THE  EFFECTS  OF  DISTAL  PROSODIC  CUES  ON  SPEECH  PERCEPTION  IN  ADULTS   WHO  STUTTER     By     Kaitlyn  Marie  Ayres         A  THESIS     Submitted  to   Michigan  State  University   in  partial  fulfillment  of  the  requirements   for  the  degree  of     Communicative  Sciences  and  Disorders  -­‐  Master  of  Arts     2015     ABSTRACT   THE  EFFECTS  OF  DISTAL  PROSODIC  CUES  ON  SPEECH  PERCEPTION  IN  ADULTS   WHO  STUTTER     By   Kaitlyn  Marie  Ayres   Stuttering  is  a  neurodevelopmental  disorder  characterized  by  the  disruption  of   rhythmic  flow  and  timing  in  speech  production.  Speech  productions  of  people  who   stutter  are  influenced  by  the  perception  of  prosodic  aspects  of  their  own  speech,   suggesting  that  people  who  stutter  may  have  difficulty  in  perceiving  prosodic   elements  of  their  own  speech  causing  disfluency.  To  investigate  this  possibility,   adults  who  stutter  (n=15)  and  adult  fluent  speakers  (n=13)  were  compared  in  their   ability  to  perceive  distal  rhythmic  and  timing  cues  in  speech.  Adults  who  stutter   exhibited  perception  of  the  distal  prosodic  cues  and  an  ability  to  internally  generate   rhythm  and  timing  for  parsing  of  syllables  and  words  in  speech.  These  findings   provide  evidence  of  intact  perception  of  rhythm  and  timing  of  speech  in  adults  who   stutter.       ACKNOWLEGMENTS     I  would  like  to  thank  my  thesis  committee  members,  Dr.  Laura  Dilley,  Dr.  Soo-­‐Eun   Chang,  and  Dr.  Amanda  Hampton  Wray  for  all  of  their  encouragement,  support,  and   guidance  with  this  research.  Additionally,  I  thank  Elizabeth  Wieland,  Gregory  Spray,   Kristin  Hicks,  Saralyn  Rubsam,  Zachary  Ireland,  and  other  members  of  the  MSU   Speech  Perception-­‐Production  Laboratory  and  MSU  Speech-­‐Neurophysiology   Laboratory  for  their  generous  assistance  with  this  project.           iii   TABLE  OF  CONTENTS     LIST  OF  TABLES…………………………………………………………………..……………………………....v   LIST  OF  FIGURES…………………………………………………………………………………………………vi   KEY  TO  ABBREVIATIONS……………………………………………………………………………………vii   Introduction…….…………………………………………………………………………………………………..1   Participants……………………………………………………………………………………………………….11   Experiment  1:  Distal  Intonation  Rhythm……………………………………….…………………….13     Methods……………………………………………………………………….…………………………13     Results……………………………………………………………………………………………………17     Discussion………………………………………………………………………………….…..............18   Experiment  2:  Distal  Speech  Rate……………………………………………….……………………….20     Methods……………………………………………………………………………….………………....20     Results……………………………………………………………………………………………………22     Discussion……………………………………………………………………………………………....24   General  Discussion  and  Conclusions…..……………………………...………………………………..25   APPENDICES………………………………………………………………………………………………….…..33     Appendix  A:  Experiment  1  Items  List………………………………………..……………...34     Appendix  B:  Experiment  2  Items  List…………………………………………..…………...35       REFERENCES………………………………………………………………………………………………...…...36     iv   LIST  OF  TABLES     Table  1:  Participant  Information…………………………………………………………………………12                                                                                     v   LIST  OF  FIGURES     Figure  1:  Distal  Context  Manipulations……………………………………………..…………………16   Figure  2:  Proportion  of  Disyllabic  Responses…………………………………………..…………..18   Figure  3:  Distal  Rate  Manipulations………………………………………………………...……..……20   Figure  4:  Reported  Function  Word  by  Rate………………………………………………………….23           vi   KEY  TO  ABBREVIATIONS     Children  who  stutter  ………………………………………………………………………………………CWS   Persons  who  stutter  …………………………………………………………………………………...…..PWS     Delayed  auditory  feedback……………………………………………………………………………….DAF     Basal  ganglia  thalamocortical  network…………………………………………………………...BGTC         vii   Introduction     Stuttering  is  a  speech  disorder  marked  by  frequent  hesitations,   prolongations  and/or  repetitions  of  sounds,  syllables  and  words.    These  types  of   stuttering  disfluencies  characterize  the  disorder  as  a  disruption  of  the  rhythmic  flow   of  speech  production  (World  Health  Organization,  2010).  Although  many  theoretical   models  suggest  possible  underlying  mechanisms  or  causes  of  stuttering,  none  have   thus  proven  to  provide  a  completely  sufficient  explanation  (e.g.,  Packman,  Code,  &   Onslow,  2007).       All  components  of  language  production,  including  pitch  and  rhythm   characteristics  (referred  to  as  prosody),  have  been  a  recurring  focus  in  this  search   for  a  cause  of  stuttering.    Various  previous  research  has  shown  that  aspects  of   prosody  play  important  roles  in  the  production  and  perception  of  fluent  speech   (Bergmann,  1986;  Besozzi  &  Adams,  1969;  Hall,  Amir,  &  Yairi,  1999;  Packman  et  al.,   2007;  Packman,  Onslow,  Richard,  &  Van  Doorn,  1996;  Wingate,  1966).  The  known   symptoms  of  dysrhythmic  flow  in  the  motor  speech  production  of  persons  who   stutter  (PWS)  have  led  to  proposals  that  an  underlying  deficit  in  PWS  may  be   associated  with  the  prosodic  aspects  of  rhythm  and  timing  used  in  speech  (Alm,   2004).      Stuttering  has  been  compared  to  other  disorders  such  as  dystonia  or   Parkinson’s  disease,  due  to  the  similarity  in  symptoms  of  disrupted  rhythm  or   timing  in  motor  movements.  These  disorders  are  classified  as  basal  ganglia  motor   disorders,  and  thus  it  has  been  suggested  that  an  impaired  ability  of  the  basal   ganglia  in  generating  timing  cues  for  initiating  motor  speech  is  a  core  dysfunction  in   stuttering  (Alm,  2004).     1     Despite  not  having  revealed  the  underlying  deficit  of  stuttering,  research  has   identified  various  conditions  in  which  stuttering  is  decreased,  most  of  which  utilize   aspects  of  rhythm  and  timing.  Studies  have  shown  that  speech  productions  of   people  who  stutter  (PWS)  can  be  influenced  by  the  perception  of  prosodic  aspects  of   their  own  speech  (Hargrave,  Kalinowski,  Stuart,  Armson,  &  Jones,  1994;  Wingate,   1966).    Packman  and  colleagues  (1996)  theorized  that  the  beneficial  effects  of   rhythmic  speech  on  stuttering  are  due  to  the  reduced  variability  of  syllabic  stress   provided  by  the  external  rhythm  (i.e.,  the  V  Model).    The  patterns  of  syllabic  stress   are  influenced  by  the  rhythmic  patterns  of  speech  perception  in  PWS.    Kent  (1984)   suggested  that  the  difference  in  ability  to  generate  rhythmic  patterns  for  speech   production  is  a  principal  distinction  between  people  who  stutter  and  fluent   speakers.  These  findings  throughout  various  research  have  been  supported  by   conditions  in  which  fluency  is  enhanced,  including  choral  reading  (Adams  &  Ramig,   1980;  Ingham  &  Carroll,  1977),  singing  (Glover,  Kalinowski,  Rastatter,  &  Stuart,   1996),  and  speaking  in  time  with  a  metronome  (Wingate  &  Howell,  2002).  These   evidence-­‐based,  fluency-­‐inducing  conditions  all  share  one  key  aspect:  the  provision   of  an  external  rhythm  or  external  pacing  of  speech.  The  fluency-­‐inducing  effects  of   an  external  pacing  signal  suggest  PWS  may  have  an  impaired  internal  pacing  signal.   Knowing  that  elements  of  speech  productions  are  generated  from  the  stored   perceptions  of  speech  (Guenther,  1994),  we  can  infer  that  if  PWS  exhibit  a  deficit  in   perceiving  rhythmic  prosodic  cues  in  speech,  it  may  be  affecting  their  ability  to   internally  generate  these  prosodic  cues  in  their  speech  productions.       2      In  this  study  we  investigated  the  possibility  of  PWS  exhibiting  an  impaired   utilization  of  prosodic  elements  in  the  perception  of  their  own  speech,  relating  to   their  disfluency  in  speech  production.  Any  deficits  found  in  the  perceptions  of   prosodic  characteristics  of  speech  (pitch  rhythm  and  timing)  by  PWS  support  the   idea  that  disruption  of  internal  rhythm  generation  from  perception  of  rhythm  and   timing  in  their  own  speech  could  be  a  contributing  factor  to  the  core  deficits  of   stuttering.  The  existence  of  deficits  in  the  rhythmic-­‐prosodic  components  of  speech   for  PWS  are  supported  by  literature  which  shows  treatments  involving  external   pacing  help  improve  their  fluency  of  speech  (Ingham  &  Carroll,  1977;  Wingate  &   Howell,  2002;  Glover,  Kalinowski,  Rastatter,  &  Stuart,  1996).  If  PWS  exhibit  a  deficit   in  perceiving  these  rhythmic  prosodic  cues  in  speech,  it  may  be  affecting  the  ability   to  internally  generate  rhythmic  pacing  of  speech,  which  would  be  evident  in  both   the  perception  and  production  of  speech.       