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ABSTRACT

APPLICATIONS OF SENSITIVITY ANALYSIS IN PLANNING AND
OPERATION OF MODERN POWER SYSTEMS

By

Mohammed Ben-Idris

More large blackouts in power systems have been encountered in the last few years than

in any other period in history. Although the evolution of a large blackout is a complex

process, it usually starts with a small triggering event that by successive events can cascade

and evolve into a complete blackout. Therefore, hardening power systems against such events

and improving power system reliability are of necessity.

Several reliability indices for composite systems have been introduced such as loss of load

probability, loss of load frequency, loss of load expectation, expected energy not supplied,

expected demand not supplied, etc. Although these indices are of a great importance in both

planning and operational power system reliability evaluation, they lack the ability to identify

the influence of each area or equipment on system reliability. Moreover, these indices cannot

determine the most effective way to improve the system in order to keep it reliable. Due to

these reasons, significant efforts have been devoted to this area in recent years to evaluate

what the system’s reliability justifications are and to determine the best location in which

to invest.

One of the promising methods that can identify the most vulnerable component(s),

bus(es), or area(s) is performing sensitivity analysis of the possible load shedding with re-

spect to component parameters and operating limits. The sensitivity analysis provides a

measure of the amount of load to be curtailed in response to the violation of the operating

limits or component characteristics.



The task of performing sensitivity analysis is amply used in power system reliability plan-

ning and operational studies. However, the application of sensitivity analysis in the changing

operating environment such as the newly imposed emission constraints, penetration of the

renewable energy sources and cascading failures in power systems has not been given much

attention. Sensitivity analyses of the reliability indices can be conducted either analytically

such as using state space enumeration or by means of simulations. Therefore, performing

sensitivity analyses over a large set of variables for large systems is computationally expensive

and often intractable.

The work presented in thesis develops and proposes new expressions for sensitivity anal-

ysis that can be used to identify the most vulnerable components in power systems. Also,

this work proposes a heuristic technique in conjunction with the population-based intelli-

gent search methods (PIS) to reduce the computation burden. The work in this thesis is

divided into three parts. Part I presents the concept of the sensitivity analyses and pro-

vides the mathematical derivations of the proposed expressions. Also, this part introduces

new techniques to reduce the computational time and burden based on PIS methods and

their applications in power system reliability evaluation. Furthermore, it introduces a new

technique to classify the search space into success, failure and unclassified subspaces. Part

II presents the application of the derived expressions on power system reliability planning

studies such as the effect of each parameter on system reliability and the effect of emission

constraints on power system reliability. Also, this part examines the proposed algorithms

to speed up the computational time against the existing techniques. Part III conducts the

application of the sensitivity analysis in power system reliability operation such as mitigation

of cascading failures and prevention of the unfolding events.
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Chapter 1

Introduction

Due to the ongoing changes in generation portfolios and environmental concerns, reliability

evaluation of composite generation and transmission systems has received a great attention.

The task of composite power system reliability evaluation has become more complicated due

to the rapid increase in electrical demand and the liberalization of the electricity markets.

Several reliability indices for composite systems have been introduced such as loss of load

probability, loss of load frequency, loss of load expectation, expected energy not supplied,

expected demand not supplied, etc. Although these indices are of a great importance in

both planning and operational power system reliability evaluation, they lack the ability of

identifying the influence of each area or equipment on system reliability. Moreover, these

indices cannot determine the most-effective way to improve the system in order to keep it

reliable.

One of the promising methods that can identify the most vulnerable component, bus, or

area is performing sensitivity analysis of the possible load shedding with respect to compo-

nent parameters and operating limits. The sensitivity analysis provides a measure for the

amount of load to be curtailed in response to the violation of the operating limits or compo-

nent characteristics. Sensitivity analysis of the power system reliability indices is intended to

determine the effect of the capacity and reliability parameters such as failure and repair rates

of each component on system reliability. Also, it examines the effect of power quality such

as voltage and reactive power reserve on system behavior. Furthermore, sensitivity analysis

1



can be used and is being used in mitigating the unfolding events in case of cascading failures.

The task of performing sensitivity analysis is amply used in power system reliability plan-

ning and operational studies. However, the application of sensitivity analysis in the changing

operating environment such as the newly imposed emission constraints, penetration of the

renewable energy sources and cascading failures in power systems has not been given much

attention. Sensitivity analyses of the reliability indices can be conducted either analytically

such as using state space enumeration or by means of simulations. Therefore, performing

sensitivity over a large set of variables for large systems is computationally expensive.

In response to the growing need to harden power systems against unfolding events with

efficient computation tools, this thesis provides a framework for performing sensitivity anal-

ysis for the risk indices with respect system variables. To make the analyses feasible in terms

of computation time and burden, a state space reduction technique in conjunction with the

population-based intelligent search methods is proposed.

In addition to component parameters such as component availability/unavailability, fail-

ure rate and repair rate, the operating limits are also included in this work. The operating

limits studied in this work are emission caps and voltage and reactive power limits. The

work provided in this thesis is the first work in the literature that addresses the effects of the

emission limits on power system planning from reliability prospective. Although the effects

of voltage and reactive power limits on power system reliability have been considered, the

sensitivity of the load shedding with respect to these limits is the first time introduced in

this thesis.
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1.1 Motivation

In response to the rapid growth of the global economics, large power grids are interconnected

in order to provide the required energy. As a result of these interconnections, the number of

failures also increases and may spread through these interconnections and cause cascading

failures. Also, due to the integration of renewable energy sources, voltage and reactive power

limits should be included in the planning and operating reliability assessments. Further, after

the introduction of the regulations and amendments to reduce the emissions from the power

generation sector, emission constraints should also be included in the reliability assessments.

The time and computation effort to evaluate the robustness of power systems against

the triggering events are of concern in both planning and operation prospective. Developing

tools that can reduce the computation burden will help in applying strategies to harden

power systems against catastrophic failures.

1.2 Challenges

The challenges that were addressed in this thesis are summarized as follows:

A. Determining the most vulnerable components in power systems that can lead to power

interruptions is a challenging task. Several indices have been introduced in the literature

of power system reliability evaluation but they lack the ability of identifying which

component that has the highest effect on system deficiency.

B. The task of power system reliability evaluation is becoming more computationally de-

manding due to the increase in the complexity of the power industry infrastructure.

The time and computation effort to evaluate power system reliability indices and their
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sensitivities with respect to component parameters and system operating limits are of

concern in both planning and operation prospective. As the number of system com-

ponents increases, the number of states that need to be tested to assess power system

reliability exponentially increases (2n in case of state space enumeration where n is the

number of system components).

C. Most of the existing power system reliability evaluation methods do not account for

the effects of the operating constraints such as voltage and reactive power limits. Also,

new regulations such as emission reduction regulations should be included in performing

power system reliability evaluation.

D. Mitigation of cascading failures in power systems has become of necessity especially after

the recent blackouts. Cascading failures usually develop in a sequence of events within

a time horizon of seconds to hours. If the potential causes of the cascading failures are

incorporated with the load shedding procedure, cascading failure could be mitigated.

1.3 Approaches

In addressing the aforementioned challenges, the following approaches were used:

A. Sensitivity analysis of the reliability indices are used to identify the most vulnerable

components in a power system. The sensitivity analysis can identify which component

that contributes in most and most sever load interruptions.

B. A state space reduction technique is proposed and used in reducing the computational

effort. This technique classifies the state space into success, failure and unclassified sub-

space by using heuristic devices. Controlled population-based intelligent search methods,
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in particular, dynamically directed particle swarm optimization search method, are used

to search for the desired states in the unclassified subspace.

C. The effects of the voltage and reactive power constraints on power system availability

are considered by utilizing the AC power flow model and a linearized power flow model.

Also, the constraints of the emission limits are accommodated by piecewise linearizing

the quadratic heat rate equations.

D. The sensitivity of the risk of load curtailments with respect to voltage and reactive power

limits are used in mitigating cascading failures in power systems. After identifying the

buses that hit the limits, reactive power compensation and/or generation rescheduling

are suggested to prevent voltage collapse.

1.4 Contributions

The contributions of the presented work can be summarized as follows:

A. Developing and proposing new sensitivity analysis expressions that can relate the ex-

pected load curtailment to the component parameters as well as operating limits.

B. Proposing a new state space reduction technique that can classify the state space of

a given system into success, failure and unclassified subspaces. The validity and effec-

tiveness of the proposed technique are tested through comparing the results with those

obtained using Monte Carlo simulation.

C. Proposing a dynamically directed particle swarm optimization search method to search

for failure states in the unclassified subspace or in any desired subspace.
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D. Introducing a complementary concept that can be used with the population-based in-

telligent search methods to estimate the reliability of power systems without the need

of testing the entire state space.

E. Inclusion of emission constraints in power system reliability evaluation.

F. Proposing new indices to include the effects of voltage and reactive power limits on

power system reliability.

G. Developing a method to mitigate cascading failures in power systems through the use

of the sensitivity analysis concept.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 presents the power flow mod-

els that are used in this thesis and the incorporation of minimum load curtailments in an

optimization framework. Chapter 3 discusses the developments of the sensitivity analysis

expressions that are used to estimate the sensitivity of power reliability indices with respect

to component parameters and the operating limits. Chapter 4 introduces the proposed state

space reduction technique and the dynamically directed particle swarm optimization search

method. Chapter 5 describes the use of the shadow price concept (Lagrange multipliers)

in evaluating the sensitivity of power system reliability indices with respect to component

parameters. Also, chapter 5 provides benchmark results that can be used to test the ef-

fectiveness of the proposed approaches. Chapter 6 shows the applications of the proposed

approaches on performing sensitivity analysis of the reliability indices. Chapter 7 shows the

applications of the proposed methods with considering emission constraints. Chapter 8 con-
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siders the effects of voltage and reactive power limits on power system reliability. Chapter 9

shows the applications of sensitivity analysis in hardening power systems against cascading

failures. Chapter 10 provides concluding remarks and possible future work.
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Chapter 2

Power Flow Modeling and

Optimization Framework

2.1 Introduction

Power flow in power system networks plays a significant part of power system planning

and operating studies. Incorporation of a power flow model and redispatch optimization

problem with minimizing operation costs and load curtailment is commonly used in planning

and operation decisions. Two types of power flow models have been commonly used in the

literature in modeling power system networks which are AC power flow and DC power flow.

The DC power flow ignores the effect of line resistances and the reactive power and assumes

voltages magnitudes are 1 p.u. These assumptions make the DC power flow less accurate

because in some scenarios the voltage collapse due to voltage limits and insufficient reactive

power support can lead to under-voltage load shedding. The full AC power flow model is

the most accurate power flow model but it is computationally expensive especially for the

applications that require repetitive runs of power flow. In this thesis, in addition to the AC

and DC power flow models, we have used another power flow model which is a linearized

version of the AC power flow that closely represents power system networks. This model

was developed by the authors in [1]. This model can be considered as a modified version of

the DC power flow model or a linearized form of the full AC load flow model.
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2.2 Power Flow Models

In evaluating the reliability indices of composite systems, an optimal power flow with an

objective of minimum load curtailment is performed. This section provides a brief overview

of the AC, DC and the linearized power flow models.

2.2.1 AC Power Flow Model

AC power flow model has been amply explained in the literature. This section provides a

brief introduction about the formulation of the AC power flow. The AC power flow equations

at bus k can be presented as follows (in the polar form),

Pk = Vk
∑
m∈k

Vm (Gkm cos δkm +Bkm sin δkm) (2.1)

Qk = Vk
∑
m∈k

Vm (Gkm sin δkm −Bkm cos δkm) (2.2)

where m ∈ k means the set of the buses connected to bus k, Pk and Qk are the real and

reactive power injected at bus k, Vk and Vm are the voltage magnitudes at buses k and m,

Gkm is the conductance between buses k and m, Bkm is the susceptance between buses k

and m and δkm is the angle difference between voltages of buses k and m (δkm = δk − δm).

In solving the AC power flow equations, each bus has four variables which are Pk, Qk,

Vk and δkm. There are three types of buses, load buses, generation buses and a slack or

reference bus. For load buses, which are sometimes called PQ buses, the Pk and Qk are

pre-specified for constant power load model. For generation buses, which are commonly

known as PV buses, Pk and Vk are pre-specified. For the slack bus (one slack bus), Pk and

δkm are pre-specified.
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2.2.2 DC Power Flow model

DC power flow model has been amply explained in the literature. This section provides a

brief introduction about the formulation of the DC power flow. The DC power flow model

is an approximated version of the AC power flow model with the following assumptions:

1. Bus voltage magnitudes are assumed 1.0 p.u.,

2. Voltage angles, δkm, between buses are small such that cos(δkm) ≈ 1 and sin(δkm) ≈

δkm = δk − δm,

3. Line resistances are much smaller than the line reactances so that line impedances can

be approximated as Zkm = jxkm (line susceptance Bkm = −j/xkm),

4. Susceptances between buses and the ground are neglected.

The real power flow between buses can be expressed as,

Pkm =
|Vk||Vm|
xkm

sin δkm (2.3)

From the above assumptions, the real power flow between buses can be approximated as,

Pkm =
δk − δm
xkm

(2.4)

Then, the real power at buses can expressed as follows,

Pk =
∑
m∈k

Pkm. (2.5)
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2.2.3 Linearized Power Flow model

The development of the linearized power flow model starts with the well-known AC real and

reactive power injection equations at bus k (equations (2.1) and (2.2)). If the voltage at bus

k is assumed 1 p.u. for calculating the power injection equations, then equations (2.1) and

(2.2) can be approximated as follows,

Pk ≈
∑
m∈k

Vm (Gkm cos δkm +Bkm sin δkm) (2.6)

Qk ≈
∑
m∈k

Vm (Gkm sin δkm −Bkm cos δkm) . (2.7)

It should be noted that, this assumption will not prevent the voltage at bus k from being

calculated, rather it approximates the power injection at bus k. In other words, this is only

an approximation that enables the linearization; it is not an assumption that the voltage

magnitude equals 1.0 p.u.

Differences in bus voltage angles usually are very small and equations (2.6) and (2.7)

can be further approximated by applying the cosine and sine rules. When δ is very small,

cos(δ) ≈ 1 and sin(δ) ≈ δ. Therefore,

Pk ≈
∑
m∈k

(VmGkm + VmBkmδkm) (2.8)

Qk ≈
∑
m∈k

(VmGkmδkm − VmBkm) . (2.9)

With further manipulation, the above equations can be rewritten as shown in equation
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(2.10).  PK

QK

 =

 −B′ G

−G′ −B


 δK

VK

 (2.10)

where B and G are the susceptance and conductance sub matrices of the Ybus and B
′

and

G
′

are the susceptance and conductance sub matrices of the Ybus without including the

susceptances and conductances of the lines. The diagonal elements of B
′

and G
′

can be

expressed as,

B
′
kk = Bkk − bkk

G
′
kk = Gkk − gkk

where bkk is the sum of susceptances of the shunt elements that are connected at bus k and

gkk is the sum of conductances of the shunt elements that are connected at bus k.

This model has been applied on several known systems and the results show its validity

and it closely approximates the full AC power flow model. For further details about this

model, the readers are suggested to refer to [1].

The developed linearized power flow model does not include the losses in the transmission

lines. In large power systems with thousands of buses, real power losses can be substantial

which is not advisable to be neglected.

If we keep the term of−
δ2km

2 of the Tylor expansion of the cosine function, while neglecting

other higher order terms, then we obtain,

Pk ≈
∑
m∈Ωk

(VmGkm +Bkmδkm)− 1

2

∑
m∈Ωk

Gkmδ
2
km (2.11)

Note that the first part of (2.11) describes the real power flow that other buses receive
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from bus k, while the second part indicates the real power loss in the power transition. Let

us define,

P kloss = −1

2

∑
m∈Ωk

Gkmδ
2
km (2.12)

Similarly, the reactive power losses can be expressed as,

Qkloss =
1

2

∑
m∈Ωk

Bkmδ
2
km (2.13)

Equations (2.12) and (2.13) explicitly indicate active and reactive power losses are quadratic

forms of δkm. Gkm, the real part of Ykm, is always non-positive, hence P kloss is a non-negative

number. Ref. [2–4] described a piecewise method to linearize transmission line losses.

Note that (2.12) and (2.13) only include the losses produced by the series impedances

of transmission lines. Losses produced from the shunt part of the transmission lines have

already been considered in the original formulation expressed by (2.10).

2.3 Optimization Problem for Minimum Load Curtail-

ment

In composite system reliability studies, power flow analyses are usually carried out in solving

optimization problems of minimum load curtailment. Optimization with minimum load

curtailment has been extensively used in calculating the reliability indices of composite power

systems. If, under any scenario, the curtailment is unavoidable, the optimization problem

tries to minimize the amount of load to be shed.
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2.3.1 Network Modeling using Nonlinear Programming and the

AC Power Flow Model

This section describes the formulation and incorporation of the objective function of mini-

mum load curtailment in the nonlinear programming problem with the AC power flow model.

This objective function is subjected to equality and inequality constraints of the power sys-

tem operating limits. The equality constraints include the power balance at each bus and the

inequality constraints are the capacity limits of generating units, power carrying capabilities

of transmission lines, voltage limits at the nodes and reactive power capability limits. The

minimization problem is formulated as follows [5],

Loss of Load = min

Nb∑
i=1

Ci

 (2.14)

Subject to

P (V, δ)− PD + C = 0

Q(V, δ)−QD = 0

PminG ≤ P (V, δ) ≤ PmaxG

QminG ≤ Q(V, δ) ≤ QmaxG

Vmin ≤ V ≤ Vmax

S(V, δ) ≤ Smax

0 ≤ C ≤ PD

δ unrestricted.

(2.15)

In (2.14) and (2.15), Ci is the load curtailment at bus i, C is the vector of load cur-

tailments (Nd × 1), V is the vector of bus voltage magnitudes (Nb × 1), δ is the vector of
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bus voltage angles (Nb × 1), PD and QD are the vectors of real and reactive power loads

(Nd × 1), PminG , PmaxG , QminG and QmaxG are the vectors of real and reactive power limits of

the generators
(
Ng × 1

)
, Vmax and Vmin are the vectors of maximum and minimum allowed

voltage magnitudes (Nb × 1), S(V, δ) is the vector of power flows in the lines (Nt × 1), Smax

is the vector of power rating limits of the transmission lines (Nt × 1) and P (V, δ) and Q(V, δ)

are the vectors of real and reactive power injections (Nb × 1). Also, Nb is the number of

buses, Nd is the number of load buses, Nt is the number of transmission lines and Ng is the

number of generators.

In the standard minimization problem given by (2.14) and (2.15), all generation and

network constraints have been taken into consideration. Also, it has been assumed that one

of the bus angles is zero in the constraints (2.15) to work as a reference bus.

2.3.2 Network Modeling using Linear Programming and the DC

Power Flow Model

The DC power flow model has been widely utilized in reliability assessment of power systems

due to its simplicity of formulation and implementation [6–8,10–17]. Moreover, the DC power

flow model has the advantage of being suitable for studies that require extensive computa-

tional burden such as composite system reliability and security assessment. Using DC power

flow, there are three main constraints which are power balance equation, generation capacity

limits and transmission lines power carrying capabilities. The linear programming model of

the network with DC power flow is given in equation (2.16) which is adapted from [7],

Loss of Load = min

Nb∑
i=1

Ci

 (2.16)
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subject to

B̂δ +G+ C = D

G ≤ Gmax

C ≤ D

bÂδ ≤ Fmaxf (2.17)

−bÂδ ≤ Fmaxr

G,C ≥ 0

δ unrestricted

where Nb is number of buses, Nt is number of transmission lines, B̂ is the augmented node

susceptance matrix (Nb ×Nb), b is the transmission line susceptance matrix (Nt ×Nt), Â is

the element-node incidence matrix (Nt ×Nb), δ is the vector of node voltage angles (Nb × 1),

C is the vector of bus load curtailments (Nb × 1), D is the vector of bus demand (Nb × 1),

Gmax is the vector of maximum available generation (Nb × 1), Fmaxf is the vector of forward

flow capacities of lines (Nt × 1), Fmaxr is the vector of reverse flow capacities of lines (Nt × 1),

and G is the solution vector of the generation at buses (Nb × 1).

In the standard minimization problem given by (2.16) and (2.17), all generation and

network constraints have been taken into consideration. Moreover, it has been assumed that

one of the bus angles is zero in the constraints (2.17) to work as a reference bus.
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2.3.3 Network Modeling using Linear Programming and the Lin-

earized Power Flow Model

In this section, the linear programming optimization problem is incorporated with the lin-

earized power flow to minimize load curtailments. Using the linearized power flow model,

in addition to the power balance equation, generation capacity limits and transmission lines

power carrying capabilities, more constraints can be added. These constraints are voltage

allowable limits and generation reactive power limits. This section provides explanations for

the incorporation of theses constraints to the optimization problem.

2.3.3.1 Power Balance Constraints

Power balance equation is an equality equation represents the sum of the complex power at

a bus. The balance equation can be derived from equation (2.10) as follows:

B
′
δ −GV + PG = PD

G
′
δ +BV +QG = QD

(2.18)

where δ is the vector of bus voltage angles, V is the vector of bus voltage magnitudes, PG

and QG are the vectors of the real and reactive power of the generators respectively and PD

and QD are the vectors of the real and reactive power of the bus loads respectively.

Since the problem is to minimize the curtailment, equation (2.18) is augmented by ficti-

tious generators that are equivalent to the required curtailment. Therefore, equation (2.18)
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becomes,

B
′
δ −GV + PG + PC = PD

G
′
δ +BV +QG +QC = QD

(2.19)

where PC and QC are the vectors of the real and reactive power of the load curtailments

respectively.

