1

6 = (l - 94 (cos 6 - cos 0 ) ' (111-39)
23' a 0

which are plotted in Figure 17. In this case, the eccentricity of

loading is initially zero and increases to a maximum given by e =

2(a-b) at 6 = 90°. The deflection ranges from zero to 6 = 2(a-b)

at 4 = 90°.

These general response characteristics will be discussed

relative to the characteristics of the elliptical section ring in

Chapter V.

The results of these and many other studies were negative

in the sense that no solutions were found to the design problem.

The conclusion drawn from these efforts was that a continuous

elastic medium would offer the greatest probability for success.

The flat plate calculations and a study of a ring in torsion (see

Chapter IV) led the author to postulate the response of a non-

circular section ring and to assume that stresses could be held to

reasonable levels.
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CHAPTER IV

PRELIMINARY CALCULATIONS OF A TWISTED RING
 

The analysis of alternate spring systems showed that any

system meeting the constraints of the problem would be highly

stressed. The critical element of effective design was felt to be

the development of an accurate predictive capability for deflec-

tions and stresses. In order to justify pursuing this endeavor,

some preliminary estimates of force, deflection, and stresses were

required. A review of the literature showed the most applicable

work to be that of Timoshenko describing the twisting of a circu-

lar ring of uniform section by distributed couples as shown in

Figure 18 (1). Timoshenko refers to a development by R. Grammel

(9) for the case when the angle of twist is not small, but the

author was unable to obtain a c0py of this paper. Additional

relevant work was done by Rodriguez (10) discussing the three di-

mensional bending of a ring on an elastic foundation. Although

Timoshenko's derivation was based on the assumption of small angle

rotation, it was felt to be of sufficient accuracy to establish

the viability of the concept as a potential solution. The proce-

dure is similar to that employed in developing the actual model.

The free body diagram of one half of the ring is shown in Figure 19.

A summation of the moments about diameter AB may be written

dMAB = (MtR do) sin a, (1v-1)

46
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Figure 18. Circular ring loaded by a uniformly distributed twisting moment.
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thus

n/Z

AB = 2J[ MtR sin a do = 'ZMtR’ (IV-2)

0

which results in a bending moment, M, on each cross-section equal

to half of the moment, MAB’ or

M

= fl = - 1v-3M 2 MR. ( )

Symmetry conditions require that the motion results from the rota-

tion of each cross-section in its own plane.

The displacement of any point P results in a change in ra-

dius and in a corresponding change in the length of the annular

fiber passing through P. The displacement of P is

1313" = p0 (IV-4)

as indicated in Figure 20. In this analysis, the angle of rota-

tion, 6, is assumed to be small and the cross-section is taken to

be small relative to the diameter. The change in the radius of P

is

AR = (06) (%)= 6y (IV-5)

Since the cross-section is small relative to the radius, the ra-

dius of any fiber is approximately equal to R and the strain in a

fiber is given by

A&_= 2n (R + AR) - ZnR

2e = ZnR

Ol"

93:91 1-R R ( V 6)

0
1 I
I

The fiber stress resulting from the strain is
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Figure 20. Displacement of a point, P, due to a rotation A0 = 61—02.
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o = E6: = E31 (IV-7)

Equilibrium conditions for the half ring may be written in the

fadA‘fg‘eRdigo (IV-8)

A A

form

and

2

foydA= [152.11.th (IV-9)

A A

Equation (IV-8) shows that the centroid lies on the x-axis.

Equation (IV-9) may be rewritten as follows:

[5% yZdA -E% ysz = M.

but A A

2 -
fydA=Ixx

and so A

Elgx a , M (IV-10)

The angle of rotation due to a distributed couple, Mt’ can be

shown to be

2
Mt R

e a -——-—- (Iv-11)
Elxx

In order to assess the viability of the concept of a ring

under twist as a solution to the Specific problem, consider the

example shown in Figure 21. The assumptions made in this calcula-

tion were
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r = 0.050 
 

Figure 21. Circular section ring for trial calculations.
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1) the envelope could be expanded to 0.100 inch square,

thus the radius, r, of the cross-section has a maximum

value of 0.050 inch

2) the axial load was to be applied at an eccentricity,

e = 2r.

3) the deflection required was 5 = 0.060 inch (assuming a

linear force-deflection curve).

Clearly, the small angle assumptions were violated in this

example but it was felt that the results would be indicative of

the magnitude of the force, deflection, and stress. This knowl-

edge justified the decision to continue the analysis.

The deflection resulting from a rotation through an angle,

0, is

6 = 2r(sin e, - sin 62) (IV-12)

where 61, and 62 are the initial and final angles of the lever

arm. It was assumed for purposes of this example that 91 =

900 and thus

6 = 2r(l - sin 62)

Ol“

- -l
62 - sin (1 - ~27) (IV-l3)

Substitution of the example data in Equation (IV-13) gave a

final angle

_ . -1 0.060 g o
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or

92 = 0.4l radian

The force required to maintain this rotation can be established

from Equation (IV-11)

M =.E1xx6

t R2

and

- Pe ..EL

”1 " m ’ 11R (Iv-14)

as shown in Figure 19. Note also that

4

= EL IV'IS

Ixx 4 ( )

for a circular cross-section. The net load on the Spring is

P _ n28 Er3
- _.____.. IV-l6. 4R , ( )

and substitution of the problem parameters gave

2 6 3
p = n (0.4T)(}2j%282;p)(0.050) = 835 pounds

The stress was determined from Equation (IV-7) and was found to be

5
a = 1.35 x l0 psi

The material assumed in the example was titanium.

The force calculated was acceptably close to the design

range and the stress levels were acceptable for the application of
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high strength engineering materials. The conclusion of this study

was that a more rigorous analysis of the ring response was

required and justified.



CHAPTER V

DEFORMATION AND STRESS IN AN ELLIPTICAL SECTION RING

The example in Chapter IV demonstrated that twisting of a

ring represented a feasible solution to the spring design problem

as specified in Chapter II. The indication was that a ring could

be designed for large deformations in the elastic range. It was

hypothesized that a suitable choice of cross-section would result

in a load-deflection curve with a constant force region over a suf-

ficient range of deflections. The study also showed the deficien-

cies of the available models in approximating ring response. The

design of a ring of non-circular section for use as a large-defor-

mation spring definitely required a more precise calculational

model. The purpose of this chapter is to present the derivation

of equations describing the ring response to distributed axial

load.

AS previously discussed, the original concept was that of a

circular ring having an arbitrary non-circular cross-section. In-

itially, it was assumed that the boundary curve of the section

could be optimized to provide the Optimum load-deflection behavior

for a specific spring requirement. The enormity of that under-

taking was quickly recognized, however, and the more modest goal

of analyzing the response with a particular boundary curve was

established. An elliptical section was chosen because the shape

is easily described for fabrication and because it can be widely

varied by appr0priate selection of the major and minor axes. The

56
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parameters of the elliptical section ring are shown in Figure 22

and the load application is depicted in Figure 23. Following com-

mon practice, the semi-major axis is designated as a, and the semi-

minor axis as b. The equation of the ellipse may be written as

x2 2

FirLz-c] (V-l)

a

where x and y are principal axes.