Recent  findings  from  functional  and  structural  magnetic  resonance  imaging   studies  have  shown  neurological  evidence  of  these  possible  deficits  in  internal  beat   generation  that  are  used  for  the  rhythmic  production  of  speech  (Chang  &  Zhu,  2013;   Grahn  &  McAuley,  2009;Toyomura  et  al.,  2015).  Rhythm  processing  and  internal   generation  of  a  beat  are  neurologically  supported  by  the  basal  ganglia   thalamocortical  (BGTC)  network,  which  involves  connectivity  among  the  basal   ganglia,  supplementary  motor  area  (SMA),  and  pre-­‐motor  and  auditory  regions   (Grahn  &  McAuley,  2009).  These  cortical  and  sub-­‐cortical  regions  are  commonly   activated  in  tasks  that  involve  motor  timing  (such  as  speech)  and  are  strongly   associated  with  temporal  perceptions  and  processing  of  auditory  stimuli     3   (Harrington  et  al.,  1998b;  Schubotz  et  al.,  2000;  Rao  et  al.,  2001;  Nenadic  et  al.,  2003;   Coull,  2004;  Grahn  and  Brett,  2007;  Hazeltine  et  al.,  1997;  Harrington  and  Haaland,   1999).  Grahn  &  McAuley  (2009)  support  these  notions  by  finding  greater  activity  of   the  pre-­‐motor  and  supplementary  motor  cortices  and  basal  ganglia  in  adults  while   making  timing  judgments  in  an  auditory  perception  task.    Additionally,  Chang  and   Zhu  (2013)  showed  that  children  who  stutter  have  attenuated  connectivity  within   the  BGTC  network  compared  to  age-­‐matched  controls.  Toyomura  et  al.  (2015)   suggested  that  the  basal  ganglia  is  involved  in  the  improvement  of  speech  fluency  by   utilizing  the  perceptions  of  an  externally  triggered  rhythm.    A  deficit  in  rhythm   perception  was  found  in  children  who  stutter  (CWS)  by  Wieland,  McAuley,  Dilley,   and  Chang  (2015),  also  providing  evidence  for  a  deficit  in  speech  perceptions  of   PWS.    Differences  between  internally  generated  pacing  for  speech  and  externally-­‐ triggered  pacing  may  be  important  for  understanding  the  underlying   neuromechanisms  of  disfluency  in  persons  who  stutter  based  on  the  fact  that   stuttering  occurs  in  self-­‐paced  speech  but  is  temporarily  decreased  with  the   presence  of  an  external  pacing  (Toyomura,  2015).     All  of  these  findings  provide  increasing  evidence  for  a  possible  deficit  in  the   BGTC  network  in  PWS  that  could  potentially  be  affecting  the  ability  to  internally   generate  rhythm  and  timing  for  motor  production.  These  results  also  suggest  the   correlation  between  a  possible  deficit  in  the  internal  rhythm  generation  within  the   self-­‐perceptions  of  speech  by  people  who  stutter  with  concomitant  effects  on  the   fluency  of  speech  production.     4     Although  previous  research  has  alluded  to  the  possibility  of  PWS  exhibiting   deficits  in  prosodic  elements,  none  have  before  looked  at  these  effects  on  the  speech   perception  of  PWS.    Further,  how  the  perception  of  these  prosodic  cues  affects   linguistic  function  in  segmentation  and  syllable  parsing  has  never  been  investigated   in  PWS.  In  the  past  35  years,  research  focusing  on  the  influence  of  prosody  on   speech  perception  targeted  how  prosodic  properties  of  local  pitch  and  timing   (proximal  to  a  word  itself)  affected  the  segmentation  and  rhythmic  properties  of   that  word  (Cutler,  Dahan,  van  Donselaar,  1997).    Prosodic  characteristics  of  spoken   language  influencing  the  processing  and  parsing  of  speech  have  been  shown  in   control  populations  across  many  different  languages.    The  literature  has  shown  that   listeners  tend  to  perceive  stressed  syllables  (i.e.,  syllables  that  include  high  pitch   and  longer  duration)  as  the  beginning  of  new  words  and  likewise,  syllable   lengthening  as  signaling  the  end  of  a  word  or  phrase  (Cutler,  Dahan,  &  van   Donselaar,  1997;  Salverda  et  al.,  2007.    While  research  on  the  effects  of  prosody  on   the  parsing  of  speech  began  with  investigation  of  proximal  (local)  prosodic   characteristics,  research  has  evolved  into  including  investigation  of  distal  (non-­‐ local)  prosody  on  the  parsing  of  speech  (Cutler,  Dahan,  van  Donselaar,  1997;  Dilley   &  McAuley,  2008).  Valid  and  reliable  ways  to  gather  measures  of  how  people   perceive  particular  elements  of  distal  (non-­‐adjacent)  prosodic  cues  has  been   established  and  tested  with  typical  control  populations  (Dilley  &  McAuley,  2008;   Dilley  &  Pitt,  2010;  Morrill,  Dilley,  and  McAuley,  2014).    Results  from  these  studies   concluded  that  typical-­‐developing  adults  utilize  distal  (i.e.,  distant,  non-­‐adjacent)   prosodic  cues  of  rhythm  and  timing  of  speech  in  their  parsing  of  syllables  and  lexical     5   segmentation  of  words.    This  was  demonstrated  by  the  fact  that  alterations  in  distal   prosodic  cues  yielded  significantly  different  speech  perceptions  for  listeners  of   proximal  material  (Dilley  and  McAuley,  2008;  Dilley  and  Pitt,  2010;  Morrill  et  al.,   2014).         Dilley  and  Pitt  (2010)  demonstrated  clear  evidence  that  a  manipulation  of   distal  speech  rate  induced  typically-­‐developing  listeners  to  segment  words   differently.  The  speech  perception  task  utilized  in  this  study  involved  judgments  on   sentences  that  included  a  target  syllable  with  a  function  word  (e.g.,  or  in  a  sentence   like  Deena  didn’t  have  any  leisure  or  time),  presented  auditorily.  When  the  distal   speech  rate  was  at  a  normal  rate,  listeners  reported  hearing  the  function  word.   However,  when  the  distal  speech  rate  was  slowed,  listeners  did  not  perceive  the   function  word.  Despite  the  fact  that  the  acoustic  properties  of  the  proximal,  targeted   syllable  (function  word)  of  each  sentence  being  acoustically  identical,  the   perceptions  of  the  target  syllable  were  altered  based  on  the  manipulated  rate  of  the   distal  context.  This  finding  demonstrates  that  listeners  from  a  typically  developing   control  population  are  sensitive  to  the  distal  speech  rate.  These  manipulations  also   demonstrated  the  function  of  prosodic  cues  in  speech  on  the  lexical  segmentation  of   speech  perception  in  typical-­‐developing  adults.     Other  research  has  revealed  additional  sensitivities  in  typically-­‐developing   listeners  to  aspects  of  distal  prosody.  For  example,  a  paradigm  developed  by  Dilley   and  McAuley  (2008)  and  extended  by  Morrill,  Dilley,  and  McAuley  (2014)  revealed   effects  of  distal  rhythmic  cues  on  linguistic  parsing  of  syllables  into  word  units.  In   these  studies,  participants  heard  auditory  speech  sequences  containing  two     6   disyllabic,  non-­‐compound  words  continued  with  a  string  of  four  syllables  (e.g.   banker  helpful  [tɑɪ  mɝ˞  dɝ  bi]).  The  string  of  final  four  syllables  had  ambiguous   lexical  structure  and  therefore  could  be  organized  more  than  one  way  (e.g.,  timer   derby,  tie  murder  bee).  The  organization  of  the  final  four  syllables  was  shown  in   these  studies  to  be  dependent  on  the  fundamental  frequency  (F0)  and  duration  of   the  distal  context.  These  studies  used  sentences  such  as  banker  helpful  [tɑɪ  mɝ˞  dɝ   bi],  in  which  the  lexical  organization  of  the  final  four  syllables  is  ambiguous  (timer   derby  or  tie  murder  bee).  The  experiments  utilized  two  distinct  distal  prosodic   conditions  that  were  expected  to  lead  to  perceptual  grouping  of  syllables  in  two   different  ways:.  In  one  distal  prosodic  pattern,  a  repeated  low  (L)-­‐high  (H)   alternation  of  F0  on  distal  syllables  was  predicted  to  lead  to  grouping  of  L  and  H   pitch  elements  across  the  entire  sequence,  which  was  predicted  to  generate   perception  of  a  disyllabic  word  (e.g.,  derby);  these  were  referred  to  as  Disyllabic   contexts.  In  another  distal  prosodic  pattern,  a  repeated  high-­‐low  alternation  of  F0   was  predicted  to  lead  to  grouping  of  H  and  L  pitch  elements  across  the  entire   sequence,  which  was  predicted  to  generate  perception  of  a  monosyllabic  final  word   (e.g.,  bee);  these  were  referred  to  as  Monosyllabic  contexts.  In  more  detail,  for  both   the  monosyllabic  and  disyllabic  contexts,  the  final  three  syllables  of  each  target   sequence  received  a  high  (H),  low  (L),  high  (H)  F0  pattern  (one  F0  target  per   syllable).  The  first  five  syllables  of  each  target  sequence  varied  in  F0  pattern.  The   first  five  syllables  of  the  disyllabic  context  items  received  a  L1-­‐H2-­‐L3-­‐H4-­‐L5-­‐   pattern,  with  one  F0  target,  H  or  L,  on  each  syllable.  The  monosyllabic  pattern     7   received  a  H1-­‐L2-­‐H3-­‐L4-­‐  HL5-­‐  pattern  with  one  F0  target  for  each  of  the  first  four   syllables,  and  a  fall  in  F0  from  H  to  L  on  the  fifth  syllable.  