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ABSTRACT 

PROPENSITY SCORE BASED METHODS IN DETERMINING THE SAFETY OF 
LUMBAR PUNCTURE IN COMATOSE MALAWIAN CHILDREN 

 
By 

Lei Zhao 

Coma is a common clinical presentation for critically ill children in sub-Saharan 

Africa, where major differential diagnoses include cerebral malaria, viral encephalitis, 

and bacterial and tuberculous meningitis. Lumbar puncture (LP) is a crucial 

diagnostic test to distinguish between these etiologies and determine optimal 

treatment. However, clinicians may be hesitant to perform an LP due to concerns of 

precipitating herniation and death, particularly in environments where pre-

procedure neuroimaging is unavailable. We performed a retrospective cohort study of 

the safety of LP in comatose Malawian pediatric inpatients recruited over consecutive 

rainy seasons from 1999-2013. Our goal is to assess whether performing an LP 

changed the mortality within the first 12 hours after the admission and the overall 

mortality during the hospitalization. Following propensity score matching, all 

baseline characteristics were balanced between matched pairs of children who did 

and did not have LPs. After matching, both 12 hour mortality and overall mortality 

were not significantly different between children who did and did not receive lumbar 

punctures. Logistic regression, stratification on propensity scores, and inverse 

probability weighting analyses all showed that the overall mortality has a statistically 

significant decrease in the group that received an LP. The results of 12-hour mortality 

from these methods are consistent with the matching method. 
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1. Introduction 

1. 1 Study background 

In hospitals in sub-Saharan African presentation of a child in coma is a frequent 

occurrence. There are differential diagnosis including cerebral malaria, bacterial 

meningitis, tuberculosis meningitis, crypotococcal meningitis, viral encephalitis and 

drug intoxication. Lumber puncture (LP) is a critical diagnostic tool and maybe the 

only way to distinguish between some of these pathologies.  However there is 

considerable controversy as to whether LPs are safe in children with decreased 

consciousness.  

More than three thousand patients were included from a retrospective cohort study of 

the safety of LP in comatose Malawian pediatric inpatients from 1999-2013. Among 

these patients, study population with a size of nine-hundred and thirty three was 

selected based on: 

1) The subjects must have a severe coma. In the data, we selected those who have 

coma score equal to or less than 2. In the record, the higher the score is, the more 

conscious the subject is. 

2) The subject must have key covariates recorded. Clinicians believe that there are 

factors that would affect the decision of performing lumber puncture. We require 

these factors to have been recorded so that we can control for them. Otherwise, 

biased estimates would be obtained for the effect of lumbar puncture. 

Purpose of the study is to see whether in a comatose child performing an LP increases 

the probability of death in the first 12 hours after admission and during the overall 

time period after correcting for other confounders. In the study, we know that the 

decision to perform lumbar puncture on the subjects is affected by many factors, such 
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as age, blood pressure, weight and height that also affect mortality. To estimate the 

causal effect of treatment, propensity score based methods in observational study 

were performed to control the effects of these confounding variables.  

 

1. 2 Confounding effect  

In a statistical model, confounding factors or confounders are those extraneous 

variables that both have correlation with dependent variable and independent 

variable. According to Hernán & Robins [1], confounding is the bias that appears when 

the treatment and the outcome share a common cause and any variable that can be 

used to help eliminate confounding bias is a cofounder. If we don’t account for 

confounders in the model, the relationship between dependent variable and 

independent variables will be estimated incorrectly. 

In equation (1), we let T be the independent variables, Y be the independent variable 

and 𝑃(𝑦|𝑑𝑜(𝑡)) stands for the probability of event Y under the hypothetical 

intervention T=t. 

𝑃(𝑦|𝑑𝑜(𝑡)) = 𝑃(𝑦|𝑡)    (1) 

This equation clearly holds when there is no confounding factors, which is that what 

we observe is what really happens. However, in many observational studies, the 

equation doesn’t hold because of confounders. 

