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ABSTRACT

BOUNDARY VALUE PROBLEMS AND PERIODIC SOLUTIONS
FOR CONTINGENT DIFFERENTIAL EQUATIONS
By
Wei-Hwa Shaw

In this thesis, we shall investigate contingent
differential equations in which the orientor fields F(t,x)
satisfy the Caratheodory conditions, i.e. F(t,x) is
measurable in t for each fixed x, F(t,x) is upper
semi-continuous in x for each fixed t and F(t,x) is

integrably bounded on every compact subset of RxR".

We begin our investigation with the fundamental
theory of such equations. Two similar Kamke-type convergence
theorems are proved. Following from the convergence theorems
are the properties of continuous dependence of solutions on

initial conditions and parameters.

We then study the general boundary value problems of
contingent differential equations. An existence theorem like
Fredholm's alternative is proved by using a fixed point theorem
which we formulate with degree theory. As the boundary

conditions require only linearity and continuity, applications



Wei-Hwa Shaw

can be obtained on periodic solutions, Nicoletti problems
and aperiodic boundary value problems. We observe also
that the set of solutions is compact in the space of conti-
nuous functions. Therefore, optiomal solutions do exist

with respect to any continuous (or semi-continuous) functionals.

In case the orientor fields are functional and T-
periodic for some T > O, we have contingent equations in
which a finite time lag r > O 1is involved. A T-periodic
set-valued transformation is set up from the space 6& of
continuous T-periodic functions into the space of non-empty,
compact and convex subsets of 6& so that the previous fixed
point theorem can be applied. Thus we obtain an existence

theorem of periodic solutions for contingent functional

differential equations.
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INTRODUCTION

A relation of the form
(E) x(t) = £(t,x(t))
where x = x(t) is an n-dimensional vector valued function
defined on a real interval and f(t,x) is a function from
a certain region of Ran into Rp, is called an ordinary

differential equation. The function f 1is called a vector

field and the solutions of (E) are curves with their tangents

prescribed by the vector field f£.

It may happen that the right-hand side of the
system (E) is approximately known up to a given accuracy.
If this is the case, then we have to consider differential

systems with multi-valued right-hand sides.

Instead of a single-valued mapping, we consider a
multi-valued mapping F, called an orientor field, which
associates with every point (t,x) of a certain region
WwecRrRR® a non-empty, convex subset F(t,x) of R". For
any function x(t) from an open subset J c R into Rp.

we have the following definition:



Definition O.1l. The set denoted bhy D*x(t) and

defined by
D*x(t) = (u(t) € R" : there exists a sequence
(. -
{tkik=l cJ, b # t and
tk + t such that

x(t, )-x(t)
ttk-t E u(t) }

is called the contingent derivative of x at t.

Consider the differential system
(cy) D x(t) < F(t,x(t)),
where F(t,x) 1is an orientor field and x(t) a mapping from
some real interval J into R". Such an x(t) will be
called a solution of (Cl) if x(t) satisfies (Cl) for

t a.e. 1in J.

When F is bounded and continuous in the sense of
Hausdorff metric with F(t,x) a non-empty, compact and
convex subset of R" for each (t,Xx) € W, T. Wazewski has
shown (see [37]) that (Cl) can be written as

(c,) x(t) € F(t,x(t)) a.e.,

where i(t) = dgtt) is the usual derivative of x at t.

A mapping x(t) from some real interval J into R® will
be called a solution of (Cz) if x(t) satisfies (Cz)
for t a.e. in J.



The systems (Cl) and (C2) are called contingent

differential equations. This more general theory of

differential systems was developed independently by A.

Marchand ([24],[25]) and S.K. Zaremba ([40],[{41]) in the
mid‘30's. Under the assumptions that the orientor field is
bounded and continuous with each image a non-empty, compact
and convex subset, they succeeded in obtaining some fundamental
properties of solutions, e.g. the existence of solutions for
the Cauchy problems, the compactness of solution funnel,

the Kneser property and the Hukuhara property.

Another importance of contingent differential equations
is their close connection with control problems. This was

observed by T. Wazewski.

Let O(Rn) denote the collection of non-empty

subsets of Rn.

Definition 0.2. By a control system S(f,C) we

mean a pair: a function f£(t,x,u) : RXxR"xR™ » R® and a
field C(t,x) : RxR" + @(R™). cC(t,x) is called the control

domain of S(f,C).

Definition 0.3. A function x = x(t) from an

interval J c R into Rn is said to be a trajectory of

S(£,C), 1if x(t) 1is absolutely continuous on J and there

exists a function u(t) such that



(1) i(t) = f(t,x(t),u(t)) for almost all t € J;:
(ii) wu(t) is measurable on J; and
(iii) u(t) e c(t,x(t)) for almost all t ¢ J.

u(t) is called the control function corresponding to the

trajectory x(t).

Now, given a control system S(£f,C), one can
eliminate the control term u and get an orientor field.
That is, define a function F(t,x) : RXR" - O(Rn) by

F(t,x) = (v ¢ R : v = f(t,x,u), u € c(t,x)}.

This orientor field F 1is called the orientor field associated

with the control system S(f,C).

If a suitable implicit function theorem is provided,
solving a control system is equivalent to solving the
contingent differential equation in which the orientor field
is the orientor field associated with this control system.
That is, if we know a trajectory of the orientor field
associated with some control system, then a suitable implicit
function theorem will enable us to find its corresponding
control function. Such implicit function theorems have been

discussed in [35], | 8 ] and [36].

A good survey of the early works is [38].

In this thesis, we shall investigate contingent

differential equations in which the orientor fields F(t,x)



satisfy the Carathéodory conditions, i.e. F(t,x) 1is
measurable in t for each fixed x, F(t,x) is upper
semi-continuous in x for each fixed t and F(t,x) is

integrably bounded on every compact subset of Ran.

Chapter I gives preliminaries. Here upper semi-
continuity, measurability, integral and topological degree

of set-valued mappings are discussed.

Chapter II deals with the fundamental theory. We
prove two similar Kamke-type convergence theorems (compare
with Theorem 3.2 of [ 12], p.14). Following from the
convergence theorems are the properties of continuous

dependence of solutions on initial conditions and parameters.

Chapter III is a study of general boundary value
problems. An existence theorem like Fredholm's alternative
is proved by using a fixed point theorem which we formulate
with degree theory. Several applications are also included
to show how our existence theorem could be applied to prove
the existence of solutions satisfying periodic conditions,
Nicoletti conditions or aperiodic conditions as well as the

existence of optimal solutions.

In the last chapter, we conclude this thesis by
using the same fixed point theorem of Chapter III to establish
an existence theorem for periodic solutions of contingent
functional differential equations in which a finite time

lag r > 0 is involved.



For reading convenience, a hollow square, [, is

used to signal the end of a proof.



Chapter I

SET-VALUED MAPPINGS

§1. Set-valued mappings and upper semi-continuity:
Let X be a metric space, E be a Banach space
and vO(E) be the collection of all non-empty subsets of

E.

Definition 1l.1. A set-valued mapping with domain

A cX into E 1is a mapping
F : A » ¢(E).
The range of F is defined to be

F(A) = U{F(x) : x € A}.

It is natural that the next thing we shall do is
to define the concept of continuity of a set-valued mapping.
If we restrict ¢&(E) to Comp (E) - the collection of non-
empty compact subsets of E, the Hausdorff continuity
induced by the Hausdorff metric on Comp (E) can be imposed
upon a set-valued mapping from A into Comp (E). However,
this continuity is too strong for our purposes. Instead,
we shall introduce a concept of upper semi-continuity which

is weaker. Upper semi-continuity can be defined in many



ways. But first, we begin with the limit inferior and limit

superior of a sequence of sets.

. . . [- .}
Definition 1.2. Let {Ak]k=l c E be a sequence of
subsets of a Banach space E. Then

lim inf A = {x € E : every neighborhood of x
Ko

intersects all the Ak's with Xk sufficiently
large)
and

lim sup A = {x € E : every neighborhood of x
Ko

intersects infinitely many Ak's].

If 1lim inf = lim sup = A, then we say (A}
o ont By -3 By B dg=1

k
converges to A and write lim Ak = A or Ak -+ A.
) )

Remark l.1l. If d denotes the metric induced by

the norm in E, then it is equivalent to define 1lim inf A

K 4o
and 1lim sup as
K4 Ak
lim inf Ak = (x € E : lim d(x,AK) =0 for kK + o}
K 9o
and
lim sup = {x € E : lim inf d(x,A,.) = O for kX 4+ «}.
e SuP A Ay

Remark l.2. If [Ax ,];:,___1 is a subsequence of

{Ak}:;l' it is easy to see that

lim inf € lim inf » € lim sup » € 1lim sup .
Koo " K ‘9o K X ‘o K K <o ks



Definition 1.3. A mapping F : A 4 ¢(E) 1is said

to be upper semi-continuous at X4 € A in the sense of

limit superior if

F(xo) D lim sup F(xn)
N

® n
for any sequence {xn}n=1 c A such that x_ = x,.

F 1is upper semi-continuous in the sense of limit

superior if F is upper semi-continuous at every x € A

in the sense of limit superior.

Definition 1.4. A mapping F : A -+ €(E) is said

to be upper semi-continuous at x, €A in the sense of

metric if for each ¢ > O, there exists a § > O such that
F(x) c Be(F(xo))
for all x € A with \x—xol < & Wwhere Be(D) =

{(x ¢e E : d(x,D) < ¢}.

F is upper semi-continuous in the sense of metric

if F 1is upper semi-continious at every x € A in the

sense of metric.

Definition 1.5. A mapping F : A + €(E) is said

to be upper semi-continuous at Xq € A in the sense of

. n n .
Kuratowski if x -+ Xge Y, * Yq and y_ € F(xn) imply

Yo € F(xg)-

F 1is upper semi-continuous in the sense of

Kuratowski if F 1is upper semi-continuous at every x ¢ A

in the sense of Kuratowski.
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Remark 1l.3. It is easy to see that F 1is upper

semi-continuous in the sense of Definition 1.5 if and only
if the graph of F, T(F) = ((x,y) : v € F(x)} c AxE, is

closed in AxE.

Definition 1.6. A mapping F : A 4 @(E) is said to

be upper semi-continuous at X5 € A in the sense of topology

if for each open set U DO F(xo). there exists a § > O

such that |x-x0| < 6§ implies F(x) c U.

F 1is upper semi-continuous in the sense of topology

if F 1is upper semi-continuous at every x € A 1in the sense

of topology.

Proposition l.1. Let F : A + ¢(E). Assume that

for x. € A, there exists a neighborhood N(xo) of x

(0] (0]
such that U F(x) 1is relatively compact, 1i.e. U F (x)
xEN(xo) xeN(xo)
is compact. Then, F is upper semi-continuous at Xq in

the sense of Definition 1.3 implies that F is upper semi-

continuous at x in the sense of Definition 1l.4.

(o]

Proof: Let ¢ > O be given. Suppose F is not

upper semi-continuous at x in the sense of Definition 1.4.

(o]
Then, for each § > O, there exists x € A such that
|x—xo| < & but F(x) & Be(F(xo)). Hence, there exists a

® n .
sequence {xn]n=l c A such that x -+ x, and there exists
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n

Y, € F(xn) with d(yn,F(xo)) 2 €~ Since x4 X0

x, € N(xo) for all n sufficiently large. Hence,

Y, € U F(x) for all n sufficiently large. It
xeN(xo)
follows from the relative compactness of U F(x) that
xeN(xo)
[yn]:=l has at least a limit point, say Yor It is clear

that Yo € lim sup F(xn). Let [yj];;l be a subsequence

o* It follows from the triangle

of {yn}:=1 such that Y3 ] y
inequality of d that
d(yye F(xg)) > |d(yj.F(xo))-d(yj.yo)|

for all j. Letting j + », we have d(yO,F(xo)) > €.
Hence, y, £ F(xo). Therefore, F is not upper semi-continuous

at X4 in the sense of Definition 1.3. O

Example 1l.1. The assumption that F be locally

relatively compact at x is necessary in Proposition 1.1.

(o)

Let R Dbe the space of real numbers with usual
metric and let £° be the space of all bounded sequences of
real numbers with the norm of each element {gn]:=l'

I(g)ll = suplg |- Let A= (01,55 ...} €R.
n

Consider F : A + 4° defined by

O for all k

F(0) = (g )y, with &g
F3) = (Blemy with g

*x

O if kX # n and

l if kX = n.
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As we observe that the unit sphere of L is
not compact, F 1is not locally relatively compact at O.
F 1is upper semi-continuous at O in the sense of Definition
1.3 since li: sup F(%) = @ c F(O). However, d(F(%),F(O)) =1
S

for all n > 1. F is not upper semi-continuous at O in

the sense of Definition 1.4.

Proposition 1.2. Let F : A 4+ @¢(E). 1If F(xo) is

closed for some Xy € A, then F 1is upper semi-continuous

at XO

upper semi-continuous at x

in the sense of Definition 1.4 implies that F is

o in the sense of Definition 1.3.

Proof: Let (xn]:;l be any sequence in A such that

n
X - X.. By Definition 1.4, for each ¢ > O, there exists

n (o]
an N > O such that F(xn) c Be(F(xo)) for all n > N. Let
y € lim sup F(xn) be arbitrary, i.e. there exists a subsequence
® ® . j
{xj}j=l of (x ] _, with yy € F(xj) such that Yy 2 y-
Thus y € Be(F(xo)). Since ¢ > O 1is arbitrary and F(xo)

is closed, y € F(xo)- O

Example 1.2. The assumption that F(x,) be closed

is necessary in Proposition 1.2.

Consider F : R + @¢(R) defined by

F(x) = (x-1,x+1) = (t ¢ R : x-1 < t < x+1}.

Let x, €R be arbitrary. It is clear that F is

upper semi-continuous at X5 in the sense of Definition 1.4
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1 n
(take § = €¢). Let X, = Xy + = Then X, = Xge However,

lim sup F(xn) = [xo-l.xo+l] ¢ (xo-l,xo+1) = F(xo).

Proposition 1.3. Let F : A + #(E). If F(xo)

is closed for some Xy € A, then F is upper semi-continuous

at x in the sense of Definition 1.4 implies that F is

(o}

upper semi-continuous at X4 in the sense of Definition 1.5.

n n
Proof: Let X, *Xgr Yy Y, and Y, € F(xn).

By Definition 1.4, for each ¢ > O, there exists an Nl(e) >0

such that F(xn) c Be(F(XO)) for all n > N;. Since
n .
Y, * Yo+ there exists an Nz(e) > 0 such that d(yo,yn) < ¢/2

for all n > N,. Take N = max(N;,N,}. Then

d(yq F(x5)) < dly,sy,) + dly,.F(x))
< e/2 + ¢/2=c¢
for all n > N. Hence, Yy, € leoi = F(xo) since F(xo)

is closed. (]

Example 1.3. Proposition 1.3 is not true without

the assumption that F(x,) Dbe closed.

Consider F : R + ¢(R) defined by
F(x) = {-1} if x < O
{1} if x>0
(-1,1) if x = O.
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F(O) is not closed. It is easy to see that F
is upper semi-continuous at O in the sense of Definition

1.4 but not in the sense of Definition 1l.5.

Proposition 1.4. Let F : A + #(E). Assume that

F is locally relatively compact at some Xq € A. Then F
is upper semi-continuous at X5 in the sense of Definition
1.5 implies that F is upper semi-continuous at X5 in
the sense of Definition 1l.4.

