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ABSTRACT

A CESIUM-133 NMR STUDY OF THE STATICS AND DYNAMICS OF
CESIUM ION COMPLEXATION BY CROWNS AND CRYPTANDS IN

VARIOUS SOLVENTS

By

Elizabeth Hun-I Mei

Chemical shifts of the cesium-133 nucleus were measured
in six nonaqueous solvents relative to 0.5 M aqueous cesium
bromide. Cesium tetraphenylborate (CsTPB), triiodide and
thiocynate were used to determine the infinite dilution
chemical shifts in pyridine (PY), propylene carbonate (PC),
dimethylformamide (DMF), dimethylsulfoxide (DMSO), aceto-
nitrile (MeCN), and acetone. The corresponding ion-pair
formation constants were determined from chemical shift
concentration data with the aid of a weighted nonlinear
least squares program (KINFIT). The association constant
for CsSCN in pyridine is 900+200 while for CsTPB in pyridine
it is 370+20, in PC it is 16*7, in MeCN it is 40+10, and in
acetone it is 22#3. The uncertainties given are standard
deviation estimates.

Cesium-133 NMR studies were also performed on cesium
tetraphenylborate complexes with five ligands in the six

nonaqueous solvents mentioned. These ligands were 18-Crown-6



(18C6), dibenzo-
tand-C222 (C222)
tave different ¢
corplexation abi
l:l and 2:1 (lig
solvents with th
103. A new EQN

t analyze data

(1) formation,
fected by the ge
"t vas also shoy
B the equiliprg

%zlexation by




Elizabeth Hun-I Mei

(18C6) , dibenzo-18C6 (DBC), dicyclohexyl-18C6 (DCC), cryp-
tand-C222 (C222), and monobenzo-C222 (C222B). These ligands
have different topologies and substituents which affect the
complexation ability. Cesium tetraphenylborate forms both
1:1 and 2:1 (ligand/cs®) complexes with 18C6 in all six
solvents with the first formation constant (Kl) larger than
103. A new EQN subroutine of the KINFIT program was written
to analyze data which show both 1:1 and sandwich complex
(2:1) formation. It was found that both K, and K, are af-
fected by the geometry and substituents of the crown ligands.
It was also shown that the solvent plays an important role
in the equilibrium process. For example, the K values for

complexation by 18C6 in pyridine are K1>108, K2 = 714,

in PC K, = (1.5:0.6) x 10%, K, = 822, in acetone K, > 107,
K, = 34£0.5, in DMF K, = (9%3) x 103, K, = 2.44£0.05, in

DMSO K, = (1.120.1) x 103, K, = (120.4) and in MeCN K, >

1
= 4.4t0.3. The attachment of a substituent on the

10%, K,
ring of 18Cé yielded values of Rl in the order 18Cé6 > DCC >
DBC. However, probably because of steric effects, the K2
values are in the order DBC > 18C6 > DCC (at least in pyri-
dine).

A thorough study of 18C6é complexes with CsTPB in pyri-
dine was made at various temperatures (from 25° to -44°C).
For the purpose of this study a new temperature independent
reference was designed. 1Its validity was tested and it

was used to show that ion-ion and ion-solvent interactions

give temperature-dependent chemical shifts. The values of
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the first formation constant at various temperatures were
too large to be determined by NMR techniques but K2 values
were determined and used to obtain the enthalpy and entropy
changes for the second complexation step. The results are:
AH, = -6.2:0.1 Kcal/mole (AG3),gg = -2.83%0.004 Kcal/mole,
AS2 = =11.2%0.3 e.u. A kinetics study of the decomplexation
reaction of cs*.18ce gave an activation energy of 8:0.3
Kcal/mole.

The formation constants of C222 and C222B complexes
were also obtained from the NMR chemical shift data. The
formation constants showed the same trends with various
solvents. For instance, Kl values for C222 are >105 (pY),
(10:1) x 103 (PC), (10.8:0.8) x 103 (acetone), (1.5:0.1)

x 102 (DMF), (27+3) (DMSO), and (4:1) x 10%

(MeCN). Cryptand-
222B, with a benzo group on one of the ether chains forms
weaker complexes, with K values ranging from (5.7+0.8) x 103
(PY) to zero (DMSO). Chemical shift-mole ratio temperature
dependent studies were also carried out, as well as studies
of kinetics. Both gave evidence for two types of complexes
in the solution. The results are interpreted on the basis
of the formation of both inclusive and exclusive complexes
of cst by C222. Enthalpies and entropies of formation were
also calculated by using the KINFIT program and it was found
that both quantities are sensitive to the solvent for the
complexation of free cesium ions to form the exclusive

complex. The conversion of the exclusive to the inclusive

complex is much less sensitive to solvent. The activation
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energy (Ea) for the complexation reaction of C222B with
CsSTPB in PC is 14*0.6 Kcal/mole. By comparison the values
obtained from kinetics studies of crown complexes in PC