These  distal  prosodic   context  manipulations  predicted  the  perceptual  grouping  of  the  final  syllables  in  the   target  sequence,  in  which  the  Disyllabic  context  caused  a  relatively  stronger   prosodic  boundary  to  be  heard  before  the  penultimate  syllable  (e.g.,  der)  than   before  the  final  syllable  (e.g.,  bee),  so  that  listeners  would  group  the  final  two   syllables  as  a  single  disyllabic  word  (e.g.,  derby).  In  contrast,  the  Monosyllabic   context  caused  the  reverse  with  a  stronger  prosodic  boundary  to  be  heard  before   the  final  syllable  (e.g.,  bee)  than  before  the  penultimate  syllable,  so  that  listeners   would  hear  a  final  monosyllabic  word  (e.g.,  bee).  The  Disyllabic  context  yielded  a   (L1-­‐H2-­‐)(L3-­‐H4-­‐)(L5-­‐H6-­‐)(L7-­‐H8)  grouping  of  the  final  three  syllable  sequence,   displaying  a  larger  boundary  before  syllable  7  than  syllable  8,  thereby  critically   yielding  a  disyllabic  final  word  report  (e.g.,  derby).  In  contrast,  the  Monosyllabic   context  yielded  a  (H1-­‐L2-­‐)(H3-­‐L4-­‐)(HL5-­‐)  (H6-­‐L7-­‐)(H8...)  grouping  of  the  final  three   syllables,  displaying  a  larger  boundary  before  syllable  8  than  before  syllable  7.  -The   pattern  of  responses  by  typical  listeners  was  as  predicted:  there  was  a  strong   tendency  for  listeners  to  hear  the  same  acoustic  material  as  ending  in  disyllabic   words  in  Disyllabic  contexts  but  as  ending  in  monosyllabic  words  in  Monosyllabic   contexts.  Results  for  these  studies  showed  that  typical-­‐developing  adults  perceived   distal  prosodic  cues  of  intonation  rhythm  in  speech  and,  that  their  perceptions   manipulated  their  parsing  of  syllables  in  speech  perception.       The  studies  reported  above  have  provided  reliable  experiment  paradigms  for   measuring  effects  of  distal  prosodic  cues  in  typical  adults.  The  goal  of  this  thesis  is  to     8   extend  these  paradigms  to  examine  speech  perceptions  in  PWS.  These  paradigms   require  listeners  to  not  only  perceive  the  distal  prosodic  cues  but  also,  crucially,  to   internally  generate  rhythm  and  timing  from  the  externally  prompted  distal  prosodic   cues  in  order  to  parse  the  proximal  speech  material  in  the  predicted  way.       Based  on  previous  literature,  it  seems  plausible  that  PWS  may  have  a  deficit   in  their  ability  to  internally  generate  intonation  rhythm  and  timing  used  for  speech   production.  This  is  supported  by  the  fact  that  external  rhythms,  rates,  and  beats  are   evidence-­‐based  to  help  with  fluency  in  this  clinical  population  (Packman  et  al.,   2007).  Studies  of  the  effects  of  intonation,  rhythm,  and  duration  on  word   perceptions  have  never  before  been  conducted  with  PWS.  These  studies  by  Dilley   and  Pitt  (2010)  and  Morrill,  Dilley,  and  McAuley  (2014)  provide  an  effective  way  to   measure  the  influence  of  prosody  in  speech  perception  and  allow  measuring   sensitivity  to  prosody  by  indexing  linguistic  perception.  In  the  present  study,  the   sensitivity  to  prosodic  cues  was  investigated  in  both  a  control  and  clinical   population;  this  comparison  allowed  for  assessing  any  group  differences  and   provided  insight  into  possible  perceptual  gaps  in  PWS.    Paradigms  utilizing   manipulations  of  distal  prosodic  cues  were  utilized  due  to  the  demands  required  by   the  listener  for  distal  manipulations  compared  to  proximal  manipulations.  When  the   manipulations  of  prosodic  cues  are  distal  to  the  lexically  ambiguous  target  portion   of  speech,  there  is  a  requirement  for  internally  generating  the  rhythm  and  timing   signaled  distally  which  prior  results  suggest  should  affect  perception  of  speech.  The   carry-­‐over  of  this  internally  generated  rhythm  is  a  valuable  measure  for     9   investigation  of  speech  perception  within  PWS,  one  that  could  not  be  tested  using   experimental  paradigms  that  involved  proximal  prosodic  cues.     This  study  is  motivated  by  the  question  of  whether  people  who  stutter  (PWS)   show  a  difference  in  the  effects  of  distal  prosodic  cues,  (pitch  rhythms  and  rate  of   speech)  on  speech  perceptions.  This  question  will  be  investigated  from  the  results  of   two  experimental  paradigms,  each  utilizing  manipulations  to  different  prosodic   characteristics,  distally.  We  hypothesized  that  PWS  would  show  reduced  sensitivity   to  the  distal  rhythm  and  speech  rate  manipulations  compared  with  matched   controls.                                   10   Participants   Twenty-­‐eight  participants  (22  males;  6  females),  ranging  from  18-­‐52  years  old,  were   selected  for  one  of  two  groups:  an  experimental  group  of  adults  who  stutter  (n=15)   and  a  control  group  (n  =  13).    All  participants  in  both  groups  participated  in   Experiments  1  and  2  of  this  study.  Participants  were  right-­‐handed,  monolingual   native  speakers  of  American  English  with  normal  hearing.    Every  participant  was   without  concomitant  developmental  disorders  (e.g.,  dyslexia,  ADHD,  learning  delay,   or  other  confirmed  developmental  or  psychiatric  conditions)  and  was  not  taking  any   medication  affecting  the  central  nervous  system.  Participants  were  matched  on  age,   sex,  years  of  education,  working  memory,  receptive  vocabulary  (Peabody  Picture   Vocabulary  Test,  PPVT-­‐4),  expressive  vocabulary  (Expressive  Vocabulary  Test,  EVT-­‐ 2),  and  a  measure  of  articulation  (Goldman-­‐Fristoe  Test  of  Articulation,  GFTA-­‐2).     Stuttering  severity  was  assessed  off-­‐line  by  reviewing  video  recorded  samples  of   speech  elicited  through  monologue,  dialogue,  and  reading  sample  with  a  certified   Speech-­‐Language  Pathologist  and/or  trained  Masters  student.  The  Stuttering   Severity  Instrument  (SSI-­‐4)  was  used  to  assess  frequency  and  duration  of   stuttering-­‐like  and  other  disfluencies  occurring  in  the  speech  sample,  as  well  as  any   physical  concomitants  associated  with  stuttering.  These  measures  were  then   incorporated  into  a  composite  stuttering  severity  rating.  Participants  in  the   stuttering  group  ranged  from  very  mild  to  severe  in  severity  ratings  from  the  SSI-­‐4.       Table  1  shows  the  means  and  standard  deviations  for  age,  handedness,  education,   years  of  musical  training,  expressive  and  receptive  language  measures,  articulation     11   measures,  and  working  memory  for  both  groups,  and  the  stuttering  severity  for  the   stuttering  group.   Group   Control   Stuttering   25  (7.42)   28.9  (11.36)   80.77  (17.06)   78  (16.12)   15.38  (1.39)   16.27  (2.25)   5.15  (3.89)   3.8  (4.71)   107.15  (5.98)   109.4  (10.2)   107.31  (9.6)   115.73  (11.32)   100.69  (1.44)   100.8  (1.66)   40  (18.58)   38.8  (14.99)    Measure   Age   Handedness   Education   Years  of  musical  training   Peabody  Picture  Vocabulary  Test     Expressive  Vocabulary  Test     Goldman-­‐Fristoe  Test  of  Articulation   Operation  Span  Score  (Working  Memory)     t-­‐test   p   0.300   0.663   0.232   0.419   0.493   0.045   0.857   0.851   Table  1:  Participant  Information.  The  table  displays  statistics  of  age,  handedness,  education,   working  memory,  and  speech  and  language  measures.  Independent  samples  t-­‐tests  revealed  a   significant  difference  between-­‐subjects  on  the  expressive  language  measure,  in  which  the  stuttering   group  displayed  a  group  average  standard  score  8.42  points  higher  than  the  control  group.               12   Experiment  1:  Distal  Intonation  Rhythm   Methods     The  first  experiment  was  a  replication  and  extension  of  Experiment  1A  of   Dilley  and  McAuley  (2008).  This  study  utilized  distal  prosodic  manipulations  of  F0   and  duration  to  examine  the  effect  of  distal  prosodic  cues  in  linguistic  parsing.  Eight-­‐ syllable  target  sequences,  such  as  banker  helpful  [tɑɪ  mɝ˞  dɝ  bi]  were  used;  the  final   four  syllables  had  ambiguous  lexical  structure  and  could  be  organized  into  words  in   more  than  one  way  (e.g.,  timer  derby,  tie  murder  bee).  Items  selected  for  this  study   corresponded  to  a  subset  of  items  from  Dilley,  Mattys  and  Vinke  (2010),  which  were   also  used  in  Morrill  et  al.  (2014).  Experimental  items  utilized  one  of  two  different   manipulation  patterns  of  distal  F0  that  was  expected  to  result  in  strong  effects  on   the  parsing  of  the  final  syllables  into  either  a  monosyllabic  or  disyllabic  final  word.   