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ABSTRACT

BOUNDARY VALUE PROBLEMS AND PERIODIC SOLUTIONS

FOR CONTINGENT DIFFERENTIAL EQUATIONS

BY

Wei-Hwa Shaw

In this thesis, we shall investigate contingent

differential equations in which the orientor fields F(t,x)

satisfy the Carathéodory conditions, i.e. F(t,x) is

measurable in t for each fixed x, F(t,x) is upper

semi-continuous in x for each fixed t and F(t,x) is

integrably bounded on every compact subset of Ran.

we begin our investigation with the fundamental

theory of such equations. Two similar Kamke-type convergence

theorems are proved. Following from the convergence theorems

are the properties of continuous dependence of solutions on

initial conditions and parameters.

We then study the general boundary value prOblems of

contingent differential equations. An existence theorem like

Fredholm's alternative is proved by using a fixed point theorem

which we formulate with degree theory. As the boundary

conditions require only linearity and continuity, applications
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can be obtained on periodic solutions, Nicoletti prdblems

and aperiodic boundary value problems. We Observe also

that the set of solutions is compact in the space of conti-

nuous functions. Therefore, Optiomal solutions do exist

with respect to any continuous (or semi-continuous) functionals.

In case the orientor fields are functional and T-

periodic fOr some T > O. we have contingent equations in

which a finite time lag r 2:0 is involved. A T-periodic

set-valued transformation is set up from the space 6% of

continuous T-periodic functions into the space of non-empty.

compact and convex subsets of 6% so that the previous fixed

point theorem can be applied. Thus we Obtain an existence

theorem of periodic solutions for contingent functional

differential equations.
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INTRODUCTION

A relation of the form

(E) 22m = f<t.x(t))

where x = x(t) is an n-dimensional vector valued function

defined on a real interval and f(t,x) is a function from

a certain region of Ran into RI, is called an ordinary
 

differential equation. The function f is called a vector

field and the solutions of (E) are curves with their tangents

prescribed by the vector field f.

It may happen that the right-hand side of the

system (E) is approximately known up to a given accuracy.

If this is the case, then we have to consider differential

systems with multi-valued right-hand sides.

Instead of a single-valued mapping, we consider a

multi-valued mapping F, called an orientor field, which

associates with every point (t,x) of a certain region

W c.Ran a non-empty, convex subset F(t,x) of RF. For

any function x(t) from an open subset J c R into RI.

we have the following definition:



Definition 0.1. The set denoted by D*x(t) and

defined by

D*x(t) = Iu(t) 6 RD : there exists a sequence

0

Itkik=1 ch; tk g t and

12k 4 t such that

x( )-x(t) k

ttk-t 4 u(t)}

is called the contingent derivative of x at t.

 

Consider the differential system

(c1) D*x(t) c: F(t,x(t) ) ,

where F(t,x) is an orientor field and x(t) a mapping from

some real interval J into R“. Such an x(t) will be

called a solution of (C1) if x(t) satisfies (C1) for

t a.e. in J.

When F is bounded and continuous in the sense of

Hausdorff metric with F(t,x) a non-empty, compact and

convex subset of Rn for each (t,x) e W, T. WaéeWSki has

shown (see [37]) that (Cl) can be written as

(c2) &(t) e F(t,x(t)) a.e..

where x(t) = QEéEL, is the usual derivative of x at t.

A mapping x(t) from some real interval J into R“ will

be called a solution of (C2) if x(t) satisfies (C2)

for t a.e. in J.



The systems (C1) and (C are called contingent2)

differential equations. This more general theory of

differential systems was developed independently by A.

Marchand ([24425]) and 5.x. Zaremba ([40].[41]) in the

mid'30's. Under the assumptions that the orientor field is

bounded and continuous with each image a non-empty, compact

and convex subset, they succeeded in Obtaining some fundamental

properties of solutions. e.g. the existence of solutions for

the Cauchy problems, the compactness of solution funnel,

the Kneser prOperty and the HMkuhara property.

Another importance of contingent differential equations

is their close connection with control prOblems. This was

Observed by T. waéewski.

Let 9(Rn) denote the collection of non-empty

subsets of RI.

Definition 0.2. By a control system S(f,C) we
 

mean a pair: a function f(t,x,u) . Ranme 4 Rn and a

field C(t,x) . kan 4 9(Rm). C(t,x) is called the control

domain of S(f,c).

Definition 0.3. A function x = x(t) from an

interval J c.R into Rn is said to be a trajectory of

S(f,C), if x(t) is absolutely continuous on J and there

exists a function u(t) such that



(i) i(t) = f(t,x(t),u(t)) for almost all t 6 J;

(ii) u(t) is measurable on J: and

(iii) u(t) e C(t,x(t)) for almost all t 6 J.

u(t) is called the control function corresponding to the
 

trajectory x(t).

Now, given a control system S(f,C), one can

eliminate the control term u and get an orientor field.

That is, define a function F(t,x) : RXRn 4 0(Rn) by

F(t,x) = {v e R“ : v = f(t,x,u), u e c(t,x)}.

This orientor field F is called the orientor field associated

with the control system S(f,C).
 

If a suitable implicit function theorem is provided.

solving a control system is equivalent to solving the

contingent differential equation in which the orientor field

is the orientor field associated with this control system.

That is, if we know a trajectory of the orientor field

associated with some control system, then a suitable implicit

function theorem will enable us to find its corresponding

control function. Such implicit function theorems have been

discussed in [35], [8] and [36].

A good survey of the early works is [38].

In this thesis, we shall investigate contingent

differential equations in which the orientor fields F(t,x)



satisfy the Carathéodory conditions, i.e. F(t,x) is

measurable in t for each fixed x, F(t,x) is upper

semi-continuous in x for each fixed t and F(t,x) is

integrably bounded on every compact subset of Ran.

Chapter I gives preliminaries. Here upper semi—

continuity, measurability, integral and tOpological degree

of set-valued mappings are discussed.

Chapter II deals with the fundamental theory. we

prove two similar Kamke-type convergence theorems (compare

with Theorem 3.2 of [ 12], p.14). Following from the

convergence theorems are the properties of continuous

dependence of solutions on initial conditions and parameters.

Chapter III is a study of general boundary value

prOblems. An existence theorem like Fredholm's alternative

is proved by using a fixed point theorem which we formulate

with degree theory. Several applications are also included

to show how our existence theorem could be applied to prove

the existence of solutions satisfying periodic conditions.

Nicoletti conditions or aperiodic conditions as well as the

existence of Optimal solutions.

In the last chapter, we conclude this thesis by

using the same fixed point theorem of Chapter III to establish

an existence theorem for periodic solutions of contingent

functional differential equations in which a finite time

lag r 2,0 is involved.



For reading convenience, a hollow square, [L is

used to signal the end of a proof.



Chapter I

SET-VALUED MAPPINGS

§l. Set-valued mappings and upper semi-continuity:

Let X be a metric space, E be a Banach space

and I0(E) be the collection of all non-empty subsets of

E.

Definition 1.1. A set-valued mapping with domain

A c.X into E is a mapping

F :A49(E).

The Eaggg_of F is defined to be

F(A) = u[F(x) : x e A}.

It is natural that the next thing we shall do is

to define the concept of continuity of a set-valued mapping.

If we restrict QCE) to Comp (E) - the collection of non~

empty compact subsets of E, the Hausdorff continuity

induced by the Hausdorff metric on Comp (E) can be imposed

upon a set-valued mapping from A into Comp (E). However,

this continuity is too strong for our purposes. Instead,

we shall introduce a concept of upper semi-continuity which

is weaker. Upper semi-continuity can be defined in many



ways. But first, we begin with the limit inferior and limit

superior of a sequence of sets.

Definition 1.2. Let {Ak}k=l c:E be a sequence of

subsets of a Banach space E. Then

lim inf Ak = {x e E : every neighborhood of x

k4!»

intersects all the Ak's with k sufficiently

large}

and

lim sup Ak = {x e E : every neighborhood of x

k-w

intersects infinitely many Ak's}.

If lim inf Ak = lim sup Ak = A, then we say [AKI;L1

k-wo R400 '—

k

converges to A and write limAk = A or Ak 4.A.

k-w

Remark 1.1. If d denotes the metric induced by

the norm in B, then it is equivalent to define lim inf AK

k-uo

and lim sup Ak as

k-No

lim inf Ak = [x e E : lim d(x,Ak) = 0 for k 4 a}

k-w

and

lim sup = [x e E : lim inf d(x, ) = 0 for'k 4 m}.
k...» Ax Ax

Remark 1.2. If (151‘.}]:.=1 is a subsequence of

IAkI;;1. it is easy to see that

lim inf c lim inf . c.1im sup . c lim sup .

k4ao 15‘ k '4“D Pk k '40 15‘ k-uo pk



Definition 1.3. A mapping F : A 4‘0(E) is said

to be upper semi-continuous at xO e A in the sense of

limit superior if

F(xo) 3 lim sup F(xn)

n4w

n
a

for any sequence {xn}n=l CLA such that xn 4 x0.

F is upper semi-continuous in the sense of limit

superior if F is upper semi-continuous at every x e A

in the sense of limit superior.

Definition 1.4. A mapping F : A 4‘9(E) is said

to be upper semi-continuous at xo €.A in the sense of

metric if for each e > 0, there exists a 5 > 0 such that

F(x) c: B€(F(x0))

for all x e A ‘with Ix-xOI < 5, where B€(D) =

Ix 6 E 3 d(X,D) < 6}-

F is upper semi—continuous in the sense of metric

if F is upper semi-continious at every x E A in the

sense of metric.

Definition 1.5. A mapping F : A 4‘9(E) is said

to be upper semi-continuous at x0 6 A in the sense of

.. n n' .
Kuratowski 1f xn 4.x yn 4 yO and yn e F(xn) imply

0'

Y0 E F(xo).

F is ppper semi—continuous in the sense of

Kuratowski if F is upper semi-continuous at every x e A

in the sense of Kuratowski.
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Remark 1.3. It is easy to see that F is upper

semi-continuous in the sense of Definition 1.5 if and only

if the graph of F, INF) = {(x,y) : y e F(x)} CiAxE, is

closed in AxE.

Definition 1.6. A mapping F : A 4w0(E) is said to

be upper semi-continuous at x0 6 A in the sense of tppology

if for each open set U 3 F(xo). there exists a 5 > 0

such that Ix-xol < 6 implies F(x) c‘U.

F is upper semi-continuous in the sense of topology
 

if F is upper semi-continuous at every x 6 A in the sense

of t0pology.

Proposition 1.1. Let F : A 4 0(E). Assume that

for x 6 A, there exists a neighborhood N(xo) of x

 

0 0

such that L) F(x) is relatively compact, i.e. LI F(x)

x€N(xo) x€N(xo)

is compact. Then, F is upper semi-continuous at X0 in

the sense of Definition 1.3 implies that F is upper semi-

continuous at x in the sense of Definition 1.4.
0

Proof: Let c > 0 be given. Suppose F is not

upper semi-continuous at x in the sense of Definition 1.4.
0

Then, fOr each 5 > 0, there exists x 6 A such that

Ix-XOI < 5 but F(x) ¢IBe(F(xO)). Hence, there exists a

m n ,

sequence {xn}n=1 CIA. such that xn 4x0 and there ex1sts
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n

Yn 6 F(Xn) Wlth d(Yn.F(xo)) Z 6- Since xn 4.xo,

xn e N(xo) for all n sufficiently large. Hence,

y 6 LI F(x) for all n sufficiently large. It
n

xeN (x0)

follows from the relative compactness of L) F(x) that

x€N (x0)

Ian:;1 has at least a limit point, say yo. It is clear

that yO 6 lim sup F(xn). Let {yj};;1 be a subsequence

of {yn]:=1 such that yj 1 yo. It follows from the triangle

inequality of d that

d(yo.F(xo)) 2 |d(yj.F(xo))-d(yj.yo)1

for all j. Letting j 4 m, ‘we have d(yo,F(xo))'2 6.

Hence, yo A F(xo). Therefore, F is not upper semi-continuous

at X0 in the sense of Definition 1.3. [3

Example 1.1. The assumption that F be locally

relatively compact at x is necessary in Proposition 1.1.
0

Let R be the space of real numbers with usual

metric and let 1“ ‘be the space of all bounded sequences of

real numbers with the norm of each element I§n1n=l'

IIIsnIII = suplenl. Let A = {0.1,%.31-....} CR.
n

Consider F : A 4 I" defined by

0 for all kF(O) = {51¢}:=1 with 5k

F(%) = I§k};;1 with 5k

5k

Oif kin and

1 if k = n.
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As we Observe that the unit sphere of to is

not compact, F is not locally relatively compact at 0.

F is upper semi-continuous at 0 in the sense of Definition

1.3 since 1i? sup F(%) = ¢'c F(O). However, d(F(%),F(0)) = 1

em

for all n]; 1. F is not upper semi-continuous at 0 in

the sense of Definition 1.4.

Proposition 1.2. Let F :IA 4 0(E). If F(xo) is

closed for some xo 6 A, then F is upper semi-continuous

at X0 in the sense of Definition 1.4 implies that F is

upper semi-continuous at x in the sense of Definition 1.3.
O

Proof: Let [xn}:;1 be any sequence in A such that

n

x 4 x . By Definition 1.4, for each s > 0, there exists
n 0

an N > 0 such that F(xn) czB€(F(xo)) for all n 2_N. Let

y 5 lim sup F(xn) be arbitrary, i.e. there exists a subsequence

o a . 3'
{xj}j=1 of [xnIn=l with yj e F(xj) such that yj 4 y.

Thus y e Be(F(xo)). Since 6 > 0 is arbitrary and F(xo)

is closed, y 6 F(xo)- C]

Example 1.2. The assumption that F(xo) be closed

is necessary in Pr0position 1.2.

Consider F : R 4 9(R) defined by

F(x) = (x-1,x+l) = [t e R : x-l < t < x+l}.

Let x0 6 R be arbitrary. It is clear that F is

upper semi-continuous at X0 in the sense of Definition 1.4
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1 n

(take 5 — e). Let xn — x0 + 5' Then xn 4Ix0. However,

lim sup F(xn) = [xo-l,xo+1] ¢:(xo-1,xo+1) = F(xo).

Proposition 1.3. Let F : A 4 0(a). If F(xo)

is closed for some x0 6 A, then F is upper semi-continuous

at x in the sense of Definition 1.4 implies that F is
0

upper semi-continuous at X0 in the sense of Definition 1.5.

 

n n

Proof: Let xn 4Ix0. yn 4’yo

By Definition 1.4, for each 6 > 0, there exists an N1(e) > 0

and yn 6 F(xn)-

such that F(xn) c Be(F(xo)) for all n 2_N1. Since

n .

yn 4 yo, there eXists an N2(e) > 0 such that d(yo,yn) < e/2

for all n 2_N Take N = max[N1,N2]. Then2.

d(yo.F(xO)) g_d(y1oyn) + dtynaF(x))

< 6/2 + 6/2 = e

for all n 2.N. Hence, yo 6 F7§37'= F(xo) since F(xo)

is closed. U

Example 1.3. Proposition 1.3 is not true without

the assumption that F(xo) ‘be closed.

Consider F : R 4 9(R) defined by

F(x) = {-1} if x < 0

{1} if x > 0
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F(O) is not closed. It is easy to see that F

is upper semi-continuous at 0 in the sense of Definition

1.4 but not in the sense of Definition 1.5.

Proposition 1.4. Let F : A 4 OCE). Assume that

F is locally relatively compact at some xo 6 A. Then F

is upper semi-continuous at X0 in the sense of Definition

1.5 implies that F is upper semi-continuous at x0 in

the sense of Definition 1.4.