are Ea = 8.5%0.5 Kcal/mole (for DCC) and Ea = 8+4 Kcal/mole
(for 18C6). It appears that the higher rigidity and
restricted geometry of the ligand combine to give C222B

the largest activation energy for removal of a cesium

ion.
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1. INTRODUCTION

For many years, complexes of alkali metal ions were
not considered an exciting area for chemical investigation,
because it was assumed by most chemists that the complexes
were neither stable nor important, and, as a matter of
fact, alkali salts were frequently used to achieve high
and constant ionic strength in solutions, when complexa-
tion with other metal ions was occurring. Recently, in-
terest in these alkali metal coordination complexes has
developed, both from the chemical and the biological
points of view, the latter because of their importance
in the metabolism of plants and liver mitochondria and
their significance as models for investigation of active
transport processes in general. The first synthetic ligand,
more or less specific for alkali catiors was a cyclic poly-
ether obtained by Pedersen in 1967 (1). The ligand pos-
sesses a bidimensional cavity which can accommodate an
alkali cation. Soon thereafter Lehn and coworkers (2)
synthesized cryptands which are diazapolyoxamacrocyclic
ligands with tridimensional cavities. Both types of 1li-
gand can form very stable alkali metal complexes in solu-
tion as well as in crystalline form. This fact enables
one to more easily control and investigate the parameters
which determine the characteristics of the complexation
reaction.

During the past decade, it has been found that alkali

NMR spectra are very sensitive probes of the immediate
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environment of the alkali metal ion (3-7). This work
mainly concerns some aspects of the complexation of cesium
ion by crown and cryptand complexing agents in various

nonagqueous solvents as studied by Cs-133 NMR.

II. HISTORICAL BACKGROUND

Interest in the polyether type ligands has grown since
1964, when Pressman and Moore discovered that the anti-
biotic valinomycin exhibits alkali cation specificity in
rat liver mitochondria (8). Later, in 1966, Stefanaéd
and Simon (9) showed by electromotive force measurements
on model membranes that alkali ion selectivity is mainly
induced through complex formation of the antibiotic ion-
phore with the cation in question. This observation was
the starting point which stimulated scientific interest
in macrocyclic complexation of metal ions. Synthetic
macrocyclic polyether- crowns and cryptand ligands have very
pronounced complexation abilities. Their special physical
characteristics will be reported separately in the follow-

ing section.

(A) MACROCYCLIC POLYETHER-CROWN COMPLEXATION OF ALKALI

METAL IONS

More than 50 macrocyclic "crown" ethers were synthe-

sized by Pedersen, and many were found to solubilize
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alkali metal salts in non-polar solvents. The structure

of the first crown compound, dibenzo-18-crown-6 (DBC)

is shown in Figure 1, where "18" and "6" indicate the total
number of atoms and the number of oxygen atoms in the ring
respectively. Ultraviolet and infrared measurements of

the DBC-KSCN system indicated the formation of a 1:1

complex (10). It was further shown that when the cation

/4
A/

Figure 1. Dibenzo-18-crown-6 (DBC).

was too large to fit in the central hole of a cyclic
polyether ligand, complexes with mole ratiog of 1:2 or 2:3
(metal:ether) could also be obtained (11). Some of the
larger ethers have been shown to complex two metal ions
simultaneously (12).

Truter et al. (13) determined the crystal structures

of several crown complexes. They showed that in the solid
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state, the alkali metal ion is located in the middle of
the polyether ring and the ligands are in a gauche con-
formation about the aliphatic carbon-carbon bonds. The
interesting features revealed in their work and that of

Pedersen are the following:

(i) When the number of oxygen atoms is even and no
larger than gix, they are coplanar in the ring,
and the apex of the C-0-C angle is centrally
directed in the same plane. Symmetry is at a
maximum when all the oxygen atoms are evenly
spaced in a circle. When seven or more oxygen
atoms are present in the polyether ring and the
complexed cation is larger than the cavity diam-
eter, the oxygen atoms cannot assume a coplanar
configuration and, consequently, arrange them-
selves around the surface of a right circular
cylinder with the apices of the C-0-C angles

pointed toward the center of the cylinder.

(ii) The second interesting feature revealed was that,
even in the crystalline state, there are inter-
actions between the cation, anion and solvent
molecules, as shown in Figqure 2 for the NaBr-
DBC-2H20 complex (14). In this case, one sodium
ion in ring A, 1s in a hexagonal bipyramid of
oxygen atoms, six from the ligand and two axial water

molecules. The sodium ion in ring B is attached



Figure 2. NaBr-DBC-2Hzo crystal structure.