The distributed load is applied and reacted through the

radial tangents as shown in Figure 23 and may be replaced by a

distributed couple.

t pe (V-2)

distributed force (per

M

unit circumference)

e = moment arm

The net force carried by the spring is

F = 2an

As in Chapter IV, the equilibrium conditions for the half ring are

ZFX = O (V-3a)

z = -Fy 0 (V 3b)

ZFZ = 0 (V-3c)

ZFZ = 0 (V-3d)

which are satisfied identically as shown in the free-body diagram

(Figure 24). An element of the ring defined by dm and located

an an angle 6 from the x-axis is subjected to external moments

de = dM sin 4 (V-4)
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Figure 22. Ellipse parameters in body coordinates.
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Figure 23. Load distribution on an elliptical section ring
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Figure 24. Free body diagram of an elliptical section ring.
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dMy = -dM cos 0 (V-S)

where

an = MtR d0 (V-6)

as shown in Figure 24. Equilibrium of moments about the x-axis

and y-axis for the half ring is defined by

n

mx : ZMx = I MtR 5111 VI dip

O

(V-7)

Mx = MtR

and V

g M = — M R cos 0 dw = 0

ZMy 2 Y .1 t (V-8)
O

= 0

My

where Mx and My are the resultant bending moments due to the

distribution of stresses over the cross-section in the x-y plane.

The strain and therefore the stress at a point, P, in the

cross-section may be defined in terms of the change in length of

the circumferential fiber through P in a manner analogous to the

procedure employed in Chapter IV. Consider a point P (x, y) on an

ellipse as Shown in Figure 25.

The distance 0P as a function of the angular position of P

is found from the coordinates

xP r(6) cos 6 (v-9)

yp r(e) sin e (v-10)

and from Equation (V-l). The length of OP is
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ab
;

1J£2 cos2 8 + b2 sin2 e (V-11)

 rial =

If, as shown in Figure 24, the ellipse is rotated about the local

z-axis, the point, P(x, y), is transformed to P (x, y). Assum-

ing no distortion of the cross-section, the coordinates of P in

the body axes, x -y are

x' . rIB) cos 0 (V'lz)

y' = rte) sin a (v-13)

Note that x -y are principal axes of the inertia tensor. The

transform of P(x, y) to P'(x, y) is defined by

x cos 6 -sin 6 x

‘ (V-14)

VJ sin 6 cos 6 y

p: p

14,. = [an] {x}.

It is obvious from Figure 23 that the moment arm, e, is

OY‘

zero for ¢ = O and 6 = n/Z. In these positions, no torque is ex-

erted upon the ring and the only deformation will be the result of

compressive strain through the section. In order to avoid this

condition in applications, it is necessary to fabricate the ring

with the axes of the ellipse oriented at some initial angle, 60,

to the x-y axes. The position of P at 6 = 60 is

{X}p. 8 [ a (¢0) ] {X}p (V-IO)
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and, following a successive transform to P" at

u ' l '

The strain, 8, in the circumferential fiber through P is defined

(V-17)

by

(M) . 211(R + xpn) - 211(R + xj.)

l u w
p p ‘ 2n Rb

clu‘

P P
(V-18)

and, assuming the cross-section to be small relative to the radius,

Rp 2 R (V-19)

thus

Xu'xs

e . n = -2--JL- (V-20)

p p R

Substituting the relationships for xp' and xp" from Equations

(V-17) and (V-16), respectively,

1
cp.p. s fi-[(cos 4 - cos 601xp.(sin 4 - sin 40) yp] (v-21)

As in classical beam theory, the transverse stress is assumed

negligible and the effects of shear are ignored so that the stress

at the point is given by

“p'p” p'p” (v-22)

The equilibrium conditions for the cross-section are

= Ee

fadA = XFZ = 0 (V-23)

A

IOXdA ' Elly ‘5 O (v_24)

A
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J; QYdA = 2M): ' 2Mx (V-25)

Equation (V-23) becomes

E
[MA = R' [{(cos 6 - cos 60) cos 6 - (sin 4 - sin 40)

sin a} He) dA

8 0

from the symmetry of the cross-section. The equilibrium of mo-

ments about the y-axis (Equation (V-24)) becomes

fodi = % fedi +1? fe(-x)dA :10

AA A

which results from the antisymmetric positions of the cross-

sections at opposite ends of a ring diameter. Finally, the

moments about the x-axis are seen from Equation (V-25) to be

foydA = 2 % [{(cos 6 - cos 6O)x - (sin 6 - sin 60)y}ydA

A A

=2fi-(cos6 cos 60)]xydA-2%(sin 6

A

A

Recall that

(V-26)

>
\

‘
<

N

O
.

> l
l
l

H

X x

fxydA E Ixy (V-27)

A
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where Ix is non-vanishing since the x-y axes are not princi-

y

pal. Therefore,

foydA 8 2 £- [1”(cos 6 - cos 6o) - Ixx(sin 6 - sin 60)]

A

= ZMx = 2Mx 3 2MtR

from Equation (V-7). The moment-rotation relationship may be seen

to be

Mt "E%'[Ixy(c°s 6 - cos 60) - Ixx(sin 6 - sin 60)] (V-28)

The values of Ixx and Ixy are determined from the transform of

the moment of inertia tensor

[101.14] = [41(4)] 11(X'.y')] [4(9)] (ll-29)

01“

g 2 2
Ixx Ix COS ¢ + 1y SI" ¢ (V-30)

I = (1xy y - Ix) $10 6 cos 6 (V-31)

and the principal moments of inertia (2)

1 , na3b (v-32)

x 4

 

I g nab3
y (V-33)

Again referring to Figure 25, the load is applied through

the horizontal tangents. Designating the point of tangency as
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Q(x, y), the following observations are made

6 = ZIXQI (v-34)

and

6 = Zlyou - yQ.l (V-35)

The condition of tangency with the x-axis is
A

c
z
g
g

3
1
.
,

0

l
l

0

l
l

A

c
o
x

(
D

O

(V-36)

where

X(6) = r(6) cos (8 + 4) (v-37)

y(9) = rte) sin (6 + 4)
(V-38)

from Equations (V-12), (V-13), and (V-14). Differentiating with

respect to 9,

”399 = -r(6) sin (e + 1) + “—5591 cos (0 + 4) (v-39)

dr(6) =
 

 

ag_(: ab

d0 0

0/52 cos2 a + b? sin2 0 (V-40)

= '9 (a2- 8?) sin 29

20

where

D = (a2 c0526 + b2 sinze)
(V-41)
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Thus

“—3521 = -r(e) sin (e + 4) + Egg (a2 - 52) sin 28 cos (0 + o)
D

Qfiéfil = - r06 (a2 cos 6 sin 6 + b2 sin 8 cos 6) (V-42)

Similarly

gfiéfll = r(9) cos (a + ¢) + r ° (a2 - b2) sin 26 sin (6 + 6)

20

  

'Qfiéfil.= Ifigl (62 C05 9 C05 4 - b2 sin 6 sin 6) (V-43)

Then

gy_= gy_. d6 8 _ a2 cos 9 cos 6 - b2 sin 6 sin_6 (V-44)

dx d6 dx 2 . 2 .

a cos 6 Sln 6 + b Sln 0 cos 6

Equating Equation (V-44) to zero gives

 

2 2 . .