Suppose ideally we have a set of all confounders denoted as Z. This Z meets three 

conditions [2]: 

1) It is associated with treatment. 

2) Conditional on treatment, it is associated with outcome. 

3) It doesn’t lie on the pathway between treatment and outcome. 
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This definition can be explained in graph theory by directed acyclic graphs (DAG). 

Pearl [3] proposes the back-door criterion for nonparametric identification of causal 

effects, which is the effect of T on Y can be identifiable if all backdoor paths between 

treatment and outcome can be block. Back-door criterion can be a proper tool to 

determine the set of Z. In Figure 1, because the risk factors T and outcome Y share a 

common cause Z and there is a back door path between T and Y. This path can be 

blocked by controlling on Z. Then according to the three conditions and the graph, Z 

is a set of confounders and needs to be adjusted for. 

Figure 1 Directed Acyclic Graphs (DAG)   

 

In our study, T refers to lumbar puncture, Y refers to two kinds of mortality and Z 

refers to all the confounders, which are explained in details in the next section.  

To get the unbiased estimate of 𝑃(𝑦|𝑑𝑜(𝑡)), we consider equation (2) 

𝑃(𝑦|𝑑𝑜(𝑡)) = ∑ 𝑃(𝑦|𝑡, 𝑧𝑖)𝑃(𝑧𝑖)    (2) 

 

 

 

 

T 

Z 

Y 

X stands for risk factors, Y stands for outcome and Z 

stands for a set of variables, which are confounders in this 

graph. 
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2. Study Design 

2. 1 Treatments and outcomes 

In the study, cerebrospinal fluid opening pressure was used to determine whether a 

subject was performed the lumbar puncture or not. The majority of children have LPs 

performed either shortly before or shortly after admission to the research ward but, 

importantly, a proportion of children have not, generally for one of 5 reasons:  

1) The clinician was concerned that the child was not stable enough to tolerate an 

LP the reasons for which include shock, severe respiratory distress or intractable 

seizures 

2) The clinician identified papilledema on retinal examination   

3) LP was attempted but failed for technical reasons 

4) The parent did not consent to LP 

5) The child regained consciousness before LP was performed.   

For outcome, 12-hour mortality and overall mortality during hospitalization were 

taken into consideration to evaluate the treatment effects. 

2. 2 Confounders  

In the model setup, variables including gender, age, comatose score, blood pressure, 

normal heart test, weight-height Z score, respiratory disease, pulse status, blood 

glucose on admission, retinopathy present, plasma lactate on admission and 

papilledema. Among these variables, weight-height Z score was created by weight and 

height according to the WHO Child Growth Standards [4]. Respiratory disease was 

determined from sigh of grunting, deep breath and normal chest exam: if any of the 



5 
 

three is abnormal, then it suggests that the respiratory disease is present. Table 1 and 

Table 2 separately give a brief view of descriptive statistics of all the categorical and 

continuous confounders in the nine hundred and thirty three study subjects. The 

numbers in the parentheses are the statistics in treated group. We can learn that 

some variables have very different summary statistics and these variables are 

unbalanced in treated and untreated right now. So some statistical methods needed 

to be performed to balance the variables to lead us unbiased estimates.  

Table 1 Summary statistics of all the categorical confounders 

Categorical 

Variable 

Value Total 

Numbers 

(Treated) 

Percent 

(Treated) 

P-value 

from 

testing 

difference 

Normal heart 

test 

Normal 888 (688) 95.18 (95.56) 0.34 

Abnormal  45 (32) 4.82 (4.44) 

Respiratory 

disease 

Not present  595 (458) 63.77 (63.61) 0.78 

Present 338 (262) 36.23 (36.39) 

Gender Male 447 (344) 47.91 (47.78) 0.79 

Female  486 (376) 52.09 (52.22) 