(iii)

to a bromide ion, at one apex of a hexagonal
bipyramid, the ligand forming the equator and
water the other apex. The structure is held in

a chain by water-bromide and water-water hydrogen
bonds. Another example is the structure of the
1:1 compound CsNCS-tetramethyl-dibenzo-18C6 as
shown in Figure 3. The compound shows equal
sharing of the two thiocyanate ions between the
two metal ions and a somewhat unsymmetrical en-

vironment for cesium.

It was also found that the stoichiometry in a
unit cell may not necessarily be the stoichiometry

of the complex. For instance, the unit cell of
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Figure 3. CsNCS-tetramethyl-DBC (1:1).

a 3:2 RbSCN complex (15) contains four molecules
of a 1:1 RbSCN-DBC complex and two uncomplexed

polyether molecules of crystallization.

The stability constant, K, of a complex is defined
by

k = [mertl/[M*][cr)

where MCrt is the complexed ion formed from metal ion (M+)
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and ligand (Cr) by the following reaction:

K
Mt + cr 7 Mext (I.1)

Values of the stability constants (or formation con-
stants) have been measured by a calorimetric titration
technique (16), by potentiometric measurements with ion-
selective electrodes (17) and by spectroscopic methods
(18) . These studies revealed that the stability constant
goes through a maximum for each cation with increasing
polyether ring size. The maximum for Na' is between 15-
crown-5 and 18-crown-6, for k' is 18-crown-6; for cst
between 18-crown-6 and 2l-crown-7. These optimum ring
sizes are those which provide the closest fit between
the cation and the "hole".

Pedersen and Frensdorff (19) noted that very few data
are available on complexation reactions in solvents less
polar than methanol. In solvents of lower polarity, ion-
pair formation becomes significant so that the anion ef-
fects would be appreciable. Smid et al. (18,20-22) in-
vestigated the interactions of alkali metal ions and their
fluorenyl ion pairs with crown ethers in tetrahydrofuran
(THF) and tetrahydropyran (THP) by using optical spec-
troscopy, distribution equilibria, conductances, and
viscosities. From their early conductance study (23,24)

in THF, it is known that at room temperature, the salt
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exists predominantly as a tight ion pair but changes into
a solvent-separated ion pair at lower temperatures. When
crown ethers are added to fluorenyl salts in ethereal
solvents, complex formation occurs. In systems where
only 1l:1 crown-ion pair complexes are formed, at least
two isomeric complexes can be found, i.e., a crown com-
plexed tight ion pair (FE,M+Cr) and a crown separated ion

pair (FL,cxrM™) (25). The equilibria in the solution are,

F~, MY + or 2 Fo 7 Mtex (I.2)

Fo- MY + cr > FE,ceMt (I.3)
o +

ns + F{, M Ccr > F{,CrM" ,ns (I.4)

where MCrtdenotes a complexed crown molecule, FL~ repre-
. sents the fluorenyl carbanion and ns is the number of
solvent molecules interacting with the crown-separated
ion pair. A semi-theoretical calculation of the electric
dipole moment was used by Grunwald (26) to obtain the
association constant for ion-pairing. From the formation
constant, K, one can obtain the free energy of complexa-
tion, AGc. However, the entropy and enthalpy of alkali
metal ion complexation have not been studied in much
detail. Simon et al. (27-29) used a computerized micro-
calorimeter to study the thermodynamic properties of

alkali complexes of antibiotics, while Izatt et al. (30-32)



also

to st
synth
1 rev
cycli
tive,

by M

ting
adadj |
from
repl:
‘ is a.
’ Plex:
‘ (nce:
|
|

that

€qui ;

In be
Role
tion
'ty

the 3]



10

also use a precision thermometric titration calorimeter

to study the thermodynamics of formation of complexes of
synthetic macrocyclic polyethers. The data shown in Table
1 reveal that, for the complexation reaction of macro-
cyclic ligands, usually AHc and quite often, ASc are nega-
tive. This is caused by the macrocyclic effect described
by Margerum (37,38). He used this term in order to dis-
tinguish it from the chelate effect because there is an
additional enhancement in stability beyond that expected
from the gain in translational entropy when chelates
replace coordinated solvent from metal ions.

Kinetics information about these complexation reactions
is also very limited. Shchori et al. monitored the com-
plexation of the sodium ion by DBC and dicyclo-hexyl-18Cé6
(DCC) in dimethylformamide and methanol solutions (4) by

using 23

Na NMR measurements. From a study of the variation
of exchange rates with concentration, they postulated
that the exchange mechanism involved the complexation

equilibrium,

Na+(x'), Crown Nat (Xx™) + Crown (I.5)

In both solvents, the activation energy is 12.6:0.6 Kcal/
mole for DBC and 8.3 Kcal/mole for DCC. The lower activa-
tion energy for releasing Na‘t ion from DCC was attributed
to the flexibility of the macrocyclic ring. Recently

the above authors also studied the decomplexation kinetics



sxoy3la@Atod DOFTOLADO0IDRW FO SUOFIORIY UOFIRXITJdWOD IOF SI3FITIUPND DTweULApowTayr T erqe.r