2.3.3.2 Real and Reactive Power Constraints of the Generators

Real power limits of the generators are bounded by maximum available capacity and min-

imum power where the latter is considered zero. Reactive power limits are the maximum

reactive power provided by a generator and the minimum reactive power assigned for each

generator. Therefore, the constraints of real and reactive power of the generators can be

expressed as,

0 ≤ PG ≤ PmaxG

QminG ≤ QG ≤ QmaxG

(2.20)

where PmaxG is the maximum available capacity for each generator, QminG is minimum reactive

power can be absorbed by a generator and QmaxG is the maximum reactive power can be

produced by a generator.

2.3.3.3 Voltage Limits Constraints

Voltage constraints are limited according to the allowed voltage fluctuations. The maximum

voltage limit, Vmax, and the minimum voltage limit, Vmin, which are assumed throughout

this work as 1.05 p.u. and 0.95 p.u. respectively, are expressed as follows,

Vmin ≤ V ≤ Vmax. (2.21)
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2.3.3.4 Line Current Limit

The current flowing through a line connecting buses k and m can be calculated from the

voltage difference and branch impedance as follows,

Îkm =
V̂k − V̂m
Ẑkm

(2.22)

Equation (2.22) can be manipulated to produce a linearized expression for the line current.

This approximation is based on the assumption that the differences between bus voltage

angles are very small such that cos δkm ≈ 1 and sin δkm ≈ δkm and line resistances is much

smaller than line reactances, i.e., Rik � Xik. Therefore,

| Ikm | ≈
√

(δk − δm)2 + (Vk − Vm)2/ | Zkm |

=
√(

I
p
km

)2
+
(
I
q
km

)2
(2.23)

where

I
p
km =

(δk − δm)

| Zkm |

I
q
km =

(Vk − Vm)

| Zkm |

where I
p
km and I

q
km are the real and imaginary components of the line current respectively.

Therefore, the line current can be expressed by two linear components but the magnitude of

these two components is non-linear.

With a constant maximum line current, the locus of the real and imaginary components

forms a circle as shown in Figure 2.1. To linearize the current, the ratio of the reactive power

to the real power flowing through a line needs to be known in advance which is not possible in

19



p

ikI

q

ikI

maxI

maxI

1
2

)sin( 1

max I

)cos( 2

max I

)sin( 2

max I

)cos( 1

max I

3

)sin( 3

max I

)cos( 3

max I

m
l

)sin(max

mI 

)cos(max

mI 

 

Figure 2.1: Line Current Linearization

solving linear programming problem. However, this ratio also can be linearly approximated

around the operating point. This can be done by running unconstrained linear programming

problem for several load scenarios to evaluate the average and standard deviation of these

ratios. From the average and standard deviation of these ratios, the two components of the

line current can be approximated by n linear segments according to the required accuracy.

Therefore, the curve around the average ratio can be linearized as mentioned above. The

angle θl in Figure 2.1 is the tangent inverse of the ratio that corresponds to segment l.

From the analysis of Figure 2.1 the linear equations of the linear segments can be ex-

pressed as,

I
p
kml cos θl + I

q
kml sin θl − I

max
km = 0 (2.24)

where l = 1, 2, ..., n

Therefore, by choosing the number of linear segments, n, the current limit constraints will

be increased with order of n times. The current limit constraints in the linear programming
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problem can be expressed as:

bA′δ + bA′V ≤ Imaxf

−bA′δ − bA′V ≤ Imaxr

(2.25)

where b is a diagonal matrix of the transmission line admittances (Nt ×Nt), A is the element-

node incidence matrix (Nt ×Na) and

bA′ = bA cos θl

bA′ = bA sin θl

As mentioned above, as the number of linear segments increases, the number of line

constraints increases accordingly which it may slow down the computation speed. However,

in most practical power systems it is not economical to transmit reactive power through

transmission lines; therefore, the ratio of reactive power flowing in a line to the real power

is usually small. Hence, linear segments can be limited to one or two segments around the

maximum real power limits.

2.3.3.5 Linear Programming Formulation

The Linear Programming is used here to minimize load curtailments similar to the for-

mulation of the DC power flow model [7] with incorporating voltage and reactive power

constraints. From the above constraints, the minimization problem can be formulated as,

Loss of Load = min

Na∑
i=1

Ci

 (2.26)
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Subject to:

B
′
δ −GV + PG + PC = PD

G
′
δ +BV +QG +QC = QD

0 ≤ PG ≤ PmaxG

QminG ≤ QG ≤ QmaxG

0 ≤ PC ≤ PD (2.27)

0 ≤ QC ≤ QD

Vmin ≤ V ≤ Vmax

bA′δ + bA′V ≤ Imaxf

−bA′δ − bA′V ≤ Imaxr

δ unrestricted

where Na is number of buses, Nt is number of transmission lines, B
′
, B, G

′
and G are

as given in section II with dimensions of (Na ×Na), δ is the vector of node voltage angles

(Na × 1), V is the vector of bus voltage magnitudes (Na × 1), PG is the vector of real power

generation (Na × 1), QG is the vector of reactive power generation (Na × 1), PC is the

vector of real load curtailments (Na × 1), QC is the vector of reactive load curtailments

(Na × 1), PD is the vector of bus real loads (Na × 1), QD is the vector of bus reactive loads

(Na × 1), PmaxG is the vector of maximum available real power generation (Na × 1), QmaxG

is the vector of maximum available reactive power generation (Na × 1), QminG is the vector

of minimum available reactive power generation (Na × 1), Vmax is the vector of maximum

allowable voltages (Na × 1), Vmin is the vector of minimum allowable voltages (Na × 1),
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Fmaxf−real is the vector of real forward flow capacities of lines (Nt × 1), Fmaxf−imaginary is the

vector of imaginary forward flow capacities of lines (Nt × 1), Fmaxr−real is the vector of real

reverse flow capacities of lines (Nt × 1) and Fmaxr−imaginary is the vector of imaginary reverse

flow capacities of lines (Nt × 1).

In (2.26) and (2.27) all generation availability and network constrains have been taken

into considerations. Also, in order to get a feasible solution for the standard problem, it has

been assumed that one of the bus angles is zero in the constraints of equation (2.26).

Formulation of the optimization problem in this manner may produce a solution with

different curtailments for the active and reactive powers. In other words, if a load is assumed

to be curtailed in case of insufficient real power generation, this formulation may shed the

real part of the load and leaves the reactive part. To insure that the curtailment solves for

real and reactive powers, an additional constraint has to be added. This constraint can be

expressed as,

PC − (PD/QD)QC = 0 (2.28)

The factor (PD/QD) is the ratio between the real load to the reactive load at each bus.

Therefore, this constraint will insure that both the active and reactive power will be curtailed

if there is no enough real power as well as if there is no enough reactive power.

2.3.4 Other Constraints

Other constraints can be incorporated into the optimization problem such as emission con-

straints, transient stability constraints, etc. In this thesis, the emission caps and limits have

been included in performing sensitivity analysis for the reliability indices.

The emission constraints are used in this work to determine the point at which the
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action of buying or selling the emission allowances can be decided. Also, the shadow prices

of emission constraints at each power plant are used in estimating the sensitivity of the

objective function with respect to the emission limits. The emission constraints are derived

as follows,

ECO2j ≤ ECOmax2j ∀j. (2.29)

In (2.29), ECO2j is the total emission of CO2 in tonne/t at the power plant j and

ECOmax2j is the cap on the CO2 emission at the power plant j. More details about the

incorporation of the emission constraints are given in chapter 7.

24



Chapter 3

Power System Reliability Indices and

Sensitivity Analysis

3.1 Introduction

Due to the ongoing changes in generation portfolios and environmental concerns several

reliability indices for composite systems have been introduced. Even though these indices are

of a great importance in both planning and operational power system reliability evaluation,

they lack the ability of identifying the influence of each area or equipment on the system

reliability. Moreover, these indices do not give a full picture of the most-effective way to

revamp the system in order to keep it reliable. Due to these reasons, significant efforts

have been devoted to this area in recent years to evaluate what the system’s reliability

justifications are and where the best location to invest is. This chapter provides explanations

for the reliability indices and the developments of the sensitivity of these indices with respect

to the component parameters.

3.2 Calculation of the Reliability Indices

In this work, we have evaluated the well know composite power system reliability indices,

namely loss of load probability (LOLP), expected demand not supplied (EDNS), loss of
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energy expectation (LOEE), loss of load expectation (LOLE), loss of load frequency (LOLF)

and expected duration of load curtailment (EDLC).

3.2.1 Calculation of System Probability Indices

Failure probability indices evaluate the probability of failure of the system to meet the

demand. Another index was introduced which is the probability of load availability. This

index represents the probability of the system to succeed to meet the demand. Through the

search process, if the state under consideration is a failure state, the probability of this state

is added to the failure probability index, q; otherwise, the probability of this state is added

to the success probability index, p. The failure probability index and the success probability

index are bounded between 0 and 1.0. If the algorithm were to visit the entire state space,

the sum of q and p would equal to 1.0. In other words, q and 1− p would reach each other

and would evaluate the same index, loss of load probability.

The probability of system failure to meet the demand is given by

q =

nf∑
i=1

P
{
xi : xi ∈ Xf

}
(3.1)

where X is the set of all states, Xf is the set of failure states (Xf ⊂ X) and nf is the

number of failure states.

The probability of system success to meet the demand is given by

p =

ns∑
i=1

P {xi : xi ∈ Xs} (3.2)

where Xs is the set of success states (Xs ⊂ X) and ns is the number of success states.
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The estimated q, (q̂), index can be calculated based on the complementary concept (the

complementary concept is introduced in chapter 4) as follows,

q̂ =
q

q + p
(3.3)

The estimated loss of load expectation can be calculated in the same manner. Let Lq

denote loss of load expectation index. The estimated Lq, (L̂q), index can be calculated

directly from the q̂ index as follows,

L̂q =
q

q + p
× T (3.4)

where T is the period of study in hours.

3.2.2 Calculation of System Energy Indices

The well-known reliability energy indices are expected demand not supplied and expected

energy not supplied. Let dn denote the expected demand not supplied index and en denote

the expected energy not supplied index. In this work, another index was introduced which

is expected demand supplied and denoted as ds. This index estimates the amount of power

supplied to system loads. For every tested state, if the state is a success state, the product of

the probability of this state and the peak load is added to the ds index. On the other hand,

if the state is a failure state, the product of the probability of this state and the amount of

load curtailment is added to the dn index and the product of the probability of this state and

the amount of supplied load (the supplied load is the peak load minus the curtailed load)

is added to the ds index. The expected demand not supplied and the expected demand
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supplied indices are bounded between 0 and the peak load. If the algorithm were to visit the

entire state space, the sum of dn and ds would equal to the peak load. In other words, dn

and (Peak Load− ds) would reach each other and would evaluate the same index, expected

demand not supplied.

The expected demand not supplied is given by,

dn =

nf∑
i=1

P
{
xi : xi ∈ Xf

}
× Lc

{
xi : xi ∈ Xf

}
(3.5)

where Lc is amount of load curtailment of state xi.

The expected demand supplied is given by,

ds =

nf∑
i=1

P
{
xi : xi ∈ Xf

}
× Ls {xi : xi ∈ X} (3.6)

where Ls is amount of load supplied of state xi and can be expressed as,

Ls {xi : xi ∈ X} =


Peak Load, xi ∈ Xs

Peak Load− Lc, xi ∈ Xf

(3.7)

The estimated value of dn, (d̂n), index can be evaluated as follows,

d̂n =
dn

dn + ds
× Peak Load (3.8)

The en index can be calculated from the estimated dn index. The estimated value of en,
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(ên), can be calculated as follows,

ên =
dn

dn + ds
× Peak Load× T . (3.9)

3.2.3 Calculation of System Frequency and Duration Indices

Calculation of frequency and duration indices is generally more difficult than calculation

of probability and energy indices. As it has been mentioned, the probability indices are

bounded between 0 and 1 and energy indices are bounded between 0 and the peak load.

On the other hand, frequency and duration indices do not have this property. However, as

a result of the frequency balance property,
(
Ff = Fs

)
, failure frequency can be calculated

either from the success states that have downward transitions crossing the boundary between

the success and failure states, Fs, or from the failure states that have upward transitions

crossing the boundary between the success and failure states, Ff . If the algorithm were to

visit the entire state space, these two frequencies would converge to the same value. Since

the search method is not intended to visit the entire state space (as shown in chapter 4) and

the frequency is related to the probabilities of the states, frequency of failure index can be

estimated by taking the average of these frequencies,
(
Fs and Ff

)
, over the visited subspace.

If we denote the frequency of the failure index as F , then the estimated value of F , (F̂ ), can

be expressed as follows,

F̂ =
Ff + Fs

2 (q + p)
(3.10)

After estimating the probability of failure index, q̂, and the frequency of failure index,
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F̂ , it is trivial to estimate the expected duration of load curtailment, T̂c, index as follows,

T̂c =
q̂

F̂
=

2 q

Ff + Fs
(3.11)

The approach used in this work to calculate frequency and duration indices was adapted

from [8, 18, 19]. The work presented in [8, 18] was based on concepts described in details

in [20, 21]. We will not reproduce the rigorous derivation here; rather, the expressions will

be presented for convenience.

Every failure state comprises of functional components and failed components. Failure

states can transit to higher states by upward transitions, and the resulted states can be

success or failure states. These transitions are said to be crossed the boundary between

the success and failure states if the failure states transit to success states. Also, the same

procedure can be applied on the success states that transit downwards to failure states.

The frequency of encountering success states (or failure states) is the sum of the individual

frequencies associated with those transitions of the failure states (or success states) which

cross the boundary.

The sum of the frequencies of the upward transitions from the failed states can be ex-

pressed as,

F (+) =

nf∑
i=1

P {xi : xi ∈ Xf
} ∑
j∈Fi

µj

 (3.12)

where Fi is the set of failed components in state i, and µj is the repair rate of component j.

The sum of the frequencies of the downward transitions from the failed states can be

expressed as,

F (−) =

nf∑
i=1

P {xi : xi ∈ Xf
} ∑
k∈Si

λk

 (3.13)
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where Si is the set of functional components in state i, and λk is the failure rate of component

k.

Some of F (+) transitions will cross the boundary and the others will not. Also, by the

assumption that the system is coherent, none of F (−) will cross the boundary. As a result

of frequency balance property, all those transitions included in F (+) which do not cross the

boundary are balanced by corresponding transitions included in F (−). Consequently, the

frequency of system success can be calculated as,

Fs = F (+) − F (−) (3.14)

In the steady state, the frequency of system success and frequency of system failure will

balance, that is Ff = Fs. Therefore, the frequency of system failure can be calculated from

failure states as follows,

Ff =

nf∑
i=1

P {xi : xi ∈ Xf
}∑

j∈Fi

µj −
∑
k∈Si

λk

 (3.15)

Following the similar approach, frequency of system failure can be calculated from the

success states as follows,

Fs =

ns∑
i=1

P {xi : xi ∈ Xs}

∑
k∈Si

λk −
∑
j∈Fi

µj

 (3.16)

where Xs is the set of success states and ns is the number of success states.
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3.2.4 Calculation of Bus Indices

Calculation of bus indices utilizing optimization problems produces multiple solutions and

hence bus indices will not be unique [22]. Depending on the manner in which the program

scans the vertices of the feasible polytopes, it can favor curtailing power at certain buses de-

pending on how the buses are numbered. In the literature, load priority philosophy technique

is usually used to overcome this problem. Such philosophies can be the priority of each load

or part of each load. Also, load can be curtailed according to closeness to the fault location.

In this method, the loads are divided into several parts with different weighting factors. Each

part is assumed to represent a percentage of the total load. However, if the amount of load

curtailment at each bus is less than the load priority level, the multi-optimum problem will

occur. This bias can be removed by dynamic numbering of the buses, i.e., altering the bus

numbers after the occurrence of each event in the simulation.

In this work we have combined both approaches by adapting the load priority philosophy

technique and dynamic numbering of the buses. Loads were divided into three parts with

different weighting factors for each part, e.g., w1, w2 and w3 respectively. The first two parts

were assumed to represent 25% of the total load and the third part was assumed to represent

50% of the total load. The weighting factor of the first part is assumed to be less than that

of the second part and the weighting factor of the second part is assumed to be less than

that of the third part or in other words, w1 < w2 < w3.

3.2.5 Modeling of System Components

There several methods to model system components in power system reliability studies. This

section presents the modeling of generators, loads and transmission lines.
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3.2.5.1 Modeling of Available Generation

Most buses have several generators which may be similar or different. The unit addition

algorithm [23] is used to construct a discrete probability distribution function for each bus

which is known as capacity outage probability and frequency table, COPAFT. This table is

constructed based on the capacity states and forced outage rates of units at each bus.

3.2.5.2 Modeling of System Load

Loads at the buses is modeled based on the cluster load model technique [23–26]. From the

chronological loads, clusters are constructed according to the load level and its probability.

These clusters are used for each load bus as a percentage of the peak load of the given bus.

3.2.5.3 Modeling of Transmission Lines

A discrete probability density function is constructed for every transmission line. If a line is

tripped for some system state, the line is removed from the bus admittance matrix and its

capacity is set to zero.

3.2.6 A Stopping Criterion

A convergence criterion should be applied to stop the algorithm if there is not much change in

the reliability indices. In power system reliability analysis using Monte Carlo simulation, it

was found to be that energy indices are the slowest indices from convergence view point [22].

In this work, we have applied the stopping criterion on the EDNS index.

The stopping criterion considering the EDNS index can be expressed as,

σ =

√
V ar(EDNS)

E [EDNS]
(3.17)
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where E [.] is the expectation operator and V ar (.) is the variance function.

After few iterations, the amount of the change in σ is calculated, if this amount is less

than or equal to the specified tolerance, the algorithm is to be terminated; otherwise, the

simulation will continue. This stopping criterion can be used for both the Monte Carlo

simulation method and the population-based intelligent search methods.

3.3 Concept of the Sensitivity Analysis

Lagrange multipliers based method is proposed for performing sensitivity analysis in com-

posite system reliability. Lagrange multipliers are defined as the sensitivity of the value of

the objective function to the change in the right hand side of the linear/non-linear program-

ming problem constraints [27–30]. Lagrange multipliers are used in evaluating the sensitivity

analysis of the reliability indices with respect to component parameters. The sensitivity of

the reliability indices with respect to the component parameters are used as a decision mak-

ing tool in identifying the system’s component or area that has the highest impact on system

reliability; and which area or component need to be reinforced to enhance the overall sys-

tem reliability. Lagrange multipliers can be determined by solving for the dual solution of

the optimization problem with an objective function of minimizing buses load curtailments.

The proposed method relies on component availability data, generation capacity, transmis-

sion line capability and load scenarios. In most of the practical applications reported in the

literature, the sensitivity evaluation techniques include approximations in generating capac-

ity model, load model and the evaluation techniques. The proposed method uses Monte

Carlo simulation and population-based intelligent search methods that do not necessitate

such approximations.
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3.4 Sensitivity Analysis of the Reliability Indices

Sensitivity analyses of reliability indices reported in the literature have been based on calcu-

lating the amount of change of these indices with respect to component parameters such as

availability/unavailability, capacity, failure rate and repair rate. These analyses have been

conducted either by examining every single state of the system or by Monte Carlo simula-

tion. The analyses have been performed by casting the dispatch operation as an optimization

problem, through minimizing load curtailment or maximizing load supplying capability. The

optimization has been constrained by generator and transmission line capacities. The LOLP

and LOLF indices from their definitions are based on reliability parameters and cannot be

directly related to the operating limits. On the other hand, the EDNS index is based on

failure rates, repair rates and unit capacities. In this section, we provide a brief description

of the sensitivity analysis of the reliability indices and the detailed derivations are given in

the appendix.

3.4.1 Sensitivity Analysis of the LOLP and LOLF Indices with

Respect to Component Parameters

Sensitivity studies of LOLP and LOLF to component reliability have been amply described in

the literature. Sensitivity analysis can be conducted analytically by enumerating all system

states or by simulation. Refs. [16, 31–33] provide relationships that are suitable for use in

state space enumeration.

The sensitivity of LOLP with respect to unavailability ui of component i can be calculated

as follows,

∂LOLP/∂ui =
∑
x∈X

If (x)P (x)[(1/ui)− Si/(aiui)] (3.18)
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where X is the set of all states, x is the state of the system, P (x) is the probability of

occurrence of state x, ui is the probability of failure of component i and ai is the probability

of success of component i. Si is the state indicator of component i, i.e., Si = 0 if component

i is in the down state (failure state) and Si = 1 if component i is in the up state (success

state) and If (x) is the system state indicator function which can be expressed as follows,

If (x) =


1 if x is failure state

0 if x is success state

(3.19)

The sensitivity of LOLP with respect to component failure rate λi is given by

∂LOLP/∂λi =
∑
x∈X

If (x)P (x)[ai/λi − Si/λi] (3.20)

The sensitivity of LOLP with respect to component repair rate µi is given by

∂LOLP/∂µi =
∑
x∈X

If (x)P (x)[−ai/µi + Si/µi] (3.21)

The sensitivity of LOLF with respect to unavailability ui of component i can be calculated

as follows.

∂LOLF/∂ui =
∑
x∈X

[
−If (x)P (x)Siµi/a

2
i

+F (x)P (x) ((1/ui)− Si/(aiui))] (3.22)

where F (x) is the sum of the repair rates of a failure state x that crosses the boundary and
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can be expressed as:

F (x) = If (x)
m∑
i=1

λini (x)

where m is the number of components, and

λini (x) = (1− Si)µi − Siµiui/ai

The sensitivity of LOLF with respect to component failure rate λi is given by

∂LOLF/∂λi =
∑
x∈X

[
−If (x)P (x)Si

+F (x)P (x) (ai/λi − Si/λi)] (3.23)

The sensitivity of LOLF with respect to component repair rate µi is given by

∂LOLF/∂µi =
∑
x∈X

[
If (x) (1− Sk)P (x)

+F (x)P (x) (−ai/µi + Si/µi)] (3.24)

3.4.2 Sensitivity Analysis of the EDNS index with Respect to

Component Capacities

The expected demand not supplied (EDNS) is an important index because it inherently

reflects the severity of the events. The sensitivities of this index with respect to ui, λi and

µi are the same as for the LOLP index except that they are multiplied by the amount of

load curtailments. The sensitivity analysis of the EDNS with respect component capacities
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was derived as follows [16,32,33],

∂EDNS/∂Ci =
∑
x∈X

If (x)P (x) ∂Lc (x) /∂Ci (3.25)

where Ci is the capacity of component i and Lc (x) is the total load curtailment when the

system is at state x.

