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ABSTRACT

APPLICATIONS OF LOGICAL CIRCUIT EXPRESSIONS
TO CMOS VLSI DESIGN AUTOMATION

By

Ching-Farn Eric Wu

CMOS technology has been recognized as a leading contender for exist-
ing VLSI systems, and is projected by industry analysts as being the dominant
technology for the next decade. In this thesis, a novel approach for represent-
ing CMOS logic circuit networks at the transistor level is proposed. Unlike
traditional device listing approaches which represent only circuit structures,
this representation combines structural data with behavioral information, and
thus illustrates a way to reduce the difficulty of information transformation
between behavioral and structural representations for CMOS circuits.

Functional recognition of logic components is an important issue in cir-
cuit verification. A new method based on functional expansion and logical cir-
cuit expressions is proposed, and recognition rules are described. The success
of logic component recognition can help other processes such as reverse
engineering, which deals with extracting logic-level components from layouts
of unknown-function circuits, and the comparison of CMOS transistor
schematic networks. Functional recognition enhances the schematic com-
parison process in that it brings the comparison up to higher levels.

Traditional approaches which use graph matching algorithms for CMOS
schematic comparison have difficulty in matching circuits with the same func-
tion but different topologies. Other approaches dealing with schematic



comparison such as switch-level simulation need to exercise all possible input
patterns, require a large amount of time, and thus are not practical for medium-
or large-sized circuits. The approach in this thesis for CMOS schematic com-
parison is to represent a CMOS transistor network by a set of logical circuit
expressions, so that the comparison process is not as rigid as graph matching
approaches and yet is efficient enough to compare two functionally isomorphic
circuits. The shift from graph connectivity to logical circuit expressions
allows schematics comparison for mattching functionally isomorphic struc-
tures, while most graph-based approaches can handle only topologically iso-
morphic circuits.

Automated CMOS design and verification using predicates is also
described in this thesis. A context-free grammar and a pushdown automata are
proposed so that the synthesis and verification processes for series-parallel net-
works can be done in linear time. ITP, an interactive theorem prover
developed at Agonne National Laboratory, is used to demonstrate the capabil-
ity of the approach.
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CHAPTER1I

INTRODUCTION

Recent advances in integrated circuit fabrication technology have increased the
complexity of integrated circuits to such an extent that it is possible to fabricate a VLSI
chip containing hundreds of thousands of transistors [Youn86]. The growth of IC com-
plexity has had a dramatic impact on the time needed to design a circuit. The design
methods which were adequate in the MSI and LSI periods require extensive improve-
ment. In the early days of IC design, almost unlimited freedom was used in order to
achieve the most compact results. This approach is no longer possible because the time
complexity for solving the design and layout problems grows exponentially as the

number of gates increases.

To tackle the complexity, automated design methods have become an indispensable
tool for designing chips in a reasonable time frame. Many efforts have been devoted to
various aspects of automated design and verification to reduce the design time and cost.
Given that the process of designing a system on silicon is complicated, the role of VLSI
design aids is to reduce this complexity and raise the level of confidence for the correct-
ness of the design. Recently, VLSI design tools have been used in many ways to help
reduce high design costs. VLSI design tools not only assist an engineer in circuit design,
simulation, testing, and layout, but also help alleviate human errors caused by the manual
design process. The average turn-around time has decreased significantly in the past ten

years due to the use of automated tools.

On the other hand, in order to reduce the VLSI design burden and make the whole
design process manageable, hierarchical design methods [Nies83] are usually considered



as a means of dealing with the VLSI design problem. The hierarchy, when properly
implemented, is the self-evident implementation of the ‘‘divide and conquer’’ principle.
The use of hierarchy involves dividing a chip into modules and repeating this operation
on the modules until the complexity of a submodule is at an appropriate and comprehen-
sible level of detail [Sequ83]. For instance, a chip may be decomposed into several
modules with the I/O pads residing around the boundaries, and modules can be further
decomposed into a number of cells.

In addition to hierarchical design methodology, circuit representation also plays an
important role. Once a high-level specification is available, the design process can be

viewed as a translation process from a higher-level description into a lower one.

1.1. Y-Chart for VLSI Design

A tripartite representation for moving a design from a high-level specification to the
low-level mask data has been proposed by Gajski and Kuhn [GaKu83]. The representa-
tion is partitioned into three sub-domains, namely, the functional (or behavioral)
representation, the structural representation, and the geometrical representation. Multi-
ple levels of detail are represented along each of the three axes. The levels of abstraction

are increasing as one moves away from the vertex.

In the functional (or behavioral) domain one is interested in what the chip does and
not how it is built. The design is treated as a black box with a specified set of inputs, a

set of outputs and a set of functions describing the behavior of each output as a function

of inputs and time. For example, the Boolean expression z = ab + cd indicates only the
function of the design whose inputs are a, b, c, and d, and whose output is z. It does not
say anything about the implementation or the structure of the cell. The functional

representation of a design may be captured at several levels, such as systems,



STRUCTURAL FUNCTIONAL
REPRESENTATION "~ REPRESENTATION

PMS systems
register
& algorithmic
transistor Boolean expressions
+ mask geometries
<+ cell placement/routing

- floor planning

v

GEOMETRICAL
REPRESENTATION

Figure 1.1. Y-chart representation of various design levels

algorithmic, and Boolean expressions. The system or architectural description defines
gross operational characteristics with performance specifications without being con-
cerned about how data is manipulated or what algorithm is used. At the algorithmic
level, the system may be represented using state transition diagrams. Variables or data
structures are not bound to registers or memories at this level, and operations are not
bound to any functional units or control state. For the logic level, Boolean expressions

are chosen to represent the circuit function.

The structural representation is the bridge between the functional representation and



the geometrical representation. It is a mapping of a functional representation onto a set
of components and connections under constraints such as cost, area, and time. This
representation does not specify any physical parameters, such as the locations of circuit
components and their sizes. In fact the structural representation specifies the connec-
tivity among various components. The most commonly used levels of structural
representation can be identified with the basic structural elements used. At the transistor
level the basic clements are transistors, while gates and flip-flops are at the logic level.
ALUEs, registers, RAMs and ROMs can be used to represent structures at the register
level, in which the communication among the components is of more concern than the
implementation of each individual component. Processors, memories, and switches are

used at the system level.

At the lowest level in this hierarchy, the geometrical representation deals with phy-
sical layout design. The geometrical representation ignores, as much as possible, what
the design is supposed to do and binds its structure in space or to silicon. Components in
the structural representation are built, placed, and interconnected using provided primi-
tives. The structure-to-geometry mapping can be defined as a two step process. The first
step, usually called symbolic or topological layout, determines relative or approximate
positions for all structural elements. The absolute positions are determined in the second
step after substitution of layouts for symbols and compaction. The most commonly used
levels in geometric representation are mask geometries, cell placement/routing and floor
planning with arbitrary size blocks. Cell placement/frouting deals with the location of
each individual cell and connections among those cells within a block, while floor plan-
ning is concerned with the placement of rectangular modules of varying sizes and shapes
such that the required electrical performance can be achieved and the total area occupied
by the modules and the interconnections is minimized.



1.2, Design Starting Point

Based on the Y-chart representation, hierarchical design is an efficient approach to
reduce the high design cost of a VLSI circuit. The design procedure for developing a
chip can be entered at various starting points. In other words, it is the designer’s respon-
sibility to decide the entry point of the design process, which is an important factor in the
tradeoff between the performance and design cost of the chip [VaSh85]. Since comple-
mentary metal oxide semiconductor (CMOS) technology has played an increasingly
important role in the integrated circuit industry over the past several years, CMOS tech-
nology is selected in the following example to illustrate different starting points for
designing a logic circuit.

Given a function f with a control signal C, assumef=a_5ifC=0andf=x_+£if
C =1. There are several different ways to implement the circuit using the prevalent
CMOS technology.

Intuitively one can use a two-input multiplexer and simple logic gates to implement
the function f. However, in order to simplify the automated synthesis process, one might
have only a limited number of available components, such as two-input NAND gates or
four-input multiplexers. Thus the basic problem of circuit design becomes finding a way
to connect those primitives so that the overall circuit behaves in the desired way
[WoOL84]. Figure 1.2 shows a logic circuit with eight two-input NANDs, in which the
two-input multiplexer is formed by four two-input NAND gates and the longest path con-
tains five stages. A total of thirty-two transistors are used. Note that the logic circuit is
not minimized.

By increasing the number of available components, one may be able to improve the
design. If two-input multiplexers and simple logic gates are available in the designer’s

cell library, a simpliﬁed'version of the same design can be obtained. Figure 1.3 shows



the circuit with one two-input multiplexer using pass transistor logic, one NAND, one
NOR and one inverter. A total of sixteen transistors are used, and the number of stages
along the longest path is three. If the chip area is proportional to the device count and the
delay time of a circuit is proportional to the number of gates along the longest path
[Hwan79], then the chip performance AT? is improved by a factor of 5.5.

Logic minimization is another way to improve the circuit. Applying simple logic
simplification rules, one notices that the function f is actually defined by ab + Cx. Thus
three NAND gates and one inverter are sufficient to build the circuit. Figure 1.4 shows
the logic diagram of the simplified circuit. Fourteen transistors are used, and the number
of stages along the longest path is only three. Thus, the chip performance is improved by

another factor of 1.14.

If the transistor level is selected instead of the gate level as the entry point of the
design, significant improvement can be achieved. Expertise at the transistor level is use-
ful in realizing a better circuit structure. A compound gate whose output is f using true
CMOS technology is shown in Figure 1.5. Only eight transistors are used. Since com-
pound gates are basically one-level circuits, they also have significant improvement in
terms of delay times. The delay time of such a circuit, estimated from SPICE [Oklo82],
is about 1.5 times that of a standard 2-input CMOS NAND gate. Thus, the chip perfor-
mance AT? is further improved by a factor of 7.

In the best case, simple logic gates available in a VLSI standard cell library are
locally optimized. Even with logic minimization at the gate level, a large number of

transistors in a circuit are usually wasted because of the lack of a global viewpoint.

The key to moving beyond this local minimum is the expertise of lower level
design, namely, transistor level expertise. The use of transistor level expertise

significantly improves the chip performance. Knowledge at the transistor level is usually
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used mainly inside the designers’ cell library. This is true especially when standard cell
design is used. In order to speed up the design process in the conventional design
environment, designers usually use those cells they need from the cell library and inter-
connect them to form new custom circuits in spite of the sacrifice in the chip perfor-
mance. The tools a designer might have are merely a collection of programs that per-
form logic minimization at the gate level, placement of selected components on the floor

plan, and routing of the interconnections.

1.3. Motivation And Thesis Organization

Since the designs at the transistor level usually result in smaller area and better per-
formance, CMOS logic circuits are considered at the transistor level as the target area.
The goal of this thesis is to find a CMOS circuit representation which combines both
functional and structural information, so that the difficulty associated with information

transformation between these two design domains can be reduced or released.

Once this representation is available, a practical problem which deals with CMOS
schematic comparison becomes evident. Traditional approaches use either direct graph-
matching algorithms or indirect switch-level simulation. As graph-matching algorithms
suffer from rigid graph isomorphism checking, switch-level simulation suffers from
tremendous computation overhead due to exhaustive exercises of input patterns and usu-
ally does not provide any information for error location. From the representation, an
alternative is proposed and a better solution for CMOS schematic comparison may be
obtained. One would also like to be able to recognize the logic functions of CMOS logic
elements, so that the comparison can be performed at the Boolean level, and thus logic
circuits with the same function but different topology may still be matched. In order to

provide solutions for these problems, one needs a circuit partitioning scheme, and that is
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where the idea for the logical circuit expressions arises.

In this thesis, a circuit representation for CMOS transistor networks is proposed and
its applications to CMOS VLSI design automation is examined. After this introductory
chapter, various CMOS logic structures and circuit design methodologies such as stan-
dard cell, gate array, and full-custom designs are described in Chapter 2. The approach
to CMOS circuit representation, the Logical Circuit Expressions, is described in Chapter
3, along with approaches for generating logical circuit expressions. In Chapter 4, a novel
approach to functional recognition for CMOS logic circuits based on logical circuit
expressions and functional expansion is proposed. In addition to the contribution of
recognizing logic functions of CMOS circuits, this approach also enhances the schematic
comparison process in that it brings the comparison process up to the gate, or even, block
level, provided that function recognition for individual or consecutive stages is success-
ful. Chapter 5 shows how logical circuit expressions can be used for CMOS schematic
comparison. Although it is different from the conventional direct and indirect
approaches, it is shown that this approach gives more freedom when compared with the
rigid graph-matching algorithms, and provides much more information when compared
to switch-level simulation approaches. In Chapter 6 a rule-based system for automating
CMOS design and verification using predicates is described. A context-free grammar
and a pushdown automata are proposed so that the synthesis and verification processes
for series-parallel networks can be done in linear time. ITP (Interactive Theorem
Prover), which was developed at Agonne National Laboratory and written in Pascal, is
used to demonstrate the capability of the approach. Finally, Chapter 7 concludes the
thesis with a summary and directions for future research.



CHAPTER 11

CMOS LOGIC STRUCTURES AND
DESIGN STYLES

Basically this chapter serves as common background for CMOS VLSI designs. The
general characteristics of CMOS technology are described, various CMOS logic struc-
tures are examined, and several VLSI design styles are discussed. Both advantages and

disadvantages of various CMOS logic structures and design styles are illustrated.

The technology of semiconductor devices is advancing at a rapid rate. Bipolar dev-
ices have been widely used for a long time. In general, bipolar transistors are character-
ized by lower ON resistances and higher current capabilities for a given size of device
than are MOS devices. The most widely used semiconductor technology was TTL
(Transistor-Transistor Logic). ECL (Emitter-Coupled Logic) and / 2, (Integrated Injec-
tion Logic) are also popular in some applications. To date, for most high-speed and
low-noise applications, such as high-speed mainframe processors, bipolar technology is
still used. However, the heat dissipation in bipolar circuits is rather large and requires an

elaborate cooling arrangement for its operation.

The fastest growing technology has been MOS since the last decade. MOS transis-
tors are known as FETs (Field-Effect Transistors) and are also referred to as MOSFETs.
The MOS technology is growing dramatically fast because of high-volume commercial
applications. The minimum feature size of MOS technology is decreasing rapidly, result-
ing in high-density complex custom chips with proven reliability of the two MOS techno-
logies, nMOS and pMOS. CMOS is comprised of both n-type and p-type MOSFETs. To
fully appreciate CMOS, it is necessary to understand the properties of MOS in general.

11
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Detailed descriptions of MOS technology can be found in [MeCo80, HoJa83, GIDo85].

The nMOS technology has had some advantages in terms of size or area of silicon
needed to produce equivalent functionality, but with decreasing feature size for CMOS,
that advantage is rapidly evaporating. The past several years have seen a rapid shift in
the technology of choice for high-complexity digital microelectronics from nMOS to
CMOS. This shift has occurred because CMOS offers high performance at low power
and scales extremely well to small feature size. The greatest advantage of CMOS over
nMOS is its static power consumption, which is an order of magnitude smaller than
nMOS static power requirements. CMOS technology has been recognized as a leading
contender for existing VLSI systems, and is projected by industry analysts as being the
dominant technology for the next decade [Mukh86]. It provides an inherently low power
static circuit technology that has the capability of providing a lower power-delay product
than comparable design-rule nMOS or pMOS technologies.

CMOS technology provides two types of transistors, an n-type transistor and a p-
type transistor. These transistors are fabricated in silicon by using negatively doped sili-
con that is rich in electrons and positively doped silicon that is rich in holes, respectively.
For the n-transistor, the structure consists of a section of p-type silicon separating two
diffused areas of n-type silicon. The area separating the n regions is capped with a
sandwich consisting of an insulator and a conducting electrode called a gate. Similarly,
for the p-transistor, the structure consists of a section of n-type silicon separating two p-
type diffused areas. Each transistor has two additional connections which are designated
the drain and the source. In fact, the drain and source may be viewed as two switched
terminals. The terminals are physically equivalent, and the name assignment depends on
the direction of current flow [WeEs85). Figure 2.1 shows a CMOS inverter with its logic

diagram, transistor schematics, and a simplified cross-section view.
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Figure 2.1. A typical P-well CMOS inverter: (a) logic diagram,

(b) transistor schematics, and (c) a simplified cross-section view.
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The use of both polarity devices on the same substrate creates various types of
CMOS circuits. Many designers prefer to use static logic whenever possible to simplify
their designs. On the other hand, dynamic CMOS circuits in which dynamic charges
play an important role in circuit behavior usually results in significant area savings. In
this chapter alternative CMOS logic configurations are examined and various approaches
by which CMOS circuits are constructed are illustrated. The CMOS logic structures
covered in this chapter are by no means complete; but through this chapter, one should be

able to understand how a CMOS circuit works and how it is constructed.

2.1. Fully Complementary CMOS Logic

Fully complementary CMOS (also referred to as FCMOS or true CMOS) logic is
the most common logic structure. An FCMOS gate consists of a network of p-type
transistors called the load circuit and a network of n-type transistors called the driver cir-
cuit. If an input combination for which the function realized by an FCMOS gate is to be
1 is applied, a path from Vpp to the output node of the gate is established through con-
ducting p-type transistors, and all paths from output to Vs through the n-type transistor
network are cut off. Similarly, if an input combination for which the output of the gate is
0 is applied, a path from Vg to the output is established through conducting n-type
transistors, and all paths from output to Vpp are disconnected. Consequently, there is no
static current path between Vpp and Vg, and fully complementary CMOS ICs dissipate
power only to charge and discharge circuit capacitance. Figure 2.2(a) shows the block
diagram of a CMOS gate with p-type and n-type transistor networks, and Figure 2.2(b)
shows a fully complementary CMOS gate which is used as the carry generator of a full
adder.

Basically there are three different physical structures of fully complementary
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Figure 2.2. Fully complementary CMOS logic: (a) block diagram,

and (b) a CMOS gate implementing z = ab + bc + ca
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CMOS combinational gates. Complementary CMOS structure refers to FCMOS gates
whose p-type and n-type transistor networks are complementary in physical structure.
Parallel n-type devices in the driver circuit imply serial p-type devices with the same gate
signals in the load circuit, and serial n-type devices in the driver circuit imply parallel p-
type devices with the same gate signals in the load circuit. The complementary CMOS
structure is simple and has been widely used in many designs, especially for simple logic
functions. The CMOS gate in Figure 2.2(b) which implements z = ab +bc +caisa typi-
cal example.

Non-complementary CMOS structure refers to FCMOS gates whose p-type and n-
type networks are not complementary in physical structure. Since both p-type and n-type
transistor networks are separated from each other, they can be implemented indepen-
dently in order to compact the physical layout. Thus, unnecessary long serial structures
may be avoided. Figure 2.3(a) shows a fully complementary CMOS realization of the
function z = ab + bc + ca, in which p-type and n-type networks are symmetric instead of
complementary in physical structure.

The third approach to implement Boolean functions using FCMOS logic is the use
of multistage design. Compound gates are basically one-stage circuits. As the complex-
ity of a logic function increases, the delay time of the gate also increases. Figure 2.3(b)

shows two CMOS gates concatenated in series to implement the same function as the one

in Figure 2.2(b). The output node z implements the function f + ab, where f = @b + € =
c(a +b). Although it becomes a two-stage circuit with both true and complementary

input signals, its first stage can be easily shared by other functions.
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2.2. Clocked CMOS Logic

Clocked CMOS logic is a variant of the fully complementary CMOS logic. It was
originally used to build low power dissipation CMOS circuits [SuOA73]. Since only part
of a circuit is active at a time, it is not necessary to enable all logic gates all the time. By
introducing a clock signal in the circuit, gates not in use can be cut off to reduce dynamic
power consumption. Figure 2.4 shows a clocked CMOS compound gate which imple-

ments the function z =ab + c(d + e).

Gates using clocked CMOS logic have the same input capacitance as fully comple-

mentary CMOS gates but larger rise and fall times due to the series clocking transistors.

2.3. Pseudo-nMOS Logic

A common criticism of CMOS is that equivalent CMOS circuits have more transis-
tors than nMOS circuits. As a point of reference, CMOS designs are commonly quoted
as being 20-30 percent larger than the nMOS equivalent designs [WeEs85]. This
increase results from *‘logical redundancy’’ [MyIv85] — the need in fully complementary
CMOS for evaluating the logic function and its complement to maintain good logic lev-
els. Thus, circuits need two devices per logic variable in use, leading to area wasteful

interconnections and a consequent degradation in performance.

Pseudo-nMOS is a CMOS variation which uses a p-type transistor to mimic an
nMOS pull-up. The load device is a single p-type transistor, with the gate connected to
Vss. This structure is equivalent to a conventional nMOS gate except that the depletion
nMOS load is replaced by a p-device. The design of this style of gate thus involves

ratioed transistor sizes to ensure correct switching.

A typical pseudo-nMOS gate is shown in Figure 2.5, which performs the same func-
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Figure 2.5. A CMOS gate using pseudo-nMOS logic

tion as the one in Figure 2.4, except that it is a static circuit. There is a definitive gain in
area, but its low-to-high transition is slower and the static power consumption cancels the
main advantage of CMOS technology. One possible advantage of the pMOS load is that
it does not suffer from body effect as the nMOS depletion load does. Thus in a CMOS
process it gives a method of emulating nMOS circuits.

2.4. Dynamic CMOS Logic

Dynamic CMOS gates require a precharge interval to generate dynamic charges at
internal nodes. A basic dynamic CMOS gate is shown in Figure 2.6. It consists of an n-
transistor logic structure whose output node is precharged to Vpp by a p-transistor in the
precharge phase and conditionally discharged by an n-transistor connected to Vgg during
the evaluate phase. Input signal ¢ is a single phase clock. The precharge phase occurs

when ¢ = 0. The path to Vgs supply is closed via the n-transistor ‘‘ground switch’’
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during the evaluate phase when ¢ = 1. The input capacitance of this gate is the same as
the pseudo-nMOS gate shown in Figure 2.5. Its pull-up time is improved by virtue of the

active switch, but the pull-down time is increased due to the ground switch.

