COPPER AND CADMIUM DYNAMICS IN A HYPEREUTROPHIC POND i Dissertation for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY ‘ JERRY BOYD LISIECKI A 1977 I IITII IIIIIIIIIIIIIIIIIII “W 3 1293 01067 8872 Alichigan State University I / This is to certify that the . thesis entitled Copper and Cadmium Dynamics in a Hypereutrophic Pond presented by Jerry Boyd Lisiecki has been accepted towards fulfillment of the requirements for PhD d . Fisheries 8c Wildlife egree 1n @V/MAMC}? Major piofessorra Date January 8, 1977 0-7639 (if L . ,1}, "i I- “#52. ABSTRACT COPPER AND CADMIUM DYNAMICS IN A HYPEREUTROPHIC POND By Jerry Boyd Lisiecki A record was developed of temperature, light, dissolved okygen, Eh, pH, and sediment characteristics for a municipal waste stabilization pond in Belding, Michigan in which the dynamics of copper and cadmium were studied through the growing season, May 23 to September 27, 1973. The submersed vascular plants, geratgr phyllum demersum L. and Potamogeton foliosus Raf., and the epineustic Lemna minor L. formed the principal plant populations in the pond. Their participation in the budgets of the metals is described. Germination and growth of the plants occurred above 10°C. The pond had a median temperature of 23°C during the months of June through September. Fifteen to 60% of the light incident at the surface penetrated to a depth of 2 m during the time of net biomass increase of the plants from early June to mid-August. Thereafter light penetration diminished to the range of 2% to 10% through September 27. Dissolved oxygen measurements showed the pond to be essentially aerobic throughout 24-hour cycles. Vertical profiles of E7 yielded values generally between 0.2V to 0.6v. pH was in the range typical of photosynthetically active Jerry Boyd Lisiecki systems, 8.5 to l0.0. A floc with consistency and color character- istics of ferric iron covered the sediments or the vegetation along the bottom of the pond. Sediments beneath the floc and over the clay seal of the pond were soft and unconsolidated, black, had lower electrode potentials than the water, and were ca. l6% carbon. Budgets for total copper and total cadmium were developed for the pond at two or three week intervals from May through September. For total copper, the efficiency of removal, grams in influent - grams in effluent/grams in influent, as measured by simultaneously sampling the influent and effluent, was l0% in June, 38% in July and was negative or copper release in August and September. Over the entire study, 2% more copper left the pond than entered in the influent. However, due to a decrease in the copper held in the water of the pond (total capper concentration in the water x pond volume) at the beginning and end of the study, the sediments trapped 4 mg Cu/mz. This amounted to 15% of the amount of copper influent to the system during the study. The aquatic vascular plant community had a net uptake of copper during June, but thereafter lost it to the environment. For the period of study, the plants had a net loss equivalent to 2% of the copper influent to the pond. There was a net removal of cadmium by the pond for inter- vals from the start of the study to mid-August. The efficiency of removal averaged 26%. Thereafter through September, the effi- ciency of removal was close to zero. During the study, the pond Jerry Boyd Lisiecki had an efficiency of removal of 17%. The sediments of the pond had a net gain of 2.3 mg Cd/mz, an amount equivalent to 28% of the amount in the influent over the study period. A portion of this was deposited as the quantity of cadmium in the volume of water in the pond declined between June and September. The aquatic plant community showed a net gain in cadmium until mid-August, and a net loss with senescence thereafter. Zooplankton and benthic macroinvertebrates of the pond showed net gains and losses that were a very small fraction of the total budgets of the elements. Less than 5% of the quantity of either element influent after the initiation of spring growth could have been removed by a harvest of the aquatic plants. COPPER AND CADMIUM DYNAMICS IN A HYPEREUTROPHIC POND By Jerry Boyd Lisiecki A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Fisheries and Wildlife 1977 Copyright by JERRY BOYD LISIECKI 1977 ACKNOWLEDGMENTS I sincerely thank Dr. C. D. McNabb for his guidance and assistance during his time as my major advisor. My graduate committee, Professors R. C. Ball, N. H. Conley, and B. D. Knezek, was valuable in planning and discussing my pro- ject and reviewing this thesis. The graduate students of this department were very helpful in discussions. Special thanks go to Douglas Bulthuis, John Craig, Robert Glandon, Louis Helfrich, Jane Kotenko, David Mahan, and Frederick Payne for their assistance on the studies. Additional gratitude is due John Craig for his ingenious sampling devices and Jane Kotenko for her excellent work as a laboratory technician. I appreciate most of all the efforts of my wife, Connie, to make my degree effort pleasant and isolate me from outside irri- tation. My son, Chad, was most understanding of my need for quiet whenever I required it. The research for this thesis was partially supported by funds provided by U. S. Department of Interior, Office of Water Research and Technology under Project No. A-O73-MICH of the Institute of Water Research at Michigan State University and the Michigan Agriculture Experiment Station under Project No. ll57. ii TABLE OF CONTENTS Page LIST OF TABLES . . . . . . . . . . . . . . . . . iv LIST OF FIGURES . . . . . . . . . . . . . . . . vi INTRODUCTION . . . . . . . . . . . . . . . . . l METHODS . . . . . . . . . . . . . . . . . . . 3 RESULTS . . . . . . . . . . . . . . . . . . . 14 Features of the Environment . . . . . . . . . . 14 Copper and Cadmium Budgets . . . . . . 20 Biotic Interactions with Copper and Cadmium . . . . . 33 DISCUSSION . . . . . . . . . . . . . . . . . . 4O LITERATURE CITED . . . . . . . . . . . . . . . . 52 APPENDIX . . .l . . . . . . . . . . . . . . . . 57 iii LIST OF TABLES Table Page 1. The schedule of sampling in Pond 4 at the Belding wastewater system in l973 . . . . . . . . . 6 2. Mean dissolved oxygen concentrations (mg/l) observed at 0400 hours in Pond 4 at Belding, Michigan during the growing season . . . . . . . . l6 3. The penetration of light in Pond 4 of the Belding waste- water system in 1973.. . . . 18 4. Characteristics of the unconsolidated sediments of Pond 4 in the growing season of 1973 . . . . . . . . . . 21 5. Hydrologic data (values x 103 liters) for Pond 4 of the Belding wastewater system during the growing season of 1973 . . . . . . . . . . . . . . . . . . 22 6. The partitioning of influent copper among functional compartments in Pond 4 of the Belding, Michigan waSte treatment system for intervals of the growing season, 1973 . . . . . . . . . . . . . . . . . . 23 7. Relationships between the total quantities of copper and cadmium in the inflow and outflow of Pond 4 for the 24-hour period on the date given . . . . . . . . . 25 8. The partitioning of the net total copper that was pro- cessed by the biota for intervals of the growing season . 26 9. Total grams of capper and cadmium in the pond volume, the biota, and the vascular hydrophytes on each 24- hour sampling date . . . . . . . . . . . . . . 27 10. The partitioning of influent cadmium among functional compartments in Pond 4 of the Belding, Michigan waste treatment system for intervals of the growing season, 1973 . . . . . . . . . . . . . . . . . . 31 iv Tab1e 11. 12. Page The partitioning of the net total cadmium that was pro- cessed by the biota among components of the biota for intervals of the growing season . . . . . . . . . 32 Concentration ratios (ratios of concentrations of metal pgm/gm of organisms to mg/l of water) for biological components in Pond 4 of the Belding wastewater treatment system, 1973 . . . . . . . . . . . . . . . 37 Figure LIST OF FIGURES The system of ponds that receives untreated wastewater from the community of Belding, Michigan Changes in the standing crop of aquatic plants (it) and the quantities of copper (O) and cadmium (©) contained in the crop over the growing season Differences in tissue concentration of copper between the floating plant, Lemna minor (CD), and the submersed vascular plant, Ceratophyllum demersum (C), over the growing season . . . . . . . . . . vi Page 34 35 INTRODUCTION The need to protect bodies of water from the eutrophying elements present in the effluent of municipal wastewater treatment facilities has led in recent years to the use of stabilization ponds and adjacent land sites for the disposal of finished water. The ponds principally reduce the fecal bacterial abundance, chemical oxygen demand and biological oxygen demand of the wastewater and remove a portion of the eutrophying elements. The irrigated land areas are intended to trap the remainder of these through the action of soil and plants. Additionally they may trap toxic heavy metals. These may represent a particular threat to the long-term optimum operation of land disposal sites (Chaney, l973; Leeper, 1972; and Chumbley, 1971). Many stabilization pond systems in Michigan are designed so that the series of ponds contains aerobic, facultative, and anaerobic cells (King, 1967; Porges and MacKenthun, 1963; Fitzgerald and Rohlich, 1958; and Towne, Bartsch, and Davis, 1957). During the growing season, submersed vascular hydrophytes are a conspicuous component of the biota of cells that appear to be aerobic in nature (McNabb, 1976). These aquatic plants affect the dissolved gases, Eh, and pH of such ponds (Wium-Andersen and Andersen, 1972; Armstrong, 1964; and Buscemi, 1958) and thus may influence the dynamics of metal compounds and complexes. The quantity of metals reaching the spray irrigation sites may be influenced by aquatic plant growth. Bulthuis, Craig, and McNabb (1974) showed that eight micro- nutrient and trace metals were in two general categories: those which - were substantially reduced in concentration during passage through stabilization ponds and those which were but little reduced. Copper, of the former category, and cadmium, of the latter, were selected for this study. Copper is an essential micronutrient for plants, but can be toxic to both plants and animals at high concentrations (Scott, 1972). Cadmium has not been shown to be an essential inorganic nutrient. Cadmium toxicity can occur in plants (Traynor, 1974) and animals (Baes, 1973; Lagerwerff, 1972). Except for the work of Bulthuis et a1. (1974), the seasonal cycles of these elements have not been detailed in stabilization ponds. Cowgill (1968) and Kimball (1973) have examined copper cycles in natural lakes but did not examine the biota or sediments. In this meager background, three objectives were formulated for this study. The first was to obtain a detailed record of temperature, light, dissolved oxygen, Eh, pH, and sediment characteristics under which the Cu and Cd dynamics were studied and a submersed vascular plant community completed its seasonal cycle of growth. The second was to develop a growing season budget for Cu and Cd in a sewage lagoon with a dense community of aquatic macrophytes. The third was to determine the effects of the biota, principally vascular hydrophytes, on the budgets during logarithmic growth, biomass peaks, and senescence of populations. To compute the budgets, metal concentration, ash-free dry weight, and mass were measured for water, sediments, plants, and aquatic invertebrates at intervals through the growing season, May 23 through September 27, 1973. METHODS The city of Belding, located in the southwest quadrant of the lower peninsula of Michigan, has a stabilization pond system con- sisting of a series of five cells (Figure 1). The ponds cover 23 hectares, have a maximum depth of 3 m and serve a population of approximately 5,000. Untreated waste from the primarily residential community enters cell 1 and flows by gravity through cells 2, 3, 4 and 5. The fifth cell serves as a seepage unit, discharging through the sand and gravel materials on which it is perched (Bulthuis et_al., 1974). The remaining effluent of pond 5 is used for spray irriga- tion on adjacent land, or is periodically released to the Flat River. The system began operations in 1966. The fourth pond in the series was the site of this work. It was 3.0 hectares in area, and averaged 1.8 m in depth during the study. The pond was sampled regularly through the seasonal cycle of growth and senescence of the vascular hydrophytes (May 23-September 27, 1973). The various categories of samples for each date are shown in Table 1. Temperature, dissolved oxygen, Eh and pH vertical profiles of the pond were obtained at 4-hour intervals over 24-hour periods during the growing season. Temperature and dissolved oxygen were measured from the surface with a YSI Model 51 automatic compensating probe. Eh was measured jn_situ with the calomel reference electrode 4 .camw;8wz .mcwu_wm mo auwczesou ogu soc» qumzmummz umpmmgucz mw>wmowc peep mecca mo Ewpmxm och-I.F mgammu O o...»-..« ...._... a..< -._.-_.: .-= —.- Aw .u...» ....:.u .u: fin m use; .I I o...» l ou— a G .o....._._ .nm use In ..o.o .esspeseQEeu so mePPmoss Feowuse> .mepsEem seem seuez usos esosm Imeo use esosmse .3opmeao use zopmsw mo mepasem seem .ee:_o> sopeuao use zepmsHs .N m .. . . . I . I m Lopez uses use :s o o. essuesesEee mo wepweoss Feowuse> ss um Aeu uws we merEem see . . esosmemo use esosmsp .meueu euesseppe so zepmuso use zopmsp mo mepaEem seem E s u use .E.e e .zopmuso use zopesw so mopssem eewmossoo .ssIem .eE:_o> zepweso use sopmsfie x x x x x nmIo~\m x om\m x mpvm x x x uIm m x , x om\m x mmmm x x x x oFImP m x x mxm x ~I_\w x m~“n x x x mFIm— n x x vau x x x qu s x x ammo x x x FNIom c x x up“o x x x “In u x x x pmxm x x x I x uNIm~\m mosusem sopxsepsooN meuxssosoez msppsEem exequwz emepuspm ssIuN epeo useseeem msmpssem epoem mswpssem Lope: .mnmp s? Eeumxm seuezepmez mswupem esp we u uses s? msteEem mo e_=uesom eshII.F msm
semso Ap\msv msowpespseosou semxxo ue>Fommwu seezII.N 04m sopss NN soseousomI0 ossu sos aeu\ms
ss Amos so ssem uu so moues nos ose 3os mssu ss mosse> sospo meuoss as uommoooso Em seuoso
.uossseoo ssupousosos am use memospos .