91 =“(a cosetcos6-b251n£3t51n6)
=0

dx 2 . .

Q a cos et Sln 6 - b Sln at cos 6

or

2 _ 2 . .

a cos et cos 6 — b 510 °t $1" 6

2 (V-45)

tan °t = i? °°t 6

at the point of horizontal tangency. The orientation of the con-

tact point relative to the minor axis of the ellipse is shown in

Figure 26 for the case a/b = 2.0 and a/b = 4.0. The contact point

is on the major axis when 6 = 0° and on the minor axis when 6 = 90°.

At other positions, the contact point lies between the axes of the

ellipse. The coordinates of Q are given by

 - 3” (V-46)

a2 cos2 °t + b2 sin2 6

't

t
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26. Location of the contact point between an ellipse and a flat plate.
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x' = r cos a

t t t (v-47)

y' = r sin 6

t t t (V-48)

The moment arm of the applied load is

e = 2r cos (6 + °t) (V-49)
t

as seen from Equation (V-34).

The deflection under the applied load from Po to 6 is

defined as

6 3 ZAyO" - yo.) (V-35)

01"

6 = 2
Peat") 51" (4’ 1 °t") ‘ r6919) 51" (1’0 + 90)) (v-50)

 

where Q' and Q" are the points of tangency in the initial and de-

formed states, respectively.

Equations (V-49) and (V-SO) may be normalized to the ratio

-% and the angle of rotation, 6, in order to study the generalized

response of an elliptical section ring. The resultant relation-

ships are
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. cos (6 + 9 )

3/(%) cos2 °t + sin2 °t

and

'23 2 2m (4’ + at") - ’1" U I °t') (V-52)
2

v\/(%) c052 °t" + sin2 °t" \/(%) c052 °t' + sin2 °t'

where

a 2

tan 0t = ('6) cot 9 ”‘45)

and the primed and double primed cases in Equation (V-52) refer to

the initial and final values of 4, respectively.

Figure 27 is a plot of Equation (V-Sl) and shows the varia-

tion in the moment arm over the range 0 S 4 S 90° for a/b = 2.0

and a/b = 4.0. Since the twisting moment required to deform the spring

also varies with angle, the force will vary in a non-linear fashion

as hypothesized. The curves for deflection as a function of angle

are plotted in Figure 28 using the relationship given in Equation

(V-52) for the case °O = 0,

Figures 29 and 30 Show the above curves with data for the

Belleville and modified Bellevile Springs discussed in Chapter III.

The negative eccentricity shown for the standard Belleville spring

occurs until the corner of the rectangular section is vertical.

Similarly, the negative deflections in Figure 29 indicate that the

point of load application moved further from the origin. Obvi-

ously, these conditions are incompatible with the actual response
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Rotation — 6

27. Load eccentricity of an elliptical section ring as a function of rotation.
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28. Change in contact point position between an elliptical section ring and a flat plate (60 = 0°).
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29. Comparison of load eccentricity for an elliptical section ring,

a Belleville spring, and a modified Belleville spring.
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30. Comparison of contact point deflection for an elliptical section ring, a Belleville spring, and a modified

Belleville spring.
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and should be disregarded. (It would be possible to reformulate

the equations to start with the corners vertical but that option

has not been pursued in this study.) The significant point of com-

parison between these three designs is that only in the case of

the elliptical section ring does the eccentricity decrease. This

allows the designer greater flexibility.

The force—deflection characteristics for a test case are

presented in Figure 31. The test case shows the calculated re-

sponse of a titanium ring (a = 0.050, b = 0.010, R = 2.23) for

60 = 0°, 20°, 40°, and 60°. The stresses resulting from

rotation of the ring over the range 20° 5 6 5 90° are shown in

Figure 32. The expected non-linearities are evident in the data.

Considering the test case relative to the problem specifications

in Chapter II, the force level for curve B (60 = 20°) is lower

than required (200 lb instead of 300 lb). The usable deflection

range (0.070 inch) is marginal since some preload would be re-

quired. Stresses encountered in this design exceed the levels

attainable with common materials but are reasonable for a first

attempt. These calculations indicate that an elliptical section

ring which meets the specifications very probably exists.

Since the spring is to be designed to function in the

elastic range of the material, the value of the maximum stress in

the ring is of interest to the designer. The maximum stress will

be defined in terms of the maximum strain,

Omax ' Eemax’
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31. Force curves from a sample calculation with RING.
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32. Force and stress for a sample calculation with 60 = 20°.
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which in turn is defined in terms of the displacement of a point

from 60 to 6:

e c 1 V- 3

max R (xp" "p ) ( 5 )

where

5(6) = 1&9)- [(cos 6 - cos 60) cos 0 - (sin 6 - sin 40) sin a]

Differentiating with respect to e ,

 

 

where

3—3 = 65' (M0) cos (8 + 6))

= -.Eé%4 [a2 cos 8 sin 6 + b2 sin 8 cos 6‘] (v-42)

so

%% - - 5.1%;- [.2 cos 8 (sin 4 - sin 4o)+ b2 sin 0 (COS 4 - £05 40] ”’54)

where _D = 32 cos2 6 + b2 sin2 6

The location of the point of maximum strain is defined by the

angle, °s , where

r(e )E _ _ s 2 . _ .
36 - 0 - 752- [a cos es Sin 4 5m 40)

D
.

2 .
+ b Sln °s cos 6 - cos 60)]

Ol‘

 

2 sin 6 - sin 60

tan 8 = - a
s '32 (cos 6 - cos 60
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which further simplifies to

2 4 t 4
_ a 0 (V-55)

tan 95";2'C0t( 2 )

The coordinates of the point of maximum strain may be

 

determined from Equations (V-ll) (V-9), (V-10), and (V-14). The

values of the maximum strain and maximum stress are specified by

Equations (V-21)and (V-22).

The neutral axis of the cross-section is defined as the

locus of points of zero strain and is described by equating

Equation V-21) to zero:

5 = % [(cos 6 - cos 6O)xp - (sin 6 - sin 6o)yp] = 0 (V-21)

cos 6 - cos 60

’11 - sin 4 - sin 60)xp (V-56)

 

which reduces to

yp = (tan-12 (4 + 40)) xp (v-ssa)
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The location of the neutral axis relative to the principal axes of

moment of inertia is

= tan"(l)= -—2- (6 + 60) (v-57)

Note that the neutral axis is not along the x-axis as would be

expected from the simple theory of beams. Oden (11), however,

indicates that the orientation of the neutral axis is not, in

' general, perpendicular to the plane of the resultant moment.

