
 

PLACE ll RETURN BOX tomanthis chockom1mm your mood.

TO AVOID FINES Mum on or baton data duo.

DATE DUE DATE DUE DATE DUE

 

 
  

 

 
  

 
  

  

  

 
  

 
 

  

 

 
  

 

 

 
      

MSU chnmumWMOpponunuy Inflation

WW1



USE OF QUEUING THEORY IN DETERMINING OPTIMAL

SUPER MARKET CHECK-OUT FACILITIES

By

0

2W“ \

John Y‘.‘ Lu

A THESIS

Submitted to the School for Advanced Graduate Studies

of Michigan State University of Agriculture and

Applied Science in.partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Economics

1959



4[57(2)

a/fi/w



ACKNOWLEDGMENTS

The author wishes to acknowledge his indebtedness to the following

individuals who have directly or indirectly helped the author in the

preparation of this thesis.

The financial assistance given to the author during his stay at

Michigan State University by Dr. Lawrence L. Roger and the

facilities accorded to him by the Department of Agricultural Economics

are greatly appreciated.

Dr. Robert L. Gustafson has given much valuable guidance to the

author in formulating the problem. Many of his ideas appear in the

following pages, especially in Chapter IV. He has also read the manu—

script and his comments have resulted in an improved presentation of

the materials contained here.

Thanks are due to Mr. Mike Wood who suggested this problem to the

author and contributed much useful information, and also to Mr. Tom

McDermott for enabling the author to obtain data in connection with the

check-out operation of a super market.

The author also had the benefit of comments by Drs. K. J. Arnold,

W. A. Cromarty, and L. V. Manderscheid when the project was first being

set up.

Bill Grosswhite and Peter Hildebrand have read parts of the manu-

script and offered a number of useful suggestions concerning its style.

The mathematical exposition in Appendix B has been considerably im-

proved as a result of coments by Willard Sparks. Needless to say, any

error remaining in the thesis is the author's sole responsibility.

The author cannot fully express here the great debt he owes to his

many teachers, but he cannot refrain from singling out Dr. Clifford

Hildreth to whom he owes his interest in econometrics. During the en-

tire course of the author's graduate study, Dr. Hildreth has been most

generous in giving encouragement and inspiration to the author.

The author's heartfelt appreciation goes to M.W.L. for the invalu-

able role she played in helping the author to complete his graduate

work.



USE OF QUEUING THEORY IN DETERMINING OPTIMAL

SUPER MARKET CHECK-OUT FACILITIES

By

23W?
0/0

John Y. Lu

AN ABSTRACT

Submitted to the School for Advanced Graduate Studies

of Michigan State'University of Agriculture and

Applied Science in partial fulfillment of

the requirements for the degree of

DOCTOR.OF PHILOSOPHY

Department of Agricultural Economics

Year 1959

Approved



ABSTRACT

The check-out service provided by a super market appears to have

all the necessary features that make up a typical queuing prdblem.

There are customers who demand service; as each customer reaches a

service channel, he receives a service. After a certain service time,

he leaves. If the service channel is not immediately available to him,

he joins a queue. In most cases, the management has little control

over the arrivals of customers to the service area either in quantity

or in time; it can, however, expand or contract facilities to meet a

certain prespecified optimum criterion. The problem involves a balanc-

ing of the cost incurred by providing a certain amount of check-out

facilities for a given period of time against the cost of losing

customers in the future because of inferior service standards.

Recent developments in queuing theory provide the basis for system-

atically and quantitatively analyzing such a problem. The procedure is

to first estimate, for given incoming traffic pattern and service

practice, the prObability distribution of the check-out system's being

in each of all the possible states which are specified by the number of

customers present in the system. Next, the cost associated with the

system in each state is calculated. ‘When the cost as well as the prob-

ability of the system being in each state is known, the expected cost

per unit time of operating the check-out service under given conditions

can be calculated. This process is repeated until the conditions which

‘would result in the minimum expected cost are found.

\
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The formal model used to estimate the state probability distribu-

tion is characterized as follows:

Input - the number of customers arriving per unit of time is

a Poisson variate.

Service mechanism - the time required to serve a customer at a

counter follows one of two different negative exponential

distributions depending on whether or not a package boy

is assisting a checker.

Queuediscipline - "first come, first served."

This procedure was applied to data obtained at one of the large

super markets in the Detroit area. The week was subdivided into five

periods. The state probability distribution was estimated for each

period and the quantities of interest such as the expected length of

queue and the probability of more than a certain number of customers

in a queue were calculated. Based on these quantities, expected costs

were obtained and the service facilities which would generate the

minimum expected cost were found.

Sensitivity of the choice of optimim service facilities to changes

in estimated average arrival rate and average service rate was examined

and was found not to be serious. The assumptions of Poisson inputs and

exponential service times were tested. The number of customers arriving

at the check-out area per unit of time follows closely a Poisson dis-

tribution. The negative exponential distribution did not appear to give

the best fit to observations on service time. The assumption that

service times are distributed by a gamma mnction was found to be more

plausible. An alternative procedure based on the Monte Carlo method

was proposed to take account of this fact.

V
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CHAPTER I

INTRODUCTION

Shopping at a super market is a familiar experience for the general

public. Every shopper is, to some extent, interested in super market

operations whether he is an operations research analyst or not because

it requires little technical training to understand the operations.

As he goes through aisles, pushing a cart, selecting his purchases, and

finally ending up at the check-out stand, he cannot help but wonder if

there is a way of improving at least some phases of the operations.

In this study, the author is thinking along the same line as this

super market customer except in a more direct manner. The main concern

of the study is how to provide a.high grade check-out service in the

most economical manner.

What is a Qleuing Problem?

1

There are many operational problems involving flow of customers

in which the following two types of condition are observed:

1) Units that require service must wait for service because there

is a shortage of service facilities.

2) The servicing facilities must remain unused, not only because

of the lack of customers in quantity, but also because of the

nature of the time spacing between customer arrivals.

 

1In queuing theory, the term customer is not restricted to a

person. It can mean an aircraft waiting to land at an airport or an

automobile waiting to pass through a toll gate.



Either of these conditions results in the formulation of a waiting

line. In the first instance it would be a queue of input units, and in

the latter the units in a waiting line consist of service facilities.

The shortage and surplus of service facilities are usually brought

about by inability of a system to decide in advance a right amount of

service facilities to provide to.its customers; this inability, in turn,

is explained by the random elements which influence demand for service

both in time and quantit .

Under these conditions, a so-called queuing problem arises. The

problem is to change the behavior of the arriving units, or the service

facilities or both in.order that the queuing process may be operated in

as efficient and economic a manner as possible. This can be illustrated

for the case where a queue consists of input units. Total variable

costs (TVC) of operating a system that involves a queuing process are

made up of operating cest ROG) and waiting time cost (WTC).

Figure 1
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Here waiting time cost is defined as the cost of losing a potential

customer because of insufficient service facilities. Operating cost

may be assumed to increase approximately in.proportion to the amount of

facilities provided. On the other hand waiting time cost (for units

being serviced) probably decreases at a decreasing rate as more service

facilities are added to the system. It should be noted that waiting

time cost is a joint function of service facilities and the behavior of

arriving units. For each change in the behavior of arriving units, a

new waiting time cost function and a corresponding total variable cost

function can be drawn as they are indicated by dotted curves in the

above Fig. 1.

There are at least three ways of minimizing the total variable

costs.

1) For a given amount of facilities, find what behavior of arriv—

ing units will give a minimum variable cost. In Fig. 1, aa'

is the minimum total variable cost.

2) Find what is a right amount of service facilities which corres-

ponds to the minimum point of the total variable cost curve for

a given behavior of arriving units.

3) By varying the two variables (behavior of arriving units and

service facilities), the minimum point along the lowest total

variable cost curve can be found.

In order to quantitatively solve a problem of this type, the tools

of prdbability theory can be used to provide convenient methods of

determining the relatiOns between the flow of arriving units, amount of

service facilities, and grade of service. With this knowledge the



optimum grade of service can be determined in a lOgical manner; the

amount of service facilities required at any time of day as well as the

flow of customers to be permitted to the system can be specified in

advance.

The probability theory can be applied in two different ways in

solving a queuing problem. They are usually referred to as the mathe-

matical and simulated sampling approaches.

The mathematical or analytical approach begins with specifications

of probability distributions regarding customer arrivals and service

times. Based on these specifications, relationships that describe the

queuing process are derived by writing down statements about the prOb-

ability of there being a given number of customers in waiting line under

various conditions. These relationships can be solved for such quantir

ties of interest as average number of customers in the system, expected

length of waiting lines, etc. ‘When costs arising from waiting time and

operation of service facilities are known, one can analytically arrive

at the conditions under which a minimum cost is attainable.

Solution of the problem by the mathematical approach has a neat

appearance. However, sometimes it is difficult to specify explicitly

arrival and service distributions. Even if they can be represented in

terms of probability distributions, frequently a researcher is not

able to arrive at mathematical statements describing the queuing process.

If this is the case, the second approach may be used.

In the simulated sampling approach, a procedure known as the Monte

Carlo technique is commonly used. By the use of a table of random

numbers and of empirically determined prdbability distributions,



statistics on arrivals and service time are duplicated in a mechanical

way on a high-speed electronic computer. This method allows a research

worker to study the effect of changing conditions without waiting for

actual data over a long period of time. The simulated sampling approach

has become more useful as a result of developments in high‘speed

computers.

In the current study, the first approach was followed and total

variable cost of the check-out operation was minimized with respect to

the amount of service facilities for a given arriving pattern of incom-

ing‘units.

Objectives of This Study

The study attempts to test the applicability of a queuing model to

the check-out operation of a super market. The check-out operation seems

to have all the necessary features that make up a typical queuing prOb-

lem. There are customers who demand service; as each customer reaches

a service point, he receives a service. After a certain service time,

he leaves. If the service point is not immediately available to him,

he must wait his turn; in other words, he joins a queue. How long he

will have to be in the waiting line depends on how many other customers

have been to the store before him and also depends on how many service

points are in Operation. Management can do little about the flow of

customers to a store but it can adjust the number of check—out counters

available to customers so that a certain criterion can be met. In most

super markets, allocation of man power necessary in providing check-out

service as well as control of the number of check-out stands Opened at



any time is left to the discretion of the store manager. In making

these decisions, he mainly relies on his experience and a rule-of-thumb

'work standard.

Hence it appears plausible to analyze the check-out service by

means of queuing theory so that the operational.prOblem involved can be

dealt in quantitative terms. It is felt that this approach would be a

supplement to a subjective way of dealing'with the problem as in the

past.

There are certain crucial assumptions on which a queuing model is

based. These assumptions must be carefully checked in the light of the

actual check-out operation to see if they are reasonable. Above all

they must yield fruitful results.

To begin with, the analysis by queuing theory is based upon:

(I) the length of time between tw0 successive customers' arrivals and

(2) the time used for servicing a customer. These two quantities are

specified in terms of probability distributions. It is than natural to

apply some statistical tests based on the hypothesized prObability

distributions to empirically derived distribution functions.

Like many a mathematical model, the queuing model need not corres-

pond exactly to a real situation; if it can.be regarded as an.approxi-

mation to the actual check-out operation, than it can be used to provide

decisiOn criteria for the operation. A general method of determining

the amount of check-out facilities which will minimize the expected total

variable cost of the check-out operation is indicated, and three specific

approaches based on this general method were proposed and they'were ap-

plied to the data Obtained at one of the large super markets in Detroit.