The derivative of the total load curtailment with respect to component capacity can be

expressed as

∂Lc (x) /∂Ci =


πg,i if component i is a generator

πt,i if component i is a circuit element

where πg,i and πt,ij are the Lagrange multipliers or shadow prices of generation capacity

constraints and transmission lines carrying capability constraints respectively. πg,i can be

calculated directly from the optimization problem. However, πt,ij depends on circuit pa-

rameters which are circuit capacity and susceptance. These two parameters are dependent

variables and cannot be treated separately. Pereira and Pinto [34], combined the effect of

circuit capacity and susceptance on circuit sensitivity and developed the following expression.

πt,ij =
(
πd,i − πd,j

) (
θj − θi

)
(3.26)

where πd,i and πd,j are Lagrange multipliers or shadow prices of load constraints of buses i

and j respectively and θj and θi are voltage angles of buses j and i respectively.
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Chapter 4

State Space Reduction and

Population-based Intelligent Search

Methods

4.1 Introduction

Composite system reliability evaluation aims at determining the reliability of the given power

system taking into consideration both transmission and generation systems. Numerous tech-

niques have been proposed in the literature to assess composite system reliability. In this

context, analytical methods [7, 35, 36] and Monte Carlo simulation [37] have been used for

composite system reliability evaluation. In evaluating the reliability indices of composite

power systems, a power flow or optimal power flow with an objective of minimum load

curtailment is usually required to test whether the state under consideration is a failure or

success state. Performing optimal power flow for huge number of scenarios can be computa-

tionally demanding. Consequently, numerous techniques have been proposed in the literature

to reduce the computational burden and the time spent in evaluating the reliability indices

of composite systems.

This chapter introduces a heuristic technique, which classifies the search space into fail-
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ure, success, and unclassified subspaces, and introduces an algorithm, which is developed

based on a directed binary particle swarm optimization search method, to search for failure

states in the unclassified subspace. The proposed heuristic technique is developed based on

calculating the maximum capacity flow of the transmission lines and the available generation.

A key element in using particle swarm optimization to search for failure states in the unclas-

sified subspace lies in selecting the weighting factors associated with the objective function.

Appropriate values of these weighting factors should be carefully selected in order to prevent

the swarm from being trapped to one corner of the state space. The work presented in this

chapter proposes an intelligent particle swarm optimization based search method to adjust

these weighting factors in a dynamic fashion. The effectiveness of the proposed method is

demonstrated on several test systems which are given in the next chapters. The results show

not only that the reliability indices obtained using the proposed method correspond closely

with those obtained using Monte Carlo simulation, but also the computational burden can

be significantly reduced using the proposed method.

The use of binary particle swarm optimization in power system reliability is found to be an

efficient tool in evaluating the reliability indices. However, the task of choosing the weighting

factors associated with the objective function tends to be tedious and time consuming as

trial and error approaches are often times being used to prevent the particles from being

flying in one direction. Consequently, the development of an automated approach to adjust

these weighting factors could save some effort in solving the task of reliability evaluation

efficiently.

This work proposes a technique to search for failure states in the unclassified subspace,

which is developed based on an intelligent bounded and directed binary particle swarm op-

timization. This technique dynamically adjusts the weighting factors associated with the
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objective function of the binary particle swarm optimization so that the swarm has always

forced to fly on the unclassified subspace. A dynamically directed binary particle swarm

optimization search method was developed by the authors in [11] to search for failure states

in the entire state space. In this work, instead of using the dynamically directed binary

particle swarm optimization search method to search for failure states in the entire state

space, we use this technique to search for failure states in the unclassified subspace. An-

other intelligence factor is added to the binary particle swarm optimization that reverses the

direction of the particles to search in the unclassified subspace if the algorithm discovers that

some particles have entered the success and/or failure subspaces. The proposed algorithm

tracks the behavior of the particles and then adjusts the objective function coefficients cor-

respondingly. The behavior of the swarm can be evaluated by examining the probabilities

of the visited states.

4.2 State Space Reduction Technique

Searching for failure states in the entire state space is time consuming; and hence, a reduc-

tion technique is required to reduce the computational time. Several methods have been

introduced in the power system literature to reduce the search space and the computational

effort. Singh and Mitra [6] have introduced the concept of the state space pruning. In [6],

an arbitrary set of coherent acceptable subspaces were pruned out from the state space us-

ing the concept of partitioning vectors. Then, Monte Carlo simulation was performed for

the remaining subspaces. The number of pruned subspaces is system dependent and it is

a tradeoff between the required time to prune the acceptable subspaces and the required

time to perform Monte Carlo simulation for the rest of the subspace. The application of
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the state space pruning to calculate the frequency and duration indices of composite power

systems was carried out by Mitra and Singh in [8]. State space partitioning has been intro-

duced in [9]. Some other researchers have developed the concept of state space pruning using

population-based intelligent search methods [38–44]. The genetic algorithm and the modi-

fied genetic algorithm have been used in [38–40] to prune the state space and Monte Carlo

simulation has been then used for the remaining part of the state space. Binary particle

swarm optimization technique has been utilized in [42, 44] to prune the state space. Green

et al. [43] have applied the artificial immune systems optimization technique in pruning the

state space. A comparative study of using population-based intelligent search methods, in

particular, genetic algorithms, repulsive binary particle swarm optimization, and binary ant

colony optimization has been held in [41]. It is worth to point out here that in the work pre-

sented in [38–44], population-based intelligent search methods have been utilized as heuristic

techniques and the selection of the acceleration factors was a key element in guaranteeing

the best performance of these methods.

In this section, a heuristic technique is introduced to prune the state space; and thereby

reduces the computational effort. This heuristic technique is developed based on calculating

the line flow capacity limits of the transmission lines. This technique models power sys-

tem networks based on network configuration, available generation, loading conditions and

transmission line availabilities, and power carrying capabilities.

By examining the optimization problems presented in chapter 2, it can be noted that for

any sampled state if at least one of the following two conditions is satisfied, we can conclude

that this state is a failure state: (1) total generation is less than the total load and (2) sum

of the capacity of the lines connected to a bus is less than the loading of that bus as shown

in Figure 4.1. Given these conditions, we can construct a heuristic technique that reduces
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the search space significantly. The procedures can be described as follows,

Bus K

Line i-k Line k-j

Generator
Load

 

Figure 4.1: A bus connecting two transmission lines. If the total generation at this bus and
the sum of line capacities are less than the load, then this state is a failure state

1. Subtract the loads connected to the generation buses from the sampled amount of

generation at these buses.

2. Construct a line capacity capability flow matrix (LCM) for the given sampled config-

uration. This matrix can be constructed in the same manner as constructing a “Ybus”

from the branch-node incidence matrix (Â) except that instead of using “−1” for the

branch that is assumed to enter a node, we use “1”. In this case, the incidence matrix

is denoted A. Further, instead of using the diagonal susceptance matrix, we use a

diagonal capacity matrix (K) so that the diagonal entries of this matrix are the line

capacities. The LCM can be expressed as follows,

LCM = AT K A (4.1)

3. At any bus, if the total generation is larger than the corresponding diagonal element of

the LCM, adjust the generation at that bus downward to the corresponding diagonal

element.

4. For a state x, if the value of any of the diagonal elements of the LCM is less than the
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absolute value of the power injection at the corresponding bus or the total generation

is less than the total demand, this state is guaranteed to be a failure state.

After reading system data, system states are sampled. For every sampled state, the above

search space reduction technique is applied. Then, failure states are passed to the optimiza-

tion problem and the reliability indices are updated. These processes are repeated for every

sampled system state.

As an example, consider the hypothetical system shown in Figure 4.2. This system

consists of five buses and 6 transmission lines. Line capacities are shown on the figure and

denoted as C1, C2, ... and C6.

The LCM is shown in (4.2) and (4.3). The diagonal entries of (4.3) represents the sum

of available line capacities at each bus.

LCM =



1 1 1 0 0 1

1 0 0 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 1 1





C1 0 0 0 0 0

0 C2 0 0 0 0

0 0 C3 0 0 0

0 0 0 C4 0 0

0 0 0 0 C5 0

0 0 0 0 0 C6





1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 0 1 0 1

0 0 0 1 1

1 0 0 0 1



(4.2)

LCM =



C1 + C2 + C3 0 0 0 0

0 C1 + C6 0 0 0

0 0 C2 + C4 0 0

0 0 0 C3 + C5 0

0 0 0 0 C4 + C5 + C6


(4.3)
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Figure 4.2: A hypothetical system to demonstrate the application of the state space reduction
technique

This heuristic technique was first developed by the authors in [10]. The heuristic tech-

nique is different from the pruning techniques, which are already presented in the literature,

in the sense that it classifies the state space into success, failure, and unclassified subspaces.

The method developed in [10] has given satisfactory results in evaluating energy indices due

to the fact that it sums up the probabilities of the visited states, and not the estimated

values of the indices. In section 4.5, we introduce a new method, which is developed based

on the complementary concept, to estimate the energy indices with less computational effort.

4.3 Power System Reliability Evaluation using Binary

Particle Swarm Optimization Search Method

Population-based intelligent search methods have been amply used in power system stud-

ies [45–47]. Genetic algorithm and bacterial foraging have been applied in power system

reliability evaluation in [48, 49]. Applications of binary particle swarm optimization in
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power system studies have reviewed in [50]. Binary particle swarm optimization has been

used as a searching tool for success or failure states in power system reliability evaluation

in [14, 38–43, 51–55]. Binary particle swarm optimization has been used in the reliability

evaluation of distribution systems and microgrids in [56–59]. The objective function of the

binary particle swarm optimization can be single objective or multi-objective. The two ob-

jective functions were intended to prevent the particles from being trapped to one corner

of the state space. The weighting factors associated with the objective functions have been

carefully selected in order to keep the particles to search in the entire state space [12, 13].

Even with two objective functions, if the weighting factors are not carefully chosen, the

particles might be trapped to one corner of the search space. To circumvent this difficulty,

an effective approach that adjusts these weighting factors and using an appropriate fitness

function are presented in this work.

4.4 Non-Sequential Monte Carlo Simulation vs. Bi-

nary Particle Swarm Optimization Search Method

One of the differences between using binary particle swarm optimization in power system re-

liability evaluation and non-sequential Monte Carlo simulation is that binary particle swarm

optimization sums up the values of the reliability indices of the visited states, whereas in

non-sequential Monte Carlo simulation, the reliability indices are evaluated by dividing the

number of encountered failure states to the number of samples. It is well known that non-

sequential Monte Carlo simulation takes long time to calculate reliability indices for the

designated accuracy; however, it is obvious that by using non-sequential Monte Carlo sim-

ulation, no need to visit all system states since it calculates the estimated values not the
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exact values. Therefore, through the sampling process, Monte Carlo simulation reaches the

designated index from both sides, under estimation and over estimation. On the other hand,

intelligent search methods such as binary particle swarm optimization accumulate the values

of the designated indices as the search progresses. Therefore, all failure states or success

states need to be visited to calculate reliability indices which are computationally expensive

if it is not impossible for large systems. Hence, the values of these indices will be always

less than the exact values unless the search method visits all the failure states or all the

success states or the entire state space. Therefore, another way to overcome this necessity

is required.

New indices have been introduced in [12, 13] which are normalized LOLP, (LOLPnorm)

and projected LOLP, (LOLPproj) to eliminate the necessity of visiting all the failure and

success states. The LOLPnorm is the ratio between the sum of the probabilities of the

failure states (LOLP) to the sum of probabilities of the states encountered so far (1+LOLP-

DLOLP); where DLOLP is the dual value of the LOLP which is one minus the sum of

probabilities of the success states encountered so far (1-sum of the probabilities of the visited

success states). The LOLPproj is the crossings between the tangents of the LOLP and

DLOLP. The normalized LOLP can be expressed as follows,

LOLPnorm =
LOLP

1 + LOLP−DLOLP
(4.4)

Again, LOLPnorm and LOLPproj are the same as the weighted LOLP index used in

Monte Carlo simulation. However, LOLPproj converges to the approximate value of the

LOLP faster than LOLPnorm [13]. It can be noted that even though binary particle swarm

optimization and Monte Carlo simulation both evaluate the weighted index, the number of

47



states to be visited using binary particle swarm optimization is significantly less than the

number of states to be visited using Monte Carlo simulation [13].

The binary particle swarm optimization is used in this work to search intelligently for

the most relevant states rather than randomly searching for failure states. Also, we present

comparisons between using binary particle swarm optimization and the conventional Monte

Carlo simulation.

The assumptions made in [12,13] are only valid for calculating loss of load probability not

for the energy, frequency and duration indices. In this work, we have used the complementary

concept (section 4.5) to evaluate all the well-known composite systems reliability indices.

4.5 The complementary Concept

The concept of complementary has been applied in several disciplines to calculate/estimate

a parameter from its complementary value. The complementary concept in composite power

system reliability evaluation can be defined as “every reliability index that can be evaluated

from the failure states, has a complementary value that can be evaluated from the success

states as long as the boundaries of an index and its complementary value are known such as

probability and energy indices or the index can be equally likely determined from the success

or failure states such failure frequency indices”. For example, the boundaries (minimum and

maximum values) of the probability of system failure and the probability of system success

are between 0 and 1. Also, the boundaries of expected load curtailment and the expected

load supplied are between 0 and the peak load. Frequency indices can be evaluated either

from the failure states that transit upwards to success states or from success states that

transit downwards to failure states. The complementary concept estimates reliability indices
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from visited states; rather than the entire state space.

4.5.1 Theoretical Background

The complementary concept starts with the fact that the sum of the probabilities of the state

space is one. Therefore, the sum of the probabilities of the success states and the failure

states is also one. The number of states in a state space is 2n where n is the number of

the components. Most power system components (generation and transmission) are highly

reliable. Therefore, the state that all system components are in the up state has the highest

probability. Not only that, the probability of a state with only one component being in the

down state usually less than the probability of the state with all the components are in the

up states of order of 1/qi where qi is the unavailability of component i. This probability

order can be generalized for the rest of the states, that is the probability of a state that

has two components in the down state (i and j) is less than the probability of a state

with all the components are in the up state of order of 1/(qiqj). Therefore, as the number

of the components in the down state increases, the probability of a state decreases with

reciprocal of the multiplication of the un-availabilities. Therefore, if an intelligent search

method discards the states with very small probabilities and captures the states that have

most effect on system reliability, the number of states that need to be evaluated can be

decreased significantly.

For example, consider a system with ten identical components with availability of 0.95.

The probability of all the components are in the up state is 0.59874 and the probability of

one component being in the down state is 0.03151. Therefore, the probability order between

the two states is 19. The probability of a state with two components are in the down state

is 0.00166. The probability order between this state and the state with all components are
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up state is 361. The probability of the state with all components are in the down state is

9.76563×10−14. Therefore, even with ignoring the states that have small probabilities, we

can accurately evaluate the behavior of the system.

For this system, if we consider at most one component being in the down state, we need

to evaluate 11 states out of 1024 states and the sum of the probabilities of these states is

0.91386. If we consider at most two components are in the down state, we need to evaluate

56 states out of 1024 states and the sum of the probabilities of these states is 0.98850. This

behavior is trivial for small systems with identical components; however, for large systems

with non-identical components, it is difficult to trace the behavior of the system analytically.

Therefore, if we allow some error tolerance, an intelligent search method can capture the

states that have most effect on system reliability. Having said that, the reliability of the

system can be approximately evaluated based on these states. The indices evaluated from

these states, however, will not be equal to the exact indices. Therefore, a method to estimate

these indices from the specified states is of necessity. In this work we introduced the concept

of complementary to estimate reliability indices.

As the algorithm searches through the state space, the reliability indices and their com-

plementary values become close to each other. For example, the difference between the

probability of system failure calculated from the failure states, q, and the probability of sys-

tem failure calculated from the success states, (1− p), goes gradually to zeros as the search

progresses. Since, the search method is not intended to visit the entire state space and the

reliability indices can approximately evaluated from the relevant states, the reliability indices

can be referred to the relevant subspace. Since the sum of probabilities of the entire state

space is 1 and the sum of probabilities of the visited states is q + p, then a reliability index
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can estimated over the evaluated subspace as follows,

f̂i(x) = fi(x)× 1

q + p
(4.5)

where, fi(x) is the reliability index under consideration and f̂i(x) is its estimated value.

4.5.2 Mathematical Justification

If we evaluate the entire state space and if we denote the loss of load probability as q and

the probability of load availability as p, then the following relationship holds,

p+ q = 1

On the other hand, if we evaluate part of the state space, then q + p < 1. In this case the

estimated value of q, (q̂), and estimated value of p, (p̂), will be less than or equal to the exact

values, that is q̂ ≤ q and p̂ ≤ p.

If the search tool were able to visit all the failure states without the need to visit the entire

state space, then q̂ = q and p̂ < p. On the other hand, if the search tool were able to visit

all the success states without the need to visit the entire state space, then q̂ < q and p̂ = p.

Searching for all the failure states or all the success states is computationally expensive

and equivalent to state space enumeration. If the search tool intelligently searches uniformly

for both success and failure states and if the algorithm does not evaluate the entire state

space, then q̂ < q and p̂ < p.

If the algorithm searches for the states that have the most effect on system reliability,

then a high cumulative probability of the state space can be evaluated through a small
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fraction of the state space. Therefore, q and p can be approximated as,

q + p ≈ 1

Through the search process, the q index represents the sum of the probabilities of the

failed states visited so far and p index represents the sum of the probabilities of the success

states visited so far. The sum of the probabilities of the states visited so far is q + p.

Therefore, the estimated value of the probabilities of failure over the visited subspace can

be expressed as follows,

q̂ =
q

q + p

and the estimated value of the probabilities of the success over the visited subspace can be

expressed as follows,

p̂ =
p

q + p

Same relations can be applied for the other indices that can be calculated from the failure

states as well as from the success states as shown in chapter 3.

4.6 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based intelligent search method, which

has been proposed by Kennedy and Eberhart in [60]. Later, Kennedy and Eberhart proposed

a discrete binary particle swarm optimization to solve combinatorial optimization problems

[61]. PSO has been proven to be an effective optimization technique and has, therefore, been

used in the presented work. We use the binary PSO to search for success and failure states

rather than looking for optimal solution. Further, generation and transmission lines states
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are represented as up states or down states so that up states are represented by 1’s and down

states are represented by 0’s. Moreover, we apply bi-objective function that searches through

the entire state space for success and failure states. Such objective function is also capable

to prevent particles from being trapped to one area of the search space. It is worth noting

here that the size of the state space is 2n, where n is the number of system components.

Therefore, even for medium systems, the number of states is very large and it is impractical

to test the entire state space. Hence, the concept of the complementary is used in this

work so that the condition of searching for all failure states over the entire state space is

eliminated.

The binary PSO technique searches through the state space and tests the visited states

for a possibility of load curtailment. In performing the search process, for every iteration,

particle velocity vi or the direction of movement of particle i from position xi can be governed

by an objective function (sections 4.6.1 and 4.6.2).

The change in particles positions can be defined by a sigmoid limiting transformation

function and a uniformly distributed random number in [0,1] as following,

xid =


1, rand() < S(vid)

0, otherwise

(4.6)

where, xid is the dth component of particle i and S(vid) is the sigmoid function of dth’s

component of particle i which can be expressed as,

S(vid) =
1

1 + e(−vid)
(4.7)
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Figure 4.3: State space representation with two conflicting objective functions

The objective function of the BPSO can be single objective (section 4.6.2) or multi-

objective (section 4.6.1). In [38–43], single objective function has been used which is mini-

mum load curtailment to search for success states to be pruned from the state space. BPSO

with two objective functions has been proposed in [12, 13] to calculate reliability indices.

In [12, 13], one objective function has been used to maximize load curtailments and the

other has been used to maximize states probabilities. These two conflicting objective func-

tions have been intended to prevent the particles from being trapped to one corner of the

state space. The representation of the state space with these two objective functions is

depicted in Figure 4.3 where x1 and x2 represent the possible states for two system compo-

nents. State space pruning using BPSO with two objective functions has been introduced

in [44]. The BPSO has been used with two objective functions to prune the success states

from the state space and then to apply Monte Carlo Simulation on the remaining part of the

state space [44]. Even with two objective functions, if the weighting factors are not chosen

carefully, the particles might be trapped to one corner of the search space. Therefore, using

multi-objective function does not guarantee that the particles will fly on the entire state

space unless the right weighting factors are chosen as shown in section 4.7.2.
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4.6.1 Multiple Objective Functions

The two objective function can be described as follows [12,13,61]:

vi = vi + rand()× c1 × (Ppbesti − xi)

+ rand()× c2 × (Pgbest− xi)

+ rand()× c3 × (Cpbesti − xi)

+ rand()× c4 × (Cgbest− xi)

(4.8)

where rand() is a uniformly distributed random number between [0,1], Ppbesti is the particle

best position from the probability of a state prospective particle i has ever encountered,

Pgbest is the group of particles best position from the probability of a state prospective the

group has ever encountered, Cpbesti is the particle best position from the load curtailment

of a state prospective particle i has ever encountered, Cgbest is the group of particles best

position from load curtailment of a state prospective the group has ever encountered and c1,

c2, c3 and c4 are acceleration factors.