Proof: Suppose F 1is not upper semi-continuous

at x in the sense of Definition 1.4. Let N(xo) be a

(0]
neighborhood of X4 such that U F(x) is compact.
xEN(xo)
Then there exists an ¢ > O and a sequence {xn):=1 c N(xo)

n
such that xn -+ xo

exists a sequence {yn]:=1 such that y € F(xn) and

and F(x) & Be(F(xo)). Hence, there
. @® ® .
d(y,.F(xy)) > e. Since [xn}n=1 c N(xg), [Yn}n=1 is
contained in a compact subset of E by our assumption on
N(x) . Therefore, there exists a subsequence [Yn'}:'=l of
o

[ n . .
[Yn]n=1 such that y .+ y, for some y, ¢ E. Considering
the inequality

d(yqeF(xg)) > |£(y - £(x3))-d(y, »v.) |

and letting n’ 4 », we have d(yo.F(xo)) > € > 0. Hence
Yo £ F(xo). Therefore, F is not upper semi-continuous at

xo in the sense of Definition 1.5. 0O
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Example 1.4. Proposition 1.4 is not true without

the assumption that F be locally relatively compact at

X, even if F 1is single-valued. Consider the following

function
F : R «+ R defined by
F(x)=}( if x#0
o if x = O.

Evidently, F 1is upper semi-continuous in the sense

of Definition 1.5 since its graph T(F) is closed in R2.
However, F is not upper semi-continuous at O in the

sense of Definition 1.4.

Proposition 1l.5. Let F : A + ¢(E) and Xq € A

be arbitrary. F is upper semi-continuous at Xq in the

sense of Definition 1.6 implies that F is upper semi-

continuous at X4 in the sense of Definition 1.4.

Proof: For each X, € A, BG(F(XO)) is an open
set containing F(xo). Definition 1.4 follows immediately

from Definition 1.6, O

Proposition 1.6. Let F : A + ¢(E). Assume that

F(xo) is compact for some x. ¢ A. Then, F 1is upper

(o)

semi-continuous at x in the sense of Definition 1.4 implies

(o]

that F 1is upper semi-continuous at x in the sense of

(o)
Definition 1.6.
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Proof: Let U be an open set containing F(xo).

For each y ¢ F(xo), let Br(y)(y) be an open ball in

E centered at y with radius r(y) and B (y) cu.

r(y)
since F(x,) is compact, the covering [Br(:l (y) : y € F(xo)]
2

has a finite subcovering, say {Brl (yl), Br2 (y2),....Brn (yn)].

2 2 2

Let r = min[rl,...,rn]. We claim that Br(F(xo)) c U. Let
2
I

y € F(xo) be arbitrary and y* € B_(y). n the finite

= NN

subcovering, there exist Y i<

< n, such that
y € Bri(yi)‘ Hence
2
d(y“by;) <dly’y) + dly,y;)
r.

<3*%

Sri.

Therefore, y° € B, (Yi) c U. Since y°  is arbitrary in
i
B_(y). Br(y) c U. Also, y € F(xo) is arbitrary. It

r

2 2

follows that Br(F(xo)) c U as desired. By Definition 1.4,
2

there exists a § = 5(§) > 0 such that

F(x) c B£(F(xo)) cUu
2
for any x € A with |x-xo| < §. Hence, F 1is upper semi-

continuous at X4 in the sense of Definition 1.6. O



compac

if F(

in the
transl:

for evi

Then

take x

(X

Hence,

of Defij,

Definj¢;




17

Example 1.5. Without the assumption of the

compactness of F(xo). Proposition 1.6 is not true even

if F(xo) is closed.

Consider F : R 4 O(Rz) defined by

1

y= - °):

F(x) = {(y,2z) : z =

It is evident that F is upper semi-continuous
in the sense of Definition 1.4 since F(xl) is only a
translation of F(xz) for any x,,x, € R. F(x) is closed

for every x ¢ R. Let x. € R be arbitrary. Define

0
U= ((y,2) : ¥y >x5 (y-x5)z >0].

Then U 1is open in R2 and F(xo) c U. For each § > O,

take x such that 0 < X5—X < §. We find that

1 1 1
) = (5(x,+x), ——)
X +4%(xo-x)-x 270 %(xo-x)

(x + %(xo-X). € F(x) \ U.

Hence, F 1is not upper semi-continuous at X5 in the sense

of Definition 1.6.

The following simple example also shows that

Definition 1.6 does not imply Definition 1.5 in general:

Example 1.6. Consider F : R + ¢(R) defined by

F(x) = (0,1) for all x € R.
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From these examples, we see that the four
definitions of upper semi-continuity are quite different.
However, from the previous propositions, we find also

that under certain conditions they are indeed equivalent.

Theorem 1l.1. Let A be an open subset of a metric

space and E be a Banach space. Suppose that F : A + &(E)
is a set-valued mapping satisfying:
(i) F(x) 1is compact for every x € A; and
(ii) for each bounded subset D ¢ A, F(D) is
relatively compact.
Then, Definitions 1.3-1.6 of upper semi-continuity are all

equivalent.

From now on, the set-valued mappings that we shall
consider in our contingent equations satisfy the hypotheses
of Theorem l.1. Therefore, when we say upper semi-continuity,

we mean any of the Definitions 1.3-1.6 with no ambiguilty.

Remark 1l.3. Suppose we restrict &(E) to Comp (E)

and consider mappings from A into Comp (E). It follows
from Propositions 1.2, 1.3 and 1.6 that Definition 1.4 is

the strongest among all.

For the sake of completeness, we introduce the

following definitions of lower semi-continuity.
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Definition 1.7. A mapping F : A -+ Comp (E)

is said to be lower semi-continuous at X5 € A 1in the

sense of limit inferior if

F(xo) c lim inf F(xn)
N

® n
} 1 ©A such that x_ =4 x,.

for any sequence {xn n= n o

F 1is lower semi-continuous in the sense of limit

inferior if F is lower semi-continuous at every x ¢ A

in the sense of limit inferior.

Definition 1.8. A mapping F : A + Comp (E) 1is

said to be lower semi-continuous at xo € A in the sense

of metric if for each ¢ > O, there exists a § > O such

that

F(Xo) c Be(F(X))

for all x € A with |x-x 5.

ol -

F 1is lower semi-continuous in the sense of metric

if F 1is lower semi-continuous at every x € A in the

sense of metric.

Remark l.4. In view of Remark 1.1, it is easy to

see that Definitions 1.7 and 1.8 are equivalent.

Definition 1.9. A mapping F : A + Comp (E) is

said to be continuous at x. € A in the sense of metric

(o)
if F 1is both upper and lower semi-continuous at Xo in

the sense of metric.
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F 1is continuous in the sense of metric if F 1is

continuous at every X € A 1in the sense of metric.

Proposition 1.7. (Hukuhara [13]). Let E Dbe any

Banach space. The operations +,+, and N have the
following properties of continuity with respect to the
product topology of the Hausdorff topologies induced by
the Hausdorff metrics of R and Comp (E):
(i) the addition +: Comp (E) x Comp (E) -+ Comp (E)
defined by
A+B=f{ath : a €A and Db ¢ B}
is continuous;
(ii) the scalar multiplication *: R x Comp (E) -+ Comp (E)
defined by
aA = {aa : a € A}
is continuous;
(iii) the intersection N: Comp (E) x Comp (E) -+ Comp (E)
defined by
ANB=(c:ceA and c € B}

is upper semi-continuous.

Let A Dbe a bounded subset of a Banach space E.

The norm of A, |A|, is defined to be |A| = sup{|x]| : x € Al}.

Proposition 1.8. Let F be a mapping from a subset

A of a metric space X into Comp (E) and let D be a
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closed, bounded and convex subset of the Banach space E
such that 0 ¢ D. If F 1is upper semi-continuous in the
sense of Definition 1.4, then the mapping G from A
into the space of non-empty, closed, bounded and convex
subsets of E defined by

G(x) = |F(x)|D for all x €A

is also upper semi-continuous in the sense of Definition 1.4.

Proof: Let F be upper semi-continuous in the

sense of Definition 1.4 and X, €A be arbitrary. Since

D is bounded, there exists a positive integer n such that
%\D\ < 1., Given ¢ > O, by Definition 1.4, there exists

a § >0 such that F(x) c Be(F(xo)) for all x with

n
|x- O\ < 8§ For any x € D,

g . |F(x) |

F(x) |x = (|F(xJ) | + £
‘ ‘ ‘ 0‘ n (‘F(xo)|+

Slo

€ (|F(xg) | + 9D
since D 1is convex and contains O. Hence, we have
|F(x) |D ¢ (|F(xg) | + S)D
c |F(xgy) D + B _(0)
= B _(|F(xg) |D).
Therefore, G 1is upper semi-continuous in the sense of

Definition 1.4. O
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Let X,X‘ and X’ be complete metric spaces,
F be a mapping from X into Comp X° and F’ be a
mapping from Comp X’ into Comp X“. The composite function
G, denoted by G = F’F, is a mapping from X into Comp X"’
defined by
G(x) = F’(F(x)) for each x € X.
In the following, we shall consider the continuity properties

of composite functions. But first,

Definition 1.10. Let X and X’ be two complete

metric spaces. A mapping F : Comp (X) -+ Comp (X*) is said

to be increasing if for any A, B € Comp (X), A c B 1implies

F(A) < F(B).

Example 1.7. Let E be a Banach space. The mappings

F and G from Comp (E) x Comp (E) into cComp (E) defined
by

F(A,B)

M + uB where )\,4 € R

and G (A' B)

ANB

are all increasing.

Proposition 1.9. (Hukuhara [13]). If F and F°’

are upper semi-continuous (resp. lower semi-continuous)
and moreover, if F’ 1is increasing, then the composite
function G = F’F 1is also upper semi-continuous (resp. lower

semi-continuous) :



be

CC

m
be

fc

in
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g

In the above proposition, the assumption that F

be increasing is superfluous if F 1is continuous.

Proposition 1.10. (Hukuhara [13]). If F 1is

continuous and F’® is upper semi-continuous (resp. lower
semi-continuous), then the composite function G = F'F

is upper semi-continuous (resp. lower semi-continuous).

§2. Measurability and integrals of set-valued mappings:
The set-valued mappings that we shall consider in
this section are mappings from a subset A of R" into
Comp (Rn). It is known that for any finite dimensional
Euclidean space R" we can define a Lebesgue measure on
R (see [33]: pp.49-53). Then with no difficulty, one
can generalize the measurability of a single-valued mapping
f from A into R" to a set-valued mapping F from A

into Comp (Rn).

Definition 1.11. A set-valued mapping F from a

measurable subset A of R™ into comp (Rn) is said to

be measurable if the set (x € A : F(x) c B} is measurable

for every closed subset B of R,

Proposition 1.11. (Hukuhara [14]). If

F:ACR" S Ccomp (Rn) is upper (resp. lower) semi-continuous
in the sense of Definition 1.4 (resp. Definition 1.8), then

F 1is measurable.
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The following characterization of measurability

of set-valued mappings is due to Plis:

Theorem 1.2. (Plis [30]). Let F be a mapping

from a bounded measurable subset A of R" into Ccomp (Rn).
In order that F be measurable, it is necessary and
sufficient that for each ¢ > O, there exists a closed
subset A° of A such that F is continuous on A’ and

the measure of ANA’ is less than «¢.

The measurability of set-valued mappings can also

be defined in the following way:

Let (S,2, u) be a finite and positive measure

space. And let d denote the Hausdorff metric on Comp (E).

Definition 1.12. A set-valued mapping F : S -+ Comp (Rn)

is called u-simple if it assumes only a finite number of
values Kl'Kz""'Kr € Comp (Rn) and each of them on a

J-measurable set.

Definition 1.13. A set-valued mapping F : S -+ Comp (Rn)

is called u-measurable if and only if there exists a sequence

Fy

that is

of u-simple functions converging in u-measure to F;

P(F,F) = inf(a + U (s €5 :d(F (s),F(s)) >al),
a>0

* )
where u (D) = inf{u(E) E €2 and D c E}, converges to

O as k «+ o,
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Let £ = {xl.xz,...,xn} be an orthonormal basis
of Rn. If x ¢ Rp, then (al,az,....an) denotes the
coordinates of x with respect to the basis E£; that is

Definition 1.14. Let K ¢ Comp (R®). A point

Xq € K is called the lexicographic maximum of K if

_,0 0O o
X = (al,az....,an) such that

. o _ . _
(i) a; = max[a1 2 x = (0g,0.000)) € K}

o

(ii) o = max{ak : X = (al,...,an) € K and
_ 0 :
a; = o for i < KJ.

We shall use e(K,E) to denote the lexicographic

maximum of K with respect to the basis &.

Clearly, for any compact K, e(K,8) € K. The

following selection theorem is due to Olech:

Theorem 1.3. (Olech (29 ]). Let (S,2, u) be a finite

measure space. If F : S -+ Comp (Rn) is uy-measurable, then
the mapping e(F(s),§) of S into R" is J-measurable in

s for each fixed orthonormal basis £ of rR™.

Let T be a Lebesgue measurable subset of R and
F be a set-valued mapping from T into O(Rn). We use

J to denote the family of all point-valued mappings f
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from T into R"™ such that f is Lebesgue measurable
over T and f(t) € F(t) for every t € T. Then the
following definitions of the integral of F 1is a natural

generalization of the integral of a point-valued mapping:

Definition 1,15. Let F : T -+ &(R"), we define

the set-valued integral of F over T, (S)I& F(t)dt,
by
(s)jT F(t)dt = [jT f(t)at : £ ¢ J}.

The following are some fundamental theorems which

will be useful in our later development:

Theorem 1.4. Let F be a Lebesgue measurable

function from a measurable subset T ¢ R into Comp (Rn)
such that the measure of T is finite and F is integrably
bounded; i.e. there exists a point-valued function f£
which is integrable over T and |F(t)| < £(t) for all
t € T. Then,

(S)IT F(t)dt # 4.

Proof: In order to get a measurable selection of
F, it suffices to show that Definition 1.1l implies
Definition 1.13 when u is the Lebesgue measure m defined

on T so that we can apply Theorem 1.3.
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Let F be Lebesgue measurable. Given any positive
integer k > O, Dby Theorem 1.2, there is a closed subset
T’ =T(k) €T such that F is Hausdorff continuous on T°

and m(T\T’) < f%u As n(T) < », there exist a,b € R

such that T c [a,b]. Since T’ is compact, F is uni-

formly continuous on T’. Let a = ag < a; <...<a =b

be a subdivision of [a,b] with ay - ay_

j=1,...,m. Let Ij = [aj,aj_l], Tj =T N Ij and

'1‘j =T’nN Ij for j=1,...,m. We choose m so large such

1l . ’ .
that d(F(tl),F(tz)) < % if tl,t2 € Tj for some j.

= % (b-a) for

Define F, : T » Comp (Rn) by

Ek(t) = F(tj) for all t ¢ Tj if there exists
a tj € T{
(0} for all t ¢ T, if 'rj' = .
It is clear that F is a simple Lebesgue measurable function
and

p(Fy,F) = inf(a + mi{t eT : d(F (£) ,F(t)) > a))

a>0

o +m(t €T : d(F (£),F(t)) > =)
S 2% 2 alf (), 2K
1 1 1
Sx *x Tk

which converges to O as k + . Hence, F 1is Lebesgue

measurable in the sense of Definition 1.13. a

Theorem 1.5, (Aumann [ 1]). Let F : T 4 O(Rn)

such that F 1is integrably bounded and F(t) is closed

for all t ¢ T. Then, (S)j‘T F(t)dt is compact.
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The following theorem is an analogue of Fatou's

lemma:

Theorem 1.,6. (Aumann [1 ]). If {Ek};;l is a

sequence of set-valued functions that are all defined and
bounded by the same integrable point-valued function h

on a measurable set T c R, then

(s) lim sup F, © lim sup F, .
IT K 4o k X4 IT k

Theorem 1.7. (Hukuhara [14]). Let F be a

measurable set-valued function defined on a set T c R
with m(T) < o, If T = Ty U T2 such that Tl and T2

are disjoint and measurable, then

(s) jT F(t)dat = (s)‘[',l.1 F(t)dat + (s).[‘,l.2 F(t)dt.