Monosyllabic  and  disyllabic  contexts  were  created  by  varying  the  fundamental   frequency  (FO)  across  the  initial  five  syllables.  The  final,  target  portions  of  these   sequences  remained  acoustically  ambiguous  (containing  the  same  F0  pattern)  for   both  monosyllabic  and  disyllabic  contexts,  resulting  in  the  possibility  of  perceiving   either  a  monosyllabic  word  (e.g.,  bee)  or  a  disyllabic  word  (e.g.,  derby).       In  one  distal  prosodic  pattern,  a  repeated  low  (L)-­‐high  (H)  alternation  of  F0   on  distal  syllables  was  predicted  to  lead  to  grouping  of  L  and  H  pitch  elements   across  the  entire  sequence,  which  was  predicted  to  generate  perception  of  a   disyllabic  word  (e.g.,  derby);  these  are  referred  to  as  Disyllabic  contexts.  In  the  other   distal  prosodic  pattern,  a  repeated  high-­‐low  alternation  of  F0  was  predicted  to  lead   to  grouping  of  H  and  L  pitch  elements  across  the  entire  sequence,  which  was     13   predicted  to  generate  perception  of  a  monosyllabic  final  word  (e.g.,  bee);  these  are   referred  to  as  Monosyllabic  contexts.  In  more  detail,  for  both  the  monosyllabic  and   disyllabic  contexts,  the  final  three  syllables  of  each  target  sequence  received  a  high   (H),  low  (L),  high  (H)  F0  pattern  (one  F0  target  per  syllable).  The  first  five  syllables   of  each  target  sequence  varied  in  F0  pattern;  the  first  five  syllables  of  the  disyllabic   context  items  received  a  L1-­‐H2-­‐L3-­‐H4-­‐L5-­‐  pattern,  with  one  F0  target,  H  or  L,  on   each  syllable  and  the  monosyllabic  pattern  received  a  H1-­‐L2-­‐H3-­‐L4-­‐  HL5-­‐  pattern   with  one  F0  target  for  each  of  the  first  four  syllables,  and  a  fall  in  F0  from  H  to  L  on   the  fifth  syllable.  These  distal  prosodic  context  manipulations  predicted  the   perceptual  grouping  of  the  final  syllables  in  the  target  sequence,  in  which  the   Disyllabic  context  was  predicted  to  cause  a  relatively  stronger  prosodic  boundary  to   be  heard  before  the  penultimate  syllable  (e.g.,  der)  than  before  the  final  syllable   (e.g.,  bee),  so  that  listeners  would  group  the  final  two  syllables  as  a  single  disyllabic   word  (e.g.,  derby).  In  contrast,  the  Monosyllabic  context  was  predicted  to  yield  the   reverse,  with  a  stronger  prosodic  boundary  to  be  heard  before  the  final  syllable  (e.g.,   bee)  than  before  the  penultimate  syllable  so  that  listeners  would  hear  a  final   monosyllabic  word  (e.g.,  bee).  The  Disyllabic  context  yielded  a  (L1-­‐H2-­‐)(L3-­‐H4-­‐)(L5-­‐ H6-­‐)(L7-­‐H8)  grouping  of  the  final  three  syllable  sequence,  displaying  a  larger   boundary  before  syllable  7  than  syllable  8,  thereby  critically  yielding  a  disyllabic   final  word  report  (e.g.,  derby).  In  contrast,  the  Monosyllabic  context  yielded  a  (H1-­‐ L2-­‐)(H3-­‐L4-­‐)(HL5-­‐)  (H6-­‐L7-­‐)(H8)  grouping  of  the  final  three  syllables,  displaying  a   larger  boundary  before  syllable  8  than  before  syllable  7.  -The  pattern  of  responses   by  typical  listeners  was  as  predicted:  there  was  a  strong  tendency  for  listeners  to     14   hear  the  same  acoustic  material  as  ending  in  disyllabic  words  in  Disyllabic  contexts   but  as  ending  in  monosyllabic  words  in  Monosyllabic  contexts.  .  The  expected   response  for  the  low-­‐high  intonation  pattern  of  the  experimental  items  is  to   perceive  and  report  a  disyllabic  word  (derby)  as  long  as  the  listener  is  perceiving   the  externally  cued  distal  intonation  rhythm  and  internally  carrying  it  throughout   the  final  two  target  syllables.  These  results  were  expected  to  be  seen  within  the   control  group,  and  seen  as  a  higher  difference  between  the  reported  number  od   disyllabic  words  and  monosyllabic  words  for  either  disyllabic  or  monosyllabic   contexts.  We  expected  PWS  to  demonstrate  a  lesser  difference  between  the   proportions  of  reported  disyllabic  and  monosyllabic  final  words.       Twenty  experimental  stimuli  were  provided  aurally  to  each  participant  via   headphones,  with  each  auditory  speech  sequence  containing  two  disyllabic,  non-­‐ compound  words  continued  with  a  string  of  four  syllables  [tɑɪ  mɝ˞ dɝ˞ bi].  Both   target  and  filler  sentences  were  read  as  connected  speech,  using  monotone  F0.   Resynthesized  speech  stimuli  were  then  derived  from  these  utterances  using  the   pitch-­‐synchronous  overlap-­‐and-­‐add  (PSOLA)  algorithm  (Moulines  &  Charpentier,   1990)  as  implemented  in  Praat  software.    Methods  for  recording  are  described  in   Dilley,  Mattys  and  Vinke  (2010).     Ten  filler  sentences  were  included  in  the  experiment  to  serve  as  practice  and   disguise  the  lexical  ambiguity  present  in  target  sentences.    Fillers  consisted  of  a   mixture  of  monosyllabic  and  disyllabic  words  with  unambiguous  lexical  structure  in   varying  positions  within  the  string;  five  of  the  filler  sequences  ended  in  a  disyllabic   word  and  the  other  five  ended  in  a  monosyllabic  word.  Each  experimental  item     15   consisted  of  initial  primary  stress  on  the  two  disyllabic  word  sequence,  e.g.,  channel   dizzy,  followed  by  a  four-­‐syllable  sequence  that  could  be  grouped  into  words  in   more  than  one  way.     Figure  1:  Distal  Context  Manipulations.  Example  of  the  distal  context  intonation  pattern  for  stimuli   used  in  this  experiment.  The  top  row  displays  a  sample  speech  waveform  of  an  auditory  string.  The   bottom  two  rows  show  the  fundamental  frequency  (F0)  contour  for  the  two  different  contexts   (monosyllabic  vs.  disyllabic)  along  with  the  expected  syllable  parsing  for  each.  H  and  L  refer  to  high   and  low  F0  targets,  respectively.  The  middle  row  displays  the  intonation  sequence  and  expected   syllable  parsing  for  the  monosyllabic  context,  and  the  bottom  for  row  for  the  disyllabic  context.  Note   the  targeted  final  two  syllables  for  both  contexts  remain  the  same  low-­‐high  pattern,  and  the  lexical   content  remaining  ambiguous  with  logical  parsing  for  either  a  monosyllabic  word  (still)  or  a   disyllabic  word  (standstill).       The  distal  prosodic  context  was  expected  to  affect  participants’  proportions  of   disyllabic  final  words  heard,  although  the  portion  of  the  string  being  judged   consisted  of  identical  acoustic  material  across  conditions.         Participants  provided  a  free  recall  typed  report  of  the  final  word  they  heard   for  each  sentence,  with  the  dependent  measure  being  the  proportion  of  disyllabic   responses  reported  for  each  experimental  stimulus.  Each  participant  parsed  the   final  four  syllables  of  the  string  into  either  a  disyllabic  final  word  (e.g.,  timer  derby)   or  a  monosyllabic  final  word  (e.g.,  tie  murder  bee).  All  experimental  items  were     16   presented  in  both  a  monosyllabic  and  disyllabic  context,  and  were  counterbalanced   across  participants.  The  entire  experiment  took  about  12  minutes  to  complete.   Results   Measures  were  taken  on  the  proportion  of  reported  disyllabic  final  words  as   a  function  of  type  of  word  context  (disyllabic  vs.  monosyllabic)  and  group  (control   vs.  stuttering).  The  typed  reported  words  for  each  participant  were  coded  by  two   different  raters  as  being  either  a  monosyllabic  or  disyllabic  word.  There  were  no   discrepancies  between  the  two  raters,  and  every  participant’s  responses  were   included  in  the  analysis.     Table  2  displays  the  means  and  standard  deviations  for  both  the  disyllabic   and  monosyllabic  words  reported  across  the  groups.  A  2  (type  of  word  context:   monosyllabic  vs.  disyllabic)  x  2  (group:  control  vs.  stuttering)  mixed-­‐measures   ANOVA  on  disyllabic  response  proportions  was  conducted.  First,  there  was  a   significant  main  effect  of  Word  Context  (F(1,  26)  =  337.121,  p  <  .001,  η p2 =  .928),     corresponding  to  a  higher  proportion  of  disyllabic  responses  in  the  disyllabic   context  (M  =  .940)  than  the  monosyllabic  context  (M  =  .164).    These  results  are   consistent  with  the  expected  higher  proportion  of  disyllabic  responses  due  to  effects   of  Word  Context.     17   Proportion  of  Disyllabic  Responses   1   0.9   0.8   0.7   0.6   0.5   Stuttering   0.4   Control   0.3   0.2   0.1   0   Di   Mono   Word  Context     Figure  2:  Proportion  of  Disyllabic  Responses.  The  effects  of  Word  Context  within-­‐subjects  on   proportion  of  reported  disyllabic  responses  for  both  experimental  stimuli  contexts,  is  displayed   above.  Stuttering  refers  to  the  experimental  group  of  adults  who  stutter,  and  control  refers  to  group   of  typically-­‐fluent  speakers.     