SOME MORPHOLOGICAL
CHARACTERS OF HELIANTHUS
ANNUUS L, AND THEIR
RELATIONSHIP
TO THE YIELD OF SEED AND OIL

Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE Alfred M. Ross 1938

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE
DEC 0 6 1998		

1/98 c:/CIRC/DateDue.p65-p.14

SOME MORPHOLOGICAL CHARACTERS OF HELIANTHUS ANNUUS L.,
AND THEIR RELATIONSHIP TO THE YIELD OF SEED AND OIL.

SOME MORPHOLOGICAL CHARACTERS OF HELIANTHUS ANNUUS L., AND THEIR RELATIONSHIP TO THE YIELD OF SEED AND OIL.

A Thesis
Respectfully Submitted
in Partial Fulfullment of
the Requirements for the
Degree of Master of Science.

at

Michigan State College

of

Agriculture and Applied Science.

Alfred M. Ross

1938

THESIS

i

.

MATERIAL IN BACK OF BOOK

CONTENTS

	Page
<u>INTRODUCTION</u>	1
OBJECT OF PROBLEM	1
REVIEW OF LITERATURE	2
LOCATION AND PLAN OF EXPERIMENT	6
CLIMATE	7
METHOD	8
RESULTS	
Yield of Seed per Plant	10
Height of Plants	12
Number of Branches per Plant	13
Number of Heads per Plant	14
Number of Days from Seeding till Blooming	15
Diameter of Main Heads	16
Number of Leaves per Plant	17
Area of Leaf Surface per Plant	19
Per Cent of Oil in Whole Seed	20
Coefficients of Total Correlation	21
DISCUSSION	
Discussion of Varieties	22
Factors Affecting the Oil Percentage	26
Factors Affecting the Yield of Seed	28
<u>SUMMARY</u>	30
CONCLUSION	31

i

Contents (Cont'd)	
	Page
ACKNOWLEDGMENTS	31
BIBLIOGRAPHY	3 2
APPENDIX	

Tables I - IX

. ,	 	
• • • •	 F & F & F & F & F & F & F & F & F & F &	

NEW CONTRACTOR CONTRAC

.

•

ĸ.

SOME MORPHOLOGICAL CHARACTERS OF HELIANTHUS ANNUUS L., AND THEIR RELATIONSHIP TO THE YIELD OF SEED AND OIL.

INTRODUCTION

Sunflower seed contains an extremely high percentage of vegetable oil which is used extensively in the manufacture of various food products. After the oil has been extracted, the remainder of the seed is utilized as a cattle feed and for this purpose is comparable with linseed cake both in nutritive value and in palatability. Unfortunately, no statistics are available to show the amount of sunflower oil which is annually imported into Canada, but it is significant that, according to Sievers (17), the United States imported twenty-seven million pounds of this commodity from Soviet Russia in 1931.

Climatic conditions in Western Canada are very similar to certain large areas in Russia where sunflowers are a staple and extensively grown crop. Mennonite farmers in certain sections of the Canadian West, notably in Rosthern and Morden districts, have been growing this crop successfully for many years and have demonstrated that good seed yields can be obtained consistently in these areas. It is therefore only logical that the possibilities of sunflowers as a field crop for the Prairie Provinces should be thoroughly investigated.

OBJECT OF PROBLEM

Russian plant breeders have originated several varieties of sunflowers each of which is specially adapted to a particular climatic zone. In Canada no variety for seed production has so far been evolved and little is known as to what type

. , . of plant should be selected for this purpose. The object of the experiment described in this thesis is to show whether or not certain habits of growth are indicative of high yields of either seed or oil.

The data presented in this paper were made available through the cooperation of the Division of Forage Plants, Central Experimental Farm, Ottawa, Canada.

REVIEW OF LITERATURE

The review of literature herewith presented does not include any of the numerous articles relating to sunflower silage, but only those contributions which might prove of assistance to one engaged in breeding sunflowers for seed production.

"Mammoth Russian" and tried to isolate these by the method of inbreeding. It was found that when the heads were covered with selfing bags all the flowers in each head opened simultaneously instead of in zones from the periphery to the centre as is normally the case. When harvested the self-fertilized heads looked perfect but although the seed looked plump, normally coloured, and apparently well-formed, no kernels were present. From these results it was concluded that it was not possible to inbreed sunflowers.

An entirely different result was obtained by McRostie (12), who found that sunflowers were not totally self sterile.

He found it necessary to isolate the heads with a material which

******* -· • í . •

would prevent wind pollination. By using this method it was possible to produce uniform pure line strains of many different types.

Hamilton (10) also reported that in 1920 several hundred sunflower heads were selfed by covering them with Manilla bags. These selfed heads yielded from 15 to 50 per cent of the normal amount of seed and even better results were obtained in instances where the heads had been agitated.

As is the case with corn, inbreeding sunflowers for three generations resulted in a marked increase in the uniformity of the strains concerned, and a corresponding decrease in the size of plants. Some of these sunflower strains, however, although becoming extremely uniform, retained their former vigour. These results indicated that it is possible to retain a larger number of desirable factors in an inbred strain than are present in the average of the open fertilized material.

In a later report McRostie (13) stated that after five generations of inbreeding, the sunflower lines were comparatively pure and the various strains showed striking differences in their reaction to climatic conditions and disease producing organisms. Some of these inbred lines showed a marked resistance to sunflower rust, <u>Puccinia helianthi</u>, Schw.

Platchek (14) also found that individual sunflower plants differed one from another in their immunity to attacks by various diseases and insects. He built up strains by straight selection which were highly immune to injury from Broom-rape,

Orobanche cumana, Wallr. When plants from these strains were

crossed with susceptible ones the F₁ progeny was almost one hundred per cent immune to this disease. The immunity appeared to be due to the nature of the pericarp.

Arnoldova (2), reported the results of a detailed study of the successive development of the different parts of the flower with special reference to its significance for artificial pollination. A method of crossing sunflowers is described which allows one person to emasculate eight or nine plants (about 1000 flowers) per hour. An experiment was also reported which showed that sunflower pollen stored for one year in paper packets at ordinary room temperatures was almost as viable as fresh pollen. This prolonged vitality of pollen affords a great opportunity to make crosses between plants which differ considerably in their time of blooming.

Platchek (15) described direct and reciprocal crosses between Helianthus annus L., (edible form) and Helianthus cucumerifolius, Torr et Gray. The F1 of the direct cross showed complete dominance of the H. annus characters, but the reciprocal cross showed both full and partial dominance of H. cucumerifolius. In the F2 generation segregation did not give a regular Mendelian ratio, but many interesting types evolved.

Cockerell (4) found that the primrose rayed varieties were recessive to the ordinary orange rayed types. The "coronatus" (red on ray petals) character also is a typical Mendelian dominant. A type of sunflower is described in which the ray flowers are missing, and crossing experiments seemed to indicate that this condition depended on several factors.

In further studies Cockerell (5) described a red rayed variety and offered some suggestions as to the cause of this pigmentation. He postulates the operation of a factor inhibiting yellow, the loss of a dioxidizing factor and the presence of a dilution factor as possible explanations.

Cockerell (6) also crossed red rayed sunflowers with several yellow rayed species. The hybrids from one of these crosses carried red only on the tips of the ray petals. A group of hybrids from other species carried the red only on the base of the petals, whereas those from a third species showed red only on the centre portion of the petals. It is evident that sunflowers possess colour patterns, although these are generally masked.

Crosses were made by Cockerell (7) between different species and varieties of Helianthus to determine their fertility. The results showed that the progeny from these crosses were not as a rule very fertile and would be useful only for ornamental purposes.

In another experiment Cockerell (8) demonstrated that when several different species were crossed the progenies varied considerably. He claimed that it is quite possible that these crosses occur naturally and that a botanical study of the genus Helianthus should make allowance for these hybrids.