11

€€ suc39oy — ZT 01- Sz
€€ otn 8°€- 88°€- sz
€€ o®x 8°y- pT Y- 0T R (¢ aowosT) 9081
-OTToAoTAXaYTa
-9'6'2'1
€€ OSWd 6°9- §*g- 52 A
€€ aWd L- "9- sz LBN 9081
-ozueqid 9'S’zZ’T
€€ JHL p°0T- 0°€- sz A 908T-0zZusaq
-TAU3aw v‘2‘1
€€ (0%H/HO®KW) 02/08 € 1e- 0Z°0T- sz
€€ (o%H/HOPH) 0E/0L 1°1 L9°€- sz
€€ (0%H/HO®H) 0%/09 z°0- 25 €~ sz
€€ (0%H/HO®W) 09/0% peT 15°2- 4
€€ (O%H/HO®KH) 08/02 s°0- 8°T- sz
33 (0°H/HO®W) 0Z/08 9°L1- ze"8- sz A
€€ (0°H/HO®W) 0€£/0L L €~ z8°€- sz
€€ (0%H/HO®H) 0%/09 z°s- gL €~ 14
€€ (0%H/HOSK) 09/0¥ S €~ €9°2- sz
€€ (0%H/HO®W) 08/02 9°2- LL T- sz LeN §OGT-0zZuag Z'T
*goy bap aTow/Ted STow/Tesoy Do uot3e) punoduo)
sV HV *dwag, OT11o4Ad50a0eK

*8I9Y3aLTod OF[O0L00I0RW FO SUOTIORdY uorIexatdwo)d 103

sarT3Tiuend otweulpouwxayl] °T 9Iqel



TP AYNAVOIO R

P@Pnurjuos

‘T sTgwer




12

€€ o%H 6°TT- 9 p- 0T K

€€ suo3e0y ———- 90°TT- sz

€€ HO®W §*0T- §°0T- sz A

€€ HO3E — 9°2T-n ST

€€ OSKd G €T~ L'L- 52

€€ ou 5 1- 61" V- ov

€€ o%H 9°6- L0°S- ¥4

€€ o%n 2z zI- 8L"S- 0T e

€€ HO®W 6°1- 9°g- sz

€€ HO3E — 9°8-n sz

1 4% OSKHda 9°0- $° ¢~ T4 N g I2WOoSI

€€ o%H z°1- 9T"2- s2 mmz

€€ o’n 2 €- 8E°Z- oy

€€ on L€~ 1v°2- 14

€€ o%H 6°€- ov°z- 0T 450

€€ o 1°v- 62°€- oy

€€ o%n z v~ €€ €~ sz

€€ o%x 8°p- €V €- 01 S

€€ o%H L z- 85 €- oy

*394 Hap eTow/Teo oTOW/TeON D, UoTIW punodwod
sV HV *dwag, o11ok0010WH

psnuijuo)y °1 OTqel



‘Penurjuop ‘T erqeg




13

6C HOSW v L+ L8°E- ¥4 +3 UTSUauUoK

9¢ HO®KW €T°8- 0°9- s¢ +EN UT3OoRUON

9¢ HO®SN 6h°€+ £€9°¢- T4 +EN

St HOSHW 1828 A% A ANy T4 +3 UT30'UONW

143 HO3d a:oﬁ X 91°6- €12~ s¢ ! uTsAwouTTeA

€€ HO®W - 0°TT- 2 +1IT

€€ HO®W J— ' §- sz -0

€€ HOSW -——- 2 1T~ sz L850

%3 HO®SKH —-———- L°CT- T4 +nm

1% HOSKW ——— S° 1T 1T A4 +&

1% HOSH ——— V- Y4 +mz 0TO0g-0zZuaqta
-p'e’‘Z’'t

€€ on €°0 60°2- sz L5

€€ oln 8L~ v-e- sz Yan

€€ o%n 9°9- 0€ €~ Y

€€ o €°6- L6°€- sz

*° 394 bap sTow/Ted STOoW/Ted} Jo uotrled punodwo)

sV HV *dwa g oTToko0x0RK

‘panui3luo0) °T STqel



of |
of
the
for
sti]
as -
X-r:
show
very
Same
to p

less

Jate

iSa



14

of DBC-K' and DBC-Rb' complexes in MeOH solutions by means
of alkali metal NMR (5). The activation energy (Ea) for
the decomplexation of the k' ion is 12.6 Kcal/mole, while
for Rb+, the exchange between free and complex sites was
still indicated as being rapid even at temperatures as low
as -50°. They interpreted these results as follows: The
x-ray crystallograph study done by Truter et al. (15),
shows that both Na® and Kt can fit the cavity size of DBC
very well, therefore for these two ions they obtained the
same Ea value. However, Rb+, a larger cation, is forced
to protrude from the cavity plane and, consequently, is
less tightly bound to the DBC molecule.