Pulse Status Low 12 (10) 1.29 (1.39) 0.25 

Normal 346 (258) 37.08 (35.83) 

High 575 (452) 61.63 (62.78) 

Blood pressure Low 12 (7) 1.29 (0.97) 0.63 

Normal 901 (701) 96.57 (97.36) 

High 20 (12) 2.14 (1.67) 

Weight-height 

score 

low weight-for-

age 

87 (59) 9.32 (8.19) 0.02 

Normal  846 (661) 90.68 (91.81) 

Coma score  Most severe  119 (86) 12.75 (11.94) 0.44 

Severe 366 (287) 39.23 (39.86) 

Less Severe 448 (347) 48.02 (48.19) 

Retinopathy 

present 

Not present  288 (237) 30.87 (32.92) 0.02 

Present 645 (483) 69.13 (67.08) 

papilledema Not present  735 (600) 78.78 (83.33) <0.0001 

Present 198 (120) 21.22 (16.67) 
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Table 2 Summary statistics of all the continuous confounders 

LP Variable Count Mean Standard  
Deviation 

P-value from 
testing difference 

Untreated blood glucose on 
admission 

plasma lactate on 
admission 

age 
 

215 
 

6.27 

10.50 

41.88 
 

3.38 

2.69 

29.12 
 

0.24 
 
 

0.60 
 
 
 

0.13 

Treated blood glucose on 
admission 

plasma lactate on 
admission 

age 
 

718 
 

6.61 

10.61 

45.21 
 

3.69 

2.56 

28.06 
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3. Methods 

3.1 Logistic regression and propensity score 

As we discussed in the previous section, there will be 12 confounders that needed to 

be adjusted for. In this study, propensity score based methods are well suited to 

estimate the treatment effect. The technique was first published by Paul Rosenbaum 

and Donald Rubin in 1983 [5]. Propensity score estimation is a statistical technique 

that attempts to estimate the effect of a treatment by accounting for the covariates 

that predict receiving the treatment. It aims to decrease the bias caused by the 

confounders found in the study especially when there are limited amounts of 

observations but many confounders. It has been used in health care research, public 

policy investigation and other areas. This method is useful in scenarios when 

confounders contain many variables or may be continuous, because it will be hard to 

adjust for potentially high-dimensional confounder with common techniques. 

Rosenbaum & Rubin showed that if we set the equation (3): 

𝑝(𝑧) = 𝑃(𝑇 = 1|𝑍)       (3) 

Then Z and T are independent given p(z) and in this situation p(z) is called 

propensity score. So a large set of confounders can be reduced to a number between 0 

and 1. This relationship between treatment and confounders can be denoted in (4) 

(𝑇 ⊥ 𝑍)|𝑝(𝑇 = 1|𝑧)        (4) 

Thus, the next thinking will be how to calculate the propensity score. We know that 

our treatment is a binary variable and logistics regression is a common technique to 

deal with binary outcome. This model was developed by D. R. Cox in 1958[6]. If we 

define that given a linear combination of Z, F(Z) is the probability that the dependent 

variable equals. In our case, we can use this regression model to get the probability of 
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receiving a treatment given a linear combination all the confounders, as shown in 

equation (5) 

𝐼𝑛
𝐹(𝑍𝑖)

1−𝐹(𝑍𝑖)
= 𝐼𝑛

𝑃(𝑇=1|𝑧𝑖)

1−𝑃(𝑇=1|𝑧𝑖)
= 𝛽0 + 𝛽𝑖𝑧𝑖    (5) 

Further, after we get the propensity score, we can use it as a covariate in addition to 

the treatment factor in a multivariate regression for the outcome of interest. 

However, Rubin suggested several advice when one performs regression adjustment 

method:[7] 

1) The difference in means of propensity score in the two groups should be small, 

unless the situation is following: (a) nearly the same variance of the covariates 

in the two groups, (b) symmetric distribution of covariates in the two groups, 

(c) sample size are nearly the same in two groups. 

