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ABSTRACT
SIMULATION AND OPTIMAL CONTROL OF ECONOMIC GROWTH SYSTEM:

APPLICATION OF SYSTEM THEORY TO THE DESIGN OF
ECONOMIC POLICIES

By
Sung Joo Park

Application of system theory to the problems of socio-economic
systems can be interpreted as an effort to find the analogies between
the two different systems--engineering systems and social or economic
systems.

The thesis is an attempt to apply the system theoretic approaches
to an economic system, an economic growth system in particular, reflect-
ing the increasing concerns of economic growth among LDC's under highly
interdependent recent world economic situations.

The economic growth system as explained in the modern theory of
economic growth is a closed system with capital being the system
state and with the two basic economic processes of capital accumulation
and production. Closed two sector (dual) economic growth system has

been modeled based on the theory of economic growth and disaggregated

into agriculture and nonagriculture which is different from the conventional

way of disaggregation for the economic growth model--consumption- and
capital-goods sectors.

The dual economic growth system with this dichotomy consists of two
system state equations and a measurement equation, and comprises non-

linear dynamic system which can be solved numerically.



Sung Joo Park

Optimal control of the dual economic growth system with saving rate
being control variable was performed based on Pontryagin's maximum principle.
Objective function--social welfare--was defined in terms of the combina-
tions of consumption and capital to conduct the optimal control where
constant exponents (weights) on the consumption and capital were used
to avoid the possible existence of singularities. The sufficient
conditions for the existence of the optimal control also were derived for
the case of bounded control and no terminal constraint. Numerical solution
of the optimal trajectories could be obtained efficiently by variation
of extremals with a simple adjustment scheme--with the constant costate
influence function matrix--for the case of the Korean economy.

In the open economic growth system, two components--trade and
balance-of-payments--were added to the closed system with further modifi-
cations. Income distribution and foreign indebtedness were also con-
sidered in the open system along with economic growth. Optimal policies
of saving rate and import were formulated and derived by general
optimization method with a piecewise quadratic objective function and
orthogonal function (Legendre) approximation of the policy paths during
a time horizon. The open model was further simulated for the case of
alternative objective functions and alternative policies on investment
and grain prices.

Considerations on the external food shock has been added to the
open economic growth system to investigate the effects of the shock to
the internal economic variables and to design feasible policies to

mitigate or eliminate the negative effects of the external shock.
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Further modifications on the aggregate production function, saving
behaviors and investment, price mechanisms, labor (migration), tax policy,
trade, foreign capital movements, and inclusion of uncertainties will
make the model close to the real situation.

The results of the study (with applications to the case of the
Korean economy) demonstrated the practical usefulness of the theory of
economic growth for the design of economic policies with respect to
the transitory behaviors of an economy during a certain (finite) planning
period. In sum, the study showed the possible applications of system
theory to an economic system to bridge the gap between the two disciplines,
and thus to provide more insights in understanding the dynamics of

economic systems.
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CHAPTER I
INTRODUCTION

Recent trends in applying system theory to the problems of socio-
economic systems have been rooted to the question: "If system theory
can improve the guidance of airplanes and spacecraft, can it also be
helpful in devising the policies for solving the problems of an econ-
omy or a society?" Obviously, a society or an economy is not a con-
crete moving object which can be measured precisely, like an airplane
or a spacecraft, and thus numerous assumptions and simplifications are
needed to find analogies between the two.

Economic_systems, as well as other social systems, can be charac-
terized by the three basic properties; uncertainty, dynamics, and the
existence of feedbacks. In fact, the classical economic theories have
failed to take into account of the three properties: they assume perfect
information or full knowledge of the parameters of the economic system,
static or comparative static anmalysis has been dominantly used with the
"ceteris paribus" conditions, and the nature of the adaptive economic
process, where decision makers increase their knowledge by the cumulative
experience of "doing while learning", has not been fully explored in
general. With the lack of ability of the traditional methodologies in
economics to handle these problems, new methodologies from other disci-
plines have been sought and applied gradually as a part of diffusion

processes among the different disciplines.



Although there were earlier attempts [P4], [S8], [S9]. [S15], the
pioneering work of applying system theory to economics can be attributed
to Arnold Tustin [T16], who viewed economic system as interdependent
dynamic systems and analyzed their time responses to exogenous shocks
using the transfer function method which was found to be very successful
in designing servomechanisms. A. W. Phillips, best known for the Phillips'
curve, also applied about the same time the thgpry of servomechanisms to
business cycles and stabilization policies of macroeconomic models [P5].
These earlier works, however, were not successful because of two reasons;
the technical reason of computational restrictions, and the circumstan-
tial reason of the inclination of the interests towards the general com-
petitive equilibrium models those days [D1]. With the advent of computers,
the first obstacle was removed, and more complex models have been emerged
[H6], [M2], [M7].

There are two ways of handling complex and/or large scale systems
in general. The first is analytical by aggregation [M1] or decomposi-
tion [H5], and the second is by simulation. Each of the two methods has
its own merits: by aggregation and decomposition, the model can be sim-
plified enough to be handled by analytical tools and may achieve analyti-
cal preciseness which most theoreticians believe to be of foremost impor-
tance, while the simulation approach allows one to investigate the inter-
actions and linkages of elements of the system at the detailed level of
the real situation with less analytical preciseness. The actual use of
any one of the methodologies in modeling depends on the nature of the
problem, the use of the model, the availability of information, and the

desired level of accuracy.



National economic planning is not only a economic but also a polit-
ical process: it includes the definition and choice of goals, identifying
the economic variables and interre]ationships, designing quicies, chért-
ing the possible paths of economy with respect to the feasible policies,
and selecting the best policy to meet the goals. The problem of design-
ing policies for economic growth under different circumstances has been J
the central core of the thesis; however, the motivation was from the -
recognition that actual society is too complex to be solved by any one
of the methodologies, and there may be certain gains from looking at the

problem from different sides using different methodologies, and thus to

advance system ;heqry in the analysis of dynamic economic models.

I.1 Background and Needs of the Study

In recent years, the world has experienced increasing interdepen-
dency of international economy and a series of shocks--most notably oil
crisis and food shortages--which affected virtually every country in
the world. Even though the initial motivation of the interdependency
originated from the mutual benefits of trade, it created high levels of
insecurity as some countries became heavily dependent on others for
certain products which are essential for their continuing growth or
existence. The immediate concerns for the highly dependent countries,
most of the developing countries, are the deepening of foreign indebted-
ness as a result of the high prices of the essential products in the
world market, and their effects to economic growth which may relieve
them from the excessive indebtedness.

Economic _growth has been one of the principal objectives of the

economic policies both in advanced and in less developed countries,



believing that groyth can be a solution to a variety of other economic
problems such as indebtedness of a country, inequitable distribution of
income, and so forth.

The theory of economic growth,] which tries to explain the primary

causes of production and their interrelationships over time periods,

has been developed for decades. However, the "state-of-the-art" of the
theory is not satisfactofy: too many controversies exist over the basic
assumptions, heavy reliance of the growth models on the balanced growth,
golden-rule paths, or steady-state growth prevents empirical application

to a specific economy, thus creating a model of "mythical states"2

aloof
from the reality. If a theory has some value and thus deserves to be
called a "tbggry", it should be able to answer questions raised from the
real situation at a certain "admittable level" of preciseness. The
existing models of economic growth have failed in this sense by staying
a safe distance from reality.
The thesis is an attempt to modify the existing models of economic
growth with the following questions in mind:
(1) what are the appropriate ¢es;riptions of an economy where the tran-
sitions and/or interactions between the primitive and advanced

sectors are more significant than those between the consumption- and

capital-goods sectors?