§3. Topological degree of set-valued mappings:

One of the important theories in non-linear analysis
is that of the degree of a mapping as developed by Leray
and Schauder in 1934 (see [20]). Their work not only
generalized the Brouwer degree to a certain class of mappings
in Banach space but also made it possible to formulate more
powerful fixed point theorems. As our main interest is the
set-valued mappings, we shall omit the lengthy development
of the degree theory of point-valued mappings which was first
defined on finite dimensional linear spaces and then extended
to normed and locally convex linear spaces. An extensive
treatment of this subject may be found in [32],[26],[27],

and [ 19].
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The extension of the topological degree from
point-valued mappings to set-valued mappings has been
established also by many mathematicians, first by Granas
[ 10], then by Hukuhara { 13] and recently by Cellina and
Lasota [ 4]. Each of their approaches is different from
the others. The way we present here follows the approach
of Granas since it is convenient for our future purposes.
For simplicity, our topological degree will be defined for
a class of set-valued mappings in a Banach space E with

domains solid spheres in E.

The following notations are needed:

Ea ¢ an arbitrary Banach space.

P, = Ea\{O].
Va(xo,p) = {x ¢ E, : |x-x0| < p} where Xy € B,
and p > O.
Sa_l(xo,p) = (x € E, * |x-xo| = p} where X, € E
and p > O.

cf(Ea) = the collection of all non-empty closed convex

subsets of Ea

Definition 1.16. A mapping & : A © E, cf(Ea) is
said to be compact if for each subset D of A, §(D) is
relatively compact in E,. i.e. §(D) is compact. ¢ is said

to be completely continuous on A if § is compact and

upper semi-continuous in the sense of Definition 1.5 on A.



f




30

Definition 1.17. A mapping ¢ : A c E - cf(Ea)

is said to be a completely continuous multi-valued vector

field on A if it can be expressed in the form
p(x) = x - §(x) for all x € A,

where &(x) 1is completely continuous on A.

Definition 1.18. We say that a completely continuous

multi-valued field ¢(x) = x - §(x), x € A, does not
vanish and denote it by ¢ : A -+ cf(Pa) if the point O does

not belong to the set ¢(x) for any x ¢ A.

Let S, _; = S,_;(x5:P), V, =V (x,,p) and
fip: S,y cf(Pa) be completely continuous (resp. single
and multi-valued) vector fields. £ is called a selection
of ¢ if £(x) € p(x) for each x ¢ S,-1* BY (32], for

every such £, an integer v(f,sa_l) is defined and is

called the characteristic of £ on Sa-l' The following

theorems are all due to Granas:

Theorem 1.8. (Granas [10]). To every non-vanishing

completely continuous multi-valued vector field ¢ : S _; -+ cf(P)
we can assign an integer v(@,sa_l) called the characteristic

of the field ¢ on S, _; such that

v (o, Sa—l) = v(f, Sa-l)

for every selection f of (.
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Definition 1.19. We say that two non-vanishing

completely continuous multi-valued fields PPy ¢ A » cf(Pa),
@ (x) =x - §,(x), o@,(x) =x - & (x) are homotopic and
denoted by P = Pyr if there exists an upper semi-
continuous (in the sense of Definition 1.5) function
v(x,t) : A x [0,1] = cf(Ea) such that the following conditions
are satisfied:
(i) the point O does not belong to any set
y(x,t) = x - y¥(x,t) for all x € A and
t € [0,1];
(ii)  vy(x,0) = & (x), ¥(x,1) = §,(x) for all
X € A;
(iii) the set ¥(A,[0,1]) 1is relatively compact

in E_ .
a

Theorem 1.9. (Granas [10]). If two non-vanishing

completely continuous multi-valued vector fields
ey * Sa_1 -+ cf(Pa) are homotopic, P = Py then their

characteristics are equal, i.e. v(ml,sa_l) = v(¢2,8a_l).

Theorem 1.10. (Fixed point property, Granas [ 1l0]).

Let ¢(x) = x - §(x) Dbe a completely continuous multi-valued
vector field

P VQ. -+ Cf(Ea)
defined on a full sphere ﬁa = V_(x5.P) into cf(E). If

the restriction of ¢ on sa—l does not vanish,
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% = @\Sa_l : Sa_1 -+ cf(Pa) and v(qb,Sa-l) # 0, then
there exists a point x ¢ vd such that O ¢ @(x), i.e.

there exists x ¢ Va such that x ¢ §(x).

Although we do not include them here, there are
many important fixed point theorems, e.g. the Kakutani-
Ky Fan theorem (see [15] and [ 7]), that can also be
obtained without much difficulty from the view of topological
degree. We shall conclude this chapter with the following
extension of the well-known theorem of Borsuk on antipodes

(see [ 3]):

Theorem 1.11. (Granas [ 11l]). If a non-vanishing

completely continuous multi-valued vector field
® S,y cf(Pa). defined on a sphere S,-1 € Eye is odq,
that is

p(x) = -p(-x) for all x ¢ Sa-l'

then its characteristic V(q”sa-l) is odd.



Chapter II

CONTINGENT DIFFERENTIAL EQUATIONS

In an ordinary differential equation, the tangent
at each point is prescribed by a point-valued function.
This gives a vector field. In a contingent differential
equation, the tangent is prescribed by a set-valued
function. This direction field is usually called an
orientor field. This more general class of equations was
developed independently by A. Marchard and S.K. Zaremba
in the mid 30's and has then been intensively investigated
by many other mathematicians. In this chapter, we shall

study the fundamental theory of such differential systems.

§1. Existence and continuation of solutions:

Definition 2.1, Let I be an interval in R. A

mapping F from IxR" into Comp (Rn) is called an

orientor field.

Definition 2.2. Let x(t) be a function from an

interval I c R into R". For each to €I, let

x(t)-x(t.)
P(t) = o_ .

x-to

33
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The set D*x(to) defined by

D*x(t ) = {c € R® : there exists a sequence (12 . ec1
o © : eque Y lx=1

such that te #£ t., tk‘t ts and
k
P(t) - c}

is called the contingent derivative of x(t) at to.

Definition 2.3. Let x(t) : I + R and

F(t,x) : IxR" o Comp (Rn). The relation
(c) D'x(t) c F(t,x(t))

is called a contingent differential equation.

Let J be an interval in R and D c IxR". We
shall use the following notations:
Proj; D = {t € I : there exists an x € R such
that (t,x) € D}
Proj2 D= (x € R™ : there exists a t € R such

that (t,x) € D)

Ll(J) = the collection of Lebesgue integrable
functions from J into R"
C(J) = the collection of continuous functions
from J into R"
AC(J) = the collection of absolutely continuous
functions from J into R"
Cc(Rn) = the collection of non-empty, compact and

convex subsets of R".
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For each x(t) € AC(J), we denote by i(t) the
usual derivative of x(t). The abbreviation a.e. J

means almost everywhere in J.

Definition 2.4. A function x = x(t) defined on

an interval J c I into R" will be called a solution of

(C) in the sense of Marchand if

x(t) € c(J) and

D x(t) c F(t,x(t)) a.e. J.

Definition 2.5. A function x = x(t) defined on

an interval J < I into Rn will be called a solution of

(C) in the sense of Wazewski if

x(t) € AC(J) and

x(t) € F(t,x(t)) a.e. J.

Definition 2.6. A function x = x(t) defined on

an interval J c I into R" will be called a solution of
(c) 1if
x(t) € AC(J) and

x(t) € x(to) + (S)I: F(s,x(s))ds
(o)

for each t,t0 € J.

The contingent differential equation that we shall
study in this thesis are equations in which the orientor

fields are of the type defined as follow:
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Definition 2.7. We shall say that an orientor

field F(t,x) from Ian into cf(Rn) satisfies the

Carathéodory conditions provided

(i) F(t,x) 1is measurable in t for each

fixed x ¢ Rn:

(ii) F(t,x) is upper semi-continuous (in the
sense of Definition 1.4) in x for
each fixed t € I; and

(iii) for each compact subset D of Ian, there
exists a function m(t) = mD(t) which is
integrable over Proj; D such that

|F(t,x) | < m(t)

for all (t,x) € D.

A contingent differential equation is said to be

of Carathéodory type if its orientor field satisfies the

Caratheodory conditions.

Proposition 2.1. (Plis [31]). Let F(t,x) be an

orientor field from IxR™ into cc(R®) such that F satisfies
conditions (i) and (ii) in Definition 2.7. Then, there
exists a orientor field H(t,x) such that

(i) H(t,x) c F(t,x) for every (t,x) € Jan;

(ii) H(t,x) 1is upper semi-continuous (in the

sense of Definition 1.4) in x for each

fixed t € I;
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(iii) H(t,x(t)) is measurable in t for any
measurable function x(t) from I into
Rn:
(iv) H(t,x) is measurable in (t,x);
(v) there exists a countable dense subset B
of R" such that
H(t,x) = F(t,x)

for (t,x) < IxB.

Remark 2.l1l. For an orientor field F(t,x) satisfying

conditions (i) and (ii) of Definition 2.7, it may happen

that F(t,x(t)) is not measurable for a measurable function
x(t) as the following example shows. This example shows an
error in Proposition 5 of [17] by Kikuchi and also shows the

need for a theorem of the Plis type.

Example 2.1l. Let S be a non-measurable subset of

[0,1]. Define F(t,x) : [0,1] x [0,1] =+ cc(R) Dby
F(t,x) = [1,2] if t=x €S
[0,1] if t=x £s
[1] if t # x.

It is clear that F(t,x) is upper semi-continuous
(hence measurable) in t for each fixed x and F(t,x)
is upper semi-continuous in x for each fixed t. Moreover,
F(t,x) 1is measurable in (t,x) since the set {(t,x) :

t =x ¢ [0,1]} is a set of measure O in [O,1] x [O,1].
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Let x(t) : [0,1] 4 [0,1] defined by x(t) = t which
is continuous (hence measurable). However, (t : F(t,x(t)) c

[1,2]) = S is non-measurable.

Remark 2.2. If H(t,x) c F(t,x), then every

trajectory of H(t,x) 1is a trajectory of F(t,x).

Remark 2.3. Let F(t,x) Dbe an orientor field

satisfying the Carathéodory conditions. It follows from

Theorem 1.4 and (iii) of Proposition 2.1 that
(8)[ F(t,x(t))at # &
1
for any measurable function x(t) from I into R® with

m(I) < o,

The following proposition will allow us to express
a contingent differential equation of Caratheodory type in

the ordinary differential form as well as the integral form:

Proposition 2.2. Let F(t,x) be an orientor field

from Ian into cc(Rn) such that F satisfies the
Carathéodory conditions. Then, Definitions 2.4-2.6 are all

equivalent.

Proof: The equivalence of Definition 2.5 and 2.6
is evident. It is clear that Definition 2.5 implies
Definition 2.4. When F(t,x) € cc(Rn). Definition 2.4

implies Definition 2.5 which is due to Wazewski (see [37]). O
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When a contingent differential system is defined,
the immediate questions that one may ask are:

(i) when does a solution exist?

(ii) How can a solution be continued?

(iii) Does the family of solutions have certain
properties of convergence and continuous
dependence upon initial conditions?

(iv) what can we say about the family of solutions

emanating from a given initial point?

The next theorem which is due to Plis gives a complete

answer to the first two questions.

Definition 2.8. Let S be an open subset of Ran

and F(t,x) be an orientor field from S into cc(Rn). A

solution x(t) defined on an open interval I is called a

non-continuable solution of (C) if 1lim (tn,x(tn)) € S implies
Ny

lim t_ € I. In this case, I is called a maximal interval

nao

of existence of x(t).

Remark 2.4. (i) From the existence theorem of Plis,

we can see that a maximal interval I exists and is unique
and we shall denote it by I = (0 ,w').

(ii) If (w ") is the maximal interval of
existence of a solution, then (t,x(t)) tends to the boundary

S of S as t 4w or w+. To say (t,x(t)) tends to 23S
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as t -« w+ (resp. t + w ), we mean that either wh = o

(resp. w = -=) or for any compact subset D of S,
(t,x(t)) £ D when t is sufficiently close to w+

(resp. w ).

Theorem 2.1. (Plig [31]). Let F(t,x) be an orientor

field from an open subset S c RxR® into cc(Rn) such that
F(t,x) satisfies the Carathéodory conditions. Then, for
each point (to,xo) € S, there exists at least one non-

continuable solution x(t) of (C) such that x(to) = X,

Remark 2.5. Actually, Plid proves this theorem

under weaker assumptions. Instead of conditions (i) and
(ii) of Definition 2.7, he only requires that F(t,x) is
upper semi-continuous for almost all t and that it contains
an orientor field G(t,x) which is densely measurable in t

on S.

§2. Convergence properties of solutions:

The convergence property is one of the most
important properties in differential equations. As it was
shown by Strauss and Yorke (see [34]), much of the fundamental
theory in ordinary differential equations follows directly
from a convergence theorem. Kanmke has given a convergence
theorem (see [12]) in which the vector fields are assumed

to be continuous. 1In [34], this theorem was proved with vector
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fields of Caratheodory type. For contingent differential
equations, Zaremba has shown a convergence theorem (see [41]).
And later, Bebernes and Schuur also established a Kamke-

type convergence theorem of initial values for contingent
differential equations in which the orientor fields are
assumed to be upper semi-continuous (see [ 2]). In this
section, we shall consider contingent differential equations
of Carathéodory type with certain perturbation and investigate

the convergence properties of their solutions.

. N ® (-]
Proposition 2.3. Let {An}n=l and (B_} -1 be

two sequences of subsets of R, Then,
(i) if An c Bn for all n=1,2,..., then

lim sup A, < lim sup Bn:
N Nopo

.. . [- -} @®
(ii) if {An]n=1 and [Bn}n=1 are bounded, then

lim sup [An+Bn] c lim sup A+ lim sup B .
N Ny Na4®

Proof: (i) follows immediately from the definition
of limit superior and (ii) follows from the Bolzano-Weierstrass

property of ) O

For any A,B € Comp (Rn), the escape of A from B
is defined and denoted by
p(A,B) = sup d(a,B)

a€A

where d(x,B) = inf |x-b|. It is obvious that p is not
beB
symmetric but does satisfy the triangle inequality.
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Definition 2.9. Let {FX}XGA

orientor fields from Ian into Comp (Rn). We say

be a family of

[FX]XGA is an equi-upper-semi-continuous family at
Xq € R" if for each e > 0, there exists a § = 5(e,xo) > 0
such that |x-x.| < &6 implies

(0)

(Y (F)\(t,X) :Fx(tcxo)) < €

for all t € I and for all ) € A.

If [FX}XEA is equi-upper-semi-continuous at every

x ¢ R®, we say (F.)

2 nen is equi-upper-semi-continuous on rR".

Proposition 2.4. Suppose that

(i) F_(t,%) : IxR" + comp (R®) such that (F o g

is an equi-upper-semi-continuous family on R%;
(ii) there exists a Fo(t,x) : IxR" -+ Comp (R®)
such that
n
p(Fn(t'x)lFo(tlx)) + 0
for all (t,x) e IxR";
n
(iii) @, (t) : I + R" such that g (t) =+ g (t) for

all t ¢ I.

Then, 11§4iup Fn(t,mh(t)) c Fo(t,¢b(t)) for all t ¢ I.