The complexation reaction of dibenzo-30Cl0 with Na+,
K+, Rb+, Cs+, NHI, '1‘1+ in methanol solution was investi-

gated by Chock (39). The reaction mechanism he postulated

is as follows:

fast
-+
Cr1 < Cr2 (1.6)
k
2
Cr, + Mt % mcrt (1.7)
ka1

That is, a conformational transition was proposed. The
symbol Cr1 represents an unreactive species, Cr, is an
open configuration which is ready to complex the cation,
and MCr' is a closed configuration which is stabilized

by a monovalent cation. His results also emphasized that

the stability of the complex is dependent on the ionic
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radius and the hydration energy of the cations under study.
Cussler and coworkers (40) made conductance studies of

DBC and DCC in acetonitrile (MeCN) and in methanol (MeOH).
Their results indicated that the stability of the complex
is affected by the solvation of the cation under study and
thus solvent effects on the complexation reaction cannot

be overlooked.

(B) COMPLEXATION OF METAL IONS BY MACROHETEROCYCLIC

LIGANDS-CRYPTANDS.

Cryptands are polyaza and polyoxa macrocyclic compounds

with tri-dimensional cavities (Figure 4). In order to

(7 BN
a's

Figure 4. Cryptand, C (k+l,m+1l,n+l).

accommodate different cations, the cavity size can be
varied by changing the length of the ether bridge. The
selectivity of complexation and stability of complexes,

in general, are several orders of magnitude greater than
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for crown compounds with the same number of oxygen atoms
in the ring.

In general, the term cryptand is ascribed to the
free ligand and the term cryptate to the complex. The
notation C(n+l,m+l,k+l) is an abbreviation for a cryp-
tand with n+l,m+l,k+1 oxygen atoms in each branch.

For instance, if a hexaoxadiamine macrocyclic compound
has a value n=m=k=1, then it can be written as C222,

The kinetics of the complexation by cryptands was
first studied by Lehn et al. (41) through a PMR tempera-
ture study on the complexation of C222 with K+, T1+, and
Nat in D,0. They concluded that the exchange mechanism
proceeded by a dissociation-complexation process rather
than a bimolecular process. The symmetrical splitting
caused by r1t-n spin-spin coupling indicated that the ion
is in the center of the molecular cavity. Dye and co-
workers (42) studied the exchange rate of sodium cryptate
in ethylenediaminé. The activation free energy value
they obtained is similar to that of Lehn obtained in aqueous
solution. They also dissolved pure sodium in ethylamine
(EA) and in THF in the presence of C222. Due to the com-
Plexation of the cryptand with Na+, the concentration of
dissolved metal was greatly enhanced and a gold-colored
(Nac222)+Na' salt was formed (43a3). At low temperatures (43b)
they observed two NMR resonances, i.e., (Nac222)% and Na~,
with the Na  peak shifted upfield about 63 ppm from

saturated aqueous NaCl for both solvents, i.e., EA and THF.
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Kintzinger and Lehn (44) also used 23Na—NMR to study the
complexation of Nat ion with cryptands. They found that

the 23

Na nuclear quadrupole coupling constant decreased
with an increasing number of oxygen atoms in the ligand.
The chemical shift (referred to a 0.25 M aqueous NaCl
solution as external reference), had values of 11.15 ppm
for Na*t-c211,-4.25 ppm for Na'-c221, and -11.45 ppm for Na‘-
C222. The line widths at halfheight were 132+3, 46+2 and
29+1 Hz, respectively.

Lithium-7 NMR kinetics studies have also been performed
by Cahen, et al. (6). They found that the activation
energy for the decomplexation of the Li-cryptand complex
is related to the Gutmann donor number of the sblvent.

This result contrasts with the kinetics studies of Shchori
et al. who used crown complexing agents. The latter authors
studied the exchange rate of Na-DBC in DMF and methanol

and noted that there seemed to be no solvent effect on

the activation energy. However the donor number for DMF

and methanol are very nearly same.

In addition to the study of the complexation of metal
ions with macrobicyclic ligands (denoted as [2]-cryptands),
Lehn et al. also synthesized macrotricyclic ligands (de-
noted as [3]-cryptands) (45,46). Later, they also studied
the cation exchange rate between binding sites on two rings
inside the cavity of a [3]-cryptate by 13¢c NMR. Their
observation for this study is summarized as follows:

(1) Complexes display an intramolecular cation exchange
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process which interconverts two species in which the cation
is located unsymmetrically in the molecular cavity, as

shown below.

.-:} o..-o —d +1 ‘o
N/O\N/ ‘ ;;{M.o\'\:
—~0— N\-'O -

(2) The free energies of activation, AG: for this process
decrease with increasing size and decreasing hydration
energy of the cations in the order cat? > Sr"'2 > Ba+2.