a
.xeu\ms sv sos uousooos ms ssze
sss .ss sss sss oe.e es.~ smse Peeoov
osse> m.someom
N sss PI II muI NuI NN\0 I 0\m
«I sss 0. II 0 NI m\m I0F\m
0I sss 0s 0 I N0 m0 ms\w I N\0
m sss mI w I um oN P\0 Ims\s
N _ss 0 m I Nm 0m 0s\s I m\m
NI _ss 0 NPI s0 we o\n IPN\0
sss mI esss NF 00 ms 0N\0 I 0\0
mopessouso>ss souxsesoooN sosse .som somsoeou Peeos
Iosoez ossusom esEos souomosepos Esssxsooeesou
a, _e>sopsH
mes sos mmos so sseo uu me
.someem msszosm esp so mpe>sopss sos eposs us» so
musesoosoo 0soEe eposs esp As uommoooss me: uesp Eossueo seeop ems use so osssospsuseo ossII.__ msmo soso esp ss uossepsoo
05.9.50 so 330
A©v s5 Eueo use
030 0:» mph ca?
03 (0 in 0%
O: F p p n s - p
s.
EBB—poo \\ e
7. so «. .I\II.\
2:: III
0 all IoIIIIIoII
j IIIoIIIIIIIoIIII
#.
on . «IIIIIIIIGIIIIIIII
.2300 on.
E 3
«£26 0*.
. .«
Agmss III/Ill]!
m esp ss momsesoII.N ossmss
0.0
I P
.i
.u so. A 8.
n 32:20
«co—n—
IV .0005.
In
35
.Esmsoeou .0 op upssepsssm ssosp opespmapps op Auossssoo ssusopsosos .s
use 3328 .Im I 00 .ssm sopomosepos sos uouusoss ose mpssos Sea .533 msszosm
esp so>oACV ssmsoeou 537393980 .pseE sepzome> uomsossum esp use .AQV sosts
eseos .pseps msspeoss esp seozpos soosoo so sospespsoosoo eommsp ss meososessssII.m ossmss
053.com .0 ocean
ofio 98 e5 ofie
eta. no to s: so
- b p n n b n o
I...”IIIIIIIoIIIIIOIIII.o u
/ O IIII o
C. I II . I ON
/0 \/\ can»: so
.o. Eu; 2:
C /. C A; l 0.? 3 O
l .. oosuIso< 3.
x. I om son :0 9...
x0
rIoe
\ p I
, .wmw 530253.. E
335:. osEoJ
30.132083 25.330330
no.0 ususopm =58.on so open
36
senescence of both taxa. The data point for C, demersum in
December (Figure 3), suggests that over-winter the capper concentra-
tion in the tissues would return to the high value of the previous
spring. For the submersed species, June and December values for
copper concentration were significantly different (p < 0.05) from
those of July, August and September (Appendix: Table A26).
L, nfinoE, a floating vascular plant, possessed increasing tissue
concentration of copper during the period of total biomass increase
and decreasing tissue concentration during biomass decrease after
7/18.
Copper and cadmium concentrations in the zooplankton and
benthic macroinvertebrates were very similar (Appendix: Tables A21
and A24). The copper concentration in both groups declined to a
minimum on August 1 (20.27 and 15.01 ugm/gm, respectively), increased
to a maximum on September 5 (597.10 and 19.20 ugm/gm, respectively),
and then decreased on September 27. The cadmium concentration in
benthic macroinvertebrates reached a maximum on August 16 (7.6 ugm/
gm) and declined to September 27. The zooplankton cadmium concentra-
tion also peaked on August 16 (1.74 ugm/gm) and decreased thereafter.
The metal concentration of the pond water divided into the
concentrations of the biotic components of the pond, are presentedirI
Table 12 as concentration factors. The table shows concentration
factors for the dates of each 24-hour study. These factors for
copper in C, demersum and the potamogetons decreased through time
with a slight upturn at the end of the season (September 27). The
copper concentration factor for L, minor doubled between June 6
37
.8528 :Essoses .m use a .me
mu0.s smN.0_ s—0.F msm.sss 0mm msm.m New 00s.u NN\0
0mm.m Nm0.N— m0s.N 0N0.Nmm 0sm.~ N00.0 0mm._ eoN.m m\m
00m.ms FNm.0P Nus.P 0_0.0N 0Ns.s 0sN.N_ «05 0Ns.m m—\0
uu_.m PNNAN me 00N.0~ msm 000.m~ mmm.P 00NA0 050 pouAM _\0
m0n.0 0FNAN 00¢ 000.0. N00 00F.0N 00~.F N0u.¢ 0mm F0w.u 0F\n
smm.e Ns0.m mmm mm0.0_ 00m Nsm.ms 500 000.0 0N0 NON.m «\N
muo.u FNO.N~ mmm 00s.0N sou 00N.0s msu._ m¢0.0N 000 umN.ss 0N\0
00_.N wmw.m New N00.ms N00._ mus.NN 0m0 Nsw.0N 0\0
u0 :0 u0 :0 uo :0 uu :0 uo =0
mopessopso>ss sopxsessooN sosss esEos .ssm .ammumamm se>sopsH
Iosoez osspsom esopomoEepos Esppxmmopesou
.mNmP .Eepmam psoEpeesp sopezopmez mssusom esp so u usos ss mpsososaoo peosmososs sos
Asopez so p\me op msmssemso so Em\so: sepoe so msospespseosoo so mospesv mospes sospespsoosouII.Np msm 0.25v) and
reducing (E7 < 0.2V) in 24 hours. From August 18 to September 27
there were decreases in the sediment concentrations of both metals.
This was a period of weak to strong reducing conditions; oxidizing
conditions at the mud-water interface were not observed.
The influence of the biota as a mechanism for trapping
elements over the entire season was minor for both metals. Cadmium
was taken up by the biota at a seasonal rate of 1% of the influent
total; copper was released at 2% of the season's influent total.
The aquatic vascular plant community was the dominant biotic
component of the system in terms of quantity of metals processed.
The data show that the yield of copper by harvest of the aquatic
plants would have been highest in this system on July 18. An
48
August 15 harvest would have resulted in the maximum yield of cadmium.
However, harvest of the aquatic macrophytes at peak periods of metal
content would have removed less than 5% of the copper or cadmium
that had entered the pond from June 6 to July 18 (copper) or from
June 6 to August 15 (cadmium).
The data of this study reveal significant biotic relation-
ships with copper and cadmium not previously reported for the
aquatic environment. The large seasonal changes in the copper
concentrations in the submersed vascular plants are one example.
For C, demersum.over-wintering terminal stem-portions 5 to 10 cm in
length had approximately the same concentration of total copper as
the sediments on which they lay at the beginning of the growing
season (ca. 75 ugm/gm). As the stems elongated into the water of
the pond by growth, whole plant copper concentrations fell to
approximately 5 ugm/gm. The water in which the new stem and leaf
itissue developed contained ca. 2 pgm Cu/l; approximately 4 orders of
magnitude less than the sediments. With disintegration of the basal
stem and leaf tissue in the fall, the stem-tips settled into the
high-copper environment of the sediments. The concentration in
these over-wintering parts in December was ca. 45 ugm/gm. It would
appear that differences in the abundance of copper in portions of
(the environment in which the plants resided from seaSon to season
influenced the concentrations found in whole plant analyses of the
tissues. The statistically significant negative correlation found
between the biomass of C, demersum and the copper content of its
tissues over the interval of sampling was probably due to a change
49
in the supply of copper available to the absorbing tissues. The
supply changed in two ways; from origin in the sediments in pre-
season (and post-season) to origin in the water, and the supply in
the water decreased over the growing season.
The copper concentrations of C, demersum and the potamogetons
were significantly positively correlated at the 99% level during the
time they co-existed. Individuals of the species of potamogetons
were first collected as small shoots in the sediments. As they
grew, new stem and leaf tissue reached the surface of the pond.
With senescence, the population collapsed and individuals fragmented
into over-wintering parts at the sediment surface. Copper concen-
trations in these plants changed in the same manner as in
g, demersum (Figure 3). Presumably, the copper concentrations in
the over-wintering tissue of both submersed plant taxa would return
to the high early summer values observed in this study in the months
subsequent to the study. Reduced sediment conditions under ice
would cause solution of various precipitated and adsorped copper
complexes. Thus copper would be more available for uptake by the
plants at the sediment surface in winter.
In a mode consistent with that described for the submersed
plants, the population of the free-floating L, @1393, having access
only to the supply of copper in the water, showed a significant
positive correlation between the concentrations in the water and
tissue. Unlike the submersed plants, however, concentration in the
tissues and biomass showed a significant direct correlation. Also,
unlike the submersed plants, the corcentration factors for copper
50
presented in Table 12 for L, mjoog, changed over the growth cycle
in the same direction as biomass while the supply (water concentra-
tion) remained relatively constant. It appears that populations of
the submersed plants and floating plants employ different strategies
regarding copper uptake from the environment.
