
'
“
1
’
2
"
.

2
1
1
3
3

Q

t
i

‘
3
'
.
’
3
.
1
;
"

5
K

_
.
.
. '24,“. .-

14:2: ’.'fY

‘ « "32's :3:-

$.95 -" .mhz. - V

.." ‘7‘; ‘I“}£*':u.'."‘f’.’-
n- J ‘1? l-An-o I-OL‘

«gap-:5!1:1.»Qu-Jg, 5-3“:- ‘ r”...

‘1‘)“ P.3d.“ p"; 2‘ 'jhr': 'fn.‘; ”A’

gnaw-dc. 4. 4.. 2”».- "mm
.n/f.,4".",‘r'.;. ‘1 p" wafi'?” ’.'.4' >'
“/19 ,J‘ .. - . Win, ”a... a-

“ -n .h w ':.-‘vn.1ofi.‘.‘ '

d. '3 5' r' 5.402" "'5 fl

. «1'34" #5"??? 71.: .r-nz
.' ‘

. ‘ ‘

o

\' M
O
W

v1

M
r

J
p
o
fi
l

V

;
.

4
3
.

I

'.
4
.
4
4
.

.
.

’
L
‘
f

i
é
w
r
-
l
w
-
‘
r
'
u
a
'
b
‘
d
o
'
w
-
P

I
r
N
M
!
"

'
4
‘
“

u
.

.
-

I
‘
.
—
'
.

'
I

-
.

A
:

L
A
“

L
'
A
I
"
‘
I
x
‘

.
‘
r
m

-. Q -. «NIH

_ . _. ,, A. _.‘.

‘. swag}. 54".!“ ..~
, V . 3 .

mint-ratxm um -

. 'A" " bun“; .-
',7.‘,l;r,'1.

' ‘1’," ’~.<A
'1

'
l

;
-

(
~
4
3
;

A
.
(
3
“

'

5‘ . ,. .‘ .

30594123329

p
a
y
.
.
.
w
a
s
-
«
q
u
a
»
"
h
e
.
m
a
s
:

~

4‘ A I 1 ‘V .V.
’29::."f-" *

a 4

"
d
i
d

(
t
o
. A

~
'
t
9
W
‘
“

llll'llllllll‘fllllllflllllL»
1293 01082 3668

[.1an

Michigan State

University

This is to certify that the

thesis entitled

A VLSI CHIP ARCHITECTURE FOR THE COMPUTATION OF

THE DIRECT KINEMATIC SOLUTION OF A ROBOTIC MANIPULATOR

presented by

STEVEN SIUTIT LEUNG

has been accepted towards fulfillment

of the requirements for

Masters degree in EIECt. Engr.

VWJ/flf
Major professor

D t 4/12/85 Michael Shanblatt

a e

0-7539 MSU is an Affirmative Action/Equal Opportunity Institution

IVTESI_J RETURNING MATERIALS:

Place in book drop to

LJBRARJES remove this checkout from

Alull5llH-L your record. FINE§ will

be charged if book is

returned after the date

stamped below.

we 2 l 1993

/

A v1.5: can: mcurncm ran ma COMPUTATION or

THE DIRECT KINEMATIC SOLUTION OF A ROBOTIC MANIPULATOR

BY

Steven Siutit Leung

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER or SCIENCE

Department of Electrical Engineering and System Science

1985

l
‘
7
’
/
/

‘
v
~

7
.
,
q

‘
—
_
-
~

\

bl-)

Copyright © by

STEVEN SIUTIT LEUNG

1985

ABSTRACT

A VLSI CHIP ARCHITECTURE FOR THE COMPUTATION OF

THE DIRECT KINEMATIC SOLUTION OF A ROBOTIC MANIPULATOR

BY

Steven Siutit Leung

This thesis describes the architecture design and simulation of a VLSI‘

chip dedicated to the computation of the Direct Kinematic Solution (DKS)

of a robotic manipulator. The design features fixed-point calculation

and on-chip generation of trigonometric functions. The calculation

achieves the resolution required for industrial applications by

augmenting the internal word size. Regularity considerations lead to

the modification of the homogeneous transformation algorithm.

Pipelining techniques applied to the inter- and intra-functional unit

designs speed up the DRS calculation. Control signals assume a

control store implementation, easing both the design and verification

processes without sacrificing the completeness of the system-phase

design tasks. A symbolic simulation approach verifies the correctness of

the design. Transistor-count and cell-count confirm the feasibility of

a semi-custom implementation approach with current technology.

Results indicate that the DKS can be obtained in microseconds, which

amounts to a speed improvement of three orders of magnitude compared to

a similar algorithm implemented on a 16-bit microprocessor.

To

my parents and my nemofe Zovcna

iii

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to his major

advisor, Dr. Michael A. Shanblatt, for his guidance, support and

encouragement in the course of this research.

He also wishes to thank the committee members, Prof. P. D. Fisher,

Prof. E. Goodman and Dr. R. L. Tummala, for their valuable comments in

' this work.

iv

TABLE OF CONTENT

Page

L IST OF FIGURES O I O O O O O O O O O O O O O O O O O O 0 O O O Vii

LIST OF TABLES I O O O O O O O O O O O O O O 0 O O O O O 0 O 0 ix

I 0 INTRODUCTION 0 O O O O O ‘0 O 0 I O O O O O O O O O O O O O O I O O O O O O O O O O O O O O O O O O 1

1.1 Problem Statement

1.2 ApproaCh 0.00.00.00.000.0.00.0...OOOOOOOOIOOOOOOOOO U
1
.
»

II. BACKGROUND ... 8

2.1 The Direct Kinematic Solution of

a Robotic Manipulator 8

2.2 VLSI System Design 11

2.2.1 Characteristics and Important Trends of

VLSI System Design 11

2.2.2 The VLSI Design Space Concept 14

III. SYSTEM SPECIFICATIONS l7

3 1 Application Requirements 17

3.2 Technology Assessment 20

3 3 Fixed-Point Calculation 21

3 4 Specifications 23

3.4.1 Design Objective and Criteria 23

3.4.2.1 I/O and Functional

Specifications 25

3.4.2.2 Performance Specification 26

IV. ALGORITHM DEVELOPMENT 28

4.1 Sine Function Generation 28

4.2 Modifications on the

Homogeneous Transformation Matrices 32

4.2.1 Regularity of the Matrix Entries 32

4.2.2 Decomposition of the 4x4 Homogeneous

Transformation Matrix 34

4.3 The Final Algorithm 35

VI.

VII.

VIII.

Page

ARCHITECTURE DESIGN 37

5.1 VLSI System Design Rules 38

5.2 Architecture Development I 38

5.2.1 Functional Units 38

5.2.2 Fixed-Point Calculation Implementation 42

5.2.3 SIN/COS Implementation 44

5.3 Timing ... 47

5.3.1 Clock Period and Pipelining 49

5.3.2 Clocking Scheme Alternatives 52

5.3.3 Timing Diagrams 55

5.4 Architecture Development II 58

5.4.1 Synthesis of the

Computational Structure 58

5.4.2 Description of Hardware in RTL 61

CONTROL AND DESIGN VERIFICATION 62

6.1 Control Signal Specification 62

6.2 Verification by Symbolic Simulation 66

6.2.1 Simulation Principles 66

6.2.2 Program Development 68

EVALUATION .. 74

7.1 Goal and Strategy 74

7.2 Area Estimation 75

7.2.1 Transistor Count 76

7.2.2 Macrocell Implementation 78

7.3 Speed Estimation 80

CONCLUSION O 84

8 O 1 AChievments O I O O O I O 0 O O I O O O 84

8 O 2 sumries O 0 O O O O O O O O O O O O O O O 85

APPENDIX 1 .. 87

APPENDIX 2 .. 89

APPENDIX 3 .. 91

APPENDIX 4 .. 94

BIBLImPHY OOOOOOOOOOOOOOO0.00....OOOOOOOOOOOOOOOOOOO 103

vi

LIST OF FIGURES

Figure _ Page

1.1 An overview of the design methodology

With respect to the researCh SCheme 0.0000000000000000. 4

2.1 The transformation matrices of the PUMA arm [5] 9

2.2 The configuration of the PUMA robotic manipulator

andits paran‘eter values [5] 00000000000000.00000000000 10

2.3 Triartite representation of the design

and various design levels [17] 15

3.1 Absolute shaft encoder and incremental

Shaft encwer [19] 000.000..0000.000000......0.0.0.0... 18

3.2 The accumulation error versus internal word size 24

303 The I/Odata formats 0.0000000000000000000000000.000.00 26

4.1 The schematic block diagram for

sine function generation [29] 29

4.2 Sine function by linear interpolation [26] 31

4.3 The three modified transformation matrices 33

5.1 The block diagram of a 5-by-5 Baugh-Wooley

two's complement array multiplier [35] 41

5.2 The block diagram of a two's complement adder

“5d in the DKS Chip 0.0....000000000000.000.000.000.00 42

5.3 Illustration of the radix point position

in themultiplication 000.0000.000000000000000000000000 43

5.4 The table value adjustment scheme [26] 44

5.5 Logic circuit diagram of the

SIN/cos contr01 section 00.000000000000000000.000000000 ‘6

vii

Figure

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

6.2

6.3

Block diagram of SIN/COS implementation

The general form of a data path [36]

The two-phase clocking scheme

Clocking scheme one using single phase latches

Clocking scheme two using single phase latches

Clocking scheme three using

dynamic registers

Timing diagram of one pseudo-matrix-

mUltiplication 000.000.00..00.00000000000000000000.0000

Circuit diagram of an input register cell

With mUltiple sources [39] 0000000000.. ooooo 00.00.0000.

A two-port register cell and the

corresponding logic truth table

BIOCk diagram or the DKS Chip 00000000000000.0000.00000

Flowchart of the DKS symbolic simulation program

Flowchart of the subroutine PHASEl

Flowchart of the subroutine PHASEZ

viii

48

50

50

53

54

54

57

58

59

60

71

72

73

Table

3.1

~ 4.1

LIST OF TABLES

Error due to the interpolation table size

A comparison of two sine generation methods

Control fields and signal definitions

Transistor count of the DKS chip

The IBM Master Image function-cell and

Chip Statistics 00000000000000000....0000.000.000.0000.

cell count Of theDKS Chip 00.00.000.000000.000000.000.

Estimtion Of the phase one delay 00.000.000.0000000000

Total calculation time for various approaches

ix

22

31

65

77

78

79

82

83

Chapter I

INTRODUCTION

In a computer-based robotics system with multiple

degrees-of-freedom (DOF) movement, the position and orientation of the

manipulator are servo-controlled through each individual joint. The

parameters of position are conveniently expressed as joint angle

variables in a link coordinate system. The position of the object to be

manipulated, however, is usually expressed in the reference base (world)

coordinate system. Given the joint angle vector 9, in the link

coordinate system, the position and orientation of the manipulator in

world coordinates can be obtained via the Direct Kinematic Solution

(DKS).

A homogeneous transformation method has been developed to solve the

direct kinematic problem effectively [1]. However, the successive

matrix multiplications involved in the homogeneous transformation

require a cumbersome amount of calculations. For similar

computationally-bound problems, VLSI (Very Large Scale Integration)

technology has shown great potential in improving system performance by

implementing concurrent numerical algorithms directly in hardware.

Furthermore, advances in CAD (Computer-Aided, or more recently,

-Automated, Design) and CM: (Computer—Aided Engineering) systems for

VLSI enable such an implementation to be carried out in a custom design

approach with relatively low cost.

The purpose of this research project is to investigate aspects of a

custom-designed VLSI chip architecture, tailored for the computation of

DKS.

Specifically, application requirements for the DKS chip

architecture are investigated in order to formulate the design criteria

and a set of specifications describing the computational requirements.

Based on the PUMA robotic manipulator, a set of simulation program

modules is developed to study the effect of fixed-point calculations on

the resolution of the resultant position and orientation.

Various methods for SIN/COS function generation are compared and

the homogeneous transformation matrices are modified to reduce the

control complexities. Based on the modified algorithm and the SIN/COS

generation method, a set of functional units and storage elements are

determined.

Additional considerations, such as the choice of the most suitable

number representation, timing rules, and hardware constraints are

discussed. The pipeline concept is extensively applied to the inter-

and intra-functional unit designs to improve the speed of the DRS

calculation. A detailed timing diagram is provided to illustrate the

data flow in the machine and to facilitate the generation of control

signals for the DRS calculation cycle. The flow of control is presented

in the form of a program written in RTL (Register Transfer Language).

Control signals are identified and partitioned into fields to

facilitate the specification and generation. Viewed as machine codes,

they are generated through the manual compilation of the RTL program.

Verification of the architecture and control design is carried out by

symbolic simulation. By comparing the simulation results with the

expected DKS function, errors are discovered and corrected.

Finally, empirical and statistical data is collected from various

sources to aid in the estimation of the total chip area requirement.

The total DKS calculation time is evaluated from both simplified circuit

models and published experimental data.

1.1 Problem Statement

Current research is being conducted in the field of robotic

controls to improve the system performance by incorporating various

dedicated computing hardware [2]. In the same spirit, the purpose of

this research is to explore some specific algorithmic and architectural

design alternatives for a single VLSI chip for dedicated high speed DKS

computation.

1.2 Approach

The VLSI design process consists of a system design phase and a

physical design phase. This research effort focuses exclusively on the

first phase development. An overview of the research scheme is

presented in Figure 1.1. Tasks in each step are identified and listed

alongside while the output from each step is shown in Italic.

REQUIREMENT * Application Requirement Analysis

ANALYSIS * Fixed-Point Calculation Simulation

Design Objectives and Criteria

System Specifications

ALGORITHM * SIN/COS Generation Method

DEVELOPMENT * Transformation Matrix Modification

DKS Algorithm

ARCHITECTURE * Timing Diagram for Data/

DESIGN Control Flow Analysis

* Pipeline Implementation

* Functional Unit Design

* Interconnections

* HDL Programming

Architecture (Block Diagram)

Clocking Scheme

Description Program in RTL

CONTROL & * Machine Code Generation

VERIFICATION * Symbolic Simulation

Control Signal Specification

COHtFOl Signal Table

EVALUATION * Empirical and Statistical

Data Collection

* Circuit Modelling

Area/Speed Estimation

 System Design

Physical Design

Figure 1.1. An overview of the design methodology

with respect to the research scheme.

The high cost of the VLSI development places unprecedented

importance upon the precise specification of the integrated system to be

designed. The first step, therefore, is to study the requirements as

carefully and comprehensively as possible. Questions to be addressed

include the future utility of the proposed st chip, the 1/0' format,

the interface requirements, the flexibility of adapting the chip to

other robotic manipulators, the impact of the working environment on the

choice of technologies, and the possibility of employing fixed-point

.calculations only.

Once the design goals and criteria are resolved, the design

proceeds with algorithmic development. Alternatives to the SIN/COS

generation methods are discussed. The transformation matrices are

modified and decomposed to yield a higher degree of regularity and

better hardware utilization. The final version of the DRS algorithm is

expressed in a Pascal-like language.

The implementation of algorithms with VLSI technology gives the

designer maximum freedom in making software/hardware choices. However,

such freedom must be exerted judiciously with an understanding of the

potentials as well as various .constraints and limitations. These

understandings are conveniently formulated as design rules or

principles, such as those suggested by Mead and Conway [3], which are

presented in Chapter 5. A two's complement number representation is

chosen and this presents certain difficulties which must be resolved by

the modifications of relevant functional units. Timing requirements are

considered in sufficient detail leading to a decision to implement a

two-stage pipeline multiplier.

Ideally, the architecture should achieve performance of such a high

degree that it will only be limited by the inherent data dependency.

Accordingly, a detailed timing diagram is constructed to aid in the

analysis of the data flow. The order of the original DKS calculation is

manipulated in such a way that a minimum number of clock cycles is

achieved for a given hardware-and-interconnect configuration. The

sequence of events is translated directly from the timing diagram into

an RTL program.

The control structure is further specified by defining the needed

control signals, which are subsquently partitioned into eleven control

fields. A table of machine code is compiled from the RTL program

manually. The control signal table is then used to drive the data

through a simulator (a symbolic simulation program) to verify the

design. Simulation principles and program developments are described in

Chapter 6.

In order to have a realistic picture of the feasibility of

implementing the DKS on a single chip, transistor count and gate count

are evaluated first and the total chip area is estimated from data

collected on comparable transistor/gate count vs chip area relationships

from various sources. Once the area, and hence the chip edge, are

known, interconnection delay as well as delay in the combinational logic

sections are estimated. Based on the estimated delays, the minimum

clock period is evaluated from the worst case delay path.

Finally, to conclude this work, insights to the VLSI design process

gained from the design of the DRS chip are sublimated to a higher level

of understanding. Results of the evaluation are compared with the design

objectives. Implications as well as problems for further research are

identified.

Chapter II

BACKGROUND

2.1 The Direct Kinematic Solution of a Robotic Manipulator

The robot arm consists of a number of link-joint pairs, each

providing one degree-of-freedom. It is convenient, for the purpose of

control, to express the position of each individual rotational (or

prismatic) link-joint pair by a single variable 9‘ (or d‘) with respect

to its own link coordinate system. A unique 4x4 homogeneous

transformation matrix A‘ , which is a function of 9‘ (or d‘), maps a

vector in the link ‘th coordinate system to the link c-lth coordinate

system. Thus, for a six degree-of-freedom robot arm, given its six

rotational joint variables 9 = (0,,0,,6,,0,,0,,9.), the joint space to

Cartesian space mapping is obtained by the successive multiplication of

the six homogeneous transformation matrices,

T = A,-A,-A3-A,°A5-A. = [n s a p]. (2.1)

The resultant homogeneous matrix T gives the orientation vectors of the

wrist n, s and a, and the current arm position p which is defined as the

vector from the origin of the base to the wrist, all in the world

coordinate system. This joint space to Cartesian space mapping is known

as the Direct Kinematic Solution (DKS) [4,5].

In the DKS calculation (eq. 2.1), each A‘ has the form

P C

cose -cosa sina sina sina a c050

l. t l l l. l C

sine cosa cosO —sina cose a sine
t I l. t l t t

A‘ - (2.2)

0 sina cosa d

t t t

 0 0 i 0 l
where a‘, at, and d‘ are the parameters of the cm link-joint pair.

Even though the matrix A; appears complicated, the parameter a‘ of

almost all of the existing robots only takes on values that result in

sina‘ or cosa‘ being either Oor :1. As an example, the simplified

PUMA robot arm transformation matrices together with their parameter

values are shown in Figure 2.1 and Figure 2.2. The highly regular

pattern and small number of elements for each A‘ suggest the possible

use of a dedicated computing structure to enhance computational

throughput in the calculation of DKS. This can be obtained by

incorporating pipeline and concurrent processing concepts with high

speed VLSI hardware .

C0] -Cc; 5”. 3315131 ~60,

5‘." Ca,CO, -Sa,C0, 0'59]

”'7‘: 0 So, CO; d;

0 0 O 1

a. o ‘—8. o c: —szoec2 ’c. o 8. ace

5‘ O C. 0 S; C, 032$; 33 o —C; 033;

A‘: M: AI=
00-100 00.‘d; 0:00

0 0 0.1 o o 0 3 Lo 0 0 1

C. 0 44 0 C3 0 35 0 PC. -S. O O

s.oc.‘o 530-650 536.00

A‘: A:= A”:
, .3 0 -1 o a. 01 O 0 5 O 0 Id.