4.6.2 Single Objective Function

To circumvent the difficulty of choosing appropriate weighting factors, a fitness function

based on the severity of the states should be used. In this work, we propose a fitness function

that is based on the risk index for each state which is the product of state probability and

amount of load curtailment. This fitness function eliminates the need to use multi-objective

function and guides the swarm to search around the states that have most effect on system

reliability and prevents the swarm from being trapped to one corner of the search space.
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The proposed fitness function can be expressed as follows,

ρ(x) = p(x)× Lc(x) (4.9)

where p(x) is the probability of state x and Lc(x) is the amount of load curtailment of state

x. The objective function becomes,

vi = vi + rand()× c1 ×
(
ρpbest−i − xi

)
+ rand()× c2 ×

(
ρgbest − xi

) (4.10)

where ρpbest−i is the particle best position from the risk of a state prospective particle i has

ever encountered and ρgbest is the group of particles best position from the risk of a state

prospective the group has ever encountered.

4.7 Dynamically-directed Binary Particle Swarm Op-

timization Search Method

In performing the heuristic technique, some failure events may not be captured. In this

context, three failure scenarios can exist. In the first scenario, an area of the system is isolated

from the generation areas (area with loads only) and the transmission lines connecting the

loads of this area are sufficient to carry the loads. In the second scenario, an area of only load

buses is connected to the rest of the system through a tie-line that cannot withstand the total

load of this area, but the transmission lines can do. In the third scenario, line impedances

force the power to flow through some capacity limited lines and the power flow will not

converge without load curtailment. These scenarios cannot be detected by considering the

56



power carrying capabilities of the transmission lines. Therefore, a search tool should be

used to capture these events. However, the search space can be bounded by definite failure

subspace and definite success subspace, which makes the search method converges to these

events with lower computational effort.

4.7.1 State Space Description

Figure 4.4 shows the state space of a three dimension system. The above reduction technique

can detect the definite failure subspace, but cannot determine the boundary of the definite

success subspace. However, since the reliability indices and their sensitivities are evaluated

based on the failure states, analysis of the entire success subspace is not important. If the

boundary of the success subspace is known, then an algorithm can be developed to search

for failure states outside the success subspace. A large part of the success subspace can

be truncated by considering all the transmission lines in the up state and determining the

vector of minimum generation that satisfies the load. Any state in the state space that has

a generation vector larger than or equal to the minimum generation vector is guaranteed to

be a success state. Therefore, the boundary of the success subspace can be used to control

the binary particle swarm optimization search method. Also, most of the unclassified failure

states lay around the boundary of the definite failure subspace. Therefore, an intelligent

search method that is bounded between the boundaries of the success and failure subspaces

can efficiently converge to the failure states in the unclassified subspace. In this work, we

use a method based on a dynamically directed binary particle swarm optimization to search

for these states.
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Figure 4.4: State space representation of three dimension system (three components with
multiple outcomes)

4.7.2 Directed BPSO

By examining the state space, all possible outcomes of the combination of generation and

transmission, the probabilities of the upper part states are larger than the probabilities of

the lower part states. Further, load curtailments of the lower part states are larger than

load curtailments of the upper part states. If the swarm was to fly on the upper part, it is

unlikely to encounter failure states and the opposite is true for the lower part. As mentioned

above, using multi-objective function does not guarantee that the particles will fly on the

desired search space unless the weighting factors are chosen carefully. Figure 4.5 and Figure

4.6 show two situations for which the weighting factors of the objective function were badly

chosen. Figure 4.5-(a) and Figure 4.6-(a), show the behavior of the particles and Figure

4.5-(b), and Figure 4.6-(b) show the expected profile of the reliability indices. In Figure 4.5

the swarm is trapped to the upper corner of the state space. In this case, the normalized
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LOLP, (LOLPnorm) as well as the projected LOLP, (LOLPproj), will be under estimated.

As the particles continue to fly on the upper corner, most of the visited states will be success

states and more likely no failure states will be captured. Therefore, no much change in the

LOLP and the 1-DLOLP is sharply increasing. On the other hand, if the swarm is trapped

into the lower corner of the state space as shown in Figure 4.6 most of the visited states will

be failure states and unlikely to encounter success states. In this case, LOLP, (LOLPnorm)

as well as the projected LOLP, (LOLPproj), will be overestimated. The LOLP index will

continue to increase whereas the 1-DLOLP index remains almost constant.
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Figure 4.5: Reliability indices profile in case the particles are trapped to the upper corner of
the state space
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Figure 4.6: Reliability indices profile in case the particles are trapped to the lower corner of
the state space

To direct the BPSO to fly on the unclassified subspace and overcome the difficulty of

choosing the weighting factors as well as the change in probability limit, we propose a

technique that tracks both the normalized LOLP and the number of the new visited states

or the mutation rate. This technique was developed based on the normalized loss of load

probability index (LOLPnorm). The LOLPnorm has been introduced in [12, 13] to estimate

the LOLP index without the need of searching the entire state space. After performing few

iterations, if LOLPnorm continues to increase that means the particles are trapped in the

lower corner of the search space. On the other hand, if LOLPnorm continues to decrease,
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that means the particles are trapped in the upper corner of the search space. Also, if no

new states are visited and the designated reliability index does not converge to the specified

accuracy, then Vmax is limiting the probability of bit change. Also, if the algorithm discovers

that the swarm entered the classified success or failure subspaces, the weighting factor are

adjusted accordingly as shown in Figure 4.7. The procedures of preventing the particles from

being trapped into one area are described in detail in the solution algorithm.

Definite Failure 
Subspace

Definite Success 
Subspace

X2

X1

Figure 4.7: Redirecting the swarm in case it enters the success or failure subspaces
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Chapter 5

Sensitivity Analysis in Composite

System Reliability Using Weighted

Shadow Prices

5.1 Introduction

In this chapter, a shadow-price based method is proposed for performing sensitivity analysis

in composite system reliability. Shadow prices (or Lagrange multipliers) are used as a decision

making tool in identifying the system’s component or area that has the highest impact

on system reliability; and which area or component need to be reinforced to enhance the

overall system reliability. In determining components’ shadow prices, power system grids

are represented by the DC power flow model (chapter 2) and solving for the dual solution

with an objective function of minimizing load curtailments. The proposed method relies

on component availability data, generation capacity, transmission line capability and load

scenarios. In most of the practical applications, the sensitivity evaluation techniques include

approximations in generating capacity model, load model and the evaluation techniques.

The proposed method uses a Monte Carlo simulation method that does not necessitate such

approximations.
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Monte Carlo simulation has been amply used in the literature in evaluating power system

reliability. The use of Monte Carlo simulations also serves as a benchmark for testing the

validity of the proposed state space reduction technique and the dynamically directed particle

swarm optimization search method in evaluating power system reliability. In this chapter,

we use Monte Carlo simulation without using any device to reduce the computation time.

Therefore, the results of using the proposed techniques will be compared with results reported

in this chapter.

5.2 Shadow Price Theory and Description

Shadow price principle was first proposed in 1930s by Conte Petrovic as an application of

linear programming optimization technique [62]. Shadow price is defined as the sensitivity

of the value of the objective function to the change in the right hand side of the linear

programming problem constraints [27]. The objective is to minimize load curtailments and

the constraints are power system network components’ limitations such as generation ca-

pacities and transmission lines’ carrying capabilities. From generation condition or status,

total available power generation can be determined. Also, from transmission line availability

and carrying capacity, the constraints can be set. From this solution, shadow prices of the

generating units and transmission lines can be calculated.

In general, suppose we have m constraints with n variables, the standard maximum linear

programming problem can be formulated as follows:

max(Z) =
n∑
j=1

cjxj (5.1)
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Subject to the following constraints,

n∑
j=1

aijxj ≤ bi (5.2)

xj ≥ 0 (5.3)

The matrix of the coefficients of the constraints is,

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


(5.4)

The right hand side vector b of the constraints consists of m constants,

b =

(
b1, b2, · · · , bm

)T
(5.5)

The row vector of the objective function c consists of n coefficients

c =

(
c1, c2, · · · , cn

)T
(5.6)

The dual of this standard maximum problem is the standard minimum problem, that is,

min(W ) =
m∑
i=1

biyi (5.7)

64



Subject to the following constraints,

n∑
j=1

aijyj ≥ cj (5.8)

yi ≥ 0 (5.9)

If the slack variables of equations (5.2) and (5.3) are imported, the standard linear pro-

gramming will have the following form,

max(Z) = CX (5.10)

With the equality constraints,

AX = b (5.11)

X ≥ 0 (5.12)

The optimal and feasible solution of (5.7) can be expressed as,

Xb = B−1b (5.13)

where B is the optimal basis at the optimal and feasible solution and Xb is the basic variable

sub-vector. In the standard problem of (5.2), the significance of the dual variables yi is

described as the ith shadow price. In other words, the yi of the dual problem are interpreted

here as the shadow prices of the linear constraints bi.
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5.3 Solution Algorithm

This section describes the approach used for calculating shadow prices of various system

components. Shadow prices can be calculated for one load scenario as well as for multiple

loading scenarios. However, to consider the shadow price as a reliability index, system

states are to be sampled till the shadow prices of all system components converge to the

pre-specified tolerance.

Since the calculation of shadow prices requires only system state and not the state du-

ration, system state sampling approach is used in determining system states. Components

outages are assumed independent events and their behavior is categorized by a uniform

distribution [0, 1].

For two state components, if the state of the ith component is denoted by Si and com-

ponent unavailability is denoted by qi, system state vector S will be,

S = [S1, S2, · · · , Si, · · · , Sn−1, Sn]

where, n is the number of components in the system.

A uniformly distributed random variable Ui under [0, 1], using improved prime number

multiplicative congruential generator method, is drawn for every component such that,

Si =


1 (upstate) if Ui ≥ qi

0 (downstate) if 0 ≤ Ui < qi

For three state components such as generating units with derated states, let Pdi denote
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the probability of the derated state of the ith generating unit such that,

Si =



1 (up state) if Ui ≥ (qi + Pdi)

2 (derated state) if qi ≤ Ui < (qi + Pdi)

0 (down state) if 0 ≤ Ui < qi

System load is modeled by multistep model (cluster technique). Probabilities of load

steps PLi are put successively between [0, 1]. By drawing a uniformly distributed random

number, the load step can be determined according to the position of the random number

of the cluster discrete probability distribution function.

After sampling system states, system bus and line data are modified according to the

new state. Using the DC power flow model and linear programming, components shadow

prices can be calculated for each state. The procedures are illustrated in Figure 5.1.

5.4 Case Studies

The proposed method is applied on the IEEE RTS [63], the Modified IEEE RTS, and the

Saskatchewan Power Corporation in Canada (SPC) and a hypothetical six bus system [64].

System descriptions are given in the appendix. Since IEEE RTS has two 400 MW and one

350 MW units which have high capacity compared to the rest of the system, it is desirable to

consider the unit derated states which is given in the modified test system [63]. Accordingly,

the proposed method is applied on the base case and the modified IEEE RTS test systems.

Also, compared to the generating units, IEEE RTS transmission system is too reliable or over

designed [63]. Due to these reasons, two additional case studies were conducted to enforce

the transmission lines to become binding constraints instead of being always redundant
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Figure 5.1: Flow chart of the proposed method
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constraints. Furthermore, for the purpose of comparison, sensitivity analysis of the IEEE

RTS is compared with those given in [32]. Another case study was conducted to determine

the reliability indices using Monte Carlo simulation. The results of using Monte Carlo

simulation will be compared with the results of using the state space reduction technique

and the dynamically directed particle swarm optimization search method.

5.4.1 Case Study I: IEEE RTS Base Case

For the base case, generating units were represented by two states (up state and down state).

The load levels were modeled using 20 clusters load levels. To model bus loads, the RTS peak

load of 2850 MW was taken as 1 p.u. and bus loads sampled to 20 clusters as a percentage

of 1 p.u. value.

Shadow prices values are given in column 2 of Table 5.1 for the generating units, column

3 of Table 5.2 for forward direction of transmission lines and column 3 of Table 5.3 for reverse

direction of the transmission lines. Also, it should be noted that, transformers were modeled

as transmission lines with length zero and they are placed between buses 3-24, 9-11, 9-12,

10-11 and 10-12.

5.4.2 Case Study I: Modifed IEEE RTS

As mentioned previously, the two 400 MW and one 350 MW generating units have consid-

erably large capacity compared to the other components of the system. These three units

were assumed to have derated states as it is given in [63]. In other words, every unit has

three states (full capacity state, derated state and down state). In simulating these states,

a cumulative distribution function was formed for every generating unit. For example, 400
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MW has a cumulative probability with three steps; down, derated and full capacity levels.

Shadow prices values are given in column 3 of Table 5.1, column 4 of Table 5.2 and column

4 of Table 5.3.

Table 5.1: Generators Shadow Prices

Bus Case Study Case Study Case Study Case Study

No. I II III IV
1 0.40310 0.43786 0.18527 0.48389
2 0.40378 0.43881 0.18739 0.48390
7 0.15612 0.17088 0.00018 0.03040
13 0.36767 0.40017 0.16363 0.45123
15 0.36832 0.39590 0.13240 0.44642
16 1.54987 2.07930 1.16986 1.50237
18 3.69131 3.18961 3.76693 3.33811
21 4.12508 3.60711 3.62967 16.9437
22 0.36371 0.42293 0.11530 0.44142
23 0.36551 0.38899 0.15000 0.44435

5.4.3 Case Study III: Increasing Generation Capacity and Loading

Level

Since the transmission lines are too reliable and have high capacity compared to the gen-

erating units, they are forced to become binding constraints by increasing generating units’

capacities by two folds and increasing buses’ loads by a factor of 1.8. These modifications

have forced the lines to carry power near to their rated capacities. Shadow prices values of

the system components are given in column 4 of Table 5.1, column 5 of Table 5.2 and column

5 of Table 5.3.
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Table 5.2: Transmission Lines Shadow Prices (Forward)

From To Case Study Case Study Case Study Case Study

Bus Bus I II III IV
1 2 0.01910 0.02797 0.02478 0.02521
1 3 0.00513 0.03031 0.05207 0.03879
1 5 0.03250 0.01738 0.01347 0.01494
2 4 0.01127 0.02497 0.04716 0.02783
2 6 0.10014 0.06714 0.03747 0.07840
3 9 0.02112 0.00654 0.00682 0.01670
3 24 0.13659 0.33778 0.33118 0.29264
4 9 0.06473 0.11148 0.03406 0.03459
5 10 0.31012 0.18250 0.01780 0.00904
6 10 0.29032 0.14138 0.20795 0.08561
7 8 0.00945 0.00413 0.00594 0.02115
8 9 0.08640 0.04409 0.04403 0.06676
8 10 0.26387 0.08410 0.05354 0.02620
9 11 0.28179 0.34020 0.06319 0.27834
9 12 0.13933 0.13406 0.21986 0.22375
10 11 0.19194 0.21197 0.04182 0.26880
10 12 0.20482 0.16501 0.20676 0.33482
11 13 0.05855 0.01416 0.09561 0.02822
11 14 0.00888 0.00847 0.03080 0.02819
12 13 0.04368 0.06997 0.04625 0.02875
12 23 0.06323 0.08933 0.10376 0.05803
13 23 0.07747 0.03390 0.03663 0.01391
14 16 0.03233 0.04106 0.24144 0.07660
15 16 0.05662 0.03764 0.04132 0.01650
15 21 0.00897 0.04632 0.02449 0.00793
15 21 0.03370 0.05385 0.13175 0.01835
15 24 0.02765 0.01104 0.14698 0.06034
16 17 0.01830 0.02639 0.14053 0.02727
16 19 0.00999 0.02918 0.02474 0.01844
17 18 0.08521 0.02969 0.03175 0.02398
17 22 0.03194 0.24006 0.16942 0.08765
18 21 0.00389 0.09870 0.02135 0.02919
18 21 0.01249 0.03610 0.01660 0.01697
19 20 0.01843 0.02143 0.03792 0.05032
19 20 0.02044 0.05901 0.03024 0.16131
20 23 0.02704 0.07893 0.00847 0.02087
20 23 0.01535 0.02283 0.02537 0.01261
21 22 0.06845 0.01126 0.02745 0.07253
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Table 5.3: Transmission Lines Shadow Prices (Reverse)

From To Case Study Case Study Case Study Case Study

Bus Bus I II III IV
2 1 0.02465 0.03037 0.02492 0.02345
3 1 0.00641 0.03088 0.05251 0.03763
5 1 0.03412 0.01854 0.03744 0.02722
4 2 0.01545 0.02762 0.06835 0.03738
6 2 0.10526 0.06962 0.03698 0.09066
9 3 0.01914 0.00831 0.00774 0.01517
24 3 0.10015 0.28250 0.24665 0.24444
9 4 0.05499 0.10741 0.02991 0.02632
10 5 0.07976 0.11993 0.01688 0.00853
10 6 0.05761 0.06277 0.05999 0.06797
8 7 0.55643 0.55998 0.66622 0.93444
9 8 0.08052 0.03544 0.02852 0.05715
10 8 0.02616 0.01965 0.03037 0.02211
11 9 0.21403 0.23538 0.04538 0.22259
12 9 0.07665 0.07778 0.13748 0.16371
11 10 0.23862 0.18203 0.03000 0.20555
12 10 0.52747 0.22230 0.13929 0.28966
13 11 0.04484 0.00789 0.03609 0.02184
14 11 0.00890 0.00833 0.03069 0.02696
13 12 0.02962 0.04041 0.02747 0.01715
23 12 0.03859 0.05952 0.05860 0.03715
23 13 0.07103 0.02514 0.03419 0.01051
16 14 0.02340 0.03051 0.02585 0.05528
16 15 0.06181 0.03872 0.04110 0.01688
21 15 0.00620 0.02904 0.01828 0.00520
21 15 0.02223 0.03742 0.10214 0.01022
24 15 0.04418 0.01751 0.16761 0.07624
17 16 0.01508 0.02060 0.04628 0.01816
16 19 0.01000 0.02766 0.04628 0.01816
17 18 0.08367 0.02786 0.02223 0.01563
17 22 0.01489 0.06379 0.03157 0.02138
18 21 0.00389 0.09616 0.12308 0.02764
18 21 0.00854 0.02988 0.02135 0.02533
19 20 0.01594 0.01601 0.01660 0.01185
19 20 0.02044 0.05406 0.02937 0.04566
20 23 0.01843 0.06626 0.02618 0.15679
20 23 0.01104 0.01526 0.00462 0.01408
21 22 0.03180 0.01126 0.01694 0.00780
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5.4.4 Case Study IV: Reducing Lines Capacity

In this case, the carrying capacities of the transmission lines are decreased to 75% of their

rated capacity. This modification was assumed to examine the effect of the lines capacities

on the system reliability. The shadow prices values of the system components are given in

column 5 of Table 5.1, column 6 of Table 5.2 and column 6 of Table 5.3.

5.4.5 Case Study V: Calculation of the Reliability Indices of Four

Test Systems

In this case study, Monte Carlo simulation method was used to estimate the well-known annu-

alized reliability indices of the IEEE RTS [63], the Modified IEEE RTS, and the Saskatchewan

Power Corporation in Canada (SPC) and a hypothetical six bus system [64]. The annualized

reliability indices are evaluated at the system peak load. The annualized indices are shown

in Table 5.4.

Table 5.4: Annualized Indices of the Tested Systems.

q̂ d̂n F̂ L̂q ên T̂c Number of

MW occ./yr h/yr MWh/yr hour sampled states

The Hypothetical Six Bus System

0.002400 0.034630 1.34832 21.02400 303.3588 15.59274 21,981

The IEEE RTS System

0.08539 14.19236 18.16174 745.967 123,984 41.07354 73,925

The Modified IEEE RTS System

0.069052 11.88175 17.14523 603.238 103,799 35.18403 67,884

Saskatchewan Power Corporation (SPC) System

0.001081 0.039098 3.23125 9.44362 341.560 2.92259 122,941

The results of the annualized indices using Monte Carlo simulation will be used in the
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next chapters as a benchmark to validate the proposed methods. Also, the number of samples

will be used to test the efficiency of the proposed state space reduction technique.

5.5 Results and Discussion

From Table 5.1 it is clear that the generating unit (400 MW) at bus 21 has the highest

shadow price followed by the shadow prices of the generating units of buses 18 and 16 for the

four study cases. Consequently, these generating units have the largest impact on system

reliability. In other words, these buses are at the highest risk and the most beneficial way

to make the system more reliable is to increase the availability of these units by adding

new units, decreasing repair time and/or using sophisticated methods to decrease units’

failure rate. When the derated states were introduced, these shadow prices decreased due

the increase in the availability of the two 400 MW and one 350 MW generating units.

In comparison to the case study I, the shadow prices of the generating units of buses 21,

18 and 16 of the case study III have slightly changed due to the unequal increase in the total

installed capacity and the peak load. Such change in the installed capacity and the peak

load has forced the transmission lines to have larger shadow prices than it was in case study

I instead of forcing the generating units.

For the case study IV, the shadow price of the generating unit at bus 21 has increased

for more than four times than it was in case study I whereas the generating units at buses 18

and 16 stayed almost the same. In addition, while buses 18 and 21 have identical generating

units, they have different shadow prices; which indicates that not only the availability of

components has an impact on systems’ reliability, but also, components’ location in the

grid. By looking back to the network configuration, bus 21 is connected to bus 15 through

74



two lines with normal capacities of 500 MW and to bus 18 also with two lines with normal

capacities of 500 MW and they have the highest loadings in the network.

From Table 5.2 and Table 5.3, the overhead transmission line between buses 7 and 8 has

the highest shadow price followed by the transformer between buses 10 and 12 and the line

that connects buses 5 and 10. From the network configuration, line 7 - 8 is the only line

that connects bus 7 to the rest of the system. Also, the nominal real power injection at bus

7 is 175 MW (300 MW - 125 MW) and the normal capacity of the line 7 - 8 is 175 MW.

Therefore, line 7 - 8 is almost always carrying its rated power. In addition, the transformer

between buses 10 and 12 connects bus 23 which have the highest generation to bus 10 which

in turn connected to load buses (buses 5, 6, 8 and 14 through bus 11).

