
MITIGATING UNCERTAINTY AT DESIGN TIME AND RUN TIME TO ADDRESS
ASSURANCE FOR DYNAMICALLY ADAPTIVE SYSTEMS

By

Erik M. Fredericks

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2015



ABSTRACT

MITIGATING UNCERTAINTY AT DESIGN TIME AND RUN TIME TO ADDRESS
ASSURANCE FOR DYNAMICALLY ADAPTIVE SYSTEMS

By

Erik M. Fredericks

A dynamically adaptive system (DAS) is a software system that monitors itself and its

environment at run time to identify conditions that require self-reconfiguration to ensure

that the DAS continually satisfies its requirements. Self-reconfiguration enables a DAS to

change its configuration while executing to mitigate unexpected changes. While it is infea-

sible for an engineer to enumerate all possible conditions that a DAS may experience, the

DAS must still deliver acceptable behavior in all situations. This dissertation introduces

a suite of techniques that addresses assurance for a DAS in the face of both system and

environmental uncertainty at different levels of abstraction. We first present a technique for

automatically incorporating flexibility into system requirements for different configurations

of environmental conditions. Second, we describe a technique for exploring the code-level

impact of uncertainty on a DAS. Third, we discuss a run-time testing feedback loop to con-

tinually assess DAS behavior. Lastly, we present two techniques for introducing adaptation

into run-time testing activities. We demonstrate these techniques with applications from

two different domains: an intelligent robotic vacuuming system that must clean a room

safely and efficiently and a remote data mirroring network that must efficiently and effec-

tively disseminate data throughout the network. We also provide an end-to-end example

demonstrating the effectiveness of each assurance technique as applied to the remote data

mirroring application.



Copyright by
ERIK M. FREDERICKS
2015



To Natalie and Zoe, thank you for everything.
I couldn’t have done this without you.

iv



ACKNOWLEDGEMENTS

I first want to thank Dr. Betty H. C. Cheng for taking me under her wing and guiding

me from the bright-eyed graduate student that I was to the sleepy-eyed, yet still optimistic,

person I am today. Your willingness to provide feedback and many, many revisions on papers

and projects is greatly appreciated. I want to also thank you for taking me along on the

ICSE ride. Because of that invaluable experience, I met many wonderful people and helped

to make something great, and I cannot thank you enough for that. Special thanks also go

to Dr. McKinley for trading me to the highest bidder early on in my academic career. I am

fairly certain that I would not have ended up in software engineering otherwise.

I also would like to thank my committee members: Dr. Philip McKinley, Dr. Erik Good-

man, Dr. William Punch, and Dr. Xiaobo Tan. Their valuable feedback and willingness to

attend overly long presentations throughout this entire process has been greatly appreciated.

Additionally, there are many other people that I would like to thank who have helped

me along the way. First of all, I’m sure that, at some point, all members of the SENS

lab were pulled into some sort of discussion on software engineering (either willingly or

unwillingly). Many thanks to Jared Moore, Tony Clark, Chad Byers, Daniel Couvertier,

Andres Ramirez, and Byron DeVries. Outside of academia, I would like to thank Matthew

Jermov, Robb Melenyk, and Greg Robertson. Their oft-uncredited discussions and support

definitely helped me get where I am today.

I would also like to thank my family and friends for both believing in me and suffering

with me through this long and somewhat arduous process. Any social life that I previously

had disappeared the moment I entered graduate school, and I appreciate all of the support

and understanding that you all have given to me. Lastly, I especially would like to thank

my parents. Thank you for giving me the drive and desire to accomplish whatever I set my

mind to.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Background and Application . . . . . . . . . . . . . . . . . . . . . 8
2.1 Dynamically Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Smart Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Overview of Smart Vacuum System . . . . . . . . . . . . . . . . 10
2.2.2 Smart Vacuum System Implementation . . . . . . . . . . . . . 11

2.3 Remote Data Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Overview of Remote Data Mirroring Application . . . . . . . 14
2.3.2 Remote Data Mirroring Implementation . . . . . . . . . . . . . 17

2.4 Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Goal-Oriented Requirements Engineering . . . . . . . . . . . . 18
2.4.2 Goal-Oriented Requirements Modeling . . . . . . . . . . . . . . 18
2.4.3 RELAX Specification Language . . . . . . . . . . . . . . . . . . 19

2.5 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1.1 Population Generation . . . . . . . . . . . . . . . . . . . 24
2.5.1.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1.4 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Stepwise Adaptation of Weights . . . . . . . . . . . . . . . . . . 27
2.5.3 Novelty Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.4 (1+1)-ONLINE Evolutionary Algorithm . . . . . . . . . . . . . 28

2.6 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Structural Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.4 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3 Addressing Requirements-Based Uncertainty . . . . . . . . . . 31
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Introduction to AutoRELAX . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Assumptions, Inputs, and Outputs . . . . . . . . . . . . . . . . . 33
3.2.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



3.2.1.2 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 AutoRELAX Approach . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Optimizing Fitness Sub-Function Weights with SAW . . . . . 42

3.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 RDM Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1.1 RDM Uncertainty . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1.2 Dynamic Weight Adjustment . . . . . . . . . . . . . . . 48

3.3.2 SVS Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2.1 SVS Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2.2 Dynamic Weight Adjustment . . . . . . . . . . . . . . . 54

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1 Expressing Uncertainty in Requirements . . . . . . . . . . . . . 58
3.4.2 Requirements Monitoring and Reflection . . . . . . . . . . . . . 58
3.4.3 Obstacle Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4 Exploring Code-Level Effects of Uncertainty . . . . . . . . . . . 61
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Introduction to Fenrir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Assumptions, Inputs, and Outputs . . . . . . . . . . . . . . . . . 63
4.2.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1.2 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Fenrir Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 RDM Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 DAS Execution in an Uncertain Environment . . . . . . . . . . 71
4.3.1.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . 73

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Automated Testing of Distributed Systems . . . . . . . . . . . 75
4.4.3 Automatically Exploring Uncertainty in Requirements . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 5 Run-Time Testing of Dynamically Adaptive Systems . . . . . 77
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Test Case Generation . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.2 When to Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.3 Testing Methodology Selection . . . . . . . . . . . . . . . . . . . 82
5.1.4 Impact and Mitigation of Test Results . . . . . . . . . . . . . . 82

5.2 Introduction to the MAPE-T Feedback Loop . . . . . . . . . . . . . . 83
5.2.1 MAPE-T Feedback Loop . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2.1 Key Challenges . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2.2 Enabling Technologies . . . . . . . . . . . . . . . . . . . 85

5.2.3 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.4 Analyzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



5.2.4.1 Key Challenges . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.4.2 Enabling Technologies . . . . . . . . . . . . . . . . . . . 87
5.2.4.3 Motivating Example . . . . . . . . . . . . . . . . . . . . 88

5.2.5 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.5.1 Key Challenges . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.5.2 Enabling Technologies . . . . . . . . . . . . . . . . . . . 89
5.2.5.3 Motivating Example . . . . . . . . . . . . . . . . . . . . 91

5.2.6 Executing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.6.1 Key Challenges . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.6.2 Enabling Technologies . . . . . . . . . . . . . . . . . . . 93
5.2.6.3 Motivating Example . . . . . . . . . . . . . . . . . . . . 94

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Exploration of System Behavior . . . . . . . . . . . . . . . . . . 95
5.3.2 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2.1 Autonomous Tester Agent . . . . . . . . . . . . . . . . . 97
5.3.2.2 Monitoring Agent . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 6 Run-Time Test Adaptation . . . . . . . . . . . . . . . . . . . . . . 100
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Introduction to Proteus . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Proteus Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.2 Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Adaptive Test Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.3.1 Regression Testing . . . . . . . . . . . . . . . . . . . . . 107
6.4 Introduction to Veritas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Assumptions, Inputs, and Outputs . . . . . . . . . . . . . . . . . 109
6.4.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.1.2 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 Veritas Fitness Functions . . . . . . . . . . . . . . . . . . . . . . 113
6.4.2.1 Test Case Validation . . . . . . . . . . . . . . . . . . . . 116
6.4.2.2 Online Evolutionary Algorithm . . . . . . . . . . . . . 117

6.5 Run-Time Testing Framework . . . . . . . . . . . . . . . . . . . . . . . 118
6.5.1 Test Case Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.2 Proteus Experimental Results . . . . . . . . . . . . . . . . . . . 126

6.6.2.1 Threats to Validity. . . . . . . . . . . . . . . . . . . . . . 129
6.6.3 Veritas Experimental Results . . . . . . . . . . . . . . . . . . . . 130

6.6.3.1 Threats to Validity. . . . . . . . . . . . . . . . . . . . . . 133
6.6.4 Combined Experimental Results . . . . . . . . . . . . . . . . . . 133

6.7 RELAXation of Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.7.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 142

viii



6.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.8.1 Search-Based Software Testing . . . . . . . . . . . . . . . . . . . 142
6.8.2 Run-Time Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.8.3 Test Plan Generation . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.8.4 Test Case Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chapter 7 Impact of Run-Time Testing . . . . . . . . . . . . . . . . . . . . . 146
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2 Analysis Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2.1 DAS Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.1.1 Total execution time . . . . . . . . . . . . . . . . . . . . 147
7.2.1.2 Memory footprint . . . . . . . . . . . . . . . . . . . . . . 147

7.2.2 DAS Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.2.1 Requirements satisficement . . . . . . . . . . . . . . . . 148
7.2.2.2 Behavioral function calls . . . . . . . . . . . . . . . . . . 148

7.3 Baseline Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.4 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5.1 Processor Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.5.2 Agent-Based Testing . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 8 End-to-End RDM Example . . . . . . . . . . . . . . . . . . . . . . 166
8.1 RDM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.2 Requirements-Based Assurance . . . . . . . . . . . . . . . . . . . . . . . 168

8.2.1 AutoRELAX Case Study . . . . . . . . . . . . . . . . . . . . . . . 168
8.2.1.1 RDM Goal RELAXation . . . . . . . . . . . . . . . . . . 169

8.2.2 Scalability of RDM Application . . . . . . . . . . . . . . . . . . 173
8.2.3 Scaled RDM Configuration . . . . . . . . . . . . . . . . . . . . . 173
8.2.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.3 Code-Based Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.3.1 Fenrir Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.4 Run-Time Testing-Based Assurance . . . . . . . . . . . . . . . . . . . . 178
8.4.1 Derivation of Test Specification . . . . . . . . . . . . . . . . . . . 179
8.4.2 Proteus Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.4.3 Veritas Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Chapter 9 Conclusions and Future Investigations . . . . . . . . . . . . . . . 187
9.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.2 Future Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.2.1 Exploration of Different Evolutionary Computation Techniques190
9.2.2 Interfacing with the DAS MAPE-K Loop . . . . . . . . . . . . 191

ix



9.2.3 Hardware Realization of the MAPE-T Loop . . . . . . . . . . 191
9.2.4 Incorporation of MAS Architecture . . . . . . . . . . . . . . . . 192

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

x



LIST OF TABLES

Table 2.1: RELAX operators [113]. . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2.2: Sample genetic algorithm encoding. . . . . . . . . . . . . . . . . . . . 24

Table 3.1: Summary of manually RELAXed goals for the RDM application. . . . 45

Table 3.2: Summary of manually RELAXed goals for the SVS application. . . . . 52

Table 4.1: Novelty search configuration. . . . . . . . . . . . . . . . . . . . . . . . 71

Table 5.1: Example of test case as defined according to IEEE standard [54]. . . . 79

Table 6.1: Examples of SVS test cases. . . . . . . . . . . . . . . . . . . . . . . . 113

Table 6.2: Individual test case fitness sub-functions. . . . . . . . . . . . . . . . . 114

Table 8.1: Subset of RDM network parameters. . . . . . . . . . . . . . . . . . . 167

Table 8.2: RDM sources of uncertainty. . . . . . . . . . . . . . . . . . . . . . . . 168

Table 8.3: End-to-end AutoRELAX-SAW configuration. . . . . . . . . . . . . . . 169

Table 8.4: Comparison of RDM Configuration Parameters. . . . . . . . . . . . . 173

Table 8.5: End-to-end Fenrir configuration. . . . . . . . . . . . . . . . . . . . . . 177

Table A.1: Smart vacuum system test specification. . . . . . . . . . . . . . . . . . 195

Table A.2: Traceability links for smart vacuum system application. . . . . . . . . 215

Table A.3: Remote data mirroring test specification. . . . . . . . . . . . . . . . . 218

Table A.4: Traceability links for remote data mirroring application. . . . . . . . . 227

xi



LIST OF FIGURES

Figure 1.1: High-level depiction of how our suite of techniques impacts a DAS at
varying levels of abstraction. . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1: Structure of dynamically adaptive system. . . . . . . . . . . . . . . . 9

Figure 2.2: KAOS goal model of the smart vacuum system application. . . . . . 12

Figure 2.3: Screenshot of SVS simulation environment. . . . . . . . . . . . . . . 13

Figure 2.4: KAOS goal model of the remote data mirroring application. . . . . . 16

Figure 2.5: Partial KAOS goal model of smart vacuum system application. . . . 20

Figure 2.6: Fuzzy logic membership functions. . . . . . . . . . . . . . . . . . . . 22

Figure 2.7: Examples of one-point and two-point crossover. . . . . . . . . . . . . 25

Figure 2.8: Example of mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.1: Data flow diagram of AutoRELAX process. . . . . . . . . . . . . . . 36

Figure 3.2: Encoding a candidate solution in AutoRELAX. . . . . . . . . . . . . 37

Figure 3.3: Examples of crossover and mutation operators in AutoRELAX. . . . 41

Figure 3.4: Fitness values comparison between RELAXed and unRELAXed goal
models for the RDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.5: Mean number of RELAXed goals for varying degrees of system and
environmental uncertainty for the RDM. . . . . . . . . . . . . . . . . 47

Figure 3.6: Fitness values comparison between AutoRELAXed and SAW-optimized
AutoRELAXed goal models for the RDM. . . . . . . . . . . . . . . . . 49

Figure 3.7: Fitness values of SAW-optimized AutoRELAXed goal models in a single
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.8: Comparison of SAW-optimized fitness values from different trials in a
single environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



Figure 3.9: Fitness values comparison between RELAXed and unRELAXed goal
models for the SVS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.10: Mean number of RELAXed goals for varying degrees of system and
environmental uncertainty for the SVS. . . . . . . . . . . . . . . . . 55

Figure 3.11: Fitness values comparison between AutoRELAXed and AutoRELAX-SAW

goal models for the SVS. . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.12: Comparison of SAW-optimized fitness values from different trials in a
single environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.1: Example code to update data mirror capacity. . . . . . . . . . . . . . 65

Figure 4.2: Data flow diagram of Fenrir approach. . . . . . . . . . . . . . . . . . 67

Figure 4.3: Sample Fenrir genome representation for the RDM application. . . . . 67

Figure 4.4: Example of weighted call graph. . . . . . . . . . . . . . . . . . . . . 69

Figure 4.5: Novelty value comparison between Fenrir and random search. . . . . . 72

Figure 4.6: Unique execution paths. . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.1: Comparison between standard test case and adaptive test case. . . . 81

Figure 5.2: MAPE-T feedback loop. . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.1: DAS configurations and associated adaptive test plans. . . . . . . . . 104

Figure 6.2: Example of test case configuration for TS1.0 and TS1.1. . . . . . . . 106

Figure 6.3: Veritas example output tuple. . . . . . . . . . . . . . . . . . . . . . . 112

Figure 6.4: Proteus workflow diagram. . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 6.5: Veritas workflow diagram. . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 6.6: Examples of test case adaptation. . . . . . . . . . . . . . . . . . . . . 123

Figure 6.7: Average number of irrelevant test cases executed for each experiment. 127

Figure 6.8: Average number of false positive test cases for each experiment. . . . 128

Figure 6.9: Average number of false negative test cases for each experiment. . . . 129

xiii



Figure 6.10: Cumulative number of executed test cases for each experiment. . . . 130

Figure 6.11: Comparison of fitness between Veritas and Control. . . . . . . . . . . . 131

Figure 6.12: Comparison of false negatives between Veritas and Control. . . . . . . 132

Figure 6.13: Average number of irrelevant test cases for combined experiments. . 134

Figure 6.14: Average number of false positive test cases for combined experiments. 135

Figure 6.15: Average number of false negative test cases for combined experiments. 136

Figure 6.16: Average test case fitness for combined experiments. . . . . . . . . . . 137

Figure 6.17: Comparison of average test case fitness values for RELAXed test cases. 140

Figure 6.18: Comparison of average test case failures for RELAXed test cases. . . . 141

Figure 7.1: Amount of time (in seconds) to execute RDM application in different
testing configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 7.2: Amount of memory (in kilobytes) consumed by the RDM application
in different testing configurations. . . . . . . . . . . . . . . . . . . . . 151

Figure 7.3: Average of calculated utility values throughout RDM execution in
different testing configurations. . . . . . . . . . . . . . . . . . . . . . 152

Figure 7.4: Average amount of utility violations throughout RDM execution in
different testing configurations. . . . . . . . . . . . . . . . . . . . . . 153

Figure 7.5: Number of adaptations performed throughout RDM execution in dif-
ferent testing configurations. . . . . . . . . . . . . . . . . . . . . . . 155

Figure 7.6: Amount of time (in seconds) to execute optimized RDM application
in different parallel and non-parallel testing configurations. . . . . . . 157

Figure 7.7: Amount of time (in seconds) to execute optimized network controller
function in different parallel and non-parallel testing configurations. . 159

Figure 7.8: Average of calculated utility values throughout RDM execution in
different parallel and non-parallel testing configurations. . . . . . . . 160

Figure 7.9: Average number of utility violations encountered throughout RDM
execution in different parallel and non-parallel testing configurations. 161

xiv



Figure 7.10: Number of adaptations performed throughout RDM execution in dif-
ferent parallel and non-parallel testing configurations. . . . . . . . . . 162

Figure 8.1: KAOS goal model of the remote data mirroring application. . . . . . 170

Figure 8.2: Fitness values comparison between RELAXed and unRELAXed goal
models for the RDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 8.3: Fitness values comparison between AutoRELAXed and SAW-optimized
AutoRELAXed goal models for the RDM. . . . . . . . . . . . . . . . . 172

Figure 8.4: RELAXed KAOS goal model of the remote data mirroring application.174

Figure 8.5: Fitness values comparison between RELAXed and unRELAXed goal
models for a scaled RDM. . . . . . . . . . . . . . . . . . . . . . . . . 176

Figure 8.6: Comparison of average number of RDM errors between original and
updated RDM application across 50 trials. . . . . . . . . . . . . . . . 179

Figure 8.7: Cumulative number of irrelevant test cases executed for each experiment.181

Figure 8.8: Cumulative number of false positive test cases for each experiment. . 182

Figure 8.9: Cumulative number of false negative test cases for each experiment. . 183

Figure 8.10: Cumulative number of executed test cases for each experiment. . . . 184

Figure 8.11: Average test case fitness values calculated for each experiment. . . . 185

Figure A.1: KAOS goal model of the smart vacuum system application. . . . . . 214

Figure A.2: KAOS goal model of the remote data mirroring application. . . . . . 230

xv



Chapter 1

Introduction

Cyber-physical systems are being increasingly implemented as safety-critical sys-

tems [74]. Moreover, these software systems can be exposed to conditions for which they

were not explicitly designed, including unexpected environmental conditions or unforeseen

system configurations. For domains that depend on these safety-critical systems, such as

patient health monitoring or power grid management systems, unexpected failures can have

costly results. In response to these issues, dynamically adaptive systems (DAS) have been

developed to constantly monitor themselves and their environments, and if necessary, change

their structure and behavior to handle unexpected situations. Providing run-time assurance

that a DAS is consistently satisfying its high-level objectives and requirements remains a

challenge, as unexpected environmental configurations can place a DAS into a state in which

it was not designed to execute. For this dissertation, environmental uncertainty refers to

unanticipated combinations of environmental conditions. In contrast, system uncertainty

encompasses imprecise or occluded sensor measurements, sensor failures, unintended system

interactions, and unexpected modes of operation. As such, we developed new techniques to

address assurance in the face of both types of uncertainty at different levels of abstraction,

including requirements, code, and testing.

1



While software engineering techniques have historically focused on design-time ap-

proaches for developing a DAS [47, 59, 114] and providing design-time assurance [48, 50,

78, 85], increasingly, more efforts are targeting assurance and system optimization at run

time [15, 36, 39, 78]. As cyber-physical systems continue to proliferate, techniques are needed

to ensure that their continued execution satisfies their key objectives. For example, agent-

based approaches have been developed to provide continual run-time testing [78, 79] in order

to verify that the system is behaving as expected. However, these approaches tend to run in

a parallel, sandboxed environment. Conversely, we focus on addressing assurance concerns

within the production environment.

This dissertation presents a suite of techniques at different levels of abstraction that

collectively addresses assurance concerns for a DAS that is experiencing both system and

environmental uncertainty. Specifically, our techniques provide automated assurance that

a DAS continually satisfies its requirements and key objectives within its requirements,

implementation, and testing levels of abstraction. Where applicable, we leverage search-

based software engineering heuristics to augment our techniques.

1.1 Problem Description

The field of software engineering strives to design systems that continuously satisfy

requirements even as environmental conditions change throughout execution [21, 94, 113].

To this end, a DAS provides an approach to software design that can effectively respond

to unexpected conditions that may arise at run time by performing a self-reconfiguration.

Design and requirements elicitation for a DAS can begin with a high-level, graphical de-

scription of system objectives, constraints, and assumptions in the form of a goal model

that can be used as a basis for the derivation of requirements [21]. Adaptation strategies

for performing system reconfiguration can then be defined to mitigate previously identified

system and environmental conditions in order to effectively respond to known or expected

2



situations [22, 47, 81]. The DAS then monitors itself and its environment at run time to

determine if the identified conditions are negatively impacting the DAS, and if so, performs

a self-reconfiguration to mitigate those conditions.

In addition to design-time assurance, verification and validation activities are required

to provide a measure of assurance that the DAS succeeds in satisfying key objectives and

requirements. However, standard testing techniques must be augmented when testing a

DAS as it may exhibit unintended behaviors or follow unexpected paths of execution in the

face of uncertainty [45]. Moreover, due to the complex and adaptive nature of a DAS, run-

time techniques are necessary to continually validate that the DAS satisfies its requirements

even as the environment changes [19, 41, 43, 44, 48]. These concerns imply that assurance

techniques for a DAS must not only be applied at design time, but also at run time.

As a result, we have identified the following challenges that currently face the DAS

research community:

• Provide effective assurance that the DAS will satisfy its objectives in different operating

conditions at run time.

• Anticipate and mitigate unexpected sources of uncertainty in both the system and

environment.

• Leverage and extend traditional testing techniques to handle the needs of a complex

adaptive system.

1.2 Thesis Statement

This research is intended to explore methods for addressing uncertainty with a focus on

providing assurance at different levels of abstraction in a DAS. In particular, techniques for

facilitating requirements adaptation, exploration of DAS behaviors expressed as a result of

exposure to different combinations of system and environmental uncertainty, and performing

run-time testing are examined to provide assurance for the DAS.

3



1.2.0.0.1 Thesis Statement.

Evolutionary techniques can be leveraged to address assurance concerns for adaptive

software systems at different levels of abstraction, including at the system’s requirements,

implementation, and run-time execution levels, respectively.

1.3 Research Contributions

The overarching objective of this dissertation is to provide assurance for a DAS at

different levels of abstraction. We address this goal with three key research objectives.

First, we provide a set of techniques that mitigate uncertainty by providing assurance for a

DAS’s requirements, implementation, and run-time behavior. Second, automation is a key

driving force to designing, performing, and analyzing the particular issues presented by each

assurance technique. Third, we provide a feedback loop to enable testing of a DAS at run

time. To accomplish these key objectives, we developed the following set of techniques:

1. At the requirements level, we provide an automated technique for mitigating uncer-

tainty at the DAS requirements level by exploring how goals and requirements can

be made more flexible by automatically introducing RELAX operators [21, 113], each

of which map to a fuzzy-logic membership function. We also introduce a method

for optimizing the exploration process of goal RELAXation for different environmen-

tal contexts. To this end, we introduce AutoRELAX [42, 88] and AutoRELAX-SAW [42],

respectively. AutoRELAX provides requirements-based assurance by exploring how RE-

LAX operators can introduce flexibility to a system goal model. AutoRELAX-SAW, in

turn, extends AutoRELAX by balancing the competing concerns that manifest when the

DAS experiences different combinations of environmental conditions.

2. At the implementation level, we develop an automated technique to explore and opti-

mize run-time execution behavior of a DAS as it experiences diverse combinations of

4



operating conditions. In particular, we introduce Fenrir [45], a technique that leverages

novelty search [64] to determine the specific path of execution that a DAS follows under

different sets of operating conditions, thereby potentially uncovering unanticipated or

anomalous behaviors.

3. At the run-time execution level, we define and implement a feedback loop that pro-

vides run-time assurance for a DAS through online monitoring and adaptive testing.

Specifically, we introduce the MAPE-T feedback loop [44], a technique that defines how

run-time testing is enabled via Monitoring, Analyzing, Planning, and Executing, linked

together by Testing knowledge, thereby taking a proactive approach in ensuring that

a DAS continually exhibits correct behaviors. Furthermore, we introduce techniques

to facilitate run-time adaptation of test suites [41] and test cases [43] to ensure that

assurance is continually provided even as environmental conditions change over time.

Figure 1.1 presents a high-level description of how each technique facilitates assurance at

the requirements, implementation, and testing levels. First, AutoRELAX (1) and AutoRELAX-

SAW (2) assess and mitigate both system and environmental uncertainty at the requirements

level. Next, Fenrir (3) explores how program behavior, as defined by DAS code, is affected

by system and environmental uncertainty. Techniques (1), (2), and (3) are intended to be

performed at design time. Next, the MAPE-T feedback loop (4) provides run-time assurance

for both the DAS’s requirements and implementation by performing run-time testing in the

face of uncertainty. The MAPE-T loop is supported by Proteus (5) and Veritas (6), where

Proteus and Veritas each address assurance by ensuring that test suites and test cases, respec-

tively, remain relevant as environmental conditions change and the DAS transitions to new

system configurations. As the operating context evolves, Proteus and Veritas ensure that test

suites and test cases correctly evolve in turn. Techniques (4), (5), and (6) are intended to

be performed at run time.

5



optimized, RELAXed 
goal model

DAS

(4)
MAPE-T 

Feedback 
Loop

(3)
Fenrir

(6)
Veritas

(5)
Proteus

Code Traces
Test Suites & 

Test Cases
RELAXed Goal 

Model

Code

novel code
traces

Goal Model
(2)

AutoRELAX
-SAW

(1)
AutoRELAX

requirements 
traceability

`

verification of run-
time behavior

execution & 
adaptation

adaptive 
test plans

optimized 
test cases

test 
suites

test 
cases

Technique Data Flow

Data store Boundary

Legend

Design-time technique

Run-time technique

Figure 1.1: High-level depiction of how our suite of techniques impacts a DAS at varying
levels of abstraction.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides back-

ground information on enabling technologies used for our research, including DASs, goal-

oriented requirements modeling, evolutionary computation, the RELAX requirements spec-

ification language, and software testing. Chapter 2 also presents background information

on our case studies used to validate our techniques: intelligent vacuum systems and remote

data mirroring. Next, Chapter 3 presents AutoRELAX and AutoRELAX-SAW, techniques for

mitigating the effects of environmental uncertainty at the system requirements level. Then,

Chapter 4 describes Fenrir, our technique for exploring the impact of environmental uncer-

tainty on DAS behavior at the code level. Next, Chapter 5 introduces the MAPE-T feedback

loop and describes the key elements of the feedback loop. Chapter 6 then describes a real-

6



ization of MAPE-T with two techniques, Proteus and Veritas, that perform online adaptation

of test suites and test cases, respectively, to ensure testing activities remain relevant to the

operating context even as the DAS reconfigures and the environment changes over time.

Following, Chapter 7 discusses the impact that a run-time testing framework can have on a

DAS and also presents techniques for optimizing run-time testing. Chapter 8 then presents

an end-to-end example where each of our techniques were applied to the RDM case study in

a stepwise process. Finally, Chapter 9 presents our conclusions and summarizes the research

contributions presented in this dissertation and then discusses future directions for this line

of work.

7



Chapter 2

Background and Application

This chapter provides relevant background information on the topics discussed within

this dissertation: dynamically adaptive systems (DAS), smart vacuum systems (SVS), re-

mote data mirroring (RDM) networks, requirements engineering, and evolutionary com-

putation (EC). First, we overview the components of a DAS and its self-reconfiguration

capabilities. Next, we describe the SVS and RDM applications, including the implementa-

tion details of each as they are used throughout this dissertation as motivating examples.

Following, we describe requirements engineering from the perspective of system goal models

and also overview the RELAX specification language. We then present EC and how it can be

used to explore complex search spaces. Finally, we describe software testing and highlight

common approaches for performing testing.

2.1 Dynamically Adaptive Systems

The state-space explosion of possible combinations of environmental conditions that a

system may experience during execution precludes their total enumeration [21, 113]. More-

over, system requirements may change after initial release, thus potentially requiring a new

software release or patch. A DAS provides an approach to continuously satisfy requirements

by changing its configuration and behavior at run time to mitigate changes in its require-

8



ments or operating environment [68, 81]. As such, we consider a DAS to comprise a set of

non-adaptive configurations connected by adaptive logic [114]. Figure 2.1 illustrates our ap-

proach for implementing a DAS. Specifically, the example DAS comprises n configurations

(C1..n), each of which is connected by adaptive logic (A). Each configuration Ci satisfies

requirements for a given operating context and each path of adaptation logic defines the

steps and conditions necessary to move from a source DAS configuration to a target DAS

configuration (e.g., from C1 to C2).

C1 C2 Cn

An1

A1n

A2n

An2

A12

A21

Legend

Ci
DAS

configuration
adaptive
logic

Figure 2.1: Structure of dynamically adaptive system.

Some DASs are embedded systems and achieve dynamic adaptations via mode

changes [77]. Mode changes can enable run-time adaptation in situations in which it is

either not safe or practical to upload or offload software on executing systems, and thus,

mode changes are required to capture the effects of dynamic reconfiguration. In particular,

mode changes enable a DAS to self-reconfigure by selecting discrete modes of operation,

where a mode is characterized by a particular configuration of system resources and pa-

rameters. For example, an autonomous wheeled robot may be characterized by different

pathfinding modes and can transition from an exploration mode to a wall-following mode

based on input from monitored sensors and a central controller.

9



2.2 Smart Vacuum System

This section describes the smart vacuum system (SVS) application that is used as a case

study throughout this dissertation. First, we overview SVSs in general, present our derived

goal model of the SVS, and then discuss our implementation of the SVS.

2.2.1 Overview of Smart Vacuum System

SVSs are currently available in the consumer market, with a notable example being

iRobot’s Roomba.1 An SVS must clean a desired space by using sensor inputs to balance path

planning, power conservation, and safety concerns. Common sensors available to an SVS

include bumper sensors, motor sensors, object sensors, and internal sensors. Bumper sensors

provide feedback when the robot collides with an object, such as a wall or a table. Motor

sensors provide information regarding wheel velocities, suction speed, and power modes.

Object sensors, for example infrared or camera sensors, can be used to detect and identify

different types of entities near the SVS. Internal sensors provide feedback regarding sensor

health or the overall state of the SVS. A robot controller processes data from each sensor to

determine an optimal path plan, conserve battery power as necessary, avoid collisions with

objects that may damage the SVS or the object itself (e.g., a pet or a child), and avoid

objects which, if vacuumed, could damage the internal components of the SVS (e.g., liquid

or large dirt particle).

Due to its relative level of sophistication, an SVS can also be modeled as an adaptive

system [7, 8]. Specifically, the SVS can perform mode changes at run time [77] as a means

to emulate the self-reconfiguration capabilities of a DAS. Each mode provides the SVS with

the capability to select an optimal configuration of system parameters to properly mitigate

uncertainties within the system and environment. An example of system uncertainty is

noisy or untrustworthy sensor data, and an example of environmental uncertainty is the

1See http://www.irobot.com/

10

http://www.irobot.com/


possibility for a liquid to have been spilled in the room in which the SVS is operating.

Possible SVS modes include different pathfinding algorithms, reduced power consumption

modes, and obstacle avoidance measures. Each mode of operation can be configured in a

different manner, leading to an explosion of possible configuration states.

Figure 2.2 presents a KAOS goal model for the SVS application. The SVS must suc-

cessfully clean at least 50% of the small dirt particles within the room (A). To do so, the

SVS must operate efficiently (B) to conserve battery power (F) while still providing both

movement (E) and suction (G) capabilities. The SVS can operate in a normal power mode

for speed (L) and suction (N), or lower its power consumption (F) by operating in a reduced

power mode for speed (K) and/or suction (M). The SVS must also clean the room effectively

(C) by selecting an appropriate path plan. The SVS can both clean and explore the room by

selecting either a random (O) or straight (P) path for 10 seconds (H), or focus on a smaller

area by selecting the 20 second (I) spiral (Q) path plan. Moreover, the SVS must also satisfy

safety objectives (D). If a safety violation occurs, then the SVS must activate a failsafe mode

(J). Safety violations include collisions with specific obstacles (e.g., pets or children), falling

down stairs (R), or collisions with objects that can damage the SVS (S).

2.2.2 Smart Vacuum System Implementation

This section describes the implementation of the SVS that is used throughout this dis-

sertation. The SVS was configured as an autonomous robot that must efficiently, effectively,

and safely vacuum dirt particles within a room while avoiding obstacles and objects that

may cause harm to the SVS. Figure 2.3 provides a screenshot of the SVS simulation as im-

plemented within the Open Dynamics Engine physics platform.2 The screenshot shows the

SVS within a simulated room, containing small dirt particles (i.e. small dark cubes), large

dirt particles (i.e., large dark cubes), a liquid spill (i.e., small yellow disc), and two obstacles

(i.e., thin red pillars) that the SVS must avoid.

2See http://www.ode.org.

11

http://www.ode.org


Achieve [50% 
Clean]

Maintain 
[Suction]

Achieve 
[Movement]

Achieve [Cleaning 
Efficiency]

   Vacuum

Achieve [Reduced 
Speed]

Achieve [Normal  
Speed]

Achieve [Reduced 
Suction]

Achieve [Normal 
Suction]

  Motors

(A)

(B)

(E) (G)

(K) (L) (M) (N)

Achieve [BatteryPower 
> 5%]

(F)

  Battery 
  Sensor

…

(A) Left half of smart vacuum system goal model.

Achieve [Cleaning 
Effectiveness]

Achieve [Path Plan 
for 10 Seconds]

Achieve [Spiral 
Path]

Achieve [Straight 
Path]

Achieve [Random 
Path]

   Bumper
   Sensors

Achieve [Clean Area 
for 20 seconds]

(C)

(H) (I)

(O) (P) (Q)

Maintain 
[Safety]

FailSafeEnabled If 
SafetyCheckFailure

Avoid 
[Obstacles]

Avoid [Self 
Damage]

Object 
Sensor

    Suction 
    Sensor

    Cliff 
      Sensor

(D)

(J)

(R) (S)

    Internal 
    Sensor

    Controller

…

    Goal

Refinement

Agent

Requirement / Expectation

Legend

(B) Right half of smart vacuum system goal model.

Figure 2.2: KAOS goal model of the smart vacuum system application.

12



Figure 2.3: Screenshot of SVS simulation environment.

The SVS (i.e., large yellow disc) comprises a controller and a set of available sensors,

including an array of bumper sensors (i.e., small gray spheres attached to SVS), an array of

cliff sensors (i.e., gray rectangles attached to SVS), an object sensor, an internal sensor, and

wheel and suction sensors. The bumper sensor array provides feedback upon contact with

a wall or object. The cliff sensor array detects downward steps and is intended to prevent

damage from falling. The object sensor detects the distance between the SVS and nearby

objects and also provides information regarding the type of object that was detected. The

internal sensor monitors the SVS to determine if any damage has occurred, such as vacuuming

liquid or large dirt particles. Wheel and suction sensors provide feedback regarding the

velocity and suction power of the wheel and suction motors, respectively, and also provide

information regarding the health of each. Lastly, a controller aggregates the information

from all sensors to determine an appropriate path plan for the robot to follow, as well as a

power consumption plan to determine if the SVS must take measures to conserve battery

power.

13



To illustrate our implementation, we now describe an example of the SVS performing

mode changes. At the start of the simulation, the SVS selects a SPIRAL path plan that

is to be executed for 20 seconds. Within 10 seconds, the cliff sensor detects that the SVS

is near a downward step and therefore changes its mode to a cliff avoidance plan, pausing

the SPIRAL path plan while the SVS begins to move in reverse, away from the step. The

cliff avoidance mode runs for 5 seconds to ensure that the SVS has avoided the step, and

then resumes the SPIRAL path plan mode for the remaining 5 seconds. At 20 seconds,

the SVS selects a new path plan mode (e.g., STRAIGHT, 10 seconds) and begins to move

in a straight line, as opposed to the spiraling path it followed previously. After executing

for several minutes, the SVS’s internal sensor detects that the amount of available battery

power is falling below a predefined threshold (e.g., 50% remaining). The SVS then selects

a power conservation mode and reduces power to its wheels, slowing the overall velocity of

the SVS while effectively extending its battery life. This process of mode changes reflects

how an onboard system-based DAS adapts and selects new configurations at run time.

2.3 Remote Data Mirroring

This section describes the remote data mirroring (RDM) application that is used as a

case study throughout this dissertation. First, we overview RDMs in general, present our

derived goal model of the RDM, and then discuss our implementation of the RDM.

2.3.1 Overview of Remote Data Mirroring Application

RDM is a data protection technique for maintaining data availability and preventing

data loss by storing copies (i.e., replicates) on servers (i.e., data mirrors) in physically remote

locations [56, 60]. By replicating data on remote data mirrors, an RDM can provide contin-

uous access to data and moreover ensure that data is not lost or damaged. In the event of

an error or failure, data recovery can be facilitated by either requesting or reconstructing the

14



lost or damaged data from another active data mirror. Additionally, the RDM network must

replicate and distribute data in an efficient manner by minimizing consumed bandwidth and

providing assurance that distributed data is not lost or corrupted.

The RDM can reconfigure at run time in response to uncertainty, including dropped or

delayed messages and network link failures. Furthermore, each network link incurs an opera-

tional cost that directly impacts a controlling budget and also has a measurable throughput,

latency, and loss rate. Collectively, these metrics determine the overall performance and

reliability of the RDM. To mitigate unforeseen issues, the RDM can reconfigure in terms

of its network topology and data mirroring protocols. Specifically, the RDM can selectively

activate and deactivate network links to change its overall topology. Furthermore, each data

mirror can select a remote data mirroring protocol, defined as either synchronous or asyn-

chronous propagation. Synchronous propagation ensures that the receiving or secondary

data mirror both receives and writes incoming data before completion at the primary or

sending site. Batched asynchronous propagation collects updates at the primary site that

are periodically transmitted to the secondary site. Given its complex and adaptive nature,

the RDM application can be modeled and implemented as a DAS [89].

Figure 2.4 provides a KAOS goal model of the RDM application. Specifically, the RDM

must maintain remotely stored copies of data (A). To satisfy this goal, the RDM must

maintain operational costs within a fixed budget (B) while ensuring that the number of

disseminated data copies matches the number of available servers (C). To satisfy Goal (B),

the RDM must be able to measure all network properties (D) while ensuring that both the

minimum number of network links are active (E) and that the network is unpartitioned (F).

To satisfy Goal (C), the RDM must ensure that risk (G) and time for data diffusion (H) each

remain within pre-defined constraints, and moreover, the cost of network adaptation must

be minimized (I). To satisfy Goals (D) – (I), RDM agents, such as sensors and actuators,

must be able to measure and effect all available network properties, respectively.