While cadmium was distributed in the environment in a manner
similar to copper (ca. 2.5 pgm/gm in sediments and 1.4 pgm/l in water),
measurements for the three plant groups were not related in the manner
described above for copper. Reasons for this difference are not
suggested in the data. Speculations for the causes of this differ-
ence would include differences that might exist in the biological
mechanisms for the uptake of an element essential for growth (copper)
and one that is not known to be essential (cadmium). The significant
correlations of the fauna with the concentrations of copper in the
water show that the ambient water was a more important source of
copper than the sediments for this group. Such a relationship for
cadmium did not exist.
The variability of the concentration factors for metals
reported here through the season is unusual. Dietz (1972) found
concentration factors in aquatic macrophytes for Pb, Cu, Ni, Zn, Fe,
Mn, and Hg to be relatively constant over a range of ambient con-
centrations. They varied by a factor of two at most. In this study,
the copper concentration factor varied by nine-fold in C, demersum,
six-fold in the potamogetons, and four-fold in L, mfloog, However,
the data reported by Dietz were from paired water and plant samples
taken at the end of the growing season in various locations, while
51
data reported here were from samples taken at various times through
the growing season in one location. The lack of paired water and
biotic samples prevent the computation of concentration factors in
studies reporting on heavy metals in zooplankton or benthic macro-
invertebrates (Copeland and Ayers, 1972; Bryan and Hummerstone,
1971).
While biotic interactions with copper and cadmium observed
in this study are of considerable interest, the information pre-
sented is most relevant to management of sewage stabilization pond
systems. Effluents from stabilization ponds in Michigan are being
more widely used to irrigate adjacent land sites in an effort to
meet water quality discharge standards. The danger that heavy
metals in the water may inactivate land disposal areas makes it
necessary to understand the cycling of heavy metals in the ponds.
The sediments were found to be the principal trap for copper and
cadmium in the pond that was studied. However, for the growing
season as a whole, neither element was efficiently trapped. Addi-
tional investigations of this sort would enhance the accuracy of
predications regarding the loading rates on sites irrigated with
municipal wastes.
LITERATURE CITED
52
LITERATURE CITED
American Public Health Association. 1971. Standard methods for
the examination of water and wastewater. 13th ed.
Washington, D.C., American Public Health Association.
874 pp.
Armstrong, W. 1964. Oxygen diffusion from the roots of some
British bog plants. Nature 204:801-802.
Baes, C. F., Jr. 1973. The properties of cadmium. Pages 29-59
jo_Cadmium the dissipated element. W. Fouterson and
H. E. Goeller, eds. Oak Ridge National Laboratory.
Bartsch, A. F. and 1H. 0. Allum. 1957. Biological factors in
treatment of raw sewage in artificial ponds. Limnol. and
Oceanogr. 2:77-84.
Bryan, G. W. and L. G. Hummerstone. 1971. Adaptation of the
polychaete Nereis diversicolor to estuarine sediments con-
taining high concentrations of heavy metals. J. Mar.
Biol. Ass. U. K. 51:845-863.
Bulthuis, D. A., J. R. Craig and C. D. McNabb. 1974. Metal
dynamics in municipal stabilization ponds. Trace sub-
stances in environmental health-VII. A Symposium.
0. D. Hemphill, ed., Univ. of Missouri, Columbia.
pp. 117-125.
Buscemi, P. A. 1958. Littoral oxygen depletion produced by a
cover of Elodea canadensis. Oikos 9:239-245.
Caldwell, D. H. 1946. Sewage oxidation ponds - performance,
operation, and design. Sew. Wks. Jour., 18:433-458.
Chaney, R. L. 1973. Cr0p and food chain effects of toxic ele-
ments in sludges and effluents. Proc. Natl. Workshop on
Land Application of Municipal Sludge and Effluent.
Cheam, V. 1973. Chelation study of copper(II): Fulvic acid
system. Can. J. Soil Sci. 53:377-382.
Chumbley, C. G. 1971. Permissible levels of toxic metals in
sewage used on agricultural land. A.D.A.S. Advisory
Paper No. 10. 12 pp.
53
54
Copeland, R. A. and J. C. Ayers. 1972. Trace element distribu-
tions in water, sediment, phytoplankton, 200plankton, and
benthos of Lake Michigan: a baseline study with calcula-
tions of concentration factors and buildup of radioiso-
topes in the food web. ERG Special Report No. l.
Cowgill, U. M. 1968. A comparative study in eutrophication.
Pages 199-231 jg Developments in applied spectroscopy.
Vol. 6. W. K. Baer, A. F. Perkins and E. L. Grove, eds.
Plenum Press, New York.
Dietz, F. 1972. The enrichment of heavy metals in submerged
plants. Pages 53-62_io Advances in water pollution
research. S. H. Jenkins, ed. Pergamon Press.
Effenberger, M. 1967. A simple flow cell for the continuous
determination of oxidation-reduction potential. Pages 123-
126 jo_Chemical enrichment in the aquatic habitat.
H. L. Golterman, ed. Proc. KBP Symp., Amsterdam and
Nieuwersluis, 10-16 Oct., 1966.
Eisler, R. and G. R. Gardner. 1973. Acute toxicology to an
estuarine teleost of mixtures of cadmium, copper, and
zinc salts. J. Fish. Biol. 5:131-142.
Ervin, Joseph L. and Terry A. Haines. 1972. Using light to
collect and separate zooplankton. Prog. Fish-Cult. 34:
171-174.
Fitzgerald, G. P. and G. A. Rohlich. 1958. An evaluation of
stabilization pond literature. Sewage and Industrial
Wastes 30:1213-1224.
Gillespie, C. G. 1944. Emergency land disposal of sewage -
discussion. Sew. Wks. Jour., 16:740-744.
Hem, J. D. 1972. Chemistry and occurrence of cadmium and zine
in surface and ground waters. Water Resources Research
8:661-679.
Jenne, E. A. 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn con-
centrations in soils and water: the significant role of
hydrous Mn and Fe oxides. Pages 337-387 jo_Trace
inorganics in water. R. A. Baker, ed. American Chemical
Society, Washington, D.C. .
Jones, J. B., Jr. 1972. Plant tissue analysis for micronutrients.
Pages 319-346 jo_Micronutrients in agriculture. J. J.
Mortvedt, P. M. Giordano and W. L. Lindsay, eds. Soil
Science Society of America, Inc. Madison, Wisconsin.
55
Kimball, K. D. 1973. Seasonal fluctuations of ionic copper in
Knights Pond, Massachusetts. Limnol. Oceanogr. 18(1):
169-172.
King, 0. L. 1967. Basic studies of controlled facultative
lagoons. Pages 88-110 jo_Advances toward understanding
lagoon behavior. Proc. Third Annual Sanitary Engineering
Conf., Univ. of Missouri, Columbia.
Kubota, J. and W. H. Allaway. 1972. Distribution of trace
element problems. Pages 525-554 jo_Micronutrients in
agriculture. J. J. Mortvedt, P. M. Giordano and W. L.
Lindsay, eds. Soil Science Society of America, Inc.,
Madison, Wisconsin.
Leeper, G. W. 1972. Reactions of heavy metals with soils with
special regard to their application in sewage wastes.
Dept. of the Army, Corps of Engineers. Contract No.
DACW73-73-C-0026. 70 pp.
Mackenthun, K. M. and C. D. McNabb. 1961. Stabilization pond
studies in Wisconsin. Jour. Water Poll. Control Fed.
33(12):1234-1251.
McNabb, C. 0., Jr. 1975. The potential of submersed vascular
plants for reclamation of wastewater in temperate zone
ponds. Pages 123-132 jo_Biological control of water
pollution. J. Tourbier and R. W. Pierson, Jr., eds.
University of Pennsylvania Press, Philadelphia, PA.
Mortimer, Clifford H. 1941. The exchange of dissolved sub-
stances between mud and water in lakes. Jour. Ecol. 29:
280-329.
Mortimer, Clifford H. 1942. The exchange of dissolved sub-
stances between mud and water in lakes - III and IV,
Summary and References. Jour. Ecol. 30:147-201.
Neilsen, E. S. and S. Wium-Andersen. 1970. Capper ions as
poison in the sea and in freshwater. Marine Biology
6:93—97.
Porges, R. and K. M. MacKenthun. 1963. Waste stabilization
ponds: use, function, and biota. Biotechnology and
Bioengineering V:255-273.
Ruttner, Franz. 1963. Fundamentals of limnology. (Translat.
0. G. Frey and F. E. J. Fry.) Univ. Toronto Press,
Toronto. 295 pp.
56
Sandholm. M., H. E. Iksanen and L. Pesonen. 1973. Uptake of
selenium by aquatic organisms. Limnol. Oceanogr. 18:
496-498.
Schindler, D. W. 1969. Two useful devices for vertical plankton
and water sampling. J. Fish. Res. Bd. Canada 26:1948-1955.
Schindler, D. W. 1967. Heterogeneous equilibria involving
oxides, hydroxides, carbonates, and hydroxide carbonates.
Pages 196-221 jo_Equilibrium concepts in natural water
systems. Advances in Chemistry Series 67. R. F. Gould,
ed. Amer. Chem. Soc., Washington, D.C.
Scott, M. L. 1972. Trace elements in animal nutrition. Pages
555-592 jo_Micronutrients in agriculture. 0. J. Mortvedt,
P. M. Giordano and W. L. Lindsay, eds. Soil Science
Society of America, Inc., Madison, Wisconsin.
Sokal, R. R. and F. J. Rohlf. 1969. Biometry. W. H. Freeman &
Co., San Francisco. 759 pp.
Stiff, M. J. 1971. Copper/bicarbonate equilibria in solutions
of bicarbonate ions at concentrations similar to those
found in natural water. Water Research 5:171-176.
Stiff, M. J. 1971. The chemical states of copper in polluted
fresh water and a scheme of analysis of differentiate them.
Water Research 5:585-599.
Stumm, W. and J. J. Morgan. 1970. Aquatic chemistry. John Wiley
& Sons, Inc., New York, New York. 583 pp.
Towne, W. W., A. F. Bartsch and W. H. Davis. 1957. Raw sewage
stabilization ponds in the Dakotas. Sewage and Ind.
Wastes 29:377-396.
Traynor, M. F. 1974. Effects upon growth and nutrient composi-
tion of corn (Zoo_mays) plants grown on two different
textured Michigan soils contaminated with nickel and
cadmium. M.S. thesis, Michigan State University,
E. Lansing, Michigan. 53 pp.
Wetzel, Robert G. 1975. Limnology. W. B. Saunders Co.,
Philadelphia, PA. 743 pp.
Wilson, R. C. H. 1972. Prediction of copper toxicity in receiving
waters. J. Fish. Res. Bd. Can. 29(10):1500-1502.
Wium-Andersen, S. and J. M. Andersen. 1972. The influence of
vegetation on the redox profile of the sediment of Grane
Langsd, a Danish Lobelia lake. Limnol. Oceanogr. 17:948-952.
APPENDIX
57
58
TABLE A-1.--Vertical temperature profiles (C°) for an
inshore station over the 1973 growing season.