5.6 Summary

This chapter has introduced the use of shadow price concept in estimating sensitivity of

the reliability indices with respect to component parameters. The shadow price can be

obtained from the dual solution of the standard linear programming problem. Four study

cases have been conducted on the IEEE RTS test system. It has been found that shadow price

analysis is an efficient tool for composite generation and transmission planning, expansion

and operation studies when compared to the sensitivity analysis technique. Moreover, it

gives essential information about which component is in unsafe state from reliability point

of view and the most effective way to enhance system reliability.
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Chapter 6

Power System Reliability Evaluation

and Sensitivity Analysis Using the

State Space Reduction Technique and

Population-based Intelligent Search

Methods

The task of power system reliability evaluation is becoming complicated due to the increase

in the complexity of the power industry infrastructure. The time and computation efforts

to evaluate power system reliability indices and their sensitivities with respect to compo-

nent parameters and system operating limits are of concern in both planning and operation

prospectives. In this chapter, we use the heuristic, which is introduced in 4 to prune the

state space and to reduce the computational efforts in evaluating the well-known reliability

indices and their sensitivities with respect to component parameters and system operating

limits. In this chapter we use the DC power flow model which is given in chapter 2.

This chapter serves as a validation for the proposed state space reduction technique and

the use of population-based intelligent search methods in power system reliability evaluation.
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The results of these methods will be compared with results of using Monte Carlo simulation

which is presented in chapter 5. The method presented in this chapter is based on particle

swarm optimization search method and it is applicable to the other population-based intel-

ligent search methods. In addition to the validation of the results, this chapter also shows

the reduction in the computational time and effort. The proposed method is applied on the

IEEE RTS, the Modified IEEE RTS and PSC.

6.1 Discussion on the Reduction in the Computational

Time

In calculating reliability indices, an optimization problem usually needs to be performed for

every system state with different loading scenarios. The process of preparing and modeling

power system data to be tested for reliability analysis is performed one time. However,

running an optimization problem is required for every system state or for any change in

system parameters. From a study of wide variety of system sizes and configurations, the

optimization problem usually takes most of the calculation time. For instance, on average,

the time required to solve an optimization problem for the systems we have tested took

more than 95% of the calculation time for each system state. By performing the reduction

technique, not all the states need to be passed to the optimization problem. In other words,

if a state is guaranteed to be a success state, no useful results can be shown by solving an

optimization problem. On the other hand, failure states should be passed to the solver to

calculate bus indices. It should be pointed out here that if only system indices are to be

evaluated and not bus indices and the algorithm was able to capture most of the failure states,

the optimization problem need not to be performed since system indices can be evaluated
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from the failure states directly.

Some failure states may not be captured by using the state space reduction technique

which denoted as unclassified subspace. We have used binary particle swarm optimization

search method to search for such states. The problem of deciding whether we need to perform

binary particle swarm optimization search method for the unclassified subspace can be solved

by running the binary particle swarm optimization search method for few iterations. If the

reliability index under consideration does not change, the algorithm is terminated and the

indices calculated by the line capacity model will be enough to evaluate the reliability of the

system.

6.1.1 Reduction in Computational Time in Case of Ignoring the

Unclassified Subspace

If the transmission lines of the system under consideration are very reliable and have high

power limits in comparison with system loading conditions which is the case for most power

systems, the proposed state space reduction technique can capture most of the failure states.

In this case, performing the binary particle swarm optimization search method is not neces-

sary and ignoring this subspace will not cause significant errors.

If we assume the total time required to evaluate system indices by passing every single

state to the solver (optimization problem) is T , the total time required to evaluate system

indices by passing only the failure states to the solver is Tr, the time required to evaluate

every system state is t, the time required by the optimization problem to evaluate every

system state is tr, number of samples is N and the loss of load probability of the system

is LOLP, then by ignoring the unclassified subspace, the percentage of reduction in the
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computational time η can be calculated as,

η =
T − Tr
T

× 100 % (6.1)

where T = N × t and

Tr ≈ N × [LOLP × t+ (1− LOLP ) (t− tr)]

here Tr is approximated because the time of performing the state space reduction technique

to identify the failure states is very small in comparison with the time of preparing system

data for every sampled state and the time required by solving the optimization problem.

After some manipulations, equation (6.1) can be rewritten as,

η ≈ (1− LOLP )
tr
t
× 100 % (6.2)

As an example, if we assume 100,000 states were sampled and evaluated in order to reach

the desired tolerance and every state takes about 0.01 seconds and if we assume the LOLP

of the system is 0.02 and the optimization solver takes 95% of the calculation time of each

state, then the time required with solving an optimization problem for “every state” is 1000

seconds (100000×0.01) and the time required by passing only the failure states to the solver

is 69 seconds,

Tr ≈ 100000× [0.02× 0.01 + (1− 0.02) (0.01− 0.95× 0.01)] = 69 (seconds)
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Therefore, the percentage of time reduction of using this technique is 93.10%,

η ≈ (1− 0.02)

(
0.95× 0.01

0.01

)
× 100 % = 93.1%

6.1.2 Reduction in Computational Time in Case of Including the

Unclassified Subspace

If ignoring the unclassified subspace causes considerable error in evaluating system indices,

the proposed binary particle swarm optimization search method should be used. In this case,

calculation of the percentage of time reduction is not straight forward and system dependent.

Therefore, calculation of this time cannot be determined beforehand.

To calculate the time reduction, another time which is the time spent by performing the

binary particle swarm optimization search method, TBPSO, should be added to the time

spent to perform the line capacity model, Tr. Now, equation (6.1) can be rewritten as,

η =
T − (Tr + TBPSO)

T
× 100 % (6.3)

The computational efforts required by the algorithm proposed in [13] for the entire state

space is found to be only 19.31% of performing Monte Carlo Simulation with State Space

Pruning [8] on the modified IEEE RTS. Since we are applying a dynamically directed binary

particle swarm optimization search method on a subspace of the entire state space, TBPSO

in our case should be less than 19.31% of T . Also, the number of states to be visited is very

small, hence, the required memory will be small too.
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6.2 Solution Algorithm

The solution algorithm explains the flow of the procedures of evaluating the reliability indices

and their sensitivities with respect to component parameters and the operating conditions

as well as the technique used to direct and prevent the particles from being trapped in a

search subspace. The steps can be explained as follows:

1. Initialize the positions and velocities of the particles, xi and vi respectively. Parti-

cles positions are initialized by using the forced outage rates of system components;

components that are in the up state are represented by 1’s and components in the

down state are represented in 0’s. The length of a particle string equals the number of

components. Velocities are initialized to have Vmax equals 2.2 (probability limits are

between 0.9 and 0.1).

2. Check if there are identical particles. If so, discard the identical ones and save the

rest of the particles in a temporary array vector by converting the binary numbers to

decimal numbers. Check if there are particles already exist in the database, if so set

probabilities and load curtailments of the existing particles to zeros to decrease the

chance of visiting these states again. Then, save the rest in the database and go to the

next step.

3. Compute the exact probability of each particle which represents the probability of a

system state. If the probability of a particle is less than a threshold ε discard this

particle, otherwise go to the next step. In this work, ε is chosen to be 10−15.

4. Set system parameters and update generation and transmission lines status for every

particle. Perform the linear programming optimization problem to check if there are
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load curtailments. Update the reliability indices.

5. Determine and update personal best states’ probabilities and best load curtailments.

Also, determine and update best global probability and best global load curtailment.

Update particles velocities using (2.16) and update particles positions using (4.7) and

(4.10).

6. Check the normalized LOLP (LOLPnorm) whether it is increasing or decreasing and

adjust c1, c2, c3 and c4 accordingly. If it increasing, increase the values of c1 and c2 and

decrease the values of c3 and c4. Perform the opposite if LOLPnorm is decreasing. In

this work, we adjust the amount of increasing or decreasing these coefficients according

to the amount of change of the LOLPnorm. Any strategy can be used to adjust these

factors. However, the optimum adjustment of these factors is out of the scope of this

work. We relate the amount of change of these coefficients to the amount of change in

LOLPnorm, (∆LOLPnorm), in an exponential form as follows,

c(1,2)−new = c(1,2)−old × e
(100×∆LOLPnorm)

c(3,4)−new = c(3,4)−old × e
(−100×∆LOLPnorm)

7. Check if any of the particles has entered the success and/or failure subspaces. If a

particle has entered the success subspace, redirect the particle by using the objective

of maximum load curtailment only (ignoring the objective of maximum probability)

by setting c1 and c2 to zeros. If a particle has entered the failure subspace, redirect the

particle by using the objective of maximum probability only (ignoring the objective of

maximum load curtailment) by setting c3 and c4 to zeros.
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8. Check for convergence. If the stopping criterion is met, stop; otherwise go to the next

step.

9. Determine the number of newly visited states since the previous few iterations. If the

number of the new states is less than a threshold, adjust Vmax and then go to step 2;

otherwise go directly to step 2. The threshold is chosen to be 80% of the total number

of particles for the first 10 iterations, 50% for the next 10 iterations and 20% thereafter.

Vmax is adjusted according to the direction of the LOLPnorm index. If the particles

are searching around the success subspace, adjust Vmax to a large number. On the

other hand, if the particles are searching around the failure subspace, adjust Vmax to

a small number. In this work we have chosen 4.0 to be the large number and 2.0 to

the small number. Again, the optimum value of Vmax to better improve the behavior

of the search method is out of the scope of this work.

6.3 Case Studies

The proposed formulation was applied on four systems, the IEEE RTS [63], the Modified

IEEE RTS, and the Saskatchewan Power Corporation in Canada (SPC) and a hypothetical

six bus system [64]. More details about these system are given in the appendix. The

case studies are divided into two cases: (I) calculating the reliability indices, validating

the results and estimating the reduction in the computational time and (II) performing

sensitivity analyses for the reliability indices.
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6.4 Case Study I: Calculation of the Reliability Indices

The model was applied on the IEEE RTS and the Modified IEEE RTS with 50 particles.

Analysis of the annual as well as the annualized indices was conducted on the two systems.

From Table 6.1, Table 6.2, Table 6.3 and Table 6.4, it has been found that in calculating

the annual indices of both systems and the annualized indices of the original IEEE RTS,

the heuristic technique was able to evaluate system indices and no BPSO was performed

(terminated after few iterations). On the other hand, in calculating the annualized indices

of the modified IEEE RTS, the heuristic technique was not able to evaluate system indices

and therefore the proposed BPSO was used to search for the unclassified subspace. Also, from

Table 6.4, the unclassified subspace has a significant effect on the LOLP and LOEE indices

and very small effect on the EDNS and LOLE indices. These effects can be interpreted as the

unclassified subspace has failure states with relatively high probability but with relatively

small load curtailments. This also can be attributed to the fact that failure states that are

located far from the origin (all components are in the down state) have high probability and

small load curtailments. Therefore, if we were looking for just the EDNS and LOLE indices,

the heuristic technique would be enough for this case.

Table 6.5 and Table 6.6, show the reduction in the computational time by using the

proposed algorithm as a percentage of the time of evaluating the same indices using Monte

Carlo simulation. These times account for calculating the bus indices for all cases. The

average base time using Monte Carlo simulation was found to be 1175 seconds for both

systems.

Figure 6.1 shows the profiles of the LOLP, DLOLP and the projected LOLP as the

algorithm progresses. As the number of visited states increases, the estimated LOLP and
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Table 6.1: Annual Indices of the IEEE RTS

LOLP EDNS LOEE LOLE

Algorithm MW/yr MWh/yr h/yr

Proposed
Heuristic 0.00117 0.16374 1430.465 10.22112

BPSO – – – –

Sum 0.00117 0.16374 1430.465 10.22112

Conventional 0.00119 0.16412 1433.752 10.39584

Table 6.2: Annualized Indices of the IEEE RTS

LOLP EDNS LOEE LOLE

Algorithm MW/yr MWh/yr h/yr

Proposed
Heuristic 0.08429 14.67784 128225.60 736.360

BPSO – – – –

Sum 0.08429 14.67784 128225.60 736.360

Conventional 0.08451 14.59761 127524.72 738.279

Table 6.3: Annual Indices of the Modified IEEE RTS

LOLP EDNS LOEE LOLE

Algorithm MW/yr MWh/yr h/yr

Proposed
Heuristic 0.00106 0.07395 645.90125 9.26016

BPSO – – – –

Sum 0.00106 0.07395 645.90125 9.26016

Monte Carlo 0.00105 0.07436 649.61330 9.17280

Table 6.4: Annualized Indices of the Modified IEEE RTS

LOLP EDNS LOEE LOLE

Algorithm MW/yr MWh/yr h/yr

Proposed
Heuristic 0.06039 10.31755 90134.083 517.259

BPSO 0.00976 0.12171 1063.256 85.263

Sum 0.07015 10.43926 91197.375 612.830

Monte Carlo 0.07017 10.44237 91224.549 613.005
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Table 6.5: Reduction in the computational time of the IEEE RTS

Time Spent by Total Time

Category Heuristic tech. BPSO Time Reduction
(seconds) (seconds) (seconds) (%)

Annual 28.66 0 28.66 97.56

Annualised 144.28 0 144.28 87.72

Table 6.6: Reduction in the computational time of the Modified IEEE RTS

Time Spent by Total Time

Category Heuristic tech. BPSO Time Reduction
(seconds) (seconds) (seconds) (%)

Annual 55.60 0 55.60 95.27

Annualised 336.15 409.75 745.90 36.52

the estimated DLOLP becomes close to each other. If the simulation were to continue to

make the particles visit the entire state space which is impractical, these two indices (LOLP

and DLOLP) would converge to the same value. Also, Figure 6.1 shows some changes in

the LOLPproj index specially at the early stages of the searching process. These changes

are due to the adjustments of the weighting factors of the objective function as well as the

adjustments in the velocity limit, Vmax.

6.5 Case Study II: Sensitivity Analyses

The proposed formulation was applied on the IEEE RTS [63]. From Table 6.8, it is clear that

the generating unit (400 MW) at bus 18 has the highest effect on all the studied reliability

indices followed by the generating units of buses 21 and 24 for all indices. Consequently,

these generating units have the largest impact on system reliability. In other words, these

buses are at the highest risk and the most beneficial way to improve the reliability of the
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Table 6.7: Bus Annual Indices for the IEEE RTS

Bus LOLP EDNS LOEE LOLE
No. MW MWh/yr hr/yr

1 0.00032 0.00555 48.50943 2.75184

2 0.00002 0.00034 2.929904 0.17472

3 0.00006 0.00188 16.41914 0.52416

4 0.00044 0.00530 46.26799 3.80016

5 0.00124 0.01473 128.67821 10.78896

6 0.00042 0.00423 36.93749 3.66912

7 0.00021 0.00398 34.78341 1.79088

8 0.00013 0.00308 26.94283 1.09200

9 0.00005 0.00125 10.90315 0.43680

10 0.00008 0.00238 20.78260 0.69888

13 0.00028 0.01001 87.42760 2.40240

14 0.00096 0.02881 251.65359 8.34288

15 0.00070 0.03126 273.12752 6.11520

16 0.00110 0.01813 158.37621 9.60960

18 0.00018 0.00862 75.30948 1.52880

19 0.00012 0.00329 28.73840 1.04832

20 0.00037 0.00744 64.97050 3.18864

system is to increase the availability of these units by adding new units, decreasing repair

time and/or using sophisticated methods to decrease units’ failure rate.

6.6 Summary

The heuristic technique, which is presented in chapter 4, was applied to reduce the search

space. The heuristic technique is conservative in that not all the failure states can be captured

and no success state was classified as failure state. The heuristic technique produces three

subspaces, definite failure subspace, definite success subspace and unclassified subspace. An
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Figure 6.1: Reliability indices profile of the IEEE RTS System

Table 6.8: Sensitivity Analysis of the LOLP index

Bus No. & ∂LOLP/∂ui ∂LOLP/∂λi ∂LOLP/∂µi

Gen. Cap. ×10−2 ×10−4 ×10−4

#18G400 33.29905 44.15546 -6.02120

#21G400 33.18920 44.00979 -6.00134

#23G350 26.16603 25.28188 -2.19842

#13G197 20.02105 10.31336 -0.54281

#23G155 11.34010 4.77216 -0.19884

#15G155 11.01719 4.63627 -0.19318

#16G155 10.77760 4.53545 -0.18898

#22G100 4.94948 2.60356 -0.10848

#2G76 4.48367 1.96626 -0.04013

#1G76 4.36122 1.91257 -0.03903
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Table 6.9: Sensitivity Analysis of the LOLF index

Bus No. & ∂LOLF/∂ui ∂LOLF/∂λi ∂LOLF/∂µi

Gen. Cap. ×10−2 ×10−4

#18G400 58.64305 77.76229 -660.80623

#21G400 57.52415 76.27860 -641.89222

#23G350 49.01718 47.36089 -202.50560

#13G197 43.04602 22.17411 -16.60056

#23G155 41.51697 17.47125 -27.43647

#15G155 39.63948 16.68116 -25.43609

#16G155 37.98464 15.98477 -23.49279

#22G100 16.69121 8.78003 -16.78555

#2G76 17.06241 7.48253 -6.30312

#1G76 16.41083 7.19679 -5.96487

Table 6.10: Sensitivity Analysis of the EDNS index

Bus No. & ∂EDNS/∂ui ∂EDNS/∂λi ∂EDNS/∂µi

Gen. Cap. ×10−2 ×10−4

#18G400 73.95452 98.06572 -1337.25977

#21G400 73.78475 97.84059 -1334.18991

#23G350 68.91659 66.58790 -579.02520

#13G197 29.80471 15.35317 -80.80615

#23G155 20.02147 8.42547 -35.10614

#15G155 18.68813 7.86438 -32.76824

#16G155 18.83241 7.92509 -33.02120

#22G100 11.23545 5.91016 -24.62565

#2G76 9.13458 4.00587 -8.17524

#1G76 8.76626 3.84434 -7.84560
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intelligent search method based on binary particle swarm optimization was used to search

for failure states in the unclassified subspace. From the failure states which were captured

by the heuristic technique and the binary particle swarm optimization, the reliability indices

and their sensitivities with respect component parameters were calculated.

An element key in using binary particle swarm optimization in composite system re-

liability evaluation is the selection of weighting factors of the objective function. These

weighting factors are system dependent and, therefore, their appropriate values should be

carefully selected, in order to prevent the swarm from being trapped to one corner of the

state space. An effective particle swarm optimization technique has been proposed and used

for reliability assessment of composite systems. The proposed method adjusts the weighting

factors associated with the objective function in a dynamic fashion so that the swarm would

always fly on the entire search space rather of being trapped to one corner of the search

space. The effectiveness of the proposed method was demonstrated on four well-known test

system. The results show that the reliability indices obtained by the proposed method cor-

respond closely with those obtained using Monte-Carlo simulation, while requiring lower

computational burden.
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Chapter 7

Reliability and Sensitivity Analysis of

Composite Power Systems Under

Emission Constraints

7.1 Introduction

In view of the increasing role of environmental considerations in power generation, there is

an evolving body of minimum cost and minimum emission methods that are cognizant of

these emerging factors. This chapter presents a method of power system expansion planning,

considering emission constraints. The method presented here uses a linearized power flow

representation in the form of a linear programming (LP) model similar to those frequently

used in power system studies to minimize the total operation cost and is applied to both

generation and transmission expansion planning. The cost of the fuel, the cost of purchasing

additional emission allowances in case a power plant reaches its maximum emission allowance

and the gain from selling the excess emission credits where the emissions are less than the

limit are combined to develop a piecewise linear objective function. Emissions are represented

as a cost in case of buying extra emission allowances or as benefits in case of selling the excess

emission allowances. It also utilizes the concept of the shadow price to perform sensitivity
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analysis with respect to the operation constraints to identify the best cost effective generation

and transmission expansion planning. The dual solution of the LP provides the shadow

prices that are used for determining the sensitivity of the minimum cost with respect to

power generation.

Following the introduction of the Clean Air Act Amendments of 1990, utilities have been

required to reduce and monitor emissions from their power generating units starting from

1995. This act enforced allowances on SO2 emissions that could be used or traded within the

specified banking period [65]. The most significant reductions have occurred very recently.

On November 14, 2012, California had its first auction and trading on greenhouse emission

allowances [66]. Starting January 2013, California’s emission cap-and-trade program came

into effect, and greenhouse gas emissions from large electric power plants are required to

be reduced by 16% between 2013 and 2020 [66]. The Regional Greenhouse Gas Initiative

(RGGI), which consists of nine North-Eastern and Mid-Atlantic states, agreed on reduction

of CO2 budget by 45% by 2014 and the reduction will decrease by 2.5% yearly from 2015 to

2020 [67]. The American Clean Energy and Security Act of 2009 provides for the reduction of

carbon emissions by 17% by 2020. The European Union Emissions Trading System reduced

greenhouse gas emissions more than 8% between 2008 and 2012 and is expected to reduce

greenhouse gas emissions below 20% of the 1990 levels by 2020, starting from 2013 [68].

Several methods have been proposed to reduce emissions from power generating units;

these include installing post-combustion cleaning equipment, switching to fuel with less pol-

lutants, increasing the penetration of the renewable energy, and modifying existing dispatch

strategies to include emissions [69]. With these reduction methods, utilities are to operate

and expand their generation within the emission allowances.

Some of the earliest work on minimum emission generation dispatch was performed by
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Gent and Lamont [70]. Nada, Hari and Kothari [71] solved economic emission load dis-

patch with line capacity constraints. Subsequently, considerable research was reported on

variations and extensions of these methods [72–78]. These variations use different means

of accommodating emissions within the optimization problem. Some of the proposed for-

mulations also take into account the different emission reduction equipment and methods

described above, and thereby provide for strategies that may allow utilities to forgo, defer,

or minimize additional capital costs. For example, [79] shows how a utility may avoid in-

stallation of new emission equipment by changing its commitment and dispatch schedules,

or by switching to fuels with low emission (and high cost), or both.