CHAPTER II

QUEUING MODEL TO BE USED IN THIS STUDY

Various queuing models can be constructed by altering specifica—

tions in regards to: (l) the number of service "channels," (2) prob-

ability distributions of customer arrivals and service times, (3) queue

discipline, and (h) queue length. In the current study, the formulae

of operational interest for the queuing model which has multiple

exponential "channels" with Poisson arrivals, infinite queue and strict

queue discipline1 were applied to the super market check-out operation

in order to determine an optimal way to provide check-out service to

customers from the standpoint of management.

A Simplified Representation of the Check-out

Operation at a Super Market

In order to apply the above model, first consider a super market

whichhas a finite mlmber of check-out stands. These check-out stands

have identical service mechanisms and each of them can operate inde-

pendently of the others. Furthermore, it is assumed that each stand

 

1Multiple exponential channels mean that there are more than one

service point and the time needed for a customer to go through a service

point follows the negative exponential distribution. Poisson arrivals

refer to the assumption that the number of arriving customers per unit

time is a Poisson variate. Infinite queue refers to situations in which

every arriving customer must join the queue no matter how long it happens

to be. Theoretically the queue may become infinite. Strict queue dis-

cipline is the so-called "first come first served" rule.



can be operated at the two different levels of average check-out rate,

say “.1 and “.2. In this analysis, the rmmber of check-out stands to be

made available to customers at any given time will be less than or

equal to the number of checkeout stands that the super market has at

the outset of the analysis.

Next, customers are considered to arrive at the check-out area at

a certain average rate. Suppose there are m-k check-out stands which

have the average service rate ofu1 and there are k check-out stands

with the average service rate of “2. A rule adopted here is that

'EiE x 100 percent of the incoming customers will be served by the check-

out stands with the average service rate pl, and the remaining portion

of customers will be serviced through those stands which have the

average service rate p2,

It is shown in Appendix A that adopting this rule will reduce the

problem to a more familiar case of m equivalent service channels, i.e.,

each of the m check-out stands has the average service rate, say u,

where p. is

(m-RJul + kpz

 u, =

m 0

As soon as each customer arrives at the check-out area, he moves into

any check-out lane which is free to service him. If he finds all the

lanes are occupied, he is assumed to form a hypothetical common queue.

Under these conditions, a queue exists when the number of customers in

the check-out area exceeds the mmber of operating check-out stands at

any time and their difference is the length of queue.



Probability Distributions of Customer

Arrivals and Service Time

The main feature of a queuing model rests in its characterization

of the input process and capacity of service mechanism in terms of

probability distributions. It is assumed that the customers arrive at

"random," i.e., the number of arrivaL'Ls‘per unit time is a Poisson

variable. Perhaps this is the simplest hypothesis about the input

process. From this assumption, it follows that the time interval.

between two consecutive arrivals has the negative exponential distribu-

tion.2 As to the service time, i.e., the time necessary for a particular

customer to be served, the assumption is that successive service times

are statistically independent of one another and each is distributed by

the negative exponential distribution. It should be noted that two types

of service time are considered here.

At first, these artificial schemes of representing customers'

arrivals and service times may not seem‘realistic, because the infor-

mation that no customer has arrived at the Check-out area for, say,

tau minutes will generally increase our expectation that a customer

will show up in the next mimte. It is also not natural to assume that

service time obeys a negative exponential law, because one would in-

tuitivelyfeel that the probability of service time approaching a very

short duration of time must be close to zero. They have been, however,

found useful in many situations which seem to have features similar to

the check-out operation. Besides, considerable mathematical

 

2See Feller, (1950), p. 36h.
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simplifications can be achieved by these assumptions. One of the main

objectives of this study, as stated at the outset, is to examine the

applicability of these schemes to the check-out operation. These assump-

tions are stated more completely in Appendix A.

Expected Values of Various Quantities of Practical

Interest in the Problem Under Study

After the fluctuations of customer arrivals and service times have

been expressed in terms of probabilities, other measurable quantities

associated with the check‘out operation will be considered as stochastic

variables which vary with time about some average values. There are two

possible ways of studying these stochastic variables. The first deals

with the steady state or stationary phenomena of the variables . The main

purpose of this first approach is to determine how'the variables behave

in the long run. The second approach has to do with the transient

behavior of the variables, i.e., the exact behavior of the stochastic

variables as a function of time.

. In the current study, the first approach was adopted to study the

stationary structure of the check-out process. Intuitively, one feels

that the check-out process will approach a steady state, because there

are restoring forces within the system which attempt to keep down the

length of queue. In many cases, a probabilistic picture of steady state

will give sufficient insight for one to be able to calculate important-

quantities of the system and predict the system's overall behavior.

Suppose the whole check-out process is considered as a system.

This system can be in a number of possible states, which are specified



by the number of units in the syStem, waiting for service, in service,

etc. The steady state solution would give us the probability that the

system is in each of the possible states. From these probabilities,

average values of the various quantities of interest (mean number of

customers in the system, average length of queue, etc.) and derived

probabilities such as the probability that there are more than a certain

number of customers waiting in each check-out lane can be calculated.

The steady state distribution is given in the following. The

derivation of this distribution is set forth in Appendix A. Although

a minor modification had to be made to take account of the fact that

not all the service points have the identical average service rate, the

mathematical development in Appendix A essentially follows the presen-

tation of Peller (1950). The author assembled all the assumptions

which are needed to derive the steady state distribution and presented

the lOgic underlying the derivation of steady state distribution in

detailed form. The purpose is to facilitate the understanding of the

technique used in this study.

Let

Pn : The probability that there are n customers

in the check-out system.

9 x The ratio of the average arrival rate to the

average service rate, per channel. Mp. u is

defined as in P.8,

m z The number of check-out stands that are rendering

service to customers.3

3The quantityp/m is often called the relative traffic intensity.

The term "relative" implies that the. traffic intensity is measured in

relation to the capacity of‘the system.
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The steady state distribution is as follows:

 

-l Ill-'2 ' J m-l m

o 330 j'. m-l)t m-p

.0
Pn = P0 ET 0 < n g m (2.1)

p

P =- P0 n g m

n mtmmm

Given the explicit expressions for the state probabilities, as in

(2.1), it is relatively straightforward to obtain the expressions for

expected number of customers in the system, expected number of customers

waiting for service, derived probabilities such as the probability of

the length of queue being less than a certain fixed number. Some useful

formulae are presented below and their derivations are also given in

Appem-‘Ix A: pp. 76-77.

Let

Ls x The expected mmber of customers in the system.

Lq 8 The expected number of customers in waiting line.

q* x A given constant.

 

 

m-l 1n n+1 ' m

Q ,_ m

LS '- P0 :0 (n-l)‘ + (hr-l)t(m—p)2 + (m—l)l(m-p) (2.2)

pm+l ' ' '

Lq = P0 (xi-lumps? (2'3)
‘ *

’ m+q +1

Prob. (length of queue > q*) = 39.4.... (2.1:)

mtmq (m-p)
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Study of Volume of Daily Sales at the

Detroit Super Market Under Study

In order for the steady state solution to be valid, the average

customer arrival rate and the average service rate nust, roughly speak-r

ing,be neither rising nor falling. If they are stable, i.e., their

fluctuations are short-term fluctuations around their constant mean

values, the state probabilities and derived average values will be

independent of time.

As long as there is no basic change in check-out facilities, it is

not too unrealistic to assume that the average service rate remains

stable. However, average customer arrival rate does fluctuate. In fact,

it is closely related to sales volume per unit time. Inspection of

daily sales volume at this store in Detroit for a period of about two

months indicated that variation is nearly periodic with periodicity of

one week. This is shown in the following diagram in which sales volume

for each week day in January and February of 1959 is plotted. Each

vertical block represents a volume of sales for one day. A low sales

volume for the first part of the week is in contrast with heavy week-

end sales. Sales on 'Thursday seem to constitute a group by themselves.

Study of this diagram suggests that the week could be subdivided

into at least four periods so that within each period the customer

arrival rate may be reasonably stable. The first three days of the

week were combined into one period, and the remaining three days were

analyzed separately. Initially it was conjectured that Friday and

Saturday would have almost identical traffic intensity, Judging from

the volume of their daily sales. Discussion with the store manager and
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the others who are familiar with the check-out operation, however, re—

vealed that the traffic pattern on Friday is quite different from that

of Saturdw. On Friday before six 0' clock, the incoming traffic is

usually not much faster than an ordinary week day, but the traffic

picks up considerably after six. Actually, more than half of the day's

sale is usually made in the last two or three hours before the store

closes. Hence, eventually Friday was not only studied separately from

Saturday, but within Friday two separate analyses were made.

Review of Literature

In this section, the main sources of the theoretical study about

the queuing model used here as well as the sources for other types of

models are mentioned. Some applied works which have come to the author's

attention and were found useful in connection with the preparation of

this thesis are also discussed.

The pioneering work in queuing theory was undertaken by A. K. Erlang

some fifty years ago at Copenhagen in connection with telephone switching

problems. Most of his papers are contained in a memoir. prepared by

Brockmeyer _e_t g1_., (l9h8). An account of Erlang's work is also given by

Fry (1928). A

More recently, Feller (1950) discussed the queuing process as an

example of simple time-dependent stochastic process and derived the

state probability distribution in the case where the number of arrivals

per unit time is a Poisson variable and service time is distributed by

a negative exponential distribution. This was the model tested in this

thesis.
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An excellent survey of queuing theory is also to be found in the

two articles by Kendall (1951, 1953). He considered, in the first

paper, a queuing process with Poisson input and no specific assumption

with respect to service time, i.e., the service time distribution can

be one of the following three distributions: 1) constant or regular,

2) negative exponential, and 3) Erl'angianf. The distribution of queue

size in statistical equilibrium was derived. In the second paper, the

assumption regarding the input process was stated in a more general

form-the inter-arrival times were independently and identically dis-

tributed in an arbitrary manner. However, the service mechanism was

supposed to be characterized by the negative exponential serVice time.

The analysis of the system was carried out by applying the method of

the imbedded Markov chain.5 The ergodic6 behavior of this Markov chain

was investigated.

A queuing system of the more general type was considered by Lindley

(1952). No specific assumptions with respect to input and service

mechanism were made except input is independently and identically

distributed and service time is distributed by one of the three

 v—v—vm _‘

4‘I.et t, 0 < t <", denote the inter-arrival time and A(t) its

c.d.f. The density of the Erlangian distribution is

‘ i k .. ..
dA(t) = LIE-L e 1‘“ tk 1 dt.

rm) _ t

For k a l, dA(t) -’ As A negative exponaltial.

For k = G, dA(t) -9 0 constant.

5It is a method of transforming a sequence of random variables

into a process which satisfied the Markovian property. See Kendall

(1953): Pp° 3hlr3h2c

6Loosely translated, it means asymptotic properties.
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distributions mentioned in connection with the papers‘ by Kendall

The queuing systems considered by the aforementioned authors are

all based on the strict queue discipline. The system becomes increas-

ingly complmc to analyze as one allows for a more flexible rule.

Although there is one article by Holly (19514) on this subject, the

problem does not seem to have been treated extensively by the statis-

ticisn.

The theory of queues has a surprisingly wide range of applications.

The four studies reviewed here represent only a small sample.