Bottom
Depth
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
5/23 1200 16.0 16.0 15.9 - 15.9 1.4
1600 16.5 16.3 16.2 - 15.0 1.3
2000 16.1 16.1 16.2 16.2 16.1 2.1
5/24 2400 15.5 15.5 16.0 - 16.0 1.4
0400 15.0 15.0 15.0 15.0 15.0 1.9
0800 15.0 15.0 15.0 15.0 15.0 1.5
1200 17.0 16.0 16.0 16.0 15.5 1.6
5/31 1200 16.2 16.2 16.1 16.1 16.0 1.8
6/6 1200 22.1 22.0 22.0 21.0 21.0 1.5
1600 22.5 22.5 22.5 21.5 21.2 1.9
2000 22.5 22.5 22.5 22.2 21.5 1.8
6/7 2400 21.0 21.8 21.9 21.9 21.5 1.8
0400 21.0 21.0 21.2 21.2 20.9 1.6
0800 21.0 21.0 21.0 21.0 20.9 1.9
1200 22.1 22.1 22.0 21.5 21.5 1.5
6/14 1200 26.7 25.5 25.2 24.8 24.0 1.7
6/20 1200 25.2 25.0 24.9 - 24.6 1.4
1600 26.0 25.7 25.2 24.1 23.5 1.8
2000 24.9 24.9 24.9 24.3 23.8 1.8
6/21 2400 24.0 24.0 24.0 24.0 24.0 1.8
0400 23.5 23.5 23.5 23.5 23.5 1.6
0800 23.4 23.4 23.4 23.3 23.3 1.7
1200 24.0 24.0 23.8 23.4 23.4 1.8
6/28‘ 1200 23.0 22.9 23.0 23.0 22.9 1.6
7/4 1200 23.8 23.3 23.0 22.0 22.0 1.5
1600 25.0 25.0 25.0 23.5 23.5 1.5
2000 24.0 24.0 23.5 23.0 22.0 1.8
7/5 2400 23.0 23.0 23.0 23.0 22.0 1.8
0400 24.0 24.0 24.0 24.0 23.0 1.6
0800 23.0 23.0 23.0 22.4 22.4 1.7
1200 24.6 23.8 23.2 22.8 22.1 1.6
7/12 1200 23.0 23.2 23.2 23.2 23.0 1.7
7/18 1200 24.8 24.8 23.8 23.0 23.0 1.5
1600 26.5 25.0 24.0 23.2 23.0 1.8
2000 26.2 26.0 24.5 23.2 22.7 1.6
7/19 2400 24.5 25.0 23.9 23.2 22.5 1.6
0400 23.0 22.7 23.0 23.5 23.5 1.5
0800 24.1 24.5 24.2 23.0 23.0 1.6
1200 24.8 24.0 23.9 23.3 23.2 1.8
TABLE A-1.--Continued.
59
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
7/26 1200 25.0 24.9 24.0 23.0 22.8 1.6
8/1 1200 24.5 23.5 23.0 23.0 23.0 1.5
1600 25.5 24.0 23.5 22.5 22.0 1.7
2000 24.5 24.5 23.5 22.5 22.5 1.5
8/2 2400 23.5 23.5 23.5 23.5 23.0 1.8
0400 22.5 23.0 23.0 23.0 23.0 1.6
0800 22.0 22.5 22.5 22.5 22.5 1.7
1200 23.5 23.0 23.0 22.7 22.7 1.5
8/9 1200 27.0 27.0 26.0 - 25.0 1.2
8/15 1200 25.0 25.0 24.5 24.0 24.0 1.5
1600 28.0 27.0 25.9 25.0 24.2 1.8
2000 28.0 27.5 25.5 - 24.5 1.4
8/16 2400 25.1 25.5 25.5 24.5 24.5 1.5
0400 23.9 24.0 24.1 24.5 24.5 1.5
0800 23.5 24.0 24.0 24.0 24.0 1.5
1200 25.5 25.2 25.0 24.5 24.5 1.5
8/23 1200 22.0 22.0 21.8 21.8 21.8 1.5
8/30 1200 26.0 25.5 25.5 25.0 25.0 1.5
9/5 1200 25.4 25.4 25.2 25.1 24.9 1.7
1600 26.5 26.2 26.1 25.3 25.3 1.5
2000 25.3 25.3 25.2 - 24.9 1.3
9/6 2400 25.1 25.1 25.1 25.1 25.1 1.9
0400 26.9 27.0 27.0 27.0 27.0 1.6
0800 23.1 23.2 23.3 - 23.5 1.4
1200 24.0 24.0 24.0 - 24.0 1.3
9/13 1200 19.2 19.2 19.0 - 18.9 1.3
9/20 1200 14.4 14.4 14.2 - 14.2 1.4
9/26 1200 20.0 19.9 19.5 - 18.0 1.3
1600 20.9 20.2 18.5 17.5 17.5 1.5
2000 22.3 22.4 20.5 - 19.1 1.3
9/27 2400 20.8 20.4 19.3 18.7 18.7 1.5
0400 21.0 21.0 20.7 19.1 19.1 1.5
0800 20.3 20.3 20.1 - 18.7 1.4
1200 20.2 20.1 19.9 19.0 18.5 1.6
60
TABLE A-2.--Vertica1 temperature profiles (C°) for an
offshore station over the 1973 growing season.
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
5/23 1200 16.0 16.0 16.0 16.0 15.0 2.1
1600 16.5 16.4 16.3 16.2 15.3 1.6
2000 16.2 16.2 16.2 16.2 16.0 2.0
5/24 2400 15.0 16.0 16.0 16.0 16.0 2.1
0400 15.0 15.0 15.5 15.5 15.5 1.6
0800 15.0 15.1 15.1 15.0 14.9 2.3
1200 17.5 17.0 17.0 17.0 15.0 1.8
5/31 1200 15.3 15.3 15.2 15.1 15.1 1.8
6/6 1200 22.0 22.0 22.0 22.0 22.0 1.7
1600 23.0 22.9 22.9 22.8 20.8 2.1
2000 22.5 22.5 22.5 22.0 21.0 2.0
6/7 2400 21.1 21.8 21.8 21.9 21.5 1.8
0400 21.0 21.0 21.2 21.2 18.6 2.5
0800 21.0 21.2 21.2 21.1 21.0 1.9
1200 22.1 22.0 22.0 22.0 22.0 2.0
6/14 1200 26.0 25.8 25.0 24.8 24.0 2.0
6/20 1200 24.9 24.8 24.8 24.2 23.2 2.4
1600 25.2 25.2 25.2 24.5 23.8 1.8
2000 25.0 24.9 24.9 24.9 23.2 2.1
6/21 2400 24.0 24.2 24.5 24.5 23.9 1.9
0400 23.0 23.5 23.5 23.5 23.0 2.0
0800 23.2 23.3 23.3 23.2 23.2 2.0
1200 24.0 24.0 24.0 23.8 23.8 1.9
6/28 1200 23.0 23.0 23.0 23.0 21.5 2.4
7/4 1200 24.0 23.5 23.2 22.0 21.0 1.9
1600 25.0 25.0 24.0 23.0 21.0 2.0
2000 24.0 24.0 23.5 23.0 22.9 2.0
7/5 2400 23.5 24.0 24.0 22.0 22.0 2.1
0400 24.0 24.0 24.0 24.0 21.0 2.1
0800 23.0 23.0 23.0 22.0 20.0 2.3
1200 24.5 24.0 23.0 22.7 20.4 2.3
7/12 1200 23.3 23.3 23.3 23.3 22.0 2.2
7/18 1200 25.0 24.8 24.0 23.8 22.8 1.9
1600 26.5 25.0 24.0 24.0 22.5 2.0
, 2000 26.5 26.5 24.5 23.5 23.0 1.7
7/19 2400 24.9 24.2 23.5 23.0 22.5 2.1
0400 23.6 24.0 24.0 24.0 23.0 1.8
0800 24.2 24.5 24.4 23.0 23.0 1.6
1200 25.0 24.8 24.8 24.2 21.2 2.4
TABLE A-2.--Continued.
6]
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
7/26 1200 25.0 24.9 24.5 23.0 22.0 1.9
8/1 1200 25.0 24.0 23.5 23.0 22.5 1.7
1600 25.5 24.0 23.5 22.5 22.0 1.7
2000 24.5 24.0 23.5 22.0 22.0 1.5
8/2 2400 23.0 23.5 23.5 22.0 22.0 1.6
0400 23.0 23.0 23.0 22.5 22.0 1.7
0800 22.2 22.8 22.9 22.9 22.0 1.9
1200 23.5 23.0 23.0 22.5 22.0 1.9
8/9 1200 26.0 26.0 26.0 24.5 23.0 2.0
8/15 1200 26.0 25.0 24.5 24.2 24.0 1.9
1600 28.0 26.5 25.5 24.5 23.0 2.3
2000 27.2 27.2 26.0 24.5 24.5 1.6
8/16 2400 25.5 25.5 25.0 24.0 24.0 1.5
0400 24.0 24.1 24.2 24.2 24.2 1.8
0800 23.5 24.0 24.0 24.0 23.5 1.8
1200 26.0 25.0 24.8 24.2 24.0 1.8
8/23 1200 22.0 22.0 21.8 21.6 21.4 2.0
8/30 1200 26.0 25.0 26.0 26.0 23.0 2.5
9/5 1200 25.4 25.4 25.2 25.2 25.0 1.8
1600 26.5 26.0 26.0 25.0 25.0 1.8
2000 25.5 25.5 25.6 25.2 25.2 1.5
9/6 2400 25.0 25.2 25.2 25.2 25.2 1.8
0400 26.5 27.0 27.5 27.2 27.2 1.9
0800 23.4 23.9 23.9 23.9 23.9 1.8
1200 24.0 24.0 24.0 24.0 23.0 1.7
9/13 1200 19.2 19.0 19.0 19.0 19.0 1.9
9/20 1200 14.2 14.2 14.2 14.0 14.0 1.7
9/26 1200 20.0 19.5 19.0 17.5 17.0 2.0
1600 21.0 21.0 20.8 18.2 17.5 1.8
2000 23.1 23.1 21.2 18.1 18.1 1.5
9/27 2400 21.0 21.1 20.8 19.1 18.1 1.7
0400 20.9 20.8 20.5 18.9 17.7 2.0
0800 20.3 20.1 20.0 18.2 17.1 2.0
1200 20.1 20.1 19.8 19.5 16.5 2.1
62
TABLE A-3.--Vertica1 dissolved oxygen profiles (mg/L) for
an inshore station over the 1973 growing
season.