No  significant  effect  of  group  (F(1,  26)  =  1.384,  p  =  .250,  η p2  =  .051)  or  interaction   (F(1,  26)  =  1.720,  p  =  .201,  η p2  =  .062)  was  found.     Discussion     In  Experiment  1,  we  examined  how  the  stuttering  group  would  respond  to   the  manipulation  of  the  distal  prosodic  cues  in  lexical  segmentation  of  an  ambiguous   target  sequence  by  measuring  the  proportion  of  reported  disyllabic  final  words  for   each  experimental  stimulus.  It  was  hypothesized  that  PWS  would  be  less  sensitive  to   this  rhythmic  cuing,  resulting  in  a  smaller  difference  in  the  proportion  of  disyllabic   words  in  Disyllabic  vs.  Monosyllabic  distal  contexts  compared  with  control   participants.  Our  finding  of  no  significant  effect  of  group  demonstrates  that  PWS     18   showed  similar  sensitivity  to  rhythmic  prosody  compared  with  the  control  group.     The  significant  main  effect  of  Word  Context  within-­‐subject  for  both  groups  indicates   that  both  PWS  and  the  controls  exhibited  sensitivity  to  distal  prosodic  cues,  which   influenced  their  syllabic  parsing  of  the  final  target  string.    The  design  of  this   experimental  paradigm  relies  on  the  sensitivity  of  the  listener  to  not  only  perceive   the  distal  prosodic  cues  of  manipulated  F0  and  duration,  but  also  internally  generate   the  intonation  rhythm  and  carry  it  through  to  the  final  four  syllables  in  order  to   parse  a  disyllabic  final  word.    The  PWS  group  resulted  in  reporting  a  higher   proportion  of  disyllabic  words  than  monosyllabic  words,  similar  to  pattern   exhibited  by  the  control  group.  Thus,  we  can  conclude  that  PWS  have  similar   sensitivity  to  prosodic  elements  in  their  speech  perceptions,  as  indexed  by  these   distal  prosody  manipulations,  as  compared  with  fluent  speakers.  These  results  also   suggest  that  PWS  were  able  to  internally  generate  the  intonation  rhythm  perceived   throughout  the  distal  material  in  a  manner  that  carried  over  to  the  lexical   ambiguous  targeted  sequence;  this  suggests  that  under  the  present  experimental   conditions  the  internal  rhythm  generation  of  PWS  was  intact  for  a  minimal  time-­‐ span  of  carryover.  Therefore,  we  did  not  find  support  for  the  hypothesis  that  PWS   would  demonstrate  a  lessened  sensitivity  to  the  distal  prosodic  cuing  of  intonation   rhythm  and  duration.           19   Experiment  2:  Distal  Speech  Rate   Methods   The  second  experiment  used  in  this  study  was  a  replication  and   extension  of  the  experimental  paradigm  used  by  Dilley  and  Pitt  (2010).  This  study   investigated  sensitivity  to  prosodic  cues  at  the  syllable  level  by  manipulating   context  speech  rate.  The  experiment  utilized  40  experimental  items;  each  included  a   sentence  that  contained  target  syllables  with  a  function  word  presented  via  auditory   recordings.  Each  sentence  had  a  function  word  that  is  optional,  as  the  sentence  will   be  grammatical  with  or  without  the  function  word.  For  example,  in  the  sentence   “Don  must  see  the  harbor  (or)  boats,”  the  target  region  consisted  of  the  function   word  or,  the  preceding  syllable  –bor,  and  the  following  phoneme  [b].  The  context   region  included  the  non-­‐target  portions  of  the  context.     Figure  3:  Distal  Rate  Manipulations.  Waveforms  of  a  sample  altered  stimulus  exampling  normal   (unaltered  rate)  versus  a  slowed  distal  context  (slowed  rate).  Sections  of  the  waveform  without   background  shadowing  correspond  to  the  target  region,  which  consisted  of  a  critical  function  word   (e.g.,  “or”)  plus  the  preceding  syllable  and  following  phoneme,  following  Dilley  and  Pitt  (2010).       The  experimental  stimuli  used  four  different  speech  rate  expansion  factors   (1,  1.3,  1.6,  1.9),  each  involving  a  temporal  manipulation  in  which  the  distal  context   of  the  phrase  is  modified  while  the  target  syllables  remain  un-­‐modified.  For  slowed     20   rates,  both  the  portion  of  speech  preceding  the  target  region  and  the  region  that   followed  it  were  multiplied  by  1.3,  1.6,  or  1.9  using  the  PSOLA  algorithm  in  Praat   (Dilley  &  Pitt,  2010).  That  is,  the  duration  of  the  context  was  130%,  160%,  or  190%   the  duration  of  the  original  context,  thus  slowing  the  speech  rate.  The  unaltered   items  were  multiplied  by  1.0  using  the  PSOLA  algorithm,  maintaining  their  original   speech  rate.  It  was  expected  that  if  the  listener  had  sensitivity  to  the  distal  speech   rate  cues,  he  or  she  would  report  a  successively  smaller  proportion  of  function   words  as  the  distal  speech  rate  was  made  increasingly  slow.  The  dependent   measure  was  the  proportion  of  reported  function  words.  We  predicted  that  if  PWS   exhibited  a  lessened  sensitivity  to  distal  speech  rate  compared  with  control   participants,  there  would  be  a  smaller  drop  in  the  proportion  of  function  words  with   increasingly  slow  speech  rates  compared  with  controls.  Each  participant  heard   every  experimental  sentence  and  the  pairing  of  speech  rates  with  experimental   items  was  counterbalanced  across  participants.  Filler  items  had  no  ambiguity   regarding the number of words they contained. They were presented at either the unaltered or slowed rate.   The  participants  were  shown  the  first  four  words  of  the  phrase  on  the   computer  screen  and  were  asked  to  transcribe  the  remainder  of  the  words  they   heard.  If  the  participant  showed  sensitivity  to  the  distal  speech  rate  manipulations,   he/she  did  not  perceive  the  function  word  when  the  distal  context  was  slowed,  but   did  perceive  the  function  word  when  the  distal  context  was  un-­‐modified.    Each   participant’s  responses  were  coded  by  two  different  raters.  The  reported  function   word  was  determined  by  the  following  definition;  a  word  (such  as  a  preposition  or  a     21   conjunction)  that  is  used  mainly  to  show  grammatical  relationships  between  other   words.  If  the  reported  function  word  was  not  the  same  as  the  spoken  function  word   in  the  auditory  stimuli,  it  was  still  counted  as  a  reported  function  word  with  the   constraints  that  the  immediate  preceding  and  proceeding  phonemic  environments   of  the  target  context  remained  accurate.   Results     Analyses were based on whether participants reported hearing a function word in the acoustically ambiguous region for each utterance. The frequency of transcribing a function word in the target region was scored; presence of a critical function word in the target region was coded as 1, and absence of a function word was coded as 0. Responses that indicated inattention to the stimuli (i.e., did not include the preceding and/or following phonemic environments) were not included in the analysis (9%). Figure 4 displays the proportion of reported function words as a function of rate and group. A 4 (Rate: 1, 1.3, 1.6, 1.9) x 2 (Group: control vs. stuttering) mixed-measures ANOVA on reported function word was conducted. There was a significant main effect of rate (F(3,  78)  =  118.230,  p  <  .001,  η p2 =  .820).     22   Average  Reported  Function  Word   1   0.9   0.8   0.7   0.6   0.5   0.4   0.3   0.2   0.1   0   Stuttering   Control   1   1.3   1.6   1.9   Rate   Figure  4:  Reported  Function  Word  by  Rate.  Average  reported  function  word  for  each  rate   between-­‐subjects  displayed  no  significant  differences  between  stuttering  and  control  groups.    Distal   context  rate  had  a  significant  main  effect  for  both  groups  resulting  in  a  gradual  decline  of  average   reported  function  words  as  the  rate  was  slowed.     There was no significant main effect of group (F(1,  26)  =  .032,  p  =  .860,  η p2  =  .001) or   interaction  (F(1,  26)  =  262.028,  p  =  .820,  η p2  =  .019)  found.  Given  the  significant   effect  of  Rate,  Bonferroni-­‐corrected,  post-­‐hoc  t-­‐tests  were  conducted  to  further   examine  pairwise  differences  among  the  levels. Results demonstrated significant differences between all pairs of rate levels at p  < .001 except for 1.6 vs. 1.9 (p  = .057). These results demonstrate that the speech rate effect is robust across both PWS and control participants. A few additional observations are noteworthy about this data. First, in the normalrate condition, function word reports were quite high; the fact that they were not at ceiling is expected given that the speech was casually spoken. Moreover, note that a comparison of reports in the normal-rate condition and the slowed-context conditions (1.3, 1.6, and 1.9) showed that merely slowing the context surrounding a function word caused the rate of reported function words to drop. The degree of drop was shown to be   23   consistent across both groups. These results display a gradual decrease in average reported function word as a function of slowed distal rate outside of the final two rates, in which the decrease of the reported function word means was not significant. Discussion     Experiment  2  showed  a  significant  main  effect  of  distal  speech  rate,  but  PWS   and  control  participants  showed  similar  sensitivity  to  distal  speech  rate,  resulting  in   no  significant  effect  of  group.  