The first empirical study is an example of the classical applica-

tion of queuing theory. The study was conducted by Molina (1927). The

objective of his study was to find a way to operate the telephone trunk-

ing system economically yet consistent with good telephone service to

the subscriber. In other words, the purpose of the study is to find

a compromise between the number of circuits and the amount of equipment

and the time necessary to complete a call. He assumed the number of

incoming calls per unit time to be a Poisson variable and considered

two alternative assumptions regarding holding time;7 viz., exponential

holding time and constant holding time. It is to be noted that in the

case of the constant holding time, he was able to obtain only approxi-

mate solutions. The probability of a delay, which is greater than an

interval of a certain length, was calculated for a given number of

trunks under various arrival rates of incoming cells. These probabili-

ties were used as action criteria in deciding if it was necessary to

 

7"Holding time" is a terminology of the telephone industry, and it

is equivalent to service time.
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add more circuits. Molina did not explicitly introduce the concept of

cost into his study.

Edie (1955) applied the theory in analyzing traffic delays at toll

booths operated by the New York Port Authority at the Lincoln tunnel,

George Washington bridge, etc. Since the major portion of expenses

necessary in manning these toll booths is the salary of toll collectors,

it was natural to consider a way to economize the toll collecting

operation by reducing the number of collectors, yet at the same time

maintain the policy of giving uniformly good service to the public.

In the past the allocation of manpower and controlling the number of

toll booths opened at any time were left to the discretion of the toll

sergeants. The quantity of the service tended to vary appreciably from

time to time. By means of the queuing theory Edie was able to provide

methods for dealing with the problem in quantitative terms and was able

to reduce toll collection expenses without impairing the quality of

service. The queuing system used is similar to the one considered by

Feller (1952). He made careful analyses of the incoming traffic, but

not much was said about service time distributions. Again, the problem

seemed to have been tackled mainly from the engineer's point of view,

because there was little discussion on the cost aspect of the problem.

In contrast to the first two studies, the cost concept was directly

utilized together with the queuing theOry in solving an inventory prob-

lem in the study made by Flagle (1956) . The stochastic element involved

in the inventory problem is the random receipt of orders for the product.

The problem was to determine the planned initial stock level that yields

a minimum sum of expected storage and depletion costs. The first step
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in solving the problem was to calculate the probability of experiencing

each of the possible inventory states during a reorder period. Next

the costs associated with the system in each of the possible states were

estimated. There were three major expense items that comprised the cost.

They were interest charges being incurred for carrying a certain level

of stock, storage and handling fees, and loss of orders due to the in-

ability of the system (shortage of stock) to fill an order. The costs

associated with the first two items are proportional to the size of the

inventory. The cost incurred by a loss of a customer or a potential

customer is inversely proportional to the inventory level. After state

probabilities and associated state costs have been obtained, expected

cost was calculated for a given value of average order rate and deple-

tion reserVes. The calculation was repeated by varying the value of

depletion reserve until that value of depletion reserve which yielded

a minimum expected cost was found. This technique was applied in

minimizing the expected cost arising from the queuing system studied

here.

In spite of its wide use by the engineer, the theory of queues has

not been applied frequently in the field of agricultural economics .

As far as the author is aware, there has been only one report on an

applied queuing problem in the Journal ofm Economics. Cox _e_t_ 31.,

(1958) applied the theory in determining livestock unloading facilities.

The problem was to decide on the number of docks needed to meet certain

management requirements which were specified in terms of either maximum

allowable waiting time for a truck to unload or the length of the maxi-

mum allowable waiting line. The simulated sampling approach was adopted.
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First probability distributions of arrivals and service time were esti-

mated. Then an arrival number was drawn at random from the estimated

distribution. For each arriving truck, a service time was also drawn

at random from the estimated service time distribution. And a record

of occupancy of the dock was kept. The process was repeated on a high

speed computer until the probabilistic features of a waiting line

formation were known. In this study, the authors were interested only

in the probability distribution of the number of trucks waiting in line

and the cost associated with this probability distribution was not dis-

cussed.

In closing this section, it should be noted that a comprehensive

bibliography of queuing problems can be found in the book edited by

McClosky and Coppinger (1956).



CHAPTER III

SOME STATISTICAL ANALYSES 0F CUSTOMER ARRIVALS AND

SERVICE TIMES

The analysis by queuing theory is based upon: (1) the length of

time between two successive customers' arrivals, and (2) the time used

for servicing a customer. These two quantities are specified in terms

of probability distributions as mentioned in the previous chapter. It

is then natural to apply some statistical tests based on the hypothe-

sized probability distributions to empirically derived distribution

functions. Although the hypothesis is that the probability distributions

are negative exponential in both cases, empirically derived distribu-

tions of the first quantity'were not directly tested against the negative

exponential functions for goodness-of-fit. Instead, empirical prob-

ability distributions of the number of customers arriving per unit time

‘were checked against Poisson distributions. As mentioned briefly in

the previous chapter, assuming the customer arrivals per unit time to

be distributed by a.Poisson.distribution implies that the length of

time between.two consecutive arrivals has a negative exponential

distribution.1 Furthermore, it is simpler to count the number of

customers arriving at the check-out area per unit time than to directly

measure how much later a customer arrives after his predecessor.

 

1ThiS'was demonstrated by Feller in his Probability Theory and

Its Applications, pp. 363-367
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The Goodness-of-fit Test

The first type of data recorded was customer arrivals at the check-

out area. Observations were taken by counting the number of customers

arriving per one minute interval, with an exception of Thursday.‘2 An

interval of one mirmte was used because it was about the shortest that

permitted the observer to make recordings without losing the count.

Observations were taken for each of the five periods within the week,

and an actual frequency distribution was constructed from observations

for each period by computing occurrences of each arrival class as a

percentage of the total intervals observed. These percentages were

then plotted against the arrival classes, as shown in Fig. 3, and

frequency polygons were drawn. The frequency distribution with the

higher average traffic volume per unit time tends to flatten out, and

at its right-hand tail there is a tendency for the frequency to be

higher. I

In order to compare these actual frequency distributions with the

theoretical distributions (in this case, Poisson), the theoretical

distribution corresponding to each group of observations was obtained

by estimating the mean from the observations and it was plotted in Fig.

)4. The similarity of the curves in Fig. 3 to those in Fig. 1;, is quite

evident. An empirical distribution based on observations on Thursday's

traffic arrivals was not included in Fig. 3 because observations were-

based on different time units.

 

2The arrival classes were based on a five-minute interval on

Thursday.
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0 Figure 3. Actual frequency distributions of customer

5 F arrivals.
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‘ Figure 1;. Theoretical frequency of distribution

h0 of customer arrivals.
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An easier comparison beWeen the actual and the two theoretical

distributions, Poisson and normal, can be made by referring to Fig. 5,

6, 7, 8 and 9. In each diagram, the actual distribution and two

theoretical distributions estimated from the same set of observations

are plotted together. The mean arrival rate and standard deviation

are also presented in the diagram. One feature to be noted is that the

normal curve appears to fit slightly better than Poisson to observations

on Thursday. This is probably due to the fact that arrival classes on

Thursday's observations are based on a five-minute interval instead of

on the one-minute interval. When the duration of observation interval

is prolonged, frequency of occurrences of the event that an extremely

small number of customers coming in during a five-minute interval would

tend to be small. Hence, the empirical distribution resembles a

familiar bell-shaped normal curve.

In addition to plotting frequency polygons, a statistical test was

noplied to see which of the two theoretical distributions gives the

better fit to the data. The test statistic used was the familiar

quadratic expression whose values are larger the farther the observed

frequencies differ from their means as calculated under the hypothesized

distribution. It is known to have asymptotically a chi-square distribu-

tion with T—K—l degrees of freedom where T and K are the number of

classes and estimated parameters respectively. When the test statistic

has been calculated, a probability level of fit can be found in a table

of chi-square distribution. A perfect fit would show a probability

level of 1.00, but a fit showing a probability level better than 0.05
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Figure 5. Comparison of Actual and Theoretical

Customer Arrivals for Monday

\ , - "'X Men Arrival Rate: 0.91 persons/one min.

- T/"_“~~
K’;/, \\ \\ \

y \ \ Standard Deviation: 0.956

96" ' \f actual

--- broken line : actual

--- solid line : theoretical

 
   

1 A 2 3 14 5 customers/ min .

Figure 6. Comparison of actual and theoretical

customer arrivals for Thursday

Mean arrival rate : 7.6 persons/5 min.

Standard deviation : 2.63 persons/

5 min.
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Figure 7. Comparison of actual and theoretical

customer arrivals for Friday (before 6 P.M.)

mean Arrival Rate: 1.76

Standard Deviation: 1.17

 

 

Customers per minute.

Figure 8. Comparison of actual and theoretical

customer arrivals for Friday (after 6 P.M.)

mean.Arrival Rate: 2.56

Standard Deviation: 1.38

L L‘ #L

1 2 3

Customers per minute.
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TABLE I

CUSTOMER.ARRIVAL GOODNESS-OF-FIT

Average Number The Significance

 

 

Arrival of One Level at which

Rate Minute Chiesquare Statistic H0 is ngected

Period Per Min. Intervals Poisson d.f. Normal d.f. Poisson Normal

Mon. Tues.

‘Wéd- 0-91 19h 3-897 h 39-232 3 99% *

Thurs. 1.50 365 7.155 12 6.681 11 9O 90

Fri.

before 6 1.77 lh5 8.107 6 18.858 5 25 *

Fri.

after 6 2.56 113 13.193 6 lO.h8h 5 5 5

Sat. 2.hh 257 3.828 6 12.822 5 75 *

 

Abbreviations: * a The significance level is less than 0.05.

d.f. a Degrees of freedom.

a theoretical distribution seem to support the reasonableness of the

assumption that the incoming traffic of customers is of the Poisson

type. And they also seem to suggest that statistical tests based on

the normal approximation would be adequate forua large sample.

Observations on another important quantity of the queuing theory,

average service time, were also tested by the chi-square test. Since

service time is a continuous variable, it was tested against a negative

exponential function. 'As mentioned previously, two kinds of checkeout

service were considered; 1) a checker alone at a check-out stand, and

2) a checker as well as package boy is at the stand. In each case,

service time is directly measured by clocking the duration of time taken

by'a checker when she starts to register a customer's purchases until
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Figure 9. 00mparison of Actual and Theoretical

Customer Arrivals for Saturday

30.
Mean Arrival Rate:2.hh

Standard deviation :1.h5
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is generally taken to mean that the hypothesized distribution need not

be rejected.

Results of applying the test are given in Table I- The fit of the

Poisson distributions seems to be very good, especially at the low

traffic volume per unit time. The fit of the normal curves are not as

satisfactory as the Poisson, although it appears to show some improve-

ment when the number of intervals observed is relatively large.

As indicated by the size of calculated chi-square statistic in Table 1,

the fit of a.Poisson distribution to an empirically derived arrival

distribution tends to deteriorate for a relatively large average arrival

rate. This may'be explained by the fact that when.the traffic becomes

extremely congested the distribution has a tendency to become constant.

Results of chi-square tests as well as an inspection of those

diagrams in which an.empirical frequency distribution is plotted against
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she finishes packing groceries into paper bags. Computed chi-square

statistics were relatively large which suggest that the data fit poorly

to the negative exponential function. They were significant at the one

percent level or less; in other words, values as large as the calculated

statistics would be observed only one time out of a hundred trials by

chance. This might have been expected because the assumption of a

negative exponential function implies that the frequency of occurrences

of service time being zero will be the largest, i.e., we-” reaches its:

maximum at t a O. Ordinarily one would expect the highest frequency of

check-out service times to be clustered around a certain average value

which is different from zero. Inspection of the data indicated that

they might have fitted better to another member of the gamma function

family.3

Sinceqthe assumption of exponential service times makes the

analytical @proach to a queuing problem manageable, the state prob-

abilities were calculated based on this assumption. Some alternative

assumptions as well as possible different approaches to the problem are

mentioned in the last chapter.