Proof: Suppose F is not upper semi-continuous

at X0 in the sense of Definition 1.4. Let N(xo) be a

neighborhood of xO such that L) F(x) is compact.

x€N(xO)

Then there exists an e > 0 and a sequence [xn}:;1 c:N(xo)

 

n

such that xn 4 x and F(xn) ¢:B€(F(xo)). Hence, there
0

exists a sequence [yn]:=1 such that yn E F(xn) and

n=1 18d(yn,F(xo))I2 6. Since {xn}:;l c:N(x0)a {Yn}

contained in a compact subset of E by our assumption on

N(x). Therefore, there exists a subsequence {yna}:.=1 of

a n'

{Yn}n=l such that yn. 4 YO for some yO G E. Considering

the inequality

d(yo,F(xO)) _>_ [£(yn..f(xo))-d(yn~yoll

and letting n’ 4 a, 'we have d(yO,F(xo))‘2 e > 0. Hence

Y0 t F(xo). Therefore, F is not upper semi—continuous at

X0 in the sense of Definition 1.5. D
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Example 1.4. Pr0position 1.4 is not true without

the assumption that F be locally relatively compact at

xO even if F is single-valued. Consider the following

function

F : R 4 R defined by

F(x)=}t if x¥0

0 if x = 0.

Evidently, F is upper semi-continuous in the sense

of Definition 1.5 since its graph IXF) is closed in R2.

However, F is not upper semi-continuous at 0 in the

sense of Definition 1.4.

Prpposition 1.5. Let F : A 4 9(E) and x0 6 A

be arbitrary. F is upper semi-continuous at X0 in the

sense of Definition 1.6 implies that F is upper semi-

continuous at x in the sense of Definition 1.4.
0

Proof: For each x0 6 A, B€(F(xo)) is an open

set containing F(xo). Definition 1.4 follows immediately

from Definition 1.6. [3

Proposition 1.6. Let F : A 4 QCE). Assume that

F(xo) is compact for some xo 6 A. Then, F is upper

semi-continuous at X0 in the sense of Definition 1.4 implies

that F is upper semi-continuous at x in the sense of
0

Definition 1.6.
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Proof: Let U be an open set containing F(xo).

. 1 'For each y 6 F(xo) et Br(y)(y) be an open ball in

E centered at y 'with radius r(Y) and Br(y)(y) c‘U.

since F(xo) is compact, the covering IBrI 2 (y) : y e F(xo)}

2

has a finite subcovering, say {Br1 (yl), B (y2),...,Br (yn)I.

_ :2. _r1
2 2 2

Let r = minIrl,...,rn}. we claim that Br(F(xo)) c U. Let

2

Iy e F(xo) be arbitrary and y’ e B (y). n the finite

P
-
N
I
H

subcovering, there exist yi, i g_ 3.“! such that

Y E Bri(yi)‘ Hence

2

d(Y'oYi) Sd(Y’OY) + d(Y:Yi)

r.

<12”?

S.ri-

Therefore, y' 6 Br (Yi) c U. Since y' is arbitrary in

i

Br(y), Br(y) c‘U. Also, y e F(xo) is arbitrary. It

2 2

follows that Br(F(xO)) c‘U as desired. By Definition 1.4,

2

there exists a a = 5(g) > 0 such that

F(x) (2 BE(F(XO)) C U

2

for any x e A with Ix—xOI < 5. Hence, F is upper semi-

continuous at X0 in the sense of Definition 1.6. I]



 

 
compact

if PIX

in the

transle

for eve

Then L

take x

Hence,

0f DefiI

Definitj
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Example 1.5. Without the assumption of the

compactness of F(xo), Pr0position 1.6 is not true even

if F(xo) is closed.

Consider F : R .. 9(112) defined by

F(x) = I<y.z) : z = g; >- o).

It is evident that F is upper semi-continuous

in the sense of Definition 1.4 since F(xl) is only a

translation of F(x2) for any x1,x2 e R. F(x) is closed

for every x e R. Let x0 6 R be arbitrary. Define

U = {(y.z) : y > x0. (y-XOIZ >0}.

Then U is Open in R2 and F(xo) c.U. For each 5 > 0,

take x such that 0 < x -x < 6. we find that

 

O

1 1 l 1

(X + -(x -X). ) = (-(X +X). ---—-) 6 F(X)\~U.

2 0 x + %(xo-x)-x 2 0 %(xo-x)

Hence, F is not upper semi-continuous at x0 in the sense

of Definition 1.6.

The following simple example also shows that

Definition 1.6 does not imply Definition 1.5 in general:

Example 1.6. Consider F : R 4 9(R) defined by
 

F(x) = (0,1) for all x e R.
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From these examples, we see that the four

definitions of upper semi-continuity are quite different.

However, from the previous propositions, we find also

that under certain conditions they are indeed equivalent.

Theorem 1.1. Let A be an Open subset of a metric

space and E be a Banach space. Suppose that F : A 4 0(E)

is a set-valued mapping satisfying:

(i) F(x) is compact for every x e A: and

(ii) for each bounded subset D :IA, F(D) is

relatively compact.

Then, Definitions 1.3-1.6 of upper semi-continuity are all

equivalent.

From now on, the set-valued mappings that we shall

consider in our contingent equations satisfy the hypotheses

of Theorem 1.1. Therefore, when we say upper semi-continuity,

we mean any of the Definitions 1.3-1.6 with no ambiguilty.

Remark 1.3. Suppose we restrict 0(E) to Comp (E)

and consider mappings from A into Comp (E). It follows

from PrOpositions 1.2, 1.3 and 1.6 that Definition 1.4 is

the strongest among all.

For the sake of completeness, we introduce the

following definitions of lower semi-continuity.
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Definition 1.7. A mapping F : A 4 Comp (E)

is said to be lower semi-continuous at x0 5 A in the

sense of limit inferior if

F(xo) c lim inf F(xn)

n4m

a: n

for any sequence IxnIn=1 c A such that xn I‘XO‘

F is lower semi-continuous in the sense of limit

inferior if F is lower semi-continuous at every x e A
 

in the sense of limit inferior.

Definition 1.8. A mapping F : A 4 Comp (E) is

said to be lower semi-continuous at x0 6 A in the sense

of metric if for each s > 0, there exists a 5 > 0 such

that

F(XO) : B€(F(X))

for all x E A with Ix-x 5.
0| \

F is lower semi-continuous in the sense of metric

if F is lower semi-continuous at every x 6 A in the

sense of metric.

Remark 1.4. In view of Remark 1.1, it is easy to
 

see that Definitions 1.7 and 1.8 are equivalent.

Definition 1.9. A mapping F : A 4 Comp (E) is
 

said to be continuous at xO e A in the sense of metric

if F is both upper and lower semi-continuous at X0 in

the sense of metric.
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F is continuous in the sense of metric if F is

continuous at every x e A in the sense of metric.

Proposition 1.7. (Hukuhara [13]). Let E be any

Banach space. The operations +,-, and n have the

following prOperties of continuity with respect to the

product tapology of the Hausdorff topologies induced by

the Hausdorff metrics of R and Comp (E):

(i) the addition +: Comp (E) x Comp (E) 4 Comp (E)

defined by

A + B = {atb : a 6 A and b e B]

is continuous:

(ii) the scalar multiplication -: R x Comp (E) 4 Comp (E)

defined by

GA = Iaa : a e A}

is continuous;

(iii) the intersection 0: Comp (E) x Comp (E) 4 Comp (E)

defined by

A n B = [c : c e A and c e B]

is upper semi-continuous.

Let A be a bounded subset of a Banach space E.

The norm of A, IA], is defined to be IA] = sup[|xI : x e A).

Proposition 1.8. Let F be a mapping from a subset
 

A of a metric space X into Comp (E) and let D be a
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closed, bounded and convex subset of the Banach space E

such that 0 e D. If F is upper semi-continuous in the

sense of Definition 1.4, then the mapping G from A

into the space of non-empty, closed, bounded and convex

subsets of. E defined by

G(x) = IF(x) [D for all x e A

is also upper semi-continuous in the sense of Definition 1.4.

Proof: Let F be upper semi-continuous in the
 

sense of Definition 1.4 and x0 6 A be arbitrary. Since

D is bounded, there exists a positive integer n such that

%IDI < 1. Given 6 > 0, by Definition 1.4, there exists

a 5 > 0 such that F(x) c.B€(F(xo)) for all x with

n

Ix-xOI < 6. For any x e D,

E) . LFU‘IL x

n ([11on + 5)

[F(x) Ix = (IF(xO)I +

I 6

since D is convex and contains 0. Hence, we have

e
IF(x) [D c: (|F(xO)I + fi)D

c [F(xo) [D + 36(0)

= Be(IF(xO)ID).

Therefore, G is upper semi-continuous in the sense of

Definition 1.4. C]
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Let X,X’, and X” be complete metric spaces,

F be a mapping from X into Comp X’ and F” be a

mapping from Comp X’ into Comp X”. The composite function

G, denoted by G = F'F, is a mapping from X into Comp X”

defined by

G(x) = F’(F(x)) for each x 6 X.

In the following, we shall consider the continuity properties

of composite functions. But first,

Definition 1.10. Let X and X’ be two complete
 

metric spaces. A mapping F : Comp (X) 4 Comp (X’) is said

to be increasing if for any A, B 6 Comp (X), A c:B implies
 

F(A) c: F(B) .

Example 1.7. Let E be a Banach space. The mappings

F and G from Comp (E) x Comp (E) into Comp (E) defined

by

F(A,B) AA + UB where A,u E R

and G(A,B) A n B

are all increasing.

Proposition 1.9. (Hukuhara [13]). If F and F’
 

are upper semi-continuous (resp. lower semi-continuous)

and moreover, if F’ is increasing, then the composite

function G = F'F is also upper semi-continuous (resp. lower

semi-continuous)-



 

 
  

be

CC

m.

be

fc

in
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In the above prOposition, the assumption that F’

be increasing is superfluous if F is continuous.

Proposition 1.10. (Hukuhara [13]). If F is
 

continuous and F' is upper semi—continuous (resp. lower

semi-continuous), then the composite function G = F'F

is upper semi-continuous (resp. lower semi-continuous).

§2. Measurability and integrals of set-valued mappings:

The set-valued mappings that we shall consider in

this section are mappings from a subset A of RI“ into

Comp (Rn). It is known that for any finite dimensional

Euclidean space Rm we can define a Lebesgue measure on

Rm (see [33]: pp.49-53). Then with no difficulty, one

can generalize the measurability of a single-valued mapping

f from A into Rn to a set-valued mapping F from A

into Comp (Rn).

Definition 1.11. A set-valued mapping F from a
 

measurable subset A of Rm into Comp (Rn) is said to

be measurable if the set [x e A : F(x) c B] is measurable

for every closed subset B of Rn.

Proposition 1.11. (Hukuhara [14]). If
 

F : A CiRm 4 Comp (Rn) is upper (resp. lower) semi-continuous

in the sense of Definition 1.4 (resp. Definition 1.8), then

F is measurable.
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The following characterization of measurability

of set-valued mappings is due to Plis:

Theorem 1.2. (Plis [30]). Let F. be a mapping

from a bounded measurable subset A of Rm into Comp (Rn).

In order that F be measurable, it is necessary and

sufficient that for each s > 0, there exists a closed

subset A' of A such that F is continuous on A” and

the measure of A‘\A’ is less than c.

The measurability of set-valued mappings can also

be defined in the following way:

Let (5.2% u) be a finite and positive measure

space. And let d denote the Hausdorff metric on Comp (E).

Definition 1.12. A set-valued mapping F : S 4 Comp (Rn)

is called ursimple if it assumes only a finite number of

values K1,K2,...,Kr 6 Comp (Rn) and each of them on a

u-measurable set.

Definition 1.13. A set-valued mapping F : S 4 Comp (Rn)
 

is called nemeasurable if and only if there exists a sequence
 

Fk of ursimple functions converging in nemeasure to F:

that is

P(Ek.F) = inf(a + qus e S :d(Ek(s),F(s)) > OI).

a>0

* I
'where u (D) = inf{u(E) E e Z, and D c:E}, converges to

O as R400.
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Let g = [x1.x2,...,xn} be an orthonormal basis

of R“. If x e Rn, then (al,a2,...,an) denotes the

coordinates of x with respect to the basis 5; that is

X = (11x1 + a2x2 +...+ anxn.

Definition 1.14. Let K 6 Comp (Rn). A point
 

x0 6 K is called the lexicographic maximum of K if

_ o o 0
x0 - (a1,a2,...,an) such that

(i) a? = maxIa1 : x = (al,...,an) E K]

.. O

(11) Gk = maxIak : x = (a1....,an) G K and

a - do for i < K}
i - i '

We shall use e(K,§) to denote the lexicographic

maximum of K ‘with respect to the basis 5.

Clearly, for any compact K, e(K,§) 6 K. The

following selection theorem is due to Olech:

Theorem 1.3. (01ech [29]). Let (8,2, u) be a finite
 

measure space. If F : S 4 Comp (Rn) is urmeasurable, then

the mapping e(F(s),§) of S into Rn is urmeasurable in

s for each fixed orthonormal basis 5 of R“.

Let T be a Lebesgue measurable subset of R and

F be a set-valued mapping from T into 0(Rn). we use

I to denote the family of all point-valued mappings f
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from T into Rn such that f is Lebesgue measurable

over T and f(t) e F(t) for every t e T. Then the

following definitions of the integral of F is a natural

generalization of the integral of a point-valued mapping:

Definition 1.15. Let F : T 4 0(Rn), we define

the set-valued integral of F over T, (S)IE F(t)dt,

by

(3)]‘T F(t)dt = []‘T f(t)dt : f e .7}.

The following are some fundamental theorems which

will be useful in our later develoPment:

Theorem 1.4. Let F be a Lebesgue measurable
 

function from a measurable subset T CIR into Comp (R?)

such that the measure of T is finite and F is integrably

bounded: i.e. there exists a point-valued function f

which is integrable over T and IF(t)I g_f(t) for all

t e T. Then,

(SIT F(t)dt :1 (5.

Proof: In order to get a measurable selection of

F, it suffices to show that Definition 1.11 implies

Definition 1.13 when u is the Lebesgue measure m defined

on T so that we can apply Theorem 1.3.
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Let F be Lebesgue measurable. Given any positive

integer k > 0, by Theorem 1.2, there is a closed subset

T’ = T(k) c T such that F is Hausdorff continuous on T'

and m(T‘\T') < §%a As m(T) < a, there exist a,b e R

such that T c [a,b]. Since T’ is compact, F is uni—

formly continuous on T'. Let a = a0 < a1 <...< am = b

be a subdivision of [a,b] with aj - aj_1 = % (b-a) for

j: 1,...,m. Let Ij = [aj'aj-l], Tj = T n I]. and

Tj = T’ n Ij for j = 1,...,m. we choose m so large such

1 . s .

that d(F(t1), F(t2 )) <-1E 1f t1,t2 e Tj for some 3.

Define Ek : T 4 Comp (Rn) by

Ek(t) = F(tj ) for all t e Tj if there exists

a t. T.

J 6 j

{o} for all t e T). if T; =.¢

It is clear that Ek is a simple Lebesgue measurable function

and

PIFk.F) = inf(a + m [t e ‘I‘ = d(Fk(t), F(t)) > a})

a>0

55-}, +m {t 6T = dwk (t) F(t)) >2k}

1 1 __1

Sm+m-i

which converges to 0 as ‘k 4 m. Hence, F is Lebesgue

measurable in the sense of Definition 1.13. [3

Theorem 1.5. (Aumann [ 1]). Let F : T 4 9(Rn)

such that F is integrably bounded and F(t) is closed

for all t e T. Then, (S)[T F(t)dt is compact.
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The following theorem is an analogue of Fatou's

lemma :

Theorem 1.6. (Aumann [l ]). If [FkI;;1 is a

sequence of set-valued functions that are all defined and

bounded by the same integrable point-valued function h

on a measurable set T CiR, then

(8) lim sup F .3 lim sup F .

IT k 409 k R4a JIT k

Theorem 1.7. (Hukuhara [14]). Let F be a

measurable set-valued function defined on a set T c:R

with m(T) < a. If T = T1 U T2 such that T1 and T2

are disjoint and measurable, then

(s)j§ F(t)dt = (3)]Tl F(t)dt + (s)]§2 F(t)dt.