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
5/23 1200 8.6 8.5 8.2 8.2 7.4 1.4
1600 10.1 9.9 9.8 - 8.2 1.3
2000 9.0 8.9 8.4 8.4 5.0 2.0
5/24 2400 7.6 7.5 7.5 - 5.4 1.4
0400 6.5 6.6 6.5 6.4 1.8 1.9
0800 7.2 7.0 7.0 5.0 5.0 1.5
1200 8.0 7.6 7.4 4.7 2.8 1.6
5/31 1200 6.4 6.4 6.1 6.1 5.8 1.8
6/6 1200 6.9 6.8 6.8 4 5 4.5 1.5
1600 7.8 7.7 7.6 8.8 2.4 1.9
2000 8.8 9.0 8.6 14.5 4.2 1.8
6/7 2400 7.6 7.5 7 5 7.3 1.3 1 8
0400 7.0 6.6 6.5 6.2 4.2 1.6
0800 6.8 6-8 6.6 6.6 5.4 1.9
1200 8.4 8.6 8.8 5.7 5.7 1.5
6/14 1200 11.8 12.1 12.2 8.6 4.0 1.7
6/20 1200 11.1 11.4 11.4 - 1.4
1600 11.8 11.8 12.1 11.9 5.3 1.8
2000 12.3 12.0 11.9 7.6 1.8 1.8
6/21 2400 10.0 9.8 9.8 3.7 2.7 1.8
0400 10.0 9.7 7.5 6.5 6.1 1.6
0800 10.0 10.0 10.1 6.6 8.7 1.7
1200 6.8 6.3 6.8 6.3 3.5 1.8
6/28 1200 10.0 10.4 11.0 9.0 5.0 1.6
7/4 1200 14.4 13.5 10.6 1.9 1.9 1.5
1600 16.5 16.5 17.2 7.5 7.5 1.6
2000 14.5 14.0 7.5 7.5 2.1 1.8
7/5 2400 12.5 12.5 12.5 9.8 2.5 1.8
0400 14.0 13.5 10.5 6.2 1.2 1.6
0800 10.8 11.2 8 6 2.4 2.0 1.7
1200 16.2 14.0 10.7 3.0 2.0 1.6
7/12 1200 10.4 10.0 10.2 9.8 8.5 1.7
7/18 1200 10.7 10.6 6.6 1.2 1.2 1.5
1600 13.6 14.2 12.8 7.6 6.4 1.8
2000 16.2 16.1 14.1 7.8 3.2 1.6
7/19 2400 12.8 12.2 11.6 8.2 4.8 1.6
0400 11.0 11.0 10.0 7.6 7.6 1.5
0800 11.4 12.2 11.8 1.6 1.2 1.6
1200 7.1 6.4 6.1 3.2 1.2 1.8
63
TABLE A-3.--Continued.
Bottom
Depth
Depth
Time
Date
(In)
0.5m 1.0m 1.5m Bottom
Surface
1.6
0.8
1200 10.
7/26
8/1
8/2
5758675
1111111
8212525
602621
8518435
602991
65nU.6rnwrnwz
8~/.—/.0.9n/.5
89576nU.5
O O O 0.
9120935
111
8508815
I O. O O O 0
8420937
111
1200
1600
2000
2400
0400
0800
1200
10 10.
1200
8/9
5845555
1111111...
2262876
. o o o o o 0
6020709
11.
26 2876
o o— o o o o
62 0709
l 1
2360032
1573091
11 ll 1
8088946
0 O O O O O 0
0523090
11111.1 1
0644718
0433090
11111 1
0000000
0000000
2604482
1122001
5 6
l l
/ /
8 8
1200 9.
8/23
11.0 10.9
1200 9.9
8/30
7639643
1111111
8000474..
012455r0.
4560222
0 I O 0
6299668
1
9520443
[209668
11
2420.3rnwdn
8200hrhw68
11
1200
1600
2000
2400
0400
0800
1200
9/5
9/6
10.2
9.0 9.0 10.6
8
1200
9/13
3.1
.4
1200
9/20
3535546
1111111
3686623
1451122
1229091
111 l 1
4386470
0. O C I. 0
1210091
11111 1
0000000
0000000
2604482
1122001
6 7
2 2
/ /
9 9
64
TABLE A—4.-—Vertical dissolved oxygen profiles (mg/L) for
an offshore station over the 1973 growing
season.
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
5/23 1200 8.2 8.2 8.1 8.1 4.2 2.1
1600 8.9 8.8 8.6 8.0 2.8 1.6
2000 8.8 8.7 8.6 8.6 4.0 2.0
5/24 2400 7.5 7.5 7.4 7.4 5.8 2.1
0400 7.7 6.8 6.8 3.2 3.2 1.6
0800 7 6 7.2 6.6 6.6 3.2 2.3
1200 8.3 8.2 8.2 8.2 2.8 1.8
5/31 1200 7.8 6.0 5.9 5.9 2.0 1.8
6/6 1200 6.4 6.4 6.5 5.2 1.7
1600 8.2 8.0 7.9 8.1 2.6 2.1
2000 8.4 8 4 8.4 9.8 0.8 2.0
6/7 2400 7.8 7.6 7.4 7.4 3.3 1.8
0400 6.5 6.4 6.4 6.2 0.2 2.5
0800 6.8 6.8 6.6 6.6 5.4 1.9
1200 8.2 8.0 7.9 8.2 6.2 2.0
6/14 1200 11.5 11.4 13.0 12.7 4.8 2.0
6/20 1200 10.1 9.8 10.1 10.7 1.6 2.4
1600 11.2 11.2 11.4 15.8 9.8 1.8
2000 12.2 12.2 12.5 12.4 2.5 2.1
6/21 2400 10.4 10.2 10.3 10.2 2.6 1.9
0400 9.4 9.0 5.2 5.2 2.9 2.0
0800 8.6 8.5 8.4 8.4 3.6 2.0
1200 8.3 8.5 8.6 6.8 5.7 1.9
6/28 1200 9.8 9.7 9.7 7.5 0.4 2.4
7/4 1200 14.6 15.0 14.5 12.6 4.5 1.9
1600 15.0 15.5 15.0 10.0 2.2 2.0
2000 17.8 18.0 12.0 8.5 3.0 2.0
7/5 2400 14.0 14.0 15.0 10.0 2.2 2.1
0400 14.0 13.8 10.5 5.8 0.9 2.1
0800 12.4 12.4 11.9 11.0 0.0 2.3
1200 13.8 14.2 10.4 6.0 0.8 2.3
7/12 1200 8.9 8.8 8.8 8.2 0.7 2.2
7/18 1200 14.2 13.5 11.6 7.2 0.6 1.9
1600 13.4 13.2 11.5 11.6 5.0 2.0
2000 15.3 15.4 14.5 9.7 4.8 1.7
7/19 2400 11.2 10.8 11.4 5.8 1.2 2.1
0400 5.8 5.6 4.8 1.6 0.6 1.9
0800 12.0 12.2 12.4 1.0 0.6 1.6
1200 7.4 7.4 7.3 4.0 0.3 2.4
65
TABLE A-4.--Continued.
Bottom
Depth
Depth
Time
Date
(In)
0.5m 1.0m 1.5m Bottom
Surface
1.9
0.1
1200 9.2
7/26
8/1
8/2
7756799
1111111
5295858
1000000
5890824
100152.].
2526424
I. I O O I 0
8409964
1
5008888
0 O 0 O O 0 0
8330954
111
6502866
0 O I O O O 0
8430955
111
1200
1600
2000
2400
0400
0800
1200
1200 10.2 .
8/9
9365888
1211111
8285663
1011200
4425202
. C I O C O .
2321604
1
0064424
. C O C C .
8052109
11111
0244489
0 O O O O O 0
2443191
11111 1
0440288
0 . . O C C .
0423192
11111 1
0000000
0000000
2604482
1122001
5 6
l l
/ /
8 8
10.4 8.6
1200 10.0
8/23
9.8 9.6 .
1200
8/30
8858987
1111111
8582003
1018630
6486482
0 0
7118655
10.2
1200 8.2
9/13
1200 8.0
9/20
0857001
2111222
4868632
1541001
1
6nunu4239u3
O O I O O 0
lnzauoanZL
111111.1 1
248nu1f4042
O O 0 O O O O
0119T1nu011
11111111111
4Fo114nqdii
0119:1nu011
11111111111
OnUnuOnunuO
OnunuonunVO
2ron74na8q¢
1119:4nu011
9/26
9/27
TABLE A-5,--Vertical profiles of platinum electrode
66
potentials (E7 in mv) for an inshore station
over the 1973 growing season.
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
5/23 1200 484 479 474 274 117 1.4
1600 388 266 250 - -72 1.3
2000 239 233 227 224 12 2.1
5/24 2400 67 61 61 - —25 1.4
0400 164 158 72 78 -20 1.9
0800 211 56 26 -96 -96 1.5
1200 323 312 179 76 -50 1.6
5/31 1200 397 386 91 96 -73 2.0
6/6 1200 351 342 338 118 118 1.5
1600 336 334 334 212 69 1.7
2000 260 253 253 198 -21 1.6
6/7 2400 220 202 116 101 10 1.7
0400 259 269 259 253 134 1.6
0800 197 46 46 1 1 1.5
6/14 1200 161 151 151 133 27 1.7
6/20 1200 320 320 318 - 269 1.4
1600 332 330 315 298 94 1.8
2000 135 183 151 149 —60 1.8
6/21 2400 94 98 89 61 -74 1.8
0400 262 217 281 289 83 1.6
0800 373 281 281 280 130 1.6
1200 245 239 239 239 163 1.8
6/28 1200 250 287 297 295 192 1.6
7/4 1200 340 348 337 140 140 1.5
1600 338 353 293 226 226 1.6
2000 210 215 178 178 70 1.8
7/5 2400 161 161 171 61 44 1.8
0400 129 130 160 2 -131 1.6
0800 102 76 101 49 -56 1.7
1200 203 230 210 187 40 1.6
7/12 1200 172 146 191 6 6 1.5
7/18 1200 633 603 566 342 342 1.5
1600 576 638 499 477 311 1.8
2000 440 375 357 151 151 1.5
7/19 2400 28 23 100 80 -166 1.6
0400 180 180 180 142 142 1.5
0800 291 306 306 243 145 1.6
1200 617 617 587 490 283 1.6
TABLE A-5.--Continued.
67
- Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
7/26 1200 387 377 342 203 93 1.6
8/1 1200 744 733 586 402 402 1.5
1600 602 598 567 451 337 1.7
2000 612 612 599 362 362 1.5
8/2 2400 659 485 609 578 412 1.8
0400 562 562 604 460 402 1.6
0800 514 463 463 460 367 1.7
1200 393 386 386 306 306 1.5
8/9 1200 271 292 163 - 129 1.2
8/15 1200 292 362 226 170 170 1.5
1600 460 435 342 156 76 1.8
2000 430 396 390 - 324 1.4
8/16 2400 98 79 34 -14 -14 1.5
0400 186 169 234 105 105 1.5
0800 259 250 290 5 5 1.5
1200 507 509 509 365 365 1.5
8/23 1200 224 209 198 188 188 1.5
8/30 1200 202 202 200 -164 -164 1.5
9/5 1200 366 396 320 299 194 1.7
1600 366 350 350 298 298 1.6
2000 207 210 204 - 36 1.3
9/6 2400 291 279 324 180 180 1.9
0400 234 158 232 237 164 1.6
0800 166 154 159 - 106 1.4
1200 361 373 233 - 151 1.3
9/13 1200 380 369 362 - 234 1.3
9/20 1200 405 379 392 - 249 1.4
9/26 1200 335 342 252 - 67 1.3~
1600 307 307 252 32 32 1.5
2000 331 330 192 - 105 1.3
9/27 2400 220 253 211 147 147 1.5
0400 152 142 152 56 56 1.5_
0800 159 169 113 - 82 1.4
1200 197 221 135 119 14 1.6
TABLE A-6.~~Vertica1 profiles of platinum electrode
in mv) for an offshore station
potentials (E7
68
over the 1973 growing season.