Proof: For any t € I, 1let y(t) € lim sup F (t,¢h(t))
n o n

be an arbitrary element. By definition, there exists a

subsequence yn.(t) € Fn.(t’qh.(t)) such that Yn.(t) 3 y(t).
J J J J
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Now, consider the sequences [Fn (t.qk(t))};;l and
J

k
j=1,2,***. Since ¢k(t) -+ ¢b(t), it follows from the

equi-upper-semi-continuity of an ];=l that for any ¢ > O,
J
there exists a K = K(eg,t) .- O such that k > K implies

€
(1) P B, (Erqe (1) By (Lrge(t))) < 3

j
for j =1,2,°***. It follows from Y (t) =+ y(t) and
3
(t) € Fn (t‘¢h (t)) that for any ¢ > O, there exists
3 3 J
a J =J(e,t) >0 such that j > J implies

Yn

(2) P(Y:Fn.(t:cpn_(t))) < ie .
J J

Now, for each ¢ >0 and t ¢ I, we pick r > max (J,K].
Then, by (1) and (2) we have

a(y., Fn

(tocpo(t)) = P(Yan (tocpo(t)))
r r

S p(Yanr (t, Cpnr(t) ))

+ p(F, (t.th(t)).Fnr(t.qb(t)))

+ = g.

Nim H

£

2

Hence, p(y,Fn (t,¢b(t)) + 0. By assumption (ii), we have
r

N A

a(ysFo(tra(6))) = ply,Foltsgo(t)))
< p(Yan (t'%(t)))
r

+ P(F, (tiq(£)),Fy(t,gy(t))) 3 o.
r

It follows from the compactness of Fo(t'¢b(t)) that

y(t) € Folt, g (t)) as desired. O
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Proposition 2.4 is not true without
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assumption (i) even in the case of point-valued functions.

Cconsider

Fn(t,x) : [1,2] x R + R defined by

Fn(t,x)

ntx
5573 for n=1,2,...
t +n2x2

and Fo(tgx) = O.

cpn(t) : [1,2]
q, (t)
and g, (t)

-

R defined by

1
r-lt for n = 1'2'000

o.

It is easy to see that F and @, are all continuous

n
for n=0,1,2,°**. Also, p(Fn(t.X).Fo(t.X)) + O and

k
% * ¥ uniformly on

a .
[1,2]. However, {Fn]n=l is not

1

an equi-upper-semi-continuous family. Let ¢ = 3 and take

Xx. =0, For any § > O, choose N so large such that

o
_ 1
Let X, -nl where n;
F_ (t,x
n1 1

Hence, p(Fnl(t,xl), F

n

> N. Then |xl-xo| =
_t 11
V=m 2375

tT+1 t7+1

(t,0)) > % = ¢. Therefore,
1

is not equi-upper-semi-continuous at O. By a simple

calculation, we have

1
N

‘x1| < § and

(F 1>

n

lim sup F_ (t,q (t)) = (%} Z (0] = Fylt,gy(t)).

N

n=

= <

1

6.
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Proposition 2.5. Suppose that

(i) an}:=1 is a family of orientor fields
from IxR" into Comp (R™) ;

(ii) there exists an orientor field Fo(t,x)
from Ian into Comp (Rn) such that
Fo(t,x) is upper semi-continuous (in
the sense of Definition 1.4) in x for
each fixed t € I:

(ii1i) p(Fn(t,x),Fo(t,x)) 2 O uniformly with
respect to x;

(iv) @ (t) : I +R® such that g (t) 3 g (t)

for each t € I.

Then, llﬁaiup Fn(t,wn(t)) c Fo(t,¢b(t)) for any t ¢ I.

Proof: For any t € I, 1let y(t) € lim sup Fn(t'“h(t))

N
be arbitrary. By definition, there exists a subsequence

[Fnj(t'“hj(t))};=l of [Fn(to¢h(t))];;1 such that

(1) ply(t),F, (t,q (t))) 3 o.
j j

Given ¢ . 0, by (1), there exists an integer J = J(e,t) > O
such that j > J implies

(2) P(Y(t):Fn.(tonn.(t))) < §€ .
J J

By assumption (iii), there exists an integer N = N(e,t) > O
such that n > N implies

(3) p(F, (t,x), Fy(t,x)) < §

for all x ¢ rR". Now, let us choose k =k (e, t) so large
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that X > J and n, > N. By (2) and (3), we have

d(y(t).FO(t.q&(t)) = p(y(t).Fo(t.%k(t)))

L p(y(t),F_ (t, (t)))

= m - Ty

+ p(F_ (t, (t)),F.(t, (t)))

m " Py 0"~

< f + § = €.

Hence,
X
(4) d(Y(t)oF (to (t))) -+ 0.
(o] ¢hk

Applying (4) with assumptions (ii) and (iv), we have

d(Y(t):Fo(thPo(t)))

PUY() ,Fy(t, gy (t)))
_<_ P(Y(t) 'Fo(t'q’nk(t) ))

k
+ P(Folts gy (8)).Foltgo(t))) = 0.
It follows from the compactness of Fo(t,qb(t)) that

y € Folt,gy(t)) as desired. O

Remark 2.6. The previous example shows also that

it is essential that the convergence in assumption (iii) of
Proposition 2.5 must be uniform in x. In Example 2.2,

1 l
take t=1 and let X, = = Then, Fn(l'xn) =3 for all

n=1,2,***. Therefore, if we choose ¢ = >, it is clear

N =

1
that we must take N > n so that p(FN(l,xn), Fo(l,xn)) < 5= e

The following two examples will show that Propositions
2.4 and 2.5 are generally two different sufficient conditions
for the limit superior of a sequence of orientor fields to

be contained in their limit function.
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Example 2.3. cConsider the orientor fields

Fn(t.x) : RxR 4+ cc(R) defined by
Fn(t,x) = [sin %?, 1] for n=1,2,...
and Fo(t,x) = [0,1].
It is clear that F is upper semi-continuous for n =0,1,2,...
and p(F, (t,X), Fo(t,x)) 30 for all (t,x) € RxR.
(i) {Fn}:;l is equi-upper-semi-continuous in x
on R : For any (t,x) € RxR, since sine
function is continuous, given ¢ > O, there
exists a § = §(e, (t,xX)) > O such that
ly=x| < & implies |sin ty - sin tx| < e.
For any positive integer n, |y-x| < &
implies \% - gl < £ < & which implies
|sin %¥ - sin %?1 < e. 'Therefore, for each
e >0 and x € R, we have p(Fn(t,y),Fn(t,x)) < €
for all y with |y-x|{ < 6 and n =1,2,°-".
(ii) p(F,(t.x),Fy(t,x)) % 0 is not uniform with
respect to x : Given t € R, for every

3Tn

positive integer n, choose X, =3¢ ¢ We

have

p(F, (t,x.),Folt,x ) = p([-1,1],[0,1])

]
[

Hence, the convergence is not uniform.

Example 2.4. cConsider the orientor fields

F (t,x) : [0,1] xR = cc (R") defined by
Fn(t,x) = [-1, sin nx + E sin x] for n =1,2,...

and Fo(t,x) = [-1,1].
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It is clear that Fo is continuous for all n = 0,1,2,°°".
(i) p(F,(t,%),Fy(t,x)) 3 O uniformly with
respect to x : Clearly,
p(Fn(t,x).Fo(t.x)) < 5 ﬁ O 1is independent
of x.
(ii) {Fn]:=1 is not equi-upper-semi-continuous :
Consider (t,0) € [0,1] x R. Let 0< e¢< 1

be given. For any § > O, choose n so

large such that %%-( 5. We have
T
P (Fn (t'ﬁ) an (t,O))
. t . . t .
= p([-1, sin g + = sin g],[-l, sin O + = sin 0])
=p([-1.1+ %), [-1,0]) =1+ 5 >1=c¢.

Hence, {Fn};=1 is not equi-upper-semi-

continuous at O.

Definition 2.10. Let be a sequence of

{¢h]:;0

functions with domains Dcch C R. We say ¢, converges
compactly to %o’ denoted by P < %o if for any compact

subset K of D , K¢ Dcp except at most a finite number
n

of D and o, a % uniformly on K.

For any open subset U of RxR", let My denote
the family of all orientor fields of Carathéodory type
from U into cc(Rn). We shall consider the following

contingent differential equations with initial conditions:
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(1) x(t) € A(t,x(t)) + F (t,x(t)) x(t ) = x

n

%o

(2) X(t) € A(t,x(t)) + Fo(t,x(t))  x(t)

Theorem 2.2 (convergence). Suppose that

(i) U and U, are open subsets of RxR"
for n=0,1,2,... such that Uy €U, c U
except for a finite number of Un's:

(ii) A € ”b and Fn € mun for n=0,1,2,...;

(iii) (Fn};;l is an equi-upper-semi-continuous
family on Proj 2 Uo such that
p(Fn(t.x),Fo(t,x)) %0 for all (t,x) € Uy’

(iv) for each compact subset Q < Uo, there
exists a function m(t) = mQ(t) such that
m(t) is integrable over Projj; Q and
\Fn(t.x)| < m(t) for all (t,x) € Q and
for all n =0,1,2,...:

(v) (tn.xn) € Uh for n=0,1,2,... such that
(%) = (tgex,).

Then, for every sequence (qh]:;l of non-continuable solutions

of (1), there exists a subsequence {Qn );=1 and there exists

a non-continuable solution 9y Of (2) such that Py S %o
3

Proof: Let [¢h}:;l be a sequence of non-
continuable solutions of (1) with interval domains

{Dcpn = (W;a WI) }:l;l.
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(i) For any compact subset Q c U, with

(o]
(to.xo) € Int Q, there exists an open interval IQ such
that t0 € IQ c (q;.w:) except for a finite number of n:

By assumption (i), Q €U for all n large enough. Define
t t
L(t) = It L(s)ds and M(t) = It m(s)ds
(o) (o)

where L(t) = LQ(t) and m(t) = mQ(t) are integrable functions
that bound A(t,x) and Fn(t,x), respectively, on Q. We
note that L(t), M(t) € AC on Projl Q. Let a > 0 be

such that the set Wd

W= [(6,%) ¢ |t=t | < o, |x=x5] < 3 dlty.x,),2Q)

is contained in Q, where 3Q denotes the boundary of Q.
Let O < B < a be such that ‘t-tol < P implies

‘L(t)‘ + ‘M(t)‘ < % d((tooxo).bQ). Define
Wy = ((t,x) : [t-t5] < B. |x=x45]| < % d((tyex,) . Q) ).

Clearly, we have Wb c Wd cQc UO. By assumption (v), there
exists an integer N > O such that (tn.xn) € Wé for all

n > N. Since @ is a solution of (1), we have

‘¢h(t)-xn‘ < ‘I:n L(s)ds| + ‘I:n m(s)ds |

|L(e)-L(t ) | + |M(t)-M(t)) |
< Ju(e) | + M(e) |+ L) | + [M(E) |

L al(ty,x,), ) + 3 d((ty,x,), %)

N\

8
Lagt,x),0)
4 o’'"o’!’
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for all n >N and all t such that |t-to| < B. Hence,

lo, (B) %) | < o (B) x| + |x x|
< F Alltgxg) s 30) + 7 dl(ty,x,) s )
1
=3 d((tocxo) » 3Q)

for all n >N and all t such that \t-to\ < B. This
shows that (t,¢n(t)) € Wﬁ for all n >N and all t such
that |t-t0| < B. Since @, is non-continuable, this shows
that ¢h(t) exists at least on the interval (tO-B,tO+B)
for all n > N. This proves (i).

(ii) For any compact interval J c IQ with
t, € Int J, [¢n(t)}:=l has a subsequence [¢hj(t)};;l which
converges uniformly to some function ¢,(t) on J; Without

loss of generality, let J = [a,b] c I and to € (a,b).

Q
Clearly, @ is defined on [a,b] for n > N. 1In part
(i) of our proof, we have shown that ((t'¢h(t)) : t € IQ.
n>N} €W cQ. Since Q is compact, [¢h}n=N+1 is
uniformly bounded on [a,b]. Also, by Proposition 2.2, the

solution @y of (1) can be expressed as
o (8) € %, + (8) [ [Alssqy(s)) + B (siq,(s)) Jas

for t ¢ [a,b] and n > N. It follows from Theorem 1.7
that

() = gy (s) € () [ [Alr g, (1) + Fy(r.q (x) ]dr
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for any t,s ¢ [a,b] and n > N. Hence, we have

lo, (B) -0, (s) | < |I:[£(r) + m(r) ]dr|

< |L(e)-L(s) | + |M(t)-M(s) |
for any t,s € [a,b] and n > N. As L(t), M(t) € ac([a,b])
and are independent of n, {¢h}:=N+l is equi-continuous
on [a,b]. It follows from Ascoli's that there exists
a subsequence [¢h.(t)};;1 which converges uniformly to
some function ¢b(t) on [a,b].
(iii) ¢b(t) is a solution of (2) on [a,b]:

consider the limit superior of both sides of the equation

t
g, () €x  + () [Als.q (s)+ F  (s.q (s)]ds
J J nj J J J
where t ¢ [a,b]. By Proposition 2.3 (i), we have

lim sup g (t) < lim sup{xn +(S)_ft [A(s,q, (s))
o J Je J J J
+ Fn.(s,¢h.(s))]ds].
J J
Since A(t,gn_(t)) and F (t,cpn (t)) are integrably bounded
3 j j
by £(t) and m(t) respectively for all t ¢ [a,b], we

can apply Proposition 2.3 (ii) and get

lim sup @ (t) c lim sup x + lim sup(S)j't [A(s,q, (s))
Jao  Tj e j 34

J
+ F (s, (s)) ]ds
j j
c lim sup x_ + lim sup{(S)J‘t [A(s,q, (s))
) ] Jam j

+ F_ (s, (s)) ]ds

ny ' ¥ny
tn.

+ B([. ) [2(s)+m(s) ]as))
o
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c lim sup x_  + lim sup(s)ft [A(s,qh (s)

je J Je j
+ Fn.(s,¢h.(s))]ds
] t
+ lim sup B(It I[ £(s) +m(s) ]ds)
jae

t
where B(_['t [ 4(s)+m(s) ]ds) is the solid sphere in R"
(0]

centered at O with radius |I: [L(s)+m(s)]ds|. Since
(o)

j . .
Qn.(t) -+ ¢b(t) uniformly on [a,b], t 3 t X 1 x
J

5 o’ ny (o}
and by Theorem 1.6, we have

oo (t) € x, + (S)j't 11?42?p[A(s,¢hJ(s)) + F J(s.cgn (s)) ]ds
+ {0}.

Define Gn (t,x) = A(t,x) + Fn (t,x) for j=1,2,... and
j J
Go(t,x) = A(t,x) + Fo(t,x).

By assumption (iii), [Gn ];;1 is equi-upper-semi-continuous
j .
on R" and p(G, (t,x),Go(t.X)) J 0. It follows from
3
Proposition 2.4 that

lim sup G, (t,q, (t)) < Gy(t, qy(t)).
Joe J J
Hence,

() €%y + (S)I:O[A(Somo(S)) + Fy (s, qp(s)) 1ds.

Therefore, ¢b(t) is a solution of (2) on {a,b].

(iv) qb(t) can be extended to IQ = (ao,bo) defined

in part (i) such that qb(t) is a solution of (2) on IQ

and [¢h]:=l has a subsequence such that

@®
(o0, x) k=1
Prk,x) 3 ¥o ©On IQ: From what we have shown above, we
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know that for every compact interval [a,b] such that
ty € (ao.bo) and [a,b] € (ao,bo), {“’n}n=1 has a

subsequence which converges compactly to a solution %
of (2) on [a,b]. Let [[ak,bk]]]:’=l be a sequence of

compact intervals such that t, € (a.B ), [a.b ] c(a ,.B ;]

- -]

and (ay,by) = kL—Jl [ay By 1.

