

Su

Appr

HYDROLOGIC ANALYSIS OF A SMALL AGRICULTURAL WATERSHED

bу

Earl Abraham Myers

AN ABSTRACT

Submitted to the School for Advanced Graduate Studies of
Michigan State University of Agriculture and
Applied Science in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering 1960

Approved Effider

t. ge de ру hyd As cea fo mo j the Wer cor numt infi to be detent

ABST RACT

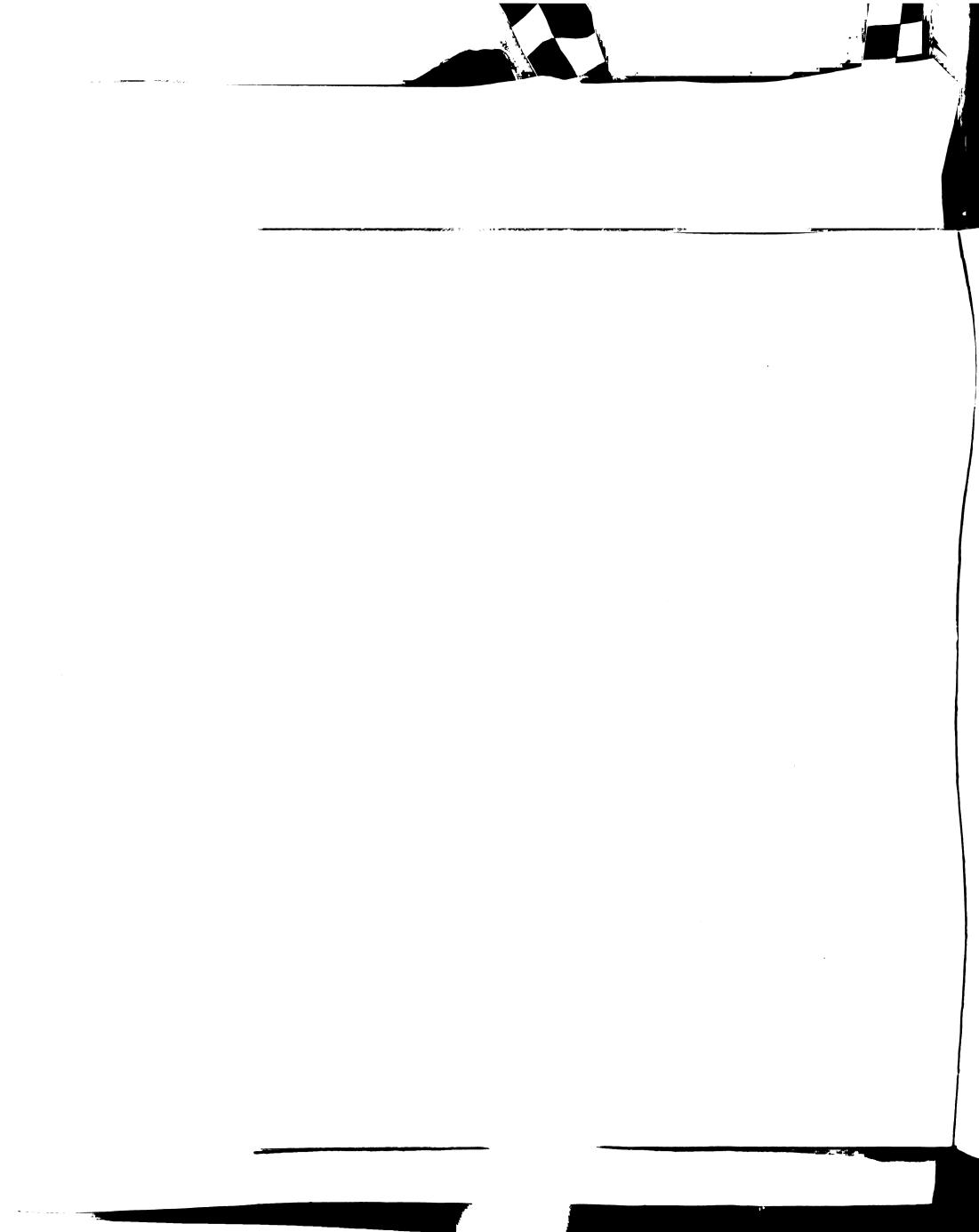
Five years of hydrologic data from a relatively flat, 9.34 square mile, predominately agricultural watershed in south-central Michigan were analyzed.

The Thiessen uniform depths, the unweighted gage average depths, and the depths recorded at one specific gage were compared. There was very little difference between the Thiessen and unweighted procedures, however the single gage determination was considered inadequate.

The amount and peak rate of surface runoff were determined for 15 storm periods. The amount was determined by planimetering the area between the total discharge hydrograph and the assumed straight-line base flow curve. As shown by a composite recession curve, surface runoff ceased approximately $2\frac{1}{2}$ days after the hydrograph peak for each storm.

In analyzing the rainfall-runoff process, antecedent moisture, moisture accounted for by base infiltration, and the amount of moisture required prior to surface runoff were considered. The fraction of antecedent precipitation considered effective depended upon the season and the number of days prior that the rain had occurred. Initial

pea.
was
the
for
exis
form
was
than



that the amount required to supply initial infiltration varied with the season, probably more specifically with the moisture content of the lower soil strata.

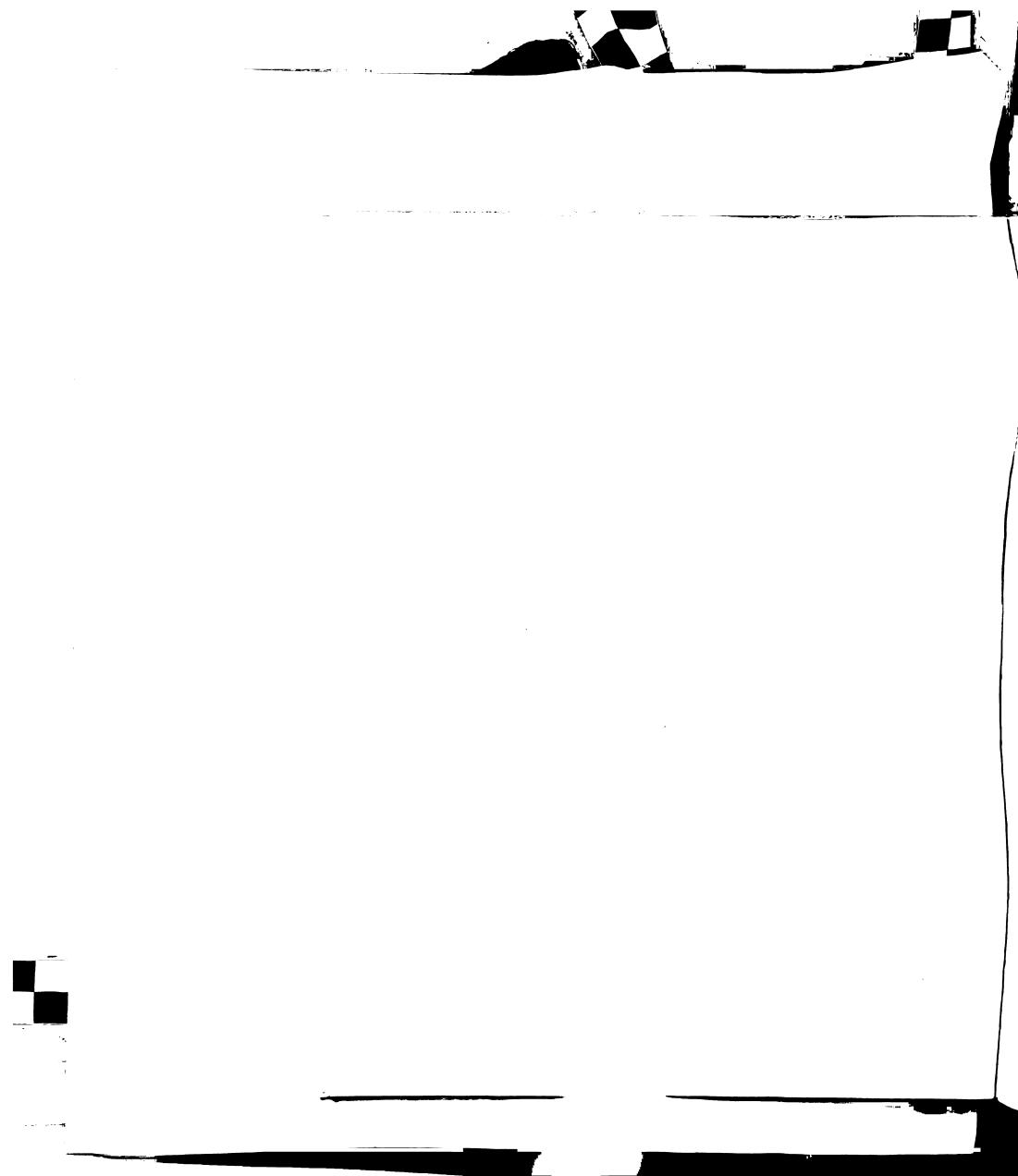
The unit graph method of estimating flood peaks and amounts was illustrated and discussed. The procedure of combining unit graphs of various lengths was described and used for determining the 1 hour unit hydrograph for the watershed. This unit graph was used for calculating the expected hydrographs which were then compared with four natural hydrographs and very satisfactory results were obtained.

To illustrate the rational formula method, the design peak runoff rate for a once in 25 years frequency rainfall was determined. This method compared favorably with the unit graph procedure and was considered appropriate for use on small watersheds where no previous records exist.

The Soil Conservation Service's revision of Cook's formula was discussed and illustrated. This procedure was considered appropriate only for areas much smaller than Sloan Creek.

HYDROLOGIC ANALYSIS OF A SMALL AGRICULTURAL WATERSHED

bу


Earl Abraham Myers

A THESIS

Submitted to the School for Advanced Graduate Studies of
Michigan State University of Agriculture and
Applied Science in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

VITA

Earl Abraham Myers

candidate for the degree of

Doctor of Philosophy

September 7, 1960; 8:00 A.M.; Room 218 Agricultural Engineering Building

Dissertation: Hydrologic Analysis of a Small Agricultural Watershed

Outline of studies:

Final examination:

Agricultural Engineering Major subject: Minor subjects:

Civil Engineering

Soil Science

Biographical items:

January 15, 1929; York, Pennsylvania Born:

Pennsylvania State University Undergraduate studies:

B.S.A.E., 1950

Graduate studies: Pennsylvania State University

M.S.A.E., 1952

Pennsylvania State University 1952-1954, 1956-1959

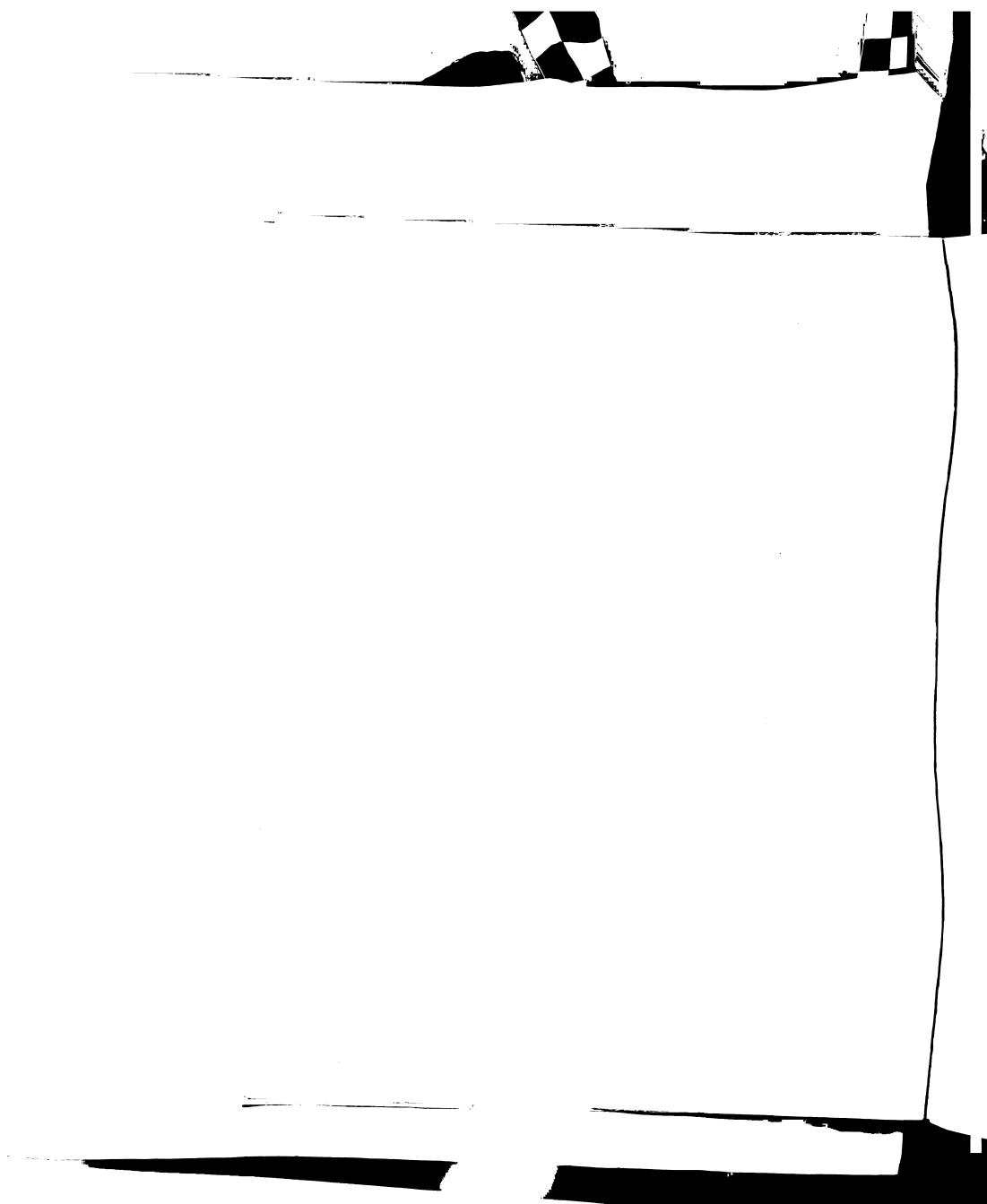
Michigan State University

1959-1960

Experience:

1950-1951 New Departure Fellow, Agricultural Engineering Department, Pennsylvania State University

1951-1954 Instructor, Agricultural Engineering Department, Pennsylvania State University
1954-1956 Military leave, Assistant Civil Engineer
Facilities Engineering Branch, Rocky Mountain Arsenal


1956-1959 Assistant Professor, Agricultural Engineering Department, Pennsylvania State University

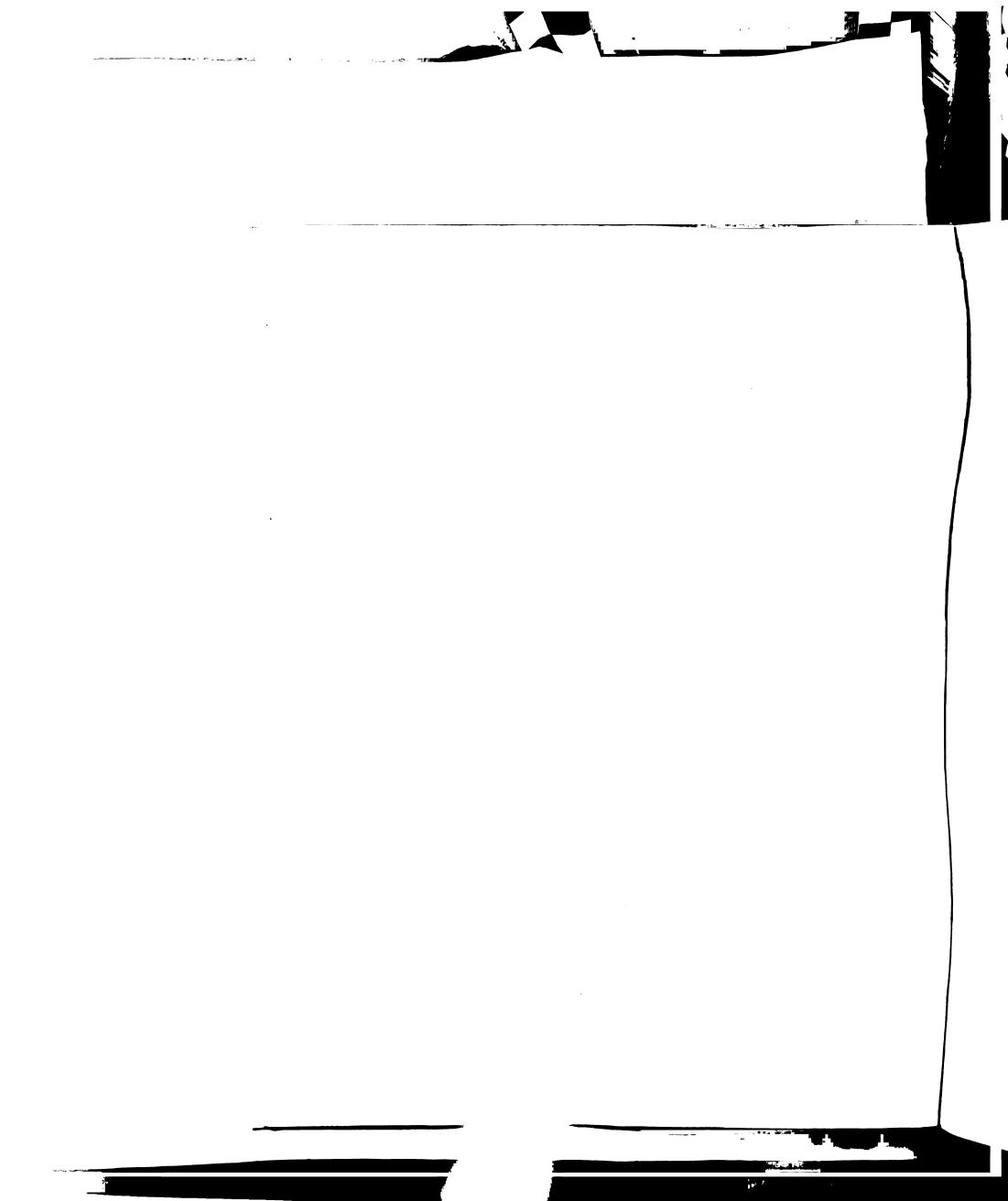
1959-1960 Graduate Assistant, Agricultural Engineering

Department, Michigan State University

Member of:

American Society of Agricultural Engineers American Society of Engineering Education Gamma Sigma Delta, Agricultural Honorary

ACKNOWLEDGEMENTS


The author expresses his gratitude to Professor

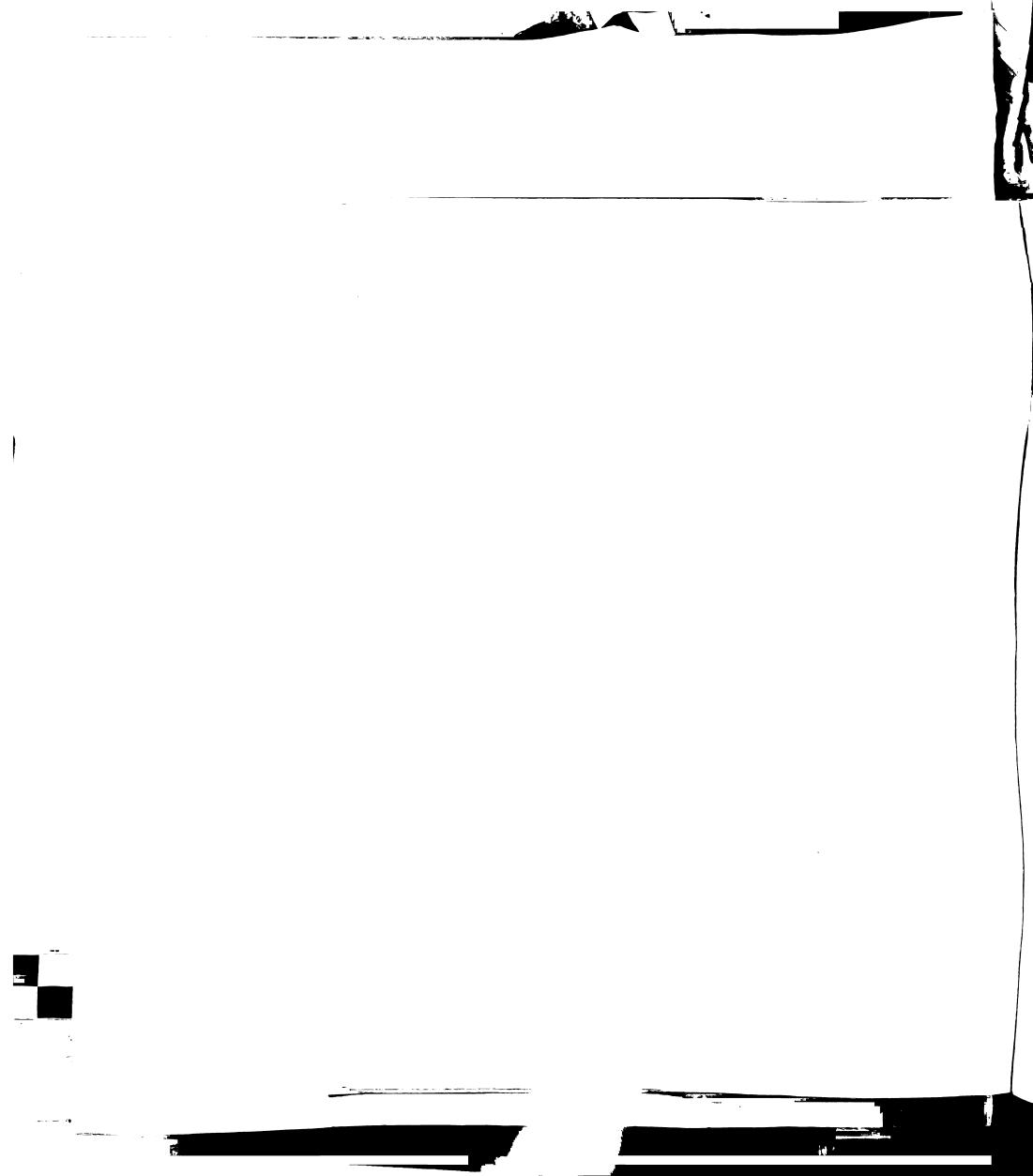
E. H. Kidder for the many hours of guidance and
discussion time so freely given throughout the writers
stay at Michigan State University.

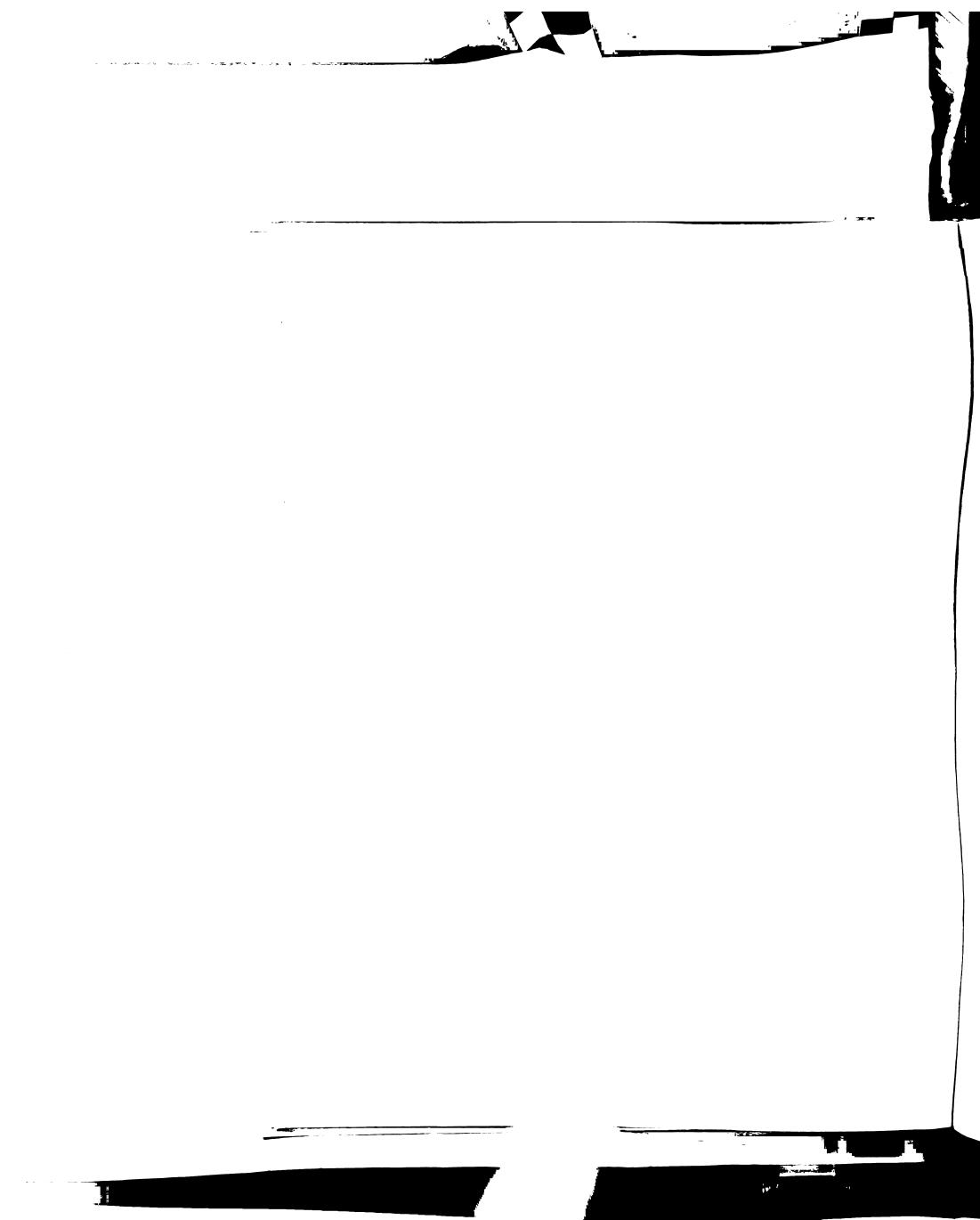
Sincere thanks are extended to Dr. A. W. Farrall for providing the opportunity and financial assistance for the pursuance of this program of studies, and to the various members of his staff who helped make this year one of great educational value.

For the generous cooperation of A. H. Eichmeier and A. D. Ash and their staffs, respectively of the U.S. Weather Bureau and U.S. Geological Survey, the writer is deeply indebted.


A special note of thanks is due Mr. R. Z. Wheaton of the Agricultual Engineering Department for his constant interest in the author's program and aid in supplying background information concerning the Sloan Creek Watershed.

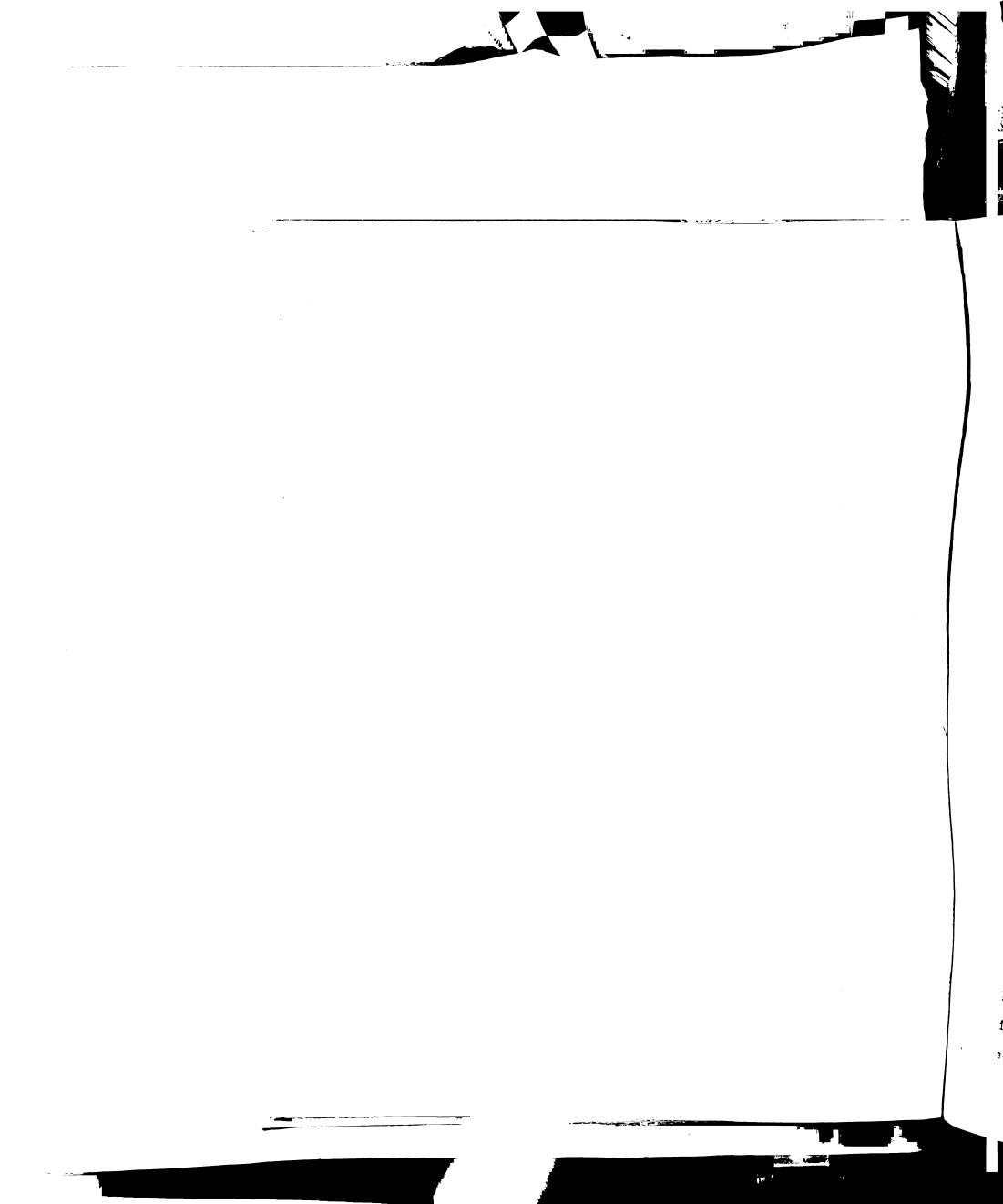
TABLE OF CONTENTS

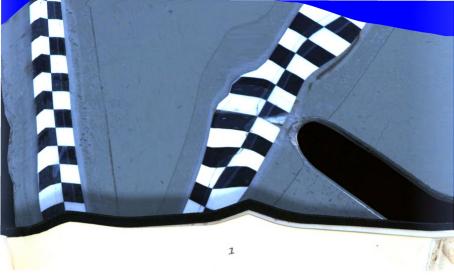

Section				Page
INTRODUCTION				1
OBJECTIVES				5
REVIEW OF LITERATURE				6
COLLECTION OF DATA				18
PROCESSING OF DATA				20
Rainfall distribution				20
Hydrograph construction				21
Recession curve and base flow				43
Runoff				45
ANALYSIS AND DISCUSSION OF RAINFALL DATA				49
ANALYSIS AND DISCUSSION OF RUNOFF DATA				53
Unit graph method				60
Rational formula method				70
Cook's method				74
SUMMARY				77
conclusions				80
SUGGESTIONS FOR FUTURE STUDIES				81
REFERENCES				82
		•	•	
APPENDIX	nhe	•	•	85 85
2. Thiessen procedure rainfall analysis d			:	95
3. Data for Sloan Creek composite recessi	on o	ur		109
4. Data for obtaining unit graphs 5. Data for comparison of calculated and			•	110
2 Hr. unit graphs	acti			113



LIST OF FIGURES

F	igur	9						Page
	1.	Sloan	Creek	basin			•	. 3
	2.	Sloan	Creek	basin six g	age Thiessen proced	ure	•	. 22
	3.	Sloan	Creek	basin nine	gage Thiessen proce	dur	e	. 23
	4.	Sloan	Creek	hydrograph	Aug. 9-12, 1956.			. 24
	5.	Sloan	Creek	hydrograph	Aug. 17-20, 1956			. 25
	6.	Sloan	Creek	hydrograph	Apr. 27-30, 1957			. 26
	7.	Sloan	Creek	hydrograph	May 14-17, 1957.			. 27
	8.	Sloan	Creek	hydrograph	May 18-21, 1957.			. 28
	9.	Sloan	Creek	hydrograph	July 4-7, 1957 .			. 2 9
	10.	Sloan	Creek	hydrograph	July 8-11, 1957.			. 30
	11.	Sloan	Creek	hydrograph	July 11-14, 1957			. 31
	12.	Sloan	Creek	hydrograph	Nov. 14-17, 1957			. 32
	13.	Sloan	Creek	hydrograph	Apr. 6-9, 1958 .			. 33
	14.	Sloan	Creek	hydrograph	July 28-31, 1958			. 34
	15.	Sloan	Creek	hydrograph	May 23-26, 1959.			. 35
	16.	Sloan	Creek	hydrograph	Aug. 16-19, 1959			. 36
	17.	Sloan	Creek	hydrograph	Sept. 21-24, 1959			. 37
	18.	Sloan	Creek	hydrograph	Oct. 6-9, 1959 .			. 38
	19.	Sloan	Creek	hydrograph	Nov. 4-7, 1959 .			. 39


Figure									Page			
2 5.	1 Hr.	Sloan	Creek	unit	graphs	•	•	•	•	•	•	. 65
26.	2 Hr.	Sloan	Creek	unit	graphs			•	•	•		. 67



LIST OF TABLES

Table		Page
1.	Percentage of watershed ascribed to each gage using Thiessen procedure	20
2.	Rainfall and runoff data for 17 Sloan Creek hydrographs	47
3.	Sloan Creek rainfall data for 18 storm periods	50
4.	Data used in the analysis of the rainfall-runoff process for the watershed	54
5.	Data showing the month by month variation in amount of moisture required prior to runoff and the percent of runoff for each storm period	59
6.	Data for unit graph from August 17-20, 1956 hydrograph	61
7.	Data for comparison of a 1 hour unit graph calculated from a \$\frac{1}{2}\$ hour composite unit graph and the actual 1 hour August 9-12, 1956 unit graph	64
8.	Comparison of calculated and actual hydrographs for July 11-14, 1957	69
9.	Calculated and actual peak differences for the selected storm periods	70

INTRODUCTION

Peak runoff rates from small-area storms are critical in the design of spillways for dams, drainage systems, flood protection works, culverts, bridges, and storm sewers. Runoff volumes from small areas are also necessary in the design of irrigation systems, flood storage reservoirs, and other water detention and storage structures.