2) The ratio of the variances of the propensity score in the two groups must be 

closed to one.  

3) After adjusting for the propensity score, the ratio of the variances of the 

residuals of the covariates should be close to one. 

 

3.2 Inverse probability weighting  

A statistical technique for calculating standardized statistics to a population different 

from that in which we collect the data can is call inverse probability weighting.  In 

observational study, the sampling probability is usually different over subjects, so we 

need to use this probability to weight the observations [8]. Using the propensity score, 

inverse probability weighting creates a weighted population, in which the distribution 

of the covariates is independent with the treatment assignment. 
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In our study, we use the weighting method that the inverse of propensity score is the 

weight for each treated subject and the inverse of (1-propensity score) is the weight 

for each untreated subject. Let Ai be the indicator denoting whether subject i is 

treated or not, we have the weight for subject i, 

𝑤𝑖 =
𝐴𝑖

𝑝(𝑇=1|𝑧𝑖)
+

1−𝐴𝑖

1−𝑝(𝑇=1|𝑧𝑖)
    (6) 

We define 𝐸(𝑌1) as the counterfactual mean, which is the outcome that would have 

been observed if we had intervened by setting the treatment value equal to 1. We want 

to show that the IP weighting mean is equivalent with counterfactual mean [1]. The IP 

weighing mean is defined as 𝐸 [
𝑌

𝑝(𝑇𝑖=1)
] = 𝐸[

𝑌

𝑝(𝑧𝑖)
], then (7) 

         𝐸 [
𝑌

𝑝(𝑧𝑖)
] = 𝐸 [

𝑌1

𝑝(𝑧𝑖)
] 

= 𝐸 {𝐸 [
𝑌1

𝑝(𝑧𝑖)
|𝑍𝑖]} 

                        = 𝐸 {𝐸 [
1

𝑝(𝑧𝑖)
|𝑍𝑖] 𝐸[𝑌1|𝑍𝑖]}      (7) 

We know 𝐸 [
1

𝑝(𝑧𝑖)
|𝑍𝑖]=1, so (7) becomes  

𝐸{𝐸[𝑌1|𝑍𝑖]} = 𝐸[𝑌1] 

The same proof can be done for 𝐸(𝑌0). In this way, our interest 𝐸(𝑌1) − 𝐸(𝑌0) can be 

estimated. 

 

3.3 Stratification 

In stratification method, the common way is to create intervals according to the scale 

of propensity score. All the subjects are ranked based on their propensity scores. 

Usually the number of strata depends on the sample size and the proportion of the 
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overlap between the propensity scores of treatment and non-treatment [8]. 

Rosenbaum and Rubin claimed that stratification on propensity score could remove 

90% of the bias due to measured confounders using 5 strata. A reduction in bias 

should appear when one increase total numbers of strata. Within each strata, the 

treated and untreated should have a nearly similar values of propensity score. That is 

to say, the covariates are distributed similarly in two groups in same strata. Then the 

treatment effects are estimated in each interval or strata with assigned weigh and a 

weighted average of the effects will give an overall estimate of the treatment effects. 

The weight is commonly determined by the fraction of the treated subjects in each 

interval. In this study, we define the stratum-specific weight: [9] 

𝑤𝑖 =
1

𝑠𝑒𝑖
2    

𝐴𝑇𝐸 =
∑ 𝑤𝑖(𝑌̅1𝑖−𝑌̅0𝑖)

∑ 𝑤𝑖
    𝑉𝑎𝑟(𝐴𝑇𝐸) =

1

∑ 𝑤𝑖
         (8) 

where 𝑠𝑒𝑖
2 is the variance of the difference between means in ith strata. So by this 

definition, we can get the estimate of average treatment effect and the variance of it 

as shown in (8). 