]The modern theory of economic growth is meant here instead of other
types of growth theory such as the grand theory of economic growth or the
theory of economic development [J1], pp. 4-6.

2A balanced growth, or golden-rule path, "thus indicating that it
represents a mythical state of affairs not likely to obtain in any
actual economy," [R5], p.99.



(2) what is needed in the model to take into account the interactions
of an economy with the world in the 1ight of trade and capital
flows?

(3) what are the primary linkages between foreign borrowing or foreign
capital flows and economic growth?

(4) what are the effects of external shocks to economic growth and
-othe} domestic economic variables?

;jgéi) what are desirable and feasible growth po]icjes, and how can the

| best policy be chosen?

Also, the study was motivated, in part, by a desire to test empirically
the basic formulation of the theory of economic growth, its applicability
to the LDC's (less developed countries), and its ability to cope with
problems relating to external effects.

The empirical study has been done on the economy of Korea for illus-
rative purposes. Korea, one of the fast growing developing economies
among LDC's, has experienced the "take-off" and the "acceleration"
stages of development during the past decades. The economic growth
has been phenomenal; the average real growth rate during 1965 to 1975
was 10.2 percent, the export has grown about 29 times with an average
annual growth rate of 22.6 percent during the same period. High level
of average education and technology transfer from the advanced countries
enhanced the growth, however, the basic forces for growth came from the
increase in investment and the migration of labor from traditionally
latent agricultural sector to the industrial sector. Investment, which
has risen from 0.151 (gross investment ratio) in 1965 to 0.314 in 1974,

has been financed substantially from foreign sources--foreign loans,



direct foreign investment, use of international reserves, and net foreign
transfers.

As a consequence, the burden of foreign indebtedness, which has
accumulated to an estimated total debt standing of six billion dollars
at the end of 1975 (from the negligible debt in 1965) with 700 million
dollars of debt service payment during 1975,] draws heavy attention
along with the costs that the Korean economy has to pay as a result of
urban migration. Clearly, these costs may play a hindering role in the
pursuit of continuing growth. This burden has been acutely, though not
devastatingly, experienced in Korea when the 0il crisis and food shock
struck the whole world. Coupled with the fact that Korea is entirely
dependent on overseas for the oil supply, and is chronologically depen-
dent on imports for about a quarter of its total grain requirements.

The main quesglpns, then, become more clear. First, what are the
possible ways of investing to further economic growth and to relieve the
burden of excessive indebtedness? In other words, what are wise foreign
borrowing schedules if the desired investments exceed the domestic
savings? Secondly, what are the consequences of the possible paths of
growth for other aspects of the economy--foreign trade, level of consump-
tion, distribution of income, etc.? Thirdly, what will be the effects
of the probable future shocks to the economy and what policies can dampen
or eliminate the negative effects of the shocks? Fourth, is there any
p011cx which is superior to the other available policies and will lead
tot (hg_hlgher economic growth, sound indebtedness, more equitable dist-
r1butiqg_9f 1ncome, and a higher level of consumption?

Even though the questions are from a specific case, these are not

the questions of only Korea but also typical to most of the LDC's.



1.2 Scope and Objectives of the Study

The remaining chapters of the thesis can be divided into two equal
parts; the analysis and control of the closed economy, and the analysis
and control of the open economy. The high level of aggregation of the
closed economy enables one to use analytical tools--state-state repre-
sentation of the economic system and optimal control of the system model
using Pontryagin's maximum principle--while the complexities of the
closed model do not allow the application of analytical tools used in
the open model.

Chapter II will describe the basic analytical tools. Chapter III
starts from the neoclassical model of economic growth which explains the
basic causal loops for production in a one sector aggregate economy where
the saving (investment) and production mechanisms govern the whole econ-
omy. A Meadean type two sector model, which disaggregates economy into
consumption- and capital-goods sectors, is also examined and is modified
into a two sector model of primitive and advanced sectors, more specifi-
cally, agriculture and nonagriculture.

Chapter IV concentrates on finding the optimal policy for a closed
economy in terms of the path of saving rate over thé-;};;ning horizon
which maximizes the "alternative" desired social welfare functions.
Direct application of the maximum principle has been made, the necessary
and the sufficient conditions for the existence of the optimal control
have been derived, and a numerical algorithm has been developed for the
specific case of an objective functional without terminal conditions.

The closed model has been further modified into the open model in
Chapter V. This model includes trade and balance-of-payments components

in addtion to the other components of the dual economic growth model.



Designing the economic policies of the open model can be quite different
from that of the closed model; it deals not only with the questions of
the saving rates and capital formation but also with those of the foreign
trade, foreign capital flow and indebtedness, foreign currency reserve,
etc. These added features make the model not readily applicable for the
analytical tools such as the optimal control theory as in the closed
model. "Creative" trial-and-error or rule-of-thumb methods may provide
certain insights for the design of better policies whereas an attempt to
objective function yields a set of optimal solutions of complex system
which may be infeasible in strict mathematical sense but may have practi-
cal usefulness if the definition of the constraints can be relaxed. In
this case, a set of orthogonal functions such as Fourier series or
Legendre polynomials can be used to approximate the dynamic paths of the
policy variables. Determining objective function is not an easy task
and may constitute conceptual difficulties. Piecewise quardratic objec-
tive function can be used more generally than quadratic objective func-
tion in order to remove some of the difficulties.

One of the prominent advantages of the open model over the closed
model is its ability to respond to external shocks and to investigate
their effects on internal economic variables. High grain prices in the
world market have been used for an external food shock to the open model.
Implications for the management of the domestic grain stock to dampen
the shock to the internal mechanism have been analyzed in Chapter VII.
The final chapter concludes the thesis with a summary, further research
areas, and possible gains from applying different methods to the problem

of economic growth.
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The primary objective of the study is to provide an qqé]yticg}nggp1

or a model which can be used for the investigation of economic growth,

desjgn of policies for the desired growth or sustained growth, both

with or without external effects. More specifically, the objectives

are to design an analytical framework, to be illustrated by the Korean
economy case, which permits one to investigate:

(1) growth and consumption paths, and saving rate of a closed economy
where the interactions between agriculture and nonagriculture are
significant

(2) the best policy for saving rates which will maximize the desired
social welfare functions

(3) the effects of alternative growth strategies on foreign indebted-
ness, distribution of income, consumption and economic growth in
the open model which includes foreign trade and capital movements

(4) the effects of external shocks to internal economic variables such
as the growth rate, consumption, foreign debt, food prices and
distribution of income

( the design of policies for the desired or sustained economic growth

fy with or withoﬁt extérna] shocks, while satisfying constraints on

\ the control and/or the state variables of the economy.



CHAPTER II

GENERAL CONCEPTS:
BACKGROUND INFORMATION

Any problem solving (in the physical world) necessarily deals with
models. By definition, di@gggl,is an abstract representation of the
actual system. It can be physical, conceptual, verbal, graphical, or
mathematical with the purpose to help one to understand the system oper-
ation, and to predict its behavior under certain conditions. The model
used in the study is based on the theory of economic growth. In this
chapter, the basic tools used to deal with the model--system theory,

simulation, optimal control--will be discussed in brief.