Most previous rainfall and runoff data have been secured from either large areas, above 25 square miles, or extremely small areas of several acres or fractional acreages. And for most of these areas only one or at best relatively few recording rain gages have been used. Thus little detailed rainfall data exist on areas of 5 to 25 square miles in size. This is especially true for predominately agricultural watersheds.

It was for the above reasons that in 1954, the Michigan Water Resources Commission; Surface Water Branch, Michigan District Office, United States Geological Survey; United States Weather Bureau office at East Lansing; and the Agricultural Engineering Department.

Williamston in south-central Michigan, from which all the data for this thesis have been secured.

The dominant land use of the Sloan Creek watershed was agricultural, with no urban infringement on the area. Nearly 60 percent of the area was cropland, with corn being the major crop. About 12 percent of the area was in pasture and 20 percent either idle or in wood land. The overall cultural picture of this watershed was one of a typical agricultural area.

From a U.S. Geological Survey topographic map and detailed field checks on the basin boundaries, the drainage area above the stream gage was determined to be 9.34 square miles. The watershed was approximately four and one-half miles wide by six miles long, see Figure 1. The topography was flat to gently undulating and the channel slopes averaged 10 feet per mile. The main channel, a constructed drainage ditch excavated about 1917, had several small meanderings; however the ditch bottom was generally straight and reasonably clear of debris and woody vegetative growth.

The watershed had mainly imperfectly-drained Conover and poorly-drained Brookston loam to clay loam soils with less than five percent of the area occupied by undulating to rolling well-drained, sandy loam Hillsdale and Bellefontaine soils. Also small areas of Brady and Griffin stratified, sorted, poorly-drained sands and

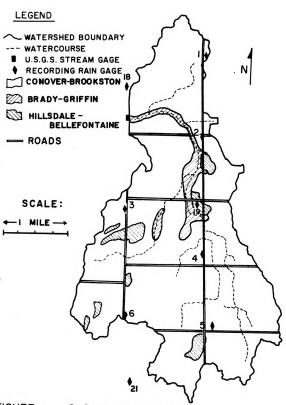
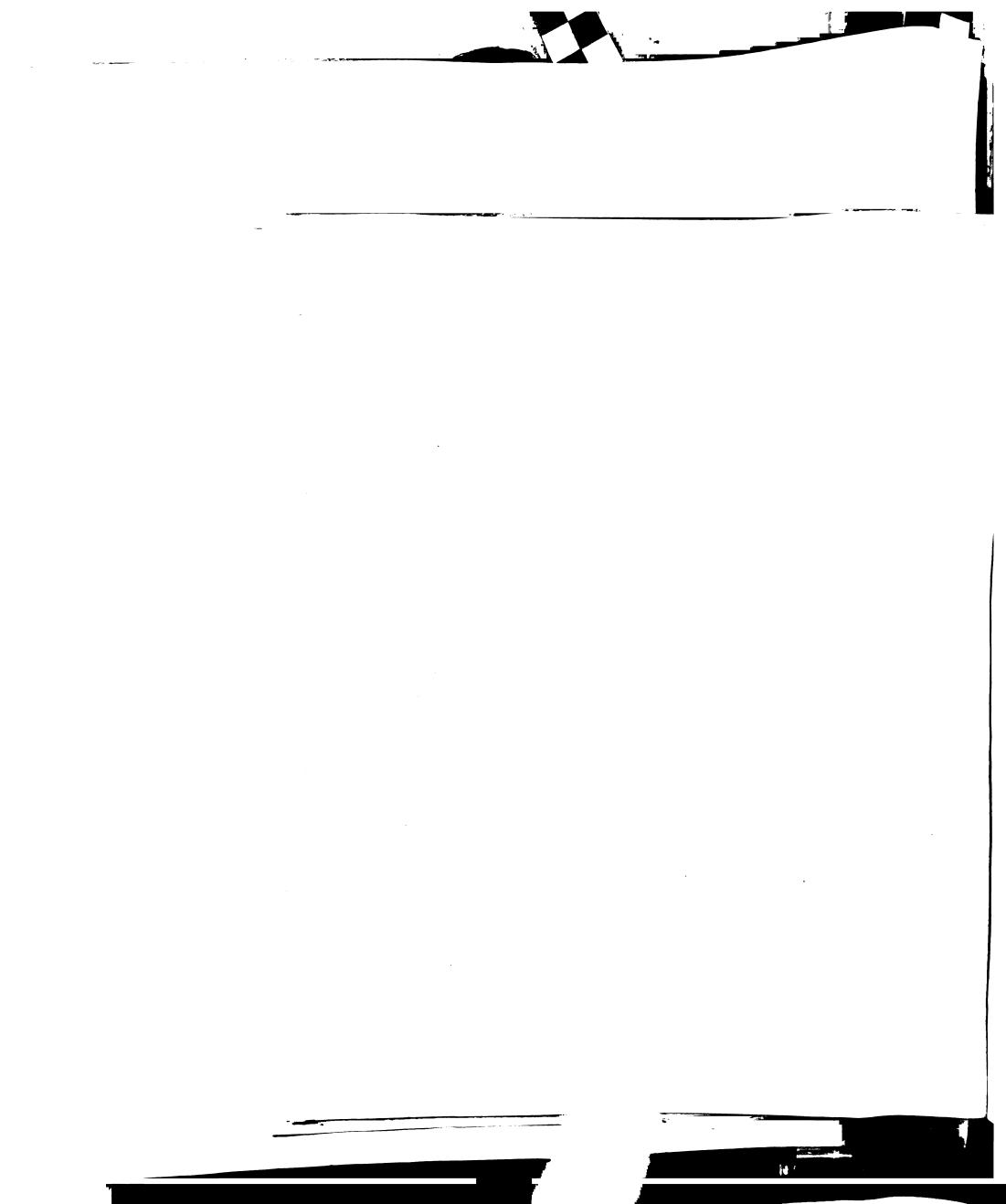
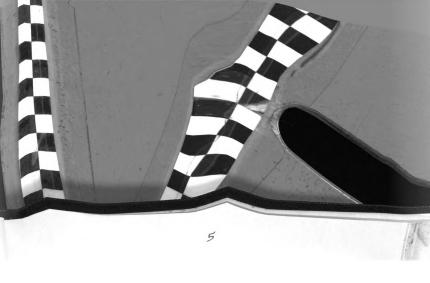



FIGURE I. SLOAN CREEK BASIN

gravels occurred along the creek.


In June 1954 the United States Geological Survey established the stream gaging station. The equipment consisted of a Stevens A-35 waterstage recorder in a wooden shelter over a welded-steel pipe well and concrete control with 90 degree steel V-notch sharp-crested weir. The operation and maintenance of this station were completely under the jurisdiction of the U.S.G.S.

Six recording rain gage stations were established in April 1956 under the supervision of the United States Weather Bureau, East Lansing office. Three additional stations were installed in April 1958 to give an even better coverage of the area. These gages were installed and calibrated by the Weather Bureau and were serviced by Agricultural Engineering personnel.

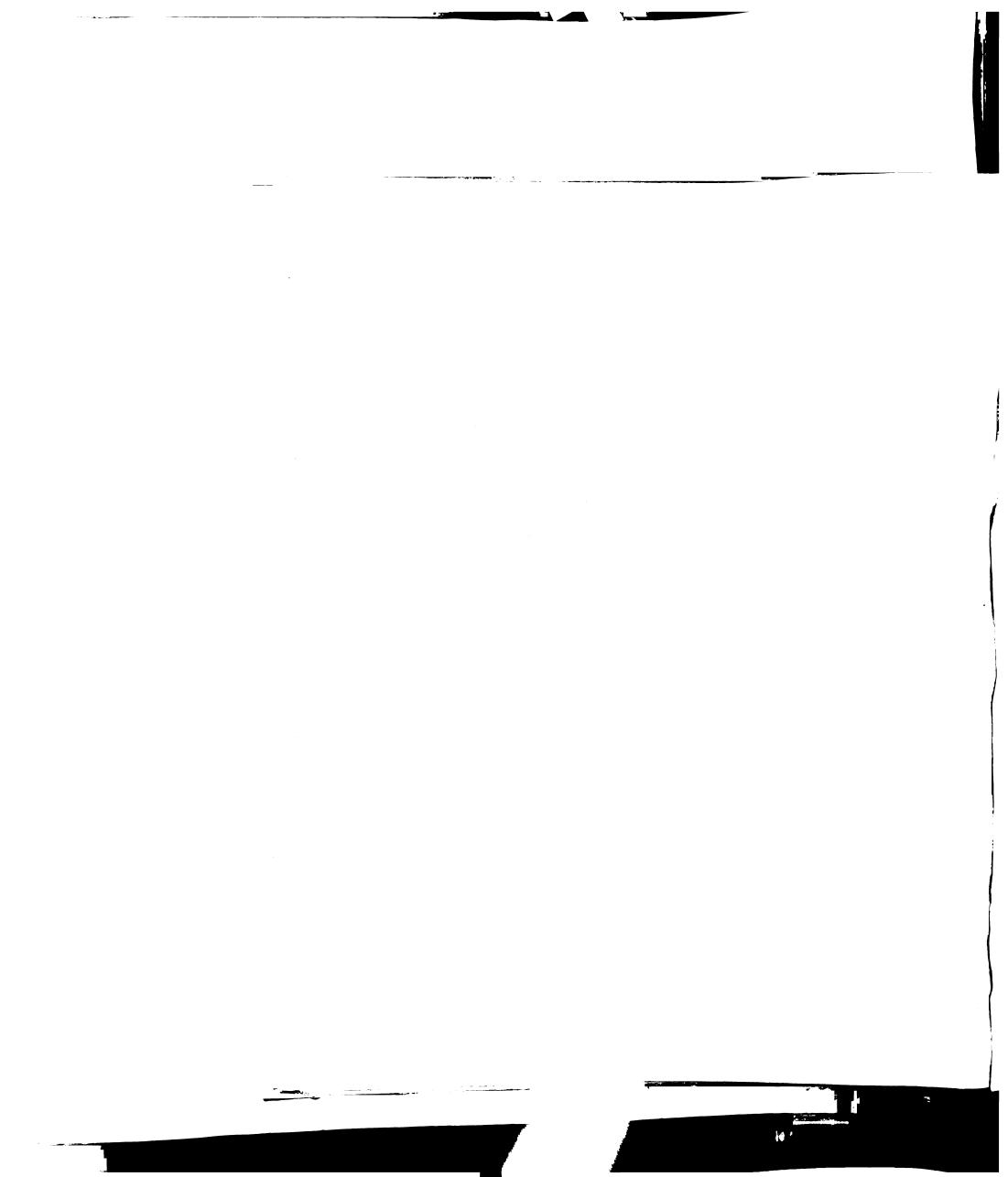
The Water Resources Commission of Michigan aided in publication of data and supplied matching funds to the U.S. Geological Survey for stream gaging. The Soil Science Department advised on watershed soils problems.

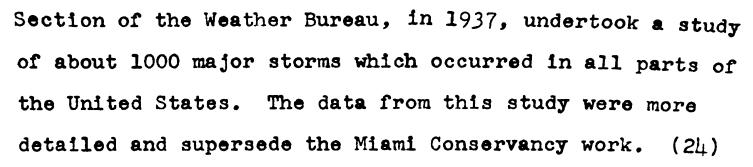
The Agricultural Engineering Department was responsible for changing the rain gage charts and helped maintain all field equipment in efficient operation. Another of its functions was to aid in the analysis of the data, under which this thesis was prepared.

OBJECTIVES

The basic objectives of this study were to collect, process, and analyze the five years of available Sloan Creek watershed rainfall and runoff records. More specifically these objectives were as follows:

- 1. To determine the adequacy of a single raingage for the watershed.
- 2. To compare the various methods of evaluating the average depth of rainfall of a small watershed.
- To choose an applicable procedure for separating surface and base flow so the volume of runoff can be determined.
- 4. To study the specific watershed characteristics which have the greatest effect on the runoff process and if possible to determine their specific values for the Sloan Creek watershed.
- 5. To determine the applicability of various methods of estimating flood peak rates and/or volumes of discharge for watersheds of this size with or without prior hydrologic records concerning them.




REVIEW OF LITERATURE

A "small watershed" may refer to any area from a fractional acre to several hundred square miles in size. As implied in the Introduction, small watersheds in this thesis refer specifically to areas of 5 to 25 square miles. Very small watersheds pertain to areas from this size down to a fraction of an acre, while large watersheds refer to areas larger than 25 square miles.

Rainfall and runoff records concerning large watersheds have been secured for a long period of time, mainly by the U.S. Weather Bureau and the U.S. Geological Survey. The early, published records contained only daily average stream discharge and raingage data, thus only areas over 500 square miles could be adequately analyzed. (10) As recording rain gage and stream gage records became available, areas much smaller than these were given more consideration.

In 1917 the Miami Conservancy District gathered data on many large-area storms in connection with the design of flood-protection works for the Miami River above Dayton, Ohio. In 1931 this study was expanded to include depth-area-duration curves for 250 of the greatest storms in eastern United States. The Corps of Engineers in cooperation with the Hydrometeorological



Since 1930, much experimental work has been in progress on watersheds ranging from a few acres to several square miles in size. These experiments were designed primarily to determine the effects of land use and of conservation practices on runoff. The procedures on and the results of many of these studies are summarized by Krimgold (12,14) and Cardwell (4).

The previous references verify that the size of the watershed affects greatly the approach required for its analysis, as it affects both the rate of runoff and the manner of its occurrence. On larger watersheds, floods reach their crest slowly, remain at flood stage for days, and subside slowly; while on smaller watersheds they crest more quickly, remain at flood stage only a short time, and subside quickly. When large streams overflow, the resulting damage is more extensive because of the larger flood plains and greater length of flood period; but the suddenness of small watershed floods frequently causes a heavy loss of life and property. (23) (29)

Floods on small watersheds are generally caused by very intense precipitation, which occurs over small areas only. It is usually rains of low intensities covering

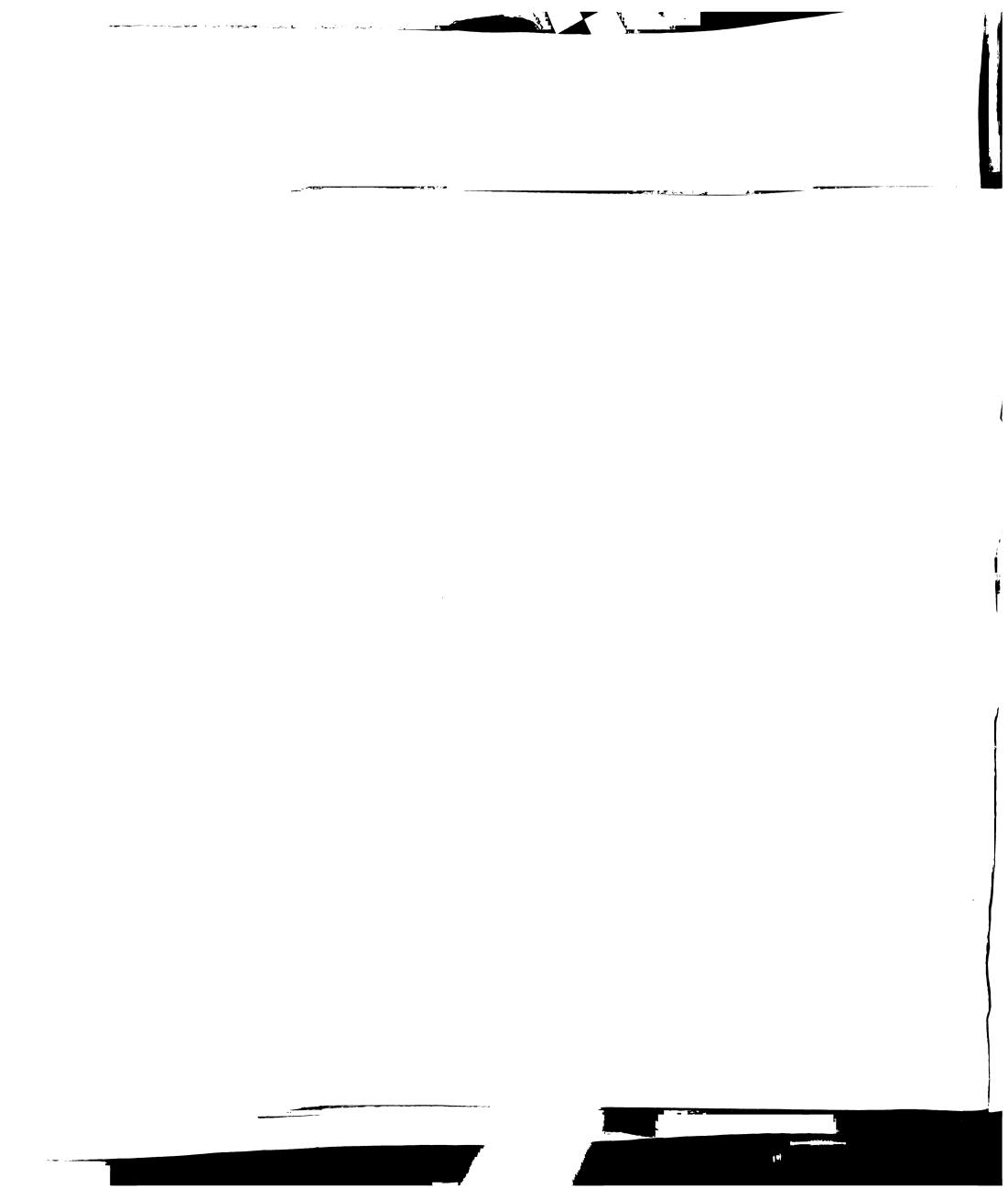
8

the entire watershed and lasting for several days which cause floods on large watersheds.

Small and very small watersheds may consist entirely of steep slopes and impervious soil, causing a high percentage of runoff and a rapid concentration of flow; while the varied topography and soil of a large watershed usual result in a smaller percentage of the rain running off and in a slower rate of concentration. For example, the June 1903 flood of Willow Creek, Oregon produced 1800 cfs per square mile from a 20 square mile watershed; while the 1904 flood on the Illinois River with a drainage area of 27,900 square mile had a flood runoff rate of only 4.48 second-feet per square mile. (23)

On very small watersheds the rates and amounts of runoff are influenced primarily by the physical conditions of soil and cover over which man had some control, and thus most attention in hydrologic studies is given to these factors. The channel storage effect for large watersheds becomes more pronounced and is given the most attention when considering runoff from large areas. (5)

During the past ten years much information has been made available concerning large watersheds and also very small areas; however, information concerning the 5 to 25 square mile areas is still very inadequate. Decisions concerning runoff from these small areas, which include



smaller watersheds, must nevertheless continue to be made. Each year these determinations of runoff must permit more economical design of structures and at the same time assure a high degree of safety. Thus more accurate rainfall-runoff data must be secured.

Pickles (23) lists and discusses a number of empirical formulas that have been used for estimating future flood flows. He also states, "The paper by Gregory and Arnold and the extensive discussion on it contain the most complete coverage of the subject of runoff formulas of which the author is aware."

Most of the previously used empirical formulas have been grouped into two categories by Linsley, et al. (17) The first category is of the type used by Fuller, Myers, Fanning, and Talbot which has the general form of $q_p = b \ A^m$. That is the peak flow is considered a power of the basin area. The exponents used differ to such an extent that this reference concluded that theses formulas "should never be used for engineering design."

The second group is typified by the Burkli-Ziegler formula $q_p=A$ c $i\sqrt{\frac{g}{A}}$. In this expression i is the expected average rainfall in inches per hour, s is the average slope of the watershed in feet per 1000 feet, A is the area in acres, and q_p is in cfs. This type of

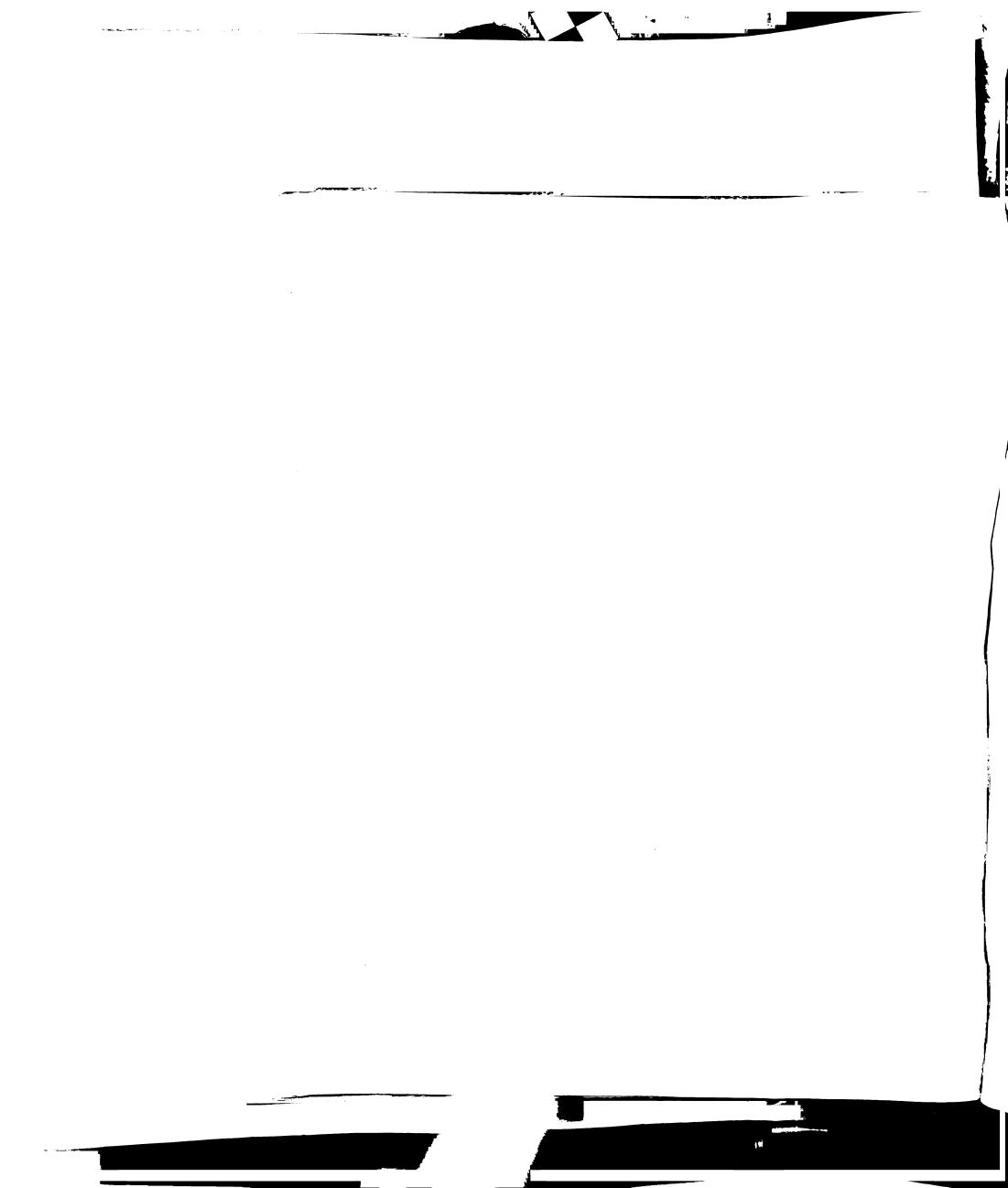
modern engineering design".

After considering all available references and the data available from the Sloan Creek watershed, three methods of estimating runoff were chosen. Before discussing these methods however, certain rainfall and watershed factors need to be considered.

The major rainfall characteristics required for hydrologic analyses are intensity, duration, amount, and distribution. (2) Direction of storm movement also affects runoff. To analyze this factor, however, requires greater synchronization of raingage timing and longer periods of record than were available for this study. Recording gages supply adequate intensity, duration, and amount of rainfall data. The number and distribution of gages in the raingage network should be such that the rainfall data are congruent with the permissible variation in basin discharge. (16)

The equivalent uniform depth of precipitation over a given area may be computed by one of four methods. The simplest is by taking the unweighted mean of the precipitation recorded by the various gages in the area. If the gages are regularly spaced this procedure is frequently as satisfactory as any of the others.

The Thiessen procedure makes allowance for irregularities in gage spacing by weighting the amount received by each gage in proportion to the area which the gage represents.



The gage is assumed to represent all areas closer to it than to any other gage. The isohyetal map makes even greater use of the gage data by taking into account the evidence of other nearby gages and making corrections accordingly. (10) (24)

In the isohyetal method, the human element enters into the drawing of isohyetal lines which account for influences of areal distribution and topography on intensities. The Myers (20) method is a mathematical procedure which assumes uniform areal variations due to storm patterns and uniform changes in precipitation due to differences in elevation, but is always consistant when used to analyze a number of storms over the same watershed.

Besides the storm characteristics previously discussed, the quantity of runoff produced by a storm depends upon the moisture deficiency of the basin at the onset of the rain. Direct determination of the moisture conditions throughout the basin is not feasible, as depression and interception storage, as well as three-dimensional soil moisture measurements are required. (17)

Nevertheless, various procedures have been considered for approximating these initial moisture conditions. Themes and Ursic (30) indicated that surface runoff is strongly correlated with storage opportunity in the upper 6 inches of soil. In this case soil moisture

throughout the watershed was determined by a network of fiberglas resistance units. Variations in groundwater discharge at the beginning of storm periods and pan-evaporation data have been used with varying success. At the present time, the most common index is based on antecedent precipitation. (17)

If moisture deficiency is broadly interpreted it also includes infiltration. Actually, storm loss is mainly due to infiltration and the infiltration rate at any time depends upon the water available for infiltration and on the infiltration capacity of the soil. If the rainfall intensity is greater than the infiltration capacity the excess water fills depressions and then runs off. (3)

The infiltration capacity is extremely variable and has been the cause of much study. Kidder (11) analyzed the effects of crops and tillage on the amount of infiltration that took place during individual natural storms. His review of literature summerized many factors which affect the infiltration process.

Krimgold (13) quoted from a paper of H. K. Rouse to show "why the records from (very) small agricultural drainage areas with constantly changing vegetal cover, soil moisture, and structure of surface soil show such a great variation in peak rates of runoff which overshadow the relation to intensity of rainfall." Zingg (31) stated, "The infiltration rate decreased throughout the

storm, from a value of 0.12 inch per hour at the initial time of rainfall excess, to less than 0.01 inch per hour about 15 hours later."

The previous data point out some of the variables which must be considered in the rainfall-runoff process. These variables, individually and through interactions, affect the shape of the runoff hydrographs of a watershed, hydrograph being defined as a graph of discharge rate versus time.