© @
Let {Qp(l'r) },-; be a subsequence of (g} _,
r

such that ®1,r) * ?(0,1) uniformly on [a;,b;]. If
(“’(k,r)}::;l is chosen and Pae,r) * P0,x) Uniformly on
[a /By ], we pick a subsequence [cp(k+l,r)]:=1 of
{CP(k.r)};;l such that a7 r) 3 ®(0,x+1) Uniformly on
[ak+1'b§<+1]’ Clearly, P(0,k+1) is a solution of (2) on
(a1 P41] 20 @ 00y 2D ] = 9(g,x) for k =1,2,---.
Define cpo(t) : (ao.bo) + R? by cpo(t) = 9(0,k) (t) where
k 1is so large that t ¢ [ak'hk]' From our selection process,
it is clear that cpo(t) is a solution of (2) on (ao,bo)
and {q)n}:::l has a subsequence {@('k,k)]l::l such that
P, %) S @ ©On (ao,bo).

(v) Let fQ be the maximal interval which is

~

contained in Projl Q and to € Int IQ such that a solution

and {cpn}:=1 has a

~

cpo(t) of (2) is defined on IQ

subsequence which converges compactly to ¥y ©On ;Q’
INQ is closed. Moreover, if a and b are the left and
right end points of fQ

to 30 as t +a +0 or t +b - 0: We shall consider the

Then,

respectively, then (t,cpo(t)) tends

~

right end point f only. The left end point a can be
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proved similarly. Since @ is a solution, for

~

; < tl < t2 <b and n=0,1,2,..., we have

t t
lon (1) =0 (£,) | < U‘ti t(s)ds| + Uti m(s)ds |
< L(e)=L(t) | + |M(t,)-M(t)) |.

As L(t), M(t) € Ac((a,b)), @, (t;) fqpn(tz) + 0 as
tl.t2 + b - 0. By the Cauchy criterion for convergence,

%(S-o) exists for all n =0,1,2,***. Also lim (t,q (t)) €Q
t+b-0
since Q 1is compact and (t,qh(t))e Q for all t ¢ (a,b)

and n=0,1,2,°**. Define

En : (5;5@ -+ Proj2 Q by

(L) = @ (t)  if t € (a,D)
v, (t) = ¢ (b-0) if t=5F

where n =0,1,2,-++. By the existence theorem of Plis, 0
can be extended so that (t'¢h(t)) £ Q. And E% is a
continuous extension of ¢ in Q. Hence, E% is a solution
of (1) for n > 1 and of (2) for n=0. Consider the
subsequence {qﬂk,k)};;l defined in part (iv). By a

similar proof as in part (ii), {Gkk k)}: 1 has a subsequence
{¢(r r)}r 1 such that m(r r) 28 @ uniformly on [c,b],

where a < ¢ < b. Since P(r,r) qb on [c,b), = ¢b

~

It follows that IQ must contain b. Hence, IQ is closed.

~ ~ r ~ ~
Clearly, w(r,r)(b) = 8. +Ey = qb(b). Suppose
lim  (t, g (t)) € Int Q, i.e. (5.50(5)) € Int Q. Then,
t+b-0
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following our previous proof, we can use {(b 3 )}n_o as

our new sequence of initial points and extend I. to the

Q
right which contradicts the maximality of 55.
(vi) Let f be the maximal interval of the fb's where
Q 1is a compact subset of Ub and (to,xo) € Int Q. Then
I is always open, say, I = (w',m+x (w-,w+) c (lim sup w_

noo n

lim inf u;). Furthermore, there exists a non-continuable
N
. . - 4
solution % of (2) defined on (w,w ) and {qh}:—l has

a subsequence [q ]J _1 such that ¢h S qu ©n (o wh):

Let ka}k =] be a sequence of compact subsets of U, such

that (to,xo) €Int Q., Q <Q., and U = U Q. - For

each Qk' we can find a maximal interval iék and a subsequence
r .
[q’(k r)}r 1 of {(pn}n _1 such that Pk, r) uni-

formly on I
%

the diagonal process as in part (iv), we get the desired

®(0,k)
. Choosing {¢(k r)}r -] inductively and taking

result. (O

The following is another convergence theorem which
is parallel to the previous one. The proof is analogous.
The only difference is we shall apply Proposition 2.5 instead

of Proposition 2.4. We give the statement as follow:

Theorem 2.3 (convergence). Suppose that

(i) U and U, are open subsets of RxR" for

n=20,1,2,... such that Ub c Un c U except

for a finite number of Un's-
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(ii) A ¢ Wb and Fn € Whn for n=0,1,2,...:

(iii) p(F, (£, %), Fy(t,x)) % 0 uniformly with
respect to x for x ¢ Proj2 UO:

(iv) for each compact Q < Ub, there exists a
function m(t) = mQ(t) such that m(t)
is integrable over Proj1 Q and
‘Fn(t,x)l < m(t) for all (t,x) € Q and
all n=0,1,2,...;

(v) (tn'xn) € Un for n=0,1,2,... such that
(tn'xn) 5 (to,xo).
Then, for every sequence {qh}:=1 of non-continuable solutions

of (1), there exists a subsequence [qh ];=1 and there exists

a non-continuable solution % of (2) such that @ < %*
j

§3. Continuous dependence of solutions on initial conditions
and parameters:

Let U be an open subset of RxR" and A be a
domain, A = {) : |x-x0| <e ¢ >0} cR. We define an
orientor field with a parameter F(t,x,)\) : UxA - cc(Rn) by

F(t,x,)\) = A(t,x) + Fl(t,x)
and we assume that

(i) for each )\ € A, U is an open subset of

N
n+l
R such that U c U, cU for all )\ € A;

Ao A

(ii) A € Wb and Fk € Wb for all )\ € A;
A
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(1ii) {FX}XEA

family on Proj, U)\0 such that

(t,x)) 2+ 0 as A =+ )\ for

is an equi-upper-semi-continuous

p(Fx(t,x),F

XO 0
all (t,x) € U_ :
‘o
(iv) for each compact subset Q c U*o' there
exists a function m(t) = mQ(t) such

that m(t) 1is integrable over Proj1 Q
and \Fx(t,x)‘ < m(t) for all (t,x) €Q

and all )\ € A.

We shall call this family of orientor fields

(F(t,x,2) : A € A} family (P) and consider the following

contingent differential equation with parameter:

(P)\) ;{(t) € F(tixl )\)I X(t)\) = x)\o

(t, »x,. ) €U, Dby the
o o ‘o

(t. ,Xx. ) we mean the set
o o

and ¢ is a solution of (PX ) ).

o 0

For any interval I, we define z+(I) =zt ] (Ian).

Definition 2.1l1l. For each

positive solution funnel through

z" = ((t,p(t)) : t >t

The negative solution funnel 2 and 2 (I) can be defined

similarly for t S'txo. And we define the solution funnel
+

z=2" Uz and z() =z uvuzT(W.

The next theorem gives some answer to question (iv)
in §1. This theorem though it follows immediately from Theorem
2.2 is actually a special case of Theorem 5 of [6 ] in which

the equations are considered in Banach spaces:
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Theorem 2.4. (Chow and Schuur: [6 ]). If I is

a compact interval on which all solutions of (Pxo) exist,

then z+(I), 7z (I) and 2(I) are all compact.

Theorem 2.5. (continuous dependence). Suppose that

all solutions of (P\o) exist on [a,b]. Then, for each
e > 0, there exists a § > O such that for any (tx,xx,x)
satisfying

pU(ty,x,).2([a,D])) + A=) < &
each non-continuable solution @x(t) of (Px) exists at

least on [a,b] and there exists a solution (t) of

@
O
(P, ) such that
o

\mx(t)-mx (t)| < ¢ for all t ¢ [a,b].
(0]

Proof: Suppose the first conclusion is false. Since

Zz([a,b]) 1is compact, there exists a sequence (tkn'xk ,xn) 2
n
(To.go,xo) such that (70,50) € Z([a,b]) and a sequence
of non-continuable solutions ¢h(t) of (Pxn) with maximal
interval of existence (u;,u;) and an integer N > O such
that [a,b] & (m;,w;) for all n > N. By Theorem 2.2, there
. @ - -]

exists a subsequence [¢h.(t)}j=1 of (¢h(t)}n=l and a

non-continuable solution ¢b(t) of

(P;o) x(t) € F(t,x(t),ag)  x(15) = &4

with maximal interval of existence (uB,uG) such that

c -+ . . :
3 on (w.,w.). Since (P’) is (P, ) with only
., ? D o’ Yo o %

the initial condition changed and this initial point

(Tonqb(To))= (To.go) € z([a,b]), % is actually a non-

continuable solution of (P, ). By our assumption, exists

%

%o
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at least on ([a,b]. Hence, [a,b] c (w; .u; ) for j
I
large enough. Choosing j so large that nj >N, we

get a contradiction.

The second conclusion is evidently true. Suppose
not. We consider the same sequence of solutions [mh};;l
as before and claim that there exists an integer M > O
such that for each n > M there exists a tn € [a,b] with
lo, (t,) ~9o(t )| 2 ¢ for some ¢ > 0. However, by Theorem
2.2, {¢h}:;l has a subsequence [@n.};;l which converges
uniformly to 9 ©n [a,b]. Hence, |th(t)—qo(t)\ < ¢ for
all t ¢ [a,b] and for all j sufficiently large. Choosing

j so large that nj > M, we get a contradiction again. (O

Remark 2.7. Theorem 2.5 is an extension of Theorem 4

and Corollary 4.2 in [34] to contingent differential equations.

Remark 2.8. It is clear that if we replace

assumption (iii) of family (P) by
(iii) p(Fx(t,x),Fxo(t,x)) + O uniformly with
respect to x, for x ¢ Proj2 U)‘o as
A~ KO'

then Theorem 2.5 also holds.

Next, we shall define another family called family

(Q) of orientor fields. Let U be an open subset of
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RxR", [a,b] c Proj; U and A= (): |x-xo‘ <ec, ¢ >0} cR.
Let
F(t,x,\) : UxA =+ cc(Rn) defined by
F(t.x,)) = F(t,x) + G, (t)
and assume that
(i) F e mys
(ii) for each )\ € A, Gx(t) is a continuous
function from Proj; U into cc(Rn);
(iii) J: |Gx(t)|dt -0 as 4\,

(iv) {Gk(t)]XEA is bounded on [a,b].

Then we shall consider the following contingent
differential equations with parameter:

(Qk) x(t) e F(t,x,)) x(tx) = x,.

It is easy to see that family (Q) satisfies all the
conditions in family (P). Therefore, Theorem 2.5 holds true

for family (Q). We have the following theorem:

Theorem 2.6. (continuous dependence). Let

F(t,x) : U cc(Rp) satisfy the Carathéodory conditions

on an open subset U of RyR" such that all solutions of

(E) x(t) € F(t,x(t))  x(tg) = x4

exist on [a,b]. Then for every ¢ > O, there exists a § > O

such that for every continuous G from [a,b] into cc(Rn)
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which satisfies

p((1,8),2([a,b])) + [° |a(t) |dt < s,
a
each solution of (¢(t) of
x(t) € F(t,x(t)) + G(t)
through (71.,£) can be extended to [a,b] and there exists
a solution y§(t) of (E) such that

lo(t)-y(t) | < ¢ for all t ¢ [a,b].

Remark 2.9. Theorem 2.6 extends a result of

Yoshizawa (see [39] p.22) and also Corollary 4.3 of Strauss

and Yorke (see [34]) to contingent differential equations.



Chapter III

GENERAL BOUNDARY VALUE PROBLEMS FOR

CONTINGENT DIFFERENTIAL EQUATIONS

It is well known that fixed point theorems play
a main role in the proof of existence theorems of
differential equations. The papers of Granas (see [1O]
and [11]) have extended the notion of topological degree
to set-valued mappings and the fixed point theorems of
Rothe and Borsuk have also been successfully established
for the set-valued case. In this chapter we shall prove
an existence theorem of contingent differential equations
by using the degree theory described in §3 of the first
chapter and we shall see some of its applications. The
results obtained here are motivated by Theorem 2.1 and
Theorem 2.2 of [12] (see p.413) and are also generalizations

of the results in [23].

§l. A fixed point theorem:

Let E be a real Banach space with norm |-|.

Definition 3.1. A mapping F : E + cc(E) is

called homogeneous if F(\x) = \F(x) for every real )

and every x € E.

63
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Lemma 3.1. (Chow and Lasota [ 5 ]). Let
F : E » cc(E) Dbe homogeneous and completely continuous
with the property that
X € F(x) »= x = 0.
Then, there exists a constant a = a(F) > O such that
X €F(x) +b = \x\ S_a‘b‘

for each x ¢ E.

Lemma 3.2. Let F(Xx) =x - V(x) and G(x) = x - W(x)
be two non-vanishing completely continuous vector fields
mapping a bounded subset A of E into cc(E) such that
G(x) c F(x) for every x € A. Then, F and G are

homotopic on A.

Proof: Define ¢&(A,x) : [0,1] x A 4 cc(E) by
(0 x) = [AW(x)+(1-2) |V(x) U] n V(x)

where U is the closed unit ball centered at O in E.
Then we define

e(\x) : [0,1] x A 4 cc(E) by

p(AX) = x = §(N\,X).

Clearly, & (hence ¢ is well-defined. It follows from
Propositions 1.7, 1.8 and 1.9 that § (hence ¢) is upper
semi-continuous. The following properties of ¢ and ¢
are immediate:

(1) #(x) c #(r’%Wx) if A > A":

(ii) #(0,x) = v(x) and §(l,x) = wW(x):
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(iii) for each 1\ € [0,1], o(A/X) is non-
vanishing on A : This follows from
the fact that o()\,x) c @(O,x) = F(x)
which is non-vanishing on A.

(iv) &([0,1],a) 1is relatively compact : Since
V(x) is a compact mapping, V(A) is
relatively compact. It follows from

$([0,1],A) c #(0,A) = V(A)

that §([0,1],a) is relatively compact.

Therefore, F and G are homotopic on A with

homotopy ¢. O

Theorem 3.1. (fixed point property). Let F,G,

H and J : E 4 cc(E) be completely continuous such that
(i) F 1is homogeneous with the property :
X € F(x) = x = 0;
(ii) G is bounded, i.e. |G|| = sup |G(x) | <K
X€E
for some K;
(iii) there exist a o0 >0 and an ¢ = ¢(F,0) >0
such that
HEx) | < el
for all x with |x| >0 > 0;:
(iv) J(x) € F(x) + G(x) + H(x) for all x € E
with |x| > o > 0.
Then, there exists at least one x € E such that x € J(x)

provided ¢ is small enough.
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Proof: Consider the following completely continuous
multi-valued vector fields from E into cc(E) :

x - F(x):

3
L)
Z
"

¢Q(X) =x - F(x) - H(x);
cp3(x) =x - F(x) - G(x) - H(x):

x - J(x).

S
~~
L

!

(1) Let &(a,x)

[0,1] X E + cc(E) defined by
(N, x)

X - FP(x) - M(x).
Let Sp = {x : x ¢ E and |x| =p} where p > 0. Clearly,
¢()\,X) 1is upper semi-continuous and 0([0,1],Sp) is

relatively compact. Moreover, ¢§(0,x) = ¢i(x) and
8(1,x) = ¢7(x)' It follows from assumption (i) that P

does not vanish on Sp'

We claim that there exists a positive number r > O

such that |x—F(x)| >r >0 for all x ¢S Suppose not.

p*

Then there exists a sequence [xn];;l c Sp such that

|xn-F(xn)| N 0. One can see easily that there exists

y_ € F(xn) such that \xn—yn| % 0. It is clear that

n

{yn}:;l is contained in F(Spf which is compact. Hence,

{yn]:;l has a subsequence (y_ 1% such that

=1
3 J

J . j
y 3y, € F(S). Since |x -y | 1 0, we have
nj o p nj nj
J . ® . .
‘xnj-yo\ 40, y, € Sp since [xnj}j=l c Sp which is closed.
J j
Now, y_ € F(xn ), Yo, * Yo and x_ = 3y, It follows

j j j J
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from the upper semi-continuity of F that Yo € F(yo).

However, |yo| = p > O. This contradicts assumption (i).