The data plotted in Figure 26 showed the position of the

contact point relative to the axes of the ellipse. The location

of the contact point relative to the radial axis of the ring is

given by

°t = 4 t °t

which is plotted in Figure 33 along with the angular locations of

the major and minor axes. The case shown i5«5= 2. 0. Superposed

on this plot are the loci of the points of maximum strain and the

neutral axis locations for various values of 60. Note that the

neutral axis is coincident with radial axis only at 6 = 40. Note

also that the point of maximum stress occurs at the contact point

only when 6 = 60. Figure 33 illustrates that the point of maximum

stress is not necessarily on the perpendicular to the neutral axis

of the section.

It is of interest to compare the above development with that

based on the assumption of small angles of rotation (see Chapter

IV). Consider first the strain as defined by Equation (V-21)
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33. Loci of the positions of the major and minor axes, contact point, neutral axis, and point of maximum

strain as measured from the radial axis of the ring.
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1
- (cos 6 - cos 6 ) x + (sin 6 - sin 6 ) y]

F R 1 0 0 (v_21)

. '3' $1" % (¢ ' ¢o)[x SIR%(¢ T 90) + y C05 “E (¢ 4’ 00)]

Then, let

4 = 40 + A4 (v-58)

and assume .64 << 60. so that

e =«%-(A6)(x sin 60 + y cos 6o) (V-59)

but .

yp. = (x sin 60 + y cos °O)

The strain at a point then becomes

6 = zE-'(A6)
(V-59a)

which agrees with Equation (V-6).

The stress-moment equilibrium, Equation (V-28), reduces to

Mt = R; [Ixy (cos 6 - cos 40) - Ixx (sin 6 - sin 40)] (V-28)

z E

R7 I- 1xx(44)] (V'60)

which is similar to Equation (IV-10)). The neutral axis for small

angle rotations is obviously the x-axis:

y=0 I

from Equation (V-59a).
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The correlation with small-angle rotations and simple beam

theory shows that the developments are consistent with existing

knowledge.

In view of the intended application of the spring and the

small size of the elliptical section, the possibility of high bear-

ing stresses was considered. The contact stresses predicted by

Hertzian theory were developed in terms of the radius of curvature

of the ellipse at the point of contact.

The ring was assumed to behave as a cylinder loaded by a

flat plate. The stresses are given by (2)

ac = 0.798 7 (KD)(CE) (MI)

and the width of the contact zone is

 
 

wc = 1.60 p KDCE (V-62)

where

KD - 2r = 2(1) (V-63)
p

2 2
c - I " V] + I " v2 (v_64)

E E E
1 2

where

E10] = plate material properties

£202 = ring material properties

The radius parameter in Equation (V-63) is defined from the equa-

tion of the ellipse and the definition of radius of curvature (12):
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it 4313112
d2 (V-65)

4.

2:3

At the point of contact (tangent to the ring)

p:

91.

dx 0

and

p : —— (V-656)

Equation (V-I) can be rearranged to give

1/2

then y =‘%'(b2 - X2)

 

-l/2

Elba; 2- 2 V-66

dx b (b x ) ( )

2

d = .__;ifll___ (v-57)

dx 1/b2.- x2

and

Y b2 - x2
p 8 t ab (V-68)

In this case, x and y are in the body coordinate system and

are the local coordinates of the point of tangency as defined by

Equations (V-46), (V-47), and (V-48).
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In the analysis of a dynamic system, the friction between

components having relative motion can have a significant effect on

the response. Since the elliptical section ring incorporates the

change of contact point as a key feature, it is necessary to con-

sider the role of friction in the spring response. In any mechani-

cal system, friction acts so as to retard relative motion between

the elements of the friction pair (13) as shown in Figure 34 (a)

and (b). The friction force reverses direction between the load-

ing cycle and unloading cycle.

The mechanism of friction between two solids is not well

understood but the macroscopic effects can be characterized in the

simple form:

f = uF (V-69)

where f is the friction force resulting between two bodies bearing

a normal force, F, and having a coefficient of friction, p. This

relationship is considered valid over a range of boundary condi-

tions and relative velocities (5). The degree of accuracy is

highly influenced by the selection of the friction coefficient.

The friction coefficient between two materials is dependent

upon a variety of factors such as the degree of lubrication and

the relative hardness of the materials. Experimental constants

are typically given as a range of values (5) from which the de-

signer must find the most appropriate choice for a particular

system.

Neglecting the problems associated with the selection of a

coefficient of friction, the effect of a friction force on an
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Figure 34. Friction force direction during (a) loading and (b) unloading.
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elliptical section ring is to alter the moment-force relationship

at any given angle, 6. Equation (V-2) describes the relationship

between the applied force, p, and the moment required to maintain

the deformation, M, as

M = pe

where e is the eccentricity or distance between the contact points

in the radial direction. Equation (V-2) may also be written in

terms of the contact point coordinates as

M = 2p('xt)

with the sign change necessary as a result of the convention

chosen for forces and moments. The moment required to maintain

the deformed state is independent of the applied loads which im-

plies that the presence of friction must change the forces re-

quired to exert the moment on the body. The moment required at

each value of 6 is given by Equation (V-28). The moment-force

relationship for loading (increasing 6) is given by

Mt = 2p (-xt - uyt) (V'70)

and for unloading by.

Mt = 2p (-xt + uyt) (V-71)

which can then be solved for the applied load necessary to main-

tain a deformed condition. Figure 35 shows the effect of friction

on a sample calculation.

Since the coefficient of friction is not readily available

for many friction pairs, it will be advantageous to extract an

estimate of the friction in a given system from the hysteresis in
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Deflection (in)

35. Sample calculation showing the effect of a friction coefficient, 11 = 0.10,

between an elliptical section ring and a flat plate.
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the force-deflection data (see Figure 35). This is accomplished

by equating Equations (V-70) and (V-71) and solving for the coeffi-

cient of friction

(pl ' p0) xt

- ' lpz + D”) yt (v-72)

 

where the subscripts 1 and u denote loading and unloading,

respectively. The coordinates xt and yt are the locations of

the tangent point, so

(132 - pu) cot (¢ + 9t)

(p. + D”)

 I1 = -
(v'73)

This relationship will allow an estimate of the friction

coefficient to be made from experimental data.

A phenomenon frequently associated with friction pairs such

as brakes and clutches is the self-locking effect which occurs

when the sum of the resistance load and the frictional force

exceeds the applied load. Consider Equation (V-70),

Mt = Zp(-xt) - Zu pyt

Clearly, if

Zp(-xt) 5 Mt + 2v nyt (v-74)

no motion can occur. This implies that if the ring is twisted to

a certain point, no further deflection will be obtained by in-

creasing the normal load. A further implication of Equation (V-74)
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is apparent when the free ring (¢ = ¢0) is considered. In this

case, Mt = 0 and

Zpl-xt) s 2n pvt (V-75)

describes the limiting conditions. The inequality states that it

is possible to construct a ring which cannot be moved from its

initial position by the application of a normal force. In order

to avoid this embarrassing occurrence, define the angle, ¢c’ to be

' the minimum free angle which allows the ring to deform. Equation

(V-74) reduces to

xt = -uyt

OY‘

tan (cpc + at) = -% (V-76)

2

Recognizing that tan at =(%) cot <l>c,

) - (32 cot ¢c + tan ¢c

1 1%)2

(V-77) 

l _

which becomes

2 2

utanz ¢c-((%) - 1) tan ¢c+u(%) =0

The solution to this quadratic is

.. ,(1%>2-):1/((-:->;- 1)? - (a? (1-7.,
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which defines the critical angle for a given ring. Equation (V-78)

is plotted in Figure 36 for a range of values of u. The space

inside the curves represent values of $0 for which motion is

possible.