Each runoff hydrograph consists of three segments, a rising limb, a crest segment, and a falling limb or recession. The shape of the rising limb for any specific watershed is influenced mainly by the rainfall characteristics of the storm producing the runoff, whereas the recession is largely independent of these characteristics. (17)

A flood-period hydrograph is usually a hydrograph of surface runoff superimposed on a hydrograph of groundwater discharge. A base flow line, between the point where the rising limb begins and the position on the recession where surface runoff ends, is used to separate these two flows. This line is assumed to be straight if groundwater data for a particular watershed is nonexistant. However, it may be concave downward or upward depending on the particular watershed characteristics. (10)

Various methods have been considered for determining the position on the recession curve where surface runoff

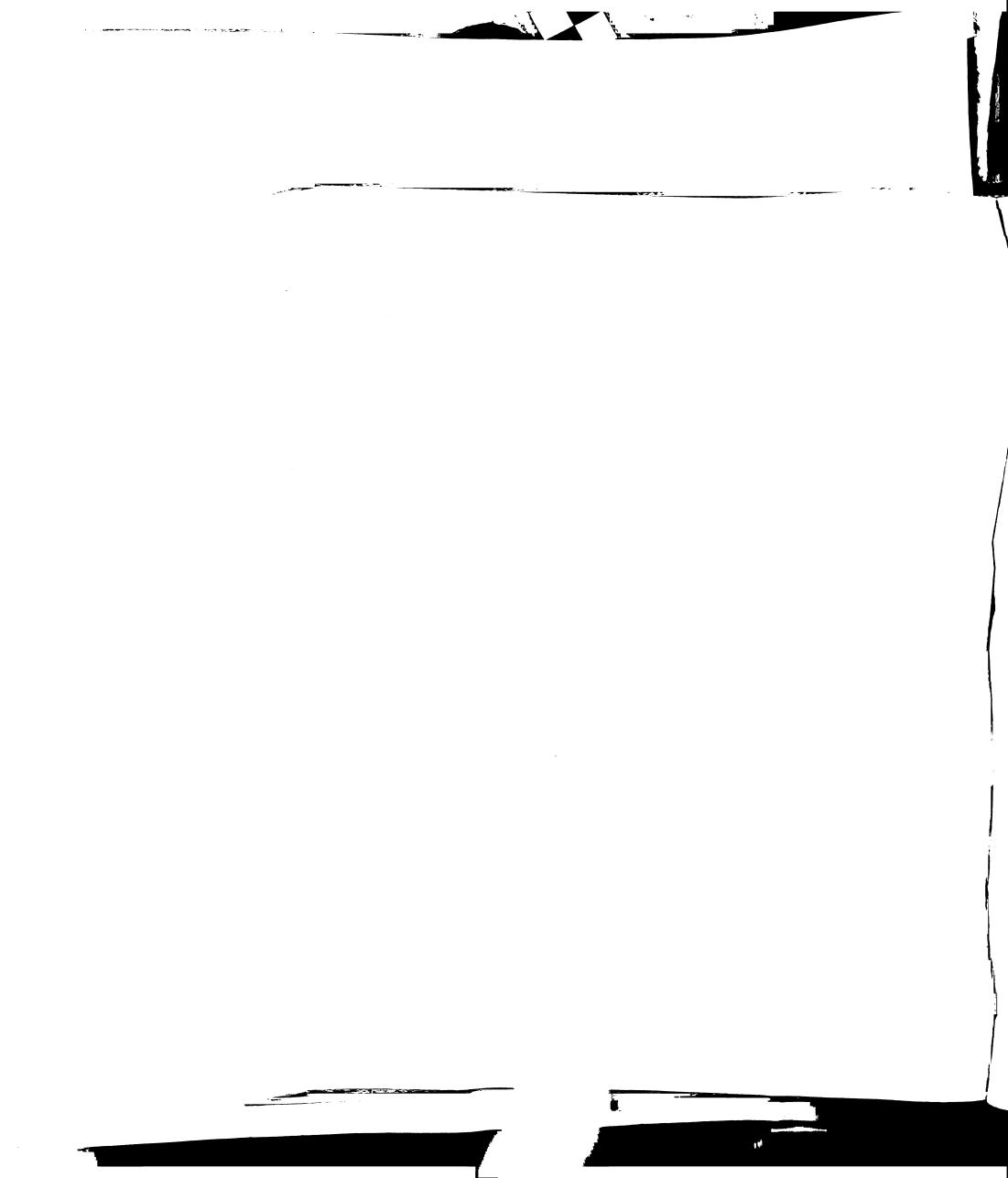
14

essentially ends. (9) The methods discussed in the Processing of Data section were suggested by references (3), (17), and (24). Pickles (23) recommended using the recession record from a similar, previous period to estimate the groundwater component.

A mathematical procedure using unit graph theory to determine the expected values of surface runoff is suggested by Johnstone and Cross (10). These computed values are then compared with the natural hydrograph values and adjustments of time made until reasonable agreement between the calculated and actual rates is reached. This procedure is frequently used when previous recession curve data are not available.

The first procedure of estimating watershed runoff to be considered in this thesis is the unit graph method. A unit graph is defined as a hydrograph resulting from 1 inch of runoff from the entire watershed as the result of a uniform rainfall lasting one unit of time. This method was introduced in 1932 by L.K. Sherman and is based on the principle that identical amounts of runoff should be produced from identical rains falling on identical watersheds. Recognizing that identical situations never occur in nature and that reasonable variations are acceptable for practical applications, certain tolerences are permitted. (15) (23)

The unit graph principle was used in the approaches of Bernard, McCarthy, and Snyder. Each of their procedures


is outlined in detail in reference (10). Their work was all on large areas. Linsley (15) has found unit hydrographs to be applicable to drainage basins in the 5-10 square mile area range. Minshall (19) is presently investigating the use of this method on areas less than 1 square mile in size.

The unit graph method is most applicable where a number of years of rainfall and discharge records from recording gages are available. Besides this possible limitation some of the assumptions and other considerations required are discussed in the following paragraphs.

For most watersheds variations of ± 25 percent for lengths of rainfalls used to develop a unit graph are permissible. (17) The unit length chosen should be short enough to adequately define the hydrograph peak (2h), or be about one-fourth of the basin lag (15).

Besides being relatively uniform in length of rainfall, the rainstorm should be evenly distributed over the entire area and of such magnitude that all parts of the watershed contribute to the runoff. The directions and rate of storm movement its intensity, and the season of its occurrence should be similar. (10)

It is assumed that the time distribution of surface runoff from a given storm period is independent of concurrent runoff from antecedent storm periods, and that for storms of equal lengths the rates of runoff at corresponding times are in the same proportion to each

16

other as the total volumes of surface runoff. (10)

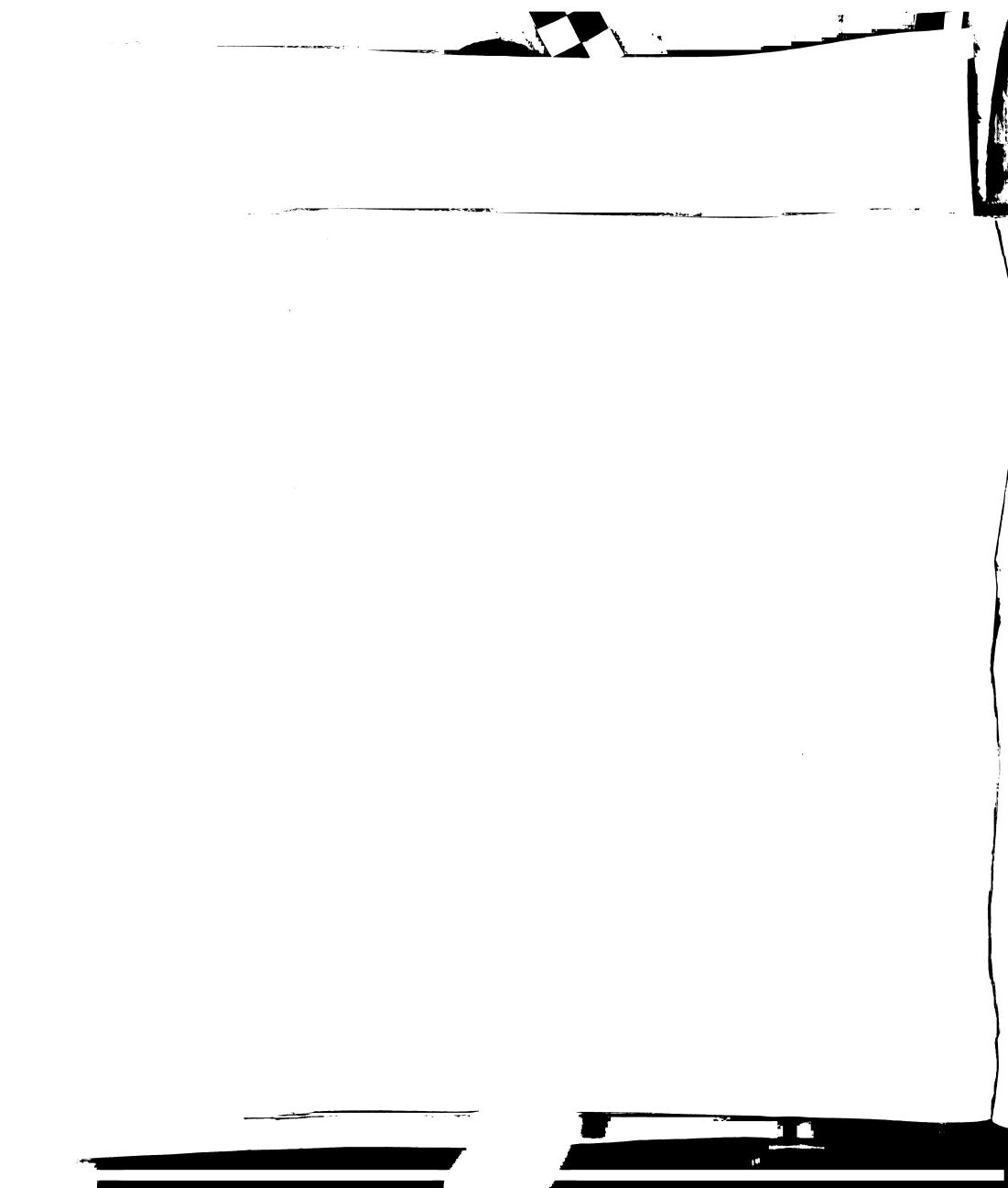
The composite unit graph from a number of similar storms is considered more applicable than from any specific one. This is because of inaccuracies in the basic data, nonuniform distribution of storms, and departures of drainage basin performance from unit graph theory. (10)

All the authorities agree that none of these assumptions are rigorousily correct, but they believe that a maximum variation and peak discharge of \pm 20 percent about the mean can be obtained.

The rational formula Q = C i A is a very simple formula. It is a very satisfactory formula however, if all the rainfall and watershed characteristics can be properly determined. Sharp (25) has done an excellent job of outlining its two main weaknesses.

"The first of these is the determination of the proper rainfall intensity to use. This will vary with the season of the year, the size of the watershed, the type of storm, direction of travel of rain wave, and many other factors Watersheds, other than those measured by square feet in area, rerely have uniform rainfall intensity even instantaneously over the entire watershed much less for periods of minutes or hours which are the most normal duration of concentration time."

"The second is the determination of the coefficient coefficient must be adjusted to accomodate surface storage, detention storage, initial abstracts, rainfall interception, and a varying rate of infiltration. Detention storage varies with land slopes and channel gradients, stream meander, pondage, and other factors. Infiltration may be affected by land use, land treatment, vegetative conditions, antecedent soil moisture, temperature, and other factors."

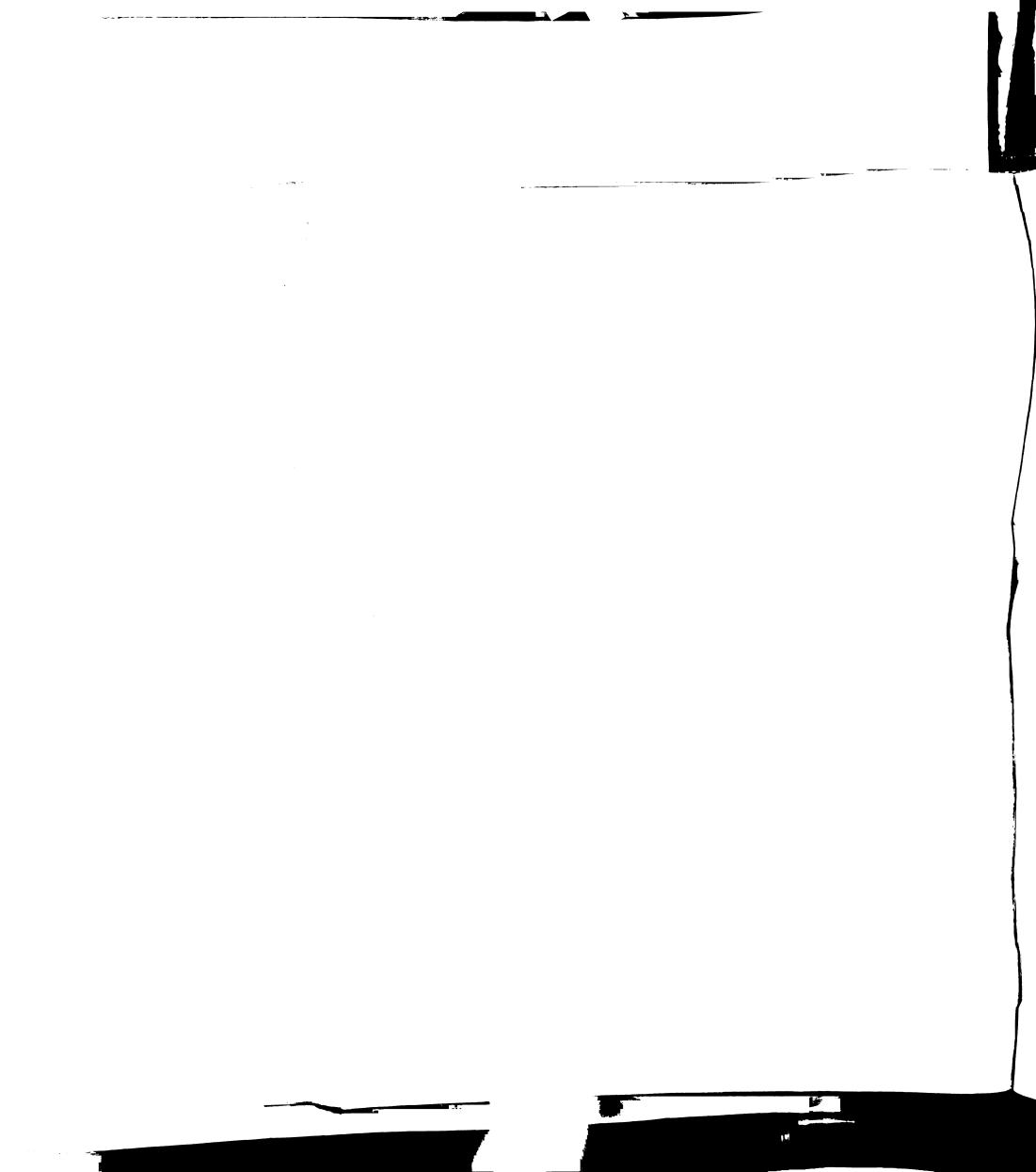

This certainly is true, but without previous rainfall

or runoff information for a watershed any other formula must consider these same factors. An example of rational formula use is given in the Analysis and Discussion of Runoff Data section.

Cook's method of evaluating runoff for a particular watershed by examining the relief, soil infiltration, vegetal cover, and surface storage characteristics has been modified by Soil Conservation Service personnel. Its latest modification has been recently outlined by Ogrosky (22), who states, "The approach takes into consideration the soil, land use or cover, treatment or practice, hydrologic condition of the cover, soil moisture condition and rainfall."

The field hydrologists are then provided with the range of data which is to be used in a prescribed procedure. This information includes 2000 major soils which have been placed in four hydrologic groups; curve numbers for various combinations of soils, cover, and treatment; a series of curves relating rainfall and runoff; and description of the various soil moisture conditions.

The procedure is very exacting; all field men arrive at the same runoff from a given set of data. These values of runoff are probably fairly accurate if the rainfall and watershed conditions were of the "average" type for which the procedure was designed.


COLLECTION OF DATA

In determining the specific rainfall-runoff periods to study, it was necessary to use raingage and streamgage records simultaneously. It is merely for convenience that they are here discussed separately.

The hourly precipitation from each of the raingage charts was read and tabulated by Weather Bureau personnel. Copies of the tabulated sheets were maintained by the Agricultural Engineering Department. These tabulations were rechecked for arithmatical accuracy and where comparisons between gages indicated possible errors original charts were referred to.

These records were satisfactory for the determination of average depth of rainfall over the watershed and for indicating the hourly amounts of precipitation for the runoff hydrographs. The original tracings, however, had to be used for preparing unit hydrographs, as specific lengths, intensities, and uniformity of rainfall are critical in their construction.

In securing runoff data it was necessary to refer to the original tracings of the waterstage recorder, as U.S. Geological Survey personnel tabulate only daily average discharges. Their notes for the calculation of

these discharges, however, served as an excellent check on the author's work.

Forty five possible discharge peaks were checked.

Many were discarded due to frozen ground or to water
from melting snow being in the discharge; others were
eliminated because the peaks could not be readily separated
or there was insufficient data. Assistance of U.S.G.S.
personnel in determing the appropriate runoff peaks to use
was invaluable.

Eventually data were secured for 19 hydrographs, with peak flows ranging from 685 cfs to 3 cfs. Fifteen of them were used for determining the rainfall-runoff process for spring, summer, and fall conditions; two were representative of winter conditions with no snow; one was for exemplifying snow melt runoff; and one was for showing the effect of very light precipitaion during extremely high antecedent moisture.

Only sufficient points necessary to obtain a true reproduction of the original hydrograph were secured. These data and an explaination of their derivative are presented in Appendix 1.

PROCESSING OF DATA

Rainfall distribution

According to Linsley, Kohler, and Paulhus (17), the Thiessen method of determing equivalent uniform depth of precipitation will give "essentially the same" results as linear interpolation used with the isohyetal procedure. Since there are no topographic influences which warrant modification from linear interpolation and since the Thiessen method is easier to apply it was used for this watershed.

Table 1. Percentage of watershed ascribed to each gage using Thiessen procedure.

Gage number	Six gages percent	Nine gages percent
1	9.8	7.2
2	19.1	11.0
3	14.2	12.4
4	19.6	14.8
5	22.9	20.8
6	14.4	14.1
18		6.0
19		11.1
21		2.6
rotal .	100.0	100.0

Figures 2 and 3 show the areas ascribed to the various rainfall gages for the six and nine gage arrangements, respectively. The specific percentages of the watershed assigned to each gage are listed in Table 1.

Using the percentages given in Table 1, the
Thiessen procedure rainfall analysis data were calculated.
These data and additional information concerning them are
presented in Appendix 2.

Hydrograph construction

The data of Appendix 1 were used to construct hydrographs for the 19 runoff periods. Figures 4 through 22 show chronologically these hydrographs with their respective base flow separations. These figures also include the Thiessen hourly precipitation values, each plotted in the center of the hour of its collection.

A uniform scale of time for the abscissas was used, but the scales for the ordinates were varied to secure maximum area under the curves. The greater area permitted increased accuracy in the determination of runoff by planimetering.

As discussed in the next section, $2\frac{1}{2}$ day surface runoff recession curves were used for nearly all hydrographs. Occurrence of another storm before the ending of this period required the lengthening of three hydrographs by using data from similar storms. Typical recessions for the

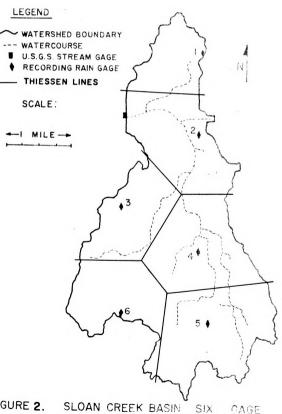
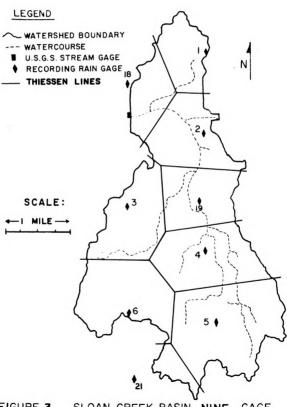
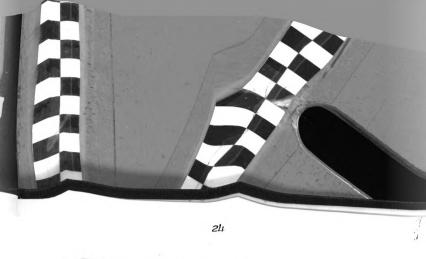
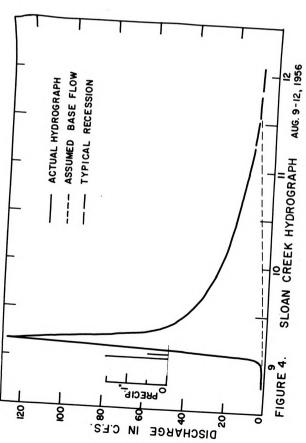
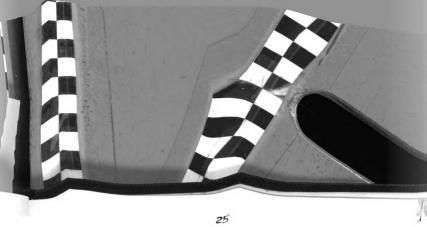
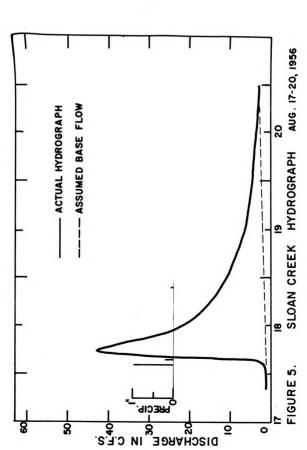
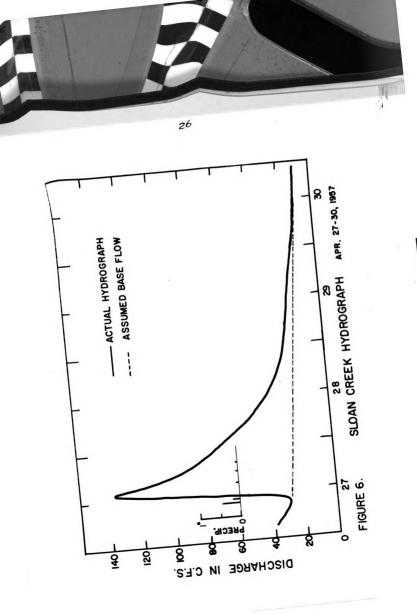


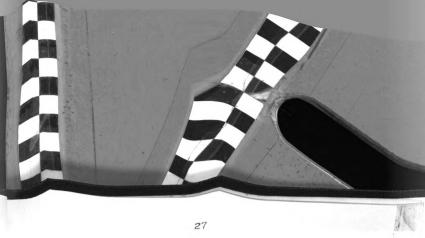
FIGURE 2. SLOAN CREEK BASIN SIX THIESSEN PROCEDURE

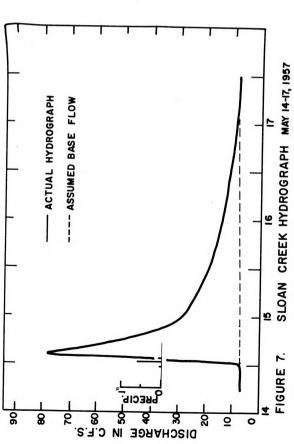






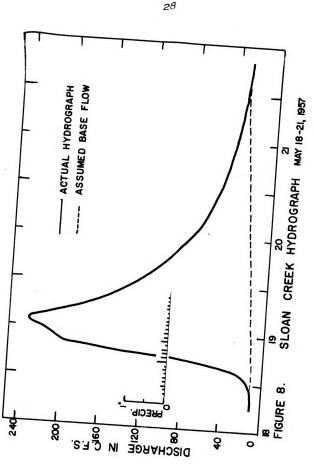

FIGURE 3. SLOAN CREEK BASIN NINE GAGE THIESSEN PROCEDURE

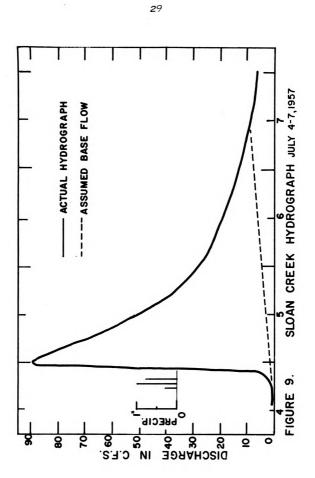


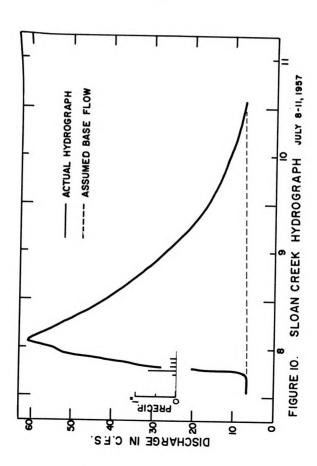


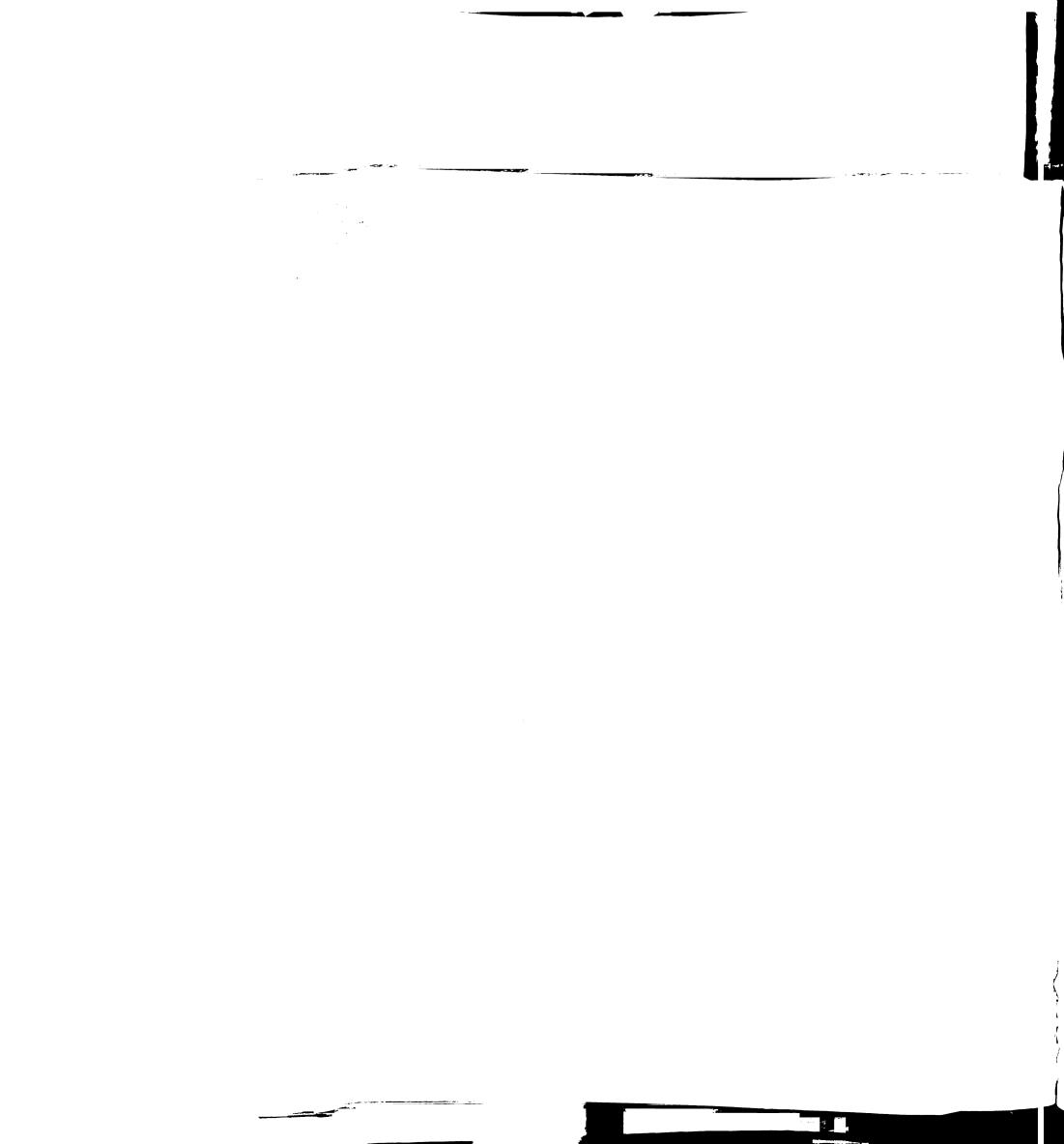


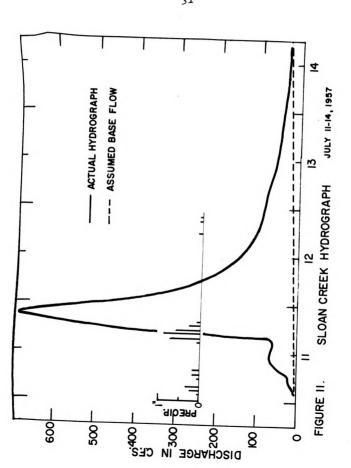


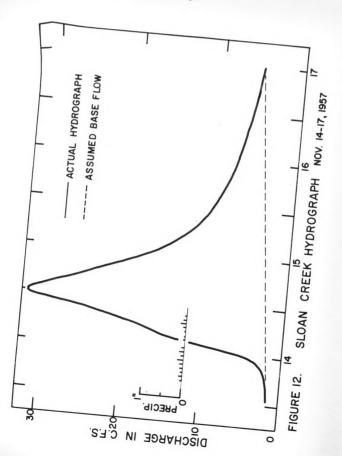


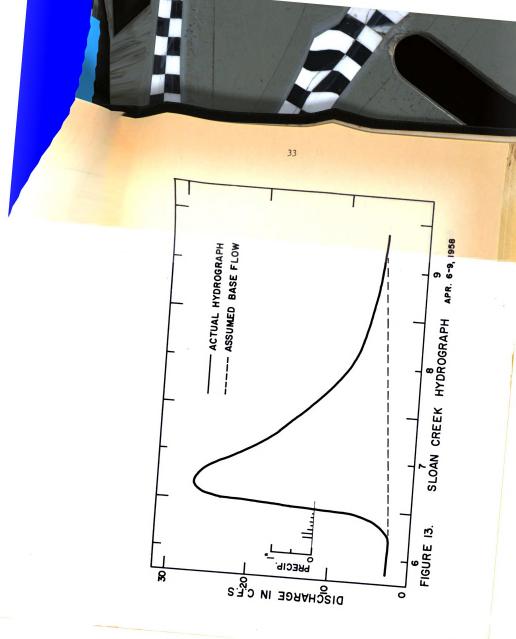


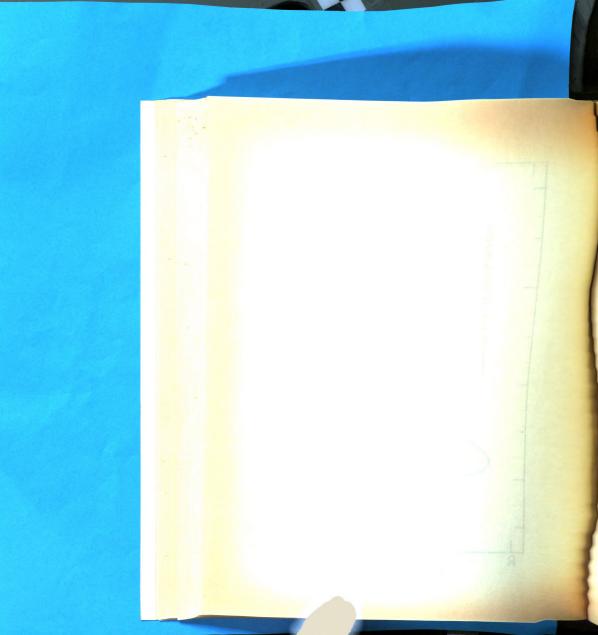


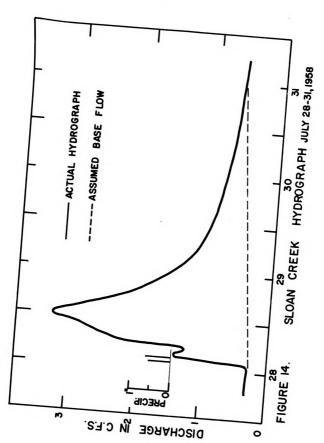


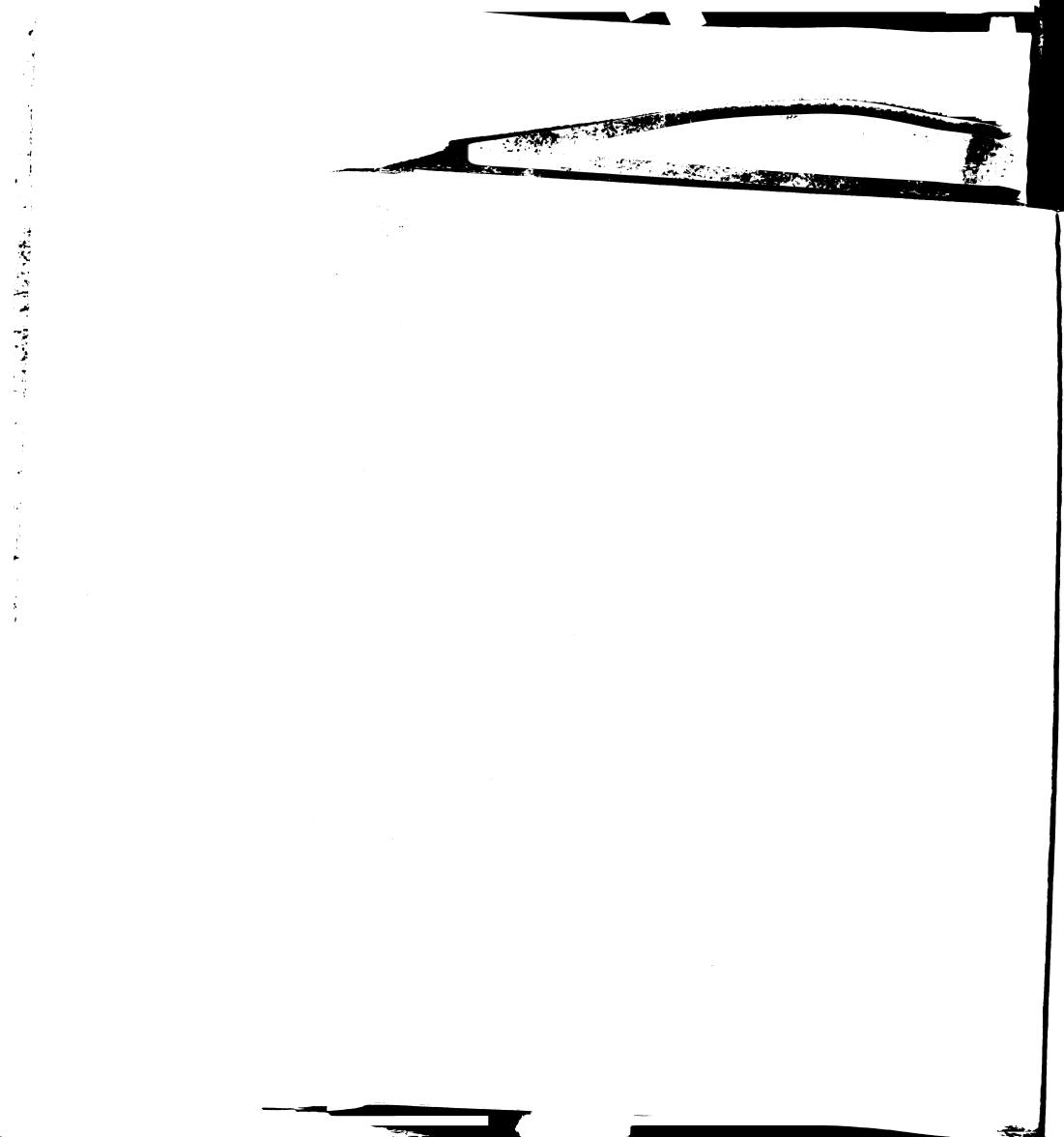

.