IT.1  System Theory

A system is a set of interconnected entities, conceptual or physi-
cal, organized toward a goal or set of goals. This concept is quite
general and broad in nature, and thus the word "system" has been used
to mean many different things for many different purposes. System the-
ory, which deals with "system", also has been defined in diverse ways.]

Among the many possible difinitions, system theory here will be
confined to a tool (in engineering sense) to design the "best" system

to satisfy a certain purpose. Often, it uses mathematical models in the

lLudwig von Bertalanffy even goes further by stating that General
System Theory (GTS) is the only possible way for the unification of sci-
ences, which encompasses large branches of science such as "classical"
system theory, computerization and simulation, compartment theory, set
theory, graph theory, net theory, cybernetics, information theory, theory
of automata, game theory, decision theory, queueing theory, etc. [B4].

10
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form of algebraic equations, difference equations, ordinary or partial
differential equations, and functional equations.

System theory starts from the system equations such as (for the

case of ordinary differential equation mode1),]
x(t) = F(x(t), U(t), w) (2.1)
y(t) = G(x(t), u(t), v) (2.2)

where X is the system state vector, u is the input vector, y is the out-
put vector (or observations), w and v represent possible vectors of sys-
tem disturbance and measurement error, and F and G identify the state
and measurement equations (or operators). Four basic problems arise in
the system theory: modeling, analysis, estimation, and control [S5].

Modeling, developing a model which adequately represents the physi-
cal situation, is undoubtedly the most critical step, since if the model
is not adequate, the subsequent mathematical or computer manipulations
are meaningless. To help to preserve the adequacy of a model, several
steps of modeling procedure have been developed which will be discussed
in the next section relating to simulation.

Analysis determines the system output y given system input u and
system structure F, G, and x. Quantitative analysis determines the pre-
cise behavior of the output, such as trajectories of the output, and
qualitative analysis determines general properties of the behavior of the
output such as stability. This is only possible under the assumption

that the system structure as given is perfectly known.

]Notation: the upper bar and the lower bar will indicate vector and
matrix, respectively, throughout the theses unless otherwise specified.
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Estimation raises question about the system structure. It uses the
observations of y and u to estimate the properties of the actual system.
Three types of estimation problems can be defined; state estimation,
identification, adaptive estimation. State estimation is to estimate
X using observation y with given system structure. Identification refers
to the estimation of parameters (or new states in a sense) using the
observations, (original) system states, and system structure, and thus
completes the estimation of the model. Adaptive estimation is state
estimation combined with identification, i.e., the state estimation prob-
lem with the combined state of original state and new state (or parameter).

In the control problem one determines the input E'given the desired
output ¥ and the system structure. There are three types of control;
open-loop, closed-loop, and adaptive. Open-loop control means a control
expressed in terms of the initial state of system and independent vari-
able(s) such as time. Closed-loop control is expressed as an explicit
function of the observed variables, and thus feeds-back the output to
the input. Adaptive control is a more complicated closed-loop control
where adaptive estimation is carried out simultaneously.

A1l the basic problems related to modeling are closely interrelated:
any one of input, output or system structure can be determined only by
assuming the others are perfectly known. Iterative procedure of analysis,
estimation, and control--which will hopefully converge--may be used to

complete the system modeling.

I[I.2 Simulation
Although the concept of simulation can be traced back to long ago,

the modern version of simulation, defined as "a numerical technique for
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conducting experiments on a digital computer which involves certain types

of mathematical and logical mode]s,"]

has its origin in the work of

von Neumann and Ulam in the late 1940's when they applied a method based
on the random numbers (which later was named as "Monte Carlo Method")

to study neutron diffusion and to determine the thickness of reactor

2 The initial motivation of the von Neumann and Ulam's work was

shields.
to incorporate stochastic uncertainties in a deterministic model, but
they also recognized that the method is capable of dealing with problems
of a more complicated nature which can't be solved by conventional ana-
lytical methods. Uncertainty (randomness) and complexity form a basic
motivation for simulation, thus the simulation model can be far more
complex than the models that system theory (as defined in the precedihg
section) usually deals with.

The basic problems of simulation are the same as those of system
theory--modeling, analysis, estimation, control. Modeling is the core
of the simulation because of its critical importance to the rest of the
procedure. To minimize the risk of model being inadequate for the real
situation, a conceptual procedure can be followed as a helpful guide to
a general problem solving.

The general procedure (or system approach) is an iterative learn-
ing process with set of steps (or phases) as following [M3]:

(1) feasibility evaluation

(2) abstract modeling

VN1, p.3.

2Part of the original thoughts of von Neumann suggested by Ulam can
be found in a von Neumann's letter to R. D. Richtmyer. R. D. Richtmyer
and J. von Neumann, "Statistical Methods in Neutron Diffusion," [T1],
Pp. 751-764.
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(3) implementation design

(4) implementation

(5) system operation

The major phases of systems approach may comprise sub-phases. Fea-
sibility evaluation consists of six sub-phases; needs analysis, system
identificaiton, problem formuation, generation of system alternatives,
determination of physical, social, and political realizability, and
determination of economic and financial feasibility. Abstract modeling
may be followed through sub-phases such as; selection of feasible system
alternatives emerged from feasibility evaluation, choice of specific
type of abstract representation--static, dynamic, micro, macro--, com-
puter implementation, validation, sensitivity analysis, stability analy-
sis, and model application.

The above procedure as suggested in [M3] is, by no means, complete,
and the validity of the procedure can only be judged on purely pragmatic
grounds. In essence, problem solving (using simulation) is a continuous

process of modification and adjustment.

II.3 Optimal Control Theory

Optimal control theory, which is a dynamic extension of static
optimization, comprises two major branches; dyna@jc programming [B2]
and Pontryagin's maximum principle [P8]. Dynamic ﬁrogramming is a
computational technique which extends the decision making concept to
sequences of decisions which together will define an optimal policy and

trajectory based on the principle of optima]ity:]

823, p. 83.
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An optimal policy has the property that whatever the initial state
and initial decision are, the remaining must constitute an optimal
policy with regard to the state resulting from the first decision.

While dynamic programming finds many applications in discrete systems,

there is one serious drawback; the "curse of dimensionality" which
indicates the exponentially-increasing size of computer memory require-
ments as the number of decision variables increases. On the other hand,
Pontryagin's maximum principle was originally developed for continuous
systems and will be used here in the closed economic growth system.
Pontryagin's maximum principle, in essence, consists of a set of
necessary conditions that must be satisfied by optimal solutions. All
of these necessary conditions originate in classical calculus of varia-
tions, but are formed in a more or less systematic way by use of a
Hamiltonian function. The prob]ém is to find an admissible control u*

which satisfies the system
xX(t) = a(x(t), u(t), t) (2.3)

and to minimize an objective functional (performance index),

t
I(@ = n(x(te), t) + .7 g(x(t), U(t), t) dt (2.4)
0
with or without additional constraints such as

I*(to) (2.5)

n
>
o

x*(te)

where X is the system state, u is the control input, t, and te are the

0

]Asterisk will be used to denote the optimal values.
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initial and the final times, respectively.