15



(J) (K) (L) (M) (N)

Maintain 
[DataAvailable]

Achieve [Network 
Partitions == 0]

Achieve [Measure 
Network Properties]

Maintain [Operational 
Costs  ≤    Budget]

Network 
Actuator

Achieve 
[Cost 

Measured]

Achieve 
[Activity 

Measured]

Achieve 
[LossRate 

Measured]

Link 
Sensor

(A)

(B)

(D) (F)Achieve [Minimum Num 
Links Active]

(E)

RDM
Sensor

…

Achieve 
[Workload 
Measured]

Achieve 
[Capacity 

Measured]

Achieve [Link 
Deactivated]

(O)

Achieve [Link 
Activated]

(P)

(A) Left half of remote data mirroring goal model.

Achieve [NumDataCopies == 
NumServers]

(C)

Network 
Controller

Adaptation 
Controller

…

Achieve [DataAtRisk  ≤  
RiskThreshold]

(G) Achieve [DiffusionTime  ≤  
MaxTime]

(H) Achieve [Adaptation 
Costs == 0]

(I)

(Q)

Achieve 
[Send Data 

Synchronously]

(R)

Achieve 
[Data Sent == 

Data Received]

(S)

Achieve 
[Send Data 

Asynchronously]

(T)

Achieve 
[Data Received 
== Data Sent]

(U)
Achieve 

[Num Active 
Data Mirrors == 
Num Mirrors]

(V)

Achieve 
[Num Passive Data 

Mirrors == 0]

(W)

Achieve 
[Num Quiescent 

Data Mirrors == 0]

    Goal

Refinement

Agent

Requirement / Expectation

Legend

(B) Right half of remote data mirroring goal model.

Figure 2.4: KAOS goal model of the remote data mirroring application.

16



2.3.2 Remote Data Mirroring Implementation

This section describes the implementation of the RDM application used for case studies

within this dissertation. Specifically, we modeled the RDM network as a completely con-

nected graph, where each node represents an RDM and each edge represents a network link.

In total, the RDM network comprises 25 RDMs with 300 network links. Each link can be

activated or deactivated, and while active, can be used to transfer data between RDMs. An

operational model previously introduced by Keeton et al. [60] was used to determine perfor-

mance attributes for each RDM and network link. The RDM application was simulated for

150 time steps. During each simulation, 20 data items were inserted into randomly selected

RDMs at different times in the simulation. The selected RDMs were then responsible for

distributing the data items to all other RDMs within the network.

The RDM network is subject to uncertainty throughout execution. For example, un-

predictable network link failures and dropped or delayed messages can affect the RDM at

any point during the simulation. In response, the network can self-reconfigure to move to a

state that can properly mitigate these setbacks. To this end, each RDM implements the dy-

namic change management (DCM) protocol [63], as well as a rule-based adaptation engine,

to monitor goal satisfaction and determine if a reconfiguration of topology or propagation

method is required. Upon determining that self-reconfiguration is necessary, a target net-

work configuration and set of reconfiguration steps are generated to ensure a safe transition

to the new configuration.

2.4 Requirements Engineering

This section presents background information on goal-oriented requirements engineering,

goal-oriented requirements modeling, and the RELAX specification language.

17



2.4.1 Goal-Oriented Requirements Engineering

An integral part of software engineering is in eliciting, analyzing, and documenting

objectives, constraints, and assumptions required for a system-to-be to solve a specific prob-

lem [105]. In the 4-variable model proposed by Jackson and Zave [55], the problem to be

solved by the system-to-be exists within some organizational, technical, or physical context.

As a result, the system-to-be shares a boundary with the area surrounding the problem,

interacting with that world and its stakeholders. As a result, the system-to-be must monitor

and control parts of this shared boundary to solve the problem.

Goal-oriented requirements engineering (GORE) extends the 4-variable model with the

concept of a goal. Specifically, a goal guides the elicitation and analysis of system require-

ments based upon key objectives of the system-to-be. Furthermore, the goal must capture

stakeholder intentions, assumptions, and expectations [105]. Several types of goals exist: a

functional goal declares a service that a system-to-be must provide to its stakeholders; a

non-functional goal imposes a quality constraint upon delivery of those services; a safety

goal is concerned with critical safety properties of a system-to-be; and a failsafe goal ensures

that the system-to-be has a fallback state in case of critical error. Additionally, a functional,

safety, or failsafe goal may be declared invariant (i.e., must always be satisfied; denoted by

keyword “Maintain” or “Avoid”) or non-invariant (i.e., can be temporarily unsatisfied; de-

noted by keyword “Achieve”). Goals may also be satisficed, or satisfied to a certain degree,

throughout execution [24].

2.4.2 Goal-Oriented Requirements Modeling

The GORE process gradually decomposes high-level goals into finer-grained sub-

goals [105], where the semantics of goal decomposition are captured graphically by a directed

acyclic graph. Each node within the graph represents a goal and each edge represents a goal

refinement. Figure 2.5 presents a KAOS goal model [25, 105] based on the SVS that is

18



used as a case study throughout this dissertation. KAOS depicts goals and refinements as

parallelograms with directed arrows that point towards the higher-level (i.e., parent) goals.

KAOS also supports AND/OR refinements, where an AND-decomposition is satisfied only

if all its subgoals are also satisfied, and an OR-decomposition is satisfied if at least one of

its subgoals is satisfied. Generally, AND-refinements capture objectives that must be per-

formed in order to satisfy the parent goal, and OR-refinements provide alternative paths for

satisfying a particular goal.

Goal decomposition continues until each goal has been assigned to an agent capable of

achieving that goal. An agent represents an active system component that restricts its behav-

ior to fulfill leaf-level goals (i.e., requirements/expectation goals) [105]. There are two types

of agents: system and environmental. A system agent is an automated component controlled

by the system-to-be, and an environmental agent is often a human or some component that

cannot be controlled by the system-to-be.

For example, Figure 2.5 presents an example of a partial KAOS goal model that defines

a subset of the high-level goals for the SVS. In particular, Goal (B) is decomposed into

Goals (E), (F), and (G) via an AND-decomposition. Goal (B) can only be satisfied if and

only if Goals (E), (F), and (G) are also satisfied. Furthermore, Goal (G) is decomposed

via an OR-decomposition into Goals (M) and (N), implying that Goal (G) is satisfied if at

least one subgoal is also satisfied. Leaf-level goals (K), (L), (M), and (N) represent low-level

requirements or expectations. Lastly, the hexagonal objects (e.g., Motors, Battery Sensor,

Vacuum) represent agents that must achieve the leaf-level goals.

2.4.3 RELAX Specification Language

RELAX [21, 113] is a requirements specification language used to identify and assess

sources of uncertainty. RELAX declaratively specifies the sources and impacts of uncertainty

at the shared boundary between the execution environment and system-to-be [55]. Further-

more, a requirements engineer organizes this information into three distinct elements: ENV,

19



Achieve [50% 
Clean]

Maintain 
[Suction]

Achieve 
[Movement]

Achieve [Cleaning 
Efficiency]

   Vacuum

Achieve [Reduced 
Speed]

Achieve [Normal  
Speed]

Achieve [Reduced 
Suction]

Achieve [Normal 
Suction]

  Motors

(A)

(B)

(E) (G)

(K) (L) (M) (N)

Achieve [BatteryPower 
> 5%]

(F)

  Battery 
  Sensor

…

Figure 2.5: Partial KAOS goal model of smart vacuum system application.

MON, and REL. ENV defines environmental properties that can be observed by the DAS’s

monitoring infrastructure. MON specifies the elements that are available within the monitor-

ing infrastructure. REL defines the method to compute a quantifiable value of ENV properties

from their corresponding MON elements.

The semantics of RELAX operators are defined in terms of fuzzy logic and specify the

extent that a non-invariant goal can be temporarily unsatisfied at run time [113]. Table 2.1

describes the intent of each RELAX operator. For instance, in Figure 2.5, the RELAX oper-

ator AS CLOSE AS POSSIBLE TO 0.05 can be applied to Goal (F) to allow flexibility in the

remaining amount of battery power for the system.

Figure 2.6 gives the fuzzy logic membership functions that have been implemented

for RELAX and used within this dissertation. Specifically, the AS EARLY AS POSSIBLE and

AS FEW AS POSSIBLE use the left shoulder function from Figure 2.6(A). The AS LATE AS

POSSIBLE and AS MANY AS POSSIBLE operators use the right shoulder function from Fig-

20



Table 2.1: RELAX operators [113].

RELAX Operator Informal Description Fuzzy-logic

Membership

Function

AS EARLY AS POSSIBLE φ φ becomes true as close to the

current time as possible.

Left Shoulder

AS LATE AS POSSIBLE φ φ becomes true as close to time

t = ∞ as possible.

Right shoulder

AS CLOSE AS POSSIBLE TO

[frequency φ]

φ is true at periodic intervals

as close to frequency as possi-

ble.

Triangle

AS FEW AS POSSIBLE φ The value of a quantifiable

property φ is as close as pos-

sible to 0.

Left shoulder

AS MANY AS POSSIBLE φ The value of a quantifiable

property φ is maximized.

Right shoulder

AS CLOSE AS POSSIBLE TO

[quantity φ]

The value of a quantifiable

property φ approximates a de-

sired target value quantity.

Triangle

ure 2.6(B). Lastly, the AS CLOSE AS POSSIBLE TO operators use the triangle function from

Figure 2.6(C).

Cheng et al. [21] previously proposed a manual approach for applying RELAX operators

to KAOS non-invariant goals. A requirements engineer must first specify the ENV, MON, and

REL elements necessary to define the sources of uncertainty within the operational context.

Next, each goal must be designated as either invariant or non-invariant, where invariant goals

are precluded from RELAXation. For each non-invariant goal, the engineer must determine

21



Desired 
Value

Measured 
Property

Max. Value 
Allowed

1.0

0.0
Desired Property

(A) Left shoulder function

Desired 
Value

Measured 
Property

Min. Value 
Allowed

1.0

0.0
Desired Property

(B) Right shoulder function

Desired 
Value

Measured 
Property

Min. Value 
Allowed

1.0

0.0
Desired Property

Max. Value 
Allowed

(C) Triangle shoulder function

Figure 2.6: Fuzzy logic membership functions.

if any of the defined sources of uncertainty can cause the goal to become unsatisfied. The

engineer then applies an appropriate RELAX operator to restrict how the particular goal

may be temporarily violated. For a modest-sized goal model with minimal sources of uncer-

22



tainty, many possible combinations of RELAXed goals are possible, thereby necessitating an

automated approach for applying RELAX operators [42, 88].

2.5 Evolutionary Computation

Evolutionary computation (EC) comprises a family of stochastic, search-based tech-

niques that are considered to be a sub-field of artificial and computational intelligence [46, 57].

Genetic algorithms [53], genetic programming [62], evolutionary strategies [96], digital evo-

lution [80], and novelty search [64] are different approaches to EC. These techniques are

generally used to solve problems in which there is a large solution space, such as compli-

cated optimization or search problems within software engineering [20, 42, 49, 50, 51, 52],

robotics [62], and land use management [23]. EC techniques typically implement evolution

by natural selection as a means to guiding the search process towards optimal areas within

the solution space.

To implement an EC approach, the parameters that comprise a candidate solution must

be fully defined. These parameters must be encoded into a data structure that enables op-

erations specified by the corresponding algorithm [46] to facilitate evolutionary search. As

EC is grounded in Darwinian evolution, the use of biologically-inspired terms is relevant.

In particular, a gene represents an element or parameter directly manipulable by the evolu-

tionary algorithm. A set of genes is known as a genome and represents a candidate solution

or individual. Lastly, the set of genomes represents a population. Evolutionary operations,

such as crossover, mutation, and selection can be applied to a genome over a number of

generations, or iterations, to simulate evolution.

2.5.1 Genetic Algorithms

A genetic algorithm [53] is a stochastic, search-based heuristic grounded in EC that can

be used to explore the space of possible solutions for complex optimization problems. A

23



genetic algorithm typically represents each possible solution (i.e., individual) in an encoded

fashion that is amenable to manipulation and evaluation. For example, Table 2.2 illustrates

a typical genetic algorithm encoding, wherein a vector of numbers comprises the parameters

necessary to represent a particular solution. The data within this table represents k candidate

solutions with an encoding of length n. Each parameter value is represented as a floating

point number, and directly corresponds to a feature within the candidate solution. Candidate

solutions can be encoded in many other formats as well, including bit strings and variable-

length vectors.

Table 2.2: Sample genetic algorithm encoding.

Solution Parameter A Parameter B ... Parameter n

Individual1 0.2 1.5 ... pn1

Individual2 0.4 1.2 ... pn2

... ... ... ... ...

Individualk pAk pBk ... pnk

A set of candidate solutions must undergo an evolutionary process to guide the search

towards an optimal solution. To do so, a set of evolutionary operations is executed upon the

population until a termination criterion, typically a specific number of generations, is per-

formed. These operations include population generation, performing crossover and mutation,

and fitness evaluation with respect to predefined fitness criteria. Each of these evolutionary

operations is next described in turn.

2.5.1.1 Population Generation

At the beginning of the genetic algorithm, a population of individuals with completely

randomized parameter values is generated. Throughout each successive generation, new

individuals are created via the crossover and mutation operations. At the end of each

24



generation, the highest performing, or elite, individuals may be retained to protect the

“successful” individuals that represent a particular area of the solution space.

2.5.1.2 Crossover

The crossover operation creates new individuals by combining genetic information from

two existing individuals. Crossover is commonly applied via one-point or two-point crossover.

As demonstrated by Figure 2.7(A), one-point crossover selects a random gene within the

genome and then exchanges the genes before and after that point to create two new children.

Two-point crossover, shown in Figure 2.7(B), selects two random genes and exchanges the

genes between those two points with another individual, thereby creating two new children

as well.

1.0 1.5 0.8 0.2 3.2 0.9 1.4 0.9 0.3 3.4

0.9 1.4 0.9 0.2 3.2 1.0 1.5 0.8 0.3 3.4

(A) One-point crossover example.

1.0 1.5 0.8 0.2 3.2 0.9 1.4 0.9 0.3 3.4

1.0 1.4 0.9 0.3 3.2 0.9 1.5 0.8 0.2 3.4

(B) Two-point crossover example.

Figure 2.7: Examples of one-point and two-point crossover.

25



2.5.1.3 Mutation

The mutation operation creates a new individual by selecting a random gene from a

random individual and mutating the selected gene. Mutation provides an approach for

exploring different areas of the solution space that may not have been explored by the

genetic algorithm. Figure 2.8 provides an example of mutation, where a gene from the

parent individual is randomly mutated to create a new child individual.

1.0 1.5 0.8 0.2 3.2

1.0 1.5 0.6 0.2 3.2

Figure 2.8: Example of mutation.

2.5.1.4 Fitness Evaluation

Each candidate solution’s fitness must be calculated to determine which areas of the

solution space should be explored by retaining the highest-performing individuals. Specifi-

cally, predefined fitness criteria are applied to each candidate solution within the population,

thereby quantifying each individual’s performance. If multiple fitness functions are neces-

sary due to domain constraints, then each fitness sub-function can be combined to form a

single aggregate fitness function. One approach for combining fitness sub-functions uses a

linear weighted sum, where each weight provides a metric for the relative impact of each

sub-function.

26



2.5.2 Stepwise Adaptation of Weights

Fitness sub-functions calculate a quantifiable performance metric for specific concerns,

the aggregation of which forms an overall fitness value. Adding a weighting coefficient to

each sub-function in turn determines the relative importance, or impact, of that particular

sub-function on an aggregate fitness value (i.e., a higher weight value gives preference to a

particular fitness sub-function in the overall fitness) [31]. However, the definition of weight

values often depends upon domain knowledge of the DAS engineer or is based on observed or

calculated metrics. As a result, an automated approach to calculating fitness sub-function

weights is necessary.

The stepwise adaptation of weights (SAW) [31, 104] is a hyper-heuristic [13] for opti-

mizing the weighting coefficients for fitness sub-function equations. Specifically, the weights

are adjusted over time and the aggregate fitness value is monitored to determine if a par-

ticular combination of weights improves overall fitness. This approach can be implemented

either offline or online. An offline SAW adjusts sub-function weights following execution

of an evolutionary algorithm (EA), whereas an online SAW implementation adjusts weights

dynamically throughout execution of the EA.

For the purposes of this dissertation, we have used the online SAW approach [104] as

it provides a fast and efficient method for optimizing fitness sub-function weights. Within

online SAW, weights are seeded with values identified as optimal by a requirements engineer.

Throughout execution, feedback from the controlling EA is analyzed periodically to deter-

mine which weight requires adjustment. The fitness sub-function that performs the worst

(i.e., yields the lowest fitness value) has its associated weight increased to provide preference

to that particular fitness sub-function. The remaining weights are then normalized to ensure

that all weights sum to a value of 1.0.

27



2.5.3 Novelty Search

Novelty search [64] is a branch of genetic algorithms that explicitly searches for unique

solutions, as opposed to optimal solutions. The intention of this approach is to avoid con-

verging to a locally optimal solution and instead explore the entire solution space to find a

set of solutions that may contain a globally optimal solution. Novelty search often replaces or

augments the traditional fitness function with a novelty function that implements a distance

metric, such as a Euclidean distance [10], to determine the distance between a candidate

solution and its nearest neighbors in the solution space. A novelty archive tracks candidate

solutions considered to be the most novel throughout the evolutionary process and is used

to guide the search towards unexplored areas within the solution space.

2.5.4 (1+1)-ONLINE Evolutionary Algorithm

Generally, EC is a computationally-intense technique that must be performed offline.

However, complex optimization problems with an enormous solution space can exist at run-

time, thereby necessitating the need for an online technique to solve these problems. The

(1+1)-ONLINE EA [12] is a lightweight approach to providing run-time evolution on systems

with limited processing capabilities. (1+1)-ONLINE EA sacrifices searching power for perfor-

mance by providing a population with only two individuals: a parent and a child. In this

approach, the parent individual is evaluated for a set amount of time. At the end of its

allotted time, the child individual asserts control of the system and is then evaluated for the

same amount of time. Upon completion of its execution cycle, the performance of both the

parent and child are compared, with the higher-performing individual retained for the fol-

lowing generation. A new child is then created by mutating the retained individual, and the

process is then repeated until either a satisfactory individual is found or a specified number

of generations has occurred.

28



The (1+1)-ONLINE EA can also search locally or globally within the solution space by

specifying a mutation parameter σ. Upon evaluation of each individual, the (1+1)-ONLINE EA

determines if the fitness has stagnated (i.e., no significant increase in value), where stagnation

implies that the search procedure is trapped within a local optima. The mutation value σ

determines the severity of the mutation, where higher severities search other regions of the

solution space, and lower severities explore nearby regions of the search space. By varying σ

as necessary, the search process has a better chance of avoiding convergence to a non-optimal

solution.

2.6 Software Testing

Software testing is an assurance technique that determines if a software system is op-

erating according to its requirements or design specification [72]. Many techniques exist for

performing software testing at design time [9] as well as approaches for extending common

testing techniques to the search-based and evolutionary domain [52]. A subset of the most

common techniques [14, 82] are structural testing, functional testing, unit testing, integration

testing, and regression testing. Each of these techniques is next described in turn.

2.6.1 Structural Testing

Structural testing, typically known as white-box testing, often is concerned with val-

idating coverage metrics such as branch or data flow coverage. Test engineers generally

have access to the source code or other abstractions of system implementation to target

implementation-specific aspects for verification and validation. For example, a test engineer

can write a set of test cases that triggers difference branches of an if-else construct to

ensure that each branch is accessible within the program.

29



2.6.2 Functional Testing

Functional testing, otherwise known as black-box testing, generally validates a system

based solely on a test specification. In this approach, a test engineer does not have implicit

knowledge of the inner workings of a system. At a high-level, functional testing is concerned

with verifying that defined features function correctly within a software implementation.

For example, a functional test case could be defined to validate that an autonomous robot

successfully actuates a motor to a particular velocity.

2.6.3 Unit Testing

Unit testing is concerned with testing individual source code modules, and often are

considered the “smallest” test that can be performed when verifying a system. Moreover,

unit tests are generally performed by the software developer to ensure that each code module

performs according to key objectives or requirements, thereby catching bugs early in the

software development cycle. For example, a unit test verifies that the output of a particular

function matches a pre-defined expected value.

2.6.4 Regression Testing

Regression testing is an assurance technique for verifying a system following a change

in software or operating context. Specifically, regression testing validates that the system

continues to satisfy previously validated requirements. For example, a regression test ensures

that a new software release does not introduce any new issues or side effects against a

previously executed test case.

30



Chapter 3

Addressing Requirements-Based

Uncertainty

This chapter introduces our techniques for automatically providing requirements-based

assurance for a DAS. Specifically, we explore how RELAX operators can be automatically

applied to a goal model using AutoRELAX and how the fitness sub-function weights that

guide the creation of automatically RELAXed goal models can be optimized with AutoRELAX-

SAW [42, 88]. First, we motivate the need for requirements-based assurance. Next, present

AutoRELAX and AutoRELAX-SAW. We then present two empirical studies across different

application domains for each technique. Lastly, we describe related work, summarize our

findings, and propose future directions for this research.

3.1 Motivation

Uncertainty experienced by the DAS at run time can adversely affect its ability to satisfy

requirements. While uncertainty can be mitigated by performing a self-reconfiguration,

introducing adaptations can incur operational costs in both preparing for and executing

the adaptation. To this end, RELAX [21, 113] has been introduced to provide flexibility

in requirements satisfaction as a means to reduce the number of adaptive reconfigurations.

31



However, the number of possible combinations for defining and applying RELAX operators

to a goal model exponentially increases with the number of non-invariant goals and sources

of uncertainty, thereby necessitating the need for an automated approach. For example, the

RDM goal model (c.f., Figure 2.4) comprises 21 non-invariant goals, each of which may have

one of the 6 presented RELAX operators applied (c.f., Table 2.1). Moreover, each RELAX

operator can be designated as active or inactive when applied to the goal model. As such,

there exist 1221 possible goal models comprising combinations of applied RELAX operators

that must be examined. To enable exploration of this enormous search space, we introduce

AutoRELAX and AutoRELAX-SAW.

AutoRELAX and AutoRELAX-SAW support our overarching objective to providing assur-

ance in exploring how RELAX operators can provide flexibility at the requirements level.

Specifically, AutoRELAX automatically generates RELAXed goal models while minimizing

the number of DAS adaptations and the number of RELAXations to enable the DAS to

temporarily tolerate adverse uncertainty. AutoRELAX-SAW automatically balances the com-

peting concerns of adaptation minimization and minimization of applied RELAX operators

by tailoring fitness sub-function weights to the operating context being experienced by the

DAS.

3.2 Introduction to AutoRELAX

In this section, we present AutoRELAX, an evolutionary approach for automatically ap-

plying RELAX operators to a goal model to mitigate system and environmental uncertainty

at the requirements level. First, we introduce the assumptions that are needed to implement

and apply AutoRELAX to a given problem. Next, we describe the inputs and the expected

outputs of AutoRELAX. Following, we describe each step in the AutoRELAX approach in detail.

Lastly, we describe how SAW, a hyper-heuristic for optimizing the weights for a set of fitness

32



sub-functions, can be applied to AutoRELAX to tailor fitness sub-functions to a particular

environment, thereby yielding a higher overall fitness value.

Thesis statement: It is possible to automatically introduce flexibility into system re-

quirements to mitigate system and environmental uncertainty.

3.2.1 Assumptions, Inputs, and Outputs

In this section we present the required assumptions for implementing AutoRELAX, as

well as the necessary inputs and expected outputs.

3.2.1.1 Assumptions

Three assumptions must hold true for AutoRELAX to successfully generate an optimized

set of RELAXed goal models to mitigate different combinations of system and environmental

configurations. In particular, we assume that:

• System and environmental data monitored by the DAS is accessible to AutoRELAX’s

genetic algorithm.

• The requirements engineer has identified a representative set of system and environ-

mental uncertainties.

• The requirements engineer has constructed a KAOS goal model that is representative

of the DAS requirements specification.

3.2.1.2 Inputs and Outputs

AutoRELAX requires three elements as input. First, a goal model of the DAS must

be provided to capture high-level requirements. Next, a set of utility functions must be

derived to provide a quantifiable measure of requirements monitoring [28, 87, 109]. Lastly,

an executable specification or prototype of the DAS is required to simulate different types of

33



system and environmental conditions. A set of RELAXed goal models is provided as output.

Each input and output is next described in detail.

3.2.1.2.1 Goal Model

AutoRELAX requires as input a KAOS goal model [25, 105] of the DAS to capture the

functional requirements of a system and resolve obstacles to goal satisfaction. Moreover,

goals within a KAOS goal model can be specified as either invariant (i.e., cannot be vio-

lated) or non-invariant (i.e., can be temporarily unsatisfied without adverse consequences).

AutoRELAX can then introduce RELAX operators to non-invariant goals, as invariant goals

are precluded from adaptation as they must always be satisfied.

3.2.1.2.2 Utility Functions

Utility functions provide an approach for quantifying and measuring run-time satisfac-

tion of software requirements [28, 87, 109]. Specifically, utility functions can yield a quan-

tifiable metric that a DAS can use to determine if its goals are being satisfied. Each utility

function comprises a mathematical relationship that maps data monitored by the DAS to

a scalar value between 0.0 and 1.0. Utility functions can be derived either manually [109],

automatically by using a goal model [87], or statistically inferred based upon observed DAS

behaviors [28]. For example, the satisfaction of Goal (B) in the RDM goal model presented

in Figure 2.4 is evaluated with a utility function that returns 1.0 if accrued operational costs

remain less than or equal to a pre-determined budget, and 0.0 otherwise. AutoRELAX lever-

ages utility functions to evaluate how applied RELAXations either positively or negatively

impact DAS behavior at run time.

For this research, we manually derived the utility functions based upon the RDM goal

model (see Figure 2.4). Specifically, the utility functions were derived according to the

Athena approach previously developed by Ramirez and Cheng [87]. Athena uses a goal model

and a mapping of environmental conditions to elements that monitor those conditions to

34



derive either state, metric, or fuzzy logic-based utility functions. State-based utility functions

monitor goals that are Boolean in nature. Both metric and fuzzy logic-based utility functions

monitor the satisficement of goals. A RELAX operator is then used to specify an appropriate

membership function for fuzzy logic goals to derive a utility function. In the context of the

RDM (c.f., Figure 2.4), a state-based utility function may monitor determine if invariant

goal (A) is either satisfied or not satisfied by monitoring if data is always accessible by the

network; a metric-based utility function may measure the satisficement of non-invariant goal

(F) to determine how many network partitions have been introduced; and a fuzzy logic-based

utility function can determine the satisficement of a goal to which a RELAX operator has

been applied, for instance, Goal (C) can be RELAXed with the AS CLOSE AS POSSIBLE TO

operator to provide flexibility in the number of data copies with respect to the number of

servers.

3.2.1.2.3 Executable Specification

An executable specification or prototype for the DAS is used by AutoRELAX to evaluate

the effects of different combinations of system and environmental conditions on DAS behav-

ior. First, a requirements engineer identifies sources of uncertainty that can affect a DAS

at run time and the executable specification is then initialized with those uncertainties. For

instance, the RDM can be initialized according to the probability that certain network links

will fail at any given point during the simulation. Varying the sources of uncertainty, includ-

ing their likelihood of occurrence and impact, will ideally trigger the DAS to self-reconfigure,

thereby leading to different types of RELAXed goal models. The executable specification then

uses the input utility functions to evaluate the satisfaction of requirements at run time.

3.2.1.2.4 RELAXed Goal Models

Given this information, AutoRELAX generates a set of RELAXed goal models that capture

optimal configurations of applied RELAXations. Each goal model in the output set represents

35



genome 
structure

(1) Define 
Solution 
Structure

(2) Configure 
Search 
Process

(3) Evaluate 
RELAXed 
Models

(5) Generate 
RELAXed Models 

(crossover, 
mutation, 
selection)

(4) Select 
RELAXed 
Models

candidate 
models

[not done]
models with 

fitness values

fittest RELAXed 
models

new RELAXed 
models

[done]

Goal Model

Requirements 
Engineer

goals,
constraints

non-invariant 
goals

Utility Functions

process

agent

data store

data flow

Legend

configuration

Weighting 
Scheme

RELAXed Models

Executable 
Specification

Figure 3.1: Data flow diagram of AutoRELAX process.

a combination of goal RELAXations that maximize run-time goal satisfaction for a particular

set of system and environmental conditions.

3.2.2 AutoRELAX Approach

This section describes the AutoRELAX approach. Figure 3.1 presents a data flow diagram

(DFD) that overviews AutoRELAX. We now present each step in detail.

(1) Define Solution Structure: First, an encoding must be specified for candidate

solutions. Each solution comprises a vector of n elements or genes, where n is equal to the

total number of non-invariant goals specified by the input goal model. Figure 3.2(A) presents

the gene structure. Specifically, each gene comprises a Boolean variable that specifies if each

non-invariant goal is to be RELAXed, a corresponding RELAX operator (see Table 2.1),

and two floating-point values that specify the left and right boundaries of the fuzzy logic

membership function, respectively.

Figure 3.2(B) illustrates how each gene is then mapped to its corresponding fuzzy logic

function to evaluate the satisfaction of that particular goal. This example maps Goal (F)

from Figure 2.4 to a left shoulder fuzzy logic membership function, corresponding to the AS

FEW AS POSSIBLE RELAX operator. This function returns 1.0 if the network is connected

36



Genome: ...

Number of non-invariant goals

Gene for ith non-invariant goal

True AS FEW AS 
POSSIBLE 0.0 3.0

RELAXed
(boolean)

RELAX
Operator

Left Endpoint 
(float)

Right Endpoint 
(float)

(A) AutoRELAX solution encoding.

1.0

0.0
0.0 3.0

Number of 
network partitions

Desired value
Measured 
property

Max. value 
allowed

(B) Mapping a gene to a RELAXed goal.

Figure 3.2: Encoding a candidate solution in AutoRELAX.

(i.e., the number of network partitions equals zero) and 0.0 otherwise. However, as long as

the network partition is transient (i.e., minor and temporary), then data can still be diffused

among connected data mirrors. While the RDM contains between 0 and 3 transient network

partitions, the downward slope from the apex to the right endpoint reflects values that may

be temporarily tolerated at run time, resulting in a quantifiable satisfaction value between

1.0 and 0.0.

(2) Configure Search Process: The genetic algorithm must then be configured by a

requirements engineer. Specifically, a population size, crossover and mutation rates, and a

termination criterion must be defined. The population size determines how many candidate

RELAXed goal models are available each generation; crossover and mutation rates specify

37



how AutoRELAX generates new goal models; and the termination criterion defines a stopping

point for AutoRELAX, and is typically represented as a generational limit.

(3) Evaluate RELAXed Models: Each RELAXed goal model is evaluated based on

the performance of the DAS throughout execution, where performance is measured based

on the satisfaction of invariant goals and the fitness sub-functions defined in Equations (3.1)

and (3.2). Minimizing the number of DAS adaptations and number of RELAXed goals is also

emphasized within the fitness calculation. To evaluate a RELAXed goal model, AutoRELAX

first maps the RELAX operators encoded in an individual goal model to their corresponding

utility functions based on Step (1). AutoRELAX then executes the prototype and records the

satisfaction of each goal and the number of adaptations performed by the DAS throughout

the simulation. Two fitness sub-functions consume this information to emphasize individuals

that minimize the number of introduced RELAXations and minimize the number of run-time

DAS reconfigurations.

The first fitness sub-function, FFnrg, rewards candidate individuals that minimize the

number of RELAXed goals. The purpose of this fitness sub-function is to limit an excess of

unnecessary flexibility provided by the controlling goal model. FFnrg is defined as follows:

FFnrg = 1.0−
( |relaxed|
|Goalsnon−invariant|

)
(3.1)

where |relaxed| and |Goalsnon−invariant| are the number of RELAXed and non-invariant

goals in the goal model, respectively.

The second fitness sub-function, FFna, rewards candidate individuals that minimize the

number of reconfigurations performed by the DAS throughout execution in order to reduce

overhead incurred on performance and cost. FFna is defined as follows:

FFna = 1.0−
( |adaptations|
|faults|

)
, (3.2)

38



where |adaptations| measures the total amount of reconfigurations performed by the DAS,

and |faults| measures the total number of adverse environmental conditions introduced

throughout the simulation, thereby reducing the number of passive and quiescent compo-

nents [63].1 A passive component can service transactions from other components, however

it cannot initiate new transactions. Quiescent components cannot initiate new transactions

or service incoming transactions. For the RDM, the operational cost of maintaining the

network varies due to the number of nodes placed into a passive or quiescent state to en-

sure system consistency. Reducing the amount of the passive and quiescent components

minimizes the impact of adaptation on operational costs. RELAX operators can increase a

system’s flexibility and ability to tolerate uncertainty, resulting in fewer nodes placed into a

passive or quiescent state.

The fitness sub-functions are then combined into a single fitness calculation with a linear

weighted sum in Equation (3.3):

Fitness V alue =

 αnrg ∗ FFnrg + αna ∗ FFna iff invariants true

0.0 otherwise
(3.3)

where αnrg and αna are weights that reflect the priority of each fitness sub-function with

respect to the calculated fitness value. The sum of the two weights must equal 1.0. Fitness of

a RELAXed goal model also depends on the satisfaction of all goals designated as invariant.

Specifically, any violation of an invariant goal results in a fitness value of 0.0, as AutoRELAX

must only produce viable RELAXed goal models.

(4) Select RELAXed Models: Next, AutoRELAX selects the highest-performing in-

dividuals from the population based on their calculated fitness value to guide the search

process towards that particular area of the solution space. AutoRELAX then applies tourna-

1A component refers to an executable element, such as a software component or network
node.

39



ment selection [53], a technique that randomly selects k individuals from the population and

competes them against one another. For each group of competing individuals, AutoRELAX

selects the RELAXed goal model with the highest fitness to survive into the next generation.

The remaining individuals do not survive and are effectively removed from consideration.

(5) Generate RELAXed Models (crossover, mutation, selection): AutoRELAX

uses two-point crossover and single-point mutation to create new RELAXed goal models.

The rates for crossover and mutation were specified to be 50% and 40%, respectively.2 Fig-

ure 3.3(A) demonstrates two-point crossover. Specifically, two individuals are selected at

random from the population and designated as parents. Two new individuals, designated as

children, are produced by exchanging genes that lie between two randomly selected points

along the genome. Conversely, Figure 3.3(B) demonstrates single-point mutation. In this

example, a single individual is selected at random, and a single point along its genome

is randomly selected and then mutated. Specifically, the mutation operator in this exam-

ple changes the RELAX operator from AS FEW AS POSSIBLE to AS MANY AS POSSIBLE, and

moreover sets the gene to enable RELAXation. Mutation is precluded from affecting the

fuzzy logic function boundaries, as that would alter the meaning of a fully satisficed goal.

In summary, the crossover operation attempts to generate new individuals that combine

good elements from their parents, and mutation introduces a random element to facilitate

exploration of the solution space.

Output RELAXed Models: AutoRELAX iteratively applies Steps (3) through (5) until

the termination criterion (i.e., generational limit) is reached and then outputs the set of

RELAXed goal models with the highest fitness values.

2The crossover and mutation rates were determined based upon the rate of convergence
found from empirical results.

40



Parent 1

Offspring 1

Parent 2

Offspring 2

(A) Two-point crossover.

Parent 1

Offspring 1

Ge
ne

 
m

ut
at

io
n

RELAXed False
RELAX 

Operator
AS FEW AS 
POSSIBLE

Left Endpoint 2.3

Right Endpoint 3.4

RELAXed True
RELAX 

Operator
AS MANY AS 

POSSIBLE
Left Endpoint 2.3

Right Endpoint 3.4

(B) Single-point mutation.

Figure 3.3: Examples of crossover and mutation operators in AutoRELAX.

41



3.2.3 Optimizing Fitness Sub-Function Weights with SAW

While AutoRELAX can automatically provide requirements-based assurance for a DAS,

the generated combination of RELAX operators as applied to the goal model may not be

optimal across different operating contexts. SAW is a hyper-heuristic for optimizing a given

weighting scheme by iteratively exploring how different combinations of weights can improve

overall fitness within a given environment [104]. Fitness sub-functions often use weighted

coefficients to define the relative importance of each sub-function and can therefore be op-

timized with SAW. Specifically, SAW explores the space of weight combinations within a

particular operating context to determine which weighting scheme is appropriate (i.e., yields

a higher fitness value) for a specific environmental configuration.

Weights are typically assigned to fitness sub-functions based mainly on the domain

knowledge of a requirements engineer, coupled with trial and error and limited empirical

evidence. As a result, the combination of weighting coefficients may not be optimal for

the specific operating context in which the DAS is executing and therefore an algorithmic

approach is necessary to determine the optimal weighting scheme. SAW iteratively updates

each weight over the course of an EA to explore how different combinations of weights affect

the fitness of an individual, resulting in a combination of weights optimized for a specific

environment.

AutoRELAX-SAW extends AutoRELAX with the SAW approach to optimize weights in the

fitness function. Specifically, we have added the online method of SAW optimization [104] to

AutoRELAX. This online approach can be performed in parallel to DAS execution. Specifically,

weights are initially seeded with values specified by a requirements engineer. Throughout

DAS execution, feedback is provided to AutoRELAX-SAW to determine which fitness sub-

functions are providing the smallest fitness value compared to the other sub-functions. The

poorer performing sub-function has its associated weight increased to indicate its importance

42



to that specific sub-function, and the remaining weights are then normalized to ensure that

all weights sum to 1.0.

To accommodate SAW within AutoRELAX, we augment Step (3) as shown in Figure 3.1

to incorporate the online SAW implementation. Fitness sub-function calculations are ex-

amined periodically (i.e., for this study, fitness was examined every 5th generation, where

this value was determined based upon empirical evidence to provide SAW enough time to

explore different weighting schemes). To guide the AutoRELAX process towards combinations

of RELAX operators that mitigate the uncertainties exhibited by the current operating con-

text, the weight associated with the poorest-performing fitness sub-function is incremented.

Incrementation of this particular weight pressures the AutoRELAX process to select appropri-

ate RELAX operators for the current environment based on the shortcomings identified by

AutoRELAX-SAW.

3.3 Case Studies

This section describes experimental results from two case studies in which AutoRELAX

and AutoRELAX-SAW were both applied to the RDM and SVS applications, respectively, to

demonstrate the effectiveness of these techniques in different application domains. First, we

introduce the configuration of each simulation environment, including sources of uncertainty

and possible reconfiguration states. Next, we present experimental results that compare and

evaluate unRELAXed, manually RELAXed, and AutoRELAXed goal models. We then describe

how SAW can augment AutoRELAX to determine an optimal weighting scheme that further

improves AutoRELAX results. For each experiment, we state and evaluate our experimental

hypotheses and resulting goal models.

43



3.3.1 RDM Case Study

For this experiment, AutoRELAX and AutoRELAX-SAW were applied to the RDM applica-

tion. The RDM was configured as described in Section 2.3.2. The fitness functions described

in Section 3.2.2 are used to guide the generation of RELAXed goal models.

3.3.1.1 RDM Uncertainty

We now compare and evaluate goal models that have been automatically RELAXed with

two goal models: one in which we manually applied RELAX operators and one that was not

RELAXed. The goal model used as a base for each experiment was previously presented in

Figure 2.4. A small group of people with domain knowledge relevant to the RDM indepen-

dently created first drafts of a manually RELAXed goal model and then collaborated to form

a single, common goal model to be used in this experiment. The following RELAX opera-

tors were applied to the goal model: Goal (C) was RELAXed to tolerate dropped messages

throughout the simulation; Goal (F) was RELAXed to allow for up to three simultaneous

transient network partitions; Goal (G) was RELAXed to allow larger exposure to data loss;

and Goal (H) was RELAXed to allow for extra time when diffusing data. These operators

are summarized in Table 3.1.