Choosing ¢ < f% and applying assumption (iii),
we have

|x=F(x) =2H(x) | > |x-F(x) | - |M(x) |

>2r - ¢lx| >r - g > 0

for all )\ € [0,1] and all x ¢ sp. Hence §()\,x) does
not vanish on Sp for all ) € [0,1]. Therefore, o is
homotopic to ¥, on Sp'

(ii) Let v : [0,1] x E 4+ cc(E) defined by

¥(Ax) = x - F(x) - AG(x) - H(x).

Clearly, V¥(\,x) is upper semi-continuous and y([o.l],sp)
is relatively compact. Moreover, y(0,x) = ¢2(x) and
v(l,x) = ¢b(x). We claim that y()\,x) does not vanish on
Sp for all ) € [0,1] if p is large enough. Suppose not.

Then there exists an x € S such that x € F(x) + \G(x) +

P
H(x) . By Lemma 3.1, there exists an a = a(F) > O such that
x| < alre(x) + H(x) | < aXK + aelx].
1 1 .
Choose ¢ < 3z. We have |x| <o)X + 3|x|, i.e. |x]| < 2aXK.
This is a contradiction since |x| = p which can be chosen

arbitrarily large. Hence, we have shown that ® and ®3

are homotopic on Sp for sufficiently large p.
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(iii) From part (i) and part (ii), P and o3

are homotopic on some large sphere S

p.
By Lemma 3.2, ¢ and ¢, are homotopic
on S .

o]

Hence, ¢ and ¢y are homotopic on S By Theorem 1.9,

p*
the characteristics of ¢, and ¢, on S, are equal.
Since F is homogeneous, we have

@ (X) = x = F(x) = =(-x+F(x)) = =(=x-F(-x)) = -¢, (-x).
It follows from Theorem 1l.1l1 that the characteristic of )
(hence 94) on Sp is odd. By Theorem 1.10, there exists

an x ¢ E with |x| < P such that x € J(x). O

Remark 3.l. In Theorem 3.1, condition (iii) and (iv)

can be replaced by
(iii) © |H(x) | £ e|x| for some ¢ = ¢(F,P) and
all x with |x]| < p:
and (iv) ° J(x) c F(x) + G(x) + H(x) for all x
with |x| < P, where p >0 is

sufficiently large.

Remark 3.2. In Theorem 3.1, if the condition

|H(x) | < e|x| holds for all x € E, then ¢ depends on

F only.

The following corollary is clear from the proof

of Theorem 3.1l:
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corollary 3.1l. Let F,H and J : E 4 cc(E) Dbe

completely continuous and such that
(i) F is homogeneous with the property :
X € F(x) = x = 0;
(ii) for any positive number p > O and all
x with |x| <p, |H(x)| < e|x| for
some ¢ = ¢(F,p):
(iii) J(x) c F(x) + H(x) for all x € E
with |x| < p.
Then, there exists at least one x € E with |x| <p such

that x € J(x) provided e is sufficiently small.

Instead of a Lipschitz type condition, Corollary 3.1

still holds if |H(x)| is small in a neighborhood of O ¢ E:

Ccorollary 3.2. Let F,H and J : E 4 cc(E) be

completely continuous such that
(i) F is homogeneous with the property :
X € F(x) »x = 0;
(ii) for some positive number p > O, there
exists an ¢ = ¢(F,p) such that
|H(x) | < ep
for all x € E with |x| < p;
(iii) J(x) c F(x) + H(x) for all x € E with
x| < ».
Then, there exists at least one x ¢ E with |x| < p such

that x ¢ J(x) provided ¢ 1is sufficiently small.
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Proof: Let us use the same notations as in

Theorem 3.1. It suffices for us to show that @§(A,x) does
not vanish on Sp and the rest of the proof is clear from

Theorem 3.1.

Let r > O be a number such that |x-F(x)| >r >0
for all x € Sp. Choosing ¢ < f% and applying assumption
(ii), we have

[8(nx) | = |x-F(x)-M(x) | > |x-F(x)| - |aH(x) |

2T -ep>r-35>0

for all ) € [0,1] and all x ¢ Sp' O

The next corollary is an immediate consequence of

Theorem 3.1:

Corollary 3.3. Let F,G,H and J : E 4 cc(E) be

completely continuous such that
(i) F is homogeneous with the property:
X € F(x) »= x = O;

(ii) G is bounded;

H(x)
X

(iv) J(x) < F(x) + G(x) + H(x) for all x ¢ E.

(iii) +0 as |x| + o

Then, there exists at least one x € E such that x ¢ J(x).

§2. An existence theorem like Fredholm's alternative:
Let A be a compact interval in R and let c"
be the Banach space of all continuous functions from A into

R® with the topology of uniform convergence.
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Lemma 3.3 (Lasota [21]). 1If [Yk];=l is a
sequence of measurable functions from A into R® such
that there is an integrable function ¢(t) from A into
R and |y (t)| < o(t) for all k =1,2,... and t a.e.
in A, then there exist a sequence of indices an and a
system of coefficients N,  (M<{k Lo, m= 1,2,...)

such that a

m
kz;m ka=1‘ amZm, )kaO

and that the sequence
a

m
Zn(8) = T e % (®)

converges to a function zo(t) a.e. in .

Proposition 3.1. Let F(t,x) : [a,b] Xx rR" -+ cc(Rn)

be an orientor field which satisfies the Carathéodory
conditions. Then the set-valued mapping G(x) : c® o cc(Cn)
defined by
t 1
G(x) = {g(t) : g(t) = I; fx(s)ds, where f €L ([a,b])

and fx(s) € F(s,x(s)) for all s ¢ [a,b]}

is completely continuous.

Proof: (i) G is well-defined: Let x ¢ C" be
arbitrary. It follows from Proposition 2.1 and Theorem 1.5
that F(t,x(t)) has an integrable selection fx(t). Hence,

G(x) # . Let g,,9, € G(x), say g,(t) = I: £,(s)ds and

t 1
g, (t) = Ia fz(s)ds where f,,f, € L~ and £, (s),
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fz(s) € F(s,x(s)) for s € [a,b]. Then for any ),
O { xA£1l, we have

90 + (1-Ngy(8) = [T gy (e) + (-0 £ (e) Jas.

Clearly, Af, + (1-Mf, € L([a,b]) ana

2
xfl(s) + (l-x)fz(s) € F(s,x(s)) for s ¢ [a,b] since
F(s,x(s)) is convex. Hence, Agy + (l-x)g2 € G(x), G(x)

is convex.

Let {gn};;l € G(x) be any sequence of functions
from G(x). Since x(t) is bounded on ([a,b] and F
satisfies the Carathéodory conditions, we have

lg,(®) | < j: |F(s,x(s)) |ds < j: m(s)ds

< M(b) - M(a)

for all t ¢ [a,b] and n =1,2,+++. Hence {gn}n=1 is
uniformly bounded. Moreover, by Theorem 1.7,
t

I (t) - g,(8) € [ Flr,x(r))dr

for all ¢t,s ¢ [a,b]. Hence,
t
lg,(t)-g (s) | < \j‘s m(r)dr| < |M(t)-M(s) |

for any t,s ¢ [a,b]. Since M ¢ AC([a,b]), [gn}:;l is

equi-continuous. It follows from the Ascoli Lemma that

(-] (-] k
{gn}n=l has a subsequence {gk}k=1 such that g, = g4
uniformly on [a,b] for some 9o° Since the convergence
is uniform, 90 € cn. We claim that 90 € G(x). Each

g, can be written as g, (t) = ft £, (s)ds where
‘ a
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fk(s) € F(s,x(s)) for kX =1,2,°°°. {fkl}:=l is integrably
bounded by m(t). By Lemma 3.3, there exist a sequence
of indices a  and a system of coefficients )\ = (m <k < a)

such that a

m
z =1, a_ _m >0
k=m)km d m v N

and that the sequence a

m
h (t) = T (t)
n(® = T g g
converges to a function ho(t) a.e. in [a,b]. Since
fk(t) € F(t,x(t)) which is convex, hm(t) € F(t,x(t)) and
hm(t) is measurable for m=1,2,°***. As F(t,x(t)) is

closed, ho(t) € F(t,x(t)) and ho(t) is measurable. Clearly,

t m t Im
Ia h (s)ds = kf?m Nem Ia £ (s)ds = k:?m Mem T (t)

t
converges to J'o hy(s)ds by the Lebesgue dominated conver-
gence theorem. Recall that [gk]]:=1 is picked so that
@® . o .
(9 )=y converges uniformly to go+ Its finite convex

combinations also converge to 9o° That is

%m t m
> e gk(t) = J”a hm(s)ds + g9, -
k=m ¢
Hence, go(t) =j’ ho(s)ds. We have g, € G(x). G(x) is
a

therefore compact.

(ii) G is compact: Let D= (x € C" : x| < K}
be any bounded subset of c®. We want to show that G(D)
has compact closure. It is equivalent for us to show that
G(D) is sequentially compact. Let {gn}:=1 c G(D). Then

t
gn(t) = ‘fa fn(s)ds
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where fn(s) € F(s,x(s)) for s ¢ [a,b] and some x ¢ D.
Since D 1is bounded and F satisfies the Carathéodory

conditions, [fn]:;l is bounded by an integrable function

m(t). It follows easily from Ascoli's that fgn nel

has a subsequence (gk];;l which converges uniformly to
some function g, € c”. since {gk];;l c G(D), g, € G(D),
G(D) is therefore compact.

(iii) G 1is upper semi-continuous: From what we
have shown above, we know that G is a compact mapping
from c" o cc(cn). By Theorem 1.1, all the definitions
of upper semi-continuity are equivalent. Let Xq € c® be
arbitrary. Let [xn]:;l c c® and [gn];;o c c® be such
that x H Xoe 9, 5 90 and g, € G(xn) for n > 1. Then

t
g, (t) = ja £ (s)ds

where fn € Ll([a,b]) and fn(s) € F(s,xn(s)) for all

s € [a,b] and n=1,2,:-+. Since X, 2 X |xn(s)| <M
®

for all s ¢ [a,b] and n > 1. Hence, (fn}n=1 is

bounded by an integrable function m(t). By Lemma 3.3, there
exist a sequence of indices a and a system of coefficients

m (M<Xk <a) such that

a
m

N T

and that the sequence
a

m
hy(t) = T hey ()

converges to a function ho(t) a.e. in [a,b]. Clearly,



75

t
as we saw in part (ii), go(t) = I ho(s)ds for all
a
t ¢ [a,b]. Since fn(t) € F(t,xn(t)), we have
%m
ho(t) € T N Flt,x (£))
k=m
for all t ¢ [a,b]. For each t fixed, F(t,x(t)) is
upper semi-continuous. Hence, given ¢ > O, there exists
a K > 0 such that
F(t,x, (t)) c F(t,x5(t)) + B_

for all k > K, where Be = [(x ¢ R" : \x| < €}. Hence,
a a

m m
k‘fm Mem F(tex (£)) cki_,m em (F (B0 (8)) + B )

= F(t,xg(t)) + B_
for all m > K. This shows that
p(hy(t), F(t,xy(t)) 3 0.
As F(t,xo(t)) is closed and hm(t) -+ ho(t) a.e. in
[a,b], we have ho(t) € F(t,xo(t)) a.e. in [a,b]. That
is 9o € G(xo). Therefore, G is upper semi-continuous in

the sense of Definition 1.5 (hence in the sense of all others).

Lemma 3.4. Let F,G : A =+ cc(Rn) be measurable
and integrably bounded and K(t) be a ball in R® centered
at O with radius \K(t)\ such that |K(t)| is integrable
over A. If F(t) < G(t) + K(t) for all t € A, then

(s) F < (S) G + (S) K.
IA IA IA
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Proof: Let £(t) be a measurable selection of F(t).
Then the function H(t) : A =« cc(RP) defined by
H(t) = [£(t)+K(t)] n G(t)
is well-defined and measurable. It follows from Theorem 1.4
that H(t) has a measurable selection h(t). Clearly, h(t)
is also a measurable selection of G(t). And h(t) = £(t) +
k(t) where k(t) € K(t) is measurable. Hence,
f£(t) = h(t) - k(t) = h(t) + (Kk(t))

where h(t) € G(t) and <k (t) € K(t) are both measurable. O

Remark 3.3. If G and K are defined as in
Lemma 3.4, it is easy to see that

(s) (GHK) = (s)| 6 + (s8)| K
J‘A IA IA

Consider the following contingent differential
equations with general boundary conditions:
(1) x(t) € A(t,x(t)) , L x(t) = 0; and
(2) x(t) € Q(t,x(t)) , L x(t) =a

where Q(t,x) < A(t,x) + B(t,x) + P(t,x).

Theorem 3.2. (Fredholm's alternative). Let A,B,P

and Q: Aan -+ cc(Rn) satisfy the Carathéodory conditions.
Suppose that
(i) A(t,x) is homogeneous with respect to x,
that is
a(t,Ax) = M(t,x)

for all real ):
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(ii) B(t,x) c K(t) where K(t) is a ball in
R" centered at O with radius K(t) |
such that |K(t)| is integrable over 4;
(iii) there exists ¢ = ¢(A,0,8) > O such that
a(t,r) < er for any r >0 >0
where o0 > O 1is arbitrary, a(t,r) =‘312 \P(t,x)‘
x |<r

and § = m(A) is the measure of ;
(iv) L : c® 4+ R® is linear and continuous.
Then, (1) has unique solutions x(t) = O implies that (2)
has at least one solution for any a ¢ Rn, provided ¢ 1is

small enough.

Proof: Without loss of generality, we may assume

A= [0,T]. Define F,G,H and J : C" 4 cc(c”) by

F(x) = [IZ u(s)ds + Lx + x(0) : u(s) € A(s,x(s))]},
6(x) = ([ ule)as - a s uls) €Kls)),

HE) = ([ u(s)as ¢ fu(e) | < clx(s) |)

) = ([5 uls)ds + 1x - a + x(0) : u(s) € Qls,x(s))),

where t ¢ [0,T] and u(t) ¢ Ll([O,T]). Then the existence

of the solutions of (1) and (2) are equivalent to the

existence of fixed points of F and J respectively.

It follows from Proposition 3.1 and the fact that the continuous
linear operator L is bounded that F,G,H and J are all

completely continuous.
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Clearly, F is homogeneous with only x(t) =0
as its fixed point. G is bounded by assumption (ii).
Let P : R® 4 cc(R®) defined by §kx) = {(u eRr" : jul g_e|x\}.
Then for any x(t) ¢ cn, S}x(t)) is a ball in R"
centered at O with radius e|x(t)| which is integrable

over [O,T]. From the way we define H, one sees easily

that
RGO = ([ u(s)ds : u(s) € Flx(a)))
and
|H(x) | < J‘A‘S(x(s)) las < [ elx(s) |as < eT|x]|.
A
Moreover, |P(t,x)| < al(t, |x) g_e\x|

for all x, \x\ =r >0 > 0. Hence, P(t,x) c S(t.x) for
all x, |x| > o. It follows from Lemma 3.4 and Remark 3.3
that

t
J(x) = [Io u(s)ds + Lx - a + x(0) : u(s) € Q(s,x(s))}

c [IZ u(s)ds + Lx - a + x(0) : u(s) ¢ A(s,x(s))
+ B(s,x(s)) + P(s,x(s))]}
c {L; u(s)ds + Lx - a + x(0) : u(s) € A(s,x(s))

+ K(s) + P(x(s)))

{j; u(s)ds + Lx + x(0) + ji v(s)ds - a + jﬁ w(s)ds:

u(s) ¢ A(s,x(s)), v(s) € K(s) and w(s) ¢ P(x(s)))
= F(x) + G(x) + H(x)
for all x ¢ c® with |x| > 0 > 0. Hence, by Theorem 3.1,

there exists at least one x ¢ c® such that x €eJdJx). O



79

Remark 3.4. As in Remark 3.1, condition (iii) of

Theorem 3.2 can be replaced by
(iii) * there exists an ¢ = ¢(A,p,8) > O
such that
a(t,r) { er for all r < p

where a(t,r) = sup |P(t,x)|, & = m(a)
|x |<x

and p > O is sufficiently large.