 

30bservations on the check~out time per channel (which is run by a

checker alone) were fitted experimntally to a gamma function of the

following form: _
e Btwflr-l

f(t) ‘3 8 5-3.)“

'Ehe parameter r determines the shape of f(t); the parameter [3 determines

its ‘scale,(r > 0,13 > 0). Estimates of the parameters r and £3 by the

method of moment were 1.8143 and 0.957 respectively. The calculated

chi-square statistic against this distribution was 8.793. Since the

degree of freedom was 9, the null hypothesis that the observations came

from the gamma distribution with r a 1.8h3 and £3 = 0.957 need not be

rejected at the 50 percent level.
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Statistical Properties of Average Durations

of Service Times

In a theoretical study of the probability structure associated

with a queuing problem, values of average arrival and service rates are

assumed to be known a M. In application of queuing theory, however,

these quantities must be first estimated from observations. The esti-

mates are subject to sampling fluctuations. In.this section some

statistical properties of estimates of average duration of service times

are discussed. Remarks made in this section on service time can be

equally applied to customer's "idle" time,4 because they are defined in

an analogous manner. -

First the sampling distribution function of an estimated average

service duration was derived. From this sampling distribution, a

confidence interval about the estimated average service duration can be

obtained to give us some measure of assurance that the true parameter

does lie within the interval. At the same time, an.appropriate sample

size can.be determined in order*that the probability that the sample

mean will lie within a fixed distance from the population mean will

meet at least a certain prespecified level. The confidence limits and

sample sizes based on the exact sampling distribution are compared with

those derived from the normal approximation. The normal approximation

was found to be satisfactory in general.

'file sampling distribution was obtained by first forming a joint

density function of all the Observations on service times and then

 

4Customer's idle time refers to a time interval between two

consecutive customers' arrivals.



31

applying an appropriate transformation to the variables of the joint

density function, and finally integrating out all the irrelevant vari-

ables from the transformed joint density function. Details of the

above procedure are presented in Appendix B. The desired cumulative

distribution function and density function are respectively as follows:

n n-l

Prob.( e< y) = 1 - e’nW 2: 1.1 ‘ (3.1)

- i=1

n

A ‘ ‘ -1 .-

g(6) ° 1%; 9 n 8 nine (3.2)

where

8 x The maximim likelihood estimate of average service

time. It is defined as n

.3 ti

5 3 i=1 -

n

 

where ti is the i—th observation on the service time.

n x The total number of observed service durations.

LL 3 The average service rate. Note that 2‘- :- e where e

is the “true" average service time.

The cumulative distribution function (3.1) is an incomplete gamma

function. It can also be considered as a right-hand tail of the Poisson

distribution with the parameter (my) . From the density function

(3.2) the mean and variance of a can be evaluated.

A - A A i A

E‘d af sg(e)de=-1-
0 P'

Var.(5) = 4" (’é-E‘é)2g(é) d e = ‘51;
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Since the mean and variance of 5 are known functions of the para-

meter p, the normal approximation can be applied as a short cut in

calculating a confidence interval of 6 as well as in determining a

required sanple size, when the sample'size is large.

Confidence Interval

Although the sampling distribution function ore has been found,

it is not independent of an unknown parameter. As can be seen from

the equation (3.1), it involves the unknown parameter p. In order to

make a probability statement of the form:

Prob. (a<6<b)= 4h g(é)de = r

where y is the fiducial probability or confidence coefficient, it is

convenient to have a distribution of 8 which is entirely free of the

unknown parameter. This can be done by transforming the density

function (3.2) according to the following formula:

n/i" P

The new density function, say 9(2), is as follows:

(th‘ffi-Pfl e ‘ fil- (Z+/IT) (3.3)

(n-1)t
(9(2) =-

Given this new density function, confidence limits which are

independent of the unknown parameter p can be obtained. To find the

bounds of integr'gt ion a and b in the following integral:
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fab <p(z)d z =- v

or Prob.(z <b) - Prob.(z < a) = Y (3.1;)

we would have to find the cumulative distribution function of 2. From

the transformation formula, z can be expressed in terms of 9.

z =u/H' (at-l)
_ #1

Hence

Prob. (z <b) = Prob. [p/H- (.3- &=) <b]

=tProb, [6< Bi]

- uf—n

Therefore, the cumulative distribution of z can be easily obtained from

that of B .

' i-l
n

Prob. (z < b) = 1 - {fir—(133E) Elli-{33%).}— (3-5)

1

By means of the distribution (3.5), constants a and b were

determined to enable us to make the following statements:

Prob. (z<b)= Yland Prob. (z<a)= 72 (3.6)

such that 71 - Ya any . There are infinitely many ways to choose 71 and

1;, which will meet the above condition. Usually they are chosen in

such a way that 1 -'rl ”Y2-

Each of the equations (3.6) was solved for b and a respectively by

use of a chart showing the cumulative Poisson distributipn for a rmmber

of different values for the parameter. This chart was prepared by
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5 _. n 1“].

Bell Telephone engineers. The function, 1 - e fl 2; -l l for

i=1

values of 8 ranging from O to 200 and i from O to 270, is drawn in

the chart. For instance, if the probability level 71 was set at 0.95

and the number of observations was 150, the corresponding value of {3,

say 80, could be read from the chart. The constant b was calculated

by simply solving the following equation:

‘y/H-(bfi/IT) '3 Bo ‘ (3-7)

Confidence limits of 1/8, which is the reciprocal of estimated

average service time, forv:L = (O'.95 and 72 = 0.05 are presented in

Table II. They are based both on the exact sampling distribution and

normal approximation, and are calculated for several different sample

sizes. It appears from the table that the normal approximation is

fairly adequate even for a sample size of less than 200.

In Table III, the estimators of average arrival rates for different

periods of the week and of average service rate of a check-out stand

which is operated by a cashier alone as-well as that of the check-out

stand which is manned by a cashier and bag boy are given. In the same

table, their confidence limits are also presented. The confidence

limits calculated were based on the normal approximation, beCause it

was felt that the approximation would yield satisfactory results for

sample sizes at hand. Besides, calculations could be considerably

simplified by using the approximate method.

 

5G. A. Campbell, "Bell System Technical Journal," Jan. 1923.
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TABLE II

CONFIDENCE LJEHTS OF.AVERAGE SERVICE TIME

 v fi m fifi v h
.

Sample Confidence Limits

Size ' Exact Distribution Normal Approximation

 

110 1/6 (0.815) 1/‘é(1.1636){1/é‘ (0:81.32) 1/8 (1.1568)

120 1/8 (0.850) l/§(l.158h); 1/5(0.8h98) l/é (1.1502)

130 16 (0.862) 1/§(1.1538); U§(o.asu9) 1/9 (1.11.51)

 

11.0 1/5 (0.865) 1/8 (1.15mi 1/s(o.8610) 1/9 (1.1390)

150 1/§ (0.870) l/§ (1.11.67)! 1/ 9(0.8657) 1/9 (1.13113)

160 ‘ 1/9 (0.872) 1/0 (1.1158) Q l/ e(0.8700_) l/e (1.1300)

TABLE III

1133me OF AVERAGE ARRIVAL RATES AND AVERAGE SERVICE

RATES, AND THEIR CONFIDENCE INTERVAIS

4‘

v '

Vfi— fl

 

 

 

Average Arrival Rate 90 Per Cent

Period customers/minute Confidence Interval

Mon., Tues.,‘Wed. 0.91 0.798 1.022

Thurs. 1.53 l.h23 1.636

Fri., before 6 1.85 1.628 2.038

Fri., after 6 2.55 2.313 2.809

sat . 2 .Ah 2 .282 2 .588

Average Service Rate 90 Per Cent 4

Type customers/minute Confidence Interval

Cashier alone 0.1.0 ' 0 .367 0 .hhz

Cashier and bag boy 0.82 0.730 0.885

—A—-



CHAPTER IV

OPTIMAL RULES FOR CHECK-0UT OPERATION

In order to decide on what grade of check-out service that manage-

ment should provide to its customers, knowledge about the probability

structure of a queuing process associated with the check-out operation

aloneis not sufficient. It is necessary to bring a cost concept into

the problem. By superimposing a cost structure on the queuing process,

expected variable cost involved in the check—out operation can be

calculated. '

In the short run, management has little control over the flow of

customers to the store. It Cannot change the physical set-up of the

store to install more check-tout counters either. It can, however,

regulate the average service rate of its check-out operation by varying

the number of check-out stands to be operated as well as the mimber of

bag boys to assist cashiers. These are two controllable variables that

management would like to adjust in such a way that a given criterion of

optimality is met.

Since the main interest of this study is determination of an

optimal combination of the controllable variables under given conditions ,

little attention was given to institutional and managerial arrangements

necessary to secure the mimber of cashiers or bag boys required to

meet the criterion of Optimality.
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A Criterion of Optimality

The criterion adopted here is the minimization of expected costs

incurred to the super market management in providing check-out service

per unit time. Notion of expected values is introduced so that prob-

ability calculus can be used to take account of random fluctuations of

important variables, such as the number of arriving customers and

departing customers per unit time, in solving the problem.

Some simplifying restrictions were imposed when.applying the above

optimal criterion. It is quite common for a super market to set up an

express check-out stand to accommodate those customers with a relatively

small number of purchases. Since the volume of daily sales made at

this counter is small in comparison to the total daily sales of the

store, and the stand is kept open most of the time, it was not included

in the present analysis. The second restriction is that there should

not be more package boys than checkers at any time. This restriction is

not too unreasonable because it is in accord with the general practice.

The third restriction is that the presence of a long queue has no effect

on the speed of service. This restriction can be somewhat relaxed if

one allows different service rates for different types of traffic

intensity;

General method of Solution

The first step is to calculate a stationary distribution which

describes the equilibrium probability of the system being in each of all

the possible states. This stationary distribution, as explained in
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Appendix A, does not change with time and is almost always independent

of where the system was in time 0. The stationary distribution depends

on the probability distribution of customers' demand for service and

also on a rate at which customers are serviced. Since this service rate

is a function of how many cashiers and bag boys are at work which are

controllable by management, a proper selection of these variables can

be made to satisfy the optimal. criterion.

Next consider a cost structure which is generated by choosing a

certain combination of the controllable variables. For each selection,

certain costs must be incurred. The most relevant portion of these

costs can be classified into two types. They are: l) wages of cashiers

amd package boys who are providing the check-out service, and 2) cost

incurred by a loss of the store's good will due to frequent formations

of an unnecessarily long queue which is caused by inadequate check-out

facilities. The first kind of cost can be readily estimated. It is

independent of the incoming traffic intensity. 0n the other hand, the

second type of cost is rather imponderable. The thing to be quantified

is the adverse effect of keeping a customer waiting too long and too

frequently for check-out service. He may become impatient and decide

that he will not come back in the future. This cost can be considered

to be a Motion of the expected length of queue and probably it is

reasonable to say that the cost will increase at an increasing rate as

the expected queue length becomes large.

The above discussion can be more conveniently and precisely stated

with use of symbols .



Let

Pn[l: P» ("1:101 Probability that there are n

customers in the system.1

Cl[m,k] : Cost per unit time of employing m

cashiers and k bag boys, where

m > k.

C2[I.q()., 3.1)] : Penalty cost per unit time.

Then the expected cost for providing the check-out service, given

fixed values of l and p. is

C a (C +C2)P (11.1)

)‘sp' a 1 n

The optimal criterion dictates that the expected cost (h.1) is to be

minimized with respect to u(m,k) for a given value of A. Hence the

equation (h.l) is evaluated at all the feasible values that m and k may

take. .