An augmented scalar function, Hamiltonian, will then be defined as

H(x(t), u(t), p(t), t) = g(x(t), u(t), t)
pr(t)[a(x(t), U(t), t)]  (2.6)

where p is a costate vector or a vector of Lagrange multipliers which
corresponds shadow prices for the case of cost minimization. Pontryagin's
maximum principle, then, states that an optimal control must minimize

the Hamiltonian, i.e., a necessary condition for u* to minimize the func-

tional J is

H(x*(t), u*(t), p*(t), t) < H(x*(t), u(t), p*(t), t) (2.7)

for all t ¢ [to, tf] and for all admissible controls.
Thus, the necessary conditions for u* to be an optimal control can

be derived as

xx(t) = A Ger(t), T(t), Pr(t), t) (2.8)
ap
pe(t) = - A x(t), T(t), P*(t), t) (2.9)
ax

H(x*(t), u*(t), p*(t), t) < H(x*(t), u(t), p*(t), t) for all

admissible u(t)

(2.10)

A

for t ¢ [to, tf]’

and boundary conditions

t (}*(te), te) - F(t)]T 6xp + [H(X*(t), T(te), D*(te), to)

+op (3 (tg)s t)] st = 0 (2.11)
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where fo and étf denote the variations of Xe and tf, respectively.

It should be noted that u*(t) is a control for the Hamiltonian to
assume its global minimum, and the given conditions are not, in general,
sufficient, and thus further conditions will be needed to guarantee the

global minimum.



CHAPTER III
ECONOMIC GROWTH MODEL

The purpose of this chapter is to investigate the basic framework
of economic growth models; to survey the one sector neoclassical growth
model and (Meade and Uzawa's) two sector model, to modify the two sector
model into a dual economic growth model using a different dichotomy,
and to apply the modified dual economic growth model to the Korean econ-
omy as an illustration to show the ability of the modified growth model

for the representation of transitory behaviors of an economy.

IIT.1  One Sector Growth Model

In the aggregate economic growth model, it is assumed that there
are two factors of production, namely, capi?g] and ]qPOﬁj that are
combined to produce a single homogeneous output. At any instant in time
a fraction of this homogeneous output may be allocated to consumption
and investment.

If K(t) and L(t) denote the currently existing stocks of capital

and labor, then the current rate of output Y(t) can be expressed by
Y(t) = A(t)FLK(t), L(t)] (3.1)

where A(t) is a measure of the current level of technical knowledge
and F[.] is the production function exhibiting certain characteristics.
Let C(t) and Z(t) denote the current rates of consumption and

investment, then from the national income identities

18
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Y(t) = C(t) + Z(t) = [1 - s(t)]Y(t) + s(t)¥(t) (3.2)

where s(t) is the fraction of current output that is being saved (saving

rate) such that 0 < s(t)

fia

1. If capital is subject to evaporative de-
cay at a constant rate u > 0, then the growth of the capital stock can

be specified by the differential equation
K(t) = s(t)ACt)FLK(t), L(t)] - uk(t) (3.3)

Assume that N(t) is the current size of the population and that
population growth is independent of the economic variable and growing

at a constant rate
N(t) = nN(t) (3.4)

where n is the rate of the population growth. Assume further that the

number of workers (labor) is a constant fraction 0 < w < 1 of the total

population
L(t) = wN(t)
L(t) = nL(t) (3.5)

If the technological change can be assumed as an autonomous growth at

a fixed rate, a, then
A(t) = aA(t) (3.6)

where a is the rate of the technological growth.
The preceding equations from (3.1)to (3.6) form the basis of the
aggregate economic growth system (Figure 3.1). If the neoclassical

assumptions on the production function--constant returns to scale in
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Figure 3.1 Block Diagram of One Sector Economic Growth System
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capital and labor, i.e., homogenous of degree one in capital and labor
--can be made, the model (neoclassical growth model) can be converted
into the equation in the per labor quantities.1 [S11] Let the vari-

ables be defined as:

output per worker :oy(t) = Y(t)/L(t)
capital per worker ¢ k(t) = K(t)/L(t)
consumption per worker : c(t) = C(t)/L(t)
investment per worker : z(t) = Z(t)/L(t)

Then the system equation and the production function can be reduced to

k(t) = s(t)y(t) - (n + u)k(t) (3.7)

y(t) = Ay e £[k(t)] (3.8)
and

0 <s(t) <1

k(0) = k0

where n, u, and a are given constants, k0 and A0 are the initial condi-
tions for each variables.

The equations (3.7) and (3.8) form the basis of one sector neocl-
assical economic growth model--Solovian model--where the equation (3.7)
can be thought as a system state equation, and the equation (3.8) can
be a measurement equation with k(t) as a state variable, y(t) as a out-

put variable, and s(t) as an input (or control) variable.

]The desirable variables for the analysis should be in terms of
per capita value rather than per labor. But in practice, mostly for its
convenience, it is assumed that the number of dependents per worker for
each sector is constant during the time horizon, and thus eliminating
the discrepancies between the two variables.
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II1.2 Two Sector Growth Model

The Meade and Uzawa's two sector model is basically a straight ext-
ension of Solow's neoclassical model by disaggregating an economy into
an investment-goods sector and a consumption-goods sector [U1].

The basic assumptions are similar to those of Solow's model such
as: perfect foresight, perfect competition, production is subjected to
constant returns to scale in both sectors, exponential population growth,
gross investment is equal to saving, and all capital goods depreciate
at a constant rate. Further assumptions are made for each sectors; The
output of the capital-goods sector (net investment) is perfectly malle-
able, the output of the consumption-goods sector is used only for con-
sumption, and there are no external economies (or diseconomies) and no
joint products between the two sectors.

The current production of the investment-goods, Y](t), and the
consumption-goods, Yz(t), are dependent upon the current allocation of

capital and labor for each sector, i.e.,

Y (t)
¥,(t)

A ()F K (8), Ly(8)] (3.9)
A, (E)F,[K (1), Ly(t)] (3.10)

where Ki and Li represent capital and labor, Ai represents a measure of
the current level of technical knowledge, and Fi[‘] is the production
function for each sector.

The factors of production, capial and labor, are constrained by

Ki(t) + Ky(t) < K(t) (3.11)
Li(t) + Ly(t) < L(t) (3.12)
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where K and L are the current stocks of available capital and labor.

From the assumptions, labor grows exponentially as

L(t) = nL(t) (3.12)
and the growth of the capital stock can be specified by

K(t) = ¥;(t) - uK(t) (3.14)

where n and u represent the (autonomous) population growth rate and the
constant rate of capital depreciation.

The system state equation (3.14) along with the production function,
which are similar to whose of Solovian model, describe the dynamic behav-
jor of the two sector economic growth model with consumption- and capi-

tal-goods sectors.

IIT.3 Modified Dual Economic Growth Model

Central to developing a formal model of the dualistic (two sector)
economy are the criteria employed in bisecting the economy into analyti-
cally and empirically meaningful units. One possible framework for sec-
toral division was represented by the Meade and Uzawa's model which spec-
ifies investment-goods and consumption-goods sectors. While this dicho-
tomy may have some value in studying the equilibrium growth path of the
industrialized economy, it is less useful for the low-income economy
where the transitional phenomena between primitive and advanced sectors
dominate the long-run equilibrium paths.