Remark 3.5. As in Remark 3.2, in Theorem 3.2, if (iii)

holds for all x ¢ E, then ¢ depends on A and § only.

In (2), when B(t,x) (0} and a = 0, we have

the equation:
(3) x(t) € a(t,x(t)), Lx(t) =0

where Q(t,x) < A(t,x) + P(t,x).

In this case, G(x) = {0}. Therefore, following
the same proof of the above theorem and applying Corollary

3.1 instead of Theorem 3.1, we obtain

Corollary 3.4. Let A,P and Q : Aan -+ cc(Rn)

satisfy the Caratheéodory conditions. Suppose that
(i) A(t,x) is homogeneous with respect to x:;
(ii) for any p > O, there exists an
e = e(A,p,8 >0 such that
a(t,r) < er for all r < p

where a(t,r) = sup |P(t,x)| and & = m(4)
|x |<x

is the measure of A;
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<o n n . . .
(iii) L : C 4R is linear and continuous.

Then, (1) has unique solution x(t)

= 0 implies that (3)

has at least one solution ¢(t) with

le| < p provided
¢ 1s small enough.

Similarly, applying Corollary 3.2, we have

Corollary 3.5.

Let A,P and Q :

: AR o cc(Rn)
satisfy the Caratheodory conditions. Suppose that

(i) A(t,x) is homogeneous with respect to x:

(ii) for some positive number p > O, there
exist an ¢ = ¢(A,p,8) > O such that

a(t,p) = sup |P(tox)| < epP

|x |<p

where § = m(A) is the measure of A;
(iii) L : c® 4 " is linear and continuous.
Then, (1) has unique solution x(t)

O implies that (3)
has at least one solution ¢(t)

with || < p provided
¢ 1is small enough.

From Corollary 3.3 and the way we prove Theorem 3.2,
there follows immediately

Corollary 3.6.

Let A,B,P and Q :

: Aan -+ cc(Rn)
satisfy the Carathéodory conditions. Suppose that
(i) A(t,x) 1is homogeneous with respect to x:

(ii) B(t,x) < K(t) where K(t) is a ball in R"
centered at O with radius |K(t)| such that

[K(t) | is integrable over 4;
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(iii) 212§£L + O uniformly in t as r 4 o,

where a(t,r) = sup |P(t,x)|;
|x |<x
(iv) L : c®™ 4 R® is linear and continuous.
Then, (1) has unique solution x(t) = O implies that (2)

has at least one solution for any a ¢ rR"™.

§3. Some applications:
(a) Periodic solutions: Consider the following

contingent differential equations:

(4) x(t) € A(t,x(t));
(5) x(t) € A(t,x(t)) + B(t,x(t)); and
(6) x(t) € A(t,x(t)) + B(t,x(t)) + P(t,x(t)).

Theorem 3.3. Let A,B and P : Ran - cc(Rn) be

T-periodic in R with T > O and satisfy the Carathéodory
conditions. Suppose that
(i) A(t,x) is homogeneous with respect to x;
(ii) B(t,x) c K(t) where K(t) is a ball in R"
centered at O with radius |K(t)| such
that |K(t)| is integrable over [s,s+T]
for any s € R:
(iii) P(t,x) is Lipschitzian at O ¢ R® with
Lipschitz content g, i.e. |P(t,x)| < 8]x]|

for any (t,x) ¢ Ran.
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Then, (4) has only trivial T-periodic solution implies
that (6) has at least one T-periodic solution provided ¢

is small enough.

Proof: Without loss of generality, we can restrict

our consideration of orientor fields on A = [O,T]. Define

L:c" 4RrR" by Lx = x(0) - x(T). Clearly, L is linear

and continuous. Let a(t,r) = sup \P(t,x)‘ as before. By

Jx |<x
assumption (iii), we have
a(t,r) = sup \P(t,x)\ <sup @olx| = eor
% |<x Ix|<x

for any r > 0. It follows from Theorem 3.2 with a=0 and
Q(t,x) = A(t,x) + B(t,x) + P(t,x) that (5) has at least
one solution ¢(t) defined on [O,T] and satisfying

©(0) - o(T) = 0 provided ¢ is small enough.

Define E(t) : R + R? by a(t) = @(s) where
s = t+T, s ¢ [0,T) and k is some integer. g is continuous
since ¢ is continuous and ¢(0) = @(T). @ is T-periodic
by the way we define it. Clearly, ¢ is a solution of (5)
since @ is a solution of (5) on [0,T] and A,B and P

are T-periodic in R. (O

Following the same way of proof of the above theorem

and applying Corollary 3.5, we have
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Ccorollary 3.7. Let A and P : RxR" =+ cc(R®) be

T-periodic in R with T > O and satisfy the Carathébdory
conditions. Suppose that
(i) A(t,x) is homogeneous with respect to x:
(ii) there exists a § > O such that
|P(t,x)| < 6p for all t € R and |x| < p
where p is some positive number.
Then, (4) has only trivial T-periodic solution implies that
(5) has at least one T-periodic solution g(t) with || <p

provided ¢ 1is small enough.

Remark 3.6. Theorem 3.3 and Corollary 3.7 generalize

Theorem 2.1 and Theorem 2.2, respectively, in [12] (see p.413)
from perturbed linear ordinary differential equations to
perturbed homogeneous contingent differential equations.

However, in Theorem 3.3, we lose the uniqueness.

(b) Optimal solutions:

Proposition 3.2. Let A,B,P,Q and L Dbe defined

and satisfy all the conditions (i)-(iv) as in Theorem 3.2
with ¢ sufficiently small and A having unique solution
x(t) = O. Then the set of all solutions of (2) is a non-

empty compact set in c".

Proof: The non-emptiness of the set of solutions

of (2) is guaranteed by Theorem 3.2. To show it is compact,
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it is equivalent to show that it is sequentially compact

. n . .
since C is a metric space.

Let [xn}:;l be a sequence of solutions of (2).
Then,

x,(t) € () 7 Q(s,x,(s))ds + Lx, - a + x,(0)
< (s)j: Als,x,(s))ds + Lx, - x,(0) + (s) [ K(s)ds

+(8) [T Blx ())ds - a

~

for all t ¢ [0,T], where P is defined as in the proof of
Theorem 3.2. By Lemma 3.1, we have

Pl = tz?g.wllxn(t)‘

< a(fz |K(s) |as + I: |§Yxn(s))|ds + Ja|)
< a(K + eT\xn\ + la])
for some o > O. Choosing ¢ < f%-, we have

%, | < 2a(K + la])

for all n=1,2,.--. Hence, {xn):;l is uniformly bounded.

Moreover,

%y (£) = x,(s) € (5) [ Q(r.x,(x))ar

for any t,s ¢ [0,T]. Since (xn};;l is uniformly bounded

and Q satisfies the Carathéodory conditions, there exists a

a function m(r) which is integrable over [O,T] such that
la(z,x (r)) | < m(x)

for all r € [O0,T] and n =1,2,--+. Hence,
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|x, (£)-x_(s) | < U‘: m(r)dr| < |M(t)-M(s)|.

As M ¢ ac((o,T]), [xn]:;l is equi-continuous on [O,T].

It follows from the Ascoli lemma that [xn};;l

® J
has a subsequence {xn.}j=l such that x_ = 3 x, € c?

uniformly on [O,T]. Now, for any t ¢ [O,T],

xo(t) = lim sup x (t)

o J

¢ lim sup((s) [* Q(s,x_ (s))ds + Lx_ - a + x_ (0))
jm o J J J

c lim sup(s) j; Q(s,x_ (s))ds + Lxy - a + x,(0)
J*: J

c (S)j:0 lim sup Q(s,x_ (s))ds + Lx, - a + xo(o)

jm J

c (S)I; Q(s,xo(s))ds + Lx. - a + xo(o).

0]

Therefore, x

o is indeed a solution of (2). O

As we know that any real valued lower (resp. upper)
semi-continuous function assumes minimum (resp. maximum)

on a compact set, from Proposition 3.2 there follows immediately

Theorem 3.4. (existence of optimal solutions). Let

A,B,P,Q and L be defined and satisfy all the conditions
as in Theorem 3.2. Furthermore, a lower (resp. upper) semi-
continuous functional T : c" 4 R is given. Then, if (1)
has unique solution x(t) = O, for any a € R? there exists

a solution of (2) which minimizes (resp. maximizes) T

provided ¢ is small enough.
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Remark 3.7. Similar existence theorems of optimal

solutions can be formulated corresponding to Theorem 3.3

and Corollaries 3.4-3.7.
Before discussing further applications, we give

Definition 3.2. An orientor field F : Aan - cc(Rn)

is said to satisfy the strong Carathéodory conditions if

(i) F(t,x) 1is upper semi-continuous in t in
the sense of Definition 1.4 for each fixed
t € A;

(ii) F(t,x) 1is measurable in t for each fixed
X € Rn:

(iii) there exist functions ¢(t) and y§(t) which
are integrable over A such that
|F(t.x) | < o(t) |x] + ¥(t)

for all (t,x) € Aan-

Remark 3.8. It is clear that a mapping satisfying

the strong Carathéodory conditions must satisfy the
Caratheodory conditions. The converse is not true even

when the orientor field is compact. Consider F(t,x) : AxR + R
defined by F(t,x) = te*. F satisfies the Carathéodory
conditions and is compact but it does not satisfy the strong
Carathéodory conditions. Therefore, all the results in

this chapter hold true for A,B,P and Q satisfying the

strong Carathéodory conditions.
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(C) Nicoletti problem: Given O < t; < t, <...

I\

tn < T and a = (al.az,....an) € Rp, we shall consider
the existence of a solution x(t) = (xl(t).xz(t),...,xn(t))
of (6) which satisfies the Nicoletti conditions [28]:

i = 1'2,.0.,“0

(7) xi(ti) =a; ,
Also, we consider the functional T : c? -+ R
defined by
T
(8) T(x) = fb |x(t) |at.

Lemma 3.5. (Lasota and Olech: [22]). Suppose the
function ¢ from [O,T] into R is Lebesgue integrable
and non-negative. Consider the differential inequality
for an n vector valued function
(9) |x(£) | < @(t) x(£) ], Ot
and the boundary value conditions
(10) x,(t;) =0, oL t, LT, i=12,...,n.

T
If LO p(t)dt < g, then x(t) = O is the unique solution

of (9) and (10).

Theorem 3.5. Let A,B and P : [O,T]an -occ(Rn)

satisfy the strong Carathéodory conditions. Suppose that
. . T T
(i) |a(t,x) | < o(t) |x| + y(t) with Io p(t)at < 5z
(ii) B(t,x) ¢ K(t) where K(t) 1is a ball in

R® centered at O with radius k(t) |

such that |K(t)| is integrable over [O,T]:
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P(t,x

" + O uniformly in t as |x| + =.

(iii)
Then, (6) has a solution which satisfies the Nicoletti
conditions (7) and also minimizes (or maximizes) the

functional (8).

Proof: Define A,B and Q : [O,T]xRn + cc(R") by

A(t,x) = (u ¢ R" : lu] < o(t) |x]1,
B(t,x) = B(t,x) + (u € R® = |u| < 4(B)},
and Q(t,x) = A(t,x) + B(t,x) + P(t,x).

Clearly, Q(t,x) < Kkt,x) + g}t,x) + P(t,x). Let
n n .
L :C 4R defined by Lx = (xl(tl)’xz(tz)'""xn(tn))'
One can see easily that A,B,P,Q and L satisfy all the
assumptions of Corollary 3.6. Since T 1is a continuous

functional, our proof follows immediately from Lemma 3.5,

Theorem 3.4, and Remark 3.7. O

(d) Aperiodic boundary value problem: Here, we
shall consider the existence of a solution x(t) of (6)
which satisfies the aperiodic boundary condition:
(11) x(0) + x(T) = 0 where )\ >0

and also minimizes (or maximizes) the functional (8).
Another lemma of differential inequality is needed:

Lemma 3.6. (Kasprzyk and Myjak: [16]). If ¢(t) >0
T
and Io p(t)dat < (r? + 1092 x)l/z. then x(t) = 0 is the

unique solution of (9) and (1l1).
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If we set Lx = x(0) + »x(1) and a=0, a result
analogous to Theorem 3.5 follows from Lemma 3.6 and

Theorem 3.4. As the proof is similar, we give the statement

as follows:

Theorem 3.6. Let A,B and P : [0,T]xR" + cc(R")

satisfy the strong Carathéodory conditions. Suppose that
(1) |A(t,x) ]| < olt) |x| + §(t) with

J‘: p(t)dt < (1r2 + log2 \) 1/2:

(ii) B(t,x) c K(t) where K(t) is a ball in
R® centered at O with radius |k (t) |

such that |K(t)| is integrable over [O,T]:

(iii) lzfiTELl + 0 uniformly in t as |x| + o,

Then, (6) has a solution which satisfies the aperiodic condition

(11) and also minimizes (or maximizes) the functional (8).




Chapter 1V
PERIODIC SOLUTIONS OF CONTINGENT
FUNCTIONAL EQUATIONS

In control problems, it may happen that the control
system is described by a functional differential equation.
Therefore, by eliminating the control term, we obtain a
contingent functional differential equation. 1In this
chapter, we shall consider the periodic solutions of such
equations and formulate an existence theorem for Fredholm's

alternative analogous to Theorem 3.2.

Suppose r > O is a given real number, R = (-=,®)
and R® is the n-dimensional Euclidean space with norm
|*]. Let C, = C([-r,O],Rn) be the Banach space of all

continuous functions from [-r,0] into R? with the norm

of each element ¢, |¢|| = sup |@(6)|. For any function
-r<6<0

X € C(R,Rn) and t € R, we define a function X, * [-x,0] =+ rR"”

by

x, (8) = x(t+6)
where -r < § < 0. Clearly, x, € C.. The function x, can
be considered as the segment of x(T) defined on [t-r,t]

and translated to [-r,0].

920
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Definition 4.1. A mapping F : RxC,. =+ Comp (Rn) is

called a functional orientor field. And a relation of the

form
(F) x(t) € F(t,x,)

is called a contingent functional differential equation.

Definition 4.2. For a fixed x € C(R,Rn), we say

a function F(t,xt) : RxC_ -+ Comp (Rn) is measurable in t

~

if the function F : R -+ Comp (Rn) defined by
F(t) = F(t.xt)

is measurable.

Definition 4.3. For a fixed t € R, we say a

. . n .
function F(t,xt) from RxC. 1into Comp (R’) is upper

semi-continuous in x (in the sense of metric) if, for

any e >0 and any x ¢ c(R,Rn), there exists a § > O
such that

n .
for all y € C(R,R) with “yt-xt“ < 6.

Definition 4.4. We say a functional orientor field

F(t,xt) : Rxcr -+ Comp (Rn) satisfies the Carathéodory

conditions if
(i) F(t,xt) is measurable in t for each
fixed x € C(R,R");
(ii) F(t,xt) is upper semi-continuous in x

for each fixed t € R;
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(iii) for any closed and bounded subset D

of RxC_. |F(D) | is bounded.

The equation (F) is said of the Carathéodory type
if its functional orientor field F satisfies the Caratheodory

conditions.

Remark 4.1. It follows from condition (iii) of

Definition 4.4 that a functional orientor field satisfying

the Caratheodory conditions must be compact.

Definition 4.5. A function x(t) is said to be a

solution of (F) in the sense of Marchaud if there exist

to € R and A > O such that
x(t) € c([to-r,to+A],Rn) and

D*x(t) c F(t,xt) for almost every t ¢ [to,to+A].