These  results  did  not  support  our  original  hypothesis   that  PWS  would  exhibit  a  lessened  sensitivity  in  perception  of  distal  speech  rate,  and   therefore  would  not  have  as  large  of  a  difference  of  reported  frequency  words   between  distal  speech  rates  as  the  control  population  would.  Making  the  duration  of   a  stretch  of  speech  containing  a  function  word  fast  relative  to  its  slowed  distal   context  affected  the  number  of  morphophonological  units  perceived  by  the   participants  in  both  groups  to  a  similar  degree.  We  obtained  clear  evidence  that  an   alteration  of  speech  rate  on  the  distal  context  affected  the  word  segmentation  of  the   target  context,  extending  prior  work  by  Dilley  and  Pitt  (2010)  to  a  clinical  group  of   PWS.  Due  to  the  lack  of  group  differences  in  the  comparison  of  PWS  and  controls,  we   can  infer  that  PWS  exhibited  sensitivity  to  distal  speech  rate  and  did  not   demonstrate  impairment  in  their  perception  or  internal  generation  of  the  distal  rate   throughout  the  stimulus.           24   General  Discussion  and  Conclusions   Stuttering  is  characterized  as  a  neurodevelopmental  disorder  that  impacts   the  rhythmic  flow  and  timing  of  spoken  language.    Despite  the  amount  of  previous   research  and  plausible  theories  on  the  etiology  of  stuttering,  there  still  is  no   generally  accepted  cause  of  the  underlying  mechanisms  affecting  fluency.    Prior   evidence  has  shown  that  fluency-­‐enhancing  techniques  for  PWS  utilize  some  type  of   externally-­‐generated  rhythm  or  timing  including  singing,  choral  reading,  or  using  a   metronome,  suggesting  that  internal  beat  and  rhythm  generation  is  problematic  for   PWS  (Adams  &  Ramig,  1980;  Ingham  &  Carroll,  1977;  Glover,  Kalinowski,  Rastatter,   &  Stuart,  1996;  Wingate  &  Howell,  2002).    Other  research  supported  this  idea  with   evidence  that  children  who  stutter  displayed  lessened  white  matter  activation  in  the   basal  ganglia  thalamocortical  (BGTC)  network,  which  involves  the  neural  cortices   that  are  utilized  in  the  auditory  perceptions  of  rhythm,  beat,  and  timing  (Chang  &   Zhu,  2013;  Grahn  &  McAuley,  2009;Toyomura  et  al.,  2015).  While  stuttering  is   typically  thought  of  a  speech  production  disorder,  studies  have  supported  that   speech  productions  of  people  who  stutter  (PWS)  can  be  influenced  by  the   perception  of  prosodic  aspects  of  their  own  speech  (Hargrave,  Kalinowski,  Stuart,   Armson,  &  Jones,  1994;  Wingate,  1966).    This  study  was  thus  conducted  to  better   understand  the  nature  of  the  possible  deficits  in  the  perceptions  of  rhythm  and   timing  and  internal  beat  generation  in  persons  who  stutter.    We  investigated  the   perception  of  distal  speech  rhythm  and  rate  in  a  group  of  adults  who  stutter  and  a   control  group.         25   In  Experiment  1,  distal  intonation  rhythm  was  manipulated  and  both  groups   responded  with  the  final  word  that  they  heard.  The  experimental  manipulations   utilized  distal  pitch  pattern  which  were  expected  to  cause  differential  perception  of   disyllabic  vs.  monosyllabic  final  words  if  they  were  sensitive  to  distal  cues  and  could   use  them  to  generate  a  rhythm  (Dilley  &  McAuley,  2008).    Our  hypothesis  proposed   that  the  stuttering  group  would  show  less  sensitivity  to  these  prosodic   manipulations,  which  was  predicted  to  manifest  as  a  smaller  difference  in  disyllabic   final  word  reports  in  disyllabic  vs.  monosyllabic  context  conditions.    In  Experiment   1,  PWS  reported  a  higher  proportion  of  disyllabic  responses  in  disyllabic  contexts   and  similar  effects  of  context  type  as  the  control  group,  indicating  that  they   perceived  the  distal  prosodic  manipulations  and  internally  generated  a  rhythm  that   influenced  the  syllable  parsing  of  the  final  word  in  a  manner  that  was  similar  to   controls.       In  Experiment  2,  distal  rate  of  speech  was  manipulated  and  both  groups   reported  the  final  words,  with  the  dependent  variable  being  function  word  reports.     The  experimental  manipulations  utilized  a  slowing  of  distal  speech  rate  to  cause  the   function  word  to  be  heard  increasingly  less  often  with  increasingly  slow  distal   speech  rates.    Our  hypothesis  proposed  that  PWS  would  show  a  lessened  sensitivity   to  the  distal  prosodic  cues,  resulting  in  a  smaller  decrease  in  function  word  reports   as  distal  speech  rate  was  slowed,  compared  with  controls.  In  Experiment  2,  the   significant  main  effect  of  rate  in  PWS  indicated  that  PWS  were  sensitive  to  the  distal   manipulations  of  rate,  since  they  reported  fewer  function  words  as  distal  was   slowed,  mirroring  the  pattern  for  controls.       26       Based  on  our  hypothesis,  if  PWS  have  a  deficit  with  internally  generating   rhythm  and  timing,  we  might  expect  that  they  would  have  difficulty  generating  an   internal  structure  from  perceived  speech  rhythmic  cues  that  would  manifest  as  a   difference  between  control  and  PWS  in  a  task  of  distal  prosody.    Both  Experiments  1   and  2  showed  that  PWS  performed  similarly  in  these  tasks  to  the  control  group.  In   Experiment  1,  the  significant  main  effect  of  word  context  for  both  groups  with  no   significant  effect  of  group  stood  in  contrast  to  the  hypothesis  of  lessened  sensitivity   to  the  distal  prosodic  manipulations  of  intonation  rhythm  in  PWS.     These  results  are  inconsistent  with  the  idea  that  the  ability  to  generate   prosody  perceptually  is  not  intact  in  PWS.  That  is,  PWS  did  not  demonstrate  an   impaired  function  within  their  perceptions  of  rhythm  and  timing  cues  in  distal   speech  or  in  their  ability  to  internally  generate  rhythms  and  rates  cued  externally   throughout  the  ambiguous  and  unaltered  targeted  speech  strings.    This  conclusion   on  the  surface  appears  inconsistent  with  proposals  of  deficits  in  rhythm  perception   caused  from  dysfunction  within  the  basal  ganglia  and  the  BGTC  network  (Grahn,   2009).  Evidence  of  a  deficit  in  rhythm  perception  was  recently  found  by  Wieland   (2015)  in  children  who  stutter  (CWS).    This  evidence  is  also  supported  by  the   reduced  white  matter  tracts  found  in  CWS  by  Chang  (2013)  compared  with  controls;   these  tracts  are  expected  to  affect  connectivity  in  the  BGTC  network.     The  failure  to  find  evidence  for  deficits  in  perception  of  rhythmic  aspects  of   speech  and  apparent  conflict  with  findings  from  previous  literature  could  be   explained  with  reference  to  four  proposals.    The  first  proposal  is  that  the  deficits  in   rhythm  perception  found  by  Wieland  (2015)  were  due  to  the  difference  in     27   developmental  stage  of  the  populations  studied:  children  who  stutter  (CWS)  for   Wieland  (2015),  in  contrast  to  adults  who  stutter  for  the  present  study.  Under  this   explanation,  deficits  in  rhythm  perception  exhibited  in  CWS  may  disappear  by   adulthood,  possibly  due  to  the  development  of  a  compensatory  strategy.  A  second   possibility  for  the  contrasting  results  of  the  present  study  is  due  to  the  robust   strength  of  the  manipulations  utilized  in  this  study.  There  is  a  possibility  that   deficits  in  rhythm  and  timing  perception  in  PWS  might  be  subtle;  thus,  such  deficits   might  not  have  been  observed  in  the  present  study  due  to  the  large  effect  sizes   produced  by  the  manipulations  across  both  paradigms  used  in  this  study.    The  third   possible  reason  for  the  contradictory  results  is  that  this  study  utilized  perception  of   rhythm  and  timing  in  speech,  while  Wieland  et  al.  (2015)  used  a  perception  task   based  solely  on  tones,  without  speech.  It  is  possible  that  the  difference  in  tasks   (tones  vs.  speech)  could  have  resulted  in  PWSs’  relying  on  a  different  set  of   characteristics  for  speech  vs.  tones.  