The

(a)

(b)

analysis of a particular ring proceeds as follows:

The required data are R, a, b, ¢0, ¢MX’ BHd

material properties for the ring and plate.

The moments of inertia of the cross-section, (Ixx’

I and Ixy) are determined (Equations (V-30)

YY’

and (V-31)).

The moment required to maintain the deformed state is

calculated from Equation (V-28).

The location of the horizontal tangent is determined

using Equations (V-46), (V-47), and (V-48).

The deflection from ¢0 to ¢ is calculated (Equation

(V-50)).

The eccentricity of loading is determined (Equation

(V-49)).

The Specific strain and strain in the cross-section

are determined from Equations (V-21), (V-SS), and

(V-SZ).

This sequence is readily programmed for digital computer

solution, permitting the designer to study the effects of variable

changes rapidly and quantitatively.
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36. Critical angle for self-locking as a function of a/b ratio.



CHAPTER VI

SPECIMEN FABRICATION
 

One of the constraints imposed on the spring system was the

'requirement that fabrication not require new technology. The

Material Fabrication Division at Lawrence Livermore Laboratory

provides shop support to the design groups and is equipped with an

array of equipment for precision metal working including a variety

of numerically controlled (N/C) machines, electro-chemical milling

(ECM) equipment, electrical discharge machining (EDM) facilities,

and diamond-turning machines. Facilities for welding, pressing,

and heat treatment are also available. Specialized capabilities

can be obtained from outside firms when required to complete a job.

Selection of the design parameters for the test specimens

was done as indicated in Chapter V. Fabrication of a ring with

such a small section at a relatively large diameter required

careful evaluation of the available techniques. Three methods

were considered: numerically controlled machining, electrical

discharge machining, and extrusion.

The simplest approach seemed to be the extrusion process in

which the material is forced through a die of the required cross-

Section. The elliptical section wire would then be formed into a

ring and welded or brazed to achieve closure. Several problems

were inherent in this method. The basic problem was the lack of

experience among shop personnel in extruding titanium thus re-

quiring a development program. Hot extrusion would anneal the

94
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material and cause grain growth thereby reducing the strength. An

additional drawback was the requirement for a weld which meant

that, even if the other problems could be solved, a local heat-

affected zone of lower strength would be present. The use of an

age-hardening titanium alloy much as Ti-6Al-4V was considered as a

means of solving these problems by permitting a post-weld heat

treatment. A study of the available literature indicated however

that heat treatment of weld zones involves material which is at a

different initial state than the parent material and generally

results in cracking (13).

Electrical discharge machining is a process in which a

shaped electrode is used to remove material. The process can be

used to shape complex sections in materials which are difficult to

machine conventionally. The process occasionally results in micro-

scopic pitting of the surface. Since the surface of the ring is

the most highly stressed region, such pits would act as stress

concentrations and degrade the effective strength of the specimen.

The EDM and ECM processes would require fixturing similar to that

required for conventional machining and would be considerably

slower.

The optimum method for fabricating the test specimens was

conventional machining on a numerically controlled machine. In

this process, the past geometry is described in an N/C computer

language which generates a series of tool drive commands on a

tape. The tool drive commands define the cutter location from a

reference point. Shop facilities at Lawrence Livermore Laboratory
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include a Sunstrand 5- axis mill, several Excello N/C lathes, and

a Sheffield ysz gage for N/C inspection. Consultations with shop

management indicated that, despite problems with fixturing the

ring to avoid deformation and out-of-round conditions, the use of

conventional N/C techniques was the best approach.

The N/C programming language currently in use at Lawrence

Livermore Laboratory is APT4. In addition to its use in the

shops, APT4 can be programmed to treat various computer graphics

media as output devices and has found widespread application by

design draftsmen in generating pictures of complex parts and

assemblies. Figure 37 and Figure 38 show drawings generated using

the APT4 language. Figure 39 is a listing of the APT4 commands

required to generate the geometry.

Commercially pure titanium is described in the literature

as easily machined (13) and no special hazards are noted that

might be encountered under normal machining practice. Job orders

were written for the fabrication of the samples. The cost esti-

mate for the 0.020 x 0.080 x 4.435 dia. ring was 60 hours. The

second ring was larger (0.040 x 0.160 x 4.435 dia.) and did not

require new fixturing or programing. The estimate was 16 hours.

A sheet of 99.98% pure titanium measuring 24 x 48 x 0.5 inches was

purchased at a cost of $ 575.00. The material certification

provided by the vendor is shown in Figure 40.

Inspection of the ring to verify the size and orientation

of the elliptical cross-section proved to be impossible because

the elliptical portion was too small to be measured on available
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PARTNO ELLIPTICAL SECTION RING

UNITS/INCHES

INTOL/.0001

0UTTOL/.0001

MACHIN/GRAPHICS.XYPLAN.-.060..060.-.060..060

CUTTER/0.0 '

A=0.050

8=0.010

PHI=30.

R=2.25

P0=POINT/0..0.

P1=POINT/R.0.

EI=ELLIPSlCENTER.Pl.A.B.PHI

PENUP

GOTO/PO

GOTO/Pl

INDIRV/I..0..0.

GO/ON.EI

PENDNN

TLON.GOLFT/EI.0N.YAXIS

GOFND/EI.ON.XAXIS

GOFND/EI.ON.YAXIS

GOFND/EI.ON.XAXIS

PENUP

GOTO/PO

FINI

FIGURE 39. APTH PROGRAM LISTING.
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Figure 40. Vendor certification of the titanium purchased for specimen fabrication.
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contour gages. The closed ring eliminated optical inspection

methods such as comparators. The only data which could be ob-

tained were the inner diameter, outer diameter, and the major and

minor axis.

The rings were fabricated and inspected. The inspection

data and the specifications are shown in Figure 37 for the small

ring and in Figure 38 for the larger specimen. The smaller ring

was later cut apart and examined under the microscope. These

results are discussed in Chapter VIII.



CHAPTER VII

EXPERIMENTAL PROGRAM
 

In order to determine the feasibility of the design and to

verify the accuracy of the calculational model, it was necessary

to test a ring and correlate the measured data with the predicted

values. The functional requirements of the design dictated that

the variation of force with deflection be measured. The large de-

formations and the expected magnitude of the stress in the ring

indicated the desirability of a strain measurement.