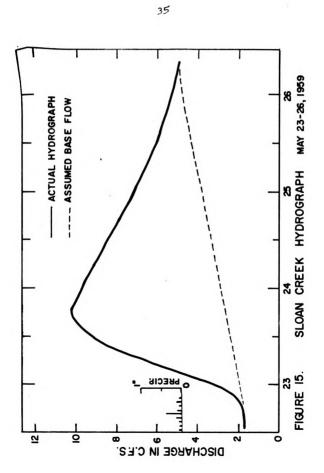


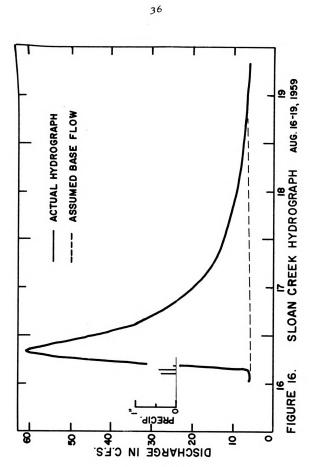


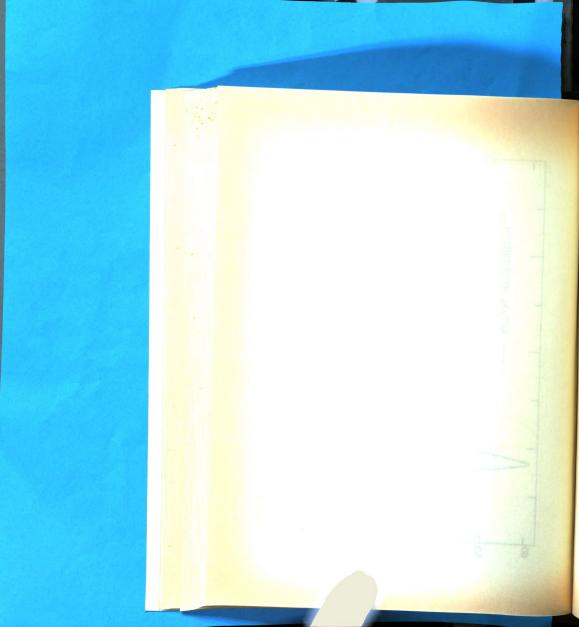


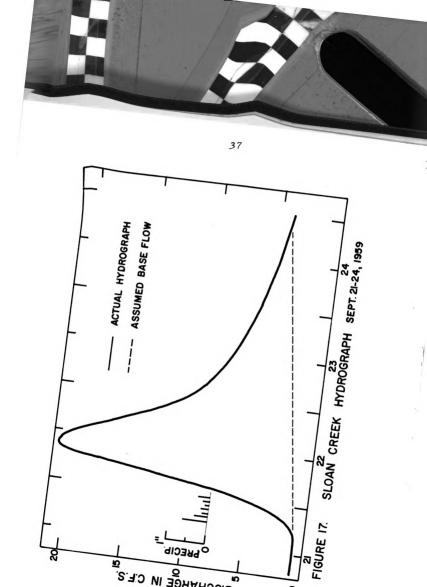


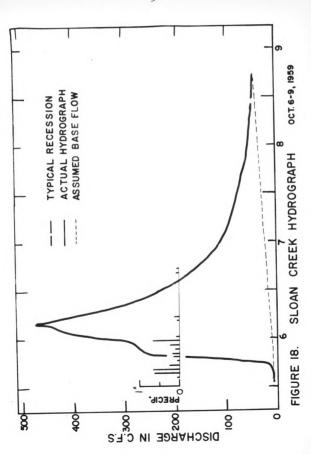



* - 2 1.**9**.

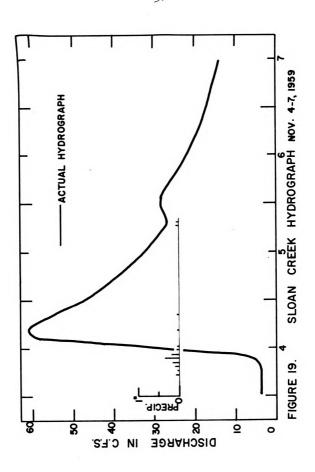


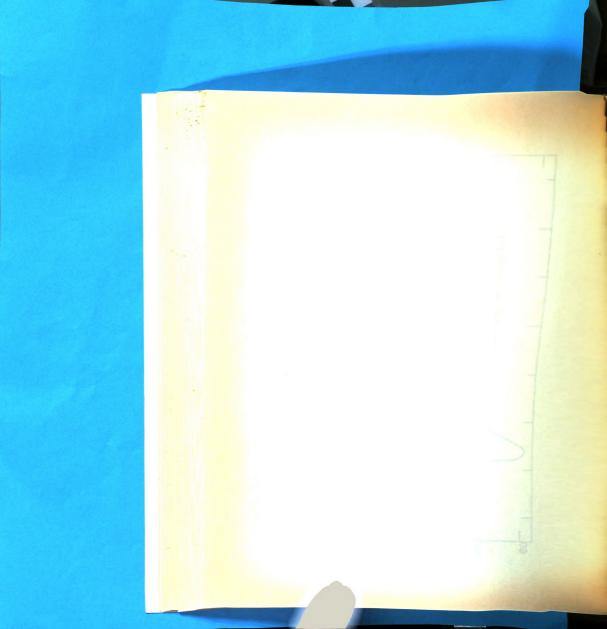


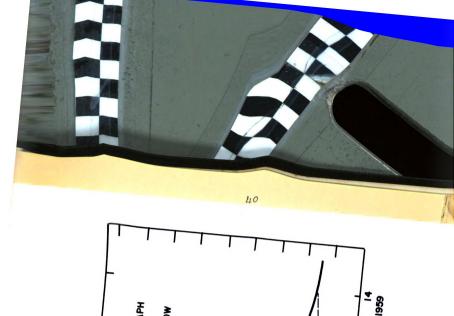


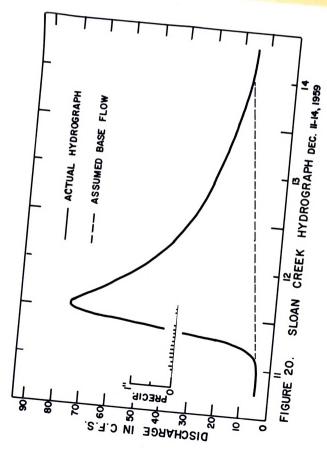


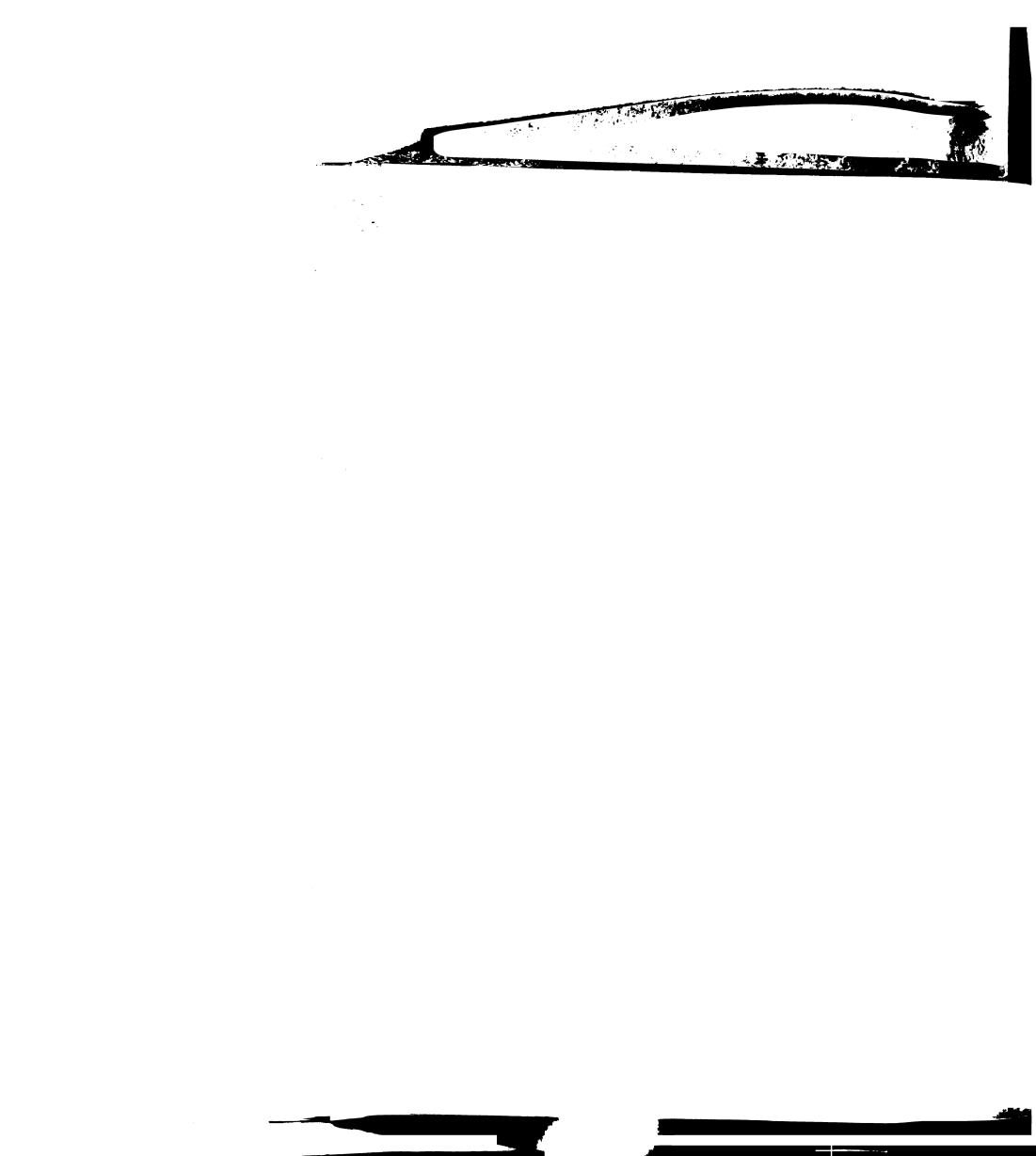
PRECIP

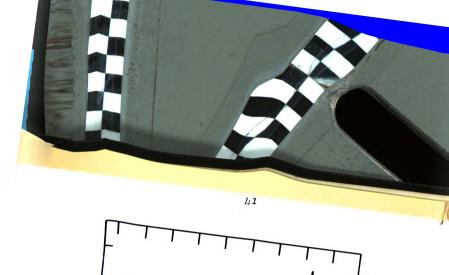

DISCHARGE IN C.F.S.

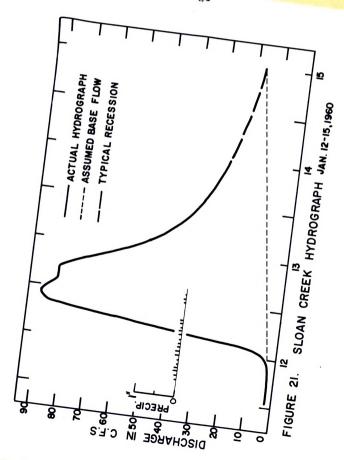

	· ·						
				•			
				-			
-							
		•					



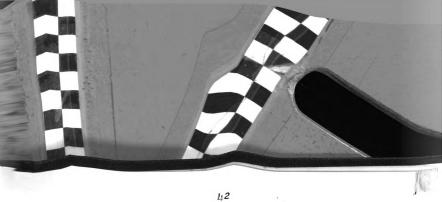


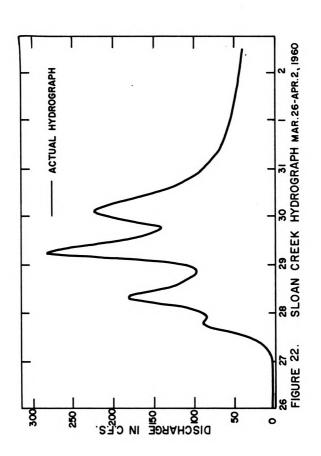


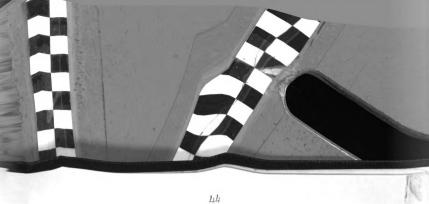


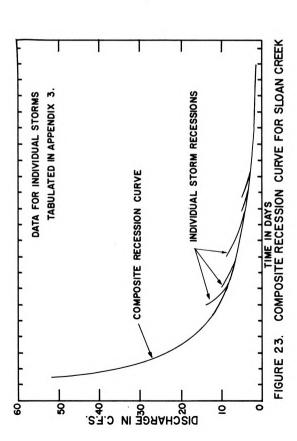









August 9-12, 1956; October 6-9, 1959; and January 12-15, 1960 hydrographs were obtained from the July 4-7, 1957; July 11-14, 1957; and January 4-7, 1955 storms, respectively.

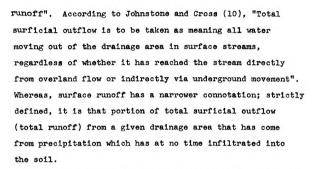

Recession curve and base flow

A specific point on the recession curve which defines
the ending of surface flow is more theoretical than
realistic. However, the position where this essentilly occurs
can be determined by methods described in the Review of
Literature. With the data available for this analysis the
use of a typical base flow recession curve was the most
appropriate method of estimating this point.

Since a sufficiently long, rainless period following a major storm did not occur, a typical recession curve was constructed synthetically by combining short recessions. Figure 23 shows the construction of the composite recession curve from seven individual storm recessions. The data for the individual storms are tabulated in Appendix 3.

Curves from the base flow section of the composite recession curve plotted to the appropriate scales were used to determine where surface flow became insignificant. This occurred essentially two and a half days after the peak for all hydrographs except April 27-30, 1957 and July 11-14, 1957. For these the storm recessions deviated

45


materially from the base recessions about three days after the peak. This was due to light showers occurring shortly after the main storm in each case.

Linsley, Kohler, and Paulhus (17) suggests, as a rule of thumb, that the time in days N from the peak to 0.2 surface flow secession may be approximated by N = A where A is the drainage area in square miles. This formula gave an N of 1.56 days for the watershed. The discrepancy between this value and the two and a half days actually found was probably due to the watershed being long and narrow, being flatter, and having proportionally more surface storage than the "typical" watershed. Our watershed examplifies their statement, "However, N is probably better determined by inspection of a number of hydrographs, keeping in mind that the total time base should not be excessively long and the rise of the groundwater should not be too great".

As little is known of the rate at which accretion to groundwater discharge takes place from infiltration, a straight line joining the positions of surface runoff beginning and ending was assumed. This concurs with the authorities referred to in the Review of Literature.

Runoff

At this point it would be well to make a precise distinction between "total surficial outflow" and "surface

The data of Appendix 1 are measures of total surficial outflow. They include certain amounts of base flow which were derived from groundwater. The straight, dashed, base flow line essentially separates that portion due to surface runoff from that due to groundwater. Actually, the portion referred to as surface runoff contains a small amount of water which has infiltrated into the soil surface but has come out again very quickly from seeps or from tile lines. This water is frequently called interflow but is usually so small in comparison that it was not considered in this analysis.

Surface runoff, hereafter referred to merely as runoff, is thus that portion between the hydrograph and the base flow line. The volume of runoff can be obtained by multiplying the average hourly ordinate in cubic feet per second by 3600 seconds in an hour and summing over the

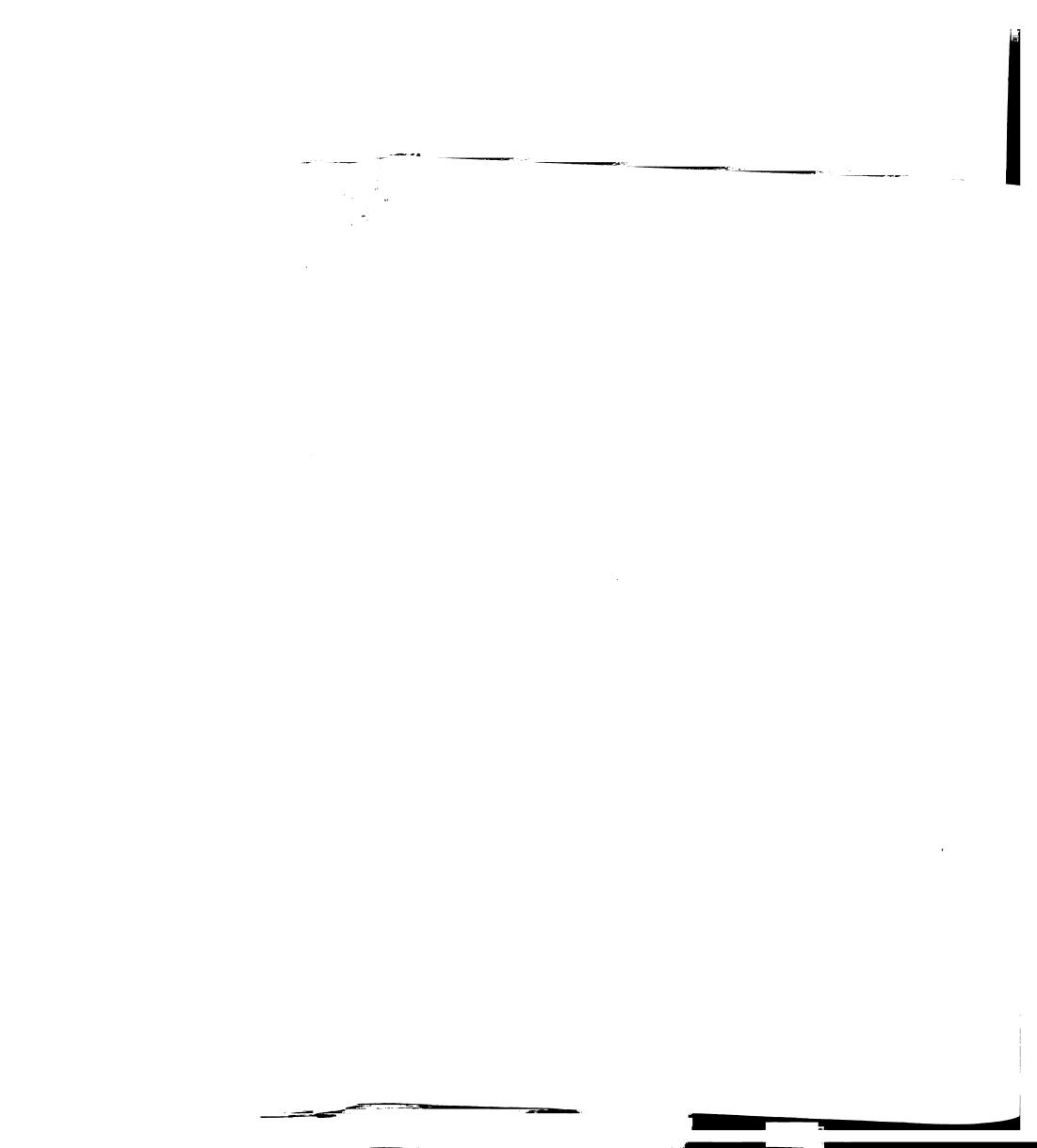


Table 2. Rainfall and runoff data for 17 Sloan Greek hydrographs.

	Date		Peak dis- charge C.F.S.	Total rain- fall In.	Runoff area Sq. In.	CFS- Hours per Sq. In.	Run- off CFS- Hours	Run- off In.
Aug.	9-12,	1956	128	2.15	4.62	288	1330	0.22
Aug.	17-20,	1956	43	1.19	3.85	144	555	0.09
Apr.	27-30,	1957	137	0.67	4.03	360	1450	0.24
May	14-17,	1957	79	0.60	4.00	216	864	0.14
May	18-21,	1957	234	1.80	8.87	576	5110	0.85
July	4-7,	1957	90	2.09	8.00	216	1728	0.29
July	8-11,	1957	61	1.19	9.13	144	1316	0.22
July	11-14,	1957	685	3.69	7.13	1440	10280	1.70
Nov.	14-17,	1957	32	1.13	9.59	72	690	0.11
Apr.	6- 9,	1958	27	0.82	8.15	72	587	0.10
July	28-31,	1958	3	1.20	6.83	9	58	0.01
May	23-26,	1959	10	1.07	10.84	2 9	312	0.05
Aug.	16-19,	1959	61	0.84	6.00	$1l_{1}l_{1}$	864	0.14
Sep.	21-24,	1959	21	1.74	10.20	48	490	0.08
Oct.	6- 9,	1959	476	3.28	7.40	1152	8530	1.41
Dec.	11-14,	1959	76	0.73	7.89	216	1703	0.28
Jan.	12-15,	1960	90	1.18	10.40	216	2250	0.37

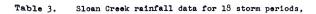

duration of runoff. Or it can be determined by planimetering the area between the curves, as each unit of area represents a specific volume in cfs-hours. Since in this study each hydrograph was reproduced to a reasonably large scale it was concluded that planimetering was a satisfactory procedure.

Table 2 shows the area of the hydrograph representing surface runoff, the cfs-hours per square inch for the scales used, the runoff, and other associated information for each of the 17 storm periods thus analyzed. The conversion between cfs-hours and inches over the 9.34 square mile watershed area was 6040.

The storms considered in this analysis are essentially of two types; 1. the steady, rather uniform, and widespread rains occurring during the approach of warm fronts with stable air masses; and, 2. the thundershower type, which develops in connection with convectively unstable air masses or the passage of cold fronts and squall lines. (2) The former type occurs mainly in the early and late parts of the growing season and frequently lasts several days. Most of the summer storms are of the thundershower type, which frequently result in high intensities for short durations, and may produce large runoffs to overload drainage systems. (7)

Existing Weather Bureau raingage stations spaced 20 to 30 miles apart serve well for describing storms of the first category. The irregularly distributed and small area summertime storms, however, may pass between these stations. As these storms are important in the design of many water management facilities, especially for small agricultural areas, the dense network of gages in this project were necessary.

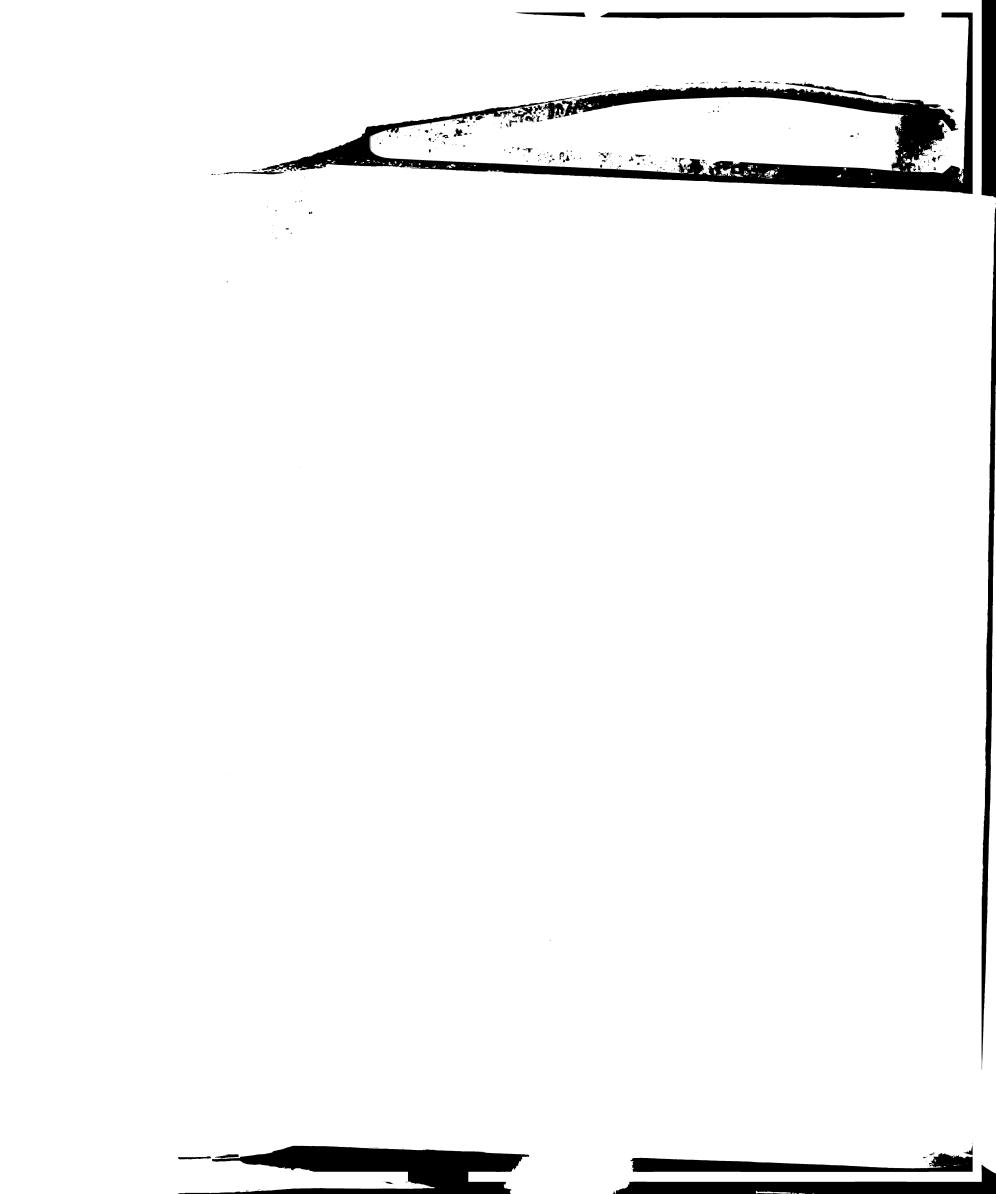
Rainfall data pertaining to 18 of the storm periods included in this analysis are presented in Table 3. Comparisons of the Thiessen averages and unweighted

	Date		Thiessen average Inches	Unweighted average Inches	Gage 4 Inches
Aug.	9-12,	1956	2.15	2.10	2.70
Aug.	17-20,	1956	1.19	1.14	1.70
Apr.	27-30,	1957	0.67	0.67	0.75
May	14-17,	1957	0.60	0.67	0.45
May	18-21,	1957	1.80	1.81	1.80
July	4-7,	1957	2.09	2.10	2.50
July	8-11,	1957	1.19	1.20	1.19
July	11-14,	1957	3.69	3.68	4.00
Nov.	14-17,	1957	1.13	1.10	1.40
Apr.	6- 9,	1958	0.82	0.81	0.81
July	28-31,	1958	1.20	1.17	1.56
May	23-26,	1959	1.07	1.06	1.13
Aug.	16-19,	1959	0.84	0.90	0.60
Sep.	21-24,	1959	1.74	1.70	2.05
Oct.	6- 9,	1959	3.28	3.20	3.92
Nov.	4-7,	1959	0.95	0.97	1.04
Dec.	11-14,	1959	0.73	0.73	0.85
Jan.	12-15,	1960	1.18	1.19	1.33

averages show that 50 percent of these differ by less than one percent. This agrees with the Weather Bureau's concept that for much work, averaging methods more detailed than unweighted averages are unnecessary.

The location of gage 4 was considered an appropriate single gage position for the entire watershed. Table 3 shows this gage recorded more rainfall than the Thiessen average 13 of the 18 times; several times by over 0.5 inch and one of these being 43 percent larger. As the location and calibration of this gage met all standard specifications, why it recorded consistantly high has been of great concern.

Even greater variation was noted when single gages at different ends of the watershed were compared. The May 15, 1957, storm produced rainfall amounts ranging from 1.36 inches at gage 1 to 0.26 inch at gage 6. The range for the August 16, 1959 storm was 1.64 inches at gage 2 to 0.23 inch at gage 5. The distances between gages 1 and 6 and 2 and 5 were respectively, 4.3 and 3 miles. These data were confirmed by those of reference (6) and indicated that for accurate rainfall information it is imperative that irrigation farmers have their own raingages.