In this section, the Meade and Uzawa's two sector model will be
modified using different dichotomy as following:

First, the model economy will be disaggregated into a primitive
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sector and a modern sector--agriculture and nonagriculture. Thus the

total production at time t, Y(t), becomes
Y(t) = Y1(t) + Yz(t) (3.15)

where Y](t) : agricultural production
Yz(t) : nonagricultural production.
Secondly, it will be assumed that the saving rates (or the marginal

propensities to save) for each sector are different

5(t) = S;(t) + S,(t)

s](t)Y](t) +s t) (3.16)

o
where S(t) : total saving
Si(t) : gross saving of each sector
Si(t) : saving rates for each sector.
Thirdly, it also will be assumed that the depreciation rates (decay ra-
tes) of each capital stocks are different, and finally, to make a link
between the saving and investment, the investment decision rule, i(t),

will be given as

1(t)
1(t)

i(t)s(t) (3.17)
(1 - i(t)]s(t) (3.18)

where Ii(t) : gross investment for each sector

i(t) : investment-allocation parameter, or investment ratio
to sector 1 from the total saving

From the above assumptions and equations, the basic system state

equations which describe the growth of the economy can be derived as
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= I](t) - u]K](t) (3.19)
Iz(t) - usz(t) (3.20)

e
N
—
t
~
1]

where u; is the depreciation rate of capital for each sector. These

equations can be rewritten using the equations (3.15)-(3.18),

Ky (£)= 1(t)s (£)Y,(8) + i(£)s,y(t)V,(t) - upk,(t) (3.21)
Ky(t) = [1-1(8) 15, (£)¥; (1) + [1-1(t)Is, (), (1) - uky(t) (3.22)

The block diagram for the above equations, (3.21) and (3.22), is shown
in Figure 3.2.

Retaining the assumptions of the Meade and Uzawa's model--neocla-
ssical assumptions--, the system state equations can also be converted

into per labor variables. Thus

ky(£) = ~Lup*aq (£)Tky (£) + 1(t)s (8)yy(£)/15(t) + §(8)s,(ty,(£)/1,(t)
(3.23)
ky(t) = -[upray(t)Tky(t) + [1-1(t)]s; (t)y; (£)/1,(t)

In matrix form,

p—

k()] |-umgy(e) 0 Ky (t)

ky(t) - |0 ugy(t)] [Ky(t)
[it, (0,8 i | [se
+ D01 (0/1,(8) D=3, (8)/1,(8)| [s,()

or

K(t) = A(t)k(t) + B(t)S(t) (3.25)
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where

yj(t) = Yj(t)/L(t)

kj(t) = Kj(t)/Lj(t)

1j(t) = Lj(t)/L(t)

9;(t) = Li(t)/L;(t) = [15(t) + 1, (6)L(E)/L()1/1(¢)
and

1] + 12 = 1.

For the derivations, the following relationships have been used:

k:(t) = 3%(Kj/Lj)

. . 2
j [Ksby - Kjbsl/L5

. S
Kj/Lj kij/L (3.26)

] = d = ] - \ 2
15 = glty/Ll FLjL Lj%]/L
Ly/L =L

therefore,

Ly/Ly = (L/L)(L/Lj) = [

ARV

J

Also from the equation (3.26),
JL. = k. + k.q..
KJ/LJ kJ ngJ
Thus, for the sector 1, it becomes

s1y1/1) *is,¥,/1y = ugk,

k] + k]g].

Likewise, for sector 2,

K2/L2 = (1-1‘)s]y]/12 + (1-1)52y2/12 - u2k2.
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The system state equations (3.25) appear to be a time-varying linear
system, however, it is not linear since the output yj is a function of
the system state (capital per labor), thus making the coefficient matrix
B a function of k. Therefore, multiplicative terms of state variables
and input variables exist which make the analytical solution impossible
in genera].] In essence, the basic difference between the model given
as equations (3.25) and the two sector models of Meade and Uzawa lies

on the number of system state equations which describe the behaviors

of the economic growth.

]If the production function is linear, the modified dual economic
growth model becomes bilinear system.
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III.4 Analysis of Economic Growth of Korea

The dual economic growth model developed in the preceding section
will be applied to the case of Korea to look into the behaviors of the
economy and to see the validity of the model at the same time.

The production function plays a crucial role in determining the
system state equations. The Cobb-Douglas production function will be
used for the aggregate production of agriculture and nonagriculture.
The estimation of the production function--in the form of Cobb-Douglas
production function--using the OLSE (ordinary least square estimation)

has been obtained as]

1n Y](t) a) + b] In K1(t) + (1 - b1) In Ll(t)

-0.989519 + 0.393019 1n K](t) + 0.606981 1In L](t)
(0.158445) (0.0646925)

(-6.24521) (6.07519) 2 (3.26)

2

R% = 0.7868 D.W. = 1.7726

In Yz(t) =a, + b2 In Kz(t) + (1 - bz) In Lz(t)

-0.506822 + 0.536155 1n K2(t) + 0.463845 1n L2(t)
(0.0266334) (0.0272827)

(-19.0295) (19.6518) (3.27)
RZ

= 0.9748 D.W. = 1.3034

where sector 1 and 2 refers to agriculture and nonagriculture.

]Labor data used for the estimation are listed in Appendix A and
capital data have been derived in Appendix B.

2The numbers in the parentheses below the estimators are the
standard errors of the estimators and the t-statistics.
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These production functions satisfy the neoclassical condition and

can be rewritten in term of per labor quantity,

Y (£)/L(t) = 0.371755 k,(t)0-393019
Y,(t)/L,(t) = 0.602407 k2(t)0‘536]55
or
y;(t) = 0.371785 Kk, (1)0-393019 ¢ (¢) (3.29)
¥,(t) = 0.602607 ky(t)0-536155 1 (1) (3.30)

The total labor force (employment) has been grown as

2

L(t) = 7517.49 0-03819 t R% = 0.9963

during the periods of 1964 to 1974, and thus the rate of growth of

the labor force is
L(t)/L(t) = 0.03819 (3.31)

There has been significant shift of labor force from agriculture to
nonagriculture in Korea; the nonagricultural labor share to the total
labor was about 41 percent in 1965 and grew to 54 percent in 1975
following linear time trend approximately. Although it is inconceiv-
able to assume that the agricultural labor force would increase beyond
a certain percentage of the total labor, the time trend linear function
has been fitted to the actual data, and assumed to follow this trend
ti11 1994 when the labor share of nonagriculture would be 75.43 percent.

The estimated trend lines are

2

0.58504 - 0.01131 t RS = 0.87103 (3.32)

1 - 1](t) = 0.41496 + 0.01131 t

15(t)
1,(t)
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where the time periods represent the years from 1965 to 1994, and t
takes the values such that 1 < t < 30.
From the production functions (3.29) and (3.30), and the equations

for the labor share (3.31) and (3.32), the system state equations for

the two sector growth model for Korea become

ky(t)|  |-1/25.5-g(t) 0 ky(t)
kz(t) 0 “1/13.9-g,(t) | [k, (t)
FEO.])(0.371755)k](t)0‘393019 i o
s, (t
. (0.1)(0.602407)k2(t)0‘536]5512(t)/1](t) !
(0.9)(0.371755)k10'3930]91](t)/lz(t) . (¢)
52
(0.9)(0.602407)k2(t)°'535‘55
(3.33)
where
g,(t) = [-0.01131 + 0.03819 1,(t)1/1,(t)
gz(t) = [0.01131 + 0.03819 1,(t)1/1,(t)

the depreciation rates are given as Uy = 1/25.5 and U, = 1/13.9 taken
from Appendix B, and the investment-allocation parameter for agriculture
is given as 0.1 from the past trend.