§3. Topological degree of set-valued mappings:

One of the important theories in non-linear analysis

is that of the degree of a mapping as developed by Leray

and Schauder in 1934 (see [20]). Their work not only

generalized the Brouwer degree to a certain class of mappings

in Banach space but also made it possible toformulate more

powerful fixed point theorems. As our main interest is the

set—valued mappings, we shall omit the lengthy develOpment

of the degree theory of point-valued mappings which was first

defined on finite dimensional linear spaces and then extended

to normed and locally convex linear spaces. An extensive

treatment of this subject may be found in [32],[26],[27],

and [19]. I
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The extension of the topological degree from

point-valued mappings to set-valued mappings has been

established also by many mathematicians, first by Granas

[]Lfl, then by Hmkuhara [l3] and recently by Cellina and

Lasota [ 4]. Each of their approaches is different from

the others. The way we present here follows the approach

of Granas since it is convenient for our future purposes.

For simplicity, our tepological degree will be defined for

a class of set-valued mappings in a Banach space E with

domains solid spheres in E.

The following notations are needed:

Ea : an arbitrary Banach space.

Pa = Ea\[0].

V (xo,p) = [x e Ea: Ix—xOI < p} where x e E
a 0 a

and p > 0.

Sa_1(xo,p) = [x 6 Ed : Ix-XOI = p] where x0 6 Ed

and p > 0.

cf(Ea) = the collection of all non—empty closed convex

subsets of Ed

Definition 1.16. A mapping e : A c:Ea 4 cf(Ea) is

said to be compact if for each subset D of A, §(D) is

relatively compact in Ea’ i.e. 'ETEY is compact. Q is said

to be completely continuous on A if Q is compact and

upper semi-continuous in the sense of Definition 1.5 on A.



 

f1
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Definition 1.17. A mapping cp : A c Ea 4 cf(Ea)

is said to be a completely‘continuous multi-valued vector

jiglg_on A if it can be expressed in the form

m(x) = x - §(x) for all x 6 A,

where G(x) is completely continuous on A.

Definition 1.18. we say that a completely continuous

multi-valued field ¢(x) = x - 5(x), x e A, does not

vanish and denote it by T : A 4»cf(Pa) if the point 0 does

not belong to the set qflx) for any x e A.

Let Sa-l = Sa_l(xo,p). Va = Vd(xo,p) and

f,¢ : Sa-l 4.cf(Pa) be completely continuous (resp. single

and multi-valued) vector fields. f is called a selection

of m if f(x) 6 m(x) for each x e Sa-l' By [32], for

every such f, an integer v(f,Sa_1) is defined and is

called the characteristic of f on Sa-l' The following
 

theorems are all due to Granas:

Theorem 1.8. (Granas [10]). To every non-vanishing
 

completely continuous multi-valued vector field m : Sa-l 4»cf(Pa)

we can assign an integer v(¢,sa_1) called the characteristic

of the field w on S such that
a-l

V(Cp: Sa_1) = VIfI SCI-1)

for every selection f of ¢°
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Definition 1.19. We say that two non-vanishing

completely continuous multi-valued fields ¢fi'¢2 : A 4 cf(Pd),

¢u(x) = x - §1(x), ¢2(X) = x - 92(x) are homotopic and

denoted by $1 a $2: if there exists an upper semi-

continuous (in the sense of Definition 1.5) function

y(x,t) : A x [0,1] 4Icf(Ea) such that the following conditions

are satisfied:

(i) the point 0 does not belong to any set

¢(x,t) = x - y(x,t) for all x e A and

t 6 [0,1]:

(ii) Y(Xo0) = §1(XI. Y(X.1) = 02(X) for all

x e A:

(iii) the set v(A,[0,l]) is relatively compact

in E .

a

Theorem 1.9. (Granas [1£fl). If two non-vanishing

completely continuous multi-valued vector fields

e1,¢2 : Sa-l 4 cf(Pa) are homotopic, $1 a $2: then their

characteristics are equal, i.e. ”(ml’Sa-l) = V(¢2'Sa-l)'

Theorem 1.10. (Fixed point prOperty, Granas [10]).

Let qfix) = x - §(x) be a completely continuous multi-valued

vector field

m : Va 4 Cf(Ea)

defined on a full sphere Va = V;T§S:§) into cf(Ea). If

the restriction of ¢ on Sa-l does not vanish,
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mb = ¢ISG_1 : Sa-l 4»cf(Ra) and v(¢b,Sa-1) #'0, then

there exists a point x e Vd such that 0 e ¢Cx), i.e.

there exists x 6 Va such that x e 6(x).

Although we do not include them here, there are

many important fixed point theorems, e.g. the Kakutani-

Ky Fan theorem (see [15] and [ 7]). that can also be

Obtained without much difficulty from the view of topological

degree. we shall conclude this chapter with the following

extension of the well4known theorem of Borsuk on antipodes

(see [ 3]):

Theorem 1.11. (Granas [11]). If a non-vanishing

completely continuous multi-valued vector field

T : Sa-l 4Icf(Pa). defined on a sphere Sa-l c:Ea, is odd,

that is

m(x) = -¢(-x) for all x e Sa-l'

then its characteristic v(¢,S1_l) is odd.



Chapter II

CONTINGENT DIFFERENTIAL EQUATIONS

In an ordinary differential equation, the tangent

at each point is prescribed by a point-valued function.

This gives a vector field. In a contingent differential

equation, the tangent is prescribed by a set-valued

function. This direction field is usually called an

orientor field. This more general class of equations was

developed independently by A. Marchard and S.K. Zaremba

in the mid 30's and has then been intensively investigated

by many other mathematicians. In this chapter, we shall

study the fundamental theory of such differential systems.

§l. Existence and continuation of solutions:

Definition 2.1. Let I be an interval in R. A

mapping F from Ian into Comp (Rn) is called an

orientor field.

Definition 2.2. Let x(t) be a function from an

interval I c:R into R“. For each to E I, let

x(t)-x(to)

F(t) = x-t0
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The set D*x(to) defined by

D*x(t ) - [c 6 Rn - there exists a s uenc [ I“ c I
o ‘ ' eq 9 tk k=1

k

such that tk #'to, tk 4 to and

k

F(tk) 4 c}

is called the contingent derivative of x(t) at to.

Definition 2.3. Let x(t) : I 4 R“ and

F(t,x) : Ian 4 Comp (Rn). The relation

*

(C) D x(t) c F(t,x(t))

is called a contingent differential equation.

Let J' be an interval in R and D c Ian. We

shall use the following notations:

Projl D = [t E I : there exists an x e R such

that (t,x) e D}

Proj2 D = [x e Rn : there exists a t E R such

that (t,x) e D]

L1(J) = the collection of Lebesgue integrable

functions from J into RP

C(J) = the collection of continuous functions

from J into Rn

AC(J) = the collection of absolutely continuous

functions from J into Rn

CC(Rn) = the collection of non-empty, compact and

convex subsets of Rn.
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For each x(t) E AC(J), 'we denote by x(t) the

usual derivative of x(t). The abbreviation a.e. J

means almost everywhere in J.

Definition 2.4. A function x = x(t) defined on

an interval J c I into Rn will be called a solution of
 

(C) in the sense of Marchand if

X(t) e C(J) and

D*x(t) c:F(t,x(t)) a.e. J.

Definition 2.5. A function x = x(t) defined on
 

an interval J CII into Rn ‘will be called a solution of
 

(C) in the sense of waéewski if

x(t) e AC(J) and

x(t) €F(t,x(t)) a.e. J.

Definition 2.6. A function x = x(t) defined on

an interval J c.I into Rn will be called a solution of
 

(C) if

x(t) eAC(J) and

t

x(t) e x(to) + (s)jt F(s,x(s))ds

o

for each t,tO 6 J.

The contingent differential equation that we shall

study in this thesis are equations in which the orientor

fields are of the type defined as follow:
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Definition gpl, We shall say that an orientor

field F(t,x) from Ian into chRn) satisfies the

Caratheodory conditions provided

(i) F(t,x) is measurable in t for each

fixed x e Rn:

(ii) F(t,x) is upper semi-continuous (in the

sense of Definition 1.4) in X for

each fixed t e I: and

(iii) for each compact subset D of Ian, there

exists a function m(t) = mD(t) ‘which is

integrable over Projl. D such that

[F(t,x) | g m(t)

for all (t,x) 6 D.

A contingent differential equation is said to be

of Carathéodory type if its orientor field satisfies the

Carathéodory conditions.

Proposition 2.1. (Plis [31]). Let F(t,x) be an

orientor field from Ian into cc(Rp) such that F satisfies

conditions (i) and (ii) in Definition 2.7. Then, there

exists a orientor field H(t,x) such that

(i) H(t,x) c:F(t,x) for every (t,x) e m“;

(ii) H(t,x) is upper semi—continuous (in the

sense of Definition 1.4) in x for each

fixed t e I:
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(iii) H(t,x(t)) is measurable in t for any

measurable function x(t) from I into

Rn:

(iv) H(t,x) is measurable in (t,x):

(v) there exists a countable dense subset B

of Rn such that

H(t.XI = F(t.X)

for (t,x) 6 1x8.

Remark 2.1. For an orientor field F(t,x) satisfying

conditions (i) and (ii) of Definition 2.7, it may happen

that F(t,x(t)) is not measurable fOr a measurable function

x(t) as the following example shows. This example shows an

error in Pr0position 5 of [17] by Kikuchi and also shows the

need for a theorem of the Plis type.

Example 2.1. Let S be a non-measurable subset of

[0,1]. Define F(t,x) : [0,1] x [0,1] 4 cc(R) by

F(t,x) = [1,2] if t = x e S

[0.1] if t = x z’S

[1] if t #'x.

It is clear that F(t,x) is upper semi-continuous

(hence measurable) in t for each fixed x and F(t,x)

is upper semi-continuous in x for each fixed t. Moreover,

F(t,x) is measurable in (t,x) since the set [(t,x) :

t = x 6 [0,1]} is a set of measure 0 in [0,1] x [0,1].
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Let x(t) : [0,1] 4 [0,1] defined by x(t) = t which

is continuous (hence measurable). However, It : F(t,x(t)) c

[1,2]) = S is non-measurable.

Remark 2.2. If H(t,x) c F(t,x), then every
 

trajectory of H(t,x) is a trajectory of F(t,x).

Remark 2.3. Let F(t,x) be an orientor field
 

satisfying the Carathéodory conditions. It follows from

Theorem 1.4 and (iii) of Pr0position 2.1 that

(5)] F(t.x(t))dt 7‘ I2!

I

for any measurable function x(t) from I into Rn with

m(I) < a.

The following prOposition will allow us to express

a contingent differential equation of Carathéodory type in

the ordinary differential form as well as the integral form:

Proposition 2.2. Let F(t,x) be an orientor field

from Ian into cc(Rn) such that F satisfies the

Carathéodory conditions. Then, Definitions 2.4-2.6 are all

equivalent.

Proof: The equivalence of Definition 2.5 and 2.6

is evident. It is clear that Definition 2.5 implies

Definition 2.4. When F(t,x) 6 cc(Rn). Definition 2.4

implies Definition 2.5 which is due to wazewski (see [37]). [j
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When a contingent differential system is defined,

the immediate questions that one may ask are:

(i) When does a solution exist?

(ii) How can a solution be continued?

(iii) Does the family of solutions have certain

properties of convergence and continuous

dependence upon initial conditions?

(iv) What can we say about the family of solutions

emanating from a given initial point?

The next theorem which is due to Plié gives a complete

answer to the first two questions.

Definition 2.8. Let S be an open subset of Ran

and F(t,x) be an orientor field from S into cc(Rn). A

solution x(t) defined on an open interval I is called a

non—continuable solution of (C) if lim (tn,x(tn)) e S implies

lim t e I. In this case, I is caII;d a maximal interval

:fmexistence of x(t).

Remark 2.4. (i) From the existence theorem of Plis,

‘we can see that a maximal interval I exists and is unique

and we shall denote it by I = (w-,m+).

(ii) If (with is the maximal interval of

existence of a solution, then (t,x(t)) tends to the boundary

as of S as t 4 w— or w+. To say (t,x(t)) tends to as



40

as t 4 w+ (resp. t 4 w-). 'we mean that either m+== a

(resp. w- = -m) or for any compact subset D of S,

(t,x(t)) ('D 'when t is sufficiently close to w+

(resp. w-).

Theorem 2.1. (Plis [31]). Let F(t,x) be an orientor

field from an open subset S c Ran into cc(Rn) such that

F(t,x) satisfies the Carathéodory conditions. Then, for

each point (to,xo) E S, there exists at least one non-

continuable solution x(t) of (C) such that x(to) = x0.

Remark 2.5. Actually, Plis proves this theorem

under weaker assumptions. Instead of conditions (i) and

(ii) of Definition 2.7, he only requires that F(t,x) is

upper semi-continuous for almost all t and that it contains

an orientor field G(t,x) which is densely measurable in t

on S.

§2. Convergence prOperties of solutions:

The convergence property is one of the most

important prOperties in differential equations. As it was

shown by Strauss and Yorke (see [34]), much of the fundamental

theory in ordinary differential equations follows directly

from a convergence theorem. Kamke has given a convergence

theorem (see [12]) in which the vector fields are assumed

to be continuous. In [34], this theorem was proved with vector
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fields of Caratheodory type. For contingent differential

equations, Zaremba has shown a convergence theorem (see [41]).

And later, Bebernes and Schuur also established a Kamke-

type convergence theorem of initial values for contingent

differential equations in which the orientor fields are

assumed to be upper semi-continuous (see [12]). In this

section, we shall consider contingent differential equations

of Carathéodory type with certain perturbation and investigate

the convergence prOperties of their solutions.

. . ¢ 5

Prop031tlon 2.3. Let [An]n=1 and [B ] _1 be

two sequences of subsets of RI. Then,

(i) if An c:Bn for all n = 1,2,..., then

lim sup An c: lim sup Bn:

n4m n40

0 o o m a

(11) 1f [An]n=1 and [En]n=1 are bounded, then

lim sup [An+Bn} c.1im sup AD + lim sup Bn'

n4m n4c n4a

Proof: (i) follows immediately from the definition

of limit superior and (ii) follows from the Bolzanoéweierstrass

prOperty of Rn. [3

For any A,B 6 Comp (Rn), the escape of A from B

is defined and denoted by

PIA.B) = SUP d(a.B)

aéA

where d(x,B) = inf |x4b|. It is Obvious that p is not

beB

symmetric but does satisfy the triangle inequality.
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Definition 2.9. Let {F1}A€A

orientor fields from Ian into Comp (Rn). we say

be a family of

{FIIAEA is an equi-upper-semi-continuous family at

x e Rn if for each 6 > 0, there exists a 5 = 5(e,x0) : O
0

such that Ix-x / 5 implies
oI‘

PIFl(t.X).Fx(t.XO)) < e

for all t e I and for all 1 e A.

If {FA}XEA is equi-upper-semi-continuous at every

x 6 Rn, we say [F I1 AEA is equi-upper-semi—co
ntinuous on Rn.

Proposition 2.4. Suppose that

. n n m

(i) Fn(t,x) . IxR 4 Comp (R) such that [FnIn=1

is an equi-upper-semi-continuous family on Rn:

(ii) there exists a Fo(t,x) : 1an 4 Comp (Rn)

such that

n

p(Fn(t.x).Fo(t.XI) 4 O

for all (t,x) 6 Ian:

... n n
(iii) ¢h(t) . I 4 R such that ¢h(t) 4 ¢b(t) for

all t e I.

Then, 11242up Fn(t,¢h(t)) c.FO(t,go(t)) for all t e I.

Proof: For any t e I, let y(t) 6 lim sup Fn(t'¢h(t))

n4m

be an arbitrary element. By definition, there exists a

subsequence yn (t) e Fn (t,¢h (t)) such that yn (t) 1 y(t).

j j j j
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c Q

Now, consider the sequences [Fnj(t,q;k(t))}k=1 and

j = 1.2,'°'. Since ek(t) 4 qo(t), it follows from the

equi-upper-semi-continuity of IF that for any 6 p 0,I?
n. =1
J J

there exists a K = K(e,t) ) 0 such that k > K implies

a
(1) P(Fnj(tamk(t)). Fnj(towb(t))) < 5

j

for j = l,2,'°°. It follows from yn (t) 4 y(t) and

j

yn (t) E Fn (t,cp:n (t)) that for any 6 > 0, there exists

j j j

a J = J(e,t) > 0 such that j > J implies

(2) PIY.Fn (to Con (13) ) ) < E .

j 3' 2

Now, for each s > 0 and t e I, we pick r > max {J,K).