The long axis of the watershed was North-South which is perpendicular to the general West to East direction of storm travel. The effect of direction of

52

storm travel on the peak discharge rate was therefore minimized. This, coupled with only small differences in the beginning time of the rain between gages, made it impossible to measure an effect due specifically to direction of storm movement.

It was possible to determine storm centers from the intensity and amount of precipitation recorded by the various gages. However, an insufficient number of storms of uniform size but with different storm centers, prevented adequate determination of their effect on peak runoff rates.

The actual average amount of rain which fell on the watershed and the amount of runoff which it produced are shown in Figures 4 through 21. This information and other pertinent data used in analyzing the rainfall-runoff process of the watershed are presented in Table 4.

Only 15 of the 19 hydrographs were considered in this analysis. The December 11-14, 1959 and January 12-15, 1960 storms occurred after the ground had been frozen and are thus not considered. It was impractical to use the November 4-7, 1959 storm period because of the additional rise on the recession due to showers on the afternoon of the fifth.

The March 26-April 2, 1960 period was included only to show a late-spring, snow-runoff hydrograph. The 285 cfs peak, due only to melting snow, was the third largest peak-discharge recorded in the five years of data and emphasizes the extreme antecedent conditions which must be considered when estimating design peak runoffs.

The total inches of rainfall and runoff for each of the storm periods are listed in columns (2) and (3), respectively. Column (4) is merely the difference between the previous two. This amount of water from the storm having just occurred did not leave the watershed as surface flow and had to be accounted for in some other way.

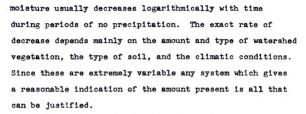

Various methods considered for determining the soil

Table 4. Data used in the analysis of the rainfall-runoff process for the watershed.

	(1)		(2) Rain-	(3) Run-	(4)	(5)	(6)	(7)	(8) Prior
			fall	off	2-3		Total moist		runoff
	Date		In.	In.	In.	In.	In.	In.	In.
Aug.	9-12,	1956	2.15	0.22	0.93	0.47	2.40	0.19	2.21
Aug.	17-20,	1956	1.19	0.09	1.10	0.00	1.10	0.19	0.91
Apr.	27-30,	1957	0.67	0.24	0.43	0.88	1.31	0.25	1.06
May	14-17,	1957	0.60	0.14	0.46	0.59	1.05	0.09	0.96
May	18-21,	1957	1.80	0.85	0.95	0.65	1.60	0.65	0.95
July	4- 7,	1957	2.09	0.29	1.80	0.00	1.80	0.25	1.55
July	8-11,	1957	1.19	0.22	0.97	0.55	1.52	0.44	1.08
July	11-14,	1957	3.69	1.70	1.99	0.50	2.49	1.13	1.36
Nov.	14-17,	1957	1.13	0.11	1.02	0.40	1.42	0.59	0.83
Apr.	6- 9,	1958	0.82	0.10	0.72	0.35	1.07	0.28	0.79
July	28-31,	1958	1.20	0.01	1.19	0.00	1.19	0.19	1.00
May	23-26,	1959	1.07	0.05	1.02	0.38	1.40	0.34	1.06
Aug.	16-19,	1959	0.84	0.14	0.70	0.88	1.58	0.19	1.39
Sep.	21-24,	1959	1.74	0.08	1.66	0.00	1.66	0.56	1.10
Oct.	6- 9,	1959	3.28	1.41	1.87	0.54	2.41	1.20	1.21

moisture conditions of a watershed prior to a storm have been mentioned in the Review of Literature. Most authorities recognize the importance of antecedent moisture and feel that antecedent precipitation gives a satisfactory index of its effects on runoff. They also agree that soil

The season of the year effects both the number of antecedent days for which precipitation will effect runoff and the fraction of the antecedent precipitation which will be effective. Ten days of antecedent precipitation were considered to effect runoff for April, May, and November and only five days for July, August, September, and early October. The specific fraction of the rain which was considered effective for each of these preceding days were 0.9, 0.7, 0.5, 0.4, 0.3, 0.2, 0.2, 0.1, 0.1, and 0.1 for the ten day period and 0.9, 0.7, 0.5, 0.3, and 0.1 for the five day period. These depletion rates compare favorably with irrigation concepts, as well as with prior hydraulic analyses.

The specific values of effective antecedent moisture computed for the surface eight to twelve inches of the watershed prior to each storm period are listed in column (5). These values added to the moisture of column (4) gave the total inches of moisture in the basin which had to be accounted for at the end of each storm period.

These totals are listed in column (6), Table 4.

Rainfall which did not run off as surface flow during the storm period was considered a combination of infiltration, surface storage, and detention storage. The surface and detention storage of a watershed is reasonably uniform from storm to storm, but infiltration is extremely variable. Infiltration depends not only upon the physical characteristics of the soil and the cover on the soil, but also on such factors as soil moisture, temperature, and rainfall intensity. Since the initial infiltration rate is much more rapid and more variable than the "normally approached constant infiltration rate" they were considered separately.

The "constant" infiltration rate was estimated at 1/32 inch per hour for April, May, and November and 1/16 inch per hour for July, August, September and October. The values for each of the two periods were determined from hydrographs which occurred due to low intensity but long duration storms.

The May 19, 1957 rain fell at an average of 0.1 inch per hour for the first 17 hours and produced a peak runoff of 240 cfs. With approximately 50 percent of the rainfall running off and a small amount going into surface and detention storage no more than about 0.03 inch per hour could have gone into the soil.

The December 11-14, 1959 and January 12-15, 1960

storms, by the same procedure of analysis, gave infiltration rates of less than 1/32 inch per hour. These, however, can be justified due to previously frozen soil. The rise produced in the hydrograph recession by the 0.12 inch of precipitation of November 5, 1959 attests also to the low infiltration rate of the watershed when extremely high antecedent conditions exist.

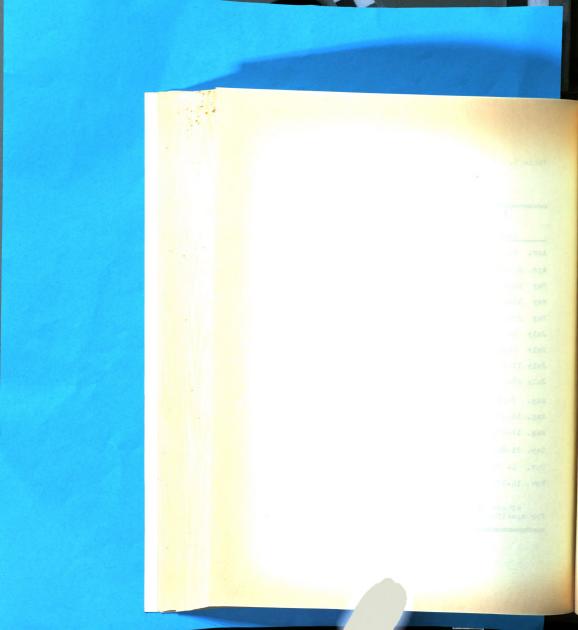
Each infiltration amount of column (7) was obtained by multiplying the appropriate infiltration rate by the number of hours two greater than the length of rainfall. The addition of two hours accounted for infiltration during the time required for overland flow. This moisture was assumed to have gone into the deeper soil strata of the watershed and to be no longer effective watershed moisture.

The total effective moisture required prior to surface runoff for each storm is listed in column (8) and was determined by subtracting column (7) from column (6). Total effective moisture included surface and detention storage, initial infiltration, and effective antecedent moisture.

The column (8) values of Table 4 listed timewise, irrespective of the year of occurrence, are presented in column (B) of Table 5. In this manner they more clearly indicate the total effective moisture required to produce runoff from month to month throughout the season. Omitting those with asterisks, the values increased from spring through the middle of August and then decreased from there

to winter. As these values depend upon the amount of moisture in the lower soil strata, the specific time they begin to decrease depends upon the amount of fall rain received.

Those storm periods marked with asterisks are not appropriate for comparison. The storm of July 28-31, 1958 produced virtually no runoff, as shown in column (C), and thus the watershed had not reached its maximum water holding capacity when the rain stopped. The other three followed previous storms which had increased the substrata moisture; thus required less initial infiltration before runoff began.


It was considered advisable to test the previously developed procedure on storms with which the author had no previous knowledge. The storms for testing, therefore, had to come from the spring of 1960 records. The multiple storm periods of April 14-17, May 19-23, and June 13-16 were chosen, as the records included no individual storm of major consequence.

In following the procedure previously outlined the author's estimated peak discharges versus those which actually occurred were as follows: April 1½-17, 10-20 cfs versus 39 cfs; May 19-22, 20-40 cfs versus 18 cfs; and June 13-16, 90-125 cfs versus 31 cfs. The differences for April 1½-17 were caused by the extremely late spring, whereas, those for June 13-16 were due to no prior June records, both of these indicating a lack of knowledge of the moisture content of the subsurface soil layers.

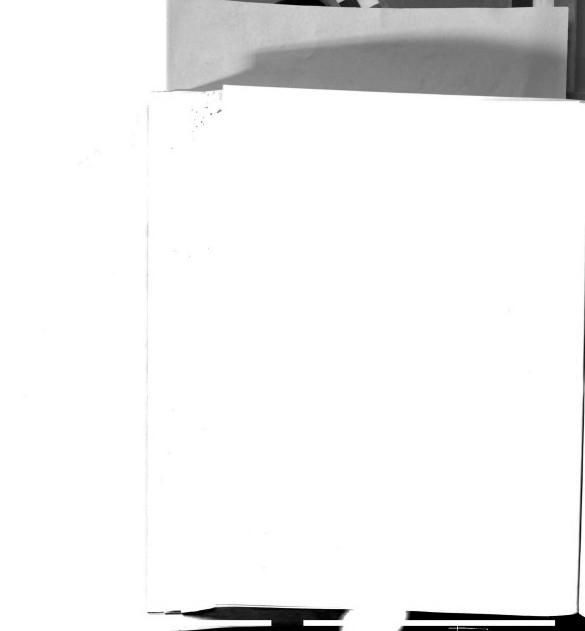
Table 5. Data showing the month by month variation in amount of moisture required prior to runoff and the percent of runoff for each storm period.

(A)	(B) Prior to	(C)	
Date	Runoff Inches	Runoff Percent	
Apr. 6- 9, 1958	0.79	11.8	
Apr. 27-30, 1957	1.06	35.8	
May 14-17, 1957	0.96	23.8	
May 18-21, 1957	0.95	47.0	
May 23-26, 1959	1.06	4.8	
July 4-7, 1957	1.55	13.7	
July 8-11, 1957	1.08*	18.3	
July 11-14, 1957	1.36*	54.0	
July 28-31, 1958	1.00*	0.8	
Aug. 9-12, 1956	2.21	10.3	
Aug. 16-19, 1959	1.39	17.0	
Aug. 17-20, 1956	0.91*	7.7	
Sep. 21-24, 1959	1.10	4.7	
Oct. 6- 9, 1959	1.21	43.0	
Nov. 14-17, 1957	0.83	10.1	

*These values are not appropriate for comparison. For specific reasons see text.

As stated previously a unit graph is a hydrograph which results from a one inch runoff from the entire watershed. It also implies the fulfillment of the other specifications stated in the Review of Literature. This rarely or never occurs in nature. However, since a perfect procedure is not available, this and other methods will be discussed as reasonable approximations.

A study of the rainfall and runoff records revealed five periods of reasonable conformation to unit graph specifications. Original raingage charts were used in the preparation of all unit graphs. Two of the rainfall periods were each $\frac{1}{2}$ hour in length, two were 1 hour, and the other was 2 hours. This proved very convenient in the selection of the unit time.


The procedure of obtaining a unit graph is explained by using the August 17-20, 1956 data as listed in Table 6. Columns (2) and (3) show the total surficial outflow and base flow, respectively. Values for both of these columns were obtained from the curves of Figure 5. The surface runoff presented in column (4) is the total flow minus the base flow.

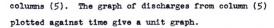
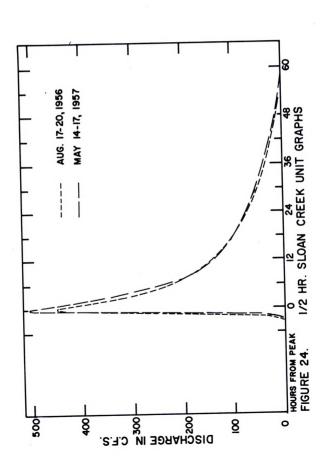

The actual depth of runoff over the entire watershed from this storm was 0.0919 inch. If I inch had run off, each value of column (4) would have been 10.9 times as large and the values would have been as recorded in

Table 6. Data for unit graph from August 17-20, 1956 hydrograph.

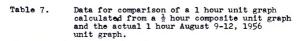
(1)	(2) Total* flow	(3) Base flow	(4) Run- off	(5) Unit graph
Time	C.F.S.	C.F.S.	C.F.S.	C.F.S.
18- 2	1.2	1.2	0.0	0
3	2.0	1.2	0.8	9
14	6.1	1.2	4.9	53
5	34	1.3	32.7	356
6	43	1.3	41.7	454
7	39	1.4	37.6	409
8	35	1.4	33.6	366
10	27	1.5	25.5	278
12	22	1.5	20.5	223
15	18	1.6	16.4	179
18	15.4	1.7	13.7	149
21	13.1	1.8	11.3	123
24	11.4	1.9	9.5	103
19-8	7.8	2.0	5.8	63
12	6.8	2.1	4.7	51
21,	4.9	2.6	2.3	25
20-12	3.6	2.9	0.7	8
18	3.1	3.1	0.0	0

^{*} This column is essentially data secured from standard U.S.G.S. rating tables where values above 10 cfs are considered only to the nearest whole number.

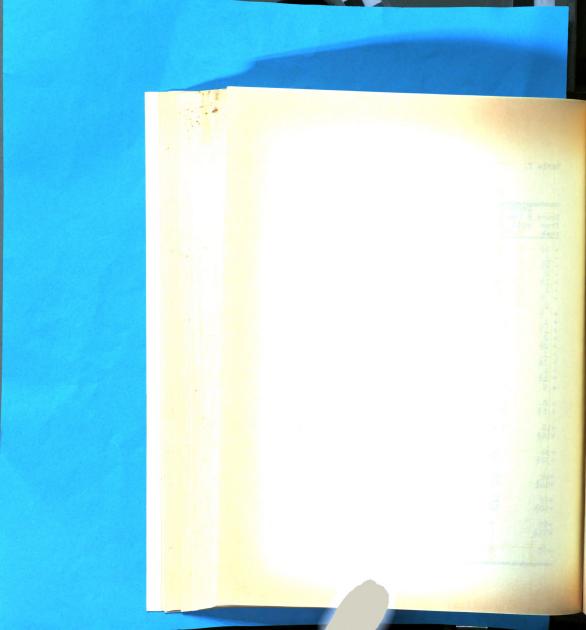


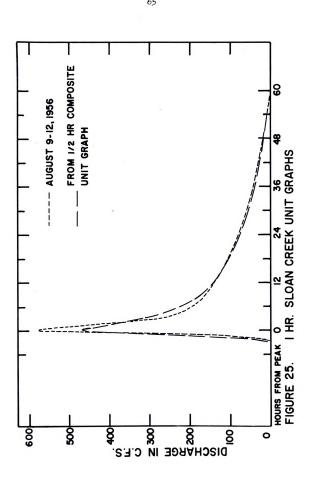



Data for the unit graphs from the periods of August 9-12, 1956; May 14-17, 1957; July 4-7, 1957; and August 16-19, 1959 are tabulated in Appendix 4.

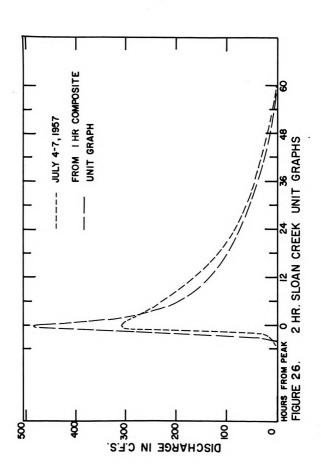

Due to nonuniform distribution of storms and departures of drainage basin performance from unit graph theory, it is common practice to derive the unit graph for a watershed from a number of storms. The two $\frac{1}{2}$ hour unit hydrographs are shown in Figure 24. The peaks were made to coincide in time as recommended by Johnstone and Cross (10). The magnitudes of the peaks differed by less than 10 percent which is considered excellent for unit graph work.

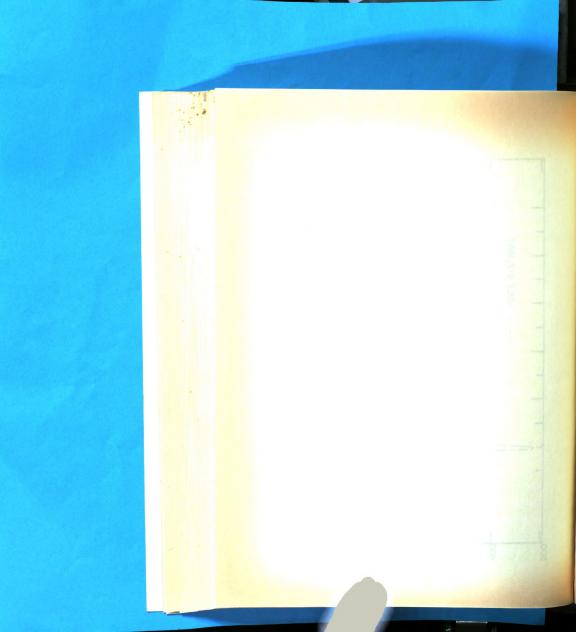
If a unit graph of $\frac{1}{2}$ hour duration is added to itself lagged by $\frac{1}{2}$ hour the resulting hydrograph represents the hydrograph for 2 inches of runoff in 1 hour. If the ordinates of this hydrograph are divided by 2 a unit graph of 1 hour results. This is the procedure which was used to convert the composite of the $\frac{1}{2}$ hour unit hydrographs to a 1 hour unit graph. The data for this procedure are tabulated in Table 7. The composite unit graph is shown with the 1 hour unit graph from the August 9-12, 1956 storm in Figure 25. The peaks of these two hydrographs differ only by approximately 20 percent which is still satisfactory.





Hours from peak	composite hour unit graph C.F.S.	Unit graph shifted hour C.F.S.	1 hour	Calculated 1 hour unit graph C.F.S.	1 hour
- 3 ¹ ⁄ ₂ - 3	0 4	0	0 4	0 2	0
- 2½	23 42	23 23	2 7 65	13 32	7
- 1½ - 1,	182 3 2 2	182	224 504	112 252 361	67
- 0 h	401 481	3 22 401	504 7 2 3 882	441	253
+ 1 2 2	455 4 2 9	481 455	936 884	468 442	574
+ 1½ + 2	404 379	4 2 9 404	833 783	416 391	478
+ 2늘	351 324	379 351	730 675	365 337 315	365
+ 3 + 3 ¹ / ₂ + 4	306 288	3 <i>2</i> 4 306	630 594	2 97	264
+ 4 ² + 5	272 256	288 272	560 5 2 8	280 264	232
+ 8 + 8½	186 179	186	365	182	167
+18 +18호	102 99	102	201	100	103
+32 +32	47 45	47	92	46	55
+1111 +111	23 21	23	44	22	2 6
+50 +50충	14 12	14	26	13	14
+55 +55늴	8 6	8	14	7	6
+60	0	0	0	0	0




The data for the conversion of the composite of the two 1 hour unit graphs to a 2 hour unit graph are listed in Appendix 5. This 2 hour unit graph was compared with the 2 hour unit graph of the July 4-7, 1957 storm in Figure 26. The peaks of the two 2 hour unit graphs differed by 57 percent which was considered too great for use in this study.

The discrepancy between the magnitudes of the peaks was due to the nonuniformity of the rain. Each of the six gages showed that the storm of July 4-7, 1957 was composed of three bursts of rain rather than a continuous one. The storm period of August 16-19, 1959 was also discounted due to nonuniformity of rain. In this case there was much variation in the intensity at each gage, as well as amounts from gage to gage.

From the previous unit graph data it was considered reasonable to use the 1 hour composite unit hydrograph to check several actual storms periods. This unit time compared favorably with Linsley (15) who states, "In general, the unit duration should probably be in the order of 25 percent of the basin lag", basin lag being the time from the centroid of rainfall to the hydrograph peak. An hour interval was also very convenient for making computations and using regularly tabulated rainfall data.

Comparison of the calculated hydrograph and actual

hydrograph for the July 11-14, 1957 storm period is shown in Table 8. The hydrograph values for the specific hours of the storm were determined by multiplying the amount of runoff for that hour by the corresponding unit graph value. Uniform runoff of 46.6 percent was considered for the four hours because of high antecedent moisture. Actual average rainfall amounts for each of the four hours were 0.88, 0.83, 0.58, and 0.43 inches.

It should be noted that only the four hours of rainfall causing the main peak were considered in this analysis. The actual runoff rates were secured by subtracting the values of the July 4-7, 1957 recession curve from the total runoff rates of Figure 11.

The comparisons between calculated and actual hydrographs for July 4-7, 1957; July 8-11, 1957; and Oct. 6-9, 1959 are shown in Appendix 6. Listed in Table 9. are the calculated and actual peaks and this percent difference based on the actual peak for each of the four storm periods.

The data of Table 9 indicate that the unit graph method is applicable to watersheds of this size. This agrees with the findings of Linsley (15) and of Minshall (18), who believes unit graph theory applicable to areas even less than one square mile in size. The unit graph method is especially appropriate for estimating runoff rates and volumes for watersheds having at least

Table 8. Comparison of calculated and actual hydrographs for July 11-14, 1957.

Hours from peak	Comp. unit graph CFS	lst. hour CFS	2nd. hour CFS	3rd. hour CFS	4th. hour CFS	Calc. run- off CFS	Act. run- off CFS	Hours from peak
- 4	0	0				0	0	- 6
- 3	10	4	0			4	37	- 5
- 2	90	37	4	0		41	283	- 4
- 1	307	126	35	3	0	164	397	- 3
0	521	215	118	24	2	359	496	- 2
+ 1	447	183	200	82	18	483	570	- 1
+ 2	365	150	172	140	61	523	644	0
+ 3	290	119	141	120	104	484	617	+ 1
+ 4	256	105	112	98	89	404	548	+ 2
+ 5	228	93	99	78	73	343	459	+ 3
+ 6	208	86	89	69	58	303	386	+ 4
+ 7	190	78	80	62	51	271	345	+ 5
+ 8	174	72	76	56	46	250	308	+ 6
+ 9	164	67	67	51	42	227	275	+ 7
+10	155	64	63	47	38	212	241	+ 8
+11	148	61	60	44	35	200	216	+ 9
+12	139	57	57	42	33	189	196	+10
+13	133	55	54	40	31	180	176	+11

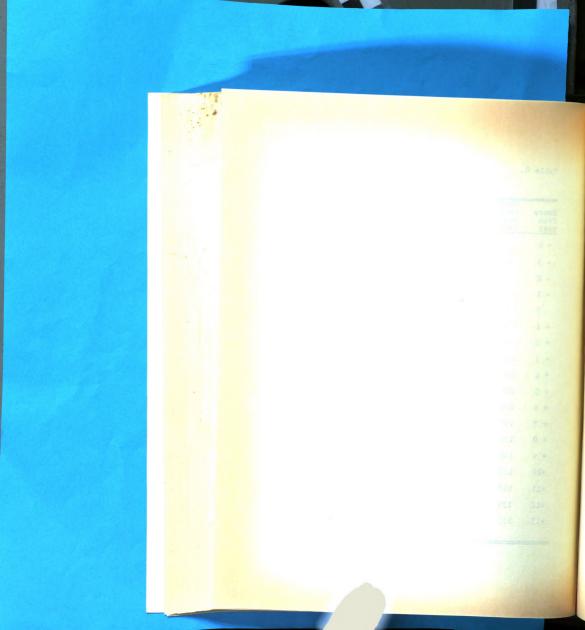


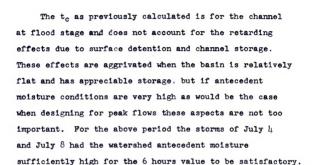
Table 9. Calculated and actual peak differences for the selected storm periods.

Date		Calculated peak C.F.S.	Actual peak C.F.S.	Difference Percent	
July 4-7,	1957	136	88	55	
July 8-11,	1957	84	54	56	
July 11-14,	1957	523	644	19	
Oct. 6-9,	1959	388	464	16	

Rational formula method

This formula was originally devised nearly 100 years ago and the Review of Literature attests its "battle-scarred" background. Theorist continue to attack it because of nonconformity to perfect theory, but practicing engineers use it more than any other method for small basins. When a greatly superior procedure is developed this method will disappear, but until then it should be given its due consideration.

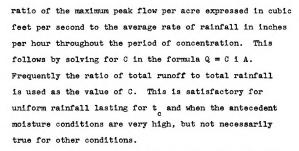
An estimate of peak flow from a drainage basin where no useful streamflow data are available can generally best be made by an application of the rational method according to Low Dams (26). Linsley, et al, (17) comments, "Of all the flood formulas, the rational formula has the advantage that its physical meaning is



The rational formula is for predicting design peak runoff rates. It is thus specifically for the watershed conditions and rainfall intensity and duration of particular frequency for which a structure can be economically designed. It is not necessarily applicable for predicting runoff rates under any and all conditions. The following analysis considers the rational method for estimating the design peak runoff rate for a once in 25 years period for the Sloan Creek watershed.

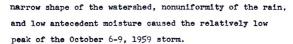
The first step was to determine the time of concentration t_C, which is defined as the time of travel of a water particle from the most remote point hydrologically to the outlet of the drainage basin. This was accomplished by estimating the average velocity for the principle reaches. Assuming an n of 0.06 and a hydraulic radius of 1 with the 10 feet per mile channel gradient gave an average velocity of 1.1 feet per second.

Lateral inflow into a stream usually creates a flood wave which is superimposed on the normal stream flow. Assuming this wave to increase the apparent velocity by 30 percent (26) increased the velocity from 1.1 to 1.4 feet per second. At this velocity it required 5.3 hours to traverse the approximately 5 miles of well-defined channel. Overland flow time for nearly $\frac{1}{12}$ mile gave a total of about 6 hours as t_C for the watershed.



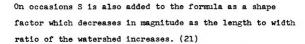
In many studies, especially on small watersheds, the $t_{\rm C}$ is considered to be the same as the time for the hydrograph to peak $t_{\rm p}$. This is true when the rain lasts for the time of consentration but naturally cannot be true for rains of much shorter periods. Considering this, the 3-5 hours basin lag for the more intense but shorter duration storms was satisfactory even with a 6 hour $t_{\rm C}$.

The i of the rational formula is the average rainfall intensity for the storm sufficiently long to cause runoff from the entire watershed. That is for the storm of length equal to $\mathbf{t_c}$, in this instance 6 hours. Rainfall intensity-frequency curves are shown (27) for only μ and 8 hours for the longer storms. Interpolating for the once in 25 years frequency gave approximately 0.5 inch per hour for a 6 hour period.


As defined for use in the rational method C is the

The coefficient C depends not only on the principle losses related to soils, cover, and topography, but must also account for geographical location and seasonal considerations. Under the conditions prevailing in the late winter and spring months in eastern United States a runoff coefficient reaching or exceeding unity can be produced. (26) This watershed in southern Michigan, being predominately cropped land, having relatively pervious soils, and being reasonably flat should have a maximum value of C around 0.5.

Using the previously determined values of 1 and C, the formula Q = C i A gave an expected once in 25 years runoff rate peak of 1495 cfs for this 5980 acre watershed. The highest peak thus far recorded was 644 cfs for the July 11-14, 1957 period. If the once in 25 years rain of July 11, had occurred at a continuous and uniform rate the peak could have been much higher. The long,



The results obtained in this storm indicate that if properly used, the rational formula can predict with reasonable accuracy design peak runoff rates for storms of particular frequencies. Its greatest value is for estimating these peak runoff rates for the smaller watersheds where no rainfall or runoff records exist.

Cook's method

This method examines the runoff characteristics of a watershed of specific size under the four categories of relief, soil infiltration, vegetal cover, and surface storage. Through observation of peak floods from agricultural areas, Soil Conservation Service personnel have assigned numerical values to these categories for specific conditions. The sum of the numerical values IN for a specific watershed is used in conjunction with the drainage area to determine the peak runoff rate P. (8)

This peak runoff value is modified by the formula Q = P R F, where Q is the peak runoff rate for the watershed, R is the geographical rainfall characteristics factor, and F is the frequency of storm recurrence factor.

The Engineers Handbook for Michigan (27) presents a graph of P versus drainage area for watersheds up to 2000 acres. But adds the note, "On drainage areas larger than 600 acres, additional methods of runoff determination should be used to aid your judgement in arriving at proper peak runoff rates". Even though the Sloan Creek watershed is three times this size, certain information can still be obtained by its use.

As listed in the Soil Conservation Service,
Hydrology Supplement A (28), the soils of the Sloan Creek
area are predominately in hydraulic soils group B. Using
the cover complex as listed in the Introduction and
considering the land to be receiving the best soil
treatment and to be in the "good" hydrologic group gave
a Z W of 50. For this value of Z W and a 2000 acre
watershed, a P of 2400 cfs was obtained. Correcting for
once in 25 years frequency and geographic location still
gave a probable maximum discharge peak rate of 1500 cfs.

As implied by the above note, this graph was developed primarily for small areas. If it had considered the very mild slopes, the fair degree of surface storage, and the somewhat elongated shape of the watershed a value more in line with those of the previous two methods should

A further extention of Cook's original method is explained in the article, "Hydrologic Techniques in Watershed Planning", by H. O. Ogrosky (22). This procedure presents a graph of inches of runoff as inches of rainfall for specific values of watershed conditions. Thus one can determine only the expected amount of runoff and not the probable peak rate of discharge with this approach.

For the determination of the probable maximum peak rate of discharge for an area of 2000 acres or over the most likely S. C. S. procedure would be the hydrograph method. This technique is similar to the unit graph method previously explained and needs no further discussion here.

SUMMARY

Five years of hydrologic data from a relatively flat, 9.34 square mile, predominately agricultural watershed in south-central Michigan were analyzed. The rainfall data were secured from a network of raingages which were installed and calibrated by U.S. Weather Bureau personnel. The operation and maintenance of the stream gaging station for the watershed were under the jurisdiction of the U.S. Geological Survey.