We define two null hypotheses for this experiment. The first, H10 , states that “there

is no difference in fitnesses achieved by a RELAXed and an unRELAXed goal model.” The

second, H20 , states that “there is no difference in fitnesses achieved between RELAXed goal

models generated by AutoRELAX and those manually created by a requirements engineer.”

Also, we specified the fitness sub-function weights, αnrg and αna, to be 0.3 and 0.7, re-

spectively. These values were chosen based on empirical evidence that it is nearly twice as

important to minimize the number of adaptations when compared to minimizing the number

of RELAXed goals.

44



Table 3.1: Summary of manually RELAXed goals for the RDM application.

Goal Description RELAX Operator Boundaries

C Achieve [DataSent] ==

[NumberofDataCopies]

AS CLOSE AS POSSIBLE TO

[quantity]

±5.0 copies

F Achieve

[NetworkPartitions] == 0

AS CLOSE AS POSSIBLE TO

[quantity]

±1.0 parti-

tions

G Achieve [DataAtRisk] <=

[RiskThreshold]

AS FEW AS POSSIBLE ±5.0% risk

H Achieve

[DiffusionT ime] <=

[MaxTime]

AS FEW AS POSSIBLE ±5.0s

Due to the variety of configurations available to the RDM at run time, not all adapta-

tions result in the same fitness. Figure 3.4 presents boxplots that capture the fitness values

achieved by AutoRELAXed goal models, a manually RELAXed goal model, and an unRELAXed

goal model (the small circle on the plot indicates an outlier for the unRELAXed fitness values),

where each experimental treatment was performed 50 times to achieve statistical significance.

Despite the fitness boost that unRELAXed goal models have (i.e., 0 applied RELAXations for

FFnrg), goal models with applied RELAX operators achieve significantly higher fitness than

unRELAXed goal models (p < 0.001, Welch Two-Sample t-test). These results enable us to

reject H10 and conclude that RELAX reduces the number of necessary adaptations in the

face of uncertainty.

Furthermore, Figure 3.4 also presents the difference in fitnesses between goal models that

have been automatically generated and those manually generated. Specifically, AutoRELAX-

generated goal models also achieve significantly higher fitness than those that are manually

RELAXed (p < 0.001, Welch Two-Sample t-test), indicating that an automated approach for

assigning RELAX operators to a system goal model provides an overall higher fitness value.

45



This result indicates that an AutoRELAXed goal model can better manage uncertainty than

those that are manually RELAXed or unRELAXed.

AutoRELAXed Manually RELAXed UnRELAXed

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Fi
tn
es
s

Experimental Treatment

Figure 3.4: Fitness values comparison between RELAXed and unRELAXed goal models for
the RDM.

Lastly, Figure 3.5 presents information regarding the types of goal model configurations

generated by AutoRELAX for varying degrees of uncertainty. There are two specific types

of uncertainty represented: low uncertainty and high uncertainty. The low uncertainty en-

vironment specifies a small probability that failure can occur, such as failed network links

and dropped or delayed messages. The environment with high uncertainty specifies the op-

posite. As such, Figure 3.5 plots the sorted number of RELAXed goals per trial, where the

first environment specifies a low degree of uncertainty and the second environment speci-

46



fies a high degree of uncertainty, and each point in the plot represents the average number

of RELAXations applied throughout the RDM simulation. In all but one trial, AutoRELAX

introduced greater than or equal amounts of RELAX operators to the goal model executed

under the environment with high uncertainty than those executed under low amounts of

uncertainty. Moreover, the positive correlation between the two curves indicates that Au-

toRELAX introduced RELAXations as necessary to mitigate increasing amounts of uncertainty,

suggesting that unnecessary goal model flexibility is avoided.

0 10 20 30 40 50

0
2

4
6

8

Trial

N
um

be
r o

f R
E

LA
X

ed
 G

oa
ls

Low Uncertainty Environment
High Uncertainty Environment

Figure 3.5: Mean number of RELAXed goals for varying degrees of system and environmental
uncertainty for the RDM.

47



3.3.1.2 Dynamic Weight Adjustment

Next, we evaluate the effectiveness of optimizing the fitness sub-function weights. Specif-

ically, we compare the calculated fitness values provided by AutoRELAXed goal models with

those generated by AutoRELAX-SAW. AutoRELAX and AutoRELAX-SAW were each executed 50

times to achieve statistical significance. The fitness sub-function weights for AutoRELAX were

set as defined in Section 3.3.1.1, and the weights for AutoRELAX-SAW were also seeded with

these values.

We define two hypotheses for this experiment. First, H10 states that “there is no

difference between an automatically RELAXed goal model with static weights and an auto-

matically RELAXed goal model that uses a SAW-optimized weighting scheme across different

environments.” The second null hypothesis, H20 , states that “there is no difference between

RELAXed goal models with optimized and unoptimized weights in a static environment.”

As such, Figure 3.6 presents two boxplots with fitness values generated by AutoRELAXed

goal models and AutoRELAX-SAW-generated goal models. As is demonstrated by these plots,

goal models that use an optimized weighting scheme achieve significantly higher fitness values

than those that use a static set of weights (p < 0.001, Welch Two-Sample t-test). These re-

sults enable us to reject H10 and conclude that optimizing the fitness sub-function weighting

scheme directly impacts AutoRELAX fitness.

For a small subset of environments, AutoRELAX-SAW converged to weights of αnrg = 1.0

and αna = 0.0, ensuring that the number of RELAXed goals is minimized. This result

implies that RELAX operators are not always necessary if the goal model can sufficiently

handle uncertainty without extra flexibility. Comparing the two populations, we can also

reject H20 (p < 0.001, Welch Two-Sample t-test) and state that SAW-optimized goal models

generally perform better than goal models without optimized weights.

Furthermore, AutoRELAX-SAW was compared to AutoRELAX in a static environment.

Figure 3.7 presents boxplots of fitness values found by AutoRELAX-SAW over 50 separate tri-

als, where the horizontal line represents the best AutoRELAX fitness value for that particular

48



AutoRELAX SAW-AutoRELAX

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Fi
tn
es
s

��������	
���

Experimental Treatment

Figure 3.6: Fitness values comparison between AutoRELAXed and SAW-optimized AutoRE-

LAXed goal models for the RDM.

environment. The results show that while AutoRELAX found a higher fitness value than the

median fitness found by AutoRELAX-SAW, optimizing with SAW enabled the achievement of

100% fitness in this particular environment. However, AutoRELAX-SAW also found fitnesses

lower than those found by AutoRELAX, indicating that not all weighting schemes are appro-

priate for a given environment. Each boxplot in Figure 3.8 represents the first 25 trials of a

single environment experiment, where each boxplot presents the fitness over 50 replicates.

49



AutoRELAX  best
fitness  value

��������	�
���

������������

��������	����

Figure 3.7: Fitness values of SAW-optimized AutoRELAXed goal models in a single environ-
ment.

3.3.2 SVS Case Study

We now describe a case study with AutoRELAX and AutoRELAX-SAW that uses the SVS

as an application domain. The SVS was implemented as a fully autonomous robot tasked

with cleaning a room, as described in Section 2.2.2. For this particular study, the SVS

monitored utility values for each goal (c.f., Figure 2.2) at each time step to determine if

a self-reconfiguration is necessary. The following section describes our experimental results

from the SVS case study.

50



Figure 3.8: Comparison of SAW-optimized fitness values from different trials in a single
environment.

3.3.2.1 SVS Uncertainty

The SVS case study also evaluates and compares unRELAXed, manually RELAXed, and

AutoRELAXed goal models as a basis for experimentation. The manually RELAXed goal model

had RELAX operators applied to: Goal (A) to allow the amount of remaining dirt to be larger

than specified; Goal (B) to allow flexibility in the amount of remaining battery power; and

Goals (F) and (G) to provide flexibility in the timing of each path plan. Table 3.2 describes

the RELAX operators and fuzzy logic boundaries for the manually RELAXed goals.

The fitness function required an update for the SVS application. Specifically, two addi-

tional fitness sub-functions were added to maximize the cleanliness of the room (i.e., FFclean)

and minimize the number of faults encountered (i.e., FFfaults). The first additional sub-

function, presented in Equation (3.4), maximizes the amount of dirt cleaned by the SVS:

51



Table 3.2: Summary of manually RELAXed goals for the SVS application.

Goal Description RELAX Operator Boundaries

A Achieve [90% Clean] AS MANY AS POSSIBLE ±5.0%

B Achieve [> 5% Power] AS MANY AS POSSIBLE ±5.0%

F Achieve [Path Plan for 30

seconds]

AS CLOSE AS POSSIBLE TO

[quantity]

±15.0 seconds

G Achieve [Clean Area for 1

minute]

AS CLOSE AS POSSIBLE TO

[quantity]

±15.0 seconds

FFclean =
( |dirt removed|
|amount of dirt|

) (3.4)

where |dirt removed| is the number of dirt particles vacuumed by the SVS and

|amount of dirt| represents the total number of initialized dirt particles. The second ad-

ditional sub-function, Equation (3.5), rewards candidates that minimized the number of

faults, such as running out of battery power before the simulation completed:

FFfaults =
( 1.0

|faults|
) (3.5)

where |faults| represents the total number of faults encountered by the SVS during simu-

lation. All fitness sub-functions can be combined into a linear weighted sum as follows in

Equation (3.6):

Fitness V alue =



[αnrg ∗ FFnrg] + % number of RELAXed goals

[αna ∗ FFna] + % number of adaptations

[αclean ∗ FFclean] + % percentage of dirt removed

[αfaults ∗ FFfaults] + % number of faults

(3.6)

52



where αclean and αfaults are the weights associated with the additional sub-functions. Again,

the sum of all weights must sum to 1.0. For this particular experiment, we have set αnrg =

0.1, αna = 0.4, αclean = 0.2, and αfaults = 0.3.

For comparison purposes, we reuse the null hypotheses proposed in the RDM case study.

Specifically, we define H10 to state that “there is no difference in fitnesses achieved by a

RELAXed and an unRELAXed goal model,” and H20 to state that “there is no difference in

fitness values between RELAXed goal models generated by AutoRELAX and those manually

created by a requirements engineer.”

Figure 3.9 presents three box plots that demonstrate the overall fitness values calculated

for AutoRELAX-generated goal models, a manually RELAXed goal model, and an unRELAXed

goal model, respectively. Each experiment was performed 50 times to achieve statistical

significance. As is demonstrated by the results, RELAXed goal models achieve significantly

higher fitness values than unRELAXed goal models (p < 0.001, Welch Two Sample t-test),

enabling us to reject H10 and conclude that applying RELAX operators to non-invariant

goals can significantly reduce the number of encountered faults while mitigating uncertainty.

Figure 3.9 also demonstrates that AutoRELAXed goal models achieve significantly higher

fitness than manually RELAXed goal models (p < 0.001, Welch Two Sample t-test), allowing

us to reject H20 and conclude that AutoRELAX can generate goal models that better mitigate

system and environmental uncertainty than those created manually.

Figure 3.10 illustrates the impact that environmental uncertainty has on the application

of RELAX operators. Specifically, this figure shows the sorted number of RELAXed goals for

each trial in two separate environments. Each data point represents the mean number of

RELAXed goals generated throughout the evolutionary process for each goal model. The first

environment contained a low degree of uncertainty, and the second contained a high degree

of uncertainty. Low uncertainty implies a low probability for the occurrence of failures, and

high uncertainty implies the opposite. In all trials, AutoRELAX generated goal models with

more RELAX operators in the environment with higher uncertainty. The gradual increase in

53



AutoRELAX Manually RELAXed UnRELAXed

0.
2

0.
3

0.
4

0.
5

0.
6

Fi
tn
es
s

Figure 3.9: Fitness values comparison between RELAXed and unRELAXed goal models for
the SVS.

slope of the curve again suggests that the application of goal RELAXations increases with

the amount of uncertainty within the DAS and environment.

3.3.2.2 Dynamic Weight Adjustment

This next experiment explores how the weighting of fitness sub-functions impacts fitness

as a result of environmental uncertainty. As such, we reuse the experimental setup as de-

scribed for the SVS in the previous section. Furthermore, we define our first null hypothesis

54



0 10 20 30 40 50

8
9

10
11

12
13

14
15

Trial

N
um

be
r o

f R
E

LA
X

ed
 G

oa
ls

Low Uncertainty Environment
High Uncertainty Environment

Figure 3.10: Mean number of RELAXed goals for varying degrees of system and environ-
mental uncertainty for the SVS.

H10 to state that “there is no difference between an automatically RELAXed goal model

with static weights and one that uses a SAW-optimized weighting scheme across different

environments.” We define a second null hypothesis H20 to state that “there is no difference

between RELAXed goal models with optimized and unoptimized weights in a static environ-

ment.” The SVS fitness sub-function weights were defined to emphasize the importance of

reducing the number of encountered faults (see Equation (3.5) while minimizing the number

55



of performed reconfigurations (see Equation (3.4). Prior to dynamic adjustment, the weights

were initialized as follows: αnrg = 0.1, αna = 0.4, αfaults = 0.3, and αclean = 0.2.

Figure 3.11 presents boxplots that show fitness values calculated from AutoRELAXed

and goal models generated with AutoRELAX-SAW, respectively. As such, AutoRELAXed goal

models with optimized weights have a significantly higher fitness (p < 0.001, Welch Two-

Sample t-test) than those without weight optimization. We can reject H10 and state that

the weighting scheme has a direct impact on aggregate fitness for a goal model.

AutoRELAX SAW-AutoRELAX

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Fi
tn
es
s

AutoRELAX-SAW

Figure 3.11: Fitness values comparison between AutoRELAXed and AutoRELAX-SAW goal
models for the SVS.

56



Lastly, Figure 3.12 demonstrates a range of fitness values calculated from goal models

with weights optimized for a static environment using AutoRELAX-SAW over 50 separate trials,

where only the first 25 trials are depicted for presentation purposes. The solid horizontal

line (at approximately 0.62) represents the best possible fitness generated by AutoRELAX

over 50 separate trials. These results demonstrate that the environment directly impacts

the weighting scheme of the fitness sub-functions, particularly in that a single weighting

scheme may not be optimal for all environments. Moreover, Figure 3.12 demonstrates that

different combinations of fitness sub-function weights yield different fitness values, indicating

that AutoRELAX-SAW can be used to search for an optimal combination of weights, thereby

finding an optimal RELAXed goal model for the particular environment.

Figure 3.12: Comparison of SAW-optimized fitness values from different trials in a single
environment.

57



3.4 Related Work

This section presents related work in specifying, detecting, and mitigating obstacles to

the satisfaction of DAS requirements. In particular, we discuss related research for express-

ing uncertainty in requirements, performing requirements monitoring and reflection, and

providing obstacle mitigation strategies.

3.4.1 Expressing Uncertainty in Requirements

Research into determining the impact of uncertainty, including assurance, affects the

design, implementation, and execution of a DAS has been recently been the focus for the

software engineering community [5, 8, 21, 32, 34, 35, 66, 86, 94, 111, 112], specifically in

identifying and documenting sources of uncertainty. For instance, a Claim [111, 112] is a

marker of uncertainty in requirements and design based upon possibly incorrect assumptions.

Likewise, an analytical framework [34, 35] has been proposed that leverages mathematical

approaches for modeling and assessing uncertainty from a risk-management perspective.

Uncertainty in model checking [110] has also been studied, specifically in the realm of model

variations. Probabilistic model checking [38] has also been explored to quantify unpredictable

changes in models to mitigate unsatisfied requirements. While these approaches often require

a requirements engineer to evaluate the sources and results of uncertainty, AutoRELAX can

automate the identification and application process of RELAX operators to mitigate those

sources of uncertainty.

3.4.2 Requirements Monitoring and Reflection

Requirements monitoring frameworks can detect the occurrence of obstacles in satisfy-

ing requirements [37]. In certain circumstances, such frameworks can also suggest mitigation

strategies as necessary. Requirements have also recently been promoted to first-class, run-

time entities whose satisfaction directly impact the execution of adaptive systems [8, 94]. Fur-

58



thermore, an awareness requirements-based feedback loop has also been introduced, where

awareness requirements perform a meta-level monitoring of system requirements [100]. In

contrast, these approaches do not directly support the management and run-time monitoring

of RELAXed requirements.

3.4.3 Obstacle Mitigation

Existing strategies have been proposed to identify, analyze, and resolve obstacles that

prevent requirements from being satisfied [105, 106], however the majority of these strategies

focus on revising goals to either prevent or negate the effects of obstacles. For example,

Letier et al. [65] have recently proposed an approach for designing software requirements

while explicitly considering obstacles posed by uncertainty using multi-objective optimization

and decision analysis. AutoRELAX can complement the proposed strategies by automatically

determining the extent to which a non-invariant goal can be unsatisfied at run time, thereby

enabling the design of a system that can continually function while exposed to obstacles that

occur as a result of uncertainty.

3.5 Conclusion

This chapter described AutoRELAX, a technique for automatically generating RELAXed

goal models, and AutoRELAX-SAW, a technique for automatically balancing fitness sub-

function weights in response to environmental uncertainty while executing AutoRELAX. Au-

toRELAX leverages a genetic algorithm to explore how RELAX operators can be automatically

applied to a goal model to provide an optimal combination of RELAXations that can effec-

tively mitigate uncertainty in both the system and environment. Similarly, AutoRELAX-SAW

also uses a genetic algorithm for optimization, however it, instead, uses AutoRELAX as a basis

for evaluation. Both AutoRELAX and AutoRELAX-SAW were applied to the RDM and SVS

applications for validation.

59



AutoRELAX experimental results indicate that RELAXations tend to correspond with

specific types of uncertainty. For the RDM, Goals (F) and (T) were RELAXed most often,

depending on whether network links had a higher probability of failure than it did for drop-

ping messages, and vice versa. RELAX operators applied to Goal (J) tended to add extra

flexibility with respect to the available time for goal satisfaction. For the SVS, Goals (D)

and (E) tended to be RELAXed more often, as RELAXing those goals effectively extends the

available operating time for the SVS. Adding the SAW optimization for both case studies

tended to improve overall goal model fitness for a given environment, specifically, we deter-

mined that the weighting scheme is directly impacted by the environmental configuration

in that fitness sub-function weights can pressure the search for an optimal RELAXed goal

model for each given environment.

Potential future directions for AutoRELAX and AutoRELAX-SAW include exploring dif-

ferent approaches to handling multiple concerns when calculating fitness, such as multi-

objective optimization [27], as well as exploring how different genetic operators can impact

the search procedure. Lastly, exploring different types of fuzzy logic membership functions

for RELAX operators is another future direction.

60



Chapter 4

Exploring Code-Level Effects of

Uncertainty

This chapter presents Fenrir, a technique for exploring how uncertainty impacts the ex-

ecution behavior of a DAS by examining the paths of execution taken throughout system

execution, thereby enabling the identification of unexpected or anomalous behaviors [45].

Anomalous behaviors can then be corrected by applying bug fixes, augmenting target con-

figurations, or updating system requirements. First, we motivate the need to explore DAS

run-time behavior. Next, we introduce Fenrir, an evolutionary computation-based approach

for exercising a DAS implementation by generating a novel set of operational contexts. We

then describe the assumptions, required inputs, and expected outputs of Fenrir. Following,

we present our case study in which Fenrir was applied to the RDM application. Lastly, we

present related work and summarize our conclusions.

4.1 Motivation

A DAS can self-reconfigure as it executes to mitigate unexpected changes in the en-

vironment by triggering adaptive logic to switch between configurations. By doing so, the

DAS can continually satisfy its requirements and high-level objectives even as its operational

61



context changes. However, if the DAS reconfigures in response to an unexpected situation,

its resulting behavior can also be unexpected and may no longer satisfy its requirements.

To this end, we describe an approach for exploring how a DAS reacts to both system and

environmental uncertainty at the code level.

Fenrir supports our approach for mitigating uncertainty by providing code-level assur-

ance. Specifically, Fenrir examines the resulting behaviors of a DAS experiencing system and

environmental uncertainty to determine the paths followed by the DAS throughout execu-

tion. The amount of total execution paths is very large due to the adaptive nature of the

DAS, as an adaptation can yield a completely unexpected DAS configuration. To explore

the space of possible execution paths, Fenrir leverages novelty search to search for a repre-

sentative set of operational contexts within the solution space. Fenrir then executes the DAS

within each discovered operating context to determine its resulting behavior. The gener-

ated execution traces can then be analyzed by a DAS engineer to determine the effect that

different types of uncertainty can have on the DAS, thereby enabling the identification of

unanticipated or anomalous behaviors.

4.2 Introduction to Fenrir

In this section, we present and describe Fenrir, our approach to exploring how uncertainty

affects a DAS within its implementation. First, we introduce the assumptions required to

use Fenrir, as well as its required inputs and expected outputs. Next, we describe each step

of the Fenrir approach in detail, illustrated by a DFD of the process. Lastly, we describe the

results of a case study in which Fenrir was applied to the RDM application and compared with

random search. Finally, we present related work in this domain, summarize our findings,

and present future directions for research into Fenrir.

Thesis statement. Complex software applications can follow unexpected paths of code

execution when faced with run-time uncertainty.

62



4.2.1 Assumptions, Inputs, and Outputs

In this section, we present the assumptions needed for implementing Fenrir. We then

describe the required inputs to Fenrir and its expected outputs in detail.

4.2.1.1 Assumptions

We assume the following when instrumenting a DAS with Fenrir to explore the different

paths of execution taken at run time:

• The DAS source code is available and can be instrumented with logging statements.

• Instrumenting the DAS does not significantly affect run-time behavior or performance

of the DAS.

• The logging statements should provide a measure of code coverage and should monitor

possible exceptions or error conditions.

4.2.1.2 Inputs and Outputs

Fenrir requires two elements as input. First, a prototype or executable specification of

a DAS must be provided and instrumented with logging statements. Second, the domain

engineer must specify all possible sources of uncertainty exposed to the DAS at run time.

Fenrir then provides an archive containing a set of pairs as output, where each pair comprises

a unique operating context and operational trace of DAS execution. Each input and output

is next described in detail.

4.2.1.2.1 Instrumented Executable Specification

Fenrir requires an instrumented DAS to execute in order to trace its run-time behav-

ior. Specifically, logging statements must be introduced into the DAS code to ensure that

all possible adaptation paths and representative behavioral paths are represented (i.e., to

63



provide a base measure of DAS behavioral coverage). Furthermore, variables identified as

relevant to the DAS operating context should also be monitored by the logging statements

to capture the state of the operating context that led to each expressed behavior.

4.2.1.2.2 Sources of Uncertainty

The DAS engineer must specify the expected sources of uncertainty to simulate while

executing Fenrir (e.g., severed network links or sensor failures). Specifically, the probability

of occurrence and the severity of each uncertainty must be defined (e.g., [5%, 8%], [10%,

15%], ..., [probabilityn, severityn]), as they are required when configuring the novelty search

algorithm. The probability of occurrence defines the chance that the source of uncertainty

will manifest and the severity defines how much the source of uncertainty will impact the

DAS. For example, a source of uncertainty may impact the ability of an RDM sensor to

monitor a data mirror. In this case, we can state that this source of uncertainty defines the

number of RDM sensors that may fail during execution. As such, we define the probability

of occurrence to be 3%. This probability states that, for each timestep of execution, there

is a 3% random chance that this source of uncertainty occurs. Next, we define the severity

of occurrence to be 25%. In this case, the severity defines an upper bound on the amount of

RDM sensors that can fail. In this case, up to 25% of all RDM sensors may fail when this

source of uncertainty is activated.

4.2.1.2.3 Fenrir Archive

Fenrir generates a collection of operational contexts, each with a corresponding execution

trace that details the path of execution followed by the DAS. Each operational context spec-

ifies the information necessary to recreate the context in simulation, comprising the sources

of uncertainty with likelihood of occurrence (e.g., 10% chance of occurrence that network

links will be severed) and severity (e.g., up to 15% of all network links affected) that are spe-

cific to that particular context. Furthermore, each context may trigger adaptations within

64



(1 ) data . s i z e = s i z e ;

( 2 ) mirror . r ema in ing capac i ty = capac i ty ;

(3 )

(4 ) // l o g the v a r i a b l e s t a t e f o r t h i s data mirror

(5 ) l o g g e r . p r i n t ( ’ data mirror : [%d ] , data s i z e : [% f ] ,

( 6 ) remaining capac i ty : [% f ] ’ , data . id ,

(7 ) data . s i z e , r ema in ing capac i ty ) ;

( 8 )

(9 ) // send data from data mirror

(10) i f ( data . s i z e <= rema in ing capac i ty )

(11) {

(12) r ema in ing capac i ty −= data . s i z e ;

(13) return t rue ;

(14) }

(15) else

(16) return f a l s e ;

Figure 4.1: Example code to update data mirror capacity.

the DAS, and as such the trace provides information specific to each explored path. Path

information comprises the invoking module, line number, description of intended behavior,

and a flag that indicates the presence of an error or exception.

For instance, a module within the RDM application that is concerned with updating

the remaining capacity for a data mirror can be instrumented as follows in Listing 4.1:

Executing the RDM under a particular operating context would yield the following order

of statement execution: [(1), (2), (12), (13)]. In this case, the size of the particular

data message is smaller than the remaining capacity of the data mirror, thus enabling a

65



successful transmission to another node. However, to reduce the size of the resulting trace,1

only a single logging statement is necessary to capture the intended behavior of this se-

quence of operations. As such, the sample logging statement would appear as follows (for

presentation purposes, only the relevant variable information has been displayed; a full log-

ging statement comprises a unique identifier, the current module name, line number, and

description including any relevant variable values):

data mirror:[2], data size:[2.5], remaining capacity:[4.0]

This particular trace statement enables a DAS developer to determine the behavior of a

particular data mirror at a particular point during execution. Each branch of the if-else

block did not require instrumentation in this case, as DAS behavior can be inferred based

upon the monitored variables.

4.2.2 Fenrir Approach

This section details the Fenrir approach. Figure 4.2 shows the DFD that illustrates Fenrir.

Each step is next described in detail.

(1) Generate Operational Contexts: Fenrir accepts the sources of uncertainty, as

specified by a DAS engineer, and in turn uses novelty search [64] to generate a set of opera-

tional contexts, where each operational context specifies the configuration of the sources of

uncertainty, the configuration of the RDM, and the configuration of the environment. These

contexts are then applied to a DAS that has been instrumented with logging statements to

determine how different configurations of uncertainty affect the DAS throughout execution,

specifically in which paths of execution the DAS follows as it executes and self-reconfigures

in response to those uncertainties.

Each operational context is represented as a genome, where a set of genomes in turn

represents a population. Each genome comprises a vector of length n, where n defines the

1Full coverage of all possible branches resulted in file sizes greater than 10 GB and required
optimization to ensure comparisons between logs would be manageable.

66



Instrumented 
DAS

Compute 
Novelty and 

Archive 
Solutions

Operational 
Contexts

Fenrir Archive

operational
contexts

(novel operational contexts,
operational traces)

operational
contexts

(operational contexts,
operational traces)

operational
contexts

Generate 
Operational 

Contexts

(1)(2)

process data store

agent data flow

Legend:

Sources of 
Uncertainty

sources of
uncertainty

Domain
Engineer

Figure 4.2: Data flow diagram of Fenrir approach.

number of uncertainty sources from the system and the environment. Each gene defines

the likelihood of occurrence and the severity of the occurrence, representing how often the

particular uncertainty is likely to occur and how much of an impact it will have on the DAS.

Figure 4.3 presents a sample Fenrir genome containing three sources of uncertainty specific

to the RDM application: dropped message, delayed message, and link failure. In this case,

there is a 15% chance that a link failure will occur, and upon occurrence, can affect up to

10% of all network links.

Genome:

Sources of 
Uncertainty

Dropped
Message

Delayed
Message

... Link 
Failure

0.15 0.10

Probability Severity

Figure 4.3: Sample Fenrir genome representation for the RDM application.

67



Following the generation of operational contexts in each generation, Fenrir then applies

each operational context to the instrumented DAS, resulting in an execution trace for each

context. The set of pairs (operational context, execution trace) is then provided as input

to the novelty value calculation, as is described in the following section.

(2) Compute Novelty and Archive Solutions: Following execution of all opera-

tional contexts within a population, Fenrir then calculates a novelty value for each solution.

First, Fenrir constructs a weighted call graph (WCG) [1] by parsing each execution trace,

where a WCG is an extension to a program call graph [90]. Each WCG is represented as

a directed graph, where each node has a unique identifier that corresponds to a particular

logging statement, the directed edges between nodes symbolize the order in which logging

statements were executed, and a weight on each edge represents execution frequency. Fig-

ures 4.4(A) and 4.4(B) illustrate a sample WCG with corresponding code statements. In

this example, Statement (a) was executed first, and only a single time. Based on the if

statement within the wrapper function, either Statement (b) or (c) can then be executed

next. Here, Statement (b) was executed three times, and Statement (c) was executed twice.

Lastly, Statement (d) is executed a single time following Statement (c).

The novelty value for an individual is calculated based upon the difference in nodes

and edges between two WCGs, as is shown in Equation (4.1), and then by applying the

Manhattan distance metric [10] to measure the distance between every other WCG in both

the current population and the novelty archive, as shown in Equation (4.2). In Equation

(4.1), v represents a vertex or node, e represents an edge, µi and µj represent the WCGs

being compared, and gi and gj represent the graphs that define each WCG. In Equation

(4.2), k represents the number of WCGs to compare.

Any individual with a novelty value that either exceeds the novelty threshold, or falls

within the top 10% of all novelty values (i.e., novelty threshold), is then added to the novelty

archive at the end of each generation. The novelty archive, in turn, stores the k most diverse

individuals throughout the evolutionary process.

68



a

b

c d

1

1

3

2

(A) Weighted call graph.

   void main() {
a:   wrapper(TRUE);
   }

   void wrapper(bool flag) {
     int i, k = 0;
     if (flag) 
b:     while (i < 3) ++i;
     else {
c:     while (i < 2) ++i;
d:     callFunction(i,k);
     }
   }

(B) Corresponding code.

Figure 4.4: Example of weighted call graph.

dist(µi, µj) = len({v ∈ gi} ⊕ {v ∈ gj}) + len({e ∈ gi} ⊕ {e ∈ gj})) (4.1)

p(µ, k) =
1

k

k∑
i=1

dist(µi, µj) (4.2)

Following completion of novelty search, Fenrir returns the novelty archive containing a set

of pairs (operational context, execution trace) that, based on their novelty score, comprise

69



the most diverse individuals found by Fenrir. Each pair provides insight into the behavior of

the DAS throughout its execution, such as adaptation triggers, parameters for each instanti-

ated DAS configuration, and any raised exceptions, unnecessary adaptations, or unacceptable

behaviors that occurred, where an unnecessary adaptation refers to thrashing between DAS

configurations before finally settling on a target configuration. This type of detailed run-

time behavior can only be found by reviewing execution traces. Unacceptable behavior can

then be corrected by providing bug fixes, augmenting target configurations, updating system

requirements, or introducing methods for adding flexibility to system requirements, such as

RELAX [21, 113].

4.3 RDM Case Study

This section presents a case study in which Fenrir is applied to the RDM application.

First, we introduce the configuration of the simulation environment. Next, we present exper-

imental results in which DAS execution behavior is examined within uncertain environments.

For this experiment, Fenrir was applied the RDM application that was configured as

described in Section 2.3.2. Equations (4.1) and (4.2) were used to guide the search proce-

dure towards novel areas of the solution space. The RDM network contained 25 RDMs with

300 network links. Each logging statement added to the DAS comprises a unique identifier

and module information such as function name, line number, and description. The RDM

was executed for 150 time steps and 20 data items were randomly inserted into the net-

work throughout the simulation. The novelty search algorithm was configured as follows in

Table 4.1:

To validate our approach, we compared the results of novelty search with a random

search algorithm. We chose random search as we do not know a priori which operational

contexts will adversely affect the system. As such, we generated 300 random operational

contexts to compare against Fenrir. For statistical purposes, we conducted 50 trials of each

70



Table 4.1: Novelty search configuration.

Parameter Value

Number of generations 15

Population size 20

Crossover rate 25%

Mutation rate 50%

Novelty threshold 10%

experiment and have plotted mean values and error bars. The following section describes

the experiment in detail, including our hypotheses and experimental results.

4.3.1 DAS Execution in an Uncertain Environment

To validate our approach, we compared Fenrir with random search to explore the space

of possible operational contexts. Specifically, we defined a null hypothesis H0 to state that

“there is no difference in execution traces generated by configurations produced by novelty

search and those created by random search.” Furthermore, we defined the alternate hypoth-

esis H1 to state that “there is a difference in execution traces generated by configurations

produced by novelty search and those created by random search.”

Figure 4.5 presents the results of our experiment. Specifically, boxplots with novelty

distances for each member of the novelty archive generated by Fenrir and novelty distances

calculated by a randomized search algorithm. This plot demonstrates that Fenrir-generated

operational contexts yield execution traces that achieve significantly higher novelty values

than are generated by random search (p < 0.001, Welch Two-Sample t-test). Furthermore,

Fenrir-generated execution traces that exhibited negative kurtosis, suggesting that the dis-

tribution of operational contexts was skewed towards larger novelty values. We can then

reject H0 based on these results. Furthermore, we can also accept H1 , as novelty search

discovered a larger number of unique DAS execution paths in comparison to random search.

71



Furthermore, Figure 4.5 also demonstrates that Fenrir can generate a better representation

of the search space with fewer operational contexts. This conclusion is attained by the fact

that the Fenrir boxplot only contains novelty values from 30 individuals, whereas the random

search boxplot contains novelty values from 300 individuals. As a result, a DAS developer

can use Fenrir at design time to assess DAS behavior in the face of uncertainty.

Novelty Search Randomized

Search Technique

0

20

40

60

80

100

120

140

160

180

N
o
v
e
lt

y
 D

is
ta

n
ce

Figure 4.5: Novelty value comparison between Fenrir and random search.

Figure 4.6 presents two sample RDM execution paths produced by execution traces

generated by Fenrir-created operational contexts. Each node represents a unique logging

statement, each edge represents a sequential execution from one node to the next, and each

weight represents the frequency that the statement was executed. For example, Figure 4.6(A)

demonstrates that Node (g) was executed 28 times and then Node (h) was executed once,

based on the transition between Nodes (h) and (g). Further analysis of Figure 4.6(A) indi-

72



cates that the RDM network comprised 28 instantiated data mirrors (i.e., Node (g) logs a

function that instantiates data mirrors).

Visual inspection of Figures 4.6(A) and 4.6(B) indicate that Fenrir can generate oper-

ational contexts that cause a DAS to exhibit wildly different execution paths in the face

of uncertainty. The diversity of these traces enables the DAS developer to determine focal

points in the DAS functional and adaptation logic to perform optimizations such as reducing

complexity, optimizing target configurations, and repairing erroneous behaviors.

da g 1

b c 1e  1

i300h 1

z

 300

j300 1 k l 300

m b1 1620  300o p300n 300 q r300

 1

s

 300

 300  300

 300 300

 1

 28  300  8100

 300

 10200  8100  8100

 300

300

(A) Execution Path 1

da g
 1

b c
 1

e
  300

i
 300

h
 1

 34

 300 1

 300   300

(B) Execution Path 2

Figure 4.6: Unique execution paths.

4.3.1.1 Threats to Validity

This research was intended to be a proof of concept to determine the feasibility of

using DAS execution trace data to examine how the DAS reacts to different sources of

uncertainty. Threats to validity include whether this technique will achieve similar results

in other application domains, such as embedded systems. To limit the resulting size of

73



generated trace data, we focused on coverage points in the DAS, rather than providing full

branch coverage. As a result, additional logging statements may be required to provide a

full representation of DAS run-time behavior.

4.4 Related Work

This section presents related work on research into code coverage efforts, methods for

automatically testing distributed systems, and automatically exploring how uncertainty im-

pacts software requirements.

4.4.1 Code Coverage

Code coverage testing provides a measure of assurance by defining a metric to which the

different branches of code are verified and validated. Moreover, code coverage can be used

to determine how uncertainty impacts a DAS codebase in terms of unexpected adaptations

or unwarranted behaviors. Chen et al. [18] previously proposed code coverage as a method

for enhancing reliability of a software system while testing is being performed, as a system

may contain latent errors in areas of code that have not been exercised even following a

successful testing phase. However, instrumenting a software system to provide code coverage

analysis is non-trivial, as each separate branch of execution must be examined for faults.

Previously, Tikir and Hollingsworth [102] introduced a technique for dynamically adding

and removing logging calls into a codebase to ease the impact of instrumenting code on the

developer. Furthermore, logging optimizations were introduced to reduce the total number

of instrumentation points as well as the expected overhead incurred by logging.

While each of these approaches facilitates code coverage testing, Fenrir instead targets

code segments that specifically cause the DAS to follow different paths of run-time execution.

These segments include branching paths and self-reconfiguration code statements, and can

provide a finer-grained representation of DAS behavior throughout execution.

74



4.4.2 Automated Testing of Distributed Systems

Distributed systems are generally composed of asynchronous processes or applications

that can send and receive data asynchronously. Distributed systems are similar to DASs

in that they are complex software systems that require constant communication to properly

function. As a result, distributed systems can exhibit a staggeringly large number of possible

execution paths. Sen and Agha [98] previously introduced the notion of concolic execution,

or simultaneous concrete and symbolic execution, to determine a partial order of events that

occur throughout system execution. Concolic execution has been proven to exhaustively find

all possible execution paths of a distributed system. In the DAS domain, concolic execution

could be used to examine the space of possible DAS adaptations and adaptation triggers,

enabling an in-depth analysis of DAS behavior in uncertain environments. Conversely, Fenrir

does not exhaustively examine all possible execution paths, instead opting to examine a

representative set of behaviors exhibited by executing a DAS under disparate environments.

While concolic execution can find all possible paths of execution, Fenrir can be used to

determine a DAS’s reaction to different operating contexts and sources of uncertainty.

Automated fault injection is an approach to facilitate fault tolerance by subjecting a

distributed system to problems at run time, thereby enabling a system to provide mitigation

behaviors to continually satisfy its requirements [26] and ensure dependability [97]. Fenrir

instead explores how a DAS handles faults by examining its reaction to various types of

operational contexts, rather than directly injecting faults for the system to mitigate.

4.4.3 Automatically Exploring Uncertainty in Requirements

Uncertainty impacts software at all levels of abstraction, including the requirements

level. Ramirez et al. [86] proposed Loki as an approach to create a set of unique operating

conditions that impacts a DAS, thereby attempting to uncover latent or unexpected errors in

the controlling requirements specification. This task is accomplished by using novelty search

75



to generate conditions that cause the DAS to exhibit different behaviors throughout execu-

tion. Fenrir extends Loki by exploring uncertainty at the code level, specifically examining

the path of execution followed by the DAS in response to different types of uncertainty.

4.5 Conclusion

This chapter described Fenrir, a design-time approach for providing code-level assurance

for a DAS in the face of uncertainty. Fenrir leverages novelty search [64] to automatically

generate a diverse set of operational contexts that can affect how a DAS executes. Specif-

ically, Fenrir introduces logging statements into the DAS codebase to determine when and

how often sections of code are executed. Fenrir calculates the distance between execution

paths by translating program logs into WCGs and then measures the difference in nodes and

edges to determine a resulting novelty value. Using novelty search, Fenrir searches for a set

of operational contexts that provide a broad range of execution traces, effectively exercising

the DAS to determine if it exhibits undesirable behaviors or contains inconsistencies between

its requirements and implementation.

Fenrir was applied to the RDM application and subjected to uncertainties in the form

of dropped or delayed messages and network link failures. Experimental results determined

that Fenrir can generate operational contexts that are more novel than can be found by

random search, and moreover can generate the set of contexts in an efficient manner. Future

directions for this work include application to additional domains, investigating the use of

other types of distance metrics for the novelty value calculation, and exploring how other

search-based or evolutionary algorithms can be leveraged to explore the operational context

solution space.