Watson (20) published a key and description of 108 species of Helianthus. Great variations were found to occur within these species and the author explained that this unstable condition was due at least in part to the morphological response

to edaphic conditions.

A statistical study was made by Reed (16) to determine if short sunflowers are shorter than average height all through their growth period, or whether they merely mature more rapidly. The experiment showed that the plants which were short in the seedling stage remained below average all through their development up to maturity. It was therefore assumed that the relative height of sunflower plants is dependent upon internal genetic factors rather than upon external casual ones.

Thornber (18) reports yields of from eight hundred to one thousand pounds of sunflower seed per acre grown under field conditions in the State of Washington. Only single types proved to be useful for seed production and rigid selection was necessary as otherwise the multiple plants soon became numerous.

LOCATION AND PLAN OF EXPERIMENT

The area selected for this test was located on the Central Experimental Farm, Ottawa. The soil was a good clay loam, well drained, and reasonably uniform. The area was fertilized a few days previous to seeding, a 4-8-4 fertilizer being applied at the rate of 720 pounds per acre. Eighteen strains of sunflowers were studied in the experiment, each of which had been inbred for at least eight generations, thus being extremely uniform.

As may be seen in Plan 1, a fourfold replication of each strain was sown and controlled randomization was resorted to in order to offset the effects of shading. The lines were therefore divided into three groups - tall (301-303), medium

• ,

PLAN No. I

Method of Controlled Randomization Used in Experiment

	Che ck		Check		Che ck		
^	301	Ŷ	306	ıt)	3 09		
	30 3	, , ,	304	(Coht	305		
	302	1	307	ن کا	314		
	310	1	308	t1 or	312		
	309	ัก 3	310	-Replication	315		
	304	Replication	301	lep1	313		
	306] 1 CE	30 3	1	311		
i H	307	Rep	302	1	318		
-Replication	305	^ <u> </u>	303		316		
1 ca l	308	1	301	>	317		
epl				_			
# 	316		302	^	317		
	318		308		311		
	317		3 0 4		316		
	315		310		313		
1	314		306	1	312	<u>.</u>	
	311	(Cont)	309	4	314	(Cont.	Check
	313)) z	305	tior	318	9)	302
•	312		307	1 ca	315	i i	303
	318	Replication	316	Replication	31 0	cation	301
n 2-*	311)11c	315	# !	3 08	Replic	305
t101	314	Rei	31 3		309	Rep	307
Replication	312		317		304		306
Rep.	Check		Che ck	Ÿ	Che ck		Check

:

1

(304-310), and short (311-318) - and randomized within each group. The rows were 36 inches apart and the seed was sown by hand at 18 inch intervals, one row constituting a plot. Sowing was done on May 18, 1937, which is a later date than is usually the case in this district. This delay was unavoidable as frequent showers prevented the necessary cultivation to prepare the seed bed for this crop. The rows were 34 feet 6 inches long and thus twenty-three plants constituted a perfect stand and provided a sufficiently large population so that the end plants could be entirely disregarded. Guard rows of "Mennonite" variety were sown at both sides of the ranges in order to minimize the border effect.

CLIMATE

The data contained in Table I were furnished by the Dominion of Canada Meteorological Service from the Station at Ottawa. In addition to reporting the weather conditions for the period when the crop was actually growing, figures are also included for the month of April, as these had a direct bearing on soil conditions at the time when the crop was sown.

Table I.	Meteorological Data						
Month	Mean	Highest	Lowest	Total	Total Hours		
	Tempera-	Tempera-	Tempera-	Precipi-	of Bright		
	ture	ture	ture	tation	Sunshine		
1937	OF	OF	OF	Inches	Hours		
April May June July August September	40.9	68	19	2.63	185.9		
	56.3	89	31	2.22	212.2		
	64.7	84	46	3.64	273.5		
	69.6	93	49	3.99	299.8		
	70.7	92	48	3.52	260.3		
	57.3	90	34	3.54	171.0		

.

METHOD

Ten plants in each replication were selected at random and numbered from one to ten. Careful records were kept for each individual by marked plants. When the majority of the plants in any one replication was in bloom, one of the unmarked plants was picked at random and this plant was taken to be representative of that replication in regard to the leaf area and the number of leaves per plant. It was not possible to use the method of measuring leaf area as described by Kramer (11), as a photoelectric cell was not available. Watson (19) outlined a method and presented mathematical formulae whereby leaf areas might be calculated from the weight of the fresh green leaves. In order to apply this method it is first necessary to obtain the mean weight per leaf by large sampling which was not possible in this experiment. The manner in which the leaf area per plant was calculated in this case was by stripping the leaves one at a time from the plant and tracing their outlines on brown paper. The paper replicas of the leaves were cut out and weighed, as was also a section of the paper with a known area of one hundred square inches. The weight of the leaves was then converted into area by simple proportion. A hundred square inch portion of paper was obtained as a check for each and every plant, but the paper was so uniform that the greatest difference between the weights of any two of these sections was less than one fifth of one per cent. The date upon which the main head of each marked plant opened was recorded. When the seed in the main

heads of any replication was in the dough stage the following notes were taken for each marked plant in that row: - diameter of the main head, height of plant, number of branches per plant, number of heads per plant. Immediately following this notetaking the heads were all covered by Manilla bags to ensure against loss of grain by the birds or by shattering. When the heads were fully ripened they were harvested and transported to a barn where they were threshed out by hand rubbing. The seed from each plant was then placed in a tray and set in a drying rack. After two weeks of air drying the seed was cleaned in a small Clipper machine and weighed to one-tenth of a gram on agate-bearing trip scales. After the weights had been recorded the seed from every marked plant in a replication was bulked together and sent to the grain laboratory where it was tested to determine the percentage of oil in the whole seed. One variety gave insufficient seed for an oil test, and in another variety one of the four replications gave insufficient seed for the test. In the latter case the missing result was filled by using Allan and Wishart's (1) method.

The procedure for determining the oil percentage is as follows:— The sunflower seed is finely ground on a Hobart burr mill, using the closest possible setting which will permit a free running meal. The ground material is then thoroughly mixed and dried in a DeKhotinsky Vacuum Oven for 18 hours at 98° - 100° c. Five grams of the dried material are extracted on an electrically heated water bath for 16 hours with Skelly-solve F (a low boiling petroleum ether) in a Soxhlet extractor,

using Whatman double thickness extraction thimbles and a siphoning rate of one per minute. The ether extract is carefully transferred to a tared 125 cc Erlenmeyer flask by suction, the extraction flask being washed with fresh solvent. The excess ether is distilled off on a water bath maintained at approximately 70° - 80° c, the extract dried in vacuo for approximately two hours at 98° - 100° c at a pressure not exceeding 25m. mercury and the oil content computed on a dry matter basis.

RESULTS

The results of the study of each factor are first presented separately, these later being correlated with the yield of seed and the percentage of oil. After all the data are presented the discussion and general conclusions are submitted.

The complete data for each factor for each of the 40 plants which constituted the population of a variety are contained in Appendix tables 1 - 9.

YIELD OF SEED PER PLANT

In Table 2 are presented the Analysis of Variance and Standard error test of the Yield of Seed per Plant.

T	ລ່	h	7	6	2
_	\sim	u		$\overline{}$	_

	D. F.	M. S.	F Value	5%	1%
Varieties	17	1256.7104	24.3275	1.77	2.22
Replications	3	535.7328	10.3708	2.62	3.82
Plants	9	17.6499	2.9268	2.71	4.31
Vars. x Reps.	51	384.5546	7.4442	1.06	1.08
Vars. x Plants	153	63.5428	1.2301	1.06	1.08
Reps. x Plants	27	58.4579	1.1316	1.54	1.83
Error	459	51.6580			
Variance for a Standard error Standard error Standard error	of a of a	single obse	rvation Terence	= 51.6 = 7.1 = 10.1	8 74
Necessary dif	ference	two vari	ety means licance (P.05	3. 1	499

In Table 3 are presented the Mean Yields of Varieties.