0 0 0 I 0 0 0 l 0 o 0 1
where C, 5 coat), ; S, z 3100,

Figure 2.1. The transformation matrices of the PUMA arm [5].

10

\\ y

\\ 25

152
”s

s

Y5(§)

26 (3)

2.61)
O

PUMA Robot Arm Link Coordinate Parameters

Join” ‘6, a, l a, d, Range

1 90 [~90 I 0 o -160to+150

2 0 I o ! 431.8 mm , 149.09 mm -225 to as

a 90 i 90 9 -20.:32 mm I 0 ~45 to 225

4 ' o I -90 ,! 0 433.07 mm -110 to 170

s 0 I 90 3 o o ~100to1oo

6 017 0 3 o i 5&25rmnA -2562o255

Figure 2.2.

and its parameter values [5].

The configuration of the PUMA robotic manipulator

11

2.2 VLSI System Design

Design, in its most general sense, can be described as a process of

successive mappings or transformations of specifications from one domain

(or abstraction level) into another. In this aspect, VLSI design is no

different from design in other disciplines. However, the fabrication

of more than 100,000 transistors on one chip requires the use of

special tools and techniques to make the design and verification process

feasible .

2.2.1 Characteristics and Important Trends of VLSI System Design

In traditional engineering practice, design and manufacturing can

be done almost independently of each other. This situation, however,

has dramatically changed for VLSI design. ”Integrated”, in fact, means

not only the integration of a large number of circuit components, but

also implies the designer's integrated knowledge, from the choice of

design alternatives to circuit layout to packaging [6]. Fortunately,

the formulation of design rules and the development of powerful tools

relieve the designer's burden by providing] a well defined interface

between the system designers and engineers working on physical

implementation. Nevertheless, the complexities and interactions between

and among all design levels have increased to the extent that it is

12

beyond human capabilities. As a result, design automation is no longer

a luxury but a necessity.

nxmy,the process of physical design, including layout, wiring and

timing analysis, has been largely automated [7]. Some state-of-the-art

design automation systems are capable of placing, and wiring over 37K

logic gates on a chip, achieve 99% automatic physical design and 100%

automated checking, and assure error-free functioning [8]. While

improvement will certainly continue in this area, automated logic

synthesis is gaining more and more attention. CAE systems aimed at

automated translation of register transfer level description of digital

systems to VLSI realization through gate arrays or standard cells, have

been developed and claim varying degrees of success [9].

Amidst all the progress in VLSI technology, perhaps the single most

important event is the appearance of the 'silicon compilers' which are

about to revolutionize the VLSI design process. Silicon compilation

attempts to reduce the entire physical design process of a VLSI systm

into a compilation process such that, at any point of time, most of the

ultimate characteristics of the finished chip can be accurately

estimated from available data. [10,11]. This opens new opportunities for

system designers to experiment with various algorithmic/architectural

alternatives with much less effort and cost. This facilitates the

making of more intelligent design decisions based on alternative

analyses .

1.3

These developments have brought forth two major impacts on VLSI

design. First, more emphasis has been shifted toward higher and higher

levels of design. It is now recognized that the size and performance of

VLSI chips are more influenced by higher level designs, such as

task-realization algorithm design and architecture design, than logic

design or layout [6,12]. The significance of this shift may be better

understood from a historical perspective by comparing it with the shift

from machine language to high-level language in the early days of

computer programing [13]. In fact, the influence of the software

engineering practice on the VLSI design process is pervasive as

evidenced by the use of terms like ”silicon compiler", and "top-down"

and "bottom-up" approach.

In parallel with this upward shift, custom and semi-custom design

approaches emerge as the mainstream of next-generation VLSI design. The

custom IC market has grown from $54 million in 1979 to $1 billion in

1984 and is predicted to reach $5 billion by 1989 [11]. This trend can

also be witnessed in the widely published objectives of the US

Department of Defense's VHSIC program [14] and DARPA's announcement of a

fast turnaround fabrication service available for commercial use. With

the availability of silicon compilers and the formation of the silicon

foundry [11,15], the ideal of a fast design turnaround time with

relatively low cost is rapidly becoming a reality. It is under such

auspices that the custom design approach is elected for the design of

the DES chip in this work.

14

2.2.2 The VLSI Design Space Concept

A significant wealth of knowledge about VLSI design has been

accumulated in the past ten years as the industry grows. In order to

gain a better understanding and insight of the design methodology, the

domain of VLSI design may be expressed as a design space spanned by

three axes - functional, structural, and geometrical representations -

as shown in Figure 2.3. Elements in each axis represent the abstract

level or refinement steps involved in the design process. VLSI design

methodology, from this perspective, is visualized as a specific path

traversing through the design space. A particular path taken by a

certain school of thought, not surprisingly, more or less reflects a

particular environment (usually expressed in needs and constraints of

human, technological and financial resources) under which that

particular methodology has evolved. (It is interesting to note that the

term "level” suggests structured programming, and ”representation,” on

the other hand, comes from the AI (Artificial Intelligence) vocabulary.)

In a more formal sense, design methodology, as suggested by Baller,

can be defined as ”a set of codified techniqueIs], broadly applicable,

that facilitate the creation of designs that are functionally correct,

qualitatively acceptable, are easily ‘understood, and are easily

modified” [16].

15

STRUCTURAL FUNCTIONAL

REPRESENTATION REPRESENTATION

Processor Memory Switch Systems

Register Transfer Algorithmic

Circuit Boolean Expression

Mask Geometries

Cells

Layout Planning
1..

 \V
GEOMETRIC

REPRESENTATION

Figure 2.3. Triartite representation of the design and various

design levels [17].

VLSI design methodology is still in a developmental stage.

Therefore, instead of endorsing a particular approach, only the basic

and common aspects of VLSI design methodology are discussed here. The

presentation below follows the philosophy of Gajski and Kuhn [17].

Extreme complexity in VLSI design forces the designer to take a

structured hierarchical approach. By hiding lower level details, the

designer is thus capable of concentrating on the design at a specific

abstract level. In spite of their wide differences, design levels in

the entire VLSI design space fall into three categories of

16

representations: the functional, structural, and geometrical

representations.

The functional representation is at the highest level of the design

and may be captured on several sublevels. The most widely accepted of

them are the systems, algorithmic, and Boolean expression (logic)

levels. Between the functional and geometrical representations is the

structural representation. It maps a functional representation onto a

set of components and connections under constraints such as cost, area

and timing. Sometimes structural representation may overlap with

functional representation. Commonly used levels of structural

representation are the processor memory switch, the register transfer

(operator register bus), and the circuit level. The geometrical

representation ignores, as much as possible, what the design is supposed

to do and binds its structure in space (physical design) or to silicon

(geometrical design). Geometric representation levels include layout

planning with arbitrary size blocks, cells, and physical mask

geometries.

This research effort focuses mainly on the design of the DKS chip

at levels corresponding to the system, algorithmic, and register

transfer levels.

Chapter III

SYSTEM SPECIFICATIONS

A lesson VLSI engineers learn from software engineering is the

crucial role of requirement and specification definition in the design

cycle. Study has shown that while requirement analysis occupies only 3%

of the total cost,its errors are 100 times more expensive to correct

than implementation errors. And unfortunately, over 40% of the errors

observed during testing are due to incorrect or misinterpreted

requirements or functional specification [18]. Therefore, at the

beginning of this work, a literature search was undertaken to collect

data on the application requirements in order to derive realistic design

specifications.

3.1 Application Requirements

Robots can be classified as Cartesian, cylindrical, rotational or

articulated depending on the number of prismatic/rotational link-joints.

‘The kinematic problems of the former three classes are simple, but their

rigid structures limit their use to only a certain class of

applications. The articulated robot arm, on the other hand, mimics the

actions. of the human arm and is the most flexible. Consequently, the

control is more complicated.

17

18

The function of the proposed DKS chip is to map the position and

orientation of an articulated robotic manipulator from the joint space

to the Cartesian space. The angular position of a joint can be measured

by a potentiometer. More recently, two major kinds of optical shaft

encoders (see Figure 3.1) have been developed. They utilize digital

techniques and ,the measurement is more accurate. An absolute shaft

encoder can provide a resolution of 0.04 degrees. The incremental shaft

encoder can provide a somewhat lower resolution of l/2500 turns (0.144

degrees) and requires more interface hardware. It has the advantage of

encoding position and velocity information simultaneously and its cost

is relatively low [19].

Reference slot

and sensor

Figure 3.1. Absolute shaft encoder and incremental shaft

encoder [l9] .

19

Surveys have shown that the positional resolution requirement of

various applications range from 0.1-10.0mm for a working range of l-2m

[20]. Expressed in a relative terms, the base two logarithm of the

ratio of the robot's maximum reach divided by its resolution is

approximately 14. Repeatability requirements of 0.01-lmm are typical.

The resolution requirement appears readily achievable using 16-bit

processors [21].

Minicomputers are often used as the control computer in which

information from sensors is transmitted to the CPU via a 16-bit bus.

The immediate use of the DKS chip is to accept joint angle inputs and

produce a real-time position and orientation in world coordinates. In

the future, the DKS chip may be incorporated into iterative algorithms

[22] to obtain the more useful Inverse Kinematic Solution (IKS). In

either case, it is desirable to have the input port and output port

separated.

To specify the orientation, only two out of three orientation

vectors are needed [5,19]. Therefore, during the entire DKS calculation

period, a total number of 15 I/0 operations are required if the SIN/COS

function can be generated on the chip. This includes six joint angle

inputs, one positional and two orientational vector outputs. Compared

with the minimum of 60 multiplications and ,3, additions, the I/o

obviously does not constitute a bottleneck. Therefore, a multiplexed

scheme through separated I/O ports is assumed for I/O operations and its

implementation will not be considered in detail here.

20

Throughout this project, the PUMA robot arm is chosen as a testbed

to study the DKS chip architecture because of its popularity. Even

though the general transformation matrix method can be applied to

various arm configurations, differences in parameter values and types of

variables (prismatic versus rotational) introduce tradeoffs between

flexibility and time-area complexity of the control hardware. However,

tradeoffs due to the difference of parameter values are simpler to

handle and thus flexibility is given a higher priority in such a case.

3.2 Technology Assessment

Three particular state-of-the-art VLSI achievements have

implications on the design of the DKS chip.

The first one is a lG-by-lé multiplier-accumulator chip by TRW.

Using l-um CMOS technology, it can perform a multiply-accumulation

Operation in 90ns with maximum power consumption under 350 mm [23].

The second achievement is the 32-bit MC68020 microprocessor by

Motorola. Using Z-um HC-MOS technology, it contains roughly 200K

transistors on a 375-by-350-mil chip. Operated at 16.67MHz, it

dissipates only 1.5 watts [24].

The third one is the 583 ”operating system on chip” by Gould AMI.

Using 3-um NMOS technology, it is actually a single chip integration of

a Zilog 280 microprocessor, a 64K ROM (containing its standard operating

system), and the system interface logic [25].

21

Because of the high packing density, low power consumption and high

noise immunity, which is particularly important in view of the generally

harsh working environment of robotic operations, CMOS is probably the

‘ natural choice for.the DKS chip. However, it is noted that the system

design rules (see Chapter 5) are intentionally formulated to be

independent of any particular IC technology. This enables the system

designer to take advantage of the best technology available. Therefore,

in this design, while CMOS technology is generally assumed, NMOS circuit

models are also used because of availability. The conversion problem

will be addressed during evaluation.

3.3 Fixed-Point Calculation

Since the joint angle input needs only 12 bits (maximum resolution

of 0.04 degrees), and the resolution requirement of position ranges from

0.1-10mm for a working range of l-Zm, the I/O values are readily

transferable through a lG-bit bus. It is of great advantage if the

internal calculations can be carried out in fixed-point calculations

since both the hardware design and control mechanism will be much

simpler. Accordingly, Fortran simulation programs have been developed

to study the round-off effects and ultimately determine the minimum

number of fixed-point bits required by the resolution parameters.

A table look-up and interpolation algorithm is chosen for the

SIN/COS generation (see Chapter 4). As a result, the position error may

originate from three sources. The error due to the resolution limit of

22

the joint angles is intrinsic and cannot be eliminated. Consequently,

all input angles in the simulations assume a lZ-bit value. The second

source of error is introduced in the sine function generation and is a

function of table size as well as word size. The third error source is

due to the accumulated round-off caused by the finite fixed-point

internal word size of the arithmetic hardware.

The first simulation program assumes no internal word size limit so

as to isolate the effect of table size as the subject of investigation.

1000 joint angle vectors are randomly generated as input. The range for

each angle is checked and the lZ-bit angle word size is enforced. The

DKS results, calculated with various table sizes, are then compared with

the correct values. The tabulated results are presented in Table 3.1.

Table 3.1. Error due to the interpolation table size.

Table Size (Entries)

Type 32 64 128 256

Orientation

(ave) 0.0006 0.0001 0.0000 0.0000

Position

(ave) 0.25(mm) 0.058(mm) 0.014(mm) 0.0034(mm)

Orientation

(max) 0.0028 0.0006 0.0002 0.0000

Position

(max) l.58(mm) 0.334(mm) 0.084(mm) 0.019(mm)

23

The first simulation result shows that with table size above 128

entries, the accumulated error due to the sine function interpolation

error is negligible. The result is encouraging, and therefore a second

Fortran program is used to simulate the fixed-point DKS calculation for

variable internal word sizes with table sizes of 128 and 256. The

results are plotted in Figure 3.2.

The figure shows two alternatives to achieve the 0.1mm positional

resolution. Either an 18-bit word with a table size of 256 or a 20-bit

word with a table size of 128 is required. Although the 18-bit word

alternative requires double the table size, the resultant increase in

total chip area will be smaller than that of the latter which will

increase roughly by 10%. Moreover, an increase of internal word size

will also increase the delay time. Therefore, the 18-bit word with a

table size of 256 is chosen.

3.4 Specifications

3.4.1 Design Objective and Criteria

The objective is to design a basic VLSI chip architecture dedicated

to the fixed-point computation of the DKS for a six DOF articulated

robotic manipulator, with computational speeds surpassing ordinary

computational techniques. A major effort is devoted to the study of

architectural alternatives for the computational requirements of DKS.

24

Position

Error (mm)

Max Error for Table Size l28

Mox Error for Table Size 256

Ave Error for Table Size l28

Ave Error for Table Size 256X
+
O
B

0
.
4
1
.
5

0
0
.
3
5

0
.
3

0
.
2
5

0
.
2
0

l6 I7 l8 :9 20 2: 22 23 24

Word Size (Bile)

Figure 3.2. The accumulation error versus internal word size.

25

The following criteria, based on the application requirement

analysis, have been established to guide the making of various design

decisions:

* MOS technology with a feature size of Zum or below and a

clock of up to 20MHz are to be used.

* SIN/COS functions should be generated on chip to avoid

possible I/O bottleneck.

* The architecture should be applicable to the whole class of

six DOF articulated manipulators of rotational joints.

* Intra-functional unit pipelining is to be used and limited

to two stages to reduce design complexities.

* Minimum cycle time and minimum interconnections are sought

with the former having higher priority.

3.4.2.1 I/O and Functional Specifications

The input to the proposed DKS chip consists of six lZ-bit joint

angle values in fractional-turn representation [26]. Each is subject to

a range limit as specified in Figure 2.2. The output consists of two

orientation vectors, n and a, and the position vector p, all in two's

complement representation.

The I/O formats are shown in Figure 3.3. I/O operations are

multiplexed through separated I/O ports. The chip function is

holistically defined by the matrix multiplications of eq. 3.1. The DKS

is obtained by fixed-point calculation with an internal word size of 18

26

bits.

0

(3.1)

O

C
D
F
‘
C
D
C
J

h
o
o
o
c
>
c
>

O

C
O
M
O

3.4.2.2 Performance Specification

Since the major concern at this point is whether the DKS function

can be realized on a single chip, only two basic performance

requirements are specified here:

* Resource utilization higher than 90%;

* Total calculation time less than lOus.

OUTPUTUB bile)

(I) Position Element
INPUT

l2-Bit Join? Angle u bits 5 bits

8 bits (mm)

/ /' xi Radix point

0

>l80 (2) Orientation Element

Tobie Size=28

l5 bits

Figure 3.3. The I/O data formats.

27

In any bus oriented processor system, the performance is ultimately

limited by the most precious resource - the bus bandwidth. Because of

this limitation and the data dependency, 100% resource utilization is

generally impossible. The performance specification figure is intended

to provide a measure of how well the algorithm and the architecture

match.

The second specification represents an absolute measure of

performance of the proposed chip. In order to get a feeling for the DKS

calculation speed, a DKS algorithm, similar to the one developed in

Chapter 4, has been implemented on the Intel 8086 microprocessor.

Experimental results show an average of 15ms total calculation time when

run at lOMHz. Thus, the specification goal of the design in this

project amounts to a speed improvement of three orders of magnitude.

Chapter IV

ALGORITHM DEVELOPMENT

4.1 Sine Function Generation

Each transformation matrix A‘ in eq. 3.1 is a function of the joint

angle 9‘ for which both sine and cosine values are needed in the

computation. Since the cosine can be obtained easily from the sine

through trigonometric equivalence, only sine generation methods need be

considered.

In general, there are four practical methods to generate the sine

function. The oldest method of Taylor series expansion is notoriously

slow and thus not considered here. The CORDIC (COordinate Rotation

DIgital Computer) algorithm [27] has the advantage of large function

capacities [28] but its hardware design is more involved. Moreover,

there is no indication that the accuracy it will achieve is needed nor

that it can be implemented as a small functional unit on a single DKS

chip. Therefore, this implementation method is also not considered.

The remaining two candidates both employ ROM look-up techniques in

their calculations. The first method, described by Muroga [29], is based

on the principle of trigonometric sum of angles. It recursively divides

the argument into a more significant part and a less significant part

until the individual parts are small enough to address a ROM of

reasonable size. The sine value is then obtained by summing up all the

partial results. An example of a schematic block diagram based on this

28

Ar dimers!

Figure 4 1

ML

LM

LL
The schematic block d'iagram for sine function generation

29

sllflMM + ML)

z-l-

2"-

2-3-

2-4

2-5

2-0

2"-

2-.-

2'9

2'10

2'”

2'12

Adders

2'13

2°14

cos 7'tu+smu1sintM

2-15
cos [(1 + 8)MM] sinLl.

[29].

2-3

2-5

2-6

2-7

2-0

2-9

2-10

2'31

2‘12

2'13

240

2-15

2'15

:3]

 s
i
n

1
s

'
s
u
n
(
M
M
+
M
L
)
+
c
0
s
[
(
l
t
l
l
M
M
l
l
s
i
n
L
M
+

s
i
n
L
L
)

30

concept is shown in Figure 4.1. The design accepts a 16-bit angle input

and outputs a 16-bit sine value.