Evaluation of the enacted cost by means of (h.1) can be somewhat

Simplified, if one notes the fact that costs of employing a certain

number of cashiers and bag boys are independent of the stationary dis-

tribution Pn. The equation (h.1) can be reduced to the following form:

CK”:- 01);:I Pn + fiCZPn

(Ll-2)

a C1 + z C2Pn

n

 

1The functional notation is to emphasize the dependence of the

state probability on the average arrival rate and average service rate.

The average service rate, in turn, is a function of the number of

checkers and package boys, (see p. 41 of this Chapter). Similar remarks

apply to the cost functions 01 and 02.
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Hence the problem may be stated as follows:

"with respect to p,(m,k).

Because of one of the simplifying assumptions that there should not be

Minimize Cl

O

more bag boys than cashiers at any tim, the function p.(m,k) would be

defined at most at Ram-+21 points. Since in most super markets the

mnber of check-out stands will rarely exceed ten, evaluation of the

cost function Cx’p’is not unmanageable.

Some Specific Solutions

Three different objective functions based on 01.2) were formulated

in this study. Their differences lie in the nature of the penalty cost

fmction assumed. In the first formulation, a specific penalty function

was introduced into the objective function. In the remaining tyro, the

penalty cost was not included in terms of the dollar values of the "good

will" lost as a result of keeping one customer waiting in line for one

time unit.2 However, the length of queue was incorporated indirectly

into the cost function as a constraint of minimization.

l) Minimize (m - k)W1 + kHz + 8 (Lq)

(11.3)

with respect to m and k, .

where

m: The number of counters in operation or the number of

checkers.

k: The number of bag boys, (05 k: m)

A _‘

2"Good will" lost can be considered as the discounted net value

of future business lost.
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W1: Cost per unit time of operating a counter without

a bag boy

W2: Cost per unit time of operating a counter with a

cashier as well as a bag boy

Lq: Ehrpected length of queue which can be computed by

formula (A.18) in Appendix A.

5 ! Penalty cost function which is assumed known to

management.

Suppose 5 is a linear function, the cost function (11.3), may be written

as follows:

m+l
Po p
 

(m--k)W1 + sz + d (Jill)

(lrn--l)t(1m-‘10)2

where d is considered as the dollar value of the good will lost as a

result of keeping one cuStomer waiting in line for one unit time and

p :5 l/u. Since there is an average of L cuStomers waiting per unit
Q

time, the average penalty cost per unit time is qu. In the above

fonmilation the explicit expression for Lg was inserted. The average

service'rate p is a function of m and k. The function is specified as

follows :

=(m’k)#1*kfl2

[1 'mr
 

(1111‘)

The symbols #1 and ",2 refer respectively to the average service rate of

one check-vent stand operated by a cashier alone and the average service

rate of a stand when it is run by a checker and bag boy.

2) Minimize (m - k)w1 + sz . (h.5)

with respect to n and k, subject to

*-
<
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where L* is the maximum allowable average length of queue. It is a

parameter set by management.

 

3) Minimize (m - MRI + U2 04.6)

with respect to m and k, subject to

at

m+q +1
-x- P

Prob.-(q>q)=—-'39v*r - <P*

mt mq (map)

where

q .: The number of customers in waiting line.

q* 3 A fixed length of queue per service channel.

P* 3 Probability level specified by management.

These last two formlations appear to be more adaptable to manage-

ment's traditional or intuitive way of thinking, because the management

was more willing to specify parameters such as L*, q*, and P* than to

specify a penalty function 5(Lq) . This does not mean that solutions

obtained by these two methods are always optimal in the sense. that the

expected cost per unit time is minimized. Although assigning a proper

weight to the penalty cost function may involve a great deal of techni-

cal difficulties, management should strive to get as accurate an estimate

as it can about parameters of the penalty cost function. Some suggestions

as to how the parameters may be estimated are given in the last chapter.

Optimal Check-out Rules for the

Super Market in Detroit

First, a check-out rule is defined as follows: for given average

. customer arrival rate, any choice of a combination of the controllable

variables (viz. , the number of checkers and the number of package boys)
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in order to provide the checkeout service to the incoming customers is

a check-out rule, and that rule which would minimize the expected cost

as defined in pp. 37-140 is an optimal rule.

The three methods of solution as described in the previous

section were applied to data obtained at one of the large super markets

in Detroit. This store is a little above average in size and does a

weekly business of better than $50,000. It is considered to be typical

by the management as far as the purchasing patterns of its customers are

concerned. There is no dominant nationality group among the customers

who might ‘show their preference for some particular shopping times.

Variation in salesvolume is closely associated with time of month or

week in relation to pay days of customers. In this store, approximately

one-fourth of the total weekly sales occur during the first three days

of the week; Friday and Saturday tOgether usually account for nearly

one-half of the weekly sales. The store has seven regular check-out

stands and one express check—out stand. The latter is responsible for

only about five per cent of the total weekly sales. Like many a super

market, the operation of check-out service is based on the composite

Judgment of the manager as to what is a uniformly good service and what

is an economical check-out service.

As. previcmsly mentioned, the week was subdivided into five periods

so that within each period the average customer arrival rate may be

reasonably assumed to be stable and the steady state solution valid.

The optimal rules were obtained separately for each of the five periods.

Those values of p. at which cost functions are to be evaluated were

calculated by (hoh‘). In this study, estimated values of p1 and p2
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were 0.10 and 0.81 respectively, and the number of checkers m goes from

0 to 7‘. The next step was to find the value ofp corresponding to each

combination of m and k (the number of package boys). This was done by

dividing an estimated average arrival rate for the period under study

by each of those calculated values of p. Calculated values of ,9 were

then used as a preliminary step in eliminating some undesirable check

out rules. ' The criterion adopted to eliminate undesirable check-out

rules was that m awn-3‘17- . This is a necessary condition for the

convergence of state probability distribution as shown in Appendix A,

p.75 . Hence, those rules which did not satisfy this criterion were

eliminated from further consideration.

Minimization of the three objective functions for each period of

the week is summarized in a tabular form in the remainder of this

section. In the first column of the table, feasible values of p are

given. In the next two columns, the number of cashiers and the number

of bag boys are indicated. In the column 11,, the operating cost of

check-out facilities is given. It was calculated by the following

formula:

(m - k)W1 + sz

where W1 is the wage of a cashier per minute and W2 is the combined wage

of a cashier and bag boy per minute. They were 2.813! and b.37fi

respectively in this case, and were based 0n the hourly wage of $1.69

for a cashier and $0 .90 for a bag boy.

Expected length of queue and probability of more than two persons

waiting in each check-out lane are presented in the columns 5 and 6
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respectively. When the am impression of those who are more

informed about check-out operations was sought in regard to the maximum

length of queue that could be tolerated, they indicated that if there

would not be more than two persons waiting in each lane probably little

adverse effect would result. They also felt that customers seem to

consider a waiting line of, say, two persons when all the check-out

lanes are open is qualitatively different from the same length of a

waiting line with only one check-rout lane open. Apparently the customer

is less irritated by a long wait if he sees that the management is

making a reasonable effort to handle the traffic by opening more

counters or putting on more package boys. This is one of the factors

that one has to consider in assigning a proper weight to the penalty

cost function. However, in the present analysis, this information was

not used because it was not available in quantitative terms.

In the 7th column, the cost function (hit) which consist of operat-

ing cost and penalty cost is evaluated. The penalty cost was based on

a linear penalty function for simplicity. Since the management was not

able to suggest the coefficient d of this function, the author used

what he considered to be a reasonable value for the coefficient. The

coefficient d was determined as follows:

Let (mo,ko) and(m1,k1) be those combinations of checkers and

package boys which would result in the highest and lowest operating

costs respectively within a period under study. By evaluating the cost

function (h.h) at these points, one would obtain two expressions which

are functions of the coefficient d. Finally set these fImctions equal

to each other and solve it for d.
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(mo-koWl + deé + d Lq(mo,ko) = (h 7)

(ml-k1)W1 + klw2 + d Lq(m1,k1) '

Let the value of d which satisfies the above equality be (1*. The

value of d thus obtained ensures that an optimal rule will be found

somewhere between these two extremes, (mo,ko) and (m1,k1). This can

be seen in the following heuristic example. Let the penalty cost,

operating cost and total variable cost be labeled PC, 00, and TVC,

respectively in the diagram below. It is assumed that PC decreases

monotonically as more service facilities are added. 0n the contrary,

00 is assumed to be a montonically increasing function of the service

facilities. Note that TVC 2 CC + PC. The procedure indicated in (h.?)

can be shown diagramatically.

Figure 10

The Diagramatic Determination

of the Coefficient d

Cost
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Select tw0 extreme grades of check-out service. They are represented

by the two points a and b along the coordinate. The points a and b

may be considered to represent those check-out facilities that are

called for by the combinations (mmko) and (m1,k1) respectively.

A principle adopted here in choosing the coefficient d is to find that

shape of the curve such that aaI = bb' . _Now a minimum point of the TVC

curve will lie within the range-ab. '

The actual values of d-X- used for calculating TVC range from about

2s per minute to 10;! per minute. They do not appear to be too far off

from what might be a customer's subjective judgment of how much his time

is worth.

If the coefficient d was assigned a value greater than d*, it would

imply that more weight is given to the penalty cost, (in fact, if it

were excessively large, it would be meaningless to apply the theory of

queues to this problem ), On the contrary, if the coefficient takes a

value smaller than d-X-, then Operating cost becomes more important in

consideration of minimizing the total variable cost. It is hoped that

more research will be undertaken in the future so that the information

pertaining to the parameter d will be more readily available. No entry

in the 7th column of the table should be interpreted that the total

variable cost for that particular check-out rule .is higher than that

corresponding to the optimal rule.

In the last column, optimum check-out rules according to the three

criteria are indicated.

Before presenting the summary tables, the abbreviations that appear

in the tables are explained again for the sake of clarity.
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p :l /p., i.e., the ratio of the estimated average arrival rate

to estimated average service rate.

m : The number of cashiers.

k : The number of bag boys.

0 : The total operating cost, cents per minute.

Lq : The expected length of queue.

Prob. (q > 2m): The probability of more than two customerswaiting

in each check-out lane.

T.V.C. : The total variable cost evaluated by means of (14-14),

cents per minute.

(1) : The optimum check-out rule obtained by the first method,

i.e.,

Min C + d Lq a ToVoCo

m,k ‘

(2) : The optimum rule obtained by the second method,

108.,

Min '0 subject to L

m,k

q<2m

(3) : The optimum rule obtained by the third method, i.e.,

Min C subject to Prob. (q > 2m) < 0.05.

m,k
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TABLE Iv

OPTIMUM CHECK-OUT RDLEB FOR MONDAY, 1111180111, AND WEDNESDAY

(Xeoan

AA A‘ :‘h‘ ‘1.v.c. Optimum _1

5 m k c Lq Prob(q > 2m) (e/min.) Rule

2.25 3 0 8.u3 1.699 7.80% 10.51

1.50 2 1 7.18 1.929 15.22 9.55 (2)

2.25 h 0 11.211 0.310 1.1.62

1.69 3 1 9.99 0.399 - 10.h8 _

1.13 2 2 8.7u 0.530 2.38 9.39 (1),(3)

2.25 5 0 1u.05 0.07u - 1h.lh

1.80 h 1 12.80 0.105 - 12.93

1.35 3 2 11.55 0.152 - 11.73

2.25 6 0 16.86 0.018 - 16.88

1.87 5 1 15 .61 0 .028 - 15 .61;

1.50. h 2 1h.36 0.0u5 - 1h.u2

1.13 3 3 13.11 0.07h - 13.20

2.25 7 0 19.67 0.00u - 19.67

1.93 6 1 18.h2 0.007 - 18.h3

1.61 5 2 17.17 0.016" - 17.19

1.28 h 3 15.92 0.021 - 15.95

1.97 7 1 21.23 0.002 - 21.23

1.69 6 2 19.98 0.003 - 19.98

1.h1 S 3 18.73 0.006 - 18.73

1.13 h h 17.u8 0.012 - 17.h9

1.75 7. 2 22.79 a -

1.50 6 3 21.5u 0.002 -

1.2h S b 20.29 0.003

1.57 7 3 2h-35 * "

1035 6 )4 23 .10 O .001 "

1.16 7 b 25-91 * -

1023 6 5 211.66 '3!” "

1.31 7 5 27 .h? -x-

l.13 6 6 26.22 a-

1.21 7 6 29.03 a —

1.13 7 7 30 .59 * -

J‘

*- : Lq is less than 0.001.