Vbp

Figure 2.6. A dynamic CMOS logic gate with clock signal ¢

Precharged logic requires a clocking scheme which implies the need for some extra
global control and communication. The inputs of a_gate must remain steady once the
precharge phase is finished. Simple single-phase dynamic CMOS gates, therefore, can-
not be cascaded due to the conditional discharge at the output of the previous gate during
the evaluate phase. A possible modification of dynamic CMOS logic is presented in
[KrLL82], which leads to Domino CMOS logic.

Friedman and Liu [FrLi84] proposed another dynamic CMOS logic structure based
on the direct interconnection of p-type logic and n-type logic dynamic gates. Adjacent
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dynamic CMOS gates utilize complementary clock signals and complementary logic net-
works so that cascaded structures are allowed. Further improvements to dynamic CMOS
logic use the forms of two and four phase logic that have been developed for earlier types
of MOS design [MyIv85, WeEs85].

2.5. Domino CMOS Logic

One of the best known approaches to the design of combinational logic in CMOS
that avoids logical redundancy without suffering from the side effect of increased power
dissipation is Domino CMOS logic. Domino CMOS circuits share some characteristics
with dynamic circuits. In particular, each output is precharged high while the path to
ground is opened, and the precharge is stopped while the path to ground is activated.
Transitions from precharge to evaluation are accomplished by means of a single clock
edge applied simultaneously to all gates in the circuit. This simplifies the clocking
scheme and permits utilization of the full inherent speed of the gates.

A single Domino CMOS gate is depicted in Figure 2.7(a). It consists of a single
phase dynamic gate and a static CMOS buffer. During precharge (¢ = 0), the output node
of the dynamic gate is precharged high and the output of the buffer is low. As subse-
quent logic stages are fed from this buffer, transistors in subsequent logic blocks will be
turned off during the precharge phase. In addition, during evaluation, a Domino gate can
make only a single transition (0 — 1). Because of the nature of the dynamic gate which
drives it, it is impossible for the buffer to go from high to low. As a result there can be
no glitches at any nodes in a cascaded set of logic blocks. Each stage evaluates and

causes the next stage to evaluate in the same manner that a stack of dominos fall.

The Domino CMOS gate may be made,static for low frequency circuits by includ- -

ing a weak p-transistor. A weak p-transistor is one that has a small W/L ratio. The ratio
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Figure 2.7. Domino CMOS logic (a) basic version, and (b) latching version
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is chosen small enough so that there is no significant impact on the pull-down current and
so that the power consumed during the evaluation phase is tolerable. If the time between
evaluation phases is relatively long, the clocked precharged p-transistor can be elim-
inated, and precharge can be accomplished by the weak static pull-up transistor. Charge
redistribution in Domino CMOS can be reduced by placing a weak p-type feedback
transistor or increasing the capacitance of the precharge node [OkMo86]. Figure 2.7(b)
shows a circuit with a weak p-type feedback transistor which leads to the latching version
of Domino CMOS gates, and increasing the capacitance of a precharge node can be
accomplished by making the size of the transistors in the output inverter larger.

2.6. Cascade Voltage Switch

Cascade voltage switch (CVS) is a circuit implementation technique for complex
single or dual output switching functions formed by cascading n-type MOS transistors.
The CVS circuits yielding a dual output are called differential CVS (DCVS) circuits
[HeGD84], whereas the other CVS circuits are called single-ended CVS (SCVS) circuits
[BrCM84]. The differential style of logic usually requires both true and complement sig-
nals to be routed to gates. Both static and dynamic circuits can be generated. DCVS cir-
cuits are obtained by realizing the complement function with another set of n-type
transistors. The two n-type networks are connected to the positive supply voltage node
by a pair of cross-coupled p-type transistors.

Figure 2.8(a) shows a two-input static DCVS XOR circuit with complementary n-
type networks. The static version is usually slower than a conventional complementary
gate employing a p-tree and n-tree, since during the switching action, the pull-ups have to
‘““fight’’ the n pull-down trees. Note that this is not a very efficient implementation of
this gate.
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(b)
Figure 2.8. Two-input DCVS XOR/XNOR circuits (a) static and (b) clocked version
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Further refinement leads to a clocked version of the DCVS gate, as shown in Figure
2.8(b). A dynamic DCVS circuit is formed simply by adding one discharge n-type
transistor and substituting the two cross-coupled p-type transistors with two precharge p-
type transistors. The logic tree is minimized from the full differential form using logic
minimization. Logic minimization results in a n-type network with only six transistors
rather than eight. Outputs from dynamic DCVS circuits are usually buffered using static
CMOS inverters, which are not shown in Figure 2.8(b). This DCVS structure can be
casily expanded for multiple-input parity generator and other complex switching circuits.
A four-way DCVS XOR gate [HeGD84], for instance, needs only fourteen transistors in

its n-type network. Significant area saving is therefore achieved.

2.7. Pass Transistor Logic

One form of logic that is popular in nMOS circuits is pass transistor logic. Pass
transistor realizations using fewer transistors usually result in area savings and higher
operating speed when compared with the corresponding gate logic realizations. CMOS
transmission gates used in many CMOS designs such as XOR gates and multiplexers are
simple examples. A CMOS XOR gate and a two-input CMOS multiplexer are depicted
in Figure 2.9. In total, four transistors are used for both the two-input CMOS XOR gate
and the two-input multiplexer. If they are implemented using gate-level design, four
two-input CMOS NAND gates are required for a two-input XOR gate, and three CMOS
NAND gates are required for a two-input multiplexer.

CMOS pass-transistor gates are composed of nMOS and pMOS transistors. Since
the transistor gate controls the passage of current between the drain and source, a
simplified scheme [MeCo80, Brya81] which allows the MOS transistors to be viewed as

simple on/off switches is proposed. In an n-transistor, for instance, the switch is closed,
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Figure 2.9. Pass transistor logic (a) A two-input CMOS XOR gate;
and (b) a two-input CMOS multiplexer

or ““ON’’, when there is a ‘‘1’’ on the gate. Formal methods for deriving pass-transistor
logic have been presented using this model [Whit83]. Basic design procedures for pass
transistor logic using modified Karnaugh map and modified Quine-McCluskey tabular
approach can be found in [RaWMS85].

2.8. Differential Pass Transistor Logic

In traditional CMOS pass transistor logic, a p-type transistor is used to pass logic

one efficiently, while the n-type transistor is used to pass logic zero efficiently. Besides
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using both p- and n-type transistors, substantial p-to-n plane interconnects and the
required well-to-device channel spacing reduce area efficiency. Furthermore, the number
of drain-source connections at the network output is doubled, hence doubling the output
capacitance and making conventional CMOS pass transistor networks inherently slow.
Pasternak et. al. [PaSS87] proposed a new logic design structure called differential pass
transistor logic by encoding the pass variables differentially, passing this signal through
a differential pass network, and then decoding the output to normal logic levels. The dif-
ferential signal can be restored to normal logic levels by using a static differential buffer,
which is typically a cascade voltage switch logic inverter. Thus, both true and comple-

mentary values of the function can be obtained due to the differential buffer.

The differential pass logic element consists of two n-type transistors, controlled by
the same gate signal, to pass the input and its complement to the output. Since n-type
transistors pass logic zero efficiently, one of these values will be zero. The other output
voltage level will be the maximum output voltage of an n-type transistor Vpp - Vry
where Vry is the ON threshold voltage of the transistor. A conventional CMOS pass-
transistor four-to-one selector circuit diagram and a differential pass-transistor four-to-

one selector network are depicted in Figure 2.10 and Figure 2.11, respectively.

Note that in Figure 2.11 all the positive row outputs are connected together to form
the signal OUT +, and all the negative row outputs are connected together to form the sig-
nal OUT-. The differential signal pair, OUT + and OUT -, is then restored to normal
logic levels by using a static differential buffer, which is simply a cascade voltage switch
logic (DCVS) inverter and is depicted in Figure 2.12. In addition to replacing the p-type
transistors of conventional CMOS pass transistor logic with smaller n-type transistors,
differential pass transistor logic eliminates the p-to-n plane interconnect, and effectively

halves the output capacitance. This results in increased area efficiency and operating

speed.
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Both DCVS logic and differential pass transistor logic structures have substantial
area savings over fully complementary CMOS. However, when compared with
corresponding DCVS circuits which suffer from longer rise time and fall time due to the
fact that the p-type pull-ups have to fight the bigger n-type pull-down trees, differential

pass transistor logic has shorter delay by using a fixed-size DCVS inverter.

2.9. Zipper CMOS

Charge-sharing is a prevalent problem in dynamic CMOS and Domino CMOS cir-
cuits. The problem arises due to the fact that not all internal nodes in the logic block are
fully precharged. Figure 2.13 shows a Domino CMOS circuit for implementing a
Boolean function f with clock signal ¢ to illustrate the charge sharing problems. During

the precharge phase of the clock, the p-type transistor @, is ON while the n-type
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transistor Qg is OFF. Node N4 is charged to Vpp and the output from the inverter is at
the voltage level close to 0 V. This situation occurs at that time at every logic block
including those whose outputs are connected to the inputs X; of this particular block. As
a consequence, the inputs X; and those of all other blocks are close to 0 V during the
precharge phase. Therefore there is no electrical path from node N4 to node N;. When
the clock turns to the evaluation phase, transistor Qg is ON conditionally creating the
path from the node N4 through the switch network to the ground, which in turn makes
the output of the inverter F the logic ONE. This value is the input to the subsequent
logic blocks and can cause the output of those blocks to switch to ONE in the ‘‘domino’’

fashion.

Obviously, the charge is stored at the node N4 during the precharge phase. The
nodes N3, N3, N1 might have been discharged during the previous cycle and thus have
no charge. Therefore, during the evaluation phase, there may be an electrical path to
several discharged nodes without an electrical path to the ground, causing so-called
charge redistribution problems. If the capacitance at the storage node N4 is C; and the
uncharged capacitance internal to the switching network is C;, it is possible that the
resulting voltage at the node N4 is reduced below the inverter threshold I'ry; i.e.

Cs
Ci+C;
where the maximum original voltage Vpp at the node N4 is assumed. This charge redis-

VDD X < ITH

tribution will cause the inverter at the output of the switching network to falsely switch,

thus placing the incorrect value on the line causing other circuits to discharge falsely.

All dynamic CMOS and Domino CMOS circuits suffer from signal degradation
caused by charge redistribution and leakage current. In contrast to these circuits, Zipper
CMOS (ZCMOS for short) is inherently immune to the problems of instability and
charge-sharing. ZCMOS is proposed by Lee and Szeto [LeSz86], and the basic ZCMOS
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Figure 2.13. Charge sharing problem in dynamic CMOS and Domino CMOS logic
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structure is depicted in Figure 2.14. The major components in a ZCMOS circuit are the
Zipper Driver circuit and the alternate n-type and p-type logic blocks. The Zipper Driver
generates four strobe signals, ST, ST, ST, and ST”, at various voltage levels based on a

single clock to drive subsequent dynamic blocks.

During precharge, the output of every n-type block is high and that of every p-type
block is low. This ensures that the transistors driven by the output of each dynamic stage
will be off. During evaluation, strobe signal ST” is at its *‘poor 1°* voltage level, and ST
is at its ‘‘poor 0’ voltage level. The precharge transistors are, therefore, partially on to
produce a residual current for sustaining the precharged value of the internal nodes and
overcoming the charge redistribution problem. The output of each n-stage can make at
most one transition from high to low, and the output of each p-stage can undergo only
one transition from low to high. This ‘‘staggered’’ fashion in which signals propagate
through n-type and p-type blocks gives rise to the name *‘Zipper CMOS’’.

Figure 2.15(a) shows the ZCMOS implementation of two stages of a ripple carry
chain. A static FCMOS implementation of the same circuit is shown in Figure 2.15(b).
P; and G; represent the propagation and generation terms at the ith stage. The carry-in
(C;) and carry-out (C,,,) signals at the ith stage are related by

Ci=P;1Ci_1 +Giy.

Generally speaking, ZCMOS circuits lead to the use of multivalued logic due to
various levels of clock signals. It improves the delay time of a CMOS circuit at the
expense of increasing its dynamic power consumption. Thus, design tradeoffs exist for
various logic structures, and the selection of an appropriate logic structure is basically a
choice among a number of factors such as area, power dissipation, speed, noise margin,

and even fault susceptibility.

In general, pseudo-nMOS, dynamic CMOS, and pass transistor logic provide sub-
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stantial savings in terms of area, which can be estimated to a first order by the number of
transistors and also affected by routing considerations. Note that dynamic gates require a
precharge interval, and this may or may not impact performance. As a rule of thumb,
small logic blocks are usually implemented statically while large logic cascaded struc-
tures might be implemented with dynamic or domino CMOS logic.

2.10. Design Styles

VLSI design styles are undergoing rapid evolution. As the density and the number
of devices on a VLSI chip increase, methods of dealing with complex design problems
have to be developed. Several different methodologies have been developed for design-
ing integrated circuit chips, ranging from full-custom approach, in which the entire IC is
designed from scratch, to semi-custom approaches, in which the designer builds the chip
from a collection of pre-designed components. One of the advantages with various
design styles is to allow system designers the option of implementing high performance
systems directly in silicon. Figure 2.16 illustrates three semi-custom approaches -- gate

array, standard cell, and macrocell.

The standard cell approach provides a cell library for functions to be intercon-
nected. The cells in a design are arranged in rows with area for making interconnect
between the rows. Usually the cells are constrained to be of uniform height but variable

width, and the designer retains the flexibility of both placement and interconnect.

The macrocell approach can be treated as an extension of the standard cell
approach, with the additional feature that designers can either use their own local cells or
circuits generated from automatic tools. Some macrocells generated from automatic
tools are parameterizable, rectilinear blocks that are customized from a library of tem-

plates. These cells are either connected by abutment or by automatic routing.
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Figure 2.16. Semi-custom design styles (a) gate array, (b) standard cell, and (c) macrocell
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Obviously, designs using macrocells offer still more flexibility than standard cell designs.

Gate arrays are semi-custom integrated circuits, which are mostly made ahead of
time and which are customized to the user’s needs by defining one or more layers of
metal on the die itself. This method provides macros with predefined placement on the
chip. The interconnection of these macros is customized for specific applications.
Because the gate array is mostly made ahead of time, it offers significant savings in both
cost and time. On the other hand, in the standard cell approach the wafers are not built
ahead of time. Therefore, in the standard cell approach, the designs of all the mask levels
of each cell have to be stored in a computer, in contrast to typically one or two such mask
levels for gate array macros. This implies that the tooling cost for a standard cell library
is considerably higher than that of a similar library of macros for gate arrays. It is true
that the die cost of a gate array is higher than that of a full custom die. However, in low-
volume applications, the nonrecurring development costs are the dominating factors, not
the differential piece-part costs. It is here that the gate array approach has a clear edge
over the full-custom and standard cell approaches. At the end of 1985, gate arrays out-
sold standard cell ICs by a four-to-one margin. By 1990 it is estimated [Holl87] that
more than half of all semiconductors sold will be semi-custom designs of which gate
arrays and standard cell ICs are a major part.

There are also a number of major arguments in favor of the standard cell approach
compared with gate arrays. The ability to put an extra 20 to 30% or more of functionality
on a die using the standard cell approach often enables the system to be partitioned in
such a way as to minimize the connections to the world outside the chip. Because the
bulk of the power dissipated is often in the I/O buffers, minimization of their numbers
can drastically cut the power dissipated by the chip. Speed will also be enhanced by the
elimination of the capacitance associated with the no-longer-needed I/O buffers. Thus,

given a standard cell library and gate array macros, some researchers are working on
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converting gate arrays to standard cell designs.

Today, standard cells and gate arrays sometimes compete for a given customization
project. However, due to the shrinking feature sizes and larger die sizes, there is nothing
to prevent standard cells from incorporating gate arrays. One or more of the standard
cells in the library could simply be a gate array cell of a given size. Such an arrangement
has the advantage of permiting a chip to be designed so as to accommodate a rapidly
changing market or to accommodate a low-entry-cost product. In the future, one will see

combinations of customization techniques on one chip.

The full-custom design style incorporates maximum flexibility, and a full-custom IC
is completely made with no interruption in the manufacturing cycle. Theoretically, a
full-custom IC is one in which every transistor is designed, sized and placed appropri-
ately for the function that particular IC performs. However, in the VLSI era with as
many as two million or more transistors on a chip, a relatively small number of transistor
designs are usually used over and over again, and groups of circuitry are replicated where
possible. Because of its flexibility, full-custom design offers a number of advantages.
Full-custom chips can often be made denser and faster than their semi-custom counter-
parts, as well as offering better yield and lower power consumption. Sadly, these advan-
tages are frequently offset by the greater time it takes to design custom chips. A survey
of the IC industry [ReSS85] shows that even moderately small (2,000 gates) full-custom
chips take approximately three times as long to design as comparable semi-custom chips.

For larger chips, the differences are even more extreme.

Chips designed using the full-custom approach take longer to design mainly
because more aspects of their layout are under designer control, and the verification of
layout pieces is much more difficult. The designer creates each circuit transistor-by-
transistor, rather than from a collection of logic gates. The layout of a given circuit is not

standard, but depends on where that circuit is used on the chip. Components are often



41

connected by abutment or local hand-routing to compact the design, instead of through
standard routing channels by an automatic router. The lack of automatic tools for full-
custom design make these cells time-consuming to enter, and even more time-consuming
to verify or change.

From the above introductory sections, it is clear that there exist many logic struc-
tures and various design methodologies by which a VLSI design can be implemented.
To automate a design or verification process, one needs to have a base, namely a design
representation, to represent and record the design. Many design representations have
been proposed in the literature and actually used at different levels. In the next chapter, a
brief discussion on how a design can be represented at various levels, followed by the

logical circuit expressions at the switch level, will be given.



CHAPTER III

LOGICAL CIRCUIT EXPRESSIONS

In this chapter, the essence of abstraction and several levels of abstraction that vari-
ous VLSI design representations use are discussed. The representation scheme proposed
in this thesis, namely the logical circuit representation, is described in detail.
Approaches for generating logical circuit expressions are proposed. Unlike traditional
device listing approaches, which represent only circuit structures, logical circuit expres-
sions combine structural data with behavioral information, and thus illustrate a way to
reduce the difficulty of information transformation between bahavioral and structural

representations of CMOS circuits.

“The VLSI design process spans a broad spectrum of disciplines in many different
fields. Because of the diversity of tasks and design issues, a systematic approach to
breaking the design process into a number of design levels and subtasks is essential.
While the design of single chips with the complexity of a microprocessor is a relatively
recent phenomenon, people have been designing software systems of similar complexity
for many years. Thus, one might naturally wonder whether the experience and tools used
in software design could be carried over directly to the world of VLSL. Certainly there
are several factors in common. In both the circuit world and program world, the problem
can be characterized as one of implementing algorithms [Ullm84]. For example, the
Least-Recently Used (LRU) processing unit designed for hierarchical memory systems
[WuNi86] is principally a hardware design for the LRU algorithm. Both large hardware
and large software designs can be carried out by several designers, and coordinating

pieces of a project is always a difficult job. Another important similarity between
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software design and the world of VLSI is that designers are much more productive when
they are given high-level languages in which to express their designs. For example, pro-
grammers almost never work in machine code, and they generally prefer higher level
languages such as C and Pascal. Similarly, working at a higher-level circuit representa-
tion will relieve the designer’s burden, and therefore improve the designer’s productivity
and reduce the turn-around time of the design. Of course, it is a dangerous practice to
oversimplify the abstractions of electronic circuit behavior. Thus, the selection of an
appropriate abstraction level for individual projects is basically a trade-off between accu-

racy and productivity, and is a matter of art.

3.1. Levels of Abstraction

The virtue of abstraction is data reduction. It is a method to replace an object by a
simplified one that defines the interactions of the object with its environment, while
deleting the internal organization of the object. There are a number of different levels of
symbolic representation for MOS VLSI circuits. In order to understand the overall
design system, it helps to be aware of the many levels of abstraction that various design
representations use. The principal sorts of design representations that appear are the fol-

lowing.

Geometry Representation

Geometry languages, such as the popular layout description languages CIF (Caltech
Intermediate Form) [MeCo80] and Calma GDS II, use colored rectangles or colored
shapes as their primitives. Once a layout has been drawn it can then be digitized, or

translated into some machine-readable form. Silicon foundries take designs expressed in



these languages as inputs to fabricate the chips.

Stick Representation

In a stick diagram, transistors and vias are represented by points of a grid, and wires
are represented by widthless lines. Such stick diagrams may be annotated with important
circuit parameters such as length-to-width ratios, if needed. Information regarding the
thickness of wires and the exact positions of the points is supplied by the compiler that
translates the stick representation into geometry. A typical language can be found in
[MaNE82]. One of the significant advantages of this sort language is that it is almost
impossible to make a design rule error, since it is the responsibility of the compiler to

position elements and wires due to the higher-level abstraction.

Switch-Level Representation

Switch-level primitives are transistors and nodes, which are points connected to one
of the three terminals of one or more transistors. These three terminals are generally
called the source and drain, which are the two ends, and the gate, which separates the
source and drain. ESIM [BaTe80], a switch-level language for event-driven switch-level
simulations, is a typical example at this level. The Logical Circuit Expressions represen-
tation to be proposed later in this chapter falls into this category.