In contrast, the second method proposed by Ruoff [26] is based on

linear interpolation as shown in Figure 4.2. In this method, the domain

of the argument is divided into intervals of 2“ which become the table

size. The endpoints of each interval are calculated and adjusted so

that the interpolation error is spread evenly over each interval. The

upper n bits (not including the most significant bit) of the argument

are used to address a precalculated table. The lower part is then used

to interpolate the sine value using the endpoint value and the

interpolation difference of that interval.

A comparison of the two described methods is shown in Table 4.1.

While the first method requires more ROM area, its only external need is

an adder. Since both methods require two-level calculations, the first

method appears faster as multiplication tends to be slower than

addition. However, an on-chip multiplier is necessary to speedup the

DKS calculation. The speed of the second method can approach the first

if pipelining is implemented within the multiplier, and between the

multiplier and adder. Thus, with much less ROM area, the second method

is preferred.

31

1M»)MD

I

...... “gaff

\\\\
/’7 44:3 nmxmnou

y.- is.)

KNOWN!

«I. .s)

W '(‘e’

ll“) ‘1»

'“4/’,/’4*"

“We,

Figure 4.2. Sine function by linear interpolation [26].

Table 4.1. A comparison of two sine generation methods.

Method ROM Multiply Add Levels Accuracy

(Blocks) (Operations) (Operations)

Muroga 4 0 2 2 2

Ruoff l l l 2 2

* Table size = 128 entries

32

4.2 Modifications on the Homogeneous Transformation Matrices

A concensus among VLSI designers is that a good VLSI architecture

should have the following properties [30,31]:

1. It should be implementable by only a few different types

of simple cells.

2. It should have simple and regular data and control paths

so that the cells can be connected by a network with local

and regular interconnections. Long distance or irregular

communications must be minimized.

3. It should use extensive pipelining and multiprocessing.

In this way, a large number of cells are active at one

time so that the overall computational rate is high.

The realization of the above properties is ultimately constrained

by the data dependency inherent in the task to be implemented. However,

within this constraint, the design of the algorithm determines the

eventual performance of the chip. The demand placed on the algorithm

can probably be summarized into a single goal - regularity.

4.2.1 Regularity of the Matrix Entries

Each transformation matrix in eq. 3.1 can be partitioned into four

submatrices as

' R - ' Rotation - Position '

3x3 ! p3x1 Matrix ! Vector

T = -----:~---- = % (4.1)

£1x3 g 1x1 Perspective g Scaling

: Transf. : .

33'

For robotic applications, the perspective transformation and

scaling are always 0 and 1 respectively. The rotation matrix is already

well structured, with the first column always [C. s‘ o]T and the other

two columns [o 0 :1 JT and 1[-S‘ c‘ o]T arranged in different orders.

However, the position vectors in A, and A, have elements of a,,,,C,(,,

and a,,,,s,,,, which cause the entries to be irregular. Note that

A, can be decomposed as a product of a rotation matrix and a pure

translation matrix as

P - l' '1 r -

c, o s, a,C, c, o s, o l o o a,

A 3 s, o -c, a,S, g s, o -c, o o l o o (4 2)

3 o l o o o 1 o o o o l 0 °

0 o o l o o o l o o o l .

The translation matrix merely adds the element a, to the first element

of the position vector of A,. Likewise, A, can be decomposed which

results in a, being added to the left-component matrix of eq. 4.2. With

this modification, all the transformation matrices now have the same

basic structure. The redefined transformation matrices A, to A, are

shown in Figure 4.3.

A: A: AO

C3 -53 0 O C; 0 S; a; C. 0 -5. a;

S, C, 0 0 S, 0 .C, 0 S. 0 C. 0

0 O 0 1 O 0 0 1 0 0 0 1

L e e e l- d

Figure 4.3. The three modified transformation matrices.

34

4.2.2 Decomposition of the 4x4 Homogeneous Transformation Matrix

Even though systolic array processors designed for 4-by-4 matrix

multiplications have been proposed [32], they are not yet practical for

single chip implementation [33]. Moreover, most of the entries of each

matrix in the DKS calculation are either 0 or 1 such that the array

processor approach may be overkill. Since only three vectors are

actually involved in the calculations, each intermediate matrix

multiplication can be decomposed to a 3-by-3 matrix multiplication and a

vector addition as

'
5
0

I I
-
-
-
-
'
A
.
-
-
.

I

H
I
'
O

[n a p] = [Ron R-a R-p+p']. (4.3)

In ordinary matrix multiplication, the resultant column can be

expanded to

all'bl + alz’bz + ala'ba

A'b = 3314), + azz'ba 4' 33,433 (4.4)

aal'bl + asz'bz + ala'ba

35

Because of the special structure of the rotation matrix, the resultant

column is actually either

all'bl + aia’ba all'bl + alz'bz

azl'bl + azs'ba or all'bl + aaz'bz

1b, 1b, .

From the expansion above, it is easy to see that twelve

multiplications and six additions are needed for each matrix

multiplication. Two additional multiplications for SIN/COS must be

carried out first. This implies that a functional unit set of more than

two multipliers and one adder will result in low hardware utilization.

However, the performance of a two-multiplier hardware unit can be

approximated by that of a two-stage pipelined multiplier with half of

the area and a much simpler interconnection requirement. Therefore, in

this design, only the architectural alternatives for a

one-multiplier-one-adder configuration are considered.

4.3 The Final Algorithm

Based on the decomposed matrix multiplication, the final DKS

algorithm is presented below. The SIN/COS generation and the

pseudo-matrix-multiplication described earlier will be given a more

detailed treatment in the next chapter and hence are simply presented as

two procedures here.

36

Procedure DKS (jangle, var world : register)

const d6=56.6*2**7; a3=-20.S*2**7; dl=432*2**7;

a2=432*2**7; d2=149.5*2**7;

type register=integer<0zl7>;

var jangle : array [l..6] of register;

world : array [l..3,l..3] of register;

buffer : array [l..3] of register;

posvec : array [1..5,l..3] of register;

creg, sreg : register;

Begin

posvec[l..5,l..3]:=0;

posvec[3,l]:=a3; posvec[4,3]:=d4;

posvec[2,3]:=d2; posvec[3,l]:=a2;

world[l..3,l..3]:=0; world[2,3]:=l*2**l7; wor1d[3,3]:=d6;

Table-look-up-and-interpolation (jangle,6,creg,sreg);

world[l,l]:=creg; world[2,l]:=sreg;

for I:=5 to 1 do

Begin

Table-1ook-up-and-interpolation (jangle,I,creg,sreg);

for Jz=l to 3 do

Begin

buffer[l..3]:=0;

Pseudo-Matrix-Multiply(I,buffer,creg,sreg,world[J,l..31);

if J<>3 then world[J,l..3]:=buffer[l..3]

End;

world[3,l..3]:=buffer[l..3]+posvec[I,l..3]

End

End.

Chapter v

ARCHITECTURE DESIGN

The architecture of a computational system can be characterized in

many ways depending on the designer's view as well as the design level.

A view proposed by Dasgupta [34] is particularly useful for the design

of the DKS chip. In this view, an architecture is collectively defined

by a specification of the functional capacities of -its physical

components, the logical structure of their interconnections, the nature

of the information (data) flow, and the control structure and mechanism.

The design decisions on system components, such as functional units

or storage elements, are rooted in the needs of how data are to be

processed. On the other hand, the interconnection between these

building blocks depends mainly on how the data flow. The strategy

adopted in this work is to determine the structure of the functional

units first. Considerations on timing are explained in detail and

several clocking scheme alternatives are discussed. A detailed timing

diagram is constructed to analyze the data flow of the DKS algorithm.

The data flow is then manipulated in such a way that maximum resource

utilization is.achieved. The architecture is modified as necessary and

presented in block diagram form. Once the architecture of the DKS chip

is defined, the DKS function is realized by a logical sequence of events

activated by signals from the control logic. This sequence of events is

expressed in the form of a program written in RTL (Register Transfer

37

38

Language).

5.1 VLSI System Design Rules

The following three rules from Mead and Conway [3] are adequate to

guarantee the correct functioning of a bus-oriented chip design and are

rigidly followed in the design of the DKS chip.

Rule 1: The system is driven by a two-phase, non—overlapped

clock; phase one inputs from phase two outputs and

vice-versa.

Rule 2: Functional units are timeless C/L (Combinational

Logic); operations on data are separated by latches

or registers which are controlled by the two-phase

clock.

Rule 3: A standard bus scheme is used; data transfer through

the bus occurs during phase one, and the bus is

precharged during phase two.

5.2 Architecture Development I

5.2.1 Functional Units

As will be seen, the choice of functional units, the mode of

calculation, and the sine function implementation are actually very

interdependent on each other. The mode of calculation is considered

first.

39

The elementary arithmetic operations needed for the DKS calculation

are multiplication, addition, subtraction and unitary complementation.

Several factors appear to favor the mode of sign-magnitude integer

calculation. First, the multiplier design is relatively simple as the

sign of the result is just the XOR (eXclusive OR) of the signs of the

two operands. Furthermore, the most significant bit of the sine

argument indicates whether the angle is greater than or equal to 180

degrees and can be used directly as the sign bit of the result. And

above all, the unitary complement operation can be carried out

separately without occupying the bus and adder with a small increase in

hardware. The fatal disadvantage, however, is that the adder design is

cumbersome and the speed is slow because of the need for post-adjustment

[35].

Another alternative is a sign-complement mode such as the two's-

complement number representation. Additionally, several two‘s

complement multiplier designs are available in the literature. However,

in the two's complement number system, the unitary complement has to be

carried out through the‘adder. Thus, a double penalty will be imposed

on this operation. This is because the operation will not only require

the bus and adder for a clock cycle, but it also requires that the

multiplier-adder pipeline be emptied and results in low functional unit

utilization.

40

A closer look at the unitary complementation in the DKS reveals

that there are actually two different sources of this operation. One

comes from the ”pseudo-matrix-multiplication", as described in Chapter

4, where the third row of the resultant column (b, or b,) may require

complementation depending on the relevant element of the rotation

matrix. Since five successive matrix multiplications are performed to

obtain the DKS, the complement operation can actually be combined

in the previous or next matrix multiplication depending on which is

more convenient. Therefore, by carefully manipulating the relevant

additions and subtractions in the neighboring matrix operations, the

complement operation due to this source can be eliminated.

The second source of the complement operation comes from the

process of sine function generation. In order to reduce the

interpolation table size, only the interval values from 0 to 180 degrees

are stored. Therefore, when the argument is greater than 180 degrees,

the result needs to be complemented. With the table look-up and

interpolation method, the sine value is obtained by

SIN (x) = T(xU) + xL~D(xU), (5.1)

where xU and xL denote the upper 8 bits and lower 3 bits of the argument

respectively, and T(xu) and D(xu) are table values addressed by xv.

Obviously, -SIN(x) can be obtained by -T(xU)-(xL-D(xu)). In two's

complement operations, -a is implemented by a'+l, where a' denotes the

bitwise complement of a. While a two's complement adder can only

41

execute a+b or a-b and not -a-b in one cycle, it is easy to modify the

adder so that it can also perform a'-b. The result may lose one digit's

resolution, but for a table size of 256, the worst maximum interpolation

error is about 2.15 (0.000019). The truncation of l in the last digit

17 and
'of an 18-bit word is equivalent to a loss in resolution of 2'

should be acceptable, especially since this occurs only when calculating

-SIN(x). In short, with a small penalty on resolution, a two's

complement implementation will be faster, the design effort will be

relatively simple, and is thus preferred. Figures 5.1 and 5.2 show the

schematic block diagrams of a Baugh-Wooley two's complement array

multiplier and a two's complement adder.

. .,h adj-etzauuan-m4)

05553 0i3 -

. ‘J’o ‘abo ‘abo ‘350 'o’o

o o .. g o

b b“‘1 ‘ a I: re ‘2 n0 ‘1‘: FA '05:

a. b. _ “3’ 6’6 6 FA .,5,

?? -oo’o

.. uiwm 0 aiaiir_u_--i-_i_

a
"

5
'

”
w

3 .
9

Figure 5.1. The block diagram of a S-by-S Baugh-Wooley two's

complement array multiplier [35].

42

.6 bl Ei‘l b°b° (505

5A2 s 2

° '

SA' SA!

C2 FA 6; FA 5A2

8A2 Sum

0 “b s s
I o~b ' O

: o'—b
Figure 5.2. The block diagram of a two's complement adder

used in the DKS chip.

5.2.2 Fixed-Point Calculation Implementation

Three data formats, as shown in Figure 3.3 exist in the DKS

calculation. The integer values of the orientation vector element and

the position vector element are their real values multiplied by 217 and

27 respectively, In other words, an implicit exponent of either 2-17 or

2'7 is implied for each integer value. To assure a correct solution, it

is necessary to maintain the consistency of these implicit exponent

values. According to the DKS algorithm developed in Chapter 4, the

matrix multiplication of A‘W is carried out by multiplying the rotation

submatrix of A‘ with each column vector of W, and the exponent value of

the result is the same as that of the W element. Since the elements of

the rotation submatrix are in the orientation vector format, the

exponent value of the W element can be easily preserved by truncating

43

the 17 least significant bits and the most significant bit of the

lB-by-la two's complement integer multiplier output. This is

illustrated in Figure 5.3. Since the implicit exponents are always the

same for the two operands for the addition operations, no adjustment is

required. The multiplication in the interpolation of the sine value

will be addressed in next section.

Orientation Position

element OP 2 element0P2

[InmeJiTwmm] HWWsJDmew]

MPY MPY

I 1 [7 bits I? bits] n bush um] i? bits]

Result Result

Op 2 = Rotation matrix element

Figure 5.3. Illustration of the radix point position in

the multiplication. .

44

5.2.3 SIN/COS Implementation

The sine function needed in the DKS is approximated by the linear

interpolation between the endpoint values of the interval in which the

angle lies. In order to reduce the approximation error, the maximum

error in each interval is Calculated first. The endpoints are then

adjusted such that the maximum error of each interval will be reduced to

half of its original error as shown in Figure 5.4.

y a- '(w) T: 3 ylE(I’ ’ I(X3)

D

‘L—
/*‘

Y“ ""=’

'«fiE(x) max

I LINE SEGMENT

ii I, V:E(x) . in.)
T. ADJUSIEO 30R INIIRVAL I

1m y = I(In)

x, x x,

WIERVAL | -1 mutant . V

‘0‘. ‘. ’30.

Figure 5.4. The table value adjustment scheme [26].

45

The interpolation formula is

f(x) = f(x,) + [(x-x1)/(x,-x,)][f(x,)-f(x,)]. (5.2)

In the above equation, x,, x, are the interval numbers determined by the

upper 8 bits of the argument and the term (X-x,)/(x,-x,) is simply the

lower 3 bits of the argument after the radix point. Accordingly, both

f(x,) (the left endpoint of the interval) and [f(x,)-f(x,)] are stored

in the table and denoted as T(x) and D(x). The table is generated for

an angle argument range from 0 to 180 degrees and stored in a ROM. In

the fractional-turn representation of an angle, the 1's in the two most

significant bits correspond to 180 degrees and 90 degrees respectively.

Since SIN(180+x) = -SIN(x), the sign bit of the angle is used to

control the complement operation. Since COS(x) = SIN(90+x), the cosine

function is obtained by adding one to the second significant bit of the

angle argument. A special combinational logic circuit shown in Figure

5.5 is designed to implement the above logic operations under the

control signal s/c.

Since fixed-point calculation is used and an 18-bit word can

represent a two's complement integer number from -2-17

518(90) is set to 2‘17—1, the largest integer value, thus preventing

overflow. The multiplier assumes that one of the input operands has the

17
implicit exponent value of 2' and the result will have the same

exponent value as that of the other operand. Since the implicit exponent

of the interpolation result is expected to be 2'17, both D(x) and

46

>To LX

Angle Registers

<9=4> Tags

H

Address

<
|
O
=
l
O
>

<
1
]
:

 s/c e<i0=l0>

C}

3s

Sign (s/c)'<II=ll>+((s/c)<l0=lo> @<II=H>)

Figure 5.5. Logic circuit diagram of the SIN/COS control section.

47

(x-x,)/(x,-x,) of eq. 5.2 must have the combined exponent value of 2-34.

The lower 3 bits of the angle argument can be hardwired to the upper 3

bits (not including the sign bit) of the multiplier input latch. In

practice, the exponent values of D(x) and (x-x,)/(x,-x,) can be

adjusted to yield a more accurate result.

According to design rule 2, data flowing through stages of the C/L

section must be separated by latches. It requires a total of three

stages to generate the SIN/COS functions. During the first stage, the

angle argument is fetched with its upper part flowing through the

SIN/COS logic section to generate the table address and its lower part

latched by a delay element. During the second stage, table values T(xU)

and D(xu) are transferred via the dual bus to another delay element and

the multiplier input respectively. During the last stage, the product of

D(xu) and xL is added to T(xU) to generate the desired function. The

angle register output is connected to the SIN/COS logic section by a

dedicated local interconnection path so that the angle fetch can be

overlapped with other operations. The entire hardware design for

SIN/COS generation is shown in Figure 5.6.

5.3 Timing

In the synchronous discipline of design, tasks are accomplished

through a logical sequence of events with each event eventually realized

under the constraint of the physical timing of transporting information

(electrical signals) from one point to another. This dual meaning of

48

 D00

 TOO

A

Sign Angle

SIN/COS Registers ‘]

gr ,

° LX

[] LA

M2 Mi 0

E:
V (DE

l'o

N

M P Y

>5

0

‘8

“O

C;-—-— .AZ Al

3 Al 3" SAI
' MUX ‘ 8A2 V +—

Figure 5.6.

ADDER

Block diagram of SIN/COS implementation.

49

timing is bound by a system-wide clock which serves both as the sequence

reference and as the time reference. Hence the design of the clocking

scheme has paramount importance to the system's correct functioning and

performance.

5.3.1 Clock Period and Pipelining

The general form of a data path and the corresponding two-phase

clocking scheme are illustrated in Figures 5.7 and 5.8.

As already seen in Chapter 4, the ”pseudo-matrix—multiplication”

involves repeated calculations of the form a-b+c-d; it is of great

advantage to have a multiplier and an adder forming a pipe because the

piped operation will save the bus bandwidth and storage of temporary

results. Thus, for the DKS chip, the multiplier and adder become two

major C/L sections in line.

From the timing diagram of the two-phase clocking scheme, it is

clear that the minimum clock period is the sum of the maximum C/L delays

of phase-one and phase-two plus some overhead of delay time and preset

time. Intuitively, the C/L delay due to the multiplier may constitute

the largest delay component in the minimum clock period calculation and

thus one may further be motivated to introduce additional pipeline

segments into the multiplier to shorten the clock period.

50

Phase I OP 0?; Phase I

Figure 5.7. The general form of a data path [36].

if Period

E5| —1 Q5.

02

._f ____

HngCdelay PMaxCdeiay

o as a

.. a /Lodd /Leven

g ' Deiay in ,2:00;? Phasez Preset t.me

for PhaseZ

Preset Iime .

for Phase!

Figure 5.8. The two-phase clocking scheme.

51

While this idea is sound, there are at least two factors that

should be taken into consideration. The first one is the scaling effect

on the interconnect delay. Since it is uncertain at this point whether

the DKS function can be realized on a single chip with l-um MOS

technology, scaling may be necessary. However, as the feature size A is

scaled down by a factor of k, the gate delay r is also scaled down by k,

but the resistance of the interconnect path may scale up quadratically

[37]. As a result, the interconnect delay may well become dominant and

thus render the intra-functional unit pipelining effort meaningless.