The testing was performed by the Materials Test Laboratory

of the Materials Engineering Division at Lawrence Livermore Labora-

tory. This group provided the necessary facilities, personnel,

and instrumentation to complete the experimental evaluation on an

accelerated schedule. The test set-up was very simple: the ring

was placed between parallel polished platens on a 20,000 lb Instron

test machine. A load cell measured the applied force and a 1.00

inch range extensometer measured the deflection. The curve of

force as a function of displacement was recorded on an x-y

plotter. The system is shown schematically in Figure 41. Figures

42 and 43 are photographs of the experimental apparatus.

The determination of the stresses in the ring was a problem

left unsolved in this research. Strain gages were considered and

rejected because the smallest known gages (approximately 1/16 inch

gage length) would have covered a substantial portion of the

surface at given location.

l02
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Load cell

Extensometer

Platen

Platen

Plotter

Deflection

Figure 41. Instrumentation schematic for ring tests



 
Figure 42. Test apparatus for load-deflection tests of elliptical-section rings
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Figure 43. Elliptical-section ring installed in the test machine
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Since the gage tends to indicate an average strain over the gage

area, the data obtained would have been meaningless. In addition,

the nature of the motion and the anticipated large deflection

would have resulted in crushing the gage between the platen and

the ring. Holographic and Moire' techniques were considered im-

practical because of the large deformations and optical difficul-

ties. Two possible solutions exist but were not considered because

of schedule constraints. One possibility is to fabricate a large

specimen amd strain gage the non-contacting surface. Photoelastic

techniques such as stress freezing might also provide a solution.

The only stress data gathered in this project, however, resulted

from observation of the onset of plastic behavior in the load

curve and the correlation between the calculated stress and the

vendor—supplied yield point data. This will be discussed in de-

tail in Chapter VIII.

Data plots such as those in Figures 44 and 45 were obtained

directly from the test group. This data was digitized for input

to a digital computer plotting routine, DPLOT, which generated

graphics output such as in Figure 46. Digitization was performed

using a Gerber digitizing table located at Sandia Laboratories,

Livermore.

The ultimate goal of any engineering analysis is the abil-

ity to understand and predict the response of a given system to a

particular input. In the case of the elliptical section ring, the

predictive capability developed in Chaper V was correlated to the

results of engineering tests conducted as described above. The
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Figure 44. Test data for a titanium ring (a=0.040,b=0.010,R=2.244 inch $0 = 30°).
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Figure 45. Test data for a titanium ring (a = 0.080, b = 0.020, R = 2.217 inch, (:10 = 200).
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RING WITH ELLIPTICAL SECTION UNDER VERTICAL LOAD AT TANGENTS

ELLIPSE PARAMETERS: A= .0400 B= .0100 R: 2.2500

RING ROTATED FRCN 30.0

MATERIAL WOULUS: I.680E+07

T : TEST DATA

  
0.01 0.02

Deflection (in)

0.03

46. Sample of dig‘tized test data plotted with DPLOT.
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tests in this case were basically intended to assess the suitabi-

lity of the ring design of a potential solution to the application

described in Chaper II. Verification of the model was a secondary

concern at the time.

The first specimen tested was fabricated to the

specifications shown in Figure 37 and summarized below:

Semi-Major Axis: a = 1.016 mm = .040 inch

Semi-Minor Axis: b = 0.250 mm = 0.010 inch

Radius (Nominal) R = 57.000 mm = 2.244 inch

Initial Angle ¢0 : 300

The material selected was commercially pure titanium having

engineering properties as listed below:

E 6
16.8 x 10 psi

v 0.30

Titanium was selected over steel on the basis of high strength

and low modulus which allows larger deformations and lower force

levels for the same stress in the material.

The material certification supplied by the vendor (see

Figure 40)showed a yield stress of 52,000 psi which was below the

range required for full deflection testing. The decision was made

to test the ring using the pure titanium as received. The bases

for the decision were the uncertainty in the availability of high

strength alloys such as BIZOVCA, the lack of experience at LLL in

titanium heat treatment, and the pressure of schedule constraints.

It was decided that if the ring behaved as predicted up to yield,
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the commitment to the design could be made at that point and

better alloys could be obtained and tested.

The dimensions for the first specimen were the result of an

early calculational model and a misinterpretation of the data. The

force-deflection curves for the first three cycles are shown in

Figure 44 and indicate large values of permanent set. Obviously,

the force levels of less than 60 pounds were far below the problem

requirements, and the design was considered unacceptable.

The second test specimen, was ordered immediately following

the first experiment. The analysis was not corrected at that

point, and the dimensions of the elliptical section were set at

twice the original values. This Size represented the upper bound

on the envelope available and required relaxation of some con-

straints. The purpose of the second test was to establish the

upper limit of Spring response in the available space. If the

test proved successful, then the final spring design could proceed

based upon the analytical model without impacting on the project

schedule.

The second specimen was fabricated to the specification

shown in Figure 38. The parameters were:

Semi-Major Axis: a = 2.033 mm = 0.080 inch

Semi-Minor Axis: b = 0.500 mm = 0.0197 inch

Radius (Nominal): R = 112.643 mm = 2.217 inch

Initial Angle: ¢0 = 200

The actual ring is shown in Figure 47.
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arrive I

:wm

 
Figure 47. Photograph of an elliptical section ring (a = 0.080, b = 0.620, R = 2.217, to = 20°)



ll3

Figure 45 Shows the results of the first three load cycles

on the second test part. The first cycle test Shows force values

in the range required (2600 pounds). The deflection of 0.010

inch at failure (onset of yield behavior) was insufficient but

clearly indicated that the design was feasible.

No further tests were conducted on the elliptical section

ring. The analytical effort proceeded and resulted in the develop-

ments detailed in Chapter V. The test program for the elliptical

ring was cancelled on the basis of non-engineering parameters.



CHAPTER VIII

COMPARISON OF CALCULATED AND EXPERIMENTAL VALUES
 

Although neither of the two tests described in Chapter VII

were particularly successful from the standpoint of meeting the

design objectives, both provided good data for correlation and

verification of an analytical model The equations developed in

Chapter V were incorporated into a FORTRAN-language computer pro-

gran which was used to generate tabular and graphics data describ-

ing the force-deflection and stress-deflection characteristics of

a given ring. In writing the program, the author elected to pre-

sent all of the data calculated rather than attempting to sort or

Optimize the.calculation. The reason for this decision was the

belief that the engineer can gain insight into the system by study-

ing the data and that pre~ordained criteria may reject data which

could be valuable.

The computer system at LLL is the Livermore Time-Sharing

System (LTSS) presently consisting of four CDC-7600 computers and

two CDC-STAR machines. These are linked by other computers to

mass storage systems, output media, and a file transport system.

The system is an interactive, time-share system which permits

large numbers of users to run programs with fast turn-around. A

variety of output media are available for text and graphics data

including hard copy, 35 mm film (including color), and microfiche.