 

3.4 Matching 

From (4), for a given propensity score, exposure to treatment is random and treated 

and untreated subjects should be on average observationally identical. Matching is 

another way to adjust the confounding effects. The goal is that we want to build a 

population in which Z variables have the same distribution in treated and untreated. 

According to the definition of propensity score, matching on the variables Z is 
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equivalent to matching on propensity score. Propensity score matching reduces the 

dimensionality of matching to a single dimension. 

In general, there are several ways to match each treated to one or more untreated: 

nearest neighbor matching, caliper matching, Mahalanobis metric matching and 

exact matching. In this study, we will use nearest neighbor matching (NNM) based on 

the PS distance, shown in equation (9) 

𝐷𝑖𝑗 = |𝑝𝑖 − 𝑝𝑗|       (9) 

NN match treated and untreated subjects taking each treated subject and searching 

for the untreated subject with the closest propensity score. Usually a subject can be a 

best match for more than one subject in another group. The advantage of NNM is 

that it can be simply performed. However, even if the propensity scores from two 

subjects are very close, they can still have very different distributions, especially in 

some key confounders. To ensure the quality of matching, balance of the covariates 

will be checked after matching. We will discuss more about this in the result section. 

A propensity score estimator for average treatment effect can be defined as: 

1 ( )

1 1
ˆ (2 1)( )

M

N

i i j

i j i

T Y Y
N M


 

       (10) 

Where M is the total numbers of matches for one subject and ( )
M

i  is the set of 

matches for subject i. It can be defined as: 

| ( ) ( )| | ( ) ( )|
: 1

( ) { 1, ...., : 1 , ( ) }p Z p Z p Z p ZM j i i k i j
k T Tk i

i j N T T I M  
 

     
  (11) 

The variance estimator is: 

2 2

,
ˆˆ ˆ ˆ ˆ

adj c V c              (12) 
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Where V̂ is the treatment model coefficient variance- covariance matrix, ĉ is the 

term used to adjust the variance based on the covariance between confounders and 

the outcome. The details of the expression are in Abadie, A., and G. W. Imbens 

2012[10].  

And  

2 2

1 ( )

2 2

1

1 1
ˆ ˆ((2 1)( ) )

1 2 1 ˆ(( ) ( )) ( , ( ))

M

N

i i j

i j i

N
i i

t i

i

T Y Y
N M

K KM
T p Z

N M M M

 



 



   


 

 


  (13) 

In which we define
iK is the number of times that subject i is used as a match.  
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4. Result  

4.1 Descriptive statistics 

Based on logistic regression, we put lumbar puncture as the dependent variable and 

the 12 confounders as independent variables. Table 3 displays the descriptive 

statistics of propensity scores in two groups. 

Table 3 Summary statistics of propensity score in LP and Non-LP 

Estimated Probability of Propensity Scores 

LP N Mean Std Dev Minimum Maximum 

0 215 0.7224326 0.1241450 0.3492940 0.9034260 

1 718 0.7838356 0.0923648 0.3119707 0.9240525 

   

In the original data, there were more than three thousand subjects recorded in the 

clinical center in Malawian. Only half of the population has been included in the 

study because others present missing values in confounders, which lead to missing 

values in propensity scores. Also the means of propensity score in two groups are not 

large so that logistic adjustment regression will likely work.  

Figure 1 displays the distribution of propensity score by treatment. The mean 

propensity score in treated is 0.78 with SD 0.09 and in untreated is 0.72 with SD 

0.12. The upper part in the figure shows the distribution of propensity scores in the 

untreated and the lowers shows the distribution in treated group. Visually, we can say 

there is a good overlap of propensity scores in distributions among treated and 

untreated. 
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Figure 2 Distribution of propensity score by treatment 

 

 

Table 4 and Table 5 display the distribution of two outcomes by treatment. 126 

subjects died in the first 12 hours and 138 died in the overall time. Among them, 