Recent studies show that refractory metal silicides can provide

low-resistivity gates and interconnects. Taken together with appropriate

interconnect scaling rules, the scale-down effects on interconnect

delays may sustain down to a linewidth (21) of 0.5um [38]. Therefore,

in this work, if scale-down is necessary, it will be assumed that it is

possible to reduce the interconnect delays linearly down to the feature

size of 0.25um.

Another factor is related to the particular choice of

implementation technology. The estimation of various delays in this

work is based on a full-custom design approach. Consequently, if the

chip is to be implemented with a semi-custom approach, such as standard

cell or macrocell implementation, the effect on the timing relationship

of the C/L delay and the interconnect propagation delay is uncertain.

Again, this suggests that the interconnect delay problem may possibly

offset the intra-functional unit pipelining effort.

52

Nevertheless, the multiplier circuit can be divided into two stages

quite naturally with the delay time of each stage about the same as that

of a ripple-carry adder as indicated by the dotted line in Figure 5.1.

An about-equal delay time of all C/L sections allows the system to

achieve a higher degree of efficiency for a given clock period. Also,

interconnect delay in this case seems very unlikely to exceed the delay

of the adder.

5.3.2 Clocking Scheme Alternatives

Given the two-stage multiplier and an adder forming a pipeline,

several clocking schemes are applicable. The first scheme is a

brute-force application of the Mead and Conway approach as shown in

Figure 5.9.

Figure 5.9 shows that the clock period is essentially the

multiplication time plus some delay overhead. The advantage of this

scheme is that when addition alone is needed, it only takes one cycle to

empty the multiplier. Also, the second stage delay can be reduced by

using a faster adder such as a CLA (Carry Look~Ahead) design. However,

each C/L section is actually activated only half of a clock cycle with

this clocking scheme.

To overcome this shortcoming, the C/L section can be selected to

operate either at phase one or phase two. Since C/L sections are

considered timeless and design rule one states that phase one inputs

come from phase two outputs and vice-versa, additional latches are

53

I 0| 0? g, a.

_;

: --) --) MPYI —-3 flMPYZ *9 r-BADDER -)

-9 L_ Ci L.

Latch L L L L

Period j

0]

g1

f3’2

Max. IMPYI.ADDERI MPY2 9i

a ‘—

Preset Preset

\Deloy/

Figure 5.9. Clocking scheme one using single phase latches.

needed. Figures 5.10 and 5.11 illustrate two alternative clocking

schemes that allow the C/L sections to operate in a single phase.

A requirement for the architecture of the second clocking scheme is

that the clock period not exceed the refresh period. of the dynamic

storage elements used on the chip. In contrast, instead of making that

assumption, the third clocking scheme accommodates the refresh rate

consideration into the calculation of the clock period and is thus more

flexible. Compared with the first clocking scheme, these two schemes

have the apparent advantage of a shorter clock period with a slight

increase in chip area. However, caution must be exercised for now two

clock cycles are needed to empty the multiplier. Furthermore, data now

54

I re 0’0 0 3

r9

. ..fi MPYI MPYZ ADDER __,

F’ m

Latch L L L L L L

[a Period

01
01

__// L ' .

fieMaXIMPYIMPYZADDERl

Delay Preset

Figure 5.10. Clocking scheme two using single phase latches.

EA 9. a, y a, a, e a,

-—i —>

MPYI -3l MPYZ ADDER "'""

"‘3

TDynamIc R R R

Register

k e Period e

0' MaxIRefresh rate. Ol+02I 0'

Jm ,2 _/___

flax (MPYI.MPY2.ADDER)

Worst case path delay

A
k
r
/

Figure 5.11. Clocking scheme three using dynamic registers.

55

take three cycles instead of two to pass through the entire pipe. This

implies that if the degree of data dependency of the algorithm is high,

the faster clock, stemming from the increase of pipeline segments, may

not be advantageous. Since the second and third schemes are essentially

the same with the third being more flexible, the study is focused on the

trade-offs of the first and third clocking schemes.

5.3.3 Timing Diagrams

Given the basic computational structure and the two clocking scheme

alternatives, the task now is to realize the desired algorithm within

this framework. This is the logical aspect of timing and can be

mastered efficiently by the aid of timing diagrams.

For full illustration of design options, the data flow timing

diagram for this design should also provide some mechanisms for

manipulating the data flow and be useful for later design work (for

example, the interconnection solution and the RTL-programming).

Accordingly, the timing diagram for this design work consists of three

resource components: the dual bus, the multiplier, and the adder. Both

adder input and multiplier input are identified by their logical meaning

rather than their functional unit name. Thus, the logical sequence of

the DKS can be easily followed. The add/subtract operation of the adder

is also explicitly specified in the diagram to facilitate the

manipulation of the neighboring matrix multiplication as discussed in

Section 5.2.1. For each bus, both source and destination are identified

56

in the diagram. This proves very useful because the data flow pattern is

soon discovered. By manipulating the data flow and modifying the

interconnect path, the total DKS calculation cycles are reduced from 83

in the original design to 68 for clocking scheme one.

Figure 5.12 illustrates the timing diagram for one pseudo-matrix

multiplication for clocking scheme one. The elements of the input

matrix are logically identified as Wl to W9 but physically stored in R1

to R9 and may or may not be in sequential order. At the beginning of

each iteration, sine and cosine values are calculated first and stored

in Creg and Sreg respectively. A local interconnect path is assumed so

that the result from the adder can be sent to the output register file

without using an internal system bus.

Another timing diagram is constructed for clocking scheme three and

the minimum total clock cycles for the entire DKS computation is found

to be 73. Compared with the first clocking scheme, the data path of the

third clocking scheme requires more area due to the additional dynamic

registers including one needed for the delay of the T(x) term in the

sine interpolation process. The resultant increase of the chip area,

however, will be small compared with the total chip area. Even for a

very unlikely 5% increase in total chip area, the time-area product of

the third scheme will still be smaller than the first one if the clock

period can be reduced at least 12%. By inspecting the timing diagrams

of Figures 9 and 11, this reduction is apparently achievable. Thus, the

third clocking scheme is adopted for the DKS chip. The entire DKS

timing diagram with clocking scheme three is shown in Appendix 1.

S7

w; w; w; C, 0 S, a, w, w, w,

w; w; w; a s, 0 -C, 0 w, w, w.

w; w; w; 0 l 0 0 w, w. w,

(0) (0) (l) L(0) (0) (0) (1) (0) (0) (1)

After Multiplication: Before Multiplication:

R1 = w; R1 - w,

R2 . w; 32 = w,

R3 3 w; R3 = W,

R4 = w; R4 = w.

R5 = w; R5 = w,

as = w; R6 = w.

R7 = W; R7 = w,

R8 = w; R8 = w,

R9 = w; R9 = w,

I

I< -------------- t I 3

I

I

BUS A src T3’ T3 R1 R3 R1 R3 R4 R6 R4 R6 R7 R9 R7 R9 R7

dst LA LA M1 M1 M1 M1 M1 M1 M1 Mt M1 M1 M1 M1 A1

BUS 8 src D3’ D3 SUM SUM Sreg Creg Creg Sreg Sreg Creg Creg Sreg Sreg Creg a2

dst M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 A2

MPYer opt x3 X3 W1 -W3 W1 -W3 W4 W6 W4 W6 W7 W9 W7 W9

op2 03' 03 C3 $3 53 C3 03 S3 S3 C3 C3 S3 S3 C3

ADDER opt 13' T3 0 C3Wt O 53Wt O C3W4 O S3W4 0 C3W7 O S3W7 W7

op2 DX3' 0X3 C3Wt-53W3 S3Wt-C3W3 C3W4 S3W6 S3W4 C3W6 C3W7 S3W9 S3W7 €3W9 a2

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

SUM to R9 Creg Sreg R1 R3 R4 R6 R7 R9

Figure 5.12. Timing diagram of one pseudo-matrix multiplication.

58

5.4 Architecture Development 11

5.4.1 Synthesis of the Computational Structure

Now that the data path structure and clocking scheme are defined,

the architecture design becomes a synthesis of previous sub-task

development with some necessary refinements and modifications.

Due to the pipeline structure, delay elements are needed to

synchronize the sine generation mechanism. The delay elements can be

implemented by the same dynamic registers shown in Figure 5.11. Most of

the input registers of functional units have more than one input source.

The circuit diagram of a register cell capable of handling multiple

sources is shown in Figure 5.13.

\7,‘ s9! “ 9| .

Select I Select 2 Select 3 :I:

Input I‘J—T i fl

Input 3 fl >~>‘D04>-— Output

Input 3 I i
Output

Figure 5.13. Circuit diagram of an input register cell with

multiple sources [39].

59

For MOS technology, the propagation delay of a device increases as

the number of loads increase. Therefore, if the number of device

destinations in a connection path is more than one, all the destination

latches or registers must be able to disconnect from the path. The

register file is required to send information to bus A and receive a

result from the adder output simultaneously (but not for the same

register) as seen in the timing diagram. A two-port register cell with

such capability is shown in Figure 5.14. And finally, the entire DKS

chip architecture is presented in block diagram form in Figure 5.15.

Bus A llkfldAItm

El
i-
s

Ld,’-\=I=Q_|_‘ll:[_—wi _:

From ADDER

Oi

RdA LdA 62 OPCIOIIOH

I O O BusAt—Req

O I O Rege—ADDER

O O I Reg«——Reg

Figure 5.14. A two-port register cell and its logic truth table.

60

t I - A . - - t I
l N P 0 R T

s/c-——-—;L , |

is SIN/COS f i 7 7

.52 l t— AL D - .AL V
a: r:

O l g D(x) T(x) 3+)

‘3

«one jCans. LX \I
UUdO'O L j

[WMZ j l LM‘ * J

I l .

LAJ:

C M P Y I §

0 a s
2;: 2 | + g d)

:1); 3 I _ g

(D E M P Y 2 l ‘I’
a) » OJ

0 i?» l I

... 1A2 ‘ .Al

0" pA|I L J T:

o 4 J, J:

“J ”0 W A D D E R <

B 3 c "’
x. 03 {89 TE; 1 a;

:2 t s g 1C) re

0 J Register File

,i
a.

0 U T P O R T akl

Figure 5.15. Block diagram of the DKS chip.

61

5.4.2 Description of Hardware in RTL

The block diagram of Figure 5.15 presents only the structural

aspect of the chip architecture. The functional aspect, or the sequence

of events ultimately realized by a control structure, is yet to be

specified. Hardware Design and Description Language (HDL) is widely

used to specify the functional, as well as structural, aspects of a

digital hardware design and can be used as input to some hardware

compilers. Because of their strong dependency on technology and

developer, existing languages often evolve from a small design community

and tend to be specialized [12]. Recognizing this, major research

efforts are being made to standardize the HDL so as to strengthen the

VLSI design process [40,41]. In view of this situation, this work uses

RTL to describe the control flow structure of the DKS chip primarily for

communication purposes. Furthermore, it is assumed that the RTL program

presented may later be translated to other similar languages for

implementation when necessary. The complete listing of the RTL program

can be found in Appendix 2.

Chapter VI

CONTROL AND DESIGN VERIFICATION

Before the design process can proceed further, a legitimate

question is whether the architecture of Figure 5.15, under the control

structure described by the RTL program, will provide the desired DKS

function. In answer to this question control signals are first

identified and generated for the 73 clock cycles. These control signals

are then used to drive a symbolic simulation program to confirm the

correct behavior of the system.

6.1 Control Signal Specification

Even though the RTL program is created mainly for communication

purposes, in practice, it is increasingly used for implementation

purposes. In fact, control logic can be synthesized from an RTL program

input with the capabilities of today's CAD systems. With this in mind,

the question from a system designer's point of view is clearly not how

the control logic is implemented but What the control signals should be.

It is obviously desirable to minimize the number of control signals

as it implies less chip area. However, in deriving the needed signals

from the RTL program, one must be aware that implicit states of certain

functional entities may exist. For example, loading or transmitting a

register is explicitly instructed, but what is not explicitly instructed

is the implied state of neither loading nor transmitting and the

62

63

forbidden state of loading and transmitting simultaneously.

Such a problem can be solved by further clarifying the operation

rules of various functional entities. For the design of the DKS chip,

the following rules are observed:

1. no register is allowed to load and transmit at the same

time;

2. no more than one source is allowed for any interconnection

or register at a time;

3. the system bus can get data from only one source and give

data to only one destination during any one cycle.

Another intriguing issue is the trade-offs of implementing the

control signals with a horizontal, vertical, or a mixed policy [42]. In

order to facilitate the generation of the control signals and the later

verification process, the control signals are organized into fields and

subfields. By assigning a meaningful name to each field, the control

function of each signal can be easily captured. The way in which the

control signals are partitioned, however, depends on which policy is

chosen.

By employing decoding techniques, the vertical approach packs more

functionality into a control word of a given size and thus has better

chip area utilization. But it suffers a slower response time due to the

decoding process. It also tends to make the encoding and simulation

process more complex. On the other extreme, the horizontal approach

64

embodies maximum parallelism in generating the control signals and thus

has a speed edge. But the waste of area is formidable for this approach

even when a register file of moderate size is considered.

At first glance, this looks mostly like an implementation problem

and therefore should not be determined during the design stage. But in

practice, whenever a control field is defined, a certain amount of

decision on the policy is already implied. In order to reduce the

design effort, a mixed policy adapted from the horizontal approach is

chosen in the partitioning of the DKS control signals. With this

policy, a control field is created for each functional element. If a

control field requires more than four bits, the vertical policy is

employed within that particular control field.

Based on the above principle, the control signals required for the

DKS chip are partitioned into 11 fields with each field further divided

into two subfields for easy encoding. The 11 control fields with their

signal definitions are shown in Table 6.1. Once the control signals are

organized and defined, the specification of control signals for each

clock cycle of the entire DKS calculation is reduced to a compilation of

the RTL program into machine codes. This step is done manually in a

straightforward manner. The control words, or machine codes, for the 73

cycles are listed in Appendix 3.

65

Table 6.1. Control fields and signal definitions.

No. Field Sub Range Definition

1 ADRTBL Ev 0/1 1: TXPORT<—T(x); Lx<—ANGLE(V) ,

V 0-6 0: Angle Register output in high 2 state

2 SINCOS s/c 0/1 0(1): Select SIN(COS) operation

Et 0/1 1: BUSAe—TXPORT; BUSBe—DXPORT;

LA<—BUSA

3 ROM EM 0/1 1: BUSBe-CONS(Madr)

Madr l-S Constants address

4 BUSAR T 0/1 1: BUSA<—REG(Radr)

Radr 1-9 Register address

5 RSUM L 0/1 1: REG(Radr)<—ADDER

Radr 1-9 Register address

6 MPY Ml 0-2 : Ml<—Lx

2: MleeBUSA

M2 0/1 1: M2<—BUSB

7 Al Alzd 0-2 1: Ale—LA

: Al<—0

Albs 0-2 1: Ale—ADDER

: A1<—BUSA

8 AZ/G A2 0-2 1: A2<—MPY2

2: A2<—BUSB

Gate 0/1 1: BUSB‘eADDER

9 MINUS CTRL 0/1 0: SAl,SA2<-SIGN (from SIN/COS)

l: SAl<—0; SA2<—SGN

SGN 0/1 0: ADDER<—AI+A2; l: ADDER<eAl-A2

10 Creg Lc 0/1 1: CREG<~ADDER

Tc 0/1 1: BUSB4-CREG

ll Sreg Ls 0/1 1: SREGe-ADDER

Ts 0/1 : BUSBe—SREG

66

6.2 Verification by Symbolic Simulation

Many tasks of the DKS chip design, from the construction of the

timing diagram to the manipulation of data flow, and from the

development of the RTL program to its compilation into machine codes,

are performed manually. The flexibility of human activity in many cases

complements the limitation of available resources; but it is also prone

to error. As the complexity grows, simulation increasingly becomes an

indispensable tool for VLSI design.

Because the homogeneous transformation method is already well

understood in the case of the DKS chip design, an exhaustive simulation

is not necessary. Besides, even for an angle word size of six bits, the

six joint angles form a total of 646 > 64x109 joint angle vector

inputs! An exhaustive simulation is plainly impossible. Generally

speaking, symbolic simulation is more practical at the system level

where the behavior of the system as a whole, rather than the correct

functioning of an indvidual building block, is the major concern.

6.2.1 Simulation Principles

The validity of any simulation rests on the rationality of the

mapping of the real system to the simulator. The behavior of the system

can be thought of as the total sum of events occuring in various

entities. From this perspective, entities may be modeled as program

67

variables while events are simply program statements. These two

axiomatic correspondencies in turn constitute the foundation of the

higher correspondence between the logical sequence of events of the DKS

chip and the logic structure of the simulation program.

Three kinds of entities are observed in the architecture of the DKS

chip. Memory elements including static devices (such as ROM) and

dynamic devices (such as registers), are readily compatible with

variables and constants of a program. Interconnects serve as the media

for data transfer between entities; they may be multi-source/destination

(such as a system bus) or dedicated (such as a wire). Functional units,

such as multipliers and adders, are timeless combinational logic

circuits which receive operands from dynamic storage elements, perform

the assigned functions, and generate results.

Events of the system fall in two categories, data transfer and

logic operations. The former can be simulated by program assignment

statements with little effort. The establishment of interconnects as an

entity enable the data transfer event to be decomposed into two logical

phases: from source to medium, and from medium to destination. Various

rule-checkings can subsequently be classified in either phase and

enforced. In contrast, no rule needs be checked for the logic

operations; but the function simulated by manipulating the symbolic

values through program procedures is slightly more involved even for

events seemingly as innocent as add or multiply. As mandated by the

68

clocking scheme of Figure 5.11, all functions are accomplished by C/L

occurring exclusively in phase two.

6.2.2 Program Development

Based on the observed correspondence between entities and

variables, a unique variable of type character string is assigned to

each of the entities in the DKS, system. The symbolic value of a

variable] represents a data item. The property of timelessness of the

C/L allows the separation of the outcome from the symbolic manipulation

process. Therefore, the variable of a functional unit is only

associated with the outcome. For a dedicated path, the only event is

the invariable source to interconnect to destination, which is simply

simulated by a single assignment statement. On the other hand, the

multiple source/destination situation of a system bus requires

rule-checking. This is facilitated by designating the first character

of the BUS variable as a flag. A load-bus operation is legal only when

the flag indicates the bus is empty('E‘) and subsequently the flag will

be set to 'F' for full. A receive-fromjbus operation will set either

the 's' or m. flag to 'a', and an error message will be issued if this

operation is attempted when the flag is '0'.

The event of data transfer is simulated by scanning all the load

bus cases first followed by processing all the load storage-element

cases. During phase two, dynamic registers or delay elements have their

69

phase-one value transferred to the phase-two variable before the logic

simulation is performed. The precharge of the bus is simulated by

assigning a special value of 'E?‘ to signal the undefined state.

The events of multiply and add are simulated by appropriate

manipulation of the symbolic values of the data and the outcomes are

stored in the variables associated with the functional units.