PLA Personalities and Logic Representation

The programmable logic array, or PLA, is a specialized layout style for implement-
ing switching logic and sequential machines. Truth tables and tiles are usually used to
generate PLAs in various styles [KaVa81, OuSM8S5]. This representation leads to regular
layouts and allows design to be carried out at a relatively high level. Similar to PLA per-
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sonalities, the logic level of the design process uses an abstraction of the underlying
electrical circuit in which the currents and voltages are limited to discrete levels. In digi-
tal circuits, the two levels of signals that are permissible are those that represent logic
ZERO and logic ONE. Thus, ordinary Boolean logic, while augmented with a notion of
sequentiality such as using the key word ‘‘LAST’’ in LGEN [John83] so one can refer to
the ‘‘current’’ and ‘‘previous’’ values of a variable, also forms a high-level way to
specify designs. However, with a language at the logic level, the designer has lost all

control over the layout and relative positioning of circuit elements.

Finite State Machine Languages

Finite state machine languages such as SLIM [Henn81] and PEG [Hama83] are
designed to specify the control of a microprocessor or similar chips. They can be com-
piled into logic or PLA personalities, for example. While a PLA is often a fast approach
for implementing a sequential machine, the compiler for the language must decide on the

coding of states for the machine in a way that minimizes the area of the PLA.

Procedure Languages

The extreme of high-level design languages is an ordinary programming language,
in which the algorithm to be performed by the circuit is written. The sequencing rules
for statements of the program are embedded into the control of the chip, while the vari-
ables are represented by registers. An attempt at compiling Pascal programs into silicon
can be found in [Tric85]. Procedural languages that are somewhat more specialized to
circuit design than are ordinary programming languages also exist. These languages,
often called register transfer languages, deal with registers and specify the sequencing of
actions involving these registers in terms of events at the inputs and events at other regis-

tm.
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Generally speaking, it is important to simplify the model of integrated circuitry, so
as to more quickly and easily analyze or explain the function of a given circuit, and more
easily visualize and invent new circuit structures without drifting too far away from phy-
sically realizable and workable solutions. An extremely simple model based on transis-
tor ‘‘switches’’ is proposed in [MeCo80], in which transistors are treated as valves or
switches. Many switch-level simulators such as ESIM [BaTe80, Term83] and MOSSIM
[Brya81] have similar models for analyzing circuit behavior.

3.2. Series-Parallel Network

The focus in this chapter is on circuit representation at the transistor level. Not only are
switch-level simulators based upon transistor networks, but also symbolic layout systems
such as TOPOLOGIZER [KoWe85] use a transistor connection description as input to
generate geometric layouts. As far as circuit connectivity is concerned, one of the first
attempts to list all electrical networks meeting certain specified conditions was made in
1892 by P. A. MacMahon [MacM92] who investigated combinations of resistances.
Among various switching circuits, the simplest structure is the so-called series-parallel
network.

A series-parallel network is a simple type of connection which occurs frequently in
both theoretical and applied electrical engineering. The concept of series-parallel con-
nection is intuitive, but this type of network plays a prominent role in Shannon’s well
known application of Boolean algebra to switching circuits [Shan38]. One reason for the
importance of series-parallel networks stems from the fact that the joint resistance is

casily evaluated by the following two rules due to Ohm:

(1) Resistance is additive for resistors in series, and
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(2) Reciprocal resistance is additive for resistors in parallel.
The following inductive definition of a series-parallel network is given in [RiSh42]:

Definition: A single element is a series-parallel network. A network N is series-parallel

if it is either a series or a parallel connection of two series-parallel networks.
There are also several alternative definitions of series-parallel networks [Duff65]:

(1) A network is series-parallel if it is a direct bonstruction of the series operation and

the parallel operation.

(2) Two edges x and y are said to be confluent if there do not exist two closed curves
C, and C; such that C; meets x and y in the same direction but C; meets x and y in
the opposite direction. A network is series-parallel if it is confluent; i.e., every pair

of its edges is confluent.
(3) A network is series-parallel if it does not have an embedded Wheatstone bridge.

Figure 3.1 shows a circuit with a Wheatstone bridge [Nils83]. Suppose that the
directions of f and c are chosen so that they have the same sense relative to the loop (£, b,

¢, d). It then results that f and ¢ have opposite sense relative to the loop (f, a, ¢, €).

The series-parallel combinations do not exhaust the possible networks since they
exclude all bridge arrangements like the Wheatstone bridge, but they are an important
class because of their simplicity. When the number of elements is less than five, all net-
works are sa‘ies-i:arallel. When the number of elements is exactly five, there is only one
bridge-type network, the Wheatstone bridge [RiSh42]. As the number of elements rises,
both series-parallel and bridge-type networks increase.

The series-parallel networks are interesting in themselves in another setting, namely
the design of switching circuits. In fact, most switching circuits are series-parallel in
structure, and all existing low-level synthesis tools use series-parallel networks to imple-

ment logic functions. Another property of a series-parallel network is that the direction
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t

Figure 3.1. A circuit with a Wheatstone bridge

of the current flow through a given edge is independent of the resistance of the edges of
the network [Duff65]. In Figure 3.2, the edges fand c can be replaced by a battery and a
meter, respectively, to measure the current flow through ¢ so as to estimate the resistance
of the resistors. Since the circuit is not series-parallel in structure, the measurement
obtained from the meter might be either positive or negative, indicating the direction of

the current flow through the edge.

A series-parallel CMOS switching network can be described using a symbolic
representation. Such a circuit is represented by a set of expressions, the terms of the
expressions corresponding to the various n-channel and p-channel devices in the circuit.
As far as the circuit function is concerned, a calculus is used for manipulating these

expressions by simple mathematical processes, most of which are similar to rules in the
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ordinary algebra. This calculus associated with logical circuit expressions is analogous
to the calculus of propositions used in the symbolic study of logic. Once a symbolic
representation is available, the desired functions of a synthesis problem can be written as
a system of expressions, and the expressions are then manipulated into the form
representing the simplest circuit. The circuit may then be immediately drawn from the
expressions.

Based on sen’e;-parallcl networks, a CMOS switching circuit can be partitioned into
a number of components, most of which are series-parallel in structure. The notation to

be used is taken chiefly from symbolic logic, and will be shown in the following sections.

3.3. Logical Circuit Representation

In terms of representing transistor connectivities, traditional approaches for low-
level circuit representation are mainly device listing approaches, in which circuit ele-
ments are listed one by one using nodes. For example, the commonly used circuit simu-
lator SPICE [Nage75] uses nodes and circuit elements to perform nodal analysis. The

switch-level event-driven simulator ESIM uses statements in the form of
<type > <gate > <source > <drain >

to represent transistors, where <zype > can be either p or n for p-type transistor and n-
type transistor, respectively.

Device listing approaches used at either circuit level or transistor level are really
simple, but are not suitable for describing system functions merely because they do not
supply any information about how a circuit works. In fact, the difficulty of information
transformation among various representations makes design automation systems for
VLSI circuits less mature. Much unnecessary effort is spent in transforming information

from one representation to another. In order to overcome this difficulty, we need a
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representation which combines both structural and functional information so that circuit

functionality can be easily extracted from geometric layouts and/or transistor schematics.

On the other hand, circuit schematics at the transistor level cannot be completely
specified in terms of Boolean expressions. Many parts of a circuit may not be recognized
as simple logic primitives. Some circuit blocks such as mutual exclusion elements
[MeCo80] used in arbiter designs are difficult to specify in terms of Boolean expressions
due to their nondeterministic behavior. Given a circuit schematic which contains
memory elements, pass transistor logic, and combinational gates of different logic struc-
tures, a complete description based on gate-level Boolean expressions is impossible. The
difficulty in developing a Boolean description is due to the ‘‘incomplete logic property”

of transistor-level circuit schematics.

In many CMOS logic structures, a signal at a p-n block junction of a circuit might
be in the high impedance state for some input combinations. This means that the output
of a circuit might depend upon the previous value of the gate. The clocked CMOS cir-
cuit shown in Figure 3.2(a) is a typical example, in that its output is floating if ¢ = 0. |
Thus, the function of the circuit is somewhat different from the Boolean equation z =a or
z=¢ a. Similarly, node f in the dynamic CMOS circuit of Figure 3.2(b) cannot be com-

pletely specified in terms of its inputs using a Boolean equation.

This property found in many circuits is referred to as the incomplete logic property,
which keeps the behavior of the circuits away from Boolean descriptions, and sometimes
makes a combinational gate behave like a sequential element. Thus, a representation
which is one-level below the level of Boolean description is needed so that it carries both

structural and functional information as much as possible.

Incomplete logic properties of digital circuits have been handled in many simulation
tools by means of a high-impedance state Z [Brya81, Haye84], either implicitly or expli-
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citly. Although Boolean expressions are not suitable for describing circuit functionality
at the transistor level due to incomplete logic properties, they can be used to represent

logical paths from signal sources to stage outputs.

Simple transistor switch models for describing transistor states have been widely
used for switch-level simulation. An n-type transistor is switched on if its gate signal is
logically ONE, and a p-type transistor is conducted if its gate signal is logically ZERO.
In general, these simple models offer useful information about circuit functionality.
Since the logic value at an output node of a circuit comes from its signal sources such as
Vpp and Vg, the function of a circuit can be represented in terms of paths. The function
of an output node in a circuit is partitioned into several parts, each of which has a signal
source and a simple path from the node to the source. The logic expression of a path is
determined by the gate signals of the transistors along the path.

A circuit schematic can be specified in terms of a number of nodes and their rela-
tionships. Primary source nodes are Vpp, Vss, and input sources. The connection
between two data terminals (source or drain), one from a p-type transistor and the other
from an n-type transistor, defines a junction node. However, if connections exist for both
pair of data terminals, i.e., if they are actually a pair of transistors in a transmission gate,
then both junctions are not considered as junction nodes. A gate node is defined as a
connection to the gate terminal of a transistor. All output terminals connected to the out-
side world are initially considered as gate nodes. If a gate node merges with a junction
node, the result is a junction node. Thus, the function of a CMOS circuit is specified in

terms of a set of logical circuit expressions for all gate nodes and junction nodes.

The logical circuit expression associated with a node z can be expressed in the form

of

z=Y [nng - np)vie X [P1p2  Psylvi
j k
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where z is either a gate node or a junction node, v; (v;) is either a primary source node or
a junction node reachable from z, and n; (p,,), 1 Si<r(j) (1 <m <s(k)), is the gate signal
of a n-type (p-type) transistor along the path from z to v; (vi). Note that a transistor in a
path is represented by its gate signal, and logic variables involved in simple paths are the
same as variables in Boolean expressions. Boolean laws, such as associative and distri-
butive laws, are applicable. In general, v; is reachable from z if and only if there exists
an n-type logic path [nyn3 - - - n,(j)] such that the corresponding n;, 1 < i <1(j), is neither
a junction node nor a gate node. A p-type logic path can be similarly defined. After all
junction nodes and gate nodes are identified, the entire transistor circuit is virtually
divided into a number of disjoint partitions.

Conventional logic primitives such as NOT, NAND, and NOR used as elements in
fully complementary CMOS circuits can be represented as @ = [a]0[a]l, ab =
[ab]O e [a +b]1, and a+b= [a + b]0 - [ab]], respectively. The circuit schematic of a
CMOS NAND gate followed by a CMOS NOR gate is depicted in Figure 3.3(a). Since
there is one simple n-type path from the junction node f to Vgs and two simple p-type
paths from f to Vpp in Figure 3.3(a), only one term ab is associated with 0 (Vss) and two
singular terms a and b are associated with 1 (Vpp). Logical paths in the circuit can be
casily realized. The equivalent logic diagram is shown in Figure 3.3(b), and the logical
circuit expressions are given in Figure 3.3(c).

It is clear that other CMOS logic structures have similar structural rules for estab-
lishing similar relationships. For example, the logical circuit expressions of NOT,
NAND, and NOR logic primitives in pseudo-nMOS logic are represented as a =
[a)0+ [0]1,ab=[ab]0+[0]1, and @ + b = [a + b]0 « [0]1, respectively.

Figure 3.4 shows a CMOS decision-making module containing a cross-couple cir-

cuit structure. It is a typical circuit for which the output cannot be logically defined in
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(b)

f=[abl0[a+b]l
z=[c+f]0-[cf )1

©)

Figure 3.3. A two-stage CMOS circuit: (a) transistor schematics, (b) logic

diagram, and (c) logical circuit expressions
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terms of its input signals, and switch-level simulation is difficult to conduct due to its
asynchronous timing-sensitive circuit behavior. The function of the circuit can be found
elsewhere [WuNi87]. To simplify the transistor network and provide a hierarchical
viewpoint, logic primitives such as NOR and OR gates are used ‘as well as transistors to
represent the CMOS circuit. The symbol D is used as the output of the two-input NOR
gate. In this mixed-mode circuit schematic, Ny, and N, are junction nodes, and N3, N4,
and N5 are gate nodes.

The logical circuit expressions of the circuit are listed below. Note that Gy, G3, D,

and R, are represented by Boolean expressions.

G1=(G.+N, +R))

G2 =(G:+N2 +Ry)

D =(G. +Ns)
R.=N3+N4+D
N1=[R1R2 Gc + N3]0« [N3]1
N2=[R2R G, +N1]0+ [Ny]1
N3 =[RyNz+[R,]0+

N4 =[R3N1 +[R3]0~
Ns=[R1JR; +[R1R; *

This mixed-level representation combines circuit structure and logic expressions
while most device listing approaches only provide the structure information of a circuit.
It illustrates a way to reduce the difficulty of data transformation between behavior
representation and structural representation of CMOS circuits. Compared with Boolean
expressions, logical circuit expressions can be used to describe physical CMOS circuit

structures and logical paths from output nodes to signal sources.



56

_(E G,
Ry
—R,
G_c —Ry
Ry
G, —
—G,
Ry—
R,—
cTc_.

ireuit
ing circui
o
CMOS decision-makin
A
34.
Figure




57

When logical circuit expressions are used to describe transistor connectivities, they
are referred to as structural circuit expressions, and the internal structure must be in the
topology of series-parallel networks. For non-series-parallel structures such as the
Wheatstone Bridge in Figure 3.1, awxiliary nodes are required to make the structure
separable. Consider the Wheatstone bridge in Figure 3.1. If each edge of it is, say, an n-
type transistor, then we have a n-type path between the starting node s and the node #:

s =[ad +ace + bcd + be ]t »
In the mean time, we have
s=[alA, +[b]A, *, where

A, and A, are auxiliary nodes, A} =[c]A; +[d]ecand A; =[c]A; +[e]t . Like junc-
tion nodes and gate nodes, each auxiliary node is used as a starting point from which a
logical circuit expression is constructed. However, paths from an auxiliary node to any
junction node can be discarded, because the actual conducting path is always the other
way around (from the junction node to the auxiliary node).

Similarly, while the logical circuit expressions for z and z in Figure 2.8(b) are

z=[(ba+ba)p)0+[¢]1  and

Z=[(ba +ba)p10+ [9]1,
we have

z=[bIM+[bIN+[0]l  and

Z=[bIM +[bIN « [¢]1
in terms of structural circuit expressions, where M =[a]P », N =[a]P ». Thenode Pisa
separating node, which will be described further in the next section.

The procedure for generating logical circuit expressions is given in Section 3.4.

Generally speaking, a logical circuit expression could be a structural circuit expression;
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but a transistor network need not to be series-parallel in structure. Although conven-
tional logic operators remain unchanged in structural circuit expressions, Boolean associ-
ative and distributive laws are no longer applicable. Concatenated variables represent
devices connected in series, and terms separated by ‘‘+’’ represent devices connected in
parallel. Thus, two sets of structural circuit expressions may be the same in terms of

functions but different in terms of circuit structures.

3.4. Generating Logical Circuit Expressions

Whenever a transistor is extracted from a given mask artwork, its data terminals
(source and drain) are checked for p-n block junctions and its gate terminal is marked as
a gate node. Output nodes connected to the outside world are initially considered to be
gate nodes, and input nodes of the circuit are typically signal sources and are as strong as
junction nodes. When a bidirectional path exists, two logical circuit expressions can be
obtained. During the circuit extraction process, a gate node might be combined with
other gate nodes and/or eventually linked to some node at a p-n block junction and thus
deleted from the gate node list. After all junction nodes and gate nodes are identified, the
entire transistor circuit is virtually partitioned into a number of components. Each com-
ponent is bounded by terminate nodes, which are the collection of primary nodes, gate
nodes, and junction nodes. Each gate node is then used as the starting point for finding
symbolic paths to its signal sources in the component. When a node such as Vss, Vpp,
input source, or a junction node is found along a path, it is considered to be a signal
source for the path. Paths having both true and complementary signals of the same input
in series are discarded. If a simple path is found from the starting gate node to a junction
node, edges involved in the path are in both virtual components and are therefore marked

out in the other side. After all gate nodes are finished, the searching procedure continues
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for each junction node.

Formally, a transistor network is treated as a connected graph G (V, E), where V is
the set of vertices (nodes) and E is the set of edges (transistors). It is clear that not all ver-
tices in a graph need to be exploited. In order to construct the logical circuit representa-
tion of a circuit, only junction nodes and gate nodes are used. Figure 3.5 and Figure 3.6
show the corresponding graph diagram of the circuits in Figure 3.3 and Figure 3.4,
respectively. All terminate nodes, except junction and gate nodes to be expressed, are
split as many times as needed to help visualize disjoint components and recognize paral-
lel structures, since terminate nodes form component boundaries. N-type edges are
represented by solid lines, while p-type edges are represented by dashed lines. Fill-in
bullets are junction nodes, and concentric circles are gate nodes. Note that all labels
(gate signals) associated with edges are ignored in both diagrams for simplicity, and all
dotted lines will be marked out after all gate nodes are traced.

3.4.1. Separating Nodes

Before the procedure for generating logical circuit expressions is presented, there
are a number of terms that must be defined. A connected graph G (V, E) is said to have a
separating vertex v if there exist vertices a and b, @ # v and b # v, such that all the paths
connecting a and b pass through v. A graph which has a separating vertex is called
separable, and one which has none is called nonseparable. Let V' ¢ V. The induced
subgraph G'(V’, E") is called a nonseparable component if G’ is nonseparable and if for
every larger V', V' c V" ¢ V, the induced subgraph G”(V”, E”) is separable.

In a given circuit, terminate nodes, including all primary source nodes, gate nodes,
and junction nodes, are physical limits of logical paths. Logical paths start from either a

gate node or a junction node, and end when they reach another terminate node. In order
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Figure 3.5. The virtual partitioning diagram of the circuit in Figure 3.3.

Figure 3.6. The virtual partitioning diagram of the circuit in Figure 3.4.



61

to generate logical circuit expressions, a modified depth-first search is conducted to find
separating nodes in the circuit. After all separating nodes are identified, a general pro-
cedure for generating logical circuit expressions for each nonseparable component is then
applied.

Let G (V, E) be the graph representing the transistor schematic, e (v, u) be an edge
between two nodes v and u, and P < V be the set consisting of only two nodes, Vpp and
GND. During the search process, the edge set E is partitioned into a tree edge set T,
which leads to nodes that have not yet been visited, and a back edge set B, where TN B =
@and T UB = E. Let s be the vertex from which we start the search. Either Vpp or
GND is a good choice for s. The tree edge set T and the vertex set V form a tree. For
each vertex v, other than s, the vertex f (v) from which v is discovered is called the father
of the node v. The low-point of a node v, L (v), is defined as the least number, k (1), of a
node u which can be reached from v via a possible empty, directed path consisting of tree
edges followed by at most one back edge. Note that k (v) is the node number assigned by
the algorithm for the node v.

An algorithm for finding separating vertices can be found in [Even79]. It is
modified for finding separating vertices in a transistor network. The reason for
modification is that the nodes for the power and ground lines should be treated differently
from other nodes. Otherwise it is most likely that the whole circuit is nonseparable due
to the fact that most of stages are connected to both Vpp and GND. Assume that s is the

node for the power line. The algorithm is as follows.

Separating Algorithm:

(1) Mark all the edges ‘‘unused’’. Empty the stack S. For every v e V let k(v) « 0.

Letie—0Oand v «s.
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ie~i+1,k(v)ei L(v)«iandputvonS. If vis the node for GND, go to Step
(5).

If v has no unused incident edges, go to Step (5).

Choose an unused incident edge e (v, u). Mark e (v, u) ‘“‘used’’. If k(u) # 0 which
implies that e (v, u) is a back edge rather than a tree edge, let L(v) « Min { L(v),
k (1) } and go to Step (3). Otherwise (k (k) =0, a new node is found) let f (k) « v,
v « u and go to Step (2).

If k(f (v)) =1, go to Step (9).

It is known that f (v) is not the starting node at this point. If L (v) < k(f (v)), then
L(f ¥)) & Min { L(f (v)),L(v) } and go to Step (8).

Now L (v) 2 k(f (v)) and f (v) is a separating vertex. All the vertices on S down to
and including v are now removed from S; this set, with f (v), forms a nonseparable
component.

v « f (v) and go to Step (3).

All vertices in S down to and including v are removed from S. They form with s a

nonseparable component.

(10) If s has no unused incident edges then halt. Otherwise s is a separating vertex. Let

v « s and go to Step (4).

Even [Even79] has shown that if e (u, v) is a tree edge, k(¥) > 1 and L(v) 2 k(u),

then u is a separating vertex of G. It has also been shown that in the case that k (u) = 1 (¥

is the starting node), u is a separating vertex if and only if there are at least two tree edges

out of u.

Although this algorithm is more complicated than the depth-first search algorithm

proposed in [HoTa73], its time complexity is still O (1E |). This follows easily from the
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fact that each edge is still scanned exactly once in each direction and that the number of

operations per edge is bounded by a constant.