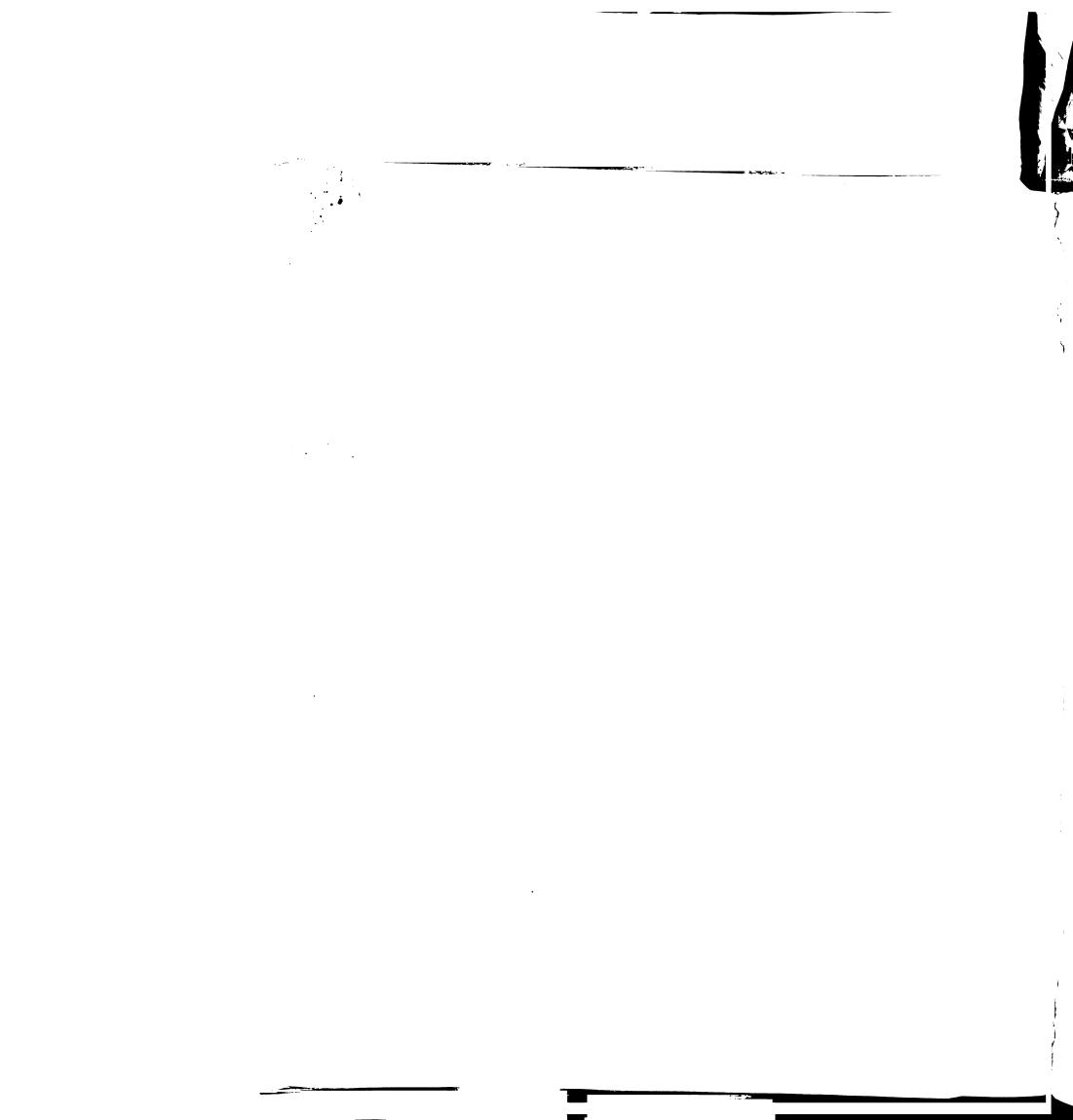
The Weather Bureau's hourly raingage data were rechecked for accuracy and then used to determine equivalent uniform rainfall depths per hour and per storm by using the Thiessen procedure. These depths were nearly identical with those obtained from unweighted gage averages, but differed appreciably with depths recorded for gage 4 which was considered an appropriate single gage position.

After the runoff data were secured from the original Geological Survey records, total discharge hydrographs were plotted for each of 19 storm periods. The surface runoff portion of the total discharge ceased approximately $2\frac{1}{2}$ days after the hydrograph peaked, as determined by a composite curve constructed from seven appropriate recessions. The area between the total discharge curve and the assumed straight-line base flow curve was planimetered to determine

An analysis was made of the factors involved in the rainfall-runoff process for 15 of the storm periods. The moisture supply which affected runoff was due to the storm rainfall and antecedent precipitation. The fraction of antecedent precipitation considered effective depended upon the season of the year and the number of days prior that the rain had fallen.

Initial infiltration, surface storage, and detention storage had to be satisfied before runoff could occur. When the surface runoff and the base infiltration were subtracted from the total moisture supply the amount of moisture required prior to runoff was obtained. As surface and detention storage were relatively constant the amount of moisture required prior to runoff was determined. This amount varied with the season of the year, probably more specifically, with the moisture content of the lower soil strata.

The unit graph method of estimating peaks and amounts of flood discharge was discussed. Two $\frac{1}{2}$ hour unit graphs were combined and the composite was then converted into a 1 hour unit graph. This 1 hour composite unit graph was combined with the August 9-12, 1956 1 hour unit graph to give the most appropriate unit graph for the watershed. The composite 1 hour unit graph was used to determine expected hydrographs for four actual storms. The calculated

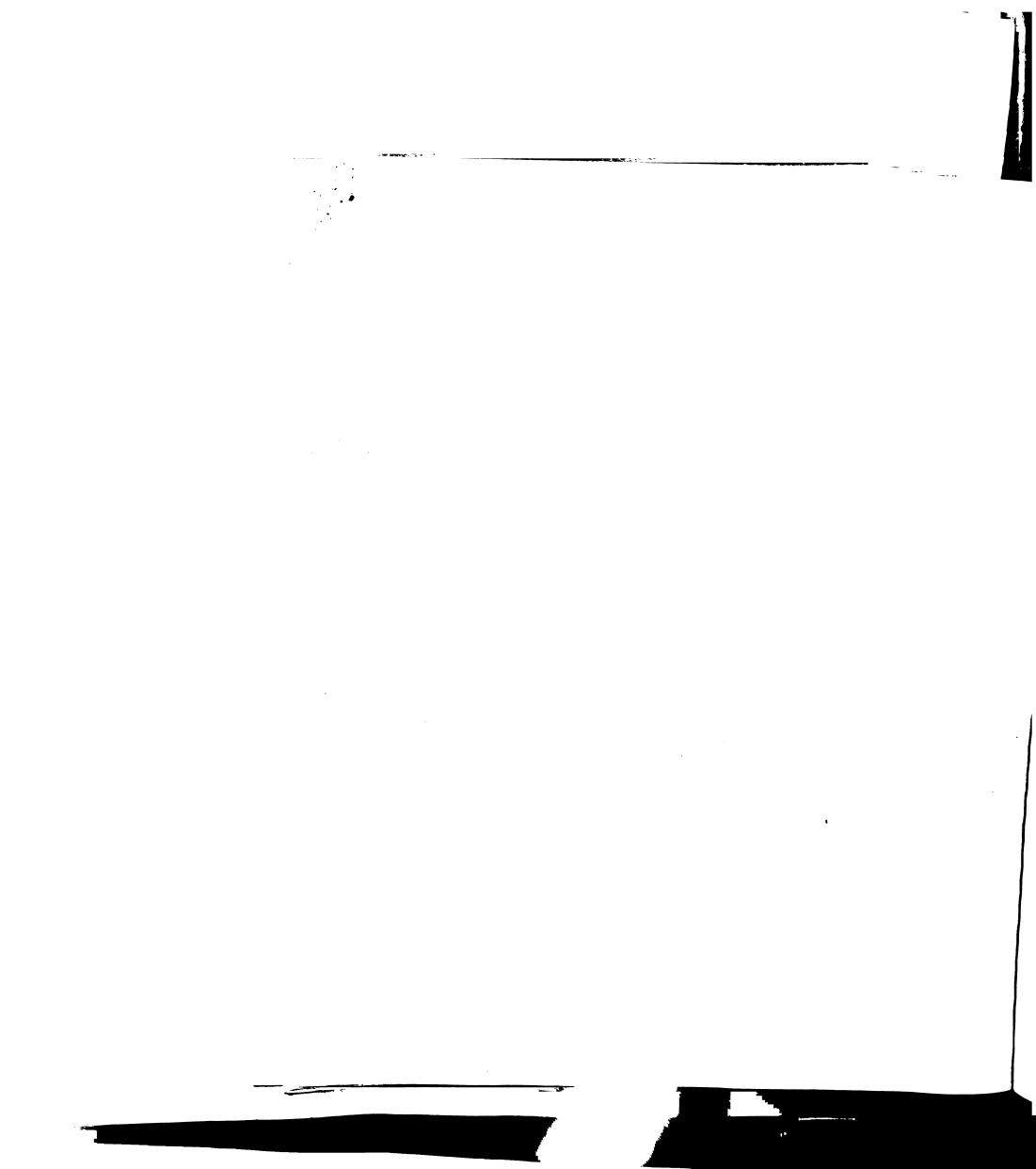

79

and actual peaks differed only between 16 and 56 percent.

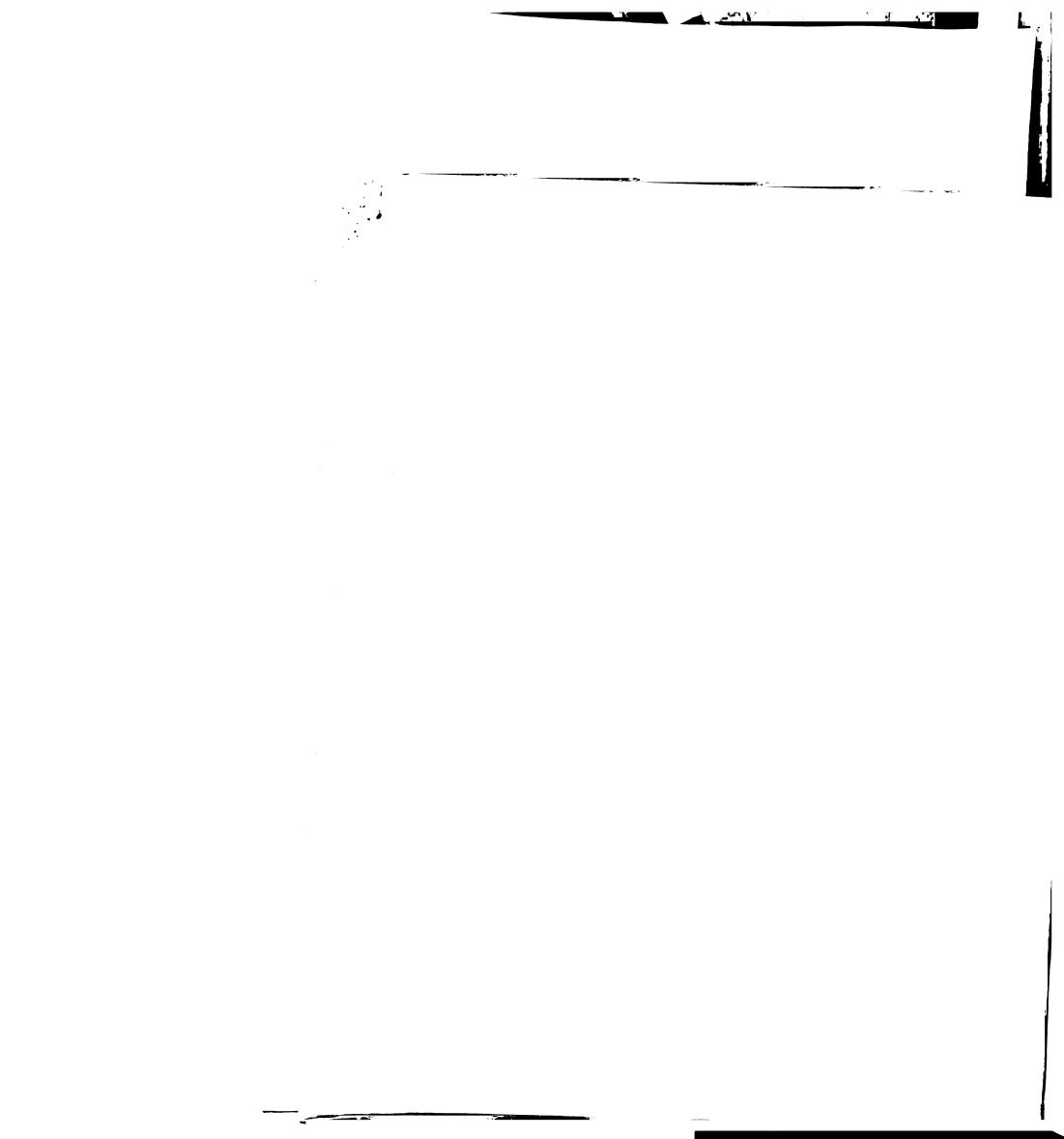
Thus this method of analysis was considered very satisfactory for estimating peak flows and volumes of discharge for watersheds where at least several years of records exist.

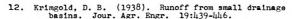
To illustrate the rational formula approach, the design peak runoff rate was determined for a once in 25 years frequency storm. The results of this method compared favorably with the unit graph procedure and with the actual hydrograph values. This method may be used to estimate design peak runoffs from small watersheds where no records presently exist.

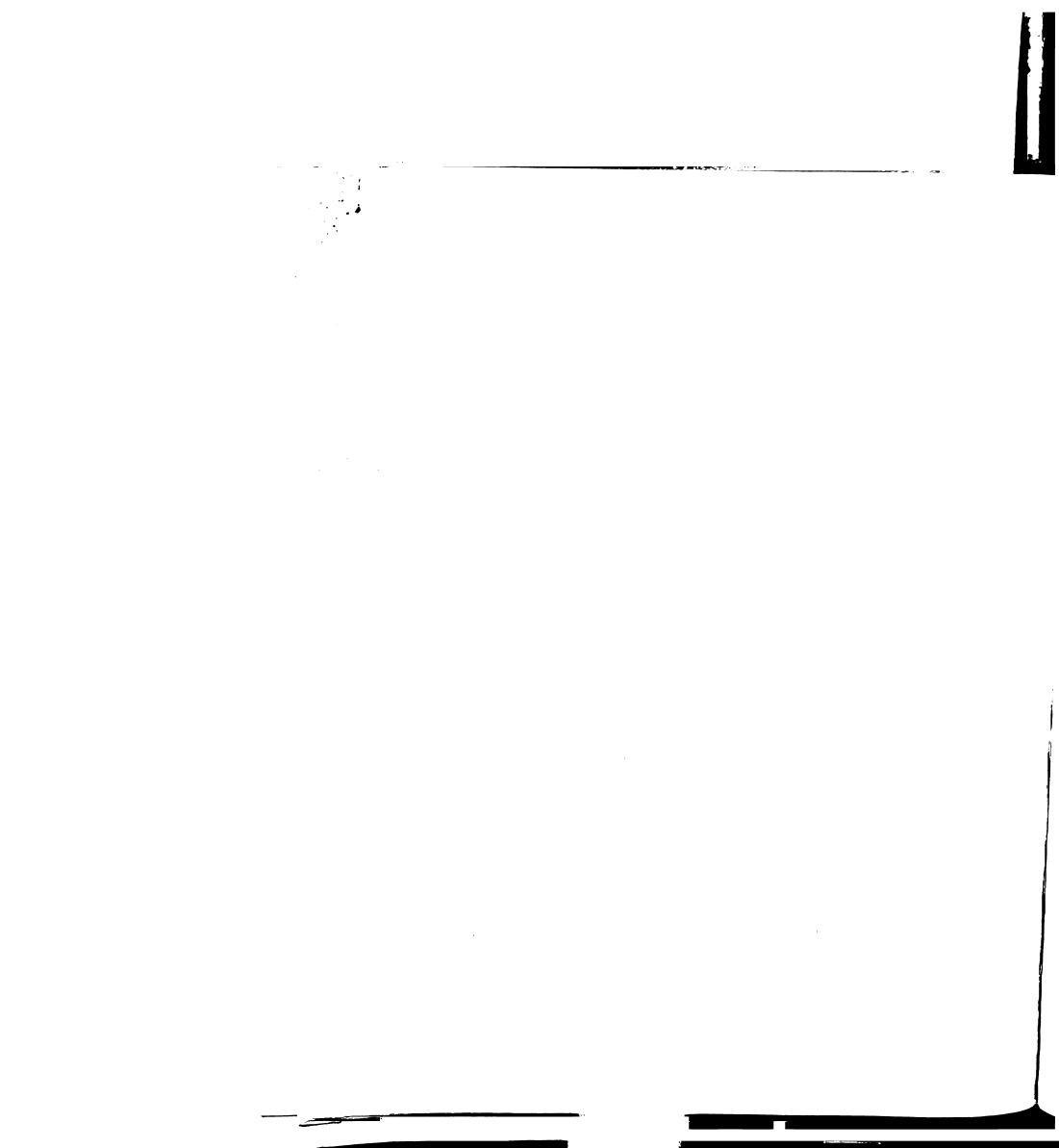
The soil Conservation Service's revision of Cook's formula was discussed and illustrated. This procedure was not considered appropriate for areas as large as the Sloan Creek watershed.



- For much work, rainfall averaging methods more detailed than unweighted averages are unnecessary.
- Accurate rainfall information, as required by irrigation farmers, etc., necessitates a minimum of one raingage per square mile.
- 3. Recession curves are largely independent of the rainfall characteristics of the storm producing the rise and are relatively uniform in length for a particular watershed. The length of time from the peak to the end of surface runoff was approximately $2\frac{1}{2}$ days for the Sloan Greek watershed.
- 4. Initial infiltration varies extensively throughout the season, generally increasing from spring through late summer and then slowly decreasing towards winter.
- 5. The unit graph method is appropriate for estimating the volume and rate of runoff from small area watersheds when at least a few years of rainfall and runoff records are available.
- 6. For watersheds up to 10 square miles, the rational formula may be adventageously used for estimating peak design rates of runoff if no prior records exist.
- 7. Cook's method as modified by the Soil Conservation Service is not appropriate for determing peak discharges for areas as large as Sloan Creek.




- 1. Information is needed on more large storms to evaluate in greater detail the unit graph and rational method's applicability to small watersheds.
- 2. A determination of the relationship between the moisture content of the subsurface layers and the initial infiltration amount required prior to surface runoff is needed.
- 3. Electrical synchronization of raingage timing is needed for the study of effect of storm direction and rate of movement on peak rates of runoff.


REFERENCES

- Ash, A. D., A. H. Eichmeier, E. H. Kidder, D. W. Granger and others (1958). Hydrologic studies of small watersheds in agricultural areas of southern Michigan, Report no. 1. Water Resources Commission. Lansing, Michigan. 77pp.
- 2. Blair, T. A. and R. C. Fite (1957). Weather Elements. 4th ed. Frentice-Hall, Inc. Englewood Cliffs, New Jersey. 444pp.
- Butler, Stanley S. (1957). Engineering Hydrology. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 356pp.
- 4. Cardwell, David W. (1940). Runoff from small agricultural watersheds. Jour. Agr. Engr. 21:479-482.
- Chow, Ven Te (1958). Frequency analysis in small water shed hydrology. Jour. Agr. Engr. 39:222-225, 231.
- Eichmeier, A. H., R. Z. Wheaton and E. H. Kidder (1959). Variation in summertime rainfall in south-central Michigan. Mich. Agr. Expt. Sta. Quarterly Bulletin, Vol. 41, No. 4, 886-888.
- Eichmeier, A. H., R. Z. Wheaton and E. H. Kidder (1959).
 Preliminary report of excessive precipitation
 over Sloan Creek Basin, a small watershed. Mich.
 Agr. Expt. Sta., Quarterly Bulletin, Vol. 41,
 No. 4, 889-893.
- Frevert, R. K., G. O. Schwab, T. W. Edminster and K.K. Barnes (1955). Soil and Water Conservation Engineering. John Wiley & Sons, Inc., New York.
- Hoyt and others. Rainfall and run-off in the United States. Dept. of Interior, USGS. Water Supply Paper 772.
- 10. Johnstone, Don and W. P. Cross (1949). Elements of Applied Hydrology. The Ronald Press Co., New York.
- Kidder, Ernest H. (1947). The analysis of hydrologic data from small agricultural plots. Thesis for degree of M.S. Univ. of Ill., Urbana, Ill. (Unpublished)

- 13. Krimgold, D. B. (1947). Rates of runoff from small drainage basins. Jour. Agr. Engr. 28:25-28.
- 14. Krimgold, D. B. (1947). Runoff as a phase of agricultural hydrology. Jour. Agr. Engr. 28:29-30.
- Linsley, Ray K. (1960). Executive Head, Department of Civil Engineering, Stanford University. Stanford, Calif. Personal Correspondence. July.
- Linsley, Ray K. and Max A. Kohler (1951).
 Variations in storm rainfall over small areas.
 National Research Council, Transactions, American Geophysical Union. Vol. 32, No. 2. 245-250.
- Linsley, Ray K., Max A. Kohler and J. H. Paulhus (1958). Hydrology For Engineers. McGraw-Hill Book Co., Inc., New York. 340pp.
- Minshall, Neal E. (1960). Predicting storm runoff on small experimental watersheds. Proceedings of the ASCE., Journal of the Hydraulics Division. Vol. 86, No. HY8, Part 1. 17-38.
- Minshall, Neal E. (1960). Supervisory Hydraulic Engineer. Madison, Wisconsin. Personal Correspondence. August.
- Myers, Victor I., A method of determining average watershed precipitation. Idaho Agr. Expt. Sta. Res. Paper No. 386. 10pp.
- Neff, Earl L. and Paul C. Sheffer (1959).
 Determination of peak discharge-frequency relationships for streams within a selected area in California. U.S.D.A., Agricultural Research Service Bul. 1,1-32. 20pp.
- 22. Ogrosky, H. O. (1960). Hydrologic techniques in watershed planning. Transactions of ASAE, 3:84-86.
- Pickels, George W. (1941). <u>Drainage and Flood-Control Engineering</u>. 2d. ed. McGraw-Hill Book Co., Inc., New York. 476pp.
- 24. Rouse, Hunter, ed. (1950). Engineering Hydraulics.
 John Wiley & Sons, Inc., New York. 1039pp.

- Sharp, A. L. (1960). Supervisory Hydrologist. Lincoln, Nebraska. Personal Correspondence. July.
- Small Water Storage Projects subcommittee of National Resources Committee (1938). Low Dams. U. S. Govt. Printing Office, Washington, D. C. 431pp.
- 27. Soil Conservation Service. Engineers Handbook for Michigan. USDA. Washington, D. C.
- 28. Soil Conservation Service Hydrology Supplement A. USDA. Washington, D. C.
- Sutton, John G. (1939). Hydraulics of open ditches. Jour. Agr. Engr. 20:175-178.
- Thames, J. L. and S. J. Ursic (1960). Runoff as a function of moisture-storage capacity. Jour. of Geophysical Research. 65:651-654.
- Zingg, A. W. (1943). The determination of infiltration-rates on small agricultural watersheds. National Research Council, Transactions of 1943, American Geophysical Union, Part II. 475-480.

The values listed under "Stage" are those indicated on the original, waterstage recorder charts before any corrections were applied. The "Corrections" listed are those applied by the U.S. Geological Survey according to their standard procedure for any discrepancy between indicated and true stage. Standard U.S.G.S. rating tables for this stream were used to convert these corrected stage values to total discharges in cubic feet per second. It is regular U.S.G.S. procedure to consider discharge less than 10 cfs to the nearest 0.1 cfs and discharge over 10 cfs to the nearest whole cfs.

Appendix 1 Data for plotting Sloan Creek hydrographs.

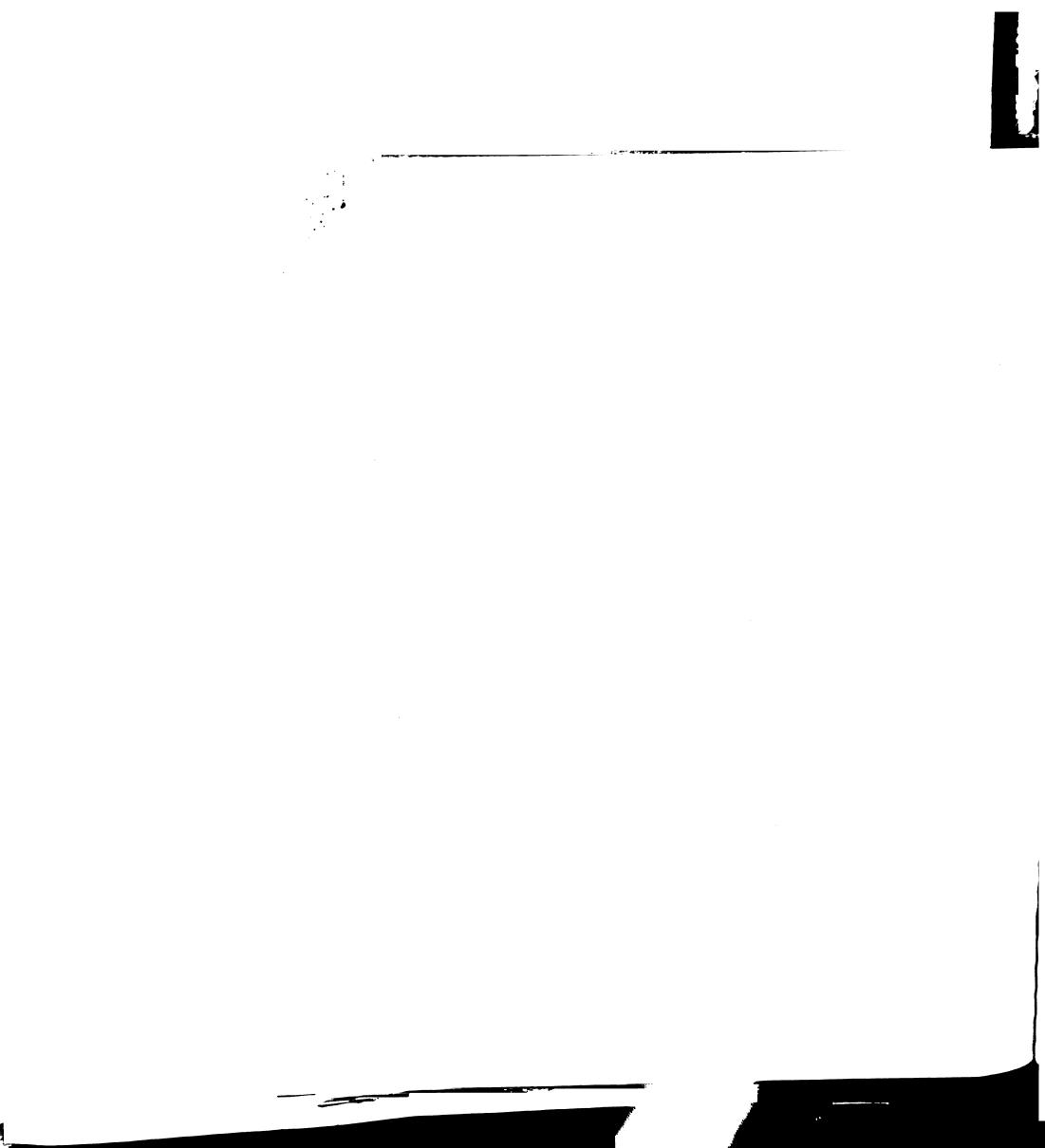
	Store	Corr.	Corr.	Dis- charge		Stage	Corr.	Corr.	Dis- charge
Time	Feet	Feet	Feet	C.F.S.	Time	Feet	Feet	Feet	C.F.S.
August	9-12	, 1956			8	3.09	06	3.03	35
9- 6	1.70	06	1.64	0.9	10	2.96	99	2.90	27
12	1.68	**	1.62	0.8	12	2.87	Ħ	2.81	22
13	2.00	**	1.94	2.6	15	2.76	•	2.70	18
114	2.68	Ħ	2.62	16	24	2.54	99	2.48	11.4
15	3.35	06	3 .2 9	57	19- 8	2.40	•	2.34	7.8
16	3.68	07	3.61	128	12	2.35	•	2.29	6.8
17	3.61	97	3.54	107	24	2.22	**	2.16	4.9
19	3.38	Ħ	3.31	60	20-12	2.12	11	2.06	3.6
20	3.32	#	3.25	53	214	2.05	06	1.99	2.9
214	3.15	Ħ	3.08	3 9	April	27-30,	1957		
10-10	2.95	11	2.88	2 6	27- 3	2.96	+.08	3.04	38
24	2.74	Ħ	2.67	17	6	2.89	Ħ	2.97	32
11-12	2.56	**	2.49	12	9	2.83	16	2.91	28
18	2.50	07	2.43	9.9	11	3.00	Ħ	3.08	41
August	17-20	0, 195	6		12	3.35	96	3.43	81
17-20	1.77	06	1.71	1.2	13	3.67	**	3.75	120
18- 2	1.77	Ħ	1.71	1.2	14	3.80	Ħ	3.88	137
4	2.30	Ħ	2.24	6.1	15	3.68	Ħ	3.76	122
5	3.08	Ħ	3.02	34	16	3.57	Ħ	3.65	108
6	3.20	n	3.14	43	18	3.45	W	3.53	93
7	3.15	06	3.09	3 9	20	3.38	+.08	3.46	84

87

Appendix 1 Continued

Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
22	3.31	+.08	3.39	76	24	2.38	+.08	2.46	11
24	3.25	**	3.33	69	17-12	2.32	*	2.40	9
28- 6	3.07		3.15	48	214	2.28	+.08	2.36	8.2
12	2.96	Ħ	3.04	38	May 18-	21, 19	57		
18	2.87	**	2.95	30	18-18	2.36	+.08	2.44	10
24	2.78		2.86	25	23	2.37	**	2.45	10
2 9 - 12	2.67	"	2.75	20	19- 1	2.48	. 11	2.56	14
24	2.52	*	2.60	15	3	2.86	*	2.94	30
30-12	2.38	н	2.46	11	5	3.20	**	3.28	63
20	2.31	+.08	2.39	8.8	6	3.42	Ħ	3.50	89
May 1	4-17,	1957			8	4.05	"	4.13	171
14-18	2.20	+.08	2.28	6.7	9	4.25	Ħ	4.33	200
24	2.18	11	2.26	6.4	12	4.36	*	4.44	216
15- 1	2.65	н	2.73	19	13	4.45	11	4.53	229
2	3.25	11	3.33	69	14	4.48	11	4.56	234
2½	3.34	п	3.42	79	15	4.42	"	4.50	225
3	3.30	11	3.38	75	16	4.32	**	4.40	210
6	3.10	10	3.18	52	19	4.04		4.12	170
11	2.83	Ħ	2.96	31	23	3.82	u	3.90	140
17	2.75	Ħ	2.83	24	20- 6	3.49	**	3.57	97
24	2.64	**	2.72	19	iı	3.36	"	3.44	82
16-12	2.49	+.08	2.57	14	18	3.21	+.08	3.29	64

Appendix 1 Continued


Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
24	3.11	+.08	3.19	53	24	2.30	+.02	2.32	7.4
21-12	2.98	#	3.06	39	July 8	-11, 19	957		
24	2.89	**	2.97	32	8- 1	2.29	+.02	2.31	7.2
22- 8	2.811	+.08	2.92	28	5	2.27	**	2.29	6.8
July l	1-7, 1 °	957			7	2.45	W	2.47	11
4-13	1.69	+.01	1.70	1.1	8	2.96	**	2.98	33
18	1.68	Ħ	1.69	1.1	9	3.00	•	3.02	36
19	1.91	**	1.92	2.4	10	3.07	W	3.09	42
21	2.19	11	2.20	5.5	11	3.16	**	3.18	52
22	2.70	Ħ	2.71	18	12	3.18	*	3.20	54
23	3.43	**	3.44	82	13	3.22	**	3.24	58
24	3.50	**	3.51	90	14	3.24	Ħ	3.26	61
5- 1	3.48	**	3.49	88	16	3.20	11	3 .22	56
3	3.41	11	3.42	79	24	3.07	**	3.09	42
13	3.14	#	3.15	48	9-11	2.90	Ħ	2.92	28
21	2.98	#	2.99	33	24	2.66	**	2.68	17
24	2.92	#	2.93	2 9	10-12	2.48	#	2.50	12
6-10	2.77	**	2.78	21	18	2.39	M	2.41	9.3
16	2.68	**	2.69	18	24	2.35	**	2.37	8.4
24	2.55	+.01	2.56	114	11- 2	2.34	+.02	2.36	8.2
7-12	2.40	+.02	2. 42	9.6	July 1	1-14, 1	1957		
18	2.33	+.02	2.35	8.0	11-2	2.34	+.02	2.36	8.2