Definition 4.6. A function x(t) 1is said to be a

solution of (F) in the sense of Wazewski if there exist

t. € R and A > O such that

(o}
x(t) € c([to-r.to+A].Rn).
x(t) € AC([to,to+A]) and

i(t) € F(t,xt) for almost every ¢t ¢ [to,to+A].

Definition 4.7. A function x(t) is said to be a

solution of (F) if there exist to €ER and A > O such that
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x(t) € c([ty—r, t+Al,R"),
x(t) € Ac([t,, ty+A]) and

x(t) € x(tg) + (S)I:O F(s,x )ds for t € [ty,t *Al.

The following proposition shows that under certain
conditions the solutions of (F) defined above are all

equivalent:

Proposition 4.1. (Kikuchi [18]). Let P(F), Y(F)

and T(F) be the collection of all solutions of (F) with
respect to Definitions 4.5, 4.6 and 4.7 respectively.
Suppose that

(i) F(t,xt) satisfies the Carathéodory conditions;
and

(ii) F(t,xt) € cc(Rn) for each (t,xt) € Rxcr.

Then, P(F) = Y(F) = T(F).

We shall consider the periodic solution of the
following contingent functional differential equations of
retarded type:

(1) x(t) € A(t,x,)
(2) x(t) € a(t,x,)

where Q(t,xt) c A(t,xt) + B(t,xt) + P(t,xt).

Theorem 4.1. (Fredholm's alternative). Let A,B,

P and Q : RxC_. + ce (R?) satisfy the Caratheodory conditions
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and be T-periodic in R for some T > O. Suppose that
(i) A(t,xt) is homogeneous with respect to
x; 1i.e.
A(t.XXt) = AA(t.xt)
for all )\ € R and x, €C.;
(ii) B(t,xt) c K(t) where K(t) 1is a ball
in R" centered at O with radius
|[K(t) | such that |K(t)| is integrable
over any T-interval [t,t+T]:
(iii) there exists an ¢ = ¢(A,p,T) > O such that
a(t,m) < em for all m >p > O

where ¢ > O 1is arbitrary and

a(t,m) = sup |P(t,xt)|.

t“Sm

Then, (1) has x(t) = O as a unique T-periodic solution

implies that (2) has at least one T-periodic solution, provided

¢ 1is small enough.

Proof: Let &, denote the set of all continuous
T-periodic functions from R into Rn, K(cn) denote the
set of all non-empty convex subsets of C" and Lioc(R)
denote the set of all functions from R into R" which are

integrable over any finite interval in R.

(i) Let P (t,x.) : RxC_ + cc(R") be defined by

P*(t,xt) = (a ¢ R" : la| < ellx 13-
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* *
Clearly, P is well-defined and P(t.xt) < P (t,xt) for
*
any (t,xt) € RxC_.. One can check easily that P satisfies
the Carathéodory conditions.

(ii) Define the operators F,G,H and J : o

-
K(c”) by

F(x) = {Ifa e-(t_s)[x(s)+u(s)]ds :u € Lioc(R) and

u(s) € A(s,xs) for all s € R},

ax) = ([5 e (*® y(s)as : u € L1°R) and
- u(s) € K(s) for all s € R},
H(x) = [Ifm e~ (t-s) u(s)ds : u ¢ Lioc(R) and
u(s) € P*(s,xs) for all s € R},
and
J(x) = [jt e (") [x(s)+u(s) ds: u € LI°°(R) and

u(s) ¢ Q(s,xs) for all s € R}.
From our hypothesis that B(t,xt) is T-periodic in
R, we can assume without loss of generality that the ball
K(t) which contains B(t,xt) is also T-periodic. All the

%*
improper integrals defined above converge since x,A,K,P

and Q are periodic (hence bounded by (iii) of Definition 4.4).

For each X ¢ 6&, A(t,xt) is measurable in t by (i) of
Definition 4.3 and is integrably bounded by (iii) of

Definition 4.4 and the periodicity of A(t,xt). Hence, F(x)

is not empty. The convexity follows immediately from the

fact that A is convex valued. Therefore, F is well-defined.

|
Similarly, G,H and J are well-defined. !
|
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~n ~ o~

(iii) Let us define F,G,H and J : @y =+ cc(ay)

by
f"(x) = F(X) N &y » E(x) = G(x) n o
H(x) = H(x) N ¢, and J(x) = J(x) N O

Since for each x ¢ o,r A(t,xt) is T-periodic, measurable
and bounded, there exists a T-periodic function fx(t) € Lioc (R)
such that fx(t) € A(t,xt) for all t € R. This is possible
because we can have a measurable selection fx(t) on [O,T]
first with fx (0) = fx (T) and then duplicate it on the
intervals [kT, (k+1)T] where k 1is a non-zero integer.

Let Ex(t) : R + R® defined by
£ (t) =[5 e (x(s)4g, (s) 1s.

It is clear that gx € F(x) n OT' Hence, ;(x) is not empty.
Since oT is a convex subspace of Cn, ;(x) is convex.

By using the Ascoli lemma and Lemma 3.3 as we did in the proof
of Proposition 3.1, one finds that the set

F(x)‘[o'T] = [fx(t)‘[O,T] : £, € F(x)])

is compact in c([o.'r],R“). However, since E(x) is a
family of T-periodic continuous functions, a sequence of
functions in ;(x) converges uniformly in [O,T] implies
that it converges uniformly in R and the limit function is
also T-periodic. Hence, for each x ¢ &, ;(x) is indeed

compact in 0,1,. Therefore, F is well-defined. Similarly,

E,ITI' and 3 are all well-defined.
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(iv) 5, 5,~ and J are compact: Let
D= (x¢€&,: |x| < K} Dbe a bounded subset of Op- We
want to show that EkD) is relatively compact. In a metric
. [3 [ ‘P 3 .
space, it is equivalent to show that F(D) is sequentially

compact. Let (y ]’L c F(D) < F(D). fThen,
n'n=1

t -(t-—
y () e (8) ] e (58 x (s)4a(s,x_ )as
- Q0 s
where X, € D. Since D is bounded and A(t,xt) is periodic

in t, it follows from Remark 4.1 that |A.(s,xn ) | g_ﬁ' for
s
all s €e R and n =1,2,---. Hence,

a0 ] <[5 e ) aRras = xR ett o as

=K + K
[--]

for all t ¢ R and n=1,2,**+. Therefore, {Yn}n=1 is

uni formly bounded.

For any tl,t € R, without loss of generality, we

2

may assume t, < t.,. Let B . Dbe the ball in R® centered
& 2 K+K

at O with radius K + ﬁ: Clearly,
x (s) + A(s,x_ ) ¢ B
n Ng K+K
1,2,... and s € R. It is easy to see that

for all n

- t
v, () eeS(s)[° e B _as
n - K+K

for all n=1,2,... and s,t €¢ R. For any n, let
n
uz(s) : (-a,tz] + R?

be integrable selections of B ., and u2(8)|(—m,tl] = u, (s)
K+K
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such that
yn(tl) = e-tlfti e ul(s)ds and Yn(tz) = e-tzjfi es uz(s)ds.
Then
Yn(tl)—yn(tz) = e-tlffi e’ ul(s)ds - e-tzjfi e’ ul(s)ds
- e_tzjti e® u, (s)ds
< (e_tl-e-tz)j'tl es(K+i3ds + e—tzftz e5 (K+K) ds
-® 1
= (K+§3[(e-t1-e-t2)(et1-1)+(1-et1-t2)]
= (K+K) [ 2( 1-e 172 e 2-e .
Hence,

~ t,-t -t -t
ly, (t) -y (£,) | < I [2]1-e 1 Z|+]e 2-e 1Y].

Therefore, [yn]° is equi-continuous in R.

n=1

It follows from Ascoli's that (y_} _,

has a subsequence
{yj};;l such that Yy 1 Yo uniformly on [O,T]. Since the
, _ . s J .
yj s are T-periodic, yj 3 Yo uniformly on R and Yo € &+
Therefore, F is compact. Similarly, one can show that G,H
and J are all compact.
(v) ;.E;H and 3' are upper semi-continuous: From
parts (iii) and (iv) of our proof, we know that Eﬁ&;g and 3
are compact mappings from 6& into cc(o&). By Theorem 1.1,
all the definitions of upper semi-continuity are equivalent.
. @® @®

Let x5 € & be arbitrary. Let {xn]n=l C @p and {yn]n=o c &

n n ~
such that x = Xoe Y 4 ¥g and Y, € F(xn) c F(xn) for
n = 1'2,.... Then'

y_ (t) = ft e-(t-s)[x (s)+u_(s) ]ds
n —e n n

loc
where u € Ll (R) and un(s) € A(s,xns) for s € R.
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Applying Lemma 3.3 as we did in the proof of Proposition 3.1,

one can see easily that

t - (t-s)
yo(t) = I_w e [xo(s)+uo(s)]ds
loc
where u, € L1 (R) and uo(s) € A(s,xOS
have Yo € F(xo). Therefore, F 1is upper semi-continuous

) for s € R. We

in the sense of Definition 1.5 (hence in the sense of all
others). The upper semi-continuity of E,E and J can be
proved similarly.

(vi) By direct computations, we know that any fixed
point of ; (resp. J) is a T-periodic solution of (1) (resp.
(2)). Therefore, it is equivalent for us to show that the
operator 5 has at least one fixed point for small ¢ if F
has only x(t) = O as its fixed point.

(vii) It follows easily from assumption (i) that

F (hence F) 1is homogeneous.

(viii) Consider the function 8 : R + R defined by

t -(t-
pe) = [- e (5% k(s) |as.
- 0o
Since K(t) is T-periodic, by using the transformation
s’ = s-T, we have
t+T - -
presm) = [ e (E¥T78) 1k (s) |as

= It e-(t-s')|K(s'+T)|ds'

=

t

e-(t-s')‘K(s')‘ds' = B (t)




for any t € R.

B(t) is continuous.

Since B (t)

Then

|G| = sup |G(x) | < sup It
X€&n teR ~°*
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Hence, PB(t) 1is T-periodic. Clearly,

Hence, fB(t) is bounded on [O,T].

is T-periodic, B(t) is bounded on R. Let

M= |B|l =sup |B(t)| = sup B(t) < =
teRr

M.

Since E(x) c G(x)

(ix)
by the way we
|8 (x)

te(O,T]

e-(t-S)|K(s)|ds = sup B (t)

ter

A
=

for all x ¢ &, we have nau <

For each X ¢ ép such that |x||=m >p > 0O,

define H(x) and P*. one has

| <

sup
ter

sup
teRr

sup
teRrR

em

Since H(x) < H(x),

X ¢ 0& with
(x)

Iﬁ, e-(t-S)|P*(s,xs)|ds

£ e e s

It e~ (t-s) em ds

et t e ds = ¢|x]|.
sipe” [ o 9= el

it follows that |§kx)| < ejlx| for all

x|l > p > o.

For every (t.xt) € Rxcr. we have

Q(t,xt) c A(t.xt) + B(t,xt) + P(t,xt)

*
c A(t,xt) + K(t) + P (t,xt).

For each x ¢ &,, K(t) and P*(t,xt) are balls in R"

centered at O with radii |K(t)| and ejx.|| respectively.
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Hence, by Lemma 3.4, we have
J(x) € F(x) + G(x) + H(x)

for any x € 6&- It follows that for any j_. € J(x) N QT

X
we have

jx(t) = fx(t) + gx(t) + hx(t)

where fx € F(x), g, € G(x), hx € H(x) and t € R. Since

jx € @p» Wwe can restrict our consideration on [0,T]. Let
t -(t-
£ (t) = I e (t s)[x(s)+u(s)]ds,
X -
t -(t-
g, (t) = j e~ (t-s) v(s)ds,
t -(t-
and h, (t) = I e (t-s) w(s)ds,

-
where u,v,w ¢ Ll([O,T]) and u(s) ¢ A(s,xs). v(s) € K(s)
and w(s) ¢ P*(s,xs) for all s ¢ [0,T]. Without loss of
generality, we may assume that u(0) = u(T), v(0) = v(T)

and w(0) = w(T).

*

. * * n
Define u, v and w : R 4+ R Dby

u*(t) = u(s) for t =XT + s
v*(t) = v(s) for t =XT + s

w*(t) = w(s) for t =XT + s
* *
where kX 1is an integer and s ¢ [0,T). Clearly, u , v
and w are all T-periodic by the way we define them and

* * * *
u ,v ,Ww ¢ Lioc(R). It is also evident that u (t) € A(t.xt).

v*(t) € K(t) and w*(t) € P*(t,xt) for all t € R. Now,

~

. PO n
define fx' 9y and hx t R+R Dby
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t

E;(t) = [ e—(t-s)[x(s)+u*(s)]ds,

5;(t) = It e_(t-s) v*(s)ds,
and h (t) = [

One can see esaily that E; € ;(x), 5; € akx) and hx [ ﬁkx).
It is also clear that
3 (t) = £ .(t) + g (t) + h (t)
for all t € R. Hence, J(x) < F(x) + G(x) + H(x) for all
X € QT.

(xi) From parts (iii)-(x), we have shown that

~ o~ ™~

F,G,H and 3 satisfy all the hypotheses of Theorem 3.l1. Hence,
if (1) has only trivial T-periodic solution (i.e. F has only
O as its fixed point). Then it follows from Theorem 3.1
that 3 has at least one fixed point x ¢ @b which is a

T-periodic solution of (2) provided ¢ is small enough. (O

Remark 4.2. In view of Remark 3.1, assumption (iii)

of Theorem 4.1 can be replaced by
(iii) * there exists an ¢ = ¢(A,p) > O such that
a(t,m) < em for all m < p
where p 1is a sufficiently large number

and a(t,m) = suT |P(t,xt)|.
m

I Il
From Corollary 3.3 and the way we prove Theorem 4.1,

there follows immediately
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Corollary 4.1. Let A,B,P and Q : Rxcr -+ cc(Rn)

satisfy the Carathéodory conditions and be T-periodic in

R for some T > O. Suppose that

Then,

that (2) has at least one T-periodic solution.

(i) A(t,xt) is homogeneous with respect to x:

(ii) B(t,xt) c K(t) where K(t) 1is a ball in

Rn centered at O with radius

K (&) |

such that |K(t)| is integrable over any

T-interval [t,t+T];

(iii) °—‘1-r%'-‘—“l + O uniformly in t as m + =,

where a(t,m) = sup ‘P(t,xt)l.
“xt“sm

(1) has unique T-periodic solution x(t)

(o)

implies

Remark 4.3. Corollary 4.1 is a generalization of

a recent result by R. Funnel (see [9]).

In (2), when B(t,xt) = 0, we have the following

equation:

(3)

x(t) ¢ Q(t,xt) where Q(t,xt) c A(t,xt) + P(t,x

t)'

In this case, it is clear that E(x) = G(x) = (0]}.

Therefore, following the same proof of Theorem 4.1 and

applying Corollary 3.5 instead of Theorem 3.1, we obtain

Corollary 4.2. Let A,P and Q : Rxcr -+ cc(Rn)

satisfy the Carathéodory conditions and be T-periodic in R

for some T > O. Suppose that
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(i) A(t,xt) is homogeneous with respect to x;
(ii) there exists a @6 > O such that
|P(t.x) | < op
for all t € R and “xtu < p, where
p 1is some positive number.
Then, (1) has only trivial T-periodic solution implies that
(3) has at least one T-periodic solution ¢(t) with |o| <p

provided 6 is small enough.

Remark 4.4. Theorem 4.1 and Corollary 4.2 generalize

Theorem 2.1 and Theorem 2.2, respectively, in [12] (p.413)
to perturbed homogeneous contingent functional differential
equations. However, for the generalization of Theorem 2.1,

we lose the uniqueness.

Remark 4.5. It is easy to observe that the results

of this chapter become the periodic case of the results of

the previous chapter when the time lag r = O.
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