Workster Number							
Variety Number	Weight of Seed in Grams	First Differences					
305	69.37						
304	65.22	4.15					
301	41.65	23.57					
316	38.08	3.57					
311	37.03	1.05					
309	36.18	. 85					
308	32.83	3.35					
318	29.94	2.89					
314	27.02	2.92					
30 7	26.66	. 36					
3 0 3	22.75	3.91					
313	19.29	3.4 6					
302	18.54	.75					
306	18.21	•33 ·					
317	12.27	5.94					
310	11.98	.29					
312	9.17	2.81					
315	2.64	6 . 53					

All differences or sums of contiguous differences greater than 3.15 are significant and greater than 4.14 are

. · -• . •
•
•
•
•
•
•
• .

• • •

•

•

.

HEIGHT OF PLANTS

In Table 4 are presented the Analysis of Variance and Standard Error Test for the Height of Plants.

Т	a	b	٦	e	4
-	α	~	_	\sim	

	D. F.	M. S.	F. Value	5%	1%
Varieties	17	5319.93	200.30	1.77	2.22
Replications	3	1772.67	66.74	2.62	3.82
Plants	9	4.28	6.21	2.71	4.31
Vars. x Rep.	51	2 46.34	9.27	1.06	1.08
Vars. x Plants	15 3	8.35	3.18	1.18	1.27
Reps. x Plants	27	22.08	1.20	1.67	2.10
Error	459	26.56			

Variance for a	single observation	=	26.56
Standard error	of a single observation	=	5.1536
Standard error	of a single difference	=	7.2882
Standard error	of the difference between		
	two variety means	=	1.1524
Necessary diffe	erence for significance (P.O5)	=	2.2587
	erence for significance (P.O1)		2.9684

In Table 5 are presented the Mean Heights of Varieties.

Table 5

Variety Number	Height of Plants	First
	in Inches	Differences
303	89.7	
301	85 .3	4.4
302	80.9	4.4
304	75.2	5 .7
305	74.5	.7
310	72.9	1.6
308	72.1	.8
315	70.7	1.4
3 06	68 .3	2 .4
307	68.0	.3
3 0 9	66 .4	1.6
31 3	63.2	3.2
311	61.9	1.3
317	5 7.3	4.6
314	5 7. 2	.1
312	5 3. 8	3.4
318	50.2	3.6
316	48.6	1,6
All differences or	sums of contiguous diffe	rences greater than

a Carlo Control Control

. • . · ·

NUMBER OF BRANCHES PER PLANT

In Table 6 are presented the Analysis of Variance and the Standard Error Test for the Number of Branches per Plant.

Τ.	яb	16	96
Τ.	a C	ΣЕ	, (

	D.F.	M.S.	F. Value	5%	1%
Varieties	17	10053.59	1546.71	1.77	2.22
Replications	3	43.03	6.62	2.62	3.82
Plants	9	2.24	2.90	2.71	4.31
Vars. x Reps.	51	36.4 8	7.15	1.06	1.08
Vars. x Plants	153	5.50	1.18	1.18	1.27
Reps. x Plants	27	3. 65	1.78	1.67	2.10
Error	459	6.50			

Variance for a single observation = 6.50
Standard error of a single observation = 2.5495
Standard error of a single difference = 3.6055
Standard error of the difference between
two variety means = .5701

Necessary difference for significance (P.05)=1.1174

Necessary difference for significance (P.O1)=1.4685

In Table 7 are presented the Mean Number of Branches per Plant of Varieties.

Table 7

Variety Number	Number of Branches	First Differences
315	59.125	
303	41.725	17.400
302	36.300	5.425
317	28.700	7.600
308	27.525	1.175
312	24.925	2.600
310	24.550	.375
311	2 3.3 50	1.200
3 06	20.850	2.500
31 3	18.875	1.975
314	15.700	3.175
316	14.100	1.600
307	12.300	1.800
318	9 .9 25	2.375
301	0.000	9.925
304	0.000	0.000
305	0.000	0.000
309	0.000	0.000

All differences or sums of contiguous differences greater than 1.117 are significant, and greater than 1.469 are highly

NUMBER OF HEADS PER PLANT

In Table 8 are presented the Analysis of Variance and Standard Error Test of Number of Heads per Plant.

Tab]	_e 8
------	------

D. F.	M.S.	F.Value	5%	1%
17	7458.81	760.33	1.77	2.22
3	590.69	60.21	2.62	3.82
9	4.30	2.28	2.71	4.31
51	191.14	19.48	1.06	1.08
153	7.75	1.27	1.18	1.27
27	7.42	1.32	1.67	2.10
459	9.81			
	17 3 9 51 153 27	17 7458.81 3 590.69 9 4.30 51 191.14 153 7.75 27 7.42	17 7458.81 760.33 3 590.69 60.21 9 4.30 2.28 51 191.14 19.48 153 7.75 1.27 27 7.42 1.32	17 7458.81 760.33 1.77 3 590.69 60.21 2.62 9 4.30 2.28 2.71 51 191.14 19.48 1.06 153 7.75 1.27 1.18 27 7.42 1.32 1.67

Variance for a	single observation	=	9.81
Standard error	of a single observation	=	3.1321
Standard error	of a single difference	=	4.4294
Standard error	of the difference between		
	two variety means	=	.7003
Necessary diffe	rence for significance (P.O5)	=	1.3726
Necessary diffe	rence for significance (P.Ol)	=	1.8038

In Table 9 are presented the Mean Number of Heads per Plant of Varieties.

Table 9

Variety N	Number	Number	of Heads	First Differences
3 15		53	,650	
30 3			725	18.925
		-		
302			.850	6.875
31 0			,225	5.625
314		21.	. 925	.3 00
317		21.	,775	.150
316		21.	450	.325
308		19.	975	1.475
312		19.	.825	.150
. 311		18.	975	.850
3 13		14.	,200	4.775
3 0 6		12.	,600	1.600
307		7.	.825	4.775
318		4.	975	2.850
301		1.	,000	3. 975
304		1.	.000	0.000
3 05		ı.	,000	0.000
309_		1.	,000	0.000

All differences or sums of contiguous differences greater than 1.373 are significant, and greater than 1.804 are highly significant.

.

•

• •

•

•

NUMBER OF DAYS FROM SERDING TILL BLOOMING

In Table 10 are presented the Analysis of Variance and Standard Error Test of the number of days from seeding till blooming.

Table 10

	D. F.	M.S.	F.Value	5%	1%
Varieties	17	1545.04	2809.16	1.77	2.22
Replications	3	99.68	181.24	2.62	3.82
Plants	9	0.59	1.07	1.96	2.55
Vars. x Reps.	51	23.79	43.25	1.06	1.08
Vars. x Plants	153	0.48	1.15	1.18	1.27
Reps. x Plants	27	.61	1.11	1.54	1.83
Error	459	55			

Variance for a single observation = .55
Standard error of a single observation = .7416
Standard error of a single difference = 1.0488
Standard error of the difference between
two variety means = .1658
Necessary difference for significance (P.05) = .3250
Necessary difference for significance (P.01) = .4271

In Table 11 are presented the Means of Number of Days from Seeding to Blooming of Varieties.

Table 11

Number of Varieties	Number of Days	First Differences
303	8 3. 85	
315	83.70	.15
306	81.83	1.87
307	81.03	.80
302	80.38	.65
317	79.53	.85
3 05	79.23	.30
301	78.80	.43
313	78.45	.35
310	78.00	.45
309	76.73	1.27
3 08	73.73	3.00
312	71.73	2.00
314	71.60	.13
311	71.40	.20
304	71.08	.32
318	71.08	.00
316	58.55	12.53
A22 21000		Canada hara Alama

All differences or sums of contiguous differences greater than .33 are significant, and greater than .43 are highly significant.