Then, by (l) and (2) we have

d(y.F (t.qo(t)) = 9(y.F (t.oo(t)))

r r

n n

< p(Yanr (tocpnr(t) ))

+ P(Fn (t.enr<t)).fnr(t.eo(tn)

N
l
m
H

+ =6-
E

2

(t,¢b(t)) 4 0.] By assumption (ii), we have

H
A

Hence, p(y,Fn

r

d(y.Fo(t.¢b(t))) 9(y.Fo(t.¢b(t)))

..<. p‘YIFnr(to¢o(t—’))

+ 90:"n (t.opo(t)).Fo(t.eo(t))) 5 o.

r

It follows from the compactness of F0(t,¢b(t)) that

y(t) E Fo(t,¢b(t)) as deSired. C]
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Example 2.2. PrOposition 2.4 is not true without
 

assumption (i) even in the case of point-valued functions.

Consider

Fn(t,x) = [1.2] x R 4 R defined by

_ ntx _
Fn(t'X) — -T-—2—-2- for n - 1.200..

t +n X

and Fo(t,x) e 0.

qn(t) : [1,2] 4 R defined by

An“) = it for n = 1,2,...

It is easy to see that Fn and g“ are all continuous

n

for n = 0,1,2,-'-. Also, p(Fn(t,x),Fo(t,x)) 4 0 and

k . m .
Qk 4 m0 uniformly on [1,2]. However, [Fn]n==1 is not

an equi-upper-semi-continuous family. Let c = % and take

x0 = 0. For any 5 > 0, choose N so large such that g < 5.

_. 1 -
Let xl — n1 where nl > N. Then le-XOI — Ix1| < 5 and

t 1 1

F (t,X ) = T 2 —— = .- .

n1 1 t +1 t2+1 5

Hence, p(F
l _ a

1(t,x1), Fn1(t,0)) 2.§ — 3. Therefore, [Fn)n=1
n

is not equi—upper-semi-continuous at 0. By a simple

calculation, we have

1im sup FnIt.cpn(t)) = {é} ¢ Io] = F0(t.cp0(t)).
n-OOO
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Proposition 2.5. Suppose that
 

(i) IFn}:el is a family of orientor fields

from Ian into Comp (R9):

(ii) there exists an orientor field Fo(t,x)

from Ian into Comp (Rn) such that

Fo(t,x) is upper semi-continuous (in

the sense of Definition 1.4) in x for

each fixed t E I:

(iii) p(Fn(t,x),Fo(t,x)) 3.0 uniformly with

respect to x:

(iv) ¢h(t) : I 4 Rn such that ¢h(t) 3 ¢b(t)

for each t 6 I.

Then, 11:4:up Fn(t,¢h(t)) c Fo(t,¢b(t)) for any t e I.

Proof: For any t e I, let y(t) 6 lim sup Fn(t'¢h(t))

n4m

be arbitrary. By definition, there exists a subsequence

{Fnj(t'¢hj(t))};=l 0f IFn(tomn(t))I:;l such that

(1) p(y(t>.rn.(t.en.<t)>) lo.

3 3

Given 3 / 0, by (1), there exists an integer J = J(e,t) > 0

such that j > J implies

(2) P(y(t).Fn (t.ch (t))) < § .

J 3

By assumption (iii), there exists an integer N = N(e,t) > 0

such that n > N implies

(3) PIFfi(t.X). F0(t.X)) < f

for all x e Rn. NOW, let us choose k = k(e,t) SO large
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that k > J and nk > N. By (2) and (3), we have

d(y(t).FO(t.op,5((t)) = P(Y(t).FO(t.can(t)))

P(Y(t).F (t. (t)))

— "a. “A.

+ P(F (t. (t)).F (t. (t)))

"k “in. 0 “*5.

< f + g = 6.

Hence,

k

(4) d(Y(t)'F°(t'¢ht(t))) 4 0.

Applying (4) with assumptions (ii) and (iv), we have

d(y(t) .Fo(t.cpo(t))) P(y(t) ,Fo(t,q)o(t) ))

.<_ P(Y(t).Fo(t.cpr5<(t)))
k

+ P(Fo(to¢hk(t)).Fo(t.¢b(t))) 4 o.

It follows from the compactness of Fo(t,¢b(t)) that

y e F0(t,¢b(t)) as desired. C]

Remark 2.6. The previous example shows also that

it is essential that the convergence in assumption (iii) of

Proposition 2.5 must be unifOrm in x. In Example 2.2,

l 1
take t—l and let xn — 5' Then, Fn(l,xn) — 5 for all

n = l,2,°--. Therefore, if we choose 6 = %, it is clear

1

that we must take N > n so that p(FN(l,xn), FO(1,xn)) < 5 — e-

The following two examples will show that PrOpositions

2.4 and 2.5 are generally two different sufficient conditions

for the limit superior of a sequence of orientor fields to

be contained in their limit function.
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Example 2.3. Consider the orientor fields

Fn(t,x) : RxR 4 cc(R) defined by

_ - SE. _
Fn(t,x) - [sin 11' l] for n — 1,2,...

and F0(t,x) = [0,1].

It is clear that F is upper semi—continuous for n = 0,1,2,...
n

and p(Fn(t,x), Fo(t,x)) 3 0 for all (t,x) E RxR.

(i)

(ii)

IFn}:;1 is equi-upper-semi-continuous in x

on R : For any (t,x) 6 RxR, since sine

function is continuous, given 9 > 0, there

exists a 5 = 5(e,(t,x)) >'0 such that

Iy-x] < 5 implies [sin ty - sin tx] < e.

For any positive integer n, Iy-x| < 5

implies IE - El < g g_5 which implies

[sin %¥-- sin €§I < e. Therefore, for each

s > 0 and x e R, we have p(Fn(t,y),Fn(t,x)) ~< e

for all y with Iy-xI < 5 and n = l,2,°°°.

p(Fn(t,x),Fb(t,x)) 3 0 is not uniform with

respect to x : Given t e R, for every

3wn

positive integer n, choose xn = 3? . We

have

II I
-
‘

p<rn(t.xn).ro(t.xn)> = p<[-1.1].[o.1])

Hence, the convergence is not uniform.

Example 2.4. Consider the orientor fields
 

Fn(t,x) : [0,1] x R 4 cc(Rn) defined by

Fn(t,x) = [-1, sin nx + E sin x] for n = 1,2,...

and F0(t,x) [-l,l].
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It is clear that Fn is continuous for all n = 0,1,2,'°°.

(i) p(Fn(t,x),Fo(t,x)) g 0 uniformly with

respect to x : Clearly,

P(Fn(tox).Fo(t.X)) 3.; 3 0 is independent

of x.

(ii) [Fn}:=1 is not equi-upper-semi-continuous :

Consider (t,0) 6 [0,1] x R. Let 0 < e < 1

be given. For any 5 > 0, choose n so

large such that %%-< 5. we have

7T

p(Fn(to§E’)an(t—00))

= p([-1, sin g + E sin g],[-1, sin 0 + 3 sin 0])

= p([—l,l + E], {-1.01) = 1 + E _>_ 1 = 5.

Hence, {Fn]:;1 is not equi-upper-semi-

continuous at 0.

Definition 2.10. Let be a sequence of

(D

[¢h}n=0

functions with domains D c:R. we say “h converges

compactly to go, denoted by Qn S ¢b' if for any compact

subset K of D , K csz except at most a finite number

n

n .

of Dcpn and m“ 4 90 uniformly on K.

For any open subset U of Ran, let MU denote

the family of all orientor fields of Caratheodory type

from U into cc(Rn). we shall consider the following

contingent differential equations with initial conditions:
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X

n
(1) x(t) e A<t.x(t)> + Fn(t.x(t>) x(tn)

(2) x(t) e A(t.x(t)) + Fo(t.X(t)) x(to) = x0

Theorem 2.2 (convergence). Suppose that

(i) U and Un are open subsets of Ran

for n = 0,1,2,... such that UO C’Un c U

except for a finite number of Uh's

(11) A 6 MD and Fn 6 mbn for n = 0,1,2,...:

(iii) {F V”n n-l is an equi-upper-semi-continuous

family on Proj 2 U0 such that

p(Fn(t,x),Fo(t,x)) 9. o for all (t,x) 6 U0:

(iv) for each compact subset Q c qo, there

exists a function m(t) = mQ(t) such that

m(t) is integrable over Proj 1 Q and

|Fn(t,x)| g m(t) for all (t,x) 6 Q and

for all n = 0,1,2,...:

(v) (tn'xn) e Uh for n = 0,1,2,... such that

n

Then, for every sequence {¢h}:;1 of non-continuable solutions

of (1), there exists a subsequence {Qh };;1 and there exists

a non-continuable solution “C of (2) such that mh S wb'

J'

O

Proof: Let f¢h}n=1 be a sequence of non-

continuable solutions of (l) with interval domains

{Dcp = (w. w”)}
n n "1n n—
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(i) For any compact subset Q c UO with

(t0,xo) 5 Int Q, there exists an Open interval IQ such

that t0 6 IQ c (m;,m:) except for a finite number of n:

By assumption (i), Q czun for all n large enough. Define

t t

L(t) = It L(s)ds and M(t) = It m(s)ds

O 0

where L(t) = 40(t) and m(t) = mQ(t) are integrable functions

that bound A(t,x) and Fn(t,x), respectively, on Q. We

note that L(t), M(t) 6 AC on Projlt Q. Let a > 0 be

such that the set wa

wa = {(t,x) : ‘t-tO) < a. |x-xo| < % d(to.xo).aQ)

is contained in Q, where 5Q denotes the boundary of Q.

Let 0 < B < a be such that |t-t0| < 6 implies

|L<t>‘ + |M<t>| < g d((to.xo).aQ). Define

, 1

WE - [(t.X) . |t-to1 '\ B. \x-xol < 71 d((to.xo).aQ)}-

Clearly, we have WE c:wd CiQ c U6. By assumption (v), there

exists an integer N > 0 such that (tn,xn) 6 WE for all

n > N. Since mh is a solution of (l), we have

‘nn(t)-xn| g_|j:n £(s)ds| + ‘Itn m(s)ds‘

lL(t)-L(tn)| + |M(t)-M(tn)|

_<_ |L(t)| + |M(t)| + |L(tn)‘ + ‘M(tn)|

1

d((t0.xo).aQ) + g- d((to.xo).aQ)/
\

t
h
I
-
J

(
D
I
P

d ( (tooxo) o 3Q)
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for all n > N and all t such that ‘t-t0| < B. Hence,

‘cpn (t) -XO) ‘ g ‘cpn (t) -Xn‘ + ‘Xn-Xo‘

< é d((to.xo).ao) + é d((to.xo).aQ)

I

N
I
H

d ( (tooxo) o 50)

for all n > N and all t such that \t-to| < B. This

shows that (t'¢h(t)) e Wd for all n > N and all t such

that ‘t-tol < 6. Since mh is non-continuable, this shows

that ¢h(t) exists at least on the interval (to-B,to+B)

for all n > N. This proves (i).

(ii) For any compact interval J c.I ‘with

Q

m
9 .

to Q Int J, [¢h(t)}n=1 has a subsequence I¢hj(t)}j=1 which

converges uniformly to some function ¢b(t) on J: Without

loss of generality, let J = [a,b] c I and t0 6 (a,b).

Q

Clearly, Qn is defined on [a,b] for n > N. In part

(i) of our proof, we have shown that {(t,¢h(t)) : t e IQ,

n > N} C Wu c Q. Since Q is compact, [mn]n=N+l is

uniformly bounded on [a,b]. Also, by Proposition 2.2, the

solution mh of (1) can be expressed as

t

cpn(t) E xn + (S) jtn[A(S.cpn(S)) + Fn(Socpn(S)) ]ds

for t 6 [a,b] and n > N. It follows from Theorem 1.7

that

cpn(t) - cpn(S) e (S)j‘:[A(r,cpn(r)) + Fn(r,cpn(r))]dr
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for any t,s 6 [a,b] and n > N. Hence, we have

‘qnn(t) -cpn(s)‘ _<_ U:[L(r) + m(r) ]dr‘

g_|L(t)-L(s)\ + ‘M(t)-M(s)|

for any t,s 5 [a,b] and n > N. As L(t), M(t) e AC([a,b])

and are independent of n, {¢h}:=N+l is equi-continuous

on [a,b]. It follows from Ascoli's that there exists

a subsequence {gn.(t)};;l which converges uniformly to

some function ¢b(t) on [a,b].

(iii) ¢b(t) is a solution of (2) on [a,b]:

Consider the limit superior of both sides of the equation

cpn.(t) e xn. + (my: [A(s,cpn.(s))+ Fn.(s,qgn.(s)]ds

J 3 nj 3 3 3

where t 6 [a,b]. By Proposition 2.3 (i), we have

lim sup qh (t) c lim sup{xn +(S)J‘tn [A(S'¢h (3))

54¢ j j4° nj nj j

+ Fn (s,¢h.(s))]ds}.

J 3

Since A(t,cgn (t)) and F (t,¢ (t)) are integrably bounded
j n 0 nj

by L(t) and m(t) respectively for all t 6 [a,b], ‘we

can apply Pr0position 2.3 (ii) and get

lim sup mn (t) c lim sup xn + lim sup(S)J‘tn [A(s,gh.(s))

j4w nJ' j4~ j j4w nj

+ Fn (s,cpn (s))]ds

j j

c lim sup xn. + lim sup{(S)j‘to[A(s'¢h. (3))

34“ J qu j

n .

+ F (S,¢h (s))]ds

J j

t
n.

+ auto] [£(s)+m(S)]ds)}
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c lim sup xn + lim sup(S)j‘to[A(s,¢h (s)

jam 3 14° j

+ Fn_(s,¢hj(s))]ds

J tn

+ lim sup B(jt:j[1(s)+m(s)]ds)

54w

t

where B(J‘t [t(s)+m(s)]ds) is the solid sphere in Rn

0

centered at O with radius ‘j: [L(s)+m(s)]ds|. Since

j 0 . .

9n (t) 4 ¢b(t) uniformly on [a,b], tn 1 t J

j

and by Theorem 1.6, we have

¢b(t) E x0 + (S)Ito lim sup[A(s,¢h. (s)) + Fn (s,¢h (s))]ds

j4” j nj

+ {0}.

Define Gn (t,x) = A(t,x) + Fn (t,x) for j = 1,2,... and

j j

Go(t,x) = A(t,x) + Fo(t,x).

By assumption (iii), [Gn };;l is equi-upper-semi-continuous

j .

on R“ and p(Gh (t,x),Go(t,x)) 1 o. It follows from

i

Proposition 2.4 that

lim sup Gn (t,cpn (t)) c: G0(t,cpo(t)).

j+° nj '

Hence,

m0(t) 6 X0 + (S)I:O[A(s.¢b(s)) + Ro(s.¢b(s))]ds.

Therefore, go(t) is a solution of (2) on [a,b].

(iv) ¢b(t) can be extended to IQ = (ao,bo) defined

in part (i) such that ¢b(t) is a solution of (2) on IQ

m o

and {Qn}n=l has a subsequence (“Rk,k)}k=l such that

wank) 4 “’0 on Io: From what we have shown above, we
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know that for every compact interval [a,b] such that

t0 6 (ao,bo) and [a,b] c (ao,bo), [¢h}n=1 has a

subsequence which converges compactly to a solution qb

of (2) on [a,b]. Let [[ak'bk1};;l be a sequence of

compact intervals such that t0 6 (ak'hk)' [ak'bk] C:[ak+l'bk+l]

and (aoobo) = kE-Jl [ak'bk].

m a:

Let [m(l,r)}r=l be a subsequence of {¢h}n=1

r
such that m(l,r) 4 m(0.1) uniformly on [a1,b1]. If

Q . .

{Cp(k,r)}r=l is chosen and m(kor) 4 @(O,k) uniformly on

[ak'th' we pick a subsequence [¢Wk+l,r)}r=l of

an r .