18.1% LPs died in the first 12 hours and 12.1% non-LPs died in the 12 hours. Based on 

these two tables, we were able to compute the unadjusted treatment effects of lumbar 

puncture on both 12 hour mortality and overall mortality. LPs lowered the 12 hour 

mortality by 0.08 (p-value 0.0234) and by 0.10 (p-value 0.0002). For both outcomes, 

LPs had significant protective effects and details are displayed in Table 4 and Table 5. 
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Table 4 the distribution of 12-hour mortality by LP 

Table of the distribution of 12-hour mortality by LP 

 12-hour mortality 

LP 0 1 total 

0 179 (81.9%) 39 (18.1%) 215 

1 631 (90%) 87 (10%) 718 

Total 807 126 933 

Unadjusted treatment effect -0.06 with 95% CI(-0.11, -0.01) 

 

Table 5 the distribution of overall mortality by LP 

Table of the distribution of overall mortality by LP 

 overall mortality 

LP 0 1 total 

0 166 (77.3%) 49 (22.7%) 215 

1 629 (87.6%) 89 (12.4%) 718 

Total 795 138 933 

Unadjusted treatment effect -0.10 with 95% CI(-0.16, -0.05) 

 

4.2 Impact of lumbar puncture on overall mortality  

Before we performed propensity score methods to analyze the treatment effect, a 

basic logistic regression model was used to evaluate in the interest. LPs lower the 

overall mortality by 0.06 with confidence interval (0.01, 0.12) and p-value 0.02.  

Analysis under inverse probability weighting: 

From the inverse probability weighting method we mentioned in the previous section, 

the goal of it is to create weighted population in which covariates and treatment are 

independent.  We can make sure that the in the weighted population the probability 

of receiving a treatment is independent from confounders and we achieve this by 
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assigning treatment with same probability for everyone. With the weight 𝑊𝑖 =

1

𝑝(𝑇=1|𝑧𝑖)
, we create a population in which subjects have a probability equal to 1 to 

receive treatment (the same for untreated).   However, we can also assign different 

probabilities as long as the treatment and confounders are independent. This is called 

stabilized weight, shown in equation (14), where P(T) is the observed probability of 

receiving treatment and i and j refer to treated and untreated [1].  

𝑊𝑖 =
𝑃(𝑇)

𝑝(𝑇=1|𝑧𝑖)
              𝑊𝑗 =

1−𝑃(𝑇)

1 –𝑝(𝑇=1|𝑧𝑗)
            (14) 

Figure 3 displays the relationship between propensity score estimates and the 

corresponding weight. Because we use the stabilized weight, the expected mean of 

weight is 1. 

Figure 3 Propensity score and corresponding weight 
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With the weighted population, we get the estimate of odds ratio for lumbar puncture 

on overall mortality. After we obtained the estimates of parameters,  we were able to 

express the result in predicted probability, the probability to die in the overall time is 

0.186 with CI (0.139, 0.243) for the untreated and the probability to die for the 

treated is 0.131 with CI (0.108, 0.157). To get the point estimate for the variance of 

the difference, we use bootstrap to find the standard error of the difference in 

predicted probability. We sample 933 subjects from out study population for 500 

times. In each sample, we obtain one estimate for the difference in predicted 

probabilities. We define the difference in original study population is 𝐷̂ and the one 

from i th sample is 𝐷𝑖̂. Then the standard error is: 

𝑠. 𝑒. =
1

500
∑ (𝐷𝑖̂ − 𝐷̂)

2500
𝑖=1      (15) 

 

Finally we have an estimate of average difference -.055 with CI (-0.081,-0.034), P-

value= 0.003. LPs had a slightly protective effect on overall mortality. 

 

Analysis under regression adjustment: 

After correcting the confounders, we got the propensity score for each subject and we 

took it as a covariate into the logistic model. After we obtained the estimates of 

parameters, we were able to express the result in predicted probability. Similarly, 

using bootstrap we got the estimate for treatment effect: LPs reduce the overall 

mortality by 0.06 with 95% confidence interval 0.01 to 0.12 (p-value=0.02). The 
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result is consistent with the one from IPW method: LP has a slight protective effect 

on overall mortality.  