DIAMETER OF MAIN HEADS IN INCHES.

In Table 12 are presented the Analysis of Variance and Standard Error Test of Diameter of Heads.

Table 12

	D. F.	M.s.	F. Value	5%_	1%
Varieties Replications	1 7 3	50. 3 929	398 .67 80 9 . 1717	1.77	2.22 3.82
Plants Vars. x Reps.	9 51	.2021 .9881	1.5989 7.8172	1.96 1.06	2.55 1.08
Vars. x Plants Reps. x Plants	153 27	.1554 .2028	1.2294 1.6044	1.06 1.54	1.08 1.83
Error	459	.1264	1.0044	1.04	1.00

Variance for a single observation = .1264
Standard error of single observation = .3555
Standard error of a single difference = .5027
Standard error of the difference between
two variety means = .0795
Necessary difference for significance (P.05) = .1558
Necessary difference for significance (P.01) = .2048

In Table 13 are presented the Means of Diameter of Main Heads of Varieties.

Table 13

Number of	Variety	Diameter of	Head First	Difference
304		7.64		
305		7.20		.44
301		6.68		.52
309		6.66		.02
306		6.34		.32
308		6.32		.02
314		5.69		.63
313		5.68		.01
317		5.60		•08
318		5 .48		.12
307		5.31		.17
310		4.80		•51
30 3		4.58		.22
302		4.45		.13
315		4.40		•05
312		4.26		.14
311		4.15		.11
316		3.85		.30

All differences or sums of contiguous differences greater than .16 are significant, and greater than .20 are highly significant.

a segment of the control of the cont

.

.

The data on the number and area of the leaves is based on only one plant per replication as was previously explained in the "Method". From an examination of Tables 2, 4, 6, 8, 10 and 12, it may be seen that in no case was there any significant difference between plants which would indicate that the procedure is reasonably accurate.

NUMBER OF LEAVES PER PLANT

In Table 14 are presented the Analysis of Variance and Standard Error Test for the Number of Leaves per Plant.

\mathbf{T}	a	h	٦	e	٦	4
-	a	v	_	\sim		_

	D. F.	M.S.	F. Value	5%	1,%
Varieties Replications	17 3	4896.435 162.940	59.878 1.993	1.87 2.79	2.40 4.20
Error	51	81.773			

Variance for a single observation = 81.773
Standard error of a single mean = 4.5214
Standard error of the difference between
any two means = 6.3942
Necessary difference for significance (P.05) = 12.5324
Necessary difference for significance (P.01) = 16.4703

In Table 15 are presented the Means of Number of Leaves per Plant of Varieties.

Table 15

Variety Number	Number of Leaves	First Differences
310	134.50	
317	120.50	14.00
311	94.25	26.25
312	90.00	4.25
314	88.00	2.00
306	66.75	21.25
318	64.25	2.50
316	62.00	2.25
315	58.50	3.50
313	5 7. 50	1.00
307	38.25	19.25
302	34. 00	4.25
305	32.75	1.25
303	30.25	2.50
308	29.00	1.25
3 0 4	22.25	6.75
3 0 9	18.50	3. 75
301	17.50	1.00

All differences or sums of contiguous differences greater than 12.53 are significant, and greater than 16.47 are highly significant.

AREA OF LEAF SURFACE PER PLANT.

In Table 16 are presented the Analysis of Variance and Standard From Test for the Area of Leaves.

Table 16____

	D. F.	M.S.	F. Value	5%	1%	
Varieties Replications Error	17 3 51	209.840 17.603 9.956	21.077 1.768	1.87	2.40 4.20	

Variance for a single observation = 9.956
Standard error of a single mean = 1.5737
Standard error of a difference between
any two means = 2.2255
Necessary difference for significance (P.05) = 4.3619
Necessary difference for significance (P.01) = 5.7325

In Table 17 are presented the Means of Leaf Area per Plant of Varieties.

Table 17

Variety	Number	Area of Leaves	First Differences
310		36.2	
314		33.6	2.6
305		28.7	4.9
308		27.3	1.4
311		25.2	2.1
317		22.6	2.6
3 06		20.4	2.2
304		19.0	1.4
3 15		18.9	•1
302		17.5	1.4
301		16.7	•8
316		15.5	1.2
303		15.1	.4
318		14.8	•3
313		14.2	•6
307		13.7	•5
309		13.1	•6
312		11.6	1.5

All differences or sums of contiguous differences greater than 4.4 are significant, and greater than 5.7 are highly significant.

PER CENT OF OIL IN WHOLE SEED

In Table 18 are presented the Analysis of Variance and Standard Error Test of Per Cent of Oil in Whole Seed.

T	a	h	٦	e	7	8
_	$\boldsymbol{\alpha}$	\cdot	1	$\mathbf{}$	_	-

	D. F.	M. S.	F. Value	5%	1%
Varieties Replications Error	16 3 47*	90.303 1.990 3.998	22.587 2.009	1.90 8.58	2.45 26.35
Variance of a Single Observation Standard error of single mean Standard error of a difference between any					98 998
two means Necessary difference for significance (P.05) Necessary difference for significance (P.01)					139 712 420

In Table 19 are presented the Means of Per Cent Oil of Varieties.

Table 19

Variety Number	Per Cent Cil	First Differences
311	32.7	
303	31.6	1 1
		1.1
304	30.0	1.6
302	28 .3	1.7
3 05	27 .4	• 9
317	25.7	1.7
309	25.1	.6
301	24.9	.2
310	2 3.4	1.5
316	21.2	2.2
312	21.1	.1
307	21.0	.1
306	20.8	.2
31 3	19.7	1.1
3 08	19.0	• 7
314	17.9	1.1
318	17.6	.3

All differences or sums of contiguous differences greater than 2.8 are significant, and greater than 3.6 are highly significant.

[•] One degree of freedom lost, due to the missing plot supplied by Allan and Wishart's Method.

In Table 20 are presented the Coefficients of Total Correlation obtained between the Per centage of Oil in the Seed and the various factors studied.

Table 20	r	
Per Cent Oil vs. Area of Leaves	017	
Per Cent Oil vs. Number of Leaves	159	
Per Cent Cil vs. Diamter of Main Heads	.001	
Per Cent Oil vs. Height of Plants	.44 8	
Per Cent Oil vs. Number of Branches	109	
Per Cent Cil vs. Number of Days from		
Seeding to blooming	.224	
Per Cent Oil vs. Number of Heads	.103	
Per Cent Oil vs. Yield of Seed	.320	

Correlation coefficient necessary for significance P.05 = .241
(P.01 = .313
Number of degrees of freedom = 65.

In Table 21 are presented the Coefficients of Total Correlation between the Yield of Seed and the various factors studied.

Table	21				r	
Maid	٥f	Seed	17.0	Area of Leaves	•100	
				Number of Leaves	483	
Yield	of	Seed	vs.	Diameter of Main Heads	.127	
				Height of Plants	.476	
				Number of Branches	7 09	
Yield	of	Seed	vs.	Number of Days from seeding		
				to blooming	317	
Yield	οf	Seed	vs.	Number of Heads	615	

Correlation coefficient necessary for significance P.05 = .232 (P.01 = .302)

Number of degrees of freedom = 70

•

PLATE I

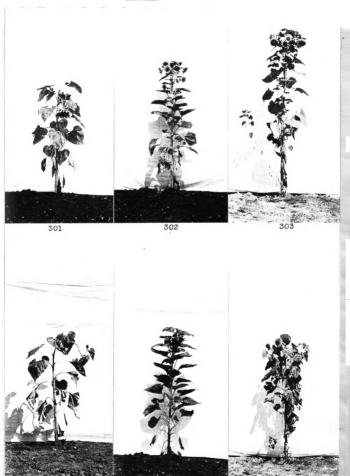
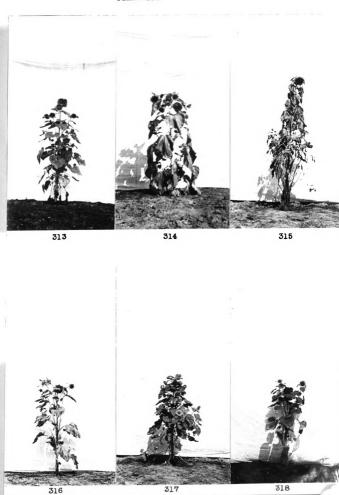



PLATE III

DISCUSSION

In Plates I, II and III are submitted photographs of all of the varieties discussed in this paper. These photographs were taken when each variety was in full bloom, and are merely to illustrate the differences in types and thus supplement the more detailed statistical study. The sheet which was utilized in every case as a background is approximately seven feet high.