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m .5m Bottom (m)
5/23 1200 139 127 117 106 ~71 1.9
1600 389 385 865 169 ~39 1.6
2000 289 267 257 257 126 1.8
5/24 2400 91 86 74 41 ~57 2.1
0400 171 170 70 52 ~62 1.6
0800 250 204 53 57 38 2.3
1200 354 353 67 67 ~74 1.8
5/31 1200 397 386 127 132 ~2 2.0
6/6 1200 371 371 371. 172 11 1.6
1600 235 235 165 165 19 2.1
2000 374 363 306 287 44 1.9
6/7 2400 374 374 409 413 256 1.8
0400 208 130 50 44 ~263 2.3
0800 41 41 75 51 51 1.9
1200 238 79 49 65 ~43 2.2
6/14 1200 209 193 193 189 29 2.0
6/20 1200 503 490 488 455 226 2.0
1600 307 307 297 310 208 1.8
2000 283 276 209 104 ~102 2.0
6/21 2400 134 48 63 93 ~100 1.9
0400 401 260 314 414 47 2.0
0800 428 396 280 280 149 1.8
1200 272 273 272 267 121 1.9
6/28 1200 150 132 107 96 ~79 2.4
7/4 1200 314 312 186 168 113 1.9
1600 347 321 346 322 199 2.0
2000 305 270 241 213 2 2.0
7/5 2400 266 267 212 181 ~112 2.0
0400 168 239 185 177 ~276 2.1
0800 163 167 86 44 ~175 2.3
1200 226 230 192 175 ~153 2.3
7/12 1200 572 552 486 426 164 2.2
7/18 1200 595 567 530 514 429 1.9
1600 674 658 497 491 284 2.0
2000 506 492 472 443 216 1.7
7/19 2400 202 257 280 246 196 2.0
0400 '326 227 271 254 132 1.9
0800 271 266 266 241 130 1.6
1200 514 474 498 481 224 2.4
TABLE A~6.~-Continued.
69
Depth Bottom
Date Time Depth
Surface 0.5m 1.0m 1.5m Bottom (m)
7/26 1200 329 181 297 268 202 1.9
8/1 1200 621 619 588 566 383 1.7
1600 668 602 567 548 411 1.7
2000 608 602 602 421 421 1.5
8/2 2400 577 566 566 559 445 1.6
0400 497 454 604 592 391 1.7
0800 552 553 553 553 467 1.9
1200 392 390 395 393 238 1.9
8/9 1200 146 143 153 133 21 2.0
8/15 1200 397 386 184 173 126 1.9
1600 307 294 292 279 155 2.3
2000 458 457 470 367 355 1.6
8/16 2400 119 111 127 ~137 ~137 1.5
0400 44 29 0 84 59 1.8
0800 283 294 290 296 157 1.8
1200 516 510 407 425 388 1.8
8/23 1200 329 319 304 242 9 2.0
8/30 1200 128 72 52 45 ~101 2.5
9/5 1200 371 365 309 289 254 1.8
1600 416 405 394 257 91 1.8
2000 227 226 221 137 ~27 1.6
9/6 2400 284 269 262 267 96 61.8
0400 259 244 243 254 62 1.9
0800 140 126 136 146 11 1.8
1200 294 304 218 223 210 1.7
9/13 1200 324 334 264 251 241 1.9
9/20 1200 438 429 409 366 366 1.5
9/26 1200 361 377 352 275 74 2.0
1600 260 253 253 240 2 1.8
2000 217 81 192 52 52 1.5
9/27 2400 205 209 203 192 159 1.7
0400 145 154 176 158 58 2.0
0800 145 29 79 51 ~37 2.0
1200 252 261 135 126 33 2.1
70
TABLE A—7.~-Vertica1 pH profiles for an inshore station
over the 1973 growing season.
Bottom
Depth
Depth
Time
Date
(In)
0.5m 1.0m 1.5m Bottom
Surface
4314956
11112.1111fl
1285986
9888778
982
879
4843823
0 O O O O O 0
9999899
A953924
9999899
4164035
0 O O O .0.
9099999
1...
0000000
0000000
2604482
1122001
3 4
2 2
/ /
5 S
1200 8.7
1200
5/31
4767675
111111.].
2185076
7767577
2441276
7888677
4.441381
8888678
A442380
8888678
4452582
8888678
1600
2000
2400
0400
0800
1200
6/6
6/7
1200 8.6
6/14
4888668
1111111
9234587
8888778
0452028
9999998
1.3—[.3128
9999998
1204240”
0 0 O O O 0
9909998
.1.
1200
1600
2000
2400
0400
0800
1200
6/20
6/21
6
l
1200 9.4
6/28
7/4
7/5
5688676
1111:111111
7871145
8988788
7898551
8988889
4782525
0 O O O O O 0
9989999
5752535
0 I O
O O O 0
9999999
5852848
9999899
1200
1600
2000
2400
0400
0800
1200
5
l
1200 9.1
7/12
5856566
1111111
4305292
97007978
4401290”
998998OJ.
6675561
9999999
7898762
9999999
7988773
9999999
1200
1600
2000
2400
0400
0800
1200
7/18
7/19
7]
TABLE A-7L--Continued.
Bottom
Depth
Depth
Time
Date
(In)
0.5m 1.0m 1.5m Bottom
Surface
1200 9.6
7/26
5758675
1111111
5655596
7777768
575356rnw
7879878
31556_/.3
99999—/.Q“
4375473
9999979
3575454
0 O I O O O 0
9999989
1200
1600
2000
2400
0400
0800
1200
8/1
8/2
1200 9.
8/9
5845555
1111111
6574210
8688857
9533753
8999899
0641852
9999899
0.851455
9999899
OnunuonunuO
Onunuonunuo
2ronv4.qnu2
lai952nunul
5 6
l l
// //
8 8
1200
1200
8/23
9.4
9.
8/30
9/5
9/6
7635643
1111111
2601390
9978879
3,0 1.5
O O
99 89
4952342
0 O O O I O 0
9989989
4963A43
9989989
A95556l
O O O O
$989989
1200
1600
2000
2400
0400
0800
1200
3
l
5
9
1200
9/13
1200 9.
9/20
3355546
1111111
0057563
8878888
332118flw
9999989
3333191
9999989
A444192
9999989
1200
1600
2000
2400
0400
0800
1200
9/26
9/27
72
TABLE A-8.--Vertical pH profiles for an offshore station
over the 1973 growing season.
Bottom
Depth
Depth
Time
Date
(In)
0.5m 1.0m 1.5m Bottom
Surface
9r0.8163
111212
002679
899778
36468nw
999889
4740..an
999999
4..rO.421-._nu.
999919
466331
a o o o o 0
999999
1200
1600
2000
5/23
2400
5/24
0400
0800
1200
5/31
6/6
6198392
1211212
2544776
8776677
2522976
8887678
25330.r0.5
8887~/._/.8
23440.75
8nd.B_/.—/.78
2544376
0 O... O 0
8887778
1200
1600
2000
2400
0400
0800
1200
6/7
1200 8.
6/14
0809089
2121211
5360938
8977687
9522901
8999899
1332901
9999899
8363nw12
8999999
9374222
8999999
1200
1600
2000
2400
0400
0800
1200
6/20
6/21
1200
6/28
7/4
9000133
1222222
6778283
8876677
”494111
9989999
3607934
9999899
3558845
9999899
4668456
9999799
1200
1600
2000
2400
0400
0800
1200
7/5
1200 9.2
7/12
9070964
1212112
0248782
9777877
4640720
9998899
57740.r0..l_
9998999
$895162
9998999
7891172
73
TABLE A-8.——Continucd.
Bottom
Depth
Depth
Time
Date
(In)
0.5m 1.0m 1.5m Bottom
Surface
. 1.9
. 9.1 .
1200 9.6
7/26
7756799
1111111
7220538
7888787
2921499
9889988
4173691
9999989
4.573691
9999989
5684792
9999989
1200
1600
2000
2400
0400
0800
1200
8/1
8/2
1200 9.6
8/9
9265888
1211111
0588842
9866876
3428464
9976996
4536352
9979897
5645845
9979897
5756245
9979897
OnunuOnUnuO
OnunuOnUnuO
2ronu4.qpu2
11L9g2nUnul
5 6
l l
/, //
8 .8
1200 8.
8/23
1200 9.6
8/30
7869987
1111111
2360468
9867767
2040542
9989989
3770443
9989989
4873544
9989989
4992664
9989989
1200
1600
2000
2400
0400
0800
1200
9/5
9/6
1200 9.6
9/13
1200 9.3
9/20
0857001
2111222
3419263
8788878
2213969
9989888
3313090
9999989
2324891
9999889
14358nuoz
9999899
1200
1600
2000
2400
0400
0800
1200
9/26
9/27
74
TABLE A-9. --Total copper and cadmium concentrations in the
water expressed as three-point means,a with
seasonal mean percentage in the suspended
fraction.
Copper - microgm/L Cadmium - microgm/L
Date ———
Inflowc OutflowC Pondd InflowC Outflowc Pondd
5/23 9.86 13.49 2.45 1.9 1.2 1.8
5/31 3.21 1.6
6/6 10.47 9.87 2.86 1.8 1.2
6/14 2.61
6/20 8.83 9.42 1.81 1.7 1.1
6/28 2.10
7/4 5.18 2.38 2.10 1.3 1.1 1.1
7/12 1.81 0.9
7/18 1.82 2.31 1.64 1.1 0.9 0.8
7/26 2.27 0.9
8/1 2.13 2.04 2.28 1.2 1.0
8/9 2.08 1.2
8/15 2.48 3.63 1.33 1.0 0.9
8/23 1.28 .
8/30 1.63
9/5 .53 1.70
9/13 1.62 .
9/20 1.12 .
9/26 2.74 4.53 1.11 1.2 1.4 1.0
Pemxmt‘
Suspended 80.9 86.1 84.2 88.9 77.5 84.1
aTabled values are means of samples taken on date
listed, preceeding date, and following date, except for the
first and last in the series (these are two-point means).
bBy membrane filtration
CFrom samples composited over 24 hr.
dFrom surface samples taken at an inshore and
offshore station at noon.
75
TABLE A-10.--Copper concentrations (microgm/L) in the water
as taken from curves fitted to the total copper
data of Table A-9.
Sample Date Total Suspended Dissolved
Inflow 6/6 10.45 8.45 2.00
6/20 8.96 7.25 1.71
7/4 7.87 3.94 0.93
7/18 2.23 1.80 0.43
8/1 1.83 1.48 0.35
8/15 2.58 2.09 0.49
9/5 2.76 2.23 0.53
9/26 2.74 2.22 0.52
Pond 6/6 2.97 2.48 0.49
6/20 2.05 1.71 0.34
7/4 1.91 1.60 0.31
7/18 2.08 1.74 0.34
8/1 1.97 1.65 0.32
8/15 1.67 1.39 0.28
9/5 1.52 1.27 0.25
9/26 1.04 0.87 0.17
Outflow 6/6 10.00 8.61 1.39
6/20 8.75 7.53 1.22
7/4 3.68 3.17 0.51
7/18 1.25 1.08 0.17
8/1 2.13 1.83 0.30
8/15 3.96 3.41 0.55
9/5 3.38 2.91 0.47
9/26
4.56
3.93
0.63
76
TABLE A-11.--Total quantities of c0pper and cadmium in the
flow of water entering and leaving Pond 4
during the 24-hour period on the dates listed.