{m(k' r) }r=l such that “JON-1o r) 4 ‘P(o,k+l) uniformly on

[ak+l'bk+1]' Clearly, w(01k+1) is a solution of (2) on

[ak+1'bk+l] and “’(o,k+1)‘[ak'bk] = own” for k = 1,2,...,

Define q0(t) : (ao.bo) 4 Rn by ¢b(t) = ¢(O k)(t) where

k is so large that t e [ak,bk]. From our selection process.

it is clear that ¢b(t) is a solution of (2) on (a0,bo)

and {¢h]n=l has a subsequence {qkk,k)}k=l such that

c

(v) Let id be the maximal interval which is

contained in Proj1 Q and to 6 Int IQ such that a solution

qo(t) of (2) is defined on f; and {wh}:;l has a

subsequence which converges compactly to ¢b on 10' Then,

~ ~

IQ is closed. Moreover, if 5' and b are the left and

right end points of IQ

to so as t 4 5' + 0 or t 4 1'5 - 0: We shall consider the

N ~

right end point b only. The left end point a can be

respectively, then (t,qo(t)) tends
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proved similarly. Since “5 is a solution, for

~

§<t1<t <b and n=0,l,2,..., we have

t t

lon(t1)-cpn(t2) | g ”t: L(s)ds‘ + W: m(s)dsl

2

_<_ \L(t2)-L(tl>‘ + ‘M(t2)-M(t1)|.

As L(t), M(t) €AC((a,b)), canal) 5%(t2) 40 as

t1.t2 4'b - 0. By the Cauchy criterion for convergence,

51163-0) exists for all n = o,l,2,~~. Also lim (t,cpn(t)) 6 Q

t4b-O

since Q is compact and (t,¢h(t))e Q for all t 6 (a,b)

and n = 0,1,2,'-°. Define

ER : (a,b] 4 Proj2 Q by

¢h(t) if t G (533)

:1
8

:
9

A
A

n
n

V
v

I
ll

— ona’S-o) if t = h”

where n = 0,1,2,-o-. By the existence theorem of Plis, mm

can be extended so that (t,mh(t)) ('Q. And fig is a

continuous extension of ¢h in Q. Hence, 3% is a solution

of (l) for n 2_l and of (2) for n=0. Consider the

subsequence {qu,k)};;1 defined in part (iv). By a

similar proof as in part (ii), {&%k,k)];;l has a subsequence

{$(r,r) :;1 such that $(r,r) 4 g uniformly on [8351,

where g < S < E. Since m(r,r) 5 cpo on [3,133, 85 = $0.

~

It follows that 55 must contain b. Hence, IQ is closed.

Clearly, $(r,r)(£3 = 5r 5 go = qb(b). Suppose

I

~

lim (t,¢b(t)) 6 Int Q, i.e. (b,&b(b)) 5 Int Q. Then,

t4b-0

l
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following our previous proof, we can use {(b, gn)}n-O as

our new sequence of initial points and extend IQ to the

right which contradicts the maximality of IQ.

(vi) Let I be the maximal interval of the fb's where

Q is a compact subset of U0 and (t0,xo) 6 Int Q. Then

I, is always Open, say, I = (w-,m+) (w-,m+) C.(lim sup w;

n4m

lim inf mg). Furthermore, there exists a non-continuable

n4w
. , .. 4.

solution m0 of (2) defined on (w ,w ) and {in}:=1 has

a subsequence [¢h ]j-_1 such that mnj 4 go on (w-,m+):

Let {Qk}k—_1 be a sequence of compactJsubsets of U0 such

that (to,xo) eInt 0k, chok+1 and U0 =kLJ1 0k. For

each Qk' we can find a maximal interval IQkkand a subsequence

r
...

{m(k,r)}:=1 of [¢n}n=l such that cp(k'r) m(0,k) uni-

formly on fék. Choosing (“wk r)}:;l inductively and taking
, _

the diagonal process as in part (iv), we get the desired

result. C

The following is another convergence theorem which

is parallel to the previous one. The proof is analogous.

The only difference is we shall apply Pr0position 2.5 instead

of PrOposition 2.4. We give the statement as follow:

Theorem 2.3 (convergence). Suppose that
 

(i) U and Un are open subsets of Ran for

n = 0,1,2,... such that qo c‘Un c‘U except

for a finite number of Un's‘
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(ii) A e Wb. and FD 6 mbn for n = 0,1,2,...;

(iii) p(Fn(t,x),Fo(t,x)) 3 O uniformly with

respect to x for x e Proj2 ‘UO:

(iv) for each compact Q th0, there exists a

function m(t) = mQ(t) such that m(t)

is integrable over Proj1_ Q and

‘Fn(t,x)| g m(t) for all (t,x) g Q and

all n = 0,1,2,...;

(v) (tn’xn) 6 Un for n = 0,1,2,... such that

(tn'xn) 3 (to,x0).

Then, for every sequence {¢h}:;1 of non-continuable solutions

of (1), there exists a subsequence {mh ];=1 and there exists

a non-continuable solution ¢b Of (2) such that Qn 3 go.

j

§3. Continuous dependence of solutions on initial conditions

and parameters:

Let U be an open subset of Ran and A ‘be a

domain, A = {x : ‘x-xo‘ < c, c > O} c.R. We define an

orientor field with a parameter F(t,x,x) : UxA 4 cc(Rn) by

F(t,x,x) = A(t,x) + Fx(t,x)

and we assume that

(i) for each x e A, UK is an Open subset of

n+1

R such that UK c UK c U for all x e A;

0

(ii) A E MU and Fl 6 Wb for all X E A:

l
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(iii) {FX}XEA is an equi-upper-semi-continuous

family on Projz U1 such that

O

p(Fx(t,x),Fko(t,x)) 4 O as X 4 10 for

all (t,x) E U :

"0

(iv) for each compact subset Q CLUXO, there

exists a function m(t) = mQ(t) such

that m(t) is integrable over Proj1 Q

and \Fx(t,x)\ g m(t) for all (t,x) Q Q

and all 1 6 A.

We shall call this family of orientor fields

{F(t,x,x) : l e A] family (P) and consider the following
 

contingent differential equation with parameter:

(P1) X(t) e F(t.X.1). X(t>\) = xx“

(t o X ) E U o by the

X0 x0 10

positive solution funnel through (t ,x ) we mean the set

10 10

and m is a solution of (P1 )}.

"o o

For any interval I, we define z+(I) = 2+ n (Ian).

Definition 2.11. For each

2+ = {(t.o(t)) : t.2 t

The negative solution funnel z“ and Z-(I) can be defined
 

similarly for t g't . And we define the solution funnel

xo

2 = 2+ U z" and 2(1) = Z+(I) u Z-(I).

The next theorem gives some answer to question (iv)

in §1. This theorem though it follows immediately from Theorem

2.2 is actually a special case of Theorem 5 of [6 ] in which

the equations are considered in Banach spaces:
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Theorem 2.4. (Chow and Schuur: [6 ]). If I is
 

a compact interval on which all solutions of (PXO) exist,

then Z+(I), Z-(I) and Z(I) are all compact.

Theorem 2.5. (continuous dependence). Suppose that
 

all solutions of (PKG) exist on [a,b]. Then, for each

6 > 0, there exists a 5 > 0 such that for any (tl'xl'X)

satisfying

9((tx.xx).z([a.b])) + \1-10\ < 5.

each non-continuable solution ¢x(t) of (P1) exists at

least on [a,b] and there exists a solution (t) of

“’1
O

(P ) such that

"O

\¢1(t)'w1 (t)) < e for all t 6 [a,b].

0

Proof: Suppose the first conclusion is false. Since

Z([a,b]) is compact, there exists a sequence (tkn'xl ,xn) a

n

(To,§o,xo) such that (TO'EO) E Z([a,b]) and a sequence

Of non-continuable solutions ¢h(t) of (Pxn) with maximal

interval of existence (m;,m:) and an integer N > 0 such

that [a,b] ¢ (g;,w:) for all n > N. By Theorem 2.2, there

. CO on

eXists a subsequence [mh.(t)}j=1 of {¢h(t)]n=l and a

non-continuable solution m0(t) of

(PKG) X(t) 6 F(t,x(t):lo) x(TO) = go

with maximal interval of existence (w5,m;) such that

¢b. 3 “D on (w-.q;). Since (P' ) 15 (P ) with only

M 10

the initial condition changed and this initial point

(Toqu(TOH = (TO.§O) E Z([a,b]), ¢b is actually a non—

continuable solution of (P ). By our assumption, exists

*0
CpO
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at least on [a,b]. Hence, [a,b] c (m; ,m; ) for j

J' 3'

large enough. Choosing j so large that nj > N, we

get a contradiction.

The second conclusion is evidently true. Suppose

not. we consider the same sequence of solutions {¢h]:;1

as before and claim that there exists an integer M > 0

such that for each n > M there exists a tn 6 [a,b] with

‘¢h(tn)-¢b(tn)"2 e for some e > 0. However, by Theorem

2.2, f¢h):;1 has a subsequence [¢h.};;l which converges

uniformly to ¢b on [a,b]. Hence, (ghj(t)-¢b(t)| < e for

all t 6 [a,b] and for all j sufficiently large. Choosing

j so large that nj > M, we get a contradiction again. [:1

Remark 2.7. Theorem 2.5 is an extension of Theorem 4

and Corollary 4.2 in [34] to contingent differential equations.

Remark 2.8. It is clear that if we replace

assumption (iii) of family (P) by

(iii)’ p(Fx(t,x),F (t,x)) 4’0 uniformly with

"o

respect to x, for x e Proj2 U as

xo

1 4 10.

then Theorem 2.5 also holds.

Next, we shall define another family called family

(9) of orientor fields. Let U be an Open subset of
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Ran, [a,b] c: Projl U and A = [x : |x-10| < c, c > 0} CR.

Let

F(t,x,x) : UxA 4 cc(Rn) defined by

Whit. 1) = F(t.x) + 61”)

and assume that

(i) F e ”b’

(ii) for each x e A, Gl(t) is a continuous

function from Proj1_ U into cc(Rn):

(iii) I: ‘Gx(t)|dt 4 0 as l 4 xo:

(iv) [G)‘(t)})‘6A is bounded on [a,b].

Then we shall consider the following contingent

differential equations with parameter:

(0).) x(t) e F(t,x,x) x(t)) = xx.

It is easy to see that family (Q) satisfies all the

conditions in family (P). Therefore, Theorem 2.5 holds true

for family (0). we have the following theorem:

Theorem 2.6. (continuous dependence). Let

F(t,x) : U 4 cc(Rp) satisfy the Caratheodory conditions

on an Open subset U of Ran such that all solutions of

(s) i(t) e F(t.x(t)) x(to) = x0

exist on [a,b]. Then for every 6 > 0, there exists a 5 > 0

such that for every continuous G from [a,b] into cc(Rg)
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which satisfies

p((w.§).2([a.b])) + J” («was < a.
a

each solution of ¢(t) of

int) 6 F(t.x(t)) + am

through (T,g) can be extended to [a,b] and there exists

a solution ((t) of (B) such that

(m(t)-((t)) < s for all t 6 [a,b].

Remark 2.9. Theorem 2.6 extends a result of

YOshizawa (see [39] p.22) and also Corollary 4.3 of Strauss

and Yorke (see [34]) to contingent differential equations.



Chapter III

GENERAL BOUNDARY VALUE PROBLEMS FOR

CONTINGENT DIFFERENTIAL EQUATIONS

It is well known that fixed point theorems play

a main role in the proof of existence theorems of

differential equations. The papers of Granas (see [10]

and [11]) have extended the notion of tOpOlogical degree

to set-valued mappings and the fixed point theorems Of

Rothe and Borsuk have also been successfully established

for the set-valued case. In this chapter we shall prove

an existence theorem of contingent differential equations

by using the degree theory described in §3 of the first

chapter and we shall see some of its applications. The

results obtained here are motivated by Theorem 2.1 and

Theorem 2.2 of [12] (see p.413) and are also generalizations

of the results in [23].

§l. A fixed point theorem:

Let E be a real Banach space with norm |-|.

Definition 3.1. A mapping F : E 4 cc(E) is

called homogeneous if F(xx) = lF(x) for every real 1

and every x E E.

63
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Lemma 3.1. (Chow and Lasota [ 5 ]) . Let

F : E 4 cc(E) be homogeneous and completely continuous

with the property that

x 6 F(x) azx = O.

d(F) > 0 such thatThen, there exists a constant a

x eF(x) +b a [x] SOL‘b]

for each x e E.

Lemma 3.2. Let F(x) = x - V(x) and G(x) = x - W(x)

be two non-vanishing completely continuous vector fields

mapping a bounded subset A of E into cc (B) such that

G(x) c F(x) for every x e A. Then, F and G are

homotOpic on A .

2522:; Define §(x,x) : [0,1] x A 4 cc(E) by

50.x) = [1w(x)+(1-1) W(x) IO] 0 VM

where U is the closed unit ball centered at O in E.

Then we define

uphox) : [0,1] xA 4cc(E) by

cp(1.x) = x - 90.x}.

Clearly, 6 (hence gp) is well—defined. It follows from

Propositions 1.7, 1.8 and 1.9 that Q (hence cp) is upper

semi-continuous. The following prOperties of Q and q)

are immediate:

(i) i(1.x) c Hitx) if 1_>_ 1’:

(ii) G(O.x) = V(x) and §(l,x) = W(x):
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(iii) for each 1 6 [0,1], ¢(x,x) is non-

vanishing on A : This follows from

the fact that q)(x,x) c cp(0,x) = F(x)

which is non-vanishing on A.

(iv) O([O,l],A) is relatively compact : Since

V(x) is a compact mapping, V(A) is

relatively compact. It follows from

1([0.1].A) c “0.11) = v(A)

that §([O,1],A) is relatively compact.

Therefore, F and G are homotopic on A ‘with

homotOpy cp- [3

Theorem 3.1. (fixed point property). Let F,G,

H and J : E 4 cc(E) be completely continuous such that

(i) F is homogeneous with the property :

x e F(x) alx = O:
/
\

X(ii) G is bounded, i.e. “G“ = sup |G(x)] __

er

for some K:

(iii) there exist a o > O and an e = €(F,o) > 0

such that

WK) 1 _<_ eIXl

for all x ‘with ‘x‘IZ o > 0:

(iv) J(x) c F(x) + G(x) + H(x) for all x e E

with |x|.2 o > 0.

Then, there exists at least one x e E such that x e J(x)

provided 6 is small enough.



66

Proof: Consider the following completely continuous

multi—valued vector fields from E into cc(E) :

cp1(x) = x - F(X):

$20!) = x - F(x) - H(x):

m3(x) = x - F(x) - G(x) - H(x):

¢h(x) = x - J(x).

(i) Let 9( XIX)

§(x,x)

[0,1] x E 4 cc(E) defined by

x - F(X) - W(x)-

Let Sp = [x : x e E and [x] = P} where p > 0. Clearly,

§(x,x) is upper semi-continuous and i([0,l],Sp) is

relatively compact. Moreover, i(0,x) = qd(x) and

Q(1,x) = ¢2(x). It follows from assumption (i) that ¢d

does not vanish on Sp'

we claim that there exists a positive number r > 0

such that ]x-F(x)| 2_r > O for all x e S Suppose not.p.

Then there exists a sequence [xn]:;1 CiSp such that

]xn-F(xn)| 3 0. One can see easily that there exists

Y 6 F(xn) such that ]xn—yn| 3 0. It is clear that
n

{yn}:;1 is contained in F(Sp) which is compact. Hence,

{yn]:;1 has a subsequence [yn I" such that

. J j=1.

ynj 1 yO 6 FTSET} Since ]xnj-ynj| 1 O, 'we have

]xnj-yo] i O, yO E Sp since [xnj};;1 c Sp which is closed.

Now, yn. 6 F(xn ), yn. 1 yO and xn 1 yo. It follows

3 j J j
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from the upper semi-continuity of F that yo 6 F(yo).

However, ]y0] = p > O. This contradicts assumption (i).