As may be seen from Table 3, the highest yielding variety in the test was 305. This was a tell, non-branching, single headed type, fairly late in maturity, but possessing large heads. These plants bore comparatively few leaves but the area of these was large, only being surpassed by two other varieties. The seed from this lot contained a high percentage of oil and the grain from only two other varieties proved to contain a significantly greater amount.

It is interesting to note that 304, the second highest yielder, was very similar to 305 in regard to several characters. Like 305 it was of the tall, non-branching, single headed type, also having very large heads and seed high in oil content. On the other hand this variety was earlier, produced fewer leaves and a smaller area of leaves. As may be seen in Plate I, 304 was much more inclined towards a nodding form of growth, and in general appearance differed from 305 quite considerably.

The third highest yielder was 301, which was also one of the two tallest varieties. Like 305 and 304, this strain belonged to the non-branching, single, large headed type. In

maturity it was slightly later than average, and produced very few though large leaves. The oil content of the grain was only of about average, and in general appearance this strain closely resembled 304.

Number 316 produced a large quantity of seed, being significantly superior in this respect to all other multiple varieties except 311. It also was one of the shortest lots, had few branches and a medium number of heads. The number of leaves produced approached the average of the test, but the leaf area was small and the percentage of oil in the seed low.

In many respects 311 was similar to 316, as it was also a good yielder, short, with few branches and about an average number of heads. These two varieties were also alike as regards their time of blooming and the size of their main heads, but 311 had considerably more leaves and a larger leaf area. This strain produced seed which was significantly higher in oil content than all others with the exception of 303 and 304.

Although 309 was the poorest yielder of the four single lines in the test it produced a comparatively large quantity of seed. It also differed from these other single varieties in that the plants were shorter and not quite so vigorous. It is probable that this variety had suffered more from the constant inbreeding than had the other strains of the same type.

Variety 308 produced more than the average amount of grain, was tall, many branched, and had more than the mean number of heads for this test. It was medium early, had large

main heads, very few leaves but a large leaf surface. The seed from this line was very poor when viewed from the standpoint of oil production.

Number 314 also yielded about the average weight of seed and in type was short with few branches but more than the average number of heads. Other characteristics of this variety were, early maturity, medium sized main heads, a large number of leaves and a very large leaf area. The oil content of the seed was low.

Strain number 307 yielded about an average weight of seed and grew to about average height. It had very few branches and heads, and was inclined to be rather late in maturing. The main heads were of average diameter, but the number of leaves produced was few, and the leaf area small. The oil content of the seed was below the average for the test.

Although 303 was significantly taller than all other varieties in this experiment, its yield of seed was less than the average. It also produced a significantly greater number of both branches and heads than did any other variety except 315. Number 303 was significantly later in maturity than all others except 315, and produced fairly small heads, few leaves and a small leaf area. The oil content of the seed was very high, being significantly greater than all other varieties with the exception of 311 and 304.

A comparatively poor yield of seed was obtained from 313. This strain was very close to average, not only in height but also in regards to number of branches, number of heads,

date of maturity, size of main heads and the number of leaves.

The leaf area and the percentage of oil in the seed were both represented by low figures.

Number 302 was a poor yielding variety and was very tall, having also a large number of branches and heads. Blooming did not commence until quite late in the season and the main heads were small in size. The number of leaves was quite small, but their area was about average, whereas the oil content of the seed was higher than most of the other varieties.

Strain 306 gave but a poor yield of seed and attained about medium height. The plants were branching but produced only a few heads which were late in appearing. The main heads were fairly large and the leaves were about the average both in number and area. The seed from this line was low in oil content.

A poor yield was also obtained from 317, which was of the short type with many branches and heads. The main heads were fairly late in maturing and were of medium size. This strain, although having only an average leaf area, had a significantly greater number of leaves than all other strains. The oil content of the seed was very close to the average of all varieties.

Another poor yielding variety was 310, which was a little taller than medium height, branched and had a medium number of heads. The most outstanding characteristics of this strain were significantly more leaves than all others, and a significantly larger leaf area than all other strains except 314. The oil percentage of the seed produced by 310 was only

about average for this test.

A very poor weight of seed was produced by 312, which was another short, branching variety with a medium number of heads. It had small heads, many leaves, a very small leaf area, and the oil percentage was low.

A significantly lower yield than from any other variety was produced by 315. This strain was of average height but had a significantly greater number of both heads and branches than any other variety. The main heads were small and late, and the number and area of the leaves was approximately average. No figures on the percentage of oil in the seed are available as the amount of seed produced was insufficient for testing purposes.

CORRELATION COEFFICIENTS

Factors affecting the oil percentage.

A considerable amount of time, material and laboratory equipment is necessary if every strain in a large sunflower nursery must be tested to determine the amount of oil in the seed of that strain. Should a correlation exist between some morphological factor and the ability to produce seed high in oil content, it would then be possible to eliminate at least the poorest lines without actual testing, and thus cut down the amount of laboratory work considerably. With this object in mind, several coefficients of total correlation were obtained and have been presented in Table 20.

The results of this study showed that there was evidently no correlation between the oil percentage of the seed

and the area of the leaves, the number of leaves, the diameter of the main heads, the number of branches, the number of days from seeding to blooming, or the number of heads per plant.

It would appear from Table 20, however, that the teller plants produced seed which was rich in oil as there was a highly significant positive correlation between the amount of oil in the seed and the height per plant. As pointed out by Goulden (9), it is quite possible that this correlation, although statistically highly significant, may not prove to be of practical significance. The reason for this supposition is that some third causal factor, such as the greater opportunity afforded the taller plants to utilize sunlight, may also influence this apparent relationship between the height of plants and the percentage of oil. It would therefore seem that although this presented evidence is impressive from the statistical standpoint, it should be further substantiated before being applied to actual plant breeding practices.

A highly significant positive correlation was obtained between the percentage of oil in the seed and the yield of seed. As the oil content was based on the analysis of the whole seed, and not on the kernels alone, it is logical to expect a higher yield of oil from the heavy, plump seed which would probably have a higher ratio of kernel to hull. This correlation would be affected by environmental conditions and, as it is based on only one years results, cannot be regarded as being conclusive.

Factors affecting yield of seed.

A group of coefficients of total correlation involving yield of seed as the dependent variable were presented in Table 21. The object of this study was to determine whether or not it is possible to identify high yielding strains of sunflowers by observation in the field.

From the results presented in Table 21 it would appear that the area of the leaf surface of any line had no direct bearing on the yield of seed.

A very significant negative correlation was found to exist between the number of leaves and the yield of grain. It is not probable that a large number of leaves were actually detrimental to the seed bearing qualities of the plant, but rather that the varieties which had many leaves were generally of the branching multiple headed type which yielded poorly.

Contrary to general belief there appeared to be no significant correlation between the yield of seed and the diameter of the main heads. It may be seen from Tables 3 and 12 that variety 316 possessed very small main heads and yielded well, whereas 317 had fairly large heads and produced a very small quanity of seed. The weight of seed produced in a head depends not only on the diameter of the head but also on the number of flower zones which are fertile and on the length of the kernels.