89

Appendix 1 Continued

Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
4	2.52	+.02	2.54	13	18	3.68	02	3.66	109
5	2.80	•	2.82	23	21	3.57	*	3.55	95
6	2.78		2.80	22	24	3.53	**	3.51	90
8	3.13	n	3.15	48	13- 2	3.50	*	3.48	87
10	3.28	*	3.30	65	12	3 .2 9	**	3.27	62
11	3.31		3.33	69	24	3.14	*	3.12	45
13	3.26	**	3.28	63	14-12	3.04	"	3.02	36
14	3.23	**	3.25	60	24	3.02	02	3.00	34
15	3.23	**	3.25	60	Novembe	er 14-	17, 19	57	
16	3.50	"	3.52	91	14- 1	1.77	none	1.77	1.5
17	5.20	**	5.22	333	4	1.79	"	1.79	1.6
18	5.95	**	5.97	445	9	1.93	"	1.93	2.4
19	6.50	**	6.52	542	12	2.19	**	2.19	5.4
21	7.33	**	7.35	685	15	2.55	**	2.55	14
22	7.17	Ħ	7.19	656	18	2.72	"	2.72	19
24	6.22	**	6.24	495	21	2.86	**	2.86	25
12-1	5.76	**	5.78	420	23	2.96	**	2.96	31
3	5.25	**	5.27	340	214	2.97	*	2.97	32
5	4.78	Ħ	4.80	270	15- 2	2.95	"	2.95	30
6	4.60	"	4.62	243	4	2.90	n	2.90	27
8	4.32	11	4.34	201	7	2.82	11	2.82	23
10	4.14	+.02	4.16	175	12	2.67	none	2.67	17

Appendix 1 Continued

Time		Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
24	2.45	none	2.45	10	9 -1 2	2.20	none	2.20	5.5
16-12	2.33	Ħ	2.33	7.6	21	2.17	none	2.17	5.1
214	2.24	Ħ	2.24	6.1	July 2	8-31,	1958		
17-12	2.17	none	2.17	5.1	28- 7	1.42	none	1.42	0.3
April	6-9,]	1958			13	1.41	. #	1.41	0.3
6-8	1.98	none	1.98	2.8	14	1.56	**	1.56	0.6
17	1.97	*	1.97	2.7	15	1.75	Ħ	1.75	1.4
19	2.05	**	2.05	3.5	16	1.75	n	1.75	1.4
21	2.15	Ħ	2.15	4.8	17	1.72	Ħ	1.72	1.2
23	2.36	W	2.36	8.2	18	1.90	#	1.90	2.2
24	2.71	*	2.71	18	20	1.96	Ħ	1.96	2.6
7-1	2.85	#	2.85	24	22	1.99	Ħ	1.99	2.8
2	2.88	•	2.88	2 6	24	2.03	**	2.03	3.3
4	2.90	Ħ	2.90	27	29- 2	2.00	**	2.00	2.9
8	2.87	Ħ	2.87	2 6	4	1.95	11	1.95	2.5
10	2.84	11	2.84	24	6	1.90	Ħ	1.90	2.2
12	2.80	11	2.80	22	9	1.84	Ħ	1.84	1.8
18	2.68	Ħ	2.68	17	12	1.78	11	1.78	1.5
24	2.56	n	2.56	14	15	1.73	11	1.73	1.3
8- 6	2.46	11	2.46	11	18	1.70	Я	1.70	1.2
12	2.37	11	2.37	8.4	24	1.66	17	1.66	1.0
24	2.28	none	2.28	6.7	30- 6	1.63	none	1.63	0.9

Appendix 1 Ontinued

Time		Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
12	1.61	none	1.61	0.8	August	16-19	, 1959		
24	1.58	#	1.58	0.7	16-12	2.23	none	2.23	6.0
31-12	1.56	"	1.56	0.6	14	2.21	**	2.21	5.6
18	1.54	none	1.54	0.6	17	3.07	11	3.07	40
May 2	3-26,	1959			18	3.17	11	3.17	51
23-1	1.81	none	1.81	1.7	20	3.26	11	3.26	61
4	1.81	11	1.81	1.7	22	3.18	11	3.18	52
8	1.87	. 11	1.87	2.0	24	3.11	11	3.11	44
12	2.03	**	2.03	3.3	17- 3	3.00	"	3.00	34
18	2.28		2.28	6.7	8	2.87	*	2.87	26
21	2.36	"	2.36	8.2	12	2.77	"	2.77	21
24	2.41	*	2.41	9.3	18	2.65	н	2.65	16
24-3	2.43	**	2.43	9.9	24	2.55	11	2.55	13
5	2.44	"	2.44	10.2	18-12	2.41	**	2.41	9.
10	2.43	"	2.43	9.9	24	2.34	"	2.34	7.8
13	2.42	"	2.42	9.6	19-12	2.28	Ħ	2.28	6.
18	2.40	"	2.40	9.0	20	2.23	none	2.23	6.0
24	2.37	"	2.37	8.4	Septem	ber 21-	-24, 19	959	
25-12	2.31	п	2.31	7.2	21- 7	1.61	none	1.61	0.8
24	2.24	"	2.24	6.1	17	1.60	n	1.60	0.7
26 - 12	2.19	н	2.19	5.4	19	1.76	Ħ	1.76	1.
20	2.16	none	2.16	4.9	22	2.03	none	2.03	3.3

92

Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
24	2.21	none	2.21	5.6	10	4.81	none	4.81	272
22- 2	2.40	**	2.40	9.0	11	4.83	11	4.83	275
6	2.70		2.70	18.0	12	5.15	n	5.15	322
7	2.75	#	2.75	20.0	13	5.55	*	5.55	383
9	2.77	11	2.77	20.8	14	5.77	11	5.77	418
11	2.76	**	2.76	20.6	15	5.85	*	5.85	431
12	2.74	**	2.74	19.6	16	6.13	*	6.13	476
14	2.69		2.69	17.9	17	5.85	"	5.85	431
17	2.62	"	2.62	15.6	20	5.08	Ħ	5.08	312
20	2.54		2.54	12.7	24	4.50	**	4.50	225
23-2	2.43	**	2.43	9.9	7- 6	4.00	n	4.00	153
12	2.33	11	2.33	7.6	12	3.68	ń	3.68	111
24	2.20	**	2.20	5.8	18	3.49	n	3.49	88
24-12	2.15	**	2.15	4.8	24	3.38	ń	3.38	75
24	2.09	none	2.09	4.0	8-12	3.20	11	3.20	54
Octobe	er 6-9	, 1959			22	3.12	none	3.12	45
6- 1	2.26	none	2.26	6.4	Novemb	er 4-7	, 1959		
4	2.30	*	2.30	7.0	4- 1	2.06	none	2.06	3.6
5	2.44	*	2.44	10	6	2.05	**	2.05	3.5
6	2.74	"	2.74	20	9	2.11	11	2.11	4.2
7	3.75	*	3.75	120	11	2.44		2.44	10
8	4.64	none	4.64	246	12	2.87	none	2.87	26

93

Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
13	3.01	none	3.01	35	18	2.60	none	2.60	15
14	3.17	*	3.17	51	19	2.81	**	2.81	22
15	3.25	"	3.25	60	21	3.13	*	3.13	46
16	3.26	11	3 .2 6	61	23	3.34	11	3.34	70
17	3.26	"	3.26	61	214	3.38	**	3.38	75
18	3.25	11	3.25	60	12- 1	3.39	. 11	3.39	76
21	3.20	**	3.20	54	2	3.38	"	3.38	75
24	3.14	**	3.14	47	6	3.28	"	3.28	63
5-12	2.98	**	2.98	33	11	3.18	Ħ	3.18	52
18	2.91	**	2.91	28	214	3.00	17	3.00	34
20	2.90	11	2.90	27	13-12	2.85	п	2.85	25
24	2.92	11	2.92	28	24	2.74	11	2.74	20
6- 3	2.91	"	2.91	28	14-12	2.62	"	2.62	16
12	2.80	11	2.80	22	20	2.57	none	2.57	14
24	2.68	11	2.68	17	Januar	y 12-1	5, 196	0	
7-12	2.57	none	2.57	14	12- 1	1.97	none	1.97	2.
De cemi	ber 11	-14, 1	959		4	1.97	19	1.97	2.
11.6	2.18	none	2.18	5.2	7	2.00	11	2.00	2.
11	2.18	**	2.18	5.2	12	2.17	11	2.17	5.
13	2.20	**	2.20	5.5	15	2.85	11	2.85	214
15	2.25	**	2.25	6.2	18	3.27	11	3.27	62
17	2.43	none	2.43	9.9	20	3.45	none	3.45	83

	-:-		7000					V	
Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.	Time	Stage Feet	Corr. Feet	Corr. Stage Feet	Dis- charge C.F.S.
21	3.50	none	3.50	89	24	3.85	none	3.85	134
22	3.51	**	3.51	90	29- 4	3.70	**	3.70	114
24	3.49	**	3.49	88	9	3.57		3.57	97
13-2	3.46	**	3.46	84	12	3.65	11	3.65	108
5	3.46	11	3.46	84	15	4.12	n	4.12	170
9	3.33	n	3.33	69	17	4.75	11	4.75	262
12	3.23	19	3.23	57	18	4.90	11	4.90	285
24	3.01	n	3.01	35	20	4.78	n	4.78	2 67
14-11	2.87	11	2.87	26	24	4.28	Ħ	4.28	192
24	2.81	none	2.81	22	30- 4	4.00	11	4.00	153
March	26 - A	April 2	2, 1960)	7	3.90	Ħ	3.90	140
26-12	1.90	none	1.90	2.2	9	4.08	ir	4.08	164
27-12	1.93	17	1.93	2.4	12	4.35	19	4.35	202
18	2.32	11	2.32	7.4	15	4.50	**	4.50	225
24	3.00	. 11	3.00	34	18	4.36	11	4.36	204
28. 3	3.31	**	3.31	66	24	3.98	. 43	3.98	150
7	3.50	11	3.50	89	31- 6	3.69	11	3.69	113
10	3.45	**	3.45	83	12	3.51	11	3.51	90
12	3.51	Ħ	3.51	90	24	3.31	11	3.31	66
15	3.70	Ħ	3.70	114	1-24	3.16	11	3.16	50
18	4.11	11	4.11	168	2-24	3.07	none	3.07	40
20	4.21	none	4.21	182					

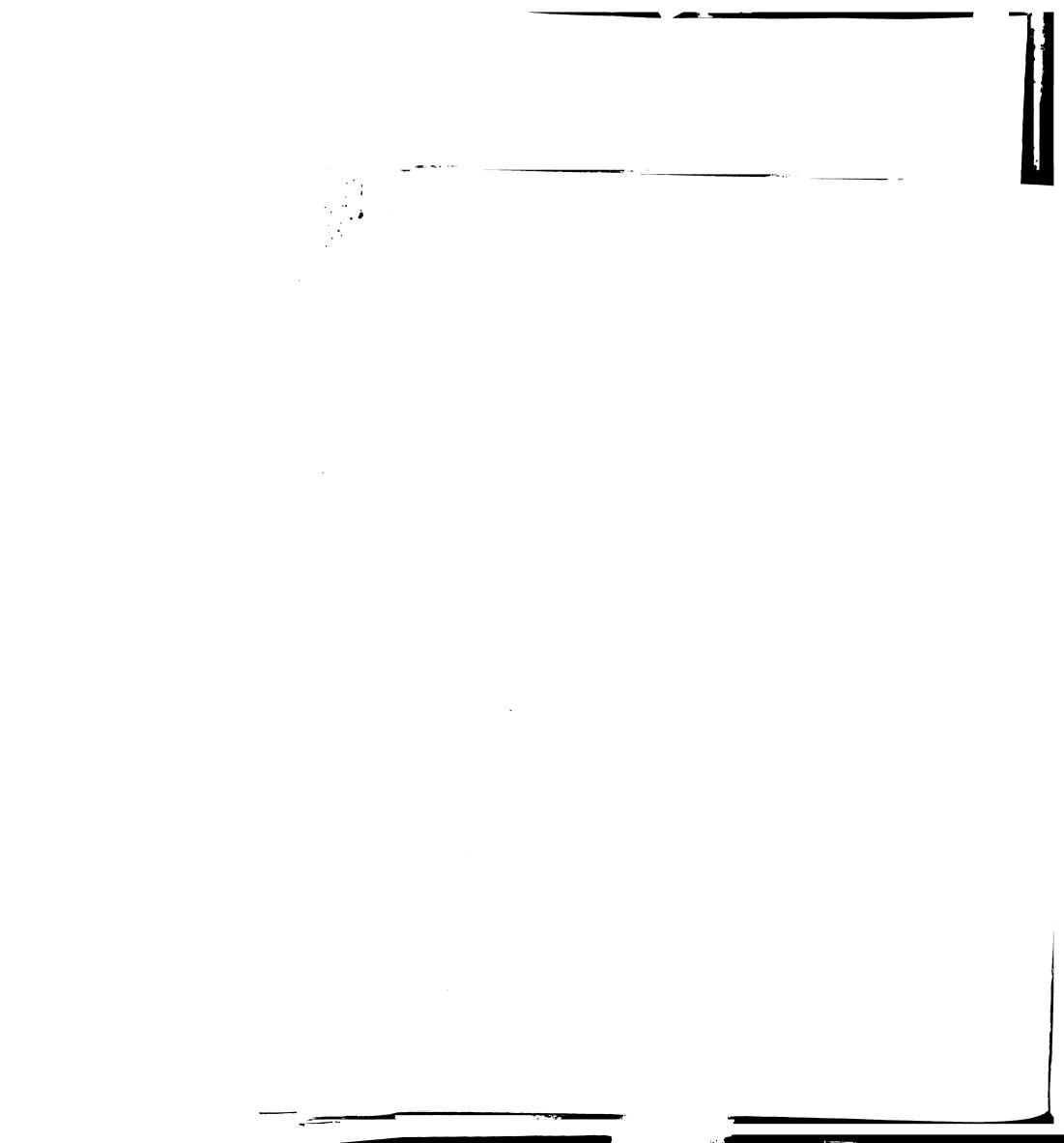
•

Appendix 2 Thiessen procedure rainfall analysis data.

The hourly precipitation for each gage was read and tabulated by Weather Bureau personnel following standard Weather Bureau procedure. These values were multiplied by the percentage of the watershed area each gage represented, according to Thiessen procedure, and listed on the following pages. The right hand column thus shows the average weighted depth of rain for each hour and at the end of each storm period indicates the equivalent uniform depth of rain over the watershed.

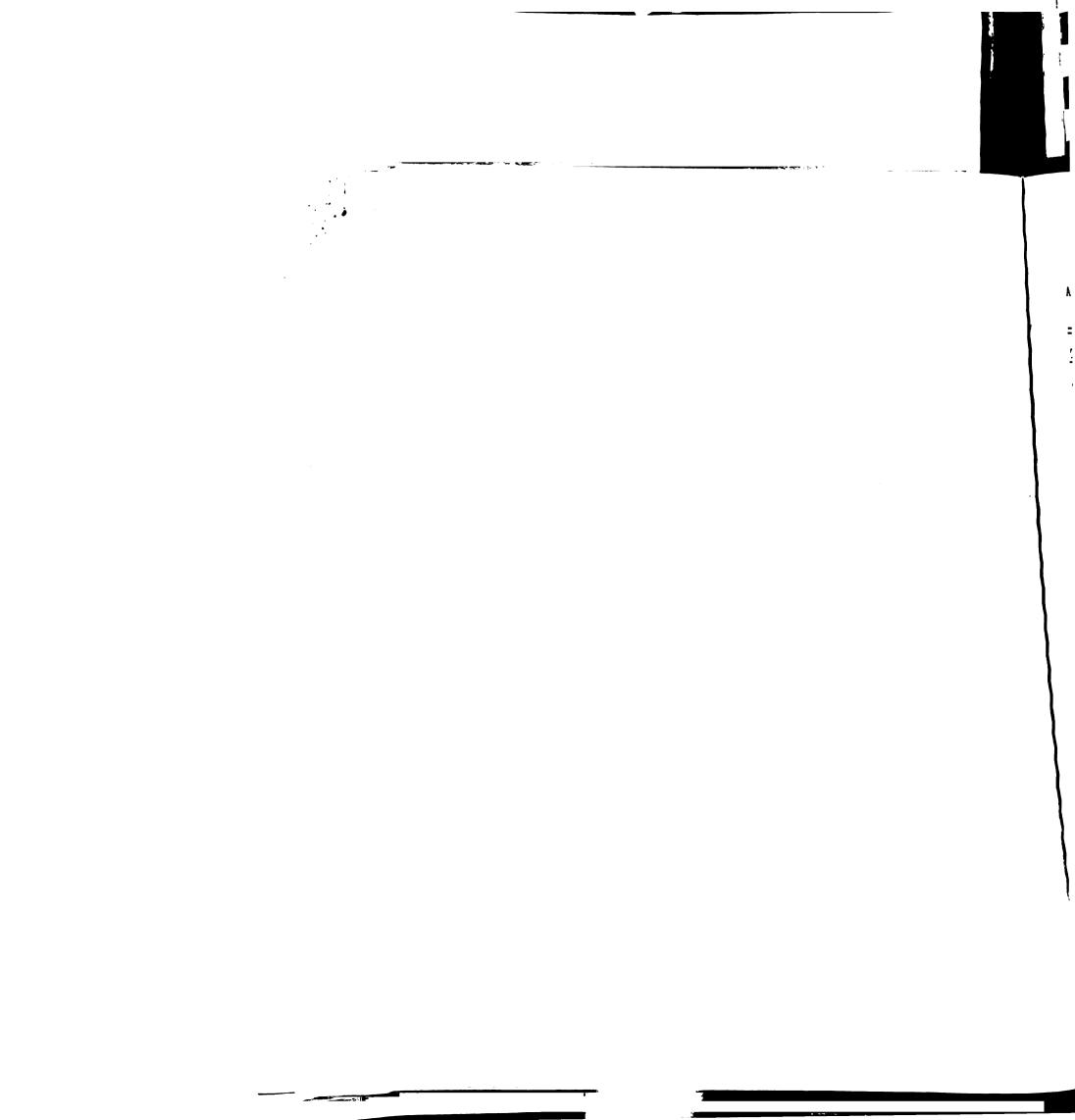
As the March 26-April 2, 1960 runoff period was included only to show the effect of snow runoff, the small amount of rain which fell during the end of this period was not included. It should also be noted that the average hourly precipitation values of less than 0.01 inch were not shown on Figures 4 through 21.

96

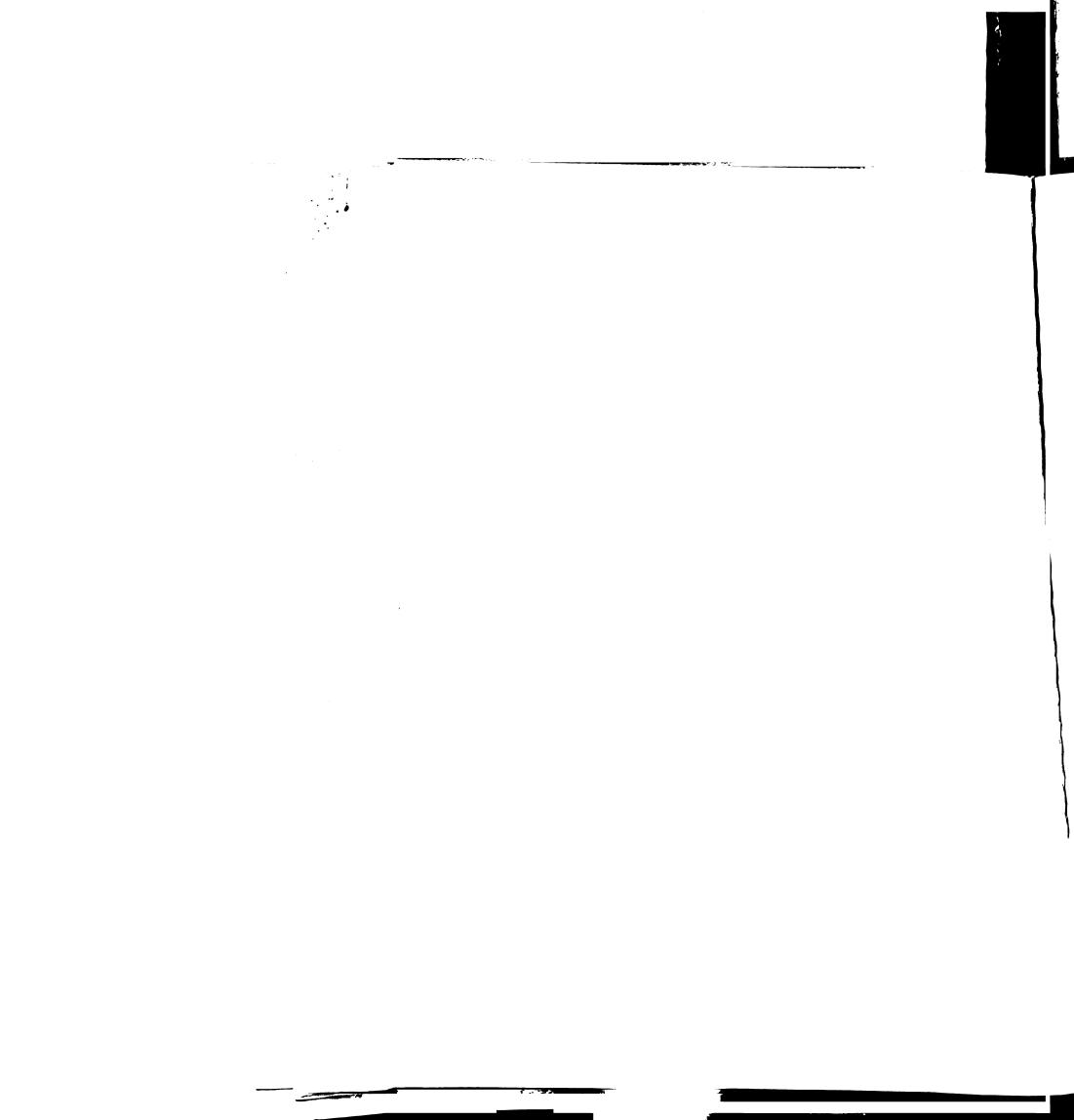

Appendix 2 Thiessen procedure rainfall analysis data.

Time	Gage 1	number 2	and wel	ghted 1	Inches o	f rain	Rain Inches
August 9							
9-13	0.076	0.334	0.173	0.333	0.389	0.274	1.579
14	0.078	0.029	0.149	0.186	0.092	0.014	0.548
15			0.004	0.010	0.005	0.003	0.022
	0.154	0.363	0.326	0.529	0.486	0.291	2.149
August 1	7-20, 19	56					
18- 2						0.007	0.007
3	0.029	0.229	0.171	0.245	0.149	0.148	0.971
4	0.002	0.008	0.048	0.088	0.030	0.003	0.179
22					0.014	0.014	0.028
	0.031	0.237	0.219	0.333	0.193	0.172	1.185
April 27	-30, 199	57					
27-9	0.001			·			0.001
10	0.033	0.075	0.064	0.090	0.105	0.065	0.432
11	0.012	0.023	0.016	0.039	0.037	0.019	0.146
12		0.002		0.002		0.003	0.007
14	0.001	0.002	0.003				0.006
15	0.004	0.006	0.004	0.002	0.009		0.025
16	0.002		0.001	0.004			0.007
17		0.002					0.002
18	0.001	0.004	0.004		0.007	0.004	0.020
19		0.002		0.004	0.002	0.001	0.009

Appendix 2 Continued


Time	Gage 1	number 2	and wel	ghted 4	inches o	f rain	Rain Inches
20	0.003	0.004	0.006	0.004		0.001	0.018
	0.057	0.120	0.098	0.145	0.160	0.093	0.673
May 14-1	.7, 1957						
14-24	0.001	•••		0.004		0.006	0.011
15-1	0.133	0.177	0.092	0.084	0.048	0.036	0.570
2			~~~		0.016		0.016
3		•			0.002	0.001	0.003
	0.134	0.177	0.092	0.088	0.066	0.043	0.600
May 18-	21, 1957	7					
18-20	0.001						0.001
21	0.004	0.006	0.003	0.004	0.002	0.004	0.023
22	0.006	0.011	0.006	0.014	0.011	0.006	0.054
23	0.004	0.017	0.018	0.022	0.023	0.025	0.109
24	0.010	0.019	0.013	0.018	0.025	0.016	0.101
19- 1	0.011	0.017	0.013	0.020	0.021	0.013	0.095
2	0.002	0.006	0.007	0.008	0.011	0.007	0.041
3	0.012	0.019	0.011	0.014	0.011	0.007	0.074
4	0.003	0.010	0.006	0.005	0.002	0.007	0.034
5	0.022	0.011	0.036	0.053	0.066	0.043	0.264
6	0.014	0.029	0.020	0.024	0.021	0.014	0.122
7	0.014	0.029	0.020	0.024	0.018	0.019	0.124
8	0.017	0.027	0.020	0.024	0.021	0.016	0.125

おは、大田田は大田村の名というのでしている



Appendix 2 Continued

Time	Gage 1	number 2	and wei	ghted 4	inches o	f rain	Rain Inches
9	0.005	0.011	0.009	0.012	0.009	0.007	0.053
10	0.014	0.021	0.014	0.027	0.032	0.023	0.131
11	0.008	0.019	0.014	0.020	0.018	0.012	0.091
12	0.012	0.019	0.014	0.022	0.023	0.013	0.103
13	0.006	0.015	0.009	0.014	0.018	0.013	0.075
14	0.003	0.004	0.004	0.004	0.005	0.035	0.055
15	0.002	0.004	0.001	0.006	0.005		0.018
16	0.002	0.004	0.001	0.002	0.002	0.003	0.014
17	0.002	0.002	0.001	0.004	0.002	0.003	0.014
18	0.001	0.004	0.003	0.004	0.005	0.001	0.018
19	0.004	0.004	0.001	0.004	0.002	0.004	0.019
20	0.001	0.002	0.001	0.004	0.005	0.003	0.016
21	0.001	0.002	0.003	0.002	0.002	0.007	0.017
22	0.001				0.002		0.003
23	0.001						0.001
24				0.002			0.002
	0.183	0.345	0.248	0.358	0.362	0.301	1.797
July 4-	7, 1957						
+-18	0.034	0.076	0.063	0.029	0.043	0.043	0.288
19	0.075	0.097	0.092	0.296	0.263	0.193	1.016
20	0.047	0.097	0.081	0.165	0.232	0.160	0.782
	0.156	0.270	0.236	0.490	0.538	0.396	2.086

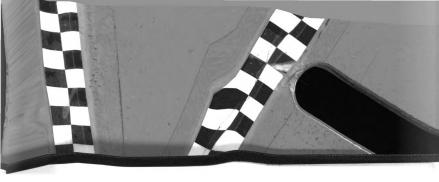
Time	Gage 1	number 2	and wei	ghted i	inches o	f rain 6	Rain Inches
July 8-1	11, 1957						
8- 5	0.001						0.001
6	0.029	0.025	0.009	0.016	0.009	0.001	0.089
7	0.073	0.149	0.094	0.135	0.142	0.094	0.687
8	0.011	0.027	0.017	0.024	0.037	0.022	0.138
9	0.011	0.019	0.014	0.026	0.030	0.019	0.119
10	0.015	0.029	0.020	0.033	0.034	0.025	0.156
11						0.003	0.003
	0.140	0.249	0.154	0.234	0.252	0.164	1.193
July 11-	-14, 195	7					
11- 2	0.001		0.004			0.010	0.015
3	0.033	0.101	0.031	0.041	0.034	0.022	0.262
4	0.009	0.035	0.068	0.096	0.092	0.048	0.348
6	0.003	0.008					0.011
7	0.007	0.029	0.026	0.029	0.032	0.043	0.166
8	0.010	0.019	0.018	0.035	0.057	0.029	0.168
15	0.004	0.010					0.014
16	0.119	0.193	0.099	0.141	0.130	0.073	0.755
17	0.087	0.208	0.121	0.196	0.206	0.092	0.910
18	0.066	0.115	0.078	0.133	0.137	0.066	0.595
19	0.017	0.025	0.043	0.075	0.076	0.049	0.285
20	0.004	0.002	0.001	0.004	0.005		0.016

100

Appendix 2 Continued

Time	Gage 1	number 2	and wei	ghted i	nches o	f rain	Rain Inches
12-18	0.009	0.008	0.011	0.006	0.005	0.003	0.042
19			0.001	0.004	0.002	0.001	0.008
21	0.002	0.010	0.007	0.008	0.009	0.003	0.039
22	0.004	0.011	0.007	0.012	0.011	0.007	0.052
23				0.004			0.004
	0.375	0.774	0.515	0.784	0.796	0.446	3.690
November	14-17,	1957					
14- 5	0.004	0.006	0.006	0.008	0.005	0.004	0.033
6	0.008	0.019	0.009	0.020	0.027	0.010	0.093
7	0.004	0.015	0.006	0.010	0.011	0.007	0.053
8	0.006	0.006	0.009	0.014	0.014	0.012	0.061
9	0.008	0.015	0.009	0.022	0.023	0.012	0.089
10	0.015	0.031	0.018	0.031	0.037	0.021	0.153
11	0.006	0.015	0.007	0.012	0.018	0.010	0.068
12	0.009	0.021	0.009	0.024	0.025	0.016	0.104
13	0.005	0.010	0.007	0.014	0.011	0.007	0.054
14	0.001	0.002	0.001	0.002		0.001	0.007
15	0.004	0.011	0.006	0.010	0.014	0.007	0.052
16	0.003	0.006	0.004	0.002	0.005	0.001	0.021
17	0.002	0.006	0.003	0.008	0.005	0.006	0.030
18	0.004	0.008	0.007	0.018	0.014	0.004	0.055
19	0.007	0.015	0.011	0.037	0.034	0.017	0.121


101


Appendix 2 Continued

Time	Gage 1	number 2	and wei	ghted 4	inches o	f rain	Rain Inches
20	0.004	0.013	0.014	0.027	0.021	0.013	0.092
21	0.003	0.004	0.003	0.010	0.009	0.001	0.030
22	0.001	0.002		0.006			0.009
	0.094	0.205	0.129	0.275	0.273	0.149	1.125
April 6	- 9 , 1 958						
6-17	0.012	0.027	0.023	0.037	0.092	0.065	0.256
18	0.029	0.044	0.041	0.051	0.069	0.035	0.269
19	0.012	0.029	0.020	0.027	0.023	0.019	0.130
20	0.003	0.002	0.006	0.012	0.009	0.006	0.038
21	0.006	0.010	0.007	0.018	0.009	0.007	0.057
22	0.002	0.008	0.006	0.010	0.007	0.007	0.040
23	0.002	0.006	0.004	0.002	0.002	0.004	0.020
24	0.001	0.002		0.002	0.002	0.001	0.008
	0.067	0.128	0.107	0.159	0.213	0.144	0.818