The system responses of the equation (3.33) to impulse, step, and

ramp inputs are shown in Figure 3.3, where the inputs used are:

impulse : s](t) = 6(t)
sz(t) = §(t)

step : s](t) = 0.05 u(t)
s,(t) = 0.25 u(t)
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Figure 3.3 Input Responses of Dual Economic Growth System+

+Subscript denotes each sector--1 for agriculture and 2 for
nonagriculture.
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ramp : s](t)
s,(t)

0.04 + 0.001 r(t)

0.15 + 0.01 r(t)

The impulse response of the growth system for Korea shows the inherent
stability of the system for bounded inputs, which also could be observed
from the negative eigenvalues of the diagonal matrix A in the equation
(3.33).

Average gross fixed investment ratio during 1965 to 1974 in Korea
was 22.7 percent of the GNP. Figure 3.4 shows the paths of the state
variables with different sets of constant saving rates, i.e., step inputs

given as:

case B : s](t)
5,(t)
case C : s](t) = 0.10 u(t)

0.05 u(t)
0.25 u(t)

sz(t) = 0.25 u(t)

The case A represents the trajectories of the actual capital per labor
during 1965 to 1975. The trajectories generated from the model by the
step inputs show closeness to the actual economy; the difference is

that the saving rates in actual economy were lower in the early

periods of 1965 to 1970 and became higher during the later periods.

Thus the satisfactory behavior of the system is expected for the projec-

ted values of the future saving rates.
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CHAPTER IV
OPTIMAL ECONOMIC GROWTH

The considerations of the preceding chapter will further be extended
to the optimal growth of an economy by adding social welfare as an ob-
jective function. Necessary and sufficient conditions for the optimality
will be derived using Pontryagin's maximum principle, and the optimal
trajectories--state, costate, control--will be obtained numerically for

the case of Korean economy.

IV.1  Economic Objectives of a Society

The usual optimal growth problem of an economy can be posed as
follows: "What are the optimal program of capital accumulation or the
optimal path of growth among other available paths which is consistent
with the growth system equations, and maximizes (or minimizes) some
suitable criterion of a society while satisfying additional constraints?"
To answer the question, the objective of a society should be defined.

Strictly speaking, there hardly exists a well-defined objective of
a society, since there are too many desired outputs which represent the
interests of different groups in the society. That is, most of the
public decisions are made as the results of collective interactions
between the conflicting interests, and moreover, there still exist
conflicts between the (commonly agreed) objectives.

This problem of social objective can be handled by defining a more

35
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cosmic concept of "social welfare" or "social utility" by assuming the
existence of Pareto optimality.]

Among the variables which will contribute to the social welfare,
consumption has been used as a key variable. Keynes, among other econ-
omists, even declared that "consumption is the sole end and object of
all economic activity."2 Following this line, the objective can be to

maximize the consumption during a certain time period. That is,
U(.) = fle(t)], 0<t<T (4.1)

where U : social welfare or utility
c : per capita (or per labor) consumption.
Conceptually, there are some desirable conditions for the "well-behaved"
utility function.3 These are:
i) there is no discontinuity in the choices of a society, i.e.,
the variables in the utility function are continuous
ii) wutility function is monotonic increasing with respect to inputs
jii) there exist continuous derivatives up to the third order and
the function is strictly concave
iv) the second derivative with respect to input approaches infinity
as the input approaches the origin, i.e.,

limU''(c) = =
c0

]There still remain paradox and conceptual difficulties with regard
to the Pareto optimality. "the so-called Pareto-type welfare function,
frequently assumed by economists, is in any case likely to be ethically
unacceptable since it (may) reveal as a social improvement some further
impoverishment of the poor compensated by some further enrichment of the
already rich," [M11], p. 747.

2[k3], p. 140.
38101, p. 355.
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which implies the rate of contribution to the satisfaction is
immeasurable at the point of the first infinitesiaml consumption.
The conceptualization of the social welfare function is closely

linked with the time horizon to be considered. If the time horizon is
infinite, inclusion of only consumption in the welfare function may be
correct, whereas, for the case of finite time horizon, which occurs to
real planners, intertemporal comparisons of welfare become essential
since one has to determine the amount of productive capacities left for
the future generations.

This leads one to include capital in the social welfare function as,

U(.) = Ulc(t), k(t)], 0<tx<T (4.2)

A

which can be classified into three cases according to the variable(s)
used for the social welfare; consumption-oriented, capital-oriented,
composite case.

Another consideration related to the time horizon is the weighting
schemes for intertemporal or intergenerational comparisons which has
been argued on the ethical ground: "Can one generation impose a speci-
fic weights to the others just because future generations have no re-
course against present generation's insistence to receive the heaviest
welfare weight?"]

Neither modifications of the social welfare function removes the
basic conceptual difficulties, however, the final choice is usually made

on the basis of convenience.

1Ramsey maintained that the rate of discount of utilities must be
distinguished from the rate of discount of the sums of money, and consi-
dered the discount of later enjoyment in comparison with earlier ones is
unethical. [R1]
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VI.2 One Sector Optimal Growth Model
The simplest form of the utility function has been used in Uzawa's

optimal growth model which is given by, [U2]
U(c) = c(t) (4.3)

Even though the above consumption-oriented utility function violates
the last two conditions of the "well-behaved" utility function, it
has been used widely for its simplicity. The objective functional, J,

will be the integral of the utility over the time horizon, i.e.,
t -rt ts -rt
Max. J(.) = ft Ulc(t)] e - dt = ft c(t) e - dt (4.4)
0 0

where to and tf are the initial and final time, and r is the rate of
discount for the future consumption. From the above objective functional

and the one sector system equation (3.7), a Hamiltonian can be formulated as

Hk(t), s(t), p(t), t] = [1-s(t)Iy(t) e™™" + p(t)[s(t)y(t) - gk(t)]
(4.5)
where p is the costate variable--Lagrange multiplier or shadow price--and
g is the sum of the depreciation rate and the growth rate of labor, u + n.

From the Pontryagin's maximum principle, the necessary conditions for the

optimality are!
K(t) = = s(t)y(t) - ok(t) (4.6)
p(t) = - — = -[1-s(£)y' ()™ + p(t)[s(t)y’ (t)-g] (4.7)
1

The notations will be used as: ﬁ(t) = %% ,» y'(.) = ChA
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0= [p(t) - e y(t) (4.8)
then, p(t) = e™", (4.9)

Since the Hamiltonian (4.5) is a linear function of input, s(t),
this problem constitutes a "bang-bang" control problem. The optimal

control for 0 < s(t) < 1 can be obtained as,

1 if p(t) > et
s(t) = indeterminate if p(t) = e 't (4.10)
0 if p(t) < e "t

Because of the indeterminacy of the control, the optimal control doesn't

exist for a time interval [ta, tb]] such that
_ -rt
p(t) = e , te [ta, tb].

To avoid the possible existence of singularity, an alternative obj-

ective utility function can be suggested as
Ulc(t)] = c(t)? (4.11)

where a is a constant such that 0 < a < 1. It can be shown that all
the desirable conditions of utility function are satisfied by the above
utility function.