Choosing e < §%- and applying assumption (iii),

we have

]x-F(X)-1H(X) | _>_ \x-F(X)| — [m(XH

Z,r - e]x] > r - g > O

for all 1 6 [0,1] and all X‘e Sp' Hence 6(l,x) does

not vanish on Sp for all 1 6 [0,1]. Therefore, ¢i is

homotOpic to ¢2 on Sp'

(ii) Let Y : [0,1] x E 4 cc(E) defined by

MLX) = X - F(x) - AGO!) - H(x).

Clearly. Y(l.x) is upper semi-continuous and Y([O,l],Sp)

is relatively compact. Moreover, y(0,x) = ¢2(x) and

y(l,x) = ¢3(x). we claim that Y(l.x) does not vanish on

Sp for all x 6 [0,1] if p is large enough. Suppose not.

Then there exists an x e Sp such that x E F(x) + xG(x) +

H(x) . By Lemma 3.1, there exists an a = d(F) > 0 such that

]x] _<_ a]XG(x) + H(x) ] _<_aXK + ae|x‘.

Choose a < égu we have [x] g_aXK + %|x], i.e. [x] g ZaAK.

This is a contradiction since ]x] = p which can be chosen

arbitrarily large. Hence, we have shown that $2 and $3

are homotopic on Sp for sufficiently large p.
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(iii) From part (i) and part (ii), qd and $3

are homotOpic on some large sphere Sp'

By Lemma 3.2, $3 and ¢Z are homotopic

on S .
p

Hence, ¢i and qh are homotOpic on S By Theorem 1.9,p'

the characteristics of ¢1 and ¢z on Sp are equal.

Since F is homogeneous, we have

cp1(x) = x - F(X) = -(-x+F(X)) = -(-x-F(-x)) = -cp1(-x) .

It follows from Theorem 1.11 that the characteristic of $1

(hence ¢Z) on Sp is Odd. By Theorem 1.10, there exists

an x e E with ]x] < P such that x 6 J(x). [1

Remark 3.1. In Theorem 3.1, condition (iii) and (iv)

can be replaced by

(iii)’ [H(x)] g'e]x] for some 6 = e(F.P) and

all x with ]x] 3.97

and (iv)’ J(x) c.F(x) + G(x) + H(x) for all x

with ]x] S_P, where p >10 is

sufficiently large.

Remark 3.2. In Theorem 3.1, if the condition

[H(x)] g.e|x] holds for all x e E, then 6 depends on

F only.

The following corollary is clear from the proof

of Theorem 3.1:
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Corollary 3.1. Let F,H and J : E 4 cc(E) be

completely continuous and such that

(i) F is homogeneous with the prOperty :

x e F(x) = x = 0:

(ii) fOr any positive number p > O and all

x ‘with [x] < p, ]H(x)]‘g_e]x] for

some a = e(F.P):

(iii) J(x) c:E(x) + H(x) for all x E E

with |x| < P.

Then, there exists at least one x 6 E with |x| < P such

that x e J(x) provided 6 is sufficiently small.

Instead of a Lipschitz type condition, Corollary 3.1

still holds if |H(x)‘ is small in a neighborhood of 0 e E:

Corollary 3.2. Let F,H and J : E 4 cc(E) be

completely continuous such that

(i) F is homogeneous with the prOperty :

x 6 F(x) ~>x = 0:

(ii) for some positive number p > 0, there

exists an e = e(FAD) such that

W(x) \ S. N?

for all x e E 'with ‘x‘ g,p:

(iii) J(x) c.F(x) + H(x) for all x e E with

M s P-

Then, there exists at least one x e E with [x] < p such

that x 6 J(x) provided a is sufficiently small.
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Proof: Let us use the same notations as in
 

Theorem 3.1. It suffices for us to show that 5(1.x) does

not vanish on Sp and the rest of the proof is clear from

Theorem 3.1.

Let r > 0 be a number such that ]x-F(x)| 2.r > O

for all x 6 SP. Choosing e < g%- and applying assumption

(ii), we have

[Hind] = \x-F(X)-1H(X)] 2 \x-F(x)\ - [1H(x)|

_>_r-1eP>r-§>O

Sfor all x 6 [0,1] and all x e [jp.

The next corollary is an immediate consequence of

Theorem 3.1:

Corollary 3.3. Let F,G,H and J : E 4 cc(E) be

completely continuous such that

(i) F is homogeneous with the property:

x E F(x) a x = 0:

(ii) G is bounded:

(iii) iii-fin 4 O as ]x] 4 an;

(iv) J(x) c: F(x) + G(x) + H(x) for all x e E.

Then, there exists at least one x e E such that x e J(x).

§2. An existence theorem like Fredholm's alternative:

Let A 'be a compact interval in R and let Cn

be the Banach space of all continuous functions from A into

Rn ‘with the tOpology of uniform convergence.
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Lemma 3.3 (Lasota [21]). If {ykl:=1 is a

sequence of measurable functions from A into R” such

that there is an integrable function m(t) from A into

R and ]yk(t)| S m(t) for all k = 1,2,... and t a.e.

in A, then there exist a sequence of indices am and a

system of coefficients Akm (m g k 3 am, m = 1,2,...)

such that

0‘11:

Z) = l, a 2.m, 2_0m >3... m >3...

and that the sequence

am

zm(t) = RE!“ )km Yk(t)

converges to a function 20(t) a.e. in A.

Pr0position 3.1. Let F(t,x) : [a,b] x Rn 41cc(Rn)

be an orientor field which satisfies the Caratheodory

conditions. Then the set-valued mapping G(x) : Cn 4 cc(Cn)

defined by

G(x) = [g(t) : g(t) = I: fx(s)ds, 'where fx 6 L1([a,b])

and fx(s) e F(s,x(s)) for all s 6 [a,b]}

is completely continuous.

Proof: (i) G is well-defined: Let x ecn be

arbitrary. It follows from PrOposition 2.1 and Theorem 1.5

that F(t,x(t)) has an integrable selection fx(t). Hence,

t

G(x) # ¢. Let 91,92 6 G(x), say gl(t) = I; f1(s)ds and

t 1
92(t) = I; f2(s)ds where f f2 6 L and f1(s),1'
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f2(s) e F(s,x(s)) for s 6 [a,b]. Then for any X.

0‘3 x‘g 1, *we have

iglm + (1-1)gz(t) = I: [1f1(S) + (l-l)f2(s)]ds.

Clearly, )(fl + (1-1) f2 6 L1([a,b]) and

1f1(s) + (1-x)f2(s) e F(s,x(s)) for s 6 [a,b] since

F(s,x(s)) is convex. Hence, xgl + (14.)92 e G(x), G(x)

is convex.

Let [gn}:;1 ch(x) be any sequence of functions

from G(x). Since x(t) is bounded on [a,b] and F

satisfies the Caratheodory conditions, we have

[sum 1 _<_ j: ‘F(s,x(s)) ‘ds 3 f: m(s)ds

3 [HM - M(a)

for all t 6 [a,b] and n = l,2,---. Hence {gn]n=l is

uniformly bounded. Moreover, by Theorem 1.7,

t

gn(t) - 9n(s) e [s F(r.X(r))dr

for all t,s 6 [a,b]. Hence,

t

\9n(t)-9n(s) l _<_ lj’s m(r)dr| _<_ [Mm-Ms) l

for any t,s 6 [a,b]. Since M,e AC([a,b]). {9n}:;1 is

equi-continuous. It follows from the Ascoli Lemma that

e e k

{gn}n=l has a subsequence {9k}k=l such that gk 2'90

uniformly on [a,b] for some go. Since the convergence

is uniform, gO 6 Cn. we claim that gO e G(x). Each

t

9k can be written as gk(t) = I fk(s)ds where

' a
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fk(s) E F(s,x(s)) for k = l,2,---. [fk];;1 is integrably

bounded by m(t). By Lemma 3.3, there exist a sequence

of indices am and a system of coefficients )km (m _<_ k 3 am)

such that a

m

Zlkm=la C1

k=m

and that the sequence

mam. 1,,20

am

h (t) = Z} (t)m k=m x... f.

converges to a function ho(t) a.e. in [a,b]. Since

fk(t) E F(t,x(t)) which is convex, hm(t) E F(t,x(t)) and

hm(t) is measurable for m = 1,2,°-°. As F(t,x(t)) is

closed, ho(t) e F(t,x(t)) and ho(t) is measurable. Clearly,

a
1; am t m

J; hm<s>ds = kg“ >3... Ia mews = kg x... am

t

converges to [6 h0(s)ds by the Lebesgue dominated conver-

gence theorem. Recall that [gk};;1 is picked so that

{9k}k=l converges uniformly to go. Its finite convex

combinations also converge to go. That is

a tm _ m

k=m t

Hence, go(t) = I; ho(s)ds. We have 90 e G(x). G(x) is

therefore compact.

(ii) G is compact: Let D = [x 6 Cn : [x] g_K}

be any bounded subset of C“. We want to show that G(D)

has compact closure. It is equivalent for us to show that

ERBT' is sequentially compact. Let [gn}:=1 c:G(D). Then

t

9n(t) = I; fn(s)ds
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where fn(s) e F(s,x(s)) for s 6 [a,b] and some x e D.

Since D is bounded and F satisfies the Caratheodory

conditions, [fn}:;1 is bounded by an integrable function

m(t). It follows easily from Ascoli's that [gnlnel

has a subsequence [gk};;1 which converges uniformly to

. n . a

some function gO e C . Since {9k}k=l c G(D), 90 e G( ),

G(D) is therefore compact.

(iii) G is upper semi-continuous: Frommwhat we

have shown above, we know that G is a compact mapping

from Cn 4 cc(Cn). By Theorem 1.1, all the definitions

of upper semi-continuity are equivalent. Let xo 6 Cn be

. a a n
arbitrary. Let [xn}n=1 CCn and {gn}n=0 c.C be such

n n

that xn 4»x0, gn 490 and 9n 6 G(xn) for n 2.1. Then

t

gn(t) = Ia fn(s)ds

where fn 6 L1([a,b]) and fn(s) e F(s,xn(s)) for all

s 6 [a,b] and n = l,2,--°. Since xn 3x ]xn(s)| SM
0'

O o

for all s 6 [a,b] and n‘z 1. Hence, [fn}n=l is

bounded by an integrable function m(t). By Lemma 3.3, there

exist a sequence of indices am and a system of coefficients

hkm (m $;k < am) such that

a

m

2 =1: (1 >1“: >0k=m)...“ m- >1...

and that the sequence

a
m

we = 23 5... am
k=m

converges to a function ho(t) a.e. in [a,b]. Clearly,
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t

as we saw in part (ii), go(t) = I 'h0(s)ds for all

a

t 6 [a,b]. Since fn(t) e F(t,xn(t)), 'we have

a
m

hm(t) e 2 1m F(t.xk(t))

k=m

for all t 6 [a,b]. For each t fixed, F(t,x(t)) is

upper semi-continuous. Hence, given 6 > 0, there exists

a K 3 0 such that

F(t,xk(t)) c F(t,xo(t)) + B€

for all k 2;K, ‘where B6 = [x e Rn : [x] g 3}. Hence,

(I. (I.

m m

kg“ 1km F(tfifi‘H‘J) ckijm Akm(F(t,xo(t)) + Be)

= F(t.xo(t)) + Be

for all m 2.K. This shows that

m

puma. F(t.xo(t>) .. 0.

As F(t,x0(t)) is closed and hm(t) 4 h0(t) a.e. in

[a,b], we have ho(t) 6 F(t,xo(t)) a.e. in [a,b]. That

is gO e G(xo). Therefore, G is upper semi-continuous in

the sense of Definition 1.5 (hence in the sense of all others). D

Lemma 3.4. Let F,G : A 4 cc(Rp) be measurable
 

and integrably bounded and K(t) be a ball in Rp centered

at 0 with radius |K(t)[ such that |K(t)] is integrable

over A. If F(t) c G(t) + K(t) for all t 6 A. then

(S) F c: (S) G + (S) K.

IA IA J‘A
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Proof: Let f(t) be a measurable selection of F(t).

Then the function H(t) : A 4 cc(Rp)

H(t) = [f(t)+K(t)] n G(t)

is well-defined and measurable.

that H(t)

defined by

It follows from Theorem 1.4

has a measurable selection h(t).

is also a measurable selection of G(t).

k(t) where

f(t) = h(t) - k(t) = h(t) + (-k(t))

where h(t)

Remark 3.3.

k(t) e K(t) is measurable.

e G(t) and ék(t) e H(t)

Lemma 3.4, it is easy to see that

(3)] (3+K) =

A

(3)] 3+ (3)] K

A A

Clearly, h(t)

And h(t) = f(t) +

Hence,

are both measurable.

If G and K are defined as in

Consider the following contingent differential

equations with general boundary conditions:

(1)

(2)

Theorem 3.2.

and Q: Ax‘Rn 4 cc(Rn)

Suppose that

(i)

k(t) eA(t.X(t)) .

5cm 6 Q(t.X(t)) .

where Q(t,x) cA(t,x) + B(t,x) + F(t,x).

L x(t)

L x(t)

(Fredholm's alternative). Let A. B, P

satisfy the Caratheodory conditions.

A(t,x) is homogeneous with respect to x,

that is

Mt. AX)

for all real x:

AA (to X)

C]
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(ii) B(t,x) cK(t) where K(t) is aball in

RP centered at O with radius |K(t)|

such that |K(t)| is integrable over A:

(iii) there exists a = e(A,o,5) > 0 such that

a(t,r) 3 er for any r20>0

where o > 0 is arbitrary, a(t,r) = sup |P(t,x)‘

lx L<.r
and 5 = m(A) is the measure of A:

(iv) L : Cn 4 R? is linear and continuous.

Then, (1) has unique solutions x(t) E 0 implies that (2)

has at least one solution for any a e R“, provided 6 is

small enough.

i?oof: without loss of generality, we may assume

 

A = [0,T]. Define F,G,H and J : Cn 4 cc(Cn) by

m ,
1

35
.

u (I: u(s)ds + Lx + x(O) : u(s) e A(s,x(s))},

G(x) = (I: U(s)ds - a : u(s) €K(8)}.

m 5
. n (I: U(S)ds [11(8)] _<_ 31MB) 1}

J(x) = (I: u(s)ds + Lx - a + x(O) : u(s) 6 Q(s,x(3))},

where t e [0,T] and u(t) e L1([O,T]). Then the existence

of the solutions of (l) and (2) are equivalent to the

existence of fixed points of F and J respectively.

It follows from PrOpOsition 3.1 and the fact that the continuous

linear Operator L is bounded that F,G,H and J are all

completely continuous.
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Clearly, F is homogeneous with only x(t) s O

as its fixed point. G is bounded by assumption (ii).

Let S : Rn 4.cc(Rn) defined by“ P(x) = [u 6 Rn : [u] g.e|x|}.

Then for any x(t) 6 Cu, S(x(t)) is a ball in RP

centered at O with radius e‘x(t)| which is integrable

over [0,T]. From the way we define H, one sees easily

that

H(X) = (I: u(8)ds : 11(8) 6 3(X(s))}

and

]H(x)| g ]‘A‘Sousn ]ds 3 ]A e|x(s) ]ds 3 arm.

Moreover, |P(t,x) | g d(t, ]x]) _<_ e|x|

for all x, ]x] = r 2 o > 0. Hence, F(t,x) c: F(t,x) for

all x, ]x].2 o. It follows from Lemma 3.4 and Remark 3.3

that

t

J(x) = [[6 u(s)ds + Lx - a + x(O) : u(s) 6 Q(s,x(s))}

c (I: u(s)ds + Lx - a + x(O) : u(s) e A(s,x(s))

+ B(s,x(s)) + P(s,x(s))}

c (L: u(s)ds + Lx - a + x(O) : u(s) e A(s,x(s))

+ K(s) + P(x(s))}

t t t
= {I6 u(s)ds + Lx + x(O) + f6 v(s)ds - a + I6'w(s)ds:

u(s) e A(s,x(s)). V(s) e K(s) and w(s) e S(x(s)))

= F(x) + G(x) + H(x)

for all x e Cn with |x]‘2 o > 0. Hence, by Theorem 3.1,

there exists at least one x G Cn such that x e J(x). (j
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Remark 3.4. As in Remark 3.1, condition (iii) of

Theorem 3.2 can be replaced by

(iii)’ there exists an e = g(A.P.6) > 0

such that

a(t,r) g_er for all r'g p

where a(t,r) = sup ]P(t,x)|, 5 = m(A)

|X\SF

and p > O is sufficiently large.