Reducing emissions not only affects power dispatch and cost-effective planning, but also

influences system reliability requirements. Imposing emission limits on some specific ar-

eas may change reliability-based expansion planning procedures. Planning decisions may

comprise a trade-off between the cost of buying extra emission allowances and the cost of

improving system reliability. Evaluating system reliability under the condition of reducing

the emission became necessary and reliability indices need to be adapted to this new con-

straint. Therefore, there is an emerging need to include emission considerations in reliability,

security and economy studies.

Sensitivity analyses of conventional reliability indices incorporate remedial action through

load curtailment minimization under the constraints of power balance, generation capacity

limits and transmission capabilities to rank system components according to their risk. How-

ever, in accommodating regulatory measures, emission allowances have been considered as

additional constraints. While planning studies are concerned with reliability and cost, it

is often useful to quantify the sensitivity of the reliability indices of interest to component

parameters and operating constraints. In the emerging context, it is reasonable to include
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emission constraints in the sensitivity analysis of the reliability indices. In other words,

sensitivity of reliability indices with respect to the emission limits needs to be added to ex-

pansion planning studies. Therefore, generation expansion planning is no longer based only

on reliability enhancement or cost minimization.

A considerable amount of research has been conducted on economic/emission dispatching

strategies. However, incorporating emission allowances in power system reliability studies

is rarely found in the literature. In [80], SO2, NOx and CO2 emissions were considered as

constraints in their generation expansion model which is based on multi-area reliability expo-

nential analytic model. Minimization of emissions while maintaining reliability requirements

in microgrids is presented in [81]. Most of the prior research has focused on evolutionary

techniques and multiobjective minimization function to minimize emissions and generation

costs in generation expansion planning [72–76,82].

The work reported in this chapter calculates the reliability indices of composite power

systems and utilizes the concept of the shadow price in ranking the generating units from the

reliability point of view while considering the emission allowances as additional constraints.

Therefore, this work adds another dimension to system planning processes through the inclu-

sion of emission constraints. Sensitivity analyses of the well-known reliability indices, LOLP,

LOLF and EDNS, are presented. Also, a new expression for calculating the sensitivity of

the EDNS with respect to the emission limits is developed. The generating units are ranked

based on their sensitivities to the emission allowances. Based on this ranking, the emission

allowances of generating stations are evaluated to determine a need for expansion. For in-

stance, if a generating plant is ranked high in terms of risk and is viewed as a candidate

for reconditioning in order to increase the overall system reliability, the emission allowance

should be applied. If the emission limit is reached, the planner should choose between buy-
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ing emission allowances and investing in another power station that has available emission

allowances. The method is applicable to any source that produces undesirable byproducts

that are capped by regulatory and other policies, as long as these byproducts are a function

of the output power. The method is demonstrated on the IEEE Reliability Test System

(IEEE-RTS).

7.2 Emissions from Electric Generation

A significant amount of energy supply is used in producing electricity worldwide, and in

most industrialized countries the bulk of electric generation comes from fossil fueled plants.

According to the Environmental Protection Agency (EPA), about 16 million tons of SO2

and 7 million tons of NOx were emitted by electric utilities in the United States in 1985 [83].

Further, EPA reports that in 1995 about 23 million tons of SO2 and 19 million tons of NOx

were emitted from all resources. In the UE-27, 40% of energy resources is used in generating

electricity [84]. Also, in the UE-27 [84], 55% of the generated electricity in 2005 was supplied

by fossil fuel resources. In 2008, 601.32 GW was generated from coal in China which is about

75.87% of the total electric energy generated [85]. Most of these emissions were produced

by fossil fuel plants. In 2006, 12 million tons of Sulphur-dioxide emissions were produced in

China [80].

Some regulations were introduced and categorized according to some definitions such

as, “new source performance”, “modified source”, “reconstruction”, “degree of emission

limitation”, etc. For instance, “new source” is defined as any source that is commissioned

after the regulation is proposed and is subjected to the NSPS (New Source Performance

Standards) requirements even if the regulation is not final [83]. Also, a “modified source”
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is any source subjected to a physical or operation change that may increase air pollutant or

produce a new air pollutant and is subject to the NSPS (CAA).

The goal of reducing the amount of emissions of SO2 and NOx is implemented in two

stages: Phase I and Phase II. Phase I began in January 1, 1995 and Phase II began in

January 1, 2000. For example, in phase I, all units with 100 MW or greater and had SO2

emission greater than 2.5 lb/mmBtu in 1985 are subjected to emission reduction according

to table A of section 404, title IV of the CAA.

7.3 CO2, SO2 and NOx Emission Constraints

This section describes the formulation and incorporation of the emission in the load cur-

tailment minimization problem (chapter 2). In this section, the emission allowances are

considered as additional constraints.

Several methods have been proposed to model the emission function of the thermal

generating units. Some of these models are based on the heat rate functions of the generating

units with modifying the heat rate coefficients. Some other model emissions based on the

heat rates with multiplying the heat rates with appropriate emission factors. In addition,

some models use more detailed models such as including the valve loading effect. The heat

rates themselves can be modeled in a quadratic, cubic or exponential function. Emission

rates were modeled using a straight linear form as in [77,80,86], combination of a straight line

and two exponentials as in [70], a quadratic form as in [71–75, 78, 79, 82, 87, 88], a quadratic

and an exponential form as in [76, 89, 90], and multiplying the heat rate function with an

emission factor as in [91]. In this work, for simplicity, the emissions are modeled based on

the heat rates, while ignoring the valve loading effects, and linearizing the quadratic form.
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The quadratic heat rate for a generating unit i can be expressed as:

HR = ai + biPi(t) + ciP
2
i (t) (MMBtu/MWh) (7.1)

where HR is the heat rate, ai, bi and ci are the heat rate coefficients and Pi(t) is the real

power generation of unit i at time t. Another widely used unit for heat rates is Btu/kWh.

MMBtu/MWh has been used so as to be consistent with units of the emission rates. To

convert from MMBtu/MWh to Btu/kWh, the given heat rate can be multiplied by 1,000.

Since the heat rates are functions of the output power and the emissions are functions

of the heat rates, the emissions of a generating unit i can be expressed as a function of the

output power as follows,

Eji = αji + βjiPi(t) + γjiP
2
i (t) (lbs/MMBtu) (7.2)

where α, β and γ are the coefficients of the emission rates, j denotes emission type (1 for

ECO2, 2 for ESO2 and 3 for ENOx), ECO2i is the CO2i emission of unit i, ESO2i is the

SO2i emission of unit i and ENOxi is the NOxi emission of unit i.

Assuming a power generating plant with n thermal units at time t, the total CO2 emission

is expressed as

ECO2 =
n∑
i=1

ECO2i (Pi(t)) (ton/h) (7.3)

Similarly, the total SO2 emission is expressed as

ESO2 =
n∑
i=1

ESO2i (Pi(t)) (ton/h) (7.4)
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Also, the total NOx emission is expressed as

ENOx =
n∑
i=1

ENOxi (Pi(t)) (ton/h) (7.5)

These emissions are nonlinear functions in the unit output power. In order to include

these emissions as constraints in the linear programming problem, these equations are lin-

earized around the operating points.

7.4 Sensitivity Analysis of EDNS Index with respect

to the Emission Limits

The optimization is constrained by generator and transmission line capacities. However,

after the introduction of the Clean Air Act, it is necessary for such analyses to accommodate

emission limits. This work includes the effect of emission limits on the sensitivity analysis

of the reliability indices. The most commonly used indices in composite power system are:

LOLP, LOLF and EDNS. The sensitivity of the LOLP, LOLF and EDNS with respect to

component parameters has been introduced in chapter 3. In this section, an analytical

expression is developed to calculate the sensitivity of the EDNS with respect to emission

limits. The development of this expression is based on the linearized relationship between

the amount of emission and the output power. The derivation starts with utilizing the partial

derivative of the EDNS to the component capacity.

The sensitivity analysis of the EDNS with respect component capacities was derived as

follows [32,33].

∂EDNS/∂Ci =
∑
x∈X

If (x)P (x) ∂Lc (x) /∂Ci (7.6)
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where Ci is the capacity of component i and Lc (x) is the total load curtailment when the

system is at state x.

The derivative of the total load curtailment with respect to component capacity is given

in section 3.4.2. Sensitivity of EDNS with respect to circuit capacity or susceptance is

inherently not affected by the emission limits; however, with generation redispatch under

the condition of emission limits reduction they may become active constraints.

In section 7.3 it was stated that the emission functions are linearized about the operating

points. Therefore, the effect of the emission limits on EDNS sensitivity can be evaluated by

developing a relationship between shadow prices of generating units with its emission. From

(2.16), the Lagrange multiplier of a generating unit can be expressed as

πg,i = ∂Lc(x)/∂gi (7.7)

where gi is the capacity of generator i.

Now a new term is introduced which is the partial derivative of total load curtailment

with respect to emission limit. This term can be thought of it as a new constraint to (2.16).

This new constraint will produce a new Lagrange multiplier which relates the emission limit

to total load curtailment. The partial derivative of total load curtailment with respect to

emission limits can be expressed as

πE,ij = ∂Lc(x)/∂Eij (7.8)

where πE,ij and Eij are the Lagrange multiplier or shadow price of the emission limit and
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the emission limit of unit i for emission type j. ∂Lc(x)/∂Eij can be expressed as

∂Lc(x)/∂Eij = ∂Lc(x)/∂gi · ∂gi/∂Eij (7.9)

The first term of the right hand side of (7.9) is the shadow price of the generating capacity.

The second term can be calculated using the relationship of generation output power and

emission. This relationship can be given as,

Eij = Ec,ij · gi (7.10)

where Ec,ij is the linearized emission coefficient of unit i for emission type j.

Therefore, from (7.10), the partial derivative of the output power with respect to the

amount of emission can be calculated as follows.

∂gi/∂Eij = 1/Ec,ij (7.11)

Now, the partial derivative of the total load curtailment with respect to the emission

allowances can be given by

∂Lc(x)/∂Eij = ∂Lc(x)/∂gi · 1/Ec,ij (7.12)

This can be expressed in terms of shadow price or Lagrange multiplier as

πE,ij = πg,i/Ec,ij . (7.13)
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Therefore, the sensitivity of the EDNS with respect to emission allowances now can be

defined as,

∂EDNS/∂Eij =
∑
x∈X

If (x)P (x)∂Lc(x)/∂Eij (7.14)

Expressed in terms of shadow price or Lagrange multiplier,

∂EDNS/∂Eij =
∑
x∈X

If (x)P (x)
(
πg,i/Ec,ij

)
(7.15)

Equations (7.14) and (7.15) calculate the sensitivity of the EDNS with respect to emission

allowances. Therefore, by solving the optimization problem of (2.16) and getting the shadow

prices of the generating units, the shadow prices of the emission limits are calculated by

dividing the shadow prices of the generating units by the linearized emission coefficients.

7.5 Solution Algorithm

This section describes the approach used for calculating the sensitivity analysis of LOLP,

LOLF and EDNS with respect to component reliability and emission allowance limits of

various system components. As mentioned above, emission allowances are considered as

additional constraints. The sensitivity analysis was carried out using the heuristic technique

and the directed binary particle swarm optimization search method as described in chapter

4.

The stopping criterion used in this method consists of comparing the coefficient of vari-

ation of a selected index (e.g., the EDNS) to a pre-specified tolerance. The simulation steps

are summarized in Figure 7.1.
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Figure 7.1: Flowchart of Estimating the Sensitivity Analysis

7.6 Case Studies

This section illustrates the method on the IEEE RTS test system [63]. The data of this

system is given in the appendix. The IEEE RTS has two nuclear steam generating units

each of which 400 MW and six hydro driven generating units each of which 50 MW. These

units do not have SO2, NOx or CO2 emissions. The emission rates were calculated from

the heat rates. The emission coefficients were calculated from the emission rates based on

2nd order polynomials.
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For every state, the partial derivative of the total load curtailment with respect to gen-

eration capacity is calculated from the optimization problem of (2.16). The emission curves

were linearized about the operating points for two linear segments. After the simulation

converges to the specified accuracy, the sensitivity of the EDNS to the emission limits is

summed up as shown in (7.15).

Two case studies have been performed: a base case, and one in which the emission

allowances are reduced by 5%. The annualized reliability indices of the IEEE RTS are

shown in Table 7.1. The results for two more reliability indices, Loss of Load Expectation

(LOLE) and Loss of Energy Expectation (LOEE, also called expected un-served energy or

EUE), are also presented. LOLE and LOEE can be calculated directly from LOLP and

EDNS respectively by multiplying by the study period in hours.

The sensitivity results of the LOLP with respect to reliability parameters for the base

case and reduced emission case are shown in Table 7.2 and Table 7.3, respectively. The

sensitivity results of the LOLF with respect to reliability parameters for the base case and

reduced emission case are shown in Table 7.4 and Table 7.5, respectively. The sensitivity

results of the EDNS with respect to reliability parameters for the base case and reduced

emission case are shown in Table 7.6 and Table 7.7, respectively. Table 7.8 shows the

sensitivity of the EDNS with respect to ESO2, ENOx and ECO2 for the base case. Table

7.9, shows the sensitivity of the EDNS with respect to ESO2, ENOx and ECO2 for the

reduced emission case.
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7.7 Results and Discussion

Is is clear that the generating unit (350 MW) at bus 23 has the highest effect on the LOLP

followed by the generating units (400 MW) of buses 18 and 21 for the two study cases.

Consequently, these generating units have the largest impact on system reliability. In other

words, these buses are at the highest risk and the most beneficial way to make the system

more reliable is to increase the availability of these stations by adding new units, or by

modernizing existing units to improve reliability. When the emission allowances were reduced

(case study 2), these sensitivities increased accordingly.

In comparison to the case study 1, the sensitivities of LOLP of the generating units of

the case study 2 have increased due to the decrease in the emission limits. Such decrease in

the emission limits has forced the generating units to have larger shadow prices values than

it was in case study 1. By decreasing the emission limits, the emission limits constraints

became binding constraints and generating capacities became redundant constraints.

Also, it is clear that the generating unit (350 MW) at bus 23 has the highest effect on

the EDNS for both study cases. Also, after reducing the emissions, the sensitivities of the

EDNS with respect to the emission limits have increased dramatically. For instance, for the

SO2 air pollutant, sensitivity of the 350 MW unit with respect to the emission has increased

by about 2.6 times and for the 197 MW unit has increased by about 4.9 times. The factor

of increase in the sensitivity of the EDNS with respect to emission limit due reducing the

emissions are shown in Table 7.10.

From the above discussion it is obvious that reducing the emission allowance limits leads

to a huge change in system reliability indices. From these studies, planners can decide

where to invest by trading off between reliability requirements and the cost of reducing the
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emissions or buying emission allowances for the affected areas.

Table 7.1: Annualized Indices of the IEEE Reliability Test System

LOLP EDNS LOEE LOLE

MW MWh/yr hr/yr

Base Case 0.08496 14.76607 128996 742.21056

Reduced Emission 0.14093 26.49218 231435 1231.16448

Table 7.2: Sensitivity Analysis of LOLP with Respect to Reliability Parameters for the Base
Case

Bus No. & ∂LOLP/∂ui ∂LOLP/∂λi ∂LOLP/∂µi

Gen. Cap. ×10−4 ×10−2 ×10−4

#15G12 0.23468 0.13523 −0.27598

#22G50 1.57580 0.30889 −0.31201

#16G155 14.87768 5.48451 −22.85212

#23G155 13.65057 5.03215 −20.96728

#15G155 14.49772 5.34444 −22.26849

#13G197 15.36175 6.93199 −36.48416

#23G350 42.33958 35.83622 −311.61931

#18G400 30.31500 35.21391 −480.18962

#21G400 30.42285 35.33918 −481.89795

7.8 Summary

Most of the emission studies in the literature focused on minimizing emission with economic

dispatch and introducing new concepts to solve multi-objective functions. The goal was

to minimize emissions and fuel costs to accommodate for the requirements of the CAA of

1990. Minimizing the emission is one solution among many methods such as utilizing fuels

with less air pollutant, exploring new techniques to reduce the amount of emissions, etc.
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Table 7.3: Sensitivity Analysis of LOLP with Respect to Reliability Parameters for the
Reduced Emission Case

Bus No. & ∂LOLP/∂ui ∂LOLP/∂λi ∂LOLP/∂µi

Gen. Cap. ×10−4 ×10−2 ×10−4

#15G12 1.39303 0.80272 −1.63820

#22G50 4.97198 0.97461 −0.98445

#16G155 17.80651 6.56419 −27.35080

#23G155 16.73514 6.16924 −25.70517

#15G155 18.46648 6.80748 −28.36451

#13G197 19.05290 8.59762 −45.25063

#23G350 46.66679 39.49877 −343.46757

#18G400 33.29836 38.67937 −527.44598

#21G400 32.84112 38.14824 −520.20328

Table 7.4: Sensitivity Analysis of LOLF with Respect to Reliability Parameters for the Base
Case

Bus No. & ∂LOLF/∂ui ∂LOLF/∂λi ∂LOLF/∂µi

Gen. Cap. ×10−4 ×10−2 ×10−4

#15G12 0.23468 0.13523 −0.27598

#22G50 1.57580 0.30889 −0.31201

#16G155 14.87768 5.48451 −22.85212

#23G155 13.65057 5.03215 −20.96728

#15G155 14.49772 5.34444 −22.26849

#13G197 15.36175 6.93199 −36.48416

#23G350 42.33958 35.83622 −311.61931

#18G400 30.31500 35.21391 −480.18962

#21G400 30.42285 35.33918 −481.89795
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Table 7.5: Sensitivity Analysis of LOLF with Respect to Reliability Parameters for the
Reduced Emission Case

Bus No. & ∂LOLF/∂ui ∂LOLF/∂λi ∂LOLF/∂µi

Gen. Cap. ×10−4 ×10−2 ×10−4

#15G12 1.39303 0.80272 −1.63820

#22G50 4.97198 0.97461 −0.98445

#16G155 17.80651 6.56419 −27.35080

#23G155 16.73514 6.16924 −25.70517

#15G155 18.46648 6.80748 −28.36451

#13G197 19.05290 8.59762 −45.25063

#23G350 46.66679 39.49877 −343.46757

#18G400 33.29836 38.67937 −527.44598

#21G400 32.84112 38.14824 −520.20328

Table 7.6: Sensitivity Analysis of EDNS with Respect to Reliability Parameters for the Base
Case

Bus No. & ∂EDNS/∂ui ∂EDNS/∂λi ∂EDNS/∂µi

Gen. Cap. ×10−4 ×10−2 ×10−4

#15G12 0.23468 0.13523 −0.27598

#22G50 1.57580 0.30889 −0.31201

#16G155 14.87768 5.48451 −22.85212

#23G155 13.65057 5.03215 −20.96728

#15G155 14.49772 5.34444 −22.26849

#13G197 15.36175 6.93199 −36.48416

#23G350 42.33958 35.83622 −311.61931

#18G400 30.31500 35.21391 −480.18962

#21G400 30.42285 35.33918 −481.89795
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Table 7.7: Sensitivity Analysis of EDNS with Respect to Reliability Parameters for the
Reduced Emission Case

Bus No. & ∂EDNS/∂ui ∂EDNS/∂λi ∂EDNS/∂µi

Gen. Cap. ×10−4 ×10−2 ×10−4

#15G12 1.39303 0.80272 −1.63820

#22G50 4.97198 0.97461 −0.98445

#16G155 17.80651 6.56419 −27.35080

#23G155 16.73514 6.16924 −25.70517

#15G155 18.46648 6.80748 −28.36451

#13G197 19.05290 8.59762 −45.25063

#23G350 46.66679 39.49877 −343.46757

#18G400 33.29836 38.67937 −527.44598

#21G400 32.84112 38.14824 −520.20328

Table 7.8: Sensitivity Analysis of EDNS with Respect to Emission Allowance Limits for the
Base Case

Bus No. & ∂EDNS/ ∂EDNS/ ∂EDNS/
Gen. Cap. ∂ESO2 ∂ENOx ∂ECO2

×10−4 ×10−4 ×10−4

#15G12 −34.95128 −13.98051 −0.04112

#16G155 −94.96082 −37.98433 −0.09044

#23G155 −47.96955 −19.18782 −0.04569

#15G155 −94.63840 −37.85536 −0.09013

#13G197 −47.58625 −19.03450 −0.05598

#23G350 −267.88743 −107.15497 −0.25513
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Table 7.9: Sensitivity Analysis of EDNS with Respect to Emission Allowance Limits for the
Reduced Emission Case

Bus No. & ∂EDNS/ ∂EDNS/ ∂EDNS/
Gen. Cap. ∂ESO2 ∂ENOx ∂ECO2

×10−4 ×10−4 ×10−4

#15G12 −39.70206 −15.88082 −0.04671

#16G155 −274.08317 −109.63327 −0.26103

#23G155 −57.60845 −23.04338 −0.05487

#15G155 −229.14951 −91.65980 −0.21824

#13G197 −233.52268 −93.40907 −0.27473

#23G350 −702.68535 −281.07414 −0.66922

Table 7.10: Percentages of Increase in the Sensitivities of EDNS with Respect to Emission
Allowance Limits Due to Reduced the Emissions

Bus No. & Ratio of Increase

Gen. Cap.

#15G12 1.14

#16G155 2.89

#23G155 1.20

#15G155 2.42

#13G197 4.90

#23G350 2.62

Minimizing the emissions can help in redispatching the existing generators. The need to

establish strategies to include the CAA 1990 in future planning is necessary. Inclusion of

emission constraints in planning studies as described in this chapter helps guide investment

strategies with respect to reconstruction or upgrades.