76



Chapter 5

Run-Time Testing of Dynamically

Adaptive Systems

This chapter proposes a run-time testing feedback loop that provides online testing

assurance for continual satisfaction of DAS requirements [44]. First, we motivate the need

for run-time testing in DASs. Next, we present MAPE-T, a feedback loop to enable run-time

testing. For each element of the MAPE-T loop, we describe in detail the key objectives,

expected functionalities, and key challenges that we anticipate to manifest. Moreover, we

describe enabling technologies that could be used or extended to realize each element. For

each component, we also highlight an example of each component within the context of

the SVS application. Next, we overview related work. Finally, we summarize our proposed

framework.

5.1 Motivation

While testing a DAS during the design and implementation phases of the software

development cycle addresses verification and validation for a DAS, the derived test cases are

often static in nature and may not adequately assess unexpected system or environmental

conditions [20, 61, 68, 93, 94, 112]. Furthermore, test cases that have been derived for the

77



anticipated environments may quickly lose relevance as the DAS self-reconfigures to address

fluctuations within the environment. For instance, test cases that have been derived to

test an SVS under conditions in which large objects must be avoided are only applicable if

those large objects exist within the current operational context. Otherwise, executing this

particular test case is superfluous and unnecessarily expends system resources.

Traditional testing techniques provide assurance that the DAS is satisfying its require-

ments by identifying and testing the DAS against anticipated operating conditions. However,

it is often unfeasible for an engineer to identify all possible conditions that the DAS may face

over its lifetime, leading to possible requirements violations and system failures as a result

of untested DAS execution states. Extending traditional testing techniques to the run-time

domain enables a DAS to determine if the operating context will cause a negative effect

on DAS operation, and if possible, reconfigure the DAS to mitigate the adverse conditions.

Moreover, the results of run-time testing could be used to trigger a DAS adaptation, thereby

strengthening the DAS against adverse conditions.

Several challenges must be overcome to test a live system as it executes. First, under-

standing how and when to generate test cases is a concern, as providing a representative

set of test cases is necessary when validating a system. Next, determining when to test is a

concern that impacts DAS performance, as testing activities may consume system resources

required for normal DAS operation. Then it is necessary to select an appropriate testing

method, as the type of testing can focus on a particular aspect of system validation (e.g.,

regression analysis, structural testing, etc.). Finally, determining the impact of test results,

and moreover, how to mitigate the impact is crucial to ensure the continual satisfaction of

DAS requirements, as the execution and results of testing activities may cause an unexpected

impact to DAS operation. Each of these challenges is next described in turn.

78



5.1.1 Test Case Generation

A test case is intended to determine if a system requirement, objective, or expectation is

being satisfied or violated. Specifically, a test case explores how different ranges, boundaries,

and combinations of input values can affect the behavior of software modules. IEEE provides

a standard definition of a test case [54] that comprises three parameters: an input value,

an expected output value, and a set of conditions necessary for the test case to be properly

executed. Table 5.1 presents an example of an SVS test case as defined according to the

IEEE standard. In this example, a test case has been defined to monitor the effective sensing

radius of a camera sensor. According to a requirements specification, the camera must be

able to detect objects within 1.0 m. To this end, the input value for this test case is a

measurement of a camera’s sensing distance. As the resulting value must be 1.0 m for this

test case to pass, the expected output value is defined to also be 1.0 m. Lastly, to successfully

execute this test case, a measurable object must be within sensing range of the SVS camera

sensor, at most, 1.0 m.

Table 5.1: Example of test case as defined according to IEEE standard [54].

Parameter Value

Test Case Camera has an effective sensing distance of 1.0 m

Input Value Measured sensing distance

Expected Output Value 1.0 m

Operating Conditions A measurable object is placed at 1.0 m away from the

SVS, and the camera sensor is enabled and able to sense

external objects.

As such, test cases are often defined at design time when environmental conditions

are static in nature and do not take into account the impact that a changing operating

context can have on a DAS. To facilitate run-time testing, traditional test cases must be

79



extended to provide adequate flexibility in the input conditions, expected output values, and

environmental conditions that define the test case.

Figure 5.1 presents a block diagram comparing the standard test case definition and

our proposed extensions necessary to facilitate run-time DAS testing. Specifically, Fig-

ure 5.1(A) demonstrates a standard test case, comprising an input value, corresponding out-

put value, and the environmental conditions necessary to execute the test case. Conversely,

Figure 5.1(B) presents an adaptive test case. An adaptive test case introduces flexibility

in terms of the input value (i.e., α) and expected output value (i.e., β). As environmental

conditions change, the input value and expected output value may require an update to

properly represent the new operating context. For example, consider the lens of a camera

on an SVS. During normal operation, the camera can sense objects within a range of 1.0 m,

however during its latest cleaning cycle, the SVS collided with an object that scratched the

camera lens, thus reducing its range of visibility to 0.75 m. However, a predefined safety

tolerance within the requirements specify that the SVS can safely operate as long as the

camera can sense objects within a radius of 0.5 m, thereby allowing continuing operation of

the SVS with its currently reduced capability. An adaptive test case that tests the sensing

range of the SVS could therefore update its expected sensing range (i.e., expected output

value) to be 0.75 m as opposed to its initial definition of 1.0 m. Given that the SVS is still

satisfying its requirements, this test case should continue to pass. The impact of making

such an adaptation is minor, as the safety tolerance ensures that the SVS still continues to

satisfy its safety requirements. However, the SVS can experience requirements violations

as its utility functions may be rigidly defined in expecting the initial sensing range. These

violations may be reduced by applying RELAX as specified in Chapter 3.

5.1.2 When to Test

Testing non-adaptive systems occurs throughout the software development cycle, includ-

ing the design, requirements, integration, and maintenance phases. However, testing efforts

80



Test Case 
Execution

Input Value

Expected 
Output Value

Environmental 
Conditions

(A) Standard test case.

Test Case 
Execution

Input Value + α 
Expected 

Output Value 
+ β  

Environmental 
Conditions

(B) Adaptive test case.

Figure 5.1: Comparison between standard test case and adaptive test case.

may decrease once the software has been released and may be restricted to performing re-

gression testing on bug fixes or code updates to ensure that new or modified functionality

does not have an adverse effect on the system. Moreover, post-deployment testing tends to

occur on isolated or cloned systems to ensure that there is not a negative impact on the pro-

duction environment. Conversely, testing a DAS following deployment must be conducted

at run time on a live system and often in response to changes in the operating context.

Given the need to perform run-time testing on DASs, traditional testing techniques must

be augmented to consider an appropriate time to execute the test cases to prevent adverse

performance effects on the system under test. Furthermore, assurance that run-time testing

activities do not negatively impact DAS performance must also be provided.

For example, continually testing an SVS can have an impact on its ability to perform its

intended functionality and process environmental data gathered from its sensors. Specifically,

images gathered by the camera may require intensive processing to distinguish and categorize

objects within its field of view. As such, executing a set of test cases concurrently with the

image processing can overextend the on-board processor, thereby reducing performance for

81



both operations. Determining an appropriate schedule for testing is therefore a necessity for

run-time testing to be feasible.

5.1.3 Testing Methodology Selection

Many established methods exist for performing software testing at design time, with

each verifying and validating a system in different ways. These include black-box, white-box,

equivalence class, and boundary testing. Black-box testing [82] examines system function-

ality without having an intimate knowledge of the internal workings of the system, whereas

white-box testing [82] examines functionality based upon prior knowledge of the system.

Equivalence class testing [14] groups test cases that exhibit similar system responses and

then executes a single item from each group to minimize the length of the testing procedure.

Finally, boundary testing [14] defines test case input values at and beyond specified limits

to determine the system’s response.

Each of these testing strategies examines different aspects of system behavior and per-

formance, and moreover can be extended to provide run-time testing capabilities. However,

assurance must be provided that run-time testing will not negatively impact the expected

functionality and behavior of the system under test. To this end, monitoring run-time re-

quirements satisfaction and only performing testing during periods in which the DAS is not

actively satisfying safety or failsafe requirements can assist in this objective.

5.1.4 Impact and Mitigation of Test Results

A failed test case in traditional systems often demonstrates a requirements violation,

typically necessitating an update to the software system and further testing. Common repair

strategies require a detailed investigation into the cause of the failure and an accompanying

resolution that may include code refactoring, patch generation, or bug fixing. Following the

repair attempt, the system must then be re-validated to ensure that the resolution strategy

fixed the problem and did not introduce any new problems.

82



Conversely, a DAS can leverage monitoring and testing information to determine if a

self-reconfiguration is needed to prevent a requirements violation from occurring. Specifically,

the DAS can correlate information gained from monitoring itself and its environment with

the results of run-time testing to determine an appropriate mitigation strategy. For instance,

the DAS can select a new configuration or require that a live patch be applied to introduce

a new configuration to mitigate an unexpected environmental situation. An example of this

behavior is that an SVS may determine that a failing test case is due to a fault within an

internal sensor tasked with monitoring sensor health. As a result, self-reconfiguration may

not be possible, however a software patch can be applied to the internal sensor to resolve

the problem.

5.2 Introduction to the MAPE-T Feedback Loop

This chapter introduces MAPE-T, a run-time testing feedback loop that proposes a

feedback-based approach for implementing run-time testing in a DAS. MAPE-T is inspired

from the MAPE-K autonomic feedback architecture that often guides DAS development [61].

Specifically, MAPE-T provides components for Monitoring, Analyzing, Planning, and Execut-

ing test cases at run time, with each component linked by Testing knowledge.

Thesis statement. Automated run-time assurance can be facilitated by a testing feed-

back loop that monitors, analyzes, plans, and executes test cases during execution.

To facilitate run-time assurance, the MAPE-T loop has four main components. Monitor-

ing observes and identifies changes within the DAS and in its environmental context. This

information is then transferred to the Analyzing component that in turn identifies individual

test cases that require adaptation and creates a test plan specific to the current operating

conditions. Next, the Planning component performs adaptation on test case input values

and expected output values and then schedules the execution of the test plan. Then the

Executing component performs the test plan and analyzes its results. Test case results can

83



feed back into the DAS MAPE-K loop to be used in determining if the DAS requires re-

configuration. Lastly, Testing Knowledge ensures that each element has full awareness of all

testing activities.

5.2.1 MAPE-T Feedback Loop

We now describe each component of the MAPE-T feedback loop in detail, identify chal-

lenges to realizing each component, discuss candidate enabling technologies that could be

leveraged, and present an example of each component within the context of the SVS case

study. Figure 5.2 provides a graphical representation of the MAPE-T feedback loop, com-

prising the Monitoring, Analyzing, Planning, and Executing components, each of which are

linked together by Testing Knowledge.

Monitoring
- Observe contextual change

Testing
Knowledge

Analyzing
- DAS component/test selection
- Identify test adaptation points

Planning
- Test scheduling
- Input/output adaptation

Executing
- Test evaluation
- Result analysis
- Outcome adjustment
- Adaptation triggers

Figure 5.2: MAPE-T feedback loop.

5.2.2 Monitoring

The MAPE-T monitoring component provides run-time information regarding both the

DAS and its environment. Moreover, monitoring is considered both an internal and an

external process, as monitoring introspects upon DAS components to provide data on sys-

84



tem execution, and moreover measures properties regarding its execution environment to

determine external factors impacting the DAS.

5.2.2.1 Key Challenges

The difficulties in monitoring the operating context of the system executing MAPE-T

are similar to those that are encountered within the monitoring component of the MAPE-K

feedback loop [61]. The following monitoring challenges are applicable to both feedback

loops:

• Which properties of the DAS and its operating context must be observed.

• Which sensors or aggregations of sensor values can measure observed properties.

• What frequency for sampling sensors or sensor values is appropriate.

• How does uncertainty in the system (i.e., imperfect or unreliable sensors) or environ-

ment (i.e., unexpected operating conditions) affect sampled sensor data.

The MAPE-T monitoring component must address each of these concerns to ensure that

all processes within the MAPE-T feedback loop are provided with accurate and appropriate

information. For example, an SVS is required to sample an array of sensors to execute a

path planning algorithm appropriate to its environment. As such, an appropriate sampling

frequency must be determined for each sensor, and the sampled values must be verified to

ensure that faulty data as a result of system and/or environmental uncertainties are not

introduced into the loop.

5.2.2.2 Enabling Technologies

As MAPE-T is based upon MAPE-K, we envision that the monitoring component will

reuse the infrastructure already in place for monitoring a DAS in the MAPE-K architecture.

To this end, MAPE-T and MAPE-K will depend upon the same monitoring infrastructure

85



that provides information regarding DAS components and processes as well as monitoring

sensors that provide feedback on environmental conditions.

Additionally, the MAPE-T architecture must also observe the success and failure rates of

test cases at run time. Moreover, the relevance of individual test cases to different operating

conditions must also be observed to ensure that only necessary test cases are executed. As a

result, enabling technologies must support the traditional MAPE-K monitoring requirements

as well as the following:

• Test case instrumentation such that the DAS is continuously aware of each individual

outcome.

• Correlation between test cases and particular operating contexts to determine test case

relevance.

• Traceability between requirements and test cases to ensure that changing requirements

also facilitate updates to test cases.

5.2.3 Motivating Example

We now provide a motivating example of the monitoring component of the MAPE-T

feedback loop. For this example and all following motivating examples, the SVS is performing

a mode change in which it previously executed the RANDOM path plan for 10 seconds and

must now transition to a 20 second SPIRAL path plan.

Given that the SVS has been modeled as a DAS, a monitoring infrastructure already

exists for monitoring system and environmental conditions. This feature of the DAS MAPE-

K loop can be reused and extended to provide the necessary infrastructure required by

MAPE-T. Upon notification from internal monitoring that the SVS has satisfied a 10 second

path execution timer, the SVS begins its transition to a new path plan (i.e., the SPIRAL

path plan). Before doing so, a run-time testing cycle must be performed due to the change

in operating context.

86



5.2.4 Analyzing

The analyzing component focuses on generating an appropriate software test plan com-

prised of test cases that can be adapted at run time. As the DAS self-reconfigures or envi-

ronmental conditions change, the test plan can contain test cases that are irrelevant to the

current operating context, and therefore cannot be properly executed. By analyzing current

conditions, MAPE-T can determine which test cases are relevant (i.e., valid for execution)

and thereby generate an appropriate software test plan conducive to the operating context.

5.2.4.1 Key Challenges

Three key challenges must be addressed in order to implement this component. First,

important changes within the DAS and its environment must be properly identified to de-

termine if a contextual change has occurred. Second, the previously identified changes must

then be analyzed to determine their impact on the current test plan, including relevance and

precision of test cases and their parameters, respectively. Finally, the analyzing component

must continually update traceability links between individual requirements, test cases, and

the DAS implementation.

5.2.4.2 Enabling Technologies

The analyzing component will leverage and possibly extend existing techniques from

formal methods [36], run-time requirements adaptation [8, 85, 94], and non-functional re-

quirements satisfaction [39, 108]. For example, an approach for verifying component-based

systems by instrumentation via a set of Labeled Transition System (LTS) properties has been

proposed [36], where LTS is a formal method for specifying a set of states and transitions.

Each transition is then labeled by a particular action. By formalizing a DAS’s state space,

it can be possible to monitor relevant artifacts within a system in an efficient manner.

87



Requirements are typically elicited at design time and are developed towards a set of

target operating contexts that may become violated over time as the system or environment

changes. However, requirements can be treated as objects to be satisfied at run time to

counter environmental uncertainty that affects a DAS [94]. An approach to elevate require-

ments to run-time entities leverages goal and architecture-based reflection [8]. If requirements

are considered as first-class artifacts in a system, then run-time reasoning [85] can be ap-

plied to consider trade-offs that may occur if the satisfaction of one requirement impedes

the satisfaction of another. Similarly, we propose that test cases should also be converted to

first-class entities in a system to enable run-time reasoning within testing activities.

Lastly, non-functional requirements must also be considered when designing a

requirements-aware DAS [94], given that non-functional requirements impose important con-

straints on how a system delivers acceptable behavior. These constraints typically involve

performance, efficiency, or usability concerns. Filieri [39] and Villegas [108] have both pro-

posed methods for quantifying non-functional requirements. This quantification can then

enable non-functional requirements to also be treated as first-class entities, enabling system

functionality to evolve alongside system behavior during execution.

5.2.4.3 Motivating Example

We now provide a motivating example of the analyzing component of the MAPE-T

feedback loop, following the example presented in Chapter 5.2.3.

Upon receiving control from the monitoring component, the analyzing component must

determine which test cases are relevant to the current operating context. As the most recently

completed path plan was RANDOM, test cases that validate the length of time for which it

was executed can be selected, as well as any other test cases that can relate to the RANDOM

path plan. This adaptation can be represented in LTS as a transition between DAS modes,

where test cases associated with each state can be selected for execution. Moreover, all safety

and failsafe test cases are also selected, as they must continually be re-validated.

88



5.2.5 Planning

The planning component accepts the set of test cases identified by the analyzing com-

ponent and determines an appropriate schedule for executing the test plan. Specifically,

planning must identify a period of time that is conducive to testing, and moreover ensure

that DAS performance and behavior is not adversely impacted by the execution of the test

plan. Furthermore, planning is also concerned with facilitating the adaptation of test case

inputs and expected outputs, as adaptation points can be defined in the planning component

to be used as a basis for later adaptation.

5.2.5.1 Key Challenges

We foresee four key challenges inherent in planning run-time test execution. First,

the performance cost of test case adaptation and side effects must be rigorously analyzed,

as the overall impact of running a test plan must be known. Specifically, executing and

adapting test cases must not cause interference or delays in the overall satisfaction of DAS

requirements. Second, automatically detecting low periods of activity within the DAS can

provide information regarding proper timing for test plan execution. Third, defining the

conditions that trigger input and output value adaptation must also be considered as a key

challenge. Finally, extending standard testing approaches to consume run-time monitoring

information for adaptation purposes is another challenge to be overcome.

5.2.5.2 Enabling Technologies

The planning component can benefit from techniques for continuous testing, search-

based software engineering, using models as run-time entities, and test scheduling and plan-

ning. Continuous testing is an approach for performing testing activities on a system at run

time. The setup and maintenance of test case parameters, test scheduling, and selection of

test cases to be executed are concerns that must be addressed while performing continuous

89



testing. Along these lines, Saff and Ernst have studied the effects of continuous testing by

performing online regression testing to aid software developers as they write code [91, 92].

In this case, spare processor cycles were used to execute regression test cases to verify that

the code updates made by the software developers continually satisfied requirements while

the system was executing. Similarly, Nguyen et al. [78] implemented run-time testing via

distributed agents that execute tests at run time. Specifically, a dedicated, automated test-

ing agent coordinates the testing of other agents within the distributed system. In this case,

testing is performed by two types of agents: monitoring and testing. The monitoring agent

detects and reports faults found within the system. The testing agent generates test suites

to be executed by other system agents to provide continuous testing throughout execution.

Test cases derived for a system generally provide a suitable starting point for continuous

testing, however the test cases are often static in nature and therefore can lose relevance as

the system experiences unexpected operating conditions. As such, test cases must adapt

along with the DAS. To address this concern, the planning component can supplement

the initial suite of test case parameters with run-time monitored values [67] to accurately

test the conditions that the DAS experiences throughout its lifetime. To this end, search-

based techniques, such as online evolutionary computation [43], can be leveraged to explore

optimal test suite parameter configurations. Furthermore, search-based techniques can also

facilitate adaptive test case generation. In particular, machine learning techniques that apply

probabilistic methods [4, 15, 38, 84], exploring points of failure [86], or extending current

methods with evolutionary computation [69] can be considered for assisting in planning

run-time testing.

Leveraging models at run time provides another dimension of enabling run-time re-

quirements satisfaction. Baresi et al. [4] have proposed methods for validating software

compositions at run time with an assertion language that describes both functional and non-

functional system properties. Morin et al. [76] have proposed an approach that considers a

DAS to be composed of software product lines (SPLs), where adaptations are represented as

90



different configurations of SPLs. To this end, the goal of SPL design is to share a common

codebase between different projects to enable code reuse. Trade-offs in balancing object sat-

isfaction must also be considered at run-time by reasoning over the models as they experience

both system and environmental uncertainty [33].

Scheduling test case execution is another concern for the planning component of MAPE-

T. Test case scheduling requires a careful balance between two competing concerns: maxi-

mizing the utilization of system resources while minimizing adverse side effects experienced

by the DAS. As was previously described in the continuous testing approaches [91, 92], the

planning component of the run-time testing framework can execute test cases as spare pro-

cessor cycles become available. Likewise, the DAS can leverage selective testing strategies

to filter extraneous tests that would otherwise consume needed resources. This concern is

exacerbated within onboard embedded systems, where resources tend to be constrained to

limited processing or memory capabilities.

Lastly, selecting an appropriate subset of test cases to be executed can be considered

a multidimensional optimization problem, where competing concerns can be represented by

system performance, test case execution scheduling, and adaptation penalties that may oc-

cur. Furthermore, there is still a large challenge in quantifying each of these concerns, as

many comprise non-functional characteristics. As such, it may be possible to use multidimen-

sional optimization algorithms, such as NSGA-II [27], to balance these competing concerns

when selecting test cases. Moreover, extending NSGA-II to be performed either online or in

a separate, evolutionary agent can further enable run-time test case selection.

5.2.5.3 Motivating Example

We now provide a motivating example of the planning component of the MAPE-T feed-

back loop, following the example presented in Chapter 5.2.3.

After the analyzing component has completed its tasks, the planning component of

MAPE-T analyzes the current state of the SVS to determine if run-time testing can be phys-

91



ically performed, considering performance and memory restrictions that may be imposed by

the limited processing capabilities of the on-board controller. Once the planning component

determines that testing can be safely performed, a run-time test plan is generated comprising

all test cases relevant to the current operating context.

5.2.6 Executing

The executing component performs the test plan according to the previously determined

schedule, analyzes the results of each test case, and triggers any necessary adaptations in the

testing framework or DAS. Following execution of the test plan, each individual test result

is analyzed to determine if adaptation is required. A test case adaptation is necessary if the

test case is no longer relevant to its environment (i.e., the input value and expected output

value are no longer correct for current operating conditions). Note that we are not suggesting

that test cases be adapted to ensure that they will always provide a passing value, instead,

they are adapted to ensure that they remain applicable targets for execution. Finally, the

test results may also be delivered to the DAS MAPE-K loop to provide extra information

regarding DAS behavior and performance, the result of which may result in reconfiguration

of the DAS.

5.2.6.1 Key Challenges

Three key challenges exist for the executing component. The first is promoting both

requirements and test cases to be first-class entities in the DAS. Specifically, distilling re-

quirements, especially non-functional requirements, and test cases into quantifiable entities

is a non-trivial task. Moreover, providing adaptation capabilities for test cases is also non-

trivial, as any flexibility must be guaranteed to not exceed any safety or failsafe tolerance.

The second challenge is in determining an appropriate amount of adaptability for each test

case, as excess plasticity can cause adverse effects on the DAS. The third challenge is in de-

92



termining and adapting the acceptance rate for test cases, as not all test cases can necessarily

be executed at the same time.

5.2.6.2 Enabling Technologies

A DAS must be able to continually deliver acceptable behavior and satisfy requirements

even as its operating context changes or requirements are updated or added. To this end,

Souza et al. [99] have proposed eliciting awareness requirements that monitor requirements

violations over time and are treated as run-time entities. Once a predetermined amount

of violations occurs, the failing requirement can be adapted at run-time with previously

identified parameter changes to improve its chances of future satisfaction. This approach

can be modeled as a set of operations over a goal model, further enabling the use of mod-

els at run time. Other approaches also use requirements as run-time entities [8, 94] that

provide capabilities for reasoning about trade-offs in requirements satisfaction at run time.

These requirements-aware systems provide a step towards handling uncertainty in a sys-

tematic manner, using system requirements as a basis for quantifying run-time behavior.

Additionally, including specification languages such as RELAX [21] or FLAGS [5] can re-

duce the rigidity of requirements, thereby improving the chances of run-time requirements

satisfaction.

Run-time testing has yet to gain major traction in production software systems, however

it has been successfully applied within hardware-based adaptive systems [75]. To this end,

field-programmable gate arrays are used to provide adaptive capabilities. Run-time testing

methods in hardware systems are typically concerned with component and/or system exe-

cution failures, and therefore must reconfigure the system as needed [29, 95]. Additionally,

these systems are further constrained with embedded CPUs and must consider power op-

timization and minimization of memory usage in their design. A previous approach used

monitoring, redundancy, and a well-defined recovery procedure to facilitate run-time testing

of an adaptive hardware system [75]. This approach enables a system to continuously func-

93



tion while executing under adverse conditions without the need for external intervention,

however, intervention can be required in the presence of severe or recurring faults. As such,

hardware-domain techniques can be reused in software, such as using redundant controllers

for monitoring and correcting faults at run time [78].

5.2.6.3 Motivating Example

We now provide a motivating example of the executing component of the MAPE-T

feedback loop, following the example presented in Chapter 5.2.3.

Upon scheduling the test plan, the execution component runs the previously selected

test cases and analyzes their results. Test cases results are correlated with the controlling

SVS goal model (see Figure 2.2) to determine the validity of their results. Failed test cases

are analyzed to determine if a run-time adaptation is necessary, as it is possible that the

current operating context may no longer reflect the initial intent of test cases derived at

design time [43]. Control is then passed back to the monitoring component, and the MAPE-T

loop repeats.

5.3 Related Work

While testing is widely used throughout the software industry for the purposes of verifi-

cation and validation, extending testing activities to the run-time domain has only recently

been introduced as a viable means of providing assurance. Testing initiatives are often rel-

egated to design-time assurance techniques [9, 52], with common approaches [14, 82] being

structural, functional, and regression testing. However, test cases derived at design time

are generally static in nature and cannot adequately provide assurance for a system as it

experiences unexpected or unanticipated environmental conditions. As software grows in

complexity, the need for run-time assurance becomes apparent, as software is required more

and more to remain online while continually behaving as expected.

94



This section presents related work in providing run-time testing for complex, distributed

systems. In particular, we overview how run-time monitoring of system behavior can be

used to test systems at run time, as well as how multi-agent systems, a branch of distributed

computing, can also be used as a basis for run-time testing.

5.3.1 Exploration of System Behavior

Distributed systems tend to comprise large networks of heterogeneous nodes that must

communicate with each other to attain a common goal. As such, validating the behavior of

each node and the system as a whole is a non-trivial task, given the size and complexity of

the system, as well as the fact that source code and/or private data may not be available on

nodes within the system. To this end, monitoring and exploring system behavior provides a

black-box approach to testing a distributed system at run time.

Researchers have explored how system behavior can be analyzed to determine if poten-

tial faults exist within distributed systems [16, 17] and have introduced DiCE as a framework

for providing run-time testing. DiCE is an approach that automatically explores how a dis-

tributed system behaves at run time and also checks to determine if there are any deviations

from desired behavior. To accomplish this task, system nodes are subjected to a variety of

inputs that systematically exercise their behaviors and actions. Furthermore, DiCE operates

in parallel to a deployed system so as not to negatively or adversely impact the production

system.

To systematically explore node behavior, DiCE begins execution from the current state

of the distributed system, essentially creating a system checkpoint for its beginning state.

DiCE clones this checkpoint to be used as a basis for testing, and then employs concolic

execution to explore how different inputs affect the node behavior. Concolic execution,

a combination of concrete and symbolic execution, uses concrete inputs while symbolically

executing a program. In concolic execution, constraints are collected by following code paths

and are then fed into a solver that attempts to find an input that negates each constraint.

95



Negating constraints provides DiCE with a set of concrete inputs that, in aggregate, provide

full coverage of the conditions that the distributed system faces at run time.

DiCE was applied to a case study that explored how the border gateway protocol (BGP),

the basis for the Internet’s inter-domain routing, can experience routing leaks (i.e., hijacking

of domain prefixes, such as a widely publicized issue in which traffic routed to YouTube.com

was hijacked [11]). DiCE exercised each node’s message processing code, resulting in a set

of prefix ranges that can be leaked, and therefore filtered by Internet providers, to prevent

such an attack.

While DiCE exhaustively explores different paths of execution in parallel to live systems,

our run-time approaches to providing assurance focus on exploring the reactions of live

systems in a production environment. This method provides the benefit that faults can be

identified live within the production system, rather than relying on a secondary, parallel

system. However, to enable this method, we stress that caution must be exercised when

implementing run-time assurance methods to ensure that, by providing assurance, we do not

adversely impact the normal execution behaviors of the running system.

5.3.2 Multi-Agent Systems

Multi-agent systems (MASs) are typically implemented as distributed systems that con-

tain multiple agents that must interact to achieve key objectives for both the agents and the

system as a whole. Agents, in reality, are separate software systems that must communicate

with each other by passing messages. Furthermore, agents can be located within different

host systems, where each host represents a different environment. Agents are reactive in that

they can monitor and react to changes in operational context, and moreover are considered

proactive in that they are autonomous and can decide which actions must be performed to

achieve their goals. Due to these particular attributes of a MAS, testing is a non-trivial task

requiring careful thought and extension of existing techniques.

96



Run-time testing of MASs requires that a framework be implemented that supports the

autonomous, proactive, and reactive properties of agents within a system. In particular,

Nguyen et al. [78] have proposed an approach that uses a set of manually derived test cases

complemented with automatically generated test cases. These test cases are then executed

continuously at run time by dedicated agents tasked with monitoring and performing testing

activities. This framework, called eCAT, uses two types of agents to enable testing: an

autonomous tester agent and a monitoring agent. Each of these agents is next described in

detail.

5.3.2.1 Autonomous Tester Agent

The autonomous tester agent is tasked with automatically generating and executing

test cases. In particular, this agent can use either random testing or evolutionary mutation

(hereafter “evol-mutation”) testing to generate test cases. Tester agents use methods for

random test data generation [73, 101] to randomly populate test cases. These test cases, in

turn, are then sent to the software systems (i.e., other agents in the MAS) that are under

test to be executed. It is then the task of the monitoring agent to observe the results of test

case execution for each system under test. Random testing may be a cheap and efficient

technique for generating test data, however the resulting test cases often lack meaning and,

as such, may not be able to uncover all faults within an agent.

Evol-mutation testing combines mutation testing with evolutionary testing. In particu-

lar, mutation testing [30] mutates existing programs (i.e., agents under test) in an attempt

to artificially introduce known defects. Moreover, mutation testing has been shown to be

a valid replacement for fault injection, as well as a better indicator of fault detection than

code coverage [58]. For example, a mutant can be a copy of an existing agent, however

an if-statement within the agent may be slightly modified with a different value being

checked, the intent of which is a fault. Evolutionary testing [83] uses evolutionary methods

to evolve test case parameters in order to achieve a better overall test suite using derived fit-

97



ness metrics. Combining these two approaches yields evol-mutation testing. Evol-mutation

testing provides an advantage in that test cases can be evolved to catch the faults introduced

into mutants, rather than relying on static testing methods. The steps required to perform

evol-mutation are next presented:

1. Preparation: Initially, mutation testing is executed on the agent(s) under test to create

a set of mutants. These mutant programs are provided as input to evolutionary testing.

2. Test execution and adequacy measurement: The test cases provided at design time are

then executed on all mutants. A fitness value is then calculated for each test case based

on a ratio of how many mutants were killed by each test case, where a killed mutant is

an agent whose output deviates from what is expected, signifying a discovered fault.

3. Test case evolution: An evolutionary process is then applied to generate new test cases

by applying crossover and mutation operations to existing test cases.

4. Decision: Lastly, this step determines if the evolutionary process should end (i.e.,

maximum number of generations has been attained) or if a new set of mutant agents

should be created and tested, respectively.

5.3.2.2 Monitoring Agent

The monitoring agent is tasked with observing the results of test cases applied to agents

under test. In particular, if monitored output deviates from an expected value, then the

monitoring agent reports to a controlling entity that the particular agent exhibits a fault. If

this agent is a mutant, then it is considered to have been killed. Furthermore, monitoring

agents are also tasked with verifying that pre and post-conditions are met by agents under

test to protect the MAS during execution. Lastly, monitoring agents observe agent behavior

and provide an execution trace to the autonomous tester agents, including information re-

garding agent birth (i.e., new mutant created), agent death (i.e., mutant killed), and agent

interactions.

98



eCat has been successfully applied to a case study in which a MAS, BibFinder, is tasked

with finding and retrieving bibliographic information from a computer. Compared to random

testing and goal-based testing, the continual testing approach of eCat was able to find more

bugs in the system, particularly those that are either very hard or take a large amount of

time to manifest.

Continuous testing of MASs is similar to the MAPE-T feedback loop that has been pro-

posed within this dissertation. However, our approach differs in that MAPE-T defines a

feedback-based approach for continuously executing and adapting testing activities. More-

over, MAPE-T is intended to test a production system that does not contain artificial defects

or generated mutants, thereby providing assurance for the live system. Finally, the infor-

mation provided by run-time testing can be used to actively reconfigure the DAS, thereby

hardening it against uncertainty.

5.4 Discussion

This chapter has introduced the MAPE-T feedback loop, an approach for automatically

providing run-time assurance for a DAS. MAPE-T comprises a set of components to facilitate

run-time testing. A monitoring component measures system and environmental conditions,

an analyzing component generates a test plan specific to current operating conditions, a

planning component performs run-time test case adaptation and moreover schedules the

execution of the test plan, and an execution component runs the generated test plan and

analyzes its results. Each of these components are linked together by testing knowledge,

a controlling aspect of MAPE-T that enables the sharing of test-related information within

each component. Furthermore, this chapter described key challenges to overcome in imple-

menting each component within the MAPE-T loop, and also proposed methods for leveraging

existing design-time techniques within the run-time domain. The following chapters detail

investigations into realizing the components of MAPE-T on a simulated SVS.

99



Chapter 6

Run-Time Test Adaptation

This chapter introduces our techniques for performing test adaptation at run time for a

DAS. Specifically, we explore how both test suites and test cases require adaptation during

DAS execution to remain relevant even as system parameters and environmental conditions

change. We first motivate the need to perform both types of run-time test adaptation in

the face of uncertainty. Next, we describe our techniques for supporting run-time test suites

adaptation and test case adaptation, respectively. Proteus1 is a technique for adapting test

suites at run time to ensure that the appropriate test cases are selected for online execution.

Veritas2 is a technique for performing fine-grained adaptation of test case parameter values

to ensure that individual test cases remain relevant to their current operating context. In

addition, Proteus acts as a managing infrastructure to facilitate run-time test adaptation by

performing coarse-grained test suite adaptation and invoking Veritas as necessary for finer-

grained parameter value adaptations. Next, we present our approach for using both Proteus

and Veritas at run time to enable adaptive testing. Then, we present results from two separate

experiments. The first experiment details how Proteus was used to automatically adapt suites

at run time, and the second experiment details how Veritas was used to automatically adapt

test cases at run time. Next we explore whether RELAX operators can be applied to run-time

1In Greek mythology, Proteus was a deity that could change his form at will.
2In Roman mythology, Veritas was known as the goddess of truth.

100



test cases to further enhance adaptive testing. Then, we compare and contrast both Proteus

and Veritas with other testing initiatives. Finally, we summarize our findings and present

future directions for our research into run-time test adaptation.

6.1 Motivation

DAS applications often must continually deliver critical functionality with assurance

even as the environment changes, requiring the DAS to self-adapt to mitigate unexpected

uncertainties. Moreover, the resulting state of the DAS following a reconfiguration may no

longer satisfy its requirements. Performing run-time testing, as described in the previous

chapter, adds a layer of assurance that the key objectives and requirements of the DAS

are still being satisfied even as the system and environment changes. However, the test

specification derived for the DAS at design time may lose relevance as the operating context

changes. For instance, a test case that tests the sensing range of an on-board camera may

become compromised as the SVS collides with a wall, causing the lens to be scratched

and thereby effectively reducing its sensing range. As a result, the test case may require

coarse-grained adaptation by Proteus (e.g., disabled as the camera is no longer functional) or

fine-grained adaptation by Veritas (e.g., the expected sensing range is reduced, yet still valid,

and can therefore be adapted to the new sensing range).

6.2 Terminology

This section introduces and defines key terminologies relevant to testing that are used

throughout this chapter. These terms are defined as follows:

• Test case: Single test to assess all or a portion of a requirement. An IEEE standard

test case comprises an input value, expected output value, and conditions necessary to

perform the test case [54].

101



• Test plan: Describes the scope and schedule of testing activities.

• Test suite: Subset of test cases from the test specification. A test suite is typically

derived to be executed under a particular operating context.

• Test specification: Set of all possible test cases derived for a system.

6.3 Introduction to Proteus

Proteus is a requirements-driven approach for run-time adaptation of test suites. Specif-

ically, Proteus acts as a managing infrastructure for test adaptation activities performed at

run time. To this end, Proteus provides two levels of adaptation capabilities. First, Proteus

creates an adaptive test plan for each DAS configuration, as well as a default test suite for

each adaptive test plan. An adaptive test plan describes how a set of test suites are used to

test a particular operating context, where a test suite comprises a collection of test cases to

be executed. From each default test suite, Proteus can selectively enable or disable test cases

as necessary to maintain relevance of each individual test case as well as to optimize run-time

testing performance. Second, Proteus determines when fine-grained test case adaptation is

required by monitoring testing results. If necessary, Proteus invokes Veritas to search for an

optimal configuration of test case parameter values.

Thesis statement. Performing online adaptation of both test suites and test cases

enhances the overall relevance of testing activities for a DAS at run time.

6.3.1 Proteus Approach

Proteus is an approach for enabling test suite adaptation at run time. First, Proteus

defines an adaptive test plan for each DAS configuration at design time. Each adaptive test

plan contains a default test suite that is executed upon invocation of the DAS configuration

at run time. The default test suite, in turn, contains all possible test cases that are relevant

102



to that particular DAS configuration. Run-time adaptation occurs by selectively activating

and deactivating test cases to generate new test suites based upon test results, where test

cases considered failing are re-executed and test cases considered passing are not. This

behavior enables test cases determined to be irrelevant to be adapted at run time (i.e., by

Veritas) and furthermore enables the conservation of system resources by not re-executing

test cases that have already passed for the current operational context. For example, the

DAS selects a new configuration Ci at run time. Proteus, in turn, activates the associated

adaptive test plan ATPi and then executes the default test suite TSi.0. Following execution

of TSi.0, Proteus generates a new test suite TSi.1 that reflects the configuration of passed and

failed test cases. The following sections describe how Proteus defines test suites and adaptive

test plans.

Figure 6.1 presents a graphical depiction of a DAS that has been instrumented with Pro-

teus. Specifically, this figure presents the logical connections between DAS configurations,

operating contexts, adaptive test plans, and test suites. For example, DAS configuration C1

is triggered by operational context OC1. When testing begins, Proteus selects the associated

adaptive test plan ATP1. ATP1 comprises a dynamically-generated collection of test suites

TSi.j that each defines a particular configuration of test cases to be executed. Moreover,

TSi.0 is considered to be the default test suite for ATP1, and as such, is executed initially

each time ATP1 is selected for testing. The test case parameter values for all test cases

within ATP1 are stored in its associated data store Params1. Finally, each test suite TSi.j

comprises a collection of test cases that specify an activation state. Specifically, Proteus

selectively activates or deactivates test cases based on test results, and therefore the config-

uration of test case states defines a unique test suite. The specific definition of a test suite

with respect to Proteus is provided in Chapter 6.3.2.

Figure 6.1 also depicts how different testing cycles can generate different test suites

within the existing collection of test suites for a particular adaptive test plan. A testing

cycle is performed following a DAS reconfiguration, and the testing cycle continues until

103



either all test cases have passed or a new DAS configuration is selected. Specifically, the

results from two testing cycles are pictured in Figure 6.1 by different patterns in each TSi.j .