Remark 3.5. As in Remark 3.2, in Theorem 3.2, if (iii)
 

holds for all x e E, then a depends on A and 5 only.

In (2), when B(t,x) [0} and a = O, we have

the equation:

(3) k(t) e Q(t.X(t)). u(t) = o

'where Q(t,x) c A(t,x) + F(t,x).

In this case, G(x) a [0}. Therefore, following

the same proof of the above theorem and applying Corollary

3.1 instead of Theorem 3.1, we Obtain

Corollary 3.4. Let A,P and Q : Aan 4cc(Rn)

satisfy the CarathéOdory conditions. Suppose that

(i) A(t,x) is homogeneous with respect to x:

(ii) for any P > 0, there exists an

e = 6(A.P.6) > 0 such that

a(t,r) g_er for all r g_p

where a(t,r) = sup |P(t.x)] and 6 = m(A)

‘x‘gr

is the measure of A:
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(iii) L : Cn 4 Rn is linear and continuous.

Then, (1) has unique solution x(t) 0 implies that (3)

has at least one solution ¢(t) ‘with ]m] < p provided

3 is small enough.

Similarly, applying Corollary 3.2, we have

Corollary 3.5. Let A,P and Q : AXE“ 4 cc(Rn)

satisfy the Carathébdory conditions. Suppose that

(i) A(t.X)

(ii)

is homogeneous with respect to x:

for some positive number p > 0, there

exist an e = g(A.P.6) > 0 such that

a(t,p) = sup |P(t,x)| g_eP

Ix ISP

where 5 = m(A) is the measure of A:

(iii) L : Cn 4 Rn is linear and continuous.

Then, (1) has unique solution x(t) 0 implies that (3)

has at least one solution ¢(t) 'with ‘¢] < p provided

a is small enough.

From Corollary 3.3 and the way we prove Theorem 3.2,

there follows immediately

Corollary 3.6. Let A,B,P and Q : Aan 4 cc(Rn)

satisfy the Caratheodory conditions. Suppose that

(i) A(t,x) is homogeneous with respect to x:

(ii) B(t,x) c:K(t) where K(t) is a ball in Rn

centered at O with radius [x(t)] such that

‘K(t)‘ is integrable over A;
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(iii) gjgégl-4 O uniformly in t as r 4 m,

where a(t,r) = sup [P(t,x)]:

1X13?

(iv) L : Cn 4 Rn is linear and continuous.

Then, (1) has unique solution x(t) s 0 implies that (2)

has at least one solution for any a e R".

§3. Some applications:

(a) Periodic solutions: Consider the following

contingent differential equations:

(4) k(t) e A(t.X(t)):

(5) k(t) e n(t.x(t)) + B(t.x(t)>. and

w) iu)eMmmu)+mmmu)+mmnuL

Theorem 3.3. Let A,B and P : Ran 4 cc(Rn) be

T-periodic in R ‘with T > 0 and satisfy the Caratheodory

conditions. Suppose that

(i) A(t,x) is homogeneous with respect to x:

(ii) B(t,x) c:K(t) where K(t) is a ball in Rn

centered at O 'with radius [K(t)] such

that ]K(t)| is integrable over [s,s+T]

for any 3 e R:

(iii) P(t,x) is Lipschitzian at O 6 Rn with

Lipschitz content 9, i.e. |P(t,x)| g 9|x]

for any (t,x) e Ran.
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Then, (4) has only trivial T-periodic solution implies

that (6) has at least one T-periodic solution provided 9

is small enough.

Proof: Without loss of generality, we can restrict
 

our consideration of orientor fields on A = [0,T]. Define

L : CD 4 Rn by Lx = x(O) - x(T). Clearly, L is linear

and continuous. Let a(t,r) = sup ]P(t,x)\ as before. By

Ix ‘53-“

assumption (iii), we have

a(t,r) = sup \P(t,x)| gDsup e‘x] = or

1" \Sr 1" L9“

for any r > 0. It follows from Theorem 3.2 with a=0 and

Q(t,x) = A(t,x) + B(t,x) + P(t,x) that (5) has at least

one solution m(t) defined on [0,T] and satisfying

ago) - qKT) = 0 provided 9 is small enough.

Define g(t) : R 4 Rn by g(t) = cp(3) where

s = ttkT. s e [0,T) and k is some integer. E is continuous

since m is continuous and ¢(O) = m(T). 8 is T-periodic

by the way we define it. Clearly, a is a solution of (5)

since g is a solution of (5) on [0,T] and A,B and P

are T-periodic in R. [3

Following the same way of proof of the above theorem

and applying Corollary 3.5, we have
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Corollary_3.7. Let A and P : Ran 4 cc(Rg) be

T-periodic in R with T > O and satisfy the CaratheOdory

conditions. Suppose that

(i) A(t,x) is homogeneous with respect to x:

(ii) there exists a e > 0 such that

|P(t,x)| g_ep for all t E R and ]x‘ g.p

where p is some positive number.

Then, (4) has only trivial T-periodic solution implies that

(5) has at least one T-periodic solution ¢(t) ‘with |¢| < p

provided 9 is small enough.

Remark 3.6. Theorem 3.3 and Corollary 3.7 generalize

Theorem 2.1 and Theorem 2.2, respectively, in [12] (see p.413)

from perturbed linear ordinary differential equations to

perturbed homogeneous contingent differential equations.

However, in Theorem 3.3, we lose the uniqueness.

(b) Optimal solutions:

PrOpOsition 3.2. Let A,B,P,Q and L be defined

and satisfy all the conditions (i)-(iv) as in Theorem 3.2

with e sufficiently small and A having unique solution

x(t) a 0. Then the set of all solutions of (2) is a non-

empty compact set in Cu.

Proof: The non-emptiness of the set of solutions

of (2) is guaranteed by Theorem 3.2. To show it is compact,
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it is equivalent to show that it is sequentially compact

O n I 0

Since C is a metric space.

Let [x ] be a sequence of solutions of (2).
n n=1

Then,

xn(t) 6 (S)£: Q(s,xn(s))ds + an - a + xn(0)

c (8)]: A(s,xn(s))ds + an - xn(0) + (8)]: K(s)ds

+ (3)]: P(xn(s))ds - a

~

for all t e [0,T], where P is defined as in the proof of

Theorem 3.2. By Lemma 3.1, we have

‘x“‘ = t:?8.T]‘xn(t)‘

_<_ d(J‘: [K(s) ]ds + I: |§(xn(s)) ]ds + |a])

_<_a(§+ eT|xn\ + (ap

for some a > 0. Choosing e < §%-, we have

|xn\ g 2a(§ + ]a])

for all n = 1,2,---. Hence, {xn}:;1 is uniformly bounded.

Moreover,

t
Xn(t) - xn(s) e (S) j‘s Q(r.xn(r))dr

for any t,s e [0,T]. Since [xn}:;l is uniformly bounded

and Q satisfies the Caratheodory conditions, there exists a

a function m(r) which is integrable over [0,T] such that

[Q(r.xn(r)) \ 3, mm

for all r e [0,T] and n = l,2,---. Hence,
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\xn(t)-xn(s)| g l]: m(r)dr| _g ]M(t)-M(s) |.

As M e AC([O,T]). [xn}:;1 is equi-continuous on [0,T].

It follows from the Ascoli lemma that [xn}:;1

a J

has a subsequence {xn.}j=l such that xn. 4xo

uniformly on [0,T]. Now, for any t e [0,T],

x0(t) = lim sup xn (t)

1*“ j

t

6 lim sup((S) Q(s,x (s))ds + Lx - a + x (0))

j... {0 “j “j "j

c 1im sup(S)I6 Q(s,xn.(s))ds + on - a + xo(0)

3*: 3

c (8)]:o 1im sup Q(s,xn.(s))ds + on - a + x0(0)

j-w J

c: (S) I: Q(s,xo(s))ds + Lx - a + xo(0).
0

Therefore, x0 is indeed a solution of (2). [3

As we know that any real valued lower (resp. upper)

semi-continuous function assumes minimum (resp. maximum)

on a compact set, from PrOpOsition 3.2 there follows immediately

Theorem 3.4. (existence of optimal solutions). Let

A,B,P,Q and L be defined and satisfy all the conditions

as in Theorem 3.2. Furthermore, a lower (resp. upper) semi-

continuous functional T : Cn 4 R is given. Then, if (1)

has unique solution x(t) a 0, for any a e Rn there exists

a solution of (2) which minimizes (resp. maximizes) T

provided 6 is small enough.
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Remark 3.7. Similar existence theorems of Optimal
 

solutions can be formulated corresponding to Theorem 3.3

and Corollaries 3.4-3.7.

Before discussing further applications, we give

Definition 3.2. An orientor field F . Aan 4 cc(Rn)
 

is said to satisfy the strong Caratheodory conditions if

(i) F(t,x) is upper semi—continuous in t in

the sense of Definition 1.4 for each fixed

t 6 A:

(ii) F(t,x) is measurable in t for each fixed

x E Rn:

(iii) there exist functions m(t) and *(t) which

are integrable over A such that

[F(t,x)] g ¢(t) |x| + fit)

for all (t,x) e Aan.

Remark 3.8. It is clear that a mapping satisfying
 

the strong Caratheodory conditions must satisfy the

Caratheodory conditions. The converse is not true even

when the orientor field is compact. Consider F(t,x) : AxR 4 R

defined by F(t,x) = tex. F satisfies the CaratheOdory

conditions and is compact but it does not satisfy the strong

Caratheodory conditions. Therefore, all the results in

this chapter hold true for A,B,P and Q satisfying the

strong Caratheodory conditions.
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(C) Nicoletti prOblem: Given 0 g_t1 g,t2 g... g

tn 3_T and a = (a1,a2,...,an) e Rn, we shall consider

the existence of a solution x(t) = (x1(t),x2(t),...,xn(t))

of (6) which satisfies the Nicoletti conditions [28]:

i
(7) xi(ti) = a. , i = 1,2,...,n.

Also, we consider the functional T : Cn 4.R

defined by

(a) T(x) = I: |x(t)|dt.

Lemma 3.5. (Lasota and Olech: [22]). Suppose the
 

function m from [0,T] into R is Lebesgue integrable

and non-negative. Consider the differential inequality

for an n vector valued function

(9) [x(t) | g m(t) |x(t)| , o g t g T

and the boundary value conditions

(10) X. (ti) = 0' 0 < ti _<_ T, i = 1,2,000'no

R
a
fi

)
4

T
If ]‘0 cp(t)dt < , then x(t) s O is the unique solution

of (9) and (10).

Theorem 3.5. Let A,B and P : [0,T]xRn 4 cc(Rn)

satisfy the strong Caratheodory conditions. Suppose that

. . T w
(i) [A(t,x) | _<_ m(t) Ix] + y(t) w1th Io m(t)dt < 5;

(ii) B(t,x) c:K(t) where K(t) is a ball in

Rn centered at 0 ‘with radius |K(t)|

such that [K(t)] is integrable over [0,T]:
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P t x

(iii) x 4 O uniformly in t as [x] 4 a.

Then, (6) has a solution which satisfies the Nicoletti

conditions (7) and also minimizes (or maximizes) the

functional (8).

Proof: Define A;B' and Q : [O,T]x‘R‘n 4 cc(Rn) by

A(t,x) = [u E Rn : [u] _<_ m(t) ]x]}, r

B(t,x) = B(t,x) + [u e Rn : ]u] _<_ ¢(t)}, I

and Q(t,x) = A(t,x) + B(t,x) + P(t,x).

Clearly, Q(t,x) cK(t,x) + B(t,x) + P(t,x). Let

n n .
L . C 4»R defined by Lx — (x1(t1),x2(t2),...,xn(tn)).

One can see easily that A,B,P,Q and L satisfy all the

assumptions of Corollary 3.6. Since T is a continuous

functional, our proof follows immediately from Lemma 3.5,

Theorem 3.4, and Remark 3.7. D

(d) Aperiodic boundary value prOblem: Here, we

shall consider the existence of a solution x(t) of (6)

which satisfies the aperiodic boundary condition:

(11) x(O) + xx(T) = 0 where A > O

and also minimizes (or maximizes) the functional (8).

Another lemma of differential inequality is needed:

Lemma 3.6. (Kasprzyk and Myjak: [16]). If ¢(t) 2_O

T

and £0 m(t)dt < (n2 + log2 x)1/2, then x(t) s O is the

unique solution of (9) and (11).
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If we set Lx = x(O) + xx(l) and a=0, a result

analogous to Theorem 3.5 follows from Lemma 3.6 and

Theorem 3.4. As the proof is similar, we give the statement

as follows:

Theorem 3.6. Let A,B and P : [03]an 4 cc(Rn)

satisfy the strong Caratheodory conditions. Suppose that

(i) [A(t,x)] g m(t) |x| + ((t) with

T .

yo smdt -< (1r2 + 1092 111/2: 4

(ii) B(t,x) c:K(t) where K(t) is a ball in

Rn centered at 0 ‘with radius |K(t)]

such that [K(t)] is integrable over [0,T]:

(iii) lngTéLl 4 O uniformly in t as ]x] 4 o.

Then, (6) has a solution which satisfies the aperiodic condition

(11) and also minimizes (or maximizes) the functional (8).

 



Chapter IV

PERIODIC SOLUTIONS OF CONTINGENT

FUNCTIONAL EQUATIONS

In control problems, it may happen that the control

system is described by a functional differential equation.

Therefore, by eliminating the control term, we Obtain a

contingent functional differential equation. In this

chapter, we shall consider the periodic solutions of such

equations and formulate an existence theorem for Fredholm's

alternative analogous to Theorem 3.2.

Suppose r 2.0 is a given real number, R = (~a,m)

and Rn is the n-dimensional Euclidean space with norm

].]. Let Cr = C([-r,O],Rp) be the Banach space of all

continuous functions from [-r,0] into RF with the norm

of each element m, “T“ = sup |m(e)]. For any function

x E C(R,Rn) and t e R, w:_g§2ine a function xt : [-r,O] 4 Rn

by

xt( e) = K(t+e)

where -r g_e 3.0. Clearly, xt 6 Cr' The function xt can

be considered as the segment of x(T) defined on [t-r,t]

and translated to [-r,0].

9O
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Definition 4.1. A mapping F : RxCr 4 Comp (Rn) is

called a functional orientor field. And a relation of the

form

(F) x(t) e F(t,xt)

is called a Contingent functional differential equation.

Definition 4.2. For a fixed x 6 C(R,R”), we say

a function F(t,xt) : RxCr 4 Comp (R9) is measurable in t

~

if the function F : R 4 Comp (Rn) defined by

 

F(t) = F(t,xt)

is measurable.

Definition 4.3. For a fixed t E R, ‘we say a

I ' n I

function F(t,xt) from RxCr into Comp (R) is 32%;.

semi-continuous in x (in the sense of metric) if, for

any a > O and any x 6 C(R,Rfi), there exists a 6 > 0

such that

F(t.yt) c Be(F(t.xt))

n .
for all y e C(R,R ) with “yt-xt“ < 5.

Definition 4.4. we say a functional orientor field
 

F(t,xt) : RxCr 4'Comp (Rn) satisfies the Caratheodory

conditions if

(i) F(t,xt) is measurable in t for each

fixed x 6 C(R,Rn):

(ii) F(t,xt) is upper semi-continuous in x

for each fixed t e R:
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(iii) for any closed and bounded subset D

of RxCr. |F(D)] is bounded.

The equation (F) is said of the Carathéodoryytype

if its functional orientor field F satisfies the Caratheodory

conditions.

Remark 4.1. It follows from condition (iii) of

Definition 4.4 that a functional orientor field satisfying

the Caratheodory conditions must be compact.

Definition 4.5. A function x(t) is said to be a

solution of (F) in the sense of Marchand if there exist

t0 6 R and A > 0 such that

x(t) e C([to-r,to+A],Rg) and

D*x(t) c F(t,xt) for almost every t e [to,to+A].