The work presented here responds to the emerging need for reliability methods that

are cognizant of environmental factors. This work introduced a framework for evaluating

the effect of the emission rates and allowances on system reliability and determining the

sensitivity of commonly used reliability indices to equipment and emission constraints.
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The Expected Demand Not Supplied (EDNS) is used as a key reliability index. The

sensitivity of the EDNS with respect to emission allowances is evaluated and used to study the

effect of emission allowances on system reliability. From the sensitivity results, components

can be ranked from reliability point of view. Therefore, the component that has the highest

effect on system reliability can be identified. Also, if the reliability of the system needs to

be improved, the sensitivity analyses can identify which component to increase its emission

limit.
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Chapter 8

Reliability and Sensitivity Analysis of

Composite Power Systems

Considering Voltage and Reactive

Power Constraints

8.1 Introduction

There is a growing need to include the effects of voltage and reactive power constraints in

power system reliability evaluation. Most of the present methods that evaluate the reliability

of composite systems represent the network using the DC power flow model, which ignores

the effects of the voltage and reactive power constraints on the reliability indices. Due to

the integration of the renewable energy resources, the voltage and reactive power limits are

expected to have more effect on the system reliability. The time and computational efforts to

evaluate the reliability indices and their sensitivities with respect to the operating conditions

using models that incorporate voltage and reactive power limits such as AC power flow model

are of concern in both planning and operation prospectives.

Traditionally, composite system reliability methods have used transportation model and
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dc power flow models to represent system flows, largely due to the complexity of AC flow-

based redispatch algorithms. Evaluation of the effects of the voltage and reactive power

limits has been introduced in [92]. The method presented in [92] is based on using the DC

power flow model in two steps and linearizing the relationship between the reactive power

injections and the voltages at the nodes. Several methods have been recently introduced

in the literature of power system reliability to investigate the effects of the lack of reactive

power support on the reliability indices. For example, using the AC power flow model in

two steps to study the aspects of the reactive power on the composite system reliability has

been introduced in [93–96].

Several methods have been introduced in the literature to decrease the time and compu-

tational efforts in evaluating power system reliability indices as it was mentioned in chapter

4. This chapter investigates the effects of the voltage and reactive power constraints on com-

posite system reliability indices through performing sensitivity analyses of the Severity Index

with respect to the voltage and reactive power constraints. In this chapter, expressions are

developed to evaluate the sensitivity of the Severity Index with respect to these constraints.

Further, four indices are used to evaluate the contributions of the minimum and maximum

voltage limits at the nodes and minimum and maximum reactive power capabilities in the

loss of load probability index. The full, non-linear AC power flow model, which is given

in (2.14) and (2.15), is used to incorporate these constraints in the reliability evaluation.

The state space pruning technique, which is introduced in chapter 3 is utilized to reduce

the computational time. Also, in this chapter, composite system reliability indices using AC

power flow model are provided to serve as a benchmark for future work involving power flow

models. A comparison between the use of AC and DC power flow models is also provided.

We have used the state space reduction technique of chapter 4.
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8.1.1 Calculation of Voltage and Reactive Power Limit Indices

Calculations of the LOLP, LOLF, EDNS, LOEE and LOLE are similar to those presented in

chapter 3. This section develops expressions to calculate the voltage and reactive power limit

indices. In this chapter, we use four indices to represent the contributions of violations of the

voltage and reactive power constraints on the loss of load probability index. These indices

are defined as follows: (a) υimin represents the contributions of the minimum voltage level

constraints, (b) υimax represents the contributions of the maximum voltage level constraints,

(c) %imin represents the contributions of the minimum reactive power level constraints and

(d) %imax represents the contributions of the maximum reactive power level constraints. For

every tested state, if any of these indices is involved in the load curtailment, this index is

updated. These indices are related to the failure subspace not to the system state space;

these indices reflect the contributions of the violations of the voltage and reactive power

constraints on the loss of load probability index. Therefore, the state space of these indices

is Xf .

The estimated values of these indices can be calculated as follows,

fk = E [qk] (8.1)

where fk is the index under consideration, (f1 is for the υimin, f2 is for the υimax, f3 is for

the %imin and f4 is for the %imax), and qk can be evaluated as follows,

qk =
1

Tf

N∑
i=1

ξki (8.2)

where Tf is the sum of the durations of tested failure states and ξki is an indicator function
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for state violation that can be expressed as,

ξki =


τi, If xi ∈ Xk

0, otherwise

(8.3)

where Xk is the set in which the index k has a contribution in the load curtailment and

Xk ⊂ Xf .

8.2 Sensitivity Analysis of the EDNS Index with re-

spect to the Voltage and Reactive Power Limit In-

dices

Sensitivity analyses of composite system reliability indices with respect to system parameters

have been extensively addressed in the literature. To calculate the sensitivity of the EDNS

index with respect to the voltage and reactive power limits; these limits need to be added

to the optimization problem as shown in (2.15).

The sensitivity analyses of the reliability indices with respect to the voltage and reactive

power constraints are important in identifying the impacts of these constraints on power

system reliability and help in hardening power systems against catastrophic failures such as

voltage collapse. Expressions for calculating the sensitivity of the EDNS index with respect

to voltage and reactive power limits are developed. These expressions were developed from

the Lagrange multipliers of the voltage and reactive power constraints.

114



8.2.1 Sensitivity of the EDNS Index with Respect to Voltage

Limit Constraints

The derivation of the sensitivity of the EDNS index with respect to voltage and reactive

power limits starts with utilizing the expression of (3.5). The sensitivity of the EDNS index

with respect to voltage limits allowed at bus k can be expressed as follows,

∂EDNS/∂υk =
∑
x∈Xf

p (x)× (∂C (x) /∂υk) (8.4)

where ∂C (x) /∂υk is the Lagrange multiplier (πυk) of the voltage constraint at bus k while

the system is residing at state x.

Also, the sensitivity of the EDNS index with respect to voltage limit constraints can be

evaluated using Monte Carlo state next event method as follows [97,98],

∂EDNS/∂υk =
1

T

N∑
i=1

ϕi × πυk. (8.5)

This expression can be used for both maximum and minimum voltages allowed at the

buses.

8.2.2 Sensitivity of the EDNS Index with Respect to Reactive

Power Limit Constraints

In the same manner, the sensitivity of the EDNS index with respect to the reactive power

available at bus k can be expressed as follows,
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∂ρ/∂%k =
∑
x∈Xf

p (x)× (∂C (x) /∂%k) (8.6)

where ∂C (x) /∂%k is the Lagrange multiplier, π%k, of the reactive power available at bus k

while the system is residing at state x.

Similarly, the sensitivity of the EDNS index with respect to reactive power constraints

at bus k can be evaluated using Monte Carlo state next event method as follows,

∂ρ̂/∂%k =
1

T

N∑
i=1

ϕi × π%k. (8.7)

Also, this expression can be used for both maximum and minimum reactive power limits

at the buses.

8.3 Case Studies

The proposed formulation was applied on the IEEE RTS [63]. The IEEE RTS system has

been extensively tested for power system reliability analysis.

8.3.1 Reliability Assessment

Reliability assessments using both the AC and DC power flow models have been performed

on the IEEE RTS system at the peak load (Annualized Indices). As a comparison, the results

of both models for the IEEE RTS are shown in Table 8.1. As it is obvious from Table 8.1,

estimates from the DC power flow model produce optimistic results in comparison with the

AC power flow model counterpart.

It is well-known that the transmission lines of the IEEE RTS are very reliable with respect
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Table 8.1: System Annualized Indices of the IEEE RTS

Power Flow q̂ ρ̂ φ̂ τ̂

Model MW occ./yr hour

AC 0.10427 17.37479 22.76247 0.00458

DC 0.08455 14.72996 19.76867 0.00428

to the generation. Also, the power carrying capability limits of the transmission lines are

much higher than the normal loading level even in the case of the peak load. Therefore,

the contributions of the transmission lines on the system reliability of this test system are

very small and can be ignored. For this reason, several studies have suggested to use the

modified version of it which is the same as the original system except that the generation

is multiplied by 2 and the load at the buses is multiplied by 1.8. The results of both power

flow models for the Modified IEEE RTS are shown in Table 8.2. Again, from Table 8.2, the

DC power flow model gives very optimistic results in comparison with the AC power flow

model counterpart.

Table 8.2: System Annualized Indices of the Modified IEEE RTS

Power Flow q̂ ρ̂ φ̂ τ̂

Model MW occ./yr hour

AC 0.44337 20.13860 63.82885 0.00695

DC 0.07141 10.52347 17.76162 0.00402

Since there are significant differences in the values of the indices for different power flow

models, two case studies have been performed by gradually stressing the transmission lines

to investigate the effects of the voltage and reactive power limits on the reliability indices

and to compare the results of the AC and DC power flow models.
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8.3.1.1 Case Study I: Gradually Increasing the Generation and Load Levels

In this case study, the generation and load levels are increased gradually to track the behavior

of system indices. The annualized reliability indices are shown in Table 8.3. The first

two columns of Table 8.3, show the factors by which the load and generation are increased

respectively. From Table 8.3, not much change in the system EDNS index between the IEEE

Table 8.3: System Annualized Indices for Case I: Effect of Gradually Increasing the Gener-
ation and Load Levels

Loading Generation q̂ ρ̂ φ̂ τ̂

Factor Factor MW occ./yr hour

1.000 1.000 0.10427 17.37479 22.76247 0.00458

1.080 1.100 0.09245 15.73231 20.50596 0.00451

1.160 1.200 0.07459 13.91987 17.03678 0.00438

1.240 1.300 0.06243 13.07068 16.30765 0.00383

1.320 1.400 0.05668 12.99306 14.51361 0.00391

1.400 1.500 0.05551 12.74350 14.54252 0.00382

1.408 1.600 0.06897 12.51458 18.99008 0.00363

1.560 1.700 0.11062 13.18529 25.88540 0.00427

1.640 1.800 0.13719 14.96639 30.11179 0.00456

1.680 1.850 0.15788 15.37179 36.89292 0.00428

1.720 1.900 0.17134 16.72898 43.63865 0.00438

1.740 1.925 0.19511 16.66352 45.35073 0.00430

1.760 1.950 0.23595 17.61181 51.25988 0.00460

1.780 1.975 0.35426 18.56049 59.52425 0.00595

1.800 2.000 0.44337 20.13860 63.82885 0.00695

RST and Modified IEEE RTS. System loss of load probability and loss of load frequency

indices are smoothly increasing with the increase in the loading and generation levels until

the load level reaches around 170% of the peak load. After this point, these indices show

a sharp increase. This sudden increase can be attributed to the voltage and reactive power
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Table 8.4: System Annualized Indices for Case II: Effect of Gradually Increasing the Load
Levels and Fixing the Generation

Loading Generation q̂ ρ̂ φ̂ τ̂

Factor Factor MW occ./yr hour

1.000 2.000 0.00139 0.00800 0.37248 0.00373

1.080 2.000 0.00171 0.02570 0.68971 0.00248

1.160 2.000 0.00185 0.04468 0.85359 0.00217

1.240 2.000 0.00202 0.07438 0.85251 0.00237

1.320 2.000 0.00201 0.09948 0.82788 0.00243

1.400 2.000 0.00272 0.20431 1.23875 0.00220

1.480 2.000 0.00557 0.40744 2.55331 0.00218

1.560 2.000 0.01041 1.05772 4.68652 0.00222

1.640 2.000 0.04629 2.97801 16.07442 0.00288

1.680 2.000 0.08679 4.68413 23.47966 0.00412

1.720 2.000 0.12261 7.91592 27.23764 0.00450

1.740 2.000 0.14321 10.02282 33.99955 0.00421

1.760 2.000 0.18729 12.58832 42.44476 0.00441

1.780 2.000 0.22284 15.67655 49.43979 0.00451

1.800 2.000 0.44337 20.13860 63.82885 0.00695

limits as it is explained in section 8.3.3.

8.3.1.2 Case Study II: Gradually Increasing the Load Level and Keeping the

Generation Level Constant

This case study is similar to the case study I except that the generation level is kept constant

by a factor of 2. The reason of performing this case study is that in Case Study I, both

generation and load levels are increasing and the point at which the indices start sharply

increasing due to load effect is difficult to detect. The annualized reliability indices are shown

in Table 8.4.
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Figure 8.1: System loss of load probability (LOLP) index profile against the change in the
system loading level

From Table 8.4, the system EDNS index smoothly increases and system loss of load

probability and loss of load frequency indices are smoothly increasing as the load level

increases until the load level reaches around 145% of the peak load. After this point, these

indices increase sharply. Also, a very sharp increase for these indices happens after around

175% of the peak load. Again, this sudden increase can be attributed to the voltage and

reactive power limits as it is explained in subsection 8.3.3.

8.3.2 Comparison with the DC Power Flow Model

To compare the results of the reliability indices with those found using the DC power flow

model, the analyses of the above case studies were repeated using the DC power flow model.

To better visualize the differences in these values, the results of the system loss of load

probability index are depicted in Figure 8.1.
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Effect of minimum voltage limits - case I

Effect of maximum voltage limits - case I

Effect of minimum voltage limits - case II

Effect of maximum voltage limits - case  II

Figure 8.2: Contributions of the voltage limit violations on the system loss of load probability
(LOLP) index against the change in the system loading level

From Figure 8.1, it is obvious that the DC power flow model closely depicts the AC power

flow model, although optimistic, until the load reaches around 145% of the base peak load

level. After this point, the differences between the results of using the AC and DC power

flow models are significant where the results of the DC power flow are very optimistic.

8.3.3 Effects of Voltage and Reactive Power Limits on the Relia-

bility Indices

From the above results, after a certain loading level, the two power flow models produce

significantly different results. Several factors may cause this difference. The effects of the

voltage and reactive power constraints on the loss of load probability index are investigated

through tracking the contributions of these constraints and the estimation of the proposed

indices of the voltage and reactive power limits.
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Effect of maximum reactive power limits - case I

Effect of minimum reactive power limits - case I

Effect of maximum reactive power limits - case II

Effect of minimum reactive power limits - case II

Figure 8.3: Contributions of the reactive power limit violations on the system loss of load
probability (LOLP) index against the change in the system loading level

8.3.3.1 Contributions of the Voltage and Reactive Power Constraints

The contributions of the voltage limit violations on the system loss of load probability index

against the change in the system loading level are shown in Figure 8.2. The contributions of

the reactive power limit violations on the system loss of load probability index against the

change in the system loading level are shown in Figure 8.3.

The results totally agree with the observations of the sharp increase in the loss of load

probability and loss of load frequency indices using AC power flow model as it is shown in

sections 8.3.1.1 and 8.3.1.2. The contributions of the voltage and reactive power violations

are very small until the load level reaches about 145% of the original load level for the Case

Study I and 170% for the Case Study II. Also, if the contributions of the voltage and reactive

power violations are subtracted from the loss of load probability index, both models would

produce similar results.
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8.3.3.2 Indices of the Voltage and Reactive Power Limits

During the simulation, if the voltage or reactive power limits contributes in the load cur-

tailment, the related index is updated according to (8.2). The results of these indices of the

Modified IEEE RTS are shown in Table 8.5. From Table 8.5, it is clear that the maximum

voltage limit at bus 2 has contributed in almost all the failure states. Maximum voltage

limits at buses 7, 13, 21 and 22 have contributed in around 80% of the failure states. One of

the possible solutions is to install condensers at these buses. Minimum voltage limit at bus 6

has contributed in around 83% of the failure states. One possible solution is to add a reactor

at this bus. Maximum reactive power limit at buses 2, 3 and 15 have contributed in around

90% of the failure states. The minimum reactive power limit at bus 6 has contributed in

around 15% of the failure states.

8.3.3.3 Relaxing Voltage Constraints

In this part, the voltage limit constraints are relaxed to investigate the effects of these

constraints on the reliability indices of the Modified IEEE RTS. Figure 8.4 shows the profile

of the loss of load probability index with relaxing the voltage constraints. The results of

the system indices with relaxing voltage constraints are given in Table 8.6. From Figure 8.4

and Table 8.6, it is clear that relaxing voltage limit constraints significantly reduces system

indices. However, even with relaxing these constraints, the values of these indices still high

in comparison with DC power flow counterpart. This can be related to the fact that the

DC power flow model ignores the losses in the lines and in the case of the AC power flow,

voltage constraints have been relaxed without increasing the reactive power support.
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Table 8.5: Contributions of Voltage and Reactive Power Constraints

Bus No υimax υimin %imax %imin

1 0.15438 0.00000 0.00684 0.00004

2 0.99643 0.00000 0.84201 0.00000

3 0.00059 0.00941 0.96751 0.00000

4 0.00002 0.00016 – –

5 0.00002 0.00007 – –

6 0.00011 0.83354 0.00309 0.15427

7 0.85299 0.00000 0.03379 0.00000

8 0.00000 0.04804 – –

9 0.00011 0.00787 – –

10 0.04770 0.00000 – –

11 0.00000 0.00034 – –

12 0.00000 0.00598 – –

13 0.78751 0.00000 0.12792 0.00000

14 0.00259 0.00435 0.03030 0.00002

15 0.18674 0.00000 0.91008 0.00015

16 0.07582 0.00050 0.19863 0.08940

17 0.00011 0.00000 – –

18 0.20134 0.00000 0.08019 0.00000

19 0.00018 0.00000 – –

20 0.00050 0.00000 – –

21 0.82095 0.00000 0.32305 0.00000

22 0.29347 0.00007 0.00003 0.00002

23 0.82510 0.00402 0.02226 0.00007

24 0.00029 0.04100 – –

8.3.4 Sensitivity Analysis

The results of the sensitivity analyses of the EDNS index with respect to the voltage and

reactive power constraints are shown in Table 8.7. The following points can be observed

124



 

1.05 1.1 1.15
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Maximum Voltage Limits (p.u.)

S
y

st
em

 L
O

L
P

 I
n

d
ex

Figure 8.4: The profile of system loss of load probability (LOLP) index with relaxing voltage
limit constraints

Table 8.6: Reliability Indices with Relaxing Voltage Limit Constraints

Voltage Voltage q̂ ρ̂ φ̂ τ̂

Max. Min. MW occ./yr hour

1.05 0.95 0.44341 19.63547 62.98836 0.00704

1.06 0.94 0.28647 18.52728 58.25106 0.00492

1.07 0.93 0.23826 18.10026 45.03072 0.00440

1.08 0.92 0.19594 17.13641 44.27397 0.00443

1.09 0.91 0.18810 16.55377 42.44361 0.00443

1.10 0.90 0.16416 16.71187 36.94868 0.00444

1.11 0.89 0.15108 16.40434 33.24840 0.00454

1.12 0.88 0.14926 16.21602 33.35913 0.00447

1.13 0.87 0.14719 15.83632 32.79869 0.00449

1.14 0.86 0.14642 15.60547 32.05549 0.00457

1.15 0.85 0.14687 15.68066 32.06075 0.00458

125



Table 8.7: Sensitivity Analyses of the Severity Index with respect to the Voltage and Reactive
Power Constraints

Bus Sensitivity of the Severity Index with respect to:

No Vmax Vmin Qmax Qmin

1 0.32604 0.00000 0.00003 0.00001

2 1.35209 0.00000 0.01412 0.00000

3 0.00002 0.17834 0.14772 0.00000

4 0.00000 0.00431 – –

5 0.00000 0.00102 – –

6 0.00005 10.3881 0.02302 0.16863

7 0.11922 0.00000 0.00088 0.00000

8 0.00000 0.10789 – –

9 0.00000 0.02155 – –

10 0.02656 0.00000 – –

11 0.00000 0.00126 – –

12 0.00000 0.03430 – –

13 0.31398 0.00000 0.00579 0.00004

14 0.00745 0.00453 0.00120 0.00001

15 0.09631 0.00000 0.02306 0.00000

16 0.06129 0.00095 0.00106 0.00164

17 0.00000 0.00000 – –

18 0.06080 0.00000 0.00071 0.00047

19 0.00000 0.00000 – –

20 0.00000 0.00000 – –

21 0.81786 0.00000 0.00460 0.00000

22 0.14240 0.00000 0.00000 0.00000

23 0.51735 0.00125 0.00000 0.00005

24 0.00056 0.25576 – –
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from the sensitivity analyses: (a) bus 2 has the highest effect in terms of maximum voltage

limit, therefore, the planner may consider installing a condenser at bus 2, (b) the minimum

voltage limit at bus 6 has the highest effect on the EDNS index, therefore, the planner may

consider installing a reactor, (c) bus 3 has the highest effect in terms of maximum reactive

power limit, and (d) bus 6 has the highest effect in terms of minimum reactive power limit.

It should be noted that the voltage sensitivity analyses are based on the p.u. values.

8.4 Summary

This chapter has investigated the effects of the voltage and reactive power constraints on

power system reliability through developing expressions and performing sensitivity analyses

of the EDNS index with respect to these constraints. Also, four indices were proposed to

address the contributions of the voltage and reactive power constraints on system load cur-

tailments. Extensive studies on the IEEE RTS and the Modified IEEE RTS were conducted

to investigate the effects of the voltage and reactive power constraints on the power sys-

tem reliability indices. Several case studies were performed through gradually stressing the

transmission lines to track the profile of the reliability indices with increasing system loading

level. A comparison between the use of the AC and DC power flow models in the composite

system reliability studies are provided to test the effects of ignoring the voltage and reactive

power constraints. The results show that, for the cases where the system is stressed, the

accuracy of the DC power flow in evaluating the reliability indices is deteriorated. Also, the

state space reduction technique has been used to reduce the computation time and burden.
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Chapter 9

Hardening Power Systems Against

Cascading Failures Based on Risk

Sensitivity Analysis

9.1 Introduction

In response to the rapid growth of the global economics, large power grids are interconnected

in order to provide the required energy. As a result of these interconnections, the number of

failures also increases and may spread through these interconnections and cause cascading

failures. Large blackouts in power system networks are rare in nature, however they usually

start with a small triggering event that by successive sequence can cascade and develop a

complete blackout. Cascading failures in power systems have been recently encountered more

frequently. Examination of catastrophic events such as the August 14, 2003 blackout shows

that many factors were involved in the development of the cascading failure. These factors

can be classified into three categories: physical behavior of the networks, software failures and

operators’ mistakes. Among the physical behavior problems of the networks are overloading,

inadvertent tripping, transient instability, voltage collapse, etc. Such factors are interrelated

and their effect cannot be separated from each other. For instance, overloading may cause
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inadvertent tripping and tripping of loaded lines may cause voltage collapse and/or transient

instability. An effort to address all of these factors faces many burdens such as modeling

and computational time. Most of current cascading failure mitigation methods can capture

only a subset of the cascading failure phenomena mechanisms. This chapter focuses on using

the sensitivity of the reliability risk index with respect to voltage limits and reactive power

reserve.