Using the utility function (4.11), the Hamiltonian can be

H(.) = [1-s(t) 1% (£)? et + p(t)[s(t)y(t) - gk(t)] (4.12)

]This interval is called singular interval, and the indeterminacy
condition is called singular condition.
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and the necessary conditions will become

k(t) = s(t)y(t) - gk(t) (4.13)
p(t) = [1-s(t)1% ay' ()% '™ + p(e)[s(t)y'(t) - g] (4.14)
0 = - a[1-s() 1 Ty(t)% ™™ + p(t)y(t) (4.15)
thus, s(t) = 1 - oter [p(t)e /a)/ (o) (4.16)

The sufficient condition for the maximum can also be obtained from

azH a-2 a -rt
— = a(a-1)[1-s(t)]° “y(t)% (4.17)
9s
which is negative for 0 <a <1, and s(t) < 1. Since the control has
to be constrained--corresponds to the conceptual or practical constraints
--to assure the existence of the optimum, the optimal control can be

obtained as

M if ;%fj{P(t)ert/a]]/(a']);J-SM
s(t) =41- f@y{p(t)ert/a]]/(a'” if 1-sy< " <1-s
SL if " >1-sL

(4.18)

where SL and SM indicate the lower and the upper boundaries of saving
rate such that S|» Sy € (0, 1). The sufficient conditions assure the
strict concavity of Hamiltonian with respect to s(t), and thus the
above optimal control is possible. In essence, the alternative utility

function (4.11) removed the possibility of singularity.
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IV.3 Two Sector Optimal Growth Model
The optimal economic growth of one sector model will be extended
into two sector model in this section. To simplify the total welfare

with intertemporal discounts, a modified Hamiltonian will be defined as]

U(.) +3 e HAK +BS)
U(.) + p (AR +BYS) (4.19)

H(.) = H(.) "t

where the system state equation is from the equation (3.25), and ;; rep-
resents a modified costate variable. Then, the necessary conditions

us ing the modified Hamiltonian can be derived as

k=24 (4.20)
ap

s o, -

pe- M (4.21)

0= g% (4.22)

The above equations enable one to use Hamiltonian without discount rate,
and will simplify the expression and computation.

A natural extension of one sector optimal control problem with
consumption-oriented utility function into two sector problem leads

to the formulation of utility function
a, a
U(.) = ¢ T, 2 (4.23)

where S is the consumption per labor of agricultural product
<, is the consumption per labor of nonagricultural product
ay and a, are the relative (preference) weights between the
consumption of two aggrigate commodities.

-

1
Vans For notational convenience, time t will not be expressed in the
ariables in this section.
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It can be shown that the utility function (4.23) satisfies the conditions
for the "well-behaved" utility function.

Using the system state equation for the two sector model, (3.25),

and the utility function (4.23), the Hamiltonian can be given by]

a a _ _
H(.) = ¢y ey 2+ p (AR +B)

(o o]

P

d a
L (e 2
= [(1=s9)yy] TTO=5)y,1 © # py(vqqky + vio¥ysy + vq9¥58,)

+ Pp(Vorky * Vap¥ySy ¥ Vop¥,sy) (4.24)
where vy, = -(u; +g)
Viz = Wy
Va1 = ~(up * 9))
Voo = (1 - 1')/12
with the definitions as in the equation (3.25).
The necessary conditions are also given by
- Viiky + VioYS7 + Vi,Y,S
K = 111 127171 127272 (4.25)

Varka ¥ Vaa¥15q * Vap¥osy
a, 1

- - a -
a,L(1-5))y;1 1 (1-5)y30(1-5,)y,]1 2 + py(vy#v,¥isy)

¥ PoVar¥1Sy
3, a2-1 ' . *re
32[(]‘51).Y1] [(]'52))'2] (]"52).Y2 + p]V]zyzsz

+ p, (v, tv,,y5s,)
2\ o1 V22722
(4.26)

. The modified Hamiltonian and the modified costate will be used
Without tilde for the rest of this chapter unless otherwise specifies.
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a,-1 a
1 2
oH -a]y][(1-S])y]] [(]'Sz)yZ] + p]V]zy] + pzvzzy]

0=3%°

a a,-1
1 2
‘azyz[(]"s])y]] [(]'Sz)yZ] + p]V]2y2 + pzvzzyz
(4.27)

The sufficient condition for the optimality also can be obtained from

the Hessian matrix

2 a,-1

1 3T,
= a]azy]YZ[(]'S])y]] [(]'Sz)yZ]

9
3

W

(7]

a]-l Zl ('l-sz)y2 T
a, ¥, (T-54)y,

a0y, (l-sz)ya

(4.28)
Since 0 < a5 3, < 1, and 0 < S1s Sp < 1, the scalar term of (4.28) is
positive. Furthermore,

a;-1 ol (1-52)y2
az yZ (]’S])y]

< 0, and the determinant of the matrix in (4.28) is

1 - (a] + a

313,

2)

Therefore, the Hessian matrix (4.28) is negative definite if and only if
ay > 0, a, > 0, and a; +a, < 1. (4.29)

The sufficient condition (4.29)--similar to (4.17) for the one sector
case--assures the existence of global optimum. The optimal control, s(t),

can be obtained by solving the simultaneous equation (4.27) such as
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—1
1 1 1-a]-a2
LT -3y 1 %
[y P Pv2i )] Ty (P vy PevaYs)]
(4.30)
—1
1 1-a,-a,
S, =1- 1
2 Y2 3 T-a,
L7 Pv12" #2201 )] Ty (P V22 P2 Y 22Y2)
(4.31)

Hence, the optimal saving rates will be given by (4.30) and (4.31) if
these values are within the constraints between 0 and 1. Upper limit
or lower limit of the constraints will be given whenever the unconstrained
optimal saving violates the constraints. This is possible because of
the strict concavity of the Hamiltonian with respect to s when the
sufficient conditions are satisfied.

Finally, the case of combined consumption-capital utility function
will be considered. The utility function can be given as

b,

2

a a
- 1. %, "
u(.) = ¢y ¢, Ky 'k (4.32)

Then, the Hamiltonian becomes

a a b b Vq.k,tv S, +v S
H.) = [1-5y) ¥y] 1[(]_52)y2] 2 Ny, 24 pT [T 127151™12%2%
Vo1KatVoo¥151#Vaa¥sS,

(4.33)

and the necessary and sufficient conditions also can be obtained as

k=AKk+BSs, which is the same with the equation (4.25)
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~ a a, b, b
[(1-57)y7] TLO=s,)y,] % Tk, &

* PoVao¥1Sy

=0
"
[

a_l 32 b] b2 '
[(1-57)y11 "TO=57)y,] Tk Tk “(ap¥5/y,%by/ka) + PyVy¥55,

+ rp (4.34)

-1 b b2

d
2
[(1-55)y5] "y Tky =+ pyvyoyy + ppVaoy,

2, a,-1 by b,
~2g¥pL {1590y 1 TL0=5)951 = Ky Tky T4 pyvyg¥y + PoVaaYy

(4.35)

3 1
'a]y][(]‘s] ).y'l]

ol

n
Q QL
w||x

Solving the above simulataneous equation to get the optimal saving rates,

1
b, b 1
s.=1-1 1 2
1 y
1 1 1-a2 1 a2
(5;9;‘plv12y1+pzvzzy1)] fsgyz(p1v1zy2+pzvzzyz)]
(4.36)
1
b. b
1 2 1-a,-a
L Ky Tk, 173,
2 y2 1 a] 1 1-a]
[3‘§7(91V12y1+pzvzzy1)] [3;§5*91V12y2+pzvzzy2)]
(4.37)

Then the sufficient conditions will also become

TAPACIVASOA T INT PR PAZERY

+ pp(Vaytvyp¥5s,)
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32H a]-l az-l b
;gf = a]azy]yz[(]'sl)y]] [(]'52)y2] k]

b,

2

T

(31‘1)Y1(]‘52)y2
a, Yo(l-s¢)y,

(az'])yZ(]’s])Y1
a] y](]‘sz)yZ

thus, the Hessian matrix [aZH/aEQ] is negative definite if and only if

a + ay < 1 and 0 < ars 0 < a, (and S1s Sp < 1)

The above condition guarantees the global maximum at any instant of time,

i.e., for each fixed sets of state and costate variables. When ay > 1
and a; +a, > 1 (and a, > 0), the Hessian matrix is positive definite;

for all the other cases, it becomes indefinite.