Volume (106L) Gm Inflow Gm Outflow
Date
Inflow Outflow Cu Cd Cu Cd
6/6 1.9 1.8 20.3 ' 3.6 18.2 2.2
6/20 1.9 1.8 17.1 3.0 15.5 2.0
7/4 1.3 1.4 6.3 1.7 5.3 1.4
7/18 1.6 1.2 3.6 1.9 1.5 1.1
8/1 2.0 2.1 3.7 2.3 4.4 2.0
8/15 1.6 1.5 4.0 1.7 5.8 1.5
9/5 1.7 1.9 4.7 2.0 6.3 2.2
9/26 1.7 1.5 4.7 2.6 6.9 2.2
77
TABLE A-12.--Cadmium concentrations (microgm/L) in the water
as taken from curves fitted to the total cadmium
data of Table A-9.
Sample Date Total Suspended Dissolved
Inflow 6/6 1.87 1.66 0.21
6/20 1.55 1.38 0.17
7/4 1.32 1.17 0.15
7/18 1.19 1.06 0.13
8/1 1.13 1.00 0.13
8/15 1.12 0.99 0.13
9/5 1.17 1.04 0.13
9/26 1.24 1.10 0.14
Pond 6/6 1.40 1.18 0.22
6/20 1.39 1.17 0.22
7/4 1.05 0.88 0.17
7/18 0.89 0.75 0.14
8/1 1.04 0.87 0.17
8/15 1.00 0.84 0.16
9/5 0.57 0.48 0.09
9/26 0.98 0.82 0.16
Outflow 6/6 1.22 0.95 0.27
6/20 1.10 0.85 0.25
7/4 1.01 0.78 0.23
7/18 0.97 0.75 0.22
8/1 0.97 0.75 0.22
8/15 1.02 0.79 0.23
9/5 1.18 0.91 0.27
9/26
1.44
1.12
0.32
78
TABLE A-13.--Relationships between the concentrations
(microgm/L) of copper and cadmium in the
inflow and outflow of Pond 4 taken from the
raw data collected on the dates given.
Inflow - Outflow Outflow/Inflow x 100
Date
Cu Cd Cu Cd
6/6 0.45 0.65 95.7 65.2
6/20 0.21 0.45 97.7 71.0
7/4 1.11 0.31 75.6 76.5
7/18 0.10 0.22 56.1 81.5
8/1 -0.30 0.16 116.4 85.8
8/15 -1.38 0.10 153.5 91.1
9/5 -0.62 -0.01 122.5 100.9
9/26 -1.82 -O.20 166.4 116.1
79
TABLE A14.--Biomass of vascular hydrophytes.
Log10 Ash-Free Dry Weight in gm/samplera
Species _ 2
Date Mean (Y) s; s n
Ceratophyllum
demersum 5/23 .40416 .06845 .07964 17
6/6 .04170 .11761 .27663 20
6/20 .43109 .10455 .26235 24
7/4 .78111 .14809 .57021 26
7/18 1.02018 .13600 .07233 26
8/1 1.11225 .10582 .26876 24
8/15 .80866 .11183 .25010 20
9/5 1.01747 .08602 .12581 17
9/26 .98305 .06322 .06792 17
Potomageton spp.b 5/23 -.44242 .18550 .58500 17
6/6 -.29492 .16933 .57344 20
6/20 -.31931 .13470 .43547 24
7/4 .04937 .12124 .26456 18
7/18 -.18809 .24735 .61180 10
8/1 -.55380 .26820 .43159 6
Lemna minor 7/4 -.16272 .13355 .35670 20
7/18 -.02498 .11146 .24846 20
8/1 -.09828 .09168 .16812 20
8/15 .30618 .12060 .29087 20
aSampler for g. demersum and POtamogeton spp, had
area of 0.1135 m2; for 5*. minor, 0.0625 m4.
b
P. foliosus and g. berchtoldii combined.
TABLE A-15.--Percentage ash of dry-weight in the vascular
80
hydrophytes.
Species Date Mean(Y) s; 52 n
Ceratophyllum
demersum 5/23 17.43 .67 2.22 5
6/6 18.45 .34 .59 5
6/20 29.68 1.97 19.46 5
7/4 26.10 1.62 13.07 5
7/18 22.38 1.72 14.75 5
8/1 21.60 1.14 6.65 5
8/15 18.78 .73 2.64 5
9/5 20.46 2.66 35.27 5
9/26 20.85 1.31 8.62 5
12/13 21.71 1.72 14.83 5
Potamogeton spp.a 5/23 18.09 1.69 14.25 5
6/6 20.37 2.85 40.74 5
6/20 22.27 1.30 8.43 5
7/4 22.01 2.74 37.49 5
7/18 18.79 4.54 61.93 3
8/1 19.00 1.33 8.82 5
Lemna minor 5/23 13.84 - - 1
6/20 22.82 1.18 2.76 2
7/4 21.35 1.20 7.20 5
7/18 20.78 .83 3.48 5
8/1 19.09 .42 .87 5
8/15 20.43 .37 .67 5
9/5 19.44 .39 .76 5
9/26 19.87 .29 .42 5
a2. foliosus and P. berchtoldii combined.
81
TABLE A-16.—-Mean copper concentrations in vascular
hydrophytes expressed as loglo of microgm/gm
of ash-free dry weight.
Date Mean (Y) s; s n
Ceratophyllum
demersum 5/23 1.86543 .06228 .02715 7
6/6 1.77013 .08022 .04504 7
6/20 1.62546 .10487 .14298 13
7/4 1.25669 .06835 .07008 15
7/18 .89140 .04750 .03385 15
8/1 .79512 .02539 .00967 15
8/15 .68481 .04202 .01766 10
9/5 .76459 .02464 .00607 10
9/26 .80683 .03909 .01528 10
12/13 1.65299 .03608 .01302 10
Potamogeton
spp.a 5/23 1.86028 .06414 .02468 6
_—— 6/6 1.79282 .05899 .03132 9
6/20 1.60106 .07071 .04999 10
7/4 1.18166 .07370 .05431 10
7/18 .97643 .17419 .12136 4
8/1 1.08653 .11771 .06928 5
Lemna minor 5/23 1.46389 - - 1
6/20 1.35139 .11118 .04944 4
7/4 1.43407 .15096 .11394 5
7/18 1.59339 .08437 .03559 5
8/1 1.45216 .09878 .04878 5
8/15 1.44845 .12720 .08089 5
9/5 .76917 .02337 .00273 5
9/26 .76756 .01179 .00070 5
a
E. foliosus and P. berchtoldii combined.
82
TABLE A-17.--Mean cadmium concentrations in vascular
hydrophytes expressed as loglo of microgm/gm
of ash-free dry weight.
Date Mean (Y) s; 52 n
Ceratophyllum '
demersum 5/23 —.13571 .01296 .00118 7
6/6 -.06256 .07516 .03954 7
6/20 .09113 .02499 .00812 13
7/4 -.01679 .03086 .01333 14
7/18 -.16849 .02672 .01071 15
8/1 -.10620 .02176 .00711 15
8/15 —.18154 .04559 .02078 10
9/5 -.04999 .05548 .17543 10
9/26 -.04396 .02423 .00587 10
12/13 -.27630 .03597 .01294 10
Potamogeton
spp.a 5/23 -.45506 .11727 .08252 6
6/6 .09925 .01212 .00132 9
6/20 .26347 .04778 .02283 10
7/4 -.20255 .15736 .24762 10
7/18 -.05671 .09035 .03266 4
8/1 .24193 .06313 .01993 5
Lemna minor 5/23 -.04335 - - 1
6/20 -.26106 .03723 .00555 4
7/4 -.35986 .02577 .00332 5
7/18 -.26999 .04475 .01001 5
8/1 .17566 .01783 .00159 5
8/15 .01598 .02737 .00375 5
9/5 -.11259 .04141 .00857 5
9/26 -.O4425 .01814 .00165 5
a
P. foliosus and P. berchtoldii combined.
83
TABLE A-18.--Tota1 quantities of copper and cadmium in the
vascular hydrophytes of Pond 4 as derived from
curves fitted to the data for ash-free biomass
and tissue concentration (also given) for dates
of sampling in 1973.
D Pond Biomass Cu in Cu held Cd in Cd held
ate . . .
1n Kg mg/Kg 1n gm mg/Kg 1n gm
Ceratophyllum demersum
6/6 362 79.81 28.9 0.89 0.3
6/20 987 35.37 34.9 1.26 1.3
7/4 2164 17.69 38.3 0.98 2.1
7/18 3416 10.11 34.5 0.75 2.6
8/1 4336 6.70 29.1 0.70 3.0
8/15 5101 5.21 26.6 0.76 3.9
9/5 4577 4.87 22.3 0.88 4.0
9/26 3368 7.39 24.9 0.92 3.1
a
Potamogeton spp.
6/6 141 66.67 9.4 1.40 0.2
6/20 210 41.10 8.7 2.05 0.4
7/4 279 16.99 4.8 0.70 0.2
7/18 155 9.28 1.4 1.01 0.2
8/1 25 13.21 0.4 2.03 0.1
8/15 nil - - - -
Lemna minor
6/6 nil - - - -
6/20 1 20.91 nil 0.56 nil
7/4 159 37.84 6.0 0.42 0.1
7/18 238 41.82 9.9 0.61 0.1
8/1 81 27.30 2.2 0.96 0.1
8/15 194 20.40 4.0 1.13 0.2
9/5 49 9.26 0.5 0.76 nil
9/26 19 5.74 0.1 0.91 nil
I'U
foliosus and P. berchtoldii combined.
84
TABLE A-19.--Biomass of zooplankton.
Loglo Ash-Free Dry Weight gm + 1.0/samplera
Date
Mean (Y) s; s2 n
6/6 .03057 .00886 .00102 13
6/20 .01353 .00200 .00008 20
7/4 .00586t .00071 .00001 20
7/18 .00315 .00071 .00001 20
8/1 .00199 .00071 .00001 20
8/15 .00240 .00071 .00001 20
9/5 .00330 .00100 .00002 20
9/26 .00251 .00100 .00002 20
aSampler volume 34.3 L.
85
TABLE A-20.--Copper and cadmium concentrations and per-
centage ash in the zooplankton.a
Date Copper Cadmium % Ash of
microgm/gm microqm/gm Dry We1ght
Ash-Free DW Ash-Free DW
5/23 38.22 0.80 -
30.53 0.67
6/6 42.73 0.60 8.84
44.47 0.47
6/20 43.82 0.85 10.54
57.78 0.89
7/4 24.21 0.20 8.58
20.23 0.20
7/18 22.12 0.92 9.69
27.37 0.79
8/1 16.51 0.31 5.63
29.66 0.52
8/15 33.15 2.61 -
9/5 660.00 1.03 -
9/26 141.28 0.91 -
Mean 8.96
aSamples for a date combined to obtain sufficient
material for analyses; tabled values are for individual
analyses.
86
TABLE A-21.--Tota1 quantities of copper and cadmium in the
zooplankton of Pond 4 as derived from curves
fitted to the data for ash-free biomass and
tissue concentration (also given) for dates
of sampling in 1973.