The sine function generation mechanism is simulated as a sum of

four independent events. In one event, during phase two, the value of

'T'i and 'DX'i will be assigned to TXPORT and DXPORT, respectively, when

the address table signal is fired. The angle 'X'i will also be assigned

to latch Lx. In another event, the multiplier will take Lx and BUSB as

its operand sources and the data in BUSA will be latched by the first

stage of a two-stage delay element. Then, in another event occuring in

phase two, if the multiplier procedure detects the input operands having

the symbolic values of 'X'i and 'DX'i, it will abort the normal multiply

manipulation and assign 'DX'i to MPYl. The last event occurs when the

adder procedure detects its input operand being 'T'i and 'DX‘i; it will

assign Si as the outcome stored in ADDER. It also checks the appropriate

control field and the SIGN to guarantee that the adder control signal is

correct. The cosine is simulated in a similar fashion with the help of

a special character flag. Obviously, sine and cosine outputs will

result only when a particular sequence of events occur.

The main program is a simple kernel driven by the machine code of

Appendix 3. In order to help in the correction of design mistakes as

70

well as the debugging of the program, an error encoding technique is

employed and a controlled dump of memory contents is provided. The

flowcharts of the simulation program are presented in Figures 6.1-6.3.

A complete listing of the simulation program can be found in Appendix 4.

In Appendix 3, some of the signals are designated with the x (don't

care) state. These conditions were converted into two machine code

tables: one with x equal to 0 and another with x equal to 1. Two

simulation runs, one with each table, are performed. Results are checked

against the correct ones individually to prove the correctness. The

simulation results are also shown in Appendix 4.

71

INITIALIZATION

Set all storage elements to UNDEF

/

SET DEBUG CONTROL

DONE? fl/

N DUMP REGISTERS

READ CONTROL WORD

 CALL PHASEI (STOP)<

Y
ERROR? \1/

DUMP REGISTERS

L

Y
DEBUG? q/

DUMP REGISTERS

J

CALL PHASE2

 N DEBUG?

Y

DUMP REGISTERS

Figure 6.1. Flowchart of DKS symbolic simulation program.

72

Task I

Check rules by examining control fields:

If ERROR. Set ERR code and RETURN

Task 2 J,

Process all load BUS cases:

For each case DO

It BUS<I=I> NOT E0 'E‘ then

Set ERR code and RETURN

else

Load BUS and set BUS<I=I> 'F'

end
Task 3

Process all LOAD controlled REG cases:

If Source = BUS then

If BUS<l=I> E0 '0' then

Set ERR code and RETURN

else

LOAD REG and set BUS<l=l> ’0'

end

end

Task 4 \L

Process data transfer between delay stages:

Load Phase-l latch from Phase-2 source latch

(RETURN4)

Figure 6.2. Flowchart of subroutine PHASEl.

73

Task l

Transfer Phase-l Latch content to

Phase-2 Latch

Task 2

Precharge BUS:

Set all controlled Phase-lLatch

to UNDEF

Task 3

SIN/COS Simulation

lf SINCOS = I

Set TXPORT. DXPORT values

Task 4 \l/

Functional Unit Symbolic Simulations

4.l Isl-Stage Multiplier simulation:

Simulate MULTIPLY operation on symbolic

values of Ml and M2. and results in MPYI

4.2 2-Stage= MPY2 MPYI

4.3 ADDER Simulation

Simulate ADD operation on symbolic

values of Al and A2. and results in ADDER

(RETURN)

Figure 6.3. Flowchart of subroutine PHASEZ.

Chapter VII

EVALUATION

7.1 Goal and Strategy

Based on the architecture presented in previous chapters, the

precise performance of the DKS chip and area requirement must be

determined by the physical design. Without the support of a physical

design, any time/area evaluation is inevitably subject to suspicions.

However, without even a qualitative estimation of the time/area

complexity of the chip, a "go or no-go" decision on physical design is

even harder, if not impossible, to make.

Since physical design is beyond the scope of this work, no attempt

is made to acquire an accurate time/area evaluation. The goal here is

to provide some basic statistics of the chip, and by comparing it with

the capabilities of current technology, provide some sort of "confidence

vote" on the feasibility of the DKS chip. In view of the industrial

practice of prototyping with semi-custom design, special attention is

paid to the possibility of the standard cell implementation approach.

This approach has been predicted to become the dominant form of

application-specific ICs [43,44].

Current technical information in the literature tends to be

fragmented, and its technology-dependent nature makes it even harder to

meaningfully use. At the time of this project, the only relatively

complete information was the IBM Master Image Chip approach [8]. Both

statistical data on functional units and cell utilization as well as

74

75

basic logic gate delays are available. The area of the DKS chip is

evaluated by this approach. The area required for CMDS implementation

is obtained from the NMOS figure according to the conversion rules

suggested by Wollssen [45].

Semi-custom design usually requires more chip area. Therefore, the

chip edge from the area estimation should be considered as an upper

bound. The phase one clock width is evaluated by taking the chip edge

as the worst case path for the propagation delay. Since the phase two

clock width is determined by the maximum combinational logic delay,

delay times from an actual multiplier IC and from gate delay summations

are used to obtain a range of possible C/L delay values. The minimum

clock period is then the sum of the two clock widths.

7.2 Area Estimation

The silicon real estate of a VLSI chip is used either for device

fabrication or for interconnects. While the former is determined

exclusively by circuit design, the later depends on many physical design

factors such as layout, placement and wiring, which are beyond this

design task. To overcome this difficulty, this work uses the physical

device count as the major parameter, and the device count is then

weighted with the transistor/cell utilization statistics obtained from

published sources to get a realistic picture of the area required for

the DKS chip including the interconnects.

76

7.2.1 Transistor Count

The transistor counts for various functional circuits in the DKS

chip are shown in Table 7.1. All transistor counts are based on NMOS

circuits taken from [3] except the adder circuit which is taken from

[46].

The transistor count of the control logic is unknown until the

actual logic design is carried out. A convenient way to get around this

problem is to assume that the control logic is implemented by storing

the machine code in a ROM with a counter generating the instruction

sequentially. 37 individual signals are needed for the DKS calculation.

This figure is rounded off to 40 to account for the I/O and other

interface control functions. Since this approach generally requires

larger chip area, the transistor count in the table may once again be

interpreted as an upper bound of the control logic section.

Because transistors in driver circuits require larger area, they

are counted separately. The table shows that the transistor counts of

the regular logic circuits and the random logic circuits are about the

same. Because of their regular nature, the former will occupy much less

area. Also, the area for storing table D(x) can be further reduced as

the first few bits of the D(x) values are always zeros.

The total number of transistors of the DKS chip is in the

neighborhood of 25K, or about 10K logic gates. This figure is well

under the projected limit of 50K logic gates for gate array

implementation [47]. In fact, CMOS gate arrays of up to 24K logic gates

77

Table 7.1. Transistor count of the DKS chip.

No. of No. of Total No.

Type Function Transistors Units of Transistors

per Unit

Regular TX(1 bit) 1 18x256 4,608

DX(l bit) 1 18x256 4,608

Constant 1 18KB 90

Control 1 40x73 2,920

Subtotal 12,226

Random Reg Cell 9 18X(9+6) 2,430

Delay Cell 6 18X2+2 228

controlled latches

l-source 7 18x2 252

2-source 9 18x2 324

4-source 13 18 234

Pass Trans. 1 18x3 54

Decoder

3-8 30 2 60

4-16 72 2 144

8-256 72 72x17+256 1,480

Subtotal 5,206

FA 18

MPYl FA 18x17+2 5,544

AND 5 2x17+l7**2 1,615

MPYZ FA 18 324

ADD FA 18 324

2-1 MUX 2 18x2 72

Subtotal 7,879

Driver I/O Buf 12 16x2 385

BUSA 5 18 90

BUSB 11 18 198

Control 8 55 440

Subtotal 1,112

Grand Total 25,232

78

have already appeared [48]. Therefore, the DKS chip can be implemented

on a single chip with current semi-custom design technology provided

gate utilization of higher than 50% can be achieved.

7.2.2 Macrocell Implementation

The gate array approach is ideal for implementing designs at the

Boolean logic level but is not suitable for high performance system

designs. To bridge the gaps of cost, design turn-around time and

performance between semi-custom design and full custom design, the

standard cell approach shows promising potential.

One such approach is the IBM Master Image Chip approach [8,49].

This approach uses a predesigned image with a fixed power bus

distribution and preallocated areas for circuits and wiring. Well

designed and tested functional circuits are stored in a macrocell

Table 7.2. IBM Master Image function-cell and chip statistics.

No. of Chip Statistics

Function Cell Item A=2um A=l.25um

2-1 MUX 1 Area(mm’) 7.4x7.4 8.0X8.0

LSSD SRL 2 Cell 2,432-2,952 8,468

SRL CLK Driver 5 Cell Util. 63-93% 79%

CLK Driver 3 Gates 7.6K—1l.8K 36K

CSA 6 Gate Delay 5-20ns 3.1-12.5ns *

4-bit Counter 10

16-by-l6 Multiplier 630

256x16 ROS 200

128x16 R05 120

* Estimated from figures of Zen

79

library and can be called out during circuit design much the same way a

digital designer selects an IC from a catalog of standard ICs. Design

efforts are thus minimized and yet the system performance can be

expected to approach that of fully custom designed ICs. Currently, the

Master Image cell library contains only NMOS circuit designs; but CMOS

implementation has been planned [8].

Table 7.2 shows the IBM Master Image Chip statistics used in the

evaluation of the DKS chip. Table 7.3 shows the estimation of cell

numbers. Linear dependence is assumed in the evaluation. For example,

the 16-by-16 multiplier requires 630 cells, and the 18-by-l8 multiplier

of the DKS chip is assumed 18/16 times larger in each dimension,

resulting in 798 cells. Note that the random logic represents 79.1% of

the total cell count compared with only 51.7% of total transistor count.

Table 7.3. Cell count of the DKS chip.

Function Cell Count

TX (256x18) 450

DX (256x18) 450

Constant 10

Control 100

Subtotal 560

Adder 108

l8-by-l8 MP? 798

Latches & Reg 828

Pass/ Mux 90

Counter 20

Clock Driver 165

SRL Driver 115

Subtotal 2,146

Total 2,706

80

In terms of a percentage of chip area, the 79.1% figure may be closer to

reality. Assuming a 10% estimation error and a .somewhat conservative

70% cell utilization, the number of cells required for the DKS chip is

about 4.3K. The Master Image chip approach allows two feature size

implementations: either 2-um with 2,952 cells or 1.25-um with 8,468

cells. Clearly, the DKS chip can be implemented with 1.25-um

technology. With half of the cell count, the chip edge of the DKS chip

is estimated about 5.6mm.

For conversion of NMOS circuits to CMOS circuits, the rule of thumb

is that the area of CMOS will be 30% larger than NMOS equivalent

circuits for random logic but the same for memory cells [45]. Using

these factors, the CMOS DKS chip will require a total of 5,317 cells,

about 24% larger than the NMOS version. The resulant chip edge is

estimated to be about 6.34mm.

7.3 Speed Estimation

The evaluation of the total DKS calculation time is based on

average gate delays. The gate delay of a two-way NOR gate of the IBM

Master Image approach using 2-um NMOS technology ranges from 5-20ns

[49]. Assuming linear scaling, the average gate delay for the 1.25-um

technology is 7.8ns. It should be pointed out that this figure is well

below the state-of-the-art gate delay. For example, CMOS gate delays of

0.8ns using 1-um technology has been reported [50]. What's more, the

81

limit of CMOS gate delay for 1-um technology is projected to be 0.2ns

[51]. Therefore, in this work, two values of gate delays are used. The

IBM figure of 7.8ns is used mainly to provide a bottomline of

performance while a lns/gate delay is used to represent what is actually

achievable in the near term.

As shown in Figure 5.11, the mdnimum clock period is the sum of the

clock widths of phase one and two. In calculating the minimum clock

widths, empirical data is extracted from various sources and applied to

the DKS chip design. Since the target feature size is 1.25um as used in

the estimation of the chip area, all timing data is adjusted according

to the scaling rules.

For the interconnections, the delay is due to the RC time constant

which is normally independent of scaling of the feature size 1. But, it

may become inproportionally larger in the total delay calculation when A

is scaled down. However, improvements in conductivity of interconnect

lines may be regarded as another scaling dimension. Combined with the

separation of interconnect scaling rules from device scaling rules, the

”scaling" of conductivity may justify the application of the same

scaling factor to the interconnect delay [38].

According to the specified clocking scheme, the phase one clock

width is the worst case path propagation delay. By inspecting Figure

5.15, the transfer of data from the register file to the input latch of

the multiplier may be taken as the worst case path. The delay

components include the register response time, bus propagation delay,

82

and the input latch response time. Table 7.4 shows the estimation of

these three components. The gate counts are derived from the relevant

circuits and the CMOS gate delay is assumed to be lns whereas figures in

parenthesis are calulated from the IBM Master Image average gate delay.

The total delay time for the phase one ranges from 20ns to 102ns.

The phase two clock width is the maximum combinational logic delay.

In the DKS chip, the first stage of the multiplier pipe can be

considered as the maximum C/L delay. Since the standard cell approach

promises the ability of incorporating proven functional circuits as

macros of the cell library, it is not unreasonable to assume that the

multiply time achieved by today's multiplier IC is also achievable by

the multiplier unit in the DKS chip. A survey of existing commercial

multiplier ICs indicates that a 16-by-16 multiplier can be as fast as

45ns per operation [52]. An even faster multiply time of 20ns using

Table 7.4. Estimation of phase one delay.

Delay Component Estimation Method Delay Time (ns)

Register 36 + 4G + 26 * 9 (70.2)

Response (Decode)+(Driver)+(Resp.)

Interconnect 6.34mmx1.25ns/mm @ 8 (8)

Latch Response 36 3 (23.4)

Total 20 (102)

* l G = l (7.8) ns

@ Scaled down from Sns/mm for S-um design rule [38].

83

1.5-um NMOS design rules has been reported by Bell Labs [53]. Based on

the somewhat moderate figure of 90ns per multiply-accumulate operation

(from TRW's l-um CMOS l6-by-16 multiplier IC), a lOOns multiplication

time for an l8-by-18 multiplier using 1.25-um CMOS technology, appears

appropriate. Since the delay times for the two stages of the multiplier

are about the same, the phase two clock is set to half of the multiply

time, i.e., 50ns.

On the other hand, if one full adder (FA) is assUmed to require 6

gate delays, the 18-FA chain in the first stage of the multiplier pipe

may require as many as 120 gate delays. Taking l (7.8)ns for one gate

delay, the phase two clock width is estimated 120(936)ns.

Table 7.5 sums up the clock period and total calculation time

estimations for various approaches and technologies. To achieve the

goal of a lOus calculation time, a gate delay of 1ns or less seems to be

necessary.

Table 7.5 Total calculation times for various approaches.

Technology Phase 1(ns) Phase 2(ns) Clock(ns) Total(us)

Fast Multiplier 20 50 70 5.1

Standard CMOS Cell

(1ns/gate) 20 120 140 10.8

IBM Master Image

(7.8ns/gate) 101.6 936 ~l,000 73

Chapter VIII

CONCLUSION

8.1 Achievements

The advent of VLSI technology offers unprecedented freedom, as well

as many challenges, for designers to integrate their knowledge and

expertise into a tiny piece of material of utmost elegance. However, an

ever-expanding gap exists today between system designers and the latest

available technology [54]. One of the difficulties in bridging this gap

arises from the fact that the design process at the different levels

has different subjects of abstraction and requires different abstraction

mechanisms. From this perspective, the greatest contribution by Mead and

Conway to the-VLSI system design is the idea of formulating a set of

rules both as a way to express the subject of abstraction and as an

abstraction mechanism. Following their lead, this work extends these

ideas to higher level designs by proposing various rules as guidelines

or templates for abstractions at different levels. The design of the

DKS chip is subsequently treated as an instantiation of these rules.

Although these rules will certainly be enriched as our understanding of

VLSI design deepens, the accomplishment of this work is a verification

that such an approach can potentially bridge the gap between the system

designer's ability and the capability of technology.

In addition, this work develops a set of tools and techniques to

facilitate the design at the system architecture level. Various

mechanisms have been incorporated into the construct of the timing

84

85

diagram such that it not only demonstrates the data flow, but also

allows for its manipulation. As to the development of simulation

programs, the validity of the simulation approach has been rationalized.

Based on the observation of the correspondencies between architecture

elements and program elements, it proposes principles and rules to set

down their relationship. Following these rules, a designer can map a

design into a symbolic simulation program with relatively little effort.

This work also verifies the feasibility for fixed-point calculation

of the DKS and further quantifies the number of bits required for the

resolution in a standard industrial environment. The major structural

and functional aspects of a VLSI chip architecture dedicated to the DKS

computation have been specified. Results indicate that the design can

be fabricated on a single chip using a semi-custom implementation

approach with current technology.

8.2 Summary

From the timing diagram of Appendix 1, it is verified that the

utilization of the bus, multiplier and adder reach 86.3%, 80.8% and

86.3%, respectively. They are somewhat lower than the first performance

specification. This is mainly due to the introduction of pipeline

segments into the multiplier which causes the data dependence problem to

become more severe. In contrast, the first design, without pipelining

inside the multiplier, achieves an average of 90% utilization.

The evaluation of the last chapter indicates that the total DKS

86

calculation time of lOus is attainable provided the basic gate delay is

1.0ns or less.

In short, the architecture design presented in this thesis

satisfies the major design objectives. The speed improvements, in

retrospect, may be attributed to two fundamental improvements: (1) the

increased speed of basic operations by using dedicated functional

hardware and by inter- and intra- functional unit pipelining; and (2)

the relief of the fundamental limitation of bus bandwidth by providing

dedicated local interconnect paths.

As stated at the beginning, this work is mainly concerned with the

design specification at the system level. As a result, much work at the

physical levels, such as logic design, circuit design and timing

verification, remains to be done. At the system level, more pipeline

segments may be introduced into the functional units. The I/O

activities and mechanisms must be further specified. Depending on the

data access time, I/O buffering may be desirable. 'All I/O and other

interface control functions have to be incorporated into the control

logic of the chip.

Beyond the implementation problem, the future utilization of the

DKS chip may be more interesting. This work shows that with nascent

VLSI technology, the DKS of a robot arm can be obtained in as little as

lOus. This result may have implications on the method of obtaining the

Inverse Kinematic Solution (IKS). For example, with a modified algorithm

using the DKS chip as its building block, the IRS may be approximated

iteratively with superior speed.