It may be observed in Table 21 that a very significant positive correlation exists between the yield of seed and the height of plants. An examination of the varieties in this test

shows that most of the high yielding varieties were tall and, as a rule, the poor yielders were short. It is questionable if this statistical result is sufficiently conclusive to be used as the sole basis for selecting breeding material.

A very strikingly significant negative correlation coefficient was obtained between the yield of seed and the number of branches. By observing Tables 3 and 7 it may be seen that had all the varieties possessing a large number of branches been discarded as breeding material, very few good yielding strains would have been eliminated by the use of this method of selection.

There was found to be a highly significant negative correlation between the yield of seed and the number of days from seeding to blooming. Weather conditions would influence this factor very considerably and, as this test was conducted for only one season, this can not be said to be conclusive evidence.

From Table 21 it may also be observed that there is a very significant negative correlation between the yield of seed and the number of heads. It was thought that this result might be influenced unduly by the fact that four single, high yielding varieties were included in this test. Another statistical method was applied, this time including all the fourteen multiple headed strains but no single variety. The result of this calculation was as follows:- Correlation coefficient obtained - -.402, with necessary difference of P.05 - .246 and P.01 - .342. It is therefore obvious that even

when the single headed varieties were excluded a highly significant negative correlation is obtained. This result conflicts with the statement, "Contrary to common belief the better multi-headed types give more grain than the single headed sorts" made by Hamilton (10). This author, however, was evidently basing his conclusions solely on observations, as his inference was not supported by any figures.

A study of sunflower yields in Washington State convinced Thornber (18) that single headed plants outyielded multiple ones, and that it was advisable to constantly rogue out all multiple headed plants when producing sunflower grain for seed purposes.

SUMMARY

Between the inbred lines of sunflowers studied in this thesis, significent differences were found to exist in regards to each and every morphological character considered.

The uniformity of the data for each plant within a line proved that these characters were hered tary and bred true.

It was shown that these lines varied greatly both in their ability to produce a high yield of seed and also in the quality of that seed when considered as a source of vegetable oil.

A statistically significant positive correlation was found to exist between the percentage of oil in the seed and the height of the plants, and similarly between the percentage of oil and the yield of seed produced.

A very significant negative correlation between the yield of seed and the number of leaves was observed. A very significant positive correlation was noted between the yield of seed and the height of plants. It was also observed that highly significant negative correlations existed between the yield of seed and the factors for number of branches, number of days from seeding to blooming and number of heads.

CONCLUSION

In a sunflower breeding project to originate a variety which will produce a large yield of seed with high oil content, only tall, non-branching plants should be considered as being of suitable type.

ACKNOTLEDGMENTS

The writer wishes to acknowledge his indebtedness to Dr. L. E. Kirk and Mr. F. Dimmock for putting the facilities of the Division of Forage Plants at his disposal; to Dr. W. F. Geddes and staff for making the oil analysis; and to Mr. F. S. Nowosad, Dr. J. M. Armstrong, and Professor H. M. Brown for their assistance and constructive criticism in the preparation of this paper.

BIBLIOGRAPHY.

- 1. Allan, F. E., Wishart, J. A method of estimating the yield of a missing plot in field experimental work. Jour. Agr. Sci. 20 p 3; 399-406, 1930.
- 2. Arnoldova, O. N., To the biology of sunflower blooming in connection with the technics of its crossing.

 J. Exp. Landw. Sudost. Eur-Russ. 3: 131-143, 1926.
- 3. Cardon, P. V. Sunflower studies. Jour. Amer. Soc. Agron. 14: 69-72, 1922.
- 4. Cockerell, T. D. A. Suppression and loss of characters in sunflowers. Sci. n.s. 40: 283-285, 1914.
- 5. Sunflower problems. Sci. n.s. 40:708-709,
- The marking factor in sunflowers. Jour. of Heredity, 6: 542-545, 1915.
- 7. Hybrid sunflowers. Nature, 102:25-26,1918.
- 8. _____Hybrid sunflowers. Amer. Nat. 63: 470-475, 1929.
- 9. Goulden, C. H. Methods of statistical analysis, Minneapolis, Burgess Publishing Co., p. 30-35, 1936.
- 10. Hamilton, R. I. Improving sunflowers by inbreeding. Sc.Agr. 6:6: 190-192, 1926.
- 11. Kramer, P. J. An improved photoelectric apparatus for measuring leaf areas. Amer. Jour. Bot. V 24, June 1937.
- 12. McRostie, G. P. Sunflowers. Canadian Cent. Exp. Farm Rep. 1923.
- Sunflowers. Canadian Cent. Exp. Farm Rep.
- 14. Platchek, E. Breeding sunflowers for resistance to disease and insect attack. Rep. 3rd All-Russian Cong. of Breeding and Seed Control, 10-11, 1920.
- Form originating processes in the sunflower under the influence of hybridization and inbreeding. Proc. U. S. S. R. Cong. Gen. Plant and Animal Breed. 2:395-396, 1930.

Bibliography (Cont'd)

- 16. Reed, H. S. Growth and variability in Helianthus. Amer. Jour. Bot. 6: 252-271, 1919.
- 17. Sievers, A. F. The sunflower: Its culture and use. U.S.D.A., B. P. I. Pamphlet, 1932.
- 18. Thornber, W. S. Sunflower culture, State Col. of Wash., Ext. Dept. Bul. Series 1: 18, 1916.
- 19. Watson, D. J. The estimation of leaf area in field crops. Jour. Agr. Sci. 27 p.3: 474-483, 1937.
- 20. Watson, E. E. Contributions to a monograph of the genus Helianthus. Mich. Acad. Sci. 9: 305-475, 1929.