(3) An intermolecular cation exchange process is also
present, but its rate is much slower and its free energy

of activation is much higher than those of the intramolecu-
lar process. (4) Both intra and intermolecular cation
exchange is fast for the weak complexes which form with
alkali cations.

Another [3]-cryptand has been synethsized recently
(47). As shown in Figure 5, the attractive feature of
this molecule is that it possesses a spherical intra-
molecular cavity into which the cation may be placed.
Preliminary measurements show that the logarithm of the

+

stability constants for the K+, Rb', and C8+ complexes

in water are about 3.4, 4.2 and 3.4, respectively; and
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28
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Figure 5. Newly synthesized macrotricyclic cryptand.

the PMR kinetic study obtained from the coalescence tem-
perature showed that the free energies of activation for
k*, Rb' and cs* are 15.5 (at 28°), 16.7 (51°) and 16.1
(at 41°C) Kcal/mole.

Kinetics information about the complexation between
cryptands and metal ions is scarce and has been mainly
obtained by NMR techniques. Very recently, a stopped-
flow technique (48) was used for a kinetics study by Wil-
kins et al. They followed the color variation of the

+2 +2

murexide-~-Ca and

+2

complexation reaction of murexide-Ca
Ca “-cryptate. 1In this study, conformational changes, i.e.,
exo-exo endo-endo (41,49), were also considered. Endo
and exo configurations are shown below. The endo con-
figuration has the lone pair electrons directed toward

the interior of the cavity while the exo configuration

has the lone pair electrons turning outside.

Formation constants of alkali metal cryptates in
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exo-exo endo-endo exo-endo

aqueous and methanolic solutions have been studied exten-
sively by Lehn and coworkers who used potentiometric tech-
niques. Recent reviews (50,33) contain extensive compila-
tions of complexation constants. Cahen et al. (7) used
an alkali NMR technique to study formation constants of
complexation in several solvents. They found that, in
a poor donor solvent such as nitromethane, the addition of
C222 or C221 cryptand to a lithium perchlorate solution
resulted in a drastic chemical shift which reached a limit-
ing value at higher than 1l:1 (ligand/metal) mole ratios.
This phenomenon indicates that the formation constant of
the resulting cryptate is large in contrast to the case
of pyridine, a better donor solvent, in which the limiting
value is not reached even at a 25:1 mole ratio because of
the competitive action of the solvent.

The thermodynamic quantity AG® can be obtained directly
from the formation constant, but AH® and AS® values are

still very limited in extent. Only very recently Lehn
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and coworkers (51) made calorimetric measurements under

an argon atmosphere to avoid the problems caused when
cryptand solutions absorb Co,. Their data are listed in
Table 2. In this work, they stressed explicitly that the
complexation reactions to form cryptates have large negative
changes in enthalpy, sometimes, negative entropy changes.
These are important factors in determining the stability

and selectivity of the complexation reaction. From their
calorimetric study they observed the trends shown in Table

3.

Table 3. Trends in Thermodynamic Parameters with Cryptands.

Cation Complex With Cryptand Dominant Minor

+ +2 . +
sr*2,Ba*? (not with C,,,), Na'(C,,,) AH<O TAS>0
Nat,xt,mbt,cs?t AH<O TAS<0
ca*? TAS>0 AH<O

In addition, they noted that [Litcc...], [Ca+2C (o]

221 211]'
[Ca+2C:C222] are entirely entropy stabilized with about zero
heat of reaction.

Crystal structures of a number of alkali cryptates
have been determined by Weiss and coworkers (52-55). For

[2]-cryptates it was observed that the metal ion is centro-

symmetrically located in the cavity. In some cases, solvent
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molecules are also linked to the complex, e.g., Rb' (C222)
SCN™-H,0, Ba'?(c222) (SCN),H,0 (56) and Ba*? (C322) (SCN),-
2H,0 (57). The solvent molecule or anion can extend into
the ligand cage and coordinate with the trapped metal ion

in the center. It was also found that for [2]-cryptates the
preferred configuration is endo-endo in the crystal. For
[3]-cryptates (58,59) the metal ion is also located in

the cavity. Monovalent ions usually form weaker complexes
with [3]-cryptands but 1:2 (ligand/metal) complexes can

be formed. The crystal structure of an Ag+-[3]—cryptate
complex actually shows two silver ions located in the

two rings and linked with a third Ag+ through the oxygen

of the nitrate group of AgNO3. This third Ag+ is oﬁtside

of the cage.

In summary, the complexation reactions of metal ions

with macrocyclic ligands depend on the following factors:

(1) The type of binding site in the ring. For a ligand
with a donor atom such as O, N or S, the stability usually
follows the trend, O > N > S for small ions such as Li+,
Na+. For a large ion such as NH: or a group B ion such

as Ag+ the same trend may not necessarily hold because of
some covalency in the coordination.