APPENDICES

APPENDIX 1

DKS TIMING DIAGRAM

Al. DKS Timing Diagram

9
8

t
o

c
a

:
8

o
n

L
a

B
e
d
s

6
0
4
0

o
n

L
8

t
o

s
o

w
e

s
o

a
s

I
s

a
s

s
o

a
:

L
a

s
o

s
:

v
:

o
r

t
o

t
o

0
:

6
t

8
t

o
n
e
s

L
n
e
o

e
n
c
o

r
u
e
s

o
n
e
s

v
n
s
o

o
n
t
o
-
I
n
e
s

o
n
e
s
-
I
n
c
a

t
o

e
!

e
x
o

.
e
x
o

o
n

L
A

L
n
e
o

0
r
e
c
s

a
v
e
t
o

o
I
n
e
s

o
I
M
S
D

0
s
n
-

-
L
n

8
1

.
8
1

o
0

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V

a
s

e
s

c
o

s
o

a
s

a
s

c
o

t
o

a
s

a
s

c
o

s
o

.
8
0

9
9

L
A

o
n

L
A

o
n

o
n

e
n

e
n

e
n
-

I
A

e
n
-

I
M

e
x

e
x

o
n
e
s

s
o

a
s

a
s

t
o

s
o

a
s

a
s

s
o

s
o

a
s

a
s

c
o

8
0

.
e
0

o
n

L
A

o
n

L
A

9
A

V
A

o
n

e
n

e
n
-

I
M

e
n
-

I
M

e
x

e
x

o
n

c
w

z
w

a
n

a
n

c
w

c
w

a
w

c
w

a
w

z
w

a
w

a
v

t
v

a
n

a
n

6
9
4
3

D
O
J
S

O
B
J
S

6
9
3
3

6
9
4
3

O
O
J
S

b
e
d
s

6
9
3
3

b
e
e
n

O
O
J
S

O
O
J
S

D
e
n
a

s
o

s
o

s
o

,
e
o

I
n

I
n

I
n

I
n

1
w

I
n

I
n

I
w

I
w

I
w

I
w

I
w

I
V

I
v

v
1

v
1

o
n

L
a

o
n

L
B

s
o

w
e

s
o

w
e

s
o

t
o

e
a

I
n

a
s

L
a

8
1

.
8
1

II

e
I

-
-
-
-
-
-
-
>
I

I

I
n

s
o

t
o

c
a

6
9
4
$

6
0
4
0

I
n

s
o

t
o

O
O
J
o

w
e

o
n

L
I

9
:

s
:

7
:

8
t

fi
t

I
:

O
I

e
a

L
9

v
e

a
I

o
 C
H
'
D

I
H
P
S

C
H
V
S

I
H
'
D

F
M
F
S

V
M
V
O

5
5
9
3

7
X
0

:
P
X
O

5
3
9
9

D
A
-

V

9
X
0

.
Q
X
O

5
X
0

I
S
X
O

V
V

V

(

 I
n
e
s

o
I
A
V
O

o
o

o
0

v
1

.
9
1

o
o

9
1

.
9
1

9
1

.
9
1

s
o

v
o

v
s

v
s

9
0

v
s

9
0

9
o

9
0

.
9
0

s
o

s
o

9
0

.
9
0

s
o

.
s
o

V
A

o
n

I
n

a
n

I
A

s
o

w
e

9
5

e
x

v
x

s
o

s
n
-

9
x

e
x

e
x

s
x

9
0

9
9

7
3

v
s

v
s

t
o

v
s

9
0

9
o

9
0

.
v
0

s
o

9
9

9
0

.
9
0

s
o

.
5
0

w
a
y
s

w
e

o
n

I
n

a
n

I
M

v
n

7
M

9
5

9
x

v
x

s
o

s
n
-

9
x

9
x

s
x

s
x

a
n

a
n

z
w

c
w

a
n

a
n

a
n

a
n

a
n

a
n

a
n

a
n

a
w

a
n

a
n

o
n

a
n

9
9

s
p

6
6
4
3

b
e
d
s

0
9
4
5

6
9
4
3

w
a
s

w
a
s

6
8
4
3

v
0

.
v
0

w
n
s

s
o

9
0

.
9
0

s
o

.
s
o

I
n

I
n

I
n

I
n

I
n

I
n

I
n

I
n

I
n

v
1

v
1

I
w

I
w

v
1

v
1

v
1

v
1

s
o

7
8

3
8

t
a

t
o

t
o

w
e

w
e

w
e

9
1

.
9
1

s
o

9
8

9
1

.
9
1

s
1

.
9
1

II

-
-
-
-

-
-
-
-
-
-
>
11

N
O
I
L
V
Z
I
T
V
I
L
I
N
I

a
d
o

t
d
o

z
o
o

t
d
o

a
d
o

t
d
o

3
8
9

0
.
1
8

3
0
9

o
n
e

0
%

H
O
S

U
B
O
O
V

3
A
d
“

I
A
d
“

8
$
0
8

V
5
0
8

0
%

"
0
5

t
o
o

a
d
o

t
d
o

a
d
o

[
G
O

3
9
9

0
J
3

3
0
9

0
J
9

H
S
O
O
V

8
A
d
“

I
A
d
"

8
$
0
8

V
S
O
B

87

88

B
U
S

A
a
r
e

d
s
t

B
U
S

B
a
n
d

d
o
t

M
P
Y

t
o
p
t

o
p
2

M
P
Y

2
O
p
t

o
p
2

A
D
D
E
R

o
p
t

S
U
M

t
o

B
U
S

A
a
r
e

d
o
t

B
U
S

B
a
r
e

d
o
t

M
P
Y

1
o
p
t

O
p
2

M
P
Y

2
o
p
t

o
p
2

A
D
D
E
R

O
p
I

o
p
2

S
U
M

t
o

I 1
<
-
-
-
-
-
-
-

1
-

2

I 1

T
2
'

T
2

R
7

R
I

R
3

R
I

R
3

R
4

R
6

R
4

L
A

L
A

A
I

M
I

M
I

M
I

M
I

M
I

M
I

M
I

0
2
’

D
2

a
2

M
2

M
2

A
2

M
2

M
2

M
2

M
2

M
2

M
2

M
2

X
2

X
2

W
1

W
2

W
1

W
2

W
4

W
5

W
4

0
2
’

0
2

C
2

$
2

5
2

C
2

C
2

S
2

S
2

A
A

A
A

A
A

A

W
9

X
2

X
2

W
I

W
2

W
1

W
2

W
4

W
5

C
3

D
2
'

0
2

C
2

5
2

S
2

C
2

C
2

5
2

A
A

A
A

A
A

A
A

—
-

O
$
3
W
7

T
2
'

T
2

W
7

0

A

c
o
w
:

0
-
5
2
w
1

o

$
3
W
7

C
S
W
9

O
X
2
'

O
X
2

a
2

C
2
W
I

S
2
W
2

S
2
W
I

A
A

A
A

6
2
W
2

C
2
W
4

3
6

3
7

3
8

3
9

4
O

4
1

4
2

4
3

4
4

4
5

4
6

4
7

R
7

R
9

C
r
e
g

S
r
e
g

R
7

R
1

R
3

I I
<
-
-
-
-
-
-
-

I
0

I

I I

T
I
’

T
I

R
8

R
1

R
2

R
I

R
2

R
4

R
5

R
4

L
A

L
A

A
I

M
I

M
I

M
I

M
I

M
I

M
I

M
I

0
1
'

D
I

6
2

M
2

M
2

A
2

M
2

A
A

A
A

M
2

M
2

M
2

M
2

M
2

M
2

X
1

X
1

W
I

W
3

W
1

W
3

W
4

W
6

W
4

0
1
'

D
I

C
I

5
1

S
I

C
I

C
I

S
I

S
I

A
A

R
A

A
A

A
A

W
8

X
I

X
I

W
I

W
3

W
I

W
3

W
4

W
6

C
2

0
1
’

0
1

C
1

S
I

S
I

C
I

C
I

S
I

A
A

A
A

A
A

A
A

— O
'
S
2
W
7

T
I
’

T
I

W
9

0

A

C
I
W
I

O
S
I
W
I

O

S
2
W
7

C
2
W
8

D
X
I
’

O
X
1

d
2

C
I
W
I

S
I
W
3

S
I
W
I

A
A

A
A

C
I
W
3

C
I
W
4

A
A

R
6

R
7

M
I

M
I

A
A

A
A

A
A

A
A

A
A

C
r
e
g

S
r
e
g

S
r
e
g

C
r
e
g

C
r
e
g

S
r
e
g

S
r
e
g

C
r
e
g

C
r
e
g

S
r
e
g

S
r
e
g

C
r
e
g

M
2

M
2

W
5

W
7

C
2

C
2

W
4

W
5

S
2

C
2

A
A

C
2
W
4

0

R
9

R
7

M
I

M
I

A
A

M
2

M
2

W
8

W
7

S
2

S
2

W
7

W
8

C
2

S
2

A -
S
2
W
4

O

A 4
8

4
9 R
4

R
5

R
7

M
I

M
I

A
A

M
2

M
2

W
6

W
7

C
I

C
I

W
4

W
6

5
1

C
I

fi

C
I
W
4

0

S
I
W
6

S
I
W
4

C
I
W
6

C
I
W
7

S
I
W
9

S
I
W
7

A
A

S
2
W
5

S
2
W
4

A 5
0

5
1 R
6

R
8

R
7

M
I

M
I

A
A

M
2

M
2

W
9

W
7

S
I

S
I

W
7

W
9

C
I

S
I

A
A

S
I
W
4

O

A
A

C
2
W
5

C
2
W
7

R
9

M
I

A

M
2

W
8

C
2

W
7

5
2

C
2
W
7

S
2
W
8

A 5
2 R
8

M
I

A
A

A
A

C
r
e
g

S
r
e
g

S
r
e
g

C
r
e
g

C
r
e
g

S
r
e
g

S
r
e
g

C
r
e
g

C
r
e
g

S
r
e
g

S
r
e
g

C
r
e
g

M
2

W
9

C
I

W
7

W
9

S
I

C
I

A
A

A
A

C
I
W
7

O
S
I
W
7

C
I
W
9

A
A

5
3

5
4

5
5

5
6

S
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

R
7

R
9

C
r
e
g

S
r
e
g

R
8

R
1

R
2

6
5

6
6 R
4

6
7

6
8 R
5

6
9

7
0

7
1

7
2

R
7

R
8

A1. DKS Timing Diagram

APPENDIX 2

DESCRIPTION OF THE

DKS CHIP IN RTL

A2. Description of the DKS Chip in RTL

type REGISTER : Bit<l7:0>;

var

DYNREG : Bit<17:0>; /* Dynamic Register */

JOINT : Bit<1l:0>;

ROM : Bit<l7:0>;

R(9). CREG, SREG OF REGISTER;

ANGLE(6) OF JOINT;

LX, M1, M2, A1, A2, TXPORT, DXPORT, TXDLAY(2) 0F DYNREG;

TX(256). DX(256), CONS(5) OF ROM;

MPYI, MPYZ, ADDER OF Bit<l7:0>; /* C/L output */

SINCOS OF Bit<7:0>; /* Table address */

SC, CTRL, SGN 0F Bit<0=0>; /* Control signal */

MACRO TRIG (FUNC, I)

Cycle N: if FUNC = SIN then SC<-0 else sc<-l endif,

TXPORTé—TX[SINCOS(ANGLE(I)<11: 4»)] .

DXPORT<—DX[SINCOS(ANGLE(I)<ll:4>)];

Cycle n+1: Ml<—Lx, M2<—DXPORT, TXDLAY(1)<—TXPORT;

Cycle n+3: Ale—TXDLAY(2), A2<—MPY2, CTRL4—O;

Cycle n+4: if FUNC = SIN then Ls<—1 else Lc<—1;

END TRIG

Begin

Cycle (0): .TRIG(COS,5);

(l): .TRIG(SIN,S);

(2): .TRIG(COS,6); '

(3): .TRIG(SIN,6);

(4): R(6)<—ADDER;

(5): Mle-R(6), Mzé—CONS(O), R(4)<—ADDER; /* CONS(0)=d6 */

(6): .TRIG(COS,4), Mlé—R(6), M2<—ADDER;

(7): .TRIG(SIN,4), Alé-O, R(2)<—ADDER;

(8): Al<—0, R(9)<—ADDER;

(9): M14-R(4), M2<—CREG, R(l)<+ADDER;

(10): Ml<—R(4), M24—ADDER;

(ll): Ml<—R(4), M2<—ADDER, A1<—0;

(12): Ml<—R(1), M24—CREG, A1<—O, R(3)<—ADDER;

(13): M1<—R(2), M2<—SREG, Ale-0, RUM—ADDER;

(14): Mlé-Ru), 5:24-5st, Al<—0, R(S)<—ADDER;

(15): Ml<—R(2), M2<—CREG, Al<—ADDER, SGN4-1;

(16): Ml<—R(4), M24—CONS(0), A14—0, R(1)<+ADDER;

(17): .TRIG(COS,3), M1<—R(5), M24—CONS(0), Alé-ADDER;

(18): .TRIG(SIN,3), Alé—O, R(2)<—ADDER;

(19): A1<eo, R(7)<—ADDER;

(20): R(8)<—ADDER;

(21):

(22): A1<—R(7), A2<—C0N$(1); /* cous<1>=a3 */

(23): A1<—R(9), A2<—C0N$(2), R(7)<—ADDER; /* cons<2>=d4 */

(24): M1<—R(1), MZG—CREG, R(9)<—ADDER;

(25): Ml<—R(3), M2<~SREG;

89

End.

(26):

(27):

(28):

(29):

(30):

(31):

(32):

(33):

(34):

(35):

(36):

(37):

(38):

(39):

(40):

(41):

(42):

(43):

(44):

(45):

(46):

(47):

(48):

(49):

(50):

(51):

(52):

(53):

(54):

(55):

(56):

(57):

(58):

(59):

(60):

(61):

(62):

(63):

(64):

(65):

(66):

(67):

(68):

(69):

(70):

(71):

(72):

M1<—R(l),

Ml<—R(3) .

Ml<—R(4),

Ml<—R(6).

Ml<—R(4),

M1<—R(6),

M1<—R(7),

Ml<—R(9) ,

Ml<—R(7) ,

M2<—SREG,

M2<—CREG,

M2<—CREG,

M24—SREG,

M2<—SRBG,

M24—CREG,

M2<—CREG,

M24—SREG,

Mzé—SREG,

A2. Description of the DKS Chip in RTL

Al<—0;

Al<—ADDER, SGNé-l;

Alé-O, R14—ADDER;

Alé-ADDER;

A14—0, R3<—ADDER;

Al<-ADDER;

Al<—0, R4<—ADDER;

A14-ADDER, SGN4-l;

Alé-O, R64—ADDER;

.TRIG(COS,2), M1<—R(9), M2<—CREG, A1<—ADDER;

.TRIG(SIN,2), A1<-0, R(7)<~ADDER;

Al<—ADDER, SGN<—l;

R(9)<—ADDER;

Alé-R(7),

M14—R(1),

M14—R(3),

Ml<—R(l),

M1<—R(3),

Ml<—R(4),

Ml4—R(6),

Ml<—R(4),

Ml<—R(6),

Ml<—R(7),

Ml<—R(9),

M1<—R(7),

A2<—CONS(3);

M2<—CREG,

M24—SREG;

M2<-SREG,

M24—CREG,

M2<—CREG,

M2<—SREG,

M24—SREG,

M2<—CREG,

M2<—CREG,

M24-SREG,

M24—SREG,

/* CONS(3)=a2 */

R(7)<—ADDER;

A1<—0;

Ale-ADDER, SGN<—1;

A1<—O, SGN4—1, R14—ADDER;

JIM—ADDER, SGN4—l;

Al<—O, R34—ADDER;

AléeADDER, SGN<-1;

Alé—O, SGN<-1, R4<—ADDER;

A14—ADDER, SGN<—1;

Al<—O, R64—ADDER;

.TRIG(COS,1), M1<—R(9), M24—CREG, A1<—ADDER, SGN<—l;

.TRIG(SIN,1), Alé—O, SGN<+1, R(7)<—ADDER;

A14-ADDER, SGN€—l;

R(9)<—ADDER;

Al<—R(8),

M1<—R(l),

Ml<—R(2),

M14—R(1),

Ml<—R(2) ,

M1<—R(4) ,

M1<—R(5) ,

Ml<—R(4),

Ml<—R(5),

Ml<—R(7) ,

M1<—R(8),

M1<-R(7),

Ml<—R(9),

A2<—CONS(4);

M2<—CREG,

M2<—SREG;

M2<—SREG,

M2<—CREG,

M24—CREG,

M24—SREG,

Mzé—SREG,

M24—CREG,

M2<—CREG,

M24—SREG,

M24—SREG,

M24—CREG,

Al<—0, R(7)<—ADDER;

Al<—ADDER;

R(8)<—ADDER

/* cons<4>=d2 */

R(8)<—ADDER;

A1<—O;

JIM—ADDER, SGN<—l;

Ale—0, R1<—ADDER;

Al<—ADDER;

Ale-0, R34—ADDER;

Al<~ADDER, SGN<—1;

Al<—O, R4<—ADDER;

Ale—ADDER;

A1<—0, R5<—ADDER;

Al<—ADDER, SGN4-l;

90

APPENDIX 3

DKS MACHINE CODE

A3. DKS Machine Code

CLOCK ADRTAB SINCOS ROM BUSAR RSUM MPY A I A2/G MIWS CREG SREG

CVCLE Ev v s/c Et EH adr T adr L adr HI M2 zd b: A2 0 c0 SGN Lc Tc L: I:

..

2 I 6 I I O X 0 X 0 X I I X X 0 X O O O O

3 I 6 O I O X 0 O X I I I I O X 0 O

4 X 0 X I O X 0 I 6 I I I X 0 O

0-----------—--—----------------------------------u-uoccc------Q----------------n-

M‘----‘----------------------—-----------------------------------—-------.H

.--c-------------------------—-------------------—----------o-----------——-------.

.

.---—-------.-----o---~-—---—----—------------------o-----—---------------—------.

.-------w—--—--—-———-o---o------—Q—qn-n----——~-—---——---—-----—-—u--——--’-----—--—

X

X X

IO X 0 X 0 O X I 4 O X 2 I I I I O I O O

'17"';"¢3"'£"6m6"§"'T'I'BUWET"’5"""""""""""""""""

TIMI}?"i"6"'6"i"'}"Y"§"§"';"}'"5"""1"6"'}"""6”?“6'"-

°§é""i"$"'§"6mé"I’W’EMTLWQW‘"{"mY'é’"?"""6"6m6"?

'};""§"6'"I’émé’QmTT"T'é'"I'VE-""73”"; """"33'3"?

75'"'I-émf'6"'6"§"'3"5'"6'?"'£"}m6"}"'}"&mi‘T";7"}3'}?

'Jé'mfémfé'"3'13“;"3"I"???"""8'7";"TBWQYB‘B’

O

..

..

..

..

..

..

..

.......-.--.-.----—...-.-.-.-.-...--..-......-.—....—........Q....--..-...--.----.

91

92

50

49

.—--.—....-.-.-....-....-----——.c..-...-—-—-—...—.....-............--...-._--.-....

48

47

.---w----—----------OD-----.

46

.....-..-—--—.-........---..—..—.....----.--.---.-o...-.-—.——.......-..-.....--.--.

45

44

43

42

41

4O

39

.......‘O...’......-.-....-.-.-...-.....-..-.--..........—..-.---..--...-.---...-.

38

37

a..—...-—..--—.-...--.—.-.---—....-.....-..-.-..-....----.——--—-....--.—.....-—-..

36

.----------—--------------------------------_---------------—---¢-----------c-----.

35

34

33

32

-----------------------------—---.

3I

.--—‘---------‘~------

30

29

28

27

26

--------.--.-.-.---------------------..----.