The first testing cycle is represented by the darker, right-slanted shading, and the second

cycle is represented by the lighter, left-slanted shading. TSi.0, as the default test suite, was

executed at the start of both testing cycles for regression purposes. Following execution of

the default test suite, both testing cycles generated TSi.1 based on the configuration of test

cases. Following execution of TSi.1, the first testing cycle then generated TS1.2, TS1.3, and

TS1.4, whereas the second testing cycle generated TS1.5, TS1.6, and TS1.7.

...

OC1

OC2 OCn

Params1

Params2 Paramsn

ATPnATP2

ATP1

TS1.0 TS1.1

TS1.2 TS1.3 TS1.4

TS1.5 TS1.6 TS1.7

C1 CnC2 ...
Cn2

Cn1

t1n

C2nC12

C21

DAS

Cij Adaptive 
logic

ATPi Adaptive 
test plan

Association

TSi.j Test suiteCi
DAS 

configuration

Test case parameter 
data storeTSi.0 Default test suite

OCi
Operational 

context

Legend

Example iteration 1 Example iteration 2

TC1.4.1 ACTIVE
TC1.4.2 INACTIVE

... ...

TS1.4

Figure 6.1: DAS configurations and associated adaptive test plans.

104



6.3.2 Test Suite

Test suites used by Proteus contain a set of test cases to be executed at run time, where

each test case has an additional status attribute that can be either ACTIVE, INACTIVE,

or N/A. Specifically, ACTIVE test cases are executed when the test suite is executed, IN-

ACTIVE test cases are not executed due to prior testing results, and N/A test cases are

not executed as they are not relevant to the current operating context. Test case status is

determined by two conditions. First, the operational context as specified by the DAS con-

figuration determines which test cases are relevant to the adaptive test plan. Test cases that

are not relevant are designated as N/A and cannot be executed while the current adaptive

test plan is selected. For instance, the SVS may be following a SPIRAL path plan while

attempting to navigate around obstacles in a room. In this case, test cases that are related

to the RANDOM path plan would be designated as N/A, as they are not relevant to the

current situation. Collectively, the set of test cases with their associated status form a unique

test suite TSi.j within a particular adaptive test plan ATPi.

The second condition for determining test case status is based on testing results. As

run-time performance could be negatively impacted by performing testing activities, Proteus

ensures that only necessary test cases are executed at run time. As such, only test cases

that are designated as ACTIVE are executed. A test case is designated as ACTIVE if it

has not yet been executed for a given DAS configuration Ci (assuming it is relevant), or if

it has previously failed. Test cases that fail are subjected to further adaptation by Veritas

in order to realign the test case with current operating conditions. Test cases that monitor

safety or failsafe concerns are always designated as ACTIVE and moreover are precluded

from adaptation. This approach enables Proteus to provide continuing assurance that the

DAS is satisfying its safety objectives at run time.

Figure 6.2 provides a detailed view of two sample test suites: TS1.0 and TS1.1. Specif-

ically, the default test suite TS1.0 considers all test cases to be relevant except for TC3,

105



where TC3 will be defined as N/A for all other test suites within ATP1 as it is not relevant

to the current operating context. TS1.1 defines TC4 to be INACTIVE, as TC4 has previ-

ously passed for this particular test suite and does not require further execution. As such,

TS1.1 is generated by Proteus at run time for this particular combination of test case statuses

following execution of the default test suite TS1.0.

TS1.1 ...

TC1
TC2
TC3
TC4
TC5

...

ACTIVE
ACTIVE
N/A

INACTIVE
ACTIVE

TC1
TC2
TC3
TC4
TC5

...

ACTIVE
ACTIVE
N/A

ACTIVE
ACTIVE

ATP1

TS1.0

Figure 6.2: Example of test case configuration for TS1.0 and TS1.1.

6.3.3 Adaptive Test Plan

An adaptive test plan comprises a default test suite and a set of dynamically-generated

test suites that are relevant to a particular DAS configuration and operating context. At

design time, an adaptive test plan contains only a default test suite TSi.0 that specifies each

relevant test case to be ACTIVE and each irrelevant test case to be N/A. Following execution

of TSi.0, Proteus analyzes the test results to generate a new test suite to be executed next.

Test cases that are considered to be invalid (e.g., false negatives or false positives) are labeled

as ACTIVE and test cases that have passed and are valid are labeled as INACTIVE. Invalid

test cases are then provided to Veritas for further adaptation.

Testing within a particular adaptive test plan continues until either all test cases have

passed (i.e., are labeled as either INACTIVE or N/A) or the DAS has selected a new con-

106



figuration. When the DAS selects a new configuration, its associated adaptive test plan is

activated and Proteus then executes the default test suite for that particular adaptive test

plan.

To illustrate Proteus adaptive test plans, consider the execution of the SVS following

startup. At the outset, the SVS randomly selects a STRAIGHT path plan to follow while

operating under a normal power consumption mode. This configuration of SVS features,

defined for a particular set of system and environmental conditions OC1, is considered to

represent DAS configuration C1. As such, ATP1 is selected by Proteus for run-time testing

and the default test suite TS1.0 is executed. Proteus analyzes the results to determine which

test cases should remain active. In Figure 6.2, TC1 and TC2 monitor safety requirements and

are therefore required to remain ACTIVE, regardless of the result of test case execution. TC3

was not executed, as it is labeled N/A and therefore not relevant to the current operating

context (i.e., OC1). TC4 passed and was therefore designated as INACTIVE until the

operating context changes. TC5 failed and therefore remains ACTIVE. Proteus analyzes

these results and generates a new test suite TS1.1 that specifies the current status of each

test case. For each test case failure that disagrees with its correlated utility function(s) (i.e.,

test case is determined to be invalid), Proteus invokes Veritas to further adapt the test case

parameter values. Following parameter value adaptation, Proteus stores the parameter values

for whichever individual test case (i.e., parent or child) exhibited the largest fitness value to

Params1 for use in the next testing cycle.

6.3.3.1 Regression Testing

To continually ensure that the DAS is satisfying its requirements even as the environ-

ment changes, Proteus performs three different levels of regression testing. First, test cases

that monitor safety and failsafe conditions (i.e., Figure 2.2, Goals (D), (J), (R), and (S))

must always remain active to ensure that they are re-validated when each test suite is ex-

ecuted. Second, test cases that monitor system invariants (i.e., Figure 2.2, Goal (G)) are

107



always considered relevant to all operating contexts and are therefore re-validated within

each test suite. Third, test cases that monitor non-invariant goals must be re-validated in

the event of a contextual change. Specifically, following reconfiguration of the DAS from C1

to C2, the default test suite TSi.0 is executed with all relevant test cases set to ACTIVE.

Assuming that a particular test case has been previously validated in a prior DAS config-

uration, re-executing that test case in the current DAS configuration provides functional

regression assurance.

6.4 Introduction to Veritas

Veritas is an evolutionary computation-based approach for fine-tuning test case param-

eter values to ensure that each test case remains relevant to its operational context. Specifi-

cally, Veritas uses an online EA (c.f., Chapter 2.5.4) to search for an optimal combination of

parameter values for each test case within a pre-defined safety tolerance defined within a test

specification. For example, a test case that tests the distance between the SVS and a liquid

spill must also provide a safety tolerance. Specifically, the test case may specify that the

SVS must detect a spill within 0.5 m, however any value larger than 0.3 m is still considered

safe, and any value below 0.3 m causes a safety violation. Therefore, Veritas cannot adapt

the expected value of this test case to be any smaller than 0.3 m.

Veritas uses DAS utility functions to assess test case relevance. While utility functions

typically quantify high-level system intent (e.g., maintaining a safe distance between vehicles

for an intelligent vehicle system), test cases provide a finer-grained assessment for the be-

havior of individual features and functions. By correlating utility functions with particular

test cases, Veritas can determine if test cases are valid or invalid at run time, and if invalid,

provide an approach for realigning test case parameters with the operational context.

Thesis statement. Adapting test case parameter values aids in providing run-time

assurance.

108



6.4.1 Assumptions, Inputs, and Outputs

In this section, we describe the assumptions that must hold when using Veritas. We

then state the required inputs as well as the expected outputs for Veritas when adapting test

cases.

6.4.1.1 Assumptions

We assume that a system goal model provides an accurate representation of key objec-

tives and requirements for a system under test. Moreover, the goal model and its derived

utility functions are assumed to have been derived correctly to provide a representative quan-

tification of system behavior. Lastly, we assume that a test specification derived from a goal

model provides full coverage of all key system objectives and requirements.

6.4.1.2 Inputs and Outputs

Veritas requires five inputs to properly adapt test case parameters at run time: a goal

model of the DAS, a set of utility functions to be used for high-level requirements monitor-

ing [109], an executable specification or prototype of the DAS, a set of monitoring elements,

and a test specification that comprises all possible test cases. First, Veritas requires a goal

model of the DAS under test to capture the requirements and key objectives of the DAS.

For this chapter, we use the SVS goal model presented in Figure 2.2.

Second, Veritas needs a set of utility functions for high-level requirements monitoring.

The utility functions must quantify each goal’s performance during DAS execution. An

example utility function that measures the satisfaction of power conservation measures for

SVS movement (Figure 2.2, Goal (F)) is presented as follows in Equations (6.1) and (6.2):

109



utilityGoal F = BatteryDecay, (6.1)

where

BatteryDecay =



1.00 if BatteryCharge >= 75%,

0.75 if BatteryCharge >= 50%,

0.50 if BatteryCharge >= 25%,

0.25 else.

(6.2)

The returned utility values are then used to determine if a DAS reconfiguration is

necessary. For example, Equations (6.1) and (6.2) quantify the current state of the battery.

If the remaining charge falls below a predefined threshold, for instance 50%, then the SVS

can self-reconfigure to provide reduced power to its wheel motors, thereby conserving battery

power while still achieving motion and satisfying Goals (A) and (B). Veritas, in turn, uses

utility values to validate test results. Following the prior example, a test case that monitors

the SVS’s power mode is considered to be valid if the utility value (utilitygoal F ) is violated

and the test case determines that the SVS has not successfully entered a reduced power

mode, implying that there is an issue in the DAS reconfiguration mechanism.

Third, an executable specification of the DAS that captures the system and environ-

mental contexts is required. The executable specification is responsible for executing DAS

behavior in a simulation environment that can generate and apply all possible operating

contexts in which the DAS may operate.

Fourth, a set of monitoring elements is required to monitor and quantify DAS operating

conditions, particularly environmental elements (ENV), variables that monitor those ENV

elements (MON), and a relationship between each ENV and MON element (REL). For example,

while in a power conservation mode, the SVS can reduce power to its wheel motors (ENV).

To do so, the SVS queries the wheel motor sensors (MON) to determine how much torque

is currently being applied to the wheels. Upon entering the power conservation mode, the

110



SVS commands the wheel motors to reduce the applied torque (REL) to effectively reduce

the amount of battery power consumed, thereby extending the amount of time that the SVS

can continue to operate.

Fifth, a test specification that provides full coverage of system requirements must be

provided to Veritas. Each test case must also be specified as invariant or non-invariant.

Invariant test cases are precluded from adaptation and are typically associated with safety

or failsafe concerns (e.g., SVS shutting down power in case of a safety violation). Non-

invariant test cases can be adapted at run time and are typically associated with functional

or behavioral concerns. For run-time validation, each test case must also be associated

with one or more utility functions that provide oversight on test case validity. Table 6.1

provides a subset of example SVS test cases. For instance, Test Case 3 ensures that the

SVS object sensor (MON) can detect large dirt particles in the environment (ENV) within

a radius of 0.5 m (REL). As such, the expected value of an SVS internal variable (i.e.,

ObjectSensor.DetectRadius) must equal 0.5 m. If this test case fails, then Veritas checks

to determine if an adaptation is necessary, as operating conditions may have changed such

that the detection radius of the object sensor is reduced.

Veritas outputs a set of tuples comprising the environmental configuration, system config-

uration, and test specification configuration, as well as an adaptation trace. The tuple is used

to determine the state of the DAS at each point of test execution and adaptation and can

be used offline to determine the types of system and environmental configurations that were

experienced by the DAS during execution. Moreover, the adaptation trace provides informa-

tion regarding the contextual changes that triggered testing activities, the results of testing,

and the adaptation path of each test case. An example of an output tuple is provided

in Listing 6.3. This listing provides a snapshot of the data found within each configura-

tion in the tuple ([Environmental Configuration], [System Configuration], [Test

Specification], [Adaptation Trace]).

111



[ Environmental Conf igurat ion ] ,

% Environment c o n f i g u r a t i o n in fo rmat ion

Number o f l i q u i d s p i l l s : 3

Room width : 10m

Room depth : 12m

Downward step : True

. . .

[ System Conf igurat ion ] ,

% SVS c o n f i g u r a t i o n in fo rmat ion

S ta r t i ng bat te ry l i f e : 98.0%

Sta r t i ng capac i ty : 0.0%

Pro bab i l i t y o f wheel s enso r f a i l u r e : 5.0%

. . .

[ Test S p e c i f i c a t i o n ] ,

. . .

%TC5 − Network actuator has never p a r t i t i o n e d network .

TC5 expected value : NetworkActuator . NumPartitions = 0

TC5 s a f e t y t o l e r a n c e : NetworkActuator . NumPartitions ∈ [ 0 , 2 ]

TC5 type : non−i n v a r i a n t

. . .

[ Adaptation Trace ]

. . .

% TC5 expected value has been adapted to 1

Timestep 5 : TC5 expected value : 0 −> 1

. . .

Figure 6.3: Veritas example output tuple.

112



Table 6.1: Examples of SVS test cases.

Test Case 1 Test Case 2 Test Case 3

Test Case

(ENV)

Test suction tank for

large objects

If SVS falls off cliff, en-

sure that failsafe mode

was enabled and all

power disabled

Verify large dirt particle

detection within 0.5m

Agent

(MON)

InternalSensor (IS) InternalSensor (IS),

Controller (C)

ObjectSensor (OS)

Expected

Value

(REL)

IS.NoLargeObjects

== TRUE

C.FailSafeActive ==

TRUE

OS.DetectRadius ==

0.5m

Type Invariant Invariant Non-invariant

Accepted

Value

TRUE TRUE [0.25m, 0.75m]

Goal Con-

straint

utilityGoal D,

utilityGoal J

utilityGoal D,

utilityGoal J

utilityGoal D,

utilityGoal R

6.4.2 Veritas Fitness Functions

This section describes the fitness functions and validation metrics used by Veritas. While

test cases typically return a Boolean pass or fail, Veritas returns a measured fitness sub-

function value and test result. A fitness value provides an extra metric for comparison of

test case relevance, and a particular fitness sub-function is defined for each test case based

on its type (i.e., either an exact value or range of values) as well as designation as invariant

or non-invariant. Table 6.2 provides the fitness sub-functions for each combination of test

type and designation.

The different types of fitness sub-functions are derived based upon the type of vari-

able measured by the particular test case. For those test cases that monitor an exact

113



Table 6.2: Individual test case fitness sub-functions.

Test type REL Fitness

Invariant Exact Value if (valuemeasured == valueexpected) then

fitnessmeasured = 1.0

else

fitnessmeasured = 0.0

Invariant Range if (valuemeasured ∈

of Values [valuelow boundary, valuehigh boundary]) then

fitnessmeasured = 1.0

else

fitnessmeasured = 0.0

Non-invariant Exact Value fitnessmeasured = 1.0 − |valuemeasured−valueexpected|
|valueexpected|

Non-invariant Range if (valuemeasured ∈

of Values [valuelow boundary, valuehigh boundary]) then

fitnessmeasured = 1.0

else

fitnessmeasured = 1.0− |valuemeasured−valueoptimal

valueoptimal
|

value, the test’s measured value (valuemeasured) is compared to the test’s expected value

(valueexpected). Variables defined as a range expect that the measured value falls within

pre-determined boundary values (i.e., [valuelow boundary, valuehigh boundary]). Moreover, if

a range variable falls outside of those boundaries, then the optimal value (i.e., valueoptimal)

is defined as the nearest boundary to the measured value, as defined in Equations (6.3)

and (6.4) that respectively depict the distance calculation to the nearest boundary and the

optimal value:

114



dlow = |valuemeasured − valuelow boundary|

dhigh = |valuehigh boundary − valuemeasured|, (6.3)

where

valueoptimal =


valuelow boundary if (dlow < dhigh),

valuehigh boundary else.

(6.4)

As such, overall fitness for each test case considers inclusion within the low and high

boundaries as an impetus for providing a fitness boost during the evolutionary process. Par-

ticularly, a measured value that is not equal to the expected value, yet is within the specified

range of acceptable values, is rewarded for being a valid result. To this end, aggregate fitness

for each test case is calculated as a linear weighted sum that comprises the measured fitness

sub-function and fitness boost for validity, where weights αmeasured and αvalid define the

relative importance of each sub-function. Aggregate test case fitness is next presented in

Equations (6.5) and (6.6):

fitnesstest case = αmeasured ∗ fitnessmeasured +

αvalid ∗ V alidResult, (6.5)

where

V alidResult =


1.0 if valuemeasured is valid,

0.0 else.

(6.6)

Given that invariant test cases cannot be adapted, they can only pass or fail. Test cases

are also considered as passing or failing based upon a fitness threshold value. As such, this

dissertation considers a test case with a fitness value of 0.75 or higher to have passed and

otherwise to have failed. This threshold value was selected to provide a higher probability

115



that the adaptation process would be triggered as test case fitness must be relatively high

to be considered passing. Given that invariant test cases cannot be adapted, they can only

pass or fail, and therefore can only use the threshold value to determine the test result. Non-

invariant test cases that are considered failed are then adapted by an online evolutionary

algorithm (EA).

6.4.2.1 Test Case Validation

Veritas analyzes the results of non-invariant test case execution to determine if adaptation

is warranted based on the validity of the test cases. Test case validity is determined by

the relationship between the test case and its corresponding utility function, with validity

comprising four possible cases:

• True positive: Test case fitness is within [Threshold, 1.0] and its correlated utility

value is within (0.0, 1.0], indicating that the test is valid and has passed. No extra

action is required by the DAS reconfiguration engine or the Proteus test adaptation

framework.

• True negative: Test case fitness is within [0.0, Threshold) and its correlated utility

value equals 0.0, indicating that an error has occurred and the test has failed. Presence

of a true negative implies that the DAS requires reconfiguration.

• False positive: Test case fitness is within [Threshold, 1.0] and its correlated utility

value equals 0.0, requiring both DAS reconfiguration and test adaptation. This result

indicates that the test case has passed, however its correlated goal is not satisfied.

In this case, the test case and utility value are in disagreement, indicating that the

test case and/or the utility function are incorrect. A DAS test engineer can analyze

the false positive and associated execution trace to determine the source of the error,

particularly if the test case or utility function is in error.3

3For this work, we assume that all utility functions have been derived correctly, and
therefore a false positive indicates an error in a test case parameter value.

116



• False negative: Test case fitness is within [0.0, Threshold) and its correlated utility

value is within (0.0, 1.0], indicating that the test case requires adaptation. In this case,

the test case and utility value are again in disagreement. Given that the utility function

is satisfied, the test case requires adaptation to become relevant again. Moreover, a

DAS test engineer can analyze the state of the DAS and its environment at this point

in time to determine the reason(s) that the test case became irrelevant.3

For example, a test case that monitors the health of the SVS’s cliff sensors is considered

to be valid if its corresponding utility value(s) indicate that the SVS has not enabled a

failsafe mode (Goal (J)) and has not fallen down a set of stairs (Goal (D)). However, if this

test case is passing (i.e., implying that the cliff sensors are fully functional) and the SVS has

fallen down a set of stairs (violating Goals (J) and (D)), then the test case disagrees with its

utility functions and is therefore invalid. In this case, either a DAS reconfiguration or sensor

replacement is necessary to rectify the problem. Test cases that are invalid are marked for

adaptation.

6.4.2.2 Online Evolutionary Algorithm

Veritas runs the (1+1)-ONLINE EA (see Chapter 2.5.4) on each individual test case that

was selected for adaptation, where the (1+1)-ONLINE EA comprises a population of two indi-

viduals: a parent and a child, where the child is created by mutating the parent. Mutation

of test case parameters is enabled by updating either the test case expected value or range

of acceptable values, depending on the type of test case (i.e., exact or range). Following

execution and analysis of each individual test case, the individual with the higher fitness

value is retained for the next iteration. Veritas considers test cases to be individuals, and

evaluation is considered to be a test case execution.

Compared to offline evolutionary approaches, the (1+1)-ONLINE EA gains a significant

advantage in its ability to provide evolutionary capabilities at run time by limiting the

amount of individuals in the population and only performing mutation. However, an ex-

117



haustive search of the solution space is precluded due to the limited population size of the

(1+1)-ONLINE EA. As a result, the (1+1)-ONLINE EA may not be able to successfully converge

to a globally-optimal solution.

6.5 Run-Time Testing Framework

Together, Proteus and Veritas provide a unified approach for DAS run-time test adap-

tation to mitigate uncertainty at different granularities. Proteus enables coarse-grained test

suite adaptation to ensure that only relevant test cases are executed as necessary even as

environmental conditions change. Veritas enables fine-grained test case adaptation to update

individual test case parameters to ensure that their values continually reflect changing envi-

ronmental conditions. This section describes how Proteus and Veritas can be used in tandem

to ensure that both test suites and test cases can continually provide run-time assurance

while testing a DAS. Furthermore, we also describe how Veritas calculates a fitness value for

individual test cases, describe how test cases are validated, and lastly describe the process

by which Veritas uses the (1+1)-ONLINE EA.

To this end, Figures 6.4 and 6.5 present a combined workflow diagram that illustrates

how Proteus and Veritas, respectively, are used to enable run-time test adaptation. Particu-

larly, Figure 6.4 presents the Proteus technique for coarse-grained test suite adaptation, and

Figure 6.5 presents the Veritas technique for fine-grained test case adaptation. As is illus-

trated by the shading in Figure 6.4, (10) and (17), Veritas is a component within the Proteus

framework.

We now describe each step of Figures 6.4 and 6.5 in detail, where bolded items indicate

Boolean conditions checked before the step is executed.

(1) The DAS identifies a change within its operating context and selects a new DAS con-

figuration. Proteus, in turn, consumes this information and activates the associated

adaptive test plan for that particular DAS configuration.

118



(1) 
New DAS 

configuration Ci invoked, 
corresponding ATPi 

is retrieved

(2) 
Execute default TSi.0 for 

associated ATPi

(5) 
All test cases valid and 

passed

(7) 
Label valid passed test cases as 

INACTIVE

(8) 
Generate TSi.j to handle ACTIVE 

test cases

(9) 
Invoke Veritas to fine-

tune test case 
parameters

(16) 
Execute adapted test 

plan TSi.j

(6) 
Done testing Ci

yes

no

(3) 
Any valid failed test 

cases?

no

(4) 
Contact MAPE-K

yes

MAPE-K

Figure 6.4: Proteus workflow diagram.

(2) Upon activation of run-time testing, Proteus first executes the default test suite, effec-

tively executing all relevant test cases for the particular operational context.

(3) Proteus analyzes the test results to determine if any true negative results exist.

(4) If a true negative exists, then the DAS is notified to perform a self-reconfiguration

as an issue has been identified that requires self-reconfiguration.

(5) If a true negative does not exist, then Proteus checks to see if execution of all test

cases resulted in true positives.

119



(9) Invoke Veritas to 
fine-tune test case 

parameters

(10) 
Was TSi.j adapted 

by 
Veritas?

(11) Compare test case 
fitness values between 

TSi.j and TSi.j’

(12) Store best 
performing test cases in 

TSi.j

(13) Select test cases 
for adaptation

(14) Create backup 
TSi.j’

(15) Execute 1+1-
ONLINE EA on 

selected test cases in 
TSi.j

(16) Execute 
adapted test suite 

TSi.j

yes

no

Figure 6.5: Veritas workflow diagram.

(6) If all test results are true positives , then testing is considered complete for the

current DAS configuration and testing is halted until a change in operating context

occurs.

(7) If at least one test result is not a true positive , then Proteus updates the current

test suite. All true positive test cases are labeled INACTIVE, as they do not need to

be re-executed until a change in operating context occurs. All remaining test cases are

labeled ACTIVE, or valid for execution.

120



(8) Proteus dynamically-generates a new test suite based upon the default test suite TSi.0

defined for ATPi to reflect the configuration of ACTIVE and INACTIVE test cases

with respect to the current operating context.4

(9) Veritas is invoked to determine if any ACTIVE test cases require fine-grained adapta-

tion, the details of which are presented in the following section.

(10) Veritas checks to determine if test cases in the current test suite TSi.j were previously

adapted.

(11) If a test case in the current test suite TSi.j was previously adapted, then

Veritas determines which test cases perform better based upon calculated fitness values

between the current test suite TSi.j and the backup test suite TSi.j′ (see Step 15).

(12) Veritas then stores the better performing test cases within the current test suite TSi.j .

(13) If no test case in the current test suite TSi.j was previously adapted, then

Veritas first determines which test cases require adaptation (i.e., test cases that have

failed).

(14) Veritas creates a backup of the current test suite TSi.j′ to provide a basis for comparison

between adapted and non-adapted test cases in the following testing cycle, where the

backup test suite is an exact copy of TSi.j prior to adaptation.

(15) Veritas executes the (1+1)-ONLINE EA on test cases selected for adaptation within the

current test suite TSi.j .

(16) Proteus executes the current test suite and then the procedure iterates back to Step 5.

4Test cases considered irrelevant to the current operational context are labeled N/A.

121



6.5.1 Test Case Adaptation.

We now discuss how test cases can be adapted at run time in the face of uncertainty.

Particularly, we present two test cases that were derived according to the SVS goal model

(Chapter 2, Figure 2.2), and specifically demonstrate how these particular test cases can be

adapted at run time. To this end, Figure 6.6 presents two representative test case adapta-

tions. For each example, we present the test case identifier (TCi), a description of the test

case, the conditions necessary for the test case to be executed, and the expected value of

the parameter being tested.5 We then present an unexpected occurrence that would other-

wise cause the test case to fail as well as an adaptation provided by Veritas that ensures the

particular test case remains relevant. For each of the presented test cases, the adaptation

is assumed to be within a tolerated safety value (i.e., adaptation of the test case does not

violate requirements or safety constraints).

First, Figure 6.6(A) presents an example test case that is impacted by a sensor occlusion.

TC12 tests that the SVS can successfully follow a backup procedure in the event that a non-

collideable (e.g., baby or pet) object is detected within 0.5 m of the SVS. However, due to

an unforeseen sensor occlusion, the effective sensing range of the SVS is lowered. As such,

Veritas can adapt the expected value that TC12 measures to be 0.35 m. The new value

ensures that TC12 will pass due to the new system condition being experienced. However,

this adaptation is only valid if the adaptation falls within a pre-defined safety tolerance, as

well oversight from a corresponding DAS utility function.

Figure 6.6(B) presents an example test case that measures the remaining battery life of

the SVS, and moreover ensures that power does not fall below 10%. During the simulation,

the SVS focused its efforts on cleaning the room and may not have conserved enough power

to ensure that it can return to a docking station while still maintaining more than 10%

remaining battery power. As such, Veritas adapts the test case parameter for TC22 to allow

5The full definition of the each presented test case is specified in Appendix .

122



Description Value
Environmental 

Condition

0.5m
Non-collideable 
object in room

SVS enables backup procedure 
upon detection of non-collideable 

object
0.35m

Non-collideable 
object in room

Sensor 
occluded

ID

TC12

TC12

SVS enables backup procedure 
upon detection of non-collideable 

object

Legend

Test Case

Action

Adapted 
Test Case

(A) Sensor occlusion example.

ID Description Value
Environmental 

Condition

TC22
SVS must ensure battery life 

remains above 10%
> 10%SVS active

TC22
SVS must ensure battery life 

remains above 5%
> 5%SVS active

SVS attempting 
to return to 

dock

(B) Power conservation example.

Figure 6.6: Examples of test case adaptation.

extra flexibility in the amount of power remaining while the SVS attempts to reach its

docking station. For reference, if power fell below 5%, then a safety violation would occur

and this test case would irrevocably fail. Depending on the correlated utility functions

(i.e., utilityGoal K , utilityGoal M , c.f., Appendix ), this test case failure will either be a true

negative (i.e., utility functions are also violated) or a false negative (i.e., utility functions are

satisficed to a degree).

123



6.6 Case Study

This section presents three case studies that illustrate how Proteus and Veritas can be used

to provide adaptive testing at run time. The first case study presents experimental results

in which Proteus was enabled to adapt test suites at run time, the second case study presents

experimental results in which Veritas was used to adapt test case parameter values at run

time, and the third case study presents experimental results in which we enabled both Proteus

test suite adaptation and Veritas test case adaptation together. The following sections also

present the simulation parameters controlling the SVS application and experimental results

for both Proteus and Veritas.

6.6.1 Simulation Parameters

Each experiment was conducted using the SVS application. Particularly, the SVS was

configured as an autonomous robot that must behave in accordance with a controlling goal

model (c.f., Chapter 2, Figure 2.2), with specific focus on effectiveness, efficiency, and safety.

The physical simulation was created within the Open Dynamics Engine,6 and the SVS and

its environment were configured as described in Section 2.2.2.

We subjected the SVS to uncertainty by using Loki [86], an approach to automatically

generate unique combinations of system and environmental conditions. System uncertainty

manifested in random occlusions and/or failures to randomly selected sensors. Environmen-

tal uncertainty comprised the amount, location, and distribution of dirt particles; instantia-

tion of objects that can damage the SVS (e.g., liquid spills), instantiation of objects that the

SVS must navigate around (e.g., stationary pets); floor friction (e.g., carpeting); downward

steps; and room dimensions.

The input test specification comprised 72 test cases, where 17 test cases covered safety

concerns and the remaining 55 test cases covered system functionality. The test cases that

6See http://www.ode.org.

124

http://www.ode.org


monitored safety and failsafe concerns were defined to be invariant, and therefore precluded

from adaptation. The test cases that validated system functionality were defined to be non-

invariant, thereby allowing run-time adaptation. The fitness function weights αmeasured and

αvalid (c.f., Equation 6.5) were defined as 0.4 and 0.6, respectively, to maximize the amount

of test results considered valid.

The SVS simulation was configured to run for 120 timesteps and was required to vacuum

at least 50% of the small dirt particles within the room. Conversely, the SVS was required

to avoid large dirt particles, liquid spills, and downward steps to avoid both internal and

external damage. The SVS simulation was also instrumented to enable run-time monitoring

of system and environmental conditions that are not typically available to SVS sensors. Ex-

amples include monitored variables that store data regarding the SVS decision-making logic

and data structures that maintain the state of all objects within the simulation environment

over time.

For the first experiment, we compared and evaluated adaptive test plans generated by

Proteus for each DAS configuration with a manually-derived test plan (hereafter the “Con-

trol”) that did not provide run-time adaptation capabilities. The Control test plan comprises

all test cases from the input test specification and it only executes the test cases that satisfy

their execution requirements (i.e., conditions necessary for execution were met). According

to the IEEE standard [54], a test case must define the test criteria for the test to be success-

fully executed. The intent of the Control test plan is to provide coverage of all possible mode

changes that may be experienced at run time by the SVS. For the second experiment, we

compared test cases adapted by Veritas to test cases that were not adapted (i.e., the Control).

As such, Proteus was disabled to focus on the impact of Veritas. Lastly, we combined our ex-

periments to determine how enabling both Proteus and Veritas can enhance testing assurance.

For statistical purposes, we conducted 50 trials of this experiment, and, where applicable,

plotted mean values with corresponding error bars or deviations.

125



6.6.2 Proteus Experimental Results

For this experiment, we define the null hypothesis H0 to state that “there is no difference

between Proteus adaptive test plans and a manually-derived test plan.” Moreover, we define

the alternate hypothesis H1 to state that “there is a difference between a Proteus adaptive

test plan and a manually-derived test plan.”

Figure 6.7 presents boxplots of the average number of test cases that should not have

been executed (hereafter termed “irrelevant”) between a Proteus adaptive test plan and a

manually-derived test plan. A test case is considered to be irrelevant if its fitness value (c.f.,

Equation 6.5) equals 0.0. For those test cases designated as irrelevant, the difference between

the measured and expected values is large, indicating that the test case is no longer relevant

to its operating context. As Figure 6.7 demonstrates, Proteus significantly reduces the number

of irrelevant test cases executed in comparison to those executed under a manually-derived

test plan (Wilcoxon-Mann-Whitney U-test, p < 0.05).

Testing activities were further analyzed to monitor the amount of false positive test

cases, or instances where test case fitness falls within [Threshold, 1.0] and its correlated

utility value equals 0.0 (c.f., Chapter 6.4.2). As Figure 6.8 demonstrates, Proteus significantly

reduces the amount of false positive test results as compared to testing with the manually-

derived test plan (Wilcoxon-Mann-Whitney U-test, p < 0.05). These results indicate that

testing with adaptive test plans can reduce the amount of false positive test results, thus

reducing the need for spurious test adaptation and, more importantly, reducing the burden

of unnecessary analysis by the DAS test engineer.

As Figure 6.9 demonstrates, Proteus also significantly reduces the amount of false neg-

ative results, or instances when test case fitness is calculated to be within [0.0, Threshold)

while its correlated utility value is greater than 0.0 (c.f., Chapter 6.4.2), that were encoun-

tered during testing (Wilcoxon-Mann-Whitney U-test, p < 0.05). This result indicates that

Proteus adaptive test plans assist in reducing the amount of run-time testing adaptations

126



10

20

30

40

Control Proteus

A
ve

ra
ge

 N
um

be
r o

f I
rr

el
ev

an
t T

es
t C

as
es

Experimental Treatment

Figure 6.7: Average number of irrelevant test cases executed for each experiment.

required for the testing framework, thereby reducing the overall cost of testing the DAS and

the amount of analysis effort required by a DAS test engineer.

Lastly, the total number of executed test cases were recorded to provide a measure of

the overall impact of run-time testing to a DAS. Particularly, we demonstrate that Proteus

significantly reduces the amount of executed test cases per testing cycle by ensuring that

only relevant test cases are executed, as is shown in Figure 6.10. This figure illustrates

that Proteus can reduce the amount of required effort by a testing framework at run time

127



400

600

800

Control Proteus

A
ve

ra
ge

 N
um

be
r o

f F
al

se
 P

os
iti

ve
s

Experimental Treatment

Figure 6.8: Average number of false positive test cases for each experiment.

(Wilcoxon-Mann-Whitney U-test, p < 0.05). The performance and behavioral impacts of

run-time testing on a DAS are explored in Chapter 7.

The combined results presented in Figures 6.7 – 6.10 enable us to reject the null hy-

pothesis H0 and determine that a clear difference exists between Proteus adaptive test plans

and a manually-derived test plan. Moreover, these results enable us to accept the alternate

hypothesis H1 , based on the assumption that the manually-derived test plan was defined in

relation to normal operating conditions.

128



1000

2000

3000

4000

5000

Control Proteus

A
ve

ra
ge

 N
um

be
r o

f F
al

se
 N

eg
at

iv
es

Experimental Treatment

Figure 6.9: Average number of false negative test cases for each experiment.

6.6.2.1 Threats to Validity.

The research presented within this section is intended as a proof of concept to determine

the feasibility of using Proteus for managing and adapting run-time testing activities. One

threat to validity is if Proteus will achieve similar results within adaptive systems that do not

implement mode changes. Another threat to validity occurs in the validity of the input test

specification, as it must be fully comprehensive to enable complete coverage of the system

requirements for testing assurance to be provided.

129



2000

2500

3000

3500

Control Proteus

C
um

ul
at

iv
e 

N
um

be
r o

f E
xe

cu
te

d 
Te

st
 C

as
es

Experimental Treatment

Figure 6.10: Cumulative number of executed test cases for each experiment.

6.6.3 Veritas Experimental Results

This section presents the experimental results from enabling Veritas test case adaptation

on the SVS. For this experiment, we define the null hypothesis H0 to state that “there is

no difference between Veritas test cases and unoptimized test cases.” We also define the

alternate hypothesis H1 to state that “there is a difference between Veritas test cases and

unoptimized test cases.” Figure 6.11 presents boxplots of the mean fitness values of all

executed test cases across different environments for both Veritas and the Control. As the

130



0.323

0.325

0.327

Control Veritas

A
ve

ra
ge

 T
es

t C
as

e 
Fi

tn
es

s

Experimental Treatment

Figure 6.11: Comparison of fitness between Veritas and Control.

figure demonstrates, Veritas test cases achieve significantly higher fitness values than those

that were not adapted at run time (Wilcoxon-Mann-Whitney U-test, p < 0.05). Moreover,

these results demonstrate that test cases adapted by Veritas consistently remain relevant to

their changing environment, whereas the non-adapted test cases quickly lost relevance. These

results enable us to reject H0 that no difference exists between adapted and non-adapted

test cases.

Next, Figure 6.12 presents the mean number of test case failures experienced through-

out the simulation for both Veritas and the Control while the corresponding utility values for

131



3500

4000

4500

5000

Control Veritas

A
ve

ra
ge

 N
um

be
r o

f F
al

se
 N

eg
at

iv
es

Experimental Treatment

Figure 6.12: Comparison of false negatives between Veritas and Control.

each test case was satisfied. This type of failure is considered to be a false negative. As is

demonstrated by the figure, adapting test case parameter values with Veritas can minimize

the amount of false negatives experienced at run time in the face of changing environmental

conditions, whereas the non-adapted test cases could not handle the unanticipated environ-

mental conditions and therefore became irrelevant.

As Veritas can successfully maximize fitness (Figure 6.11) and minimize the amount of

false negatives incurred during testing (Figure 6.12), we can safely reject H0 and accept H1 .

Moreover, we can state that Veritas can optimize run-time test cases to fail significantly less

132



often under changing environmental conditions while still maintaining a valid representation

of the operational context.

6.6.3.1 Threats to Validity.

This experiment was intended as a proof of concept to determine the feasibility of

adapting test case parameter values at run time to support the MAPE-T feedback loop.

Veritas was applied to an adaptive system that used mode changes to facilitate adaptation.

One threat to validity is if Veritas can achieve similar results in adaptive systems that do not

use mode changes as a basis for adaptation. Another threat to validity is the validity of the

derived utility functions, as they play a major role in determining the validity of test results.

Furthermore, the performance impact of Veritas on a live system was not explored. Lastly,

the overall representativeness of the test cases with respect to the system and encountered

environmental conditions is another threat to validity.

6.6.4 Combined Experimental Results

Lastly, we enabled both Proteus test suite adaptation and Veritas test case parameter

adaptation together to demonstrate the impact of using both techniques simultaneously,

reusing the experimental setups defined in the previous sections. To this end, Figure 6.13

presents the average number of executed irrelevant test cases for each experiment. In com-

parison to the Control in which no test adaptation was performed, both Proteus and Veritas

significantly reduce the number of irrelevant test cases (Wilcoxon-Mann-Whitney U-test,

p < 0.05). As Figure 6.13 shows, Proteus incurs far fewer irrelevant test cases than Veritas

incurs alone. Moreover, combining Proteus and Veritas does not significantly reduce irrelevant

test cases further than Proteus alone (Wilcoxon-Mann-Whitney U-test, p < 0.05). This result

indicates that, while Veritas does reduce irrelevant test cases, Proteus provides a much greater

overall impact.

133



10

20

30

40

Control Veritas Proteus Proteus+Veritas

A
ve

ra
ge

 N
um

be
r o

f I
rr

el
ev

an
t T

es
t C

as
es

Experimental Treatment

Figure 6.13: Average number of irrelevant test cases for combined experiments.

Next, Figure 6.14 presents the amount of false positive test cases executed for each

experiment. In this case, only Proteus reduces the amount of false positives significantly in

comparison to the Control experiment (Wilcoxon-Mann-Whitney U-test, p < 0.05), indicating

that test suite adaptation provides a larger benefit than test case adaptation in reducing false

positives.