Figure 3.7 shows a two-input arbiter design. It’s function can be found in [DiCI8S,
WuNi87]. The element marked ‘‘C’’ in Figure 3.7 is called a Muller C-element, or a C-
element for short [MeCo80]. It is a binary storage device whose output becomes ONE
when both its inputs are ONE, and becomes ZERO when both inputs are ZERO. A por-
tion of the design is illustrated at the transistor level in Figure 3.8, which includes the
mutual exclusion (ME) element, the logic elements G, G3, G3, and a Muller-C ele-
ment. The symmetric part (on the top of the schematic) in Figure 3.8 is the ME element,
which takes /; and I, as inputs, and produces O, and O, as outputs. Each separating
node except Vpp and GND is shown by a circle, and junction nodes are indicated by
squares. Note that there is no gate node in Figure 3.8.

It can be found that most nonseparable components in Figure 3.8 have only one or
two transistors. Although it is not always the case, it will be shown in the next section
that most nonseparable components are series-parallel, and therefore the partitioning
scheme is very efficient. Assume that there are n nonseparable components (n —1
separating vertices) along the path from a junction node (or a gate node) z to one of its
signal sources s. If the logical circuit expression E; is found for each individual non-
separable component C;, the resulting expression for the logical path P,_; is the AND
operation of all the logical circuit expressions. That is,

n
P:_‘ = H Ei.
i=1
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Figure 3.7. A two-input asynchronous arbiter design



Figure 3.8. Separating nodes for nonseparable components
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3.4.2. Nonseparable Components

After the separating nodes are all identified, each nonseparable component is typi-
cally small. The reason for small nonseparable components is due to the fact that circuits
are different from arbitrary graphs. Circuit structures are limited by many factors, such
as area, speed, charge sharing problems, and body effects. It is these constraints which
make circuit structure different from arbitrary graphs. For those components which have
fewer than five edges, the network connectivity must be series-parallel. In addition, there
are only ten possible structures for a two-terminal (refer to the starting node and ter-
minating node) nonseparable component with fewer than five edges. The ten structures
include the trivial case with a single edge. Figure 3.9 shows the ten possible structures,

in which s stands for starting node and ¢ for terminating node.

If each nonseparable component in Figure 3.9 is checked for parallel structures with
respect to the starting node and terminating node, all nonseparable components will
eventually become the trivial case with only one single edge. In fact, this is true for a
series-parallel structure with any number of edges, as long as the edges connected in
parallel can be separated. Thus, a nonseparable component with five elements can be
compared with the Wheatstone bridge for checking series-parallel structure, and larger
components with six or more elements may be separated by detecting parallel structures
in linear time complexity.

Although most switching circuits presented in Chapter 2 and Chapter 3 have series-
parallel structures, there are nonseparable components whose structures are not series-
parallel. In order to derive logical circuit expressions from a non-series-parallel non-
separable component, a definition of equivalence between two n-terminal networks is

needed.
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Figure 3.9. Possible structures for a 2-terminal nonseparable

component with less than 5 elements
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For two n-terminal networks, the equivalence with respect to those n terminals is
established if and only if the logical path between each pair of terminals is preserved. As
in ordinary impedance theory, there exist delta-to-wye (A-to-Y) and wye-to-delta (Y-to-
A) transformations; similar transformations exist for generating logical circuit expres-
sions. The A-to-Y and Y-to-A transformations are redefined and depicted in Figure 3.10
and Figure 3.11, respectively.

The two networks in Figure 3.10 are equivalent with respect to the three terminals
N,,N,, and N3, since we have a + bc = (a + b)(c + a) between N; and N5, and similar-
ity for the other pairs of terminals N,-N3 and N3-N;. Similarly the two networks in Fig-
ure 3.11 are equivalent with respect to Ny, N,, and N3. This follows from the fact that
ab =ab + cabc, etc.

An n-point star also has a mesh equivalent with the central junction eliminated.
Shannon [Shan38] has shown that there always exists a equivalent mesh network for a
star network. Thus, one can always apply the transformations until the network is of the
series-parallel type. To apply this to the Wheatstone bridge of Figure 3.1, first the node
A2 may be eliminated by applying the Y-to-A transformation to the star s—A;, A;—A2,
t—A,. This gives the network of Figure 3.12. The logical path from s to ¢ is then given
by

Py_y=(a+bc)d+ce)+be

=qad + be + ace + bcd.

Let S be a subset of vertices with the starting node s € S and the terminating node ¢
€ S=V-S. Then the set of edges connecting vertices of S with S is called the cut
defined by S. Logical circuit expressions of non-series-parallel structures can be also
derived from drawing all possible lines (cuts) which would break the circuit between the

points under consideration. The expression for the path is written as a product of results
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Figure 3.10. Delta-to-wye (A-to-Y) transformation
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Figure 3.11. Wye-to-delta (Y-to-A) transformation
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Figure 3.12. Equivalent network by means of transformations

obtained from those cuts, each of which is a sum. By applying this method to the Wheat-
stone bridge in Figure 3.1, we have
s=@+b)d+e)@+c+e)(b+c+d)
=(@ad+be+ae+bd)(a+c+e)(b+c+d)
=(ad +ae +bcd +be) (b+c +d)
= ad + be + ace + bcd

which is the same as the result obtained by using transformations.



CHAPTER 1V

FUNCTIONAL RECOGNITION OF
STATIC CMOS CIRCUITS

Functional recognition is an important step toward symbolic circuit verification. In
this chapter, a new approach for logic component recognition is proposed. A number of
recognition rules are developed for symbolic verification of CMOS logic circuits. Based
on functional expansion and logical circuit expressions, this approach can be applied to

various CMOS logic structures to verify logic functions.

To shorten the design cycle and to decrease design costs, it is crucial to eliminate as
many errors as possible before manufacturing an integrated circuit. There are many
chances for errors to occur in the design of a VLSI chip. The reasons why a particular
design may not work are numerous. They range from very low-level problems, such as
short circuits in the design, to high-level bugs in algorithms. Thus, many approaches
proposed in the past have been used at various levels to detect design errors. For exam-
ple, design rule checking is usually conducted in the early stage of the design process.
Physical layout rules or design rules specify the legal or illegal relationships among the
polygons used in the IC mask-making and fabrication process to implement the final cir-
cuit. During the design process of a circuit, different forms of simulation and timing

analysis can be used for the verification of the design at various stages.

One of the most common methods of computer-aided verification is simulation
[BaTe80, Bray84]. Simulation approaches verify the correct functionality of a logic
design only for the particular data simulated. The designer provides the design descrip-

tion in a form that can be simulated, specifies a set of simulation runs, and compares the

71



72

simulation results with predicted responses. In practice, a large fraction of the errors in a
design can be successfully detected using simulators, either because the user has some
intuition about what data patterns are most likely to cause difficulty, because the error
causes improper behavior for many different patterns, or because the user simulated a
large number of patterns. Even so, the user is left with the difficult task of choosing data
that will detect every design error and deciding when a sufficient set of tests have been
applied. The complete verification of a design by simulation requires exhaustive simula-
tion covering all possible combinations of states and inputs. In many cases, errors
remain undetected until well into the design process or even after the circuit has been
manufactured. Therefore, formal verification techniques which are independent of input
patterns are required in order to raise the level of confidence for the correctness of the

design and to save time and memory space.

Verification of a hardware design is the process by which a logic design is shown to
be consistent with a functional or behavioral specification of the design [Roth77,
CoVa80]. To verify the correctness of a digital circuit in a more rigorous fashion, we
need to recognize logic functions of individual circuit components so that verification or
comparison can be conducted in a higher level. For circuits described in terms of logic
gate networks, the verification process at the logic level is conceptually straightforward,
since the functions computed by a network is given by the composition of the functions
computed by the gates. Our interest, however, is in verifying CMOS circuits represented
at the switch level as networks of nodes connected by resistive transistor switches. This
is done by obtaining circuit behavior in terms of Boolean functions. By doing so, we are
able to recognize logic components in a circuit, and therefore comparison of CMOS cir-

cuits can be conducted at the Boolean logic level.
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4.1. Previous Work

Circuit verification at the algorithmic level has attracted much attention since
software verification techniques such as inductive assertions [Floy67] and temporal logic
[ReUr71, Boch82] were proposed. Many researchers [CaJB79, Darr79, CoVa80, PiSt83,
SuFr86] have tried to verify the correctness of microcode in microprogrammed
machines, and computation components such as a multiplier, either by generating arith-
metic equations from a given specification or by comparing two specifications such as
state transition diagrams. This architectural description of the target component or
machine is typically independent of the underlying technology. Therefore the verification
is conducted based on the assumptions that all basic components and/or specifications are

functionally correct.

Logic component recognition is a crucial step toward symbolic circuit verification.
Several approaches to logic component recognition for verifying functional correctness
in hardware designs have been proposed. A logic gate recognition technique for fully
complementary CMOS circuits using series parallel reduction is proposed in [TaMC82].
A circuit is first partitioned into a number of disjoint subcircuits using so-called direct
current path (or d.c. path for short) techniques. Each subcircuit is a d.c. path block,
which is defined as a collection of devices connected within the user-specified boundary
nodes. In general, Vpp and GND are the boundary nodes, and therefore a pass transistor

at the output node of a gate is part of a path rather than being a path itself.

Using this approach, the transistors in each subcircuit are classified into a
driver/pulldown part, a load/pullup part, and a transmission part. Then, series parallel
connected transistors are replaced by a newly generated transistor, and trees are con-
structed for both p-type and n-type transistor networks. In CMOS circuits, both trees are

examined and the primitive logic gates are recognized if the trees are complementary to
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each other. The complementary check is performed by examining whether or not the pair
of trees are isomorphic under the conditions that (1) corresponding parent vertices belong
to the opposite category (series versus parallel) and (2) corresponding leaf vertices have
the same labels. These constraints imply that transistor networks have to be series-
parallel in structure in order to be recognizable, and only fully complementary CMOS
gates whose p-type and n-type transistor networks are complementary to each other can

be identified. It is therefore too limited to apply for recognizing various CMOS circuits.

Symbolic simulation is another possible alternative for conventional simulation. In
conventional simulation, signals are assumed to have some initial values. The simulation
proceeds in a deterministic fashion, and the signals have known values at most times, if
not all times, during the simulation. In symbolic simulation, by contrast, no assumptions
are made about initial values. The initial values of signals are represented symbolically.
They could be Boolean variables as well as the constants 0 and 1. The advantage of sym-
bolic simulation is that it fully tests a system, while conventional simulation tests only
specific cases. On the other hand, symbolic simulation is difficult due to the need for
symbolic formula manipulation and logical deduction capable of establishing desirable

equations from original descriptions.

Bryant [Brya85], while advocating the use of Boolean algebra for symbolic
analysis, proposed a verification technique for symbolic simulation at the switch level
using path relations and Boolean matrices. A switch-level network consists of a set of
nodes and a set of transistors. Each storage node is assigned an integer size from the set
{1,2,..,k) in a highly simplified way to indicate its capacitance relative to nodes with
which it may share charge. Each transistor has a type indicating the conditions under
which it will become conducting and a strengrh indicating its conductance relative to
other transistors. Transistor conductances are modeled by assigning each transistor. an

integer strength from the set { k+1, k+2, ... , w=1 }, where w is the strength of input
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nodes. A rooted path p is a directed path in a switch graph originating at vertex Root (p),
terminating at vertex Destination (p) and consisting of a possibly empty set of edges
Edges (p), in which an edge is actually a transistor. A rooted path represents a source of
charge from its root to its destination with driving power indicated by its strength, which
is determined by the weakest transistor or node along the path. In general, the steady
state response of a node depends on a subset of paths to the corresponding vertex in the
switch graph, namely those which are not blocked. A definite path is defined as a rooted
path p such that no edge in Edges (p) corresponds to a transistor in the open state. In
addition, a path p is said to be blocked if for some initial segment p’ of p and for some
definite path g, Destination (p") = Destination (q) and the strength of p’ is less than that of
q.

Suppose we wish to compute the steady state values of a component containing
nodes { ny, ny, ..., ny } and transistors collected into sets of the form T,(i,j) consisting
of those transistors of strength greater than or equal to s having source and drain nodes »;
and nj. To account for the different strength levels, this Boolean matrix approach solves
three Boolean equations for each node n for each strength s: steady 1,(n) (respectively
steadyQ,(n)) indicating the conditions under which the node is driven to 1 (respectively
0) by a path of strength greater than or equal to s with no blocking path of strength
greater than s, and block,(n) indicating the conditions under which the node will be the
destination of a definite path of strength greater than or equal to s. The path relation P is
defined as m P n if there is an unblocked path p in the switch graph with Root (p)
corresponding to node m and with Destination (p) corresponding to node n. Then the
steady state response on node 7 is given by the equation

steady (n) = l.u.b. { state(m) | m P n )

where L.u.b. represents the least upper bound over the ordering 0 < X and 1 <X, and 0, 1,
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X are three possible states for each node. The steady state response for a component in
such a network is then expressed in terms of Boolean matrix and operations for all inter-

nal nodes.

This verification approach tries to capture circuit behavior for a given time instant,
since the steady state response of a node depends upon a subset of the paths to the
corresponding vertex in the switch graph rather than all possible paths. In addition, the
assignment of storage sizing and transistor strength is not only very difficult but also
lacks accuracy. However, it is claimed that the same effect as the switch-level simulator
MOSSIM II [Brya84] does is achieved by solving three equations in an algebra of path
strengths for each node.

4.2. Functional Expansion and Recognition Rules

In this section, a new method for logic component recognition of CMOS circuits is
proposed. This approach can be applied to various CMOS logic families, such as fully
complementary CMOS, pseudo-nMOS, pass transistor logic, and DCVS (Differential
Cascode Voltage Switch) structures. In addition to simple logic gates, storage elements

and circuit components using tightly-coupled structures can also be recognized.

To recognize various CMOS logic circuits, the following rules are used to extend
logical circuit expressions for further applications. Justifications for the rules are also
provided.

Rule 1:
If a node z =[a]b *, does not have high-impedance states and signal conflicts

for any its input combination, then it is equivalent to z = [aI;]O . [37] 1,ie.,

R1l: z=[a]be=[ab]0-[ab]l.
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Justification: If g is zero, the n-type transistor is disconnected, and the logic value of z
depends on other simple paths. In this case both the paths [ab] from z to
Vss (0) and [EE] to Vpp (1) are open, thus the logic value of z is indepen-
dent of b. If a is one, the n-type transistor is conducting, and the logic
value of z depends on the value of b. In this case z is rewritten as
z = [b]0 « [b]1, which shows z = b.

Rule 2:

If a node z=+[alb, a # b, does not have high-impedance states and signal

conflicts for any its input combination, then it is equivalent to

z =[ab]0 « [ab]1; ic.,

R2: z=-+[a]b=[ab]0+ [ab]l.

Justification: If g is one, the p-type transistor is disconnected, and the logic value of z
depends on other simple paths. In this case both the paths [@b] from z to
Vss (0) and [ab] from z to Vpp (1) are open, which makes z independent
from b. If a is zero, the p-type transistor is conducting, and the logic
value of z depends on b. In this case z is rewritten as
z =[@b]0 « [ab]1 = [b]0 + [b]1, which is equivalent to z = b.

If the gate and source signals of a transistor are the same or complementary to each
other, results from Rule 1 and Rule 2 can be further simplified. For example, in the case
of a = b, we have

z=[alb-
=[ab]0 - [@b]1
=+[al

for n-type transistors, and
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z=e+[alb
= [ab]0 + [ab]1
=[a]0
for p-type transistors. Similarly, in the case of a = b, we have
z=[alb-
= [ab]0 * [@b]1
=[a]0-

for n-type transistors, and

z=e+[alb
= [@b]0 * [ab]1
=e[a]l
for p-type transistors.

By using these two rules, one can always perform functional expansion for a given
logical circuit expression to see if the circuit component is recognizable. In order to gen-
eralize the recognition procedures, one needs to exploit pseudo-nMOS and fully comple-
mentary CMOS logic structures.

Pseudo-nMOS logic plays an important role in many CMOS designs such as PLA
implementation for finite state machines in order to minimize body effects and nodal
capacitances due to long interconnections. This CMOS logic structure introduces a
pullup node [Brya81], which is defined as a node connected via a pullup transistor (a
depletion-mode n-type transistor in nMOS technology or a grounded p-type transistor in
pseudo-nMOS logic) to Vpp. A pullup node is never trapped into a high-impedance
state. It is considered to have a logic value one unless grounded. Thus, pseudo-nMOS
circuits do not have high-impedance states as is found in other CMOS logic structures,

and the function of a pseudo-nMOS logic gate depends upon its n-type network. The fol-
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lowing rules are used to formally indicate properties of pseudo-nMOS logic, and the state
of a pullup node can be expressed in terms of the associated rules:

Rule 3:

If there is a grounded p-type transistor which connects a node z to the node
Vb, other p-type paths to the same source node (Vpp) is of no use in terms of

logic functions; i.e.,

R3: z=¢[0+P;+Py+ -+ +P,]1 =¢[0]1 where P; is a simple path reachable
from z to Vpp.

Justification: As far as the logic function is concerned, one conducting path will do the

same thing as two or more conducting paths emitting from the same signal

source. Thus Rule 3 is true in the sense that logic value ONE is the same

as logic value ONE plus logic value ONE.

Similarly, a conducting n-type transistor which connects a node z to the node Vgg

has the same effect as two or more conducting paths. Therefore we have the similar rule:

Rule 4:

If there is a conducting n-type transistor which connects a node z to the node
Vss, other n-type paths to the same source node (Vss) is of no use in terms of

logic functions; i.e.,

R4: z=[1+N;+N;3+ ‘- +N,]0+=[1]0 * where N; is a simple path reachable
from z to V.

The nice thing about logical circuit expressions is that they are ‘‘compatible’’ with
Boolean expressions: the expressions for n-type paths have the same properties as
Boolean expressions, and those for p-type paths also have the same properties except that
cach variable is evaluated by its complement. The other important property of pseudo-
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nMOS logic is that the function of a pseudo-nMOS logic gate depends upon its n-type
network. This property is expressed in Rule S.

Rule §:

If a node z has a conducting p-type path to Vpp, then a Boolean expression can
be directly obtained from its n-type paths. The Boolean function is actually

the negation of the expression for its n-type block; i.e.

RS: z=[fp]0+[0]1 =f_o where fy is the sum of expressions for all n-type paths
from z to V.

Justification: If fg is O (logic value ZERO), which implies that there is no conducting
path from the node z to the node Vg, then the voltage at the node z will be
at the high-voltage range (logic value ONE) due to the grounded p-type
transistor. On the other hand, if fg is 1 (logic value ONE), which implies
that there is a conducting path from node z to Vg, then the voltage at the
node z will be pulled down to the low-voltage range (logic value ZERO).
Thus, the logic function at node z depends upon the n-type paths and it is

the negation of the expressions for the n-type paths.

Fully complementary CMOS structures have many advantages, such as low power
consumption and high noise margins, over other CMOS logic families. The ‘‘logical
redundancy’’ property [MylIv85] of fully complementary CMOS circuits can be applied
to recognize logic functions after the logical circuit expression of each circuit component
is expanded.

Rule 6:

The complement expression f’ of a Boolean expression f is defined as an
expression which is the same as f except that all logic variables and constants

in f are substituted by their complements in f’. Let fo and f; be the
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expressions for the n-type and p-type paths of a logical circuit expression,
respectively (z = [fo]0 * [f1]11). Iff_o = fy’, then the function at the output
node z is given by z = fy = f"; i.c.,

R6: z=[fol0[fill=fo  iffo=f1’

Justification: Since a p-type transistor is conducting when its gate is connected to a
logic signal ZERO, the expressions for p-type paths are evaluated in a way
similar to Boolean expressions but using complement variables and con-
stants. The Boolean expression f;’ actually specifies the close/open
(connected/disconnected) state of the p-type paths, while the other expres-
sion fo specifies the close/open state of the n-type paths. Thus, the neces-
sary condition fo=r1 1" implies that the p-type and n-type paths reach their
close states in a mutual-exclusive fashion: for each conducting n-type
path the same input pattern will disconnect all possible p-type paths, and
for each conducting p-type path the same input pattern will disconnect all
possible n-type paths. Therefore the function of z is completed without
signal conflicts.

There exist cases in which logic gates are tightly-coupled and none can be recog-
nized as a logic primitive using previous rules from a single logical circuit expression.
This situation arises especially in DCVS logic structures. By converting all p-type
transistors of a fully complementary CMOS gate to n-type transistors with complemen-
tary gate signals and adding two cross-coupled p-type transistors, it is always possible to
obtain both true and complementary values of the original logic function. Sometimes the
number of transistors and/or the cell area can be reduced using this technique. Based on
logical circuit expressions, this design technique is described below.

Rule 7:
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Given f = g and a cross-coupled structure with logical circuit expressions x =
[f]0<[y]1 and y = [g]O0 ¢ [x]1, the expressions of x and y are functionally
equivalent to two separate logical circuit expressions given by x =[]0 [f]1
=fandy=[g]0-[g]1 =F;ie.,

R7: x=[f10+[y]1=(f10[f]1=Fandy=[g]0[x]l = [g]0°[g]1 =2 pro-
vided that f=¢ ‘
Justification: The expression x = [f ]0 * [y]1 indicates that the output node x has logic
value ONE if both y and f are ZERO, and has logic value ZERO when the
Boolean expression f is ONE. By examing the signal sources of the
expression y = [g]0 ¢ [x]1, we know that y will have logic value ZERO
when the Boolean expression g is ONE. This implies that x may have
logic value ONE if g is ONE. In this case, if fis ZERO, then x is ONE.
From f = g, it is clear that x will have logic value ONE if f is ZERO.
Thus, we have x = [f10[y]1 =[f10[f]1 =?. The same argument is
applied fory=[g]0[x]1=[g]0+[g]l =3.
Both expressions for x and y are in the form of pseudo-nMOS logic. In the case of f
# g, the voltage at node x and node y might be in the low-level voltage range at the same
time but never in the high-level voltage range at the same time, since a p-type transistor
is ON when its gate voltage is 0 and a pullup node is considered to have a logic value
ONE unless grounded.