- : Prob(q > 2m) is less than 1%.



TABLE V

OPTIMIM QiEGK-OUT RULES FOR THURSDAY

 

 

 

(i=15n

‘ “ ‘ Lma‘ wmmm

p“ m k 0 La Prob( q > 2m (gs/min.) Rule

3.78 h 0 11.2h 15.138 52-9h 32.h3

2.8a 3 1 9.99 16.009 61.37 32.u0

1.89 2 2 8.7h 16.790 66.38 32.20

3.78 5 0 1h.05 1.862 2.17 16.10

3.02 L; 1 12.80 1.596 11.111 15.03 (3)

2.27 3 2 11.55 1.799 8.21 1h.07 (2)

3.78 6 0 16.86 0.399 - 17.82

3.15 5 1 15.61 0.h69 - 16.23

2.52 h 2 1h.36 0.556 - 15.1h

1.89 3 3 13.11 0.671 1.53 1h.05 (1)

3.78 7 0 19.67 0.125 - 19.8u

3.2h 6 1 18.u2 0.156 - 18.6h

2.70 5 2 17.17 0.198 - l7.h5

2.16 h 3 15.92 0.253 - 16.27

3.31 7 1 21.23 0.053 - 21.30

2.8u 6 2 19.98 0.072 - 20.08

2.36 5 3 18.73 0.096 - 18.86

1.89 h h 17.h8 0.133- - 17.66

2.7h 7 2 22.79 0.025' - 22.82

2.52 6 3 21.5u 0.035 - 21.58

2.08 5 b 20.29 0.0u9 - 20.36

2 065 7 3 2'4 035 O .013 "

2.27 6 h 23.10 0.019 -

1089 5 S 21085 0.030 “

2.h1 7 b 25.91 0.007'

2.06 6 5 211.66 0.011

2.21 7 5 27.u7 0.001

1.89 6 6 26.22 0.006

2-0h 7 6 29.03 0.002 -

1.89 7 7 30.59 0.001 -

 

- : Prob (q > 2m) < 0.01.



TABLE VI

' OPTIMUM CHECK-OUT RULES FOR FRIDAY BEFORE 6 P.M.

 

 

 

(1:189

T.V.C. Optimum

7, m k c Lq Prob(q > 2m) (pf/min.) . Rule

ho§7 S 0 in.os 8-h17 29.52 32.57

3.65 h 1 12.80 8.u61 35.82 31.81

2.7h 3 2 11.55 8.880 hh.h5 31.09 (2)

b.57 6 0 16.86 l-hZS 1.26 20.00

3.81 5 1 15.61 1.526 2.9h 18.97

3.0a h 2 18.36 1.667 8.13 18.03 (3)

2.28 3 3 13.11 1.8u8 8.51 17.17 (1)

n.57 7 0 19.67 0.h3h - 20.63

3 .91 6 1 18 .112 0 .1193 19 .50

3.26 5 2 17.17 0.572 - 18.h3

2.61 h 3 15.92 0.672 1.06 17.h0

n.00 7 1 21.23 0.180 -

3.h3 6 2 19.98 0.220 -

2.85 5 3 18.73 0.266 -

2 028 )4 )4 17 0’48 0 0332 "

3.55 7 2 22.79 0.08h -

3.01. 6 3 21. 511 0.107 -

2.51 5 a 20.29 0.133 -

3.20 7 3 2h-35 0-0h3 -

2.7h 6 b 23.10 0.058_ -

2.28 5 5 21.85 0.080 -

2 .91 7 )4 25 091 O .023 "'

2.89 6 5 2h.66 0.03u -

2.66 7 5 27.27 0.013 -

2.28 6 6 26.22 0.020

2.h6 7 6 29.03 0.008 -

2 .28 ‘ 7 7 30.59 0 .005 -

J

-. : Prob (q > 2m) is less than 1%.
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TABLE VII

OPTIMUM CHECK-OUT RULES FOR FRIDAY AFTER 6 P.M.

(X.= 2.55)

I 8* 3 ‘A h; A T.V.C. optimuaE

a m 1 k C Lq Prof(q > 2m) (fi/min.) Rule

6.32 7 0 19.67 6.880 18.18 33.h9

5.h2 6 l 18.h2 7.1h8 18.17 32.79

b.51 5 2 17.17 7.210 27.86 31.66

3.61 h 3 15.92 7.323 31.6h 30.63 (2)

5.53 7 1 21.23 1.7h3 1.78 28.73

2.72 6 2 19.98 1.862 2.83 23.72

3.95 5 3 18.73 2.010 2.16 22.77 (3)

3.16 h h l7.h8 2.173 7.07 21.8h (l)

2.92 7 2 22.79 0.727 - 2h.25

h.21 6 3 21.5h 0.799 * 23.15

3.88 5 a 20.29 0.852 - - 22.00

hth 7 3 2h-35 0-3h7 * 25-0h

3.79 6 h 23.10 0.808 23.91

3.16 5 5 21.85 0.h77 22.80

8.02 7 L 25.91 0.185

3.h5 6 5 2h.66 0.228

3-69 7 5 27-h7 0-107 ‘

3016 6 6 26022 00135 "‘

3.80 7 6 29.03 0.063 -

3.16 7 7 30.59 0.080 -

 

- : Prob(q .> 2m) is less than 1%.



TABLE VIII

OPTIMUM CHECK-OUT RULES FOR SATURDAY

 

 

 

(i = 2.1114)

7 fi 1* - 1‘.v.c. Optimum“

E, m k C Lq Prof(q > 2m) (xi/min.) Rule

6.03 7 0 19.67 3.870 6.91 32.hh

5.17 6 l 18.h2 h.060 10.89 31.82

1.31 5 2 17.17 1.263 13.30 31.21

3-h6 h 3 15.92 h-hlé 18.67 30oh9 (2)

5.28 7 l 21.23 1.219 - 25.35

1.52 6 2 19 .98 1.305 1.16 211 .29

3-77 5 3 18.73 1.1139 1.97 23.149

3.01 1 1 17.18 1.562 1.16 22.63 (1),(3)

11.69 7 2 22 .79 0 .517 21; .50

1.02 6 3 21 .51 0 .587 - 23 .18

3.31 5 h 20.29 0.625 - 22.35

1.22 7 3 211 .35 0 .251 - 25 .19

3 .62 6 11 23 .10 0 .301 - 21 .10

3.01 5 5 21.85 0.360 e 23.03

308).} 7 )4 25.91 0.138 "

3.29 6 5 21.66 0.171 -

3 -52 7 S 27 .117 0 .078

3.01 6 6 26.22 0.101

3.25 7 6 29.03 0.0h7 -

3 .01 7 7 30 059 O 0028 "

 

- : Prob(q >»2m) is less than 1%.
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From the foregoing tables, the optimum check-out rules for each

period of the week can be determined. However, even if the management

is unable to specify parameters necessary for optimization, these

tables would still provide useful informatidn because they have narrowed

down a range of selection for optimal rules.

As mentioned previously, rules considered here are limited to

those which satisfy one of the conditions for the convergence of the

stationary-prdbability distribution. This condition states that p >-m.

Hence, the rules in the table may be considered to have passed the

initial screening.

In.most cases, a checkeout rule with a higher'operating cost would

tend to be associated with a better grade of service as indicated by'a

shorter expected length of queue and smaller PrOb(q > 2m). However,

there are some exceptions to this tendency. One may note that a number

of check-out rules in the foregoing tables illustrates this point. For

instance, on Saturday, the check—out rule (m = 5, k = 3) is to be

preferred to the rule (m = 7, k = 0), because the application of the

former would bring about the better service with smaller expenses as

compared to the latter. Hence a rule such as (m a 7, k = 0) has to be

excluded from further consideration. The jdb can be always done more

efficiently and economically by adopting the rule (m a 5, k = 3) in

place of the rule (m - 7, k a 0).

'It may be worth noting that for given average arrival rate and cost

function, the optimal rule (m,k) is not highly sensitive to the choice

of the criterion Of optimality (at least not for the three criteria used

here). This can be seen.in the following table.



55

TABLE IX

OPTIMJM MILES FOR DIFFERENT AVERAGE ARRIVAL RATE AND

DIFFERENT CRITERIA 0F OPTIMALITY

___.fi v—f

\1 0.91 1.53 1.85 2.11 2.55

 

 

CriteriOh\mk mk mk mk mk

(l) 22 33 33 11 11

(2) 21 32 32 143 13

(3) 22 111 12 11 53

Before concluding the discussion on Optimum checkvout rules, a

question may be raised as to what effect the sampling fluctuations of

estimates of average arrival rate and average service rate would have

on determination of optimal check‘out rules. For this purpose, some

results obtained in the second half of Chapter III will be used.

The first item to be considered is the variation in 5 as estimates

of 7. and u fluctuate. This is done by Obtaining upper and lower limits

of 5 from confidence limits Of X and a.

Letx*, and 1* be the upper and lower confidence limits,

respectively, of f for a given size of confidence coefficient;

similarly 9* and 11* are the upper and lower limits of 12.3 awould

* A

then vary between its upper limit 25* and lower limit If: . The effect

of variations ini and";~ on optimum check-rule can be studied by

obtaining the optimum rules corresponding to those limits.

 

3Since 9, is calculated by the formula perm-’1‘)“ " 19%, (1.11)

p is obtained by inserting upper confidence limits Ofm p1 and112 into

(11.11:) and 11* is obtained by inserting lower confidence limits of 111 and

pa into the equation.
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In Table X, optimum rules for Saturday based on the upper and

lower limits of ‘5‘, which in turn were obtained from the 90 percent

confidence limits of X and a, as presented in Table III, page 35,

are compared to those given in Table VIII of this chapter.

TABLE X

EFFECI| 0F VARIATION IN ESTIMATES 0F 1 AND 31 ON

OPTIMUM CHECK-OUT RULES

A k ‘_A_‘ A

—V— fi‘v j *—

 

Method (1) Method (2) Method (3)

m k m k . m k

Upper limit of 8 5 5 11 11 5 11

3 1 1 1 3 1 1

Lower limit 01.13 1 1 3 3 1 3

‘A A _

This example suggests that selection of optimal rules by the methods

proposed in this study is fortunately not very sensitive to variation

in estimates of X and 11 due to sampling error.



CHAPTER V

SUMMARY OF RESULTS AND SUGGESTIONS

FOR FUR‘IliER STUDY

The applications of queuing theory have been many and varied.

They range from the design of airports to the scheduling of patients in

clinics.