A video disk system (TMDS) provides display capability on local

monitors.

ll4
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The analysis program, RING, was designed to calculate

force, deflection, and stress values for a ring over a range of

angle of rotation from ¢0 to d The calculations were
max'

iterated over a range of cross-section parameters.

amin 5 a 5 Smax

bmin 5 b 5 bmax

. Calculation of the Hertzian contact stress at the interface 1was

perfonned at each increment. Recognizing that the initial orienta-

tion of the ring has a significant effect on response, the author

included a feature in RING which allowed for iteration of the

value of do for each cross-section. The results of these itera-

tions were plotted as families of force-deflection curves as shown

in Figure 48. The force-deflection curves were also plotted indi-

vidually for each section with the stress curve scaled to fit and

superposed as in Figure 49. Scaling was done with a routine

written by the author which sets the full scale value of the grid

to a multiple of 1.0, 2.0, or 5.0 as in standard engineering

practice. Note that the stress curve is scaled to fit on the grid

determined by the force data. (It was decided that the force-

deflection curve required greater resolution than the stress

curve. Tabular output from RING corresponding to Figures 48 and

49 is presented in Tables 3 and 4. (The number of angle incre-

ments has been reduced in the tabular output for purposes of

illustration).

A second routine, DPLOT, was written to convert the digi-

tized data from the engineering tests to computer graphics output.
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48. Force-deflection curves — sample calculation.
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RING WITH ELLIPTICAL SECTION UNDER VERTICAL LOAD AT TANGENTS

I— ELLIPSE PARAMETERS: A: .0500 B= .0100 R: 2.2300

RING ROTATED FROA 20.0 TO 90.0 DEGREES

   
Deflection (in)

49. Force and stress curves for do = 20° — sample calculation.
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TABLE 3. SAMPLE CALCULATION ' OUTPUT FROM RING.

RING HITH ELLIPTICAL SECTION IN TORSION

(LOAD APPLIED NORMAL TO HORIZONTAL TANGENTS)

2.230 RADIUS RING ROTATED FROM .0 DEGREES TO 90.00 DEGREES IN 5.000 DEGREE INCREMENTS

ELLIPSE PARAMETER RANGE :

MAJOR AXIS : .0300 TO .0500 AT .0050 INCREMENT

MINOR AXIS : .0100 TO .0200 AT .0050 INCREMENT

MATERIAL PROPERTIES :

RING MATERIAL : TITANIUM MODULUS = 1.680E907 NU I .300

PLATE MATERIAL : STEEL MODULUS = 2.800E*07 NU = .300 (FOR CONTACT STRESSESI



ELLIPSE PARAMETERS:

'll9

TABLE 9. SAMPLE CALCULATION - OUTPUT FROM RING.

RING HITH ELLIPTICAL SECTION UNDER VERTICAL LOAD AT TANGENTS

MATERIAL MODULUS:

ANGLE

5.

IO.

15.

20.

25.

30.

35.

90.

95.

50.

55.

60.

65.

70.

75.

80.

85.

90.

.0

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00 m
—
—
~
m
m
m
m
u
w
u
:
:
:
:
:
:
:

FORCE

.0E+00

.829E+02

.773E+02

.689E+08

.573E+02

.HEHE+02

.896E+02

.039E+02

.806E+02

.5495+oa

.270E002

.973E+02

.GGHEtoa

.3HBE+02

.039Et02

.792E*02

.513E+02

.~9~E+oa

.115E+l3

A: .0500

1.680E007

DEFLECTION

-3.

-I.

-3.

-5.

-8.

.BBBE-OB

.729E-02

-I

-I

-3.

-3.

-3.

.035E-06

.708E'02

-5.

-5.

-6.

.37HE-08

-7.

-8.

-w

-w

-7

.0E+00

653E-0»

958E-03

BESS-03

782E-03

976E-03

232E-08

789E-08

392E-02

ROBE-08

097E-02

770E-02

BEBE-02

OBOE-02 W
W
W
N
W
W
N
W
T
U
N
T
U
N
—
~
—
L
O
O
I
W

B: .0100 R=

STRESS SPEC

.0E+00

.283E+0H

.538E+OH

.739E+09

.286E+05

.587E+05

.875E+05

.IHBEtOS

.902E*05

.636E*05

.898E+05

.036E+05

.l97Et05

.338E005

.H37E+05

.SIEEtOS

.555E+05

.567E+05

.SHSE*05 _
_
.
-
—
—
—
—
r
u
m
m
m
m
u
w
w
w
w
u

FORCE

.0Et00

.HH3E+OI

.HO7E+OI

.3H7E+01

.263Et01

.ISBESOI

.030E+0I

.883E+01

.7l6E+01

.533E+01

.33HE+0|

.l22E*OI

.90lE+OI

.676E+Ol

.H58E+Ol

.BHHE901

.080Et01

.066E+OI

.509E+12

8.2300

MOMENT ARM

5.

-8.

.sssc-oa

~a.

‘3.

.ouoE-oe

-4.

-5.

-5.

-4

-6

-7

-7

-7

-7

390E-16

366E-03

HBIE-OE

275E-08

768E-02

H53E-02

086E-08

.SSSE-OE

.ISHE-Oa

.561E-02

-7. 856E-02

.996E-02

.906E-08

-7.

-6.

-3.

-8.

H3lE-08

252E-02

833E-08

790E-IH

STRAIN

.0E+00

.959E-03

.898E-03

.797E-03

.SSHE-03

.HHBE-03

.IlSE-OE

.278E-08

.H3OE-02

.569E-02

.SSSE-OE

.807E-02

.903E’02

.983E-02

.OHSE-Oa

.090E‘08

.IISE-OE

.123E-02

.lIlE-OB

CONTACT S

U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
U
I
G
J
I
'
U

.OEtOO

.639E*03

.363E003

.795E005

.7H5E+05

.795E+05

.795E+05

.795E+05

.795E+05

.795E+05

.7HSE005

.795Ea05

.795E+05

.7H5E+05

.7M5E+05

.795E+05

.795E005

.7HEE+05

.265E008
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This program along with available graphics editing routines allow

the superposition of test data and calculations and output via

standard LLL graphics output devices. DPLOT includes the scaling

from x-y data in inches (or millimeters) as generated by the

Gerber digitizer to force-deflection data according to the scale

factors used when the data was recorded.

The optional input of range limits for the axes allows the

user to plot to the same scale as the analysis code. This

combined with the capability to plot a curve without axes or

labels permitted superposition of the experimental and calculated

curves.