Definition 4.6. A function x(t) is said to be a

solution ofng) in the sense of wazewski if there exist

to e R and A > 0 such that

n
x(t) e C([to-r,to+A],R ),

x(t) 6 AC([to,to+A]) and

x(t) e F(t,xt) for almost every t e [to,to+A].

Definition 4.7. A function x(t) is said to be a
 

solution of (F) if there exist t E R and A > 0 such that
O
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X(t) E C([to’ro to+A]pRn) I

x(t) E AC([to,to+A]) and

x(t) e x(to) + (3)]:0 F(s,xs)ds for t e [to,to+A].

The following prOposition shows that under certain

conditions the solutions of (F) defined above are all

equivalent:

PrOposition 4.1. (Kikuchi [18]). Let P(F). Y(F)

and T(F) be the collection Of all solutions of (F) with

respect to Definitions 4.5, 4.6 and 4.7 respectively.

Suppose that

(i) F(t,xt) satisfies the Caratheodory conditions:

and

(ii) F(t,xt) e cc(Rn) for each (t,xt) e RxCr.

Then, P(F) = Y(F) = T(F).

we shall consider the periodic solution of the

following contingent functional differential equations of

retarded type:

(1) x(t) e A(t.xt)

(2) x(t) e 0(t.xt)

where Q(t,xt) c A(t,xt) + B(t,xt) + P(t,xt).

Theorem 4.1. (Fredholm's alternative). Let A,B,

P and Q : Rxcr 4 cc(Rn) satisfy the Caratheodory conditions
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and be T-periodic in R for some T > 0. Suppose that

(i) A(t,xt) is homogeneous with respect to

x: i.e.

A(t.lxt) = m(t.xt)

for all A e R and xt 6 Cr:

(ii) B(t,xt) c:K(t) 'where K(t) is a ball

in Rn centered at 0 ‘with radius

[K(t)] such that [K(t)] is integrable

over any T-interval [t,t+T]:

(iii) there exists an e = C(A,p.T) > 0 such that

a(t,m) _<_ em for all mZp > 0

‘where p >10 is arbitrary and

a(t,m) = sup [P(t,xtH.

t‘Sm

Then, (1) has x(t) s O as a unique T-periodic solution

implies that (2) has at least one T-periodic solution, provided

a is small enough.

2399;; Let 6% denote the set of all continuous

T-periodic functions from R into Rn, K(Cn) denote the

set of all non-empty convex subsets of CD and Li°c(R)

denote the set of all functions from R into R? which are

integrable over any finite interval in R.

(i) Let P*(t,xt) : RxCr 41cc(Rg) be defined by

‘
-
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* *

Clearly, P is well-defined and P(t,xt) : P (t,xt) for

*

any (t,xt) e RxCr. One can check easily that P satisfies

the Caratheodory conditions.

(ii) Define the Operators F,G.H and J : 9 4

 

T

K(Cn) by

F(x) = (j: e‘(t‘3)[x(s)+u(s)]ds : u e Li°°(n) and ,1

u(s) e A(s,xs) for all s e R],

G(x) = []‘t e-(t-S) u(s)ds : u e Lioc(R) and

-w u(s) 6 K(s) for all s 6 R},

H(x) = {]Ew e-(t-S) u(s)ds : u e Li°c(R) and

u(s) e P*(s,xs) for all s e R},

and

J(x) = [It e-(t-s)[x(s)+u(sX]ds: u 6 Li°c(R) and

u(s) e Q(s,xs) for all s 6 R}.

From our hypothesis that B(t,xt) is T-periodic in

R, we can assume without loss of generality that the ball

K(t) which contains B(t,xt) is also T-periodic. All the

imprOper integrals defined above converge since x,A,K,P*

and Q are periodic (hence bounded by (iii) of Definition 4.4).

 For each x e 6%, A(t,xt) is measurable in t by (i) of

Definition 4.3 and is integrably bounded by (iii) of

Definition 4.4 and the periodicity of A(t,xt). Hence, F(x)

is not empty. The convexity follows immediately from the l

fact that A is convex valued. Therefore, F is well—defined. !

Similarly, G,H and J are well-defined. }

i



96

~~~

(iii) Let us define F,G,H and 3': 6% 4 cc(éfi)

by

fix) = F(x) no . S(x) = G(x) neT

H(x) = H(x) n er and 36:) = J(x) n 9.1,.

Since for each x e 6% A(t,xt) is T-periodic, measurable

and bounded, there exists a T-periodic function fx(t) E Li°c(R)

such that fx(t) e A(t,xt) for all t e R. This is possible

because we can have a measurable selection fx(t) on [0,T]

first with fx(O) = fx(T) and then duplicate it on the

intervals [kT,(k+l)T] where k is a non-zero integer.

Let EX (t) : R 4 Rn defined by

fx(t) = If” e-(t-S)[x(s)+f*(s)]ds.

It is clear that f; E F(x) n 6%. Hence, F(x) is not empty.

Since 9% is a convex subspace of Cn, F(x) is convex.

By using the Ascoli lemma and Lemma 3.3 as we did in the proof

of Proposition 3.1, one finds that the set

F(x) “0',” = {fx(t) [[O'T] : fx 6 F(XH

is compact in C([O,T],Rn). However, since Fkx) is a

family of T-periodic continuous functions, a sequence of

functions in F(x) converges uniformly in [0,T] implies

that it converges uniformly in R and the limit function is

also T-periodic. Hence, for each x e 9 , F(x) is indeed

compact in 4%. Therefore, F is well—defined. Similarly,

G,H' and 3' are all well-defined.

.
.
.
.
.
.

4
,

.
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(iv) F,G,H and J are compact: Let

D = {x e 65 : [x] g_K] be a bounded subset of 6%. We

want to show that F(D) is relatively compact. In a metric

o O 0 w- 0 0

space, it is equivalent to show that F(D) is sequentially

compact. Let {Yn};=1 C.FYD) c F(D). Then,

Yn(t) E (8)1:1, e-(t-s) [xn(s)4-A(s,xn )]ds

3

where xn e D. Since D is bounded and A(t,xt) is periodic

in t, it follows from Remark 4.1 that |A(s,xn )] g I? for

s

all s 6 R and n = l,2,---. Hence,

\ynm] g If e-<t-s)(K+§,ds = (K+§)e't]’t .8 a.

=K+f€

for all t e R and n = 1,2,--o. Therefore, [yn}:;1 is

uniformly‘bounded.

For any tl.t e R, ‘without loss of generality, we
2

may assume t1 < t2. Let B .1 be the ball in Rn centered

K+K

at O with radius K + K: Clearly,

x (s) +A(s,x )cB ~

n ns K+K

for all n = 1,2,... and s E R. It is easy to see that

.. t

y(t)eet(s)]‘ esB ~ds

n "°° K+K

for all n = 1,2,... and s,t e R. For any n, let

4 n

u2(s) : (-a,t2] 4 Rn

be integrable selections of B h, and u2(S)|(—w,t1] = u1(s)

K+K
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such that

-t t -t t
_ 1 1 s _ 2 2 s

Yn(t1) - e [_a e “1(8)ds and yn(t2) - e f-” e u2(s)ds.

Then

-t t -t t

Yn(t1)*Yn(t2) = e 1] 1 e8 u1(s)ds — e 2] 1 es ul(s)ds

-t t

2 2 s
- e e u (s)ds111 2

-t -t t ~ -t t ~

g.(e 1-e 2)] 1 es(K+K)ds + e ZItZ eS(K+K)d3

-¢ 1

~ -t -t t t -t

= (K+K)[(e 1-e 2)(e 1-l)+(1-e 1 2)]

~ t -t -t -t

= (K+K)[2(1-e 1 2)+(e 2-e 1)1.

Hence,

~ t -t -t -t

]yn(t1)-yn(t2)| g (K+K)[2|l-e 1 2|+\e 2-e 1]].

n-l is equi—continuous in R.Therefore, {ynl

It fellows from Ascoli's that [yn]n=l has a subsequence

{yj};;1 such that yj 1 yo uniformly on [0,T]. Since the

, __.. 3 .
yj s are T periodic, yj 4 yo uniformly on R and y0 E 6&-

Therefore, F is compact. Simdlarly, one can show that G,H

and J are all compact.

(v) F,G,H and J are upper semi-continuous: From

parts (iii) and (iv) of our proof, we know that F,G,H and 3

are compact mappings from 0% into cc(ak). By Theorem 1.1,

all the definitions of upper semi-continuity are equivalent.

0

0 Q G

Let x e 6% be arbitrary. Let {xn}n=l c145 and {yn)n_o c.0&

n n "

such that xn 4 x0. yn 4 y0 and yn e F(xn) c:F(xn) for

n = l,2,---. Then,

yn(t) = If” e-(t-S)[xn(s)+un(s)]ds

lo

where un 6 L1 c(R) and un(s) 6 A(s,xns) for s E R.
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Applying Lemma 3.3 as we did in the proof of PrOposition 3.1,

one can see easily that

t _(t_s)

y (t) = e [x (s)+u (3)]ds
0 I“, o o

loc

where u 6 L (R) and u (s) e A(s,x ) for s E R. We
0 l 0 08

have yO e F(xo). Therefore, F is upper semi-continuous

in the sense of Definition 1.5 (hence in the sense of all

others). The upper semi-continuity of 5,§' and 3' can be

proved similarly.

(vi) By direct computations, we know that any fixed

point of F (resp. J) is a T-periodic solution of (1) (resp.

(2)). Therefore, it is equivalent for us to show that the

Operator 3' has at least one fixed point for small 6 if F

has only x(t) s O as its fixed point.

(vii) It follows easily from assumption (i) that

F (hence F) is homogeneous.

(viii) Consider the function 6 : R 4 R defined by

t - -

B(t) = j e (t 8’ |K(s) (as.
-c:

Since K(t) is T-periodic, by using the transformation

3’ = s-T, we have

t+T - -

B(t+T) = j e ‘t+T 8)]K(s)|ds

= It e-(t-s’)]K(s’+T)]ds’

= It e"(t-S ’) ‘K(S 4) ‘dsl = B(t)
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for any t e R. Hence, S(t) is T-periodic. Clearly,

B(t) is continuous. Hence. B(t) is bounded on [0,T].

Since B(t) is T-periodic. B(t) is bounded on R. Let

M = “B“ = SUP m(t)] = sup B(t) < ...

tER t€[O,T]

Then

_ t -(t-s) _
HG“ - sup |G(x) ] _<_ sup I e [K(s) |ds - sup B(t)

x56T teR ’“ tER

= M.

Since G(x) c G(x) for all x e 6%, ‘we have HG“ g'M.

(ix) For each x e 6% such that “x“ = m

*

by the way we define H(x) and P , one has

[H(x)] g sup It e’(t'S)|P*(s,xs)|ds

ten "‘°

t —(t-s)
g_sup e x ds“R I... an an

g_sup It e-(t-S) cm ds

tER "°°

_ t

= em sup e t I e8 d3 = eux“,

tER

Since H(x) c H(x), it follows that |H(x)| g_enxu for all

x e 6% with “x“ 2 P > O.

(x) For every (t,xt) e RxCr, we have

Q(t,xt) c A(t,xt) + B(t,xt) + P(t,xt)

*

C A(t,xt) + K(t) + P (t,xt).

*

For each x 6 6’. K(t) and P (t,xt) are balls in Rn

centered at 0 with radii ]K(t)| and eHXtH respectively.
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Hence, by Lemma 3.4, we have

J(x) : F(x) + G(x) + H(x)

for any x 6 9T' It follows that for any j E J(x) n 6%
x

we have

jx(t) = fx(t) + gx(t) + hx(t)

where fx 6 F(x), g e G(x), hx € H(x) and t E R. Since
X

j E 6%. ‘we can restrict our consideration on [0,T]. Let
x

fx(t) = If“ e-(t-s)[x(s)+u(s)]ds,

9x(t) = It e-(t-s) v(s)ds,

and hx(t) = ]‘t {(1513) w(s)ds,

...-Q

where u,v,w e L1([O,T]) and u(s) e A(s,xs), V(s) e K(s)

and 'w(s) e P*(s,xs) for all s E [0,T]. Without loss of

generality, we may assume that u(O) = u(T), V(O) = V(T)

and W(O) = W(T) o

, w * * n

Define u , v and w : R 4 R by

'k

u (t) u(s) for t = kT + s

'k

v (t) = v(s) for t kT + s

'k

'w (t) = w(s) for t = kT + s

' *

where k is an integer and s e [0,T). Clearly, u , v*

'k

and w are all T-periodic by the way we define them and

* * * loc . . *

u ,v ,w 6 L1 (R). It is also eVident that u (t) e A(t,xt).

v*(t) E K(t) and w1(t) e P*(t,xt) for all t 6 R. Now,

~

. ~ ~ n
define fx' gX and hx . R 4 R by
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f;(t)= If” e-(t-S)[x(s)+u*(s)]ds,

3x“) " It .1“: S) v (s)ds,

and fi¥(t) = It ‘(t‘3) w (s)ds.

One can see esaily that f; e F(x), E; e G(x) and hx e H(x).

It is also clear that

Jx(t) = fx(t) + gx<t) + hx(t)

for all t 6 R. Hence, J(x) c:F(x) + G(x) + H(x) for all

x e 6%.

(xi) From parts (iii)-(x), we have shown that

~~

F,G,H and J satisfy all the hypotheses of Theorem 3.1. Hence,

if (1) has only trivial T-periodic solution (i.e. F, has only

0 as its fixed point). Then it follows from Theorem 3.1

that 3' has at least one fixed point x E 6% which is a

T-periodic solution of (2) provided 6 is small enough. C]

Remark 4.2. In view of Remark 3.1, assumption (iii)

Of Theorem 4.1 can be replaced by

(iii)’ there exists an E = g(A.P) > 0 such that

a(t,m) g cm. for all m g'p

where p is a sufficiently large number

and a(t,m) = su |P(t,x )|.

“le3“ t

From Corollary 3.3 and the way we prove Theorem 4.1,

there follows immediately
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Corollary 4.1. Let A,B,P and Q : Rxcr 4 cc(Rn)

satisfy the Caratheodory conditions and be T-periodic in

R for some T > 0. Suppose that

(i) A(t,xt) is homogeneous with respect to x:

(ii) B(t,xt) c K(t) where K(t) is a ball in

RF centered at O ‘with radius [K(t)]

such that [K(t)‘ is integrable over any

T-interval [t,t+T]:

(iii) QLELEL 4 O uniformly in t as m 4 a,

where a(t,m) = sup [P(t,xt)|.

HXtHSF

Then, (1) has unique T-periodic solution x(t) e 0 implies

that (2) has at least one T-periodic solution.

Remark 4.3. Corollary 4.1 is a generalization of

a recent result by R. Funnel (see [9]).

In (2), when B(t,xt) E O, we have the following

equation:

(3) x(t) e Q(t,xt) where Q(t,xt) c:A(t,xt) + P(t,xt).

In this case, it is clear that G(x) s G(x) E [0].

Therefore, following the same proof of Theorem 4.1 and

applying Corollary 3.5 instead of Theorem 3.1, we Obtain

Corollary‘4.2. Let A,P and Q : RxCr 4 cc(Rn)

satisfy the Caratheodory conditions and be T-periodic in R

for some T > 0. Suppose that
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(i) A(t,xt) is homogeneous with respect to x;

(ii) there exists a e > 0 such that

[P(t.xt)[ _<_ 99

for all t 6 R and “xtu gDp, where

p is some positive number.

Then, (1) has only trivial T-periodic solution implies that

(3) has at least one T—periodic solution m(t) 'with [m[ < p

provided a is small enough.

Remark 4.4. Theorem 4.1 and Corollary 4.2 generalize

Theorem 2.1 and Theorem 2.2, respectively, in [12] (p.413)

to perturbed homogeneous contingent functional differential

equations. However, for the generalization of Theorem 2.1,

we lose the uniqueness.

Remark 4.5. It is easy to Observe that the results

of this chapter become the periodic case of the results of

the previous chapter when the time lag r = O.
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