Following, Figure 6.15 presents the amount of false negative test cases executed for

each experiment. Here, both Proteus and Veritas significantly reduce the amount of false

134



400

600

800

Control Veritas Proteus All

A
ve

ra
ge

 N
um

be
r o

f F
al

se
 P

os
iti

ve
s

Experimental Treatment

Figure 6.14: Average number of false positive test cases for combined experiments.

negatives (Wilcoxon-Mann-Whitney U-test, p < 0.05), however Proteus once more provides

a far greater overall impact than does Veritas.

Lastly, Figure 6.16 presents the average test case fitness of SVS execution over several

consecutive environments. While Veritas does provide a fitness boost for executed test cases,

employing Proteus adaptive test plans introduces a further overall increase in fitness, as only

relevant test cases are executed. This result occurs as Veritas may not have converged to

a fully-optimal solution, while Proteus gains an advantage by executing test cases specified

by adaptive test plans as relevant to the current operating context, and therefore better-

135



1000

2000

3000

4000

5000

Control Veritas Proteus All

A
ve

ra
ge

 N
um

be
r o

f F
al

se
 N

eg
at

iv
es

Experimental Treatment

Figure 6.15: Average number of false negative test cases for combined experiments.

performing in comparison to Veritas test cases. Together, Proteus and Veritas perform signif-

icantly better than the Control that performs no test adaptation (Wilcoxon-Mann-Whitney

U-test, p < 0.05), indicating that the combination of Proteus and Veritas provides a clear

advantage for run-time testing.

In summary, Proteus and Veritas enable test adaptation to improve the relevance of run-

time test cases. Proteus ensures that test suites remain relevant to their operational context by

requiring that only relevant test cases are executed, thereby reducing the amount of executed

irrelevant test cases. Furthermore, Veritas ensures that test case parameter values remain

136



0.325

0.330

0.335

0.340

0.345

Control Veritas Proteus All

A
ve

ra
ge

 T
es

t C
as

e 
Fi

tn
es

s

Experimental Treatment

Figure 6.16: Average test case fitness for combined experiments.

relevant to their operational context by ensuring that parameter values adapt alongside the

environment. Together, Proteus and Veritas can increase overall test case relevance in the face

of uncertainty.

6.7 RELAXation of Test Cases

This section presents our investigation into the feasibility of using RELAX operators

to facilitate adaptive testing. Particularly, we examined how RELAX, a fuzzy logic-based

137



language for specifying flexibility in requirements, can be extended to the testing domain

to provide flexibility in executing test cases under uncertain conditions. In this section, we

introduce our technique for applying RELAX operators to test cases, describe and present

our experiment in which RELAX operators were both manually and automatically applied to

a test specification, and discuss the implications of this study.

RELAX [21, 113] was initially developed for the requirements domain to introduce flexi-

bility to requirements and provide a means for tolerating uncertainty. As such, we extended

the RELAX approach to the testing domain to investigate if RELAX operators can provide

flexibility to test cases that may be no longer be indicative of their operating context as a re-

sult of uncertainty. Similar to Veritas, RELAX operators can only be applied to non-invariant

test cases to ensure that both safety and failsafe concerns are continually satisfied. More-

over, our approach follows the existing RELAX approach [113] in that uncertainty factors,

monitoring agents, and mathematical relationships between each must be defined for each

use of a RELAX operator. Our approach extends the existing RELAX approach by requiring

that each test case be linked to at least one requirement or goal to provide both traceability

and coverage.

In the case of requirements or goals, a fuzzy logic function is applied to each associated

utility function to provide flexibility in the level of satisfaction, based upon the calculated

utility value. Ideally, a test case can be RELAXed in a similar fashion. Specifically, test cases

derived for Proteus and Veritas each specify a fitness function (c.f., Table 6.2) that captures

the difference between the measured and expected value for each test case. Given that the

fitness function is normalized to a value between [0.0, 1.0], a fuzzy logic function can be

applied to the fitness function to provide extra flexibility in satisfaction with the resulting

distance between the measured and expected value. For the purposes of this dissertation,

we reused the set of RELAX operators presented in Table 2.1.

To investigate test case RELAXation, we both manually and automatically introduced

RELAX operators to non-invariant test cases. For the manual approach, a DAS test engineer

138



identified a set of target test cases most conducive to RELAXation. The automatic approach

applied a genetic algorithm in a similar fashion to the AutoRELAX technique introduced in

Chapter 3.2.2, where test cases replaced goals as targets for automated RELAXation.

We compared both automated and manually RELAXed test specifications to a Control

that did not provide any RELAXation or test adaptation over 50 trials to establish statistical

significance. Figure 6.17 presents boxplots comparing the average test case fitness between

experimental treatments where test cases were automatically RELAXed, manually RELAXed,

and not RELAXed (i.e., the Control). Furthermore, we compared these results to the average

test case fitnesses generated by run-time test adaptation provided by both Proteus and Veritas.

These results indicate that introducing RELAX operators, either manually or automatically,

does not significantly improve test case fitness (Wilcoxon-Mann-Whitney U-test, p < 0.05),

especially in comparison to run-time test case adaptation.

Next, Figure 6.18 presents boxplots of the average number of test case failures recorded

throughout execution, where a test case failure occurs when the measured test case fitness

value falls below the test case failure threshold (c.f., Chapter 6.4.2). These results indicate

that RELAXation does not improve run-time testing by reducing the amount of test case

failures (Wilcoxon-Mann-Whitney U-test, p < 0.05). Using Proteus and Veritas test adap-

tation does significantly reduce the amount of experienced failures, indicating again that

Proteus and Veritas test adaptation continually improves the relevance of test cases to their

environment.

6.7.1 Discussion

This section has presented our investigation into the feasibility of using RELAX opera-

tors to provide extra flexibility for run-time test cases within a test specification. Specifically,

the fuzzy logic functions derived for each RELAX operator were intended to enable RELAXed

test cases to accept a wider range of possible measured values as valid, thereby extending

the relevance of RELAXed test cases to different operational contexts. Experimental results

139



0.6

0.7

0.8

Au
toR
EL
AX
ed

Man
ua

lly
 R

ELA
Xed

Co
ntr
ol

Pr
ote
us
+V
er
ita
s

A
ve

ra
ge

 T
es

t C
as

e 
Fi

tn
es

s

Experimental Treatment

Figure 6.17: Comparison of average test case fitness values for RELAXed test cases.

indicate that a test specification with RELAXed test cases does not perform significantly

better than a non-RELAXed test specification. Moreover, run-time test adaptation provided

by Proteus and Veritas performs significantly better than a RELAXed test specification. As

such, Proteus and Veritas adapt test suites and test case parameters at run time to optimize

testing activities with respect to changing environmental conditions, whereas RELAX oper-

ators introduce flexibility into test cases by using fuzzy logic functions to enable a test case

to tolerate a wider range of values than it could without RELAX. The proactive adapta-

tion provided by Proteus and Veritas to ensure that test cases are relevant to their operating

140



0

1000

2000

3000

4000

Au
toR
EL
AX
ed

Man
ua

lly
 R

ELA
Xed

Co
ntr
ol

Pr
ote
us
+V
er
ita
s

A
ve

ra
ge

 T
es

t C
as

e 
Fa

ilu
re

s

Experimental Treatment

Figure 6.18: Comparison of average test case failures for RELAXed test cases.

context demonstrates a significant advantage in the average test case fitness and number of

failures encountered, whereas the RELAXed test specification may still have been too rigid

to provide any significant benefit. These results indicate that RELAXation of test cases may

not be a feasible strategy for extending the relevance of test cases to changing environmental

conditions.

141



6.7.2 Threats to Validity

The research presented within this section is intended to be a proof of concept to de-

termine the feasibility of applying RELAX operators to test cases to tolerate uncertainty at

run time. As such, one threat to validity is the validity of the derived test specification, as

the safety ranges must be correctly defined to ensure that safety or failsafe concerns are not

violated. Another threat to validity is if similar results can be achieved in a DAS application

that does not implement mode changes.

6.8 Related Work

This section presents existing research that is related to run-time testing. Particularly,

we overview prior work in search-based software testing, run-time testing, test plan genera-

tion, and test case selection.

6.8.1 Search-Based Software Testing

Search-based software testing leverages search-based techniques, such as evolutionary

computation, simulated annealing, and hill climbing, to the field of software testing. Search-

based techniques have been successfully applied to automated test case generation, including

applications in model-based testing, regression testing, and structural testing [51, 52, 69].

EvoSuite [40] and Nighthawk [3] are testing frameworks that use evolutionary computation

to generate test suites and instantiate unit tests, respectively. Proteus does not directly lever-

age search-based techniques, however Veritas applies search-based techniques at run-time. In

contrast, other search-based applications tend to focus at design-time optimization. Using

evolutionary techniques at run time enables a DAS to react to and adapt towards live condi-

tions, rather than requiring the system be taken offline for bug fixes or code optimizations.

142



6.8.2 Run-Time Testing

Testing software at run time provides insights into the behavior and correctness of

a system while executing in different operating conditions. Previously, run-time testing

has been implemented using models [50] and as a variation of reinforcement learning [107].

By extending an assertion language, unit testing has been incorporated into a run-time

verification framework [71]. Run-time software testing has previously been accomplished

by recording execution traces and then replaying them on a secondary computer in parallel

while examining those traces for faults [103]. Markov models have been used to mitigate

uncertainty in a run-time monitoring framework [38], and agent-based approaches have also

been used to facilitate run-time testing in distributed systems [78]. While each of these

approaches facilitate run-time testing, Veritas combines evolutionary search with goal-based

validation. Furthermore, Proteus focuses on maintaining test plan and test case relevance as

system and environmental conditions change.

6.8.3 Test Plan Generation

Automatic generation of software test plans is a field that has been extensively stud-

ied. One approach to automated test plan generation uses a requirements specification and

formal grammars to automatically define a test plan [6]. In this approach, requirements

are converted to a finite state automata (FSA) and a grammar is then derived from that

FSA. Test plans are then generated from the grammar and can be used during testing activ-

ities. Conversely, Proteus generates new test plans based upon a predefined default test plan

and then executes test plans at run time based upon monitored system and environmental

conditions.

Automated planning approaches have also been applied to testing graphical user in-

terfaces (GUIs) [70]. Here, artificial intelligence techniques were used to anticipate actions

taken by users who are actively using the GUI, resulting in a set of testing goals. The algo-

143



rithm then generates a partially-ordered plan that realizes the testing goals and generates a

set of related test cases. Conversely, Proteus automatically generates a test plan by analyzing

run-time monitoring information to determine which test cases are appropriate based upon

the operational context.

6.8.4 Test Case Selection

Automatic selection and prioritization of test cases has also been extensively stud-

ied, with a particularly excellent survey covering the search-based software engineering do-

main [51]. In this survey, test case selection is concerned with selecting a representative

set of test cases, and test case prioritization is concerned with optimizing the order of test

case execution. However, the surveyed techniques tend to focus on design-time approaches,

whereas Proteus selects test cases at run time. Tropos [78] is an agent-based implementation

that uses a testing agent to continuously validate the behavior of other agents in the system

by performing randomized testing. Conversely, Proteus generates test plans that are targeted

towards each DAS configuration based on each set of operating conditions.

6.9 Conclusion

This chapter has introduced our approach for adaptive run-time testing. We first intro-

duced Proteus, a technique for automatically generating adaptive test plans to ensure that

only relevant test cases are executed at run time. Next, we introduced Veritas, a technique

for adapting test case parameter values at run time to ensure that test cases remain rele-

vant to changing environmental conditions. Together, these approaches support the MAPE-T

feedback loop by enabling the creation and execution of test suites and test cases at run

time. We have demonstrated both Proteus and Veritas on the SVS application that was re-

quired to clean a room effectively, efficiently, and safely while mitigating uncertainty in the

system and environment. These uncertainties included random sensor occlusions and/or

144



failures, randomly placed dirt particles, downward steps to be avoided, and randomly placed

obstacles that may cause damage to the SVS or to the object itself. Experimental results

indicate that providing run-time adaptation capabilities for testing activities significantly in-

creases the relevance of executed test cases. Possible future directions for this work include

investigating other search-based techniques, such as simulated annealing or multi-objective

optimization, for run-time use to automatically derive a representative set of test suites and

optimize test case parameters. Lastly, another direction includes providing feedback to the

MAPE-K loop to assist in performing self-reconfigurations.

145



Chapter 7

Impact of Run-Time Testing

This chapter provides an analysis of the impact that run-time testing has on a DAS from

both a performance and a behavioral standpoint. We first motivate the need to analyze the

impact of testing on a DAS. Next, we describe the metrics we use to quantify each type of

impact on the DAS. Following, we discuss optimizations to the run-time testing framework to

reduce the overall impact of run-time testing on the DAS. Lastly, we summarize our findings

and propose future optimizations to our work.

7.1 Motivation

Run-time testing provides a valuable layer of assurance for a DAS. However, the rela-

tive impact that a testing framework imposes upon the DAS must also be considered when

performing run-time testing, as the addition of testing activities can require additional pro-

cessing time, extra memory overhead, and/or unexpected changes to DAS behavior. To this

end, we analyze how our run-time testing framework impacts a DAS at run time in terms of

extra performance overhead or unexpected behavioral changes. We define these metrics in

the following section.

146



7.2 Analysis Metrics

This section presents the metrics used for analyzing the performance and behavioral

impact that run-time testing imposes on a DAS. To study the effect of these metrics on a

DAS, we analyze how run-time testing affects the RDM application at run time.

7.2.1 DAS Performance

We quantify DAS performance based upon two key metrics: total execution time and

memory footprint. The method for which we measure each metric is defined as follows.

7.2.1.1 Total execution time

In simulation, the DAS executes for a set number of timesteps and therefore the total

execution time can be measured. To this end, we measure the total execution time of the

function that is responsible for executing the complete DAS simulation. In particular, we use

the cProfile Python package1 to measure the cumulative time that the simulation execution

function requires. Measuring the execution times of a deterministic DAS instrumented with

run-time testing and with testing disabled can then provide a point of comparison for any

extra time used to perform run-time testing.

7.2.1.2 Memory footprint

Extra memory may be consumed when instrumenting a DAS with a run-time testing

framework. Depending on the hardware used to support the DAS, the extra memory cost

may be prohibitive, particularly in embedded systems where memory is limited. Given that

the RDM application has been implemented in Python, we use the resource package to

examine the total amount of memory consumed throughout execution.

1See https://docs.python.org/2/library/profile.html.

147

https://docs.python.org/2/library/profile.html


7.2.2 DAS Behavior

While execution time and incurred memory costs are relatively straightforward to quan-

tify, examining differences in DAS behavior is less obvious. To this end, we define two key

metrics for quantifying behavior: requirements satisficement and behavioral function calls.

Each of these metrics are next described in turn.

7.2.2.1 Requirements satisficement

We first examine the extent to which software requirements are satisficed during execu-

tion to examine the impact that testing may impose upon a DAS. In particular, we monitor

utility values calculated based upon a provided DAS goal model to determine if any dif-

ference occurs when run-time testing is performed on a DAS. Given that a utility value is

required to be within a range of [0.0, 1.0], any difference in behavior can be identified based

on a comparison of the utility values that quantify goal satisficement.

7.2.2.2 Behavioral function calls

We also quantify behavioral performance based upon the number of behavioral function

calls invoked. We define a behavioral function call as a function identified by the DAS

engineer as having an integral impact on DAS behavior. For the purposes of this chapter, we

monitor the number of self-reconfigurations performed by the DAS, as a self-reconfiguration

can create a major divergence in system behavior.

7.3 Baseline Results

This section presents the results found by executing the RDM in a baseline setting to

determine the impact that run-time testing has on a DAS, where the baseline introduces no

148



optimizations.2 In particular, we instrument the RDM application to provide the metrics

that we have previously defined in this chapter. Moreover, we configure run-time testing

activities on the RDM as follows:

• (S1): All run-time testing activities enabled (i.e., Proteus and Veritas enabled)

• (S2): Run-time testing disabled (i.e., Proteus and Veritas disabled)

• (S3): Run-time testing removed (i.e., Proteus and Veritas data structures and functions

removed from DAS codebase)

(S1) executes the RDM with all run-time testing activities enabled, including test case

execution, Proteus test plan adaptation, and Veritas test case parameter value adaptation.

(S2) does not perform run-time testing, however the data structures and functions required

by the framework are still instantiated by the DAS. Lastly, (S3) completely removes the

run-time testing framework from the DAS.

Figure 7.1 presents boxplots of the number of seconds required to execute the RDM

simulation for each testing state across 50 trials. As these results demonstrate, performing

run-time testing requires significantly more time for the simulation to complete than either

disabling or removing run-time testing from the RDM application (Wilcoxon-Mann-Whitney

U-test, p < 0.05).

Next, Figure 7.2 presents boxplots of the total amount of memory consumed by the

RDM application for each testing state. In particular, we examine the total number of

kilobytes required by the RDM simulation across 50 trials. As these boxplots demonstrate,

no significant difference exists in memory overhead incurred by each testing state (Wilcoxon-

Mann-Whitney U-test, p > 0.05).

Figure 7.3 presents boxplots that display an average of all utility value calculations

across 50 trials of RDM execution. Here, we average the calculated utility values across

2For the purposes of this experiment, Proteus is not considered to be an optimization, but
a managing infrastructure and an approach for continuously ensuring test case relevance.

149



10

20

30

40

50

Te
sti

ng
 E

na
ble

d 
(S

1)

Te
sti

ng
 D

isa
ble

d 
(S

2)

Te
sti

ng
 R

em
ov

ed
 (S

3)

Test Configuration

A
ve

ra
ge

 E
xe

cu
tio

n 
Ti

m
e 

(s
ec

)

Figure 7.1: Amount of time (in seconds) to execute RDM application in different testing
configurations.

150



58000

62000

66000

70000

Te
sti

ng
 E

na
ble

d 
(S

1)

Te
sti

ng
 D

isa
ble

d 
(S

2)

Te
sti

ng
 R

em
ov

ed
 (S

3)

Test Configuration

A
ve

ra
ge

 M
em

or
y 

C
on

su
m

pt
io

n 
(K

B
)

Figure 7.2: Amount of memory (in kilobytes) consumed by the RDM application in different
testing configurations.

151



all timesteps of RDM execution into a single value to represent overall goal satisficement.

These results, while exhibiting a difference in their respective means, are not statistically

significantly different from each other overall (Wilcoxon-Mann-Whitney U-test, p > 0.05),

resulting in the conclusion that our testing framework does not significantly impact DAS

behavior.

0.00

0.25

0.50

0.75

1.00

Te
sti

ng
 E

na
ble

d 
(S

1)

Te
sti

ng
 D

isa
ble

d 
(S

2)

Te
sti

ng
 R

em
ov

ed
 (S

3)

Test Configuration

A
ve

ra
ge

d 
U

til
ity

 V
al

ue
s

Figure 7.3: Average of calculated utility values throughout RDM execution in different
testing configurations.

Next, Figure 7.4 presents boxplots that display the average number of utility violations

throughout RDM execution. Statistically, performing run-time testing does not incur sig-

152



nificantly more utility violations as compared to disabling or removing run-time testing, as

no significant difference exists between each set of data (Wilcoxon-Mann-Whitney U-test,

p > 0.05).

500

1000

1500

Te
sti

ng
 E

na
ble

d 
(S

1)

Te
sti

ng
 D

isa
ble

d 
(S

2)

Te
sti

ng
 R

em
ov

ed
 (S

3)

Test Configuration

N
um

be
r o

f G
oa

l V
io

la
tio

ns

Figure 7.4: Average amount of utility violations throughout RDM execution in different
testing configurations.

While the presented results in Figure 7.3 and 7.4 are not statistically significant, a clear

difference exists in the presented mean values. As such, we examine RDM execution traces to

determine why this difference occurs. To this end, we found that, while no difference exists

in the operating context between all three testing states, a minor difference in execution

153



behavior does occur. Specifically, utility functions sample data provided by the RDM each

timestep. When testing is enabled or available, the real time at which utility values are

calculated will be slightly delayed by the extra time required to perform testing activities,

resulting in a sampling of different RDM environmental states. For example, at a certain

point during RDM execution, the number of passive data mirrors increased when testing

was enabled, decreasing the number of active data mirrors and resulting in a partitioned

network. As such, this behavior induces a utility violation in Goal (F) (c.f., Figure 2.4).

We next compare the total amount of self-reconfigurations performed by the RDM

throughout its simulation and present these results in Figure 7.5. This figure corroborates

the information presented in Figures 7.3 and 7.4 in that run-time testing did not incur signif-

icantly more adaptations than were found by disabling or removing testing (Wilcoxon-Mann-

Whitney U-test, p < 0.05). These results, coupled with the results presented in Figure 7.3

and 7.4, indicate that our testing framework does not introduce significant behavioral change

to the RDM application.

The results presented in Figures 7.1 – 7.5 indicate that run-time testing only significantly

impacts a DAS in the amount of execution time required, whereas memory overhead and

behavior are not significantly impacted by run-time testing. The next section details our

approaches for optimizing run-time testing from a performance perspective.

7.4 Optimization Approach

We now detail our optimization strategy to lessen the overall impact of run-time testing

on a DAS. As such, this section details our implemented optimizations for run-time testing

in terms of execution time. Specifically, we discuss how we introduce parallelization into

the RDM framework. In particular, we create a separate worker subprocess using Python’s

multiprocessing package3 to perform testing in parallel to RDM execution. The worker

3See https://docs.python.org/2/library/multiprocessing.html.

154

https://docs.python.org/2/library/multiprocessing.html


0

100

200

300

Te
sti

ng
 E

na
ble

d 
(S

1)

Te
sti

ng
 D

isa
ble

d 
(S

2)

Te
sti

ng
 R

em
ov

ed
 (S

3)

Test Configuration

N
um

be
r o

f A
da

pt
at

io
ns

Figure 7.5: Number of adaptations performed throughout RDM execution in different testing
configurations.

155



subprocess comprises instantiation of testing-related data structures, sequential execution of

test cases, and sequential adaptation of test suites and test cases. Information particular to

RDM execution, such as the number of active network links and number of quiescent data

mirrors, are passed to the worker subprocess via a pipe.

We now examine the impact that parallel processing has on the performance of our

run-time testing approach. To this end, we extend the execution states previously defined

in Chapter 7.3 (i.e., (S1), (S2), and (S3)) to understand the impact that each technique has

on RDM performance:

• (S1): Proteus test plan adaptation enabled, Veritas test case adaptation enabled

• (S1.1): Proteus test plan adaptation disabled, Veritas test case adaptation enabled

• (S1.2): Proteus test plan adaptation enabled, Veritas test case adaptation disabled

• (S2): Proteus test plan adaptation disabled, Veritas test case adaptation disabled

• (S3): Testing framework removed (i.e., Control)

We compare the overall execution time for States (S1), (S1.1), and (S1.2) with their

parallelized counterparts (i.e., (S1’), (S1.1’), and (S1.2’)) in Figure 7.6. No comparison to a

parallelized implementation is made for States (S2) and (S3) as no test execution is performed

while these particular states are active. Figure 7.6 presents boxplots of the number of seconds

required to execute the RDM simulation for each testing state across 50 trials.

The results presented in Figure 7.6 demonstrate the differences in execution time be-

tween each State and its parallelized counterpart. As such, parallelizing States (S1), (S1.1),

and (S1.2) significantly decreases the amount of execution time required (Wilcoxon-Mann-

Whitney U-test, p < 0.05). Moreover, States (S1’), (S1.1’), and (S1.2’) do not demonstrate

a significant difference between States (S2) and (S3), indicating that parallelizing testing

activities does not significantly impact run-time performance of the RDM (Wilcoxon-Mann-

Whitney U-test, p < 0.05).

156



20406080

Pr
ot

eu
s+

Ve
rit

as
 (S

1)

Pa
ra

lle
l P

ro
te

us
+V

er
ita

s (
S1

')

Pr
ot

eu
s (

S1
.1

)

Pa
ra

lle
l P

ro
te

us
 (S

1.
1')

Ve
rit

as
 (S

1.
2) Pa

ra
lle

l V
er

ita
s (

S1
.2

') Te
sti

ng
 D

isa
ble

d 
(S

2) Te
sti

ng
 R

em
ov

ed
 (S

3)

Te
st

 C
on

fig
ur

at
io

n

Average Execution Time (sec)

Figure 7.6: Amount of time (in seconds) to execute optimized RDM application in different
parallel and non-parallel testing configurations.

157



To confirm our results, we now examine the RDM framework in greater detail. In

particular, we examine the amount of time required to execute a controlling function that

executes both network and testing activities, whereas we previously examined the execution

time of the RDM simulation as a whole, including instantiation of all requisite data structures

as well as execution of the controlling function. Figure 7.7 next presents boxplots of the

execution time required for each testing state in terms of the controlling function. Again,

parallelizing testing activities significantly reduces the execution time required.

Next, we analyze the speedup that our optimization approach provided using Amdahl’s

Law [2]. In particular, we use Equation 7.1 to calculate the speedup ratio:

S(N) =
T (1)

T (N)
(7.1)

where S(N) is the speedup ratio, T (1) is the time required for the program to execute sequen-

tially, and T (N) is the time required for the program to execute with N worker processes.

For our experiment, we used 1 worker process. Over 50 experimental treatments, we calcu-

late an average S(N) of 2.742, or a 274.2% speedup, in processing time when parallelization

is introduced.

Following, we re-examine the behavioral impact of testing activities on the RDM in our

parallelized and non-parallelized testing states. Specifically, Figure 7.8 presents the average

utility value calculated during the RDM simulation, Figure 7.9 presents the average number

of utility violations encountered during the simulation, and Figure 7.10 presents the number

of triggered adaptations. For each figure, there again is no significant behavioral difference,

suggesting that our parallelization approach did not induce significant changes to RDM

behavior (Wilcoxon-Mann-Whitney U-test, p < 0.05).

Lastly, we examine two other approaches to reduce the performance impact of testing.

For the first approach, we create two subprocesses to execute in parallel to RDM execu-

tion, the first of which performs testing adaptation and the second of which executes the

test cases sequentially. For the second approach, each test case is executed in parallel in

158



204060

Pr
ot

eu
s+

Ve
rit

as
 (S

1)

Pa
ra

lle
l P

ro
te

us
+V

er
ita

s (
S1

')

Pr
ot

eu
s (

S1
.1

)

Pa
ra

lle
l P

ro
te

us
 (S

1.
1')

Ve
rit

as
 (S

1.
2) Pa

ra
lle

l V
er

ita
s (

S1
.2

') Te
sti

ng
 D

isa
ble

d 
(S

2) Te
sti

ng
 R

em
ov

ed
 (S

3)

Te
st

 C
on

fig
ur

at
io

n

Average Execution Time (Network Execute Function) (sec)

Figure 7.7: Amount of time (in seconds) to execute optimized network controller function
in different parallel and non-parallel testing configurations.

159



0.
6

0.
7

0.
8

0.
9

Pr
ot

eu
s+

Ve
rit

as
 (S

1)

Pa
ra

lle
l P

ro
te

us
+V

er
ita

s (
S1

')

Pr
ot

eu
s (

S1
.1

)

Pa
ra

lle
l P

ro
te

us
 (S

1.
1')

Ve
rit

as
 (S

1.
2) Pa

ra
lle

l V
er

ita
s (

S1
.2

') Te
sti

ng
 D

isa
ble

d 
(S

2) Te
sti

ng
 R

em
ov

ed
 (S

3)

Te
st

 C
on

fig
ur

at
io

n

Average Utility Value

Figure 7.8: Average of calculated utility values throughout RDM execution in different
parallel and non-parallel testing configurations.

160



50
0

10
00

15
00

Pr
ot

eu
s+

Ve
rit

as
 (S

1)

Pa
ra

lle
l P

ro
te

us
+V

er
ita

s (
S1

')

Pr
ot

eu
s (

S1
.1

)

Pa
ra

lle
l P

ro
te

us
 (S

1.
1')

Ve
rit

as
 (S

1.
2) Pa

ra
lle

l V
er

ita
s (

S1
.2

') Te
sti

ng
 D

isa
ble

d 
(S

2) Te
sti

ng
 R

em
ov

ed
 (S

3)

Te
st

 C
on

fig
ur

at
io

n

Number of Goal Violations

Figure 7.9: Average number of utility violations encountered throughout RDM execution in
different parallel and non-parallel testing configurations.

161



0

10
0

20
0

30
0

Pr
ot

eu
s+

Ve
rit

as
 (S

1)

Pa
ra

lle
l P

ro
te

us
+V

er
ita

s (
S1

')

Pr
ot

eu
s (

S1
.1

)

Pa
ra

lle
l P

ro
te

us
 (S

1.
1')

Ve
rit

as
 (S

1.
2) Pa

ra
lle

l V
er

ita
s (

S1
.2

') Te
sti

ng
 D

isa
ble

d 
(S

2) Te
sti

ng
 R

em
ov

ed
 (S

3)

Te
st

 C
on

fig
ur

at
io

n

Number of Adaptations

Figure 7.10: Number of adaptations performed throughout RDM execution in different par-
allel and non-parallel testing configurations.

162



separate subprocesses. In particular, no dependencies exist between our test cases and, for

this case study, test case execution can be considered an embarrassingly-parallel problem.

Performance slightly improves for the first approach, however is not significant enough to be

considered successful. Interestingly, performance degrades for the second approach. Specif-

ically, executing test cases in parallel significantly increases the execution time required for

the RDM simulation. After further study, we determine that the increase in execution time

is a result of using Python for the RDM application, as the overhead necessary to continually

instantiate subprocesses far outweighs the performance benefit from executing test cases in

parallel.

7.5 Related Work

This section overviews related work in optimizing software testing. In particular, we

examine how physical processors can be monitored to determine when testing should be

performed and how testing can be divested onto agents to remove the burden on the main

processing unit.

7.5.1 Processor Cycles

Previously, Saff and Ernst [91, 92] introduced a continuous testing approach for assisting

a software developer in catching bugs while the developer writes code. The continuous

testing framework was integrated into a development environment to run regression tests

in parallel to development, thereby increasing both development and testing efficiency. In

particular, their approach monitored intervals between developer activity (i.e., writing code,

compiling, etc.) and executed a set of prioritized test cases while the developer was inactive.

As such, continuous testing was shown to dramatically improve both developer and testing

efficiency, specifically by localizing software bugs in advance of a formal testing cycle. In

comparison, our run-time testing approach parallelizes testing activities at run time, reducing

163



the performance impact to the DAS. However, our approach does not fully minimize the

impact that run-time testing incurs on DAS performance. Therefore, regularly monitoring

system activity to determine appropriate intervals for executing test cases and performing

test adaptations may be an optimization to complement our current testing strategy.

7.5.2 Agent-Based Testing

We have previously discussed agent-based testing in detail in Chapter 5.3, however we

now examine the physical use of agents to perform testing. Nguyen et al. [78] examined the

use of multi-agent systems (MAS) to provide a continuous and evolutionary testing approach.

In particular, the agent-based approach requires that a particular agent, or separate software

system, be used solely to perform testing. As such, the performance impact incurred when

performing run-time testing does not affect agents tasked with critical system functionalities,

as they are not required to perform testing. Instead, the testing agent is required to perform

testing and is fully dedicated to that task. Our approach to provide run-time testing uses

subprocesses that execute in parallel to the DAS. While we do offload testing activities

to subprocesses, the DAS and portions of the testing framework share a central processor,

thereby introducing the possibility for contention of processor usage between testing activities

and DAS execution. Introduction of a separate testing agent into the DAS environment,

effectively creating a union of a DAS and a MAS, may be an effective approach to reducing

the performance impact of run-time testing.

7.6 Conclusion

In this chapter, we have described the impact that run-time testing can have on a DAS.

In particular, we examined impact based on two metrics: performance and behavior. Perfor-

mance was measured based on execution time and memory overhead. Behavior was measured

based on overall requirements satisfaction and the number of performed self-reconfigurations.

164



Our experiments indicate that our run-time testing framework has an impact on performance

in terms of required execution time, however, it does not significantly impact the DAS in

terms of memory overhead, requirements satisfaction, or DAS reconfigurations.

We next introduced an optimization strategy to reduce the performance impact in terms

of execution time. To this end, we introduced parallelization into the RDM simulation, mov-

ing instantiation and execution of testing activities into a worker subprocess that executes in

parallel to the RDM. As such, we found that parallelization can significantly reduce overall

execution time of the simulation. In terms of the RDM application, introducing paralleliza-

tion effectively reduced overall execution time to be comparable with disabling or removing

run-time testing activities. Future investigations include studying how memory overhead can

be optimized in onboard systems. Specifically, examining how test trace data can be scaled

back while still providing useful information to the test engineer, offloading data storage

to separate devices, and introducing extra processors or modules for additional processing

capabilities are examples of future optimizations.

165



Chapter 8

End-to-End RDM Example

This dissertation has presented techniques for providing assurance for a DAS at varying

levels of abstraction and it has demonstrated those techniques in different domains. This

chapter presents an end-to-end example of how these techniques can provide assurance for

the RDM application at its different levels of abstraction. In particular, we present how

each technique can be used sequentially to increase overall assurance. First, we present the

configuration of the RDM application for each portion of the end-to-end investigation. Next,

we discuss how a goal model describing RDM requirements can be automatically refined with

RELAX operators to provide requirements-based assurance, as well as the overall scalability

of this technique. Following, we present our technique for analyzing the RDM codebase to

discover unexpected paths of execution. Lastly, we instrument the RDM application with an

adaptive, run-time testing framework to provide run-time testing-based assurance. Where

applicable, this chapter reuses previously presented experimental results.

8.1 RDM Configuration

This section describes the configuration of the RDM application. In particular, we define

the configuration of the RDM network and sources of uncertainty.

166



The RDM configuration comprises parameters that define the RDM network as well as

parameters that define the sources of uncertainty that can affect the RDM during execu-

tion. First, Table 8.1 presents a subset of the parameters that configure the RDM network.

Specifically, we provide the number of timesteps the simulation is specified to run for all ex-

periments, the possible network topologies that may be selected, the number of data mirrors

available to the network, the number of messages that must be distributed by the end of

the simulation, and the available budget and the cost of each network link in terms of U.S.

dollars.

Table 8.1: Subset of RDM network parameters.

Configuration Parameter Value

Timesteps 300

Network topology {Complete,Grid, Tree, Random, Social}

Number of data mirrors [15, 30]

Number of messages [100, 200]

Budget [$350, 000.0, $550, 000.0]

Network link cost [$10, 000.0, $15, 000.0]

... ...

Next, Table 8.2 describes a subset of the parameters that define the sources of uncer-

tainty. Here, the function that generates random values for the RDM application is provided

with a different seed and distribution for each replicate. Furthermore, the probabilities de-

scribing the failure rates, fuzz rates, and rates of possible message errors that can occur

during simulation are also presented.

167



Table 8.2: RDM sources of uncertainty.

Configuration Parameter Value

Random seed [1, 50]

Random number distribution {Binomial, Exponential, Normal,

Poisson, Uniform}

Probability of data mirror failure [0.0%, 5.0%]

Probability of data mirror sensor failure [0.0%, 5.0%]

Probability of data mirror sensor fuzz [0.0%, 20.0%]

Probability of network link failure [0.0%, 10.0%]

Probability of dropped message [0.0%, 20.0%]

Probability of delayed message [0.0%, 10.0%]

Probability of corrupted message [0.0%, 10.0%]

... ...

8.2 Requirements-Based Assurance

This section first presents a case study examining how AutoRELAX enables requirements-

based assurance and then investigates the scalability of AutoRELAX with respect to the RDM

application.

8.2.1 AutoRELAX Case Study

We now discuss how assurance can be provided for a DAS at its requirements level.

First, we examine how RELAX can be used to augment the RDM goal model to provide

requirements-based assurance. In particular, we study the impact of AutoRELAX as applied to

the RDM application. Next, we examine how the SAW can be used to enhance requirements-

based assurance by tailoring fitness sub-function weights to different operational contexts.

Lastly, we provide an investigation into the scalability of AutoRELAX.

168



8.2.1.1 RDM Goal RELAXation

We applied AutoRELAX to the RDM application to explore how AutoRELAX enables

requirements-based assurance. To facilitate readability, we now recreate the RDM goal

model in Figure 8.1 and AutoRELAX fitness functions in Equations (8.1) – (8.3). As such,

we examined the resulting fitness values generated by AutoRELAXed goal models, manually

RELAXed goal models, and unRELAXed goal models. For the manually RELAXed goal model,

we introduced RELAX operators to Goals (C), (F), (G), and (H) (c.f., Figure 8.1).

FFnrg = 1.0−
( |relaxed|
|Goalsnon−invariant|

)
(8.1)

FFna = 1.0−
( |adaptations|
|faults|

)
, (8.2)

Fitness V alue =

 αnrg ∗ FFnrg + αna ∗ FFna iff invariants true

0.0 otherwise
(8.3)

Table 8.3 presents the configuration of both the genetic algorithm and hyper-heuristic

used for AutoRELAX and AutoRELAX-SAW, respectively.

Table 8.3: End-to-end AutoRELAX-SAW configuration.

Configuration Parameter Value

Number of generations 50

Population size 20

Crossover rate 50.0%

Mutation rate 40.0%

SAW Sampling Rate Every 5th generation

169



(J) (K) (L) (M) (N)

Maintain 
[DataAvailable]

Achieve [Network 
Partitions == 0]

Achieve [Measure 
Network Properties]

Maintain [Operational 
Costs  ≤    Budget]

Network 
Actuator

Achieve 
[Cost 

Measured]

Achieve 
[Activity 

Measured]

Achieve 
[LossRate 

Measured]

Link 
Sensor

(A)

(B)

(D) (F)Achieve [Minimum Num 
Links Active]

(E)

RDM
Sensor

…

Achieve 
[Workload 
Measured]

Achieve 
[Capacity 

Measured]

Achieve [Link 
Deactivated]

(O)

Achieve [Link 
Activated]

(P)

(A) Left half of remote data mirroring goal model.

Achieve [NumDataCopies == 
NumServers]

(C)

Network 
Controller

Adaptation 
Controller

…

Achieve [DataAtRisk  ≤  
RiskThreshold]

(G) Achieve [DiffusionTime  ≤  
MaxTime]

(H) Achieve [Adaptation 
Costs == 0]

(I)

(Q)

Achieve 
[Send Data 

Synchronously]

(R)

Achieve 
[Data Sent == 

Data Received]

(S)

Achieve 
[Send Data 

Asynchronously]

(T)

Achieve 
[Data Received 
== Data Sent]

(U)
Achieve 

[Num Active 
Data Mirrors == 
Num Mirrors]

(V)

Achieve 
[Num Passive Data 

Mirrors == 0]

(W)

Achieve 
[Num Quiescent 

Data Mirrors == 0]

    Goal

Refinement

Agent

Requirement / Expectation

Legend

(B) Right half of remote data mirroring goal model.

Figure 8.1: KAOS goal model of the remote data mirroring application.

170



Figure 8.21 presents boxplots of the average fitness values calculated for an RDM ap-

plication using AutoRELAX to configure its goal models, a manually-RELAXed goal model

configured by a requirements engineer, and a Control in which no goal RELAXations were

applied. As is demonstrated by these results, AutoRELAX can attain significantly higher

fitness values than can be found using either the manually-RELAXed goal model or the

unRELAXed goal model.

AutoRELAXed Manually RELAXed UnRELAXed

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Fi
tn
es
s

Experimental Treatment

Figure 8.2: Fitness values comparison between RELAXed and unRELAXed goal models for
the RDM.

Furthermore, we examined how SAW can optimize fitness by evolving the fitness sub-

function weights. Figure 8.32 presents boxplots of the average fitness values calculated for

1Figure 8.2 was previously presented in Chapter 3.3.1.1.
2Figure 8.3 was previously presented in Chapter 3.3.1.2.

171



AutoRELAXed goal models and goal models evolved with AutoRELAX-SAW. As these results

demonstrate, SAW can significantly increase fitness by evolving fitness sub-function weights.