Appendix 2 Continued

Time	Gage 1	Gage number with listing of weighted inches 1 2 2 4 4	with 11	sting o	f weigh	ted inc	o	rainfall	121	Rain Inches
July 28-31	28-31, 1958									
28-14	0.042	0.054	0.099	0.092	0,102	0.077	0.020	0.078	0.007	0.571
15	0.016	0.077	0.092	0.136	901.0	0.082	0.037	0.062	0.021	0.629
16				0.003		1		1	i	0.003
	0.058	0.131	0.191	0.231	0.208	0.159	0.057	0,140	0.028	1.203
May 23-26,	1959									
23- 1	0.002	0.003	0.005	0.003	0.008	0.003	0.001	i	1	0.025
8	0.003	0.002	0.001	0.003	0.002	900.0	0.002	0.003	i	0.022
٣	0.005	0.008	0.007	0.007	0.010	0.007	0.004	0.003	0.002	0.053
4	0.011	0.017	0.022	0.025	0.044	0.026	0.010	0.009	0.003	0.167
rv	0.028	0.042	0.061	0.056	0.090	0.055	0.022	0.043	0.012	0.409
9	0.007	0.010	0.009	0.022	0.031	0.011	0.007	0.019	0.004	0.120
7	900.0	0.011	0.01	0.015	0.012	0.010	0.005	0.009	0.002	0.081
8	0.012	0.019	0.020	0.019	0.029	0.021	0.007	900.0	1	0.133
6	0.001	0.002	0.005	0.016	0.010	0.003	0.003	0.018	0.004	0.062
	0.075	0.114	0.141	0.166	0.236	0.142	0.061	0.110	0.027	1.072

Gage number with listing of weighted inches of rainfall 2 3 μ 5 6 18 190.058 0.022 0.014 760.0 0.033 0.044 0.001 0.078 0.011 0.038 0.006 0.055 0.037 0.010 0.047 i 0.047 0.034 0.007 0.088

0.108 0.075

August 16-19, 1959

Time

16-15

Appendix 2 Continued

0.070 0.053 0.107

0.050

16

0.003

0.003 1

0.187 0.004

0.180 0.003

0.105 0.002

Rain

0.360 0.422 0.055 0.837

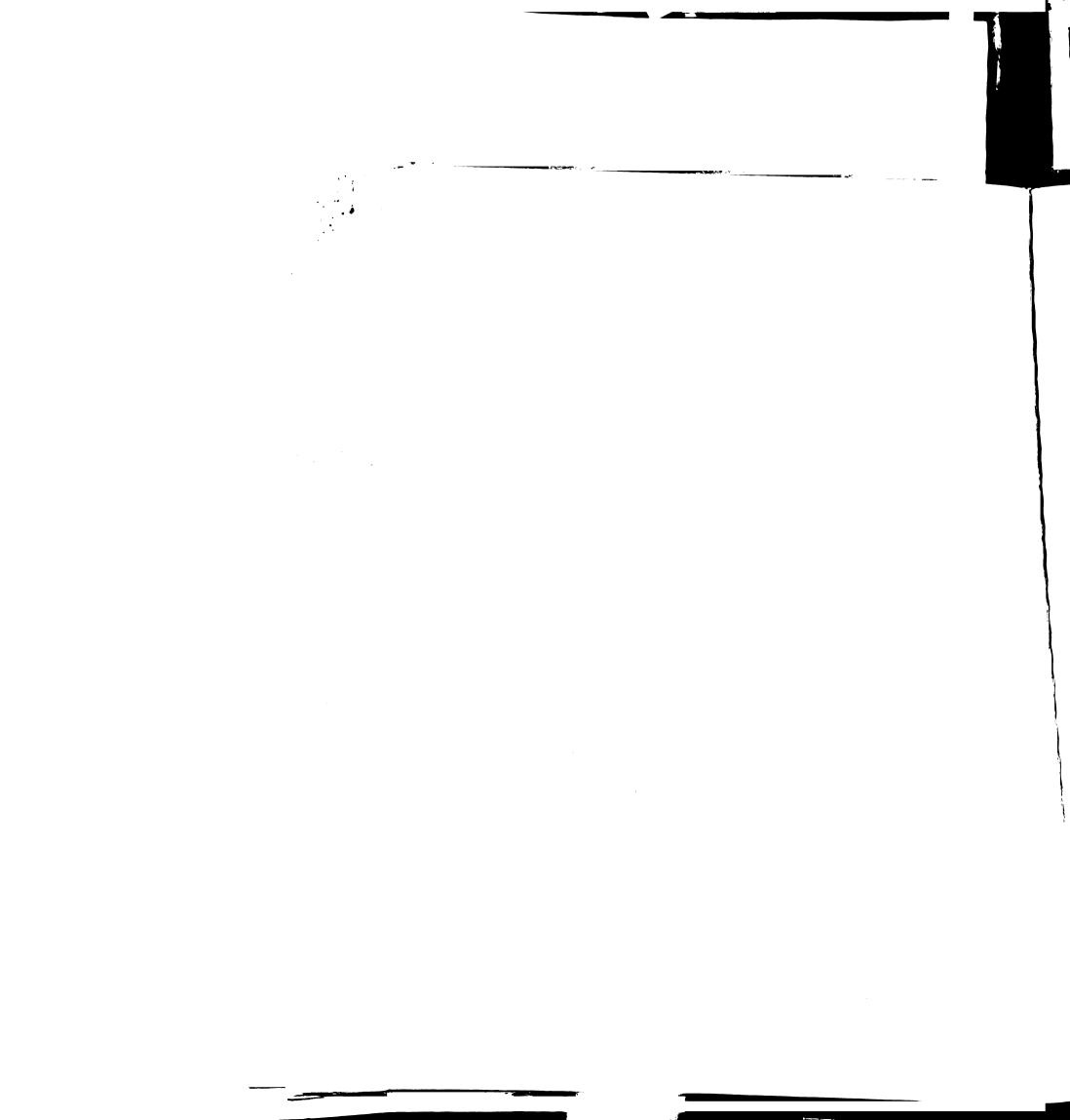
September	21-24,	1959								
21-18	0.073	0.078	090.0	0.077	690.0	0.062	0.050	0.051	0.003	0.523
19	0.010	0.021	τ ₄ ο.c	0.065 0	0.083	0.044	600.0	0.038	0.011	0.322
50	0.003	0.018	.017	0.031	0.040	0.02	3 0.003	0.013	0.005	0.158
ผ	0.009	0.01	0.024	0.044	0.031	0.030	0.008	0.033	0.005	0.202
22	900.0	0.00	0.010	0.012	0.015	0.011	0.005	0.009	0.002	0.079
23	0.004	0.013		0.010	0.040	0.051	p.00t	0.002	0.002	0.152
ਰੋ	0.022	0.041	0.034	0.064	0.04	0.023	0.020	0.050	0.005	0.303
	0.127	0.198	0.212 (0.303	0.322	0.249	0.099	961.0	0.033	1.739

0.007

0.001

:

0.001 0.002 0.001 0.001


:

0.001

6- 2

October 6-9, 1959

103

104

Time	Gage 1	number 2	with 11	Gage number with listing of 1 -2 3 $+4$	r weighted 5	ted Inc	hes of	Inches of rainfall	1 21	Rain Inches
٣	0.002	1	0.002	0.003	0.002	0.004	0.002	0.001	0.001	0.017
7	0.044	0.080	960.0	0.124	0.125	0.124	0.037	0.026	0.011	0.667
7	0.036	0.067	0.085	0.124	0.121	0.087	0.031	0.100	0.017	0,668
9	0.014	0.020	0.019	0.037	970.0	0.041	0.010	0.058	900.0	0.251
7	0.001	0.002	0.004	0.015	0.021	0.011	0.001	0.010	0.002	0.067
89	0.004	0.007	0.012	0.028	0.042	0,040	0.003	0.011	900.0	0.153
6	0.009	0.017	0.019	0.038	0.052	0.017	0.008	0.019	900.0	0.185
10	0.014	0.011	110.0	0.015	0.017	0.011	0.010	0.008	0.003	0.100
11	0.017	0.029	0.048	0.022	0.037	990.0	0.014	0.008	0.003	0.243
12	0.034	190.0	690.0	0.139	0,160	0.087	0.025	0.071	0.020	0,669
13	0.004	0.004	0.002	0.013	0.015	0.004	0.002	0.031	0.005	0.080
17	-	1	0.010	1	1	0.014	1	0.001	1	0.025
18	0.01	0.014	0.01	0.019	0.025	0.004	0.008	0.008	0.003	0.103
7-5	1	0.002	0.002	0.003	0.002	1	0.001	1	;	0.010
9	1	i	1	400.0	0.004	0.001	ł	0.002	i	0.011
6	1	0.001	;	1	1	0.003	0.001	1	1	0.005

Time	Gage 1	number 2	with 11	sting of	. weigh	ted inc	hes of	Gage number with listing of weighted inches of rainfall 1 2 3 $^4\mu$ 5 6 18 19 21		Rain Inches
10	1	0.002	1	0.001	ŀ	1	0.001	0.001	1	0.005
#	0.002	0.001	0.004	1	1	ł	1	1	1	0.007
12	1	1	0.001	:		1	0.001	0.002	:	0.004
	0.192	0.322	0.395	0.586	0.671	0.514	0.156	0.357	0.084	3.277
November 4-7, 1959	4-7, 195	63								
9 - 1	0.004	900.0	0.005	0.007	0.010	900.0	0.004	0.001	0.001	0.044
7	0.003	0.004	0.005	0.007	0.002	0.004	0.002	0.002	0.001	0.030
80	0.007	0.011	0.012	0.015	0.021	0.013	0.007	0.007	0.002	0.095
6	0.011	0.017	0.016	0.024	0.027	0.021	0.008	0.016	400.0	0.144
10	0.023	0.035	0.041	0.052	170.0	0.051	0.017	0.018	900.0	0.314
11	0.013	0.021	0.030	0.021	0.025	0.020	0.013	0,040	0.007	0.190
12	900.0	0.009	0.007	0.013	0.010	0.008	0.005	0.009	0.002	0.069
13	0.001	0.001	0.001	0.003	0.002	0.001	0.005	400.0	0.002	0.020
17	0.001	0.001	0.005	0.003	ł	0.001	i	ł	1	0.01
18	0.001	0.001	1	0.001	1	0.001	0.001	0.001	1	900.0
12	0.001	0.001	0.002	900.0	0.010	0.003	0.001	0.003	0.001	0.028
	0.071	0.107	0.124	0.152	0.178	0.129	0.063	0.101	0.026	0.951

	1										
w _a											

Time	Gage 1	number 2	Gage number with listing	sting o	of weighted inches	ted inc	P	rainfal 19	1 21	Rain Inches
December 11-14, 1959	11-14, 1	1959								
11-11	0.004	0.007	900.0	0.007	900.0	900.0	0.002	0.001	0.001	0,040
12	900.0	0.010	0.01	0.012	0.015	0.008	0.004	0.010	0.002	0.078
13	0.004	0.005	0.007	0.009	0.010	0.007	0.004	0.008	0.002	0.056
77	900.0	0.010	0.009	0.009	0.015	0.011	0.005	0.007	0.001	0.073
15	0.004	0.007	0.010	0.015	0.021	0.016	0.004	0.010	0.003	0.090
16	0.007	0.010	0.010	0.015	0.019	0.014	0.005	0.011	0.002	0.093
17	0.004	0.007	0.007	0.012	0.012	0.008	0.004	0.010	0.002	990.0
18	0.004	0.005	900.0	0.009	0.010	0.010	0.003	0.007	0.002	0.056
19	900.0	0.007	900.0	0.007	0.010	0.007	0.004	0.007	0.001	0.055
50	0.003	0.003	0.004	900.0	0.008	0.003	0.002	0.004	0.001	0.034
21	0.001	0.003	0.001	0.004	0.002	0.004	0.001	0.004	}	0.020
22	0.001	0.002	0.001	0.004	0.002	i	0.001	0.001	1	0.012
23	0.001	0.001	0.001	1	0.002	0.001	0.001	1	}	0.007
त्तं	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	}	0.009
12- 1	0.001	0.001	0.001	0.001	0.002	0.003	0.001	0.001	}	0.01

	No.									

107

Time	Gage 1	number 2	Gage number with listing of 1 2 3 μ	sting o	f weigh	weighted inches of 5 6 18	hes of	rainfal 19	72	Rain Inches
8	0.001	0.001	0.002	0.004	0.002	0.001	0.001	0.001	1	0.013
11	}	!	0.001	0.001	0.002	1	ł	0.001	i	0.005
12	1	ł	1	0.003	i	0.001	;	1	1	0.004
13	0.001	1	1	0.001	0.002	-	1	ł	1	0.004
14				0.003	0.002	0.001		:	:	0.006
	0.055	0.080	0.084	0.123	0.144	0.102	0.043	0.084	0.017	0.732
January	January 12-15, 1960	090								
12- 5	0.001	0.003	0.004	0.003	0.002	0.001	0.003	0.001	i	0.018
9	700.0	0.009	600.0	0.010	0.012	0.007	900.0	0.008	0.001	990.0
7	0.007	0.012	0.011	0.016	0.021	0.015	0.007	0.016	0.003	0.108
89	900.0	0.008	0.007	0.010	0.015	0.011	0.005	0.011	0.002	0.075
6	700.0	900.0	0.005	0.007	0.008	900.0	0.004	900.0	0.001	0.047
10	0.004	0.005	900.0	0.007	0.008	0.007	0.002	0.004	0.001	440.0
11	900.0	0.009	0.012	0.015	0.021	0.014	0.002	900.0	0.002	0.087
12	900.0	0.011	0.011	0.016	0.021	0.015	0.005	0.011	0.003	0.099
13	0.007	0.008	0.010	0.012	0.017	0.010	0.005	0.011	0.002	0.082

							1		

Appendix 2 Continued

Time	Gage 1	number 2	Gage number with listing of 1 2 3 4	sting of		weighted inches	9	rainfal 19	1 21	Rain Inches
114	0.005	0.009	0.007	0.012	0.010	0.010	900.0	0.010	0.002	0.071
15	0.005	0.007	0.009	600.0	0.017	0.010	0.003	0.003	0.002	0.065
16	100.0	0.009	0.007	0.010	0.012	0.008	0.005	0.011	0.002	0.068
17	ή00.0	0.008	0.011	0.013	0.019	0.014	0.004	0.008	0.002	0.083
18	0.005	0.007	900.0	600.0	0.010	0.007	0.003	900.0	0.001	0.054
19	0.002	0.003	0.002	0.007	0.008	900.0	0.002	0.004	100.0	0.035
20	0.003	0.004	0.005	0.007	900.0	0.004	0.003	900.0	0.001	0.039
21	1	0.001	!	0.001	0.002	1	1	1	1	0.004
22	-	-	i	0.001	ŀ	0.001	0.001	0.001	}	0.004
23	0.001	1	0.001	1	0.002	0.001	0.001	1	i	900.0
77	0.002	0.004	0.007	0.013	900.0	0.004	0.002	900.0	0.001	0.045
13-1	0.001	0.003	900.0	0.007	0.015	0.008	0.001	0.001	0.001	0.043
8	0.002	0.003	0.00	0.007	0.006	0.008	0.001	0.007	0.001	0.039
	0.079	0.129	0,140	0.192	0.238	0.167	0.071	0.137	0.029	1,182

Data for Sloan Greek composite recession curve. Appendix 3

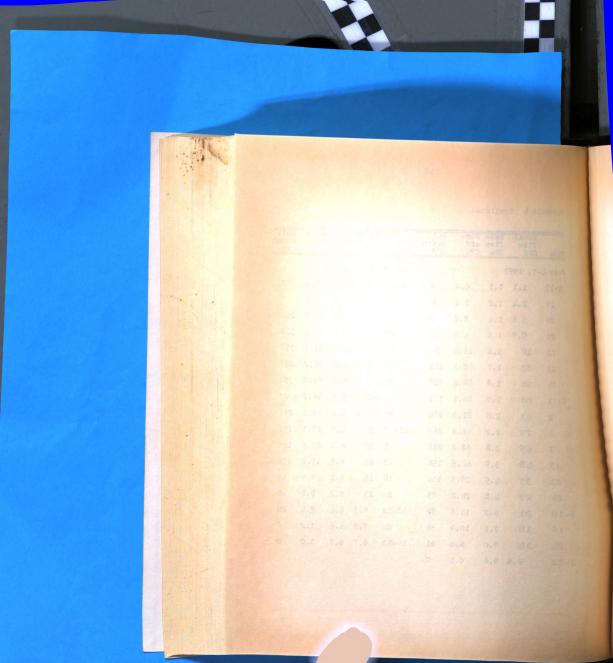
Dis- charge C.F.S.		24 177	997	1.00-t	46.	
Date		0ct. 59	34,7,7,	118	228	
Dis- charge C.F.S.				-จพพ ระตา	3.9	
Date			122	1242	16	
Dis- charge C.F.S.		83 26 17		0.00	760 97.0	
Date	May 57	ន្តន្តន្តន	May 59	้นดผ	⊅ ₩0	
Dis charge C.F.S.			0.6	-จพพ เจ๋ต์	wo.00	, ou u u u
Date		Nov. 59	~ 80	`212	Apr. 55 26 27 28	J&4044
Dis- charge C.F.S.				7	4.48.90 4.48.90	ingiii inomeni
Date	,			June 57	ี ⊣ ທ [ັ] ພ⊐ກ	79 C 8 9 0 1

Appendix 4 Data for obtaining unit graphs.

The specific procedure for calculating unit graph values is presented in the Analysis and Discussion of Rainfall Data section. The May 14-17, 1957 data are for a $\frac{1}{2}$ hour unit graph, the August 9-12, 1956 and August 16-19, 1959 data are for 1 hour unit graphs, and the July 4-7, 1957 data are for a 2 hour unit graph.

The total flow values as listed under each of these storm periods were essentially all from Appendix 1 data and thus list values above 10 cfs only to the nearest whole cfs. The base flow data were all from the respective hydrograph figures, therefore were read to the nearest 0.1 cfs. The tenths were maintained under the surface runoff column because this column had to be proportionally increased to 1 inch of runoff which required a large magnification in most cases.

111


Appendix 4 Data for obtaining unit graphs.

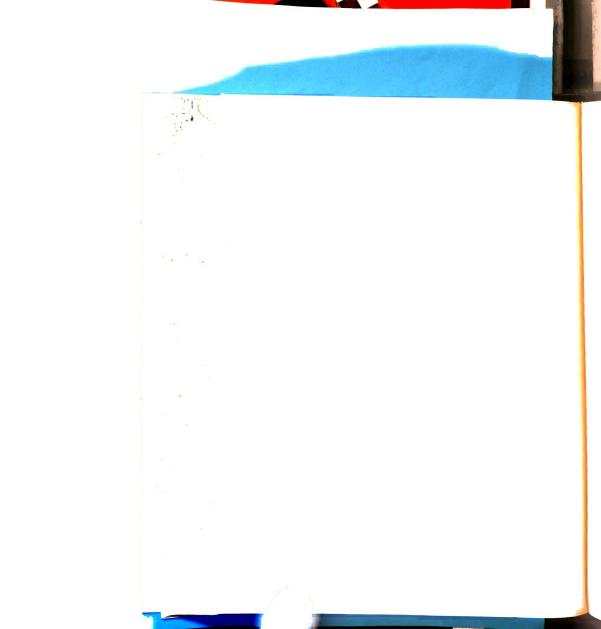
Time	Total flow CFS	Base flow CFS	Run- off CFS	Unit graph CFS	Time	Total flow CFS	Base flow CFS	Run- off CFS	Unit graph CFS
August	9-12,	1956			May 14	-17, 1	957		
9-12	0.8	0.8	0.0	0	14-24	6.4	6.4	0.0	0
13	2.6	1.0	1.6	7	15- 1	19	6.4	12.6	88
14	16	1.1	14.9	67	2	69	6.4	62.6	438
15	57	1.2	55.8	253	21/2	79	6.4	72.6	508
16	128	1.3	126.7	574	3	75	6.5	68.5	479
17	107	1.4	105.6	478	6	52	6.6	45.4	318
18	82	1.5	80.5	365	11	31	6.8	24.2	169
19	60	1.6	58.4	264	17	24	7.0	17.0	119
20	53	1.7	51.3	232	24	19	7.2	11.8	83
24	39	2.2	36.8	167	16-12	14	7.6	6.4	45
10-10	26	3.3	22.7	103	24	11	8.0	3.0	21
24	17	4.9	12.1	55	17-12	9	8.3	0.7	5
11-12	12	6.2	5.8	26	15	8.5	8.5	0.0	0
18	9.9	6.9	3.0	14					
23	8.8	7.4	1.4	6					
12- 4	8.0	8.0	0.0	0					

Appendix 4 Continued

Time	Total flow CFS	Base flow CFS	Run- off CFS	Unit graph CFS	Time	Total flow CFS	Base flow CFS	Run- off CFS	Unit graph CFS
July 4	-7, 195	7			August	16-19	, 195	9	
4-18	1.1	1.1	0.0	0	16-14	5.6	5.6	0.0	0
19	2.4	1.2	1.2	4	15	6.6	5.6	1.0	7
20	3.6	1.4	2.2	8	17	40	5.7	34.3	2 40
21	5.5	1.5	4.0	14	18	51	5.7	45.3	318
2 2	18	1.6	16.4	57	19	57	5.7	51.3	359
23	82	1.7	80.3	281	20	61	5.8	55.2	387
24	90	1.8	88.2	308	21	57	5.8	51.2	358
5- 1	88	1.9	86.1	301	22	52	5.8	46.2	323
2	83	2.0	81.0	284	24	1 +1+	5.9	38.1	267
3	79	2.2	76.8	2 69	17- 3	34	5.9	28.1	197
7	65	2.8	62.2	218	8	2 6	6.0	20.0	140
13	48	3.5	44.5	156	12	21	6.0	15.0	105
21	33	4.5	28.5	100	18	16	6.1	9.9	69
24	2 9	4.8	24.2	85	24	13	6.2	6.8	48
6-10	21	6.2	14.8	52	18-12	9.3	6.4	2.9	20
16	18	7.1	10.9	38	24	7.8	6.6	1.2	8
21,	14	8.0	6.0	21	19-12	6.7	6.7	0.0	0
7-12	9.6	9.6	0.0	0					

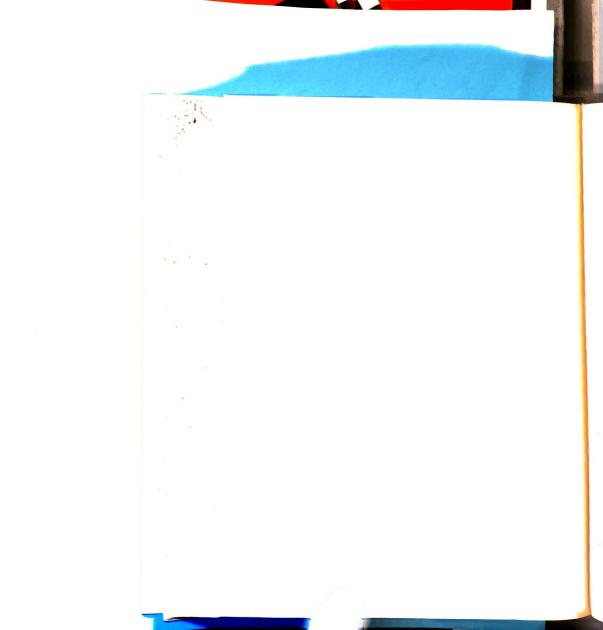
Appendix 5 Data for comparsion of calculted and actual 2 Hr. unit graphs.

-		·····			
Hours from peak	Comp. 1 hour un. gr. C.F.S.	Un. gr. shifted l hour C.F.S.	Double 2 hour un. gr. C.F.S.	Calc. 2 hour un. gr. C.F.S.	4-7 July 57 2 hour un. gr. C.F.S.
54321012345678 ++++++	0 10 90 307 521 447 365 290 256 208 190 174	0 10 90 307 521 447 365 290 256 228 208 190	0 100 100 397 828 968 812 6546 436 438 4398 364	0 50 198 414 484 406 327 273 242 218 199 182	0 4 8 14 57 281 308 301 284 269 255 240 229 218
+11 +12	148 139	148	287	143	174
+17 +18	109 102	109	211	105	123
+24 +25	78 74	78	152	76	85
+31 +32	54 50	54	104	52	60
+43 +44	26 24	26	50	2 5	30
→ 49 → 50	15 13	15	28	14	19
→ 54 → 55	9 7	9	16	8	10
- 59 - 60	1 0	1	1	o	0



114

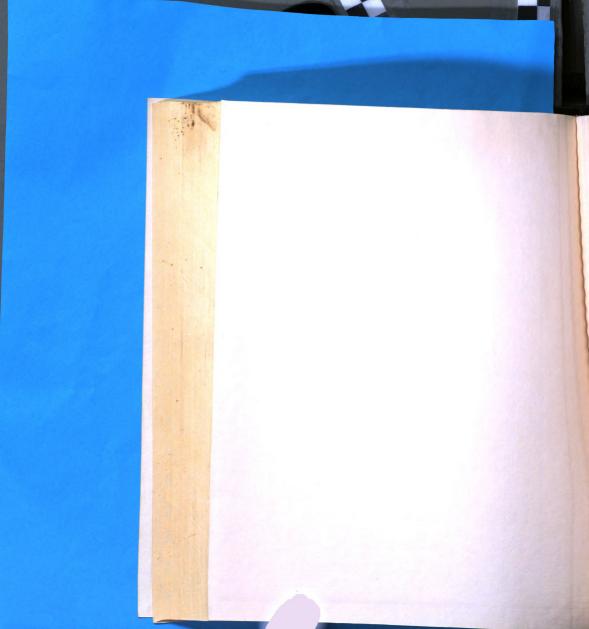
Appendix 6 Data for comparsion of calculated and actual hydrographs.

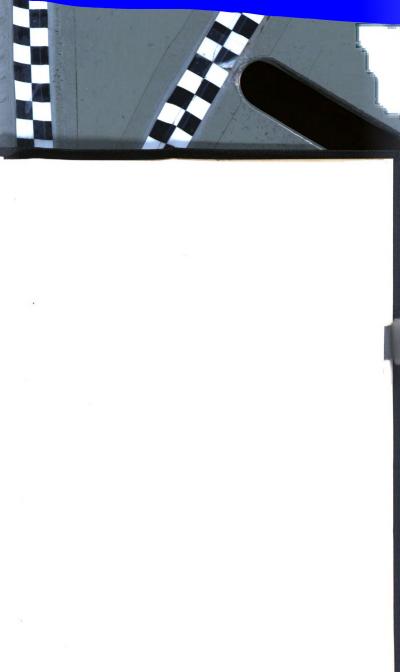

Hours from peak	Comp. unit graph CFS	July 4-7 1st. hour CFS	, 1957 2nd. hour CFS	Calc. Run off CFS	Act. Run off CFS	Hours from peak
					0	- 6
- 4	0	0		0	1	- 5
- 3	10	2	0	2	2	- 4
- 2	90	15	1	16	4	- 3
- 1	307	52	11	63	16	- 2
0	521	88	36	124	80	- 1
+ 1	447	75	61	136	88	0
+ 2	365	61	53	114	86	+ 1
+ 3	290	49	43	92	81	+ 2
+ 4	256	43	34	77	77	+ 3
+ 5	228	38	30	68	73	+ 4
+ 6	208	35	27	62	69	+ 5
+ 7	190	32	25	57	65	+ 6
+ 8	174	29	22	51	62	+ 7
+ 9	164	28	21	49	59	+ 8
+10	155	26	19	45	56	+ 9
+11	148	25	18	42	53	+10
+12	139	23	17	40	50	+11
+13	133	22	16	38	47	+12

115

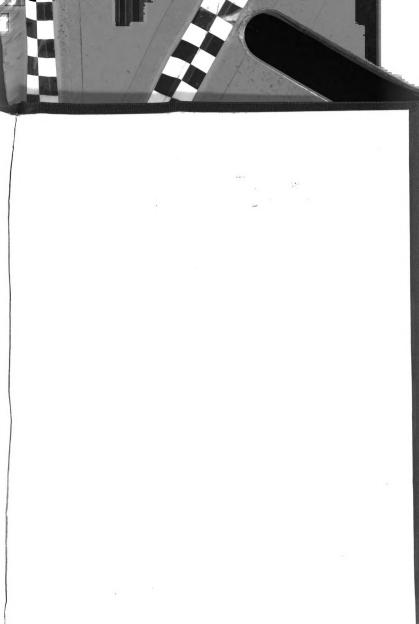
Appendix 6 Continued


	Comp.			11, 195	7	Calc.	Act.	
from peak	unit graph CFS	1st. hour CFS	2nd. hour CFS	3rd. hour CFS	4th. hour CFS	Run- off CFS	Run- off CFS	Hours from peak
							0	- 8
							4	- 7
- 4	0	0				0.	2 6	- 6
- 3	10	1	0			. 1	2 9	- 5
- 2	90	12	0	. 0		12	35	- 4
- 1	307	42	2	0	0	44	45	- 3
0	521	71	7	3	0	81	47	- 2
+ 1	447	61	11	9	3	84	51	- 1
+ 2	365	50	10	15	9	84	54	0
+ 3	290	40	8	13	15	76	52	+ 1
+ 4	256	35	6	11	13	65	49	+ 2
+ 5	228	31	6	8	11	56	47	+ 3
+ 6	208	2 9	5	7	8	49	45	+ 4
+ 7	190	2 6	5	7	7	45	44	+ 5
+ 8	174	24	4	6	7	41	42	+ 6
+ 9	164	22	4	6	6	38	40	+ 7
+10	155	21	4	5	6	36	39	+ 8
+11	148	20	3	5	5	33	37	+ 9
+12	139	19	3	5	5	32	36	+10
+13	133	18	3	4	5	30	35	+11


116


Hours from peak	Comp. unit graph CFS	lst. hour	2nd. hour	3rd. hour	CFS	5th. hour CFS	1959 6th. hour CFS	7th. hour	8th. hour CFS	9th. hour	Calc. Run- off CFS	Act. Run- off	Hours from peak	
- 3	10		0								3	6	-11	
- 2	06	56	3	0							53	12	-10	
- 1	307	88	56	٦	0	٠,					115	111	6 -	
0	521	150	88	10	0	0					248	237	. 1	
+ 1	744	128	150	33	3	1	0				315	6村2	- 7	
+	365	105	128	95	6	9	ı	0			305	260	9 -	
+ 3	290	83	105	84	15	20	. 2	0	0		278	274	1	
+ 14	256	73	83	39	13	34	25	4	1	0	272	311	4 -	
+ 70	228	99	73	31	11	30	42	13	6	m	277	372		
9 +	208	09	99	27	8	24	36	22	32	56	300	407	- 2	
+ 7	190	52	09	25	7	19	59	19	55	88	357	419	- 1	
+ 8	174	20	52	22	7 .	17	24	16	47	150	388	494	0	
6 +	164	47	20	23	9	15	23	12	38	128	338	418	+ 1	
+10	155	45	47	19	9	14	18	11	30	105	295	379	+ 2	
+11	148	43	45	18	N	13	17	10	27	83	261	338	+	
+12	139	10	43	17	70	11	15	6	77	73	237	302	7 +	
+13	133	38	04	16	N	11	17	8	22	65	219	273	+	

Appendix 6 Continued


ROOM USE ONLY

AUG 13 WAY WOOM USE CHILY

WG 27 1982 A

MAT 2 8 1963

JUN 8 1963 W