The  fourth  proposal  for  the  contradictory   results  across  studies  could  be  that  the  manipulations  utilized  in  this  current  study   did  not  rely  heavily  enough  on  the  internal  generation  of  rhythm  and  timing.  The   generation  of  the  rhythms  and  timings  utilized  in  these  experiments  were  cued   externally  through  the  prosodic  manipulations  of  distal  contexts  and  carried   throughout  a  minimal  time-­‐span,  rather  than  fully  being  generated  internally.    Thus,   the  present  results  are  consistent  with  the  hypothesis  that  PWS  can  perceive   rhythms  and  timings  cued  by  externally  provided  distal  prosodic  cues  but  that  they   have  deficits  in  internal  rhythm  and  timing.  Future  research  should  address  this  and     28   further  investigate  with  a  paradigm  utilizing  purely  internally-­‐generated  rhythm   and  timing  information.   It  has  been  shown  that  internal  generation  of  rhythm  and  pacing  in  people   who  stutter  (PWS)  can  be  influenced  by  perception  of  prosodic  aspects  of  their  own   speech  (Hargrave,  Kalinowski,  Stuart,  Armson,  &  Jones,  1994;  Wingate,  1966).   Guenther  (1994)  suggested  that  auditory-­‐motor  integration  is  used  for  spoken   language  of  fluent  speakers  and  that  speech  production  occurs  by  integrating   perceptions  of  self-­‐speech  into  ongoing  speech  production.  Previous  research  points   to  a  problem  in  some  aspect  of  the  auditory-­‐integration  process  in  a  manner  that   generates  disfluency.  There  is  evidence  that  shows  PWS  have  difficulty  with  this   auditory-­‐motor  integration  of  speech  perceptions  into  speech  production  (Cai  et  al.,   2014).    These  findings  of  this  study  help  us  to  distinguish  among  three  possible  loci   for  the  deficit  in  PWS  related  to  the  auditory-­‐motor  integration  of  prosody  in  speech   identified  by  Cai  et  al.  (2014)  and  related  research.  One  is  the  possibility  of  difficulty   in  the  perception  of  prosody.  A  second  possibility  is  difficulty  in  the  production  of   prosodic  elements  in  speech.  A  third  possibility  is  difficulty  of  integrating  perception   of  prosodic  elements  from  self-­‐speech  into  speech  productions.  These  possibilities   are  discussed  below  with  reference  to  the  findings  of  the  present  study.     While  stuttering  is  thought  of  as  being  a  problem  in  the  production  of  speech,   speech  perception  has  been  shown  to  play  an  important  role  in  the  speech   production  of  PWS  (Hargrave,  Kalinowski,  Stuart,  Armson,  &  Jones,  1994;  Wingate,   1966).  This  is  evidenced  by  the  effects  of  changing  the  auditory  feedback  of  pitch  or   timing  on  the  fluency  of  PWS  with  delayed  auditory  feedback  (DAF)  devices  (Cai  et     29   al.,  2014).  The  possibility  of  a  problem  with  perception  of  prosodic  elements  of   speech  provides  one  possible  explanation  for  the  underlying  deficits  in  PWS.  The   results  of  the  present  study  suggest  that  the  perception  of  rhythm  and  timing  in   adults  who  stutter  remains  intact.    These  findings  suggest  that  the  problem  does  not   seem  to  lie  within  the  perceptions  of  prosodic  elements  of  speech  in  PWS.   The  hypothesis  of  difficulty  in  speech  production  is  another  potential  locus  of   influence  of  prosody  in  underlying  deficits  of  PWS.    If  the  problem  is  within  the   motor  mechanisms  for  speech  production,  PWS  would  not  be  able  to  produce   speech  that  exhibited  prosodic  elements  such  as  appropriate  rhythm,  timing,  or   pitch.  PWS  can  however  demonstrate  appropriate  prosodic  elements  in  their  speech   productions  with  the  assistance  of  externally  generated  rhythm  and  pacing  devices   (Hargrave,  Kalinowski,  Stuart,  Armson,  &  Jones,  1994;  Wingate,  1966).    The  fact  that   PWS  can  exhibit  prosodic  elements  in  fluent  speech  with  assistive  fluency-­‐ enhancing  devices  leads  to  the  idea  that  the  problem  does  not  rely  in  solely  the   production  of  these  prosodic  elements.    Further  evidence  was  presented  in  a  recent   poster  presentation  at  the  annual  conference  of  the  American  Speech-­‐Language-­‐ Hearing  Association  by  Wieland  et  al.  (2014)  that  showed  that  prosodic  aspects  of   fluent  speech  in  children  who  stutter  were  similar  to  those  of  a  group  of  matched   control  children.  These  results  suggest  that  an  underlying  deficit  in  production  of   prosodic  elements  such  as  rhythm  and  timing  are  not  likely  to  be  a  core  deficit  in   PWS.   The  third  possibility  is  that  the  problem  lies  within  the  integration  of   perception  into  speech  production.  This  possibility  is  supported  by  the  results  found     30   by  Cai  et  al.  (2014)  showing  a  deficit  in  PWS  in  the  integration  of  perturbed  auditory   feedback  into  their  speech  productions.    Cai  et  al.  (2014)  demonstrated  results  of   weak  error  correction  of  speech  production  in  PWS  when  their  perceptions  of   timing  had  been  disrupted.    This  idea  of  difficulty  within  auditory-­‐integration  is   supported  by  the  fluency-­‐inducing  effects  of  auditory-­‐feedback  devices  that  alter  the   pitch  and  timing  in  auditory  feedback  of  self-­‐speech.  Without  altered  auditory-­‐ feedback,  the  incorporation  of  normal  feedback  into  speech  production  seems  to  be   disrupted,  as  it  typically  results  in  disfluency.  Once  prosodic  elements  of  the   auditory  feedback  is  manipulated,  fluency  is  often  enhanced,  supporting  the  idea  of   a  disruption  in  the  integration  of  auditory-­‐feedback  (perception  of  self-­‐speech)  into   speech  production.   From  previous  literature  and  the  results  of  this  study,  the  perception  and   production  of  prosodic  elements  of  speech,  each  considered  individually,  do  not   display  a  problem  underlying  the  deficits  of  PWS.    Thus,  the  present  work  supports   the  idea  that  a  new,  fruitful  hypothesis  to  be  tested  involves  investigating  how   prosodic  information  from  speech  perception  is  integrated  within  speech   production.  While  this  study  primarily  focused  on  perception  of  prosodic  elements   and  internal  rhythm  generation  in  PWS,  a  focus  of  research  on  the  auditory-­‐ integration  of  speech  perception  into  motor  production  of  speech  is  suggested  to  be   most  productive  for  investigation  of  underlying  deficits  in  PWS  associated  with   prosody.    Despite  the  lack  of  understanding  of  overall  core  deficits  in  PWS,  the   results  from  the  current  study  have  provided  evidence  of  an  intact  ability  of  PWS  to   perceive  prosodic  elements  in  speech  and  to  internally  generate  rhythm  and  timing     31   following  distal  prosodic  cues  in  speech.  Research  defining  underlying  deficits  (or   the  lack  thereof)  have  significant  clinical  implications,  since  core  strategies  or   techniques  can  be  recognized  when  core  deficits  or  strengths  within  a  clinical   population  are  recognized  and  understood.  .  The  results  of  this  study  shed  light  onto   new  potential  areas  for  research  to  continue  investigation  of  an  underlying  deficit   related  to  prosody  in  PWS.           32                                                     APPENDICES   33   Appendix  A:  Experiment  1  Items  List     1.   banker  helpful  (tie  murder  bee/timer  derby)     2.   kettle  heaven  (Tim  burrow  bow/timber  oboe)     3.   pebble  dollar  (bar  lever  chew/barley  virtue)   4.   gossip  oyster  (pan  treaty  coy/pantry  decoy)     5.   angry  index  (lay  birdie  fence/labor  defense)     6.   chapter  elbow  (rue  beaver  gin/ruby  virgin)     7.   kitchen  dealer  (may  beanie  grow/maybe  negro)   8.   hero  vacuum  (sell  early  gull/cellar  legal)     9.   bullet  junior  (come  feeding  key/comfy  dinky)     10.   liquid  perish  (broad  leasing  king/broadly  sinking)     11.   lumpy  danger  (chair  eager  knee/cherry  gurney)     12.   plasma  honey  (pigs  typo  low/pigsty  polo)     13.   blanket  mounted  (ham  mercy  nick/hammer  scenic)     14.   tourist  robin  (draw  musty  plea/drama  steeply)     15.   trouble  wealthy  (limb  burner  sing/limber  nursing)   16.   nature  lazy  (faux  meaty  tour/foamy  detour)     17.   lady  jacket  (bran  diesel  tree/brandy  sultry)     18.   husband  lemon  (fan  seaman  cheese/fancy  munchies)     19.   center  northern  (two  cancer  plus/toucan  surplus)     20.   mixture  pleasure  (class  seedy  pose/classy  depots)         34   Appendix  B:  Experiment  2  Items  List     1.   The  murrays  are  (our)  favorite   2.   The  johnsons  are  (our)  rich  relatives  from  California   3.   The  accountants  are  (our)  wise  advisors   4.   We  won't  have  any  winter  (or)  wet  weather   5.   