Rules derived in this section are generally applicable, rather than being useful only
for certain kind of logic structure like the approach given in [TaMC82]. This approach
based on logical circuit expressions is also much simpler than approaches such as the
Boolean matirx method mentioned in the previous section. A number of examples given

in the next section are used to illustrate the usefulness of these rules.
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4.3. Static Logic Component Recognition

To illustrate these techniques for static CMOS circuits, consider the logical circuit
expressions of the circuits shown in Figure 4.1 and Figure 4.2. By applying R1, R3, and
RS, the function of the logic circuit in Figure 4.1 can be verified through a sequence of
steps:

z=[bla+[a]b «[0]1
=[ba +ab]0 « [0+ ba +ab]1
= [ba +ab]0 + [0]1

= ba + ab.

The mutual exclusion element depicted in Figure 4.2 contains two logical circuit
expressions for nodes p and g, respectively. Since the circuit has a cross-coupled struc-
ture with two NOR gates (the same as a basic RS flip-flop), the outputs A; and A, cannot
be expressed in terms of R and R,. Instead, the rest of the circuit is verified using logi-
cal circuit expressions:

p=[bla - [0]1
= [ba]0 « [0+ ba]1
= [ba]0 « [0]1
=ba=a+b

and

q=[alb-[0]1
=[ab]0 « [0+ @b]1
=[ab]0 -« [O]1
=ab=b+a.

Since node a and node b will never be one at the same time, node p and node g will not
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Figure 4.1. A pseudo-nMOS XNOR circuit

Figure 4.2. A mutual exclusion element
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be zero simultaneously. This in turn ensures that node A; and node A, will not rise to

high at the same time; thus, the mutual exclusion operation of the circuit is achieved.

Pass transistor logic is commonly used in many CMOS designs. Transmission
gates, for example, are popular in that they maintain good logic levels while reducing
chip area. Two CMOS circuits containing transmission gates have been depicted in Fig-
ure 2.9. The circuit in Figure 2.9(a) is a XOR gate consisting of a transmission gate and
an inverter structure. This circuit is used to perform the exclusive-OR function when
both true and complementary values of one variable are available. The other circuit in
Figure 2.9(b) is a two-input multiplexer consisting of two transmission gates.

To validate the circuits in Figure 2.9, they are specified in terms of logical circuit
expressions, and then the n-type and p-type paths are manipulated using general Boolean
algebra and rules derived in Section 4.2. Node fis verified by:

f=[bla+[albe[bla+[ald
=[ba + @b + ba + ab]0 + [ba +ab + ba + ab]1
= [ba +ab]0 « [ba + ab]1

= ba + ab.
Node g can also be verified through a sequence of steps:
g=[cla+[clbelcla+[c)b
=[EE+CB+EE+CI;]0' [cZi+El7+cZi+EI;]l

=[cad+ch]0-[ca +cb]l

=Ca+cb.
Two tightly-coupled two-input static XOR/XNOR gates using CMOS DCVS logic
structures are depicted in Figure 4.3. In fact, the circuit in Figure 4.3(b) is a simplified
version of the circuit in Figure 4.3(a) such that the number of transistors is reduced.

These circuits offers both the true and complementary values, in a way similar to that a
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flip-flop does.

These two circuits have the same static function, and their logical circuit expres-
sions are also the same. On the other hand, their circuit connectivities are different.
Therefore they have different structural circuit expressions. Note that the circuit in Fig-

ure 4.3(b) has two auxiliary nodes, but the one in Figure 4.3(a) with series-parallel n-type
networks does not have any auxiliary nodes.

To recognize the function of these two circuits, one first checks if ba + ba is the

same as ba + ba. Since they are the same, rule R7 is applicable:

x =[ba+bal0e[y]l =ba +ba

y =[ba +ba)0e [x]1 =ba + ba.

which validates the functions of x and y.

4.4. Recognition of Storage Cells

Static storage cells such as flip-flops, buffers, and memory elements are partitioned
into two subcircuits during the circuit partitioning step. Each subcircuit forms a logical
circuit expression and takes the output of the other as one of its inputs. Thus storage cell
recognition is achieved by finding nested logical circuit expressions in consecutive

stages.

Figure 4.4 shows a two-input Muller-C element using pseudo-nMOS logic structure.
The Muller-C element found in many self-timed systems is a binary storage device. Its
output becomes ONE only after all of its inputs are ONE, and becomes ZERO only after
all of its inputs are ZERO. The logical circuit expressions for the two subcircuits of the

Mullér-C element are
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Figure 4.3. Two 2-input DCVS XOR/XNOR gates with the same logical circuit

expressions x = [ba +bal0 e [yllandy = [b@ +bal0 e« [x]1
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p=[ab +q(a +b))0- [0]1, and

g=[p10-[0]1,
respectively. It can be seen that the junction node p is taken as an input in the logical cir-
cuit expression of node ¢ and vice versa. If the logic function of each subcircuit can be
recognized, the storage cell function can also be recognized. In this example, we have
p= m and ¢ =p. By replacing p by its logic function and making ¢ a func-

tion of time, we have q,,1 =ab + g,(a + b).

q

. |
b—-i a—| I_b

Figure 4.4. A pseudo-nMOS Muller-C element

D flip-flops are commonly used as storage elements in many static CMOS circuits.

The transistor structure of a D flip-flop is depicted in Figure 4.5.

Once the logic function of each subcircuit is recognized (in Figure 4.5, ¢ = ¢2 +p

and p = ¢d + q), we can recognize the function of the binary storage cell by substituting

one variable and making the other a function of time. Thus, for the D flip-flop in Figure
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Figure 4.5. Transistoi' schematics of a static CMOS D flip-flop
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4.5, we have

q=¢d+p=(0+d)p,
and therefore

Gns1 = (0 +d) (0d + gn) = 0q, +d0.

Based on logical circuit expressions, recognition of many other storage cells which
were difficult to recognize before due to tightly-coupled structures becomes possible.

In general, this recognition technique can be applied to the schematic comparison
problem described in the previous chapter, and is also useful in the field of reverse
engineering. Reverse engineering in the field of VLSI design is a process which takes an
existing but unknown circuit artwork as input, and generates a higher-level description,
such as a schematic capture. With the power of this recognition technique, the reverse

engineering process can be significantly simplified.



CHAPTER V

COMPARISON OF CMOS TRANSISTOR
SCHEMATIC NETWORKS

Schematic comparison deals with comparing two circuit schematics, in which one
extracted from the layout, and the other specified by the designer. This chapter shows
how logical circuit expressions can be used for CMOS transistor schematic comparison.
Traditional graph matching algorithms for schematic comparison are too rigid to match
functionally isomorphic schematics, while other approaches such as switch-level simula-
tion suffer from tremendous computation overhead. In this chapter it is shown that the
use of logical circuit expressions can help significantly to reduce the difficulty of the
comparison process.

Verifying IC layouts against their schematics is a tedious task. Many methods have
been developed for verifying the extracted circuit connectivity. One of the common
approaches is to simulate the extracted circuit using a switch level simulator and to com-
pare the results with the expected input-output responses [BaTe80, Brya81]. Although
no reference connectivity description is needed and no restrictions are imposed on the
design methodologies, this method provides little indication for error locations. In addi-
tion, this technique becomes impractical when circuits consist of more than a few
thousand transistors, especially when many layout errors exist. Thus, circuit comparison
between the layout and the specification of the circuit is considered essential for validat-

ing layouts created manually or by, for example, a silicon compiler system.

When circuits are verified as they are laid out through circuit comparison, errors

may be found early in the design cycle, and thus the impact of layout change is more

91



92

easily managed. To date, most existing netlist comparison methods based on graph iso-
morphism are capable of matching topologically isomorphic circuits [EbZa83, SpNe83].
Hierarchical modeling and randomization techniques are used [TyEI85] to speed up the
comparison process, and graph automorphism introduced by swappable terminals is also
considered [TyEI85, KoMc86]. However, these capabilities are limited since a good cir-
cuit comparison approach should be able to recognize other types of disagreement which
do not change the electrical or logical isomorphism of the circuits. Recently, another
approach [Shir86] considers functionally isomorphic circuits as well as topologically
identical structures. This approach assumes that two functionally isomorphic networks
may differ topologically through subcircuit permutation and/or repetition. An algorithm
based on graph connectivity is used in which each subcircuit is initially represented by an
arc, and permutation/repetition is performed on the graph to match two transistor net-
works.

The approach for circuit comparison presented in this thesis is different from others
in that comparison between an extracted circuit and its specification is based on logical
circuit expressions instead of graphs. This representation is able to handle both transistor
and gate-level circuit schematics and can help to reduce the difficulty of data transforma-
tion between behavior representation and structural representation of CMOS circuits. By
using logical circuit expressions which consist of Boolean expressions, the designer can
represent a CMOS transistor schematic network in the logical circuit representation. As
far as circuit functionality is concerned, logic expressions are independent of circuit
structures, design styles and underlying technologies. The Boolean comparison approach
developed at IBM [SmBHS82] has been recognized as a useful tool for verifying logic
designs. Although IBM’s approach aims at high-level circuit verification, it demon-
strates the usefulness of logic expressions for circuit verification. Since a logic expres-

sion imposes no constraints on how a circuit is built, it can not only handle all possible
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subcircuit permutations and repetitions, but it can also match circuits with identical func-

tions but different logic structures.

5.1. Functional Isomorphism

The approach at the circuit level is to compare the extracted transistor network with
the intended structure. In doing the comparison at this level, a designer should take cer-
tain permutations into account so that circuits with different topologies can be recognized
to be the same as the original specification. Pins on elements, for instance, can be per-
muted with no change in the electrical or logical function of the network. Therefore pin
permutation is allowed in circuit comparison.

Most existing methods for netlist comparison handle topologically isomorphic net-
lists based on graph connectivity. For example, Takashima et. al. [TaMC82] use a
digraph representation for graph isomorphism testing. All vertices of the two graphs are
partitioned into several vertex groups according to the in-degree, out-degree and the type
of each vertex. In general, since the graph isomorphism problem is believed to be
intractable [Hoff82], it would seem that development of an efficient algorithm for netlist
comparison is infeasible. Thus, heuristics based on signature analysis are usually used
for graph isomorphism checking [EbZa83, SpNe83].

In addition to the intractable graph isomorphism problem, two functionally iso-
morphic networks may differ topologically in the following ways:

(a) subcircuit permutation,
(b) subcircuit repetition, and
(c) functional transformation.

First of all, devices connected in series may exchange their positions. Figure 5.1

shows two circuits which differ from each other through subcircuit permutation. The two
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pseudo-nMOS gates are functionally identical but topologically different. Permutation
might occur at various levels. In this example the input signals a and b are exchanged,

and two pieces of subcircuits in series are also permuted.

In addition to subcircuit permutations, different counts of the same subcircuit in two
circuit schematics might be encountered due to subcircuit repetition. Figure 5.2 shows
two static CMOS NAND gates. Their functions are identical, although they are topologi-
cally non-isomorphic.

A general case comes from functional permutation, which is a super set of subcir-
cuit permutations/repetitions. In general, it is possible that when translating the original
circuit diagram into mask artwork, the designer performs a logically equivalent transla-
tion in order to reduce chip area or to improve electrical performance. Figure 5.3 illus-
trates two pseudo-nMOS XOR circuit schematics. Their transistor connectivities are

obviously different, but their functions are the same.

The approach using logical circuit representation decomposes a circuit based on
symbolic paths from internal nodes to signal sources. Since paths are grouped together in
terms of signal sources, comparison between two circuits is shifted to the logic domain,

and Boolean logic comparison is therefore applicable.

Logical circuit expressions for the schematics shown in Figure 5.1(a) and Figure
S.1(b) are

u=[ab]0+[c]IM «[0]1
=[ab + cd + ce]0 « [0]1, and

v=[balO+[d+e]N [0]1
=[ba +dc +ec]0 - [0]1,

respectively, where M =[d +e]0*and N =[c]0-.
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(b)

Figure 5.1. Two pseudo-nMOS gates through subcircuit permutations
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Figure 5.2. Two static CMOS NAND gates through subcircuit repetition
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Figure 5.3. Two pseudo-nMOS XOR gates through functional transformation
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Similarly, the static CMOS NAND gates in Figure 5.2(a) and Figure 5.2(b) are

represented as
x=[ab]0*[a +b]1, and
y =[ab +ab]0 e [a + b]1.

After internal separating nodes, such as nodes M and N in Figure 5.1, have been
expanded along the logical paths, comparisons between two networks of the same type
are performed using logic manipulation. Boolean expressions in logical circuit represen-
tations indicate paths from an output or intermediate node to various signal sources. The
corresponding expressions in two networks of the same type are then checked for logical
equivalence.

The logical circuit expressions of the CMOS XOR gates in Figure 5.3 are

f=[ab+abJ0+[0]1
and

g=[@+bWN - [0]1

=[@+b) (@ +b)0- [0]1,

respectively, where N =[a + b]0 . Since

ab+ab=@+b)(a+b)
we have f = g, which matches the outputs in Figure 5.3(a) and Figure 5.3(b). From this
example, we know that there are many different ways to construct such a circuit to per-

form the exclusive-OR operation, and the approach using logical circuit expressions is

exactly the right choice for comparing their functions.

In order to speed up the comparison process, one can use hierarchical processing if
extra information, such as Signal Correspondence Record lists [SmBHS82], is available.

Hierarchical processing allows one to compare parts of the circuits without having the
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schematic and layout completed for the entire design. If each level of a hierarchy con-
tains information about no more than k junction nodes and gate nodes, and F (k)
represents the expected required time to compare two descriptions containing k structural
logic expressions, then the time for comparison reduces to F (k) logi(n), where n is the

total number of structural logic expressions in the circuit.

5.2. Comparison of Boolean Expressions

There are several different ways to verify logical equivalence. The Differential
Boolean Analyzer (DBA) in IBM’s Boolean comparison approach [SmBH82], for exam-
ple, examines the NAND operation of two gate-level Boolean equations. Assume fand g
are the two functions to be compared. They are obtained from a segment builder for the
reference model and the hardware function, respectively. Let z =fg. The algorithm
proceeds by assigning constant values (zero or one) to the inputs of the two functions,
one at a time, in a way similar to Binary Decision Diagrams [Aker78]. Thus a binary
tree can be constructed. Any input combination which leads to f # g will have z =1,
indicating a counterexample to equivalence. An input combination which contains
‘“‘don’t care’’ terms and leads to z =0 will be examined further. It is reported that this
technique has been successfully used on the IBM 3081 with approximately 500,000 cir-
cuit elements, in which Boolean comparison runs are made for individual hardware

modules of approximately 30,000 circuit elements each.

Another simple approach is to expand the two Boolean equations with the same
source signal into truth tables and check corresponding rows at the same time. To speed
up the process one can express one function in sum-of-products form and the other func-
tion in product-of-sums form. While the former is compared to logic one (1), the latter is

checked for logic zero (0). Roughly half of the computation time can be saved. A coun-
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terexample to equivalence is then detected when a mismatch is found in a row.

Since the Boolean comparison problem is known to be NP-complete [LePa81], one
might anticipate that execution times would increase exponentially with the input size.
However, circuit structures are limited not only by performance constraints such as area
and speed, but also by electrical constraints such as the charge sharing problem and body
effects. When complex structures with a large number of inputs have to be implemented,
the best speed performance may be obtained by using stages where the number of inputs
ranges from about two to five [WeEs85]. As the size of the transistor network increases,
the circuit is subject to the charge redistribution problem and body effects due to the
circuit’s internal node capacitance. Many design engineers, therefore, consider circuits
with more than three or four serial connected transistors to be poor designs. Thus, the
number of variables involved in a logic path is typically small, and the exponential time
complexity is thus affordable at this level of granularity.

Symbolic processing using simplification rules can help to reduce the time complex-
ity [SrAg86]. Assume f and g are defined as before. Equations f and g are said to be
equivalent if and only if f ®©¢g =?g +f g =0. Both fand g derived from circuit struc-
tures are expressed in sum-of-products form by applying the Boolean distributive law;
and the complements of f and g are expressed in product-of-sums form using the
DeMorgan’s law. Simplification rules are then used to minimize ?g and fg. Although
the resulting expressions might need to be expanded into individual product terms to see
if they can be canceled out, the simplification rules are useful to speed up the Boolean

comparison process since the resulting expressions are usually simpler.
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5.3. Comparison Beyond Logic Structures

In many cases the functionality of a circuit is the major concern of the design. As
long as circuit delays, area, and electrical parameters such as power consumption are
tolerable within a certain range, various designs for the same circuit module based on dif-
ferent logic structures are allowed. For example, pseudo-nMOS NOR gates might be
replaced by static CMOS gates and vice versa. In order to recognize and compare circuit
functions of different logic structures, circuit pre-processing such as logic gate recogni-
tion is required to construct two circuits of the same type or to generate logic level
descriptions.

Logical circuit representation exactly meets this requirement, since it is compatible
with traditional logic descriptions at the logic level. Whenever it is convenient, the out-
put of a logic gate can be expressed in terms of a standard logic description, such as
using f=m instead of f=[a +b]0 « [ab]]l, so that logic manipulations at the gate
level are possible.

Figure 5.4 shows a two-stage static CMOS XNOR gate. Since paths from the out-
put of a static CMOS gate to Vpp and Vgg are complementary in logic, a single rule is
used to reconstruct static CMOS circuits using pseudo-nMOS logic. Assume
f=1[fol0*[f1]1, where f and f; indicate simple paths from the output node f of a static
CMOS gate to Vgg and Vpp, respectively. The complement expression f’ of a Boolean
expression f is defined as a Boolean expression which is the same as f except all logic
variables and constants in f are substituted by their complements in f*. If f; is logically
the same as f;’, then f; can be substituted for by a constant O for further comparison.

Thus, we have

F=0fol0° [f1]1 =[f(]0~ [0]1
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provided thatf_o=f1'. In fact, the function fcan be obtained asf=E whcnf(; =f1’.

In Figure 5.4, the static CMOS XNOR circuit is expressed by

f=[ab]0+[a +b]1

z=[f@+b)]0[f+ab]l
using logical circuit representation. Since it is found that f;"=@+b=f, and
2y’ =f+ (@b) =z, we have

f=[ab10+ [0]1 = ab, and

z=[f(@+b)I0+[0]1 =f (@ +b).

The resulting circuit structure is shown in Figure 5.5, which is comparable with other cir-
cuits using pseudo-nMOS logic.

To expand the above approach for comparison beyond logic structures, one needs to
generalize the basic properties of n-type and p-type transistors. The functional recogni-
tion techniques proposed in Chapter 4 are very suitable to apply. Thus, the comparison
process may be conducted at the logic level.

5.4. Comparison Hierarchy and Binding

One of the advantages of using logical circuit representation for connectivity com-
parison is its compatibility with higher level functional descriptions, since each simple
path is represented by a traditional Boolean expression. When circuit functionality is the
major concern of the design and the function of several consecutive stages have been
recognized, the whole block can be treated as a black box with a number of Boolean
equations for specifying its input-output relationships. Thus, our approach combines

three levels of comparison:



Voo "
] ,-:J’ \g = i
"I l_ l_b

103

_.l ‘ 2
a-l I—-b

Figure 5.4. A two-stage static CMOS XNOR gate
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Figure 5.5. Two-stage pseudo-nMOS XNOR gate
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(1) At the transistor level, circuits to be compared are described in terms of logical cir-
cuit expressions based on individual disjoint components. Subcircuit
permutations/repetitions and functional permutations are considered at this level by
means of symbolic path analysis.

(2) Different CMOS logic structures for the same function may be allowed for the gate
level comparison. This usually requires additional rules for gate recognition. The
number of logical circuit expressions are still the same for both circuits provided
that the circuits are identical. Static CMOS gates can therefore be compared with

pseudo-nMOS gates and vice versa.

(3) The comparison at the block level checks if two corresponding black boxes are logi-
cally identical. Thus, logical circuit expressions are replaced by Boolean equations,
which specify the relationship between the input and output nodes of the black box.
The number of original logical circuit expressions might be different, but the
number of Boolean equations (or the number of outputs for the corresponding black
boxes) are the same.

Binding is an important procedure in the circuit comparison process. After two cir-
cuit schematics are specified in terms of logical circuit expressions, corresponding nodes
have to be identified on a one-to-one basis. The combination of comparison and binding
is basically a searching procedure, as the approach proposed in [SmBHS82] for Boolean
comparison. A simple heuristic is to first compare the logical circuit expression with the
most number of variables in each set. Nodes with the same logical circuit expression are
bound and put on a list. If a correspondence list such as the Signal Correspondence
Record (SCR) list in [SmBH82] is available, the comparison process can be further
simplified, and it is then possible to conduct parallel processing during the comparison
process.
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Errors occur when a logical circuit expression in one circuit does not occur in the
other circuit. Errors are then detectable by looking through the mismatch between the

schematic and the layout.



CHAPTER VI

CMOS DESIGN AND VERIFICATION
USING LOGICAL PREDICATES

Based on logical circuit expressions, a novel circuit representation using logical
predicates is proposed to describe the connectivity of a CMOS series-parallel transistor
network. A context-free grammar is proposed for constructing series-parallel networks,
and a pushdown automata is developed for recognizing strings generated from the
context-free grammar. Thus, the synthesis and verification processes for CMOS series-
parallel transistor networks can be done in linear time. ITP (Interactive Theorem
Prover), which was developed at Argonne National Laboratory, is used to demonstrate
the capability of the approach.

Circuit synthesis and verification are major goals in design automation. A tradi-
tional approach to ensure the correctness of a physical layout is to simulate the extracted
circuit using a switch level simulator and then compare the results with the expected
input-output responses [BaTe80, Term83]. On the other hand, a more recent approach,
formal verification, is input-pattern independent and is designed to guarantee functional
equivalence between two representations of the design at different levels. Since the use
of logic verification increases the level of confidence in the design, verification becomes

increasingly important as the complexity of IC design grows [NeSa86].