(2) The number of binding sites in the ring. Compare

for example the log K value for the Nat ana x* complexes
of C222 (with Na* or K* in MeOH log K is larger than 8)

and C22C8 (with Na' in MeOH log K is 3.5 while for kt
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it is 5.2). 1In this comparison, C22C8 denotes a [2]-
cryptand with one aliphatic branch. Both ligands have about
the same cavity radius but C22C8 contains two fewer oxygen
sites. This results in a decrease in stability by a factor
of 10%-10° (50).
(3) The relative sizes of the metal ions and the ligand
(60). The K value as a function of the cation radius
shows a maximum for any given ligand. This indicates that
the ratio of cavity radius to the ionic radius contributes
significantly to the selectivity of these ligands.
(4) Steric hinderance and ligand thickness (61). The
substituents on the ring will introduce rigidity and hin-
derance in the ligand. These can make the ligand have a
higher selectivity and ability to discriminate against
cations which are either smaller or larger than the preferred
one.

The ligand interposes a layer between the cation and
the outside medium. Therefore the thicker the ligand,
the better the cation is shielded from the medium. This
effect decreases long range ionic stabilization. The effect
is larger the higher the dielectric constant of the solvent.
(5) The solvent and extent of solvation of the ion and
ligand. For example, Cahen's study illustrates that in
solution the complexation reaction competes with solvation.
Media which can solvate cations more strongly usually
result in weaker complexes.

(6) The electrical charge of the ion. Previous studies
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have shown that, with a similar cation radius, a bivalent
ion forms a stronger complex than a monovalent ion (61).
However, in this case ligand thickness becomes very im-
portant because the long range interaction energy varies

as the square of the ionic charge.

(7) Topology of the ligand. The dimensions and geometry
of the ring can greatly affect the stability of the complex.
This is most pronounced when the complexing groups are held
in favorable positions by the ligand framework. The extent
of ion-pairing also depends on the geometry of the ligand.
In addition to the recent work of Smid et al., electron spin
resonance studies (62,64) have been made of alkali metal
hyperfine splittings in the presence of macrocyclic poly-v
ether ligands. These results illustrate that several

types of ion-pairs are formed with crown complexes in low
dielectric media. However this effect was not observed

when cryptates were in the same media.

(C) NUCLEAR MAGNETIC RESONANCE

(i) INTRODUCTION

Electrolyte solutions are particularly suited to in-
vestigation by nuclear magnetic resonance techniques. The
presence of extremely rapid and generally random molecular
motions averages local magnetic and electric fields to
very small values and can result in narrow resonance lines

even for quadrupolar nuclei. This fact is important
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because it enables small differences in magnetic shielding
and/or fine structure of the resonance signal to be detected.
In addition, broadening of the resonance line because of
chemical exchange, hyperfine interaction or quadrupolar
effects may be studied and chemical information derived
from the observed behavior. Proton NMR is useful in the
investigation of solvent or ligand behavior and can provide
information about ion-solvent or ion-ligand interactions.
In favorable cases, non-proton NMR can be used to study

the ions themselves and thus provide direct information
about such interactions. Although resonance frequencies

of metal ions are sensitive to ion-solvent, ion-ligand,

and inter-ionic interactions, the generally weak resonance
signals and the special instrumentation required combined
to make such studies rare prior to the last decade. All
alkali metals possess at least one isotope with a magnetic
nucleus; e.g., 7Li, 23Na, 39K, 87Rb, and 133c3. The in-
herent intensity of the resonance is much lower than that
of the proton. However, the sensitivity of the nuclear
magnetic shielding constants to the nature of the surround-
ings is considerably larger and increases as the atomic
number of the ion increases. This condition leads to a
wide range of chemical shifts, from a few ppm to hundreds
of ppm. Variations in the chemical shift result primarily

from changes in the paramagnetic shielding constant, cp.
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(ii) CHEMICAL SHIFT STUDIES OF ELECTROLYTE SOLUTIONS

For an assembly of identical but isolated nuclei of
spin I and magnetic moment u in a static magnetic field H,,

the simplest expression for the resonance condition is

Vg = uHo/Ih = YHO/Zn (1.8)
in which Vo is the frequency at which energy is absorbed
and y is the magnetogyric ratio. The latter has a charac-
teristic value for each isotopic species. However, a
variety of mechanisms may produce secondary magnetic fields
at a nucleus. The actual field experienced by the nucleus

may be written as

H = Hj (1-0) (1.9)
where o is a dimensionless quantity known as the shielding
(or screening) constant.