As discussed previously, the dimensions for the test

specimens resulted from an early calculational model which was

found to be in error. The specimens provided data to verify the

calculational model which was invaluable when the experimental

program was cancelled. The nominal dimensions of the first ring

were:

a = 0.040 inch

b = 0.0l0 inch

R = 2.244 inches

_ 0
¢0 - 30

Figure 50 shows the expected curve family for O0 S ¢0 S

600 and the specified curve for ¢0 = 300 is shown in Figure

51. If a material yield of 50 ksi is assumed, the onset of yield

will occur at approximately 0.0l0 inch deflection. The test data

for this test specimen are shown in Figure 44 as recorded by the



F
o
r
c
e
(
5
.
0
0
0
E
+
0
2

l
b
s
—

f
u
l
l
s
c
a
l
e
)

500

400

300

200

100‘

A

lZI

 

1fif1111111111

RING WITH ELLIPTICAL SECTION UNDER VERTICAL LOAD AT TANGENTS

   

_ ELLIPSE PARAMETERS: A: .0400 B: .0100 R: 2.2300 3

PHIO RANGE : .0 TO 60.0 IN 15.0 DEGREE STEPS
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50. Force curves for Test Specimen No. 1 (nominal dimensions).
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51. Force and stress for Test Specimen No. 1 (nominal dimensions).
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operators. The data for the first cycle were digitized and

plotted with the DPLOT program (see Figure 52). The initial

portion of the curve indicates a non-uniform response which was

felt to be the flattening of ring warpage. A warped ring could

result from residual stresses induced by machining. Figure 53

shows the test data when corrected for this effect.

The major and minor axes of the ring were inspected prior

to the test and were found to be

a 0.0418 (0.040 nominal)

b 0.0095 (0.0l0 nominal)

The initial angle could not be checked. Figure 54 shows the pre-

dicted curve for the actual ring cross-section with the test data

superposed. The Shape of the curve agrees with the expected

results but the force levels are low. The calculated stress at

the apparent yield (6 = 0.015 inch) is approximately 72 ksi which

exceeds the material strength by a considerable margin.

The discrepancies between the experimental and predicted

responses could be the result of several factors such as a non-

elliptical cross-section resulting from machining errors or a

change in initial angle from the 300 specified value. After the

tests, the first specimen was sectioned and examined under a micro-

scope. Figure 55 shows a photomicrograph of the cross-section at

52.9X magnification. Figure 56 shows a similar section etched to

indicate the titanium grain structure. The cross section photo-

micrograph was digitized and plotted to compare it with the speci-

fied ellipse (see Figure 57). The contour appears elliptical in
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52. Test data for Specimen 1.
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54. Force and stress for measured cross section of Specimen 1 ($0 = 30°).
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Figure 56. Photomicrograph of the cross-section of test specimen No. 1

(the section has been etched to indicate grain size)
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form but could be significantly different in section properties.

The initial orientation of the ellipse was lost when the section

was removed from the ring.

Figure 58 shows a family of curves for the measured cross-

section of the first ring over the range 300 s 00 5 45° with

the test data superposed. It is obvious that the test data are

similar to the response curve corresponding to 00 = 40°. The

change in the height of the ring (between tangents) is 0.008 inch

from 300 to 400 or approximately ten percent. This exceeds

the tolerance band for the part but is not unlikely given the size

of the part and the small cross-section. The specific curve for

00 = 40° is shown in Figure 59, again with the test data super-

posed. It is.interesting to note that the calculated stress at

apparent yield is approximately 55 ksi which agrees well with the

material certification (Figure 40).

The first test specimen did not provide adequate verifi-

cation 0f the model. Several probable sources of error could

account for the discrepancies but none of these can be shown to

have existed at the time of the test.

The nominal dimensions of the second test ring were:

a = 0.0800 inch

b = 0.0197 inch

R = 2.217 inches

¢0 = 20°

The predicted curves are shown in Figures 60 and 61. The expected

force levels are higher than the first test, reaching approximately
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58. Force curves for measure cross section of Specimen No. 1.
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59. Force and stress for measured cross section of Specimen No. 1 (do = 40°).
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60. Force curves for Test Specimen No. 2 (nominal dimensions)
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61 . Force and stress for Test Specimen No. 2 (nominal dimensions)
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500 lbs at the yield point (52 ksi). The predicted deflection at

yield is 0.005 - 0.006 inch. The digitized test data for the

second test specimen are plotted in Figure 62. Figure 63 shows

the same data corrected for zero shift.

The actual dimensions of the second specimen were

a = 0.0815 inch

0 = 0.205 inch

R'= 2.2185 inches

which resulted in the curves shown in Figures 64 and 65. The test

data has been superposed and agrees well with the calculated re-

sponse. The calculated stress at apparent yield is approximately

60 ksi. The force peaked at about 600 lbs and the deflection at

the onset of yield was 0.0055 inch.

The actual force curve is higher than the predicted curve.

This could be due to friction between the ring and the load

platens. Rabinowicz (14) reports a coefficient of friction of

0.09 for titanium riding on a steel surface with light lubrica-

tion. This was felt to be appropriate Since the platens were

hardened steel and were lightly oiled. Figure 66 shows the

predicted curve for u = 0.10 with the test data superposed. The

results suggest that friction between the elements is increasing

the force as expected.

The second test correlates well with the calculated

response and confirms the model. The presence of friction is

suggested and can be accounted for in the calculated response.

Since the ring was stressed into the plastic region and did not
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62. Test data for Specimen No. 2.
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63. Specimen 2 test data corrected for zero shift.
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64. Force curves for measured cross section of Specimen No. 2.
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65. Force and stress for measured cross section of Specimen No. 2.
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66. Effect of friction (,u = 0.10) on the calculated response for Specimen No. 2.
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return to the original value of 00, it is not possible to calcu-

late the coefficient of friction using the hysteresis loop as

proposed in Chapter V. An estimate of the friction coefficient

may be obtained from Run N0. 2 shown in Figure 45. The permanent

set from the first test is approximately 0.008 inch which

corresponds to a value of 00 = 27.50 from Run N0. 2. Table 5

shows the values for Equation (V—73) for 6 = 0.0035 inch and 5 =

0.0050 inch in Run N0. 2. The values are determined for the

friction constant, u = 0.13 and u = 0.15, agree well with each

other and with the value expected from Run No. l. The constants

are within the range reported in (14).
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TABLE 5. ESTIMATE OF THE COEFFICIENT

OF FRICTION FROM THE HYSTERESIS LOOP. (Data

from Run No. 2, Figure 45.)

 

Deflection

Parameter 6 = 0.0035 6 = 0.0050

6/a 0.0429 0.0613

00 27.5° 27.5°

30.25° 3l.35°

pu 130. 190.

p2 80. 110.

u 0.13 0.15

 



CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

The investigation of the response of an elliptical-section

circular ring to a distributed axial load resulted in a mathe-

matical model which can be used to predict the force-deflection

characteristics of a given ring as well as the stress levels in

the material. The effects of friction between the ring and the

loading element can be predicted and the limits of operation can

be specified based on the critical angles for self-locking. The

project was terminated without testing a ring which satisfied the

constraints of the original problem. This could be accomplished

quickly Should the need arise.

The following recommendations for future study are proposed:

1. Larger specimens of high-strength materials Should be

tested. Inspection prior to testing should determine

the ellipse parameters (a, b, ¢0) and the section

properties (Ixx’ Iyy)' Testing should include

strain gaging to monitor the strain levels in the part.

2. Hypteresis studies should be conducted to further

verify the effects of friction on ring response.

3. Uniaxial arrays of fibrous composites such as Kevlar/

epoxy and Thormel/epoxy should be considered as ring

materials. These composites have high strengths and

low moduli in the fiber direction and should be well

suited to this application.
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