Circuit synthesis is viewed as the process of transforming a high-level design
specification into a low-level design specification that includes more structural details,
leading to the physical design of the IC. Much previous work has been concentrated on

the gate or higher levels. For example, local transformations [DaJB81] is a logic
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synthesis approach based on gate-level circuits. Recently similar work [GrBD86] has
used a set of rules to optimize the logic circuitry and to automate the design process.
This approach basically considers gate-level optimization by converting gates from one

type to another or by rearranging components to improve area and timing constraints.

Subrahmanyam [Subr86] has proposed a method for low-level automated synthesis
using predicates. For a n-input function, a predicate requiring 2" + 1 arguments is
needed. Such a logic predicate has different argument lengths for various logic func-
tions, and therefore it is difficult to manipulate. In addition to the predicate representa-
tion, a designer has to derive a set of axioms for any given Boolean expression. Even a
simple circuit like a CMOS inverter needs three axioms as well as eight demodulators
(i.e., rewrite rules) and two support rules supplied by the designer. That is not attractive
since the time spent in developing the axioms might be longer than building a cell for a
cell library. It is difficult for a designer to generate axioms for all Boolean functions in
his/her design. Thus it is almost impossible for a designer to build a medium- or large-
sized circuit using this scheme.

An alternative way to drive the inference engine is developing general rules and
describing a function in terms of Boolean expressions. What is needed is a set of axioms
and/or demodulators which is generally applicable so as to generate all necessary func-
tions for a given CMOS logic family. Different supports which describe necessary logic
functions are then used to drive the inference engine in order to generate circuit
schematic diagrams.

In this chapter, a novel approach using logical predicates is proposed for design and
verification of CMOS logic circuits. Based on the same concepts as logical circuit
expressions, logical predicate representation shows an approach when taking implemen-
tation into consideration. The Interactive Theorem Prover (ITP), written in Pascal and

developed at Argonne National Laboratory [LuOv84], is used to demonstrate the
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approach. Although the primary target technology is CMOS, it is believed that these
techniques can be applied to other MOS technologies as well.

6.1. Using Logical Predicates

Predicates are used to specify relationships among object arguments. They are
basically functions that map object arguments into TRUE or FALSE values. In this
chapter, predicates are used to describe CMOS circuit connectivities at the transistor

level and to form a basis for a rule-based system.

A total of five predicates are needed to describe CMOS logic circuits, as listed in
Table 6.1. The drain and the source of a MOS transistor may be viewed as two switched
terminals. Since MOSFETSs are symmetric in nature, the drain and the source are inter-
changeable. They are physically equivalent, and the name assignment depends on the
direction of current flow. Circuit outputs are represented using the predicate CK (x, y) to
emphasize primary outputs and outputs from internal stages. The predicate CK (x, y) is
also used to drive reasoning procedures in circuit verification. In this tree-structure
representation, the number of transistors in a circuit is the same as the number of dn and

dp predicates used in the circuit description.

A fully complementary CMOS gate consisting of a network of p-type transistors
(the load circuit) and a network of n-type transistors (the driver circuit) is depicted in
Figure 6.1. This circuit shows an implementation of the Boolean expression z =

ab +bc +ca using FCMOS logic.

In representing a CMOS circuit using logic predicates, signals generated from non-
separable components play an important role. Similar to the predicates PN and PD at
some separating nodes to indicate the places where parallel devices start, each separating

node is assigned with a node name to be referred to. On the other hand, separating nodes



109

Table 6.1. A set of five logic predicates for CMOS circuit representation

predicate explanation

dn(a, b) drain of an n-type transistor (a: gate, b: source)

dp (a, b) drain of a p-type transistor (a: gate, b: source)

CK (x, y) | output with x from n-type and y from p-type blocks

PN (x, y) | predicates x and y connected in parallel (n-type)
PD (x, y) | predicates x and y connected in parallel (p-type)

between two serial devices, or those nodes along a path with a single device followed by
a parallel structure, need not be exploited to eliminate unnecessary expressions.
For instance, the output of the circuit in Figure 6.1 is represented as:
CK (PN (dn(a, dn (b, 0)), PN (dn (b, dn(c, 0)), dn(c, dn(a, 0)))),
PD (dp(c, m), dp(a, m)));
where m = PD (dp (b, n), dp (c, n)) and n = PD (dp (a, 1), dp (b, 1)). In this case m and
n are separating nodes.

If two identical transistors are connected in series, the rise and fall time will be
approximately twice that of a single transistor with the same capacitive load. In circuit
synthesis, separating nodes are avoided as much as possible to reduce the probability of
forming long serial devices. Parallel connected transistors of the same type should be

pushed towards the supply and ground rails so that internal node capacitance is minim-
ized.
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Figure 6.1. An FCMOS gate implementing z =ab + bc + ca
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An alternative to fully complementary CMOS logic is pseudo-nMOS logic.
Pseudo-nMOS logic is a CMOS variation which uses a p-transistor to mimic an nMOS
pull-up. The load device is a single p-transistor, with the gate connected to Vgg. This is

equivalent to a conventional nMOS gate except that the depletion nMOS load is replaced

by a p-device. Figure 6.2 shows a pseudo-nMOS gate realizing z = ab + cd. The output
signal is represented as

CK (PN (dn(a, dn(b, 0)), dn(c, dn(d, 0))), dp (0, 1));
where dp (0,1) is the pull-up p-type transistor whose gate terminal is connected to the

ground.

One of the best knpwn approaches to the design of combinational logic in CMOS
that avoids logical redundancy without suffering from the side effect of increased power
dissipation is Domino CMOS logic. Each output in Domino CMOS logic is precharged
high while the path to ground is open, and the precharge is stopped while the path to
ground is activated. Transitions from precharge to evaluation are accomplished by
means of a single clock edge applied simultaneously to all gates in the circuit. A Dom-
ino CMOS circuit is shown in Figure 6.3. The circuit consists of a single phase dynamic

gate and a static CMOS buffer. Using logic predicates, the circuit is represented by
z=CK (dn(pz, 0), dp (pz, 1));
pz =CK (PN (dn(a, dn (b, m)), dn(c, dn(d, m))), dp (¢, 1)));
where m =dn (¢, 0). In fact, this output-driven representation specifies transistor con-
nectivities in the circuit.

There are many other CMOS logic structures described in Chapter 2, including
clocked CMOS, pass transistor logic, dynamic CMOS, cascade voltage switch logic,
zipper CMOS, etc. The proposed set of logic predicates is flexible enough to describe all
these logic structures [WuWN86, WuWN&87].
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Figure 6.3. A Domino CMOS circuit with a clock signal ¢
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6.2. Formal Representation of CMOS Circuits

Fundamentally, a grammar is a finite mechanism for producing and recognizing sets
of strings [Harr78]. A phrase-structure grammar is a 4-tuple: G = (V, X, P, S), where:

(a) V is a finite nonempty set called the vocabulary;

(b) £ ¢ V is a finite nonempty set called the terminal alphabet;

(c) S € V-Z =Nis called the start symbol;

(d) P is a finite set of rules (or productions) of the form & — p where . € V°NV*

andBe V°.

A phrase-structure grammar has very general rules. The only requirement is that
the left-hand side has at least one variable. It is equivalent to a nondeterministic Turing
machine, and its parsing complexity is typically nonlinear.

Context-free languages are an important topic in formal language theory. The char-
acterization of context-free languages can be expressed in terms of pushdown automata.
A phrase-structure grammar G = (V, Z, P, S) is a context-free grammar if each rule is of
the form A — o, where A € N, a. € V*. The term *‘context-free’’ means that a nonter-
minal on the left-hand side of each rule can be replaced by whatever appears on the
right-hand side, no matter the context.

A context-free grammar G = (V, I, P, S) can be used to describe CMOS circuits.
The terminal alphabet X is formed by a set of logic values, which consists of 0 and 1 in
the simplest case, the input signal set /, the separating variable set A, the brackets (“‘[”’
and ‘‘]’’) and the plus sign ‘‘+’’ for parallel structures, and a period ‘‘«’’ for separating
n-type and p-type transistor networks. Logic value ‘‘0’’ denotes ground and signals in
the low voltage V,, range, while logic value ‘1’ denotes the power supply and signals in

the high voltage Vi range. The number of logic levels can be expanded as necessary to
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increase modeling accuracy.

The input signal set / and the separating variable set A are both finite since the
number of inputs and the number of internal separating nodes in a circuit are finite. The
period ‘‘s’’ separates the n-type network from the p-type network. Signals derived from
parallel devices are surrounded by ‘‘[’’ and ‘‘]’’ and are connected by the plus sign “‘+’’.
Thus, wehave Z={ 0,1, [, ], +,1, A }. Actually the separating variable set A can be
further expanded.

Nonterminal variables are crucial in constructing CMOS circuits. Two nonterminal
variables <dn > and <dp > are used to denote the primitive elements, n-type transistor
and p-type transistor, respectively. The variable <output> denotes an output signal
observed at a given node, and also serves as the start symbol. Three variables, <PN >,
<PD >, and <CK >, are used to describe circuit structures in the transistor network.
Variable <PN > indicates n-type devices connected in parallel, while variable <PD >
represents p-type devices connected in parallel. Variable <CK > denotes a signal which
is pulled from a junction between n-type and p-type transistor networks.

There is an alternative form of context-free grammar which is used in the
specification of programming languages, namely, the Backus normal form (BNF)
[LePa81]. The BNF form uses four meta characters which are not in the vocabulary:
<, 4>, “u="’, and *‘I”’. Strings are enclosed by < and > and denote variables. The
symbol ::= serves as a replacement operator, and | is read ‘‘or’’. Production rules are
used to parse strings in the context-free language. The production set P contains six rules

to represent CMOS circuits using BNF form:
<output> ::=<CK>1011

<CK>:u=<dn>*<dp>|l<dn>+<PD>|<PN>e+<dp>|<PN>+<PD>
<PN > ::=[<dn> + <dn >] | [<dn >+ <PN >]
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<PD > ::=[<dn >+ <dp >] | [<dp > + <PD >]
<dn> :=I1<dn>|I<PN>I1IAIIQ
<dp> :=I<dp>|I<PD>1]AII1

CMOS circuit representation using the predicates described in the previous section
illustrates how the ‘‘parse trees’’ are constructed, which in turn represent the physical
transistor structures of the CMOS circuits. If we trace a parsing tree inorders (from left
to right), the leaves traveled through form a string in the language L(G). Strings in the
language L (G) look like logic equations. Separating nodes in n-type or p-type blocks
can be expanded to complete the circuit representation.

Predicate representations are used to describe CMOS circuit connectivities. The
representations are actually parse trees in the formal language. Each parse tree comes
from its original string, which can be recognized by the grammar of the language. Thus,
for the circuit in Figure 6.1, there is a corresponding string to describe the behavior of the
gate:

z=[ab0+ [bcO+ca0]]  [am + bm]
m=¢[bn +cn]

n=e¢[cl+all.
The parse tree of node z is shown in Figure 6.4.

The above strings generated from the production rules P resemble Boolean expres-
sions. With the help of such tools as automated reasoning, circuit verification and syn-
thesis can be achieved. In the following sections, the process of how the function of a
CMOS circuit can be recognized based on its transistor structure is addresed, and how
such a circuit can be constructed from its corresponding Boolean expressions is also dis-

cussed.
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Figure 6.4. The parse tree of node z in Figure 6.1

6.3. Deterministic Pushdown Automata

Pushdown automata (pda for short) form a class of devices for recognizing strings

generated from gramars. A pushdown automaton is a 7-tuple [LePa81]

A =(Q9 z:r’ 6’ QO’ZO’F)
where

(a) Q is a finite nonempty set of states;

(b) ZXis a finite nonempty set of input symbols;

(c) T is a finite nonempty set of pushdown symbols;
(d) go € Q is the initial state;

(¢) Zg e I'is the initial symbol on the pushdown store;

(f) F ¢ Qis asetof final states; and
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(8) & Qx((Eu {A))xT — finite subsets of @ x I'", where A is the null symbol.

We usually write (¢’, &) € 8(q, a, Z) to indicate a particular transition. To ensure
that a pda is deterministic, we must restrict the ‘‘choice’’ of a next state to at most one

state. Thatis, forall (g, a, Z) € Q@ x E U {A}) xT we have 13(g, a, Z)| S 1.

A deterministic context-free language can be characterized using deterministic
pushdown automata. A set L is called a deterministic context-free language if there is
some deterministic pda, D, such that L =T (D), where T (D) is the set accepted by auto-
maton D by final state. Deterministic context-free languages are one of the most impor-
tant classes of languages because it is possible to construct efficient parsers for them.
They can be parsed from left to right by working from the bottom to the top. This class
of grammars is rich enough to contain the syntax of many programming languages, but
restrictive enough to be parsed in linear time. Moreover, these languages are all unambi-
guous [Harr78].

A deterministic pda which accepts the context-free language in Section 6.2 can be
generated. The listing of the deterministic pda is tedious. In order to save space, we list
here the transitions used to recognize n-type transistor networks only. Representation for
p-type transistor networks can be recognized using similar transitions. Since representa-
tions for n-type and p-type transistor networks in a CMOS gate are always separated by a
period ‘‘*”’, it is easy to extend this set of transitions so that it accepts the context-free
language L (G) described in Section 6.2.

LetD=(Q, %, T, 8, g0, Zo, F), where Q = {q0, 41, 92, 43, 94> 45, 46> 47> 43
99}, Z={0,i,a,[,+ ]}, '={Zp,[},and F = {qg9}. Note that we use lower case letter
“‘i’” and “‘a’’ to represent input nodes and separating nodes, respectively. Ford € I" and
A € {a, i}, the transition set § is listed in Table 6.2.

The pushdown automaton is clearly deterministic since for all (g, @, Z2) e Q x U
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Table 6.2. State transition table for recognizing n-type networks

(1) 8(q0,1, d) = (g1, d);
(2) 8(qo, [, d) = (g2, dD;
(3) &q1,i,d) = (g1, 9%
(4) 8(q1, [, d) = (g2, d);
(5) 8(q2.1, d) = (g3, d);
(6) (g3, [, d) = (g2, dD);
() 8(g3,1, d) = (g3, d);
(8) 8(q3, A, d) = (g4, d);
(9) 8(q4, +, d) = (g5, d);
(10) 3(gss, [, @) = (q2.dD;
(11) 8(gs, i, d) = (g6, d);
(12) 8(q, i, d) = (g6, d);
(13) &gqs, [, d) = (q2, dD:;
(14) 8(gs, A, d) = (q7, d);
(15) 8(¢7,1. D =(gs. A);
(16) 8(¢s, 1, D = (g5, A);
(17) 3(qs, + @) = (g5, d);
(18) 8(gs, A, Zo) = (99, Zo);
(19) 8(¢1, A, d) = (q9, d);




119

{A}) x T, 18(q, a, Z)l S 1. Therefore L(G) = T(D) is a deterministic context-free
language. Notice that the above deterministic pda accepts the language which can be
generated by the following production rules only:
(@) <PN> :=[<dn>+ <dn>]1[<dn>+ <PN >]
(b) <dn>:=i<dn>1i<PN>1iAli0

The start symbol could be either <PN > or <dn >. A transition diagram is shown in
Figure 6.5, by which n-type transistor blocks can be recognized. Since p-type transistor
networks have similar production rules, a complete state-transition table could be esta-

blished to recognize the context-free language. Thus one knows that the CMOS circuit

representation is deterministic and it is recognizable in linear time.

6.4. Automated Circuit Verificaiton

Although formal verification of digital systems is still in its infancy, a number of
researchers have addressed this issue at the gate and higher levels in the VLSI design
hierarchy.

In this section, a set of basic demodulators are derived to guide the verification pro-
cedure for FCMOS circuits. Given a combinational circuit already designed as well as
the logical specifications it supposedly satisfies, one is asked to prove that the design, in
fact, meets the specification. In order to reduce the number of inference rules in use,
<PN > and <PD > are merged and replaced by a single predicate <PP > to represent

parallel devices. Table 6.3 lists a set of six rules for true CMOS circuit verification.

Rule RS is actually encoded in the production rules of the context-free language
defined in Section 6.2. Rules R3 and R4 are partially encoded in Section 6.2 since strings

in the context-free language may carry constants 0 and 1, which represent the power and
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Table 6.3. Verification rules for true CMOS circuits

Rule
Rl | dn(X,0)=X

R2 | dp(X, D=X

R3 | dn(X, Y)=XY

R4 | dp(X, V)=XY

RS | PPX, V)=X+Y
R6 | CK(X, V)=XifX=Y

the ground, respectively. It is these rules that make strings in the context-free language
resemble Boolean expressions. If an n-type transistor with gate signal X is connected to
the ground Vgg, a logic value X is assigned to the drain of the transistor. If a p-type
transistor with gate signal X is connected to the power line Vpp, a logic value X is also
assigned to the drain of the transistor. Due to the true CMOS circuit structure, a path
constructed by serial n-type transistors from a node toward Vg is assigned the logical
AND of the gate signals along the path, and a path formed by serial p-type transistors
from a node toward Vpp is also assigned the logical AND of the gate signals along the
path. Similarly, two transistors (both either n-type or p-type) connected in parallel are
treated as the logical OR of their gate signals.

The last rule, R6, chooses the negated logic expression of the n-type block to verify
the function of a circuit as long as it is the same as the logic expression of its p-type

block. This rule reflects the *‘logical redundancy’’ property of the true CMOS circuits.
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Using automated reasoning [Wojc83, WoOL84, KaWo85], logic circuit validation
can be viewed as a translation between two different representations. For circuits
described in terms of logic networks, the verification of the circuit function is conceptu-
ally straightforward in that the function computed by a network is given by the composi-
tion of the functions at previous stages. After the functions of the circuit have been
derived at the higher level, expressions are canonicalized and compared with the
specifications the circuit supposedly satisfies. The important topics of expression canoni-
calization and Boolean equivalence are discussed elsewhere [WoOL84, WoKS84].

The ITP (Interactive Theorem Prover) automated reasoning system [LuOV84]
developed at Argonne National Laboratory is used to demonstrate the verification pro-
cess. Other systems, such as Prolog [StSh86], could also be used. Figure 6.6 illustrates
the transistor schematics of a one-bit full adder using true CMOS logic. Its correspond-
ing circuit representation is shown in Table 6.4 using ITP clauses. The output signal outs
and ourc denote the sum and carry output, respectively. Since an output signal and its
corresponding circuit has to be identified in a one-to-one manner, clauses in ITP are writ-
ten in the form of

ck (output_signal, n—block_structure, p —block_structure);

instead of

output_signal = ck (n—-block_structure, p—block_structure).

During the verification procedure, demodulators might be generated after a gate is
verified. If the output node of a gate is connected to its next stage circuits as an input sig-
nal, we need to represent the signal in terms of primary inputs. This means clauses
derived during the verifications may also become demodulators and should be dynami-
cally added to the demodulator list. Thus, an extra demodulator which generates new

inference rules is used.
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Table 6.4. ITP predicate statements of the circuit in Figure 6.6

ck(f, pp(dn(a, dn(b, 0)), dn(c, pp(dn(a, 0), dn(b, 0)))),
pp(dp(a, dp (b, 1)), dp(c, pp(dp(a, 1), dp (b, 1)))));

ck (outc, dn(f, 0), dp (f, 1));

ck(g, pp(dn(c, dn(b, dn(a, 0))), dn(f, pp(dn(a, 0),
pp(dn (b, 0), dn(c, 0))))), pp(dp(c, dp (b, dp(a, 1)),
dp(f, pp(dp(a, 1), pp(dp (b, 1), dp(c, D)

ck (outs,dn (g, 0),dp (g, 1));

Although there are four clauses in Table 6.4, only two of them, outs and outc, are of
interest. The outputs of the intermediate stages, f and g, are not of interest outside of the
circuit. Two demodulators, which explicitly specify the output signals so that they can
be easily identified, can be used to indicate the important signals in the circuit. To make
the output more readable, three more demodulators are added into the demodulator list.
The initial demodulator list that serves as an input list is shown in Table 6.5. Note that
all the demodulators are generally applicable, except the two that are used to explicitly
specify primary outputs.

The results from I'TP are shown below:

lis (outc, lan (lor (a, b), lor (c, lan(a, b))));
lis (outs, lan (lor (¢, lor (b, a)), lor (lor (lan (Ino (a), Ino (b)),
lan (Ino (c),lor (Ino (a),Ino (b)))),lan (a,lan (b,c)))));
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In other words, we have
outc =(a+b)(c +ab)=ab + bc +ca,

and

outs = (c +b+a)(55+E(E+I;)+abc)=a ©b ©Oc.

Table 6.5. Demodulator list for the circuit in Figure 6.6

eq (ck (outc, x 1, x2), lis (outc, x2));

eq (ck (outs, x1, x2), lis (outs, x2));
eq(dn(x1, 0), x1);

eq(dp(x1, 1), Ino (x 1));

eq(dn(x1, x2), lan(x 1, x2));
eq(dp(x1, x2), lan (Ino (x 1), x2));
eq(pp(x1, x2), lor (x1, x2));
eq(ck(x1,x2,x3), eq(x1, x3));

eq (Ino (Ino (x 1)), x 1);

eq (Ino (lor (x 1, x2)), lan (Ino (x 1), Ino (x 2)));

eq (Ino (lan(x 1, x2)), lor (Ino (x 1), Ino (x 2)));

With three demodulators for logic manipulation and two demodulators for speciify-
ing primary outputs as well as the six original inference rules, some key metrics for the
verification of the circuit are shown in Table 6.6. The table shows data from an execu-

tion on a SUN-3/160 running UNIX 4.2. Owing much of its speed to the fact that no
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occurs check is performed, other logic programming techniques might result in runtime
improvements by at least 16-20 times [KISW86]. A complete listing created by ITP is
shown in the Appendix.