AutoRELAX SAW-AutoRELAX

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Fi
tn
es
s

��������	
���

Experimental Treatment

Figure 8.3: Fitness values comparison between AutoRELAXed and SAW-optimized AutoRE-

LAXed goal models for the RDM.

Based on these results, we conclude that AutoRELAX can generate better configurations

of RELAX operators than can be found by a requirements engineer. We analyzed the resulting

set of data and determined that Goals (C), (F), and (T) provided the largest impact to RDM

fitness. To this end, we manually introduce RELAX operators to Goals (C), (F), and (T) in all

instances of the RDM application for the remainder of this end-to-end study, as RELAXation

of these goals provides extra flexibility necessary for the RDM to satisfy its key objectives.

172



Figure 8.4 presents the RDM goal model updated to use the RELAX operators found by

AutoRELAX.

8.2.2 Scalability of RDM Application

In this section, we explore the scalability of the RDM application. First, we introduce

the parameters used to configure the RDM in both the normal and scaled experiments. Next,

we describe our approach for comparing the normal and scaled versions of the RDM. Finally,

we explore the effectiveness of AutoRELAX in the scaled RDM application.

8.2.3 Scaled RDM Configuration

The RDM application accepts a configuration file that defines parameters such as the

number of data mirrors, number of messages to disperse, and an operating budget. Thus far,

the RDM has been configured on a relatively small scale for simulation purposes. Table 8.4

presents the relevant configuration parameters that have been increased to effectively scale

the RDM application.

Table 8.4: Comparison of RDM Configuration Parameters.

Configuration Parameter Normal RDM Value Scaled RDM Value

Number of Messages [100, 200] [800, 1000]

Timesteps 300 2000

As such, only two parameter updates were necessary to scale the RDM application, as

the existing number of data mirrors and operating budget can successfully handle the larger

number of messages inserted into the network. In particular, we increased the number of

messages to be distributed to effectively increase the amount of traffic handled by the RDM

application. To this end, we also increased the number of timesteps available for the RDM

to disseminate those messages, as extra time was required to fully replicate each message

throughout the network.

173



(J) (K) (L) (M) (N)

Maintain 
[DataAvailable]

Achieve [Network 
Partitions AS CLOSE AS 

POSSIBLE TO 0]
Achieve [Measure 

Network Properties]

Maintain [Operational 
Costs  ≤    Budget]

Network 
Actuator

Achieve 
[Cost 

Measured]

Achieve 
[Activity 

Measured]

Achieve 
[LossRate 

Measured]

Link 
Sensor

(A)

(B)

(D)

(F)

Achieve [Minimum Num 
Links Active]

(E)

RDM
Sensor

…

Achieve 
[Workload 
Measured]

Achieve 
[Capacity 

Measured]

Achieve [Link 
Deactivated]

(O)

Achieve [Link 
Activated]

(P)

(A) Left half of RELAXed remote data mirroring goal model.

Achieve [NumDataCopies AS CLOSE AS 
POSSIBLE TO NumServers]

(C)

Network 
Controller

Adaptation 
Controller

…

Achieve [DataAtRisk  ≤  
RiskThreshold]

(G) Achieve [DiffusionTime  ≤  
MaxTime]

(H) Achieve [Adaptation 
Costs == 0]

(I)

(Q)

Achieve 
[Send Data 

Synchronously]

(R)

Achieve 
[Data Sent == 

Data Received]

(S)

Achieve 
[Send Data 

Asynchronously]

(T)
Achieve 

[Data Received 
AS CLOSE AS 
POSSIBLE TO 

Data Sent]

(U)
Achieve 

[Num Active 
Data Mirrors == 
Num Mirrors]

(V)

Achieve 
[Num Passive Data 

Mirrors == 0]

(W)

Achieve 
[Num Quiescent 

Data Mirrors == 0]

    Goal

Refinement

Agent

Requirement / Expectation

Legend

(B) Right half of RELAXed remote data mirroring goal model.

Figure 8.4: RELAXed KAOS goal model of the remote data mirroring application.

174



8.2.4 Approach

For this study, we analyzed the scalability of the RDM application as applied to Au-

toRELAX. In particular, we were interested in the viability of evolving a RELAXed goal model

for a network that has been scaled upward. To this end, we reuse the AutoRELAX approach

introduced in Chapter 3.2.2, however the RDM was configured to use the scaled config-

uration parameters defined in Table 8.4. Moreover, we also reuse the RDM goal model

presented in Figure 8.4. In the interest of both execution time and available storage space,

AutoRELAX-SAW was not applied to this study.

8.2.5 Experimental Results

We now present experimental results from applying AutoRELAX to a scaled RDM ap-

plication. We performed three experimental treatments to determine the scalability of both

the RDM and AutoRELAX. For the first treatment, we applied AutoRELAX to the RDM goal

model. For the second treatment, we manually applied RELAX operators to the RDM goal

model. In particular, RELAX operators were manually applied to Goals (F), (G), and (H)

(c.f., Figure 8.1). Lastly, the third treatment was a Control in which no goal RELAXation

was performed. For each treatment, we performed 50 trials for statistical significance.

Figure 8.5 presents boxplots of the average fitness values calculated for the RDM applica-

tion over each experimental treatment. These results indicate that automatically RELAXing

goals can yield a higher overall fitness as compared to performing no goal RELAXation

(Wilcox-Mann-Whitney U-test, p < 0.05). However, manually RELAXing the goal model

did not yield significantly higher fitness values than the Control, indicating that a RELAXed

goal model will not always yield higher fitness values when scaling the RDM application.

Furthermore, we manually RELAXed other goals to determine if different configurations of

RELAX operators would perform better. In each case, overall fitness did not significantly

improve compared to the Control experiment.

175



0.00

0.25

0.50

0.75

1.00

AutoRELAXed Manually RELAXed UnRELAXed

A
ve

ra
ge

 F
itn

es
s

Experimental Treatment

Figure 8.5: Fitness values comparison between RELAXed and unRELAXed goal models for a
scaled RDM.

While scaling the RDM application is feasible, the amount of data generated was ex-

ponentially larger than the dataset generated by the normally-configured application. In

particular, each experimental replicate generated a dataset several gigabytes in size and

moreover required at least three days to run on a high-performance computing cluster. In

total, the combined number of executed replicate trials required roughly three weeks of com-

puting time to run. To summarize, this experiment has demonstrated the feasibility of scaling

176



Table 8.5: End-to-end Fenrir configuration.

Configuration Parameter Value

Number of generations 15

Population size 20

Crossover rate 25.0%

Mutation rate 50.0%

Novelty threshold 10.0%

both the RDM application and AutoRELAX while presenting the overhead encountered when

performing AutoRELAX in an upward-scaled environment.

8.3 Code-Based Assurance

This section presents how we used Fenrir to address assurance for the RDM’s implemen-

tation to address code-based uncertainty. In particular, we examine how an RDM engineer

can analyze output provided by Fenrir to identify sections of code that may require an up-

date. The RDM engineer can then update the associated system goal model or requirements

specification as necessary to reflect the required changes to the DAS implementation.

8.3.1 Fenrir Analysis

We applied RELAX operators to the goals previously identified by AutoRELAX (c.f., Fig-

ure 8.4) to determine the RDM’s response to uncertainty when augmented with RELAX. In

particular, we applied RELAX operators to Goals (C), (F), and (T). Following, we executed

the instrumented, RELAXed RDM application over 50 trials to provide a statistically sig-

nificant suite of possible execution behaviors. Table 8.5 presents the configuration of the

novelty search algorithm implemented by Fenrir.

177



As such, we selected a subset of the resulting RDM execution traces that exhibited

the largest number of errors for manual analysis. We then identified a section of code

that continually triggered an error condition in the data distribution portion of the RDM

codebase. In particular, the RDM was attempting to send messages via faulty data mirrors,

thereby triggering an assertion error. We then rectified the problem by ensuring that a faulty

data mirror is never selected for message distribution.

Figure 8.6 presents boxplots that compare the average number of errors exhibited by

the original RDM codebase to the average number of errors exhibited by the updated RDM

codebase. These results demonstrate that the bugfix significantly reduces the number of

errors encountered throughout the simulation (Wilcoxon-Mann-Whitney U-test, p < 0.05).

Moreover, the introduced bugfix reduces the maximum number of errors to 1, indicating

that the updated section of code was responsible for the majority of errors logged within the

RDM application.

The data presented within this section, particularly in Figure 8.6, demonstrate that

Fenrir enables a DAS engineer to effectively identify and rectify problems within a DAS

codebase. Specifically, the novel set of system and environmental conditions generated by

Fenrir provide a repository of operational contexts with which to exercise DAS behavior in

uncertain situations.

8.4 Run-Time Testing-Based Assurance

This section discusses the application of Proteus and Veritas to the RDM application to

provide run-time testing assurance. We first discuss the derivation of the test specification

and then analyze the results from applying both Proteus and Veritas to the RDM, respectively.

178



0

300

600

900

Original Codebase Updated Codebase

A
ve

ra
ge

 N
um

be
r o

f E
rr

or
s

Experimental Treatment

Figure 8.6: Comparison of average number of RDM errors between original and updated
RDM application across 50 trials.

8.4.1 Derivation of Test Specification

To perform run-time testing on the RDM, a test specification was derived based upon

its requirements. As such, we derived a representative set of test cases based on the goal

model presented in Figure 8.4. Furthermore, we analyzed the RDM codebase to create extra

test cases to validate system functionality. In total, 34 test cases were derived for run-time

execution on the RDM application. Each test case was correlated to at least one goal in

179



the goal model to measure test case relevance, as described in Chapter 6.4.2. Of those 34

test cases, 7 test cases were considered invariant and therefore precluded from adaptation.

Moreover, invariant test cases were re-executed each testing cycle to ensure that system

constraints are continually satisfied. The remaining 27 test cases were labeled non-invariant

and were therefore targets for adaptation.

To provide assurance at the run-time testing level, the RDM application was outfitted

with the Proteus run time testing framework, including management of run-time testing

activities and coarse-grained test plan adaptation. Furthermore, Veritas was also implemented

to provide fine-grained test case adaptation capabilities. The following sections present

results in which run-time testing activities, including both types of test adaptation, were

performed on the RDM application.

8.4.2 Proteus Analysis

To evaluate the impact of Proteus test plan adaptation on the RDM application, we

compared Proteus adaptive test plans to a manually-derived test plan. Moreover, Veritas was

disabled to focus solely on the effects of Proteus test plan adaptation. The manually-derived,

or Control, test plan comprised all test cases from the test specification. The test cases in

the Control test plan were only executed when the conditions for test case execution, as

specified by each individual test case, were met. Lastly, to provide statistical significance,

we performed 50 trials of each experiment.

First, we examined the amount of executed irrelevant test cases to demonstrate how

Proteus can reduce the expended effort of the testing framework. Figure 8.7 presents the

cumulative amount of irrelevant test cases executed using Proteus adaptive test plans and the

Control test plan, respectively. As the boxplots in Figure 8.7 demonstrate, Proteus adaptive

test plans significantly reduce the amount of executed irrelevant test cases (Wilcoxon-Mann-

Whitney U-test, p < 0.05). This result enables us to conclude that using adaptive test plans

can reduce the amount of unnecessary effort expended by the testing framework.

180



2.0

2.5

3.0

3.5

4.0

Control Proteus

C
um

ul
at

iv
e 

A
m

ou
nt

 o
f I

rr
el

ev
an

t T
es

t C
as

es

Experimental Treatment

Figure 8.7: Cumulative number of irrelevant test cases executed for each experiment.

Figure 8.8 next presents the amount of false positive (i.e., test case passed but the

correlated utility function was violated) test results found when performing run-time testing.

As the results demonstrate, Proteus adaptive test plans can significantly reduce the amount of

false positive test results (Wilcoxon-Mann-Whitney U-test, p < 0.05), indicating that Proteus

adaptive test plans can reduce the amount of executed test cases that are not relevant to

current operating conditions.

Next, Figure 8.9 depicts the amount of false negative (i.e., test cases that fail but the cor-

related utility function is satisfied) test cases. Here, Proteus significantly reduces the amount

181



0

10

20

30

Control Proteus

C
um

ul
at

iv
e 

A
m

ou
nt

 o
f F

al
se

 P
os

iti
ve

s

Experimental Treatment

Figure 8.8: Cumulative number of false positive test cases for each experiment.

of false negative test cases (Wilcoxon-Mann-Whitney U-test, p < 0.05), demonstrating that

adaptive test plans can reduce the overall amount of adaptations required by the testing

framework, thereby reducing the overall cost of testing on the DAS.

Lastly, Figure 8.10 presents the total number of executed test cases for both Proteus

and the Control. This figure demonstrates that adaptive test plans significantly reduce the

amount of test case executions at run-time (Wilcoxon-Mann-Whitney U-test, p < 0.05).

This result enables the conclusion that using Proteus adaptive test plans can again reduce

182



10

15

20

25

30

Control Proteus

C
um

ul
at

iv
e 

A
m

ou
nt

 o
f F

al
se

 N
eg

at
iv

es

Experimental Treatment

Figure 8.9: Cumulative number of false negative test cases for each experiment.

the effort required by the testing framework, as the total number of test cases executed at

run time has been minimized.

8.4.3 Veritas Analysis

To evaluate the impact of fine-grained test case adaptation on the run-time testing

framework we enabled Veritas and augmented the original test specification with acceptable

adaptation ranges for each test case. We then compared the results to a Control in which

183



4000

6000

8000

10000

Control Proteus

C
um

ul
at

iv
e 

A
m

ou
nt

 o
f E

xe
cu

te
d 

Te
st

 C
as

es

Experimental Treatment

Figure 8.10: Cumulative number of executed test cases for each experiment.

test case adaptation was not performed. For this experiment, we disabled Proteus test plan

adaptation to focus solely on the results provided by Veritas.

In particular, we examine the average test case fitness value through execution of the

RDM. Test case fitness is considered to be the difference between the test case expected

value and the value measured by the testing framework (test case fitness is formally de-

fined in Chapter 6.4.2). Figure 8.11 presents the average test case fitness values calculated

throughout execution of the RDM application. These results indicate that Veritas can adapt

test case parameter values to be more relevant towards their environment, as Veritas returned

184



0.84

0.86

0.88

Veritas Control

A
ve

ra
ge

 T
es

t C
as

e 
Fi

tn
es

s

Experimental Treatment

Figure 8.11: Average test case fitness values calculated for each experiment.

significantly higher fitness values during the course of execution (Wilcoxon-Mann-Whitney

U-test, p < 0.05).

8.5 Conclusion

This chapter has discussed our investigation into applying each assurance technique

presented within this dissertation sequentially to the RDM application to demonstrate the

effectiveness of our techniques. First, we explored how AutoRELAX provides requirements-

185



based assurance by automatically RELAXing a system goal model. To this end, we discovered

that introducing RELAX operators to the RDM goal model can increase overall fitness of

the application, and moreover Goals (C), (F), and (T) are most amenable to RELAXation.

We also explored the scalability of the RDM application. We performed the AutoRELAX

experiment on an RDM application that was required to distribute an exponentially higher

number of messages than was required for the normal RDM. The scaled version of the

RDM successfully satisfied its requirements, however it incurred significant overhead in both

execution time and memory overhead.

Next, we applied Fenrir to the RELAXed RDM application to enable implementation-

based assurance. In particular, analyzing Fenrir output enabled us to discover a major bug

within the RDM application that accounted for the majority of run-time errors. Lastly,

we performed run-time testing on the RDM application to enable run-time assurance that

the RDM is behaving in accordance with its requirements. As such, we enabled Proteus

test plan adaptation and Veritas test case parameter value adaptation to provide flexibility

when executing tests in uncertain environments, ensuring that test cases remained relevant

throughout changing conditions.

186



Chapter 9

Conclusions and Future Investigations

This chapter summarizes our contributions to the field of software engineering by pro-

viding DAS run-time assurance at different levels of abstraction. We also propose future

investigations to complement this body of work.

Software systems are becoming increasingly complex to enable execution in uncertain

environments. In particular, software systems can adapt at run time in the face of uncertainty

to continue execution while still satisfying requirements. DASs provide self-reconfiguration

capabilities to change configuration states when exposed to different types of environmental

conditions. As such, providing continuous assurance that a DAS is executing correctly and

safely is a concern, especially as DASs take part in increasingly critical systems, such as

health care infrastructure and power grid management. To this end, researchers have been

exploring methods of providing run-time assurance through system monitoring and run-time

testing, particularly when faced with uncertain environmental conditions.

This dissertation presented techniques for providing run-time assurance for a DAS at

different levels of abstraction, particularly at design time and run time. First, we described

how to provide assurance at the requirements level with AutoRELAX [42, 88] and AutoRELAX-

SAW [42], two techniques that add flexibility to a system goal model and tailor fitness sub-

function weights to particular environmental contexts, respectively. Next, we presented our

187



work in exploring how assurance can be provided during design time at the implementation

level with Fenrir [45], our technique for exploring how a DAS executes in different operational

contexts. Following, we outlined a guiding approach to enabling run-time testing with the

MAPE-T feedback loop [44]. MAPE-T is derived from the DAS MAPE-K feedback loop, and

as such, can be used in tandem with MAPE-K to provide run-time assurance. We also out-

lined the key challenges and enabling technologies to realize MAPE-T. Then, we introduced

two techniques for providing run-time assurance with adaptive testing. Specifically, we in-

troduced Proteus [41], a technique for test suite adaptation, and Veritas [43], a technique for

adapting test case parameter values. We also investigated the feasibility of using RELAX op-

erators to provide flexibility for run-time test case results. To demonstrate the effectiveness

of our techniques, we applied Fenrir, AutoRELAX, and AutoRELAX-SAW to an application that

must dynamically reconfigure an RDM application. Furthermore, we also applied AutoRE-

LAX, AutoRELAX-SAW, Proteus, and Veritas to a cyber-physical system that must efficiently,

effectively, and safely vacuum a room.

We then studied the impact that run-time testing imparts on a DAS. In particular, we

examined DAS performance and behavior while run-time testing was enabled. We discovered

that a DAS outfitted with a run-time testing framework requires significantly more time to

execute than a DAS that does not perform run-time testing. However, our testing framework

did not consume significantly extra memory, and moreover did not significantly impact the

DAS from a behavioral standpoint. Therefore, we conclude that, as long as the DAS can

tolerate the extra time required, run-time testing provides a considerable benefit for run-

time assurance. Lastly, we performed an end-to-end investigation of each of our techniques

as applied to the RDM application to demonstrate how each technique enhances assurance

at different levels of abstraction.

188



9.1 Summary of Contributions

There were three overarching objectives for this body of research:

1. Provide a set of techniques that effectively and efficiently mitigate uncertainty by

providing assurance at different levels of DAS abstraction.

2. Maximize the use of automation in designing, performing, and analyzing each tech-

nique.

3. Provide a well-defined feedback loop to enable run-time testing of a DAS.

As such, this dissertation has presented the following research contributions:

• Defined a suite of techniques that provide assurance for a DAS at its requirements

level [42, 88], implementation level [45], and run-time testing level [41, 43, 44].

• Explored how search-based software engineering techniques, particularly evolutionary

computation, can be used to enable assurance for a DAS at different levels of ab-

straction. Specifically, we investigated how a genetic algorithm and hyper-heuristic

can mitigate requirements-based uncertainty [42, 88], how novelty search can mitigate

implementation-based uncertainty [45], and how an online evolutionary algorithm can

mitigate run-time testing-based uncertainty [43]. Moreover, we explored how auto-

mated techniques can be used to create, execute, and maintain run-time software test

suites [41].

• Proposed and instantiated a well-defined DAS testing feedback loop for execution at

run time [44], and moreover provided an implementation of the different aspects of the

feedback loop [41, 43].

189



9.2 Future Investigations

The investigations described within this dissertation demonstrate approaches for pro-

viding software assurance at different levels of abstraction to address uncertainty. Based on

the presented results, we now describe complementary investigations that can be pursued to

extend our line of work in automatically enabling DAS assurance. We next describe each

investigation in turn.

9.2.1 Exploration of Different Evolutionary Computation Tech-

niques

Evolutionary computation is used as our main approach for automatically searching a

solution space for an optimal solution. AutoRELAX uses a genetic algorithm to search for

optimal configurations of RELAXed goal models, and moreover uses a hyper-heuristic, SAW,

to search for an optimal combination of fitness sub-function weights. Fenrir leverages novelty

search to find a solution set comprising the most different solutions within the search space.

Lastly, Veritas implements an online evolutionary algorithm, the (1+1)-ONLINE EA, to find

optimal combinations of test case parameter values.

We envision that exploration of other search-based techniques can provide an interesting

comparison point to this body of work to determine the effect that other approaches may

have on providing assurance, as other evolutionary approaches may uncover unexplored areas

of a solution space that our techniques may not have found. In particular, approaches such

as multi-objective optimization, simulated annealing, or particle swarm optimization can be

used to compare to the results found by the evolutionary approaches we have used. Moreover,

exploration into the extension of these techniques to the run-time domain would also be of

great benefit to the field of software engineering, as few run-time evolutionary algorithms

currently exist, and many advanced applications (e.g., power grid systems, autonomous

vehicles, etc.) may benefit from an available suite of run-time, search-based heuristics.

190



Furthermore, different types of distance metrics can be explored for use in Fenrir to determine

if a different approach can uncover solutions that provide a richer set of expressed DAS

behaviors. For instance, we use the Manhattan distance metric, whereas others, such as

Euclidean distance, could be explored in comparison. Lastly, probabilistic methods [4, 15,

38, 84] may also be used to explore the search space.

9.2.2 Interfacing with the DAS MAPE-K Loop

We have provided sample instantiations of the MAPE-T feedback loop for run-time test-

ing. We envision that future investigations can more tightly link the DAS MAPE-K loop

with the MAPE-T loop to enable fine-grained control over DAS reconfiguration capabilities.

In particular, test cases that have been correlated with a utility function could be used to

validate different aspects of the utility function, enabling a fine-grained analysis of each util-

ity function. As such, the DAS reconfiguration engine could consume this information and

perform a targeted reconfiguration, thereby reducing the overall impact of reconfiguration to

the DAS and potentially reducing unexpected side effects of a total reconfiguration.

9.2.3 Hardware Realization of the MAPE-T Loop

To validate the techniques presented in this dissertation, we have simulated both a

high-level networking application and a low-level onboard control for an embedded system.

However, given the reality gap that naturally exists between simulation and implementation,

we envision that a hardware-based realization of a DAS with which to implement the MAPE-T

loop can provide an even richer testbed for experimentation in both validating our simulated

results and enabling further research into the MAPE-T loop.

191



9.2.4 Incorporation of MAS Architecture

Lastly, unifying the DAS and MAS architectures to create a new type of adaptive

system could be a particularly interesting path of research. Specifically, the use of agents in

the DAS architecture could provide a significant advantage in that processor- or memory-

intensive tasks could be offloaded to a separate agent, thereby freeing the DAS to fully focus

on monitoring its environment and performing self-reconfigurations. Given the prior work

we have previously described in agent-based testing [78], we envision that using agents to

perform software testing can significantly reduce the impact of run-time testing on the DAS

architecture.

192



APPENDIX

193



Appendix

Test Specifications

This appendix presents the test specifications used for both the smart vacuum system

(SVS) and remote data mirroring (RDM) case studies within this dissertation. For each

case study, we first present the full test specification, including a description of each test

case, expected value(s), and the safety tolerances used to enable safe adaptation of test case

parameter values. We then provide the traceability links between tests and requirements,

particularly, how each test case is correlated to a particular goal within the corresponding

goal model.

Smart Vacuum System Test Specification

This section overviews the test specification used for the SVS case study within this

dissertation. Particularly, Table A.1 presents the test specification that is used as a basis for

run-time testing and adaptation. For each test case, we present the test case identifier (ID),

the test case type (i.e., invariant or non-invariant), a description, the expected value(s), and

the safety tolerance used for adaptation. Furthermore, if the safety tolerance is listed as

N/A, then the test case is considered non-invariant, however cannot be physically adapted

as no defined flexibility was provided. Lastly, while some test cases appear to be duplicates,

194



they may measure different variables, execute under different circumstances, or provide a

slightly different safety tolerance to explore different test case adaptations.

Table A.1: Smart vacuum system test specification.

TC1

Test case type Non-invariant

Description Room sensor can detect the amount of dirt cleaned by the SVS.

Expected value RoomSensorActive = True

Safety tolerance N/A

TC2

Test case type Non-invariant

Description SVS executes a power conservation plan to maximize the amount

of time it spends vacuuming the room.

Expected value PowerModifier ∈ [0.0, 1.0)

Safety tolerance N/A

TC3

Test case type Non-invariant

Description SVS executes a path plan to maximize the amount of coverage

while vacuuming the room.

Expected value PathP lan ∈ {RANDOM,SPIRAL, STRAIGHT}

Safety tolerance N/A

TC4

Test case type Non-invariant

Description SVS internal sensor can detect battery usage and percentage of

room covered.

Continued on next page

195



Table A.1 (cont’d)

Expected value InternalSensorActive = True

Safety tolerance N/A

TC5

Test case type Non-invariant

Description SVS must be in motion.

Expected value Speed > 0.0

Safety tolerance Speed ≥ 0.0

TC6

Test case type Non-invariant

Description SVS suction must be active.

Expected value SuctionActive = True

Safety tolerance N/A

TC7

Test case type Invariant

Description Bumper sensor tested by internal health monitor SHALL always

be healthy.

Expected value BumperSensor.Healthy = True

Safety tolerance N/A

TC8

Test case type Invariant

Description No large dirt particles SHALL be inside vacuum at any point in

time.

Expected value NoLargeDirtDetected = True

Continued on next page

196



Table A.1 (cont’d)

Safety tolerance N/A

TC9

Test case type Invariant

Description SVS SHALL never fall off cliff.

Expected value FallDetected = False

Safety tolerance N/A

TC10

Test case type Invariant

Description SVS SHALL never collide with non-collideable objects.

Expected value InvalidCollision = False

Safety tolerance N/A

TC11

Test case type Invariant

Description SVS SHALL never collide with liquid objects.

Expected value InvalidCollision = False

Safety tolerance N/A

TC12

Test case type Non-invariant

Description If OBJECT detected within 0.5m of SVS, SVS SHALL execute

BACKUP procedure for 2 seconds.

Expected value DistanceToObject = 0.5m

Safety tolerance ±0.2m

TC13

Continued on next page

197



Table A.1 (cont’d)

Test case type Non-invariant

Description If LIQUID detected within 0.5m of SVS, SVS SHALL execute

BACKUP procedure for 2 seconds.

Expected value DistanceToLiquid = 0.5m

Safety tolerance ±0.2m

TC14

Test case type Non-invariant

Description If CLIFF detected by SVS cliff sensor, SVS SHALL execute

BACKUP procedure for 2 seconds.

Expected value DistanceToCliff = 0.5m

Safety tolerance ±0.2m

TC15

Test case type Non-invariant

Description If LARGE DIRT PARTICLE detected within 0.5m of SVS, SVS

SHALL execute BACKUP procedure for 2 seconds.

Expected value DistanceToLargeDirtParticle = 0.5m

Safety tolerance ±0.2m

TC16

Test case type Invariant

Description Wheel sensor tested by internal health monitor SHALL always

be healthy.

Expected value WheelSensor.Healthy = True

Safety tolerance N/A

Continued on next page

198



Table A.1 (cont’d)

TC17

Test case type Non-invariant

Description If LEFT BUMPER array triggered, SVS SHALL reorient by

π/4.0 radians clockwise.

Expected value CurrentPathAngle = CurrentPathAngle + (π/4.0)rad

Safety tolerance ±1.0rad

TC18

Test case type Non-invariant

Description If RIGHT BUMPER array triggered, SVS SHALL reorient by

π/4.0 radians counter-clockwise.

Expected value CurrentPathAngle = CurrentPathAngle − (π/4.0)rad

Safety tolerance ±1.0rad

TC19

Test case type Non-invariant

Description If CENTER BUMPER array triggered, SVS SHALL reorient by

π/4.0 radians in the preferred (configured) direction.

Expected value CurrentPathAngle = CurrentPathAngle ± (π/4.0)rad

Safety tolerance ±1.0rad

TC20

Test case type Non-invariant

Description If BatteryPower falls below 50%, SVS reduces power to either

SUCTION or MOTOR.

Expected value BatteryPower ≤ 50%

Continued on next page

199



Table A.1 (cont’d)

Expected value V elocity ≥ 0.0

Safety tolerance N/A

TC21

Test case type Non-invariant

Description If BatteryPower falls below 25%, SVS reduces power to either

SUCTION or MOTOR, whichever is still operating at FULL

POWER.

Expected value BatteryPower ≤ 25%

Safety tolerance N/A

TC22

Test case type Non-invariant

Description If BatteryPower falls below 10%, SVS reduces power further to

SUCTION and MOTOR.

Expected value BatteryPower ≤ 10%

Safety tolerance N/A

TC23

Test case type Invariant

Description Suction sensor tested by internal health monitor SHALL always

be healthy.

Expected value SuctionSensor.Healthy = True

Safety tolerance N/A

TC24

Test case type Invariant

Continued on next page

200



Table A.1 (cont’d)

Description SVS suction must not be impeded by large objects or liquids.

Expected value InvalidCollision = False

Safety tolerance N/A

TC25

Test case type Non-invariant

Description If RANDOM selected, SVS SHALL execute RANDOM path

plan for 10 seconds.

Expected value PathP lanT imer = 10sec

Safety tolerance ±5.0sec

TC26

Test case type Non-invariant

Description If STRAIGHT selected, SVS SHALL execute STRAIGHT path

plan for 10 seconds.

Expected value PathP lanT imer = 10sec

Safety tolerance ±5.0sec

TC27

Test case type Non-invariant

Description SVS continually provides forward motion while providing suc-

tion.

Expected value V elocity ≥ 0.0

Safety tolerance N/A

TC28

Test case type Invariant

Continued on next page

201



Table A.1 (cont’d)

Description If internal sensor or object sensor has failed, then SVS must

disable the wheel motors.

Expected value WheelMotors = DISABLED

Safety tolerance N/A

TC29

Test case type Invariant

Description If large dirt particle is detected internally, then SVS SHALL

shut off all power.

Expected value Power = OFF

Safety tolerance N/A

TC30

Test case type Invariant

Description If liquid detected internally, then SVS SHALL shut off all power.

Expected value Power = OFF

Safety tolerance N/A

TC31

Test case type Invariant

Description If collision with non-collideable object, SVS SHALL shut off all

power.

Expected value Power = OFF

Safety tolerance N/A

TC32

Test case type Invariant

Continued on next page

202



Table A.1 (cont’d)

Description If SVS fell off cliff, then SVS SHALL shut off all power.

Expected value Power = OFF

Safety tolerance N/A

TC33

Test case type Non-invariant

Description If OBJECT detected within 0.5m of SVS, SVS SHALL execute

BACKUP procedure for 2 seconds.

Expected value DistanceToObject = 1.0m

Safety tolerance ±0.2m

TC34

Test case type Non-invariant

Description If LIQUID detected within 0.5m of SVS, SVS SHALL execute

BACKUP procedure for 2 seconds.

Expected value DistanceToLiquid = 0.5m

Safety tolerance ±0.2m

TC35

Test case type Non-invariant

Description If CLIFF detected by SVS cliff sensor, SVS SHALL execute

BACKUP procedure for 2 seconds.

Expected value DistancetoCliff = 0.5m

Safety tolerance ±0.2m

TC36

Test case type Non-invariant

Continued on next page

203



Table A.1 (cont’d)

Description If LARGE DIRT PARTICLE detected within 0.5m of SVS, SVS

SHALL execute BACKUP procedure for 2 seconds.

Expected value DistanceToObject = 0.5m

Safety tolerance ±0.2m

TC37

Test case type Non-invariant

Description If ROOM SENSOR cannot measure amount of dirt in room,

SVS controller SHALL select a random path plan.

Expected value RoomSensor.Healthy = True

Safety tolerance N/A

TC38

Test case type Non-invariant

Description SVS is moving at the prescribed reduced speed.

Expected value V elocityModifier ∈ (0.0, 1.0)

Safety tolerance [0.0, 1.0]

TC39

Test case type Non-invariant

Description SVS has at least 25% battery power remaining.

Expected value BatteryPower ≥ 0.25

Safety tolerance [0.05, 1.0]

TC40

Test case type Non-invariant

Description SVS is moving at the initially prescribed speed.

Continued on next page

204



Table A.1 (cont’d)

Expected value V elocityModifier = 1.0

Safety tolerance [0.0, 1.0]

TC41

Test case type Non-invariant

Description SVS has at least 75% battery power remaining.

Expected value BatteryPower ≥ 0.75

Safety tolerance [0.05, 1.0]

TC42

Test case type Non-invariant

Description SVS has successfully entered a REDUCED SUCTION POWER

mode.

Expected value SuctionModifier ∈ (0.0, 1.0)

Safety tolerance [0.0, 1.0]

TC43

Test case type Non-invariant

Description SVS provides suction power of at least the base measure and

less than the power provided in NORMAL SUCTION POWER

mode.

Expected value SuctionPower ≥ 0.25 AND SuctionPower < 1.0

Safety tolerance N/A

TC44

Test case type Non-invariant

Continued on next page

205



Table A.1 (cont’d)

Description SVS continually moves in a forward motion while providing re-

duced suction power.

Expected value V elocityModifier ≥ 0.25 AND SuctionPower ∈ (0.0, 1.0)

Safety tolerance N/A

TC45

Test case type Non-invariant

Description SVS has not entered a REDUCED SUCTION POWER mode.

Expected value SuctionPower is always 1.0

Safety tolerance [0.0, 1.0]

TC46

Test case type Non-invariant

Description SVS provides suction power of the prescribed base measure.

Expected value SuctionPower = 0.25

Safety tolerance [0.0, 1.0]

TC47

Test case type Non-invariant

Description SVS continually provides forward motion while providing base

suction power.

Expected value V elocityModifier ≥ 0.25 AND SuctionPower ≥ 0.25

Safety tolerance [0.0, 1.0]

TC48

Test case type Non-invariant

Continued on next page

206



Table A.1 (cont’d)

Description If RANDOM selected, SVS SHALL execute RANDOM path

plan for 10 seconds.

Expected value PathT imer = 10.0sec

Safety tolerance ±5.0sec

TC49

Test case type Non-invariant

Description If RANDOM selected, SVS SHALL select a random angle on

[0.0, π]rad every 5 seconds.

Expected value PathT imer = 10.0sec

Safety tolerance ±5.0sec

TC50

Test case type Non-invariant

Description If STRAIGHT selected, SVS SHALL execute STRAIGHT path

plan for 10 seconds.

Expected value PathT imer = 10.0sec

Safety tolerance ±5.0sec

TC51

Test case type Non-invariant

Description If STRAIGHT selected and collision occurs, SVS will select a

new angle (π/4.0)rad from the prior angle.

Expected value PathAngle ± (π/4.0)rad

Safety tolerance N/A

TC52

Continued on next page

207



Table A.1 (cont’d)

Test case type Non-invariant

Description Wheel motors can be actuated to specified velocity.

Expected value V elocityLeft ≥ SPECIFIED V ELOCITY AND

V elocityRight ≥ SPECIFIED V ELOCITY

Safety tolerance N/A

TC53

Test case type Non-invariant

Description SVS moves in a forward motion while following SPIRAL path

plan.

Expected value V elocityLeft ≥ 0.0 AND V elocityRight ≥ 0.0

Safety tolerance N/A

TC54

Test case type Non-invariant

Description SVS executes the spiral path plan for 20 seconds.

Expected value PathT imer = 20.0sec

Safety tolerance ±5.0sec

TC55

Test case type Non-invariant

Description SVS continually provides at least the base measure of suction

power while executing spiral path plan.

Expected value SuctionPower ≥ 0.25

Safety tolerance N/A

TC56

Continued on next page

208



Table A.1 (cont’d)

Test case type Non-invariant

Description If SPIRAL selected, SVS SHALL execute SPIRAL path plan for

20 seconds.

Expected value PathP lan = SPIRAL AND PathT ime = 20sec

Safety tolerance ±5.0sec

TC57

Test case type Non-invariant

Description Object sensor tested by internal health monitor SHALL always

be healthy.

Expected value ObjectSensor.Healthy is never False

Safety tolerance N/A

TC58

Test case type Non-invariant

Description Cliff sensor tested by internal health monitor SHALL always be

healthy.

Expected value CliffSensor.Healthy is never False

Safety tolerance N/A

TC59

Test case type Non-invariant

Description Internal sensor tested by internal health monitor SHALL always

be healthy.

Expected value InternalSensor.Healthy is never False

Safety tolerance N/A

Continued on next page

209



Table A.1 (cont’d)

TC60

Test case type Invariant

Description No large dirt particles SHALL be inside vacuum at any point in

time.

Expected value NoLargeDirtParticles is never False

Safety tolerance N/A

TC61

Test case type Non-invariant

Description SPIRAL path plan is executed for 20 seconds.

Expected value PathT imer = 20.0sec

Safety tolerance ±5.0sec

TC62

Test case type Non-invariant

Description RANDOM path plan is executed for 10 seconds.

Expected value PathT imer = 10.0sec

Safety tolerance ±5.0sec

TC63

Test case type Non-invariant

Description STRAIGHT path plan is executed for 10 seconds.

Expected value PathT imer = 10.0sec

Safety tolerance ±5.0sec

TC64

Test case type Non-invariant

Continued on next page

210



Table A.1 (cont’d)

Description SVS selects a new angle on [0.0, π]rad every 5.0 seconds.

Expected value PathAngle ∈ [0.0, π]rad

Safety tolerance [−(π/2.0), π + (π ∗ 2.0)]rad

TC65

Test case type Non-invariant

Description Upon notification of a left bumper collision, the SVS reorients

clockwise by (π/4.0)rad.

Expected value PathAngle + (π/4.0)rad

Safety tolerance [(π/4.0)− 1.0, (π/4.0) + 1.0]rad

TC66

Test case type Non-invariant

Description Upon notification of a right bumper collision, the SVS reorients

counter-clockwise by (π/4.0)rad.

Expected value PathAngle − (π/4.0)rad

Safety tolerance [−(π/4.0)− 1.0,−(π/4.0) + 1.0]rad

TC67

Test case type Non-invariant

Description Upon notification of a center bumper collision, the SVS reorients

by (π/4.0)rad towards the configured direction preference.

Expected value PathAngle ± (π/4.0)rad

Safety tolerance [−(π/4.0)− 1.0, (π/4.0) + 1.0]rad

TC68

Test case type Non-invariant

Continued on next page

211



Table A.1 (cont’d)

Description The SVS executes a backup procedure for 2.0sec upon detection

of an object within 0.5m.

Expected value DistanceToObject = 0.5m

Safety tolerance [0.3, 0.7]m

TC69

Test case type Non-invariant

Description The SVS executes a backup procedure for 2.0sec upon detection

of a liquid spill within 0.5m.

Expected value DistanceToLiquid = 0.5m

Safety tolerance [0.3, 0.7]m

TC70

Test case type Non-invariant

Description The SVS executes a backup procedure for 2.0sec upon detection

of a downward step within 0.5m.

Expected value DistanceToCliff = 0.5m

Safety tolerance [0.3, 0.7]m

TC71

Test case type Non-invariant

Description The SVS executes a backup procedure for 2.0sec upon detection

of a large object within 0.5m.

Expected value DistanceToObject = 0.5m

Safety tolerance [0.3, 0.7]m

TC72

Continued on next page

212



Table A.1 (cont’d)

Test case type Non-invariant

Description Room sensor can measure the amount of dirt within the room.

Expected value RoomSensor.Active = True

Safety tolerance N/A

Smart Vacuum System Goal Correlation

This section provides an overview of how each test case is correlated to a particular

goal, thereby providing a method for validating test results at run time. We now reproduce

the SVS goal model previously presented in Figure 2.2 to simplify readability.