Despite the fact that the check-out service at super markets

appears to have all the necessary features that make up a typical

queuing problem, as far as the author is aware, no attempt has been

made to answer some important questions in connection with the efficient

operation of check-out service more rigorously. For example, how many

check-out stands should there be in operation to handle the customers

ready for check-tout at any given time? Or, given that six employees

are available, is it betterto have six checkeout stands Operating or

only three check-out stands with one package boy each?

This thesis is chiefly concerned with procedures that can-be used

to answer these questions in quantitative terms and in a logical manner.

The procedures proposed here were applied to data obtained at one large

super market in the Detroit area.

An application of the procedures essentially involves a balancing

of the cost incurred by providing a certain amount Of check-out facili-

ties (the cost mainly comprises the wages of checkers and package boys)

for a given time period against the cost Of losing customers in the
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future because Of inferior service standards. The first type of cost

is essentially a function Of the number Of checkers and the number of

package boys attending check-out stands during that time period. The

second type of cost depends on the following three factors: 1) the

number of checkers and the number of package boys, 2) the number of

customers arriving at the check-out area during the time period, and

3) the rate at which each arriving customer is served. The management

can not regulate the flow of customers to suit its available labor and

facilities; however, it can decide on the amount of labor and facility

requirements to meet a given flow of customers. Hence, if some func-

tional relationships between the sum of these two coats and the three

factors mentioned above can be specified, it will then be possible to

determine the cost for given values of the factors. It was shown in

this thesis that such functional relationships could be specified in a

logical manner.

The last two factors which comprise a main portion of the second

type of cost are not known in advance. In order to get around this

difficulty the probability distributions of these two quantities are

estimated. From these stochastic quantities, an expected cost can be

calculated by means of the theory of queues. The specific procedures.

followed in this thesis are briefly described in the following.

First, a queuing system which is inherent in any check-out Opera-

tion at super markets was characterized in the following manner:

Input: time intervals between two consecutive arrivals are

independently and identically distributed by a negative

eiqaonential distribution.
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Service mechanism: nunber of check-out counters available is

finite; time required to serve one customer at

a counter has one of two different probability

distributions depending on whether a package

boy is at the counter or not; both distribu-

tions are assumed to be negative exponential

distributions .

Qieue discipline: "first come, first served."

The system can be in any of possible "states," specified by

the number of customers in the queue, the number of customers being

served, . or the total nunber of customers in the system. From the

probabilistic characterizations of input and service mechanisms, the

probabilities that the system is in each of the possible states

independently of time were calculated. These probabilities are called

steady state probabilities.

Next the costs associated with the system in each state were esti-

mated. From the steady state probabilities and their associated costs,

the expected costs could be readily computed.

The steady state probabilities are valid only when the average

arrival rate and the average service rate can reasonably be considered

stable. It is not unrealistic to assume that the latter will remain

constant so long as there is no- basic change in the service mechanism.

On the other hand, the average arrival rate varies from day to day, if

not from hour to hour. It is known to be closely related to sales per

unit of time. In order to apply the procedures developed in this study

to the check-out Operation at a super market in Detroit, sales records

of the store were examined; and the weds was divided into five periods

so that within each period the assumption of stable average arrival rate

would be more tenable.



60

Optimum check-out rules for each of the five periods were Obtained

separately and were shown in tabular forms. From the table, the effect

of alternative optimal criteria on the rules can be readily seen.

It should be noted that the thesis is .chiefly concerned with

derivation of procedures in obtaining certain check-out rules which

satisfy given optimm criteria. As such, institutional and managerial

arrangements necessary in adopting the Optimal check-out rules to the

actual check-out Operation were considered outside the scope of this

thesis.

Prior to calculating expected costs of the check-out operation,

some statistical analyses were made of customer arrivals and service

times in order to determine how well the assumptions of Poisson arrival

and exponential service time will approximate the actual situation.

The chirsquare test of goodness-of-fit was used. The test results

indicated that in general the number of arriving customers per minute

follows closely a Poisson distribution. The negative exponential

distribution, however, did not seem to give the best fit to observations

on service time. Since the empirically derived distribution was skewed

to the left, another member of the gamma function family would probably

have given a better fit.‘ Nevertheless, the steady state probabilities

were calculated, based on this exponential service time hypothesis,

because the hypothesis. renders the mathematics manageable .

In the theoretical study of a queuing problem, the average arrival

rate and the average service rate are treated as thOugh they were known

am. In'an applied problem, they have to be estimated by some

statistical procedure; hence, they are subject to sampling fluctuations.
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Since a choice of an Optimum check-out rule depends on the estimates of

these quantities, it is natural to examine the sensitivity of the method

of choosing optimal check-out rules to changes in the estimated average

arrival rates and the estMated average service rate. This was done by

first obtaining the sampling distributions of these estimates and then

calculating their confidence limits. From these limits, a range of

variation in check-out rules was examined. This range was found to be

very small when the procedures were applied to the data obtained at the

store in Detroit.

Although use of such a queuing model enables a research worker to

analyze a given problem without going to the expense of actually dupli—

cating the situation, there are several points that ought to be further

examined for the model to be more useful.

The calculated state probability distribution pm, for n = O,

l, ..., can be checked for its accuracy by observing the frequency of

the formation of queues of all possible lengths. One could operate the

check-out stands for a period with fixed number of checkers and package

boys, and Observe the mmber of customers waiting for service at the

end of every interval, say one minute, during the period. Experiment

such as this is conceptually possible; however, the resource available

to the author did not permit carrying out the experiment at this time.

Little is known about the coefficient of the penalty function.

Probably some ideas can be obtained if one were to ask the customer in

the waiting line how much he considers his time is worth. Accurate

information about this coefficient is much needed in Obtaining the valid

solution of a queuing problem such as this. It might be desirable to
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consider enlisting the help of a psychologist in designing an experiment

for such a purpose.

- The hypothesis of exponential service time was used throughout

this study, because of its mathematical simplicity. An alternative

hypothesis is that of constant service time. A queuing model based on

this hypothesis is briefly described below. The hypotheses with respect

to input and queue discipline are the same as before.

Let

m : the number of check-out stands to be put in Operation.

k : the nunber of package boys.

1 : the average number of customers arriving per fixed time

interval. In particular, the tine interval is set equal

to the service timc. It should be noted that when A is

measured in this manner, it will depend on the controll-

able variables m and k because they affect the length of

average service time.

Each of the following set of equations relates the state probabili-

ity at the beginning and end of the interval which is equal to service

 

time:

P(n) = P(n+m)e + P(n+m-1)7\e )‘+ ....+. P(m+1) 7371')! e x

m 7. n _ )1 ‘

+[ 2 P(i) nl )e forn= o, 1,.... (5.1)

:0 ~ '

Equation (5.1) states that the probability that there are n customers

in the system at the end of the fixed interval is equal to the sum of

the probabilities of the following n+1 contingencies: 1) there are n+m

customers at the beginning 'of the interval and no customer comes during

the interval............n) there are m+1 customers at the beginning of

the interval and exactly n-l customers arrive during the interval, n+1)
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there are less than mtl people at the beginning of the interval but n

people arrive during ’the interval, so that at the end there are still

11 customers waiting.

It is not easy to solve this infinite set of equations.1 If the

solution is obtainable at a reasonable cost, the state probability

distribution may be calculated for each of the feasible average service

times. The expected cost corresponding to each service time can also

be calculated as in the model with exponential service time.

If an assumption in regard to the service mechanism is such that

an analytical approach to the queuing problem becomes so complex that

it is impossible to obtain a solution, a simulated sampling approach

may be adopted. Briefly, the procedure to be followed is this.

Observations on customer arrivals and service times are examined and

parameters of the theoretical distributions which are most likely to

give the best fitto the data are estimated. By means of a table of

random numbers, one can construct a scheme such that the drawing of a

random number will be from the population which has a known probability

distribution. This is done for both customer arrivals and service

times, using their respective estimated probability distributions.

For instance, a Inimber is drawn at random from the table of random

numbers at the end Of every fixed interval and if the mimber drawn

falls between 0 and 9000 it is interpreted that no customer has arrived

during that period; if it is between 9001 and 9999, then one customer

 h

1Everett (1953) suggested an iterative procedure to Obtain an

approximate solution.

# k ~’--'~‘~~:'4- ‘-—'M~ ~ -~ -.’—\‘ we"
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has arrived. In order to generate a sequence of random service times

from a known distribution, all the four-digit numbers may be grouped

according to the estimated service time distribution, and a certain

service time is assigned to each group of numbers: Repeated drawings

of numbers from the table will then give a sequence of service times

‘with the desired probability distribution. Next, the first random

service time is assigned to the first customer; the second random

service time to the second customer and so on. In this way, the

congestion situation at the check-out area can be simulated.

If such an experiment is carried out on a high-speed computer,

enough data can be Obtained to construct a frequency distribution of

the system in each of all the possible states in a very short period of

time. The expected cost can.be calculated based on this frequency

distribution. The process is repeated for different values of the

parameters of the arrival distribution and service time distribution

'until that expected cost which meets a given optimal criterion is found.

The above procedure is for the case of one service channel. If the

prOblem involves more than one service channel and if each of them has

a different prObability distribution, then as many sets of service times

as the number of service channels have to be drawn. A realistic rule

has to be set up to determine a manner in which a random service time

is to be assigned to each of the incoming customers, and the congestion

situation can.be simulated as before.

In the light of recent developments of high-speed computers, there

is much to be recommended for adopting the simulated sampling approach



65

to a queuing problem. The advantageof this approach is that there are

more flexibilities in regard to 'the assumptions about input and service

mechanism. It is quite likely that the future study of queuing problems

by the Monte Carlo method will yield many fruitful reSults .
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APPENDIX A

STATE PRQBABILITY DISTRIBUTION

The techniques of deriving state probability distributions have

been.presented by'a number of authors1 in a highly technical and often

abbreviated form.

In.this appendix, the assumptions and definitions upon which the

derivation of state prObability distributions will proceed are set

forth in detail and the derivation is presented step by step in order

to facilitate an understanding of the logic behind these techniques.

First of all, hypotheses about the service mechanism and input

process have to be specified.

Service time distribution:

Let the service time be defined as the time which elapses while a

particular customer is being served. The hypothesis about the service

time is as follows:

A check-out service It has started -pt
= e (o < te< O )

Pmb' extends beyond time t at time o

(A.l)

.For an interpretation of the parameter uq‘we take the expected

value of t. Since the equation (A.l) defines the cumulative distribution

function (c.d.f.) of service time in terms of its upper tail, we have

to first obtain.the c.d.f. in its usual form in order to calculate mean

of the random variate t.

 

1See Feller (1950), Kendall (1951) and Lindley (1952).
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F(T'_s_ t) a 1 - e’“t the c.d.f. of t in the

usual form.

'3':- = “e Int the density function

Hence 'E(t) = [éftue‘m’ dt = (A.2)

‘
F
h
—
J

Since E(t) is the mean service time, p, can be considered as the average

number of customers served per unit time. It is called the mean service

rate. '

From (A.1), the conditional probability that a check-out service

is completed between t and t + A t given that the service was being

rendered at time t can be calculated.

Pro 15 [Check-out service ends It did not end]

° between t and t + A t before time t

Prob [Check-out service does not terminate before t,]

a fbutendsbetweentandt+At¢ J

Prob,[Check-out service did not end before t]

e-ut -‘e -p(t +At)

 

9'1”

3 l_e-pot

. 1-[1-un.m_21;.>3_ - Lee—2.... 1

= not + 0(At) (L3)

The equation (A.3) is interpreted as follows: If at time t a!

check-out stand is occupied, then the probability that the stand would

teminate its operation during (t, t + A t) is pm; plus terms which

approach zero faster than At.
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Arrival Distribution:

The hypothesis adopted throughout this analysis is that the customer

arrivals consist of a Poisson process, i.e., the number of arrivals in

time t being a Poisson variable with mean At, say. This implies that

the time interval between two consecutive arrivals has the negative

expond'ltial distribution.2 This time interval is often referred to as

customer "idle" time.