 

Analysis under stratification: 

According to the propensity we got before, we created five stratums containing both 

patients in treatment group and non-treatment group. Each stratum was created 

based on the scale of propensity scores. The sample sizes in fives stratums are similar 

with each other. In addition to this, treated and untreated subjects would have 

similar distributions in each stratum. We also tested the balance in each strata 

through t-test for each covariates. The weight of each stratum was calculated 

according to the standard error in each stratum. The specific formula was introduced 

in the method section. In the Table 6 below, there are the differences between 

probabilities of death between treatment group and non-treatment group in each 

stratum. From the confidence interval we cannot say there is a significant difference 

between two groups in each stratum. After taking the weight of each stratum into 

consideration, Tables 7 displays the overall average treatment effects and here we can 

conclude the treatment lowers the overall mortality by 5.54% with CI (0.2%, 10.9%). 

 

Table 6 Differences of probabilities of overall death in each stratum  

Stratums Treatment effect in each stratum   Lower CL Upper CL 

1 -0. 0991 -0. 2309 0. 0326 

2 -0. 0651 -0.1905 0. 0603 

3 -0. 0541 -0.1747 0.0665 

4 -0. 0674 -0.1180 0.1070 

5 0. 00547 -0.1807 0.0459 
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Table 7 Overall average treatment effects on overall mortality  

Overall treatment effect  Stander error Lower CI Upper CI 

-0. 055493 0. 027212 -0. 10883 -0. 002156978 

 

Analysis under matching: 

To find the average treatment effect, we perform one to one matching following 

nearest neighbor method. Each treated unit is matched with an untreated unit based 

on having the closest propensity score. So in total we find 215 treated units to match 

all the untreated units and 718 untreated units to match all the treated. To see if the 

covariates distribute similarly in the treated and untreated, a covariate balance table 

was created with using standardized difference as a test measurement. It has been 

suggested that if the standardized difference is greater than 10%, there is a 

meaningful imbalance in covariates in two groups [12].  

Table 8 and 9 display the balance tables before matching and after matching. We 

notice that in Table 8 among confounders, age weight, height and papilledema have 

more than 10% standardized difference, shown in (16) and (17) 

For a continuous variable, [13] 

2 2

( )

2

treatment non treat

treat non treat

Z Z
d

s s








    (16) 

Where 𝑍̅ is the mean in each sample and S2 is means the sample variance in each 

group. 

For a dichotomous variable, 
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ˆ ˆ( )

ˆ ˆ ˆ ˆ(1 ) (1 )

2

treatment non treat

treat treat non treat non treat

p p
d

p p p p



 




   (17) 

where p̂ is the mean in each sample. 

After matching, these variables all have standardized differences less than 10% and 

most standardized differences become smaller. 

 

Table 8 Covariates Balance table before matching 

Untreated Variable Mean Treated Mean SD 

215 

Age 41.8883 

718 

45.293 0.1190 

Sex 0.5116 0.5236 0.0240 

Coma sc 1.3209 1.3621 0.0582 

Bp stat 1.0139 1.0069 0.0335 

Resp dis 0.3534 0.3649 0.0237 

N heart 0.9395 0.9554 0.0711 

Pulse stat 1.5674 1.6142 0.0908 

Wh zscore -1.1573 -1.058 0.0720 

Adm gluc 6.27723 6.6169 0.0958 

Papilledema  0.3628 0.1671 0.4538 

plasma lactate on 
admission 

10.61 10.5 0.04189 

Retinopathy  0.7210 0.6708 0.20573 

 