213



Achieve [50% 
Clean]

Maintain 
[Suction]

Achieve 
[Movement]

Achieve [Cleaning 
Efficiency]

   Vacuum

Achieve [Reduced 
Speed]

Achieve [Normal  
Speed]

Achieve [Reduced 
Suction]

Achieve [Normal 
Suction]

  Motors

(A)

(B)

(E) (G)

(K) (L) (M) (N)

Achieve [BatteryPower 
> 5%]

(F)

  Battery 
  Sensor

…

Achieve [Cleaning 
Effectiveness]

Achieve [Path Plan 
for 10 Seconds]

Achieve [Spiral 
Path]

Achieve [Straight 
Path]

Achieve [Random 
Path]

   Bumper
   Sensors

Achieve [Clean Area 
for 20 seconds]

(C)

(H) (I)

(O) (P) (Q)

Maintain 
[Safety]

FailSafeEnabled If 
SafetyCheckFailure

Avoid 
[Obstacles]

Avoid [Self 
Damage]

Object 
Sensor

    Suction 
    Sensor

    Cliff 
      Sensor

(D)

(J)

(R) (S)

    Internal 
    Sensor

    Controller

…

(A) Left half of SVS goal model

(B) Right half of SVS goal model

    Goal

Refinement

Agent

Requirement / Expectation

Legend

Figure A.1: KAOS goal model of the smart vacuum system application.

Table A.2 next presents the traceability links for each test case. Particularly, the first

column presents the test case identifier and the second column lists the goals to which the

test case is correlated. The traceability defined here enables run-time validation of test cases,

214



as is described in Chapter 6.4.2. Furthermore, we only linked test cases to leaf-level goals

for the SVS, as they represent system requirements.

Table A.2: Traceability links for smart vacuum system application.

Test Case ID Correlated Goal(s)

TC1 (K), (L), (M), (N), (O), (P), (Q), (R), (S)

TC2 (K), (L), (M), (N), (O), (P), (Q), (R), (S)

TC3 (K), (L), (M), (N), (O), (P), (Q), (R), (S)

TC4 (K), (L), (M), (N), (O), (P), (Q)

TC5 (K), (L), (M), (N), (O), (P), (Q)

TC6 (K), (L), (M), (N), (O), (P), (Q)

TC7 (R)

TC8 (R)

TC9 (S)

TC10 (R), (S)

TC11 (R), (S)

TC12 (R)

TC13 (R)

TC14 (S)

TC15 (R), (S)

TC16 (K), (L)

TC17 (K), (L)

TC18 (K), (L)

TC19 (K), (L)

TC20 (K), (M)

TC21 (K), (M)

Continued on next page

215



Table A.2 (cont’d)

Test Case ID) Correlated Goal(s)

TC22 (K), (M)

TC23 (M), (N)

TC24 (M), (N)

TC25 (O)

TC26 (P)

TC27 (K), (L), (O), (P), (Q)

TC28 (R), (S)

TC29 (R), (S)

TC30 (R), (S)

TC31 (R), (S)

TC32 (S)

TC33 (R), (S)

TC34 (R), (S)

TC35 (S)

TC36 (R), (S)

TC37 (S)

TC38 (K)

TC39 (K)

TC40 (L)

TC41 (L)

TC42 (M)

TC43 (M)

TC44 (M)

Continued on next page

216



Table A.2 (cont’d)

Test Case ID) Correlated Goal(s)

TC45 (N)

TC46 (N)

TC47 (N), (O), (P)

TC48 (O)

TC49 (O)

TC50 (P)

TC51 (P)

TC52 (Q)

TC53 (Q)

TC54 (Q)

TC55 (Q)

TC56 (Q)

TC57 (R)

TC58 (S)

TC59 (S)

TC60 (S)

TC61 (G), (N)

TC62 (F), (L), (M)

TC63 (L)

TC64 (D)

TC65 (D)

TC66 (D)

TC67 (O), (P), (Q)

Continued on next page

217



Table A.2 (cont’d)

Test Case ID) Correlated Goal(s)

TC68 (O)

TC69 (P), (Q), (R)

TC70 (O), (P), (R)

TC71 (O), (P), (Q), (R)

TC72 (P)

Remote Data Mirroring Test Specification

This section overviews the test specification used for the RDM case study within this

dissertation. Particularly, Table A.3 presents the test specification that is used as a basis for

run-time testing and adaptation. For each test case, we present the test case identifier (ID),

the test case type (i.e., invariant or non-invariant), a description, the expected value(s), and

the safety tolerance used for adaptation. Furthermore, if the safety tolerance is listed as

N/A, then the test case is considered non-invariant, however cannot be physically adapted.

Table A.3: Remote data mirroring test specification.

TC1

Test case type Invariant

Description Data has been fully replicated throughout the network at the

end of execution.

Expected value RDM.DataCopies = RDM.NumServers

Safety tolerance N/A

Continued on next page

218



Table A.3 (cont’d)

TC2

Test case type Invariant

Description Operational cost has never exceeded the budget.

Expected value RDM.Cost < RDM.Budget

Safety tolerance N/A

TC3

Test case type Non-invariant

Description Link sensor and RDM sensor can collectively measure network

properties.

Expected value LinkSensor.Active = True

AND RDMSensor.Active = True

Safety tolerance N/A

TC4

Test case type Non-invariant

Description Network actuator only enables the minimum number of links to

replicate data.

Expected value NetworkActuator.ActiveNetworkLinks =

(RDM.NumServers − 1)

Safety tolerance [RDM.NumServers− 1, RDM.NumServers+ 1]

TC5

Test case type Non-invariant

Description Network actuator has never partitioned network.

Expected value NetworkActuator.NumPartitions = 0

Continued on next page

219



Table A.3 (cont’d)

Safety tolerance [0, 2]

TC6

Test case type Non-invariant

Description Risk threshold is never exceeded while sending data syn-

chronously.

Expected value NetworkController.SynchronousSend = True

AND NetworkController.Risk ≤ RiskThreshold

Safety tolerance [RiskThreshold, RiskThreshold+ 20.0]

TC7

Test case type Non-invariant

Description Diffusion time never exceeds maximum time while sending data

asynchronously.

Expected value NetworkController.AsynchronousSend = True

AND DiffusionT ime ≤ MaxTime

Safety tolerance [DiffusionT ime− 5.0, DiffusionT ime+ 5.0]

TC8

Test case type Non-invariant

Description Network adaptation costs must remain 0.

Expected value AdaptationController.AdaptationCosts = 0.0

Safety tolerance [0.0, 200.0]

TC9

Test case type Non-invariant

Description Link sensor can physically measure cost.

Continued on next page

220



Table A.3 (cont’d)

Expected value LinkSensor.Active = True

Safety tolerance N/A

TC10

Test case type Invariant

Description Link sensor is active.

Expected value LinkSensor.Active = True

Safety tolerance N/A

TC11

Test case type Non-invariant

Description Link sensor can physically measure activity.

Expected value LinkSensor.Active = True

Safety tolerance N/A

TC12

Test case type Non-invariant

Description Link sensor can physically measure loss rate.

Expected value LinkSensor.Active = True

Safety tolerance N/A

TC13

Test case type Non-invariant

Description RDM sensor can physically measure workload.

Expected value RDMSensor.Active = True

Safety tolerance N/A

TC14

Continued on next page

221



Table A.3 (cont’d)

Test case type Invariant

Description RDM sensor is active.

Expected value RDMSensor.Active = True

Safety tolerance N/A

TC15

Test case type Non-invariant

Description RDM sensor can physically measure capacity.

Expected value RDMSensor.TotalCapacity > 0.0

Safety tolerance N/A

TC16

Test case type Non-invariant

Description Network actuator can measure link state.

Expected value NetworkActuator.NumActiveLinks ≥ 0.0 AND

NetworkController.NumSynchronousLinks ≥ 0.0 AND

NetworkController.NumAsynchronousLinks ≥ 0.0

Safety tolerance N/A

TC17

Test case type Non-invariant

Description Network actuator can physically deactivate a link.

Expected value NetworkActuator.NumActiveLinks ≥ 0.0

Safety tolerance N/A

TC18

Test case type Invariant

Continued on next page

222



Table A.3 (cont’d)

Description Network actuator is active.

Expected value NetworkActuator.Active = True

Safety tolerance N/A

TC19

Test case type Non-invariant

Description Network actuator can physically activate a link.

Expected value NetworkActuator.NumActiveLinks ≥ 0.0

Safety tolerance N/A

TC20

Test case type Non-invariant

Description Network controller can synchronously send data.

Expected value NetworkController.NumSynchronousLinks ≥ 0.0

Safety tolerance N/A

TC21

Test case type Non-invariant

Description Network controller can send data over the network.

Expected value NetworkController.NumInsertedMessages > 0

AND NetworkActuator.NumActiveLinks > 0

Safety tolerance N/A

TC22

Test case type Invariant

Description Network controller is active.

Expected value NetworkController.Active = True

Continued on next page

223



Table A.3 (cont’d)

Safety tolerance N/A

TC23

Test case type Non-invariant

Description Network controller can physically measure data sent.

Expected value NetworkController.NumSentMessages ≥ 0

Safety tolerance N/A

TC24

Test case type Non-invariant

Description Network controller can physically measure data received.

Expected value NetworkController.NumReceivedMessages ≥ 0

Safety tolerance N/A

TC25

Test case type Non-invariant

Description Network controller records that the data received equals the data

sent.

Expected value NetworkController.NumReceivedMessages =

NetworkController.NumSentMessages

Safety tolerance [0.0, 10.0]

TC26

Test case type Non-invariant

Description Network controller can asynchronously send data.

Expected value NetworkController.NumAsynchronousLinks ≥ 0.0

Safety tolerance N/A

Continued on next page

224



Table A.3 (cont’d)

TC27

Test case type Non-invariant

Description Adaptation controller can physically measure number of active

data mirrors.

Expected value RDM.NumActiveServers ≥ 0

Safety tolerance N/A

TC28

Test case type Non-invariant

Description Adaptation controller can physically measure number of data

mirrors.

Expected value RDM.NumServers ≥ 0

Safety tolerance N/A

TC29

Test case type Non-invariant

Description Adaptation controller has ensured that all data mirrors are ac-

tive.

Expected value RDM.NumServers = RDM.NumActiveServers

Safety tolerance [RDM.NumServers ∗ 0.4, RDM.NumServers]

TC30

Test case type Invariant

Description Adaptation controller is active.

Expected value AdaptationController.Active = True

Safety tolerance N/A

Continued on next page

225



Table A.3 (cont’d)

TC31

Test case type Non-invariant

Description Adaptation controller can physically measure number of passive

data mirrors.

Expected value RDM.NumPassiveServers ≥ 0

Safety tolerance N/A

TC32

Test case type Non-invariant

Description Adaptation controller has not put a data mirror into passive

state.

Expected value RDM.NumPassiveServers = 0

Safety tolerance [0, RDM.NumServers ∗ 0.4]

TC33

Test case type Non-invariant

Description Adaptation controller can physically measure number of quies-

cent data mirrors

Expected value RDM.NumQuiescentServers ≥ 0

Safety tolerance N/A

TC34

Test case type Non-invariant

Description Adaptation controller has not put a data mirror into quiescent

state.

Expected value RDM.NumQuiescentServers = 0

Continued on next page

226



Table A.3 (cont’d)

Safety tolerance [0, RDM.NumServers ∗ 0.4]

Remote Data Mirroring Goal Correlation

This section provides an overview of how each test case is correlated to a particular

goal, thereby providing a method for validating test results at run time. We now reproduce

the RDM goal model previously presented in Figure 2.4 to simplify this section.

Table A.4 next presents the traceability links for each test case. Particularly, the first

column presents the test case identifier and the second column lists the goals to which the test

case is correlated. Again, the traceability defined in this section enables run-time validation

of test cases, as was previously described in Chapter 6.4.2. For the RDM, we correlated

test cases to all goals within the goal model to examine a different approach for test case

derivation and correlation.

Table A.4: Traceability links for remote data mirroring application.

Test Case ID Correlated Goal(s)

TC1 (A), (C)

TC2 (A), (B)

TC3 (D)

TC4 (E)

TC5 (F)

TC6 (G)

TC7 (H)

Continued on next page

227



Table A.4 (cont’d)

Test Case ID) Correlated Goal(s)

TC8 (I)

TC9 (J)

TC10 (J), (K), (L)

TC11 (K)

TC12 (L)

TC13 (M)

TC14 (M), (N)

TC15 (N)

TC16 (O), (P)

TC17 (O)

TC18 (O), (P)

TC19 (P)

TC20 (Q)

TC21 (Q), (S)

TC22 (Q), (R), (S), (T)

TC23 (R), (T)

TC24 (R), (T)

TC25 (R), (T)

TC26 (S)

TC27 (U)

TC28 (U)

TC29 (U)

TC30 (U), (V), (W)

Continued on next page

228



Table A.4 (cont’d)

Test Case ID) Correlated Goal(s)

TC31 (V)

TC32 (V)

TC33 (W)

TC34 (W)

229



(J) (K) (L) (M) (N)

Maintain 
[DataAvailable]

Achieve [Network 
Partitions == 0]

Achieve [Measure 
Network Properties]

Maintain [Operational 
Costs  ≤    Budget]

Network 
Actuator

Achieve 
[Cost 

Measured]

Achieve 
[Activity 

Measured]

Achieve 
[LossRate 

Measured]

Link 
Sensor

(A)

(B)

(D) (F)Achieve [Minimum Num 
Links Active]

(E)

RDM
Sensor

…

Achieve [NumDataCopies == 
NumServers](C)

Network 
Controller

Adaptation 
Controller

…

(A) Left half of RDM goal model

(B) Right half of RDM goal model

Achieve 
[Workload 
Measured]

Achieve 
[Capacity 

Measured]

Achieve [Link 
Deactivated]

(O)

Achieve [Link 
Activated]

(P)

Achieve [DataAtRisk  ≤  
RiskThreshold]

(G) Achieve [DiffusionTime  ≤  
MaxTime](H) Achieve [Adaptation 

Costs == 0](I)

(Q)

Achieve 
[Send Data 

Synchronously]

(R)

Achieve 
[Data Sent == 

Data Received]

(S)

Achieve 
[Send Data 

Asynchronously]

(T)

Achieve 
[Data Received 
== Data Sent]

(U)
Achieve 

[Num Active 
Data Mirrors == 
Num Mirrors]

(V)

Achieve 
[Num Passive Data 

Mirrors == 0]

(W)

Achieve 
[Num Quiescent 

Data Mirrors == 0]

    Goal

Refinement

Agent

Requirement / Expectation

Legend

Figure A.2: KAOS goal model of the remote data mirroring application.

230



BIBLIOGRAPHY

231



BIBLIOGRAPHY

[1] Shin-Young Ahn, Sungwon Kang, Jongmoon Baik, and Ho-Jin Choi. A weighted
call graph approach for finding relevant components in source code. In 10th ACIS
International Conference on Software Engineering, Artificial Intelligences, Networking
and Parallel/Distributed Computing, pages 539–544. IEEE, 2009.

[2] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 483–485. ACM, 1967.

[3] James H. Andrews, Tim Menzies, and Felix C.H. Li. Genetic algorithms for randomized
unit testing. IEEE Trans. on Software Engineering, 37(1):80–94, January 2011.

[4] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web
service compositions. Software, IET, 1(6):219–232, 2007.

[5] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy goals for requirements-driven adapta-
tion. In Requirements Engineering Conference (RE), 2010 18th IEEE International,
pages 125 –134, 27 2010-oct. 1 2010.

[6] Jonathon A Bauer and Alan B Finger. Test plan generation using formal grammars.
Proceedings of the 4th International Conference on Software Engineering, pages 425–
432, 1979.

[7] Nelly Bencomo and Amel Belaggoun. Supporting decision-making for self-adaptive
systems: from goal models to dynamic decision networks. In Requirements Engineering:
Foundation for Software Quality, pages 221–236. Springer, 2013.

[8] Nelly Bencomo, Jon Whittle, Peter Sawyer, Anthony Finkelstein, and Emmanuel
Letier. Requirements reflection: Requirements as runtime entities. In Proc. of the
32nd ACM/IEEE International Conference on Software Engineering, pages 199–202,
Cape Town, South Africa, May 2010. ACM.

[9] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In
Future of Software Engineering, 2007. FOSE ’07, pages 85–103, 2007.

[10] Paul E. Black. Dictionary of algorithms and data structures. U.S. National Institute
of Standards and Technology, May 2006.

[11] Renesys Blog. Pakistan hijacks youtube. http://www.renesys.com/2008/02/

pakistan-hijacks-youtube-1/, 2008.

[12] N. Bredeche, E. Haasdijk, and A.E. Eiben. On-line, on-board evolution of robot con-
trollers. In Pierre Collet, Nicolas Monmarché, Pierrick Legrand, Marc Schoenauer, and
Evelyne Lutton, editors, Artifical Evolution, volume 5975 of Lecture Notes in Computer
Science, pages 110–121. Springer Berlin Heidelberg, 2010.

232

http://www.renesys.com/2008/02/pakistan-hijacks-youtube-1/
http://www.renesys.com/2008/02/pakistan-hijacks-youtube-1/


[13] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and Sonia
Schulenburg. Hyper-heuristics: An emerging direction in modern search technology.
In Fred Glover and Gary A. Kochenberger, editors, Handbook of Metaheuristics, vol-
ume 57, pages 457–474. Springer US, 2003.

[14] Ilene Burnstein. Practical software testing: a process-oriented approach. Springer,
2003.

[15] J. Camara and R. de Lemos. Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In Software Engineering for Adaptive and Self-Managing
Systems., pages 53 –62, june 2012.

[16] Marco Canini, Vojin Jovanovic, Daniele Venzano, Boris Spasojevic, Olivier Crameri,
and Dejan Kostic. Toward online testing of federated and heterogeneous distributed
systems. In USENIX Annual Technical Conference, 2011.

[17] Marco Canini, Dejan Novaković, Vojin Jovanović, and Dejan Kostić. Fault prediction
in distributed systems gone wild. In Proceedings of the 4th International Workshop on
Large Scale Distributed Systems and Middleware, pages 7–11, 2010.

[18] Mei-Hwa Chen, Michael R Lyu, and W Eric Wong. Effect of code coverage on software
reliability measurement. IEEE Transactions on Reliability, 50(2):165–170, 2001.

[19] Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A. Müller, Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bernhard
Rumpe, Daniel Schneider, Frank Trollmann, and Norha M. Villegas. Using models at
runtime to address assurance for self-adaptive systems. In Models@run.time, volume
8378 of Lecture Notes in Computer Science, pages 101–136. Springer International
Publishing, 2014.

[20] Betty H. C. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, and
et al. Software engineering for self-adaptive systems: A research roadmap. In Software
engineering for self-adaptive systems, chapter Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2009.

[21] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A goal-based
modeling approach to develop requirements of an adaptive system with environmental
uncertainty. In Proc. of the 12th International Conference on Model Driven Engineer-
ing Languages and Systems, pages 468–483, Berlin, Heidelberg, 2009. Springer-Verlag.

[22] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-based self-
adaptation in the presence of multiple objectives. In Proceedings of the 2006 inter-
national workshop on Self-adaptation and self-managing systems, pages 2–8. ACM,
2006.

[23] O. Chikumbo, E. Goodman, and K. Deb. Approximating a multi-dimensional pareto
front for a land use management problem: A modified moea with an epigenetic silencing
metaphor. In 2012 IEEE Congress on Evolutionary Computation (CEC), 2012.

233



[24] Lawrence Chung, B Nixon, E Yu, and J Mylopoulos. Non-functional requirements.
Software Engineering, 2000.

[25] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of computer programming, 20(1):3–50, 1993.

[26] Scott Dawson, Farnam Jahanian, Todd Mitton, and Teck-Lee Tung. Testing of fault-
tolerant and real-time distributed systems via protocol fault injection. In Proceedings
of Annual Symposium on Fault Tolerant Computing, pages 404–414. IEEE, 1996.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective ge-
netic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182
–197, apr 2002.

[28] Paul deGrandis and Giuseppe Valetto. Elicitation and utilization of application-level
utility functions. In Proc. of the 6th International Conference on Autonomic Comput-
ing, ICAC ’09, pages 107–116. ACM, 2009.

[29] R.F. DeMara and Kening Zhang. Autonomous fpga fault handling through competitive
runtime reconfiguration. In NASA/DoD Conference on Evolvable Hardware, pages 109
– 116, 2005.

[30] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41, 1978.

[31] A.E. Eiben and J. K. van der Hauw. Adaptive penalties for evolutionary graph coloring.
In Artifical Evolution. Springer, 1998.

[32] Sebastian Elbaum and David S. Rosenblum. Known unknowns: Testing in the presence
of uncertainty. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 833–836, 2014.

[33] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Model
evolution by run-time parameter adaptation. In Proc. of the 31st International Con-
ference on Software Engineering, pages 111–121, Washington, DC, USA, 2009. IEEE
Computer Society.

[34] N. Esfahani. A framework for managing uncertainty in self-adaptive software systems.
In Automated Software Engineering (ASE), 2011 26th IEEE/ACM International Con-
ference on, pages 646–650, 2011.

[35] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. Taming uncertainty in self-
adaptive software. In Proc. of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 234–244. ACM,
2011.

[36] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga, and Saddek Ben-
salem. Runtime verification of component-based systems. In Proc. of the 9th interna-
tional conference on Software engineering and formal methods, pages 204–220, Berlin,
Heidelberg, 2011. Springer-Verlag.

234



[37] S. Fickas and M.S. Feather. Requirements monitoring in dynamic environments. In
Requirements Engineering, 1995., Proc. of the Second IEEE International Symposium
on, pages 140 – 147, mar 1995.

[38] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time efficient proba-
bilistic model checking. In Proc. of the 33rd International Conference on Software
Engineering, pages 341–350, Waikiki, Honolulu, Hawaii, USA, 2011. ACM.

[39] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. A formal approach to adap-
tive software: continuous assurance of non-functional requirements. Formal Aspects of
Computing, 24:163–186, 2012.

[40] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proc. of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, ESEC/FSE ’11,
pages 416–419, Szeged, Hungary, 2011. ACM.

[41] Erik M. Fredericks and Betty H. C. Cheng. Automated generation of adaptive test
plans for self-adaptive systems. In Accepted to Appear in Proceedings of 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’15, 2015.

[42] Erik M. Fredericks, Byron DeVries, and Betty H. C. Cheng. Autorelax: Automati-
cally relaxing a goal model to address uncertainty. Empirical Software Engineering,
19(5):1466–1501, 2014.

[43] Erik M. Fredericks, Byron DeVries, and Betty H. C. Cheng. Towards run-time adap-
tation of test cases for self-adaptive systems in the face of uncertainty. In Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’14, 2014.

[44] Erik M. Fredericks, Andres J. Ramirez, and Betty H. C. Cheng. Towards run-time
testing of dynamic adaptive systems. In Proceedings of the 8th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’13,
pages 169–174. IEEE Press, 2013.

[45] Erik M. Fredericks, Andres J. Ramirez, and Betty H. C. Cheng. Validating code-
level behavior of dynamic adaptive systems in the face of uncertainty. In Search Based
Software Engineering, volume 8084 of Lecture Notes in Computer Science, pages 81–95.
Springer Berlin Heidelberg, 2013.

[46] Christian Gagné and Marc Parizeau. Genericity in evolutionary computation software
tools: Principles and case-study. International Journal on Artificial Intelligence Tools,
15(02):173–194, 2006.

[47] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, 2004.

235



[48] C. Ghezzi. Adaptive software needs continuous verification. In Software Engineering
and Formal Methods (SEFM), 2010 8th IEEE International Conference on, pages 3
–4, Sept. 2010.

[49] Heather J. Goldsby and Betty H. C. Cheng. Automatically generating behavioral mod-
els of adaptive systems to address uncertainty. In Model Driven Engineering Languages
and Systems, pages 568–583. Springer, 2008.

[50] Heather J. Goldsby, Betty H. C. Cheng, and Ji Zhang. Models in software engineer-
ing. In Holger Giese, editor, Models in Software Engineering, chapter AMOEBA-RT:
Run-Time Verification of Adaptive Software, pages 212–224. Springer-Verlag, Berlin,
Heidelberg, 2008.

[51] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search based software engi-
neering: A comprehensive analysis and review of trends techniques and applications.
Department of Computer Science, King’s College London, Tech. Rep. TR-09-03, 2009.

[52] Mark Harman, Phil McMinn, Jerffeson Teixeira Souza, and Shin Yoo. Search based
software engineering: Techniques, taxonomy, tutorial. In Empirical Software Engineer-
ing and Verification, volume 7007 of Lecture Notes in Computer Science, pages 1–59.
Springer Berlin Heidelberg, 2012.

[53] John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, USA, 1992.

[54] IEEE. Systems and software engineering – vocabulary. ISO/IEC/IEEE 24765:2010(E),
pages 1–418, Dec 2010.

[55] Michael Jackson and Pamela Zave. Deriving specifications from requirements: an
example. In Proceedings of the 17th International Conference on Software Engineering,
pages 15–24. ACM, 1995.

[56] Minwen Ji, Alistair Veitch, and John Wilkes. Seneca: Remote mirroring done write.
In USENIX 2003 Annual Technical Conference, pages 253–268, Berkeley, CA, USA,
June 2003. USENIX Association.

[57] Keneth A. De Jong. Evolutionary computation, a unified approach. The MIT Press,
March 2002.

[58] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software test-
ing. Preprint, 12 pages, available online http://homes.cs.washington.edu/~rjust/

publ/mutants_real_faults_fse_2014.pdf, 2014.

[59] Gail Kaiser, Phil Gross, Gaurav Kc, Janak Parekh, and Giuseppe Valetto. An approach
to autonomizing legacy systems. Technical report, DTIC Document, 2005.

236

http://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf
http://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf


[60] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes. De-
signing for disasters. In Proc. of the 3rd USENIX Conference on File and Storage
Technologies, pages 59–62, Berkeley, CA, USA, 2004. USENIX Association.

[61] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer, 36(1):41
– 50, jan 2003.

[62] John R. Koza. Genetic programming: On the programming of computers by means of
natural selection (complex adaptive systems). The MIT Press, December 1992.

[63] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change
management. Software Engineering, IEEE Transactions on, 16(11):1293–1306, 1990.

[64] Joel Lehman and Kenneth O. Stanley. Exploiting open-endedness to solve problems
through the search for novelty. In Proceedings of the Eleventh International Conference
on Artificial Life (ALIFE XI). MIT Press, 2004.

[65] Emmanuel Letier, David Stefan, and Earl T. Barr. Uncertainty, risk, and information
value in software requirements and architecture. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, pages 883–894, 2014.

[66] Emmanuel Letier and Axel van Lamsweerde. Reasoning about partial goal satisfaction
for requirements and design engineering. In Proceedings of the 12th ACM SIGSOFT
Twelfth International Symposium on Foundations of Software Engineering, pages 53–
62, 2004.

[67] Khaled Mahbub and George Spanoudakis. A framework for requirements monitoring of
service based systems. In Proc. of the 2nd international conference on Service oriented
computing, pages 84–93. ACM, 2004.

[68] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B. H. C. Cheng. Composing adaptive
software. Computer, 37(7):56 – 64, july 2004.

[69] P. McMinn. Search-based software testing: Past, present and future. In Software Test-
ing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on, pages 153–163, 2011.

[70] Atif M Memon, Martha E Pollack, and Mary Lou Soffa. Hierarchical gui test case
generation using automated planning. IEEE Transactions on Software Engineering,
27(2):144–155, 2001.

[71] Edison Mera, Pedro Lopez-Garćıa, and Manuel Hermenegildo. Integrating software
testing and run-time checking in an assertion verification framework. In Logic Pro-
gramming, pages 281–295. Springer, 2009.

[72] Bertrand Meyer. Seven principles of software testing. Computer, 41(8):99–101, 2008.

[73] Harlan D Mills, Michael Dyer, and Richard C Linger. Cleanroom software engineering.
IEEE Software, 1987.

237



[74] S. Mitra, T. Wongpiromsarn, and R.M. Murray. Verifying cyber-physical interactions
in safety-critical systems. IEEE Security Privacy, 11(4):28–37, 2013.

[75] Subhasish Mitra, W.-J. Huang, N.R. Saxena, S.-Y. Yu, and E.J. McCluskey. Recon-
figurable architecture for autonomous self-repair. Design Test of Computers, IEEE,
21(3):228 – 240, may-june 2004.

[76] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. Models@ run.time to
support dynamic adaptation. Computer, 42(10):44 –51, oct. 2009.

[77] Sandeep Neema, Ted Bapty, and Jason Scott. Development environment for dynam-
ically reconfigurable embedded systems. In Proc. of the International Conference on
Signal Processing Applications and Technology. Orlando, FL, 1999.

[78] Cu D. Nguyen, Anna Perini, Paolo Tonella, and Fondazione Bruno Kessler. Automated
continuous testing of multiagent systems. In The Fifth European Workshop on Multi-
Agent Systems (EUMAS), 2007.

[79] Duy Cu Nguyen, Anna Perini, and Paolo Tonella. A goal-oriented software testing
methodology. In Proc. of the 8th international conference on Agent-oriented software
engineering VIII, pages 58–72, Berlin, Heidelberg, 2008. Springer-Verlag.

[80] Charles Ofria and Claus O Wilke. Avida: A software platform for research in compu-
tational evolutionary biology. Artificial life, 10(2):191–229, 2004.

[81] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic,
A. Quilici, D.S. Rosenblum, and A.L. Wolf. An architecture-based approach to self-
adaptive software. Intelligent Systems and their Applications, IEEE, 14(3):54 –62,
1999.

[82] Thomas Ostrand. Encyclopedia of Software Engineering. Wiley, 2002.

[83] Roy P Pargas, Mary Jean Harrold, and Robert R Peck. Test-data generation using
genetic algorithms. Software Testing, Verification and Reliability, 9(4):263–282, 1999.

[84] Esteban Pavese, Vı́ctor Braberman, and Sebastian Uchitel. Automated reliability es-
timation over partial systematic explorations. In Software Engineering (ICSE), 2013
35th International Conference on, 2013.

[85] N.A. Qureshi, S. Liaskos, and A. Perini. Reasoning about adaptive requirements for
self-adaptive systems at runtime. In Proc. of the 2011 International Workshop on
Requirements at Run Time, pages 16 –22, aug. 2011.

[86] A.J. Ramirez, A.C. Jensen, B. H. C. Cheng, and D.B. Knoester. Automatically ex-
ploring how uncertainty impacts behavior of dynamically adaptive systems. In Auto-
mated Software Engineering (ASE), 2011 26th IEEE/ACM International Conference
on, pages 568 –571, nov. 2011.

238



[87] Andres J. Ramirez and Betty H. C. Cheng. Automatically deriving utility functions for
monitoring software requirements. In Proc. of the 2011 International Conference on
Model Driven Engineering Languages and Systems Conference, pages 501–516, Welling-
ton, New Zealand, 2011.

[88] Andres J. Ramirez, Erik M. Fredericks, Adam C. Jensen, and Betty H. C. Cheng.
Automatically relaxing a goal model to cope with uncertainty. In Gordon Fraser and
Jerffeson Teixeira de Souza, editors, Search Based Software Engineering, volume 7515,
pages 198–212. Springer Berlin Heidelberg, 2012.

[89] Andres J Ramirez, David B Knoester, Betty HC Cheng, and Philip K McKinley.
Applying genetic algorithms to decision making in autonomic computing systems. In
Proceedings of the 6th international conference on Autonomic computing, pages 97–106,
2009.

[90] Barbara G Ryder. Constructing the call graph of a program. IEEE Transactions on
Software Engineering, pages 216–226, 1979.

[91] David Saff and Michael D. Ernst. Reducing wasted development time via continuous
testing. In Proc. of the 14th International Symposium on Software Reliability Engi-
neering, pages 281–292. IEEE Computer Society, 2003.

[92] David Saff and Michael D. Ernst. An experimental evaluation of continuous testing
during development. In Proc. of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, pages 76–85, Boston, Massachusetts, USA, 2004. ACM.

[93] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and re-
search challenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
4(2):14:1–14:42, May 2009.

[94] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. Requirements-
aware systems: A research agenda for re for self-adaptive systems. In Requirements
Engineering Conference (RE), 2010 18th IEEE International, pages 95 –103, 2010.

[95] Nirmal R. Saxena, Santiago Fernandez-Gomez, Wei-Je Huang, Subhasish Mitra, Shu-
Yi Yu, and Edward J. McCluskey. Dependable computing and online testing in adap-
tive and configurable systems. IEEE Des. Test, 17(1):29–41, January 2000.

[96] Hans-Paul Schwefel. Numerical optimization of computer models. John Wiley & Sons,
Inc., 1981.

[97] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R. Dancey,
A. Robinson, and T. Lin. Fiat-fault injection based automated testing environment.
In Eighteenth International Symposium on Fault-Tolerant Computing, 1988. FTCS-18,
Digest of Papers. IEEE, 1988.

[98] Koushik Sen and Gul Agha. Automated systematic testing of open distributed pro-
grams. In Fundamental Approaches to Software Engineering, pages 339–356. Springer,
2006.

239



[99] V.E.S. Souza, A. Lapouchnian, and J. Mylopoulos. (requirement) evolution require-
ments for adaptive systems. In Software Engineering for Adaptive and Self-Managing
Systems, 2012 ICSE Workshop on, pages 155 –164, 2012.

[100] V.E.S. Souza and J. Mylopoulos. From awareness requirements to adaptive systems:
A control-theoretic approach. In Requirements@Run.Time (RE@RunTime), 2011 2nd
International Workshop on, pages 9–15. IEEE Computer Society, 2011.

[101] Pascale Thevenod-Fosse and Helene Waeselynck. Statemate applied to statistical soft-
ware testing. ACM SIGSOFT Software Engineering Notes, 18(3):99–109, 1993.

[102] Mustafa M Tikir and Jeffrey K Hollingsworth. Efficient instrumentation for code
coverage testing. In ACM SIGSOFT Software Engineering Notes, volume 27, pages
86–96. ACM, 2002.

[103] J.J.-P. Tsai, K.-Y. Fang, Horng-Yuan Chen, and Yao-Dong Bi. A noninterference mon-
itoring and replay mechanism for real-time software testing and debugging. Software
Engineering, IEEE Transactions on, 16(8):897–916, 1990.

[104] van der Hauw K. Evaluating and improving steady state evolutionary algorithms on
constraint satisfaction problems. Master’s thesis, Leiden University, 1996.

[105] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models
to Software Specifications. Wiley, 2009.

[106] Axel Van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented
requirements engineering. Software Engineering, IEEE Transactions on, 26(10):978–
1005, 2000.

[107] Margus Veanes, Pritam Roy, and Colin Campbell. Online testing with reinforcement
learning. In Formal Approaches to Software Testing and Runtime Verification, pages
240–253. Springer, 2006.

[108] Norha M. Villegas, Hausi A. Müller, Gabriel Tamura, Laurence Duchien, and Rubby
Casallas. A framework for evaluating quality-driven self-adaptive software systems. In
Proc. of the 6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 80–89, Waikiki, Honolulu, Hawaii, USA, 2011. ACM.

[109] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi Das. Utility
functions in autonomic systems. In Proc. of the First IEEE International Conference
on Autonomic Computing, pages 70–77. IEEE Computer Society, 2004.

[110] O. Wei, A. Gurfinkel, and M. Chechik. On the consistency, expressiveness, and pre-
cision of partial modeling formalisms. Information and Computation, 209(1):20–47,
2011.

[111] K. Welsh, P. Sawyer, and N. Bencomo. Towards requirements aware systems: Run-
time resolution of design-time assumptions. In Automated Software Engineering (ASE),
2011 26th IEEE/ACM International Conference on, pages 560–563, 2011.

240



[112] Kristopher Welsh and Peter Sawyer. Understanding the scope of uncertainty in dynam-
ically adaptive systems. In Proc. of the Sixteenth International Working Conference
on Requirements Engineering: Foundation for Software Quality, volume 6182, pages
2–16. Springer, 2010.

[113] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.M. Bruel. Relax: Incor-
porating uncertainty into the specification of self-adaptive systems. In Requirements
Engineering Conference, 2009. RE ’09. 17th IEEE International, pages 79–88, 31 2009-
sept. 4 2009.

[114] Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive
software. In Proceedings of the 28th international conference on Software engineering,
pages 371–380. ACM, 2006.

241


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Problem Description
	Thesis Statement
	Research Contributions
	Organization of Dissertation

	Background and Application
	Dynamically Adaptive Systems
	Smart Vacuum System
	Overview of Smart Vacuum System
	Smart Vacuum System Implementation

	Remote Data Mirroring
	Overview of Remote Data Mirroring Application
	Remote Data Mirroring Implementation

	Requirements Engineering
	Goal-Oriented Requirements Engineering
	Goal-Oriented Requirements Modeling
	RELAX Specification Language

	Evolutionary Computation
	Genetic Algorithms
	Stepwise Adaptation of Weights
	Novelty Search
	(1+1)-ONLINE Evolutionary Algorithm

	Software Testing
	Structural Testing
	Functional Testing
	Unit Testing
	Regression Testing


	Addressing Requirements-Based Uncertainty
	Motivation
	Introduction to AutoRELAX
	Assumptions, Inputs, and Outputs
	AutoRELAX Approach
	Optimizing Fitness Sub-Function Weights with SAW

	Case Studies
	RDM Case Study
	SVS Case Study

	Related Work
	Expressing Uncertainty in Requirements
	Requirements Monitoring and Reflection
	Obstacle Mitigation

	Conclusion

	Exploring Code-Level Effects of Uncertainty
	Motivation
	Introduction to Fenrir
	Assumptions, Inputs, and Outputs
	Fenrir Approach

	RDM Case Study
	DAS Execution in an Uncertain Environment

	Related Work
	Code Coverage
	Automated Testing of Distributed Systems
	Automatically Exploring Uncertainty in Requirements

	Conclusion

	Run-Time Testing of Dynamically Adaptive Systems
	Motivation
	Test Case Generation
	When to Test
	Testing Methodology Selection
	Impact and Mitigation of Test Results

	Introduction to the MAPE-T Feedback Loop
	MAPE-T Feedback Loop
	Monitoring
	Motivating Example
	Analyzing
	Planning
	Executing

	Related Work
	Exploration of System Behavior
	Multi-Agent Systems

	Discussion

	Run-Time Test Adaptation
	Motivation
	Terminology
	Introduction to Proteus
	Proteus Approach
	Test Suite
	Adaptive Test Plan

	Introduction to Veritas
	Assumptions, Inputs, and Outputs
	Veritas Fitness Functions

	Run-Time Testing Framework
	Test Case Adaptation.

	Case Study
	Simulation Parameters
	Proteus Experimental Results
	Veritas Experimental Results
	Combined Experimental Results

	RELAXation of Test Cases
	Discussion
	Threats to Validity

	Related Work
	Search-Based Software Testing
	Run-Time Testing
	Test Plan Generation
	Test Case Selection

	Conclusion

	Impact of Run-Time Testing
	Motivation
	Analysis Metrics
	DAS Performance
	DAS Behavior

	Baseline Results
	Optimization Approach
	Related Work
	Processor Cycles
	Agent-Based Testing

	Conclusion

	End-to-End RDM Example
	RDM Configuration
	Requirements-Based Assurance
	AutoRELAX Case Study
	Scalability of RDM Application
	Scaled RDM Configuration
	Approach
	Experimental Results

	Code-Based Assurance
	Fenrir Analysis

	Run-Time Testing-Based Assurance
	Derivation of Test Specification
	Proteus Analysis
	Veritas Analysis

	Conclusion

	Conclusions and Future Investigations
	Summary of Contributions
	Future Investigations
	Exploration of Different Evolutionary Computation Techniques
	Interfacing with the DAS MAPE-K Loop
	Hardware Realization of the MAPE-T Loop
	Incorporation of MAS Architecture


	APPENDIX
	Test Specifications
	BIBLIOGRAPHY