Table 6.6. Metrics for verification of the one-bit full adder

Metric Metric

Runtime (sec) 6.78 | Clauses Forward Subsumed 3
Input Clauses 15 Clauses Back Demodulated 5
Given Clauses 11 Unification Attempts 170
Clauses Generated 5 Unification Success 166

Clauses Integrated 8 Failures due to Occurs Check 0

The performance of the ITP reasoning system is limited by the natural property of
the combinational-explosion problem. However, the inorder search of a parse tree is
linear. Since the circuit structure is represented in terms of logic predicates, dedicated
programs can be generated based on the context-free language so that the above circuit
verification can be done in linear time. In other words, logic expressions can be directly
derived from the corresponding circuit structures in linear time. For the one-bit full

adder, the logic expressions are derived as follows:
outc=ck(dn(f, 0), dp (f, 1)) =f
=pp(dn(a, dn(b, 0)), dn(c, pp(dn(a, 0), dn(b, 0)))
=ab+c(a+b),
outs=ck(dn(g, 0),dp(g, 1))=¢
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=pp(dn(c, dn(b, dn(a, 0))), dn(f, pp(dn(a, 0),
pp(dn(b, 0), dn(c, 0)))))

=cba+f(@a+(b+c))

=cbha+ab+c(a+b)(a+b+c)

Thus, we can verify the function of the one-bit full adder by the output signals outc and

outs.

Rules in Table 6.3 can be partitioned into two categories: logic-family dependent
rules and logic-family independent rules. For instance, rule R6 which reflects the logical
redundancy property of true CMOS circuits is a logic-family dependent rule. Rules of
this kind can be extended for other CMOS logic circuits. In pseudo-nMOS circuits, for
example, the following three rules
(1) dp(, 1)=NOT
(2) PD(NOT, X)=NOT

(3) CKX, NOT)=X

are used. The nonterminal set N = V - X is slightly modified to contain the symbol NOT
to represent the unique structure of the pseudo-nMOS logic, in which p-type block usu-
ally has one grounded p-type transistor as the load circuit.

6.5. Automated Circuit Design

Circuit design or synthesis is viewed as the process of transforming a high-level
design specification into a low-level design specification that includes more structural
details, leading to the physical design of the IC. Why is automatic synthesis difficult to
achieve? The major problem is that, in the search for optimal designs, a combinatorial

explosion of synthesis possibilities is observed at every stage of the design process
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[Shiv83, Park84]. As one proceeds down the design hierarchy, more detail is needed in

the specification to describe a circuit.

The advantage of automated synthesis is to be able to design circuits faster, and

more accurately, than can be done manually. Of the characteristics needed in a represen-

tation for logic synthesis, the most important one is the need to capture the functionality

of a design. The predicate representation exactly meets this requirement.

Given a logic function, say f = ab + bc + ca, a corresponding logic circuit is to be

designed. The following procedure illustrates a simple systematic approach to design

combinational circuits.

Basic Synthesis Procedure:

(1)

2

3)

Negate the logic function for its n-type block while manipulating the original
Boolean equation for the p-type block. At this stage, logic equations for both blocks
are arranged so that the negation operator is used for only single logic variables.
Thus, DeMorgan’s laws, X+Y=XY and XY =X +7, are used to arrange logic
equations. Each product term at the first level (not those inside parentheses) is then
concatenated with 1 or 0, which indicates the power and ground, respectively. Note
that each logic variable in a logic equation corresponds to the gate signal of a cer-
tain transistor.

Using the associative law, the constant 1 or O at the end of each product term is
merged into its last pair of parentheses, if they exist. Boolean equations are then
rearranged from left to right so that brackets and symbol ‘‘+’’s, which are used to
represent parallel devices in the predicate representation, match the rules for parallel

devices in the deterministic context-free language.

Perform parsing on both blocks from left to right. If the string cannot be parsed at
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some point, introduce a separating node which is used as a signal source to cover

the rest of the string.

(4) Perform parsing for separating nodes based on the strings left from both blocks.
This step is repeated many times for all separating nodes until the original strings
are completely covered.

Based on the basic synthesis procedure, the design process is driven by a parsing
mechanism with linear time complexity. In order to distinguish signals at separating
nodes from other signals, upper case letters M and N are used in this example. The pro-
cess for constructing the CMOS circuit is shown below by means of equations. The
result is listed using the predicate representation which specifies its circuit connectivity:

f=ab+bctea
=CK (ab + bc +ca, @ +b)(b +T)(C +a));
=CK(ab0+bc0+ca0, @+b)bd +0)C +a)l);
=CK (ab0 +bc0+ca0, @ +b)b + )1 +al)y;
= CK ([ab0+ [bc 0+ caO]], [@ +b] [b +¢] [c1 +a1));
= CK ([abO0 + [bc 0 + caO]], (@ + b] M);
= CK ([ab0 + [bc 0+ ca0]], (aM + bM));
=CK (PN (dn(a, dn (b, 0)), PN (dn (b, dn(c, 0)), dn(c, dn(a, 0)))),
PD (dp (a, M), dp (b, M)));
where
M =+[b+7][Cl+3l]

=+[b+C]N

=+ [bN +TN]

=PD (dp (b, N), dp(c, N));
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and
=e¢[cl+al]
=PD (dp(c, 1), dp(a, 1));
The symbol ‘‘s’’ in those expressions is used to indicate the device type. Thus
expressions whose strings start with ‘‘’’ are formed by p-type transistors, while those

with ‘“¢’’ attached at the end are constructed by n-type transistors.

The circuit schematics generated from the parsing mechanism is the same as the cir-
cuit shown in Figure 6.1. To evaluate the precise performance of the design, one should
have lower-level parameters supplied by silicon foundries, such as oxide thickness, sub-
strate doping, zero-bias threshold voltage, etc. Thus, circuit performance is a relative
term at this level. In fact, one may construct different CMOS circuits to perform the same
function and to provide better performance. Algorithms for obtaining better circuit struc-

tures are currently under investigation.

The goal of logic synthesis is to accept functional specifications, such as Boolean
expressions, for a hardware unit and to generate automatically a detailed, technology-
specific implementation comparable in quality to that of an experienced engineer. Syn-
thesizing combinational logic from a Boolean expression at the gate level is a relatively
straightforward process. Most existing low-level synthesis procedures assume that all
memory elements of the final implementation are identified in its original specification
[DaJB81]. A given sequential circuit is partitioned into several disjoint combinational
pieces and thus the synthesis process is simplified. Given the specification of a sequen-
tial element, the basic synthesis procedure that has been proposed can also be employed

to generate its predicate representation.

Due to the existence of feedback lines in sequential circuits, pseudo signals are

introduced when sequential circuit elements are required. The strategy for sequential ele-
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ment synthesis is to further partition a sequential circuit or element by introducing some
pseudo signal so that each partition is a combinational piece. Thus the basic synthesis
procedure can be applied.

For storage elements, the transistor schematics of a static CMOS D flip-flop is dep-
icted in Figure 5.5. The function of the D flip-flop can be expressed as a Boolean func-
tion:

dn+1 = Qn$ +dd
where g, and g, indicate the current state and next state of the D flip-flop, respectively.

By introducing the pseudo signal M = g, the ambiguity between ¢’s on either side of

the equality symbol can be eliminated. Thus, we have M = q$ +ddandg=M

These two combinational pieces can be synthesized using the basic synthesis pro-

cedure:

M=q¢+do

=CK(q0+d¢, @ +)d + )

=CK (@40 +d¢0, @ + 9)(d + §)1)

=CK (g0 +d¢0, (7 + $)(d1 +61))

= CK ([q0+ d¢0], [§ + ¢][d1 + 1))

= CK ([q90 + d¢0), [ + OIN)

= CK ([q0 + d¢0], [gN + ¢N )

=CK (PN (dn(q, dn(9, 0)), dn(d, dn(9, 0))),
PD (dp(q, N), dp (¢, N)));

where
= [d1+¢1]
=PD (dp(d, 1), dp (9, 1));



132

The other portion of the circuit is given by

q=M
=CK M, M),
=CK (MO, M1);
=CK(dnM, 0), dp M, 1));
Figure 6.7 illustrates the transistor schematic of the alternative D flip-flop design
using the basic synthesis procedure and pseudo signal M. Note that the signal N in Fig-

ure 6.7 is a separating node and is generated during the basic synthesis process.
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Figure 6.7. Alternative D flip-flop design using basic synthesis procedure

Compared with the D flip-flop in Figure 5.5, which has fourteen transistors, the

alternative design with ten transistors uses only d (instead of both d and 2) and is smaller
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and faster. This D-latch is also used by Reddy [ReRe86] as the basic structure for detect-
ing stuck-open faults in CMOS latches and flip-flops. It has been shown that the latch is
devoid of clock turn-on and turn-off hazards and glitches if the data is stable when the
clock changes, and also that the latch is race free if the data is stable when the clock turns
off.



CHAPTER VII

CONCLUSIONS

7.1. Summary

One reason for the success in producing VLSI devices is the availability of transis-
tor switches. These elements, also known as the n-type and p-type field-effect transistors
in silicon technology, allow large digital circuits to be made with just two types of com-
ponent. Thus the transistor switches realize what may be called the physicist’s dream of
a single fundamental particle.

At the transistor switch level, one no longer has to worry about various types of
logic gates. The simplicity allows the assemblage of large aggregates to perform power-
ful functions. This simplicity, it is believed, is also the power behind the switch-level
techniques when it comes to many VLSI areas such as synthesis, simulation, layout, and

test.

In this thesis, a novel approach for representing CMOS logic circuit networks at the
transistor level has been proposed. Unlike traditional device listing approaches, which
represent only circuit structures, logical circuit expressions combine structural data with
behavioral information, and thus illustrate a way to reduce the difficulty of information

transformation between behavioral and structural representations for CMOS circuits.

As explained in Chapter 1 and Chapter 2, CMOS technology has been recognized as
a leading contender for existing VLSI systems, and is projected by industry analysts to be
the dominant technology for the next decade. Various CMOS logic structures and design

styles were examined to help to understand the essence of CMOS logic design and the

134
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transistor structure of CMOS circuits. Both advantages and disadvantages of various
CMOS logic structures and design styles were described. The charge sharing problem
inherent in many CMOS logic structures was clearly illustrated, and possible solutions
were proposed. It is also pointed out that the choices of logic structures and design styles

are basically trade-offs among a number of factors, and are matters of art.

Chapter 3 introduced the definition and basic concepts of logical circuit expressions.
Approaches for generating logical circuit expressions were described. A number of
examples were given to demonstrate how the logical circuit expressions can be used to
represent CMOS digital circuits. Among those examples, a CMOS decision-making cir-
cuit and a CMOS mutual exclusion element used in arbiter designs were proposed
[WuNi87].

Functional recognition is an important step toward symbolic circuit verification. In

this thesis, a new approach for logic component recognition was proposed. A number of

recognition rules were developed for symbolic verification of CMOS logic circuits.
Based on functional expansion and logical circuit expressions, this approach can be
applied to various CMOS logic structures to verify logic functions [WNW87a]. In gen-
eral, this recognition technique is able to shift the schematic comparison process from
pure topology checking to logic function comparison, and is also useful in the field of
reverse engineering. Reverse engineering in the field of VLSI design is a process which
takes an existing but unknown circuit artwork as input, and generates a higher-level
description, such as a schematic capture. With the power of this recognition technique,
the reverse engineering process can be significantly simplified.

Another application of logical circuit expressions to CMOS VLSI design automa-
tion is the comparison of CMOS transistor schematic networks. Traditional approaches
can be divided into two major categories: (1) direct approaches based on graph matching
algorithms, and (2) indirect approaches such as switch-level simulation. Although no
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restrictions are imposed on the design methodologies and no reference connectivity
description is needed using switch-level simulation, the exhaustive exercise of input pat-
terns requires a large amount of computation power and provides little indication of error
locations. On the other hand, researchers have tried to incorporate techniques such as
signature analysis to speed up the comparison process using graph isomorphism
approaches and to allow subcircuit permutation and/or repetition to match circuits with
the same function but different topologies. However, the graph isomorphism problem is
believed to be intractable, and thus the development of an efficient algorithm for
schematic comparison may be infeasible. In addition, techniques for functional
equivalence based on graph matching are still preliminary [Shir86]). Therefore, it is
difficult to compare functionally isomorphic circuits using graph matching algorithms.
The approach in this thesis for CMOS schematic comparison, to the contrary, is to
represent a CMOS transistor network by a set of logical circuit expressions, so that the
comparison process is not as rigid as graph-isomorphic matching and yet efficient enough
to compare two functionally identical circuits [WNW87b].

Based on logical circuit expressions, a novel circuit representation using logical
predicates is proposed to describe the connectivity of i CMOS series-parallel transistor
network. A context-free grammar is proposed for constructing series-parallel networks,
and a pushdown automata is developed for recognizing strings generated from the
context-free grammar. Thus, the synthesis and verification processes for CMOS series-
parallel transistor networks can be done in linear time [WuWN87]. ITP (Interactive
Theorem Prover), which was developed at Argonne National Laboratory, is used to
demonstrate the capability of the approach.
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7.2. Future Work

Several areas deserve further investigation in the field of CMOS VLSI design auto-

mation using logical circuit expressions.

First of all, how to incorporate timing information into logical circuit expressions
and/or how to estimate timing delays based on logical circuit expressions is a big issue.
As VLSI chips increase in size and complexity, the importance of timing analysis at the
switch level increases as well. Although timing analysis at the switch level may not be
as accurate as it is at the circuit level, the time required to examine the circuit is much
less than that at the circuit level. Thus a result from a timing analyzer may be used as a
reference for choosing the right logic structure, or for estimating the performance of a
logic design.

Fault modeling is an important issue in VLSI circuits. Fault models in MOS VLSI
circuits are used to model physical faults and explain the behavior of the faults. Many
possible faults in MOS VLSI circuits have been proposed. The simple stuck-at fault
model, for example, was developed based on the assumption that most physical defects
have the same effect on the operation of the circuit as a set of gate inputs and outputs that
are stuck at logic ZERO or logic ONE [FrMe71, Meik74]). However, a particularly trou-
blesome case may arise in CMOS VLSI circuits: a break in a line or a transistor that is
permanently off can make the output of a supposely combinational logic circuit depen-
dent on the previous output rather than the current input alone [Wads78]. Such a fault in
CMOS circuits is called a stuck-open fault. Since logical circuit representation includes
a partitioning scheme which decomposes a circuit into a number of components, possible
faults in CMOS VLSI circuits might have specific expressions or patterns which can be
casily examined. Stuck-open faults, on the other hand, might require extra effort to

examine possible high-impedance states.
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Other interesting topics include high-level circuit verification using logical circuit
expressions and circuit sharing for multiple output designs. Additionally, how the logical
circuit expressions can provide signal information to Temporal logic is also an interesting
issue.

Based on the logical circuit representation, we have shown that the schematic com-
parison and functional recognition processes can be significantly simplified. CMOS
logic design and verification using logical predicates has also been illustrated. As the
design and verification at the switch level attracts more and more attention and symbolic
processing is getting more and more popular, it is believed that the approach proposed in
this thesis is very promising in the field of CMOS VLSI design automation.
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Central to the operation of ITP are four lists of clauses [LuOv84]: the axiom list, the
set of support list, the have-been-given list, and the demodulator list. Generally speak-
ing, the set of support list contains a list of facts. The bits of knowledge given to a rea-
soning program at the start of a program is called axioms or clauses. The axiom list con-
sists of a number of customized inference rules, which are used to derive new facts from
existing ones. The demodulator list contains a set of demodulators, which are also called
rewrite rules. The have-been-given list is basically a list of results. Each of these plays a
specific role in the fundamental operation of the reasoning system. The fundamental
operation consists of the following steps:

(1) Choose a clause from the set of support list. Call this clause *‘the given clause’’.

(2) Infer a set of clauses that have the given clause as one parent and other parent
clauses selected from the axioms list, the have-been-given list, and the demodulator
list.

(3) For each generated clause, process it (for example, simplify it).

(4) Move the given clause from the set of the support list to the have-been-given list.

This fundamental operation is repeated many times during the execution of the pro-
gram until either the set of support list has become exhausted, or a contradiction has been
found.

In the following example, ITP is run under its verbose mode so that the outputs are
more readable and thus self-explanatory.
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ITP - version 86

7k

option file to read? opt.fd

options read from file opt.fd

fdemod =y

demodcount = 1000

r

filename? adder

axioms:

set of support:

1 ck(f, pp(dn(a, dn(b, 0)), dn(c, pp(dn(a, 0), dn(b, 0)))), pp(dp(a, dp(b, 1)), dp(c,
pp(dp(a, 1), dp(b, 1)))));

2 ck(outc, dn(f, 0), dp(f, 1));

3 ck(g, pp(dn(c, dn(b, dn(a, 0))), dn(f, pp(dn(a, 0), pp(dn(b, 0), dn(c, 0))))),
pp(dp(c, dp(b, dp(a, 1))), dp(f, pp(dp(a, 1), pp(dp(b, 1), dp(c, 1))))));
4 ck(outs, dn(g, 0), dp(g, 1));

have been given:

demodulators:

5 eq(ck(outc, x1, x2), lis(outc, x2));

6 eq(ck(outs, x1, x2), lis(outs, x2));

7 eq(dn(x1, 0), x1);

8 eq(dp(x1, 1), Ino(x1));

9 eq(dn(x1, x2), lan(x1, x2));

10 eq(dp(x1, x2), lan(lno(x1), x2));

11 eq(pp(x1, x2), lor(x1, x2));

12 eq(ck(x1, x2, x3), eq(x1, x3));

13 eq(Ilno(lno(x1)), x1);

14 eq(lno(lor(x1, x2)), lan(Ino(x1), Ino(x2)));
15 eg(lno(lan(x1, x2)), lor(Ino(x1), Ino(x2)));
new left-to-right demodulator

new left-to-right demodulator
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new left-to-right demodulator

new left-to-right demodulator

new left-to-right demodulator

new left-to-right demodulator

new left-to-right demodulator

new left-to-right demodulator

new left-to-right demodulator

new left-to-right demodulator

new left-to-right demodulator

state restored from file adder

g

# of given clauses to use? 0

> given clause number 1 is: 2 ck(outc, dn(f, 0), dp(f, 1));
16 lis(outc, Ino(f)); ancestors:287 5

given clause number 2 is: 16 lis(outc, Ino(f));

given clause number 3 is: 4 ck(outs, dn(g, 0), dp(g, 1));
17 lis(outs, Ino(g)); ancestors: 487 6

given clause number 4 is: 17 lis(outs, Ino(g));

given clause number 5 is: 1 ck(f, pp(dn(a, dn(b, 0)), dn(c, pp(dn(a, 0), dn(b, 0)))),
pp(dp(a, dp(b, 1)), dp(c, pp(dp(a, 1), dp(b, 1)))));

18 eq(f, lor(lan(lno(a), Ino(b)), lan(lno(c), lor(Ino(a), Ino(b))))); ancestors: 1 8 8
11108101177119791112

new left-to-right demodulator

clause 16 back demodulated and deleted
clause 3 back demodulated and deleted
clause 2 back demodulated and deleted
given clause back demodulated

19 lis(outc, lan(lor(a, b), lor(c, lan(a, b)))); ancestors: 18 16 14 151413 1313 15
1313

20 eq(g, lor(lan(Ino(c), lan(lno(b), Ino(a))), lan(lan(lor(a, b), lor(c, lan(a, b))),
lor(lno(a), lor(Ino(b), Ino(c)))))); ancestors: 18388 1181110141514 13 1313
1513138101011 77117111897991112
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new left-to-right demodulator
clause 17 back demodulated and deleted
clause 4 back demodulated and deleted

21 eq(lor(lan(lno(a), Ino(b)), lan(Ino(c), lor(Ino(a), Ino(b)))), lor(lan(ino(a), Ino(b)),
lan(lno(c), lor(Ino(a), Ino(b))))); ancestors: 18 188 111081011771197911
12

new lex-dependent demodulator

22 lis(outs, lan(lor(c, lor(b, a)), lor(lor(lan(lnoéa), Ino(b)), lan(Ino(c), lor(lno(a),
Ino(b)))), lan(a, lan(b, ¢))))); ancestors: 2017 141514141313131514151415
15131313

given clause number 6 is: 19 lis(outc, lan(lor(a, b), lor(c, lan(a, b))));
given clause number 7 is: 18 eq(f, lor(lan(lno(a), Ino(b)), lan(lno(c), lor(Ino(a),
Ino(b)))));

given clause number 8 is: 21 eq(lor(lan(lno(a), Ino(b)), lan(lno(c), lor(lno(a),
Ino(b)))), lor(lan(Ino(a), Ino(b)), lan(Ino(c), lor(lno(a), Ino(b)))));

given clause number 9 is: 22 lis(outs, lan(lor(c, lor(b, a)), lor(lor(lan(Ino(a), Ino(b)),
lan(lno(c), lor(Ino(a), Ino(b)))), lan(a, lan(b, c)))));

given clause number 10 is: 20 eq(g, lor(lan(lno(c), lan(lno(b), Ino(a))),
lan(lan(lor(a, b), lor(c, lan(a, b))), lor(Ino(a), lor(lno(b), Ino(c))))));

23 eq(lor(lan(Ino(c), lan(lno(b), lno(a))), lan(lan(lor(a, b), lor(c, lan(a, b))),
lor(Ino(a), lor(Ino(b), 1no(c))))), lor(lan(lno(c), lan(Ino(b), Ino(a))), lan(lan(lor(a, b),
lor(c, lan(a, b))), lor(Ino(a), lor(lno(b), Ino(c)))))); ancestors: 20 20

new lex-dependent demodulator

given clause number 11 is: 23 eq(lor(lan(lno(c), lan(Ino(b), lno(a))), lan(lan(lor(a,
b), lor(c, lan(a, b)), lor(Ino(a), lor(Ino(b), Ino(c))))), lor(lan(ino(c), lan(lno(b),
Ino(a))), lan(lan(lor(a, b), lor(c, lan(a, b))), lor(Ino(a), lor(Ino(b), Ino(c))))));

no more clauses in the set of support

2t

level of report? 1

> layer 1 statistics:
applgets = 1567 applfrees = 1456 appllist= 103 inuse= 111
vargets= 74 varfrees= 71 varlist= 5 inuse= 3
namegets = 2565 namefrees = 2474 namelist= 176 inuse= 91




143

relndgets = 3995 relndfrees = 3752 relndlist= 262 inuse= 243
upbogets= 8 upbofrees = 8 upblist(r&o) = 14 in use = 0

upbrgets= 86 upbrfrees= 86 in use = 0

ivecchgets = 2003 ivecchfrees= 2003 ivecchlist = 129 in use = 0

cstrchgets = 774 cstrchfrees= 677 cstrchlist= 21 inuse= 97

unification attempts = 170 successes = 166 failures = 4

half-match attempts = 146 half successes = 142 half failures = 4 Y

unification failures due to occurs check= 0

runtime........c.eee. 6.78

unify time............ 0.13

build prop search tree  0.03

property search time.. 0.05

level of report? 2

> layer 2 statistics:
cstrgets = 80 cstrfrees= 80 cstrlist= 1 inuse= 0
ivgets= 204 ivfrees= 204 ivlist= 17 inuse= 0
stkntgets = 991 stkntfrees = 991 stkntlist= 2 inuse= 0

number of simplifications = 127

Approximate times in seconds:
getlit clock........ 0.00

Fast inference statistics
unify attempts........ 0

logical inferences.... 0
intermediate subsumed. 0
deduction size prunes. 0
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level of report? 3

> layer 3 statistics:

number of input clauses... 15
number of given clauses... 11
clauses generated......... 5
clauses integrated........ 8
clauses forward subsumed.. 3
(includes quick unit sub). 3
(includes x = x sub)...... 0
clauses back demodulated.. 5
clauses back subsumed..... 0
rejected by user.......... 0
rejected by weight........ 0
null clauses generated.... 0

approximate times in seconds:
inference rules..... 1.18
process clauses..... 3.58
simplification...... 0.33

forward subsumption. 0.27
back subsumption.... 0.02

unit deletion....... 0.00
auto factor......... 0.00
unit conflict....... 0.25
log inferences...... 0.00

back demodulation... 2.27
unit subsumption.... 0.22

subsuming clauses (subsumer:number_subsumed):
19: 121: 122: 1
level of report?