IV.4 Numerical Procedures of the Optimal Control

In order to determine the optimal controls, (4.36) and (4.37),
explicitly, state and costate equations should be solved which yields
a nonlinear two-point boundary problem. Analytical solution of this
kind is impossible in general, and thus necessarily rely on numerical
procedures. The basic task of the numerical procedure is to find the
control so as to satisfy all the necessary conditions of optimal control
during the time period.

Since the final time is fixed by the given planning horizon, the
necessary conditions can be summarized as following for the case of free

final states:

K(t)

p(t)

aH/ ap (4.38)
-aH/3k + rp (4.39)
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0 = aH/3s (4.40)
k(0) = k0

0<s <1

p(tf) = 3h/sk ltf =0

Generally, the computational procedure can be given as following:

1) use initial guess on any of the variables to obtain the solu-
tion to a problem in which one or more of the necessary condi-
tions is violated

2) adjust the initial guess in an attempt to make the next solution
come closer to satisfying all of the necessary conditions

3) repeat the preceding steps until the iterative procedure conver-
ges, and thus all the necessary conditions will be satisfied.

Various methods have been used for numerical solutions in practice

such as Ritz's method, dynamic programming, the gradient method, the
method of steepest descent, variation of extremals, the method of quasi-
linearization, and the method of invariant imbedding [S1], [K4]. The
method chosen in the study is a variation of extremals which starts from
the initial guess of the costate variables and solve the system equa-
tions iterative]y] by changing the initial costate variables without
storing the whole paths of the variables until the final costates come
closer to zero, since there is no terms of final states appear in the
objective functional.

The choice of the method can be justified by the linearity in the

1Simultaneous linear differential equation solver by the method of
Bg]irsch-Stoer, DREBS, in IMSL (International Mathematical & Statistical
Libraries) has been used.
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Figure 4.1 Numerical Procedure for the Optimal Trajectory of
the Economic Growth System
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initial and the final costates, i.e., the changes in the initial costates
correspond linearly to the changes in the final costates, which comes
from the physical meaning of the costate in the case of economic growth
system. The costate implies the social demand price of a unit of invest-
ment in terms of a currently foregone unit of consumption, thus the
costate will be positive for all normal economy, and will be decreasing
monotonically towards the final time as the opportunities for the invest-
ment are decreasing as time passes. This concept is just an extention
of the Lagrange multipliers--shadow prices in the case of static optimi-
zation--along the time scale. With this specific property of the costate
variable, a numerical algorithm given in Figure 4.1 can be used efficien-
tly to solve the problem.

The adjustment scheme is the key in this method which can simply be

given by (as constant costate influence function matrix),
P(0), g = P(0) 74 - ALPH-D(te) (4.41)

where ALPH is a constant adjustment coefficient--diagonal element of
costate influence function matrix--such that 0 < ALPH < 1. For nega-
tive final costate, the new initial costate should be increased from the
old initial value, and the new initial costate should be decreased for
the positive final costate until the norms (or square of Euclidean norms)

of the final costate variables are within the given error limit.

IV. 5 Optimal Growth of Korean Economy
In applying the preceding discussions to Korean economy to obtain
the optimal growth paths, one has to determine the relative weights in

the objective function. This is not an easy task even for the alternative
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objective functions, because there are virtually innumerable combinations
of the ralative weights of each consumptions and capita]s--a], a,s b],
bz--which satisfy the sufficient conditions of optimality. It also can
be inferred from the discussions in chapter IV.1 that the higher the sum
of the relative weights of consumptions (or closer to one), the longer
the periods of maximum savings waiting for the final consumption spree.
Thus, the probability of getting saturated optimal control--bounded
optimal saving rates--will be increased for the higher values of the sum.

Although the relative weights between the goods for consumption or
capital may change the optimal paths of the state and costate variables
not less significantly, the main concern in the theory of optimal growth
lies on the consumption-investment decision, i.e., determining the rel-
ative weights between the a's and b's. Thus, the relative weights for
the alternative objective functions are given in such a way to reflect
the alternative decisions between consumption and capital investment
by varying the relative weights of these rather than varying the rel-
ative weights between the goods of each sector.

Table 4.1 summarizes the values of the relative weights used for
the alternative objective functions, initial conditions, parameters,
values of the final states, initial values of the costates (the results
of the numerical procedure), final costates and its norm, the number of
iterations, consumption and output at the final time, and the values of
the overall performance index (social welfare).

Because of the definitions of the alternative objective functions,
the direct comparisons of the performance indices are meaningless; however,

the comparisons of the performance indices for the alternative policies
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TABLE 4.1
RESULTS OF THE OPTIMAL CONTROL'

1 2 3 4 5 6
u(. )3 6.800  5.423  4.435  3.675  3.092  2.530
y(10) 0.5168  0.5874  0.6043  0.6116  0.6156  0.6182
c(10) 0.6513  0.7457  0.7685  0.7783  0.7838  0.7873
apsa, 0.2 0.2 0.2 0.2 0.2 0.2
bysb, 0.0 0.2 0.4 0.6 0.8 1.0
ky(10) 0.3204  0.4014  0.4212  0.4297  0.4344  0.4374
k,(10) 1.2040  1.5498  1.6395 1.6787  1.7008  1.7150
p(0) 1.1573  2.9047  3.7444  4.0659  4.0980  3.9785
p,(0) 0.4127  0.8652 1.1186  1.2376  1.2782  1.2736
p,(10)  -0.0047  0.0159  0.0146  0.0189  0.0184  0.0165
p,(10) 0.0100 -0.0103 -0.0078 -0.0096 -0.0094 -0.0082

2
|| p(10)||  0.0001  0.0004 0.0003 0.0005 0.0004  0.0003
ITER® 7 6 8 8 8 8

+Initia1 Conditions and Parameters:
p](O) = 2.5, p2(0) = 0.8, ALPH = 0.5, ERR = 0.001

iThe value of U(.) is the value of social welfare function using
the modified Hamiltonian, i.e., the value of non-discounted welfare.

§The number of iterations for the square Euclidean norm to be
within the error limit (ERR).
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with the identical objective function may have some value as an indicator
for the effectiveness of the policies.

As has been discussed, the numerical algorithm in Figure 4.1 shows
fast convergency of the final costates to the origin with less than
eight iterations from arbitrary initial guesses for the convergency
error limit of 0.001 (for square Euclidean norm). This also can be
observed in Figure 4.3 which shows the costate trajectories of each
goods for alternative objective functions to converge to the zero from
the positive initial values.

Figure 4.2 shows the optimal trajectories, k, of each sector with
respect to the different objective functions given in Table 4.1. The
corresponding costates and con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>