9.2 Sensitivity Analysis-based Cascading Failure Mit-

igation

This chapter introduces a method based on risk sensitivity analysis to determine strategies

to harden power systems against catastrophic failures. This method utilizes risk sensitivity

analysis in mitigating the cascading failures in power systems. In other words, the proposed

method utilizes sensitivity analysis of the risk index with respect to the control variables to

identify vulnerabilities that can be corrected by strategic or tactical measures. For any initi-

ating event, the sensitivity of the risk of load curtailments with respect to the power quality

constraints such as voltage and reactive power is derived, and thereby preventive/correction

actions are determined. In addition to the insertion of compensation devices, rescheduling

of generation is considered to increase the reactive power reserve. In order to evaluate the

sensitivity of the risk index with respect to the power quality constraints, voltage and reac-

tive power constraints are incorporated with the optimization problem with an objective of

minimum load curtailments.

Cascading failures usually occurs as a sequence of events within a time horizon of sec-

onds to minutes and in the best scenarios the time horizon is hours. In order to evaluate
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the sensitivity of the risk index with respect to the power quality within a short time, the

linearized power flow model that accounts for voltage and reactive power was used (chapter

2). The linearized power flow model was incorporated with a linear programming optimiza-

tion problem with objective of minimum load curtailments. For any initiating event, the

sensitivity of the risk of load curtailment with respect to the control variables is used to

mitigate the risk of cascading failures. The risk sensitivity was combined with the WORMS

and the Dynamic Decision-Event Tress (DDET) techniques for searching for the chain of the

events and preventing the risk of the cascading failures.

From the sensitivity of the risk index with respect to voltage limits and reactive power

reserve, generation rescheduling can be performed to move the system from being close to

a voltage collapse to a state where the system resides within the safe operating limits. For

example, if one of the expected next events may cause the voltage at a certain bus will

be less than or larger than the operating limits, the remedial action can be reactive power

compensation at that bus. However, if there is no reactive power compensator nearby that

bus, the real power output of generators that are close to that bus have to be reduced to

increase the reactive power reserve. This chapter provides suggestions for the control action

but specifically identifying which corrective action should be performed. This model was

applied on the IEEE RTS and the results are presented.

9.3 Remedial Actions

A remedial action scheme based on the sensitivity analysis with economic dispatch helps

the operator in the control room to choose an action that appropriate for the conditions on

hand. The proposed sensitivity analysis-based remedial action scheme can be combined with
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the other tools using multi-decision-making techniques to choose the “best” option that has

minimum risk and minimum cost. The remedial action scheme can be run periodically as

well as after every triggering event. From the results of the analyzer (sensitivity analysis of

the risk index with respect to voltage limits and reactive power reserve), a remedial action

scheme produces a list of actions that can alleviate the violation if there is any.

The remedial action scheme is intended to act as a preventive/corrective action control.

The ability of distinguishing between these two actions depends upon the initial conditions

of the system and the triggering events. For example, in case there is no disturbance,

the remedial action scheme examines the designated contingencies for possible voltage limit

violations. In case of possible violations, the scheme lists possible generation rescheduling

alternatives based on the sensitivity of the risk index with respect to control parameters

and the best action can be chosen based on multi-decision-making techniques. Possible

actions from the preventive action scheme are insertion of reactive power compensation and

generation rescheduling. The preventive action scheme can help operators to discard the

unsafe alternatives. Also, the suggested actions can be combined with the other tools and

control parameters such as equipment actuation time, cost, available means, etc. using

multi-decision-making techniques.

In case of corrective action mode, the scheme can be used to prevent the possibility of

cascading failures. The corrective action scheme is less costly than the preventive action;

however, it is the last defense line and if the correction actions suggested by this scheme

cannot be applied, the system more likely to go under cascading failures. Therefore, a

careful selection of the proposed actions needs to be implemented in this scheme. Possible

actions from the corrective action scheme are generation rescheduling and load shedding.

In many situations where loss of one of the critical lines may cause the system to go under
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cascading failures and a fast action needs to be initiated. Based on the preventive action

scheme, the power flowing in the critical lines can be alleviated by generation rescheduling

but this might be costly prohibitive. In such cases, the critical lines will be allowed to work at

their power transfer limits and perform corrective action control in case of tripping of these

lines. The most commonly control actions is one or combination of generation tripping, load

shedding and braking resistor insertion.

9.4 Case Studies

The proposed formulation was applied on the modified IEEE RTS. System’s data are given

in the appendix.

It is well known that the transmission lines of the IEEE RTS are very reliable and they

have high power carrying capabilities in comparison with the loading level of the system.

The contributions of the failures of these transmission lines and their capacity limits on the

annual and annualized indices are very small and can be ignored [17, 99, 100]. For instance,

the annualized LOLP index of the IEEE RTS using DC load flow model is 0.08344. On the

other hand, if we relax the power carrying capability limits and assume the transmission lines

are perfectly reliable, the LOLP becomes 0.0829. The modified IEEE RTS is the same as the

IEEE RTS except that the generation is multiplied by 2.0 and the loads are multiplied by 1.8

to stress the transmission lines. However, these modifications cause the voltage limit at bus

3 to contribute in every sampled state. We have added a 30 MVar synchronous condenser

at bus 3.

In evaluating the sensitivity of the risk index with respect to the control variables, the

state space reduction technique was not able to entirely classify the state space into success
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and failure subspaces. This can be interpreted as the unclassified subspace has failure states

with relatively high probability but with relatively small load curtailments. This also can

be attributed to the fact that failure states that are located far from the origin (all compo-

nents are in the down state) have high probability and small load curtailments. Therefore,

the proposed dynamically directed binary particle swarm optimization search method was

used to search for the unclassified subspace. To investigate the benefits of the state space

reduction technique and the dynamically directed binary particle swarm optimization search

method, we have performed the same a case study on the modified IEEE RTS using Monte

Carlo simulation. The computation time using the state space reduction technique with the

dynamically directed binary particle swarm optimization search method was around 45%

less than the computation time using Monte Carlo simulation.

The sensitivities of the risk index of the modified IEEE RTS with respect voltage and

reactive power limits are shown in Table 9.1, Table 9.2, Table 9.3 and Table 9.4.

Table 9.1: Sensitivity of the risk index with respect to minimum reactive power limits for
the modified IEEE RTS

Power limit Minimum Reactive Power Limit

Bus No. 22 21 16 18 15

Value -0.00078 -0.00045 -0.00007 -0.00006 -0.00004

Table 9.2: Sensitivity of the risk index with respect to maximum reactive power limits for
the modified IEEE RTS

Power limit Maximum Reactive Power Limit

Bus No. 6 14 16 13 & 15 1

Value -0.00362 -0.00036 -0.00014 -0.00005 -0.00003
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Table 9.3: Sensitivity of the risk index with respect to under voltage limits for the modified
IEEE RTS system

Voltage limit Minimum Voltage Limit

Bus No. 3 8 6 24 7

Value -0.06538 -0.03226 -0.01649 -0.01345 -0.01313

Bus No. 4 18 20 19 13

Value -0.00795 -0.00218 -0.00032 -0.00027 -0.00032

Table 9.4: Sensitivity of the risk index with respect to over voltage limits for the modified
IEEE RTS system

Voltage limit Maximum Voltage Limit

Bus No. 1 2 13 14 10

Value -0.03888 -0.02926 -0.02710 -0.01370 -0.01228

Bus No. 6 23 7 22 15

Value -0.01205 -0.01157 -0.00586 -0.00335 -0.00075

Form Table 9.1, we can see that among the minimum reactive power limits, bus 22

has the highest effect on the risk index. Also, buses 15, 16, 18, 21 and 22 are generation

buses. Therefore, one of the options to harden this system against catastrophic failures is to

reschedule the generation at these buses to increase the minimum reactive power limits.

Table 9.2 shows the effect of maximum reactive power limits on the risk index. Buses 1,

13, 15 and 16 are generator buses. Again, one of the options to harden this system against

catastrophic failures is to reschedule the generation at these buses to increase the maximum

reactive power limits. Bus 14 has a synchronous condenser. Another condenser may be

added at this bus. At bus 6 there is a fixed reactor with 100 MVar. A condenser may be
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added at this bus.

Table 9.3 and Table 9.4 show the effect of under and over voltage limits on the risk index.

The buses that hit the limits consist of load and generation buses. At load buses that have

only under voltage problems, condensers may be added. At load buses that have only over

voltage problems, reactors may be added. As in the case of the effect of reactive power

limits, at generation buses that have under or over voltage problems or both, generation

rescheduling to increase the reactive power margin may solve the problem. Buses 6, 7 and

13 appear in both under and over voltage violations. These buses have special property.

Bus 6 is connected to bus 10 through a cable with high line susceptance. The high line

susceptance makes bus 6 sensitive to loading levels and line status. Buses 7 and 13 are

connected with a line with capacity of 175 MVA and it is the only line connects bus 7 to the

rest of the system. Any failure in this line, the system will be separated.

9.5 Summary

Several power system networks operate at their capacity and voltage limits and a tool to

harden power systems against cascading failures is of necessity. A risk sensitivity analysis

with respect to voltage and reactive power limits is introduced in this chapter. To account

for voltage and reactive power constraints, the linearized power flow model was used and

incorporated with a linear programming optimization problem with the objective of minimum

load curtailments to calculate the sensitivity of the reliability risk index with respect to

voltage limits and reactive power reserve. The most vulnerable components as well as the

most buses that have voltage collapse and reactive support problems were identified. The

results obtained from the risk sensitivity analysis are used to harden power systems against
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cascading failures. In addition, these results can be used in preventive or corrective remedial

actions. It is noteworthy pointing out here that the method presented in this chapter differs

from the existing cascading failure mitigation methods in the sense that it evaluates the

sensitivity of the risk index with respect to voltage and reactive power limits for N-k events,

instead of considering sequence of events.

In performing the sensitivity analyses, large number of states has to be tested. The

state space reduction approach in conjunction with the dynamically directed particle swarm

optimization search method was used to reduce the search space, and thereby speed up the

computations. The proposed method was applied on the modified IEEE RTS. The results of

the sensitivity analysis of the risk index with respect to voltage and reactive power limits have

identified the buses that have most effect on system availability and possibility of cascading

failures.
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Chapter 10

Conclusions and Future Work

Summaries of the findings have been provided at the end of each chapter. These summaries

discuss specific findings related to each chapter. This chapter provides a general conclusion

about the methods that have been used, the general outcomes of this work and suggestions.

Also, this chapter provides possible future developments that can be built on or added to

the presented work.

10.1 Concluding Remarks

The objective of this work was to develop a comprehensive formulation of the sensitivity

analysis and an efficient solution algorithms and methods to decrease the computation bur-

den. The work presented in this thesis uses sensitivity analysis-based method to develop

strategies to improve power system reliability. Lagrange multipliers were used in estimating

the sensitivity of the reliability indices with respect to component parameters. The Lagrange

multipliers can be obtained from the dual solution of a standard linear/non-linear program-

ming problem. Three power flow models were utilized in modeling power system networks,

namely, DC power flow model, AC power flow model and a linearized power flow model. A

state space reduction technique in conjunction with a dynamically directed particle swarm

optimization search method was used to reduce the computational time and burden.

The state space reduction technique, which is presented in chapter 4, was proposed and
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applied to reduce the search space. This technique is conservative in that not all the failure

states can be captured and no success state was classified as failure state. The state space

reduction technique classifies the state space into three subspaces, definite failure subspace,

definite success subspace and unclassified subspace. An intelligent search method based on a

dynamically directed binary particle swarm optimization was developed and used to search

for failure states in the unclassified subspace. From the failure states, which were captured

by the state space reduction technique and the dynamically directed binary particle swarm

optimization search method, the reliability indices and their sensitivities with respect to

component parameters were calculated.

An element key in using binary particle swarm optimization in composite system reliabil-

ity evaluation is the selection of weighting factors of the objective function. These weighting

factors are system dependent and, therefore, their appropriate values should be carefully

selected in order to prevent the swarm from being trapped to one corner of the state space.

An effective particle swarm optimization search method was proposed and used for reliabil-

ity assessment of composite systems. The proposed method adjusts the weighting factors

associated with the objective function in a dynamic fashion so that the swarm would always

fly on the desired search space rather of being trapped to one corner of the search space.

The effectiveness of the proposed methods was tested on several standard test systems

and the results correspond closely with those obtained using Monte-Carlo simulation, while

requiring lower computational burden. The proposed methods were applied on several prac-

tical problems such as the effects of the voltage and reactive power limits on power system

reliability, the effects of imposing the regulations of reducing the emissions from power gen-

eration, and hardening power systems against cascading failures.

The effects of the voltage and reactive power constraints on power system reliability
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were investigated through developing expressions and performing sensitivity analyses of the

expected demand not supplied (EDNS) index with respect to these constraints. Four indices

were proposed to address the contributions of the voltage and reactive power constraints on

system load curtailments. Extensive studies on the IEEE RTS and the Modified IEEE RTS

were conducted to investigate the effects of the voltage and reactive power constraints on

the power system reliability indices. Several case studies were performed through gradually

stressing the transmission lines to track the profile of the reliability indices with increasing

system loading level. A comparison between the use of the AC and DC power flow models

in the composite system reliability studies are provided to test the effects of ignoring the

voltage and reactive power constraints. The results show that, for the cases where the

system is stressed, the accuracy of the DC power flow in evaluating the reliability indices is

deteriorated.

The effects of the inclusion of the emission constraints were investigated through per-

forming sensitivity analysis of the EDNS index with respect to the emission constraints.

Most of the emission studies in the literature have focused on minimizing emissions through

economic dispatch and introducing new concepts to solve multi-objective functions. This

work introduced a framework for evaluating the effect of the emission rates and allowances

on system reliability and determining the sensitivity of commonly used reliability indices to

equipment and emission constraints. From the sensitivity results, components can be ranked

from reliability point of view. Therefore, components that have the highest effect on system

reliability can be identified. Also, if the reliability of the system needs to be improved, the

sensitivity analyses can identify which component to increase its emission limit. Inclusion

of emission constraints in planning studies helps guide investment strategies with respect to

reconstruction or upgrades.
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Hardening power systems against cascading failures by improving voltage stability was

also introduced. The sensitivity of the reliability EDNS index with respect to voltage limits

and reactive power reserve was used to identify the most vulnerable components as well as

the most buses that have voltage collapse and reactive support problems. In addition, the

results of the sensitivity analysis can be used in establishing preventive or corrective remedial

action schemes.

10.2 Future Work

Although the results presented in this thesis show the powerfulness of the use of the sensitivity

analysis in power system planning and operation and the effectiveness of the use of state

space reduction technique with the population-based intelligent search methods, the work

could be extended and further developed by considering some of the following points:

1. Adding another constraints: Another constraints can be added to the system operating

constraint such as transient stability limits, voltage stability limits, operating cost, etc.

Inclusion of such constraints would increase the complexity of the optimization problem

but it would make the solution for optima more realistic.

2. Using different population-based intelligent search methods: In this thesis, we have

used particle swarm optimization due to its simplicity; the other population-based

intelligent search methods could be used and a comparison between these methods in

terms of efficiency and reduction in the computational time could be established.

3. Combining the proposed state space reduction method with the existing methods: In

this work, we have used minimum generation vector for determining the boundary of
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the success subspace. The state space pruning could be combined with the proposed

method to decrease the size of the unclassified subspace.

4. Determining the effective region of the Lagrange multipliers: In this work, we have used

the value of the Lagrange multipliers in performing sensitivity analysis, but without

accounting for the effective region. The effective region can be defined as the region in

which the Lagrange multipliers of the corresponding constraints are binding. In other

words, there will be a limit for a Lagrange multiplier after which the corresponding

constraint becomes redundant.
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Derivation of the Sensitivity Relationships

Here, only the derivations of the sensitivity of the LOLP index with respect to reliability

parameters are provided. The remaining sensitivities for LOLF and EDNS can be easily

derived in the same manner. Some of the derivations presented below have been adapted

from [32]. However, this reference does not provide the complete derivations.

Sensitivity of LOLP to Component Failure Probability

∂LOLP/∂ui

=
∑
x∈X
{[∂If (x)/∂ui]P (x) + If (x)[∂P (x)/∂ui]}

=
∑
x∈X

If (x){[∂[P (S1)P (S1) · · ·P (Si) · · ·P (Sm)]/∂ui]}

=
∑
x∈X

If (x)P (x)[1/P (Si)][∂P (Si)/∂ui]

If Si = 1,

[1/P (Si)][∂P (Si)/∂ui]

= (1/P (Si = 1))(∂P (Si = 1)/∂ui)

= (1/ai)(∂ai/∂ui) = −1/ai = −Si/ai
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If Si = 0,

[1/P (Si)][∂P (Si)/∂ui]

= (1/P (Si = 0))(∂P (Si = 0)/∂ui)

= (1/ui)(∂ui/∂ui) = 1/ui = (1− Si)/ui

Therefore, in general,

[1/P (Si)][∂P (Si)/∂ui] = (1− Si)/ui − Si/ai

= (1/ui)− Si/(aiui)

Then,

∂LOLP/∂ui =
∑
x∈X

If (x)P (x)[(1/ui)− Si/(aiui)]

Sensitivity of LOLP to Component Failure Rate

∂LOLP/∂λi

=
∑
x∈X
{[∂If (x)/∂λi]P (x) + If (x)[∂P (x)/∂λi]}

=
∑
x∈X

If (x){[∂[P (S1)P (S1)...P (Si)...P (Sm)]/∂λi]}

=
∑
x∈X

If (x)P (x)[1/P (Si)][∂P (Si)/∂λi]
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If Si = 1,

[1/P (Si)][∂P (Si)/∂λi]

= (1/P (Si = 1))(∂P (Si = 1)/∂λi)

= (1/ai)(∂ai/∂λi) = −Si/(λi + µi)

If Si = 0,

[1/P (Si)][∂P (Si)/∂λi]

= (1/P (Si = 0))(∂P (Si = 0)/∂λi)

= (1/ui)(∂ui/∂λi)

= (ai/ui)(1/(λi + µi))

= (ai/ui)((1− Si)/(λi + µi))

Therefore, in general,

[1/P (Si)][∂P (Si)/∂λi]

= −Si/(λi + µi) + (ai/ui)((1− Si)/(λi + µi))

= ai/λi − Si/λi

Then,

∂LOLP/∂λi =
∑
x∈X

If (x)P (x)[ai/λi − Si/λi]
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Sensitivity of LOLP to Component Repair Rate

∂LOLP/∂µi

=
∑
x∈X
{[∂If (x)/∂µi]P (x) + If (x)[∂P (x)/∂µi]}

=
∑
x∈X

If (x){[∂[P (S1)P (S1)...P (Si)...P (Sm)]/∂µi]}

=
∑
x∈X

If (x)P (x)[1/P (Si)][∂P (Si)/∂µi]

If Si = 1,

[1/P (Si)][∂P (Si)/∂µi] = (1/P (Si = 1))(∂P (Si = 1)/∂µi)

= (1/ai)(∂ai/∂µi)

= (ui/ai)(1/(λi + µi))

= (ui/ai)(Si/(λi + µi))

If Si = 0,

[1/P (Si)][∂P (Si)/∂µi]

= (1/P (Si = 0))(∂P (Si = 0)/∂µi)

= (1/ui)(∂ui/∂µi)

= −1/(λi + µi) = −(1− Si)/(λi + µi)
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Therefore, in general,

[1/P (Si)][∂P (Si)/∂µi]

= (ui/ai)(Si/(λi + µi))− (1− Si)/(λi + µi)

= −ai/µi + Si/µi

Then,

∂LOLP/∂µi =
∑
x∈X

If (x)P (x)[−ai/µi + Si/µi]

Test Systems

IEEE RTS

The IEEE RTS System has been extensively tested for power system reliability analysis [63].

IEEE RTS consists of 24 buses, 38 transmission lines/transformers (33 transmission lines and

5 transformers) and 32 generating units on 10 buses. The total generation of this system is

3405 MW and total peak load is 2850 MW.

Modified IEEE

The modified IEEE RTS System is the same as the original IEEE RTS System except that

the generation is doubled and the loads are multiplied by a factor of 1.8. The reason of

this modification is because the transmission lines of the original system have high power

carry capabilities in comparison with the generation and loading conditions. Therefore, this

modification will make the transmission lines more stressed. Also, this modification will

allow us to test the robustness of the proposed method.
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A Six Bus Hypothetical System

The six bus system is a hypothetical system consists of 16 generating units on two generating

buses, five load buses and 9 transmission lines. Line and generation data are given in [64].

The total generation of this system is 240 MW and the total real power load is 185 MW.

The Saskatchewan Power Corporation in Canada

The SPC system is the network of the Saskatchewan Power Corporation in Canada [64]. The

system consists of 45 buses, 29 generating units on 8 buses and 71 transmission lines/transformers.

Four of the 45 buses are used to represent equivalent assistance from the Manitoba Hydro

System. One of these four buses is a fictitious bus that represents the power import from

Manitoba Hydro System which is 300 MW. This bus is connected to the other three buses

and the sum of the 300 MW is represented by three generating units each of which 100 MW.

The total generation is 2530 MW and total load is 1802.5 MW. System data are given in [64].
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