Prob, [Every customer is idleat time o]

' and still is idle at time t

=- Prob.[No customer coming in during that period ]

-= e " M” (At)

Using (A.h), we can calculate the cOnditional probability of exactly

one arrival between (t, t 4- At) given that there is no arrival during

(o,t).

Prob. [Exactly one arrival No arrival

during (t, t Hit) between (o,t)

. 1 _ é -Mt

- 1A 1: + 00113) (A-S)

A is the mean arrival rate.

After the incoming traffic and the service mechanism have been

characterized in terms of probability as above (Poisson arrival and

exponential service time), the next thing to specify is the queue

discipline. It is assumed that a check-out system follows the so—called

 

2A proof of this statement can be found in Feller ( 1950), pp.

36h-367. .
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strict queue discipline. Since check-out stands, in the current study,

are classified into two groups depending on whether a package boy is

assisting a checker or not, it is necessary to adopt a rule in order to

decide how each arriving customer moves into a check-out lane. Let p1

and “2 denote respectively the average service rate of one check-out

stand that is operated by a checker alone and by a package boy and a

checker together. Suppose there are m-rk check-out stands with the

average service rate '11 and k check-out stands with the average service

rate“ 2. The rule is that LEI-15- fraction of the incoming customers "will

go through the counters with p1 average service rate and the remaining

fraction (1;?) will be served by the counters with pa average service

rate. In other words, the assignment of each customer to a service

channel is decided by tossing a coin with a ratio 235- : 3;; .

This completes the specification of the system. With these

assumptions, one can proceed to write equations which represent the

detailed balancing of transitions between states for a stationary

steady state.

Two contingencies have to be recognized. In the first situation,

the number of customers (11) present in the system is less than the

number of check-out stands (m) which are in operation. The second

situation is that the former is at least as great as the latter.

Adopting the terminology of the theory of stochastic process, we

shall say that the system is in state En' at time t when there are n

customers in the check-out system at that time.

The system will be in state En at time t + [it only under the

following conditions:
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1. The system is in En at time t and during (t, t e at) no customer

arrives or departs.

2. The system is in ELI-1.1 at time t and exactly one customer comes

'in during (t, t Hit).

3. The system is in En+l at time t, and exactly one customer leaves

the system.

Lt. During (t, t +1113), two or more customers arrive or depart.

It is assumed that the probability-of the last contingency becomes

insignificant as n t —-> 0. Hence, it was not considered in calculation

of the state probabilities. Since the first three situations are

mutually exclusive, the probabilities of these contingencies are

additive.

Let Pn(t) denote the probability that the system is in state En at

time t. First consider the situation 11 5 In. There the probability of

exactly n customers in the system at time t + [it is as follows:

Pn(tt-At)=[1 -).nt - (ll-(£119) it, + fik— I12)” 1Pn(t)+Mt Pn..l(t)

. “(Er—24331 p, + itallls [.12)At] Pn+l(t) + 0(At). (A.6)

From left to right, each term on the right hand side of (A.6) corres—

ponds to the probability of a contingency in the order listed in the

previous page. When the term Pn(t) is transposed to the left hand side

of (A.6) and the resulting expression is divided byA t, we have the

derivative of Pn( t) with respect to t by definition upon taking a limit

of the ratio as At --> O.
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To simplify notations, let

(“9&4 ” £32
 

 

m (A.6)

Then this derivative can be written as follows:

d? t

3: ) - -( Amp) Pn(t) 4: APn_1(t) t (n+l)an+l(t) (A.7)

for n g m

This is the same set of differential equations for the case where all

the service channels have equivalent service capacities.

Since the state probability Pn_1(t) is undefined for n-l < o, the

differential equation (A.7) is valid only for m =I>= n > 1. For n a c,

an equation similar to (A.6) has to be formulated.

Po(t +At) = (l rxbt) Po(t) *uAtPfit) + 0 (At) (11.8)

The above relation says that the probability of no customer in the

system at time .t + At is the sum of two independent probabilities:

l) probability of no customer in the system at time t and no arrival

during (t, t + At), and 2) probability of exactly one customer in the

system at time t and he will leave the system during (t, t 4» At). From

this equation, the derivative 93.3% is obtained in a similar manner

as in (A.7).

9.13.3?! u xpo(t) + pP1(t) (11.9)

Theoretically transient solutions, i.e., the solutions which depend

on the variate t, can be obtained by first deriving a partial differential
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eqlation for the generating function of state probability distributionf3

The mathematics, however, becomes rather involved. In the current study

it is assumed that a statistical equilibrium exists i.e., lim Pn(t) =

Pu“. acists, and only the so—called steady ,state solution iE-Ibtoained

from (As?) and (A.9).. This can be done by setting 93%;). :3 o and

923%)- = o and solving the following set of simultanecms equations by

recursionufor all relevant Pn's in terms of P0:

1P0 3 “Pl

(Ni- 1‘1an == APn + (n + 1) “Pm-1 O < n s m (A.10)
:-

The result of solving these relations relating the state probabilities

is
n- ‘

Pn== 319—8—- where o= l- (A.11)n‘ ’ I p

The second contingency that needs to be considered is the situation

in which there are more customers than the check-Pout stands in operation.

The basic system of differential equations for n g m is derived

from

Pn(t + At) = (1 - int - th)Pn(t) +Mt Pn..1(t) +

m Mt Pm1(t)' + 0 (At) (11.12)

The interpretation of the above equation is similar to that (of

(A.6) and (A.8). The differential equations are as follows:

 

3The partial differential equation for the generating function is

given in Feller (1950), p. 396.

4Supression of the variable ’0 indicates that the state probability

Pn is independent of time t.
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dIan“)

dt

 

= -( X + mu) Pn(t) +an_1(t) muPn+l(t-) (A.13)

Again a steady state solution is obtained by setting 9:39 = o.

The following set of simultaneous equations are then solved by

recursion.

(M mp) Pn = )‘Pn-l + man+l (hit)

The solution is

n

a 22L,forngm>o. (1)-15)
n-m

ml m

Pn

From (A .11) and (A.15), the probability that the system is in any

state except E0 can be calculated in terms of P0. In order to

determine Po, we make use of the condition 5 Pn = 1

By means of (A.ll) and (A.15), this condition can be more explicitly

written as follows:

m-l n m . n

“Po” trig? 3 9‘s]
n-O n==m m

then "F2 n m-l (A.16)

P P m
P31 =- r130 H + T1337" 7;")

(11.11), (A.15) and (A.16),together completely specify the distribution

of a statistically steady state. It should be noted from (A.15) that the

series ngm £3 coverges only when p< m. This can be seen from the

following argument:~ Divide both sides of (A.15) by P0 and sum it

over the index n from m to '.

I m o m
.2 :2 a '2? 21 (Eng) (A.17)

nam Po n-m



The right hand side of (A.17) is a geometric series, and it converges

m

 

f
to a limit (Ii-17‘6Hpe)

p < m was used as one of the criteria in eliminating unsatisfactory

only when p < m. This convergence condition

checkdout rules as explained in Chapter IV.

When the state probability distributions have been obtained, one

can proceed to determine means of a number of quantities which are of

interest in a queuing problem as well as explicit expressions for

derived probabilities. Quantities of special interest in the current

study are the mean number of customers in queue and the probability

that the rmmber of people in waiting line exceeds a certain pre—

specified number.

Let L be the mean queue length.
‘1

L'= E (n-m) P

q n==m+l n

, rises-lei p0

nmlmmm.

.911. 2. .2'2=P°mtm [li-Zm +3(m)+ ]

It can be seen that the quantity within the brackets converges

‘ 2

to a limit (#113) for p <m. Let g; = 1T.

lt2fl+3fl2 t ...........

=3 l hfl+fi2 + 0.000.000.

fl+fl2 + oooooooooo

“2" 000.000..
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_ m m m 2 .....
”—P *' “Mpfl+-—_m‘ T7 t

00.0000... ]

 

Ir"‘p

-02.. 2

“km-p)

a P PM? 11.18)
Hence Lq ($21) t(m-p) 2 (

Let Prob.(q s q*) denote the probability that the length of queue

is greater than q*. Since a queue exists when the nunber of customers

exceeds the number of check-out stands in operation, i.e., n > m, the

quantity mm is defined to be the length of queue.

Let n-m = q. q takes values from O, l,...,q*,

The probability distribution of the random variate q is given by sub-

stituting q for mu in (A.15).

II
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APPENDIX B

THE DISTRIBUTION FUNCTION OF ESTDiATED

AVERAGE SERVICE TIME

Let the joint density of n observations on service times be

n

. —p 2‘. ti

h(t1, tg,...,tn) =- ens i=1 (3.1)

and let § denote the maximlm likelihood estimate of average service

time where

 

One way to obtain the distribution of g is to apply the following

transformation to all the ti's in the density (B.l):

w1 = l o o ...o t1

wz l 1 o ...o ta

. l l l o..o .. (3.2)

Wn l ' " l tn

Then from the resulting transformed function, all the We except wn

are integrated out. Note that wn =- n'é . From the fornula (3.2), t's

can be expressed in terms of w's explicitly.
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t1\ = l o o w1\

\

t2 \ -1 l O o 0 W2 \

n \

i o -l 1 o o \ (B.3)

’ / . o '

tn/ 0 ~l l wn

The Jacobian of the transformation in this case is

5131

(NJ 1- 1

Hence we obtain the new density function of We as follows:

6 131
n w

h(t1,...,tn) ‘62}: + =p. e'“ n (3.1;)

 

where t's are expressed in terms of we by the relation (B .3). Next

step is-to find the appropriate region of integration for wl, ...,wn..1.

From the first two equations in the system (B .3) and o' 5 t1 <~ for all

i's, we see that or< w1 ng. Similarly from the lat, 2nd and 13rd-

equations w,2 can be seen to take a value between 0 and w3, etc., and

finally 0 < wn'g y. Hence the cumulative distribution of wn is given

by

W

w 2 -
Prob (wn<y)=l-&n/o'y/; n ...... ""/o e Wn dwl .....dwn

n y __

=_)-—(n-lI. 4 e I‘m wnr11 dwn. (B5)

Since we are interested in the distribution of 11:3 we must make one more

transformation .
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Let Er? a D 33:3 = n . ....... Jacobian

9

Then

Pb(1'13'<)- “n /y ‘VmAe(g)n"l d6ro . n y - m7, O e n n.

n y -pn 9 . n—l

" nilll 6 e 9 ‘19 (3.6)

The distribution (B .6) can be integrated as follows:

.- ~ I A _

{yee‘m Ben—lag = ['eW {(un 9)n1+ (n-l)( pn9)n 2

a _ __ Y

(n—1>(n-2>(une)n 3 * M (n W} 1 o

n—l x e ‘W m1
= Wm)“ - W— [(p,ny) ..... + (n-l)l].

Hence 'n-l

98 A

.éEE)T_/y 99 de

l l o

n-1 n-2

_ “WW éfl¥__ #1513.
e [ n-lt + n-2I +...+ l]

n ‘ ' i-l ' .

a - ‘1‘“ >3 1%l e 131 l l t (8.7)

The equation (B .7) is the desired distribution function. It is an

incomplete gamma function and has the form of a Poisson distribution

with the parameter my.
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