25

CLOCK AORTAB SINCOS ROM BUSAR

CYCLE Ev v o/c E: E“ our 7 adr

RSUM

L odr MI

MPY I A2/G MINUS CREG

M2 16 b3 A2 0 CO SGN Lc Ic LI

SREO

II

A

A3. DKS Machine Code

93

72

7I

.-------—---:--------------------—-----u-----------------—------------h----------.

7O

69

68

-

.........-.-.-—-.-.....—.-—...--....---.—-.--.-.-..-—...-..--—-.....-.—-~.....-...

67

66

...-....-...-...-...-...----.—.........-—---....-.....-..O—.-.—..-.....----..---..

65 X 0 (5 x

.......-......-........-.J'..—......-...........-...........-.——---......-...-...........

64

63

62

--¢-----------------------n--.—-—«.---v-u--n——-—-——---—------~u—u.----------------—---.

61

60

59

58

.------------------------c-----‘o-------—----Q----n------a—------—---O-------------

57

C-----------—-------------.-----------------—-------------o-------------—-QQ------.

56

55

54

----------------D---—-~¢----------------Q-----------------------------——---------.

53

.....-.-.......---........--.-....-----.-..-.-......o.—.---.---....-----..-...--..

52

--------------—-----------------—---

SI

CLOCK ADRIAB SINCOS ROM

CYCLE Ev v s/c Et EM adr T adr

RSUM MPY

L adr MI

A I A2/G MINUS

M2 2d bs A2 G CO SGN Lc

CREG

Tc Ls

SREG

Ts

BUSAR

A3. DKS Machine Code

APPENDIX 4

PROGRAM LISTING AND SIMULATION RESULT

A4. Symbolic Simulation Program Listing

!
l

PROGRAM DKSVRF 74/175 OPT: L ROUND: A(S/ FTN 5. 587 02é27/85

Do-gLONcl- DT. ARG= -CDMMDN/FIXED CSa USER/— FI ED DB=-Té/DSB/- SL/ ER/ /-PMD/ ST PL= .

0 PROGRAM DKSVRF

c THIS PROGRAM SIMULATES THE DATA FLOW (USING SYMBOLIC VALUES)

C IN THE DKS CHIP TO VERIFY THE CONTROL SIGNAL SPECIFICATION

E AND THE DESIGN AS A wHDLE AT THE BEHAVIORAL LEVEL.

IMPLICIT INTEGER (A-ZI

COMMON /CONTRL/CDNTRL 11.2)

COMMON /CFIELD ADRTBL SINCOS CDNS.BUSAR RSUM MPY A1 A2. MINUS. c. 5

COMMON /MEM/RO go; 4).IHETA(6).UNDEF.CSFLAG. SIGN

COMMON /REG/REG 9).CREG.SREG

COMMON /LATCH DYNREG(4.2).DELAY(4 2),TXPORT DXPORT. Lx

6 COMMON /MISC/ USA BUSB.MPY1.MPY2.ADDER,MYPIPE(12

CHARACTERF2 ROM. THETA UNDEF.CREG SREG.CSFLAG.SIGN

CHARACTERt4 TXPORT DXPORT.LX.DE Y

CHARACTERt1oo DYNREG REG.MPY1.MPY2.ADDER.BUSA.BUSB.MYPIPE

C EXTERNAL PHASE1. PHASE2

C FOR INFORMATION ABOUT THE USAGE OF THE VARIABLES.

g SEE COMMENTS IN SUBRDUTINE PHASE1.

DATA ROM/D6’.’A3’ 'D4’ 'A2' '02'

DATA THETA/'x1'.'x2 x3' 'x4 x ' xe'l

DATA AORTBL.SINCOS CONS. BUSAR RSUM. MPY A1/L 2. 3 4 s 6 7/

DATA A2.MINUS,C.S/é.9.10.11/

C DATA UNDEF/’E?’/

g INITIALIZATIDN: SET THE CONTENTS OF ALL STORAGE ELEMENTS TO UNDEFINED

DD 1 I: 1 4

DYNREG I. =UNDE

DYNREG I 2 =OELAY(I.1)=DELAY(I.2)=UNDEF(2:)

1 CONTINUE

DO 2 .9

REG(I “UNDEF(2)

2 CONTI

BUSA=BUSB=UNDEF

CREG= SREG= UNDEF(2:)

TXPORT=DXPDRT= Lx= UNDEF(2:)

MPY1=MPY2= ADDER=UNDEF(2:)

MYPIPE(1 1): MYPIPE(1 2):UNDEF(2)

CSFLAG=SIGN:UNDEF(2:)

PRINT

3 FORMAT 3('1')

C THE BEHAVIOR OF THE CHIP IS SIMULATED THROUGH THE COMPLETE D.K.S.

c CALCULATION PERIOD DRIVEN BY THE CONTROL SIGNAL TABLE. THE ENTIRE

C PERIOD CONSISTS OF 77 2-PHASE. NDN-OVERLAPPED SYSTEM CLOCK CYCLES

c DURING PHASE ONE. DATA FLowS BETwEEN VARIOUS STORAGE ELEMENTS VIA

c SYSTEM OR LOCAL BUSES. DURING PHASE Two DATA IS TRANSFERRED TO

C PHASE Two LATCHES AND PROCESSED BY COMBINATIONAL LOGIC SECTIONS.

C THE ASSIGNED FUNCTION IS SIMULATED BY MANIPULATING THE SYMBOLIC

g VALUES OF DATA. THE BUS Is ALSO PRECHARGED DURING PHASE Two.

ERR=o

CYCLE=O

OPEN 1.F;LE=’TABLE’)

READ 1.1 NUM DBUG

IF {NUM .GT. 7B) NUM= 76

100 IF CYCLE .GT. NUM) THEN

CLOSE (1)

CALL DMPREG

STOP

ENDIF

READ (1 *)E((CDNTRL(FIELD SUB). SUB=1.2). FIELD=ADRTBL.S)

IF (DBUG.1)

PRINT t.E

PRINT ., ' CY LE 2 '. CYCLE. ' CONTROL wDRD = '. ((CONTRL

+(FIELD.SUB). SUB=1.2). FIELD=ADRTBL.S)

C ENDIF

C CALL PHASE1 (ERR)

IF (ERR .NE. 0) GOTO 200

94

A4. Symbolic Simulation Program Listing

PROGRAM DKSVRF 74/175 0PT81.ROUND= A/ S/ M/-D.-DS FTN 5.14587 02/27/85

IF (DBUG .E0. 1) CALL DMPDYN

CALL PHASE2

IF (DBUG .E0. 1) THEN

CALL DMPDY

PRINT 1. ' MPY1 . '.MPY1

PRINT ., '

PRINT 1. ' ADDER = ’.ADDER

PRINT :. ' '

CALL DMPREG

C ENDIF

IF (éCYCLE EO.9).OR.(CYCLE.Eo.24).OR.(CYCLE.EO.40).OR.(CYCLE.EO

+.58)g ALL DMPREG

E=CYCLE+1

c GDTO 100

8 ERROR HANDLING SECTION

200 PRINT '. ' ttttt ERROR c.555'

pRINT ., . CYCLE = '. CYCLE. RRDR CODE = '. ERR

PRINT -. ' CONTROL VORD = '. ((CDNTRL(FIELD. SUB). SUB=1.2). FIEL

+D=ADRTBL.S)

PRINT .. ' '

PRINT -. ' BUSA . '. BUSA

PRINT o. ' BUSB = '. BUSB

PRINT t. ' '

CALL DMPDYN

CALL DMPREG

STOP

END

SUBROUTINE DMPREG 74/175 DPT=1 ROUND: A/ s/ M/-D - TN 5.1+587
-- -- _ - 02/?m/DON5LONG/-DT ARG- CDMMDN/— FIXED. CS— USER/~F IXEDD.DB=-TB/-SSB/- SL/ ER/ ID/ pmo/ 51 pLL=500005

SUBROUTINE DMPREG

COMMON /REG/REG(9)

CHARACTERv11oo REG

831N111i é OUTPUT REGISTER CONTENT DUMP 11:11'

PRINT c. ' OUT REG '. I. ' = '

1 CONTINUE ‘ REG(I)

PRINT t. ' ,

RETURN

END

SUBROUTINE DMPDYN 74/175 DPT: 1 ROUND= A/ s/ M/- D 05 TN 87 02/27/35
9?;gLONG/-OT.ARG=’COMMON/ FIXED. CS= USER/ FIXED. DB=-TB/ 58/" SL/ ER/ 10/ PMD/ SI. PL=SOOOO

SUBROUTINE DMPDYN

COMMON /LATCH/DYNREG(4 2)

CHARACTER»1oo DY

SSINTIFi ; ttttEE GDYNAMIC REGISTER CONTENT DUMPo

’ DYN REG ’. I. ' PHASE '. d. ’ = '. DYNREG(I.J)

95

TN5..

A4. Symbolic Simulation Program Listing

SUBROUTINE PHASE1 74/175 DPT-1 RDUND= A/ s/ M/D FTN 5 5802/27/85

Do--LONG/- 0T. ARG= -COMMDN/- FIXED. CS= 'USER/-FIxED DB=- TB/DSB/- SL/ ER/- 0/ PMD/- ST. PL= 50000

SUBROUTINE PHASE1 (ERR)

IMPLICIT INTEGER (A-ZI

COMMON /CDNTRL CONTRL 11.2)

COMMON /CFIELD/ADRTBL SINCOS CONS BUSAR RSUM MPY A1 A2 MINUS c 5

COMMON /MEM/ROMEO:4) THETA(6). UNDEF. CSFLAG. SIGN

COMMON /REG/REG 9).CREG SREG

COMMON /LATCHéOYNREG(4.éDELAY 4 2) TXPORT DxPDRT. Lx

COMMON /MISC/ USA.BUSB.MPY1.MPY .ADOER.MYPIPE(1.

CHARACTER 2 R0

O
O
O
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
0
0
0

M. THETA. UNDEF CREG SREG. CSFLAG. SIGN

CHARACTER 4 TXPORT DxPDRT. Lx. DELAY

CHARACTER1100 DYNREG. REG. MPY1. MPY2. ADDER. BUSA. BUSB MYPIPE

VARIABLE USAGE EXPLANATION:

CONTRL--CONTROL WORD OF THE CURRENT CYCLE

TST INDEX IOENTIFIES ’FIELD’ AS IN ’CFIELD' COMMON BLOCK

EACH FIELD HAS 2 SUBFIELDS IDENTIFIED BY THE 2ND INDEX

DYNREG(I. PHASE)--DYNAMIC REGISTERS CONTROLLED BY PHASE = 1 OR 2

I= 1: M1. MULTIPLIER OPERAND LATCH CONNECTEC TO BUSA

I=2t M2. MULTIPLIER OPERAND LATCH CONNECTEC T0 BUSB

I=3: A1. ADDER OPERAND LATCH CONNECTEC TO BUSA

I=4t A2, ADDER OPERAND LATCH CONNECTEC TO BUSB

DELAY(I.PHASE)'-DELAY ELEMENTS CONTROLLED BY PHASE 8 1 OR 2

I=1: 1ST DELAY STAGE FOR TX

I=2: 2ND DELAY STAGE FOR TX

I=3: 1ST DELAY STAGE FOR SIGN CONTROL IN SIN CALCULATION

I=4: 2ND DELAY STAGE FOR SIGN CONTROL IN SIN CALCULATION

BUSA(B)‘-THE 1ST CHARACTER IS A E/F FLAG FUNCTIONS SIMILAR TO CTRLAH

TASK 1: RULE CHECKING

IF CDNTRL(BUSAR 1)+CONTRL(RSUM.1I .GT. 1 THEN

I (CDNTRL(BUSAR. 2) .E0. CONTRL RSUM. 2) ERR=1

..... ERROR: TRY TO LDAD AND TRANSMIT AM REG AT THE SAME TIME '10:.

ELEEéF2(CONTRL(C.1)+C0NTRL(C.2) .GT. 1 THEN

‘*‘ ERROR: TRY TO LOAD AND TRANSMIT CREG AT THE SAME TIME *“

ELES;F3(CONTRL(S. 1)+CONTRL(S. 2) GT. 1)THEN

'* ERROR: TRY TO LOAD AND TRANSMIT SREG AT THE SAME TIME ''

IEDIERR .NE. 0) RETURN

TASK 2: PROCESS LOAD BUS CASES

IF (CONTRL SINCOS .E0. 1) THEN

BUSA=’F /TXPMORT

BUSB=’F //DXPORT

NDIF

IF I£(CONTR%(BUSA5 1) .E0. 1) .AND. (CONTRL(BUSAR.2) .NE. 0)) THEN

“RR " E E') THEN

:ttttEEREGISTER ATTEMP To LOAD THE ALREADY LOADED BUS A

ELSE

BUSA='F’ //REG(CONTRL(BU$AR. 2))

ENDIF

ENDIF

IF (CONTRL‘CONS. 1) .E0. 1) THEN

IF (BUSB .NE. ’E’) THEN

.....E RROM2ATTEMP TO LOAD THE ALREADY LOADED BUS B

RETURN

ELSE

BUSB=‘F’//ROM(CONTRL(CONS.2))

ENDIF

ENDIF

IF éCONTRL’C.2) .E0. 1) THEN

I (BUSB :1 .NE. ’E’) THEN

96

A. Symbolic Simulation Program Listing

SUBROUTINE pHASE1 74/175 opfs1.ROUND= A/ s/ M/-D.-DS FTN 5.1+537 02/27/85

c CREG ATTEMP TO LOAD THE ALREADY LOADED BUS B

RETURN

ELSE
BUSBx'F'//CREG

ENDIF

ENDIF

0
0
0

IF éCONTRLES”.2) .E0. 1) THEN

.NE. ’E) THEN

ERR 14

OttttRE¥REg ATTEMP TO LOAD THE ALREADY LOADED BUS B '*‘*'

LSE

BUSB='F'//SREG

ENDIF

ENDIF

IF 1(CONTRL2A2) 2) .E0. 1 THEN

NE. ’E’ THEN

ERR=

it‘ttpE¢BBER OUTPUT ATTEMP TO LOAD THE ALREADY LOADED BUS B *“"

LSE

BUSB=‘F'//AOOER

ENDIF

ENDIF

TASK 3: PROCESS THE LOADINGS OF REGISTERS OR CONTROLLED-LATCHES

IF P((CONTRL(ADRTBL. 1) .EOngg .AND. (CONTRL(AORTBL.2) .NE.O)) THEN

tittl Ottt.’

PRINT * ’ AT CYCLEA'. CYCLE-1. ' ATTEMP TO LOAD THETA. INSTRU

+EL69N IGNOREO.’

.AND. (CONTRL(RSUM.2) .NE. 0)) THEN

IFE(SOQTRL(MPY. 1) .GT. 2) THEN

fi'ttfi SLTEMP TO LOAD MULTIPLIER INPUT LATCH MORE THAN ONCE ****‘

RETU

IF (CDNTRL(MPY.1) .E0. 1) THEN

DYNREG(1.1)=LX

ELSEIF (CONTRL(MPY.1) .E0. 2) THEN

IF (BUSA(1) .E0. '0') THEN

ERR=22

RETURN

ELSE

DYNREG$1.1)=BUSA(2)

BUSA(:)='0'

ENDIF

ENDIF

ENDIF

IF SCONTRLfMPY..2) .E0. 1) THEN

.EO . '0') THEN

AttttE ATTEMP TO LOAD MULTIPLIER INPUT LATCH MORE THAN ONCE

RETURN

ELSE

DYNREG(2.1)=BUSB(2:)

BUSB(:1)= 0'

ENDIF

ENDIF

IFEééCgNTRL(A1.1) .NE. 0) .AND. (CONTRL(A1.2) .NE. 0)) THEN

SSREETUSLTEMP TO LOAD A1 MORE THAN ONCE *‘***

ELEgéF2é(CONTRL(A1,1) .GT. 2) .OR. (CONTRL(A1,2) .GT. 2)) THEN

t‘tfit ATTEMP TO LOAD A1 MORE THAN ONCE ‘*'*'

RETURN

ELSEIF (CONTRL(A1.1) .E0. 2) THEN

97

A4. Symbolic Simulation Program Listing

SUBROUTINE RHASE1 74/175 ORT=1.ROUNO= A/ S/ M/-D.-DS FTN 5.1+537 02/27/85

DYNREG(3.1&"O'

ELSEIF (CONT L(A1 1 E?. 1) THEN

DYNREGé3.1&=DELAY 2.2

ELSEIF (ONT L(A1.2 E0. 1) THEN

DYNREG(3.1g=ADDER

ELSEIF (CONT L(A1.2) .E0. 22 THEN

IF (BUSA(:1) .E0. '0') TH N

ERR=26

RETURN

ELSE

DYNREG$3.1)=BUSA(2)

BUSA(:)8'0'

ENDIF

ENDIF

IF (CONTRL(A2.1) .GT. 2) THEN

ERR=27

c ATTEMP TO LOAO A2 LATCH TWICE

R TURN

ELSEIF (CONTRL(A2.1) .E0. 1) THEN

DYNREG(4.1&=MPY2

ELSEIF (CONT L(A2.1) .EO. 2) THEN

IF (BUSB(1) .E0. '0') THEN

ERR=23

RETURN

ELSE

DYNREG(4.1)=BUSB(2)

BUSB(:1)=’O'

ENDIF

ENDIF

IF £CONTRL SINCOS.2) .E0. 1) THEN

I (BUSA :1) .E0. ’0’) THEN

ERR=29

RETURN

LSE

OELAv(1 1)=BUSA(2)

BUSA(:1)='O’

ENDIF

ENDIF

IF ECONTRLEC,1; .E0. 1 CREG=ADDER

c IF CONTRL S 1 .E0 1 SREG=ADDER

8 TASK 4: TRANSFER OATA TO OTHER PHASE-1 LATCHES FROM PHASE-2 LATCHES

DELAY 2.1 =OELAv(1.2)

OELAv 3.1 =CSFLAG

OELAv 4.1 =OELAv(3.2)

SIGN=DELAYS4.2)

MYPIPE(1.1 =MPY1

RETURN

END

98

A4. Symbolic Simulation Program Listing

SUBROUTINE PHASE2 74/175 OPT' 1. ROUNO= A/ S/ M/ TN 5. 1*58 7 02/27/85

OOI-LONG/ OT. ARG3--COMMON/- FIXED. CS'l USER/ FIXED. OBI-TB/DSB/- SL/ ER/- IO/- PMO/ ST. PL= 50000

FTNS.