>
?s

filename? adder.out

current status saved in file adder.out
7q

exiting itp

145



[Aker78]

[BaTe80]

[Boch82]

[BrCM84]

[Brya81]

[Brya84]

[Brya85]

[CaJB79]

[CoVa80]

[Darr79]

BIBLIOGRAPHY

Akers, S.B., ‘‘Binary Decision Diagrams’’, IEEE Trans. Computers, Vol.
C-27, No. 6, pp. 509-516, June 1978.

Baker, C.M,, and Terman, C., ‘‘“Tools for Verifying Integrated Circuit
Designs’’, LAMBDA, pp. 22-30, First Quarter, 1980.

Bochman, G.V., ‘‘Hardware Specification With Temporal Logic: An Exam-
ple’’, IEEE Trans. on Computers, Vol. C-31, No. 3, pp. 223-231, March
1982.

Brayton, R.K., Chen, C.L., McMullen, C.T., Otten, R.H., and Yamour, Y.J.,
‘‘Automated Implementation of Switching Functions as Dynamic CMOS
Circuits’’, Proc. IEEE Custom Integrated Circuit Conf., pp. 346-350, 1984.

Bryant, R.E., ‘“‘MOSSIM: A Switch-Level Simulator for MOS LSI"’, Proc.
18th ACM/IEEE Design Automation Conf., pp. 786-790, June 1981.

Bryant, R.E., ‘‘A Switch-Level Model and Simulation for MOS Digital Sys-
tems’’, IEEE Trans. Computers, Vol. C-33, No. 2, pp. 160-177, Feb. 1984.

Bryant, R.E., ‘‘Symbolic Verification of MOS Circuits’’, Proc. Chapel Hill
Conference on VLSI, pp. 419-438, 1985.

Carter, W.C,, Joyner, W.H,, and Brand, D., ‘‘Symbolic Simulation for
Correct Machine Design’’, Proc. 16th Design Automation Conference, pp.
280-286, 1979.

Cory, W.E.,, and VanCleemput, W.M.,, ‘‘Developments in Verification of
Design Correctness’’, Proc. 17th Design Automation Conf., pp. 156-164,
June 1980.

Darringer, J.A., ‘“The Application of Program Verification Techniques to
Hardware Verification’’, Proc. 16th Design Automation Conference, pp.
375-381, 1979.

146



[DaJB81]

[DiC185]

[Duff65]

[EbZa83]

[Even79]
[Floy67]

[FrLi84]

[FrMe71]

[GaKu83]

[GIDo8S5]

[GrBD86]

[Hama83)

[Harr78]

(Haye84]

147

Darringer, J.A., Joyner, W.H., Berman, C.L., and Trevillyan, L., ‘‘Logic
Synthesis Through Local Transformations’’, IBM J. Research and Develop-
ment, Vol. 25, No. 4, pp. 272-280, July 1981.

Dill, D.L., and Clarke, E.M., ‘‘Automatic Verification of Asynchronous Cir-
cuits Using Temporal Logic’’, Proc. 1985 Chapel Hill Conf. on VLSI, pp.
127-143, 198s.

Duffin, R.J., ‘““Topology of Series-Parallel Networks’’, Journal of Mathemat-
ical Analysis and Applications, Vol. 10, pp. 303-318, 1965.

Ebeling, C., and Zajicek, O., ‘‘Validating VLSI Circuit Layout by Wirelist
Comparison’’, Digest of Tech. Papers, ICCAD’83, pp. 172-173, Nov. 1983.

Even, S., Graph Algorithms, Computer Science Press, 1979.

Floyd, R.W., ‘‘Assigning Meanings to Programs’’, Proc. Symposia in
Applied Mathematics, Vol. 19, pp. 19-32, 1967.

Friedman, V., and Liu, S., ‘‘Dynamic Logic CMOS Circuits’’, IEEE Journal
of Solid-State Circuits, Vol. SC-19, No. 2, pp. 263-266, April 1984.

Frieman, A.D., and Memon, P.R., Fault Detection in Digital Circuits,
Prentice-Hall, 1971.

Gajski, D.D., and Kuhn, R.H., ‘‘Guest Editor’s Introduction: New VLSI
Tools’’, IEEE Computer, pp. 11-14, Dec. 1983.

Glasser, L.A., and Dobberpuhl, D.W., The Design and Analysis of VLSI Cir-
cuits, Addison-Wesley, 1985.

Gregory, D., Bartlett, K., DeGeus, A., and Hachtel, G., *‘Socrates: A System
for Automatically Synthesizing and Optimizing Combinational Logic’’,
Proc. 23rd Design Automation Conf., pp. 79-85, June 1986.

Hamachi, G., ‘“‘PEG Manual’’, 1983 VLSI Tools, Report No. UCB/CSD
83/115, Computer Science Division of EECS, U.C. Berkeley, 1983.

Harrison, M.A., Introduction to Formal Language Theory, University of
California, Berkeley, 1978.

Hayes, J.P., ‘‘Fault Modeling for Digital MOS Integrated Circuits’’, IEEE
Trans. Computer-Aided Design, Vol. CAD-3, No. 3, pp. 200-207, July 1984.



[HeGD84]

[Henn81]

[HoJa83]

[Hoff82]

[Holl87]
[HoTa73]

[Hwan79]

[John83]

[KaWo85]

[KaVa81]

[(KIWS87]

[KoMc86]

[KoWe85]

148

Heller, L.G., Griffin, W.R., Davis, J.W., and Thomas, N.G., ‘‘Cascode Vol-
tage Switch Logic: A Differential CMOS Logic Family’’, Proc. 31st IEEE
Int’l Solid-State Circuits Conf., Digest of Technical Papers, pp. 16-17, Feb.
1984,

Hennessy, J.L., ‘‘SLIM: A Simulation and Implementation language for
VLSI Microcode’’, LAMBDA, pp. 20-28, April 1981.

Hodges, D.A., and Jackson, H.G., Analysis and Design of Digital Integrated
Circuits, MacGraw-Hill, 1983.

Hoffman, C., Group-Theoretic Algorithms and Graph Isomorphism,
Springer-Verlag, 1982.

Hollis, E.E., Design of VLSI Gate Array ICs, Prentice-Hall, 1987.

Hopcroft, J., and Tarjan, R., ‘‘Algorithm 477: Efficient Algorithms for
Graph Manipulation’’, Communication of ACM, Vol. 16, pp. 372-378, 1973.

Hwang, K., Computer Arithmetic: Principles, Architecture, and Design,
John Wiley and Sons, 1979.

Johnson, S.C., ‘‘Code Generation for Silicon’’, Proc. 10th ACM Symposium
on Principles of Programming Languages, 1983.

Kabat, W.C., and Wojcik, A.S., ‘‘Automated Synthesis of Combinational
Logic Using Theorem-Proving Techniques’’, IEEE Trans. Computers, Vol.
C-34, No. 7, pp. 610-632, July 1985.

Kang, S., and VanCleemput, W.M,, ‘‘Automatic PLA Synthesis from a
DDL-P Description’’, Proc. 18th Design Automation Conference, pp. 391-
397, June 1981.

Kljaich, J., Wojcik, A.S., and Smith, B.T., ‘‘Formal Verification of Fault-
Tolerance Using Theorem-Proving Techniques’’, Proc. of the Sixth Annual
IEEE Phoenix Conference on Computers and Communications, Feb. 1987.

Kodandapani, K.L., and McGrath, E.J., ‘A Wirelist Compare Program for
Verifying VLSI Layouts’’, IEEE Design & Test, Vol. 3, No. 3, pp. 46-51,
June 1986.

Kollaritsch, P.W., and Weste, N.H., ‘‘Topologizer: An Expert System Trans-
lator of Transistor Connectivity to Symbolic Cell Layout’’, IEEE J. Solid-



(KrLL82]

[LeSz86)

[LePa81]

[LuOv84]

[MacM92]

[MaNES82]

[MeCo80]

[Meik74]

[Mukh86]

[Mylv85]

[Nage75]

[NeSa86]

[Nies83]

149

State Circuits, Vol. SC-20, NO. 3, pp. 799-804, June 1985.

Krambeck, R.H., Lee, C.M,, and Law, H.S., ‘‘High-Speed Compact Circuits
with CMOS"’, IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 3, pp.
614-619, June 1982.

Lee, CM,, and Szeto, EW., “‘Zipper CMOS"’, IEEE Circuits and Devices,
Vol. 2, No. 3, pp. 10-17, May 1986.

Lewis, H.R., and Papadimitriou, C.H., Elements of the Theory of Computa-
tion, Prentice-Hall, 1981.

Lusk, E.L., and Overbeek, R.A., ‘‘The Automated Reasoning System ITP”’,
Argonne National Laboratory, April 1984.

MacMahon, P.A., ‘‘The Combination of Resistances’’, The Electrician,
April 8, 1892.

Matthews, R., Newkirk, J., and Eichenberger, P., ‘‘A Target Language for
Silicon Compilers’’, IEEE COMPCON, pp. 349-353, 1982.

Mead, C,, and Conway, L., Introduction to VLSI Systems, Addison-Wesley,
1980.

Mei, K.C,, “‘Bridging and Stuck-At Faults’’, IEEE Trans. Computers, Vol.
C-23, pp. 720-726, July 1974.

Mukherjee, A., Introduction to nMOS and CMOS VLSI Systems Design,
Prentice-Hall, 1986.

Myers, DJ., and Ivey, P.A., ‘‘A Design Style for VLSI CMOS*’, IEEE Jour-
nal of Solid-State Circuits, Vol. SC-20, No. 3, pp. 741-745, June 1985.

Nagel, L.W., *‘SPICE: A Computer Program to Simulate Semiconductor
Circuits’’, Ph.D. Thesis, Memorandum No. ERL-M520, Electronics
Research Laboratory, EECS, University of California, Berkeley, 1975.

Newton, A.R., and Sangiovanni-Vincentelli, A.lL, ‘‘Computer-Aided Design
for VLSI Circuits’’, IEEE Computer, Vol. 19, No. 4, pp. 38-60, April 1986.

Niessen, C., ‘‘Hierarchical Design Methodologies and Tools for VLSI
Chips”’, Proc. of the IEEE, pp. 11-14, Jan. 1983. ~




[Nils83]
[Oklo82]

[OkMo86]

[OuSM85]

[Park84]

[PaSS87]

[PiSt83]

150

Nilsson, J.W., Electric Circuits, Addison-Wesley, 1983.

Oklobdzija, V.G., ‘‘Design for Testability of VLSI Structures Through the
Use of Circuit Techniques’’, Ph.D. Thesis, University of California, Los
Angeles, 1982.

Oklobdzija, V.G., and Montoye, R.K., ‘‘Design-Performance Trade-Offs in
CMOS Domino Logic’’, IEEE Journal of Solid-State Circuits, Vol. SC-21,
No. 2, pp. 304-306, April 1986.

Ousterhout, J.K., Scott, W.S., Mayo, R.N., and Hamachi, G., ‘1986 VLSI
Tools: Still More Works by the Original Artists’’, Report No. UCB/CSD
86/272, Computer Science Division (EECS), University of California,
Berkeley, Dec. 1985.

Parker, A.C., ‘‘Automated Synthesis of Digital Systems’’, IEEE Design &
Test, Vol. 1, No. 2, pp. 75-81, Nov. 1984.

Pasternak, J.H., Shubat, A.S., and Salama, C.A., ‘“‘CMOS Differential Pass-
Transistor Logic Design’’, IEEE J. Solid-State Circuits, Vol. SC-22, No. 2,
Pp. 216-222, April 1987.

Pitchumani, V., and Stabler, E.P.,, ‘“An Inductive Assertion Method for
Register Transfer Level Design Verification’’, IEEE Transactions on Com-
puters, Vol. C-32, No. 12, pp. 1073-1080, Dec. 1983.

[RaWMB85] Radhakrishnan, D., Whitaker, S.R., and Maki, G.K., ‘‘Formal Design Pro-

[ReRe86]

[ReSS85]

[ReUr71]
[RiSh42]

cedures for Pass Transistor Switching Circuits’’, IEEE Journal of Solid-State
Circuits, Vol. SC-20, No. 2, pp. 531-536, April 1985.

Reddy, S.M,, and Reddy, M.K., ‘‘Testable Realizations for FET Stuck-Open
Faults in CMOS Combinational Logic Circuits’’, JEEE Trans. Computers,
Vol. C-35, No. 8, pp. 742-754, Aug. 1986.

Reineke, P.S., Skinner, R.D., Swanson, M.C.,, and Winkelmann, D.A.,
‘““STATUS 1985: A Report on the Integrated Circuit Industry’’, Integrated
Circuit Engineering Corporation, Dec. 1985.

Rescher, N., and Urquhart, A., Temporal Logic, Springer-Verlag, 1971.

Riordan, J., and Shannon, C.E., ““The Number of Two-Terminal Series-
Parallel Networks’’, Journal of Mathematics and Physics, Vol. 21, pp. 83-




[Roth77]

[Sequ83]

[Shan38]

[Shir86]

[Shiv83]

[SmBHS82]

[SpNe83]

[SrAg86]

[StSh86]

[Subr86]

[SuFr86]

[SuOA73]

151

93, 1942.

Roth, J.P., ‘‘Hardware Verification’’, IEEE Trans. on Computers, Vol. C-26,
No. 12, pp. 1292-1294, Dec. 1977.

Sequin, C.H., ‘‘Managing VLSI Comlpexity: An Outlook’’, Proceedings of
the IEEE, Vol. 71, No. 1, pp. 149-166, Jan. 1983.

Shannon, C.E., ‘A Symbolic Analysis of Relay and Switching Circuits’’,
Transactions of A. 1. E. E., Vol. 57, pp. 713-723, 1938.

Shiren, Y., “YNCC: A New Algorithm for Device-Level Comparison
Between Two Functionally Isomorphic VLSI Circuits’’, Digest of Tech.
Papers, ICCAD’86, pp. 298-301, Nov. 1986.

Shiva, S.G., ‘‘Automatic Hardware Synthesis’’, Proceedings of the IEEE,
Vol. 71, No. 1, pp. 76-87, Jan. 1983.

Smith, G.L., Bahnser, R.J., and Halliwell, H., ‘‘Boolean Comparison of
Hardware and Flowcharts’’, IBM J. Research and Development, Vol. 26, No.
1, pp. 106-116, Jan. 1982.

Spickelmier, R.L., and Newton, A.R., ‘“WOMBAT: A New Netlist Com-
parison Program’’, Digest of Tech. Papers, ICCAD’83, pp. 170-171, Nov.
1983.

Srinivas, N.C., and Agrawal, V.D., ‘‘PROVE: Prolog Based Verifier’’, Dig-
est of Tech. Papers, ICCAD’ 86, pp. 306-309, Nov. 1986.

Sterling, L., and Shapiro, E., The Art of Prolog: Advanced Programming
Techniques, The MIT Press, 1986.

Subrahmanyam, P.A., ‘‘Synapse: An Expert System for VLSI Design’’,
IEEE Computer, Vol. 19, No. 7, pp. 78-89, Jul. 1986.

Supowit, K.J., and Friedman, S.J., ‘‘A New Method for Verifying Sequential
Circuits’’, Proc. 23rd Design Automation Conf., pp. 200-207, June 1986.

Suzuki, Y., Odagawa, K., and Abe, T., ‘‘Clocked CMOS Calculator Circui-
try”’, IEEE J. Solid-State Circuits, Vol. SC-8, No. 6, pp. 462-469, Dec.
1973.



[TaMC82]

[Term83]

[Tric85]

[TyEI85]

[VaSh8S]

152

Takashima, M., Mitsuhashi, T., and Chiba, T., ‘‘Programs for Verifying Cir-
cuit Connectivity of MOS/LSI Mask Artwork’’, Proc. 19th Design Automa-
tion Conf., pp. 544-550, June 1982.

Terman, C.J., “‘Simulation Tools for Digital LSI Design’’, MIT Laboratory
for Computer Science, TR-304, 1983.

Trickey, HW., ‘‘Compiling Pascal Programs Into Silicon’’, Ph.D. Thesis,
Department of Computer Science, Stanford University, July 1985.

Tygar, J.D., and Ellickson, R., ‘‘Efficient Netlist Comparison Using Hierar-
chy and Randomization’’, Proc. 22nd Design Automation Conf., pp. 702-
708, June 1985.

Vai, MK,, and Shanblatt, M.A., ‘‘Performance-Design Tradeoff of
Hierarchical VLSI Design Entry Points’’, Master Thesis, Michigan State
University, Aug. 1985.

[WNW87a] Wu, C.E,, Ni, LM., and Wojcik, A.S., ‘‘Functional Recognition of Static

CMOS Circuits’’, 1987 International Conf. on Computer-Aided Design,
Nov. 1987.

[WNW87b] Wu, C.E., Ni, L.M,, and Wojcik, A.S., ‘‘Comparison of CMOS Schematics

[Wads78]

[WeEs85]

[Whit83]

[(Wojc83]

[WoKS84]

Using a Logical Circuit Representation’’, 1987 International Conf. on Com-
puter Design, Oct. 1987.

Wadsack, R.L., ‘‘Fault Modeling and Logic Simulation of CMOS and MOS
Integrated Circuits’’, Bell System Tech. Journal, Vol. 57, pp. 1449-1474,
May-July 1978.

Weste, N.H., and Eshraghian, K., Principles of CMOS VLSI Design: A Sys-
tems Perspective, Addison-Wesley, 198S.

Whitaker, S., ‘‘Pass-Transistor Networks Optimize n-MOS Logic’’, Elec-
tronics, pp. 144-148, Sep. 22, 1983.

Wojcik, A.S., ‘‘Formal Design Verification of Digital Systems’’, Proc. 20th
Design Automation Conference, pp. 228-231, June 1983.

Wojcik, .A.S., Kljaich, J., and Srinivas, N., ‘A Formal Design Verification
System Based on an Automated Reasoning System’’, Proc. 21st Design
Automation Conference, pp. 641-647, June 1984.



153

[WoOL84] Wos, L., Overbeek, R., Lusk, E., and Boyle, J., ‘‘Logic Circuit Design’’,
Automated Reasoning: Introduction and Applications, Chap. 7, pp. 186-223,
1984.

[WuNi86] Wu, CE., and Ni, LM,, “VLSI Design Automation: Introduction and
Experiments’’, Technical Report, MSU-ENGR-86-016, Dept. of Computer
Science, Michigan State University, July 1986.

[WuWN86] Wu, C.E., Wojcik, A.S., and Ni, LM,, ““CMOS Circuit Representation,
Verification, and Synthesis Using Automated Reasoning’’, Technical Report,
Dept. of Computer Science, Michigan State University, Nov. 1986.

[WuWN87] Wu, C.E., Wojcik, A.S., and Ni, L.M., ‘‘A Rule-Based Circuit Representa-
tion for Automated CMOS Design and Verification’’, Proc. 24th Design
Automation Conf., pp. 786-792, June 1987.

[WuNi87] Wu, C.E, and Ni, L.M., ‘“Asynchronous Arbiter Design Using CMOS
DCVS Logic’’, Digest of 1987 Symposium on VLSI Circuits, pp. 96-97, May
1987.

[Youn86] Young, J., ‘““TRW’s Superchip Passes First Milestone’’, Electronics, pp. 49-
54, McGraw-Hill, July 10, 1986.



il(llWWﬂ!llll!lﬂﬂl\lﬂlmlM"INNIWHMI"HI(HI

293010