Nov 2 12

Wasah	+ +e D1	lanta fa	n inches																																														TO A STATE OF THE PARTY.	CONTROL DE	E HERENT C	138EE 1
nergi		1 108 11								10080		D14	icate 2							Pon14	eate 3			- 64				2400	te 4	Renlf	coto 4					-		Te	tels by	Reps.				Te	tals by	Plants	SIGN	EMENT.	LIPPLI	181	Totals by	Means of
				нершс	ete 1							Repli	icate s							nepli	2000 0									NOP21	00.00																ALSTY	TERIAL	MA		Varieties	Varieties
Variety	1	2	3	4	5 6	7	8	9	10	1	2	3	4	5	6	7 8	3 9	10	1	2	3	4	5	6	7	8	9 10	1	2	3	4 .	5	6	7	8 9	10	1	2	3	4	,	2	3	4	5	6	7	8	9	10		
301	78	78	78	E0 .	81 81	1 84	81	78	81	96	100	93	93	90	96	96 9	3 9	6 94	87	92	93	96	98	96	95	91	0 92	. 74	73	75	71	71	72	70	7 5 7 5	78	800	0 941	930	0 73	4 3	35 34	3 339	340	340	345	345	340	339	345	3411	85.275
302	73	74	72	75	73 73	3 77	77	75	78	93	93	96	96	.01	87	93 8	37 8	7 90	93	87	90	90	88	84	85	86 8	37 86	69	72	67	67	65	66	68	71 76	76	750	913	876	6 69	7 3	31 326	325	328	317	310	323	321	325	330	3236	80.900
303	84	82	81	80	30 84	4 84	84	84	87	102	102	104	108	109	102	105 10	00 10	3 102	91	96	98	99	96	99	93	93	5 90	78	3 79	81	80	77	76	74	73 73	78	830	1037	959	9 76	9 3	55 359	364	367	362	361	356	350	355	357	3586	89.650
304	72	68	72	78	77 7	6 75	75	78	78	81	84	78	79	77	81	75 1	78 7	7 72	81	81	76	81	80	79	81	78	18 77	66	66	71	71	69	67	70	71 68	67	749	7 8	2 792	2 68	4 3	00 299	297	309	303	303	301	302	299	294	3007	75.175
305	73	75	76	79	77 7	8 77	73	77	79	75	78	81	81	80	84	81 1	79 7	9 72	76	75	72	69	72	74	78	77	/8 79	67	7 68	69	68	67	69	66 6	67 66	69	764	790	750	0 67	6 2	91 928	298	297	296	305	302	296	300	299	2980	74.500
306	66	67	72	67	66 7	0 68	70	70	73	74	74	77	79	72	73	Y 5	72 7	1 69	71	71	71	72	72	73	69	70	18 66	5 59	63	60	58	62	59	60 6	62 59	61	689	736	703	3 60	3 2	70 275	280	276	272	275	272	274	268	269	2731	68,275
307	70	72	66	66	66 6	4 66	69	67	72	72	71	72	71	71	71	72	70 7	0 70	75	75	69	72	72	72	72	72	13 72	61	L 59	60	61	63	62	60 6	61 61	6€	678	710	724	1 600	8 2	78 277	267	270	272	269	270	272	271	274	2720	68.000
308	66	67	6 8	69	71 6	9 64	72	73	71	75	78	74	75	81	79	79	57 6	18 65	75	79	84	79	81	76	74	75	38 64	74	72	71	68	71	70	69 6	69 66	65	690	744	755	69:	5 2	90 296	297	291	304	294	286	283	275	268	2884	72.100
309	63	66	66	69	70 7	0 68	66	71	73	62	66	71	70	72	74	69	39 7	3 70	60	63	63	63	64	63	61	64	88 65	65	65	60	64	62	66	63 6	37 66	65	682	696	634	649	3 2	50 260	260	266	268	273	261	266	278	273	2655	66.375
310	66	60	69	63	63 6	9 63	69	71	73	78	81	80	82	81	80	72	81 7	18 75	73	81	84	85	82	72	78	75	74 72	67	7 70	72	72	72	71	66 6	55 66	66	666	788	776	681	7 2	82 292	305	302	298	292	279	290	289	286	2917	72.925
311	55	56	60	60	59 6	2 61	64	62	65	51	54	54	55	57	60	56	56 5	64 58	66	66	65	63	63	61	65	66	56 69	68	63	66	63	67	67	67 6	68	69	604	555	650	665	5 2	40 239	245	241	246	250	249	253	250	261	2474	61.85 •
312	52	54	55	59	56 5	7 57	58	56	52	51	49	53	48	53	55	53	52 4	19 51	54	54	54	55	51	49	51	55	55 50	54	57	56	55	57	59	55 5	4 55	53	556	51	4 528	3 555	2	11 214	218	217	217	220	216	219	215	206	2153	53.825
313	54	63	62	60	59 6	3 64	63	61	60	62	61	62	60	63	65	65	58 6	33 63	67	65	66	67	63	64	65	62	59 63	67	61	62	64	67	68	66 6	65	71	609	622	641	651	7 2:	50 250	252	251	252	260	260	249	248	257	2529	63,225
314	51	53	58	57	55 5	58 57	57	56	60	52	51	50	53	54	49	49	54 5	53 55	61	63	62	58	65	63	61	60	50 59	65	5 61	60	58	60	58	59 5	57 58	57	561	520	612	593	5 22	29 228	230	226	234	227	226	228	227 2	231	2286	57.150
315	67	50	64	67	68 6	57 72	75	75	70	69	71	70	71	72	70	71	74 7	71 69	78	76	72	73	73	74	74	75	76 79	71	1 68	68	69	66	70	68 6	68	66	685	708	750	683	3 28	85 275	274	280	279	281	285	293	290	284	2826	70.65
316	48	49	47	48	51 4	18 45	51	53	48	50	49	50	48	47	45	51	49 5	1 48	46	48	48	46	48	44	45	47	48 47	53	5 52	54	48	49	50	47 4	8 51	49	488	488	467	501	1 19	97 198	199	190	195	187	188	195	203	192	1944	48.6 00
317	51	55	51	54	57 6	50 54	58	57	54	54	57	53	55	54	53	54	53 5	54 55	62	62	61	57	60	62	57	64	36 65	5 62	2 60	58	57	58	54	57 5	56 60	62	551	542	616	5 584	21	29 234	223	223	229	229	222	231	237	236	2293	57.3 25
318	50	48	47	53	50 5	52 51	51	52	50	50	48	49	50	47	45	46	51 :	51 53	53	54	54	56	51	51	51	55	51 54	4 48	3 52	45	48	46	47	51 5	50 50	47	504	490	530	484	20	01 202	195	207	194	195	199	207	204	204	2008	50.2 00
										2																																										
	1142	1147	1164	1184 1	179 120	00 1187	1213	1216	1224	1247	1267	1267	1274	1271	1269	1262 12	43 124	18 1234	1269	1288	1282	1281	1279	1256	1255	1265 12	50 1249	9 1168	3 1131	1155	1142	1149	151 1	.136 114	8 1149	1159	11856	12582	12684	11518	4488	26 4863	4868	4881	4878	4876	4840	4869 4	1873 4	1866	48640	67.555
										100																								Ymanav	LIBRARIES W. STATE UNI	SHC#8																