0
0
0

a
0
0
0

0
0
0

M
0
0
0
0
0

0
0
0

SUBROUTINE PHASE2

IMPLICIT INTEGER (A-zz

COMMON /CONTRL/CONTRL 11.2)

COMMON /CFIELD¢A08TBL SINCOS CONS BUSAR RSUM MPY AL A2. MINUS c. 5

COMMON /MEM/RO EC. 4) THETA(6). UNDEF. CSFLAG. SIGN

COMMON /REG/REG 9) CREG SREG

COMMON /LATCH/DYNR§G§4.§).DEL 34 2) TXPORT, DXPORT. Lx

COMMON /MISC/8USA .BU 8.MPY1.MPY .ADDER. MYPIPE(1. 2)

CHARACTER12 ROM THETA UNDEF.CREG SREG.CSFLAG.SIGN

CHARACTER‘d TxRORT DXPORT.LX DELAV

CHARACTERv1OO DYNREG REG.Mpvi.Mpv2.ADDER.8USA.BUSB.MYRIRE

CHARACTER‘TOO 0P2

TASK 1: TRANSFER DATA FROM RHASE-1 LATCHES TO PHASE-2 LATCHES

DO 1 1x1 4

DYNREG I 2)=DYNREG(I

DELAY 2)=DELAY(I.1)”

CONTINU

MYPIPE(1.2)=MYPIPE(1.1)

TASK 2: RRECHARGE BUS AND UNDEFINE PHASE-1 CONTROLLED LATCHES

gusg=Dusa=-UNOEF

0DYNREGII.1)=UNDEF(2:)

CONTINUE

DELAY(1.1)=UNDEF(2:)

TASK 3: SIN/COS SIMULATION

IF (CONTRL‘ADRTBL. 1) .E0. 1) THEN

CSFLAG

Lx= THETA(CONTRL(ADRTBL. 2 A

TXPORT=’T'//THETA CONTRL DRTBL.2)(2:2)

DXPORT='O’//THETA CONTRL ADRTBL,2

IF (CONTRL(SINCOS.1).EO.1) THEN

TXPORT2323;=""

DXPORT 4:4 :""

ENDIF

ELSE

LX=UNDEF(2:2

CSFLAG=UNDE (2:

TXPORT=OXPORT=UNOEF(2)

ENDIF

TASK 4: SIMULATE DATA FLOWING THROUGH COMBINATIONAL LOGIC SECTIONS

TASK 4.1: SIMULATE THE 1ST STAGE OF MULTIPLIER PIPE

IFM((DYNREGH 2)(:1). Eo. 'x) .AND. (DYNREG(2.2)(:2).EO.'OX')) THEN

WDYNREGT

ELSE

géLL ACTLEN(M1 FLAG. DYNREG(1 2))

IF DYNREG(1. 2) 1)ENEo. ' -') SGN=-SGN

IF FLAG . EQ.

IF (SGN .GT.)TT

ELgEv1=-DVNREG 2. 2)(:N2)//DYNREG(1. 2)

MP;1=’-’//DYNREG(2.2)(:2)//DYNREG(1.2)(2:)

IF (SGN .GT. 0)T

EL:EY1=—DYNREG(2 2)(:N2)// (’//DYNREG(1 2)(: M1)//’)'

MPY1=’-’//DYNREG(2.2)(:2)//DYNREG(1.2)(2:)

ENDIF

ENDIF

ENDIF

TASK 4.2: SIMULATE THE 2ND STAGE OF MULTIRLIER PIPE

MPY2=MYPIPE(1.2)

99

A4. Symbolic Simulation Program Listing

SUBROUTINE PHASE2 74/175 OPT-1.ROUND' A/ S/ M/‘D.-DS FTN 5.14587 02/27/85

TASK 4. 3: SIMULATE ADDER FUNCTION

IF$(DYNREGgé2g$1.’T) .AND. (DYNREG(4.2)(:2).EO.'DX’)) THEN

I (3 "") THEN

ADDER-'c(//DYNREG°

0
0
0

32)(2n

ELSE

ADDERx'S l/DYNREG(3.2)(2:2)

END F

leé§§%6N(i1! .NE. '1') .OR. (CDNTRL(MINUS.1) .NE. 0)) THEN

‘0

PRINT t.' ... ADDER CONTROL ERROR IN SINE SIMULATION 4-1'

PRINT . '

ENDIF

ELSE

geht'ACTLEN(L2.FLAG.DYNREG(4.2))

IFSéDYNREG(4..2)(:1) .Eo. '-') THEN

IF (FLAG .E0. 2 HEN

OP2= DVNREG(4.)(3: L2- 1)

L2=L2 3

FLAG= 1

ELSE

0P2=DYNREG(4.2)(2:)

L2=L2-1

ENDIF

ELSE

OP2=DYNREG(4 2)

ENDIF

IF (CONTRL MINUS 1 +CONTRL (M INUS.2) .E0. 2) SGN=~SGN

IF DYNRE 3.2)(.E0. 0) THEN

IF (SN HEN

AODER=

ELSEIF (FLAG ED. 0) THEN

ADDER=’-’//OP2

ELSE

ADDER=’-('//0P2(:L2)//')’

ENDIF

ELSE

CALL ACTLEN(L1 FLAGI DYNREG(3. 2))N

IF (DYNREG(3 2)(:1) .NE.)

IF (SGN .GT. OI HEN

ADDER=DYNREG 3.2) :L1)‘/ + //OP2(: L2)

ELSEIF (FLAG .EO. D THE

ELggDER=DvNREG(3.2 :L1)//'-'//OP2(:L2)

ADDER=DvNREG(3,2)(: L1)// -('//OP2(:L2)//')'

ENDIF

EL E

GN=-SGN

IF (FLAG1.EO.O THEN

IF (SGN . GT. 0

ADOER=’-(’//DYNREG(3.2)(2: L1)//'+'//0P2(: L2)//)I

ELSEIF (FLAG ED. 0) THEN

ELgEDER='-(//DvNREG(3.2)(2:L1)//'-'//OP2(:L2)//)'

AODER=’-(’//DYNREG(3.2)(2:L1)// -(’//0P2(L2)//'))'

ENDIF

LSE

IF (SGN .GT. 0 TH

ADDER=OYNREG 3. 2)N :L1-1)//'+'//0P2(:L2)//’)'

ELSEIF (FLAG . THEN

ELgDDER=—DYNREG(3. 2) :L1-1)//'-'//OP2(:L2)//')'

ADDER=DYNREG(3.2)(:L1-1)//'-('//0P2(:L2)//'))'

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

RETURN

END

100

A4. Symbolic Simulation Program Listing

SUBROUTINE ACTLEN 74/175 0PT-1.ROUND= A/ S/ M/‘D 'DS FTN 5.1+587 02427/85

ggfiéLONGI-OT,ARG=-COMMDN/-FIXED.CS' USER/~FIXED.DB=-Té/-SB/-SL/ ER/-lD/-PMD/-ST.PL= 0000

SUBROUTINE ACTLEN (I.FLAG.STRING)

INTEGER FLAG

gHgRACTER'100 STRING

0.

IF (STRING(I I) .Eo. '(') THEN

FLAG=2

ELSE

FLAG=O

ENOIF

1 IF £STRING(I:I) .go. ' ' GOTO 2

I (FLAG .E0. 2 GOTO

IFd STRING(I:I .Eo. ' ') THEN

ELSESF'(STRING(I:I) .Eo. ')') THEN

ELSEIF ((STRING(I I) .EO. '+') .OR. SSTRING(I:I) .Eo. '-')) THEN

IF ((FLAG .E0. 0) .AND. (J .E0. 0) FLAG=1

ENOIF

T=I+1

IF (1 .LT. 100) GOTO 1

2 I=I~1

RETURN

ENO

101

A4. Symbolic Simulation Program Listing

8“88 OUTPUT REGISTER CONTENT DUMP 28888

OUT REG 1 8 C605

OUT REG 2 8 56

OUT REG 3 8 7

OUT REG 4 8 55

OUT REG 5 8 7

OUT REG 6 8 C5

OUT REG 7 8 ?

OUT REG 8 8 7

OUT REG 9 8 DGCS

‘8i‘8 OUTPUT REGISTER CONTENT DUMP 8ttt8

OUT REG 1 8 C4C6C5-5456

OUT REG 2 8 S4C6C5+C4SG

OUT REG 3 8 C655

OUT REG 4 8 C455

OUT REG 5 8 $455

OUT REG 6 8 C5

OUT REG 7 = D6C4S$+A3

OUT REG 8 = 065455

OUT REG 9 8 06C5+D4

01.1: OUTPUT REGISTER CONTENT OUMP

OUT REG 1 - c3(C4CGc5-S4SG)-53CGSS

OUT REG 2 - S4C6C5+C4SG

OUT REG 3 : 53(c4cscs-S4SG)+G3CGSS

OUT REG 4 - c3c4ss+sacs

OUT REG 5 = S455

OUT REG 6 a 53c4SS-c3cs

OUT REG 7 = c3(OGC4SS+A3)+Sa(Osc5+04)

OUT REG 8 = 065455

OUT REG 9 = S3(OGC4SS+A3)-03(OGCS+O4)

888.8 OUTPUT REGISTER CONTENT DUMP 9.888

OUT REG 1 8 C2(C3(C4C6C5-S456)'S3C655)‘S2(S3(C4C6C5‘5456)+C3C6$5)

OUT REG 2 = S4C6C5+C4SG

OUT REG 3 8 -(S2(C3(C4C6C5-Sd$6)'SSCGSS)+C2(S3(C4C6CS-S4SG)+C3C6$5))

OUT REG 4 8 C2(C3C4SS+S3C5)*S2(S3C4SS‘C3C5)

OUT REG 5 = $455

OUT REG 6 8 '(S2(C3C4SS+S3C5)+C2(S3C4SS-C3CS)T

OUT REG 7 8 C2(C3(DGC4SS+A3)+S3(OGCS+04)+A2)'52(SS(DGC4SS+A3)~C3(D6C5+04))

OUT REG 8 8 065455+D2

OUT REG 9 8 -(S2(C3(OGC4SS+A3)+S3(06C5+O4)+A2)+C2(53(DGC455+A3)-C3(D6C5+04)))

888** OUTPUT REGISTER CONTENT DUMP 88888

OUT REG 1 8 C1(C2(CS(C4C6C5-S4SG)’SGCGSS)'$2(S3(C4C6C5-54$6)+C3C655))‘51154C6C5+C456)

OUT REG 2 8 S1(C2(C3(C4C6C5“Sd$6)‘53C655)'52(S3(C4C6C5-S456)+C3C655))+C1(S4C6C5*C456)

OUT REG 3 8 -(S2(C3(C4C6C5-Sd$6)'SGCGSS)+C2(53(C4C6C5-5456)+C3C655))

OUT REG 4 8 C1(C2(C3C4SS+S3C5)'S2(S3C4SS-C3C5))‘S15455

OUT REG 5 8 S1(C2(C3C4SS+SBCS)‘S2(S3C4SS-C305))+C1S4SS

OUT REG 6 8 -(S2(C3C4SS+S3C5)*C2(SSC4SS-C3C5))

OUT REG 7 8 C1(C2(C3(DSC4SS+A3)+S3(DGC5+04)+A2)-S2(53(DGC4SS+A3)-C3(DGC5+D4)))'S1(D6SdSS+O2)

OUT REG 8 8 '(S1(C2(C3(DSC4SS+A3)+S3(OGC54D4)+A2)-S2(S3(DGC4SS+A3)-C3(DGC5*D4)))'C1(DGS4SS+D2))

OUT REG 9 8 '(52(C3(DGC4SS+A3)*S3(DGC5+O4)+A2)+C2(S3(DGC4SS+A3)-C3(DGC5+04)))

102

BIBLIOGRAPHY

10.

ll.

12.

BIBLIOGRAPHY

J. Denavit, and R. s. Hartenberg, "A Kinematic Notation for

Lower-Pair Mechanisms Based on Matrices," Journal of Applied

Mechanics, 1955, pp. 215-221.

E. Ribble and K. Olson, "Skeletal Motion Processor for High

Speed Robotics and Graphic Computations," Proceedings of 1984

International Conference on Robotics, IEEE Computer Society

Press, 1984, pp. 230-238.

Introduction to VLSI Systems, C. Mead and L. Conway, Readings,

MA: Addison-Wesley, 1978, Chapter 3-5.

Robot Manipulators: Mathematics, Programming and Control, R. P.

Paul, Cambridge, MA: MIT Press, 1981, Chapter 1,2.

G. C. S. Lee, ”Robot Arm Kinematics" in Tutorial on Robotics,

G. C. S. Lee, R. C. Gonzalez, and K. S. PO, 1888 Computer

Society Press, 1983, pp. 47-65.

VLSI System Design, When and How to Design Very-Large-Scale

Integrated Circuits, S. Muroga, Wiley, 1982, p. 42, Chapter

7.9.

J. A. Darringer, et al., "LSS: A System for Production LOgic

Synthesis,” IBM Journal of Research and Development, Vol. 28,

No. 5, September 1984, pp. 537-545.

W. H. Elder, P. P. Zenewicz and R. R. Alvarodiaz, ”An

Interactive System for VLSI Chip Physical Design,” IBM Journal

of Research and Development, Vol. 28, No. 5, September 1984,

pp. 524-536.

F. J. Hill, 2. Navabi, et al., "Hardware Compilation from an

RTL to a Storage Logic Array Target," IEEE Trans. on

Computer-Aided Design, Vol CAD-3, No. 3, July 1984, pp.

208-217.

S. C. Johnson, "VLSI Circuit Design Reaches the Level of

Architecture Description," Electronics, May 3, 1984, pp.

121-128.

P. Wallick, "On the Horizon: Fast Chip Quickly," IEEE Spectrum,

Vol. 21, No. 3, March 1984, pp. 28-34.

W. M. vanCleemput and H. Ofek, "Design Automation for Digital

Systems," IEEE Computer, Vol. 17, No. 10, October 1984, pp.

103

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. U. Smith and J. A. Dallen, "A Comparison of Design

Strategies for Software and for VLSI,” IEEE 1984 Workshop on

the Engineering of VLSI and Software, IEEE Computer Society,

1984, pp. 160-165.

D. H. Barbe, "VHSIC Systems and Technology," IEEE Computer,

Vol. 14, No. 2, February 1981, pp. 13-22.

F. Guterl, P. Wallich, and M. A. Fischetti, "In Pursuit of the

One-Month Chip," IEEE Spectrum, Vol. 21, No. 9, September 1984,

pp. 28-49 0

H. H. Baller, "VLSI/Software Engineering Design Methodology,"

IEEE 1984 Workshop on the Engineering of VLSI and Software,

IEEE Computer Society Press, 1984, pp. 3-5.

D. D. Gajski and R. H. Kuhn, ”New VLSI Tools," IEEE Computer,

Vol. 16, No. 12, December 1983, pp. 11-14.

C. V. Ramamoorthy, et al., "Software Engineering: Problems and

Perspectives," IEEE Computer, Vol. 17, No. 10, October 1984,

pp. 191-209.

Industrial Robots Computer Interfacing and Control, W. E.

Snyder, Englewood Cliffs, NJ: Prentice-Hall, 1985, pp. 24-28,

119.

L. D. Harmon, "Automated Tactile Sensing," The International

Journal of Robotics Research, vol. 1, no. 2, Summer, 1982.

J. F. Jarvis, "Robotics," IEEE Computer, Vol. 17, No. 10,

October 1984, pp.283-292.

J. J. Uicker, J. Denavit, and R. S. Hartenberg, "An iterative

Method for the Displacement Analysis of Spatial Mechanism,"

Transactions of ASME, Journal of Applied Mechanics, vol. 31,

Series E, 1964, pp. 309-314.

ElectronicsWeek, November 5, 1984, p. 88.

ElectronicsWeek, July 12, 1984, p. 46.

M. A. Fischetti, "Solid State" in "Technology '85," IEEE

Spectrum, Vol. 22, No. 1, January 1985, pp. 60-64.

C. F. Ruoff, "Fast Trig Functions for Robot Control,” in

Robotics Age in the Beginning, ed. by C. T. Helmers, Hasbrouck

Heights, NY: Hayden Book, 1983, pp. 73-79.

104

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

J. E. Valder, "The CORDIC Trigonometric Computing Technique,"

IEEE Trans. on Electronics and Computers, Vol. EC-9, September

1960, pp. 227-231.

Computer Arithmetic, K. Hwang, John Wiley and Son, 1979, pp.

368-373.

S. Muroga, op. cit., pp. 313-316.

M. J. Poster and H. T. Kung, "The Design of Special-Purpose

VLSI Chip," IEEE Computer, Vol. 13, No. 1, January 1980, pp.

26-40.

P. C. Treleaven, ”VLSI Processor Architecture," IEEE Computer,

Vol. 15, No. 6, June 1982, pp.33-45.

Computer Arithmetic and Parallel Processing, K. Hwang and F. A.

Briggs, New York, McGraw Hill, 1984, pp. 788-803.

W. C. Hsu and M. A. Shanblatt, " Evaluation of a Single VLSI

Chip Algorithm for Triangulating Large Band Form Matrices,"

Tech. Report No. MSU-ENGR 82-015, Michigan State University, E.

Lansing, Michigan (August 1982).

The. Design and Description of Computer Architecture, 5.

Dasgupta, Wiley, 1984, Chapter 1.

K. Hwang, op. cit., Chapter 3-6.

C. Mead and L. Conway, op. cit., p. 26.

C. Mead and L. Conway, op. cit., p. 231.

D. J. McGreivy, "Interconnects/Gates in VLSI Technologies," in

VLSI Through the 80's and Beyond, ed. by D. J. McGreivy and K.

A. Picker, IEEE Computer Society Press, 1982.

C. Mead and L. Conway, op. cit., p. 155.

L. I. Maissel and H. Ofek, "Hardware Design and Description

Language in IBM," IBM Journal of Research and Development, Vol.

28, No. 5, September 1984, pp. 557-563.

M. Shahdad, et al., "VHSIC Hardware Description Language,” IEEE

Computer, Vol. 18, No. 2, February 1985, pp. 94-103.

Structured Computer Organization, A. s. Tanenbaum, Englewood

Cliffs, NJ: Prentice-Hall, 1984, pp. 149-156.

105

43'

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

R. Beresford, ”Advances in Customization Free VLSI System

Designers," Electronics, February 10, 1983, pp. 134-145.

B. R. Bourbon, "ICs Tailored to Applications Gain Ground,"

ElectronicsWeek, September 3, 1984, pp. 117-121.

D. L. Wollesen, "CMOS LSI - The Computer Component Process of

the 80's," IEEE Computer, Vol. 13, No. 2, February 1980, pp.

59-67.

S. Muroga, Op. cit. pp. 163-164.

D. J. McGreivy, "VLSI Chip Trend - Size, Complexity, Cost,” in

VLSI Through the 80's and Beyond, ed. by D. J. McGreivy and K.

A. Picker, IEEE Computer Society Press, 1982.

B. C. Cole, "Memories Dominate ISSCC," ElectronicsWeek,

February 11, 1985, pp. 51-60.

R. L. Donze and G. Sporzynski, ”Masterimage Approach to VLSI

Design," IEEE Computer, Vol. 16, No. 12, December 1983, pp.

18-25.

S. 20110, "CMOS Array Break 1N5," ElectronicsWeek, January 21,

1985, pp. 55-56.

K. Kokkonem and R. Pashley, "Modular Approach to CMOS

Technology Tailors Process to Application,” Electronics, May 3,

1984, pp. 129-133.

L. Waller, "IC Houses are Fruitful in Multipliers,"

Electronics, July 14, 1983, pp. 155-157.

9. T. Greiling, "High Speed Digital 1c performance Outlook,"

Seminar, Michigan State University, January 31, 1985.

J. E. Dykes, "Bridging the Gap," IEEE Proceedings of the 1984

Custom Integrated Circuits Conference, Rochester, NY, 1984,

pp. 5-8.

106

"IVIIIEIITIIIIIIIT