Date Pond Biomass Cu in Cu held Cd in Cd held
1n Kg mg/Kg 1n gm mg/Kg 1n gm
6/6 119.8 46.49 5.6 0.62 0.1
6/20 5.9 42.55 0.3 0.77 nil
7/4 2.5' 31.78 0.1 0.40 nil
7/18 0.8 20.73 nil 0.41 nil
8/1 0.5 20.27 nil 0.86 nil
8/15 0.9 48.46 nil 1.74 nil
9/5 1.4 597.10 0.9 1.23 nil
9/26 0.8 147.45 0.1 0.99 nil
TABLE A-22.--Biomass of benthic macroinvertebrates.
87
Loglo Ash—Free Dry Weight gm + 1.0/samplera
Date
Mean (Y) s— 52 n
5/23 .04216 .00671 .00089 20
6/6 .01344 .00300 .00018 20
6/20 .00878 .00229 .00010 19
7/4 .00711 .00141 .00004 20
7/18 .00746 .00158 .00005 20
8/1 .00926 .00200 .00008 20
8/15 .00205 .00071 .00001 20
9/5 .00149 .00071 .00001 20
9/26 .00966 .00265 .00014 20
aSampler
2
area .023 m .
88
TABLE A-23.--Copper and cadmium concentrations in benthic
macroinvertebrates.a
Copper Cadmium
Date
nficnmegnAshdheeIMP ' nficfimegnlEhflhnelfiP
5/23 37.34 2.22
30.59 1.85
33.67 2.16
34.86 3.13
6/6 26.47 2.97
6/20 25-04 4.64
7/4 20.38 5.68
7/18 14.59 4.94
8/1c 14.05 5.37
8/15 18.94 9.69
9/5 18.73 1.73
9/26 16.92 1.59
aSamples for a date combined to obtain sufficient
material for analyses; tabled values are for individual
analyses.
bA11 samples combined for single determination of
percentage ash; this composite 12.15% ash.
CA second sample consisting of only dragonfly naiads
(Anax g2.) had 16.42 microgm/gm Cu and 0.02 microgm/gm Cd.
89
TABLE A-24.--Tota1 quantities of copper and cadmium in the
benthic macroinvertebrates of Pond 4 as
derived from curves fitted to the data for
ash-free biomass and tissue concentration
(also given) for dates of sampling in 1973.
Date Pond Biomass Cu in Cu held Cd in Cd held
1n Kg mg/Kg 1n gm mg/Kg 1n gm
6/6 44.0 26.25 1.2 2.94 0.1
6/20 25.9 26.49 0.7 5.62 0.1
7/2 25.4 18.75 0.5 4.60 0.1
7/18 26.3 15.01 0.4 5.15 0.1
8/1 23.5 15.21 0.4 7.43 0.2
8/15 12.7 17.57 0.2 7.60 0.1
9/5 3.3 19.20 0.1 1.93 nil
9/26 31.5 16.88 0.5 1.61 0.1
90
Hoooooo.l Noooo. mmooo.l mmvoo. NmNNo.I mmamo. AHmHQEmm
\H + .35 8.5:: 59
mmflfiqmmmoaflhmm amen
m 880... 842. 838.: 8.82.. 3588335 gnaw.“ 29
mmflfifim
.5 “Sign 285
m 288. 88.8.- 88m. 2.88.- 259.8335 005.5.“ 89
mmgfifim.EfiHWE¥u
5288858 o as
m «88.- ~88. 880. cad 39: 35:88
5 5868 550585
N 880.- 88m. 88m.» :3 m}: 3%
5 .888 53588
N 388.- «SS. 8288 2.35 $9:
35588 5 55.08 58
m 82.- ~mc-.~ 352.: 1.3.6 m}:
mamandomfiauqu%Hvamfiau
A 5-38.8. 735. 880.- 808. 808.- M88. 088.- 880. 381 8383
88 5 5568 1.88.
p 8-35 735- 888. 808.- 8.80. 880.- 888. 858.- 38.5 8383
88 5 0088 58.
m 8888. 880. :89- 880. 38.5 85.2
3238 5 5588 58.
4m 888. 880.- 488. 02.8.- 808. mflmof SEE ~88:
3338 5 .688 38.
m 8088.- N88. 088.- 188. 38,5 8382
355 5 85888 58.
m 2888. 880.- 880. 388.. SEC. M88: 3815 8383
3035 5 8&8 138.
X X X X I
85:. 4. 8 mx 4x mx m ax 88.435 5
Uflw mm>HSU
.v ocom Mo mucmcomeoo MOM Amm\mno\ov dump :0mmmm mcH3oum ou
newmmmummu Hmfifiocxaom wo mumzoauc ou manmfium>nx u0m mucofiowmwmoo cam ummonmucfllwll.mmn< wands
91
880. 38. >88. 898. u «2.85 889? 2.35 8812 963
c8388 5 5668 fig
288. ~88. 88o. 88~. 388. u ~88~ 3.3 85.5 $9:
85388 5 Monaco canoe
880. 3.8. 808. 83.. . 88¢.~ 885.? cad 855 $63
855m 5 .5868 35
~88. 880. £88. m~2~. u om-m. 885. 2.35 $5.58
303 mQfiam 5 59900 363
:88. 38°. 88°. 35. 888.? 888». cad 855mm mks
no.3: map-3 5.. .5868 303
~28. ~88. . 9:8. 888. . ”id 88,122 m a
“an: «8:3 5 .8880 o m3
828. 35. 83mg- 82%.“. $837 cad 885.54 Qua mum
g 5 .5868 Smog
380. «RS. . 58m. -~34 3.3 85112 a}: Hm
gauged 5 Monaco cams
~88. 2:8. 888. mamm~. . 8854 8.8.3.? .38 8&5 99: 55.866
.5: a 85.8 5 5558 35
~88. ~28. 8o-. .. S~8.~ :2 088.3 363 568806
Saagoumuwo an” .8950 onQH
~88. 2.8. 288. . 88o. 18588m>+ .35 85.5.4 29
mug 60353008 oamQH
mx vx mx Nx ax ummoumucwlw
.nQEfiEOUI .mNIG a
92
m~\m H\m m\m m~\m mH\m ma\~ ¢\~ o~\m
em.m~ mo.mH 88.85 nm.ma mv.o~ mh.o~ mm.H~ ~m.-
ca>m.v u >O¢ Smd w HOGfiE MEEOA
m~\m o\o maxm mxm o~\m H\m ma\~a ma\~ «\n o~\o
mv.~H mv.ma mn.ma mv.o~ mm.o~ om.H~ H~.H~ mm.- oa.m~ mo.m~
444m~.m u >08 nma w Esmumemc Esaamanumumo
H\m ma\m o~\m ma\n m\m vxn o~\m m\o
mmaoo. ov~oo. Hm~oo. mamoo. ammoo. mmmoo. mmmao. hmomo.
«aaom.ma u >o< nfiumHmEmm\o.a + .3.Q mmumlnmm Emv mmmEon couxcmamooN oamoq
m\m ma\m maxn q\~ o~\o H\m w~\m m\o m~\m
mvaoo. mo~oo. Hanoo. mvaoo. mnmoo. o~mo. oomoo. vqmao. oa~vo.
«8aav.ha n >04 naumHmEmm\o.H + .3.0 mounnnmfi Emv mmmeoflm monucmm camoq
o\o m~\m o~\m v\~ ma\m m~\m m\m ma\~ H\m
08540. @5808. moflmv. 555mb. mmmom. momma. ~¢~HQ.H mHo~o.H m-~H.H
a««mm.aa u >O¢ naumHmEmm\.3.Q mmnmlnmd Evy mmmEoHn Edmumamp EDHHNSQOHMHmU camoq
.mmuxcmouohn
Hoasomm> cfl EdHEomo can Hmmmoo paw mucmEmusmmmE mmmeofln MOM
mAmo.o u 8V ummu mmcmu mamfluHDE m.cmocso mo muasmmu cam mammE Umxcmmll.mmld mqmde
93
m~\m mxm o~\m «\n mH\m ~\m m~\m maxh
mmbon. pamon. amamm.fl noqmo.a mvm¢v.~ m-mv.a mmmwe.a mmmmm.a
«88>N.> n >O< A.3.o wmuhunmé Em\Emnv HOGAE mnfimq CH Hmmmou onOA
m~\m v\~ m~\~ m\m H\m o~\o
mommv.a mmmom.n Hummo.| mmmmo. mmaem. nwmom.
«48mm.m u >O< A.3.o mmHmI£m¢ Em\Em:v o.QQm coummOEmuom CH Esfifiomo camoq
ma\~ H\m q\n o~\m m\o m~\m
mwmnm. mmomo.a monH.H moaom.a mmmmh.a mmomm.a
888nm.am n >o< A.3.o mmumlnmfl Em\Em:v Odom souoOOEmuom ca Hoodoo camoq
ma\~a maxm waxh m~\m axm m\8 m\m m~\a o\m o~\o
ommbm.l vamH.I mvmma.l Humma.l Hhmma.l wmmoo.l mmmvo.l mmmwo.l mbmao.l MHHmo.
«««mh.m n >O¢ A.3.Q omnmnnmm Em\Em:v ESmHmEmU Esaawcmoumumo :H EUHECMU camoq
ma\m m\m H\m m~\m ma\~ «\n o~\o mH\~H o\o m~\m
Hm¢mo. mmvmh. ~Hmm~. mmmom. oq~mm. momm~.a ovm~m.a ma~mo.a mao-.~ mvmom.a
«880m.mm u >o< A.3.o wouuucmd Em\Emn V EamumEmp Enaawnmoumumo ca Hmmmoo camoq
efiyznuSHYi.wTagwfizg
94
858.8 58:88 .m 8.... 3 no
.mmumunmuum>CHouomE oHCqun “NE mMHH.o .EsmumEmp .m "mumHQEmm mo mNHmQ
.C m.vm .aouxcmamoON 1~e m~o.o
.Ho>mH wm.mm um mmoCmumwwHo
quoHMHCme u «*4 “Hm>mH wo.mm um mmonHmmep quonHCon u ««
.moHumHumum mumsvm CmmE Hound mUCMHum> mo mHmaHMCm mCu mum moCHm> >O<
.Hm>mH wmm mnu um quuoHMHU >HUCm0HwHCmHm uOC mCmmE nowCCoo mmCqu
vxn H\m w\w m~\m mH\~ o~\o o~\a m\m maxm
mmmo~.- ovmmm.n Cm-~.u mmmma.u Hmmmo.u ~maoo.a Hmavo.u vm~ao. «8854.
A.3.o mmumlnmd Em\Emnv CouxCMHmooN CH ECHEUMU OHmoq
v\~ H\m maxn maxm m~\m m\o o~\m o~\m m\m
mmvvm.a ~Hmvm.H Hoaam.a «HC~m.H mammm.fl mmmmo.C onao~.H -mva.~ vmmam.~
A.B.o moumanmd Em\Eo:V CouxCMHmooN CH Commou OHOOC
¢\~ max» o~\o mxm o~\m m~\m mH\m axm
mmmmm.u mmmo~.- moam~.u mm~CH.u m~vvo.u mmmvo.- mamao. mammo.
«««mw.w~ H >o¢ A.3.Q moaninmé Em\Em1V HOCHE MCEmC CH ECHEUmU OHmoq
.UODCHHCOUII.@NI< mqm<fi
"”‘Wflfli’flfl’lfliflmfl‘lflflfllfiflflflr