MICHIGAN STATE UNIVERSITY

EAST LANSING, MICH. 48224-105

EAST LANSING MICH ERSPALING

Number of	reads pe	r plan	t																																																		NewsER EF	982E 17	
				Replica	ate 1							Re	plicate	e 2							Repl	icate	3							Replic	cate 4								Tot	als by l	Reps				Totals	by Pla	nts		YF	ENTA	PREN	lue	Totals by		THE RESERVE AND ADDRESS.
Variety	1	2	3 4	1 5	6	7	8	9	10	1	2	3	4	5	6	7 8	9	10	1	2				6	7	8 0	10	1		2 3			6	7																JAIH	MATE		Varieties	Varietie	S
100																																			8	9	10	1	2	3	4	1	2	3	4	5	6	7	8	9	10				
301	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1 1	1	1	. 1	1 1	1	1	1	1	1	1	i	10	10	10	10	4	4	4	4	4	4	4	4	4	4		40	1.000	
302	21	20	18]	18 18	19	20	21	19	19	44	45	30	27	34	41	43 3	6 3	5 39	31	30	41	33	37	31	33	40 3	7 32	1	9 2	22 20	21	21	19	18	20	22	20	193	374	345	202	115	117	109	99	110	110	114	117	113	110		1114	27.85	
303	28	27	24 2	30	28	27	24	28	28	47	39	48	45	36	48	47 4	1 49	43	33	46	31	48	45	43	41	38 4	1 43	3	50 3	31 29	31	28	23	24	24	23	22	272	443	409	265	138	143	132	152	139	142	139	127	141	136		1389	34.725	
304	1	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1 1	1	1	. 1	1 1	1	1	1	1	1	1	1	10	10	10	10	4	4	4	4	4	4	4	4	4	4		40	1.000	
305	1	1	1 :	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1 1	1	1	. 1	1 1	1	1	1	1	1	1	1	10	10	10	10	4	4	4	4	4	4	4	4	4	4		40	1.000	
306	11	15	12	13 11	. 14	12	10	10	11	12	14	14	12	14	16	14 1	4 1:	14	12	17	16	15	15	12	11	14 1	2 14	1	1 1	11 12	11	13	12	11	11	9	10	119	136	138	111	46	57	54	51	53	54	48	49	43	49		504	12.600	
30₹	7	7	7 5	7 8	7	7	7	7	7	5	7	7	7	6	7	7 5	6	6	12	12	11	14	11	12	11	12 8	9	6	s 6	3 9	5	9	5	7	7	7	6	71	63	112	67	30	32	34	33	34	31	32	31	28	28		313	7.825	
308	16	16	17	19 18	19	20	19	17	18	23	23	23	23	21	16	20 1	9 18	18	22	22	21	20	21	24	23	19 2	1 22	2	3 2	20 20	23	22	22	18	18	17	18	179	204		201	84	81	81	85	82	81	81	75	73	76		799	19.975	
309	1	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1 1	1	1	. 1	1 1	1	1	1	1	1	1	1	10	10	10	10	4	4	4	4	4	4	4	A	4	4		40	1.000	
310	19	20	18 2	21 1 8	19	19	21	20	19	23	28	23	24	30	33	18 2	4 2:	28	14	18	31	27	31	21	24	30 3	2 23	2	20 1	16 21	19	21	26	19	18	16	16	194	252	251	192	76	82	93	91	100	99	80	93	89	86		869	22.225	
311	19	19	21	19 19	18	19	21	19	22	15	11	13	17	16	13	12 1	3 14	17	22	19	23	20	23	19	20	20 2	4 21	2	25 2	21 19	21	19	24	20	19	23	20	196	141	211	211	81	70	76	77	77	74	71	73	80	80		759	18.975	
312	22	20	22 2	21 18	19	22	22	23	23	20	18	23	19	18	21	17 2	1 19	19	21	15	19	17	15	16	16	15 1	5 20	2	22 2	26 19	22	21	19	19	19	22	28	212	195	169	217	85	79	83	79	72	75	74	77	79	90		793	19.825	
313	13	17	14	15 10	15	13	17	18	17	12	14	15	13	14	15	14 1	4 1:	15	13	15	12	14	15	13	12	15 1	3 15	1	12 1	15 12	16	13	16	14	15	14	15	149	139	137	143	50	61	53	58	53	59	53	61	58	62		568	14.200	
314	20	23	19 2	22 21	. 23	20	23	20	22	21	19	21	19	17	18	24 1	6 2:	L 24	26	25	21	19	19	24	25	19 2	3 26	2	4 2	23 22	22	25	23	26	26	24	22	213	200	227	237	91	90	83	82	88	88	95	84	88	94		877	21,925	
315	41	36	31 3	33 35	35	60	43	38	52	61	57	61	67	49	62	31 3	6 6:	L 36	71	68	71	68	74	68	73	61 7	2 68	6	38 4	18 56	41	40	57	51	66	66	54	384	521	694	547	241	209	219	209	198	222	195	206	237	210		2146	53.650	
316	19	20	24 2	20 19	23	22	19	20	20	22	19	21	25	24	20	23 1	9 24	19	27	29	23	29	18	22	26	25 2	3 25	1	16]	17 20	23	17	16	24	20	21	15	206	216	247	189	84	85	88	97	78	81	95	83	88	79		858	21.450	
317	20	24	20 2	25 22	26	22	23	26	20	18	22	18	19	19	19	21 2	0 18	3 19	22	23	25	17	23	19	22	20 2	1 21	2	2 2	21 22	22	28	28	21	22	25	26	228	193	213	237	82	90	85	83	92	92	86	85	90	86		871	21.775	
318	5	6	5	5 5	5	5	5	5	5	5	5	5	5	5	5	5 5	5	5	5	5	5	5	5	6	5	5 5	5	4		5 4	5	5	4	5	5	5	5	51	50	51	47	19	21	19	20	20	20	20	20	20	20		199	4.975	
									1																																														
	265 2	274 2	256 27	70 256	274	272	279	274	287	332	325	326	326	307	338 3	00 28	7 320	306	335	348	354	50	356	334 3	46 3	37 35	348	30	06 28	36 289	286	287	298	281	294	298	281	2707	3167	3459	2906	1238	1233	1225	1232	1206	1244	1199	1197	1243	1222		12239	16.999	
																													YTISSE	LIBRARIES STATE UNIV	MICHIGAN											Title:	MANAGERIA												

MICHIGAN STATE UNIVERSITY
EAST LANSING MICH 48824-1049

							n 22 10 N 26	123
	Variety No.	Rep. 1	Rep. 2	Rep.3	Rep. 4	Totals by Varieties	Means of V	erieties
	301	19	16	16	19	70	17.50	6
	302	33	35	32	36	136	34.00	3
	303	31	28	29	33	121	30.25	E
	304	19	23	24	23	89	22.25	<u>₩</u>
	305	37	31	33	30	131	32.75	WE.
	306	70	67	64	66	267	66.75	₹ jū
	307	35	42	45	31	153	38,25	MATERIAL
	308	28	29	30	29	116	29.00	
	309	18	19	18	19	74	18,50	
	310	121	152	146	119	538	134.50	
	311	103	84	90	100	377	94.25	
9	312	108	78	91	83	360	90*00	- (1
	313	58	65	53	54	230	57.50	
	314	86	86	96	84	352	88,00	
	315	84	74	36	40	234	58,50	
	316	66	67	59	56	248	62,00	
	317	124	109	130	119	482	120,50	
	318	84	61	61	51	257	64.25	
	Totals	1124	1066	1053	992	4235	58.82	
		- Company of the Company	MILESTANIA	THE SHOTTER W		LINEARIES		

TABLE VIIL AREA OF LEAVES.

							123
	Variety No.	Rep. 1	Rep. 2	Rep. 3	Rep.4	Totals, by Varieties	Means of Varieties
	301	16.2	18.6	19.2	12.6	66.6	16.650
	302	18.0	20.1	15.2	16,8	70.1	17.525
	303	15.2	15.0	15.9	14.1	60,2	15,050
	304	20.8	17.2	19.8	18.1	75.9	18.975
	305	25.8	31.2	32.2	25.7	114.9	28.725
	306	16.7	25.8	18.7	20.3	81.5	20.375
	307	14.0	13.6	14.6	12.4	54.6	13.650
	308	25.8	30.5	27.9	25.0	109.2	27,300
	309	13.7	12.1	14.5	12.1	52.4	13.100
1	310	36.6	42.7	42.4	23.0	144.7	36,175
	311	25.5	22.5	23.3	29.3	100.6	25.150
	312	13.8	10.1	11.9	10.6	46.4	11.600
	313	14.8	14.4	13.1	14.5	56.8	14.200
	314	30.1	31.8	35.9	36.5	134.3	33,575
	315	21.8	22,1	15.9	15.9	75.7	18,925
	316	16.1	17.6	14.0	14.3	62.0	15,500
	317	23.7	21.4	22.0	23.2	90,3	22.575
	318	19.7	12.1	13.6	13.6	59.0	14,750
_					-		
	Totals	368.3	378.8	370.1	338.0	1455.2	20.211

LIBRARIES
MICHIGAN STATE UNIVERSITY
EAST LANSING, MICH. 48924-1048

TABLE TX

						123
Variety No.	Rep. 1	Rep. 2	Rep. 3	Rep. 4	Totals by Varieties	Means of Varieties
301	29.5	20.5	24.1	25.6	99.7	24,925
302	26.5	30.2	27.2	29.1	113.0	28.250
303	31.1	30.5	33.2	31.6	126.4	31.600
304	29.4	28.6	30.8	31.0	119.8	29.950
305	27.4	29.1	27.3	26.8	109.6	27.400
306	20.3	23.2	20.0	19.5	83.0	20.75
307	18.7	22.7	22.3	20.1	83,8	20.950
308	17.8	16.4	19.9	21.9	76.0	19.000
309	22.1	22.2	29.9	26.0	100.2	25.050
310	22.9	22.4	23.1	25.3	93.7	23.425
311	33.7	32.6	32.4	32.0	130.7	32.675
312	20.5	20.6	18.5	24.9	84.5	21.125
313	20.8	19,2	19.5	19.3	78.8	19.700
314	16.2	22.0	16.5	16.8	71.5	17.875
316	21.5	21.4	20.6	21.4	84.9	21.225
317	26.9	25.3	24.6	25.9	102.7	25.675
318	17.1	17.2	18,2	17.8	70.3	17,575
	402.4	403.1	408.1	415.0	1628.6	23.950

MICHIGAN STATE UNIVERSITY, EAST LAWSING, MEGHICAGE SWITCH SWITCH