Table 9 Covariates Balance table after matching 

Untreated Variable Mean Treated Mean SD 

933 

Age  43.9346195 

933 

44.3772 0.0153 

Sex  0.5423365 0.5305 0.0236 

Coma sc 1.437299 1.4155 0.0309 

Bp stat 0.9989282 1.0086 0.0481 

Resp dis 0.3622722 0.3536 0.0178 

N heart 0.9442658 0.9453 0.00469 

Pulse stat 1.5344 1.5442 0.019 

Wh zscore -1.0886007 -1.0686 0.0152 

Adm gluc 6.4026795 6.6020 0.0555 

Papilledema 0.2079314 0.2154 0.0183 
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Table 9 (cont’d)  

Untreated Variable Mean Treated Mean SD 

933 

plasma lactate 
on admission 

10.7002 

933 

10.7135 0.0258 

Retinopathy  0.7325 0.7256 0.0134 

 

With the good balanced distribution of covariates in treatment group and non-

treatment group, we can implement the nearest-neighbor matching estimator for the 

average treatment effect. The estimate of the average treatment effect is -0.0525 with 

a confidence interval (-0.119, 0.143). This suggests that lumber puncture doesn’t have 

a significant effect on overall mortality. 

4.3 Impact of lumbar puncture on 12-hour mortality  

Before we performed propensity score methods to analyze the treatment effect, a 

basic logistic regression model was used to evaluate in the interest. LPs lower the 12 

hour mortality by 0.04 with confidence interval (-0.01, 0.09) and p-value 0.15.  

 

By using propensity score based methods, we got the estimate when outcome variable 

is 12-hour mortality. Treatment effect is -0.041 with confidence interval (-0.094, 

0.010), p-value=0.11 in the weighed population and -0.038 with confidence interval 

(-0.091 0.016), p-value 0.16 in the regression adjustment method.  

The average treatment effect is -0.0371 with confidence interval (-0.091, 0.016) from 

stratification and -0.053 with confidence interval (-0.116, 0.011), p-value=0.26 from 

matching. All the results are consistent showing there is no significant treatment 

effect on 12-hour mortality from lumbar puncture. 
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5. Conclusion and discussion  

Randomized controlled trial is considered to be the ideal approach to get the average 

treatment effects. However, in observational study, subjects are not randomly 

assigned as the treated or untreated. In this study, the decision of performing lumbar 

puncture can be affected by other symptoms. Historically, researchers have been 

using regression adjustment to control for other factors. However, those procedures 

could be hard to implement when there are many factors to be adjusted. Especially 

some of them are often continuous variable and undefined variable. Propensity score 

based method is able to reduce the confounding effects by boiling down a large set of 

confounders to a probability. In this study, we performed inverse probability 

weighing, regression, stratification and matching based on propensity score. We find 

out that 12-hour mortality is not significantly different among those who received the 

lumbar puncture and who didn’t receive the lumbar puncture. For overall mortality, 

inverse probability weighing, regression, and stratification give that there is a slight 

protective effect from lumbar puncture. But in matching, the average treatment effect 

is -0.0525 with a confidence interval (-0.119, 0.143), which is not significant. From 

the matching table, we achieved balanced the distribution of confounders in 

treatment and non-treatment. In that scenario, it is closer to an ideal random clinical 

trial and the estimate of the average treatment effect would be more accurate. We 

also compared the results from propensity score based methods and basic regression 

model. The results were consistent and propensity score based showed a stable and 

good performance in evaluation of treatment effects. When the number of covariates 

is large, propensity score based methods would have better performance.   
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However, there are limitations and pitfalls in propensity score based methods. First, 

all the confounders we used are from observed data and experience from clinicians 

and in this way those unmeasured confounders cannot be controlled. In our study, 

there are 12 confounders that may cause bias on our outcome. But there may be other 

unobserved factors that would affect the decision of lumbar puncture. We can barely 

do something to them. What is more, in our study, we observed massive missing 

values in some key confounders. Due to this, more than half subjects were excluded 

from the study. This may lead to decrease in power and lose of useful information. 
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