Marty  gave  him  a  dollar  (or)  twenty  last  week   6.   Fred  would  rather  have  (a)  summer  or  lake   7.   Mom  said  these  are  (our)  gray  gloves   8.   Sam  got  it  in  writing  before  (her)  last  wishes   9.   It's  not  long  before  (her)  rare  wit   10.   John  didn’t  tell  the  junior  (or)  representative  about  it   11.   The  snowsuits  are  (our)  only   12.   The  Clines  are  (our)  good  friends   13.   People  were  offended  after  (her)  rude   14.   These  copy  machines  are  (our)  largest   15.   Anne  wanted  to  see  (a)  very  funny   16.   Susan  said  those  are  (our)  black  socks   17.   New  laws  are  (our)  last  chances  for  a  change  in  climate   18.   Deena  doesn't  have  any  leisure  (or)  time   19.   Connor  knew  that  bread  and  butter  (are)  both   20.   It's  not  easy  to  convey  (a)  likely   21.   Sam  knew  there  (are)  apples   22.   Todd  said  there  (are)  rooms   23.   John  said  he  would  obey  (a)  rebel   24.   Sally  might  try  (a)  liquid   25.   The  sign  was  replaced  after  (her)  black   26.   Don  must  see  the  harbor  (or)  boats   27.   The  message  was  clear  after  (her)  blank   28.   Tina  decorated  with  paper  (or)lace  in  most  rooms   29.   Sue  said  there  (are)  lunches   30.   Phil  and  Mary  are  (our)  young  cousins   31.   Glenn  thought  his  friend  and  neighbor  (are)  like  plenty   32.   Dave  asked  how  long  it  takes  to  repay  (a)  large   33.   Rose  knew  that  there  (are)  lamps   34.   Dawn  said  that  it's  easy  to  go  to  (a)  regular   35.   Those  tickets  are  (our)  late  entries   36.   John  called  her  sugar  (or)  honey  most  of  the  time   37.   The  leaves  fell  after  (her)  green   38.   They  were  sad  after  (her)  poor   39.   The  Lees  are  (our)  old  friends  from  high  school   40.   It's  not  long  before  (her)  bad           35                                             REFERENCES                                                   36   REFERENCES       Alm,  P.  A.  (2004).  Stuttering  and  the  basal  ganglia  circuits:  a  critical  review  of   possible  relations.  Journal  of  communication  disorders,  37(4),  325-­‐369.     Adams,  M.  R.,  &  Ramig,  P.  (1980).  Vocal  characteristics  of  normal  speakers  and   stutterers  during  choral  reading.  Journal  of  Speech,  Language  and  Hearing   Research,  23(2),  457-­‐469.       Bergmann,  G.  (1986).  Studies  in  stuttering  as  a  prosodic  disturbance.  Journal  of   Speech,  Language  and  Hearing  Research,  29(3),  290-­‐300.      Besozzi,  T.  E.,  &  Adams,  M.  R.  (1969).  The  influence  of  prosody  on  stuttering   adaptation.  Journal  of  Speech,  Language,  and  Hearing  Research,  12(4),  818-­‐ 824.       Cai,  S.,  Beal,  D.  S.,  Ghosh,  S.  S.,  Guenther,  F.  H.,  &  Perkell,  J.  S.  (2014).  Impaired  timing   adjustments  in  response  to  time-­‐varying  auditory  perturbation  during   connected  speech  production  in  persons  who  stutter.  Brain  and  language,   129,  24-­‐29.Chang,  S.-­‐E.,  &  Zhu,  D.  (2013).  Neural  network  connectivity   differences  in  children  who  stutter.  Brain,  136(12),  3709-­‐3726.       Coull,  J.T.,  2004.  fMRI  studies  of  temporal  attention:  allocating  attention  within,  or     towards,  time.  Cogn.  Brain  Res.  21,  216–226.     Cutler,  A.,  Dahan,  D.,  &  van  Donselaar,  W.  (1997).  Prosody  in  the  comprehension  of   spoken  language:  A  literature  review.  Language  and  Speech,  40,  141–201.     Dilley,  L.  C.,  &  McAuley,  J.  D.  (2008).  Distal  prosodic  context  affects  word   segmentation  and  lexical  processing.  Journal  of  Memory  and  Language,  59(3),   294-­‐311.      Dilley,  L.  C.,  &  Pitt,  M.  A.  (2010).  Altering  context  speech  rate  can  cause  words  to   appear  or  disappear.  Psychological  Science,  21(11),  1664-­‐1670.       Glover,  H.,  Kalinowski,  J.,  Rastatter,  M.,  &  Stuart,  A.  (1996).  Effect  of  instruction  to   sing  on  stuttering  frequency  at  normal  and  fast  rates.  Perceptual  and  Motor   Skills,  83,  511-­‐522.      Grahn,  J.A.,  &  Brett,  M.,  2007.  Rhythm  perception  in  motor  areas  of  the  brain.  J.   Cogn.  Neurosci.  19,  893–906.       37   Grahn,  J.  A.,  &  McAuley,  J.  D.  (2009).  Neural  bases  of  individual  differences  in  beat   perception.  Neuroimage,  47(4),  1894-­‐1903.   doi:10.1016/j.neuroimage.2009.04.039     Guenther,  F.  H.  (1994).  A  neural  network  model  of  speech  acquisition  and  motor   equivalent  speech  production.  Biological  Cybernetics,  72(1),  43-­‐53.      Hall,  K.  D.,  Amir,  O.,  &  Yairi,  E.  (1999).  A  longitudinal  investigation  of  speaking  rate   in  preschool  children  who  stutter.  Journal  of  Speech,  Language  and  Hearing   Research,  42(6),  1367–1377.       Hargrave,  S.,  Kalinowski,  J.,  Stuart,  A.,  Armson,  J.,  &  Jones,  K.  (1994).  Effect  of   frequency-­‐altered  feedback  on  stuttering  frequency  at  normal  and  fast   speech  rates.  Journal  of  Speech,  Language,  and  Hearing  Research,  37(6),  1313-­‐ 1319.       Harrington,  D.L.,  Haaland,  K.Y.,  1999.  Neural  underpinnings  of  temporal  processing:   a  review  of  focal  lesion,  pharmacological,  and  functional  imaging  research.   Rev.Neurosci.  10,  91–116.     Harrington,  D.L.,  Haaland,  K.Y.,  Knight,  R.T.,  1998b.  Cortical  networks  underlying     mechanisms  of  time  perception.  J.  Neurosci.  18,  1085–1095.     Hazeltine,  E.,  Helmuth,  L.L.,  Ivry,  R.,  1997.  Neural  mechanisms  of  timing.  Trends   Cogn.  Sci.  1,  163–169.     Ingham,  R.  J.,  &  Carroll,  P.  J.  (1977).  Listener  judgment  of  differences  in  stutterers'   nonstuttered  speech  during  chorus-­‐and  nonchorus-­‐reading  conditions.   Journal  of  Speech,  Language  and  Hearing  Research,  20(2),  293-­‐302.       Kent,  R.  D.  (1984).  Stuttering  as  a  temporal  programming  disorder.  In  R.  F.  Curlee  &   W.  H.  Perkins  (Eds.),  Nature  and  treatment  of  stuttering:  New  directions  (pp.   283-­‐301).  San  Diego:  College-­‐Hill  Press.     Morrill,  T.  H.,  Dilley,  L.  C.,  &  McAuley,  J.  D.  (2014).  Prosodic  patterning  in  distal   speech  context:  Effects  of  list  intonation  and  f0  downtrend  on  perception  of   proximal  prosodic  structure.  Journal  of  Phonetics,  46,  68-­‐85.     Moulines,  E.,  &  Charpentier,  F.  (1990).  Pitch-­‐synchronous  waveform  processing   techniques  for  text-­‐to-­‐speech  synthesis  using  diphones.  Speech   Communication,  9(5-­‐6),  453–467.     Nenadic,  I.,  Gaser,  C.,  Volz,  H.-­‐P.,  Rammsayer,  T.,  Hager,  F.,  Sauer,  H.,  2003.  Processing   of  temporal  information  and  the  basal  ganglia:  new  evidence  from  fMRI.  Exp.   Brain  Res.  148,  238–246.       38   Packman,  A.,  Code,  C.,  &  Onslow,  M.  (2007).  On  the  cause  of  stuttering:  Integrating   theory  with  brain  and  behavioral  research.  Journal  of  Neurolinguistics,  20(5),   353-­‐362.  doi:  10.1016/j.jneuroling.2006.11.001     Packman,  A.,  Onslow,  M.,  Richard,  F.,  &  Van  Doorn,  J.  (1996).  Syllabic  stress  and   variability:  A  model  of  stuttering.  Clinical  Linguistics  &  Phonetics,  10(3),  235-­‐ 263.       Rao,  S.M.,  Mayer,  A.R.,  Harrington,  D.L.,  2001.  The  evolution  of  brain  activation   during  temporal  processing.  Nat.  Neurosci.  4,  317–323.     Salverda,  A.  P.,  Dahan,  D.,  Tanenhaus,  M.  K.,  Crosswhite,  K.,  Masharov,  M.,  &   McDonough,  J.  (2007).  Effects  of  prosodically-­‐modulated  sub-­‐phonetic   variations  on  lexical  competition.  Cognition,  105,466-­‐476.     Schubotz,  R.I.,  Friederici,  A.D.,  von  Cramon,  D.Y.,  2000.  Time  perception  andmotor   timing:  a  common  cortical  and  subcortical  basis  revealed  by  fMRI.   Neuroimage  11,  1–12.     Toyomura,  A.,  et  al.,  Effect  of  an  8-­‐week  practice  of  externally  triggered  speech  on   basal  ganglia  activity  of  stuttering  and  fluent  speakers,  NeuroImage  (2015),   http://dx.doi.org/10.1016/j.neuroimage.2015.01.024     Wieland,  E.  A.,  Dilley,  L.  C.,  Burnham,  E.  B.,  Redford,  M.,  &  Chang,  S-­‐E.  (2014).   Prosodic  characteristics  of  fluent  speech  by  children  who  do  and  do  not   stutter.  Poster  presented  at  the  Annual  Meeting  of  the  American  Speech-­‐ Language  Hearing  Association,  Orlando,  FL,  November  20-­‐22,  2014      Wieland,  E.  A.,  McAuley,  J.  D.,  Dilley,  L.  C.,  &  Chang,  S.  E.  (2015).  Evidence  for  a   rhythm  perception  deficit  in  children  who  stutter.  Brain  and  language,  144,   26-­‐34.Wingate,  M.  E.  (1966).  Prosody  in  stuttering  adaptation.  Journal  of   Speech,  Language,  and  Hearing  Research,  9(4),  550-­‐556.       Wingate,  M.  E.,  &  Howell,  P.  (2002).  Foundations  of  stuttering.  J  Acoust  Soc  Am(112),   1229-­‐1241.       World-­‐Health-­‐Organization.  (2010).  International  statistical  classification  of   diseases  and  related  health  problems.      Retrieved  4/30/13,  from   http://apps.who.int/classifications/icd10/browse/2010/en#/F98.5       39