Ramsey (65,66) has developed general theoretical expres-
sions for chemical shifts caused by magnetic shielding of
nuclei in molecules. This treatment has been applied succes-
fully to simple molecules but the approximations required to
apply it to more complex systems yield only qualitatively cor-
rect results. Saika and Slichter (67) attempted to explain the
difference in the shielding constants of F2 and F . They

divided the contributions into separate terms: (1) the
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diamagnetic contribution for the atom in question. (2)
a paramagnetic contribution for the same atom and (3)
contribution from the electrons of other atoms.

When investigating an electrolyte solution, one can
expand Ramsey's formulation as applied to a solid state
environment. If alkali halide crystals are considered to
be purely ionic in character, each constituent ion will
have a spherical closed-shell electronic configuration
identical to that expected for the isolated ion. 1In
Ramsey's expression, the shielding constant of the ionic
nucleus is determined only by the diamagnetic term, oggqr
for an isolated ion. Therefore, the observed large.para-
magnetic contributions found for crystals (usually 102-
103 times larger than °d) indicate that there are additional
interactions present which are able to distort the symmetry
of the electron distribution and introduce some net
orbital angular momentum into the ion. This perturbation
gives rise to a paramagnetic chemical shift. Such inter-
actions might be considered in terms of electrostatic,
covalency or overlap effects. However, the calculations
indicate (68) that neither electrostatic effects nor rea-
sonable estimates of the degree of covalency can account
for shifts of the magnitude observed. The best inter-
pretation so far is that of Kondo and Yamashita (69).

They suggested that the cause of the paramagnetic shift is
due to the short range repulsive forces between ions.

Mutual overlap of atomic wave functions of neighboring
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ions produces a strong repulsive force mainly due to the
Pauli exclusion principle. This force acts over a short
range and competes with the electrostatic forces which tend
to reduce the separation of oppositely charged ions. At
equilibrium in the crystal the attractive and repulsive
forces are in balance. Kondo and Yamashita used Léwdin's
(70) orthogonalized-atomic-orbital model and considered
that the overlap integrals are significant only for inter-
actions of orbitals which belong to nearest-neighbor ions.
Later, both Ikenberry and Das (71) Hafemeister and Flygare

(72) gave more exact derivations of the paramagnetic shift

to be expected from overlap forces in alkali halide crystals.

But at that time they ran into difficulty in comparing

theoretical results with experiments because the experimental

shielding data are usually referred to a reference sample

in which the shielding constants are not known. Therefore

it was thought that this problem could be solved by referring

all experimental shielding constants to the infinite dilution

chemical shift in water which, in principle, is supposed to
be constant because of the strong hydration properties of
water.

When the alkali salt is put into a solvent, the cal-
culated paramagnetic shielding constant, op, from the
crystal state and the experimentally measured shift,

§, referred to the aqueous solution are related by the

equation:
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o =g -84 (1.10)

where U:q is the paramagnetic shift of the hydrated ion

relative to the "free ion". Since cgq should be independent

of the partner ion in any alkali metal or halide series,

o
the constancy of °aq

and experiment, therefore, provides a test for the proposed

obtained by a combination of theory

overlap mechanism and the accuracy of the wave functions em-
ployed in the calculation. However, in reality, cgq

is not constant. Attempts were made to explain the dis-
crepancy by Hafemeister and Flygare (73), Ikenberry and
Das (74) and Y. Yamagata (68) individually by using various
models in the calculations. However, all of them could
only illustrate that ion-solvent interactions can produce
sizable paramagnetic shifts of the ionic nucleus, but their
results were still not comparable with the experimental
values. Therefore, it was suggested that chemical shifts
in solutions may be caused not only by ion-solvent inter-
actions in dilute solution, but also may have contributions
from direct interionic effects.

By using the Kondo-Yamashita model one could in prin-
ciple account for the chemical shifts in aqueous solutions.
Direct collisions between ions will distort the spherical
symmetry of the electron distribution and also can produce
paramagnetic chemical shifts. In the solid state, the

relative positions and distances of separation of the

component ions are known, and, therefore, the theoretical
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attack is easier. 1In solution the environment of each ion
varies randomly with time as the ion and solvent molecules
undergo rotational and translational diffusion. The ob-
served chemical shift is an average value resulting from
many separate contributions corresponding to the various
short-lived associations in solution. An exact expression
for the shielding constant would require a knowledge of
both the radial distribution function of other ions and
water molecules about the central ion and the magnitude of
the appropriate overlap integrals as a function of the
separation. This information is difficult to obtain. To
make this problem tractible, Deverell et al. (75) modified
the Kondo-Yamashita theory in the following way: At in-
finite dilution, the only interactions present are between
the ion and the water molecules. This contribution to the

paramagnetic chemical shift can be expressed by

_ -3 o
Cag = ~ & <y >p Ai-H20 (I.11)

where A is the average excitation energy,

a is the fine-structure constant,

<r'3>p is the expectation value of r13 for an outer p-
electron of the central ion, i.
AE-H o is an appropriate sum of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>